Sample records for casting technology research

  1. Wide Strip Casting Technology of Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Park, W.-J.; Kim, J. J.; Kim, I. J.; Choo, D.

    Extensive investigations relating to the production of high performance and low cost magnesium sheet by strip casting have been performed for the application to automotive parts and electronic devices. Research on magnesium sheet production technology started in 2004 by Research Institute of Industrial Science and Technology (RIST) with support of Pohang Iron and Steel Company (POSCO). POSCO has completed the world's first plant to manufacture magnesium coil. Another big project in order to develop wide strip casting technology for the automotive applications of magnesium sheets was started in succession.

  2. Development of an Innovative Laser-Assisted Coating Process for Extending Lifetime of Metal Casting Dies. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madhav Rao Gonvindaraju

    1999-10-18

    Die casting dies used in the metal casting industry fail due to thermal fatigue cracking accompanied by the presence of residual tensile stresses, corrosion, erosion and wear of die surfaces. This phase 1 SBIR Final Report summarize Karta Technologies research involving the development of an innovative laser coating technology for metal casting dies. The process involves depositing complex protective coatings of nanocrystalline powders of TiC followed by a laser shot peening. The results indicate a significant improvement in corrosion and erosion resistance in molten aluminum for H13 die casting die steels. The laser-coated samples also showed improved surface finish, amore » homogeneous and uniform coating mircrostructure. The technology developed in this research can have a significant impact on the casting industry by saving the material costs involved in replacing dies, reducing downtime and improving the quality.« less

  3. Research on the influence of moulding-casting technology on the quality of castings

    NASA Astrophysics Data System (ADS)

    Josan, A.; Pinca Bretotean, C.; Raţiu, S.; Ardelean, E.; Ardelean, M.

    2017-05-01

    The quality of castings has a particularly role in the Romanian foundries. In this context, quality assurance is the overall objective of the foundries. The paper presents the critical analysis performed on moulding-casting technology of the type Lifting mechanism. This casting is a subset of the lifting and rotating mechanism of the furnace vault. The casting analysed is a medium size, with weight of 114 kg. The current moulding-casting technology involves moulding into three mould-parts leading to the occurrence of defects (decentering of the core, displacement of the lower mould and the middle mould and occurrence of burrs in area separated. Thus, to reduce the percentage of defects registered in industrial practice is necessary to change the moulding-casting technology. This requires the use of two mould-parts, re-dimensioning of the core and the core box and dimensioning of the runner network. The adoption of these changes in industrial practice has direct implications on the cost of casting and foundry costs default.

  4. Mississippi State University Center for Air Sea Technology FY95 Research Program

    NASA Technical Reports Server (NTRS)

    Yeske, Lanny; Corbin, James H.

    1995-01-01

    The Mississippi State University (MSU) Center for Air Sea Technology (CAST) evolved from the Institute for Naval Oceanography's (INO) Experimental Center for Mesoscale Ocean Prediction (ECMOP) which was started in 1989. MSU CAST subsequently began operation on 1 October 1992 under an Office of Naval Research (ONR) two-year grant which ended on 30 September 1994. In FY95 MSU CAST was successful in obtaining five additional research grants from ONR, as well as several other research contracts from the Naval Oceanographic Office via NASA, the Naval Research Laboratory, the Army Corps of Engineers, and private industry. In the past, MSU CAST technical research and development has produced tools, systems, techniques, and procedures that improve efficiency and overcome deficiency for both the operational and research communities residing with the Department of Defense, private industry, and university ocean modeling community. We continued this effort with the following thrust areas: to develop advanced methodologies and tools for model evaluation, validation and visualization, both oceanographic and atmospheric; to develop a system-level capability for conducting temporally and ; spatially scaled ocean simulations driven by or are responsive to ocean models, and take into consideration coupling to atmospheric models; to continue the existing oceanographic/atmospheric data management task with emphasis on distributed databases in a network environment, with database optimization and standardization, including use of Mosaic and World Wide Web (WWW) access; and to implement a high performance parallel computing technology for CAST ocean models

  5. Continuation of Crosscutting Technology Development at Cast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Roe-Hoan

    2012-03-31

    This Final Technical Report describes progress made on the sub-projects awarded in the Cooperative Agreement DE-FC26-05NT42457: Continuation of Crosscutting Technology Development at Center for Advanced Separation Technologies (CAST). The final reports for each sub-project are attached in the appendix. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: a) Solid-solid separation b) Solid-liquid separation c) Chemical/Biological Extraction d) Modeling and Control, and e) Environmental Control.

  6. Tutorial Video Series: Using Stakeholder Outreach to Increase Usage of ToxCast Data (SETAC EU)

    EPA Science Inventory

    The limited amount of toxicity data on thousands of chemicals found in consumer products has led to the development of research endeavors such as the U.S. EPA’s Toxicity Forecaster (ToxCast). ToxCast uses high-throughput screening technology to evaluate thousands of chemicals for...

  7. Building the Sun4Cast System: Improvements in Solar Power Forecasting

    DOE PAGES

    Haupt, Sue Ellen; Kosovic, Branko; Jensen, Tara; ...

    2017-06-16

    The Sun4Cast System results from a research-to-operations project built on a value chain approach, and benefiting electric utilities’ customers, society, and the environment by improving state-of-the-science solar power forecasting capabilities. As integration of solar power into the national electric grid rapidly increases, it becomes imperative to improve forecasting of this highly variable renewable resource. Thus, a team of researchers from public, private, and academic sectors partnered to develop and assess a new solar power forecasting system, Sun4Cast. The partnership focused on improving decision-making for utilities and independent system operators, ultimately resulting in improved grid stability and cost savings for consumers.more » The project followed a value chain approach to determine key research and technology needs to reach desired results. Sun4Cast integrates various forecasting technologies across a spectrum of temporal and spatial scales to predict surface solar irradiance. Anchoring the system is WRF-Solar, a version of the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model optimized for solar irradiance prediction. Forecasts from multiple NWP models are blended via the Dynamic Integrated Forecast (DICast) System, the basis of the system beyond about 6 h. For short-range (0-6 h) forecasts, Sun4Cast leverages several observation-based nowcasting technologies. These technologies are blended via the Nowcasting Expert System Integrator (NESI). The NESI and DICast systems are subsequently blended to produce short to mid-term irradiance forecasts for solar array locations. The irradiance forecasts are translated into power with uncertainties quantified using an analog ensemble approach, and are provided to the industry partners for real-time decision-making. The Sun4Cast system ran operationally throughout 2015 and results were assessed. As a result, this paper analyzes the collaborative design process, discusses the project results, and provides recommendations for best-practice solar forecasting.« less

  8. Building the Sun4Cast System: Improvements in Solar Power Forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haupt, Sue Ellen; Kosovic, Branko; Jensen, Tara

    The Sun4Cast System results from a research-to-operations project built on a value chain approach, and benefiting electric utilities’ customers, society, and the environment by improving state-of-the-science solar power forecasting capabilities. As integration of solar power into the national electric grid rapidly increases, it becomes imperative to improve forecasting of this highly variable renewable resource. Thus, a team of researchers from public, private, and academic sectors partnered to develop and assess a new solar power forecasting system, Sun4Cast. The partnership focused on improving decision-making for utilities and independent system operators, ultimately resulting in improved grid stability and cost savings for consumers.more » The project followed a value chain approach to determine key research and technology needs to reach desired results. Sun4Cast integrates various forecasting technologies across a spectrum of temporal and spatial scales to predict surface solar irradiance. Anchoring the system is WRF-Solar, a version of the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model optimized for solar irradiance prediction. Forecasts from multiple NWP models are blended via the Dynamic Integrated Forecast (DICast) System, the basis of the system beyond about 6 h. For short-range (0-6 h) forecasts, Sun4Cast leverages several observation-based nowcasting technologies. These technologies are blended via the Nowcasting Expert System Integrator (NESI). The NESI and DICast systems are subsequently blended to produce short to mid-term irradiance forecasts for solar array locations. The irradiance forecasts are translated into power with uncertainties quantified using an analog ensemble approach, and are provided to the industry partners for real-time decision-making. The Sun4Cast system ran operationally throughout 2015 and results were assessed. As a result, this paper analyzes the collaborative design process, discusses the project results, and provides recommendations for best-practice solar forecasting.« less

  9. A Winning Cast

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Howmet Research Corporation was the first to commercialize an innovative cast metal technology developed at Auburn University, Auburn, Alabama. With funding assistance from NASA's Marshall Space Flight Center, Auburn University's Solidification Design Center (a NASA Commercial Space Center), developed accurate nickel-based superalloy data for casting molten metals. Through a contract agreement, Howmet used the data to develop computer model predictions of molten metals and molding materials in cast metal manufacturing. Howmet Metal Mold (HMM), part of Howmet Corporation Specialty Products, of Whitehall, Michigan, utilizes metal molds to manufacture net shape castings in various alloys and amorphous metal (metallic glass). By implementing the thermophysical property data from by Auburn researchers, Howmet employs its newly developed computer model predictions to offer customers high-quality, low-cost, products with significantly improved mechanical properties. Components fabricated with this new process replace components originally made from forgings or billet. Compared with products manufactured through traditional casting methods, Howmet's computer-modeled castings come out on top.

  10. Casting Technology.

    ERIC Educational Resources Information Center

    Wright, Michael D.; And Others

    1992-01-01

    Three articles discuss (1) casting technology as it relates to industry, with comparisons of shell casting, shell molding, and die casting; (2) evaporative pattern casting for metals; and (3) high technological casting with silicone rubber. (JOW)

  11. ExpoCast: Exposure Science for Prioritization and Toxicity Testing (S)

    EPA Science Inventory

    The US EPA is completing the Phase I pilot for a chemical prioritization research program, called ToxCast. Here EPA is developing methods for using computational chemistry, high-throughput screening, and toxicogenomic technologies to predict potential toxicity and prioritize limi...

  12. ExpoCast: Exposure Science for Prioritization and Toxicity Testing

    EPA Science Inventory

    The US EPA is completing the Phase I pilot for a chemical prioritization research program, called ToxCastTM. Here EPA is developing methods for using computational chemistry, high-throughput screening, and toxicogenomic technologies to predict potential toxicity and prioritize l...

  13. Novel technologies for the lost foam casting process

    NASA Astrophysics Data System (ADS)

    Jiang, Wenming; Fan, Zitian

    2018-03-01

    Lost foam casting (LFC) is a green precision casting process categorized as a near net forming technology. Yet, despite its popularity, it still suffers from some technological problems, such as poor filling ability of the castings, coarse and non-dense microstructure, low mechanical properties for the Al and Mg LFC processes, and defective carburization for the low carbon steel LFC process. These drawbacks restrict the development and widespread application of the LFC process. To solve these problems, the present study developed several novel LFC technologies, namely, LFC technologies under vacuum and low pressure, vibration solidification, and pressure solidification conditions; expendable shell casting technology; and preparation technology of bimetallic castings based on the LFC process. The results showed that the LFC under vacuum and low pressure evidently improved the filling ability and solved the oxidization problem of the alloys, which is suitable for producing complex and thinwall castings. The vibration and pressure solidifications increased the compactness of the castings and refined the microstructure, significantly improving the mechanical properties of the castings. The expendable shell casting technology could solve the pore, carburization, and inclusion defects of the traditional LFC method, obtaining castings with acceptable surface quality. Moreover, the Al/Mg and Al/Al bimetallic castings with acceptable metallurgical bonding were successfully fabricated using the LFC process. These proposed novel LFC technologies can solve the current technological issues and promote the technological progress of the LFC process.

  14. The US EPAs ToxCast Program for the Prioritization and Prediction of Environmental Chemical Toxicity

    EPA Science Inventory

    To meet the need for evaluating large numbers of chemicals for potential toxicity, the U.S. Environmental Protection Agency has initiated a research project call ToxCast that makes use of recent advances in molecular biology and high-throughput screening. These technologies have ...

  15. [Registration technology for mandibular angle osteotomy based on augmented reality].

    PubMed

    Zhu, Ming; Chai, Gang; Zhang, Yan; Ma, Xiao-Fei; Yu, Zhe-Yuan; Zhu, Yi-Jia

    2010-12-01

    To establish an effective path to register the operative plan to the real model of mandible made by rapid prototyping (RP) technology. Computerize tomography (CT) was performed on 20 patients to create 3D images, and computer aided operation planning information can be merged with the 3D images. Then dental cast was used to fix the signal which can be recognized by the software. The dental cast was transformed to 3D data with a laser scanner and a programmer that run on a personal computer named Rapidform matching the dental cast and the mandible image to generate the virtual image. Then the registration was achieved by video monitoring system. By using this technology, the virtual image of mandible and the cutting planes both can overlay the real model of mandible made by RP. This study found an effective way for registration by using dental cast, and this way might be a powerful option for the registration of augmented reality. Supported by Program for Innovation Research Team of Shanghai Municipal Education Commission.

  16. CASTING DEFECT MODELING IN AN INTEGRATED COMPUTATIONAL MATERIALS ENGINEERING APPROACH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabau, Adrian S

    2015-01-01

    To accelerate the introduction of new cast alloys, the simultaneous modeling and simulation of multiphysical phenomena needs to be considered in the design and optimization of mechanical properties of cast components. The required models related to casting defects, such as microporosity and hot tears, are reviewed. Three aluminum alloys are considered A356, 356 and 319. The data on calculated solidification shrinkage is presented and its effects on microporosity levels discussed. Examples are given for predicting microporosity defects and microstructure distribution for a plate casting. Models to predict fatigue life and yield stress are briefly highlighted here for the sake ofmore » completion and to illustrate how the length scales of the microstructure features as well as porosity defects are taken into account for modeling the mechanical properties. Thus, the data on casting defects, including microstructure features, is crucial for evaluating the final performance-related properties of the component. ACKNOWLEDGEMENTS This work was performed under a Cooperative Research and Development Agreement (CRADA) with the Nemak Inc., and Chrysler Co. for the project "High Performance Cast Aluminum Alloys for Next Generation Passenger Vehicle Engines. The author would also like to thank Amit Shyam for reviewing the paper and Andres Rodriguez of Nemak Inc. Research sponsored by the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office, as part of the Propulsion Materials Program under contract DE-AC05-00OR22725 with UT-Battelle, LLC. Part of this research was conducted through the Oak Ridge National Laboratory's High Temperature Materials Laboratory User Program, which is sponsored by the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program.« less

  17. Producing Foils From Direct Cast Titanium Alloy Strip

    NASA Technical Reports Server (NTRS)

    Stuart, T. A.; Gaspar, T. A.; Sukonnik, I. M.; Semiatan, S. L.; Batawi, E.; Peters, J. A.; Fraser, H. L.

    1996-01-01

    This research was undertaken to demonstrate the feasibility of producing high-quality, thin-gage, titanium foil from direct cast titanium strip. Melt Overflow Rapid Solidification Technology (MORST) was used to cast several different titanium alloys into 500 microns thick strip, 10 cm wide and up to 3 m long. The strip was then either ground, hot pack rolled or cold rolled, as appropriate, into foil. Gamma titanium aluminide (TiAl) was cast and ground to approximately 100 microns thick foil and alpha-2 titanium aluminide (Ti3AI) was cast and hot pack rolled to approximately 70 microns thick foil. CP Ti, Ti6Al2Sn4Zr2Mo, and Ti22AI23Nb (Orthorhombic), were successfully cast and cold-rolled into good quality foil (less than 125 microns thick). The foils were generally fully dense with smooth surfaces, had fine, uniform microstructures, and demonstrated mechanical properties equivalent to conventionally produced titanium. By eliminating many manufacturing steps, this technology has the potential to produce thin gage, titanium foil with good engineering properties at significantly reduced cost relative to conventional ingot metallurgy processing.

  18. Synthetic Vision System Commercial Aircraft Flight Deck Display Technologies for Unusual Attitude Recovery

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Ellis, Kyle E.; Arthur, Jarvis J.; Nicholas, Stephanie N.; Kiggins, Daniel

    2017-01-01

    A Commercial Aviation Safety Team (CAST) study of 18 worldwide loss-of-control accidents and incidents determined that the lack of external visual references was associated with a flight crew's loss of attitude awareness or energy state awareness in 17 of these events. Therefore, CAST recommended development and implementation of virtual day-Visual Meteorological Condition (VMC) display systems, such as synthetic vision systems, which can promote flight crew attitude awareness similar to a day-VMC environment. This paper describes the results of a high-fidelity, large transport aircraft simulation experiment that evaluated virtual day-VMC displays and a "background attitude indicator" concept as an aid to pilots in recovery from unusual attitudes. Twelve commercial airline pilots performed multiple unusual attitude recoveries and both quantitative and qualitative dependent measures were collected. Experimental results and future research directions under this CAST initiative and the NASA "Technologies for Airplane State Awareness" research project are described.

  19. The Design and Construction Process of a Test Stand for Casting the Power Steering’S Housing with the Use of the Pdcpd Material

    NASA Astrophysics Data System (ADS)

    Sobek, M.; Baier, A.; Grabowski, Ł.

    2018-01-01

    The use of new technologies and materials in various industries is a natural process that is directly related to the very high rate of development of these technologies. Certain industries decide to much faster introduce new technologies and materials. One of such branches is the automotive industry, whose representatives are very energetically looking for both financial savings and savings resulting from the vehicles mass reduction. An economically justified approach to construction materials is leading the search for new solutions and materials. The use of a modern material such as the two-component PDCPD composite shows hitherto unknown possibilities of producing subassemblies of many different constructions. The possibility of using a modern composite material with parameters comparable to that of metals and significantly lighter, can be an excellent alternative in the selection of materials for many parts of motor vehicles. The potentiality of precise casting of tolerated surfaces will allow to reduce the operations related to machining process, which is an indispensable part of the production process of elements that are cast of metal. This article describes the process of designing and building a test stand for precise positioning of power steering gear components at the stage of casting their housing. The article presents the principle of operation of the test stand and the process of preparation for the casting and the cast itself will be rudely described. Due to the implementation of research as part of a research project with an industrial partner, the article will only describe some operations. This is related to the confidentiality of the project.

  20. Fatigue behavior in rheocast aluminum 357 suspension arms using the SEED process

    NASA Astrophysics Data System (ADS)

    Samuel, Ehab; Zheng, Chang-Qing; Bouaicha, Amine; Bouazara, Mohamed

    Extensive studies have been devoted to the use of aluminum alloys in the automotive industry, by virtue of the favourable mechanical properties that can be attained. Moreover, the aluminum casting method employed has also been the subject of scrutiny, given the multitude of casting options available. The present work serves to illustrate the advancements made in the area of rheocasting, using the SEED method, as carried out at the National Research Council Canada — Aluminum Technology Centre. The SEED (Swirled Enthalpy Equilibration Device) process, which relies on heat extraction of the liquid aluminum alloy via mechanical agitation in a confined cylinder to form the semi-solid billet, has already proven successful in producing sound aluminum castings having an excellent combination of strength and ductility. Moreover, fatigue testing on the cast alloy parts has shown enormous potential for this emerging technology.

  1. DSSTox ToxCast and Tox21 Chemical Inventories: Laying the Foundation for the U.S. EPA’s Computational Toxicology Research Programs

    EPA Science Inventory

    High quality chemical structure inventories provide the foundation of the U.S. EPA’s ToxCast and Tox21 projects, which are employing high-throughput technologies to screen thousands of chemicals in hundreds of biochemical and cell-based assays, probing a wide diversity of targets...

  2. An improved method for collecting and monitoring pine oleoresin

    Treesearch

    Dick Karsky; Brian Strom; Harold Thistle

    2004-01-01

    A new method for collecting and monitoring pine oleoresin has been developed through a cooperative project involving the Missoula Technology Development Center (MTDC), Southern Research Station (Brian Strom, research entomologist), and the Forest Health Technology Enterprise Team. The new sampling unit (figure 1) is cast from rugged plastic. It provides a closed system...

  3. Venous haemodynamics of Jet Impulse Technology within a lower limb fibreglass cast: a randomized controlled trial.

    PubMed

    Braithwaite, Irene; Mackintosh, Stephen; Buchanan, Samantha; Schwarzenlander, Kerstin; De Ruyter, Bernadette

    2017-02-01

    We investigated popliteal venous haemodynamics of the VenaJet Jet Impulse Technology system within a below-knee fibreglass cast. Randomized controlled trial. Twenty-four healthy participants aged 18-54 had both feet placed within the Jet Impulse Technology system and were randomised for one or other leg to be within a below-knee fibreglass cast. Pacific Radiology, Lower Hutt, Wellington. The primary outcome variable was peak systolic velocity (cm/s) compared between legs with and without the cast at 60 min (after 10 min Jet Impulse Technology activation), using a mixed linear model and a non-inferiority bound of 4.8 cm/s. Secondary outcome variables were the difference in peak systolic velocity between the casted limb and the non-casted limb at baseline and 40 min after casting, and the difference in mean flow velocity (cm/s), vein diameter (mm), and total volume flow (L/min) between the casted limb and the non-casted limb at baseline, 40 and 60 min. The mean (standard deviation) peak systolic velocity was 4.6(1.5), 4.8(1.1), 28.8(16.1), and 4.3(1.2), 4.8(1.4) and 29.3(19.0) cm/s at baseline, 40 and 60 min in the casted and non-casted leg, respectively. The difference (95% confidence interval) between cast and no-cast at 60 min was -0.8 (-6.5 to 4.9) cm/s, P  = 0.78. The peak systolic velocity, flow velocity and total volume flow at 40 min were not statistically significantly different from baseline for both casted and non-casted limb. In healthy volunteers, the popliteal venous haemodynamics of the Jet Impulse Technology system was similar between the legs with and without a below-knee fibreglass cast. In-cast Jet Impulse Technology may provide a non-pharmacological option for venous thromboembolism prophylaxis for lower-limb cast-immobility.

  4. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Light Metals Permanent Mold Casting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fasoyinu, Yemi

    2014-03-31

    Current vehicles use mostly ferrous components for structural applications. It is possible to reduce the weight of the vehicle by substituting these parts with those made from light metals such as aluminum and magnesium. Many alloys and manufacturing processes can be used to produce these light metal components and casting is known to be most economical. One of the high integrity casting processes is permanent mold casting which is the focus of this research report. Many aluminum alloy castings used in automotive applications are produced by the sand casting process. Also, aluminum-silicon (Al-Si) alloys are the most widely used alloymore » systems for automotive applications. It is possible that by using high strength aluminum alloys based on an aluminum-copper (Al-Cu) system and permanent mold casting, the performance of these components can be enhanced significantly. This will also help to further reduce the weight. However, many technological obstacles need to be overcome before using these alloys in automotive applications in an economical way. There is very limited information in the open literature on gravity and low-pressure permanent mold casting of high strength aluminum alloys. This report summarizes the results and issues encountered during the casting trials of high strength aluminum alloy 206.0 (Al-Cu alloy) and moderate strength alloy 535.0 (Al-Mg alloy). Five engineering components were cast by gravity tilt-pour or low pressure permanent mold casting processes at CanmetMATERIALS (CMAT) and two production foundries. The results of the casting trials show that high integrity engineering components can be produced successfully from both alloys if specific processing parameters are used. It was shown that a combination of melt processing and mold temperature is necessary for the elimination of hot tears in both alloys.« less

  5. Materials for advanced ultrasupercritical steam turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purgert, Robert; Shingledecker, John; Saha, Deepak

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have sponsored a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired power plants capable of operating at much higher efficiencies than the current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of advanced ultrasupercritical (A-USC) steam conditions. A limiting factor in this can be the materials of construction for boilers and for steam turbines. The overall project goal is to assess/develop materials technology that will enable achieving turbinemore » throttle steam conditions of 760°C (1400°F)/35MPa (5000 psi). This final technical report covers the research completed by the General Electric Company (GE) and Electric Power Research Institute (EPRI), with support from Oak Ridge National Laboratory (ORNL) and the National Energy Technology Laboratory (NETL) – Albany Research Center, to develop the A-USC steam turbine materials technology to meet the overall project goals. Specifically, this report summarizes the industrial scale-up and materials property database development for non-welded rotors (disc forgings), buckets (blades), bolting, castings (needed for casing and valve bodies), casting weld repair, and casting to pipe welding. Additionally, the report provides an engineering and economic assessment of an A-USC power plant without and with partial carbon capture and storage. This research project successfully demonstrated the materials technology at a sufficient scale and with corresponding materials property data to enable the design of an A-USC steam turbine. The key accomplishments included the development of a triple-melt and forged Haynes 282 disc for bolted rotor construction, long-term property development for Nimonic 105 for blading and bolting, successful scale-up of Haynes 282 and Nimonic 263 castings using traditional sand foundry practices, and a techno-economic study of an A-USC plant including cost estimates for an A-USC turbine which showed A-USC to be economically attractive for partial carbon and capture compared to today’s USC technology. Based on this successful materials research and a review with U.S. utility stakeholders, a new project to develop a component test facility (ComTest) including the world’s first A-USC turbine has been proposed to continue the technology development.« less

  6. Venous haemodynamics of Jet Impulse Technology within a lower limb fibreglass cast: a randomized controlled trial

    PubMed Central

    Mackintosh, Stephen; Buchanan, Samantha; Schwarzenlander, Kerstin; De Ruyter, Bernadette

    2017-01-01

    Objectives We investigated popliteal venous haemodynamics of the VenaJet Jet Impulse Technology system within a below-knee fibreglass cast. Design Randomized controlled trial. Participants Twenty-four healthy participants aged 18–54 had both feet placed within the Jet Impulse Technology system and were randomised for one or other leg to be within a below-knee fibreglass cast. Setting Pacific Radiology, Lower Hutt, Wellington Main outcome measures The primary outcome variable was peak systolic velocity (cm/s) compared between legs with and without the cast at 60 min (after 10 min Jet Impulse Technology activation), using a mixed linear model and a non-inferiority bound of 4.8 cm/s. Secondary outcome variables were the difference in peak systolic velocity between the casted limb and the non-casted limb at baseline and 40 min after casting, and the difference in mean flow velocity (cm/s), vein diameter (mm), and total volume flow (L/min) between the casted limb and the non-casted limb at baseline, 40 and 60 min. Results The mean (standard deviation) peak systolic velocity was 4.6(1.5), 4.8(1.1), 28.8(16.1), and 4.3(1.2), 4.8(1.4) and 29.3(19.0) cm/s at baseline, 40 and 60 min in the casted and non-casted leg, respectively. The difference (95% confidence interval) between cast and no-cast at 60 min was −0.8 (−6.5 to 4.9) cm/s, P = 0.78. The peak systolic velocity, flow velocity and total volume flow at 40 min were not statistically significantly different from baseline for both casted and non-casted limb. Conclusion In healthy volunteers, the popliteal venous haemodynamics of the Jet Impulse Technology system was similar between the legs with and without a below-knee fibreglass cast. In-cast Jet Impulse Technology may provide a non-pharmacological option for venous thromboembolism prophylaxis for lower-limb cast-immobility. PMID:28203384

  7. An Analysis of Industrial Technology Curriculum and Its Significance to the Casting Industry.

    ERIC Educational Resources Information Center

    Hauser, Roger Emmett

    The purpose of this study was to determine to what extent industrial technology programs are training technologists in light of the needs of the casting industry. To determine the type of curriculum needed to prepare individuals for entry into the casting industry, and to study industrial technology programs as they relate to metal casting,…

  8. The influence of cooling parameters on the speed of continuous steel casting

    NASA Astrophysics Data System (ADS)

    Tirian, G. O.; Gheorghiu, C. A.; Hepuţ, T.; Chioncel, C. P.

    2018-01-01

    This paper analyzes the cooling parameters of the continuous casting speed. In the researches carried out we aimed to establish some correlation equations between the parameters characterizing the continuous casting process, the temperature of the steel at the entrance to the crystallizer, the superheating of the steel and the flow of the cooling water in the crystallizer and different zones of the secondary cooling. Parallel to these parameters were also the values for the casting speed. The research was made for the casting of round ϕ270mm semi-finished steel products. The steel was developed in an electric EBT furnace with a capacity of 100t, treated in L.F. (Ladle - Furnace) and VD (Vacuum-Degassing) and poured in a 5-wire continuous casting plant. The obtained data was processed in MATLAB using three types of correlation equations. The obtained results are presented both in the analytical and graphical form, each correlation being analyzed from the technological point of view, indicating the optimal values for the independent parameters monitored. In the analysis we present a comparison between the results obtained after the three types of equations for each correlation.

  9. Research Progresses and Suggestions of Manufacturing Technologies of Engine Bearing Bushes

    NASA Astrophysics Data System (ADS)

    Cao, J.; Yin, Z. W.; Li, H. L.; Y Gao, G.

    2017-12-01

    Bearing bush is a key part of diesel engine, and its performance directly influences the life of whole machine. Several manufacturing technologies of bearing bush such as centrifugal casting, sintering, electroplating and magnetron sputtering have been overviewed. Their bond strength, porosity, production efficient, layer thickness, frictional coefficient and corresponding materials analyzed and compared. Results show that the porosity and oxidation of sintering and centrifugal casting are higher than that of other two methods. However, the production efficiency and coating thickness are better than that of electroplating and magnetron sputtering. Based on above comparisons and discussions, the improvements of all manufacturing technologies are suggested and supersonic cold spraying is suggested. It is proved that cold spraying technology is the best choice in the future with the developing of low frictional materials.

  10. Cast CF8C-Plus Stainless Steel for Turbocharger Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maziasz, P.J.; Shyam, A.; Evans, N.D.

    2010-06-30

    The purpose of this Cooperative Research and Development Agreement (CRADA) project is to provide the critical test data needed to qualify CF8C-Plus cast stainless steel for commercial production and use for turbocharger housings with upgraded performance and durability relative to standard commercial cast irons or stainless steels. The turbocharger technologies include, but are not limited to, heavy-duty highway diesel engines, and passenger vehicle diesel and gasoline engines. This CRADA provides additional critical high-temperature mechanical properties testing and data analysis needed to quality the new CF8C-Plus steels for turbocharger housing applications.

  11. Cast Metals Coalition Technology Transfer and Program Management Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwyn, Mike

    2009-03-31

    The Cast Metals Coalition (CMC) partnership program was funded to ensure that the results of the Department of Energy's (DOE) metalcasting research and development (R&D) projects are successfully deployed into industry. Specifically, the CMC program coordinated the transfer and deployment of energy saving technologies and process improvements developed under separately funded DOE programs and projects into industry. The transition of these technologies and process improvements is a critical step in the path to realizing actual energy savings. At full deployment, DOE funded metalcasting R&D results are projected to save 55% of the energy used by the industry in 1998. Thismore » closely aligns with DOE's current goal of driving a 25% reduction in industrial energy intensity by 2017. In addition to benefiting DOE, these energy savings provide metalcasters with a significant economic advantage. Deployment of already completed R&D project results and those still underway is estimated to return over 500% of the original DOE and industry investment. Energy savings estimates through December 2008 from the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) portfolio of projects alone are 12 x 1012 BTUs, with a projection of over 50 x 1012 BTUs ten years after program completion. These energy savings and process improvements have been made possible through the unique collaborative structure of the CMC partnership. The CMC team consists of DOE's Office of Industrial Technology, the three leading metalcasting technical societies in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders Society of America; and the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. CMC provides collaborative leadership to a complex industry composed of approximately 2,100 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people. Without collaboration, new technologies enabling energy efficiencies and environment-friendly improvements are slow to develop, and have trouble obtaining a broad application. The CMC team was able to effectively and efficiently transfer the results of DOE's metalcasting R&D projects to industry by utilizing and delivering the numerous communication vehicles identified in the proposal. The three metalcasting technical associations achieved significant technology transition results under this program. In addition to reaching over 23,000 people per year through Modern Casting and 28,000 through Engineered Casting Solutions, AFS had 84 national publications and reached over 1,200 people annually through Cast Metals Institute (CMI) education courses. NADCA's education department reached over 1,000 people each year through their courses, in addition to reaching over 6,000 people annually through Die Casting Engineer, and publishing 58 papers. The SFSA also published 99 research papers and reached over 1,000 people annually through their member newsletters. In addition to these communication vehicles, the CMC team conducted numerous technical committee meetings, project reviews, and onsite visits. All of these efforts to distribute the latest metalcasting technologies contributed to the successful deployment of DOE's R&D projects into industry. The DOE/CMC partnership demonstrated significant success in the identification and review of relevant and easy-to-implement metalcasting energy-saving processes and technologies so that the results are quickly implemented and become general practice. The results achieved in this program demonstrate that sustained technology transfer efforts are a critical step in the deployment of R&D projects to industry.« less

  12. Additive Manufacturing and Casting Technology Comparison: Mechanical Properties, Productivity and Cost Benchmark

    NASA Astrophysics Data System (ADS)

    Vevers, A.; Kromanis, A.; Gerins, E.; Ozolins, J.

    2018-04-01

    The casting technology is one of the oldest production technologies in the world but in the recent years metal additive manufacturing also known as metal 3D printing has been evolving with huge steps. Both technologies have capabilities to produce parts with internal holes and at first glance surface roughness is similar for both technologies, which means that for precise dimensions parts have to be machined in places where precise fit is necessary. Benchmark tests have been made to find out if parts which are produced with metal additive manufacturing can be used to replace parts which are produced with casting technology. Most of the comparative tests have been made with GJS-400-15 grade which is one of the most popular cast iron grades. To compare mechanical properties samples have been produced using additive manufacturing and tested for tensile strength, hardness, surface roughness and microstructure and then the results have been compared with the samples produced with casting technology. In addition, both technologies have been compared in terms of the production time and production costs to see if additive manufacturing is competitive with the casting technology. The original paper has been written in the Latvian language as part of the Master Thesis within the framework of the production technology study programme at Riga Technical University.

  13. Research on High-efficient Remanufacturing Technologies and Application of Electric Motor

    NASA Astrophysics Data System (ADS)

    Liu, Ren; Zhao, Yuejin; Yang, Xu; Wang, Gen

    2017-09-01

    The energy conservation of electric motor system is the key of industrial energy conservation. With the implementation and acceleration of electric motor energy efficiency improvement plan, more and more electric motors are knocked out. High-efficient remanufacturing of electric motor refers to improving the efficiency of electric motor and recycling the resources by replacing the winding, iron core and other components of electric motor on the basis of the low-efficient/outdated electric motors, which conforms to China’s policy of circular economy and resource recovery. The remanufacturing of electric motor not only maximizes the use of resources, but also reduces the energy consumption generated by reprocessing of cast iron, silicon steel sheet and other materials in dismantling of electric motor. However, structures and iron core materials used in design and manufacture of electric motors are different, and the degrees of wear of electric motors are also different under different operating conditions, which further result in diversified design schemes, increased remanufacturing cost and reduced remanufacturing efficiency. This paper analyzes the key process technologies for remanufacturing of electric motors are researched by analyzing the remanufacturing technologies of electric motors, and presents the feasibility to replace the cast-aluminum rotor with cast-copper rotor in high-efficient remanufacturing process of electric motor.

  14. Casting And Solidification Technology (CAST): Directional solidification phenomena in a metal model at reduced gravity

    NASA Technical Reports Server (NTRS)

    Mccay, M. H.

    1988-01-01

    The Casting and Solidification Technology (CAST) experiment will study the phenomena that occur during directional solidification of an alloy, e.g., constitutional supercooling, freckling, and dendrite coarsening. The reduced gravity environment of space will permit the individual phenomena to be examined with minimum complication from buoyancy driven flows.

  15. Creep-rupture behavior of a developmental cast-iron-base alloy for use up to 800 deg C

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Scheuermann, Coulson M.

    1987-01-01

    A promising iron-base cast alloy is being developed as part of the DOE/NASA Stirling Engine Systems Project under contract DEN 3-282 with the United Technologies Research Center. This report presents the results of a study at the Lewis Research Center of the alloy's creep-rupture properties. The alloy was tested under a variety of conditions and was found to exhibit the normal 3-stage creep response. The alloy compared favorably with others being used or under consideration for the automotive Stirling engine cylinder/regenerator housing.

  16. Rapid manufacturing of metallic Molds for parts in Automobile

    NASA Astrophysics Data System (ADS)

    Zhang, Renji; Xu, Da; Liu, Yuan; Yan, Xudong; Yan, Yongnian

    1998-03-01

    The recent research of RPM (Rapid Prototyping Manufacturing) in our lab has been focused on the rapid creation of alloyed cast iron (ACI) molds. There are a lot of machinery parts in an automobile, so a lot of mettallic molds are needed in automobile industry. A new mold manufacturing technology has been proposed. A new large scale RP machine has been set up in our lab now. Then rapid prototypes could be manufactured by means of laminated object manufacturing (LOM) technology. The molds for parts in automobile have been produced by ceramic shell precision casting. An example is a drawing mold for cover parts in automobile. Sufficient precision and surface roughness have been obtained. Itis proved that this is a vew kind of technology. Work supported by the Mational Science Foundation of China.

  17. Advanced Casting Technology

    DTIC Science & Technology

    1982-08-01

    components with consequent cost and weight benefits but there is traditionally a reluctance by designers to trust castings. The object of the...Specialist Meeting was to present the current state of developments of advanced casting technology, and to bring together designers and materials and...significantly in the near future. The discussion highlighted areas needing further attention, which included: — Designers need to design for casting, not

  18. Netcast™ Shape Casting Technology: A Technological Breakthrough that Enhances the Cost Effectiveness of Aluminum Forgings

    NASA Astrophysics Data System (ADS)

    Anderson, Mark; Bruski, Richard; Groszkiewicz, Daniel; Wagstaff, Bob

    A new Direct Chill (DC) casting process is introduced to semi-continuous casting where near net shaped ingots are solidified. This process is currently being used at Alcan Engineered Cast Products (ECP) facility in Jonquiere, Canada, sectioned, then forged at Alcoa Automotive, Kentucky Casting Center (KCC). Finished forgings are machined and assembled into the Ford D/EW98 platform as suspension components. A brief description of the process and the implications on the forging process are presented.

  19. Industrial Location Research Studies: Reports 17-25.

    ERIC Educational Resources Information Center

    Fantus Co., Inc., New York, NY.

    Nine industrial-location research studies of the Appalachian region are presented in this document. These studies relate to the casting, plastic, metal, and food industries. Each study devotes sections to (1) a profile of the industry, (2) the industry's prospects for growth, (3) technology and trends, (4) primary factors influencing selection of…

  20. Manufacturing and Characterization of Ultra Pure Ferrous Alloys Final Report CRADA No. TC02069.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesuer, D.; McGreevy, T. E.

    This CRADA was a.collaborative effort between the Lawrence Livermore National Security LLC (formerly University of California)/Lawrence Livermore National Laboratory (LLNL),and Caterpillar Inc. (CaterpiHar), to further advance levitation casting techniques (developed at the Central Research Institute for Material (CRIM) in St. Petersburg, Russia) for use in manufacturing high purity metal alloys. This DOE Global Initiatives for Proliferation Prevention Program (IPP) project was to develop and demonstrate the levitation casting technology for producing ultra-pure alloys.

  1. Photophysical Studies of Spin Cast Polymer Films

    DTIC Science & Technology

    1988-07-13

    Polymeric Materials contained research presentations on fundamental radiation chemistry and physics as well as on technological applications of polymer ...on Polymeric Materials," X~os Hoos. ueensland. Australia., August 16-19, 1987 ,7 COSAII CODES I&. SUBJECT TEAMS (Conuo an itwre it r~,*Ctzy Mid od@0ty...by biOck mumblrJ _ILO GR UP SU8 -GaOUP 9. AaSTkRAC7T (COn1nue an r*"wne it noatamey and iwaf by bWok nuffltr) Snim casting is a commonly used technique

  2. The Role of Diesel Engines in Early Submarine Development

    DTIC Science & Technology

    2010-04-26

    advantage of advances in metallurgical technology, could not match the superior technology in casting processes, alloy development, and heat treatments...metallurgical technology. NELSECO had the German plans and assistance from German engineers, but the foundries could not duplicate the casting to German...that the Germans and other European countries possessed. The U.S. commercial foundries did not want to undertake the risky development casting of low

  3. "A Dance with the Butterflies:" A Metamorphosis of Teaching and Learning through Technology

    ERIC Educational Resources Information Center

    McPherson, Sarah

    2009-01-01

    This paper describes a web-based collaborative project called "A Dance with the Butterflies" that applied the brain-based research of the Center for Applied Special Technologies (CAST) and principles of Universal Design for Learning (UDL) to Pre-K-4 science curriculum. Learning experiences were designed for students to invoke the Recognition,…

  4. Rapid bridge construction technology : precast elements for substructures.

    DOT National Transportation Integrated Search

    2011-06-01

    The goal of this research was to propose an alternate system of precast bridge substructures which can : substitute for conventional cast in place systems in Wisconsin to achieve accelerated construction. : Three types of abutment modules (hollow wal...

  5. AIS/DOE Technology Roadmap Program: Strip Casting: Anticipating New Routes To Steel Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prof. Alan W. Camb; Prof. Anthony Rollett

    2001-08-31

    To determine the potential for strip casting in the steel industry and to develop the fundamental knowledge necessary to allow the role of strip casting in the modern steel industry to be understood. Based upon a study of carbon steel strip castings that were either produced for the program at British Steel or were received from a pre-commercial production machine, the following conclusions were made. Strip casting of carbon steels is technically feasible for sheet material from slightly less than 1 mm thick to 3 mm thick, and, assuming that it is economically viable, it will be first applied inmore » carbon steel markets that do not require stringent surface quality or extensive forming. The potential of strip casting as a casting process to be developed for steel castings is very high as the cast strip has some very novel characteristics. Direct cast carbon strip has better surface quality, shape and profile than any other casting process currently available. The more rapidly solidified structure of direct cast strip tends to be strong with low ductility; however, with adequate thermal treatment, it is possible to develop a variety of properties from the same grade. The process is more amenable at this time to production tonnages per year of the order of 500,000 tons and as such will first find niche type applications. This technology is an additional technology for steel production and will be in addition to, rather than a replacement for, current casting machines.« less

  6. Clean Metal Casting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makhlouf M. Makhlouf; Diran Apelian

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS asmore » a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.« less

  7. Development of polymer nano composite patterns using fused deposition modeling for rapid investment casting process

    NASA Astrophysics Data System (ADS)

    Vivek, Tiwary; Arunkumar, P.; Deshpande, A. S.; Vinayak, Malik; Kulkarni, R. M.; Asif, Angadi

    2018-04-01

    Conventional investment casting is one of the oldest and most economical manufacturing techniques to produce intricate and complex part geometries. However, investment casting is considered economical only if the volume of production is large. Design iterations and design optimisations in this technique proves to be very costly due to time and tooling cost for making dies for producing wax patterns. However, with the advent of Additive manufacturing technology, plastic patterns promise a very good potential to replace the wax patterns. This approach can be very useful for low volume production & lab requirements, since the cost and time required to incorporate the changes in the design is very low. This research paper discusses the steps involved for developing polymer nanocomposite filaments and checking its suitability for investment castings. The process parameters of the 3D printer machine are also optimized using the DOE technique to obtain mechanically stronger plastic patterns. The study is done to develop a framework for rapid investment casting for lab as well as industrial requirements.

  8. Energy Saving Melting and Revert Reduction Technology (Energy SMARRT): Manufacturing Advanced Engineered Components Using Lost Foam Casting Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Littleton, Harry; Griffin, John

    2011-07-31

    This project was a subtask of Energy Saving Melting and Revert Reduction Technology (Energy SMARRT) Program. Through this project, technologies, such as computer modeling, pattern quality control, casting quality control and marketing tools, were developed to advance the Lost Foam Casting process application and provide greater energy savings. These technologies have improved (1) production efficiency, (2) mechanical properties, and (3) marketability of lost foam castings. All three reduce energy consumption in the metals casting industry. This report summarizes the work done on all tasks in the period of January 1, 2004 through June 30, 2011. Current (2011) annual energy savingmore » estimates based on commercial introduction in 2011 and a market penetration of 97% by 2020 is 5.02 trillion BTU's/year and 6.46 trillion BTU's/year with 100% market penetration by 2023. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.03 Million Metric Tons of Carbon Equivalent (MM TCE).« less

  9. Going Boldly Into the Future: A Series of Case Studies of Co-Operative Research Centres and Their Relationships with the VET Sector.

    ERIC Educational Resources Information Center

    Ferrier, Fran; Trood, Clifford; Whittingham, Karen

    This document presents case studies of 10 cooperative research centers (CRCs) across Australia and their relationships with the vocational education and training (VET) sector. The CRCs profiled in the case studies are as follows: Co-operative Research Centre for Sustainable Rice Production; Cast Alloy and Solidification Technology Co-operative…

  10. Metal Matrix Composite LOX Turbopump Housing Via Novel Tool-Less Net-Shape Pressure Infiltration Casting Technology

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Lee, Jonathan; Bhat, Biliyar; Wells, Doug; Gregg, Wayne; Marsh, Matthew; Genge, Gary; Forbes, John; Salvi, Alex; Cornie, James A.; hide

    2002-01-01

    This presentation provides an overview of the effort by Metal Matrix Cast Composites, Inc. to redesign turbopump housing joints using metal matrix composite material and a toolless net-shape pressure infiltration casting technology. Topics covered include: advantage of metal matrix composites for propulsion components, baseline pump design and analysis, advanced toolless pressure infiltration casting process, subscale pump housing, preform splicing and joining for large components, and fullscale pump housing redesign.

  11. Precision Casting via Advanced Simulation and Manufacturing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A two-year program was conducted to develop and commercially implement selected casting manufacturing technologies to enable significant reductions in the costs of castings, increase the complexity and dimensional accuracy of castings, and reduce the development times for delivery of high quality castings. The industry-led R&D project was cost shared with NASA's Aerospace Industry Technology Program (AITP). The Rocketdyne Division of Boeing North American, Inc. served as the team lead with participation from Lockheed Martin, Ford Motor Company, Howmet Corporation, PCC Airfoils, General Electric, UES, Inc., University of Alabama, Auburn University, Robinson, Inc., Aracor, and NASA-LeRC. The technical effort was organized into four distinct tasks. The accomplishments reported herein. Task 1.0 developed advanced simulation technology for core molding. Ford headed up this task. On this program, a specialized core machine was designed and built. Task 2.0 focused on intelligent process control for precision core molding. Howmet led this effort. The primary focus of these experimental efforts was to characterize the process parameters that have a strong impact on dimensional control issues of injection molded cores during their fabrication. Task 3.0 developed and applied rapid prototyping to produce near net shape castings. Rocketdyne was responsible for this task. CAD files were generated using reverse engineering, rapid prototype patterns were fabricated using SLS and SLA, and castings produced and evaluated. Task 4.0 was aimed at developing technology transfer. Rocketdyne coordinated this task. Casting related technology, explored and evaluated in the first three tasks of this program, was implemented into manufacturing processes.

  12. Induction hardening treatment and simulation for a grey cast iron used in engine cylinder liners

    NASA Astrophysics Data System (ADS)

    Castellanos-Leal, E. L.; Miranda, D. A.; Coy, A. E.; Barrero, J. G.; González, J. A.; Vesga Rueda, O. P.

    2017-01-01

    In this research, a technical study of induction hardening in a grey cast iron used in engine cylinder liners manufactured by LAVCO Ltda., a Colombian foundry company, was carried out. Metallurgical parameters such as austenitization temperature, cooling rate, and quenching severity were determined. These factors are exclusively dependent on chemical composition and initial microstructure of grey cast iron. Simulations of induction heating through finite elements method were performed and, the most appropriate experimental conditions to achieve the critical transformation temperature was evaluated to reach a proper surface hardening on the piece. Preliminary results revealed an excellent approximation between simulation and heating test performed with a full bridge inverter voltage adapted with local technology.

  13. Direct metal laser sintering: a digitised metal casting technology.

    PubMed

    Venkatesh, K Vijay; Nandini, V Vidyashree

    2013-12-01

    Dental technology is undergoing advancements at a fast pace and technology is being imported from various other fields. One such imported technology is direct metal laser sintering technology for casting metal crowns. This article will discuss the process of laser sintering for making metal crowns and fixed partial dentures with a understanding of their pros and cons.

  14. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Clean Steel Casting Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuyucak, Selcuk; Li, Delin

    2013-12-31

    Inclusions in steel castings can cause rework, scrap, poor machining, and reduced casting performance, which can obviously result in excess energy consumption. Significant progress in understanding inclusion source, formation and control has been made. Inclusions can be defined as non-metallic materials such as refractory, sand, slag, or coatings, embedded in a metallic matrix. This research project has focused on the mold filling aspects to examine the effects of pouring methods and gating designs on the steel casting cleanliness through water modeling, computer modeling, and melting/casting experiments. Early in the research project, comprehensive studies of bottom-pouring water modeling and low-alloy steelmore » casting experiments were completed. The extent of air entrainment in bottom-poured large castings was demonstrated by water modeling. Current gating systems are designed to prevent air aspiration. However, air entrainment is equally harmful and no prevention measures are in current practice. In this study, new basin designs included a basin dam, submerged nozzle, and nozzle extension. The entrained air and inclusions from the gating system were significantly reduced using the new basin method. Near the end of the project, there has been close collaboration with Wescast Industries Inc., a company manufacturing automotive exhaust components. Both computer modeling using Magma software and melting/casting experiments on thin wall turbo-housing stainless steel castings were completed in this short period of time. Six gating designs were created, including the current gating on the pattern, non-pressurized, partially pressurized, naturally pressurized, naturally pressurized without filter, and radial choke gating without filter, for Magma modeling. The melt filling velocity and temperature were determined from the modeling. Based on the simulation results, three gating designs were chosen for further melting and casting experiments on the same casting pattern using the lip pouring method. It was observed again that gating designs greatly influenced the melt filling velocity and the number of inclusion defects. The radial choked gating showed improvements in casting cleanliness and yield over the other gatings, even though no mold filters were used in the gating system.« less

  15. Magnesium Front End Research and Development: A Canada-China-USA Collaboration

    NASA Astrophysics Data System (ADS)

    Luo, Alan A.; Nyberg, Eric A.; Sadayappan, Kumar; Shi, Wenfang

    The Magnesium Front End Research & Development (MFERD) project is an effort jointly sponsored by the United States Department of Energy, the United States Automotive Materials Partnership (USAMP), the Chinese Ministry of Science and Technology and Natural Resources Canada (NRCan) to demonstrate the technical and economic feasibility of a magnesium-intensive automotive front end body structure which offers improved fuel economy and performance benefits in a multi-material automotive structure. The project examines novel magnesium automotive body applications and processes, beyond conventional die castings, including wrought components (sheet or extrusions) and high-integrity body castings. This paper outlines the scope of work and organization for the collaborative (tri-country) task teams. The project has the goals of developing key enabling technologies and knowledge base for increased magnesium automotive body applications. The MFERD project began in early 2007 by initiating R&D in the following areas: crashworthiness, NVH, fatigue and durability, corrosion and surface finishing, extrusion and forming, sheet and forming, high-integrity body casting, as well as joining and assembly. Additionally, the MFERD project is also linked to the Integrated Computational Materials Engineering (ICME) project that will investigate the processing/structure/properties relations for various magnesium alloys and manufacturing processes utilizing advanced computer-aided engineering and modeling tools.

  16. Titanium Aluminide Casting Technology Development

    NASA Astrophysics Data System (ADS)

    Bünck, Matthias; Stoyanov, Todor; Schievenbusch, Jan; Michels, Heiner; Gußfeld, Alexander

    2017-12-01

    Titanium aluminide alloys have been successfully introduced into civil aircraft engine technology in recent years, and a significant order volume increase is expected in the near future. Due to its beneficial buy-to-fly ratio, investment casting bears the highest potential for cost reduction of all competing production technologies for TiAl-LPTB. However, highest mechanical properties can be achieved by TiAl forging. In view of this, Access e.V. has developed technologies for the production of TiAl investment cast parts and TiAl die cast billets for forging purposes. While these parts meet the highest requirements, establishing series production and further optimizing resource and economic efficiency are present challenges. In order to meet these goals, Access has recently been certified according to aircraft standards, aiming at qualifying parts for production on technology readiness level 6. The present work gives an overview of the phases of development and certification.

  17. Increasing the reliability and quality of important cast products made of chemically active metals and alloys

    NASA Astrophysics Data System (ADS)

    Varfolomeev, M. S.; Moiseev, V. S.; Shcherbakova, G. I.

    2017-01-01

    A technology is developed to produce highly thermoresistant ceramic monoxide corundum molds using investment casting and an aluminum-organic binder. This technology is a promising trend in creating ceramic molds for precision complex-shape casting of important ingots made of high-alloy steels, high-temperature and titanium alloys, and refractory metals. The use of the casting molds that have a high thermal and chemical resistance to chemically active metals and alloys under high-temperature casting minimizes the physicochemical interaction and substantially decreases the depth of the hard-to-remove metal oxide layer on important products, which increases their service properties.

  18. Remelt Ingot Production Technology

    NASA Astrophysics Data System (ADS)

    Grandfield, J. F.

    The technology related to the production of remelt ingots (small ingots, sows and T-Bar) is reviewed. Open mold conveyors, sow casting, wheel and belt casting and VDC and HDC casting are described and compared. Process economics, capacity, product quality and process problems are listed. Trends in casting machine technology such as longer open mold conveyor lines are highlighted. Safety issues related to the operation of these processes are discussed. The advantages and disadvantages of the various machine configurations and options e.g. such as dry filling with the mold out of water and wet filling with the mold in water for open mould conveyors are discussed. The effect of mold design on machine productivity, mold cracking and mold life is also examined.

  19. Program Evaluation - Automotive Lightweighting Materials Program Research and Development Projects Assessment of Benefits - Case Studies No. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, S.

    This report is the second of a series of studies to evaluate research and development (R&D) projects funded by the Automotive Lightweighting Materials (ALM) Program of the Office of Advanced Automotive Technologies (OAAT) of the U.S. Department of Energy (DOE). The objectives of the program evaluation are to assess short-run outputs and long-run outcomes that may be attributable to the ALM R&D projects. The ALM program focuses on the development and validation of advanced technologies that significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. Funded projects range from fundamentalmore » materials science research to applied research in production environments. Collaborators on these projects include national laboratories, universities, and private sector firms, such as leading automobile manufacturers and their suppliers. Three ALM R&D projects were chosen for this evaluation: Design and Product Optimization for Cast Light Metals, Durability of Lightweight Composite Structures, and Rapid Tooling for Functional Prototyping of Metal Mold Processes. These projects were chosen because they have already been completed. The first project resulted in development of a comprehensive cast light metal property database, an automotive application design guide, computerized predictive models, process monitoring sensors, and quality assurance methods. The second project, the durability of lightweight composite structures, produced durability-based design criteria documents, predictive models for creep deformation, and minimum test requirements and suggested test methods for establishing durability properties and characteristics of random glass-fiber composites for automotive structural composites. The durability project supported Focal Project II, a validation activity that demonstrates ALM program goals and reduces the lead time for bringing new technology into the marketplace. Focal projects concentrate on specific classes of materials and nonproprietary components and are done jointly by DOE and the Automotive Composites Consortium of U.S. Council for Automotive Research (USCAR). The third project developed a rapid tooling process that reduces tooling time, originally some 48-52 weeks, to less than 12 weeks by means of rapid generation of die-casting die inserts and development of generic holding blocks, suitable for use with large casting applications. This project was conducted by the United States Automotive Materials Partnership, another USCAR consortium.« less

  20. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Lost Foam Thin Wall - Feasibility of Producing Lost Foam Castings in Aluminum and Magnesium Based Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fasoyinu, Yemi; Griffin, John A.

    2014-03-31

    With the increased emphasis on vehicle weight reduction, production of near-net shape components by lost foam casting will make significant inroad into the next-generation of engineering component designs. The lost foam casting process is a cost effective method for producing complex castings using an expandable polystyrene pattern and un-bonded sand. The use of un-bonded molding media in the lost foam process will impose less constraint on the solidifying casting, making hot tearing less prevalent. This is especially true in Al-Mg and Al-Cu alloy systems that are prone to hot tearing when poured in rigid molds partially due to their longmore » freezing range. Some of the unique advantages of using the lost foam casting process are closer dimensional tolerance, higher casting yield, and the elimination of sand cores and binders. Most of the aluminum alloys poured using the lost foam process are based on the Al-Si system. Very limited research work has been performed with Al-Mg and Al-Cu type alloys. With the increased emphasis on vehicle weight reduction, and given the high-strength-to-weight-ratio of magnesium, significant weight savings can be achieved by casting thin-wall (≤ 3 mm) engineering components from both aluminum- and magnesium-base alloys.« less

  1. Ultra-Light Precision Membrane Optics

    NASA Technical Reports Server (NTRS)

    Moore, Jim; Gunter, Kent; Patrick, Brian; Marty, Dave; Bates, Kevin; Gatlin, Romona; Clayton, Bill; Rood, Bob; Brantley, Whitt (Technical Monitor)

    2001-01-01

    SRS Technologies and NASA Marshall Space Flight Center have conducted a research effort to explore the possibility of developing ultra-lightweight membrane optics for future imaging applications. High precision optical flats and spherical mirrors were produced under this research effort. The thin film mirrors were manufactured using surface replication casting of CPI(Trademark), a polyimide material developed specifically for UV hardness and thermal stability. In the course of this program, numerous polyimide films were cast with surface finishes better than 1.5 nanometers rms and thickness variation of less than 63 nanometers. Precision membrane optical flats were manufactured demonstrating better than 1/13 wave figure error when measured at 633 nanometers. The aerial density of these films is 0.037 kilograms per square meter. Several 0.5-meter spherical mirrors were also manufactured. These mirrors had excellent surface finish (1.5 nanometers rms) and figure error on the order of tens of microns. This places their figure error within the demonstrated correctability of advanced wavefront correction technologies such as real time holography.

  2. Multivariate research in areas of phosphorus cast-iron brake shoes manufacturing using the statistical analysis and the multiple regression equations

    NASA Astrophysics Data System (ADS)

    Kiss, I.; Cioată, V. G.; Alexa, V.; Raţiu, S. A.

    2017-05-01

    The braking system is one of the most important and complex subsystems of railway vehicles, especially when it comes for safety. Therefore, installing efficient safe brakes on the modern railway vehicles is essential. Nowadays is devoted attention to solving problems connected with using high performance brake materials and its impact on thermal and mechanical loading of railway wheels. The main factor that influences the selection of a friction material for railway applications is the performance criterion, due to the interaction between the brake block and the wheel produce complex thermos-mechanical phenomena. In this work, the investigated subjects are the cast-iron brake shoes, which are still widely used on freight wagons. Therefore, the cast-iron brake shoes - with lamellar graphite and with a high content of phosphorus (0.8-1.1%) - need a special investigation. In order to establish the optimal condition for the cast-iron brake shoes we proposed a mathematical modelling study by using the statistical analysis and multiple regression equations. Multivariate research is important in areas of cast-iron brake shoes manufacturing, because many variables interact with each other simultaneously. Multivariate visualization comes to the fore when researchers have difficulties in comprehending many dimensions at one time. Technological data (hardness and chemical composition) obtained from cast-iron brake shoes were used for this purpose. In order to settle the multiple correlation between the hardness of the cast-iron brake shoes, and the chemical compositions elements several model of regression equation types has been proposed. Because a three-dimensional surface with variables on three axes is a common way to illustrate multivariate data, in which the maximum and minimum values are easily highlighted, we plotted graphical representation of the regression equations in order to explain interaction of the variables and locate the optimal level of each variable for maximal response. For the calculation of the regression coefficients, dispersion and correlation coefficients, the software Matlab was used.

  3. Development of the Electromagnetic Continuous Casting Technology for of Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Park, Joon-Pyo; Kim, Myoung-Gyun; Kim, Jong-Ho; Lee, Gyu-Chang

    Currently, magnesium billets produced by ingot casting or direct chill casting process, result in low-quality surfaces and low productivity, Continuous casting technology to solve these problem has not only high-quality surface billets with fine-grained and homogeneous microstructure but also cost down. The latent heat of fusion per weight (J/g) of magnesium is similar to other metals, however, considering the heat emitted to the mold surface during continuous casting in meniscus region and converting it to the latent heat of fusion per volume, magnesium will be rapidly solidified in the mold during continuous casting, which induces subsequent surface defect formation. In this study, electromagnetic casting and stirring (EMC and EMS) techniques are proposed to control solidification process conveniently by compensating the low latent heat of solidification by volume and to fabricate magnesium billet with high-quality surface. This technique was extended to large scale billets up to 300 mm diameter and continuous casting was successfully conducted. Then magnesium billet was used for the fabrication of prototype automobile pulley.

  4. Cloud-Based Speech Technology for Assistive Technology Applications (CloudCAST).

    PubMed

    Cunningham, Stuart; Green, Phil; Christensen, Heidi; Atria, José Joaquín; Coy, André; Malavasi, Massimiliano; Desideri, Lorenzo; Rudzicz, Frank

    2017-01-01

    The CloudCAST platform provides a series of speech recognition services that can be integrated into assistive technology applications. The platform and the services provided by the public API are described. Several exemplar applications have been developed to demonstrate the platform to potential developers and users.

  5. Development of Metal Casting Molds By Sol-Gel Technology Using Planetary Resources

    NASA Technical Reports Server (NTRS)

    Sibille, L.; Sen, S.; Curreri, P.; Stefanescu, D.

    2000-01-01

    Metals extracted from planetary soils will eventually need to be casted and shaped in-situ to produce useful products. In response to this challenge, we propose to develop and demonstrate the manufacturing of a specific product using Lunar and Martian soil simulants, i.e. a mold for the casting of metal and alloy parts, which will be an indispensable tool for the survival of outposts on the Moon and Mars. Drawing from our combined knowledge of sol-gel and metal casting technologies, we set out to demonstrate the extraordinary potential of mesoporous materials such as aerogels to serve as efficient casting molds as well as fulfilling numerous other needs of an autonomous planetary outpost.

  6. Software Analytical Instrument for Assessment of the Process of Casting Slabs

    NASA Astrophysics Data System (ADS)

    Franěk, Zdeněk; Kavička, František; Štětina, Josef; Masarik, Miloš

    2010-06-01

    The paper describes the original proposal of ways of solution and function of the program equipment for assessment of the process of casting slabs. The program system LITIOS was developed and implemented in EVRAZ Vitkovice Steel Ostrava on the equipment of continuous casting of steel (further only ECC). This program system works on the data warehouse of technological parameters of casting and quality parameters of slabs. It enables an ECC technologist to analyze the course of casting melt and with using statistics methods to set the influence of single technological parameters on the duality of final slabs. The system also enables long term monitoring and optimization of the production.

  7. PREFACE: International Conference on Advancement in Science and Technology 2012 (iCAST): Contemporary Mathematics, Mathematical Physics and their Applications

    NASA Astrophysics Data System (ADS)

    Ganikhodjaev, Nasir; Mukhamedov, Farrukh; Hee, Pah Chin

    2013-04-01

    The 4th International Conference on the Advancement of Science and Technology 2012 (iCAST 2012), with theme 'Contemporary Mathematics, Mathematical Physics and their Applications', took place in Kuantan, Malaysia, from Wednesday 7 to Friday 9 November 2012. The conference was attended by more than 100 participants, and hosted about 160 oral and poster papers by more than 140 pre-registered authors. The key topics of the 4th iCAST 2012 include Pure Mathematics, Applied Mathematics, Theoretical/Mathematical Physics, Dynamical Systems, Statistics and Financial Mathematics. The scientific program was rather full since after the Keynote and Invited Talks in the morning, four parallel sessions ran every day. However, according to all attendees, the program was excellent with a high level of talks and the scientific environment was fruitful; thus all attendees had a creative time. The conference aimed to promote the knowledge and development of high-quality research in mathematical fields concerned with the application of other scientific fields as well as modern technological trends in physics, chemistry, biology, medicine, economics, sociology and environmental sciences. We would like to thank the Keynote and the Invited Speakers for their significant contributions to 4th iCAST 2012. We would also like to thank the members of the International Scientific Committee and the members of the Organizing Committee. We cannot end without expressing our many thanks to International Islamic University Malaysia and our sponsors for their financial support . This volume presents selected papers which have been peer-reviewed. The editors hope that it may be useful and fruitful for scholars, researchers, and advanced technical members of the industrial laboratory facilities for developing new tools and products. Guest Editors Nasir Ganikhodjaev, Farrukh Mukhamedov and Pah Chin Hee The PDF contains the committee lists, board list and biographies of the plenary speakers.

  8. Investigation of Materials Processing Technology

    DTIC Science & Technology

    1993-07-01

    Figure 6: Time-temperature curves of A357 casting in Cu mold ................. 12 Figure 7: Time-temperature curves of 17 -4 casting in ceramic mold...simulation of 17 -4 ................ 17 Figure 12: IHTC from IHEAT simulation of 17 -4 casting ..................... 18 Figure 13: Temperature profiles...mold used for Ti castings .......................... 23 Figure 16: Cooling curves for a Ti casting in ceramic mold .................. 24 Figure 17

  9. Space Technology for Palate Surgery

    NASA Technical Reports Server (NTRS)

    1980-01-01

    University of Miami utilized NASA's spacecraft viewing technology to develop the optical profilometer provides more accurate measurements of cleft palate casts than has heretofore been possible, enabling better planning of corrective surgery. Lens like instrument electronically scans a palate cast precisely measuring its irregular contours by detecting minute differences in the intensity of a light beam reflected off the cast. Readings are computer processed and delivered to the surgeon by a teleprinter.

  10. Utilization of the International Space Station for Crew Autonomous Scheduling Test (CAST)

    NASA Technical Reports Server (NTRS)

    Healy, Matthew; Marquez, Jesica; Hillenius, Steven; Korth, David; Bakalyar, Laure Rush; Woodbury, Neil; Larsen, Crystal M.; Bates, Shelby; Kockler, Mikayla; Rhodes, Brooke; hide

    2017-01-01

    The United States space policy is evolving toward missions beyond low Earth orbit. In an effort to meet that policy, NASA has recognized Autonomous Mission Operations (AMO) as a valuable capability. Identified within AMO capabilities is the potential for autonomous planning and replanning during human spaceflight operations. That is allowing crew members to collectively or individually participate in the development of their own schedules. Currently, dedicated mission operations planners collaborate with international partners to create daily plans for astronauts aboard the International Space Station (ISS), taking into account mission requirements, ground rules, and various vehicle and payload constraints. In future deep space operations the crew will require more independence from ground support due to communication transmission delays. Furthermore, crew members who are provided with the capability to schedule their own activities are able to leverage direct experience operating in the space environment, and possibly maximize their efficiency. CAST (Crew Autonomous Scheduling Test) is an ISS investigation designed to analyze three important hypotheses about crew autonomous scheduling. First, given appropriate inputs, the crew is able to create and execute a plan in a reasonable period of time without impacts to mission success. Second, the proximity of the planner, in this case the crew, to the planned operations increases their operational efficiency. Third, crew members are more satisfied when given a role in plan development. This paper presents the results from a single astronaut test subject who participated in five CAST sessions. The details on the operational philosophy of CAST are discussed, including the approach to crew training, selection criteria for test days, and data collection methods. CAST is a technology demonstration payload sponsored by the ISS Research Science and Technology Office, and performed by experts in Mission Operations Planning from the Flight Operations Directorate at NASA Johnson Space Center, and researchers across multiple NASA centers. It is hoped the results of this investigation will guide NASA's implementation of autonomous mission operations for long duration human space missions to Mars and beyond.

  11. Advances in Gammalloy Materials-Processes-Application Technology: Successes, Dilemmas, and Future

    NASA Astrophysics Data System (ADS)

    Kim, Young-Won; Kim, Sang-Lan

    2018-04-01

    For the last several years, gamma titanium aluminide ( γ-TiAl)-based alloys, called "gammalloys," in specific alloy-microstructure forms began to be implemented in civil aero-engines as cast or wrought low-pressure turbine (LPT) blades and in select ground vehicle engines as cast turbocharger rotors and wrought exhaust valves. Their operation temperatures are approximately up to 750°C for LPT blades and around 1000°C for turbocharger rotors. This article critically assesses current engineering gammalloys and their limitations and introduces eight strengthening pathways that can be adopted immediately for the development of advanced, higher temperature gammalloys. Intelligent integration of the pathways into the emerging application-specific research and development processes is emphasized as the key to the advancement of the gammalloy technology to the next higher engineering performance levels.

  12. Next-generation casting technologies and their adaptation and development in Russia: I. at the beginning of a new technological paradigm

    NASA Astrophysics Data System (ADS)

    Semenov, A. B.; Gavrilenko, A. E.; Semenov, B. I.

    2016-12-01

    The up-to-date methods of powder metallurgy and casting technology are considered. They can be used to apply the design and technological solutions that are intended to form parts with the optimum space configuration, to deLcrease the number of assembly elements, and to decrease the number of mechanical and welded joints in units.

  13. Assessment of the Cast Stone Low-Temperature Waste Form Technology Coupled with Technetium Removal - 14379

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Christopher F.; Rapko, Brian M.; Serne, R. Jeffrey

    2014-03-03

    The U.S. Department of Energy Office of Environmental Management (EM) is engaging the national laboratories to provide the scientific and technological rigor to support EM program and project planning, technology development and deployment, project execution, and assessment of program outcomes. As an early demonstration of this new responsibility, Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) were chartered to implement a science and technology program addressing low-temperature waste forms for immobilization of DOE aqueous waste streams, including technetium removal as an implementing technology. As a first step, the laboratories examined the technical risks and uncertainties associated withmore » the Cast Stone waste immobilization and technetium removal projects at Hanford. Science and technology gaps were identified for work associated with 1) conducting performance assessments and risk assessments of waste form and disposal system performance, and 2) technetium chemistry in tank wastes and separation of technetium from waste processing streams. Technical approaches to address the science and technology gaps were identified and an initial sequencing priority was suggested. A subset of research was initiated in 2013 to begin addressing the most significant science and technology gaps. The purpose of this paper is to report progress made towards closing these gaps and provide notable highlights of results achieved to date.« less

  14. Rapid Prototyping Technology for Manufacturing GTE Turbine Blades

    NASA Astrophysics Data System (ADS)

    Balyakin, A. V.; Dobryshkina, E. M.; Vdovin, R. A.; Alekseev, V. P.

    2018-03-01

    The conventional approach to manufacturing turbine blades by investment casting is expensive and time-consuming, as it takes a lot of time to make geometrically precise and complex wax patterns. Turbine blade manufacturing in pilot production can be sped up by accelerating the casting process while keeping the geometric precision of the final product. This paper compares the rapid prototyping method (casting the wax pattern composition into elastic silicone molds) to the conventional technology. Analysis of the size precision of blade casts shows that silicon-mold casting features sufficient geometric precision. Thus, this method for making wax patterns can be a cost-efficient solution for small-batch or pilot production of turbine blades for gas-turbine units (GTU) and gas-turbine engines (GTE). The paper demonstrates how additive technology and thermographic analysis can speed up the cooling of wax patterns in silicone molds. This is possible at an optimal temperature and solidification time, which make the process more cost-efficient while keeping the geometric quality of the final product.

  15. Progress of Crew Autonomous Scheduling Test (CAST) On the ISS

    NASA Technical Reports Server (NTRS)

    Healy, Matthew; Marquez, Jessica; Hillenius, Steven; Korth, David; Bakalyar, Lauren Rush; Woodbury, Neil; Larsen, Crystal M.; Bates, Shelby; Kockler, Mikayla; Rhodes, Brooke; hide

    2017-01-01

    The United States space policy is evolving toward missions beyond low Earth orbit. In an effort to meet that policy, NASA has recognized Autonomous Mission Operations (AMO) as a valuable capability. Identified within AMO capabilities is the potential for autonomous planning and replanning during human spaceflight operations. That is allowing crew members to collectively or individually participate in the development of their own schedules. Currently, dedicated mission operations planners collaborate with international partners to create daily plans for astronauts aboard the International Space Station (ISS), taking into account mission requirements, ground rules, and various vehicle and payload constraints. In future deep space operations the crew will require more independence from ground support due to communication transmission delays. Furthermore, crew members who are provided with the capability to schedule their own activities are able to leverage direct experience operating in the space environment, and possibly maximize their efficiency. CAST (Crew Autonomous Scheduling Test) is an ISS investigation designed to analyze three important hypotheses about crew autonomous scheduling. First, given appropriate inputs, the crew is able to create and execute a plan in a reasonable period of time without impacts to mission success. Second, the proximity of the planner, in this case the crew, to the planned operations increases their operational efficiency. Third, crew members are more satisfied when given a role in plan development. This presentation shows the progress done in this study with a single astronaut test subject participating in five CAST sessions. CAST is a technology demonstration payload sponsored by the ISS Research Science and Technology Office, and performed by experts in Mission Operations Planning from the Flight Operations Directorate at NASA Johnson Space Center, and researchers across multiple NASA centers.

  16. Microstructural Evolution in Intensively Melt Sheared Direct Chill Cast Al-Alloys

    NASA Astrophysics Data System (ADS)

    Jones, S.; Rao, A. K. Prasada; Patel, J. B.; Scamans, G. M.; Fan, Z.

    The work presented here introduces the novel melt conditioned direct chill casting (MC-DC) technology, where intensive melt shearing is applied to the conventional direct-chill casting process. MC-DC casting can successfully produce high quality Al-alloy billets. The results obtained from 80 mm diameter billets cast at speed of 200 mm/min show that MC-DC casting of Al-alloys, substantially refines the microstructure and reduces macro-segregation. In this paper, we present the preliminary results and discuss microstructural evolution during MC-DC casting of Al-alloys.

  17. Accuracy verification of magnetic resonance imaging (MRI) technology for lower-limb prosthetic research: utilising animal soft tissue specimen and common socket casting materials.

    PubMed

    Safari, Mohammad Reza; Rowe, Philip; Buis, Arjan

    2012-01-01

    Lower limb prosthetic socket shape and volume consistency can be quantified using MRI technology. Additionally, MRI images of the residual limb could be used as an input data for CAD-CAM technology and finite element studies. However, the accuracy of MRI when socket casting materials are used has to be defined. A number of six, 46 mm thick, cross-sections of an animal leg were used. Three specimens were wrapped with Plaster of Paris (POP) and the other three with commercially available silicone interface liner. Data was obtained by utilising MRI technology and then the segmented images compared to corresponding calliper measurement, photographic imaging, and water suspension techniques. The MRI measurement results were strongly correlated with actual diameter, surface area, and volume measurements. The results show that the selected scanning parameters and the semiautomatic segmentation method are adequate enough, considering the limit of clinical meaningful shape and volume fluctuation, for residual limb volume and the cross-sectional surface area measurements.

  18. Accuracy Verification of Magnetic Resonance Imaging (MRI) Technology for Lower-Limb Prosthetic Research: Utilising Animal Soft Tissue Specimen and Common Socket Casting Materials

    PubMed Central

    Safari, Mohammad Reza; Rowe, Philip; Buis, Arjan

    2012-01-01

    Lower limb prosthetic socket shape and volume consistency can be quantified using MRI technology. Additionally, MRI images of the residual limb could be used as an input data for CAD-CAM technology and finite element studies. However, the accuracy of MRI when socket casting materials are used has to be defined. A number of six, 46 mm thick, cross-sections of an animal leg were used. Three specimens were wrapped with Plaster of Paris (POP) and the other three with commercially available silicone interface liner. Data was obtained by utilising MRI technology and then the segmented images compared to corresponding calliper measurement, photographic imaging, and water suspension techniques. The MRI measurement results were strongly correlated with actual diameter, surface area, and volume measurements. The results show that the selected scanning parameters and the semiautomatic segmentation method are adequate enough, considering the limit of clinical meaningful shape and volume fluctuation, for residual limb volume and the cross-sectional surface area measurements. PMID:22619599

  19. Cheminformatic Analysis of the US EPA ToxCast Chemical Library

    EPA Science Inventory

    The ToxCast project is employing high throughput screening (HTS) technologies, along with chemical descriptors and computational models, to develop approaches for screening and prioritizing environmental chemicals for further toxicity testing. ToxCast Phase I generated HTS data f...

  20. Advanced Gas Turbine (AGT) Technology Development Project annual report

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This report is the tenth in a series of Technical Summary reports for the Advanced Gas Turbine (AGT) Technology Development Project, authorized under NASA Contract DEN3-167, and sponsored by the Department of Energy (DOE). This report was prepared by Garrett Turbine Engine Company, A Division of the Garrett Corporation, and includes information provided by Ford Motor Company, the Carborundum Company, and AiResearch Casting Company. The Project is administered by Mr. Thomas N. Strom, Project Manager, NASA-Lewis Research Center, Cleveland, Ohio. This report covers plans and progress for the period July 1, 1984 through June 30, 1985.

  1. Universal Design for Learning: A Blueprint for Success for All Learners

    ERIC Educational Resources Information Center

    Brand, Susan Trostle; Favazza, Antoinette E.; Dalton, Elizabeth M.

    2012-01-01

    The Center for Applied Special Technology, Inc. (CAST), an educational research organization, introduced Universal Design for Learning (UDL) in its earliest form nearly 25 years ago. According to Orkwis and McLane (1998), UDL is a tangible means by which educators implement the special education requirements and sustain the gains that were…

  2. An Innovative Speech-Based User Interface for Smarthomes and IoT Solutions to Help People with Speech and Motor Disabilities.

    PubMed

    Malavasi, Massimiliano; Turri, Enrico; Atria, Jose Joaquin; Christensen, Heidi; Marxer, Ricard; Desideri, Lorenzo; Coy, Andre; Tamburini, Fabio; Green, Phil

    2017-01-01

    A better use of the increasing functional capabilities of home automation systems and Internet of Things (IoT) devices to support the needs of users with disability, is the subject of a research project currently conducted by Area Ausili (Assistive Technology Area), a department of Polo Tecnologico Regionale Corte Roncati of the Local Health Trust of Bologna (Italy), in collaboration with AIAS Ausilioteca Assistive Technology (AT) Team. The main aim of the project is to develop experimental low cost systems for environmental control through simplified and accessible user interfaces. Many of the activities are focused on automatic speech recognition and are developed in the framework of the CloudCAST project. In this paper we report on the first technical achievements of the project and discuss future possible developments and applications within and outside CloudCAST.

  3. Production of footbridge with double curvature made of UHPC

    NASA Astrophysics Data System (ADS)

    Kolísko, J.; Čítek, D.; Tej, P.; Rydval, M.

    2017-09-01

    This article present a mix design, preparation and production of thin-walled footbridge made from UHPFRC. In this case an experimental pedestrian bridge was design and prepared. Bridge with span of 10 m and the clear width of 1.50 m designed as single-span bridge. Optimization of UHPFRC matrix and parameters of this material leads to the design of very thin structures. Total thickness of shell structure 30 - 45 mm. Bridge was cast as a prefabricated element in one piece. Self-compacting character of UHPFRC with high flowability allows the production of the final structure. Extensive research was done before production of footbridge. Experimental reached data were compared with extensive numerical analysis and the final design of structure and UHPFRC matrix were optimized in many details. Two versions of large scale mock-ups were casted and tested. According to the complexity of whole experiment a casting technology and production of formwork were tested and optimized many times.

  4. High Strength and Wear Resistant Aluminum Alloy for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    In this paper, a new high strength and wear resistant aluminum cast alloy invented by NASA-MSFC for high temperature applications will be presented. Developed to meet U.S. automotive legislation requiring low-exhaust emission, the novel NASA 398 aluminum-silicon alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (500 F-800 F), enabling new pistons to utilize less material, which can lead to reducing part weight and cost as well as improving performance. NASA 398 alloy also offers greater wear resistance, surface hardness, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys for several commercial and automotive applications. The new alloy can be produced economically using permanent steel molds from conventional gravity casting or sand casting. The technology was developed to stimulate the development of commercial aluminum casting products from NASA-developed technology by offering companies the opportunity to license this technology.

  5. FY2017 Materials Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Felix; Gibbs, Jerry; Kleinbaum, Sarah

    The Materials Technology subprogram supports the Vehicle Technology Office’s mission to help consumers and businesses reduce their transportation energy costs while meeting or exceeding vehicle performance expectations. The Propulsion Materials research portfolio seeks to develop higher performance materials that can withstand increasingly extreme environments and address the future properties needs of a variety of high efficiency powertrain types, sizes, fueling concepts, and combustion modes. Advanced Lightweight Materials research enables improvements in fuel economy by providing properties that are equal to or better than traditional materials at a lower weight. Because it takes less energy to accelerate a lighter object, replacingmore » cast iron and traditional steel components with lightweight materials such as high-strength steel, magnesium (Mg), aluminum (Al), and polymer composites can directly reduce a vehicle’s fuel consumption. Materials technology activities focus on the following cost and performance targets: (1) enable a 25 percent weight reduction for light-duty vehicles including body, chassis, and interior as compared to a 2012 baseline at no more than a $5/lb-saved increase in cost; and (2) validate a 25 percent improvement in high temperature (300°C) component strength relative to components made with 2010 baseline cast Al alloys (A319 or A356) for improved efficiency light-duty engines.« less

  6. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher Hull

    2009-10-31

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginiamore » Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium -- Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno - that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/biological extraction; (4) Modeling and control; and (5) Environmental control. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed by category, along with brief abstracts of their aims and objectives.« less

  7. Rapid prototype fabrication processes for high-performance thrust cells

    NASA Technical Reports Server (NTRS)

    Hunt, K.; Chwiedor, T.; Diab, J.; Williams, R.

    1994-01-01

    The Thrust Cell Technologies Program (Air Force Phillips Laboratory Contract No. F04611-92-C-0050) is currently being performed by Rocketdyne to demonstrate advanced materials and fabrication technologies which can be utilized to produce low-cost, high-performance thrust cells for launch and space transportation rocket engines. Under Phase 2 of the Thrust Cell Technologies Program (TCTP), rapid prototyping and investment casting techniques are being employed to fabricate a 12,000-lbf thrust class combustion chamber for delivery and hot-fire testing at Phillips Lab. The integrated process of investment casting directly from rapid prototype patterns dramatically reduces design-to-delivery cycle time, and greatly enhances design flexibility over conventionally processed cast or machined parts.

  8. Implementation of Metal Casting Best Practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eppich, Robert; Naranjo, Robert D.

    2007-01-01

    The project examined cases where metal casters had implemented ITP research results and the benefits they received due to that implementation. In cases where casters had not implemented those results, the project examined the factors responsible for that lack of implementation. The project also informed metal casters of the free tools and service offered by the ITP Technology Delivery subprogram.

  9. Electroslag Processing for Marine Application. Summary Report on a Workshop Held in Annapolis, Maryland on 5-6 March 1985.

    DTIC Science & Technology

    1985-03-01

    the ESC process technology to private industry. The task emphasizes four major areas: (1) advancement of ESC technology , (2) preparation of castings (by...to advance the technology . This can possibly be best accomplished by industry or by industry in cooperation with one or more Government agencies... Technology ( CANMET ) has been involved with electroslag casting for the past 4 years. Recently this equipment has been modified to produce thin-wall hollow

  10. FIELD DEMONSTRATION OF EMERGING PIPE WALL INTEGRITY ASSESSMENT TECHNOLOGIES FOR LARGE CAST IRON WATER MAINS

    EPA Science Inventory

    The U.S. Environmental Protection Agency sponsored a large-scale field demonstration of innovative leak detection/location and condition assessment technologies on a 76-year old, 2,500-ft long, cement-lined, 24-in. cast iron water main in Louisville, KY from July through Septembe...

  11. Field Demonstration of Emerging Pipe Wall Integrity Assessment Technologies for Large Cast Iron Water Mains - Paper

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) sponsored a large-scale field demonstration of innovative leak detection/location and condition assessment technologies on a 76-year old, 2,000-ft long, cement-lined, 24-in. cast-iron water main in Louisville, KY from July through Se...

  12. Development and Implementation of the Casting of Rods Made of Refractory Cast Alloys

    NASA Astrophysics Data System (ADS)

    Kabanov, I. V.; Urin, S. L.; Ivanyuk, A. S.; Nesterov, A. N.; Bogdanov, S. V.

    2017-12-01

    The problems of the production of a so-called casting rod blank made of a refractory casting alloy in the vacuum induction furnaces of AO Metallurgical Plant Electrostal are considered. A unique technology of casting and subsequent treatment of as-cast rod blanks made of refractory alloys is developed, tested, and optimized. As a result of the developed and performed measures for the production of metal products in the Consarc furnace, the ingot-to-product yield increases by 15% as compared to metal casting in an ISV-1.0 furnace. As a result, we have widened the range of cast alloy grades and are going to cast metals for the manufacture of blanks of other sizes and ranges of alloy an steel grades.

  13. Designing a combined casting mold for manufacture of a gasoline centrifugal pump body using CAD/CAM-systems

    NASA Astrophysics Data System (ADS)

    Galin, N. E.; Ogol, I. I.; Chervach, Yu B.; Dammer, V. Kh; Ru, Jia Hong

    2017-02-01

    The present paper examines designing of a combined casting mold for manufacture of a gasoline centrifugal pump body. The paper offers technological solutions for obtaining high quality castings at the testing stage of the finished mold. The paper is intended for practical use and prepared by order of JSC ‘Tomsk Electrical Engineering Plant’ using software and equipment of the department ‘Technologies of Computer-Aided Machinery Manufacturing’ of the Tomsk Polytechnic University (TPU) under the economic contract within state import substitution program. In preparing the paper, CAD/CAM-systems KOMPAS-3D and PowerMILL were used. In 2015, the designed casting mold was introduced into the production process at JSC ‘Tomsk Electrical Engineering Plant’.

  14. Centrifugal casting of ZA8 zinc alloy and composite A356/silicon carbide: Study and modeling of phases' and particles' segregation

    NASA Astrophysics Data System (ADS)

    Balout, Bahaa

    Centrifugation is a casting technology that allows the production of cylindrical and graduated parts with different mechanical properties through the section. The need for materials with good quality and specific mechanical properties has been driven this technology in order to produce different types of materials such as zinc alloys and graduated metal matrix composites reinforced by hard and wear resistant particles. The goal of this research project is to study and model the eutectic macrosegregation, the solidification speed, and the speeds of solidification fronts during centrifugal casting of ZA8 zinc-aluminum alloy in order to improve the part quality and increase its strength and field reliability. Moreover, the segregation of the particles during centrifugal casting of an aluminum matrix composite reinforced by silicon carbide particles (A356/SiC) is also studied to improve and control the graduation of the parts. The cooling rate, the speed, acceleration/deceleration, displacement, and segregation of the particles across the section will be modeled by discretization of Stokes' law in time in order to take into consideration the change in the centrifugal radius and melt viscosity during cooling process. This study will allow the control of the graduation degree of particles across the section in order to improve the properties and wear resistance of the composite. This composite can be used in systems where friction is critical and load is high (reinforcements of parts for the cylinders of pneumatic systems). The results show that the maximum macrosegregation zone of the eutectic across the casting section corresponds to the last point of solidification. The eutectic macrosegregation produced during centrifugal casting of thin walled part is a normal segregation which varies depending on the solidification speed and the ratio between the speeds of solidification fronts. On the other hand, it was found that the position and volume fraction of the particles on the outer/inner casting surface and across the section varies whether the viscosity of the liquid metal used and the centrifugal radius are considered constant or variable during the modeling. Modeling the particles' segregation while discretizing, in time, the particles' velocities gives more consistent results compared to those obtained experimentally. Key-words: centrifugal casting, composite, macrosegregation, solidification.

  15. Grain Refinement of Magnesium Alloys: A Review of Recent Research, Theoretical Developments, and Their Application

    NASA Astrophysics Data System (ADS)

    StJohn, D. H.; Easton, M. A.; Qian, M.; Taylor, J. A.

    2013-07-01

    This paper builds on the "Grain Refinement of Mg Alloys" published in 2005 and reviews the grain refinement research on Mg alloys that has been undertaken since then with an emphasis on the theoretical and analytical methods that have been developed. Consideration of recent research results and current theoretical knowledge has highlighted two important factors that affect an alloy's as-cast grain size. The first factor applies to commercial Mg-Al alloys where it is concluded that impurity and minor elements such as Fe and Mn have a substantially negative impact on grain size because, in combination with Al, intermetallic phases can be formed that tend to poison the more potent native or deliberately added nucleant particles present in the melt. This factor appears to explain the contradictory experimental outcomes reported in the literature and suggests that the search for a more potent and reliable grain refining technology may need to take a different approach. The second factor applies to all alloys and is related to the role of constitutional supercooling which, on the one hand, promotes grain nucleation and, on the other hand, forms a nucleation-free zone preventing further nucleation within this zone, consequently limiting the grain refinement achievable, particularly in low solute-containing alloys. Strategies to reduce the negative impact of these two factors are discussed. Further, the Interdependence model has been shown to apply to a broad range of casting methods from slow cooling gravity die casting to fast cooling high pressure die casting and dynamic methods such as ultrasonic treatment.

  16. Investigation of optimal chemical composition of cast aluminum alloys for vibrational mechanical-chemical polishing and deposition of protective and decorative coatings

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Popov, S. I.; Kirichek, A. V.

    2018-03-01

    The article suggests the technology of vibration finishing processing of aluminum alloys with simultaneous coating. On the basis of experimental studies, cast alloys, working media, operating modes of equipment, activating solutions were chosen. The practical application of the developed technology on real parts is shown.

  17. Updates on EPA’s High-Throughput Exposure Forecast (ExpoCast) Research Project (CPCP)

    EPA Science Inventory

    Recent research advances by the ORD ExpoCast project (CSS Rapid Exposure and Dosimetry) are presented to the computational toxicology community in the context of prioritizing chemicals on a risk-basis using joint ExpoCast and ToxCast predictions. Recent publications by Wambaugh e...

  18. Fibreglass Total Contact Casting, Removable Cast Walkers, and Irremovable Cast Walkers to Treat Diabetic Neuropathic Foot Ulcers: A Health Technology Assessment

    PubMed Central

    Costa, Vania; Tu, Hong Anh; Wells, David; Weir, Mark; Holubowich, Corinne; Walter, Melissa

    2017-01-01

    Background Diabetic neuropathic foot ulcers are a risk factor for lower leg amputation. Many experts recommend offloading with fibreglass total contact casting, removable cast walkers, and irremovable cast walkers as a way to treat these ulcers. Methods We completed a health technology assessment, which included an evaluation of clinical benefits and harms, value for money, and patient preferences for offloading devices. We performed a systematic literature search on August 17, 2016, to identify randomized controlled trials that compared fibreglass total contact casting, removable cast walkers, and irremovable cast walkers with other treatments (offloading or non-offloading) in patients with diabetic neuropathic foot ulcers. We developed a decision-analytic model to assess the cost-effectiveness of fibreglass total contact casting, removable cast walkers, and irremovable cast walkers, and we conducted a 5-year budget impact analysis. Finally, we interviewed people with diabetes who had lived experience with foot ulcers, asking them about the different offloading devices and the factors that influenced their treatment choices. Results We identified 13 randomized controlled trials. The evidence suggests that total contact casting, removable cast walkers, and irremovable cast walkers are beneficial in the treatment of neuropathic, noninfected foot ulcers in patients with diabetes but without severe peripheral arterial disease. Compared to removable cast walkers, ulcer healing was improved with total contact casting (moderate quality evidence; risk difference 0.17 [95% confidence interval 0.00–0.33]) and irremovable cast walkers (low quality evidence; risk difference 0.21 [95% confidence interval 0.01–0.40]). We found no difference in ulcer healing between total contact casting and irremovable cast walkers (low quality evidence; risk difference 0.02 [95% confidence interval −0.11–0.14]). The economic analysis showed that total contact casting and irremovable cast walkers were less expensive and led to more health outcome gains (e.g., ulcers healed and quality-adjusted life-years) than removable cast walkers. Irremovable cast walkers were as effective as total contact casting and were associated with lower costs. The 5-year budget impact of funding total contact casting, removable cast walkers, and irremovable cast walkers (device costs only at 100% access) would be $17 to $20 million per year. The patients we interviewed felt that wound healing was improved with total contact casting than with removable cast walkers, but that removable cast walkers were more convenient and came with a lower cost burden. They reported no experience or familiarity with irremovable cast walkers. Conclusions Ulcer healing improved with total contact casting, irremovable cast walkers, and removable cast walkers, but total contact casting and irremovable cast walkers had higher rates of ulcer healing than removable cast walkers. Increased access to offloading devices could result in cost savings for the health system because of fewer amputations. Patients with diabetic foot ulcers reported a preference for total contact casting over removable cast walkers, largely because they perceived wound healing to be improved with total contact casting. However, cost, comfort, and convenience are concerns for patients. PMID:28989556

  19. Fibreglass Total Contact Casting, Removable Cast Walkers, and Irremovable Cast Walkers to Treat Diabetic Neuropathic Foot Ulcers: A Health Technology Assessment.

    PubMed

    2017-01-01

    Diabetic neuropathic foot ulcers are a risk factor for lower leg amputation. Many experts recommend offloading with fibreglass total contact casting, removable cast walkers, and irremovable cast walkers as a way to treat these ulcers. We completed a health technology assessment, which included an evaluation of clinical benefits and harms, value for money, and patient preferences for offloading devices. We performed a systematic literature search on August 17, 2016, to identify randomized controlled trials that compared fibreglass total contact casting, removable cast walkers, and irremovable cast walkers with other treatments (offloading or non-offloading) in patients with diabetic neuropathic foot ulcers. We developed a decision-analytic model to assess the cost-effectiveness of fibreglass total contact casting, removable cast walkers, and irremovable cast walkers, and we conducted a 5-year budget impact analysis. Finally, we interviewed people with diabetes who had lived experience with foot ulcers, asking them about the different offloading devices and the factors that influenced their treatment choices. We identified 13 randomized controlled trials. The evidence suggests that total contact casting, removable cast walkers, and irremovable cast walkers are beneficial in the treatment of neuropathic, noninfected foot ulcers in patients with diabetes but without severe peripheral arterial disease. Compared to removable cast walkers, ulcer healing was improved with total contact casting (moderate quality evidence; risk difference 0.17 [95% confidence interval 0.00-0.33]) and irremovable cast walkers (low quality evidence; risk difference 0.21 [95% confidence interval 0.01-0.40]). We found no difference in ulcer healing between total contact casting and irremovable cast walkers (low quality evidence; risk difference 0.02 [95% confidence interval -0.11-0.14]). The economic analysis showed that total contact casting and irremovable cast walkers were less expensive and led to more health outcome gains (e.g., ulcers healed and quality-adjusted life-years) than removable cast walkers. Irremovable cast walkers were as effective as total contact casting and were associated with lower costs. The 5-year budget impact of funding total contact casting, removable cast walkers, and irremovable cast walkers (device costs only at 100% access) would be $17 to $20 million per year. The patients we interviewed felt that wound healing was improved with total contact casting than with removable cast walkers, but that removable cast walkers were more convenient and came with a lower cost burden. They reported no experience or familiarity with irremovable cast walkers. Ulcer healing improved with total contact casting, irremovable cast walkers, and removable cast walkers, but total contact casting and irremovable cast walkers had higher rates of ulcer healing than removable cast walkers. Increased access to offloading devices could result in cost savings for the health system because of fewer amputations. Patients with diabetic foot ulcers reported a preference for total contact casting over removable cast walkers, largely because they perceived wound healing to be improved with total contact casting. However, cost, comfort, and convenience are concerns for patients.

  20. Fluid mechanics of directional solidification at reduced gravity

    NASA Technical Reports Server (NTRS)

    Chen, C. F.

    1992-01-01

    The primary objective of the proposed research is to provide additional groundbased support for the flight experiment 'Casting and Solidification Technology' (CAST). This experiment is to be performed in the International Microgravity Laboratory-1 (IML-1) scheduled to be flown on a space shuttle mission scheduled for 1992. In particular, we will provide data on the convective motion and freckle formation during directional solidification of NH4Cl from its aqueous solution at simulated parameter ranges equivalent to reducing the gravity from the sea-level value down to 0.1 g or lower. The secondary objectives of the proposed research are to examine the stability phenomena associated with the onset of freckles and the mechanisms for their subsequent growth and decline (to eventual demise of some) by state-of-the-art imaging techniques and to formulate mathematical models for the prediction of the observed phenomena.

  1. Grain Refinement and Improvement of Solidification Defects in Direct-Chill Cast Billets of A4032 Alloy by Melt Conditioning

    NASA Astrophysics Data System (ADS)

    Li, Hu-Tian; Zhao, Pizhi; Yang, Rongdong; Patel, Jayesh B.; Chen, Xiangfu; Fan, Zhongyun

    2017-10-01

    Melt-conditioned, direct-chill (MC-DC) casting is an emerging technology to manipulate the solidification process by melt conditioning via intensive shearing in the sump during DC casting to tailor the solidification microstructure and defect formation. When using MC-DC casting technology in an industrial scale DC cast billet of an A4032 aluminum alloy, significant grain refinement and uniform microstructure can be achieved in the primary α-Al phase with fine secondary dendritic arm spacing (SDAS). Improved macrosegregation is quantitatively characterized and correlated with the suppression of channel segregation. The mechanisms for the prevention of channel segregation are attributed to the increased local cooling rate in the liquid-solid phase region in the sump and the formation of fine equiaxed dendritic grains under intensive melt shearing during MC-DC casting. A critical cooling rate has been identified to be around 0.5 to 1 K/s (°C/s) for the channel segregation to happen in the investigated alloy based on quantitative metallographic results of SDAS. Reduction and refinement of microporosity is attributed to the improved permeability in the liquid-solid phase region estimated by the Kozeny-Carman relationship. The potential improvement in the mechanical properties achievable in MC-DC cast billets is indicated by the finer and more uniform forging streamline in the forgings of MC-DC cast billet.

  2. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Development of Surface Engineered Coating Systems for Aluminum Pressure Die Casting Dies: Towards a 'Smart' Die Coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. John J. Moore; Dr. Jianliang Lin,

    2012-07-31

    The main objective of this research program was to design and develop an optimal coating system that extends die life by minimizing premature die failure. In high-pressure aluminum die-casting, the die, core pins and inserts must withstand severe processing conditions. Many of the dies and tools in the industry are being coated to improve wear-resistance and decrease down-time for maintenance. However, thermal fatigue in metal itself can still be a major problem, especially since it often leads to catastrophic failure (i.e. die breakage) as opposed to a wear-based failure (parts begin to go out of tolerance). Tooling costs remain themore » largest portion of production costs for many of these parts, so the ability prevent catastrophic failures would be transformative for the manufacturing industry.The technology offers energy savings through reduced energy use in the die casting process from several factors, including increased life of the tools and dies, reuse of the dies and die components, reduction/elimination of lubricants, and reduced machine down time, and reduction of Al solder sticking on the die. The use of the optimized die coating system will also reduce environmental wastes and scrap parts. Current (2012) annual energy saving estimates, based on initial dissemination to the casting industry in 2010 and market penetration of 80% by 2020, is 3.1 trillion BTU's/year. The average annual estimate of CO2 reduction per year through 2020 is 0.63 Million Metric Tons of Carbon Equivalent (MM TCE).« less

  3. Development of Aerogel Molds for Metal Casting Using Lunar and Martian Regolith

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In the last few years NASA has set new priorities for research and development of technologies necessary to enable long-term presence on the Moon and Mars. Among these key technologies is what is known as in situ resource utilization, which defines all conceivable usage of mineral, liquid, gaseous, or biological resources on a visited planet. In response to this challenge, we have been focusing on developing and demonstrating the manufacturing of a specific product using Lunar and Martian soil simulants (i.e., a mold for the casting of metal and alloy parts) which will be an indispensable tool for the survival of outposts on the Moon and Mars. In addition, our purpose is to demonstrate the feasibility of using mesoporous materials such as aerogels to serve as efficient casting molds for high quality components in propulsion and other aerospace applications. The first part of the project consists of producing aerogels from the in situ resources available in Martian and Lunar soil. The approach we are investigating is to use chemical processes to solubilize silicates using organic reagents at low temperatures and then use these as precursors in the formation of aerogels for the fabrication of metal casting molds. One set of experiments consists of dissolving silica sources in basic ethylene glycol solution to form silicon glycolates. When ground silica aerogel was used as source material, a clear solution of silicon glycolate was obtained and reacted to form a gel thus proving the feasibility of this approach. The application of this process to Lunar and Martian simulants did not result in the formation of a gel; further study is in progress. In the second method acidified alcohol is reacted with the simulants to form silicate esters. Preliminary results indicate the presence of silicon alkoxide in the product distillation. However, no gel has been obtained so further characterization is ongoing. In the second part of the project, the focus has been on developing a series of aerogel plates suitable for thin plate metal casting and ingot metal castings. The influence of aerogels on thin wall metal castings was studied by placing aerogel plates into the cavities of thin sections of resin bonded sand molds. An 1 based commercial alloy ( 356) containing 7 percent Si was poured into these molds. Post-solidification studies provide evidence that aerogel inserts significantly reduce the cooling rate during solidification. The advantage of a lower rate using aerogel inserts was reflected in the reduction of casting defects such as shrinkage porosity. Quantitative results support the hypothesis that using aerogels as a mold material can offer definite advantages when used as casting thin sections. As a separate effort, silica aerogel with cylindrical cavities have been prepared and will be evaluated for casting commercial alloys.

  4. [Effect of fluoride concentration on the corrosion behavior of cobalt-chromium alloy fabricated by two different technology processes].

    PubMed

    Qiuxia, Yang; Ying, Yang; Han, Xu; Di, Wu; Ke, Guo

    2016-02-01

    This study aims to determine the effect of fluoride concentration on the corrosion behavior of cobalt-chromium alloy fabricated by two different technology processes in a simulated oral environment. A total of 15 specimens were employed with selective laser melting (SLM) and another 15 for traditional casting (Cast) in cobalt-chromium alloy powders and blocks with the same material composition. The corrosion behavior of the specimens was studied by potentiodynamic polarization test under different oral environments with varying solubilities of fluorine (0, 0.05%, and 0.20% for each) in acid artificial saliva (pH = 5.0). The specimens were soaked in fluorine for 24 h, and the surface microstructure was observed under a field emission scanning electron microscope after immersing the specimens in the test solution at constant temperature. The corrosion potential (Ecorr) value of the cobalt-chromium alloy cast decreased with increasing fluoride concentration in acidic artificial saliva. The Ecorr, Icorr, and Rp values of the cobalt-chromium alloy fabricated by two different technology processes changed significantly when the fluoride concentration was 0.20% (P < 0.05). The Ecorr, Icorr, and Rp values of the cobalt-chromium alloy fabricated by two different technology processes exhibited a statistically significant difference. The Icorr value of the cobalt-chromium alloy cast was higher than that in the SLM group cobalt-chromium alloy when the fluoride concentration was 0.20% (P < 0.05). The Ecorr, tRp alues of the cobalt-chromium alloy cast were lower htan those of the SLM group cobalt-chromium alloy when the fluoride concentration was 0.20% (P< 0 .05). Fluoride ions adversely affected the corrosion resistance of the cobalt-chromium alloy fabricated by two different technology processes. The corrosion resistance of the cobalt-chromium alloy cast was worse than that of the SLM group cobalt-chromium alloy when the fluoride concentration was 0.20%.

  5. Formwork pressure exerted by self-consolidating concrete

    NASA Astrophysics Data System (ADS)

    Omran, Ahmed Fathy

    Self-consolidating concrete (SCC) is an emerging technology that utilizes flowable concrete that eliminates the need for consolidation. The advantages of SCC lie in a remarkable reduction of the casting time, facilitating the casting of congested and complex structural elements, possibility to reduce labor demand, elimination of mechanical vibrations and noise, improvement of surface appearance, producing a better and premium concrete product. The research focussed on capturing existing knowledge and making recommendations for current practice. An experimental program was undertaken at the Universite de Sherbrooke to evaluate the lateral pressure developed by SCC mixtures. A portable devise (UofS2 pressure column) for measuring and predicting lateral pressure and its rate of decay of SCC was developed and validated. The UofS2 pressure column is cast with 0.5 m high fresh concrete and air pressure is introduced from the top to simulate casting depth up to 13 m. Then, develop and implement test method for field evaluation of relevant plastic and thixotropic properties of SCC that affect formwork pressure were done. Portable vane (PV) test based on the hand-held vane test method used to determine the undrained shear strength property of clay soil was the first setup as well as the inclined plane (IP) test. The IP device involves slumping a small concrete cylinder on a horizontal plate and then lifting up the plate at different durations of rest until the slumped sample starts to move. Identifying role of material constituents, mix design, concrete placement characteristics (casting rate, waiting periods between lifts, and casting depth), temperature, and formwork characteristics that have major influence on formwork pressure exerted by SCC were evaluated in laboratory and validated by actual field measurements. Relating the maximum lateral pressure and its rate of decay to the plastic properties of SCC were established. In the analytical part of the research, effective ways to reduce lateral pressure by developing formulation expertise and practical guidelines to lower lateral pressure of SCC were proposed. Various design equations as well as chart diagrams to predict formwork pressure that can be exerted by SCC on column and wall elements were derived and reported. In general, the results obtained show that measured lateral pressure is lower than corresponding hydrostatic pressure. The study has shown that lateral pressure exerted by SCC is closely related to the structural build-up at rest (or thixotropy) of SCC. The latter can be controlled using different mixture proportionings, material constituents, and chemical admixtures. SCC mixture with a high rate of structural build-up at rest can develop low lateral pressure on formwork. Increased rate of structural build-up at rest can be ensured by incorporating a greater volume of coarse aggregate, lower paste volume, and/or lower sand-to-total aggregate ratio. Incorporating coarse aggregate of larger maximum size could also increase the thixotropy and hence reduce the lateral pressure. This can also be achieved by reducing the workability of SCC using less HRWRA concentration. Indeed, all mixture factors have been replaced by measuring the rate of structural build-up at rest (or thixotropy) using the developed portable vane and inclined plane field-oriented test as well as the modified Tattersall MK-III concrete rheometer. On the other hand, increasing or maintaining the concrete temperature at a certain level plays an important role to reduce the lateral pressure. The higher concrete temperature can accelerate the heat of hydration of cement with water and increase the internal friction leading to higher thixotropy. Controlling the placement rate has a great impact on the resultant lateral pressure of SCC. The lateral pressure can be reduced by slowing down the casting rate, as concrete has more time to build-up. However, this can slow down the rate of construction. The casting rate should be optimized to yield a cost effective formwork system. Pausing the continuous casting by a waiting period can reduce the exerted lateral pressure. The research investigation could accelerate the acceptance and implementation of SCC technology in cast-in-place applications, which is the preponderate business of the ready mixed concrete suppliers. The research findings could also contribute to the removal of some of the major barriers hindering the acceptance of SCC in cast-in-place applications and provide the industry with much needed guidelines on formwork pressure. (Abstract shortened by UMI.)

  6. Web Cast on Arsenic Demonstration Program: Lessons Learned

    EPA Science Inventory

    Web cast presentation covered 10 Lessons Learned items selected from the Arsenic Demonstration Program with supporting information. The major items discussed include system design and performance items and the cost of the technologies.

  7. Effect of Thermal and Chemical Treatment on the Microstructural, Mechanical and Machining Performance of W319 Al-Si-Cu Cast Alloy Engine Blocks and Directionally Solidified Machinability Test Blocks

    NASA Astrophysics Data System (ADS)

    Szablewski, Daniel

    The research presented in this work is focused on making a link between casting microstructural, mechanical and machining properties for 319 Al-Si sand cast components. In order to achieve this, a unique Machinability Test Block (MTB) is designed to simulate the Nemak V6 Al-Si engine block solidification behavior. This MTB is then utilized to cast structures with in-situ nano-alumina particle master alloy additions that are Mg based, as well as independent in-situ Mg additions, and Sr additions to the MTB. The Universal Metallurgical Simulator and Analyzer (UMSA) Technology Platform is utilized for characterization of each cast structure at different Secondary Dendrite Arm Spacing (SDAS) levels. The rapid quench method and Jominy testing is used to assess the capability of the nano-alumina master alloy to modify the microstructure at different SDAS levels. Mechanical property assessment of the MTB is done at different SDAS levels on cast structures with master alloy additions described above. Weibull and Quality Index statistical analysis tools are then utilized to assess the mechanical properties. The MTB is also used to study single pass high speed face milling and bi-metallic cutting operations where the Al-Si hypoeutectic structure is combined with hypereutectoid Al-Si liners and cast iron cylinder liners. These studies are utilized to aid the implementation of Al-Si liners into the Nemak V6 engine block and bi-metallic cutting of the head decks. Machining behavior is also quantified for the investigated microstructures, and the Silicon Modification Level (SiML) is utilized for microstructural analysis as it relates to the machining behavior.

  8. Advanced rotary engine components utilizing fiber reinforced Mg castings

    NASA Technical Reports Server (NTRS)

    Goddard, D.; Whitman, W.; Pumphrey, R.; Lee, C.-M.

    1986-01-01

    Under a two-phase program sponsored by NASA, the technology for producing advanced rotary engine components utilizing graphite fiber-reinforced magnesium alloy casting is being developed. In Phase I, the successful casting of a simulated intermediate housing was demonstrated. In Phase II, the goal is to produce an operating rotor housing. The effort involves generation of a material property data base, optimization of parameters, and development of wear- and corrosion-resistant cast surfaces and surface coatings. Results to date are described.

  9. Rapidly solidified titanium alloys by melt overflow

    NASA Technical Reports Server (NTRS)

    Gaspar, Thomas A.; Bruce, Thomas J., Jr.; Hackman, Lloyd E.; Brasmer, Susan E.; Dantzig, Jonathan A.; Baeslack, William A., III

    1989-01-01

    A pilot plant scale furnace was designed and constructed for casting titanium alloy strips. The furnace combines plasma arc skull melting techniques with melt overflow rapid solidification technology. A mathematical model of the melting and casting process was developed. The furnace cast strip of a suitable length and width for use with honeycomb structures. Titanium alloys Ti-6Al-4V and Ti-14Al-21 Nb were successfully cast into strips. The strips were evaluated by optical metallography, microhardness measurements, chemical analysis, and cold rolling.

  10. Development of a Thin-Wall Magnesium side door Inner Panel for Automobiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jekl, J.; Auld, J.; Sweet, C.

    Cast magnesium side door inner panels can provide a good combination of weight, functional, manufacturing and economical requirements. However, several challenges exist including casting technology for thin-wall part design, multi-material incompatibility and relatively low strength vs steel. A project has been initiated, supported by the US Department of Energy, to design and develop a lightweight frame-under-glass door having a thin-wall, full die-cast, magnesium inner panel. This development project is the first of its kind within North America. Phase I of the project is now complete and the 2.0mm magnesium design, through casting process enablers, has met or exceeded all stiffnessmore » requirements, with significant mass reduction and part consolidation. In addition, a corrosion mitigation strategy has been established using industry-accepted galvanic isolation methods and coating technologies.« less

  11. Approaches to Design and Evaluation of Sandwich Composites

    NASA Technical Reports Server (NTRS)

    Shivakumar, Kunigal; Raju, I. S. (Technical Monitor); Ambur, D. (Technical Monitor)

    2001-01-01

    This report describes research during the period June 15, 1997 to October 31, 2000. This grant yielded a low cast manufacturing of composite sandwich structures technology and characterization interfacial and subinterfacial cracks in foam core sandwich panels. The manufacturing technology is called the vacuum assisted resin transfer (VARTM). The VARTM is suitable for processing composite materials both at ambient and elevated temperatures and of unlimited component size. This technology has been successfully transferred to a small business fiber preform manufacturing company 3TEX located in Cary, North Carolina. The grant also supported one Ph.D, one M.S and a number of under graduate students, and nine publications and Presentations.

  12. Ultra-smooth finishing of aspheric surfaces using CAST technology

    NASA Astrophysics Data System (ADS)

    Kong, John; Young, Kevin

    2014-06-01

    Growing applications for astronomical ground-based adaptive systems and air-born telescope systems demand complex optical surface designs combined with ultra-smooth finishing. The use of more sophisticated and accurate optics, especially aspheric ones, allows for shorter optical trains with smaller sizes and a reduced number of components. This in turn reduces fabrication and alignment time and costs. These aspheric components include the following: steep surfaces with large aspheric departures; more complex surface feature designs like stand-alone off-axis-parabola (OAP) and free form optics that combine surface complexity with a requirement for ultra-high smoothness, as well as special optic materials such as lightweight silicon carbide (SiC) for air-born systems. Various fabrication technologies for finishing ultra-smooth aspheric surfaces are progressing to meet these growing and demanding challenges, especially Magnetorheological Finishing (MRF) and ion-milling. These methods have demonstrated some good success as well as a certain level of limitations. Amongst them, computer-controlled asphere surface-finishing technology (CAST), developed by Precision Asphere Inc. (PAI), plays an important role in a cost effective manufacturing environment and has successfully delivered numerous products for the applications mentioned above. One of the most recent successes is the Gemini Planet Imager (GPI), the world's most powerful planet-hunting instrument, with critical aspheric components (seven OAPs and free form optics) made using CAST technology. GPI showed off its first images in a press release on January 7, 2014 . This paper reviews features of today's technologies in handling the ultra-smooth aspheric optics, especially the capabilities of CAST on these challenging products. As examples, three groups of aspheres deployed in astronomical optics systems, both polished and finished using CAST, will be discussed in detail.

  13. Development of Thin Section Zinc Die Casting Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodwin, Frank

    2013-10-31

    A new high fluidity zinc high pressure die casting alloy, termed the HF alloy, was developed during laboratory trials and proven in industrial production. The HF alloy permits castings to be achieved with section thicknesses of 0.3 mm or less. Technology transfer activities were conducted to develop usage of the HF high fluidity alloy. These included production of a brochure and a one-hour webinar on the HF alloy. The brochure was then sent to 1,184 product designers in the Interzinc database. There was excellent reception to this mailing, and from this initial contact 5 technology transfer seminars were conducted formore » 81 participants from 30 companies across a wide range of business sectors. Many of the successful applications to date involve high quality surface finishes. Design and manufacturing assistance was given for development of selected applications.« less

  14. Improving Metal Casting Process

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Don Sirois, an Auburn University research associate, and Bruce Strom, a mechanical engineering Co-Op Student, are evaluating the dimensional characteristics of an aluminum automobile engine casting. More accurate metal casting processes may reduce the weight of some cast metal products used in automobiles, such as engines. Research in low gravity has taken an important first step toward making metal products used in homes, automobiles, and aircraft less expensive, safer, and more durable. Auburn University and industry are partnering with NASA to develop one of the first accurate computer model predictions of molten metals and molding materials used in a manufacturing process called casting. Ford Motor Company's casting plant in Cleveland, Ohio is using NASA-sponsored computer modeling information to improve the casting process of automobile and light-truck engine blocks.

  15. Liquid Metal Engineering by Application of Intensive Melt Shearing

    NASA Astrophysics Data System (ADS)

    Patel, Jayesh; Zuo, Yubo; Fan, Zhongyun

    In all casting processes, liquid metal treatment is an essential step in order to produce high quality cast products. A new liquid metal treatment technology has been developed which comprises of a rotor/stator set-up that delivers high shear rate to the liquid melt. It generates macro-flow in a volume of melt for distributive mixing and intensive shearing for dispersive mixing. The high shear device exhibits significantly enhanced kinetics for phase transformations, uniform dispersion, distribution and size reduction of solid particles and gas bubbles, improved homogenisation of chemical composition and temperature fields and also forced wetting of usually difficult-to-wet solid particles in the liquid metal. Hence, it can benefit various casting processes to produce high quality cast products with refined microstructure and enhanced mechanical properties. Here, we report an overview on the application of the new high shear technology to the processing of light metal alloys.

  16. Development of expert systems for modeling of technological process of pressure casting on the basis of artificial intelligence

    NASA Astrophysics Data System (ADS)

    Gavarieva, K. N.; Simonova, L. A.; Pankratov, D. L.; Gavariev, R. V.

    2017-09-01

    In article the main component of expert system of process of casting under pressure which consists of algorithms, united in logical models is considered. The characteristics of system showing data on a condition of an object of management are described. A number of logically interconnected steps allowing to increase quality of the received castings is developed

  17. Microstructure and Dynamic Failure Properties of Freeze-Cast Materials for Thermobaric Warhead Cases

    DTIC Science & Technology

    2012-12-01

    Function LLNL Lawrence Livermore National Laboratory PDF Probability Density Function PMMA Poly(Methyl Methacrylate) RM Reactive Materials SEM...FREEZE CAST MATERIALS Freeze casting technology combines compounds such as aluminum oxide and poly(methyl methacrylate) ( PMMA ) to develop a...Subsequently, the porous structure can be infiltrated with a variety of materials, such as a standard polymer like PMMA . This hybrid material is believed

  18. Study of Fluid Experiment System (FES)/CAST/Holographic Ground System (HGS)

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Cummings, Rick; Jones, Brian

    1992-01-01

    The use of holographic and schlieren optical techniques for studying the concentration gradients in solidification processes has been used by several investigators over the years. The HGS facility at MSFC has been primary resource in researching this capability. Consequently, scientific personnel have been able to utilize these techniques in both ground based research and in space experiments. An important event in the scientific utilization of the HGS facilities was the TGS Crystal Growth and the casting and solidification technology (CAST) experiments that were flown on the International Microgravity Laboratory (IML) mission in March of this year. The preparation and processing of these space observations are the primary experiments reported in this work. This project provides some ground-based studies to optimize on the holographic techniques used to acquire information about the crystal growth processes flown on IML. Since the ground-based studies will be compared with the space-based experimental results, it is necessary to conduct sufficient ground based studies to best determine how the experiment worked in space. The current capabilities in computer based systems for image processing and numerical computation have certainly assisted in those efforts. As anticipated, this study has certainly shown that these advanced computing capabilities are helpful in the data analysis of such experiments.

  19. Casting technology for manufacturing metal rods from simulated metallic spent fuels

    NASA Astrophysics Data System (ADS)

    Leeand, Y. S.; Lee, D. B.; Kim, C. K.; Shin, Y. J.; Lee, J. H.

    2000-09-01

    A uranium metal rod 13.5 mm in diameter and 1,150 mm long was produced from simulated metallic spent fuels with advanced casting equipment using the directional-solidification method. A vacuum casting furnace equipped with a four-zone heater to prevent surface oxidation and the formation of surface shrinkage holes was designed. By controlling the axial temperature gradient of the casting furnace, deformation by the surface shrinkage phenomena was diminished, and a sound rod was manufactured. The cooling behavior of the molten uranium was analyzed using the computer software package MAGMAsoft.

  20. Help for the Steel Industry

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A collaboration between NASA Lewis Research Center (LRC) and Gladwin Engineering resulted in the adaptation of aerospace high temperature metal technology to the continuous casting of steel. The continuous process is more efficient because it takes less time and labor. A high temperature material, once used on the X-15 research plane, was applied to metal rollers by a LRC developed spraying technique. Lewis Research Center also supplied mold prototype of metal composites, reducing erosion and promoting thermal conductivity. Rollers that previously cracked due to thermal fatigue, lasted longer. Gladwin's sales have increased, and additional NASA-developed innovations are anticipated.

  1. Position Accuracy of Implant Analogs on 3D Printed Polymer versus Conventional Dental Stone Casts Measured Using a Coordinate Measuring Machine.

    PubMed

    Revilla-León, Marta; Gonzalez-Martín, Óscar; Pérez López, Javier; Sánchez-Rubio, José Luis; Özcan, Mutlu

    2017-11-17

    To compare the accuracy of implant analog positions on complete edentulous maxillary casts made of either dental stone or additive manufactured polymers using a coordinate measuring machine (CMM). A completely edentulous maxillary model of a patient with 7 implant analogs was obtained. From this model, two types of casts were duplicated, namely conventional dental stone (CDS) using a custom tray impression technique after splinting (N = 5) and polymer cast using additive manufacturing based on the STL file generated. Polymer casts (N = 20; n = 5 per group) were fabricated using 4 different additive manufacturing technologies (multijet printing-MJP1, direct light processing-DLP, stereolithography-SLA, multijet printing-MJP2). CMM was used to measure the correct position of each implant, and distortion was calculated for each system at x-, y-, and z-axes. Measurements were repeated 3 times per specimen in each axis yielding a total of 546 measurements. Data were analyzed using ANOVA, Sheffé tests, and Bonferroni correction (α = 0.05). Compared to CMM, the mean distortion (μm) ranged from 22.7 to 74.9, 23.4 to 49.1, and 11.0 to 85.8 in the x-, y-, and z-axes, respectively. CDS method (x-axis: 37.1; z-axis: 27.62) showed a significant difference compared to DLP on the x-axis (22.7) (p = 0.037) and to MJP1 on the z-axis (11.0) (p = 0.003). Regardless of the cast system, x-axes showed more distortion (42.6) compared to y- (34.6) and z-axes (35.97). Among additive manufacturing technologies, MJP2 presented the highest (64.3 ± 83.6), and MJP1 (21.57 ± 16.3) and DLP (27.07 ± 20.23) the lowest distortion, which was not significantly different from CDS (32.3 ± 22.73) (p > 0.05). For the fabrication of the definitive casts for implant prostheses, one of the multijet printing systems and direct light processing additive manufacturing technologies showed similar results to conventional dental stone. Conventional dental stone casts could be accurately duplicated using some of the additive manufacturing technologies tested. © 2017 by the American College of Prosthodontists.

  2. Feasibility of Actively Cooled Silicon Nitride Airfoil for Turbine Applications Demonstrated

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.

    2001-01-01

    Nickel-base superalloys currently limit gas turbine engine performance. Active cooling has extended the temperature range of service of nickel-base superalloys in current gas turbine engines, but the margin for further improvement appears modest. Therefore, significant advancements in materials technology are needed to raise turbine inlet temperatures above 2400 F to increase engine specific thrust and operating efficiency. Because of their low density and high-temperature strength and thermal conductivity, in situ toughened silicon nitride ceramics have received a great deal of attention for cooled structures. However, the high processing costs and low impact resistance of silicon nitride ceramics have proven to be major obstacles for widespread applications. Advanced rapid prototyping technology in combination with conventional gel casting and sintering can reduce high processing costs and may offer an affordable manufacturing approach. Researchers at the NASA Glenn Research Center, in cooperation with a local university and an aerospace company, are developing actively cooled and functionally graded ceramic structures. The objective of this program is to develop cost-effective manufacturing technology and experimental and analytical capabilities for environmentally stable, aerodynamically efficient, foreign-object-damage-resistant, in situ toughened silicon nitride turbine nozzle vanes, and to test these vanes under simulated engine conditions. Starting with computer aided design (CAD) files of an airfoil and a flat plate with internal cooling passages, the permanent and removable mold components for gel casting ceramic slips were made by stereolithography and Sanders machines, respectively. The gel-cast part was dried and sintered to final shape. Several in situ toughened silicon nitride generic airfoils with internal cooling passages have been fabricated. The uncoated and thermal barrier coated airfoils and flat plates were burner rig tested for 30 min without and with air cooling. Without cooling, the surface temperature of the flat plate reached approximately 2350 F. Starting with computer aided design (CAD) files of an airfoil and a flat plate with internal cooling passages, the permanent and removable mold components for gel casting ceramic slips were made by stereolithography and Sanders machines, respectively. The gel-cast part was dried and sintered to final shape. Several in situ toughened silicon nitride generic airfoils with internal cooling passages have been fabricated. The uncoated and thermal barrier coated airfoils and flat plates were burner rig tested for 30 min without and with air cooling. Without cooling, the surface temperature of the flat plate reached approximately 2350 F. With cooling, the surface temperature decreased to approximately 1910 F--a drop of approximately 440 F. This preliminary study demonstrates that a near-net-shape silicon nitride airfoil can be fabricated and that silicon nitride can sustain severe thermal shock and the thermal gradients induced by cooling and, thus, is a viable candidate for cooled components.

  3. Cast Aluminum Structures Technology (CAST) Phase VI. Technology Transfer.

    DTIC Science & Technology

    1980-04-01

    and other aspects of the program was provided as follows: o Phase I--Preliminary Design Richard C. Jones o Phase il--Manufacturing Methods Richard G...Christner o Phase Ill--Detailed Design Richard C. Jones o Phase IV--Fabrication of Demonstration Richard G. Christner Articles and Production... Richard C. Jones, assisted by Carlos J. Romero, Christian K. Gunther, Cecil E. Parsons, and Donald D. Goehler; and by Walter Hyler of Battelle Columbus

  4. Processing of IN-718 Lattice Block Castings

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.

    2002-01-01

    Recently a low cost casting method known as lattice block casting has been developed by JAM Corporation, Wilmington, Massachusetts for engineering materials such as aluminum and stainless steels that has shown to provide very high stiffness and strength with only a fraction of density of the alloy. NASA Glenn Research Center has initiated research to investigate lattice block castings of high temperature Ni-base superalloys such as the model system Inconel-718 (IN-718) for lightweight nozzle applications. Although difficulties were encountered throughout the manufacturing process , a successful investment casting procedure was eventually developed. Wax formulation and pattern assembly, shell mold processing, and counter gravity casting techniques were developed. Ten IN-718 lattice block castings (each measuring 15-cm wide by 30-cm long by 1.2-cm thick) have been successfully produced by Hitchiner Gas Turbine Division, Milford, New Hampshire, using their patented counter gravity casting techniques. Details of the processing and resulting microstructures are discussed in this paper. Post casting processing and evaluation of system specific mechanical properties of these specimens are in progress.

  5. Tutorial Video Series: Using Stakeholder Outreach to Increase ...

    EPA Pesticide Factsheets

    The limited amount of toxicity data on thousands of chemicals found in consumer products has led to the development of research endeavors such as the U.S. EPA’s Toxicity Forecaster (ToxCast). ToxCast uses high-throughput screening technology to evaluate thousands of chemicals for potential toxicity. At the end of 2013, U.S. EPA released ToxCast chemical data on almost 2,000 chemicals through the interactive Chemical Safety for Sustainability (iCSS) Dashboard. The iCSS Dashboard provides public access to the high-throughput screening data that can be used to inform the evaluation of the safety of chemicals. U.S. EPA recognized early in the development of ToxCast that stakeholder outreach was needed in order to translate the complex scientific information featured in the iCSS Dashboard and data, with the goal of educating the diverse user community through targeted efforts to increase data usage and analysis. Through survey feedback and the request of stakeholders, a series of tutorial videos to demonstrate how to access and use the data has been planned, and the first video of the series has been released to guide data usage. This presentation will describe the video tutorial strategy including an overview of: 1) Stakeholder outreach goals and approach; 2) Planning, production, and dissemination of tutorial videos; 3) Overview of Survey Feedback; 4) Overview of tutorial video usage statistics and usage of the ToxCast data. This stakeholder-outreach approach

  6. Microstructure and mechanical properties of zirconium doped NiAl/Cr(Mo) hypoeutectic alloy prepared by injection casting

    NASA Astrophysics Data System (ADS)

    Sheng, L. Y.; Du, B. N.; Guo, J. T.

    2017-01-01

    NiAl based materials has been considered as most potential candidate of turbine blade, due to its excellent high-temperature properties. However the bad room-temperature properties handicap its application. In the present paper, the zirconium doped NiAl/Cr(Mo) hypoeutectic alloy is fabricated by conventional casting and injection casting technology to improve its room-temperature properties. The microstructure and compressive properties at different temperatures of the conventionally-cast and injection-cast were investigated. The results exhibit that the conventionally-cast alloy comprises coarse primary NiAl phase and eutectic cell, which is dotted with irregular Ni2AlZr Heusler phase. Compared with the conventionally-cast alloy, the injection-cast alloy possesses refined the primary NiAl, eutectic cell and eutectic lamella. In addition, the Ni2AlZr Heusler phase become smaller and distribute uniformly. Moreover, the injection casting decrease the area fraction of primary NiAl phase at the cell interior or cell boundaries. The compressive ductility and yield strength of the injection-cast alloy at room temperature increase by about 100% and 35% over those of conventionally-cast alloy, which should be ascribed to the microstructure optimization.

  7. Research keeps lead and zinc viable in high-tech markets

    NASA Astrophysics Data System (ADS)

    Cole, Jerome F.

    1989-08-01

    Lead and zinc have long enjoyed widespread use in a variety of applications. To insure growing markets for the future, however, new applications for these durable metals must be developed. Currently, projects are underway to determine the capabilities of lead for such high-technology uses as earthquake damping and nuclear waste containment. Zinc's capabilities are being developed further, too, particularly in the areas of direct injection die casting, composites and the improvement of coating properties. Other ongoing research initiatives are attempting to better determine the health and environmental influences of these metals.

  8. Prediction of Shrinkage Porosity Defect in Sand Casting Process of LM25

    NASA Astrophysics Data System (ADS)

    Rathod, Hardik; Dhulia, Jay K.; Maniar, Nirav P.

    2017-08-01

    In the present worldwide and aggressive environment, foundry commercial enterprises need to perform productively with least number of rejections and create casting parts in shortest lead time. It has become extremely difficult for foundry industries to meet demands of defects free casting and meet strict delivery schedules. The process of casting solidification is complex in nature. Prediction of shrinkage defect in metal casting is one of the critical concern in foundries and is one of the potential research areas in casting. Due to increasing pressure to improve quality and to reduce cost, it is very essential to upgrade the level of current methodology used in foundries. In the present research work, prediction methodology of shrinkage porosity defect in sand casting process of LM25 using experimentation and ANSYS is proposed. The objectives successfully achieved are prediction of shrinkage porosity distribution in Al-Si casting and determining effectiveness of investigated function for predicting shrinkage porosity by correlating results of simulating studies to those obtained experimentally. The real-time application of the research reflects from the fact that experimentation is performed on 9 different Y junctions at foundry industry and practical data obtained from experimentation are used for simulation.

  9. AMCC casting development, volume 2

    NASA Technical Reports Server (NTRS)

    1995-01-01

    PCC successfully cast and performed nondestructive testing, FPI and x-ray, on seventeen AMCC castings. Destructive testing, lab analysis and chemical milling, was performed on eleven of the castings and the remaining six castings were shipped to NASA or Aerojet. Two of the six castings shipped, lots 015 and 016, were fully processed per blueprint requirements. PCC has fully developed the gating and processing parameters of this part and feels the part could be implemented into production, after four more castings have been completed to ensure the repeatability of the process. The AMCC casting has been a technically challenging part due to its size, configuration, and alloy type. The height and weight of the wax pattern assembly necessitated the development of a hollow gating system to ensure structural integrity of the shell throughout the investment process. The complexity in the jacket area of the casting required the development of an innovative casting technology that PCC has termed 'TGC' or thermal gradient control. This method of setting up thermal gradients in the casting during solidification represents a significant process improvement for PCC and has been successfully implemented on other programs. The alloy, JBK75, is a relatively new alloy in the investment casting arena and required our engineering staff to learn the gating, processing, and dimensional characteristics of the material.

  10. Arsenic Removal from Drinking Water - Web cast

    EPA Science Inventory

    Web cast presentation covered six topics: (1) Arsenic Chemistry, (2) Technology Selection/Arsenic Demonstration Program, (3) Case Study 1, (4) Caser Study 2, (5) Case Study 3, and (6) Media Regeneration Project. The presentation was considered a training session and consist of m...

  11. Arsenic Removal from Drinking Water - Web Cast Presentation

    EPA Science Inventory

    Web cast presentation covered six topics: 1), Arsenic Chemistry, 2), Technology Selection/Arsenic Demonstration Program, 3), Case Study 1, 4), Caser Study 2, 5), Case Study 3, and 6), Media Regeneration Project. The presentation was considered a training session and consist of m...

  12. COST AND PERFORMANCE REPORT: INNOVATIVE ACOUSTIC SENSOR TECHNOLOGIES FOR LEAK DETECTION IN CHALLENGING PIPE TYPES

    DTIC Science & Technology

    2016-12-30

    Operational Variable LeakFinderRT Equipment Logistics Portable Case Pipe Material Pit Cast Iron, Spun Cast Iron, Steel , Ductile Iron, Asbestos Cement ...AND ACRONYMS AC asbestos cement AMI advanced metering infrastructure AWWA American Water Works Association CI cast iron DI ductile iron DoD...assessing their ability to detect and accurately locate leaks in challenging pipe types such as polyvinyl chloride (PVC), asbestos cement (AC), and

  13. Benefit from NASA

    NASA Image and Video Library

    1998-01-01

    Don Sirois, an Auburn University research associate, and Bruce Strom, a mechanical engineering Co-Op Student, are evaluating the dimensional characteristics of an aluminum automobile engine casting. More accurate metal casting processes may reduce the weight of some cast metal products used in automobiles, such as engines. Research in low gravity has taken an important first step toward making metal products used in homes, automobiles, and aircraft less expensive, safer, and more durable. Auburn University and industry are partnering with NASA to develop one of the first accurate computer model predictions of molten metals and molding materials used in a manufacturing process called casting. Ford Motor Company's casting plant in Cleveland, Ohio is using NASA-sponsored computer modeling information to improve the casting process of automobile and light-truck engine blocks.

  14. Using Remote Sensing Technology, Web Casts, and Participation in a Valuable Research Project to Jazz Teachers and Excite Students About Science

    NASA Astrophysics Data System (ADS)

    Benko, T. M.; Czajkowski, K. P.; Struble, J.; Zhao, L.

    2002-12-01

    Scientific education of primary and secondary school children has become a topic of concern in Ohio and throughout the United States. So with that in mind, how do you get students excited about learning science? One route is to inform and jazz teachers about current technology! The University of Toledo has hosted three one-week, NASA and OhioView sponsored professional development institutes entitled, Observing Earth from Space, for teachers from grades K-12 during July 2000, 2001, and 2002. Sixty-seven teachers from the Upper Midwest and Kansas with Earth Science, Social Studies, and Physics backgrounds attended. Each participant acquired new ideas, plenty of educational materials, and posters of satellite imagery. The teachers received basic training in remote sensing, global positioning systems, digital elevation models, and weather observing techniques and learned about useful remote sensing applications. This instruction was conducted through: 1) presentations given by research scientists, 2) integration of the learned content into authentic, hands-on lesson plans, and 3) participation in a learning adventure, where their students collected real-time earth science data at their respective schools while university research scientists gathered corresponding satellite imagery. The students observations were submitted via a simple Web interface: www.remotesensing.utoledo.edu. One of the very exciting platforms used to communicate with the teachers and students throughout the school year were live Web Casts sponsored by NASA Glenn Research Center. The students data have successfully assisted in the validation of cloud/snow remote sensing algorithms, and next year the students observations will include various surface temperature readings. The participation in a cutting-edge technology workshop and in an important global climate change research project, applicable in the classroom, has added another worthwhile dimension to the learning process and career awareness for both the teachers and their students.

  15. Mission Critical STEM Partnership with the Air Force Office of Scientific Research

    DTIC Science & Technology

    2015-04-06

    Dr. Valerie Lundy-Wagner, Senior Research Associate, Community College Research Center Teachers College, Columbia University 29...composites. We were comparing our experiments vs. structural steel . Our project consisted of a 4x4 in square caste. The caste was fabricated by bonding...aluminum and stainless steel . The caste experiments varied from 3, 5, and 7 stainless steel rods embedded in the piece. We tested for tensile strength

  16. Additive manufacturing of biologically-inspired materials.

    PubMed

    Studart, André R

    2016-01-21

    Additive manufacturing (AM) technologies offer an attractive pathway towards the fabrication of functional materials featuring complex heterogeneous architectures inspired by biological systems. In this paper, recent research on the use of AM approaches to program the local chemical composition, structure and properties of biologically-inspired materials is reviewed. A variety of structural motifs found in biological composites have been successfully emulated in synthetic systems using inkjet-based, direct-writing, stereolithography and slip casting technologies. The replication in synthetic systems of design principles underlying such structural motifs has enabled the fabrication of lightweight cellular materials, strong and tough composites, soft robots and autonomously shaping structures with unprecedented properties and functionalities. Pushing the current limits of AM technologies in future research should bring us closer to the manufacturing capabilities of living organisms, opening the way for the digital fabrication of advanced materials with superior performance, lower environmental impact and new functionalities.

  17. Challenges in the Successful Research Management of a Collaborative EU Project.

    PubMed

    Zikos, Dimitrios; Diomidous, Marianna; Mantas, John

    2012-03-01

    Successful research management requirements include; equal teamwork and efficient coordination, in order to increase the impact of the research outcomes and provide added value knowledge. Aim of this paper is to discuss the strategies that have been followed during the RN4CAST study, the largest nursing multi-country research project ever conducted in Europe. The paper focuses on the core research strategies rather than on the administrative activities, which are inevitably also required for the success of a large scale research. This paper is an extension of a conference presentation in the International Conference of the European Federation for Medical Informatics (MIE) 2011 in Oslo, and was subsequently published in the Studies in Health Technology and Informatics book series (IOS Press) under the title "Research management: the case of RN4CAST." Management of a multicountry nursing survey requires the use of common data collection tools, applicable to every context, research protocols supporting the scope of the research, data models for multi-country analyses and global dissemination strategies. Challenges that may be faced during the implementation of the study include the individualized confrontation of obstacles during data collection, the coherence of national procedures (for example permissions for data collection) in European level, and the challenge to gain information of added value for the EU, by aggregating the national survey results through a powerful data analysis model. Communication strategies are also discussed.

  18. Understanding the Biology and Technology of ToxCast and Tox21 Assays

    EPA Science Inventory

    The ToxCast high-throughput toxicity (HTT) testing methods have been developed to evaluate the hazard potential of diverse environmental, industrial and consumer product chemicals. The main goal is prioritizing the compounds of greatest concern for more detailed toxicological stu...

  19. Casting materials and their application in research and teaching.

    PubMed

    Haenssgen, Kati; Makanya, Andrew N; Djonov, Valentin

    2014-04-01

    From a biological point of view, casting refers to filling of anatomical and/or pathological spaces with extraneous material that reproduces a three-dimensional replica of the space. Casting may be accompanied by additional procedures such as corrosion, in which the soft tissue is digested out, leaving a clean cast, or the material may be mixed with radiopaque substances to allow x-ray photography or micro computed topography (µCT) scanning. Alternatively, clearing of the surrounding soft tissue increases transparency and allows visualization of the casted cavities. Combination of casting with tissue fixation allows anatomical dissection and didactic surgical procedures on the tissue. Casting materials fall into three categories namely, aqueous substances (India ink, Prussian blue ink), pliable materials (gelatins, latex, and silicone rubber), or hard materials (methyl methacrylates, polyurethanes, polyesters, and epoxy resins). Casting has proved invaluable in both teaching and research and many phenomenal biological processes have been discovered through casting. The choice of a particular material depends inter alia on the targeted use and the intended subsequent investigative procedures, such as dissection, microscopy, or µCT. The casting material needs to be pliable where anatomical and surgical manipulations are intended, and capillary-passable for ultrastructural investigations.

  20. Accuracy of three-dimensional dental resin models created by fused deposition modeling, stereolithography, and Polyjet prototype technologies: A comparative study.

    PubMed

    Rebong, Raymund E; Stewart, Kelton T; Utreja, Achint; Ghoneima, Ahmed A

    2018-05-01

    The aim of this study was to assess the dimensional accuracy of fused deposition modeling (FDM)-, Polyjet-, and stereolithography (SLA)-produced models by comparing them to traditional plaster casts. A total of 12 maxillary and mandibular posttreatment orthodontic plaster casts were selected from the archives of the Orthodontic Department at the Indiana University School of Dentistry. Plaster models were scanned, saved as stereolithography files, and printed as physical models using three different three-dimensional (3D) printers: Makerbot Replicator (FDM), 3D Systems SLA 6000 (SLA), and Objet Eden500V (Polyjet). A digital caliper was used to obtain measurements on the original plaster models as well as on the printed resin models. Comparison between the 3D printed models and the plaster casts showed no statistically significant differences in most of the parameters. However, FDM was significantly higher on average than were plaster casts in maxillary left mixed plane (MxL-MP) and mandibular intermolar width (Md-IMW). Polyjet was significantly higher on average than were plaster casts in maxillary intercanine width (Mx-ICW), mandibular intercanine width (Md-ICW), and mandibular left mixed plane (MdL-MP). Polyjet was significantly lower on average than were plaster casts in maxillary right vertical plane (MxR-vertical), maxillary left vertical plane (MxL-vertical), mandibular right anteroposterior plane (MdR-AP), mandibular right vertical plane (MdR-vertical), and mandibular left vertical plane (MdL-vertical). SLA was significantly higher on average than were plaster casts in MxL-MP, Md-ICW, and overbite. SLA was significantly lower on average than were plaster casts in MdR-vertical and MdL-vertical. Dental models reconstructed by FDM technology had the fewest dimensional measurement differences compared to plaster models.

  1. Barotropic Tidal Predictions and Validation in a Relocatable Modeling Environment. Revised

    NASA Technical Reports Server (NTRS)

    Mehra, Avichal; Passi, Ranjit; Kantha, Lakshmi; Payne, Steven; Brahmachari, Shuvobroto

    1998-01-01

    Under funding from the Office of Naval Research (ONR), the Mississippi State University Center for Air Sea Technology (CAST) has been working on developing a Relocatable Modeling Environment (RME) to provide a uniform and unbiased infrastructure for efficiently configuring numerical models in any geographic or oceanic region. Under Naval Oceanographic Office (NAVOCEANO) funding, the model was implemented and tested for NAVOCEANO use. With our current emphasis on ocean tidal modeling, CAST has adopted the Colorado University's numerical ocean model, known as CURReNTSS (Colorado University Rapidly Relocatable Nestable Storm Surge) Model, as the model of choice. During the RME development process, CURReNTSS has been relocated to several coastal oceanic regions, providing excellent results that demonstrate its veracity. This report documents the model validation results and provides a brief description of the Graphic user Interface.

  2. Metal Matrix Composite LOX Turbopump Housing via Novel Tool-less Net-Shape Pressure Infiltration Casting Technology

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Lee, Jonathan; Bhat, Biliyar; Wells, Doug; Gregg, Wayne; Marsh, Matthew; Genge, Gary; Forbes, John; Salvi, Alex; Cornie, James A.

    2003-01-01

    Metal matrix composites for propulsion components offer high performance and affordability, resulting in low weight and cost. The following sections in this viewgraph presentation describe the pressure infiltration casting of a metal matrix composite LOX turbopump housing: 1) Baseline Pump Design and Stress Analysis; 2) Tool-less Advanced Pressure Infiltration Casting Process; 3) Preform Splicing and Joining for Large Components such as Pump Housing; 4) Fullscale Pump Housing Redesign.

  3. Continuous tone printing in silicone from CNC milled matrices

    NASA Astrophysics Data System (ADS)

    Hoskins, S.; McCallion, P.

    2014-02-01

    Current research at the Centre for Fine Print Research (CFPR) at the University of the West of England, Bristol, is exploring the potential of creating coloured pictorial imagery from a continuous tone relief surface. To create the printing matrices the research team have been using CNC milled images where the height of the relief image is dictated by creating a tone curve and then milling this curve into a series of relief blocks from which the image is cast in a silicone ink. A translucent image is cast from each of the colour matrices and each colour is assembled - one on top of another - resulting is a colour continuous tone print, where colour tone is created by physical depth of colour. This process is a contemporary method of continuous tone colour printing based upon the Nineteenth Century black and white printing process of Woodburytype as developed by Walter Bentley Woodbury in 1865. Woodburytype is the only true continuous tone printing process invented, and although its delicate and subtle surfaces surpassed all other printing methods at the time. The process died out in the late nineteenth century as more expedient and cost effective methods of printing prevailed. New research at CFPR builds upon previous research that combines 19th Century Photomechanical techniques with digital technology to reappraise the potential of these processes.

  4. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Final Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Thornton C

    2014-03-31

    Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) is a balanced portfolio of R&D tasks that address energy-saving opportunities in the metalcasting industry. E-SMARRT was created to: • Improve important capabilities of castings • Reduce carbon footprint of the foundry industry • Develop new job opportunities in manufacturing • Significantly reduce metalcasting process energy consumption and includes R&D in the areas of: • Improvements in Melting Efficiency • Innovative Casting Processes for Yield Improvement/Revert Reduction • Instrumentation and Control Improvement • Material properties for Casting or Tooling Design Improvement The energy savings and process improvements developed under E-SMARRT have been mademore » possible through the unique collaborative structure of the E-SMARRT partnership. The E-SMARRT team consisted of DOE’s Office of Industrial Technology, the three leading metalcasting technical associations in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders’ Society of America; and SCRA Applied R&D, doing business as the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. This team provided collaborative leadership to a complex industry composed of approximately 2,000 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people. Without collaboration, these new processes and technologies that enable energy efficiencies and environment-friendly improvements would have been slow to develop and had trouble obtaining a broad application. The E-SMARRT R&D tasks featured low-threshold energy efficiency improvements that are attractive to the domestic industry because they do not require major capital investment. The results of this portfolio of projects are significantly reducing metalcasting process energy consumption while improving the important capabilities of metalcastings. Through June 2014, the E-SMARRT program predicts an average annual estimated savings of 59 Trillion BTUs per year over a 10 year period through Advanced Melting Efficiencies and Innovative Casting Processes. Along with these energy savings, an estimated average annual estimate of CO2 reduction per year over a ten year period is 3.56 Million Metric Tons of Carbon Equivalent (MM TCE).« less

  5. Structural modification in the formation of starch - silver nanocomposites

    NASA Astrophysics Data System (ADS)

    Begum, S. N. Suraiya; Aswal, V. K.; Ramasamy, Radha Perumal

    2016-05-01

    Polymer based nanocomposites have gained wide applications in field of battery technology. Starch is a naturally occurring polysaccharide with sustainable properties such as biodegradable, non toxic, excellent film forming capacity and it also act as reducing agent for the metal nanoparticles. In our research various concentration of silver nitrate (AgNO3) was added to the starch solution and films were obtained using solution casting method. Surface electron microscope (SEM) of the films shows modifications depending upon the concentration of AgNO3. Small angle neutron scattering (SANS) analysis showed that addition of silver nitrate modifies the starch to disc like structures and with increasing the AgNO3 concentration leads to the formation of fractals. This research could benefit battery technology where solid polymer membranes using starch is used.

  6. Metal Matrix Composite LOX Turbopump Housing Via Novel Tool-Less Net-Shape Pressure Infiltration Casting Technology

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Lee, Jonathan; Bhat, Biliyar; Wells, Doug; Gregg, Wayne; Marsh, Matthew; Genge, Gary; Forbes, John; Salvi, Alex; Cornie, James A.; hide

    2001-01-01

    Metal matrix composites (MMC) offer relatively higher specific strength, specific stiffness, lower coefficient of thermal expansion (CTE) and lower density as compared with conventional alloys. These unique properties make them very attractive for aerospace turbomachinery applications where there is ever increasing emphasis to reduce weight and cost, and to increase engine performance. Through a joint effort between NASA and Metal Matrix Cast Composites, Inc., a complex liquid oxygen (LOX) compatible turbopump housing is being redesigned and manufactured from hybrid (particulate and fibers) Aluminum MMC. To this end, a revolutionary tool-less pressure infiltration casting technology is being perfected. Ceramic preforms for the composite are 3-dimensionally printed using a stereolithography file, acquired from a CAD model. The preforms are then invested into a refractory material and pressure infiltrated with liquid metal. After casting, the refractory material is washed away leaving behind a near net-shape composite part. Benefits of this process include increased composite uniformity, no mold machining, short time from design to part, properties matching traditional methods, ability to make previously impossible to manufacture parts and no size limitations with a newly developed joining technology. The results of materials, manufacturing and design optimizations, preform joining, and sub-element tests will be presented.

  7. Metal Matrix Composite LOX Turbopump Housing Via Novel Tool-Less Net-Shape Pressure Infiltration Casting Technology

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Lee, Jonathan; Bhat, Biliyar; Wells, Doug; Gregg, Wayne; Marsh, Matthew; Genge, Gary; Forbes, John; Salvi, Alex; Cornie, James A.; hide

    2001-01-01

    Metal matrix composites (MMC) offer relatively higher specific strength, specific stiffness, lower coefficient of thermal expansion (CTE) and lower density as compared with conventional alloys. These unique properties make them very attractive for aerospace turbomachinery applications where there is ever increasing emphasis to reduce weight and cost, and to increase engine performance. Through a joint effort between NASA and Metal Matrix Cast Composites, Inc., a complex liquid oxygen (LOX) compatible turbopump housing is being redesigned and manufactured from hybrid (particulate and Fibers) Aluminum MMC. To this end, a revolutionary tool-less pressure infiltration casting technology is being perfected. Ceramic preforms for the composite are 3-dimensionally printed using a stereolithography file, acquired from a CAD model. The preforms are then invested into a refractory material and pressure infiltrated with liquid metal. After casting, the refractory material is washed away leaving behind a near net-shape composite part. Benefits of this process include increased composite uniformity, no mold machining, short time from design to part properties matching traditional methods, ability to make previously impossible to manufacture parts and no size limitations with a newly developed joining technology. The results of materials, manufacturing and design optimizations, preform joining, and sub element tests will be presented.

  8. Metal Matrix Composite LOX Turbopump Housing Via Novel Tool-less Net-Shape Pressure Infiltration Casting Technology

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Lee, Jonathan; Bhat, Biliyar; Wells, Doug; Gregg, Wayne; Marsh, Matthew; Genge, Gary; Forbes, John; Salvi, Alex; Cornie, James A.; hide

    2002-01-01

    Metal matrix composites (MMC) offer relatively higher specific strength, specific stiffness, lower coefficient of thermal expansion (CTE) and lower density as compared with conventional alloys. These unique properties make them very attractive for aerospace turbomachinery applications where there is ever increasing emphasis to reduce weight and cost, and to increase engine performance. Through a joint effort between NASA and Metal Matrix Cast Composites, Inc., a complex liquid oxygen (LOX) compatible turbopump housing is being redesigned and manufactured from hybrid (particulate and fibers) Aluminum MMC. To this end, a revolutionary toolless pressure infiltration casting technology is being perfected. Ceramic preforms for the composite are 3-dimensionally printed using a stereolithography file, acquired from a CAD model. The preforms are then invested into a refractory material and pressure infiltrated with liquid metal. After casting, the refractory material is washed away leaving behind a near net-shape composite part. Benefits of this process include increased composite uniformity, no mold machining, short time from design to part, properties matching traditional methods, ability to make previously impossible to manufacture parts and no size limitations with a newly developed joining technology. The results of materials, manufacturing and design optimizations, preform joining, and sub-element tests will be presented.

  9. Sixty Years of Casting Research

    NASA Astrophysics Data System (ADS)

    Campbell, John

    2015-11-01

    The 60 years of solidification research since the publication of Chalmer's constitutional undercooling in 1953 has been a dramatic advance of understanding which has and continues to be an inspiration. In contrast, 60 years of casting research has seen mixed fortunes. One of its success stories relates to improvements in inoculation of gray irons, and another to the discovery of spheroidal graphite iron, although both of these can be classified as metallurgical rather than casting advances. It is suggested that true casting advances have dated from the author's lab in 1992 when a critical surface turbulence condition was defined for the first time. These last 20 years have seen the surface entrainment issues of castings developed to a sufficient sophistication to revolutionize the performance of light alloy and steel foundries. However, there is still a long way to go, with large sections of the steel and Ni-base casting industries still in denial that casting defects are important or even exist. The result has been that special ingots are still cast poorly, and shaped casting operations have suffered massive losses. For secondary melted and cast materials, electro-slag remelting has the potential to be much superior to expensive vacuum arc remelting, which has cost our aerospace and defense industries dearly over the years. This failure to address and upgrade our processing of liquid metals is a serious concern, since the principle entrainment defect, the bifilm, is seen as the principle initiator of cracks in metals; in general, bifilms are the Griffith cracks that initiate failures by cracking. A new generation of crack resistant metals and engineering structures can now be envisaged.

  10. 20180416 - Understanding the Biology and Technology of ToxCast and Tox21 Assays (SETAC Durham NC)

    EPA Science Inventory

    The ToxCast high-throughput toxicity (HTT) testing methods have been developed to evaluate the hazard potential of diverse environmental, industrial and consumer product chemicals. The main goal is prioritizing the compounds of greatest concern for more detailed toxicological stu...

  11. BLAST FURNACE CAST HOUSE EMISSION CONTROL TECHNOLOGY ASSESSMENT

    EPA Science Inventory

    The study describes the state-of-the-art of controlling fumes escaping from blast furnace cast houses. Background information is based on: a study of existing literature; visits to blast furnaces in the U.S., Japan, and Europe; meetings with an ad hoc group of experienced blast f...

  12. Tox21 and ToxCast Chemical Landscapes: Laying the Foundation for 21st Century Toxicology

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s ToxCast project and the related, multi-Agency Tox21 project are employing high-throughput technologies to screen hundreds to thousands of chemicals in hundreds of assays, probing a wide diversity of biological targets, pathways and mecha...

  13. Mississippi State University Center for Air Sea Technology. FY93 and FY 94 Research Program in Navy Ocean Modeling and Prediction

    DTIC Science & Technology

    1994-09-30

    relational versus object oriented DBMS, knowledge discovery, data models, rnetadata, data filtering, clustering techniques, and synthetic data. A secondary...The first was the investigation of Al/ES Lapplications (knowledge discovery, data mining, and clustering ). Here CAST collabo.rated with Dr. Fred Petry...knowledge discovery system based on clustering techniques; implemented an on-line data browser to the DBMS; completed preliminary efforts to apply object

  14. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Mechanical Performance of Dies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Allen Miller, Principal Investigator; Kabiri-Bamoradian, Contributors: Khalil; Delgado-Garza, Abelardo

    2011-09-13

    As a net shape process, die casting is intrinsically efficient and improvements in energy efficiency are strongly dependent on design and process improvements that reduce scrap rates so that more of the total consumed energy goes into acceptable, usable castings. A casting that is distorted and fails to meet specified dimensional requirements is typically remelted but this still results in a decrease in process yield, lost productivity, and increased energy consumption. This work focuses on developing, and expanding the use of, computer modeling methods that can be used to improve the dimensional accuracy of die castings and produce die designsmore » and machine/die setups that reduce rejection rates due to dimensional issues. A major factor contributing to the dimensional inaccuracy of the casting is the elastic deformations of the die cavity caused by the thermo mechanical loads the dies are subjected to during normal operation. Although thermal and die cavity filling simulation are widely used in the industry, structural modeling of the die, particularly for managing part distortion, is not yet widely practiced. This may be due in part to the need to have a thorough understanding of the physical phenomenon involved in die distortion and the mathematical theory employed in the numerical models to efficiently model the die distortion phenomenon. Therefore, two of the goals of this work are to assist in efforts to expand the use of structural modeling and related technologies in the die casting industry by 1) providing a detailed modeling guideline and tutorial for those interested in developing the necessary skills and capability and 2) by developing simple meta-models that capture the results and experience gained from several years of die distortion research and can be used to predict key distortion phenomena of relevance to a die caster with a minimum of background and without the need for simulations. These objectives were met. A detailed modeling tutorial was provided to NADCA for distribution to the industry. Power law based meta-models for predicting machine tie bar loading and for predicting maximum parting surface separation were successfully developed and tested against simulation results for a wide range of machines and experimental data. The models proved to be remarkably accurate, certainly well within the requirements for practical application. In addition to making die structural modeling more accessible, the work advanced the state-of-the-art by developing improved modeling of cavity pressure effects, which is typically modeled as a hydrostatic boundary condition, and performing a systematic analysis of the influence of ejector die design variables on die deflection and parting plane separation. This cavity pressure modeling objective met with less than complete success due to the limits of current finite element based fluid structure interaction analysis methods, but an improved representation of the casting/die interface was accomplished using a combination of solid and shell elements in the finite element model. This approximation enabled good prediction of final part distortion verified with a comprehensive evaluation of the dimensions of test castings produced with a design experiment. An extra deliverable of the experimental work was development of high temperature mechanical properties for the A380 die casting alloy. The ejector side design objective was met and the results were incorporated into the metamodels described above. This new technology was predicted to result in an average energy savings of 2.03 trillion BTU's/year over a 10 year period. Current (2011) annual energy saving estimates over a ten year period, based on commercial introduction in 2009, a market penetration of 70% by 2014 is 4.26 trillion BTU's/year by 2019. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.085 Million Metric Tons of Carbon Equivalent (MM TCE).« less

  15. Mapping ExpoCast onto ToxCast

    EPA Science Inventory

    The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EP...

  16. Identification of Vehicle Health Assurance Related Trends

    NASA Technical Reports Server (NTRS)

    Phojanamongkolkij, Nipa; Evans, Joni K.; Barr, Lawrence C.; Leone, Karen M.; Reveley, Mary S.

    2014-01-01

    Trend analysis in aviation as related to vehicle health management (VHM) was performed by reviewing the most current statistical and prognostics data available from the National Transportation Safety Board (NTSB) accident, the Federal Aviation Administration (FAA) incident, and the NASA Aviation Safety Reporting System (ASRS) incident datasets. In addition, future directions in aviation technology related to VHM research areas were assessed through the Commercial Aviation Safety Team (CAST) Safety Enhancements Reserved for Future Implementations (SERFIs), the National Transportation Safety Board (NTSB) Most-Wanted List and recent open safety recommendations, the National Research Council (NRC) Decadal Survey of Civil Aeronautics, and the Future Aviation Safety Team (FAST) areas of change. Future research direction in the VHM research areas is evidently strong as seen from recent research solicitations from the Naval Air Systems Command (NAVAIR), and VHM-related technologies actively being developed by aviation industry leaders, including GE, Boeing, Airbus, and UTC Aerospace Systems. Given the highly complex VHM systems, modifications can be made in the future so that the Vehicle Systems Safety Technology Project (VSST) technical challenges address inadequate maintenance crew's trainings and skills, and the certification methods of such systems as recommended by the NTSB, NRC, and FAST areas of change.

  17. Extrapolation of mammalian-based ToxCast assay results to non-mammalian species to evaluate endocrine disruption

    EPA Science Inventory

    In vitro high-throughput screening (HTS) and in silico technologies have emerged as 21st century tools for chemical hazard identification. In 2007 the U.S. Environmental Protection Agency (EPA) launched the ToxCast Program, which has screened thousands of chemicals in hundreds of...

  18. Cross-species extrapolation of mammalian-based ToxCast Data using Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS)

    EPA Science Inventory

    In vitro high-throughput screening (HTS) and in silico technologies have emerged as 21st century tools for chemical hazard identification. In 2007 the U.S. Environmental Protection Agency (EPA) launched the ToxCast Program, which has screened thousands of chemicals in hundreds of...

  19. Barotropic Tidal Predictions and Validation in a Relocatable Modeling Environment. Revised

    NASA Technical Reports Server (NTRS)

    Mehra, Avichal; Passi, Ranjit; Kantha, Lakshmi; Payne, Steven; Brahmachari, Shuvobroto

    1998-01-01

    Under funding from the Office of Naval Research (ONR), and the Naval Oceanographic Office (NAVOCEANO), the Mississippi State University Center for Air Sea Technology (CAST) has been working on developing a Relocatable Modeling Environment(RME) to provide a uniform and unbiased infrastructure for efficiently configuring numerical models in any geographic/oceanic region. Under Naval Oceanographic Office (NAVO-CEANO) funding, the model was implemented and tested for NAVOCEANO use. With our current emphasis on ocean tidal modeling, CAST has adopted the Colorado University's numerical ocean model, known as CURReNTSS (Colorado University Rapidly Relocatable Nestable Storm Surge) Model, as the model of choice. During the RME development process, CURReNTSS has been relocated to several coastal oceanic regions, providing excellent results that demonstrate its veracity. This report documents the model validation results and provides a brief description of the Graphic user Interface (GUI).

  20. Hanford's Simulated Low Activity Waste Cast Stone Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Young

    2013-08-20

    Cast Stone is undergoing evaluation as the supplemental treatment technology for Hanford’s (Washington) high activity waste (HAW) and low activity waste (LAW). This report will only cover the LAW Cast Stone. The programs used for this simulated Cast Stone were gradient density change, compressive strength, and salt waste form phase identification. Gradient density changes show a favorable outcome by showing uniformity even though it was hypothesized differently. Compressive strength exceeded the minimum strength required by Hanford and greater compressive strength increase seen between the uses of different salt solution The salt waste form phase is still an ongoing process asmore » this time and could not be concluded.« less

  1. Development of high purity large forgings for nuclear power plants

    NASA Astrophysics Data System (ADS)

    Tanaka, Yasuhiko; Sato, Ikuo

    2011-10-01

    The recent increase in the size of energy plants has been supported by the development of manufacturing technology for high purity large forgings for the key components of the plant. To assure the reliability and performance of the large forgings, refining technology to make high purity steels, casting technology for gigantic ingots, forging technology to homogenize the material and consolidate porosity are essential, together with the required heat treatment and machining technologies. To meet these needs, the double degassing method to reduce impurities, multi-pouring methods to cast the gigantic ingots, vacuum carbon deoxidization, the warm forging process and related technologies have been developed and further improved. Furthermore, melting facilities including vacuum induction melting and electro slag re-melting furnaces have been installed. By using these technologies and equipment, large forgings have been manufactured and shipped to customers. These technologies have also been applied to the manufacture of austenitic steel vessel components of the fast breeder reactors and components for fusion experiments.

  2. Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency

    DOE PAGES

    Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.; ...

    2018-04-25

    Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatmentmore » line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. Furthermore, this work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.« less

  3. Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency

    NASA Astrophysics Data System (ADS)

    Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.; Kesler, Michael S.; Weiss, David; Ott, Ryan T.; Meng, Fanqiang; Kassoumeh, Sam; Evangelista, James; Begley, Gerald; Rios, Orlando

    2018-06-01

    Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatment line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. This work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.

  4. Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency

    NASA Astrophysics Data System (ADS)

    Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.; Kesler, Michael S.; Weiss, David; Ott, Ryan T.; Meng, Fanqiang; Kassoumeh, Sam; Evangelista, James; Begley, Gerald; Rios, Orlando

    2018-04-01

    Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatment line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. This work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.

  5. Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.

    Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatmentmore » line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. Furthermore, this work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.« less

  6. AMCC casting development. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Advanced Combustion Chamber Casting (AMCC) has been a technically challenging part due to its size, configuration, and alloy type. The height and weight of the wax pattern assembly necessitated the development of a hollow gating system to ensure structural integrity of the shell throughout the investment process. The complexity in the jacket area of the casting required the development of an innovative casting technology that PCC has termed 'TGC' or Thermal Gradient Control. This method, of setting up thermal gradients in the casting during solidification, represents a significant process improvement for PCC and has been successfully implemented on other programs. Metallurgical integrity of the final four castings was very good. Only the areas of the parts that utilized 'TGC Shape & Location System #2' showed any significant areas of microshrinkage when evaluated by non-destructive tests. Alumina oxides detected by FPI on the 'float' surfaces (top sid surfaces of the casting during solidification) of the part were almost entirely less than the acceptance criteria of .032 inches in diameter. Destructive chem mill of the castings was required to determine the effect of the process variables used during the processing of these last four parts (with the exception of the 'Shape & Location of TGC' variable).

  7. Morse Brothers, Inc. Harrisburg plant : high-strength concrete : research study.

    DOT National Transportation Integrated Search

    1987-07-01

    This report is the seventh in a series of research studies designed to determine the difference in strength of concrete cylinders cast in steel molds vs. cylinders cast in plastic molds. Prior to this report, six other research studies on the differe...

  8. Prospects for the domestic production of large-sized cast blades and vanes for industrial gas turbines

    NASA Astrophysics Data System (ADS)

    Kazanskiy, D. A.; Grin, E. A.; Klimov, A. N.; Berestevich, A. I.

    2017-10-01

    Russian experience in the production of large-sized cast blades and vanes for industrial gas turbines is analyzed for the past decades. It is noted that the production of small- and medium-sized blades and vanes made of Russian alloys using technologies for aviation, marine, and gas-pumping turbines cannot be scaled for industrial gas turbines. It is shown that, in order to provide manufacturability under large-scale casting from domestic nickel alloys, it is necessary to solve complex problems in changing their chemical composition, to develop new casting technologies and to optimize the heat treatment modes. An experience of PAO NPO Saturn in manufacturing the blades and vanes made of ChS88U-VI and IN738-LC foundry nickel alloys for the turbines of the GTE-110 gas turbine unit is considered in detail. Potentialities for achieving adopted target parameters for the mechanical properties of working blades cast from ChS88UM-VI modified alloy are established. For the blades made of IN738-LC alloy manufactured using the existing foundry technology, a complete compliance with the requirements of normative and technical documentation has been established. Currently, in Russia, the basis of the fleet of gas turbine plants is composed by foreign turbines, and, for the implementation of the import substitution program, one can use the positive experience of PAO NPO Saturn in casting blades from IN738-LC alloy based on a reverse engineering technique. A preliminary complex of studies of the original manufacturer's blades should be carried out, involving, first of all, the determination of geometric size using modern measurement methods as well as the studies on the chemical compositions of the used materials (base metal and protective coatings). Further, verifying the constructed calculation models based on the obtained data, one could choose available domestic materials that would meet the operating conditions of the blades according to their heat resistance and corrosion resistance.

  9. Structural modification in the formation of starch – silver nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Begum, S. N. Suraiya; Ramasamy, Radha Perumal, E-mail: perumal.ramasamy@gmail.com; Aswal, V. K.

    Polymer based nanocomposites have gained wide applications in field of battery technology. Starch is a naturally occurring polysaccharide with sustainable properties such as biodegradable, non toxic, excellent film forming capacity and it also act as reducing agent for the metal nanoparticles. In our research various concentration of silver nitrate (AgNO{sub 3}) was added to the starch solution and films were obtained using solution casting method. Surface electron microscope (SEM) of the films shows modifications depending upon the concentration of AgNO{sub 3}. Small angle neutron scattering (SANS) analysis showed that addition of silver nitrate modifies the starch to disc like structuresmore » and with increasing the AgNO{sub 3} concentration leads to the formation of fractals. This research could benefit battery technology where solid polymer membranes using starch is used.« less

  10. Design and optimization of the micro-engine turbine rotor manufacturing using the rapid prototyping technology

    NASA Astrophysics Data System (ADS)

    Vdovin, R. A.; Smelov, V. G.

    2017-02-01

    This work describes the experience in manufacturing the turbine rotor for the micro-engine. It demonstrates the design principles for the complex investment casting process combining the use of the ProCast software and the rapid prototyping techniques. At the virtual modelling stage, in addition to optimized process parameters, the casting structure was improved to obtain the defect-free section. The real production stage allowed demonstrating the performance and fitness of rapid prototyping techniques for the manufacture of geometrically-complex engine-building parts.

  11. Chemical Degradation of the Cathodic Electrical Contact Between Carbon and Cast Iron in Aluminum Production Cells

    NASA Astrophysics Data System (ADS)

    Brassard, Martin; Désilets, Martin; Soucy, Gervais; Bilodeau, Jean-François; Forté, Martin

    2017-06-01

    The cathodic carbon to cast iron electrical contact degradation is one of the factors to consider in the cathode voltage drop (CVD) increase over the lifetime of aluminum production cells. Lab-scale experiments were carried out to study the cast iron to carbon interface chemical degradation and the impact of important cell parameters like temperature and bath chemistry. Laboratory degradation results were compared with industrial samples. A thermoelectric Ansys numerical model was then used to predict the effect of cast iron surface degradation over CVD. Results show that the aluminum formation on the cast iron surface and its subsequent diffusion creates an immiscible mixture of Fe-Al metal alloy and electrolytic bath. Disparities were also observed between industrial samples taken from two different technologies, suggesting that the degradation can be slowed down. Thermoelectric calculations finally revealed that the impact of the contact resistance augmentation is by far greater than the cast iron degradation.

  12. Workplace Basic Skills in the Metal Casting Industry for World Class Process and Technology.

    ERIC Educational Resources Information Center

    Rasmussen, Bonnie

    A workplace basic skills project for the metal casting industry was established jointly by Central Alabama Community College and Robinson Foundry, Inc. Evaluation of the project was made through a commercial test of hourly workers' general literacy level gains, instructor-developed pre- and posttests of mastery of the industrial process and…

  13. Tox21 and ToxCast Chemical Landscapes: Laying the Foundation for 21st Century Toxicology - Application of the Strategy to Chemical Testing

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s ToxCast project and the related, multi-Agency Tox21 project are employing high-throughput technologies to screen hundreds to thousands of chemicals in hundreds of assays, probing a wide diversity of biological targets, pathways and mecha...

  14. Effect of mold designs on molten metal behaviour in high-pressure die casting

    NASA Astrophysics Data System (ADS)

    Ibrahim, M. D.; Rahman, M. R. A.; Khan, A. A.; Mohamad, M. R.; Suffian, M. S. Z. M.; Yunos, Y. S.; Wong, L. K.; Mohtar, M. Z.

    2017-04-01

    This paper presents a research study conducted in a local automotive component manufacturer that produces aluminium alloy steering housing local and global markets. This study is to investigate the effect of design modification of mold in die casting as to improve the production rate. Design modification is carried out on the casting shot of the mold. Computer flow simulation was carried out to study the flow of molten metal in the mold with respect to the mold design modification. The design parameters of injection speed, die temperature and clamping force has been included in the study. The result of the simulation showed that modifications of casting shot give significant impact towards the molten flow behaviour in casting process. The capabilities and limitations of die casting process simulation to conduct defect analysis had been optimized. This research will enhance the efficiency of the mass production of the industry of die casting with the understanding of defect analysis, which lies on the modification of the mold design, a way early in its stages of production.

  15. Passivity of the bars manufactured using current technologies: laser-sintering, casting, and milling

    NASA Astrophysics Data System (ADS)

    Popescu, Diana; Popescu, Sabin; Pop, Daniel; Jivanescu, Anca; Todea, Carmen

    2014-01-01

    Implant overdentures are often selected as therapeutic options for the treatment of edentulous mandibles. "Passive-fit" between the mesostructures and the implants plays an important role in the longevity of the implant-prosthetic assembly in the oral cavity. "Mis-fit" can cause mechanical or biological complications. The purpose of this test was to investigate the passive adaptation of the bars manufactured through different technologies, and in this respect two bars (short and long) were fabricated by each process: laser-sintering, milling, casting. The tensions induced by tightening the connection screw between the bars and the underlying implants were recorded using strain gauges and used as measuring and comparing tool in testing the bars' "passivity". The results of the test showed that the milled bars had the best "passive-fit", followed by laser-sintered bars, while cast bars had the lowest adaptation level.

  16. Development of a New Membrane Casting Apparatus for Studying Macrovoid Defects in Low-G

    NASA Technical Reports Server (NTRS)

    Lee, Hanyong; Hwang, Sun-Tak; Krantz, William B.; Greenberg, Alan R.; Khare, Vivek; Zartman, Jeremiah; Todd, Paul W.

    2002-01-01

    A new membrane-casting apparatus is developed for studying macrovoid defects in polymeric membranes made by the wet- and dry-casting process in low-gravity. Macrovoids are large (10-50 micron), open cavities interspersed among the smaller pores in the substructure under the gelled skin surface layer of the cast membrane. Although their occurrence is considered endemic to the wet- and dry-casting process since they can lead to compaction or skin rupture in the membrane process, recent studies suggest several useful applications such as transdermal and osmotic drug delivery systems, miniature bioreactors, etc. However, lack of knowledge about the macrovoid formation mechanism is an obstacle to further development of applications using them. An on-going debate is the role of the surface-tension-driven solutocapillary convection during macrovoid formation. The rapid growth of macrovoids within 1-5 seconds and the high polymer concentration in and near macrovoids make it difficult to explain the mechanism of macrovoid growth by diffusion alone, which is the widely accepted hypothesis proposed by Reuvers et al. The hypothesis advanced by our research group can explain this rapid growth via a mechanism that involves diffusion from the casting solution in the meta-stable region to the macrovoid enhanced by solutocapillary convection induced by the steep nonsolvent concentration gradient in the vicinity of the macrovoid. Since macrovoid growth is hypothesized to be the interplay of a solutocapillary-induced driving force counteracted by viscous drag and buoyancy, eliminate the latter provides a means for testing this hypothesis. Moreover, free convection mass transfer in the nonsolvent immersion bath used to cause phase-separation in membrane casting complicates developing a model for both the wet-casting process and macrovoid growth. The low-g environment minimizes gravitationally induced free convection thereby permitting a tractable solution to the ternary diffusion equations that characterize membrane formation. NASA's Parabolic Flight Research Aircraft provides a small window of low-g (approximately 25 s) that can be used to study macrovoid development in both wet- and dry-cast membranes if an appropriate casting apparatus is used. This casting apparatus should be able to cast the membrane in both low- and high-g in a manner so that essential one-dimensional mass transfer conditions are achieved to insure lateral uniformity in the membrane. The apparatus used in previous research on membrane casting in low-gravity was operated with the plunger driven mechanism. The spring-loaded plunger pushes the bottom block containing the polymer casting solution well directly under the absorbent chamber located in the upper stationary block. However, membranes made via this casting apparatus often displayed lateral nonuniformities that precluded obtaining quantitative information on the macrovoid growth process. Thus, it was necessary to determine the reason for these structural irregularities observed in the low-g casting apparatus. Both experimental as well as computer simulation studies of the low-g casting apparatus established that the impulsive action of the plunger caused the undesired structural nonuniformities. The simulation results showed that the width-to-depth aspect ratio of the shallow well that contains the casting solution in this apparatus was not an important factor in minimizing this problem. Even for a 40:1 (width : depth) aspect ratio, any convection induced by the horizontal motion of the interface of the casting solution will be damped out within 6.25x10(exp 4) seconds. However, the experimental studies revealed that the impulsive motion of the plunger caused a 'sloshing' of the casting solution that had to be eliminated. Therefore, the plungerdriven mechanism was changed to a cam-driven mechanism that did not cause any impulsive motion of the casting solution. Other refinements to this new membrane-casting apparatus include provision for removing the membranes from the casting wells in a less destructive manner. This was accomplished by using a slit geometry for the casting well that permitted disassembly for removal of the cast membrane. The materials used in the construction of this casting apparatus were chosen to insure wetting at the side walls and to maintain precise control of the thickness of the polymer solution in the casting well. An additional provision in this new casting apparatus is the ability to carry out both wet- as well as dry-casting. As such, this apparatus permitted the first studies of the wet-casting of polymeric membranes in low-g. Both wet- and dry-casting experiments on NASA's KC-135 research aircraft employing this new membrane-casting apparatus are scheduled in July 2002. The morphology of the resulting membranes will be characterized using an environmental scanning electron microscope (ESEM). The results of these low-g studies will be reported later.

  17. Superalloy Lattice Block Structures

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.; Whittenberger, J. D.; Hebsur, M. G.; Kantzos, P. T.; Krause, D. L.

    2004-01-01

    Initial investigations of investment cast superalloy lattice block suggest that this technology will yield a low cost approach to utilize the high temperature strength and environmental resistance of superalloys in lightweight, damage tolerant structural configurations. Work to date has demonstrated that relatively large superalloy lattice block panels can be successfully investment cast from both IN-718 and Mar-M247. These castings exhibited mechanical properties consistent with the strength of the same superalloys measured from more conventional castings. The lattice block structure also accommodates significant deformation without failure, and is defect tolerant in fatigue. The potential of lattice block structures opens new opportunities for the use of superalloys in future generations of aircraft applications that demand strength and environmental resistance at elevated temperatures along with low weight.

  18. Chitosan-Sodium Phytate Films with a Strong Water Barrier and Antimicrobial Properties Produced via One-Step-Consecutive-Stripping and Layer-by-Layer-Casting Technologies.

    PubMed

    Yang, Jie; Xiong, Liu; Li, Man; Sun, Qingjie

    2018-06-20

    The pursuit of sustainable functional materials requires the development of materials based on renewable resources and efficient fabrication methods. Here, we first fabricated chitosan-sodium phytate films via one-step-stripping and layer-by-layer-casting technologies. The proposed film-fabrication methods are general, facile, environmentally benign, cost-effective, and easy to scale up. The resultant one-step-stripped film was thin (9 ± 1 μm), soft, transparent, and strong, whereas the thickness of the layer-by-layer-cast film was 70 ± 3 μm. FTIR analysis of the films indicated the formation of interactions between the phosphoric groups in sodium phytate and the amino groups in chitosan. More importantly, the water-vapor-permeability values of the one-step-stripped and cast films were 4-5 orders of magnitude lower than chitosan films reported before. Layer-by-layer-cast films in particular exhibited high tensile strength (49.21 ± 1.12 MPa) and were more than three times stronger than other polyelectrolyte multilayer films. Both types of films remained stable in an acidic environment. Furthermore, the layer-by-layer-assembled films presented greater antimicrobial activity than the stripped films. The developed chitosan-sodium phytate films can enhance several biomedical and environmental applications, such as packaging, drug delivery, diagnostics, microfluidics, and biosensing.

  19. Talkoot Portals: Discover, Tag, Share, and Reuse Collaborative Science Workflows

    NASA Astrophysics Data System (ADS)

    Wilson, B. D.; Ramachandran, R.; Lynnes, C.

    2009-05-01

    A small but growing number of scientists are beginning to harness Web 2.0 technologies, such as wikis, blogs, and social tagging, as a transformative way of doing science. These technologies provide researchers easy mechanisms to critique, suggest and share ideas, data and algorithms. At the same time, large suites of algorithms for science analysis are being made available as remotely-invokable Web Services, which can be chained together to create analysis workflows. This provides the research community an unprecedented opportunity to collaborate by sharing their workflows with one another, reproducing and analyzing research results, and leveraging colleagues' expertise to expedite the process of scientific discovery. However, wikis and similar technologies are limited to text, static images and hyperlinks, providing little support for collaborative data analysis. A team of information technology and Earth science researchers from multiple institutions have come together to improve community collaboration in science analysis by developing a customizable "software appliance" to build collaborative portals for Earth Science services and analysis workflows. The critical requirement is that researchers (not just information technologists) be able to build collaborative sites around service workflows within a few hours. We envision online communities coming together, much like Finnish "talkoot" (a barn raising), to build a shared research space. Talkoot extends a freely available, open source content management framework with a series of modules specific to Earth Science for registering, creating, managing, discovering, tagging and sharing Earth Science web services and workflows for science data processing, analysis and visualization. Users will be able to author a "science story" in shareable web notebooks, including plots or animations, backed up by an executable workflow that directly reproduces the science analysis. New services and workflows of interest will be discoverable using tag search, and advertised using "service casts" and "interest casts" (Atom feeds). Multiple science workflow systems will be plugged into the system, with initial support for UAH's Mining Workflow Composer and the open-source Active BPEL engine, and JPL's SciFlo engine and the VizFlow visual programming interface. With the ability to share and execute analysis workflows, Talkoot portals can be used to do collaborative science in addition to communicate ideas and results. It will be useful for different science domains, mission teams, research projects and organizations. Thus, it will help to solve the "sociological" problem of bringing together disparate groups of researchers, and the technical problem of advertising, discovering, developing, documenting, and maintaining inter-agency science workflows. The presentation will discuss the goals of and barriers to Science 2.0, the social web technologies employed in the Talkoot software appliance (e.g. CMS, social tagging, personal presence, advertising by feeds, etc.), illustrate the resulting collaborative capabilities, and show early prototypes of the web interfaces (e.g. embedded workflows).

  20. ToxCast: Developing Predictive Signatures of Chemically Induced Toxicity (Developing Predictive Bioactivity Signatures from ToxCasts HTS Data)

    EPA Science Inventory

    ToxCast, the United States Environmental Protection Agency’s chemical prioritization research program, is developing methods for utilizing computational chemistry, bioactivity profiling and toxicogenomic data to predict potential for toxicity and prioritize limited testing resour...

  1. Energy Saving Melting and Revert Reduction Technology (Energy SMARRT): Development of CCT Diagrams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chumbley, L Scott

    2011-08-20

    One of the most energy intensive industries in the U.S. today is in the melting and casting of steel alloys for use in our advanced technological society. While the majority of steel castings involve low or mild carbon steel for common construction materials, highly-alloyed steels constitute a critical component of many industries due to their excellent properties. However, as the amount of alloying additions increases, the problems associated with casting these materials also increases, resulting in a large waste of energy due to inefficiency and a lack of basic information concerning these often complicated alloy systems. Superaustenitic stainless steels constitutemore » a group of Fe-based alloys that are compositionally balanced to have a purely austenitic matrix and exhibit favorable pitting and crevice corrosion resistant properties and mechanical strength. However, intermetallic precipitates such as sigma (³) and Laves can form during casting or exposure to high-temperature processing, which degrade the corrosion and mechanical properties of the material. Knowledge of the times and temperatures at which these detrimental phases form is imperative if a company is to efficiently produce castings of high quality in the minimum amount of time, using the lowest amount of energy possible, while producing the least amount of material waste. Anecdotal evidence from company representatives revealed that large castings frequently had to be scrapped due to either lower than expected corrosion resistance or extremely low fracture toughness. It was suspected that these poor corrosion and / or mechanical properties were directly related to the type, amount, and location of various intermetallic phases that formed during either the cooling cycle of the castings or subsequent heat treatments. However, no reliable data existed concerning either the time-temperature-transformation (TTT) diagrams or the continuous-cooling-transformation (CCT) diagrams of the super-austenitics. The goal of this study was to accurately characterize the solid-solid phase transformations seen in cast superaustenitic stainless steels. Heat treatments were performed to understand the time and temperature ranges for intermetallic phase formations in alloys CN3MN and CK3McuN. Microstructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy and wavelength dispersive spectroscopy (EDS, WDS). In this way TTT and CCT diagrams could be developed for the matrix of samples chosen. As this study consisted of basic research into the development of TTT and CCT diagrams as an aid to the US steel casting industry, there is no formal commercialization plan associated with this task other than presentations and publications via the Steel Founders Society of America to their members. The author is confident that the data contained in this report can be used by steel foundries to refine their casting procedures in such a way as to reduce the amount of waste produced and energy wasted by significantly reducing or eliminating the need for remelting or recasting of material due to unwanted, premature intermetallic formation. This development of high alloy steel CCT diagrams was predicted to result in an average energy savings of 0.05 trillion BTU's/year over a 10 year period (with full funding). With 65% of the proposed funding, current (2011) annual energy saving estimates, based on initial dissemination to the casting industry in 2011and market penetration of 97% by 2020, is 0.14 trillion BTU's/year. The reduction of scrap and improvement in casting yield will also result in a reduction of environmental emissions associated with the melting and pouring of the steel. The average annual estimate of CO2 reduction per year through 2020 is 0.003 Million Metric Tons of Carbon Equivalent (MM TCE)« less

  2. The development of lab-on-a-chip fabricated from two molds

    NASA Astrophysics Data System (ADS)

    Pramuanjaroenkij, A.; Bunta, J.; Thiangpadung, J.; Sansaradee, S.; Kamsopa, P.; Sodsai, S.; Vichainsan, S.; Wongpanit, K.; Maturos, T.; Lomas, T.; Tuantranont, A.; Cetin, B.; Phankhoksoong, S.; Tongkratoke, A.

    2018-01-01

    Development of diagnostic technique of microfluidic or lab-on-a-chip (LOCs) is currently of great interest for researchers and inventors for their many advantages. It can be used as a real laboratory was many ways to help to the diagnosis faster. This research aims to develop Polydimethylsiloxane (PDMS) lab-on-a-chip (LOCs) which were produced from different molds; the silicon wafer mold and the stainless mold to investigate the flow of the biological sample as the flow in nanochannels. In addition, this research proposes a means to leakage and the blockage of the channel flow. The experimental results were found that the LOCs casted from the silicon wafer mold sandwiched by both the plasma cleaner machine and H shaped acrylic sheets showed leakages around the electrode areas because the first new electrodes were too thick, the proper thickness of the nickel electrode was at 0.05 millimeters. The LOCs casted from the stainless mold were inserted by the nickel electrodes produced by the from the prototype shaped electroplating process; this LOCs using nickel plated electrodes 2 times to make a groove on the nickel electrode backsides when pouring the PDMS into the LOCs casted from the stainless mold. It was found that PDMS was able to flow under the nickel electrode and the PDMS sheet could stick with the glass slide smoothly. In conclusion, it was possible to develop these LOC designs and new electrode fabrications continually under helps from Micro-Electro-Mechanical system, Thailand National Electronics and Computer Technology Center, since causes of the LOC problems were found, and demonstrated the feasibility of developing the LOCs for chemical detection and disease diagnostics.

  3. The Design of 3D-Printed Lattice-Reinforced Thickness-Varying Shell Molds for Castings.

    PubMed

    Shangguan, Haolong; Kang, Jinwu; Yi, Jihao; Zhang, Xiaochuan; Wang, Xiang; Wang, Haibin; Huang, Tao

    2018-03-30

    3D printing technologies have been used gradually for the fabrication of sand molds and cores for castings, even though these molds and cores are dense structures. In this paper, a generation method for lattice-reinforced thickness-varying shell molds is proposed and presented. The first step is the discretization of the STL (Stereo Lithography) model of a casting into finite difference meshes. After this, a shell is formed by surrounding the casting with varying thickness, which is roughly proportional to the surface temperature distribution of the casting that is acquired by virtually cooling it in the environment. A regular lattice is subsequently constructed to support the shell. The outside surface of the shell and lattice in the cubic mesh format is then converted to STL format to serve as the external surface of the new shell mold. The internal surface of the new mold is the casting's surface with the normals of all of the triangles in STL format reversed. Experimental verification was performed on an Al alloy wheel hub casting. Its lattice-reinforced thickness-varying shell mold was generated by the proposed method and fabricated by the binder jetting 3D printing. The poured wheel hub casting was sound and of good surface smoothness. The cooling rate of the wheel hub casting was greatly increased due to the shell mold structure. This lattice-reinforced thickness-varying shell mold generation method is of great significance for mold design for castings to achieve cooling control.

  4. Biochemical Activities of 320 ToxCast Chemicals Evaluated Across 239 Functional Targets

    EPA Science Inventory

    EPA’s ToxCast research program is profiling chemical bioactivity in order to generate predictive signatures of toxicity. The present study evaluated 320 chemicals across 239 biochemical assays. ToxCast phase I chemicals include 309 unique structures, most of which are pesticide ...

  5. In Vitro Screening of 1877 Industrial and Consumer Chemicals, Pesticides and Pharmaceuticals in up to 782 Assays: ToxCast Phase I and II (SOT)

    EPA Science Inventory

    In Phase II of the ToxCast program, the U.S. EPA and Tox21 partners screened 1,877 chemicals, including pesticides; food, cosmetics and personal care ingredients; pharmaceuticals; and industrial chemicals. Testing used a 782 in vitro assays across 7 technologies and multiple bi...

  6. EPA's ToxCast Project: Lessons learned and future directions for use of HTS in predicting in vivo toxicology -- A Chemical Perspective

    EPA Science Inventory

    U.S. EPA’s ToxCast and the related Tox21 projects are employing high-throughput screening (HTS) technologies to profile thousands of chemicals, which in turn serve as probes of a wide diversity of targets, pathways and mechanisms related to toxicity. Initial models relating ToxCa...

  7. Initial Mechanical Testing of Superalloy Lattice Block Structures Conducted

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Whittenberger, J. Daniel

    2002-01-01

    The first mechanical tests of superalloy lattice block structures produced promising results for this exciting new lightweight material system. The testing was performed in-house at NASA Glenn Research Center's Structural Benchmark Test Facility, where small subelement-sized compression and beam specimens were loaded to observe elastic and plastic behavior, component strength levels, and fatigue resistance for hundreds of thousands of load cycles. Current lattice block construction produces a flat panel composed of thin ligaments arranged in a three-dimensional triangulated trusslike structure. Investment casting of lattice block panels has been developed and greatly expands opportunities for using this unique architecture in today's high-performance structures. In addition, advances made in NASA's Ultra-Efficient Engine Technology Program have extended the lattice block concept to superalloy materials. After a series of casting iterations, the nickel-based superalloy Inconel 718 (IN 718, Inco Alloys International, Inc., Huntington, WV) was successfully cast into lattice block panels; this combination offers light weight combined with high strength, high stiffness, and elevated-temperature durability. For tests to evaluate casting quality and configuration merit, small structural compression and bend test specimens were machined from the 5- by 12- by 0.5-in. panels. Linear elastic finite element analyses were completed for several specimen layouts to predict material stresses and deflections under proposed test conditions. The structural specimens were then subjected to room-temperature static and cyclic loads in Glenn's Life Prediction Branch's material test machine. Surprisingly, the test results exceeded analytical predictions: plastic strains greater than 5 percent were obtained, and fatigue lives did not depreciate relative to the base material. These assets were due to the formation of plastic hinges and the redundancies inherent in lattice block construction, which were not considered in the simplified computer models. The fatigue testing proved the value of redundancies since specimen strength was maintained even after the fracture of one or two ligaments. This ongoing test program is planned to continue through high-temperature testing. Also scheduled for testing are IN 718 lattice block panels with integral face sheets, as well as specimens cast from a higher temperature alloy. The initial testing suggests the value of this technology for large panels under low and moderate pressure loadings and for high-risk, damage-tolerant structures. Potential aeropropulsion uses for lattice blocks include turbine-engine actuated panels, exhaust nozzle flaps, and side panel structures.

  8. Stirling material technology

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Stephens, J. R.; Scheuermann, C. M.

    1984-01-01

    The Stirling engine is an external combustion engine that offers the advantage of high fuel economy, low emissions, low noise, and low vibrations compared to current internal combustion automotive engines. The most critical component from a materials viewpoint is the heater head consisting of the cylinders, heating tubes, and regenerator housing. Materials requirements for the heater head include compatibility with hydrogen, resistance to hydrogen permeation, high temperature oxidation/corrosion resistance, and high temperature creep-rupture and fatigue properties. A materials research and technology program identified the wrought alloys CG-27 and 12RN72 and the cast alloys XF-818, NASAUT 4G-A1, and NASACC-1 as candidate replacements for the cobalt containing alloys used in current prototype engines. It is concluded that manufacture of the engine is feasible from low cost iron-base alloys rather than the cobalt alloys used in prototype engines. Results of research that lead to this conclusion are presented.

  9. Research on laser direct metal deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yongzhong; Shi, Likai

    2003-03-01

    Laser direct deposition of metallic parts is a new manufacturing technology, which combines with computer-aided design, laser cladding and rapid prototyping. Fully dense metallic parts can be directly obtained through melting the coaxially fed powders with a high-power laser in a layer-by-layer manner. The process characteristics, system composition as well as some research and advancement on laser direct deposition are presented here. The microstructure and properties observation of laser direct formed 663 copper alloy, 316L stainless steel and Rene'95 nickel super alloy samples indicate that, the as-deposited microstructure is similar to rapidly solidified materials, with homogenous composition and free of defects. Under certain conditions, directionally solidified microstructure can be obtained. The as-formed mechanical properties are equal to or exceed those for casting and wrought annealed materials. At the same time, some sample parts with complicate shape are presented for technology demonstration. The formed parts show good surface quality and dimensional accuracy.

  10. Predictive Model of Rat Reproductive Toxicity from ToxCast High Throughput Screening

    EPA Science Inventory

    The EPA ToxCast research program uses high throughput screening for bioactivity profiling and predicting the toxicity of large numbers of chemicals. ToxCast Phase‐I tested 309 well‐characterized chemicals in over 500 assays for a wide range of molecular targets and cellular respo...

  11. Melt Conditioning of Light Metals by Application of High Shear for Improved Microstructure and Defect Control

    NASA Astrophysics Data System (ADS)

    Patel, Jayesh B.; Yang, Xinliang; Mendis, Chamini L.; Fan, Zhongyun

    2017-04-01

    Casting is the first step toward the production of majority of metal products whether the final processing step is casting or other thermomechanical processes such as extrusion or forging. The high shear melt conditioning provides an easily adopted pathway to producing castings with a more uniform fine-grained microstructure along with a more uniform distribution of the chemical composition leading to fewer defects as a result of reduced shrinkage porosities and the presence of large oxide films through the microstructure. The effectiveness of high shear melt conditioning in improving the microstructure of processes used in industry illustrates the versatility of the high shear melt conditioning technology. The application of high shear process to direct chill and twin roll casting process is demonstrated with examples from magnesium melts.

  12. "Let's Get This Party Started!": An Analysis of Health Risk Behavior on MTV Reality Television Shows.

    PubMed

    Flynn, Mark A; Morin, David; Park, Sung-Yeon; Stana, Alexandru

    2015-01-01

    Past research has examined portrayals of risk behavior in various media, including television, advertising, and film. To address an underexplored area, this study analyzed drinking, smoking, and sexual activities in MTV reality programming popular among adolescent viewers from 2004 to 2011. Cast members' demographic attributes were also examined in relation to their risk behaviors. Results demonstrated that drinking and casual sexual behaviors were pervasive among cast members. Smoking and more intense sexual behaviors were also present, but to a smaller degree. Men and young adult cast members were more likely to engage in risk behaviors than women and teenage cast members. Also, ethnic/racial minority characters were shown drinking more often than were White cast members. Interpretations of these findings are discussed based in social cognitive theory and the concept of super peers. Implications for future research are provided.

  13. The influence of flushing time on the bonding quality of liquid white cast iron on the solid surface of similar material

    NASA Astrophysics Data System (ADS)

    Bandanadjaja, Beny; Purwadi, Wiwik; Idamayanti, Dewi; Lilansa, Noval; Hanaldi, Kus; Nurzaenal, Friya Kurnia

    2018-05-01

    Hard metal castings are widely used in the coal mill pulverizer as construction material for coal crushers. During its operation crushers and mills experience degradation caused by abrasion load. This research dealed with the surface overlaying of similiar material on the surface of white cast iron by mean of gravity casting. The die blank casting was preheated prior to the casting process of outer layer made of Ni-Hard white cast iron to guarantee bonding processes and avoid any crack. The preheating temperature of die blankin ther range of 500C up to 850C was set up to reach the interface temperature in the range of 887°C -1198°C and the flushing time was varied between 10-20 seconds. Studies carried on the microstructure of sample material revealed a formation of metallurgical bonding at the preheating temperature above 625 °C by pouring temperature ranging from 1438 °C to 1468 °C. Metallographical and chemical composition by mean of EDS examination were performed to observed the resut. This research concludes that the casting of Ni-Hard 1 overlay by applying gravity casting method can be done by preheating the surface of casting to 625 °C, interface temperature of 1150 °C, flushing time of 7 seconds and pouring temperature of 1430 °C. Excellent metallurgical bonding at the contact area between dieblank and overlay material has been achieved in which there is no parting line at the interface area to be observed.

  14. Thermodynamic Behavior Research Analysis of Twin-roll Casting Lead Alloy Strip Process

    NASA Astrophysics Data System (ADS)

    Jiang, Chengcan; Rui, Yannian

    2017-03-01

    The thermodynamic behavior of twin-roll casting (TRC) lead alloy strip process directly affects the forming of the lead strip, the quality of the lead strip and the production efficiency. However, there is little research on the thermodynamics of lead alloy strip at home and abroad. The TRC lead process is studied in four parameters: the pouring temperature of molten lead, the depth of molten pool, the roll casting speed, and the rolling thickness of continuous casting. Firstly, the thermodynamic model for TRC lead process is built. Secondly, the thermodynamic behavior of the TRC process is simulated with the use of Fluent. Through the thermodynamics research and analysis, the process parameters of cast rolling lead strip can be obtained: the pouring temperature of molten lead: 360-400 °C, the depth of molten pool: 250-300 mm, the roll casting speed: 2.5-3 m/min, the rolling thickness: 8-9 mm. Based on the above process parameters, the optimal parameters(the pouring temperature of molten lead: 375-390 °C, the depth of molten pool: 285-300 mm, the roll casting speed: 2.75-3 m/min, the rolling thickness: 8.5-9 mm) can be gained with the use of the orthogonal experiment. Finally, the engineering test of TRC lead alloy strip is carried out and the test proves the thermodynamic model is scientific, necessary and correct. In this paper, a detailed study on the thermodynamic behavior of lead alloy strip is carried out and the process parameters of lead strip forming are obtained through the research, which provide an effective theoretical guide for TRC lead alloy strip process.

  15. Research of Mechanical Property Gradient Distribution of Al-Cu Alloy in Centrifugal Casting

    NASA Astrophysics Data System (ADS)

    Sun, Zhi; Sui, Yanwei; Liu, Aihui; Li, Bangsheng; Guo, Jingjie

    Al-Cu alloy castings are obtained using centrifugal casting. The regularity of mechanical property gradient distribution of Al-Cu alloy castings with the same centrifugal radius at different positions is investigated. The result shows that the tensile strength, yield strength, elongation and microscope hardness exhibit the following gradient distribution characteristic — high on both sides and low on the center. The trend of mechanical property gradient distribution of Al-Cu alloy increases with the increase in the rotation speed. Moreover, the mechanical properties of casting centerline two sides have asymmetry. The reason is that the grain size of casting centerline two sides and Al2Cu phase and Cu content change correspondingly.

  16. Application of heat pipe technology in permanent mold casting of nonferrous alloys

    NASA Astrophysics Data System (ADS)

    Elalem, Kaled

    The issue of mold cooling is one, which presents a foundry with a dilemma. On the one hand; the use of air for cooling is safe and practical, however, it is not very effective and high cost. On the other hand, water-cooling can be very effective but it raises serious concerns about safety, especially with a metal such as magnesium. An alternative option that is being developed at McGill University uses heat pipe technology to carry out the cooling. The experimental program consisted of designing a permanent mold to produce AZ91E magnesium alloy and A356 aluminum alloy castings with shrinkage defects. Heat pipes were then used to reduce these defects. The heat pipes used in this work are novel and are patent pending. They are referred to as McGill Heat Pipes. Computer modeling was used extensively in designing the mold and the heat pipes. Final designs for the mold and the heat pipes were chosen based on the modeling results. Laboratory tests of the heat pipe were performed before conducting the actual experimental plan. The laboratory testing results verified the excellent performance of the heat pipes as anticipated by the model. An industrial mold made of H13 tool steel was constructed to cast nonferrous alloys. The heat pipes were installed and initial testing and actual industrial trials were conducted. This is the first time where a McGill heat pipe was used in an industrial permanent mold casting process for nonferrous alloys. The effects of cooling using heat pipes on AZ91E and A356 were evaluated using computer modeling and experimental trials. Microstructural analyses were conducted to measure the secondary dendrite arm spacing, SDAS, and the grain size to evaluate the cooling effects on the castings. The modeling and the experimental results agreed quite well. The metallurgical differences between AZ91E and A356 were investigated using modeling and experimental results. Selected results from modeling, laboratory and industrial trials are presented. The results show a promising future for heat pipe technology in cooling permanent molds for the casting of nonferrous alloys.

  17. The Technological Enframing of Mathematics Education

    ERIC Educational Resources Information Center

    Thornton, Steve

    2014-01-01

    In this paper I seek to critique pervasive notions of what counts in mathematics education using Heidegger's notion of the technological enframing. I suggest that early childhood and schooling have become technologies in themselves, casting students and teachers as part of the standing reserve within the inexorable drive for economic advancement.…

  18. Metallic Fuel Casting Development and Parameter Optimization Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.S. Fielding; J. Crapps; C. Unal

    One of the advantages of metallic fuel is the abilility to cast the fuel slugs to near net shape with little additional processing. However, the high aspect ratio of the fuel is not ideal for casting. EBR-II fuel was cast using counter gravity injection casting (CGIC) but, concerns have been raised concerning the feasibility of this process for americium bearing alloys. The Fuel Cycle Research and Development program has begun developing gravity casting techniques suitable for fuel production. Compared to CGIC gravity casting does not require a large heel that then is recycled, does not require application of a vacuummore » during melting, and is conducive to re-usable molds. Development has included fabrication of two separate benchscale, approximately 300 grams, systems. To shorten development time computer simulations have been used to ensure mold and crucible designs are feasible and to identify which fluid properties most affect casting behavior and therefore require more characterization.« less

  19. This photographic copy of an engineering drawing shows floor plans, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    This photographic copy of an engineering drawing shows floor plans, sections and elevations of Building E-86, with details typical of the steel frame and "Transite" building construction at JPL Edwards Facility. California Institute of Technology, Jet Propulsion Laboratory, Facilities Engineering and Construction Office: "Casting & Curing, Building E-86, Floor Plan, Elevations & Section," drawing no. E86/6, 25 February 1977. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California - Jet Propulsion Laboratory Edwards Facility, Casting & Curing Building, Edwards Air Force Base, Boron, Kern County, CA

  20. Overview of the ToxCast Research Program: Applications to Predictive Toxicology and Chemical Prioritization (SETAC)

    EPA Science Inventory

    Understanding the potential health risks posed by environmental chemicals is a significant challenge driven by the large number of diverse chemicals with generally uncharacterized exposures, mechanisms and toxicities. The U.S. EPA’s ToxCast chemical prioritization research projec...

  1. Three-Dimensional Analysis of Internal Adaptations of Crowns Cast from Resin Patterns Fabricated Using Computer-Aided Design/Computer-Assisted Manufacturing Technologies.

    PubMed

    Liu, Yushu; Ye, Hongqiang; Wang, Yong; Zhao, Yijao; Sun, Yuchun; Zhou, Yongsheng

    2018-05-17

    To evaluate the internal adaptations of cast crowns made from resin patterns produced using three different computer-aided design/computer-assisted manufacturing technologies. A full-crown abutment made of zirconia was digitized using an intraoral scanner, and the design of the crown was finished on the digital model. Resin patterns were fabricated using a fused deposition modeling (FDM) 3D printer (LT group), a digital light projection (DLP) 3D printer (EV group), or a five-axis milling machine (ZT group). All patterns were cast in cobalt-chromium alloy crowns. Crowns made from traditional handmade wax patterns (HM group) were used as controls. Each group contained 10 samples. The internal gaps of the patterns were analyzed using a 3D replica method and optical digitization. The results were compared using Kruskal-Wallis analysis of variance (ANOVA), a one-sample t test, and signed rank test (α = .05). For the LT group, the marginal and axial gaps were significantly larger than in the other three groups (P < .05), but the occlusal adaptation did not reveal a significant difference (P > .05). In the ZT group, the axial gap was slightly smaller than in the HM group (P < .0083). All the means of gaps in all areas in the four groups were less than 150 μm. Casting crowns using casting patterns made from all three CAD/CAM systems could not produce the prescribed parameters, but the crowns showed clinically acceptable internal adaptations.

  2. Silviculture and Swiss needle cast: research and recommendations.

    Treesearch

    Gregory M. Filip; A. Kanaskie; K. Kavanagh; G. Johnson; R. Johnson; D. Maguire

    2000-01-01

    For the past ten years, Douglas-fir on the Oregon and Washington coast has shown a progressive decrease in height and diameter increment as a result of Swiss needle cast, which is caused by Phaeocryptopus gaeumannii. In this contribution, we discuss the effects of silvicultural operations on Swiss needle cast and recommend specific actions to...

  3. Measures to reduce construction time of high-rise buildings

    NASA Astrophysics Data System (ADS)

    Kolchedantsev, Leonid; Adamtsevich, Aleksey; Stupakova, Olga; Drozdov, Alexander

    2018-03-01

    The organizational and technological solutions for high-rise buildings construction efficiency increase are considered, primarily - decrease of typical floor construction time and improvement of bearing structures concrete quality. The essence of offered technology is: a concrete mixing station and a polygon mainly for load-bearing wall panels with starter bars casting are located on the building site; for reinforced concrete components manufacturing and butt joints grouting the warmed-up concrete mixtures are used. The results of researches and elaborations carried out by the SPSUACE in area of a preliminary warming-up of concrete mixtures are presented. The possibility and feasibility of their usage in high-rise buildings and of excess height buildings construction including cast-in-place and precast execution are shown. The essence of heat-vibro treating of concrete mixture is revealed as a kind of prior electroresistive curing, and the achieved results are: accelerated concrete strength gain, power inputs decrease, concrete quality improvement. It is shown that the location of a concrete mixing station on the building site enables to broaden possibilities of the "thermos" method use and to avoid concrete mixtures warming up in medium-mass structures erection (columns, girders) during the high-rise buildings construction. It is experimentally proved that the splice between precast elements encased with warmed-up concrete mixture is equal with conjugated elements in strength.

  4. A novel use of QR code stickers after orthopaedic cast application.

    PubMed

    Gough, A T; Fieraru, G; Gaffney, Pav; Butler, M; Kincaid, R J; Middleton, R G

    2017-07-01

    INTRODUCTION We present a novel solution to ensure that information and contact details are always available to patients while in cast. An information sticker containing both telephone numbers and a Quick Response (QR) code is applied to the cast. When scanned with a smartphone, the QR code loads the plaster team's webpage. This contains information and videos about cast care, complications and enhancing recovery. METHODS A sticker was designed and applied to all synthetic casts fitted in our fracture clinic. On cast removal, patients completed a questionnaire about the sticker. A total of 101 patients were surveyed between November 2015 and February 2016. The questionnaire comprised ten binary choice questions. RESULTS The vast majority (97%) of patients had the sticker still on their cast when they returned to clinic for cast removal. Eighty-four per cent of all patients felt reassured by the presence of the QR code sticker. Nine per cent used the contact details on the cast to seek advice. Over half (56%) had a smartphone and a third (33%) of these scanned the QR code. Of those who scanned the code, 95% found the information useful. CONCLUSIONS This study indicates that use of a QR code reassures patients and is an effective tool in the proactive management of potential cast problems. The QR code sticker is now applied to all casts across our trust. In line with NHS England's Five Year Forward View calling for enhanced use of smartphone technology, our trust is continuing to expand its portfolio of patient information accessible via QR codes. Other branches of medicine may benefit from incorporating QR codes as portals to access such information.

  5. The Design of 3D-Printed Lattice-Reinforced Thickness-Varying Shell Molds for Castings

    PubMed Central

    Shangguan, Haolong; Kang, Jinwu; Yi, Jihao; Zhang, Xiaochuan; Wang, Xiang; Wang, Haibin; Huang, Tao

    2018-01-01

    3D printing technologies have been used gradually for the fabrication of sand molds and cores for castings, even though these molds and cores are dense structures. In this paper, a generation method for lattice-reinforced thickness-varying shell molds is proposed and presented. The first step is the discretization of the STL (Stereo Lithography) model of a casting into finite difference meshes. After this, a shell is formed by surrounding the casting with varying thickness, which is roughly proportional to the surface temperature distribution of the casting that is acquired by virtually cooling it in the environment. A regular lattice is subsequently constructed to support the shell. The outside surface of the shell and lattice in the cubic mesh format is then converted to STL format to serve as the external surface of the new shell mold. The internal surface of the new mold is the casting’s surface with the normals of all of the triangles in STL format reversed. Experimental verification was performed on an Al alloy wheel hub casting. Its lattice-reinforced thickness-varying shell mold was generated by the proposed method and fabricated by the binder jetting 3D printing. The poured wheel hub casting was sound and of good surface smoothness. The cooling rate of the wheel hub casting was greatly increased due to the shell mold structure. This lattice-reinforced thickness-varying shell mold generation method is of great significance for mold design for castings to achieve cooling control. PMID:29601543

  6. Competitive allele-specific TaqMan PCR (Cast-PCR) is a sensitive, specific and fast method for BRAF V600 mutation detection in Melanoma patients

    PubMed Central

    Barbano, Raffaela; Pasculli, Barbara; Coco, Michelina; Fontana, Andrea; Copetti, Massimiliano; Rendina, Michelina; Valori, Vanna Maria; Graziano, Paolo; Maiello, Evaristo; Fazio, Vito Michele; Parrella, Paola

    2015-01-01

    BRAF codon 600 mutation testing of melanoma patients is mandatory for the choice of the most appropriate therapy in the clinical setting. Competitive allele specific TaqMan PCR (Cast-PCR) technology allows not only the selective amplification of minor alleles, but it also blocks the amplification of non-mutant allele. We genotyped codon 600 of the BRAF gene in 54 patients’ samples by Cast-PCR and bidirectional direct sequence analysis. All the mutations detected by sequencing were also identified by Cast-PCR. In addition, Cast-PCR assay detected four samples carrying mutations and was able to clearly identify two mutations of uncertain interpretation by Sanger sequencing. The limit of detection of Cast-PCR was evaluated by constructing dilution curves of BRAFV600E and BRAFV600K mutated clinical samples mixed with a not-mutated specimens. Both mutations could be detected until a 1:100 mutated/not mutated ratio. Cloning and sequencing of the clones was used to confirm mutations on representative discrepant cases. Cast PCR performances were not affected by intratumour heterogeneity, and less affected by melanin content. Our results indicate that Cast-PCR is a reliable diagnostic tool for the identification of melanoma patients as eligible to be treated with TKIs and might be implemented in the clinical setting as elective screening method. PMID:26690267

  7. Casting Simulation of an Austrian Bronze Age Sword Hilt

    NASA Astrophysics Data System (ADS)

    Pola, Annalisa; Mödlinger, Marianne; Piccardo, Paolo; Montesano, Lorenzo

    2015-07-01

    Bronze Age swords with a metal hilt can be considered the peak of Bronze Age casting technologies. To reconstruct the casting techniques used more than 3000 years ago, a metal hilted sword of the Schalenknauf type from Lower Austria was studied with the aid of macroscopic analyses and simulation of mold filling and casting solidification. A three-dimensional model of the hilt was created based on optical scanner measurements performed on a hilt recently discovered during archaeological excavations. Three different configurations of the gating system were considered, two on the pommel disk and one on the knob, and the effect of its location on the formation of casting defects was investigated. Three-dimensional computed tomography was used to detect internal defects, such as gas and shrinkage porosity, which were then compared with those calculated by simulation. The best match between actual and predicted hilt quality demonstrated the location of the gating system, which turned out to be on the pommel disk.

  8. Effect of dental technician disparities on the 3-dimensional accuracy of definitive casts.

    PubMed

    Emir, Faruk; Piskin, Bulent; Sipahi, Cumhur

    2017-03-01

    Studies that evaluated the effect of dental technician disparities on the accuracy of presectioned and postsectioned definitive casts are lacking. The purpose of this in vitro study was to evaluate the accuracy of presectioned and postsectioned definitive casts fabricated by different dental technicians by using a 3-dimensional computer-aided measurement method. An arch-shaped metal master model consisting of 5 abutments resembling prepared mandibular incisors, canines, and first molars and with a 6-degree total angle of convergence was designed and fabricated by computer-aided design and computer-aided manufacturing (CAD-CAM) technology. Complete arch impressions were made (N=110) from the master model, using polyvinyl siloxane (PVS) and delivered to 11 dental technicians. Each technician fabricated 10 definitive casts with dental stone, and the obtained casts were numbered. All casts were sectioned, and removable dies were obtained. The master model and the presectioned and postsectioned definitive casts were digitized with an extraoral scanner, and the virtual master model and virtual presectioned and postsectioned definitive casts were obtained. All definitive casts were compared with the master model by using computer-aided measurements, and the 3-dimensional accuracy of the definitive casts was determined with best fit alignment and represented in color-coded maps. Differences were analyzed using univariate analyses of variance, and the Tukey honest significant differences post hoc tests were used for multiple comparisons (α=.05). The accuracy of presectioned and postsectioned definitive casts was significantly affected by dental technician disparities (P<.001). The largest dimensional changes were detected in the anterior abutments of both of the definitive casts. The changes mostly occurred in the mesiodistal dimension (P<.001). Within the limitations of this in vitro study, the accuracy of presectioned and postsectioned definitive casts is susceptible to dental technician differences. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. High Reynolds number tests of the CAST 10-2/DOA 2 airfoil in the Langley 0.3-meter transonic cryogenic tunnel, phase 1

    NASA Technical Reports Server (NTRS)

    Dress, D. A.; Mcguire, P. D.; Stanewsky, E.; Ray, E. J.

    1983-01-01

    A wind tunnel investigation of an advanced technology airfoil, the CAST 10-2/DOA 2, was conducted in the Langley 0.3 meter Transonic Cryogenic Tunnel (0.3 m TCT). This was the first of a series of tests conducted in a cooperative National Aeronautics and Space Administration (NASA) and the Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt e. V. (DFVLR) airfoil research program. Test temperature was varied from 280 K to 100 K to pressures from slightly above 1 to 5.8 atmospheres. Mach number was varied from 0.60 to 0.80, and the Reynolds number (based on airfoil chord) was varied from 4 x 10 to the 8th power to 45 x 10 to the 6th power. This report presents the experimental aerodynamic data obtained for the airfoil and includes descriptions of the airfoil model, the 0.3 m TCT, the test instrumentation, and the testing procedures.

  10. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Use of Laser Engineered Net Shaping for Rapid Manufacturing of Dies with Protective Coatings and Improved Thermal Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brevick, Jerald R.

    2014-06-13

    In the high pressure die casting process, molten metal is introduced into a die cavity at high pressure and velocity, enabling castings of thin wall section and complex geometry to be obtained. Traditional die materials have been hot work die steels, commonly H13. Manufacture of the dies involves machining the desired geometry from monolithic blocks of annealed tool steel, heat treating to desired hardness and toughness, and final machining, grinding and polishing. The die is fabricated with internal water cooling passages created by drilling. These materials and fabrication methods have been used for many years, however, there are limitations. Toolmore » steels have relatively low thermal conductivity, and as a result, it takes time to remove the heat from the tool steel via the drilled internal water cooling passages. Furthermore, the low thermal conductivity generates large thermal gradients at the die cavity surfaces, which ultimately leads to thermal fatigue cracking on the surfaces of the die steel. The high die surface temperatures also promote the metallurgical bonding of the aluminum casting alloy to the surface of the die steel (soldering). In terms of process efficiency, these tooling limitations reduce the number of die castings that can be made per unit time by increasing cycle time required for cooling, and increasing downtime and cost to replace tooling which has failed either by soldering or by thermal fatigue cracking (heat checking). The objective of this research was to evaluate the feasibility of designing, fabricating, and testing high pressure die casting tooling having properties equivalent to H13 on the surface in contact with molten casting alloy - for high temperature and high velocity molten metal erosion resistance – but with the ability to conduct heat rapidly to interior water cooling passages. A layered bimetallic tool design was selected, and the design evaluated for thermal and mechanical performance via finite element analysis. H13 was retained as the exterior layer of the tooling, while commercially pure copper was chosen for the interior structure of the tooling. The tooling was fabricated by traditional machining of the copper substrate, and H13 powder was deposited on the copper via the Laser Engineered Net Shape (LENSTM) process. The H13 deposition layer was then final machined by traditional methods. Two tooling components were designed and fabricated; a thermal fatigue test specimen, and a core for a commercial aluminum high pressure die casting tool. The bimetallic thermal fatigue specimen demonstrated promising performance during testing, and the test results were used to improve the design and LENS TM deposition methods for subsequent manufacture of the commercial core. Results of the thermal finite element analysis for the thermal fatigue test specimen indicate that it has the ability to lose heat to the internal water cooling passages, and to external spray cooling, significantly faster than a monolithic H13 thermal fatigue sample. The commercial core is currently in the final stages of fabrication, and will be evaluated in an actual production environment at Shiloh Die casting. In this research, the feasibility of designing and fabricating copper/H13 bimetallic die casting tooling via LENS TM processing, for the purpose of improving die casting process efficiency, is demonstrated.« less

  11. Overview of the ToxCast Research Program: Applications to Predictive Toxicology and Chemical Prioritization

    EPA Science Inventory

    EPA’s ToxCast program, the NTP’s HTS initiative, and the NCGC’s Molecular Libraries Initiative into a collaborative research program focused on identifying toxicity pathways and developing in vitro assays to characterize the ability of chemicals to perturb those pathways. The go...

  12. Learn by Doing - Phase I of the ToxCast Research Program

    EPA Science Inventory

    In 2007, the USEPA embarked on a multi-year, multi-million dollar research program to develop and evaluate a new approach to prioritizing the toxicity testing of environmental chemicals. ToxCast was divided into three main phases of effort – a proof of concept, an expansion and ...

  13. Fabrication of Microfluidic Valves Using a Hydrogel Molding Method

    NASA Astrophysics Data System (ADS)

    Sugiura, Yusuke; Hirama, Hirotada; Torii, Toru

    2015-08-01

    In this paper, a method for fabricating a microfluidic valve made of polydimethylsiloxane (PDMS) using a rapid prototyping method for microchannels through hydrogel cast molding is discussed. Currently, the valves in microchannels play an important role in various microfluidic devices. The technology to prototype microfluidic valves rapidly is actively being developed. For the rapid prototyping of PDMS microchannels, a method that uses a hydrogel as the casting mold has been recently developed. This technique can be used to prepare a three-dimensional structure through simple and uncomplicated methods. In this study, we were able to fabricate microfluidic valves easily using this rapid prototyping method that utilizes hydrogel cast molding. In addition, we confirmed that the valve displacement could be predicted within a range of constant pressures. Moreover, because microfluidic valves fabricated using this method can be directly observed from a cross-sectional direction, we anticipate that this technology will significantly contribute to clarifying fluid behavior and other phenomena in microchannels and microfluidic valves with complex structures.

  14. Fabrication of Microfluidic Valves Using a Hydrogel Molding Method.

    PubMed

    Sugiura, Yusuke; Hirama, Hirotada; Torii, Toru

    2015-08-24

    In this paper, a method for fabricating a microfluidic valve made of polydimethylsiloxane (PDMS) using a rapid prototyping method for microchannels through hydrogel cast molding is discussed. Currently, the valves in microchannels play an important role in various microfluidic devices. The technology to prototype microfluidic valves rapidly is actively being developed. For the rapid prototyping of PDMS microchannels, a method that uses a hydrogel as the casting mold has been recently developed. This technique can be used to prepare a three-dimensional structure through simple and uncomplicated methods. In this study, we were able to fabricate microfluidic valves easily using this rapid prototyping method that utilizes hydrogel cast molding. In addition, we confirmed that the valve displacement could be predicted within a range of constant pressures. Moreover, because microfluidic valves fabricated using this method can be directly observed from a cross-sectional direction, we anticipate that this technology will significantly contribute to clarifying fluid behavior and other phenomena in microchannels and microfluidic valves with complex structures.

  15. Energy efficient engine high-pressure turbine single crystal vane and blade fabrication technology report

    NASA Technical Reports Server (NTRS)

    Giamei, A. F.; Salkeld, R. W.; Hayes, C. W.

    1981-01-01

    The objective of the High-Pressure Turbine Fabrication Program was to demonstrate the application and feasibility of Pratt & Whitney Aircraft-developed two-piece, single crystal casting and bonding technology on the turbine blade and vane configurations required for the high-pressure turbine in the Energy Efficient Engine. During the first phase of the program, casting feasibility was demonstrated. Several blade and vane halves were made for the bonding trials, plus solid blades and vanes were successfully cast for materials evaluation tests. Specimens exhibited the required microstructure and chemical composition. Bonding feasibility was demonstrated in the second phase of the effort. Bonding yields of 75 percent for the vane and 30 percent for the blade were achieved, and methods for improving these yield percentages were identified. A bond process was established for PWA 1480 single crystal material which incorporated a transient liquid phase interlayer. Bond properties were substantiated and sensitivities determined. Tooling die materials were identified, and an advanced differential thermal expansion tooling concept was incorporated into the bond process.

  16. Nucleated casting for the production of large superalloy ingots

    NASA Astrophysics Data System (ADS)

    Carter, William T.; Jones, Robin M. Forbes

    2005-04-01

    The gas turbine industry is continuously driven to achieve higher thermodynamic efficiency, higher electrical output, and higher reliability through turbine design improvements. The specific component of interest in this article is the turbine wheel, which is the rotating hub on which turbine blades are mounted. The wheel is mechanically loaded by both axial and centrifugal forces and thermally loaded by heat that is conducted from the turbine blades. Currently, the turbine wheel is forged from an ingot that is triple-melted, but nucleated casting is under development as a long-term option. This article describes the investigation into nucleated casting technology for future turbine wheel production.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asmussen, R. Matthew; Pearce, Carolyn I.; Miller, Brian W.

    A cementitious waste form, Cast Stone, is a possible candidate technology for the immobilization of low activity nuclear waste (LAW) at the Hanford site. This paper focuses on the addition of getter materials to Cast Stone that can sequester Tc from the LAW, and in turn, lower Tc release from the Cast Stone. Two getters which produce different products upon sequestering Tc from LAW were tested: Sn(II) apatite (Sn-A) that removes Tc as a Tc(IV)-oxide and potassium metal sulfide (KMS-2) that removes Tc as a Tc(IV)-sulfide species, allowing for a comparison of stability of the form of Tc upon enteringmore » the waste form. The Cast Stone with KMS-2 getter had the best performance with addition equivalent to ~0.08 wt% of the total waste form mass. The observed diffusion (D obs) of Tc decreased from 4.6 ± 0.2 × 10 -12 cm 2/s for Cast Stone that did not contain a getter to 5.4 ± 0.4 × 10 -13 cm 2/s for KMS-2 containing Cast Stone. Finally, it was found that Tc-sulfide species are more stable against re-oxidation within getter containing Cast Stone compared with Tc-oxide and is the origin of the decrease in Tc D obs when using the KMS-2.« less

  18. The Southern California Earthquake Center/Undergraduate Studies in Earthquake Information Technology (SCEC/UseIT) Internship Program

    NASA Astrophysics Data System (ADS)

    Perry, S.; Jordan, T.

    2006-12-01

    Our undergraduate research program, SCEC/UseIT, an NSF Research Experience for Undergraduates site, provides software for earthquake researchers and educators, movies for outreach, and ways to strengthen the technical career pipeline. SCEC/UseIT motivates diverse undergraduates towards science and engineering careers through team-based research in the exciting field of earthquake information technology. UseIT provides the cross-training in computer science/information technology (CS/IT) and geoscience needed to make fundamental progress in earthquake system science. Our high and increasing participation of women and minority students is crucial given the nation"s precipitous enrollment declines in CS/IT undergraduate degree programs, especially among women. UseIT also casts a "wider, farther" recruitment net that targets scholars interested in creative work but not traditionally attracted to summer science internships. Since 2002, SCEC/UseIT has challenged 79 students in three dozen majors from as many schools with difficult, real-world problems that require collaborative, interdisciplinary solutions. Interns design and engineer open-source software, creating increasingly sophisticated visualization tools (see "SCEC-VDO," session IN11), which are employed by SCEC researchers, in new curricula at the University of Southern California, and by outreach specialists who make animated movies for the public and the media. SCEC-VDO would be a valuable tool for research-oriented professional development programs.

  19. The Childhood Asperger Syndrome Test (CAST): Test-Retest Reliability in a High Scoring Sample

    ERIC Educational Resources Information Center

    Allison, Carrie; Williams, Jo; Scott, Fiona; Stott, Carol; Bolton, Patrick; Baron-Cohen, Simon; Brayne, Carol

    2007-01-01

    The Childhood Asperger Syndrome Test (CAST) is a 37-item parental self-completion questionnaire designed to screen for high-functioning autism spectrum conditions in epidemiological research. The CAST has previously demonstrated good accuracy for use as a screening test, with high sensitivity in studies with primary school aged children in…

  20. Do Nonverbal Emotional Cues Matter? Effects of Video Casting in Synchronous Virtual Classrooms

    ERIC Educational Resources Information Center

    Han, Heeyoung

    2013-01-01

    This study examined the effects of an instructor's use of video casting as a nonverbal emotional cue in synchronous discussion sessions on students' social presence, satisfaction, and learning achievement. A quasi-experimental design was used to evaluate the effect of video casting in a synchronous virtual classroom. The research setting was a…

  1. Biological profiling of the ToxCast Phase II Chemical Library in Primary Human Cell Co-Culture Systems

    EPA Science Inventory

    The U.S. EPA’s ToxCast research project was developed to address the need for high-throughput testing of chemicals and a pathway-based approach to hazard screening. Phase I of ToxCast tested over 300 unique compounds (mostly pesticides and antimicrobials). With the addition of Ph...

  2. Cast-in-place, ambiently-dried, silica-based, high-temperature insulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Eric Jianfeng; Thompson, Travis; Salvador, James R.

    A novel sol-gel chemistry approach was developed to enable the simple integration of a cast-in-place, ambiently-dried insulation into high temperature applications. The insulation was silica based, synthesized using methyltrimethoxysilane (MTMS) as the precursor. MTMS created a unique silica microstructure that was mechanically robust, macroporous, and superhydrophobic. To allow for casting into and around small, orthogonal features, zirconia fibers were added to increase stiffness and minimize contraction that could otherwise cause cracking during drying. Radiative heat transport was reduced by adding titania powder as an opacifier. To assess relevance to high temperature thermoelectric generator technology, a comprehensive set of materials characterizationsmore » were conducted. The silica gel was thermally stable, retained superhydrophobicity with a water contact angle > 150° , and showed a high electrical resistance > 1 GΩ, regardless of heating temperature (up to 600 °C in Ar for 4 h). In addition, it exhibited a Young's modulus ~3.7 MPa in room temperature and a low thermal conductivity < 0.08 W/m.K before and after heat treatment. Thus, based on the simplicity of the manufacturing process and optimized material properties, we believe this technology can act as an effective cast-in-place thermal insulation (CTI) for thermoelectric generators and myriad other applications requiring improved thermal efficiency.« less

  3. Cast-in-place, ambiently-dried, silica-based, high-temperature insulation

    DOE PAGES

    Cheng, Eric Jianfeng; Thompson, Travis; Salvador, James R.; ...

    2017-02-03

    A novel sol-gel chemistry approach was developed to enable the simple integration of a cast-in-place, ambiently-dried insulation into high temperature applications. The insulation was silica based, synthesized using methyltrimethoxysilane (MTMS) as the precursor. MTMS created a unique silica microstructure that was mechanically robust, macroporous, and superhydrophobic. To allow for casting into and around small, orthogonal features, zirconia fibers were added to increase stiffness and minimize contraction that could otherwise cause cracking during drying. Radiative heat transport was reduced by adding titania powder as an opacifier. To assess relevance to high temperature thermoelectric generator technology, a comprehensive set of materials characterizationsmore » were conducted. The silica gel was thermally stable, retained superhydrophobicity with a water contact angle > 150° , and showed a high electrical resistance > 1 GΩ, regardless of heating temperature (up to 600 °C in Ar for 4 h). In addition, it exhibited a Young's modulus ~3.7 MPa in room temperature and a low thermal conductivity < 0.08 W/m.K before and after heat treatment. Thus, based on the simplicity of the manufacturing process and optimized material properties, we believe this technology can act as an effective cast-in-place thermal insulation (CTI) for thermoelectric generators and myriad other applications requiring improved thermal efficiency.« less

  4. Stabilizing the boundary between US politics and science: the role of the Office of Technology Transfer as a boundary organization.

    PubMed

    Guston, D H

    1999-02-01

    The sociological study of boundary-work and the political-ecomomic approach of principal-agent theory can be complementary ways of examining the relationship between society and science: boundary-work provides the empirical nuance to the principal-agent scheme, and principal-agent theory provides structure to the thick boundary description. This paper motivates this complementarity to examine domestic technology transfer in the USA from the intramural laboratories of the US National Institutes of Health (NIH). It casts US policy for technology transfer in the principal-agent framework, in which politicians attempt to manage the moral hazard of the productivity of research by providing specific incentives to the agents for engaging in measurable research-based innovation. Such incentives alter the previously negotiated boundary between politics and science. The paper identifies the crucial role of the NIH Office of Technology Transfer (OTT) as a boundary organization, which medicates the new boundary negotiations in its routine work, and stabilizes the boundary by performing successfully as an agent for both politicians and scientists. The paper hypothesizes that boundary organizations like OTT are general phenomena at the boundary between politics and science.

  5. The Advanced Industrial Materials (AIM) program office of industrial technologies fiscal year 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorrell, C.A.

    1997-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in FY95 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven `Vision Industries` that use about 80%more » of industrial energy and generated about 90% of industrial wastes. These are: aluminium; chemical; forest products; glass; metal casting; refineries; and steel. OIT is working with these industries, through appropriate organizations, to develop Visions of the desired condition of each industry some 20 to 25 years in the future and then to prepare Road Maps and Implementation Plans to enable them to reach their goals. The mission of AIM has, therefore, changed to `Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`« less

  6. Next generation hyper resolution wide swath and multi-channel optical payload for CBERS series

    NASA Astrophysics Data System (ADS)

    Wang, Weigang

    2017-11-01

    The China-Brazilian Earth Resources Satellite (CBERS) program, (also called ZY-1) the result of a space technology agreement between China and Brazil, was officially signed in 1988 after the first joint work report produced by National Institute for Space Research (INPE) and the Chinese Academy of Space Technology (CAST). During the 26 years of its existence, the program of cooperation between China and Brazil in space has achieved the successful launch of three satellites. It has become a unique example of cooperation in cutting edge technology between emerging nations. CBERS satellite is the first generation data-transferring remote sensing satellite developed by China. CBERS satellite data are widely applied to crop yield estimation, exploration of land and resources, urban planning, environmental protection and monitoring, disaster reduction, and other fields. CBERS series is just like Landsat series of USA and SPOT series of France.

  7. Playing with data at EPA—ToxCast, ExpoCast, HTTK, and the Exposome (Emory Exposome course)

    EPA Science Inventory

    This is a lecture for the Emory Exposome Summer Course in Atlanta, Georgia. The focus will be on how CSS research and tools inform research on exposomics, particularly with identifying relevant chemicals and chemicals pathways from non-targeted monitoring data. This is an opportu...

  8. The perception of 3-D shape from shadows cast onto curved surfaces.

    PubMed

    Norman, J Farley; Lee, Young-lim; Phillips, Flip; Norman, Hideko F; Jennings, L RaShae; McBride, T Ryan

    2009-05-01

    In a natural environment, cast shadows abound. Objects cast shadows both upon themselves and upon background surfaces. Previous research on the perception of 3-D shape from cast shadows has only examined the informativeness of shadows cast upon flat background surfaces. In outdoor environments, however, background surfaces often possess significant curvature (large rocks, trees, hills, etc.), and this background curvature distorts the shape of cast shadows. The purpose of this study was to determine the extent to which observers can "discount" the distorting effects of curved background surfaces. In our experiments, observers viewed deforming or static shadows of naturally shaped objects, which were cast upon flat and curved background surfaces. The results showed that the discrimination of 3-D object shape from cast shadows was generally invariant over the distortions produced by hemispherical background surfaces. The observers often had difficulty, however, in identifying the shadows cast onto saddle-shaped background surfaces. The variations in curvature which occur in different directions on saddle-shaped background surfaces cause shadow distortions that lead to difficulties in object recognition and discrimination.

  9. Influence of casting conditions on durability and structural performance of HPC-AR : optimization of self-consolidating concrete to guarantee homogeneity during casting of long structural elements : final report.

    DOT National Transportation Integrated Search

    2017-05-01

    This report is a summary of the research done on dynamic segregation of self-consolidating concrete (SCC) including the casting of pre-stressed beams at Coreslab Structures. SCC is a highly flowable concrete that spreads into place with little to no ...

  10. Study of abrasive resistance of foundries models obtained with use of additive technology

    NASA Astrophysics Data System (ADS)

    Ol'khovik, Evgeniy

    2017-10-01

    A problem of determination of resistance of the foundry models and patterns from ABS (PLA) plastic, obtained by the method of 3D printing with using FDM additive technology, to abrasive wear and resistance in the environment of foundry sand mould is considered in the present study. The description of a technique and equipment for tests of castings models and patterns for wear is provided in the article. The manufacturing techniques of models with the use of the 3D printer (additive technology) are described. The scheme with vibration load was applied to samples tests. For the most qualitative research of influence of sandy mix on plastic, models in real conditions of abrasive wear have been organized. The results also examined the application of acrylic paintwork to the plastic model and a two-component coating. The practical offers and recommendation on production of master models with the use of FDM technology allowing one to reach indicators of durability, exceeding 2000 cycles of moulding in foundry sand mix, are described.

  11. Mechanical Properties of Be-Al Alloys

    DTIC Science & Technology

    2000-02-22

    technology (sand and mold casting) producing a coarse dendritic structure that did not produce mechanical properties appropriate for structural ... Mechanical Properties of Be-AI Alloys 2. REPORT TYPE Technical Report 6. AUTHOR(S) E. U. Lee K. George V. V. Agarwala H. Sanders 3. DATES...SUPPLEMENTARY NOTES 14. ABSTRACT ~ — — This study was conducted to define the mechanical properties of a wrought 62Be-38A1 alloy and a cast 65Be-32A1

  12. Parallel volume ray-casting for unstructured-grid data on distributed-memory architectures

    NASA Technical Reports Server (NTRS)

    Ma, Kwan-Liu

    1995-01-01

    As computing technology continues to advance, computational modeling of scientific and engineering problems produces data of increasing complexity: large in size and unstructured in shape. Volume visualization of such data is a challenging problem. This paper proposes a distributed parallel solution that makes ray-casting volume rendering of unstructured-grid data practical. Both the data and the rendering process are distributed among processors. At each processor, ray-casting of local data is performed independent of the other processors. The global image composing processes, which require inter-processor communication, are overlapped with the local ray-casting processes to achieve maximum parallel efficiency. This algorithm differs from previous ones in four ways: it is completely distributed, less view-dependent, reasonably scalable, and flexible. Without using dynamic load balancing, test results on the Intel Paragon using from two to 128 processors show, on average, about 60% parallel efficiency.

  13. Commercialization of NASA's High Strength Cast Aluminum Alloy for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2003-01-01

    In this paper, the commercialization of a new high strength cast aluminum alloy, invented by NASA-Marshall Space Flight Center, for high temperature applications will be presented. Originally developed to meet U.S. automotive legislation requiring low- exhaust emission, the novel NASA aluminum alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (450 F-750 F), which can lead to reducing part weight and cost as well as improving performance for automotive engine applications. It is an ideal low cost material for cast components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. NASA alloy also offers greater wear resistance, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys, and the new alloy can be produced economically from sand, permanent mold and investment casting. Since 2001, this technology was licensed to several companies for automotive and marine internal combustion engines applications.

  14. Ni{sub 3}Al technology transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikka, V.K.; Viswanathan, S.; Santella, M.L.

    1997-04-01

    Ductile Ni{sub 3}Al and Ni{sub 3}Al-based alloys have been identified for a range of applications. These applications require the use of material in a variety of product forms such as sheet, plate, bar, wire, tubing, piping, and castings. Although significant progress has been made in the melting, casting, and near-net-shape forming of nickel aluminides, some issues still remain. These include the need for: (1) high-strength castable composition for many applications that have been identified; (2) castability (mold type, fluidity, hot-shortness, porosity, etc.); (3) weld reparability of castings; and (4) workability of cast or powder metallurgy product to sheet, bar, andmore » wire. The four issues listed above can be {open_quotes}show stoppers{close_quotes} for the commercial application of nickel aluminides. This report describes the work completed to address some of these issues during FY 1996.« less

  15. Chemical-Gene Interactions from ToxCast Bioactivity Data ...

    EPA Pesticide Factsheets

    Characterizing the effects of chemicals in biological systems is often summarized by chemical-gene interactions, which have sparse coverage in the literature. The ToxCast chemical screening program has produced bioactivity data for nearly 2000 chemicals and over 450 gene targets. To evaluate the information gained from the ToxCast project, a ToxCast bioactivity network was created comprising ToxCast chemical-gene interactions based on assay data and compared to a chemical-gene association network from literature. The literature network was compiled from PubMed articles, excluding ToxCast publications, mapped to genes and chemicals. Genes were identified by curated associations available from NCBI while chemicals were identified by PubChem submissions. The frequencies of chemical-gene associations from the literature network were log-scaled and then compared to the ToxCast bioactivity network. In total, 140 times more chemical-gene associations were present in the ToxCast network in comparison to the literature-derived network highlighting the vast increase in chemical-gene interactions putatively elucidated by the ToxCast research program. There were 165 associations found in the literature network that were reproduced by ToxCast bioactivity data, and 336 associations in the literature network were not reproduced by the ToxCast bioactivity network. The literature network relies on the assumption that chemical-gene associations represent a true chemical-gene inte

  16. ScienceCast 100: Comet ISON Meteor Shower

    NASA Image and Video Library

    2013-04-19

    Sungrazing Comet ISON, expected to become a bright naked-eye object later this year, might dust the Earth with meteoroids in early 2014. Researchers discuss the possibilities in this week's ScienceCast.

  17. Influence of processing factors over concrete strength.

    NASA Astrophysics Data System (ADS)

    Kara, K. A.; Dolzhenko, A. V.; Zharikov, I. S.

    2018-03-01

    Construction of facilities of cast in-situ reinforced concrete poses additional requirements to quality of material, peculiarities of the construction process may sometimes lead to appearance of lamination planes and inhomogeneity of concrete, which reduce strength of the material and structure as a whole. Technology compliance while working with cast in-situ concrete has a significant impact onto the concrete strength. Such process factors as concrete curing, vibration and compaction of the concrete mixture, temperature treatment, etc., when they are countered or inadequately followed lead to a significant reduction in concrete strength. Here, the authors experimentally quantitatively determine the loss of strength in in-situ cast concrete structures due to inadequate following of process requirements, in comparison with full compliance.

  18. Non-Magnetic, Tough, Corrosion- and Wear-Resistant Knives From Bulk Metallic Glasses and Composites

    NASA Technical Reports Server (NTRS)

    Hoffman, Douglas C.; Potter, Benjamin

    2013-01-01

    Quality knives are typically fabricated from high-strength steel alloys. Depending on the application, there are different requirements for mechanical and physical properties that cause problems for steel alloys. For example, diver's knives are generally used in salt water, which causes rust in steel knives. Titanium diver's knives are a popular alternative due to their salt water corrosion resistance, but are too soft to maintain a sharp cutting edge. Steel knives are also magnetic, which is undesirable for military applications where the knives are used as a tactical tool for diffusing magnetic mines. Steel is also significantly denser than titanium (8 g/cu cm vs. 4.5 g/cu cm), which results in heavier knives for the same size. Steel is hard and wear-resistant, compared with titanium, and can keep a sharp edge during service. A major drawback of both steel and titanium knives is that they must be ground or machined into the final knife shape from a billet. Since most knives have a mirrored surface and a complex shape, manufacturing them is complex. It would be more desirable if the knife could be cast into a net or near-net shape in a single step. The solution to the deficiencies of titanium, steel, and ceramic knives is to fabricate them using bulk metallic glasses (or composites). These alloys can be cast into net or near-net shaped knives with a combination of properties that exceed both titanium and steel. A commercially viable BMG (bulk metallic glass) or composite knife is one that exhibits one or all of the following properties: It is based on titanium, has a self-sharpening edge, can retain an edge during service, is hard, is non-magnetic, is corrosion-resistant against a variety of corrosive environments, is tough (to allow for prying), can be cast into a net-shape with a mirror finish and a complex shape, has excellent wear resistance, and is low-density. These properties can be achieved in BMG and composites through alloy chemistry and processing. For each desired property for knife fabrication and performance, there is an alloy development strategy that optimizes behavior. Although BMG knives have been demonstrated as far back as 1995, they never found commercial success because they had to be ground (which presented problems because the alloys contained beryllium), they weren't low cost (because they weren't cast to a net-shape), they were brittle (because they were made with a low-quality commercial material), and they had extremely poor corrosion resistance (because corrosion was not well-understood in these materials). Ultimately, these shortcomings prevented the widespread commercialization. In the current work, the inventors have applied more than a decade of research on BMGs from Caltech and JPL to develop a better understanding of how to make BMG knives that exhibit an optimal combination of properties, processing and cost. Alloys have been developed based in titanium (and other metals), that exhibit high toughness, high hardness, excellent corrosion resistance, no ferromagnetism, edge-retaining selfsharpening, and the ability to be cast like a plastic using commercially available casting techniques (currently used by commercial companies such as Liquidmetal Technologies and Visser Precision Casting). The inventors argue that depending on the application (diving, military, tactical, utility, etc.) there is an optimal combination of design and alloy composition. Moreover, with new casting technologies not available at the inception of these materials, net-shaped knives can be cast into complex shapes that require no aftermarket forming, except for sharpening using water-cooled polishing wheel. These combinations of discoveries seek to make low-cost BMG knives commercially viable products that have no equal among metal or ceramic knives. Current work at JPL focuses on net-shape casting of these alloys and testing their mechanical properties versus commercially available knives to demonstrate their benefits.

  19. Systematic review of spica casting for the treatment of paediatric diaphyseal femur fractures.

    PubMed

    Tisherman, R T; Hoellwarth, J S; Mendelson, S A

    2018-04-01

    Paediatric femur fractures are commonly encountered and often successfully managed with spica casting. Despite spica casting's long history there is little formal guidance for optimal outcomes and no consolidation of existing literature. The purpose of this study is to review the available literature regarding the use of spica casting for the management of paediatric diaphyseal femur fractures. The PubMed database was queried for all research articles including the phrase "spica". A total of 788 abstracts were reviewed for relevance to the current study. Data was extracted from all available research studies which specified tolerance for fracture angulation or shortening in the cast. Additionally, all articles describing alternative materials, methods for spica application, and complications of spica casting were reviewed. In all, 106 articles were found relevant to the management of diaphyseal femur fractures in the paediatric population. The aggregated, accepted fracture shortening decreased from 16 mm to 18 mm before age ten years to 12 mm to 14 mm after puberty. Aggregated, accepted angulation decreased from 14° to 16° varus/valgus and 18° to 22° pro/recurvatum before age two years, to 6° to 8° and 10° to 12° by puberty, respectively. The overall reported complication rate was 19.6%, with the most common complication being skin compromise in 8.2% of patients, followed by unacceptable angulation at the fracture site in 4.2% of patients and excessive limb shortening in 1.9% of patients. This article reviews the available spica casting literature and compiles the available data. Spica casting offers a safe, effective means for definitive management of paediatric diaphyseal femur fractures. Future research identifying the rate and pattern of remodelling as it relates to angulation and shortening at various patient ages, particularly beyond the aforementioned norms, would be valuable to identify true biological tolerances versus accepted expert opinion. Review of level II evidence.

  20. Semi-simultaneous application of neutron and X-ray radiography in revealing the defects in an Al casting.

    PubMed

    Balaskó, M; Korösi, F; Szalay, Zs

    2004-10-01

    A semi-simultaneous application of neutron and X-ray radiography (NR, XR) respectively, was applied to an Al casting. The experiments were performed at the 10MW VVR-SM research reactor in Budapest (Hungary). The aim was to reveal, identify and parameterize the hidden defects in the Al casting. The joint application of NR and XR revealed hidden defects located in the Al casting. Image analysis of the NR and XR images unveiled a cone-like dimensionality of the defects. The spectral density analysis of the images showed a distinctly different character for the hidden defect region of Al casting in comparison with that of the defect-free one.

  1. Getters for improved technetium containment in cementitious waste forms

    DOE PAGES

    Asmussen, R. Matthew; Pearce, Carolyn I.; Miller, Brian W.; ...

    2017-07-26

    A cementitious waste form, Cast Stone, is a possible candidate technology for the immobilization of low activity nuclear waste (LAW) at the Hanford site. This paper focuses on the addition of getter materials to Cast Stone that can sequester Tc from the LAW, and in turn, lower Tc release from the Cast Stone. Two getters which produce different products upon sequestering Tc from LAW were tested: Sn(II) apatite (Sn-A) that removes Tc as a Tc(IV)-oxide and potassium metal sulfide (KMS-2) that removes Tc as a Tc(IV)-sulfide species, allowing for a comparison of stability of the form of Tc upon enteringmore » the waste form. The Cast Stone with KMS-2 getter had the best performance with addition equivalent to ~0.08 wt% of the total waste form mass. The observed diffusion (D obs) of Tc decreased from 4.6 ± 0.2 × 10 -12 cm 2/s for Cast Stone that did not contain a getter to 5.4 ± 0.4 × 10 -13 cm 2/s for KMS-2 containing Cast Stone. Finally, it was found that Tc-sulfide species are more stable against re-oxidation within getter containing Cast Stone compared with Tc-oxide and is the origin of the decrease in Tc D obs when using the KMS-2.« less

  2. Getters for improved technetium containment in cementitious waste forms.

    PubMed

    Asmussen, R Matthew; Pearce, Carolyn I; Miller, Brian W; Lawter, Amanda R; Neeway, James J; Lukens, Wayne W; Bowden, Mark E; Miller, Micah A; Buck, Edgar C; Serne, R Jeffery; Qafoku, Nikolla P

    2018-01-05

    A cementitious waste form, Cast Stone, is a possible candidate technology for the immobilization of low activity nuclear waste (LAW) at the Hanford site. This work focuses on the addition of getter materials to Cast Stone that can sequester Tc from the LAW, and in turn, lower Tc release from the Cast Stone. Two getters which produce different products upon sequestering Tc from LAW were tested: Sn(II) apatite (Sn-A) that removes Tc as a Tc(IV)-oxide and potassium metal sulfide (KMS-2) that removes Tc as a Tc(IV)-sulfide species, allowing for a comparison of stability of the form of Tc upon entering the waste form. The Cast Stone with KMS-2 getter had the best performance with addition equivalent to ∼0.08wt% of the total waste form mass. The observed diffusion (D obs ) of Tc decreased from 4.6±0.2×10 -12 cm 2 /s for Cast Stone that did not contain a getter to 5.4±0.4×10 -13 cm 2 /s for KMS-2 containing Cast Stone. It was found that Tc-sulfide species are more stable against re-oxidation within getter containing Cast Stone compared with Tc-oxide and is the origin of the decrease in Tc D obs when using the KMS-2. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Addressing Learning Disabilities with UDL and Technology: Strategic Reader

    ERIC Educational Resources Information Center

    Hall, Tracey E.; Cohen, Nicole; Vue, Ge; Ganley, Patricia

    2015-01-01

    CAST created "Strategic Reader," a technology-based system blending Universal Design for Learning (UDL) and Curriculum-Based Measurement (CBM) in a digital learning environment to improve reading comprehension instruction. This experimental study evaluates the effectiveness of Strategic Reader using two treatment conditions for measuring…

  4. Effects of Casting Size on Microstructure and Mechanical Properties of Spheroidal and Compacted Graphite Cast Irons: Experimental Results and Comparison with International Standards

    NASA Astrophysics Data System (ADS)

    Ceschini, L.; Morri, Alessandro; Morri, Andrea

    2017-05-01

    The aim of this research was to investigate the effects of casting size (10-210 mm) on the microstructure and mechanical properties of spheroidal (SGI) and compacted (CGI) graphite cast irons. A comparison of the experimental mechanical data with those specified by ISO standards is presented and discussed. The study highlighted that the microstructure and mechanical properties of SGI (also known as ductile or nodular cast iron) are more sensitive to casting size than CGI (also known as vermicular graphite cast irons). In particular, in both types of cast iron, hardness, yield strength and ultimate tensile strength decreased, with increasing casting size, by 27% in SGI and 17% in CGI. Elongation to failure showed, instead, an opposite trend, decreasing from 5 to 3% in CGI, while increasing from 5 to 11% in SGI. These results were related to different microstructures, the ferritic fraction being more sensitive to the casting size in SGI than CGI. Degeneration of spheroidal graphite was observed at casting size above 120 mm. The microstructural similarities between degenerated SGI and CGI suggested the proposal of a unified empirical constitutional law relating the most important microstructural parameters to the ultimate tensile strength. An outstanding result was also the finding that standard specifications underestimated the mechanical properties of both cast irons (in particular SGI) and, moreover, did not take into account their variation with casting size, at thicknesses over 60 mm.

  5. [Rapid prototyping: a very promising method].

    PubMed

    Haverman, T M; Karagozoglu, K H; Prins, H-J; Schulten, E A J M; Forouzanfar, T

    2013-03-01

    Rapid prototyping is a method which makes it possible to produce a three-dimensional model based on two-dimensional imaging. Various rapid prototyping methods are available for modelling, such as stereolithography, selective laser sintering, direct laser metal sintering, two-photon polymerization, laminated object manufacturing, three-dimensional printing, three-dimensional plotting, polyjet inkjet technology,fused deposition modelling, vacuum casting and milling. The various methods currently being used in the biomedical sector differ in production, materials and properties of the three-dimensional model which is produced. Rapid prototyping is mainly usedforpreoperative planning, simulation, education, and research into and development of bioengineering possibilities.

  6. Advances in compact manufacturing for shape and performance controllability of large-scale components-a review

    NASA Astrophysics Data System (ADS)

    Qin, Fangcheng; Li, Yongtang; Qi, Huiping; Ju, Li

    2017-01-01

    Research on compact manufacturing technology for shape and performance controllability of metallic components can realize the simplification and high-reliability of manufacturing process on the premise of satisfying the requirement of macro/micro-structure. It is not only the key paths in improving performance, saving material and energy, and green manufacturing of components used in major equipments, but also the challenging subjects in frontiers of advanced plastic forming. To provide a novel horizon for the manufacturing in the critical components is significant. Focused on the high-performance large-scale components such as bearing rings, flanges, railway wheels, thick-walled pipes, etc, the conventional processes and their developing situations are summarized. The existing problems including multi-pass heating, wasting material and energy, high cost and high-emission are discussed, and the present study unable to meet the manufacturing in high-quality components is also pointed out. Thus, the new techniques related to casting-rolling compound precise forming of rings, compact manufacturing for duplex-metal composite rings, compact manufacturing for railway wheels, and casting-extruding continuous forming of thick-walled pipes are introduced in detail, respectively. The corresponding research contents, such as casting ring blank, hot ring rolling, near solid-state pressure forming, hot extruding, are elaborated. Some findings in through-thickness microstructure evolution and mechanical properties are also presented. The components produced by the new techniques are mainly characterized by fine and homogeneous grains. Moreover, the possible directions for further development of those techniques are suggested. Finally, the key scientific problems are first proposed. All of these results and conclusions have reference value and guiding significance for the integrated control of shape and performance in advanced compact manufacturing.

  7. Innovative forming and fabrication technologies : new opportunities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, B.; Hryn, J.; Energy Systems

    2008-01-31

    The advent of light metal alloys and advanced materials (polymer, composites, etc.) have brought the possibility of achieving important energy reductions into the full life cycle of these materials, especially in transportation applications. 1 These materials have gained acceptance in the aerospace industry but use of light metal alloys needs to gain wider acceptance in other commercial transportation areas. Among the main reasons for the relatively low use of these materials are the lack of manufacturability, insufficient mechanical properties, and increased material costs due to processing inefficiencies. Considering the enormous potential energy savings associated with the use of light metalmore » alloys and advanced materials in transportation, there is a need to identify R&D opportunities in the fields of materials fabrication and forming aimed at developing materials with high specific mechanical properties combined with energy efficient processes and good manufacturability. This report presents a literature review of the most recent developments in the areas of fabrication and metal forming focusing principally on aluminum alloys. In the first section of the document, the different sheet manufacturing technologies including direct chill (DC) casting and rolling, spray forming, spray rolling, thin slab, and strip casting are reviewed. The second section of the document presents recent research on advanced forming processes. The various forming processes reviewed are: superplastic forming, electromagnetic forming, age forming, warm forming, hydroforming, and incremental forming. Optimization of conventional forming processes is also discussed. Potentially interesting light metal alloys for high structural efficiency including aluminum-scandium, aluminum-lithium, magnesium, titanium, and amorphous metal alloys are also reviewed. This section concludes with a discussion on alloy development for manufacturability. The third section of the document reviews the latest developments in fiber-reinforced composite materials. Emerging curing processes are presented along with a discussion on the possible developments in biocomposite materials. The fourth section presents recent developments in the fabrication of bulk nanomaterials and nanoparticles reinforced materials. Advanced joining technologies are presented in the fifth section. Future research is proposed in the last section.« less

  8. Los Alamos Discovers Super Efficient Solar Using Perovskite Crystals

    ScienceCinema

    Mohite, Aditya; Nie, Wanyi

    2018-05-11

    State-of-the-art photovoltaics using high-purity, large-area, wafer-scale single-crystalline semiconductors grown by sophisticated, high temperature crystal-growth processes offer promising routes for developing low-cost, solar-based clean global energy solutions for the future. Solar cells composed of the recently discovered material organic-inorganic perovskites offer the efficiency of silicon, yet suffer from a variety of deficiencies limiting the commercial viability of perovskite photovoltaic technology. In research to appear in Science, Los Alamos National Laboratory researchers reveal a new solution-based hot-casting technique that eliminates these limitations, one that allows for the growth of high-quality, large-area, millimeter-scale perovskite crystals and demonstrates that highly efficient and reproducible solar cells with reduced trap assisted recombination can be realized.

  9. Timing of Getter Material Addition in Cementitious Wasteforms

    NASA Astrophysics Data System (ADS)

    Lawter, A.; Qafoku, N. P.; Asmussen, M.; Neeway, J.; Smith, G. L.

    2015-12-01

    A cementitious waste form, Cast Stone, is being evaluated as a possible supplemental immobilization technology for the Hanford sites's low activity waste (LAW), which contains radioactive 99Tc and 129I, as part of the tank waste cleanup mission. Cast Stone is made of a dry blend 47% blast furnace slag, 45% fly ash, and 8% ordinary Portland cement, mixed with a low-activity waste (LAW). To improve the retention of Tc and/or I in Cast Stone, materials with a high affinity for Tc and/or I, termed "getters," can be added to provide a stable domain for the radionuclides of concern. Previous testing conducted with a variety of getters has identified Tin(II)-Apatite and Silver Exchanged Zeolite as promising candidates for Tc and I, respectively. Investigation into the sequence in which getters are added to Cast Stone was performed following two methods: 1) adding getters to the Cast Stone dry blend, and then mixing with liquid waste, and 2) adding getters to the liquid waste first, followed by addition of the Cast Stone dry blend. Cast Stone monolith samples were prepared with each method and leach tests, following EPA method 1315, were conducted in either distilled water or simulated vadose zone porewater for a period of up to 63 days. The leachate was analyzed for Tc, I, Na, NO3-, NO2- and Cr with ICP-MS, ICP-OES and ion chromatography and the results indicated that the Cast Stone with getter addition in the dry blend mix (method 1) has lower rates of Tc and I leaching. The mechanisms of radionuclide release from the Cast Stone were also investigated with a variety of solid phase characterization techniques of the monoliths before and after leaching, such as XRD, SEM/EDS, TEM/SAED and other spectroscopic techniques.

  10. High-resistant castable corrosion-resistant nickel alloy for monocrystalline casting by the directional crystallization method

    NASA Astrophysics Data System (ADS)

    Belikov, S. B.; Andrienko, A. G.; Gaiduk, S. V.; Kononov, V. V.; Zamkovoi, V. E.

    2008-01-01

    A high-resistant corrosion-resistant nickel-based alloy has been developed for monocrystalline casting using the directional crystallization method. Its mechanical properties are close to those of aircraft alloys ZhS6K-VI and ZhS6U-VI with an equiaxial structure and ZhS26-VI with an oriented structure. The technology of producing blades for turboprop engines from the new alloy has been developed and tested.

  11. Potential Technology Transfer to the DoD Unmanned Ground Vehicle Program.

    DTIC Science & Technology

    1996-10-01

    Germany. This process combines x-ray lithography, galvanic casting, and micromolding technology and can be used to produce a variety of sensors and...whether circulation is being obstructed by atherosclerosis . Finally, work is being done at the University of Minnesota on a microrobotic device

  12. Rough case-based reasoning system for continues casting

    NASA Astrophysics Data System (ADS)

    Su, Wenbin; Lei, Zhufeng

    2018-04-01

    The continuous casting occupies a pivotal position in the iron and steel industry. The rough set theory and the CBR (case based reasoning, CBR) were combined in the research and implementation for the quality assurance of continuous casting billet to improve the efficiency and accuracy in determining the processing parameters. According to the continuous casting case, the object-oriented method was applied to express the continuous casting cases. The weights of the attributes were calculated by the algorithm which was based on the rough set theory and the retrieval mechanism for the continuous casting cases was designed. Some cases were adopted to test the retrieval mechanism, by analyzing the results, the law of the influence of the retrieval attributes on determining the processing parameters was revealed. A comprehensive evaluation model was established by using the attribute recognition theory. According to the features of the defects, different methods were adopted to describe the quality condition of the continuous casting billet. By using the system, the knowledge was not only inherited but also applied to adjust the processing parameters through the case based reasoning method as to assure the quality of the continuous casting and improve the intelligent level of the continuous casting.

  13. Education and Social Equity: With a Special Focus on Scheduled Castes and Scheduled Tribes in Elementary Education. CREATE Pathways to Access. Research Monograph No. 19

    ERIC Educational Resources Information Center

    Sedwal, Mona; Kamat, Sangeeta

    2008-01-01

    The Scheduled Castes (SCs, also known as Dalits) and Scheduled Tribes (STs, also known as Adivasis) are among the most socially and educationally disadvantaged groups in India. This paper examines issues concerning school access and equity for Scheduled Caste and Scheduled Tribe communities and also highlights their unique problems, which may…

  14. Thin Gauge Twin-Roll Casting, Process Capabilities and Product Quality

    NASA Astrophysics Data System (ADS)

    Daaland, O.; Espedal, A. B.; Nedreberg, M. L.; Alvestad, I.

    Traditionally industrial twin roll casters have been operated at gauges 6-10 mm, depending on the type of caster and the final product requirements. Over the past few years it has become apparent that a significant increase in productivity can be achieved when the casting gauge is reduced. Hydro Aluminium embarked on an extensive research and development, thin gauge casting programme, in the beginning of the 1990's and this paper presents some results from a five year lasting project (joint programme between Hydro Aluminium a.s. and Lauener Engineering). Based on more than 400 casting trials the major benefits and limitations of casting at reduced gauge and increased speed are outlined. Important aspects related to process development and product quality are discussed including: productivity and limitations, surface defects, microstructural characteristics, cooling rates and dendrite structure, segregation behaviour and mechanical properties after thermo-mechanical processing. Results for casting of several alloys are given. Additionally, numerical modelling results of the strip casting process are included.

  15. ToxCast: Developing Predictive Signatures of Chemically Induced Toxicity (S)

    EPA Science Inventory

    ToxCast, the United States Environmental Protection Agency’s chemical prioritization research program, is developing methods for utilizing computational chemistry, bioactivity profiling and toxicogenomic data to predict potential for toxicity and prioritize limited testing resour...

  16. Improved Slip Casting Of Ceramic Models

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.; Vasquez, Peter; Hicks, Lana P.

    1994-01-01

    Improved technique of investment slip casting developed for making precise ceramic wind-tunnel models. Needed in wind-tunnel experiments to verify predictions of aerothermodynamical computer codes. Ceramic materials used because of their low heat conductivities and ability to survive high temperatures. Present improved slip-casting technique enables casting of highly detailed models from aqueous or nonaqueous solutions. Wet shell molds peeled off models to ensure precise and undamaged details. Used at NASA Langley Research Center to form superconducting ceramic components from nonaqueous slip solutions. Technique has many more applications when ceramic materials developed further for such high-strength/ temperature components as engine parts.

  17. Methods for Casting Subterranean Ant Nests

    PubMed Central

    Tschinkel, Walter R.

    2010-01-01

    The study of subterranean ant nests has been impeded by the difficulty of rendering their structures in visible form. Here, several different casting materials are shown to make perfect casts of the underground nests of ants. Each material (dental plaster, paraffin wax, aluminum, zinc) has advantages and limitations, which are discussed. Some of the materials allow the recovery of the ants entombed in the casts, allowing a census of the ants to be connected with features of their nest architecture. The necessary equipment and procedures are described in the hope that more researchers will study this very important aspect of ant natural history. PMID:20673073

  18. Physicochemical and Microstructural Characterization of Corn Starch Edible Films Obtained by a Combination of Extrusion Technology and Casting Technique.

    PubMed

    Fitch-Vargas, Perla Rosa; Aguilar-Palazuelos, Ernesto; de Jesús Zazueta-Morales, José; Vega-García, Misael Odín; Valdez-Morales, Jesús Enrique; Martínez-Bustos, Fernando; Jacobo-Valenzuela, Noelia

    2016-09-01

    Starch edible films (EFs) have been widely studied due to their potential in food preservation; however, their application is limited because of their poor mechanical and barrier properties. Because of that, the aim of this work was to use the extrusion technology (Ex T) as a pretreatment of casting technique to change the starch structure in order to obtain EFs with improved physicochemical properties. To this, corn starch and a mixture of plasticizers (sorbitol and glycerol, in different ratios) were processed in a twin screw extruder to generate the starch modification and subsequently casting technique was used for EFs formation. The best conditions of the Ex T and plasticizers concentration were obtained using response surface methodology. All the response variables evaluated, were affected significatively by the Plasticizers Ratio (Sorbitol:Glycerol) (PR (S:G)) and Extrusion Temperature (ET), while the Screw Speed (SS) did not show significant effect on any of these variables. The optimization study showed that the appropriate conditions to obtain EFs with the best mechanical and barrier properties were ET = 89 °C, SS = 66 rpm and PR (S:G) = 79.7:20.3. Once the best conditions were obtained, the optimal treatment was characterized according to its microstructural properties (X-ray diffraction, Scanning Electron Microscopy and Atomic Force Microscopy) to determine the damage caused in the starch during Ex T and casting technique. In conclusion, with the combination of Ex T and casting technique were obtained EFs with greater breaking strength and deformation, as well as lower water vapor permeability than those reported in the literature. © 2016 Institute of Food Technologists®

  19. SeqAPASS to evaluate conservation of high-throughput screening targets across non-mammalian species

    EPA Science Inventory

    Cell-based high-throughput screening (HTS) and computational technologies are being applied as tools for toxicity testing in the 21st century. The U.S. Environmental Protection Agency (EPA) embraced these technologies and created the ToxCast Program in 2007, which has served as a...

  20. Syndicated RSS Feeds for Course Information Distribution

    ERIC Educational Resources Information Center

    Glotzbach, Ronald J.; Mordkovich, Dorina A.; Radwan, Jaime E.

    2008-01-01

    Students in higher education today are technologically savvy and expect faculty to use myriad web technologies for course delivery. This includes taking advantage of email, course web sites, and online learning communities. However, expectations now also include RSS, blogs, web-, pod-, and vod-casting, extending the classroom experience to provide…

  1. Really Simple Syndication (RSS): An Educational Approach

    ERIC Educational Resources Information Center

    Glotzbach, Ronald J.; Mohler, James L.; Radwan, Jaime E.

    2009-01-01

    Today's post-secondary students are technologically savvy and they expect faculty to use myriad web technologies for course delivery. This includes taking advantage of email, course web sites, and online learning communities. However, expectations now also include RSS, blogs, web- and pod-casting, extending the classroom experience to provide…

  2. Census 2001: issues and perspectives.

    PubMed

    1998-01-01

    This article discusses the Census of India for 2001 and gender issues such as the sex ratio, undercounts of girls, tribe and scheduled caste data, and the data users' conference. The April 1998 conference was attended by representatives of government planning and development departments, research institutions, and statisticians and researchers. Under consideration was a government Ministry of Welfare proposal to reintroduce, after a 60-year hiatus, data by scheduled caste and tribe. This issue is complicated by criteria that vary by state and includability. Quotas for backward classes in educational institutions, government jobs, and in decision-making bodies are the reason for designations by caste. Some groups are distressed because of lack of inclusion as backward classes. M.N. Srinivas strongly advises that counting by caste will create problems for enumerators and will result in lawsuits and violent disturbances. G. Shah argues that caste counts will not weaken the caste system nor expand their political power, but will intensify internal conflicts between the Dalit and Bahujan movements. One other issue is the reintroduction of the 1961 Household schedule which provides family composition by landholding size and household enterprise. Krishnaji advises that this data would help analyze sex ratio imbalances. In 1997, the Core Group examined gender equity issues and operational issues about increasing the scope without increasing costs. The Core Group recommended caste data at the district and sub-district level. Undercounting of the female work force is a continuing issue from the 1991 Census. Suggestions by the Core Group are indicated in brief.

  3. Religion insulates ingroup evaluations: the development of intergroup attitudes in India.

    PubMed

    Dunham, Yarrow; Srinivasan, Mahesh; Dotsch, Ron; Barner, David

    2014-03-01

    Research on the development of implicit intergroup attitudes has placed heavy emphasis on race, leaving open how social categories that are prominent in other cultures might operate. We investigate two of India's primary means of social distinction, caste and religion, and explore the development of implicit and explicit attitudes towards these groups in minority-status Muslim children and majority-status Hindu children, the latter drawn from various positions in the Hindu caste system. Results from two tests of implicit attitudes find that caste attitudes parallel previous findings for race: higher-caste children as well as lower-caste children have robust high-caste preferences. However, results for religion were strikingly different: both lower-status Muslim children and higher-status Hindu children show strong implicit ingroup preferences. We suggest that religion may play a protective role in insulating children from the internalization of stigma. © 2013 John Wiley & Sons Ltd.

  4. ScienceCast 32: 600 Mysteries in the Night Sky

    NASA Image and Video Library

    2011-10-14

    The Fermi Gamma-ray Space Telescope recently produced a map of the night sky. Out of 1873 new sources, nearly 600 were complete mysteries. In this week's ScienceCast, researchers speculate on the nature of the mystery objects.

  5. Riser Feeding Evaluation Method for Metal Castings Using Numerical Analysis

    NASA Astrophysics Data System (ADS)

    Ahmad, Nadiah

    One of the design aspects that continues to create a challenge for casting designers is the optimum design of casting feeders (risers). As liquid metal solidifies, the metal shrinks and forms cavities inside the casting. In order to avoid shrinkage cavities, risers are added to the casting shape to supply additional molten metal when shrinkage occurs during solidification. The shrinkage cavities in the casting are compensated by controlling the cooling rate to promote directional solidification. This control can be achieved by designing the casting such that the cooling begins at the sections that are farthest away from the risers and ends at the risers. Therefore, the risers will solidify last and feed the casting with the molten metal. As a result, the shrinkage cavities formed during solidification are in the risers which are later removed from the casting. Since casting designers have to usually go through iterative processes of validating the casting designs which are very costly due to expensive simulation processes or manual trials and errors on actual casting processes, this study investigates more efficient methods that will help casting designers utilize their casting experiences systematically to develop good initial casting designs. The objective is to reduce the casting design method iterations; therefore, reducing the cost involved in that design processes. The aim of this research aims at finding a method that can help casting designers design effective risers used in sand casting process of aluminum-silicon alloys by utilizing the analysis of solidification simulation. The analysis focuses on studying the significance of pressure distribution of the liquid metal at the early stage of casting solidification, when heat transfer and convective fluid flow are taken into account in the solidification simulation. The mathematical model of casting solidification was solved using the finite volume method (FVM). This study focuses to improve our understanding of the feeding behavior in aluminum-silicon alloys and the effective feeding by considering the pressure gradient distribution of the molten metal at casting dendrite coherency point. For this study, we will identify the relationship between feeding efficiency, shrinkage behavior and how the change in riser size affects the pressure gradient in the casting. This understanding will be used to help in the design of effective risers.

  6. Energy Saving Melting and Revert Reduction (E-SMARRT): Precision Casting of Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Von L. Richards

    2011-09-30

    This project addresses improvements in metal casting processes by reducing scrap and reducing the cost of production, due to scrap reduction from investment casting and yield improvement offered by lost foam casting as compared to no-bake or green sand molding. The objectives for the investment casting portion of the subtask are to improve knowledge of fracture toughness of mold shells and the sources of strength limiting flaws and to understand the effects of wax reclamation procedures on wax properties. Applying 'clean steel' approaches to pouring technology and cleanliness in investment casting of steel are anticipated to improve incoming materials inspectionmore » procedures as they affect the microstructure and toughness of the shell. This project focused on two areas of study in the production of steel castings to reduce scrap and save energy: (1) Reducing the amount of shell cracking in investment cast steel production; (2) Investigate the potential of lost foam steel casting The basic findings regarding investment casting shell cracking were: (1) In the case of post pouring cracking, this could be related to phase changes in silica upon cooling and could be delayed by pouring arrangement strategies that maintained the shell surface at temperature for longer time. Employing this delay resulted in less adherent oxidation of castings since the casting was cooler at the time o fair exposure. (2) A model for heat transfer through water saturated shell materials under steam pressure was developed. (3) Initial modeling result of autoclave de-waxing indicated the higher pressure and temperature in the autoclave would impose a steeper temperature gradient on the wax pattern, causing some melt flow prior to bulk expansion and decreasing the stress on the green shell. Basic findings regarding lost foam casting of steel at atmospheric pressure: (1) EPS foam generally decomposes by the collapse mode in steel casting. (2) There is an accumulation of carbon pick-up at the end of the casting opposite the gate. (3) It is recommended that lost foam castings in steel be gated for a quiescent fill in an empty cavity mold to prevent foam occlusion defects from the collapse mode. The energy benefit is primarily in yield savings and lower casting weight per function due to elimination of draft and parting lines for the larger lost foam castings. For the smaller investment casting, scrap losses due to shell cracking will be reduced. Both of these effects will reduce the metal melted per good ton of castings. There will also be less machine stock required per casting which is a yield savings and a small additional energy savings in machining. Downstream savings will come from heavy truck and railroad applications. Application of these processes to heavy truck castings will lighten the heavy truck fleet by about ten pounds per truck. Using ten years to achieve full penetration of the truck fleet at linear rate this will result in a fuel savings of 131 trillion BTU over ten years.« less

  7. Fbis report. Science and technology: China, October 18, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-10-18

    ;Partial Contents: Nanomaterials Fabrication, Applications Research Advances Noted; CAST Announces World`s First Space-Grown Large-Diameter GaAs Monocrystal; Assay of Antiviral Activity of Antisense Phosphorothioate Oligodeoxynucleotide Against Dengue Virus; Expression and Antigenicity of Chimeric Proteins of Cholera Toxin B Subunit With Hepatitis C Virus; CNCOFIEC Signs Agreement With IBM for New Intelligent Building; Latest Reports on Optical Computing, Memory; BIDC To Introduce S3 Company`s Multimedia Accelerator Chipset; Virtual Private PCN Ring Network Based on ATM VP Cross-Connection; Beijing Gets Nation`s First Frame Relay Network; Situation of Power Industry Development and International Cooperation; Diagrams of China`s Nuclear Waste Containment Vessels; Chinese-Developed Containment Vesselmore » Material Reaches World Standards; Second Fuel Elements for Qinshan Plant Passes Inspection; and Geothermal Deep-Well Electric Pump Technology Developed.« less

  8. Trappings of technology: casting palliative care nursing as legal relations.

    PubMed

    Larsen, Ann-Claire

    2012-12-01

    Community palliative care nurses in Perth have joined the throng of healthcare workers relying on personal digital assistants (PDAs) to store, access and send client information in 'real time'. This paper is guided by Heidegger's approach to technologies and Habermas' insights into the role of law in administering social welfare programs to reveal how new ethical and legal understandings regarding patient information add to nursing's professional responsibilities. This qualitative research interprets data from interviews with twenty community palliative care nurses about clients' legal rights to informational privacy and confidentiality. It explores nurses' views of their nursing responsibilities regarding clients' legal rights, liability issues, bureaucratic monitoring and enforcement procedures. It concludes that nurses and clients are construed as legal subjects entrenched in legal relations that have magnified since these nurses began using PDAs in 2005/2006. © 2011 Blackwell Publishing Ltd.

  9. Space Technology for the Iron Foundry

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Electric Power Research Institute (EPRI) initiated development of a plasma melter intended to solve a major problem in the U.S. foundry industry. EPRI is a non-profit organization that manages research and development for some 600 electric utility member companies. For the plasma melter program, EPRI enlisted as co-sponsors Westinghouse Electric's Environmental Systems and Services Division, General Motors Corporation, and Modern Equipment Company, supplier of equipment and services to the foundry industry. General Motor's plasma melter, first in the U.S., is an advanced technology system designed to improve the efficiency of coke-burning cupolas that melt iron to produce automotive castings. The key elements are six Westinghouse plasma torches. Electrically-powered plasma torch creates an ionized gas that superheats air entering the cupola to 10,000 degrees Fahrenheit. That great heat, three times higher than that attainable by oil or natural gas systems, is the key to making iron cheaper, cleaner, and faster. System offers an environmental bonus in reduced cupola emissions. Plasma torches increase GM's electric bill at Defiance, but that cost is more than compensated by the savings in charge material. The EPRI-sponsored Center for Materials Production (CMP) is evaluating the potential of plasma cupola technology.

  10. ScienceCast 56: April is the Cruelest Month

    NASA Image and Video Library

    2012-04-12

    One year after the historic tornado outbreak of April 27-28, 2011, researchers say they've learned a few things about deadly twisters. This week's ScienceCast presents some of the scientific findings that emerged from the swath of destruction.

  11. ToxCast: Using high throughput screening to identify profiles of biological activity

    EPA Science Inventory

    ToxCast, the United States Environmental Protection Agency’s chemical prioritization research program, is developing methods for utilizing computational chemistry and bioactivity profiling to predict potential for toxicity and prioritize limited testing resources (www.epa.gov/toc...

  12. Predictive In Vitro Screening of Environmental Chemicals – The ToxCast Project

    EPA Science Inventory

    ToxCast, the United States Environmental Protection Agency’s chemical prioritization research program, is developing methods for utilizing computational chemistry and bioactivity profiling to predict potential for toxicity and prioritize limited testing resources (www.epa.gov/toc...

  13. ScienceCast 116: Comet ISON to Fly By Mars

    NASA Image and Video Library

    2013-08-15

    Comet ISON is heading for a Thanksgiving Day brush with the sun, but first it's going to pay a visit to Mars. In this week's ScienceCast, researchers discuss what might happen when Comet ISON meets the Red Planet.

  14. JPRS Report, Science & Technology, USSR: Science & Technology Policy

    DTIC Science & Technology

    1989-12-07

    technologies. —The restoration of the biosphere and its return to an ecologically clean, healthy state; the preservation and reproduction of soils and the...and Geochemistry of Combustible Materials Institute, Casting Problems Institute, Technical Thermal Physics Institute, Gas Insti- tute, Social and...academician, honorary director of the Institute of Geochemistry imeni A.P. Vinogradov of the Siberian Department of the USSR Academy of Sciences

  15. Repair welding of cast iron coated electrodes

    NASA Astrophysics Data System (ADS)

    Żuk, M.; Górka, J.; Dojka, R.; Czupryński, A.

    2017-08-01

    Welding cast iron is a complex production procedure. Repair welding was used to repair damaged or poorly made castings. This is due to a tendency to cracking of the material during welding as well as after it. Welding cast iron can be carried out on hot or on cold. Hot welding requires high heat material and the use of welding material in the form of cast iron. In the case of cold welding, it is possible to use different materials. Mostly used filler metals are nickel and copper based. The work shows the course of research concerning repairmen of ductile iron with arc welding method. For the reparation process four types of ESAB company coated electrodes dedicated for cast iron were used with diameter 3.2 and 4 mm: ES 18-8-6B (4mm), EB 150 (4mm), OK NiCl, EŻM. In the cast iron examined during the testing grooves were made using plasma methods, in order to simulate the removed casting flaws. Then the welding process with coated electrodes was executed. The process utilized low welding current row of 100A, so there would only be a small amount of heat delivered to the heat affected zone (HAZ). Short stitches were made, after welding it was hammered, in order to remove stresses. After the repair welding the part of studies commenced which purpose was finding surface defects using visual testing (VT) and penetration testing (PT). In the second part, a series of macro and microscopic studies were executed witch the purpose of disclosuring the structure. Then the hardness tests for welds cross sections were performed. An important aspect of welding cast iron is the colour of the padding weld after welding, more precisely the difference between the base material and padding weld, the use of different materials extra gives the extra ability to select the best variant. The research of four types of coated electrode was executed, based on the demands the best option in terms of aesthetic, strength and hardness.

  16. Secondary Waste Simulant Development for Cast Stone Formulation Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Renee L.; Westsik, Joseph H.; Rinehart, Donald E.

    Washington River Protection Solutions, LLC (WRPS) funded Pacific Northwest National Laboratory (PNNL) to conduct a waste form testing program to implement aspects of the Secondary Liquid Waste Treatment Cast Stone Technology Development Plan (Ashley 2012) and the Hanford Site Secondary Waste Roadmap (PNNL 2009) related to the development and qualification of Cast Stone as a potential waste form for the solidification of aqueous wastes from the Hanford Site after the aqueous wastes are treated at the Effluent Treatment Facility (ETF). The current baseline is that the resultant Cast Stone (or grout) solid waste forms would be disposed at the Integratedmore » Disposal Facility (IDF). Data and results of this testing program will be used in the upcoming performance assessment of the IDF and in the design and operation of a solidification treatment unit planned to be added to the ETF. The purpose of the work described in this report is to 1) develop simulants for the waste streams that are currently being fed and future WTP secondary waste streams also to be fed into the ETF and 2) prepare simulants to use for preparation of grout or Cast Stone solid waste forms for testing.« less

  17. Focused Molding Using Adhesive Pads in Mehta Casting for Early-Onset Scoliosis.

    PubMed

    Abraham, Roby; Sponseller, Paul D

    2014-11-01

    Prospective clinical series. To determine the effect of adhesive pads placed over the apex of scoliosis curves on curve correction 1) after the first cast and 2) after the final cast. Early-onset scoliosis is often effectively managed by serial casting. Properly localizing the apex of the molds with the cast in place is challenging. The authors explored the effectiveness of a novel technique: incorporation of adhesive pads placed over the major curve apex before Mehta casting. The 27 patients who received body casts (2000-2013) were divided into 2 groups: those without and with apical adhesive pads (5-6 layers of pads placed on the major curve's apex during casting): non-pad (NP) group (n = 12) and pad (P) group (n = 15), respectively. Groups were compared regarding the percentage of Cobb angle change from the first cast and curve correction to a Cobb angle of <25° with Student t and chi-square tests (significance was p < .05). The mean percentage of major first-cast curve correction was 39% ± 18% and 56% ± 17% in the NP and P groups, respectively. Of the 26 patients out of a cast, 11 (42%) had a Cobb angle of <25°: 3 (25%) and 8 (57%) in the NP and P groups, respectively. The mean differences between the 2 groups in percentage of major curve correction and this Cobb angle correction were significant: p = .023 and .005, respectively. Adhesive pads placed over major curve(s) during Mehta casting were effective in increasing the amount of major curve correction from the first cast for idiopathic early-onset scoliosis and in decreasing curves to <25° at final follow-up. Copyright © 2014 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.

  18. Systematic review of spica casting for the treatment of paediatric diaphyseal femur fractures

    PubMed Central

    Tisherman, R. T.; Hoellwarth, J. S.; Mendelson, S. A.

    2018-01-01

    Purpose Paediatric femur fractures are commonly encountered and often successfully managed with spica casting. Despite spica casting’s long history there is little formal guidance for optimal outcomes and no consolidation of existing literature. The purpose of this study is to review the available literature regarding the use of spica casting for the management of paediatric diaphyseal femur fractures. Methods The PubMed database was queried for all research articles including the phrase “spica”. A total of 788 abstracts were reviewed for relevance to the current study. Data was extracted from all available research studies which specified tolerance for fracture angulation or shortening in the cast. Additionally, all articles describing alternative materials, methods for spica application, and complications of spica casting were reviewed. Results In all, 106 articles were found relevant to the management of diaphyseal femur fractures in the paediatric population. The aggregated, accepted fracture shortening decreased from 16 mm to 18 mm before age ten years to 12 mm to 14 mm after puberty. Aggregated, accepted angulation decreased from 14° to 16° varus/valgus and 18° to 22° pro/recurvatum before age two years, to 6° to 8° and 10° to 12° by puberty, respectively. The overall reported complication rate was 19.6%, with the most common complication being skin compromise in 8.2% of patients, followed by unacceptable angulation at the fracture site in 4.2% of patients and excessive limb shortening in 1.9% of patients. Conclusion This article reviews the available spica casting literature and compiles the available data. Spica casting offers a safe, effective means for definitive management of paediatric diaphyseal femur fractures. Future research identifying the rate and pattern of remodelling as it relates to angulation and shortening at various patient ages, particularly beyond the aforementioned norms, would be valuable to identify true biological tolerances versus accepted expert opinion. Level of evidence Level II Review of level II evidence PMID:29707052

  19. Ecoacoustic Music for Geoscience: Sonic Physiographies and Sound Casting

    NASA Astrophysics Data System (ADS)

    Burtner, M.

    2017-12-01

    The author describes specific ecoacoustic applications in his original compositions, Sonic Physiography of a Time-Stretched Glacier (2015), Catalog of Roughness (2017), Sound Cast of Matanuska Glacier (2016) and Ecoacoustic Concerto (Eagle Rock) (2014). Ecoacoustic music uses technology to map systems from nature into music through techniques such as sonification, material amplification, and field recording. The author aspires for this music to be descriptive of the data (as one would expect from a visualization) and also to function as engaging and expressive music/sound art on its own. In this way, ecoacoustic music might provide a fitting accompaniment to a scientific presentation (such as music for a science video) while also offering an exemplary concert hall presentation for a dedicated listening public. The music can at once support the communication of scientific research, and help science make inroads into culture. The author discusses how music created using the data, sounds and methods derived from earth science can recast this research into a sonic art modality. Such music can amplify the communication and dissemination of scientific knowledge by broadening the diversity of methods and formats we use to bring excellent scientific research to the public. Music can also open the public's imagination to science, inspiring curiosity and emotional resonance. Hearing geoscience as music may help a non-scientist access scientific knowledge in new ways, and it can greatly expand the types of venues in which this work can appear. Anywhere music is played - concert halls, festivals, galleries, radio, etc - become a venue for scientific discovery.

  20. Marginal discrepancy of noble metal-ceramic fixed dental prosthesis frameworks fabricated by conventional and digital technologies.

    PubMed

    Afify, Ahmed; Haney, Stephan; Verrett, Ronald; Mansueto, Michael; Cray, James; Johnson, Russell

    2018-02-01

    Studies evaluating the marginal adaptation of available computer-aided design and computer-aided manufacturing (CAD-CAM) noble alloys for metal-ceramic prostheses are lacking. The purpose of this in vitro study was to evaluate the vertical marginal adaptation of cast, milled, and direct metal laser sintered (DMLS) noble metal-ceramic 3-unit fixed partial denture (FDP) frameworks before and after fit adjustments. Two typodont teeth were prepared for metal-ceramic FDP abutments. An acrylic resin pattern of the prepared teeth was fabricated and cast in nickel-chromium (Ni-Cr) alloy. Each specimen group (cast, milled, DMLS) was composed of 12 casts made from 12 impressions (n=12). A single design for the FDP substructure was created on a laboratory scanner and used for designing the specimens in the 3 groups. Each specimen was fitted to its corresponding cast by using up to 5 adjustment cycles, and marginal discrepancies were measured on the master Ni-Cr model before and after laboratory fit adjustments. The milled and DMLS groups had smaller marginal discrepancy measurements than those of the cast group (P<.001). Significant differences were found in the number of adjustments among the groups, with the milled group requiring the minimum number of adjustments, followed by the DMLS and cast groups (F=30.643, P<.001). Metal-ceramic noble alloy frameworks fabricated by using a CAD-CAM workflow had significantly smaller marginal discrepancies compared with those with a traditional cast workflow, with the milled group demonstrating the best marginal fit among the 3 test groups. Manual refining significantly enhanced the marginal fit of all groups. All 3 groups demonstrated marginal discrepancies within the range of clinical acceptability. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  1. FIELD DEMONSTRATION OF INNOVATIVE LEAK DETECTION/LOCATION TECHNOLOGIES COUPLED WITH WALL-THICKNESS SCREENING FOR WATER MAINS

    EPA Science Inventory

    The U.S. Environmental Protection Agency sponsored a large-scale field demonstration of innovative leak detection/location and condition assessment technologies on a 76-year old, 2,500-ft long, cement-lined, 24-in. cast iron water main in Louisville, KY from July through Septembe...

  2. Field Demonstration of Innovative Condition Assessment Technologies for Water Mains: Leak Detection and Location

    EPA Science Inventory

    Three leak detection/location technologies were demonstrated on a 76-year-old, 2,057-ft-long portion of a cement-lined, 24-in. cast iron water main in Louisville, KY. This activity was part of a series of field demonstrations of innovative leak detection/location and condition a...

  3. Manufacturing Materials and Processes. Grade 11-12. Course #8165 (Semester). Technology Education Course Guide. Industrial Arts/Technology Education.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of Vocational Education.

    This guide is intended for use in teaching an introductory course in manufacturing materials and processes. The course centers around four basic materials--metallics, polymers, ceramics, and composites--and seven manufacturing processes--casting, forming, molding, separating, conditioning, assembling, and finishing. Concepts and classifications of…

  4. The perceptual significance of high-frequency energy in the human voice.

    PubMed

    Monson, Brian B; Hunter, Eric J; Lotto, Andrew J; Story, Brad H

    2014-01-01

    While human vocalizations generate acoustical energy at frequencies up to (and beyond) 20 kHz, the energy at frequencies above about 5 kHz has traditionally been neglected in speech perception research. The intent of this paper is to review (1) the historical reasons for this research trend and (2) the work that continues to elucidate the perceptual significance of high-frequency energy (HFE) in speech and singing. The historical and physical factors reveal that, while HFE was believed to be unnecessary and/or impractical for applications of interest, it was never shown to be perceptually insignificant. Rather, the main causes for focus on low-frequency energy appear to be because the low-frequency portion of the speech spectrum was seen to be sufficient (from a perceptual standpoint), or the difficulty of HFE research was too great to be justifiable (from a technological standpoint). The advancement of technology continues to overcome concerns stemming from the latter reason. Likewise, advances in our understanding of the perceptual effects of HFE now cast doubt on the first cause. Emerging evidence indicates that HFE plays a more significant role than previously believed, and should thus be considered in speech and voice perception research, especially in research involving children and the hearing impaired.

  5. The perceptual significance of high-frequency energy in the human voice

    PubMed Central

    Monson, Brian B.; Hunter, Eric J.; Lotto, Andrew J.; Story, Brad H.

    2014-01-01

    While human vocalizations generate acoustical energy at frequencies up to (and beyond) 20 kHz, the energy at frequencies above about 5 kHz has traditionally been neglected in speech perception research. The intent of this paper is to review (1) the historical reasons for this research trend and (2) the work that continues to elucidate the perceptual significance of high-frequency energy (HFE) in speech and singing. The historical and physical factors reveal that, while HFE was believed to be unnecessary and/or impractical for applications of interest, it was never shown to be perceptually insignificant. Rather, the main causes for focus on low-frequency energy appear to be because the low-frequency portion of the speech spectrum was seen to be sufficient (from a perceptual standpoint), or the difficulty of HFE research was too great to be justifiable (from a technological standpoint). The advancement of technology continues to overcome concerns stemming from the latter reason. Likewise, advances in our understanding of the perceptual effects of HFE now cast doubt on the first cause. Emerging evidence indicates that HFE plays a more significant role than previously believed, and should thus be considered in speech and voice perception research, especially in research involving children and the hearing impaired. PMID:24982643

  6. Concept of a small satellite for sub-MeV and MeV all sky survey: the CAST mission

    NASA Astrophysics Data System (ADS)

    Nakazawa, Kazuhiro; Takahashi, Tadayuki; Ichinohe, Yuto; Takeda, Shin'ichiro; Tajima, Hiroyasu; Kamae, Tuneyoshi; Kokubun, Motohide; Takashima, Takeshi; Tashiro, Makoto; Tamagawa, Toru; Terada, Yukikatsu; Nomachi, Masaharu; Fukazawa, Yasushi; Makishima, Kazuo; Mizuno, Tsunefumi; Mitani, Takefumi; Yoshimitsu, Tetsuo; Watanabe, Shin

    2012-09-01

    MeV and sub-MeV energy band from ~200 keV to ~2 MeV contains rich information of high-energy phenomena in the universe. The CAST (Compton Telescope for Astro and Solar Terrestrial) mission is planned to be launched at the end of 2010s, and aims at providing all-sky map in this energy-band for the first time. It is made of a semiconductor Compton telescope utilizing Si as a scatterer and CdTe as an absorber. CAST provides allsky sub-MeV polarization map for the first time, as well. The Compton telescope technology is based on the design used in the Soft Gamma-ray Detector (SGD) onboard ASTRO-H, characterized by its tightly stacked semiconductor layers to obtain high Compton reconstruction efficiency. The CAST mission is currently planned as a candidate for the small scientific satellite series in ISAS/JAXA, weighting about 500 kg in total. Scalable detector design enables us to consider other options as well. Scientific outcome of CAST is wide. It will provide new information from high-energy sources, such as AGN and/or its jets, supernova remnants, magnetors, blackhole and neutron-star binaries and others. Polarization map will tell us about activities of jets and reflections in these sources, as well. In addition, CAST will simultaneously observe the Sun, and depending on its attitude, the Earth.

  7. Manufacturing Processes for Long-Life Gas Turbines

    NASA Astrophysics Data System (ADS)

    Hoppin, G. S.; Danesi, W. P.

    1986-07-01

    Dual-alloy turbine wheels produced by solid-state diffusion bonding of vacuum investment cast blade rings of one superalloy to preconsolidated powder metal hubs of a second superalloy have the long cyclic lives characteristic of wrought or powder superalloys combined with the high creep strength and net-shape blades characteristic of cast superalloys. A wide variety of superalloys and turbine configurations are compatible with this technology. Improved temperature capability turbine blades and vanes of the MAR-M 247 alloy made by directional solidification casting processes are now in volume production for Garrett gas turbines. Single-crystal alloys derivative to MAR-M 247 further extend the temperature capability of turbine blades and have been successfully engine tested. These blades are produced by a relatively simple modification of the processes used to manufacture directionally solidified blades.

  8. Analysis and comparison of the biomechanical properties of univalved and bivalved cast models.

    PubMed

    Crickard, Colin V; Riccio, Anthony I; Carney, Joseph R; Anderson, Terrence D

    2011-01-01

    Fiberglass casts are frequently valved to relieve the pressure associated with upper extremity swelling after a surgical procedure or when applied after reduction of a displaced fracture in a child. Although different opinions exist regarding the valving of casts, no research to date has explored the biomechanical effects of this commonly used technique. As cast integrity is essential for the maintenance of fracture reduction, it is important to understand whether casts are structurally compromised after valving. Understanding the effects of valving on cast integrity may help guide clinicians in the technique of valving while minimizing the potential for a loss of fracture reduction. Thirty standardized cylindrical fiberglass cast models were created. Ten models were left intact, 10 were univalved, and 10 were bivalved. All the models were mechanically tested by a 3-point bending apparatus secured to a biaxial materials testing system. Load to failure and bending stiffness were recorded for each sample. Differences in load of failure and bending stiffness were compared among the groups. Unvalved cast models had the highest failure load and bending stiffness, whereas bivalved casts showed the lowest value for both failure load and bending stiffness. Univalved casts had a failure load measured to be between those of unvalved and bivalved cast models. Analysis of variance showed significance when failure load and bending stiffness data among all the groups were compared. A post hoc Bonferroni statistical analysis showed significance in bending stiffness between intact and bivalved models (P < 0.01), intact and univalved models (P < 0.01), but no significant difference in bending stiffness between univalved and bivalved models (P > 0.01). Differences in measured failure load values were found to be statistically significant among all cast models (P < 0.01). Valving significantly decreases the bending stiffness and load to failure of fiberglass casts. Univalved casts have a higher load to failure than bivalved casts. Valving adversely alters the structural integrity of fiberglass casts. This may impair a cast's ability to effectively immobilize an extremity or maintain a fracture reduction.

  9. The role of heat transfer in strip casting

    NASA Astrophysics Data System (ADS)

    Misra, Paretosh

    The last few years have witnessed rapid developments in the area of strip casting of steel. It involves smaller capital and operating cost, lower greenhouse gas emissions, and an opportunity to create newer products due to a faster solidification rate that leads to a different solidification structure. Thus, ample reasons for interest in the technology exist. At the same time, it needs to be determined if the properties of a strip cast product can match those of a conventional product and if it is possible to produce steel strip at high production rates. The first objective of this work was to characterize the quality, structure, and properties of strip cast material of different chemistries and cast at different machines, to identify the critical operating conditions that would result in the best properties. Determination of the possible range of properties was also aimed, given that the structure of the material is different from the traditional material. The second objective was to investigate ways to increase the rate of heat transfer in strip casting, as that will also enhance the productivity of a strip caster. It was also envisaged to see what effect a high rate of heat transfer will have on the properties of the strip cast material. Results from the strip cast material characterization that was carried out to achieve the first objective indicated that an effective control of heat transfer is very important to get the best properties. Samples that showed best properties had a uniform solidification structure consisting of columnar grains running from the edge of a strip to the centerline, indicating a good control of heat transfer, and their dendrite spacings pointed towards a relatively faster rate of cooling between the rolls. These findings indicated that heat transfer is a core issue in strip casting. The mechanism of increase in the rate of heat transfer in strip casting due to the presence of liquid oxide films at the metal-mold interface was examined. It was discovered that these films originate from the metal itself. A high degree of interdendritic supersaturation can lead to the formation of low melting point oxide phases by the deoxidizing agents in the steel. As the temperature lowers further the film may get ejected out of the metal due to the non-wetting of the metal by the oxide phase. If enough oxide film can be generated then this can result in an almost two-fold increase in the rate of heat transfer during initial solidification---the first 20 milliseconds. The results indicate that if a proper control of these films is ensured then it provides an attractive alternative to increasing the roll diameter as a mechanism of increasing the rate of production of a strip caster. This mechanism will work even with smaller diameter rolls, in fact, perhaps better in that case due to a smaller interface area over which uniformity of heat transfer has to be ensured, thus leveraging its full advantages. If successfully implemented at a plant, this technique can help the strip casting machines to increase their productivity and emerge as a competitive technology to produce steel strip.

  10. Superalloy Lattice Block Developed for Use in Lightweight, High-Temperature Structures

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.; Whittenberger, J. Daniel; Krause, David L.

    2003-01-01

    Successful development of advanced gas turbine engines for aircraft will require lightweight, high-temperature components. Currently titanium-aluminum- (TiAl) based alloys are envisioned for such applications because of their lower density (4 g/cm3) in comparison to superalloys (8.5 g/cm3), which have been utilized for hot turbine engine parts for over 50 years. However, a recently developed concept (lattice block) by JAMCORP, Inc., of Willmington, Massachusetts, would allow lightweight, high-temperature structures to be directly fabricated from superalloys and, thus, take advantage of their well-known, characterized properties. In its simplest state, lattice block is composed of thin ligaments arranged in a three dimensional triangulated trusslike configuration that forms a structurally rigid panel. Because lattice block can be fabricated by casting, correctly sized hardware is produced with little or no machining; thus very low cost manufacturing is possible. Together, the NASA Glenn Research Center and JAMCORP have extended their lattice block methodology for lower melting materials, such as Al alloys, to demonstrate that investment casting of superalloy lattice block is possible. This effort required advances in lattice block pattern design and assembly, higher temperature mold materials and mold fabrication technology, and foundry practice suitable for superalloys (ref. 1). Lattice block panels have been cast from two different Ni-base superalloys: IN 718, which is the most commonly utilized superalloy and retains its strength up to 650 C; and MAR M247, which possesses excellent mechanical properties to at least 1100 C. In addition to the open-cell lattice block geometry, same-sized lattice block panels containing a thin (1-mm-thick) solid face on one side have also been cast from both superalloys. The elevated-temperature mechanical properties of the open cell and face-sheeted superalloy lattice block panels are currently being examined, and the microstructure is being characterized in terms of casting defects. In addition, a small study (ref. 3) is being undertaken with GE Aircraft Engines to determine the suitability of superalloy lattice block for engine components.

  11. Fabrication of U-10 wt.%Zr Metallic Fuel Rodlets for Irradiation Test in BOR-60 Fast Reactor

    DOE PAGES

    Kim, Ki-Hwan; Kim, Jong-Hwan; Oh, Seok-Jin; ...

    2016-01-01

    The fabrication technology for metallic fuel has been developed to produce the driver fuel in a PGSFR in Korea since 2007. In order to evaluate the irradiation integrity and validate the in-reactor of the starting metallic fuel with FMS cladding for the loading of the metallic fuel, U-10 wt.%Zr fuel rodlets were fabricated and evaluated for a verification of the starting driver fuel through an irradiation test in the BOR-60 fast reactor. The injection casting method was applied to U-10 wt.%Zr fuel slugs with a diameter of 5.5 mm. Consequently, fuel slugs per melting batch without casting defects were fabricated through the developmentmore » of advanced casting technology and evaluation tests. The optimal GTAW welding conditions were also established through a number of experiments. In addition, a qualification test was carried out to prove the weld quality of the end plug welding of the metallic fuel rodlets. The wire wrapping of metallic fuel rodlets was successfully accomplished for the irradiation test. Thus, PGSFR fuel rodlets have been soundly fabricated for the irradiation test in a BOR-60 fast reactor.« less

  12. A Review of Permanent Magnet Stirring During Metal Solidification

    NASA Astrophysics Data System (ADS)

    Zeng, Jie; Chen, Weiqing; Yang, Yindong; Mclean, Alexander

    2017-12-01

    Rather than using conventional electromagnetic stirring (EMS) with three-phase alternating current, permanent magnet stirring (PMS), based on the use of sintered NdFeB material which has excellent magnetic characteristics, can be employed to generate a magnetic field for the stirring of liquid metal during solidification. Recent experience with steel casting indicates that PMS requires less than 20 pct of the total energy compared with EMS. Despite the excellent magnetic density properties and low power consumption, this relatively new technology has received comparatively little attention by the metal casting community. This paper reviews simulation modeling, experimental studies, and industrial trials of PMS conducted during recent years. With the development of magnetic simulation software, the magnetic field and associated flow patterns generated by PMS have been evaluated. Based on the results obtained from laboratory experiments, the effects of PMS on metal solidification structures and typical defects such as surface pinholes and center cavities are summarized. The significance of findings obtained from trials of PMS within the metals processing sector, including the continuous casting of steel, are discussed with the aim of providing an overview of the relevant parameters that are of importance for further development and industrial application of this innovative technology.

  13. Clinical marginal and internal fit of metal ceramic crowns fabricated with a selective laser melting technology.

    PubMed

    Huang, Zhuoli; Zhang, Lu; Zhu, Jingwei; Zhang, Xiuyin

    2015-06-01

    Selective laser melting (SLM) technology has been introduced to fabricate dental restorations. However, the fit of these restorations still needs further study. The purpose of this in vivo investigation was to compare the marginal and internal fit of SLM metal ceramic crowns with 2 lost-wax cast metal ceramic crowns and to evaluate the influence of tooth type on the marginal and internal fit of these crowns. A total of 330 metal ceramic crowns were evaluated. The metal copings were fabricated with SLM Co-Cr, cast Au-Pt, and cast Co-Cr alloy (n=110). The marginal and internal gaps of crowns were recorded by using a replica technique. The anterior and premolar replicas were sectioned 2 times, and molar replicas were sectioned 4 times. The marginal and internal gap width of each cross section was examined by stereomicroscope at ×30 magnification. Two-way analysis of variance was performed to identify the statistical difference among the groups. The marginal fit of the SLM Co-Cr group (75.6 ±32.6 μm) was not different from the cast Au-Pt group (76.8 ±32.1 μm) (P>.05) but was better than the cast Co-Cr group (91.0 ±36.3 μm) (P<.01). No significant difference was found among the SLM Co-Cr group (127.3 ±45.8 μm), cast Au-Pt group (129.9 ±61.1 μm). and cast Co-Cr group (142.5 ±63.7 μm) (P>.05). The mean occlusal gap width of the SLM Co-Cr group (309.8 ±106.6 μm) was significantly higher than that of the cast Au-Pt group (254.6 ±109.6 μm) and the cast Co-Cr group (249.6 ±110.4 μm) (P<.005). No significant difference was found in the marginal fit among the anterior group (84.4 ±35.1 μm), the premolar group (80.6 ±26.3 μm), and the molar group (82.7 ±38.0 μm) (P>.05). Also, no significant difference was found in the axial fit among the anterior group (138.3 ±52.5 μm), the premolar group (132.9 ±50.4 μm), and the molar group (134.4 ±52.5 μm) (P>.05). The anterior group (267.6 ±110.2 μm) did not differ from the premolar group (270.2 ±112.8 μm) and the molar group (268.6 ±110.5 μm) in occlusal fit (P>.05). The marginal fit of SLM Co-Cr metal ceramic crowns was similar to that of the cast Au-Pt metal ceramic crowns and was better than that of the cast Co-Cr metal ceramic crowns. The SLM Co-Cr metal ceramic crowns were not significantly different from the 2 cast metal ceramic crowns in axial fit but were less accurate in occlusal fit. Tooth type did not influence the marginal and internal fit of the metal ceramic crowns. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  14. Biotransformation and ToxCast™

    EPA Science Inventory

    A major focus in toxicology research is the development of in vitro methods to predict in vivo chemical toxicity. Within the EPA ToxCast program, a broad range of in vitro biochemical and cellular assays have been deployed to profile the biological activity of 320 ToxCast Phase I...

  15. High content screening of ToxCast compounds using Vala Sciences’ complex cell culturing systems (SOT)

    EPA Science Inventory

    US EPA’s ToxCast research program evaluates bioactivity for thousands of chemicals utilizing high-throughput screening assays to inform chemical testing decisions. Vala Sciences provides high content, multiplexed assays that utilize quantitative cell-based digital image analysis....

  16. EPAs ToxCast Research Program: Developing Predictive Bioactivity Signatures for Chemicals

    EPA Science Inventory

    The international community needs better predictive tools for assessing the hazards and risks of chemicals. It is technically feasible to collect bioactivity data on virtually all chemicals of potential concern ToxCast is providing a proof of concept for obtaining predictive, b...

  17. Splice length of prestressing strand in field-cast ultra-high performance concrete connections, TechBrief

    DOT National Transportation Integrated Search

    2014-02-02

    The objective of this research was to determine the lap splice length of untensioned prestressing strand in field-cast ultrahigh performance concrete (UHPC). This document is a technical summary of the Federal Highway Administration report, Splice Le...

  18. Thermal integrity profiling for augered cast-in-place piles - implementation plan.

    DOT National Transportation Integrated Search

    2017-08-01

    This study was the second in a two-part research program focused on assessing the feasibility of using thermal integrity profiling (TIP) as a quality assurance tool for Augered Cast-In-Place (ACIP) piles. This was made possible by coordinating with t...

  19. Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions

    NASA Technical Reports Server (NTRS)

    Gandin, Charles-Andre; Ratke, Lorenz

    2008-01-01

    The Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MSL-CETSOL and MICAST) are two investigations which supports research into metallurgical solidification, semiconductor crystal growth (Bridgman and zone melting), and measurement of thermo-physical properties of materials. This is a cooperative investigation with the European Space Agency (ESA) and National Aeronautics and Space Administration (NASA) for accommodation and operation aboard the International Space Station (ISS). Research Summary: Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing (CETSOL) and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MICAST) are two complementary investigations which will examine different growth patterns and evolution of microstructures during crystallization of metallic alloys in microgravity. The aim of these experiments is to deepen the quantitative understanding of the physical principles that govern solidification processes in cast alloys by directional solidification.

  20. FY97 Materials & Processes Technology Area Plan

    DTIC Science & Technology

    1996-09-01

    Offices ess has Center Technology Coun- ings, the first use ever of gamma (SPOs). In addition, we provide cil (CTCs) technology needs Titanium Aluminide ...300,000 in form- structive evaluation (NDE). Four Agreements (CRDAs) with 7 ing of Titanium Aluminide with Data EAchange Agreements more in negotiation and...Systems Aircraft Range with r 50% Decrease in Fuel Propulsion Syste s =Consumption Titanium Aluminides Cast Titanium 25000F Ceramic Matrix Transition

  1. Contemporary and futuristic views of pollution control devices in foundries.

    PubMed

    Krishnaraj, R

    2015-10-01

    Foundry practices are used in contemporary world to produce large volume of components and products. Foundry practices involve the melting of metals and pouring the molten metal into the cavities called molds. On solidification, the metals which assume the shape of molds are removed as castings. Foundries that employ these practices were growing in large number till the middle part of the twentieth century in the world. After the middle part of the twentieth century, the world community begun to realize that, foundries were emitting pollutants which were affecting the health of humans. In order to overcome this situation, several countries in the world promulgated laws stipulating the maximum level of pollutants that can emit by foundries. These laws affected the functioning and growth of foundries. In order to sustain amidst these constraints, foundries begun to install energy efficient melting technologies and pollution control devices (PCDs). In this back ground, this paper reports to assess the contemporary scenario and project the future needs for sustaining the foundries. During the conduct of this literature review, it was discernable that, research papers have reported three categories of researches. In the first category of research papers, the researches reporting the achievement of cleaner production technologies in foundries using PCDs have appeared. In the second category of research papers, the application of cleaner production technology in foundries located in different countries has been examined. In the third category of research papers, the application of efficient melting technologies and PCDs in different clusters of foundries located in different parts of world has been explored. Subsequently implementation technics of Environmental Management System in cleaner production technics in foundries has been described the analysis of the information and knowledge drawn from these three categories of papers has revealed that, researches exploring the sustenance of foundries situated in different parts of world are required to be carried out intensively in future. The outcome of these researchers will be useful to apply the cleaner production technologies that would be suitable for implementation in different foundry clusters to suit the different conditions prevailing with regard to the adoption of efficient melting technologies and PCDs. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Design of experiments to optimize an in vitro cast to predict human nasal drug deposition.

    PubMed

    Shah, Samir A; Dickens, Colin J; Ward, David J; Banaszek, Anna A; George, Chris; Horodnik, Walter

    2014-02-01

    Previous studies showed nasal spray in vitro tests cannot predict in vivo deposition, pharmacokinetics, or pharmacodynamics. This challenge makes it difficult to assess deposition achieved with new technologies delivering to the therapeutically beneficial posterior nasal cavity. In this study, we determined best parameters for using a regionally divided nasal cast to predict deposition. Our study used a model suspension and a design of experiments to produce repeatable deposition results that mimic nasal deposition patterns of nasal suspensions from the literature. The seven-section (the nozzle locator, nasal vestibule, front turbinate, rear turbinate, olfactory region, nasopharynx, and throat filter) nylon nasal cast was based on computed tomography images of healthy humans. It was coated with a glycerol/Brij-35 solution to mimic mucus. After assembling and orienting, airflow was applied and nasal spray containing a model suspension was sprayed. After disassembling the cast, drug depositing in each section was assayed by HPLC. The success criteria for optimal settings were based on nine in vivo studies in the literature. The design of experiments included exploratory and half factorial screening experiments to identify variables affecting deposition (angles, airflow, and airflow time), optimization experiments, and then repeatability and reproducibility experiments. We found tilt angle and airflow time after actuation affected deposition the most. The optimized settings were flow rate of 16 L/min, postactuation flow time of 12 sec, a tilt angle of 23°, nozzle angles of 0°, and actuation speed of 5 cm/sec. Neither cast nor operator caused significant variation of results. We determined cast parameters to produce results resembling suspension nasal sprays in the literature. The results were repeatable and unaffected by operator or cast. These nasal spray parameters could be used to assess deposition from new devices or formulations. For human deposition studies using radiolabeled formulations, this cast could show that radiolabel deposition represents drug deposition. Our methods could also be used to optimize settings for other casts.

  3. Determining the Mechanical Properties of Lattice Block Structures

    NASA Technical Reports Server (NTRS)

    Wilmoth, Nathan

    2013-01-01

    Lattice block structures and shape memory alloys possess several traits ideal for solving intriguing new engineering problems in industries such as aerospace, military, and transportation. Recent testing at the NASA Glenn Research Center has investigated the material properties of lattice block structures cast from a conventional aerospace titanium alloy as well as lattice block structures cast from nickel-titanium shape memory alloy. The lattice block structures for both materials were sectioned into smaller subelements for tension and compression testing. The results from the cast conventional titanium material showed that the expected mechanical properties were maintained. The shape memory alloy material was found to be extremely brittle from the casting process and only compression testing was completed. Future shape memory alloy lattice block structures will utilize an adjusted material composition that will provide a better quality casting. The testing effort resulted in baseline mechanical property data from the conventional titanium material for comparison to shape memory alloy materials once suitable castings are available.

  4. The Exomet Project: EU/ESA Research on High-Performance Light-Metal Alloys and Nanocomposites

    NASA Astrophysics Data System (ADS)

    Sillekens, W. H.

    The performance of structural materials is commonly associated with such design parameters as strength and stiffness relative to their density; a recognized means to further enhance the weight-saving potential of low-density materials is thus to improve on their mechanical attributes. The European Community research project ExoMet that started in mid-2012 targets such high-performance aluminum- and magnesium-based materials by exploring novel grain-refining and nanoparticle additions in conjunction with melt treatment by means of external fields (electromagnetic, ultrasonic, mechanical). These external fields are to provide for an effective and efficient dispersion of the additions in the melt and their uniform distribution in the as-cast material. The consortium of 27 companies, universities and research organizations from eleven countries integrates various scientific and technological disciplines as well as application areas — including automotive and (aero)-space.

  5. Tensile and creep rupture properties of (16) uncoated and (2) coated engineering alloys at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Fritz, L. J.; Koster, W. P.

    1977-01-01

    Sixteen test materials were supplied by NASA-Lewis Research Center as wrought bar or cast remelt stock. The cast remelt stock was cast into test blanks with two such materials being also evaluated after Jocoat coating was applied. Mechanical properties evaluated included tensile, modulus of elasticity, Poisson's Ratio, creep properties and creep rupture strength. Tests were conducted at temperatures applicable to the service temperature of the various alloys. This range extended from room temperature to 1000 C.

  6. Improved Safety and Cost Savings from Reductions in Cast-Saw Burns After Simulation-Based Education for Orthopaedic Surgery Residents.

    PubMed

    Bae, Donald S; Lynch, Hayley; Jamieson, Katherine; Yu-Moe, C Winnie; Roussin, Christopher

    2017-09-06

    The purpose of this investigation was to characterize the clinical efficacy and cost-effectiveness of simulation training aimed at reducing cast-saw injuries. Third-year orthopaedic residents underwent simulation-based instruction on distal radial fracture reduction, casting, and cast removal using an oscillating saw. The analysis compared incidences of cast-saw injuries and associated costs before and after the implementation of the simulation curriculum. Actual and potential costs associated with cast-saw injuries included wound care, extra clinical visits, and potential total payment (indemnity and expense payments). Curriculum costs were calculated through time-derived, activity-based accounting methods. The researchers compared the costs of cast-saw injuries and the simulation curriculum to determine overall savings and return on investment. In the 2.5 years prior to simulation, cast-saw injuries occurred in approximately 4.3 per 100 casts cut by orthopaedic residents. For the 2.5-year period post-simulation, the injury rate decreased significantly to approximately 0.7 per 100 casts cut (p = 0.002). The total cost to implement the casting simulation was $2,465.31 per 6-month resident rotation. On the basis of historical data related to cast-saw burns (n = 6), total payments ranged from $2,995 to $25,000 per claim. The anticipated savings from averted cast-saw injuries and associated medicolegal payments in the 2.5 years post-simulation was $27,131, representing an 11-to-1 return on investment. Simulation-based training for orthopaedic surgical residents was effective in reducing cast-saw injuries and had a high theoretical return on investment. These results support further investment in simulation-based training as cost-effective means of improving patient safety and clinical outcomes. Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence.

  7. Resistance of Titanium Aluminide to Domestic Object Damage Assessed

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Draper, Susan L.; Pereira, J. Michael; Nathal, Michael V.; Austin, Curt

    1999-01-01

    A team consisting of GE Aircraft Engines, Precision Cast Parts, Oremet, and Chromalloy were awarded a NASA-sponsored Aerospace Industry Technology Program (AITP) to develop a design and manufacturing capability that will lead to the engine test demonstration and eventual implementation of a ?-Ti-47Al-2Nb-2Cr (at. %) titanium aluminide (TiAl) low-pressure turbine blade into commercial service. One of the main technical risks of implementing TiAl low-pressure turbine blades is the poor impact resistance of TiAl in comparison to the currently used nickel-based superalloy. The impact resistance of TiAl is being investigated at the NASA Lewis Research Center as part of the Aerospace Industry Technology Program and the Advanced High Temperature Engine Materials Program (HITEMP). The overall objective of this work is to determine the influence of impact damage on the high cycle fatigue life of TiAl-simulated low-pressure turbine blades. To this end, impact specimens were cast to size in a dog-bone configuration and given a typical processing sequence followed by an exposure to 650 degrees Celsius for 20 hours to simulate embrittlement at service conditions. Then, the specimens were impacted at 260 degrees Celsius under a 69-MPa load. Steel projectiles with diameters 1.6 and 3.2 mm were used to impact the specimens at 90 degrees Celsius to the leading edge. Two different impact energies (0.74 and 1.5 joules) were used to simulate fairly severe domestic object damage on a low-pressure turbine blade.

  8. Manufacturing technology methodology for propulsion system parts

    NASA Astrophysics Data System (ADS)

    McRae, M. M.

    1992-07-01

    A development history and a current status evaluation are presented for lost-wax casting of such gas turbine engine components as turbine vanes and blades. The most advanced such systems employ computer-integrated manufacturing methods for high process repeatability, reprogramming versatility, and feedback monitoring. Stereolithography-based plastic model 3D prototyping has also been incorporated for the wax part of the investment casting; it may ultimately be possible to produce the 3D prototype in wax directly, or even to create a ceramic mold directly. Nonintrusive inspections are conducted by X-radiography and neutron radiography.

  9. Composites for Advanced Space Transportation Systems (CASTS)

    NASA Technical Reports Server (NTRS)

    Davis, J. G., Jr. (Compiler)

    1979-01-01

    A summary is given of the in-house and contract work accomplished under the CASTS Project. In July 1975 the CASTS Project was initiated to develop graphite fiber/polyimide matrix (GR/PI) composite structures with 589K (600 F) operational capability for application to aerospace vehicles. Major tasks include: (1) screening composites and adhesives, (2) developing fabrication procedures and specifications, (3) developing design allowables test methods and data, and (4) design and test of structural elements and construction of an aft body flap for the Space Shuttle Orbiter Vehicle which will be ground tested. Portions of the information are from ongoing research and must be considered preliminary. The CASTS Project is scheduled to be completed in September 1983.

  10. High-Throughput Models for Exposure-Based Chemical Prioritization in the ExpoCast Project

    EPA Science Inventory

    The United States Environmental Protection Agency (U.S. EPA) must characterize potential risks to human health and the environment associated with manufacture and use of thousands of chemicals. High-throughput screening (HTS) for biological activity allows the ToxCast research pr...

  11. High-Throughput Exposure Potential Prioritization for ToxCast Chemicals

    EPA Science Inventory

    The U.S. EPA must consider lists of hundreds to thousands of chemicals when prioritizing research resources in order to identify risk to human populations and the environment. High-throughput assays to identify biological activity in vitro have allowed the ToxCastTM program to i...

  12. Serial Derotational Casting in Idiopathic and Non-Idiopathic Progressive Early-Onset Scoliosis.

    PubMed

    Gussous, Yazeed M; Tarima, Sergey; Zhao, Shi; Khan, Safdar; Caudill, Angela; Sturm, Peter; Hammerberg, Kim W

    2015-05-01

    Serial derotational casting has been used as a definitive treatment or as delaying strategy in progressive idiopathic (IS) and non-idiopathic (NIS) early-onset scoliosis (EOS). Retrospective chart and radiographic review of patients who underwent serial casting for progressive EOS between 2005 and 2012 at a single institution. A total of 74 consecutive patients entered serial cast treatment. Twenty-eight were currently being casted, 30 completed cast treatment and were converted to thoracolumbosacral orthosis (TLSO), 9 were treated surgically, 6 were lost to follow-up, and 1 had no further treatment. The researchers diagnosed IS in 41 patients; 33 had NIS. At presentation the IS group had an average Cobb angle (CA) of 49° and a rib vertebral angle difference (RVAD) of 37°. The NIS group had a CA of 51° (p = .69) and RVAD of 37° (p = .94). In patients currently being casted, 19 IS patients had a decreased CA, from 47° to 27°. The 9 NIS patients had a decreased CA, from 62° to 57° (p = .0002). Cobb angle improvement was significantly better in IS (p = .0005). In the TLSO group the 17 IS patients had a decreased average CA, from 46° to 18°, after serial casting and the 13 NIS patients decreased CA from 42° to 32°. Patients with IS had better improvement in CA than the NIS group (p < .001). At last follow-up, this was reduced to 11° in the IS group and maintained at 32° in the NIS. In the IS group, 5 of 41 patients were converted to growth constructs, and 4 of 26 in the NIS group. Casting initiated before age 2 years yielded better curve correction for IS (p < .01) compared with NIS. Progressive idiopathic scoliosis patients had better curve correction with casting than NIS patients. Casting in IS patients before age 24 months yielded better curve correction. Patients who required surgery had a higher age and Cobb angle at presentation than those who transitioned to a TLSO. The surgical group was observed for a similar duration of time and there was no significant statistical difference. Although RVAD is a predictor of progression in infantile IS, it did not show a predictive value in the response to casting of either the IS or NIS groups. Copyright © 2015 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.

  13. Physics Teacher Candidates' Opinions on Fiber Optics and New Technologies in This Field

    ERIC Educational Resources Information Center

    Çildir, Sema

    2016-01-01

    Factors such as innovations brought in by the developing technology, also rapidly changing social structures casted various roles to both the student and the teacher. Therefore, it is necessary to associate such knowledge acquired in courses with implications of the knowledge in our real lives and to constantly enrich course contents, namely to…

  14. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: STORMWATER SOURCE AREA TREATMENT DEVICE — BAYSAVER TECHNOLOGIES, INC. BAYSAVER SEPARATION SYSTEM, MODEL 10K

    EPA Science Inventory

    Verification testing of the BaySaver Separation System, Model 10K was conducted on a 10 acre drainage basin near downtown Griffin, Georgia. The system consists of two water tight pre-cast concrete manholes and a high-density polyethylene BaySaver Separator Unit. The BaySaver Mod...

  15. Manufacturing Technology Support (MATES II) Task Order 0005: Manufacturing Integration and Technology Evaluation to Enable Technology Transition. Subtask Phase 0 Study Task: Manufacturing Technology (ManTech) and Systems Engineering For Quick Reaction Systems

    DTIC Science & Technology

    2014-10-01

    Porosity from gas entrapment & shrinkage 4 Continuous Fiber Ti Metal Matrix Composites (Aircraft panels and rotor components) [14...process models for casting, forging, and welding , and software capability to integrate various independent models with design, thermal, and structural...Applications, Ph.D. Thesis, Queen’s College, University of Oxford, (2007). 14. S.A. Singerman and J.J. Jackson, Titanium Metal Matrix Composites for

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brosha, Eric L; Mukundan, Rangachary; Nelson, Mark A

    The purpose of this research effort is to develop a low cost on-board Nitrogen Oxide (NO{sub x})/Ammonia (NH{sub 3}) sensor that can not only be used for emissions control but has the potential to improve efficiency through better monitoring of the combustion process and feedback control in both vehicle and stationary systems. Over the past decade, Los AJamos National Laboratory (LANL) has developed a unique class of electrochemical gas sensors for the detection of carbon monoxide, hydrocarbons, hydrogen and nitrogen oxides. These sensors are based on the mixed-potential phenomenon and are a modification of the existing automotive lambda (oxygen) sensormore » and have the potential to meet the stringent sensitivity, selectivity and stability requirements of an on-board emissions/engine control sensor system. The current state of the art LANL technology is based on the stabilization of the electrochemical interfaces and relies on an externally heated, hand-made, tape cast device. We are now poised to apply our patented sensing principles in a mass production sensor platform that is more suitable for real world engine-out testing such as on dynamometers for vehicle applications and for exhaust-out testing in heavy boilers/SCR systems in power plants. In this present work, our goal is to advance towards commercialization of this technology by packaging the unique LANL sensor design in a standard automotive sensor-type platform. This work is being performed with the help of a leading US technical ceramics firm, utilizing commercial manufacturing techniques. Initial tape cast platforms with screen printed metal oxide and Pt sensor electrodes have shown promising results but also clearly show the need for us to optimize the electrode and electrolyte compositions/morphologies and interfaces of these devices in order to demonstrate a sensitive, selective, and stable NO{sub x} sensor. Our previous methods and routes to preparing stable and reproducible mixed potential sensors - in bulk, tape cast, and thin film variants - need to be adapted as a necessary adjunct to address materials challenges resulting from the implementation of commercial manufacturing methods. We also modified the electrodes to demonstrate a NH{sub 3} sensor that can be used in conjunction with the NO{sub x} sensor for feedback control of emissions systems. Once desirable properties are achieved, we will work closely with potential customers in order to dynamometer and boiler test these devices. Ultimately, this will accurately gauge the level of readiness of mixed potential sensor technology for commercialization and eventual use of this important electrochemical technology.« less

  17. Ceramic port shields cast in an iron engine head

    NASA Technical Reports Server (NTRS)

    Hakim, Nabil S.; Groeneweg, Mark A.

    1989-01-01

    Silicon nitride exhaust and intake port shields have been successfully cast into a gray iron cylinder head of a heavy duty diesel single cylinder research engine. Careful design considerations, finite element, and probability of survival analyses indicated viability of the design. Foundry experience, NDE, and failure investigations are reported.

  18. Developing predictions of in vivo developmental toxicity of ToxCast chemicals using mouse embryonic stem cells.

    EPA Science Inventory

    Developing predictions of in vivo developmental toxicity of ToxCast chemicals using mouse embryonic stem cells S. Hunter, M. Rosen, M. Hoopes, H. Nichols, S. Jeffay, K. Chandler1, Integrated Systems Toxicology Division, National Health and Environmental Effects Research Labor...

  19. Validation, acceptance, and extension of a predictive model of reproductive toxicity using ToxCast data

    EPA Science Inventory

    The EPA ToxCast research program uses a high-throughput screening (HTS) approach for predicting the toxicity of large numbers of chemicals. Phase-I tested 309 well-characterized chemicals (mostly pesticides) in over 500 assays of different molecular targets, cellular responses an...

  20. Chemical and Biological Profiling Approaches for Exploring Mutagenicity and Carcinogenicity of EPA ToxCast Chemicals

    EPA Science Inventory

    Phase I of U.S. Environmental Protection Agency’s ToxCastTM research project is building on three rich data tiers: 309 unique, structurally diverse chemicals (predominantly pesticides), activity and concentration response data from approximately 500 in vitro (cell-based and cell-...

  1. Compacted graphite iron: Cast iron makes a comeback

    NASA Astrophysics Data System (ADS)

    Dawson, S.

    1994-08-01

    Although compacted graphite iron has been known for more than four decades, the absence of a reliable mass-production technique has resulted in relatively little effort to exploit its operational benefits. However, a proven on-line process control technology developed by SinterCast allows for series production of complex components in high-quality CGI. The improved mechanical properties of compacted graphite iron relative to conventional gray iron allow for substantial weight reduction in gasoline and diesel engines or substantial increases in horsepower, or an optimal combination of both. Concurrent with these primary benefits, CGI also provides significant emissions and fuel efficiency benefits allowing automakers to meet legislated performance standards. The operational and environmental benefits of compacted graphite iron together with its low cost and recyclability reinforce cast iron as a prime engineering material for the future.

  2. Thermophysical property sensitivity effects in steel solidification

    NASA Technical Reports Server (NTRS)

    Overfelt, Tony

    1993-01-01

    The simulation of advanced solidification processes via digital computer techniques has gained widespread acceptance during the last decade or so. Models today can predict transient temperature fields, fluid flow fields, important microstructural parameters, and potential defects in castings. However, the lack of accurate thermophysical property data on important industrial alloys threatens to limit the ability of manufacturers to fully capitalize on the technology's benefits. A study of the sensitivity of one such numerical model of a steel plate casting to imposed variations in the data utilized for the thermal conductivity, specific heat, density, and heat of fusion is described. The sensitivity of the data's variability is characterized by its effects on the net solidification time of various points along the centerline of the plate casting. Recommendations for property measurements are given and the implications of data uncertainty for modelers are discussed.

  3. Transtibial Prosthetic Socket Shape in a Developing Country: A study to compare initial outcomes in Pressure Cast hydrostatic and Patella Tendon Bearing designs.

    PubMed

    Laing, Sheridan; Lythgo, Noel; Lavranos, Jim; Lee, Peter Vee Sin

    2017-10-01

    This study compared the physical function and comfort level of patients with unilateral transtibial amputation after being fitted with a hand-cast Patella Tendon Bearing (PTB) socket and a pressure-cast (PCAST) hydrocast socket. The latter technique aims to reduce the skill dependency currently required for socket manufacture and fit. The study was conducted at the Vietnamese Training Centre for Orthopaedic Technologies and involved seventeen Vietnamese participants with unilateral transtibial amputation, all of whom were long term users of prosthetics. All participants were fitted with two sockets manufactured using both hand-cast and PCAST techniques with International Committee of the Red Cross components. Walking tests (timed up and go test and six-minute-walk-test), spatio-temporal gait analyses and subjective comfort assessments were completed after a short acclimatisation period with each socket. The participant-preferred socket was also noted. No significant differences were found for the measures of mobility, functional capacity, spatio-temporal gait parameters, gait symmetry, perceived comfort or participant socket preference. The results show the initial patient outcomes are similar when participants are fitted with a hand-cast PTB socket and a PCAST hydrocast sockets. Future work should confirm these findings in a longer trial. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Knowledge Acquisition and Job Training for Advanced Technical Skills Using Immersive Virtual Environment

    NASA Astrophysics Data System (ADS)

    Watanuki, Keiichi; Kojima, Kazuyuki

    The environment in which Japanese industry has achieved great respect is changing tremendously due to the globalization of world economies, while Asian countries are undergoing economic and technical development as well as benefiting from the advances in information technology. For example, in the design of custom-made casting products, a designer who lacks knowledge of casting may not be able to produce a good design. In order to obtain a good design and manufacturing result, it is necessary to equip the designer and manufacturer with a support system related to casting design, or a so-called knowledge transfer and creation system. This paper proposes a new virtual reality based knowledge acquisition and job training system for casting design, which is composed of the explicit and tacit knowledge transfer systems using synchronized multimedia and the knowledge internalization system using portable virtual environment. In our proposed system, the education content is displayed in the immersive virtual environment, whereby a trainee may experience work in the virtual site operation. Provided that the trainee has gained explicit and tacit knowledge of casting through the multimedia-based knowledge transfer system, the immersive virtual environment catalyzes the internalization of knowledge and also enables the trainee to gain tacit knowledge before undergoing on-the-job training at a real-time operation site.

  5. Stress-strain relationship and seismic performance of cast-in-situ phosphogypsum.

    PubMed

    Zhang, Yichao; Dai, Shaobin; Weng, Wanlin; Huang, Jun; Su, Ying; Cai, Yue

    2017-06-16

    Phosphogypsum is a waste by-product during the production of phosphoric acid. It not only occupies landfill, but also pollutes the environment, which becomes an important factor restricting the sustainable development of the phosphate fertilizer industry. Research into cast-in-situ phosphogypsum will greatly promote the comprehensive utilization of stored phosphogypsum. The aim of this study was to clarify the mechanical properties of phosphogypsum. Stress-strain relationships of cast-in-situ phosphogypsum were investigated through axial compressive experiments, and seismic performance of cast-in-situ phosphogypsum walls and aerated-concrete masonry walls were simulated based on the experimental results and using finite element analysis. The results showed that the stress-strain relationship fitted into a polynomial equation. Moreover, the displacement ductility index and the energy dissipation index of cast-in-situ phosphogypsum wall were 6.587 and 3.425, respectively. The stress-strain relationship for earthquake-resistant performance of cast-in-situ phosphogypsum walls is better than that of aerated-concrete masonry walls. The curve of stress-strain relationship and the evaluation of earthquake-resistant performance provide theoretical support for the application of cast-in-situ phosphogypsum in building walls.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandler, H.E.

    The predictions of a special Metal Progress round table spanning the next 20 years in materials and process engineering in North America are given. Subjects discussed include the energy crunch, impact of computer technology, new roles for testing and inspection, happenings in non ferrous technology, materials substitution, composites and non metallics, people aspects of technology, materials availability, powder metallurgy changes, casting, welding and joining, heat treatments, carbon and alloy steels, new and improved materials, forming, coatings and conservation, and metal production. (FS)

  7. The paternal ancestry of Uttarakhand does not imitate the classical caste system of India.

    PubMed

    Negi, Neetu; Tamang, Rakesh; Pande, Veena; Sharma, Amrita; Shah, Anish; Reddy, Alla G; Vishnupriya, Satti; Singh, Lalji; Chaubey, Gyaneshwer; Thangaraj, Kumarasamy

    2016-02-01

    Although, there have been rigorous research on the Indian caste system by several disciplines, it is still one of the most controversial socioscientific topic. Previous genetic studies on the subcontinent have supported a classical hierarchal sharing of genetic component by various castes of India. In the present study, we have used high-resolution mtDNA and Y chromosomal markers to characterize the genetic structuring of the Uttarakhand populations in the context of neighboring regions. Furthermore, we have tested whether the genetic structuring of caste populations at different social levels of this region, follow the classical chaturvarna system. Interestingly, we found that this region showed a high level of variation for East Eurasian ancestry in both maternal and paternal lines of descent. Moreover, the intrapopulation comparison showed a high level of heterogeneity, likely because of different caste hierarchy, interpolated on asymmetric admixture of populations inhabiting on both sides of the Himalayas.

  8. Computation material science of structural-phase transformation in casting aluminium alloys

    NASA Astrophysics Data System (ADS)

    Golod, V. M.; Dobosh, L. Yu

    2017-04-01

    Successive stages of computer simulation the formation of the casting microstructure under non-equilibrium conditions of crystallization of multicomponent aluminum alloys are presented. On the basis of computer thermodynamics and heat transfer during solidification of macroscale shaped castings are specified the boundary conditions of local heat exchange at mesoscale modeling of non-equilibrium formation the solid phase and of the component redistribution between phases during coalescence of secondary dendrite branches. Computer analysis of structural - phase transitions based on the principle of additive physico-chemical effect of the alloy components in the process of diffusional - capillary morphological evolution of the dendrite structure and the o of local dendrite heterogeneity which stochastic nature and extent are revealed under metallographic study and modeling by the Monte Carlo method. The integrated computational materials science tools at researches of alloys are focused and implemented on analysis the multiple-factor system of casting processes and prediction of casting microstructure.

  9. Kinematic Gait Changes Following Serial Casting and Bracing to Treat Toe Walking in a Child With Autism.

    PubMed

    Barkocy, Marybeth; Dexter, James; Petranovich, Colleen

    2017-07-01

    To evaluate the effectiveness of serial casting in a child with autism spectrum disorder (ASD) exhibiting a toe-walking gait pattern with equinus contractures. Although many children with ASD toe walk, little research on physical therapy interventions exists for this population. Serial casting has been validated for use in idiopathic toe walking to increase passive dorsiflexion and improve gait, but not for toe walking in children with ASD. Serial casting followed by ankle-foot orthosis use was implemented to treat a child with ASD who had an obligatory equinus gait pattern. Gait analysis supported improvements in kinematic, spatial, and temporal parameters of gait, and the child maintained a consistent heel-toe gait at 2-year follow-up. STATEMENT OF CONCLUSION AND RECOMMENDATIONS FOR CLINICAL PRACTICE:: Serial casting followed by ankle-foot orthosis use is a viable treatment option for toe walking in children with ASD.

  10. Implementation and Validation of 3-D Ice Accretion Measurement Methodology

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Broeren, Andy P.; Kreeger, Richard E.; Potapczuk, Mark; Utt, Lloyd

    2014-01-01

    A research program has been implemented to develop and validate the use of a commercial 3-D laser scanning system to record ice accretion geometry in the NASA Icing Research Tunnel. A main component of the program was the geometric assessment of the 3- D laser scanning system on a 2-D (straight wing) and a 3-D (swept wing) airfoil geometries. This exercise consisted of comparison of scanned ice accretion to castings of the same ice accretion. The scan data were also used to create rapid prototype artificial ice shapes that were scanned and compared to the original ice accretion. The results from geometric comparisons on the straight wing showed that the ice shape models generated through the scan/rapid prototype process compared reasonably well with the cast shapes. Similar results were obtained with the geometric comparisons on the swept wing. It was difficult to precisely compare the scans of the cast shapes to the original ice accretion scans because the cast shapes appear to have shrunk during the mold/casting process by as much as 0.10-inch. However the comparison of the local ice-shape features were possible and produced better results. The rapid prototype manufacturing process was shown to reproduce the original ice accretion scan normally within 0.01-inch.

  11. Molding of strength testing samples using modern PDCPD material for purpose of automotive industry

    NASA Astrophysics Data System (ADS)

    Grabowski, L.; Baier, A.; Sobek, M.

    2017-08-01

    The casting of metal materials is widely known but the molding of composite polymer materials is not well-known method still. The initial choice of method for producing composite bodies was the method of casting of PDCPD material. For purpose of performing casting of polymer composite material, a special mold was made. Firstly, the 3D printed, using PLA material, mold was used. After several attempts of casting PDCPD many problems were encountered. The second step was to use mold milled from a firm and dense isocyanate foam. After several attempts research shown that this solution is more resistant to high-temperature peak, but this material is too fragile to use it several times. This solution also prevents mold from using external heating, which can be necessary for performing correct molding process. The last process was to use the aluminum mold, which is dedicated to PDCPD polymer composite, because of low adhesiveness. This solution leads to perform correct PDCPD polymer composite material injection. After performing casting operation every PDCPD testing samples were tested. These results were compared together. The result of performed work was to archive correct properties of injection of composite material. Research and results were described in detail in this paper.

  12. High Cycle Fatigue Crack Initiation Study of Case Blade Alloy Rene 125

    NASA Technical Reports Server (NTRS)

    Kantzos, P.; Gayda, J.; Miner, R. V.; Telesman, J.; Dickerson, P.

    2000-01-01

    This study was conducted in order to investigate and document the high cycle fatigue crack initiation characteristics of blade alloy Rene 125 as cast by three commercially available processes. This alloy is typically used in turbine blade applications. It is currently being considered as a candidate alloy for high T3 compressor airfoil applications. This effort is part of NASA's Advanced Subsonic Technology (AST) program which aims to develop improved capabilities for the next generation subsonic gas turbine engine for commercial carriers. Wrought alloys, which are customarily used for airfoils in the compressor, cannot meet the property goals at the higher compressor exit temperatures that would be required for advanced ultra-high bypass engines. As a result cast alloys are currently being considered for such applications. Traditional blade materials such as Rene 125 have the high temperature capabilities required for such applications. However, the implementation of cast alloys in compressor airfoil applications where airfoils are typically much thinner does raise some issues of concern such as thin wall castability, casting cleaningness, and susceptibility to high-cycle fatigue (HCF) loading.

  13. ScienceCast 202: Escape of the Destructive Electrons

    NASA Image and Video Library

    2015-12-14

    Earth is surrounded by electrons that can be disruptive to our technology. NASA is using high-altitude balloons and spacecraft to monitor and understand these particles in the radiation belts surrounding our planet.

  14. In-flight simulation of high agility through active control: Taming complexity by design

    NASA Technical Reports Server (NTRS)

    Padfield, Gareth D.; Bradley, Roy

    1993-01-01

    The motivation for research into helicopter agility stems from the realization that marked improvements relative to current operational types are possible, yet there is a dearth of useful criteria for flying qualities at high performance levels. Several research laboratories are currently investing resources in developing second generation airborne rotorcraft simulators. The UK's focus has been the exploitation of agility through active control technology (ACT); this paper reviews the results of studies conducted to date. The conflict between safety and performance in flight research is highlighted and the various forms of safety net to protect against system failures are described. The role of the safety pilot, and the use of actuator and flight envelope limiting are discussed. It is argued that the deep complexity of a research ACT system can only be tamed through a requirement specification assembled using design principles and cast in an operational simulation form. Work along these lines conducted at DRA is described, including the use of the Jackson System Development method and associated Ada simulation.

  15. "The angel of the house" in the realm of ART: feminist approach to oocyte and spare embryo donation for research.

    PubMed

    Alichniewicz, Anna; Michalowska, Monika

    2014-02-01

    The spectacular progress in assisted reproduction technology that has been witnessed for the past thirty years resulted in emerging new ethical dilemmas as well as the revision of some perennial ones. The paper aims at a feminist approach to oocyte and spare embryo donation for research. First, referring to different concepts of autonomy and informed consent, we discuss whether the decision to donate oocyte/embryo can truly be an autonomous choice of a female patient. Secondly, we argue the commonly adopted language of gift is misleading and that calling for altruism could put female patients at risk of exploitation. Finally, we point out that the presence of gender stereotypes in the procreative area casts doubt whether even a more robust notion of informed consent manages to overcome this risk.

  16. Sputtered protective coatings for die casting dies

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Nieh, C.-Y.; Wallace, J. F.

    1981-01-01

    Three experimental research designs investigating candidate materials and processes involved in protective die surface coating procedures by sputter deposition, using ion beam technologies, are discussed. Various pre-test results show that none of the coatings remained completely intact for 15,000 test cycles. The longest lifetime was observed for coatings such as tungsten, platinum, and molybdenum which reduced thermal fatigue, but exhibited oxidation and suppressed crack initiation only as long as the coating did not fracture. Final test results confirmed earlier findings and coatings with Pt and W proved to be the candidate materials to be used on a die surface to increase die life. In the W-coated specimens, which remained intact on the surface after thermal fatigue testing, no oxidation was found under the coating, although a few cracks formed on the surface where the coating broke down. Further research is planned.

  17. E. Graeme Robertson--dynamics in fluid and light.

    PubMed

    Kempster, P A; Gerraty, R P; Bower, S P C

    2013-02-01

    An eponymous lecture at the Australian and New Zealand Association of Neurologists Annual Scientific Meeting commemorates E. Graeme Robertson (1903-75), and some neurologists will know that particular Australian practices in clinical neurology, so far as they exist, have origins in his career. This is a historical article on the literary record of a man who had his own sense of history--an affinity with the past as well as an awareness of future generations of readers. He wrote authoritative texts on pneumoencephalography before new technology made it obsolete, and he produced a series of books on decorative architectural cast iron in Australian cities. A talent for visual interpretation seems to have drawn him to both of these topics; a common theme is contrast between light and dark, which is expatiated in images and in clear, well-written prose in his publications. We review his medical writings, including some largely forgotten principles of cerebrospinal fluid physics that he discovered when researching pneumoencephalography. We also explore his obsession with cast iron--its architectural historical significance, his techniques for photographing it, and some of the ways that it related to his life's work as a clinical neurologist. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Testing a Variety of Encryption Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henson, T J

    2001-04-09

    Review and test speeds of various encryption technologies using Entrust Software. Multiple encryption algorithms are included in the product. Algorithms tested were IDEA, CAST, DES, and RC2. Test consisted of taking a 7.7 MB Word document file which included complex graphics and timing encryption, decryption and signing. Encryption is discussed in the GIAC Kickstart section: Information Security: The Big Picture--Part VI.

  19. Caste load and the evolution of reproductive skew.

    PubMed

    Holman, Luke

    2014-01-01

    Reproductive skew theory seeks to explain how reproduction is divided among group members in animal societies. Existing theory is framed almost entirely in terms of selection, though nonadaptive processes must also play some role in the evolution of reproductive skew. Here I propose that a genetic correlation between helper fecundity and breeder fecundity may frequently constrain the evolution of reproductive skew. This constraint is part of a wider phenomenon that I term "caste load," which is defined as the decline in mean fitness caused by caste-specific selection pressures, that is, differential selection on breeding and nonbreeding individuals. I elaborate the caste load hypothesis using quantitative and population genetic arguments and individual-based simulations. Although selection can sometimes erode genetic correlations and resolve caste load, this may be constrained when mutations have similar pleiotropic effects on breeder and helper traits. I document evidence for caste load, identify putative genomic adaptations to it, and suggest future research directions. The models highlight the value of considering adaptation within the boundaries imposed by genetic architecture and incidentally reaffirm that monogamy promotes the evolutionary transition to eusociality.

  20. Energy Saving Melting and Revert Reduction Technology: Innovative Semi-Solid Metal (SSM) Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diran Apelian

    2012-08-15

    Semi-solid metal (SSM) processing has emerged as an attractive method for near-net-shape manufacturing due to the distinct advantages it holds over conventional near-net-shape forming technologies. These advantages include lower cycle time, increased die life, reduced porosity, reduced solidification shrinkage, improved mechanical properties, etc. SSM processing techniques can not only produce the complex dimensional details (e.g. thin-walled sections) associated with conventional high-pressure die castings, but also can produce high integrity castings currently attainable only with squeeze and low-pressure permanent mold casting processes. There are two primary semi-solid processing routes, (a) thixocasting and (b) rheocasting. In the thixocasting route, one starts frommore » a non-dendritic solid precursor material that is specially prepared by a primary aluminum manufacturer, using continuous casting methods. Upon reheating this material into the mushy (a.k.a. "two-phase") zone, a thixotropic slurry is formed, which becomes the feed for the casting operation. In the rheocasting route (a.k.a. "slurry-on-demand" or "SoD"), one starts from the liquid state, and the thixotropic slurry is formed directly from the melt via careful thermal management of the system; the slurry is subsequently fed into the die cavity. Of these two routes, rheocasting is favored in that there is no premium added to the billet cost, and the scrap recycling issues are alleviated. The CRP (Trade Marked) is a process where the molten metal flows through a reactor prior to casting. The role of the reactor is to ensure that copious nucleation takes place and that the nuclei are well distributed throughout the system prior to entering the casting cavity. The CRP (Trade Marked) has been successfully applied in hyper-eutectic Al-Si alloys (i.e., 390 alloy) where two liquids of equal or different compositions and temperatures are mixed in the reactor and creating a SSM slurry. The process has been mostly used for hypo-eutectic Al-Si alloys (i.e., 356, 357, etc.) where a single melt passes through the reactor. In addition, the CRP (Trade Marked) was designed to be flexible for thixocasting or rheocasting applications as well as batch or continuous casting. Variable heat extraction rates can be obtained by controlling either the superheat of the melt, the temperature of the channel system, or the temperature of the reactor. This program had four main objectives all of which were focused on a mechanistic understanding of the process in order to be able to scale it up, to develop it into a robust process,and for SSM processing to be commercially used.« less

  1. Culture in Psychiatric Epidemiology: Using Ethnography and Multiple Mediator Models to Assess the Relationship of Caste with Depression and Anxiety in Nepal

    PubMed Central

    Kohrt, Brandon A.; Speckman, Rebecca A.; Kunz, Richard D.; Baldwin, Jennifer L.; Upadhaya, Nawaraj; Acharya, Nanda Raj; Sharma, Vidya Dev; Nepal, Mahendra K.; Worthman, Carol M.

    2013-01-01

    Background The causes of ethnic and caste-based disparities in mental health are poorly understood. Aim To identify mediators underlying caste-based disparities in mental health in Nepal. Subjects and methods A mixed methods ethnographic and epidemiological study of 307 adults (Dalit/Nepali, n=75; high caste Brahman and Chhetri, n=232) assessed with Nepali versions of Beck Depression (BDI) and Anxiety (BAI) Inventories. Results One third (33.7%) of participants were classified as depressed: Dalit/Nepali 50.0%, high caste 28.4%. One quarter (27.7%) of participants were classified as anxious: Dalit/Nepali 50.7%, high caste 20.3%. Ethnographic research identified four potential mediators: stressful life events, owning few livestock, no household income, and lack of social support. The direct effect of caste was 1.08 (95% CI -1.10—3.27) on depression score and 4.76 (95% CI 2.33—7.19) on anxiety score. All four variables had significant indirect (mediation) effects on anxiety, and all but social support had significant indirect effects on depression. Conclusion Caste-based disparities in mental health in rural Nepal are statistically mediated by poverty, lack of social support, and stressful life events. Interventions should target these areas to alleviate the excess mental health burden born by Dalit/Nepali women and men. PMID:19381985

  2. Culture in psychiatric epidemiology: using ethnography and multiple mediator models to assess the relationship of caste with depression and anxiety in Nepal.

    PubMed

    Kohrt, Brandon A; Speckman, Rebecca A; Kunz, Richard D; Baldwin, Jennifer L; Upadhaya, Nawaraj; Acharya, Nanda Raj; Sharma, Vidya Dev; Nepal, Mahendra K; Worthman, Carol M

    2009-01-01

    The causes of ethnic and caste-based disparities in mental health are poorly understood. The study aimed to identify mediators underlying caste-based disparities in mental health in Nepal. A mixed methods ethnographic and epidemiological study of 307 adults (Dalit/Nepali, n=75; high caste Brahman and Chhetri, n=232) was assessed with Nepali versions of Beck Depression (BDI) and Anxiety (BAI) Inventories. One-third (33.7%) of participants were classified as depressed: Dalit/Nepali 50.0%, high caste 28.4%. One quarter (27.7%) of participants were classified as anxious: Dalit/Nepali 50.7%, high caste 20.3%. Ethnographic research identified four potential mediators: Stressful life events, owning few livestock, no household income, and lack of social support. The direct effect of caste was 1.08 (95% CI -1.10-3.27) on depression score and 4.76 (95% CI 2.33-7.19) on anxiety score. All four variables had significant indirect (mediation) effects on anxiety, and all but social support had significant indirect effects on depression. Caste-based disparities in mental health in rural Nepal are statistically mediated by poverty, lack of social support, and stressful life events. Interventions should target these areas to alleviate the excess mental health burden born by Dalit/Nepali women and men.

  3. Soldier caste influences on candidate primer pheromone levels and juvenile hormone-dependent caste differentiation in workers of the termite Reticulitermes flavipes.

    PubMed

    Tarver, Matthew R; Schmelz, Eric A; Scharf, Michael E

    2011-06-01

    Caste systems and the division of labor they make possible are common underlying features of all social insects. Multiple extrinsic factors have been shown to impact caste composition in social insect colonies. Primer pheromones are one type of extrinsic caste-regulatory factor; they are chemical signaling molecules produced by certain colony members to impact developmental physiology of recipient nestmates. However, only limited evidence exists regarding primer pheromones and their actions in eusocial termites. In previous research we identified two soldier-produced terpenes, γ-cadinene (CAD) and γ-cadinenal (ALD), as candidate primer pheromones of the lower termite Reticulitermes flavipes. In the present study we tested hypotheses related to CAD and ALD action in recipient individuals. We examined the influences of terminally developed soldier termites on (1) CAD and ALD levels and (2) caste differentiation in developmentally totipotent workers. Our findings show CAD and ALD (respectively) are caste stimulatory and inhibitory components of chemical blends present in soldier heads, ALD levels increase significantly (10.9×) in workers only in the presence of soldiers, and soldiers can reduce developmental-hormone response thresholds of workers, presumably via ALD action. These findings provide novel evidence supporting that CAD and ALD are authentic caste-regulatory primer pheromones in Reticulitermes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Toxicity Screening of the ToxCast Phase II Chemical Library Using a Zebrafish Developmental Assay (SOT)

    EPA Science Inventory

    As part of the chemical screening and prioritization research program of the US EPA, the ToxCast Phase II chemicals were assessed using a vertebrate screen for developmental toxicity. Zebrafish embryos (Danio rerio) were exposed in 96-well plates from late-blastula stage (6hr pos...

  5. Functional analyses of the digestive ß-Glucosidase of Formosan Subterranean Termites (Coptotermes formosanus)

    USDA-ARS?s Scientific Manuscript database

    The research was to elucidate the function of the ß-glucosidase of Formosan subterranean termites in vitro and in vivo. Quantitative RT-PCR analyses indicated that the gene transcript was relatively more abundant in the foraging worker caste than in other castes and salivary glands were the major ex...

  6. Statistical experiments using the multiple regression research for prediction of proper hardness in areas of phosphorus cast-iron brake shoes manufacturing

    NASA Astrophysics Data System (ADS)

    Kiss, I.; Cioată, V. G.; Ratiu, S. A.; Rackov, M.; Penčić, M.

    2018-01-01

    Multivariate research is important in areas of cast-iron brake shoes manufacturing, because many variables interact with each other simultaneously. This article focuses on expressing the multiple linear regression model related to the hardness assurance by the chemical composition of the phosphorous cast irons destined to the brake shoes, having in view that the regression coefficients will illustrate the unrelated contributions of each independent variable towards predicting the dependent variable. In order to settle the multiple correlations between the hardness of the cast-iron brake shoes, and their chemical compositions several regression equations has been proposed. Is searched a mathematical solution which can determine the optimum chemical composition for the hardness desirable values. Starting from the above-mentioned affirmations two new statistical experiments are effectuated related to the values of Phosphorus [P], Manganese [Mn] and Silicon [Si]. Therefore, the regression equations, which describe the mathematical dependency between the above-mentioned elements and the hardness, are determined. As result, several correlation charts will be revealed.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asmussen, Robert M.; Lawter, Amanda R.; Stephenson, John R.

    Washington River Protection Solutions (WRPS) is collecting relevant available data on waste forms for use as a supplemental immobilization technology, to provide the additional capacity needed to treat low-activity waste (LAW) in Hanford Site tanks and complete the tank waste cleanup mission in a timely and cost-effective manner. One candidate supplemental waste form, fabricated using a low-temperature process, is a cementitious grout called Cast Stone. Cast Stone has been under investigation for this application at Pacific Northwest National Laboratory (PNNL) since initial screening tests in FY13. This report is the culmination of work to lower the diffusivities of Tc andmore » I from Cast Stone using getters. Getters are compounds added to a system designed to selectively sequester a species of interest to provide increased stability to the species. The work contained within this report is related to waste form development and testing, and does not directly support the 2017 integrated disposal facility (IDF) performance assessment. However, this work contains valuable information which may be used in performance assessment maintenance past FY17, and in future waste form development. This report on performance characterization of Tc and I getters in Cast Stone fabricated with simulated LAW covers several areas of interest and major findings to WRPS: investigating performance of potassium metal sulfide (KMS-2-SS) and tin (II) apatite (Sn-A) as Tc getters when incorporated into Cast Stone; investigating performance of silver exchanged zeolite (Ag-Z) and argentite (Arg) as I getters when incorporated into Cast Stone; utilizing sequential addition of Tc and I getters to overcome any deleterious interactions between the getters in solution; determining, for the first time, Tc distribution within the cured Cast Stone and its evolution during leaching; and performing solid state characterization of getters and Cast Stone samples to support leach test findings and develop a mechanistic understanding of the processes that control Tc and I release into solution.« less

  8. MedCast: a discussion support system for cooperative work

    NASA Astrophysics Data System (ADS)

    Moreno, Ramon A.; Lima, Vinícius; Lopes, Isidro; Gutierrez, Marco A.

    2012-02-01

    The availability of low cost Internet connections and specialized hardware, like webcams and headsets, makes possible the development of solutions for remote collaborative work. These solutions can provide advantages compared to presential meetings, such as: availability of experts on remote locations; lower price compared to presential meetings; creation of online didactic material (e.g. video-classes); richer forms of interaction between participants. These technologies are particularly interesting for continent-sized countries where typically there is a short number of skilled people in remote areas. However, the application of these technologies in medical field represents a special challenge due to the more complex requirements of this area, such as: Provide confidentiality (patient de-identification) and integrity of patient data; Guarantee availability of the system; Guarantee authenticity of data and users; Provide simple and effective user interface; Be compliant with medical standards such as DICOM and HL7. In order to satisfy those requirements a prototype called MedCast is under development whose architecture allows the integration of the Hospital Information System (HIS) with a collaborative tool in compliance with the HIPAA rules. Some of the MedCast features are: videoconferencing, chat, recording of the sessions, sharing of documents and reports and still and dynamic images presentation. Its current version allows the remote discussion of clinical cases and the remote ECG evaluation.

  9. Ventriculostomy Simulation Using Patient-Specific Ventricular Anatomy, 3D Printing, and Hydrogel Casting.

    PubMed

    Ryan, Justin R; Chen, Tsinsue; Nakaji, Peter; Frakes, David H; Gonzalez, L Fernando

    2015-11-01

    Educational simulators provide a means for students and experts to learn and refine surgical skills. Educators can leverage the strengths of medical simulators to effectively teach complex and high-risk surgical procedures, such as placement of an external ventricular drain. Our objective was to develop a cost-effective, patient-derived medical simulacrum for cerebral lateral ventriculostomy. A cost-effective, patient-derived medical simulacrum was developed for placement of an external lateral ventriculostomy. Elastomeric and gel casting techniques were used to achieve realistic brain geometry and material properties. 3D printing technology was leveraged to develop accurate cranial properties and dimensions. An economical, gravity-driven pump was developed to provide normal and abnormal ventricular pressures. A small pilot study was performed to gauge simulation efficacy using a technology acceptance model. An accurate geometric representation of the brain was developed with independent lateral cerebral ventricular chambers. A gravity-driven pump pressurized the ventricular cavities to physiologic values. A qualitative study illustrated that the simulation has potential as an educational tool to train medical professionals in the ventriculostomy procedure. The ventricular simulacrum can improve learning in a medical education environment. Rapid prototyping and multi-material casting techniques can produce patient-derived models for cost-effective and realistic surgical training scenarios. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Development of Thixomolded{reg_sign} magnesium products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, D.; Fan, R.; Kang, K.

    1995-10-01

    Thixomolding{reg_sign} is a racial new process which merges the technologies of die-casting and plastic injection molding for the net shape molding of magnesium based alloys. Properties of Thixomolded{reg_sign} magnesium alloys are discussed and compared with those of traditional die casting. Magnesium alloys are of great interest to automobile manufacturers because of the potential weight savings and corresponding energy savings due to increased fuel economy. For this reason, one of the first target markets for Thixomolded{reg_sign} products is the automotive industry. The use of Thixomolding{reg_sign} in the production of an automobile part is examined.

  11. Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties

    NASA Astrophysics Data System (ADS)

    Cheng, Shaoling; Zhang, Yapei; Cha, Ruitao; Yang, Jinliang; Jiang, Xingyu

    2015-12-01

    By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food.By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07647a

  12. Socio-environmental and endocrine influences on developmental and caste-regulatory gene expression in the eusocial termite Reticulitermes flavipes

    PubMed Central

    2010-01-01

    Background Strict regulation of caste differentiation, at the molecular level, is thought to be important to maintain social structure in insect societies. Previously, a number of extrinsic and intrinsic factors have been shown to influence caste composition in termite colonies. One important factor is the influence of nestmates; in particular, soldier termites are known to inhibit hormone-dependent worker-to-soldier differentiation. However, soldier influences on nestmates at the molecular level are virtually unknown. Here, to test the hypothesis that soldiers can influence nestmate gene expression, we investigated the impact of four treatments on whole-body gene expression in totipotent Reticulitermes flavipes workers: (i) juvenile hormone III (JHIII; a morphogenetic hormone), (ii) soldier head extracts (SHE), (iii) JHIII+SHE, and (iv) live soldiers. Results Using quantitative-real-time PCR we determined the expression patterns of 49 previously identified candidate genes in response to the four treatments at assay days 1, 5, and 10. Thirty-eight total genes from three categories (chemical production/degradation, hemolymph protein, and developmental) showed significant differential expression among treatments. Most importantly, SHE and live soldier treatments had a significant impact on a number of genes from families known to play roles in insect development, supporting previous findings and hypotheses that soldiers regulate nestmate caste differentiation via terpene primer pheromones contained in their heads. Conclusions This research provides new insights into the impacts that socio-environmental factors (JH, soldiers, primer pheromones) can have on termite gene expression and caste differentiation, and reveals a number of socially-relevant genes for investigation in subsequent caste differentiation research. PMID:20416061

  13. Socio-environmental and endocrine influences on developmental and caste-regulatory gene expression in the eusocial termite Reticulitermes flavipes.

    PubMed

    Tarver, Matthew R; Zhou, Xuguo; Scharf, Michael E

    2010-04-23

    Strict regulation of caste differentiation, at the molecular level, is thought to be important to maintain social structure in insect societies. Previously, a number of extrinsic and intrinsic factors have been shown to influence caste composition in termite colonies. One important factor is the influence of nestmates; in particular, soldier termites are known to inhibit hormone-dependent worker-to-soldier differentiation. However, soldier influences on nestmates at the molecular level are virtually unknown. Here, to test the hypothesis that soldiers can influence nestmate gene expression, we investigated the impact of four treatments on whole-body gene expression in totipotent Reticulitermes flavipes workers: (i) juvenile hormone III (JHIII; a morphogenetic hormone), (ii) soldier head extracts (SHE), (iii) JHIII+SHE, and (iv) live soldiers. Using quantitative-real-time PCR we determined the expression patterns of 49 previously identified candidate genes in response to the four treatments at assay days 1, 5, and 10. Thirty-eight total genes from three categories (chemical production/degradation, hemolymph protein, and developmental) showed significant differential expression among treatments. Most importantly, SHE and live soldier treatments had a significant impact on a number of genes from families known to play roles in insect development, supporting previous findings and hypotheses that soldiers regulate nestmate caste differentiation via terpene primer pheromones contained in their heads. This research provides new insights into the impacts that socio-environmental factors (JH, soldiers, primer pheromones) can have on termite gene expression and caste differentiation, and reveals a number of socially-relevant genes for investigation in subsequent caste differentiation research.

  14. The fuzzy algorithm in the die casting mould for the application of multi-channel temperature control

    NASA Astrophysics Data System (ADS)

    Sun, Jin-gen; Chen, Yi; Zhang, Jia-nan

    2017-01-01

    Mould manufacturing is one of the most basic elements in the production chain of China. The mould manufacturing technology has become an important symbol to measure the level of a country's manufacturing industry. The die-casting mould multichannel intelligent temperature control method is studied by cooling water circulation, which uses fuzzy control to realize, aiming at solving the shortcomings of slow speed and big energy consumption during the cooling process of current die-casting mould. At present, the traditional PID control method is used to control the temperature, but it is difficult to ensure the control precision. While , the fuzzy algorithm is used to realize precise control of mould temperature in cooling process. The design is simple, fast response, strong anti-interference ability and good robustness. Simulation results show that the control method is completely feasible, which has higher control precision.

  15. Application of superalloy powder metallurgy for aircraft engines

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Miner, R. V., Jr.

    1980-01-01

    In the last decade, Government/Industry programs have advanced powder metallurgy-near-net-shape technology to permit the use of hot isostatic pressed (HIP) turbine disks in the commercial aircraft fleet. These disks offer a 30% savings of input weight and an 8% savings in cost compared in cast-and-wrought disks. Similar savings were demonstrated for other rotating engine components. A compressor rotor fabricated from hot-die-forged-HIP superalloy billets revealed input weight savings of 54% and cost savings of 35% compared to cast-and-wrought parts. Engine components can be produced from compositions such as Rene 95 and Astroloy by conventional casting and forging, by forging of HIP powder billets, or by direct consolidation of powder by HIP. However, each process produces differences in microstructure or introduces different defects in the parts. As a result, their mechanical properties are not necessarily identical. Acceptance methods should be developed which recognize and account for the differences.

  16. Microstructure formation and fracturing characteristics of grey cast iron repaired using laser.

    PubMed

    Yi, Peng; Xu, Pengyun; Fan, Changfeng; Yang, Guanghui; Liu, Dan; Shi, Yongjun

    2014-01-01

    The repairing technology based on laser rapid fusion is becoming an important tool for fixing grey cast iron equipment efficiently. A laser repairing protocol was developed using Fe-based alloy powders as material. The microstructure and fracturing feature of the repaired zone (RZ) were analyzed. The results showed that regionally organized RZ with good density and reliable metallurgical bond can be achieved by laser repairing. At the bottom of RZ, dendrites existed in similar direction and extended to the secondary RZ, making the grains grow extensively with inheritance with isometric grains closer to the surface substrate. The strength of the grey cast iron base material was maintained by laser repairing. The base material and RZ were combined with robust strength and fracture resistance. The prevention and deflection of cracking process were analyzed using a cracking process model and showed that the overall crack toughness of the materials increased.

  17. Microstructure Formation and Fracturing Characteristics of Grey Cast Iron Repaired Using Laser

    PubMed Central

    Liu, Dan; Shi, Yongjun

    2014-01-01

    The repairing technology based on laser rapid fusion is becoming an important tool for fixing grey cast iron equipment efficiently. A laser repairing protocol was developed using Fe-based alloy powders as material. The microstructure and fracturing feature of the repaired zone (RZ) were analyzed. The results showed that regionally organized RZ with good density and reliable metallurgical bond can be achieved by laser repairing. At the bottom of RZ, dendrites existed in similar direction and extended to the secondary RZ, making the grains grow extensively with inheritance with isometric grains closer to the surface substrate. The strength of the grey cast iron base material was maintained by laser repairing. The base material and RZ were combined with robust strength and fracture resistance. The prevention and deflection of cracking process were analyzed using a cracking process model and showed that the overall crack toughness of the materials increased. PMID:25032230

  18. Casting of weldable graphite/magnesium metal matrix composites with built-in metallic inserts

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.; Kashalikar, Uday; Majkowski, Patricia

    1994-01-01

    Technology innovations directed at the advanced development of a potentially low cost and weldable graphite/magnesium metal matrix composites (MMC) through near net shape pressure casting are described. These MMC components uniquely have built-in metallic inserts to provide an innovative approach for joining or connecting other MMC components through conventional joining techniques such as welding, brazing, mechanical fasteners, etc. Moreover, the metallic inserts trapped within the MMC components can be made to transfer the imposed load efficiently to the continuous graphite fiber reinforcement thus producing stronger, stiffer, and more reliable MMC components. The use of low pressure near net shape casting is economical compared to other MMC fabrication processes. These castable and potentially weldable MMC components can provide great payoffs in terms of high strength, high stiffness, low thermal expansion, lightweight, and easily joinable MMC components for several future NASA space structural, industrial, and commercial applications.

  19. Leveraging metal matrix composites to reduce costs in space mechanisms

    NASA Technical Reports Server (NTRS)

    Nye, Ted; Claridge, Rex; Walker, Jim

    1994-01-01

    Advanced metal matrix composites may be one of the most promising technologies for reducing cost in structural components without compromise to strength or stiffness. A microlight 12.50 N (2.81 lb), two-axis, solar array drive assembly (SADA) was made for the Advanced Materials Applications to Space Structures (AMASS) Program flight experiment. The SADA had both its inner and outer axis housings fabricated from silicon carbide particulate reinforced alumimun. Two versions of the housings were made. The first was machined from a solid billet of material. The second was plaster cast to a near net shape that required minimal finish machining. Both manufacturing methods were compared upon completion. Results showed a cost savings with the cast housing was possible for quantities greater than one and probable for quantities greater than two. For quantities approaching ten, casting resulted in a reduction factor of almost three in the cost per part.

  20. EBSD Study on Grain Boundary and Microtexture Evolutions During Friction Stir Processing of A413 Cast Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Shamanian, Morteza; Mostaan, Hossein; Safari, Mehdi; Szpunar, Jerzy A.

    2016-07-01

    The as-cast Al alloys contain heterogeneous distributions of non-deforming particles due to non-equilibrium solidification effects. Therefore, these alloys have poor tribological and mechanical behaviors. It is well known that using friction stir processing (FSP), very fine microstructure is created in the as-cast Al alloys, while their wear resistance can be improved. In this research work, FSP is used to locally refine a surface layer of the coarse as-cast microstructure of cast A413 Al alloy. The main objective of this study is to investigate the effect of FSP on microstructure and microtexture evolutions in A413 cast Al alloy. The grain boundary character distribution, grain structure, and microtexture evolutions in as-cast and friction stir processed A413 Al alloy are analyzed by electron back scatter diffraction technique. It is found that with the FSP, the fraction of low ∑boundary such as ∑3, 7, and 9 are increased. The obtained results show that there are no deformation texture components in the structure of friction stir processed samples. However, some of the main recrystallization texture components such as BR and cubeND are formed during FSP which indicate the occurrence of dynamic recrystallization phenomenon due to the severe plastic deformation induced by the rotation of tool.

  1. Engineering of the institutionalization of the circular economy at the level of casting production

    NASA Astrophysics Data System (ADS)

    Vescan, M. M.; Soporan, V. F.; Crișan, D. M.; Lehene, T. R.; Pădurețu, S.; Samuila, V.

    2017-06-01

    This paper is motivated by the necessity of introducing the principles of circular economy at the level of different social - economic activities, and from this point of view one of the fields with a special potential is that of the manufacture of castings. Objective: to connect to the organizing and application of the methodology of the circular economy principles. The proposed method is an innovating one, being connected to the use of institutionalization engineering. Formulating the subject: The subject formulated to be solved aims at the introduction of new approaches, defined through institutionalization engineering, which proposes to set the correlation of actions between the specifics of the circular economy and the specific elements of the manufacture of castings. Research method: An institutional structuring operation was imposed for the optimization of the research method, in which different versions interact at the following levels: the level of public policies, the level of the regulatory framework, the level of technical solutions and the level of financing solutions and financial instruments. The determination of the optimal solution established in a dynamic context, favorable for the requirements of the different actors present within the process, appeals to the elements of critical thinking, specific for the engineer’s actions. Achievement of the research activity: The research activity structures a methodology of quantifying the contributions of each stage of the manufacturing process for castings at the fulfilling of the specific conditions of the circular economy, indicating the critical areas of action for more efficient actions of the circular economy, according to the market economy requirements, where there is a potential of implementing the technical solutions by quantizing the financial solutions and the opportunity of using the financial instruments. The major contribution of the research: The proposed methodology, with examples at the level of castings manufacture, sets the bases of a new field of action of the engineering thinking, namely, that of circular economy institutionalization functioning. Conclusions of the research activity: The proposed methodology represents the bases of establishing a new instrument of action at the level of institutionalized functioning of the circular economy.

  2. U.S. Geological Survey's ShakeCast: A cloud-based future

    USGS Publications Warehouse

    Wald, David J.; Lin, Kuo-Wan; Turner, Loren; Bekiri, Nebi

    2014-01-01

    When an earthquake occurs, the U. S. Geological Survey (USGS) ShakeMap portrays the extent of potentially damaging shaking. In turn, the ShakeCast system, a freely-available, post-earthquake situational awareness application, automatically retrieves earthquake shaking data from ShakeMap, compares intensity measures against users’ facilities, sends notifications of potential damage to responsible parties, and generates facility damage assessment maps and other web-based products for emergency managers and responders. ShakeCast is particularly suitable for earthquake planning and response purposes by Departments of Transportation (DOTs), critical facility and lifeline utilities, large businesses, engineering and financial services, and loss and risk modelers. Recent important developments to the ShakeCast system and its user base are described. The newly-released Version 3 of the ShakeCast system encompasses advancements in seismology, earthquake engineering, and information technology applicable to the legacy ShakeCast installation (Version 2). In particular, this upgrade includes a full statistical fragility analysis framework for general assessment of structures as part of the near real-time system, direct access to additional earthquake-specific USGS products besides ShakeMap (PAGER, DYFI?, tectonic summary, etc.), significant improvements in the graphical user interface, including a console view for operations centers, and custom, user-defined hazard and loss modules. The release also introduces a new adaption option to port ShakeCast to the "cloud". Employing Amazon Web Services (AWS), users now have a low-cost alternative to local hosting, by fully offloading hardware, software, and communication obligations to the cloud. Other advantages of the "ShakeCast Cloud" strategy include (1) Reliability and robustness of offsite operations, (2) Scalability naturally accommodated, (3), Serviceability, problems reduced due to software and hardware uniformity, (4) Testability, freely available for new users, (5) Remotely supported, allowing expert-facilitated maintenance, (6) Adoptability, simplified with disk images, and (7) Security, built in at the very high level associated with AWS. The ShakeCast user base continues to expand and broaden. For example, Caltrans, the prototypical ShakeCast user and development supporter, has been providing guidance to other DOTs on the use of the National Bridge Inventory (NBI) database to implement fully-functional ShakeCast systems in their states. A long-term goal underway is to further "connect the DOTs" via a Transportation Pooled Fund (TPF) with participating state DOTs. We also review some of the many other users and uses of ShakeCast. Lastly, on the hazard input front, we detail related ShakeMap improvements and ongoing advancements in estimating the likelihood of shaking-induced secondary hazards at structures, facilities, bridges, and along roadways due to landslides and liquefaction, and implemented within the ShakeCast framework.

  3. Presurgical nasoalveolar molding for cleft lip and palate: the application of digitally designed molds.

    PubMed

    Shen, Congcong; Yao, Caroline A; Magee, William; Chai, Gang; Zhang, Yan

    2015-06-01

    The authors present a novel nasoalveolar molding protocol by prefabricating sets of nasoalveolar molding appliances using three-dimensional technology. Prospectively, 17 infants with unilateral complete cleft lip and palate underwent the authors' protocol before primary cheiloplasty. An initial nasoalveolar molding appliance was created based on the patient's first and only in-person maxillary cast, produced from a traditional intraoral dental impression. Thereafter, each patient's molding course was simulated using computer software that aimed to narrow the alveolar gap by 1 mm each week by rotating the greater alveolar segment. A maxillary cast of each predicted molding stage was created using three-dimensional printing. Subsequent appliances were constructed in advance, based on the series of computer-generated casts. Each patient had a total three clinic visits spaced 1 month apart. Anthropometric measurements and bony segment volumes were recorded before and after treatment. Alveolar cleft widths narrowed significantly (p < 0.01), soft-tissue volume of each segment expanded (p < 0.01), and the arc of the alveolus became more contiguous across the cleft (p < 0.01). One patient required a new appliance at the second visit because of bleeding and discomfort. Eleven patients had mucosal irritation and two experienced minor mucosal ulceration. Three-dimensional technology can precisely represent anatomic structures in pediatric clefts. Results from the authors' algorithm are equivalent to those of traditional nasoalveolar molding therapies; however, the number of required clinic visits and appliance adjustments decreased. As three-dimensional technology costs decrease, multidisciplinary teams may design customized nasoalveolar molding treatment with improved efficiency and less burden to medical staff, patients, and families. Therapeutic, IV.

  4. Materials Selection and Their Characteristics as Used in Rapid Prototyping

    NASA Technical Reports Server (NTRS)

    Cooper, K.; Salvail, P.; Vesely, E.; Wells, D.

    1999-01-01

    NASA's Marshall Space Flight Center (MSFC) conducted a program to evaluate six technologies used in Rapid Prototyping (RP) to produce investment casting patterns. In this paper, RP refers to the collective additive fabrication technologies known as Solid Free-Form Fabrication. Such technologies are being used with increasing frequency in manufacturing applications, due in part to their rapidly expanding capabilities to fabricate models from many types of materials. This study used ABS plastic, polycarbonate, TrueForm PM6, epoxy resin, paper, starch, and wax. The baseline model was a semi-complex prototype fuel pump housing, intended for use in the X-33 reusable launch vehicle. All models were shelled in a production- grade colloidal silica ceramic. Primary coats were zircon-base flour with zircon backup, while secondary coats were silica grains with a tabular alumina backup. Each model was shelled in an identical manner, using the same atmospheric conditions and drying times, as well as the same number of layers. Bake-outs and firing cycles were consistent with the leach ability of each material. Preheat and bath temperatures were also kept consistent. All molds were cast in vacuum using a hydrogen-resistant superalloy (NASA- 23) that was developed in-house. The final technical evaluation included detailed measurements of the model and the final casting, in order to determine any dimensional changes caused by different pattern materials, as well as documentation of all defects and any obvious refractory/model reactions. Prototype production costs were estimated for each method and taken into consideration during trade-off analysis.

  5. What makes professors appear credible: The effect of demographic characteristics and ideological beliefs.

    PubMed

    Zhu, Luke Lei; Aquino, Karl; Vadera, Abhijeet K

    2016-06-01

    Five studies are conducted to examine how ideology and perceptions regarding gender, race, caste, and affiliation status affect how individuals judge researchers' credibility. Support is found for predictions that individuals judge researcher credibility according to their egalitarian or elitist ideologies and according to status cues including race, gender, caste, and university affiliation. Egalitarians evaluate low-status researchers as more credible than high-status researchers. Elitists show the opposite pattern. Credibility judgments affect whether individuals will interpret subsequent ambiguous events in accordance with the researcher's findings. Effects of diffuse status cues and ideological beliefs may be mitigated when specific status cues are presented to override stereotypes. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  6. Development of an expert system for the simulation model for casting metal substructure of a metal-ceramic crown design.

    PubMed

    Matin, Ivan; Hadzistevic, Miodrag; Vukelic, Djordje; Potran, Michal; Brajlih, Tomaz

    2017-07-01

    Nowadays, the integrated CAD/CAE systems are favored solutions for the design of simulation models for casting metal substructures of metal-ceramic crowns. The worldwide authors have used different approaches to solve the problems using an expert system. Despite substantial research progress in the design of experts systems for the simulation model design and manufacturing have insufficiently considered the specifics of casting in dentistry, especially the need for further CAD, RE, CAE for the estimation of casting parameters and the control of the casting machine. The novel expert system performs the following: CAD modeling of the simulation model for casting, fast modeling of gate design, CAD eligibility and cast ability check of the model, estimation and running of the program code for the casting machine, as well as manufacturing time reduction of the metal substructure. The authors propose an integration method using common data model approach, blackboard architecture, rule-based reasoning and iterative redesign method. Arithmetic mean roughness values was determinated with constant Gauss low-pass filter (cut-off length of 2.5mm) according to ISO 4287 using Mahr MARSURF PS1. Dimensional deviation between the designed model and manufactured cast was determined using the coordinate measuring machine Zeiss Contura G2 and GOM Inspect software. The ES allows for obtaining the castings derived roughness grade number N7. The dimensional deviation between the simulation model of the metal substructure and the manufactured cast is 0.018mm. The arithmetic mean roughness values measured on the casting substructure are from 1.935µm to 2.778µm. The realized developed expert system with the integrated database is fully applicable for the observed hardware and software. Values of the arithmetic mean roughness and dimensional deviation indicate that casting substructures are surface quality, which is more than enough and useful for direct porcelain veneering. The manufacture of the substructure shows that the proposed ES allows the improvement of the design process while reducing the manufacturing time. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. FIELD DEMONSTRATION OF INNOVATIVE CONDITION ASSESSMENT TECHNOLOGIES FOR WATER MAINS: ACOUSTIC PIPE WALL ASSESSMENT, INTERNAL INSPECTION, AND EXTERNAL INSPECTIONVOLUME 1: TECHNICAL REPORT AND VOLUME 2: APPENDICES

    EPA Science Inventory

    Nine pipe wall integrity assessment technologies were demonstrated on a 76-year-old, 2,057-ft-long portion of a cement-lined, 24-in. cast iron water main in Louisville, KY. This activity was part of a series of field demonstrations of innovative leak detection/location and condi...

  8. 76 FR 47144 - In the Matter of: Jianwei Ding, 51 Bukit Batok Crescent, #0828 Unity Centre, Singapore 658077...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ... the China Academy of Space Technology (``CAST''), participated in a scheme whereby he directed... instructions and informed Ding that he ``had to make up the story [when] I call for [a] rate quote.'' On or... kilograms of Toray M40 material to New Bluesky Technology Co. Ltd. in Hong Kong. These exports were destined...

  9. Modeling Biotransformation Using In Vitro Data on Parent-Metabolite Pairs within the ToxCast Phase I Chemical Set

    EPA Science Inventory

    A major focus in toxicology research is the development of new in vitro methods to predict in vivo chemical toxicity. Within the EPA ToxCast program, a broad range of in vitro biochemical and cellular assays have been deployed to profile the biological activity of 320 Phase I che...

  10. Using ToxCast in vitro Assays in the Hierarchical Quantitative Structure-Activity Relationship (QSAR) Modeling for Predicting in vivo Toxicity of Chemicals

    EPA Science Inventory

    The goal of chemical toxicology research is utilizing short term bioassays and/or robust computational methods to predict in vivo toxicity endpoints for chemicals. The ToxCast program established at the US Environmental Protection Agency (EPA) is addressing this goal by using ca....

  11. Casting the Die before the Die Is Cast: The Importance of the Home Numeracy Environment for Preschool Children

    ERIC Educational Resources Information Center

    Niklas, Frank; Schneider, Wolfgang

    2014-01-01

    Mathematical competencies are important not only for academic achievement at school but also for professional success later in life. Although we know a lot about the impact of "Home Literacy Environment" on the development of early linguistic competencies, research on "Home Numeracy Environment" (HNE) and the assessment of its…

  12. Impact of the foliar pathogen Swiss needle cast on wood quality of Douglas-fir.

    Treesearch

    G.R. Johnson; Amy T. Grotta; Barbara L. Gartner; Geoff. Downes

    2005-01-01

    Many stands of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) near coastal areas of Oregon and Washington are heavily infected with the foliar pathogen causing Swiss needle cast (SNC) disease, and yet there is very little research on the resulting wood quality. Modulus of elasticity(MOE), modulus of rupture (MOR), microfibril angle (MFA), wood...

  13. Automotive Manufacturing Processes. Volume III - Casting and Forging Processes

    DOT National Transportation Integrated Search

    1981-02-01

    Extensive material substitution and resizing of the domestic automotive fleet, as well as the introduction of new technologies, will require major changes in the techniques and equipment used in the various manufacturing processes employed in the pro...

  14. Arsenic Removal from Drinking Water

    EPA Science Inventory

    Web cast presentation covered six topics: 1), Arsenic Chemistry, 2), Technology Selection/Arsenic Demonstration Program, 3), Case Study 1, 4), Case Study 2,5), Case Study 3, and 6), Media Regeneration Project. The presentation consists of material presented at other training sess...

  15. Mechanical properties of aluminium fused SiO2 particulate composites cast using metallic and non-metallic chills

    NASA Astrophysics Data System (ADS)

    Harshith, H. S.; Hemanth, Joel

    2018-04-01

    This research work aims at developing and mechanical characterization of aluminium (LM13) based metal matrix composite reinforced with varying percentage of fused SiO2 (3%,6%,9%,12%). The mechanical properties are completely dependent on the microstructural parameters of the system. Also the microstructure further depends on the cooling rates during solidification process. Various Chills like Silicon carbide, Mild steel, Copper were used during the casting process to increase the rate of solidification, which enhances the mechanical properties of the composite. The chill casted specimens were subjected to tensile and hardness tests followed by microstructure studies. A casting produced using mild steel chill exhibited higher young's modulus and was found to be maximum at 9% reinforcement. Finer microstructure and better UTS were seen for specimen's casted using copper chills, whereas silicon carbide and mild steel chills gave rise to very coarse structure with reduced UTS values compared to copper chills.

  16. Terrestrial applications from space technology

    NASA Technical Reports Server (NTRS)

    Clarks, H.

    1985-01-01

    NASA's Technology Utilization Program, which is concerned with transferring aerospace technologies to the public and private sectors, is described. The strategy for transferring the NASA technologies to engineering projects includes: (1) identification of the problem, (2) selection of an appropriate aerospace technology, (3) development of a partnership with the company, (4) implementation of the project, and (5) commercialization of the product. Three examples revealing the application of aerospace technologies to projects in biomedical engineering, materials, and automation and robotics are presented; the development of a programmable, implantable medication system and a programmable, mask-based optical correlator, and the improvement of heat and erosion resistance in continuous casting are examined.

  17. Classrooms of the Future. A Thirty-Three Act Play with an Ever-Changing Cast; Out of the Spotlight; Selected Acts; The Perils and Promises of Technological Literacy: Three Case Studies; The Producers, the Critics, and the Glitch Factor.

    ERIC Educational Resources Information Center

    Landsberger, Joe; Krey, Cynthia L.; Moorhead, Alice

    2001-01-01

    This special section on the history and creators of COTF VII describe the process for creating a conference on technology in education using the example of the Minnesota-based Classrooms of the Future Symposia presented by colleges and universities in the Twin Cities area. Highlights include the role of technology in instruction; promotional…

  18. High-Performance All-Solid-State Na-S Battery Enabled by Casting-Annealing Technology.

    PubMed

    Fan, Xiulin; Yue, Jie; Han, Fudong; Chen, Ji; Deng, Tao; Zhou, Xiuquan; Hou, Singyuk; Wang, Chunsheng

    2018-04-24

    Room-temperature all-solid-state Na-S batteries (ASNSBs) using sulfide solid electrolytes are a promising next-generation battery technology due to the high energy, enhanced safety, and earth abundant resources of both sodium and sulfur. Currently, the sulfide electrolyte ASNSBs are fabricated by a simple cold-pressing process leaving with high residential stress. Even worse, the large volume change of S/Na 2 S during charge/discharge cycles induces additional stress, seriously weakening the less-contacted interfaces among the solid electrolyte, active materials, and the electron conductive agent that are formed in the cold-pressing process. The high and continuous increase of the interface resistance hindered its practical application. Herein, we significantly reduce the interface resistance and eliminate the residential stress in Na 2 S cathodes by fabricating Na 2 S-Na 3 PS 4 -CMK-3 nanocomposites using melting-casting followed by stress-release annealing-precipitation process. The casting-annealing process guarantees the close contact between the Na 3 PS 4 solid electrolyte and the CMK-3 mesoporous carbon in mixed ionic/electronic conductive matrix, while the in situ precipitated Na 2 S active species from the solid electrolyte during the annealing process guarantees the interfacial contact among these three subcomponents without residential stress, which greatly reduces the interfacial resistance and enhances the electrochemical performance. The in situ synthesized Na 2 S-Na 3 PS 4 -CMK-3 composite cathode delivers a stable and highly reversible capacity of 810 mAh/g at 50 mA/g for 50 cycles at 60 °C. The present casting-annealing strategy should provide opportunities for the advancement of mechanically robust and high-performance next-generation ASNSBs.

  19. Characterization of a 12-pdr wrought-iron cannonball from the Akko 1 shipwreck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cvikel, D.; Ashkenazi, D., E-mail: dana@eng.tau.ac.il; Stern, A.

    2013-09-15

    The Akko 1 shipwreck, discovered in Akko harbor, Israel, is the remains of an eastern Mediterranean brig built at the beginning of the 19th century. Among other finds, eleven cannonballs were found in the shipwreck and three of them were retrieved. Two of the cannonballs, the 9- and 24-pdrs, have been studied previously. The present study of the 12-pdr cannonball included γ-rays radiographic testing, XRF analysis, density measurements, optical microscopy and SEM-EDS observation, OES analysis and microhardness tests. The investigation included characterization of the composition, microstructure and slag analysis. The results revealed a quite homogenous microstructure of α-ferrite phase, withmore » glassy, wüstite and fayalite slags, as typical for a wrought-iron—annealed product, a more complicated and an earlier technology, compared to the 9- and 24-pdr that were made of cast-iron. Ferritic cannonballs are extremely rare, especially in the 19th century, when cannonballs were manufactured of cast iron by the sand casting process. The different manufacturing methods may indicate a different place of fabrication, and an apparently earlier production date for the 12-pdr, which might have even been used as ballast. - Highlights: • Three cannonballs were retrieved from the 19th century Akko 1 shipwreck. • The 12-pdr differs from the 9- and 24-pdr cannonballs previously studied. • The 12-pdr was made of high quality annealed wrought-iron, not of cast-iron. • The technology used indicates a date earlier than the middle of the 19th century. • Perhaps the 12-pdr belonged to another navy than the other two or used as ballast.« less

  20. Uses of the Drupal CMS Collaborative Framework in the Woods Hole Scientific Community (Invited)

    NASA Astrophysics Data System (ADS)

    Maffei, A. R.; Chandler, C. L.; Work, T. T.; Shorthouse, D.; Furfey, J.; Miller, H.

    2010-12-01

    Organizations that comprise the Woods Hole scientific community (Woods Hole Oceanographic Institution, Marine Biological Laboratory, USGS Woods Hole Coastal and Marine Science Center, Woods Hole Research Center, NOAA NMFS Northeast Fisheries Science Center, SEA Education Association) have a long history of collaborative activity regarding computing, computer network and information technologies that support common, inter-disciplinary science needs. Over the past several years there has been growing interest in the use of the Drupal Content Management System (CMS) playing a variety of roles in support of research projects resident at several of these organizations. Many of these projects are part of science programs that are national and international in scope. Here we survey the current uses of Drupal within the Woods Hole scientific community and examine reasons it has been adopted. The promise of emerging semantic features in the Drupal framework is examined and projections of how pre-existing Drupal-based websites might benefit are made. Closer examination of Drupal software design exposes it as more than simply a content management system. The flexibility of its architecture; the power of its taxonomy module; the care taken in nurturing the open-source developer community that surrounds it (including organized and often well-attended code sprints); the ability to bind emerging software technologies as Drupal modules; the careful selection process used in adopting core functionality; multi-site hosting and cross-site deployment of updates and a recent trend towards development of use-case inspired Drupal distributions casts Drupal as a general-purpose application deployment framework. Recent work in the semantic arena casts Drupal as an emerging RDF framework as well. Examples of roles played by Drupal-based websites within the Woods Hole scientific community that will be discussed include: science data metadata database, organization main website, biological taxonomy development, bibliographic database, physical media data archive inventory manager, disaster-response website development framework, science project task management, science conference planning, and spreadsheet-to-database converter.

  1. Scaffolds for whole organ tissue engineering: Construction and in vitro evaluation of a seamless, spherical and hollow collagen bladder construct with appendices.

    PubMed

    Hoogenkamp, Henk R; Pot, Michiel W; Hafmans, Theo G; Tiemessen, Dorien M; Sun, Yi; Oosterwijk, Egbert; Feitz, Wout F; Daamen, Willeke F; van Kuppevelt, Toin H

    2016-10-01

    The field of regenerative medicine has developed promising techniques to improve current neobladder strategies used for radical cystectomies or congenital anomalies. Scaffolds made from molecularly defined biomaterials are instrumental in the regeneration of tissues, but are generally confined to small flat patches and do not comprise the whole organ. We have developed a simple, one-step casting method to produce a seamless large hollow collagen-based scaffold, mimicking the shape of the whole bladder, and with integrated anastomotic sites for ureters and urethra. The hollow bladder scaffold is highly standardized, with uniform wall thickness and a unidirectional pore structure to facilitate cell infiltration in vivo. Human and porcine bladder urothelial and smooth muscle cells were able to attach to the scaffold and maintained their phenotype in vitro. The closed luminal side and the porous outside of the scaffold facilitated the formation of an urothelial lining and infiltration of smooth muscle cells, respectively. The cells aligned according to the provided scaffold template. The technology used is highly adjustable (shape, size, materials) and may be used as a starting point for research to an off-the-shelf medical device suitable for neobladders. In this study, we describe the development of a simple, one-step casting method to produce a seamless large hollow collagen-based scaffold mimicking the shape of the whole bladder with integrated anastomotic sites for ureters and urethra. The hollow bladder scaffold is highly standardized with uniform wall thickness and a unidirectional pore structure to facilitate cell infiltration in vivo. The closed luminal surface and the porous exterior of the scaffold facilitated the formation of a urothelial lining and infiltration of smooth muscle cells, respectively. The applied technology is highly adjustable (shape, size, materials) and can be the starting point for research to an off-the-shelf medical device suitable for neobladders. Copyright © 2016. Published by Elsevier Ltd.

  2. Energy Saving Melting and Revert Reduction Technology: Improved Die Casting Process to Preserve the Life of the Inserts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Schwam, PI; Xuejun Zhu, Sr. Research Associate

    2012-09-30

    The goal of this project was to study the combined effects of die design, proper internal cooling and efficient die lubricants on die life. The project targeted improvements in die casting insert life by: Optomized Die Design for Reduced Surface Temperature: The life of die casting dies is significantly shorter when the die is exposed to elevated temperature for significant periods of time. Any die operated under conditions leading to surface temperature in excess of 1050oF undergoes structural changes that reduce its strength. Optimized die design can improve die life significantly. This improvement can be accomplished by means of coolingmore » lines, baffles and bubblers in the die. A key objective of the project was to establish criteria for the minimal distance of the cooling lines from the surface. This effort was supported with alloys and machining by BohlerUddeholm, Dunn Steel, HH Stark and Rex Buckeye. In plant testing and evaluation was conducted as in-kind cost share at St. Clair Die Casting. The Uddeholm Dievar steel evaluated in this program showed superior resistance to thermal fatigue resistance. Based on the experimental evidence, cooling lines could be placed as close as 0.5" from the surface. Die Life Extension by Optimized Die Lubrication: The life of die casting dies is affected by additions made to its surface with the proper lubricants. These lubricants will protect the surface from the considerable temperature peaks that occur when the molten melt enters the die. Dies will reach a significantly higher temperature without this lubricant being applied. The amount and type of the lubricant are critical variables in the die casting process. However, these lubricants must not corrode the die surface. This effort was supported with alloys and machining by BohlerUddeholm, Dunn Steel, HH Stark and Rex Buckeye. In plant testing and evaluation was conducted as in-kind cost share at St. Clair Die Casting. Chem- Trend participated in the program with die lubricants and technical support. Experiments conducted with these lubricants demonstrated good protection of the substrate steel. Graphite and boron nitride used as benchmarks are capable of completely eliminating soldering and washout. However, because of cost and environmental considerations these materials are not widely used in industry. The best water-based die lubricants evaluated in this program were capable of providing similar protection from soldering and washout. In addition to improved part quality and higher production rates, improving die casting processes to preserve the life of the inserts will result in energy savings and a reduction in environmental wastes. Improving die life by means of optimized cooling line placement, baffles and bubblers in the die will allow for reduced die temperatures during processing, saving energy associated with production. The utilization of optimized die lubricants will also reduce heat requirements in addition to reducing waste associated with soldering and washout. This new technology was predicted to result in an average energy savings of 1.1 trillion BTU's/year over a 10 year period. Current (2012) annual energy saving estimates, based on commercial introduction in 2010, a market penetration of 70% by 2020 is 1.26 trillion BTU's/year. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.025 Million Metric Tons of Carbon Equivalent (MM TCE).« less

  3. Materials for Advanced Ultrasupercritical Steam Turbines Task 4: Cast Superalloy Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thangirala, Mani

    The Steam Turbine critical stationary structural components are high integrity Large Shell and Valve Casing heavy section Castings, containing high temperature steam under high pressures. Hence to support the development of advanced materials technology for use in an AUSC steam turbine capable of operating with steam conditions of 760°C (1400°F) and 35 Mpa (5000 psia), Casting alloy selection and evaluation of mechanical, metallurgical properties and castability with robust manufacturing methods are mandated. Alloy down select from Phase 1 based on producability criteria and creep rupture properties tested by NETL-Albany and ORNL directed the consortium to investigate cast properties of Haynesmore » 282 and Haynes 263. The goals of Task 4 in Phase 2 are to understand a broader range of mechanical properties, the impact of manufacturing variables on those properties. Scale up the size of heats to production levels to facilitate the understanding of the impact of heat and component weight, on metallurgical and mechanical behavior. GE Power & Water Materials and Processes Engineering for the Phase 2, Task 4.0 Castings work, systematically designed and executed casting material property evaluation, multiple test programs. Starting from 15 lbs. cylinder castings to world’s first 17,000 lbs. poured weight, heavy section large steam turbine partial valve Haynes 282 super alloy casting. This has demonstrated scalability of the material for steam Turbine applications. Activities under Task 4.0, Investigated and characterized various mechanical properties of Cast Haynes 282 and Cast Nimonic 263. The development stages involved were: 1) Small Cast Evaluation: 4 inch diam. Haynes 282 and Nimonic 263 Cylinders. This provided effects of liquidus super heat range and first baseline mechanical data on cast versions of conventional vacuum re-melted and forged Ni based super alloys. 2) Step block castings of 300 lbs. and 600 lbs. Haynes 282 from 2 foundry heats were evaluated which demonstrated the importance of proper heat treat cycles for Homogenization, and Solutionizing parameters selection and implementation. 3) Step blocks casting of Nimonic 263: Carried out casting solidification simulation analysis, NDT inspection methods evaluation, detailed test matrix for Chemical, Tensile, LCF, stress rupture, CVN impact, hardness and J1C Fracture toughness section sensitivity data and were reported. 4) Centrifugal Casting of Haynes 282, weighing 1400 lbs. with hybrid mold (half Graphite and half Chromite sand) mold assembly was cast using compressor casing production tooling. This test provided Mold cooling rates influence on centrifugally cast microstructure and mechanical properties. Graphite mold section out performs sand mold across all temperatures for 0.2% YS; %Elongation, %RA, UTS at 1400°F. Both Stress-LMP and conditional Fracture toughness plots data were in the scatter band of the wrought alloy. 5) Fundamental Studies on Cooling rates and SDAS test program. Evaluated the influence of 6 mold materials Silica, Chromite, Alumina, Silica with Indirect Chills, Zircon and Graphite on casting solidification cooling rates. Actual Casting cooling rates through Liquidus to Solidus phase transition were measured with 3 different locations based thermocouples placed in each mold. Compared with solidification simulation cooling rates and measurement of SDAS, microstructure features were reported. The test results provided engineered casting potential methods, applicable for heavy section Haynes 282 castings for optimal properties, with foundry process methods and tools. 6) Large casting of Haynes 282 Drawings and Engineering FEM models and supplemental requirements with applicable specifications were provided to suppliers for the steam turbine proto type feature valve casing casting. Molding, melting and casting pouring completed per approved Manufacturing Process Plan during 2014 Q4. The partial valve casing was successfully cast after casting methods were validated with solidification simulation analysis and the casting met NDT inspection and acceptance criteria. Heat treated and sectioned to extract trepan samples at different locations comparing with cast on coupons test data. Material properties requisite for design, such as tensile, creep/rupture, LCF, Fracture Toughness, Charpy V-notch chemical analysis testing were carried out. The test results will be presented in the final report. The typical Haynes 282 large size Steam Turbine production casting from Order to Delivery foundry schedule with the activity break up is shown in Figures 107 and 108. • From Purchase Order placement to Casting pouring ~ 26 weeks. 1. Sales and commercial review 3 2. Engineering Drawings/models review 4 3. Pattern and core box manufacturing 6 4. Casting process engineering review 4 5. FEM and solidification simulation analysis 4 6. Gating & Feeder Attachments, Ceramic tiling 2 7. Molding and coremaking production scheduling 6 8. Melting planning and schedule 3 9. Pouring, cooling and shake out 2 • From Pouring to casting Delivery ~ 29 weeks 10. Shot blast and riser cutting, gates removal 3 11. Homogenizing , solutionizing HT furnace prep 4 12. Grinding, Fettling 2 13. Aging HT Cycle, cooling 2 14. VT and LPT NDT inspections 2 15. Radiographic inspection 4 16. Mechanical testing, Chemical analysis test certs 4 17. Casting weld repair upgrades and Aging PWHT 4 18. NDT after weld repairs and casting upgrades 3 19. Casting Final Inspection and test certifications 3 20. Package and delivery 2 Hence the Total Lead time from P.O to Casting delivery is approximately 55 weeks. The Task 4.2 and Task 4.3 activities and reporting completed.« less

  4. Evolution of the mandibular mesh implant.

    PubMed

    Salyer, K E; Johns, D F; Holmes, R E; Layton, J G

    1977-07-01

    Between 1960 and 1972, the Dallas Veterans Administration Hospital Maxillofacial Research Laboratory developed and made over 150 cast-mesh implants. Successive designs were ovoid, circular, and double-lumened in cross section to improve implant strength, surface area for bioattachment, and adjustability. Sleeves, collars, and bows were employed in the assembly of these implants, with an acrylic condylar head attached when indicated. In 1972, our laboratory developed a mandibular mesh tray, cast in one piece on a single sprue, with preservation of the vertically adjustable ramus. Stainless steel replaced Vitallium because of its greater malleability. Essentially, a lost-wax technique is used to cast the mesh tray. The model of a mandibular segment is duplicated as a refractory model. Mesh wax, made in our own custom-made die, is adapted to the refractory model. The unit is then sprued and invested. The wax is fired our of the mold in a gas furnace. Casting is done by the transferral of molten stainless steel from the crucible to the mold by centrifugal force in an electro-induction casting machine. Other mesh implants that have been developed are made from wire mesh, Dacron mesh, cast Ticonium, and hydroformed titanium.

  5. Energy Saving Melting and Revert Reduction Technology: Melting Efficiency in Die Casting Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Schwam

    2012-12-15

    This project addressed multiple aspects of the aluminum melting and handling in die casting operations, with the objective of increasing the energy efficiency while improving the quality of the molten metal. The efficiency of melting has always played an important role in the profitability of aluminum die casting operations. Consequently, die casters need to make careful choices in selecting and operating melting equipment and procedures. The capital cost of new melting equipment with higher efficiency can sometimes be recovered relatively fast when it replaces old melting equipment with lower efficiency. Upgrades designed to improve energy efficiency of existing equipment maymore » be well justified. Energy efficiency is however not the only factor in optimizing melting operations. Melt losses and metal quality are also very important. Selection of melting equipment has to take into consideration the specific conditions at the die casting shop such as availability of floor space, average quantity of metal used as well as the ability to supply more metal during peaks in demand. In all these cases, it is essential to make informed decisions based on the best available data.« less

  6. Synthesis, Characterization and Cold Workability of Cast Copper-Magnesium-Tin Alloys

    NASA Astrophysics Data System (ADS)

    Bravo Bénard, Agustín Eduardo; Martínez Hernández, David; González Reyes, José Gonzalo; Ortiz Prado, Armando; Schouwenaars Franssens, Rafael

    2014-02-01

    The use of Mg as an alloying element in copper alloys has largely been overlooked in scientific literature and technological applications. Its supposed tribological compatibility with iron makes it an interesting option to replace Pb in tribological alloys. This work describes the casting process of high-quality thin slabs of Cu-Mg-Sn alloys with different compositions by means of conventional methods. The resulting phases were analyzed using X-ray diffraction, scanning electron microscopy, optical microscopy, and energy dispersive X-ray spectroscopy techniques. Typical dendritic α-Cu, eutectic Cu2Mg(Sn) and eutectoid non-equilibrium microstructures were found. Tensile tests and Vickers microhardness show the excellent hardening capability of Mg as compared to other copper alloys in the as-cast condition. For some of the slabs and compositions, cold rolling reductions of over 95 pct have been easily achieved. Other compositions and slabs have failed during the deformation process. Failure analysis after cold rolling reveals that one cause for brittleness is the presence of casting defects such as microshrinkage and inclusions, which can be eliminated. However, for high Mg contents, a high volume fraction of the intermetallic phase provides a contiguous path for crack propagation through the connected interdendritic regions.

  7. Collaborative Research and Development (CR&D). Delivery Order 0031: Basic Research and Development of Ti-B Alloys

    DTIC Science & Technology

    2006-09-01

    September 2005 Abstract The grain size of as-cast Ti- 6Al - 4V is reduced by about an order of magnitude from 1700 to 200 /lm with an addition of 0.1 wt...and enhances subsequent mechanical working response [l J. The grain sizes of conventional cast titanium alloys (e.g, Ti-6AI- 4V ) are rather coarse...microstructure; Serial sectioning 1. Introduction The addition of boron to titanium alloys such as Ti­ 6AI- 4V can significantly enhance their strength

  8. Development of Integrated Die Casting Process for Large Thin-Wall Magnesium Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, Jon T.; Wang, Gerry; Luo, Alan

    The purpose of this project was to develop a process and product which would utilize magnesium die casting and result in energy savings when compared to the baseline steel product. The specific product chosen was a side door inner panel for a mid-size car. The scope of the project included: re-design of major structural parts of the door, design and build of the tooling required to make the parts, making of parts, assembly of doors, and testing (both physical and simulation) of doors. Additional work was done on alloy development, vacuum die casting, and overcasting, all in order to improvemore » the performance of the doors and reduce cost. The project achieved the following objectives: 1. Demonstrated ability to design a large thin-wall magnesium die casting. 2. Demonstrated ability to manufacture a large thin-wall magnesium die casting in AM60 alloy. 3. Tested via simulations and/or physical tests the mechanical behavior and corrosion behavior of magnesium die castings and/or lightweight experimental automotive side doors which incorporate a large, thin-wall, powder coated, magnesium die casting. Under some load cases, the results revealed cracking of the casting, which can be addressed with re-design and better material models for CAE analysis. No corrosion of the magnesium panel was observed. 4. Using life cycle analysis models, compared the energy consumption and global warming potential of the lightweight door with those of a conventional steel door, both during manufacture and in service. Compared to a steel door, the lightweight door requires more energy to manufacture but less energy during operation (i.e., fuel consumption when driving vehicle). Similarly, compared to a steel door, the lightweight door has higher global warming potential (GWP) during manufacture, but lower GWP during operation. 5. Compared the conventional magnesium die casting process with the “super-vacuum” die casting process. Results achieved with cast tensile bars suggest some improvement in tensile properties with vacuum casting. Plant trials with large castings revealed cavity fill issues attributed to cooling and partial solidification of metal in the shot sleeve while waiting for vacuum to be established in the die cavity. 6. Developed age-hardenable Mg-based alloys as potential alternatives to the AM60 and AZ91 alloys typically used in automotive applications. Mg-7%Al-based alloys having Sn or Sn+Si additions exhibited significant age hardening, but more work is needed to demonstrate significant improvement in tensile properties. Corrosion behavior of these alloys is between those of AM60 and AZ91 alloys. 7. Evaluated the die casting of magnesium directly onto either steel or aluminum tubes as a potential process to make large lightweight subassemblies. Samples were free of gross defects, but additional work is needed to increase the interfacial shear strength. Overall, the project demonstrated that an automotive door-in-white design incorporating a die cast magnesium inner panel and a stamped aluminum outer panel can achieve approximately 50% mass reduction compared to the stamped steel baseline door-in-white. This leads to reduced energy consumption when driving the vehicle, which should more than offset the increased embedded energy of manufacture associated with the lighter metals. However, additional design work would be needed in order to meet the mechanical performance required of a door. Development of high-strength, high-ductility magnesium alloy castings would help make this technology more attractive for potential use in the side doors on automobiles. Also, increased use of recycled magnesium and aluminum would reduce the embedded energy and greenhouse gas emissions associated with the manufacture of this type of lightweight door. Commercialization planning of the type of lightweight door technology addressed in this project would be contingent upon the doors meeting all technical performance requirements of the car maker. The specific lightweight door developed in this project didn’t meet some of those requirements, but a preliminary business case study was conducted anyhow. This study considered the ratio of cost increase to mass decrease when the lightweight door is compared to a baseline steel door. The ratio was found to be in an acceptable range for some vehicle programs, especially if the number of such vehicles to be produced is equal to or slightly less than the estimated 250,000-shot life of the die set. This would allow for the investment in the dies to be spread across many parts and thereby help minimize the cost increase.« less

  9. Peculiarities of organization of project and research activity of students in computer science, physics and technology

    NASA Astrophysics Data System (ADS)

    Stolyarov, I. V.

    2017-01-01

    The author of this article manages a project and research activity of students in the areas of computer science, physics, engineering and biology, basing on the acquired experience in these fields. Pupils constantly become winners of competitions and conferences of different levels, for example, three of the finalists of Intel ISEF in 2013 in Phoenix (Arizona, USA) and in 2014 in Los Angeles (California, USA). In 2013 A. Makarychev received the "Small Nobel prize" in Computer Science section and special award sponsors - the company's CAST. Scientific themes and methods suggested by the author and developed in joint publications of students from Russia, Germany and Austria are the patents for invention and certificates for registration in the ROSPATENT. The article presents the results of the implementation of specific software and hardware systems in physics, engineering and medicine.

  10. High Throughput Transcriptomics: From screening to pathways

    EPA Science Inventory

    The EPA ToxCast effort has screened thousands of chemicals across hundreds of high-throughput in vitro screening assays. The project is now leveraging high-throughput transcriptomic (HTTr) technologies to substantially expand its coverage of biological pathways. The first HTTr sc...

  11. JPRS Report, Science & Technology, Japan

    DTIC Science & Technology

    1987-12-02

    casting nathod —.ntnoshar ic sintering nethod _Reaotion sintering nethod .Btlf-iintering nethod „Recrystallizing sintering nathod -Hot Porning ...was completed by photo- graphically recalling even such things as how bolts were fastened to achieve a complete copy similar to a video replay of

  12. ExpoCast: Exposure Science for Prioritization and Toxicity Testing (T)

    EPA Science Inventory

    The US EPA National Center for Computational Toxicology (NCCT) has a mission to integrate modern computing and information technology with molecular biology to improve Agency prioritization of data requirements and risk assessment of chemicals. Recognizing the critical need for ...

  13. Reliability of multiple-degree incisal/occlusal tooth wear assessment on dental casts: findings from a fiveexaminer investigation and related clinical implications.

    PubMed

    Paesani, Daniel A; Guarda-Nardini, Luca; Gelos, Carlota; Salmaso, Luigi; Manfredini, Daniele

    2014-03-01

    The aim was to answer the clinical research question: is incisal/occlusal tooth wear assessment on dental casts performed by five professionals with expertise in different fields of dentistry reliable? Five examiners with different fields of expertise in the dental profession assessed tooth wear on dental casts of 45 subjects, based on a six-degree rating of incisal/occlusal wear. After a calibration meeting, the examiners evaluated the casts individually and various issues concerning interexaminer agreement and reliability were assessed. A total of 872 teeth were evaluated. The five examiners agreed only for the rating of 6.6% of the teeth. The teeth with the highest percentage of agreement were the premolars. Pairwise comparison of the assessments of the examiners #1 (bruxism expert), #2 (orthodontist), #3 (temporomandibular disorders [TMD] and occlusion expert), #4 (dental nurse) showed fair to moderate agreement, with κ-values ranging from 0.306 to 0.577, whilst the examiner #5 (lab technician) achieved low interexaminer reliability values with all the other four examiners. The interexaminer reliability of tooth wear assessment on dental casts performed by five professionals with expertise in different fields of dentistry is highly variable. General practitioners should keep in mind that consensus decisions by the examiners and assessment by raters belonging to the same dental discipline are recommended strategies to increase the reliability of tooth wear evaluation in the clinical setting. This investigation adds to the literature suggesting that, in a clinical setting, a single examiner's assessment of tooth wear on dental casts does not have optimal reliability and that it may be source of internal validity problems in the research setting.

  14. Non-Heat Treatable Alloy Sheet Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayden, H.W.; Barthold, G.W.; Das, S.K.

    ALCAR is an innovative approach for conducting multi-company, pre-competitive research and development programs. ALCAR has been formed to crate a partnership of aluminum producers, the American Society of Mechanical Engineers Center for Research and Technology Development (ASME/CRTD), the United States Department of Energy (USDOE), three USDOE National Laboratories, and a Technical Advisory Committee for conducting cooperative, pre-competitive research on the development of flower-cost, non-heat treated (NHT) aluminum alloys for automotive sheet applications with strength, formability and surface appearance similar to current heat treated (HT) aluminum alloys under consideration. The effort has been supported by the USDOE, Office of Transportation Technologymore » (OTT) through a three-year program with 50/50 cost share at a total program cost of $3 million. The program has led to the development of new and modified 5000 series aluminum ally compositions. Pilot production-size ingots have bee n melted, cast, hot rolled and cold rolled. Stamping trials on samples of rolled product for demonstrating production of typical automotive components have been successful.« less

  15. SpaceCast_Weekly_075_1030_628917

    NASA Image and Video Library

    2018-03-16

    SpaceCast Weekly is a NASA Television broadcast from the Johnson Space Center in Houston featuring stories about NASA’s work in human spaceflight, including the International Space Station and its crews and scientific research activities, and the development of Orion and the Space Launch System, the nextgeneration American spacecraft being built to take humans farther into space than they’ve ever gone before.

  16. SpaceCast_Weekly_2018_0413_1423_640008

    NASA Image and Video Library

    2018-04-13

    SpaceCast Weekly is a NASA Television broadcast from the Johnson Space Center in Houston featuring stories about NASA’s work in human spaceflight, including the International Space Station and its crews and scientific research activities, and the development of Orion and the Space Launch System, the nextgeneration American spacecraft being built to take humans farther into space than they’ve ever gone before.

  17. SpaceCast_Weekly_2018_110_1500_643169

    NASA Image and Video Library

    2018-04-24

    SpaceCast Weekly is a NASA Television broadcast from the Johnson Space Center in Houston featuring stories about NASA’s work in human spaceflight, including the International Space Station and its crews and scientific research activities, and the development of Orion and the Space Launch System, the nextgeneration American spacecraft being built to take humans farther into space than they’ve ever gone before.

  18. SpaceCastWeekly_2018_089_1500__634356

    NASA Image and Video Library

    2018-03-30

    SpaceCast Weekly is a NASA Television broadcast from the Johnson Space Center in Houston featuring stories about NASA’s work in human spaceflight, including the International Space Station and its crews and scientific research activities, and the development of Orion and the Space Launch System, the nextgeneration American spacecraft being built to take humans farther into space than they’ve ever gone before.

  19. SpaceCast_Weekly_2018_082_1500__631237

    NASA Image and Video Library

    2018-03-23

    SpaceCast Weekly is a NASA Television broadcast from the Johnson Space Center in Houston featuring stories about NASA’s work in human spaceflight, including the International Space Station and its crews and scientific research activities, and the development of Orion and the Space Launch System, the nextgeneration American spacecraft being built to take humans farther into space than they’ve ever gone before.

  20. Inclusive Education in India: Interpretation, Implementation, and Issues. CREATE Pathways to Access. Research Monograph No. 15

    ERIC Educational Resources Information Center

    Giffard-Lindsay, Katharine

    2007-01-01

    Children with disabilities are a minority that are not prioritised in the context of education programmes in India, although they are often found in many marginalised groups that are catered for if non-disabled, for example, girls, scheduled tribe, scheduled caste, and other backward caste children. Inclusive education may be a way of merging…

  1. Cheminformatics Analysis of EPA ToxCast Chemical Libraries to Identify Domains of Applicability for Predictive Toxicity Models and Prioritize Compounds for Toxicity Testing

    EPA Science Inventory

    An important goal of toxicology research is the development of robust methods that use in vitro and chemical structure information to predict in vivo toxicity endpoints. The US EPA ToxCast program is addressing this goal using ~600 in vitro assays to create bioactivity profiles o...

  2. Changing Attitudes in Learning and Assessment: Cast-Off "Plagiarism Detection" and Cast-On Self-Service Assessment for Learning

    ERIC Educational Resources Information Center

    Chew, Esyin; Ding, Seong Lin; Rowell, Gill

    2015-01-01

    Considering the change of attitudes of plagiarism detection to assessment for learning, it is necessary to explore the effect of the paradigm shift for Turnitin, from "plagiarism detection" to self-service learning aid. Two research questions are explored in the present study: (1) How Turnitin augments self-service skills of students and…

  3. Cast Iron Versus Creativity: Fostering Balanced Thinking in Military Professionals

    DTIC Science & Technology

    2015-06-01

    CREATIVITY: FOSTERING BALANCED THINKING IN MILITARY PROFESSIONALS by Michael H. Laplante June 2015 Thesis Advisor: Leo Blanken Co...AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE CAST IRON VERSUS CREATIVITY: FOSTERING BALANCED THINKING IN MILITARY PROFESSIONALS 5...utilizes multivariant experimentation with military officers. The research analyzes the impact of how a commander frames a problem to a subordinate. More

  4. Process research into metallic pipe wear of hot chamber die casting machines and methods ofincreasing wear resistance

    NASA Astrophysics Data System (ADS)

    Mukhametzyanova, G. F.; Kolesnikov, MS; Mukhametzyanov, I. R.; Astatshenko, V. I.

    2017-09-01

    The kinetics and reasons for metallic pipe wear of hot chamberzinc alloy die casting machines are established.Increasing metallic pipe wear components wear resistance is being achieved by means of die steelДИ - 22 with electroslag remelting modification and electron-beamremelting modification and after the processes of nitriding and boriding besides.

  5. CAST-10-2/DOA 2 Airfoil Studies Workshop Results

    NASA Technical Reports Server (NTRS)

    Ray, Edward J. (Compiler); Hill, Acquilla S. (Compiler)

    1989-01-01

    During the period of September 23 through 27, 1988, the Transonic Aerodynamics Division at the Langely Research Center hosted an International Workshop on CAST-10-2/DOA 2 Airfoil Studies. The CAST-10 studies were the outgrowth of several cooperative study agreements among the NASA, the NAE of Canada, the DLR of West Germany, and the ONERA of France. Both theoretical and experimental CAST-10 airfoil results that were obtained form an extensive series of tests and studies, were reviewed. These results provided an opportunity to make direct comparisons of adaptive wall test section (AWTS) results from the NASA 0.3-meter Transonic Cryogenic Tunnel and ONERA T-2 AWTS facilities with conventional ventilated wall wind tunnel results from the Canadian high Reynolds number two-dimensional test facility. Individual papers presented during the workshop are included.

  6. Reproducibility of ZrO2-based freeze casting for biomaterials.

    PubMed

    Naleway, Steven E; Fickas, Kate C; Maker, Yajur N; Meyers, Marc A; McKittrick, Joanna

    2016-04-01

    The processing technique of freeze casting has been intensely researched for its potential to create porous scaffold and infiltrated composite materials for biomedical implants and structural materials. However, in order for this technique to be employed medically or commercially, it must be able to reliably produce materials in great quantities with similar microstructures and properties. Here we investigate the reproducibility of the freeze casting process by independently fabricating three sets of eight ZrO2-epoxy composite scaffolds with the same processing conditions but varying solid loading (10, 15 and 20 vol.%). Statistical analyses (One-way ANOVA and Tukey's HSD tests) run upon measurements of the microstructural dimensions of these composite scaffold sets show that, while the majority of microstructures are similar, in all cases the composite scaffolds display statistically significant variability. In addition, composite scaffolds where mechanically compressed and statistically analyzed. Similar to the microstructures, almost all of their resultant properties displayed significant variability though most composite scaffolds were similar. These results suggest that additional research to improve control of the freeze casting technique is required before scaffolds and composite scaffolds can reliably be reproduced for commercial or medical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The multisensory body revealed through its cast shadows.

    PubMed

    Pavani, Francesco; Galfano, Giovanni

    2015-01-01

    One key issue when conceiving the body as a multisensory object is how the cognitive system integrates visible instances of the self and other bodies with one's own somatosensory processing, to achieve self-recognition and body ownership. Recent research has strongly suggested that shadows cast by our own body have a special status for cognitive processing, directing attention to the body in a fast and highly specific manner. The aim of the present article is to review the most recent scientific contributions addressing how body shadows affect both sensory/perceptual and attentional processes. The review examines three main points: (1) body shadows as a special window to investigate the construction of multisensory body perception; (2) experimental paradigms and related findings; (3) open questions and future trajectories. The reviewed literature suggests that shadows cast by one's own body promote binding between personal and extrapersonal space and elicit automatic orienting of attention toward the body-part casting the shadow. Future research should address whether the effects exerted by body shadows are similar to those observed when observers are exposed to other visual instances of their body. The results will further clarify the processes underlying the merging of vision and somatosensation when creating body representations.

  8. O

    NASA Astrophysics Data System (ADS)

    Donnellan, Karen

    My work is driven by the metaphysical and the potential for healing through the manipulation of energy. Points of research include the enso (the only symbol used in Zen Buddhism), which uses the circle as a symbol of wholeness, divinity, and enlightenment. The writings of Alex Grey, Eckhart Tolle and the work of Ann Hamilton will also be investigated. I plan to create work from turned wooden vortex forms, the shapes of which are based on the movement of energy within the body. These objects will be transformed from wood, through rubber, wax, plaster, iron, bronze to cast, and blown glass. This transformation through materials is becoming a metaphor for the continuous transformation of universal light and energy. As part of my material research, I will exploit various casting techniques including kiln casting, hot casting, and pate de verre. Photography, film, and projection also will be explored. Conceptually, the process will become an integral part of the work where involved, repetitive methods will be treated as a meditation or mantra and will, in turn, add a performative dimension to the work. It is through these meditative practices that I intend to imbue the work with healing energies.

  9. The multisensory body revealed through its cast shadows

    PubMed Central

    Pavani, Francesco; Galfano, Giovanni

    2015-01-01

    One key issue when conceiving the body as a multisensory object is how the cognitive system integrates visible instances of the self and other bodies with one’s own somatosensory processing, to achieve self-recognition and body ownership. Recent research has strongly suggested that shadows cast by our own body have a special status for cognitive processing, directing attention to the body in a fast and highly specific manner. The aim of the present article is to review the most recent scientific contributions addressing how body shadows affect both sensory/perceptual and attentional processes. The review examines three main points: (1) body shadows as a special window to investigate the construction of multisensory body perception; (2) experimental paradigms and related findings; (3) open questions and future trajectories. The reviewed literature suggests that shadows cast by one’s own body promote binding between personal and extrapersonal space and elicit automatic orienting of attention toward the body-part casting the shadow. Future research should address whether the effects exerted by body shadows are similar to those observed when observers are exposed to other visual instances of their body. The results will further clarify the processes underlying the merging of vision and somatosensation when creating body representations. PMID:26042079

  10. The Effects of Casting Porosity on the Tensile Behavior of Investment Cast 17-4PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Susan, D. F.; Crenshaw, T. B.; Gearhart, J. S.

    2015-08-01

    The effect of casting porosity on the mechanical behavior of investment cast 17-4PH stainless steel was studied as well as the effect of heat treatment on the alloy's sensitivity to casting defects. Interdendritic porosity, formed during solidification and shrinkage of the alloy, reduces the yield strength and ultimate tensile strength roughly in proportion to the reduction in load bearing cross-section. The effects of casting porosity on ductility (% strain, % reduction in area) are more severe, in agreement with research on other alloy systems. In this study, 10% porosity reduced the ductility of 17-4PH stainless steel by almost 80% for the high-strength H925 condition. Tensile testing at -10°C (263 K) further reduces the alloy ductility with and without pores present. In the lower strength H1100 condition, the ductility is higher than the H925 condition, as expected, and somewhat less sensitive to porosity. By measuring the area % porosity on the fracture surface of tensile specimens, the trend in failure strain versus area % porosity was obtained and analyzed using two methods: an empirical approach to determine an index of defect susceptibility with a logarithmic fit and an analytical approach based on the constitutive stress-strain behavior and critical strain concentration in the vicinity of the casting voids. The applicability of the second method depends on the amount of non-uniform strain (necking) and, as such, the softer H1100 material did not correlate well to the model. The behavior of 17-4PH was compared to previous work on cast Al alloys, Mg alloys, and other cast materials.

  11. Cellularized Cellular Solids via Freeze-Casting.

    PubMed

    Christoph, Sarah; Kwiatoszynski, Julien; Coradin, Thibaud; Fernandes, Francisco M

    2016-02-01

    The elaboration of metabolically active cell-containing materials is a decisive step toward the successful application of cell based technologies. The present work unveils a new process allowing to simultaneously encapsulate living cells and shaping cell-containing materials into solid-state macroporous foams with precisely controlled morphology. Our strategy is based on freeze casting, an ice templating materials processing technique that has recently emerged for the structuration of colloids into macroporous materials. Our results indicate that it is possible to combine the precise structuration of the materials with cellular metabolic activity for the model organism Saccharomyces cerevisiae. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Manufacturing Methods and Technology Project Summary Reports

    DTIC Science & Technology

    1982-12-01

    aluminide was used to eliminate adhesive failures. A doctor blade and expandable ring segment were selected as the tooling to apply the 0.010 inch...contractual effort is to develop manu- facturing technology for the production of integrally bladed impellers using titanium pre-alloyed powder and...Projectiles in Modernized Plants 1-16 METALS Abstracts ME-1 Projects 176 7046, 17T 7046 and 177 7046 - Precision Cast Titanium Compressor Casing ME

  13. Future requirements for advanced materials

    NASA Technical Reports Server (NTRS)

    Olstad, W. B.

    1980-01-01

    Recent advances and future trends in aerospace materials technology are reviewed with reference to metal alloys, high-temperature composites and adhesives, tungsten fiber-reinforced superalloys, hybrid materials, ceramics, new ablative materials, such as carbon-carbon composite and silica tiles used in the Shuttle Orbiter. The technologies of powder metallurgy coupled with hot isostatic pressing, near net forging, complex large shape casting, chopped fiber molding, superplastic forming, and computer-aided design and manufacture are emphasized.

  14. 20180311 - High Throughput Transcriptomics: From screening to pathways (SOT 2018)

    EPA Science Inventory

    The EPA ToxCast effort has screened thousands of chemicals across hundreds of high-throughput in vitro screening assays. The project is now leveraging high-throughput transcriptomic (HTTr) technologies to substantially expand its coverage of biological pathways. The first HTTr sc...

  15. South Africa’s Technology Sector

    DTIC Science & Technology

    2007-08-01

    Somchem’s rocket motor propellant casting pits were destroyed and sealed with concrete .135 In taking this step, South Africa became the only country...principles of restraint, responsibility, and translucence .163 Translucence or semi-transparency is distinct from the more rigorous concept of total

  16. ExpoCastDB: A Publicly Accessible Database for Observational Exposure Data

    EPA Science Inventory

    The application of environmental informatics tools for human health risk assessment will require the development of advanced exposure information technology resources. Exposure data for chemicals is often not readily accessible. There is a pressing need for easily accessible, che...

  17. Freeze Casting for Assembling Bioinspired Structural Materials.

    PubMed

    Cheng, Qunfeng; Huang, Chuanjin; Tomsia, Antoni P

    2017-12-01

    Nature is very successful in designing strong and tough, lightweight materials. Examples include seashells, bone, teeth, fish scales, wood, bamboo, silk, and many others. A distinctive feature of all these materials is that their properties are far superior to those of their constituent phases. Many of these natural materials are lamellar or layered in nature. With its "brick and mortar" structure, nacre is an example of a layered material that exhibits extraordinary physical properties. Finding inspiration in living organisms to create bioinspired materials is the subject of intensive research. Several processing techniques have been proposed to design materials mimicking natural materials, such as layer-by-layer deposition, self-assembly, electrophoretic deposition, hydrogel casting, doctor blading, and many others. Freeze casting, also known as ice-templating, is a technique that has received considerable attention in recent years to produce bioinspired bulk materials. Here, recent advances in the freeze-casting technique are reviewed for fabricating lamellar scaffolds by assembling different dimensional building blocks, including nanoparticles, polymer chains, nanofibers, and nanosheets. These lamellar scaffolds are often infiltrated by a second phase, typically a soft polymer matrix, a hard ceramic matrix, or a metal matrix. The unique architecture of the resultant bioinspired structural materials displays excellent mechanical properties. The challenges of the current research in using the freeze-casting technique to create materials large enough to be useful are also discussed, and the technique's promise for fabricating high-performance nacre-inspired structural materials in the future is reviewed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Examination of the Position Accuracy of Implant Abutments Reproduced by Intra-Oral Optical Impression

    PubMed Central

    Odaira, Chikayuki; Kobayashi, Takuya; Kondo, Hisatomo

    2016-01-01

    An impression technique called optical impression using intraoral scanner has attracted attention in digital dentistry. This study aimed to evaluate the accuracy of the optical impression, comparing a virtual model reproduced by an intraoral scanner to a working cast made by conventional silicone impression technique. Two implants were placed on a master model. Working casts made of plaster were fabricated from the master model by silicone impression. The distance between the ball abutments and the angulation between the healing abutments of 5 mm and 7 mm height at master model were measured using Computer Numerical Control Coordinate Measuring Machine (CNCCMM) as control. Working casts were then measured using CNCCMM, and virtual models via stereo lithography data of master model were measured by a three-dimensional analyzing software. The distance between ball abutments of the master model was 9634.9 ± 1.2 μm. The mean values of trueness of the Lava COS and working casts were 64.5 μm and 22.5 μm, respectively, greater than that of control. The mean of precision values of the Lava COS and working casts were 15.6 μm and 13.5 μm, respectively. In the case of a 5-mm-height healing abutment, mean angulation error of the Lava COS was greater than that of the working cast, resulting in significant differences in trueness and precision. However, in the case of a 7-mm-height abutment, mean angulation errors of the Lava COS and the working cast were not significantly different in trueness and precision. Therefore, distance errors of the optical impression were slightly greater than those of conventional impression. Moreover, the trueness and precision of angulation error could be improved in the optical impression using longer healing abutments. In the near future, the development of information technology could enable improvement in the accuracy of the optical impression with intraoral scanners. PMID:27706225

  19. Technetium Getters to Improve Cast Stone Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Lawter, Amanda R.; Serne, R. Jeffrey

    2015-10-15

    The cementitious material known as Cast Stone has been selected as the preferred waste form for solidification of aqueous secondary liquid effluents from the Hanford Tank Waste Treatment and Immobilization Plant (WTP) process condensates and low-activity waste (LAW) melter off-gas caustic scrubber effluents. Cast Stone is also being evaluated as a supplemental immobilization technology to provide the necessary LAW treatment capacity to complete the Hanford tank waste cleanup mission in a timely and cost effective manner. Two radionuclides of particular concern in these waste streams are technetium-99 (99Tc) and iodine-129 (129I). These radioactive tank waste components contribute the most tomore » the environmental impacts associated with the cleanup of the Hanford site. A recent environmental assessment of Cast Stone performance, which assumes a diffusion controlled release of contaminants from the waste form, calculates groundwater in excess of the allowable maximum permissible concentrations for both contaminants. There is, therefore, a need and an opportunity to improve the retention of both 99Tc and 129I in Cast Stone. One method to improve the performance of Cast Stone is through the addition of “getters” that selectively sequester Tc and I, therefore reducing their diffusion out of Cast Stone. In this paper, we present results of Tc and I removal from solution with various getters with batch sorption experiments conducted in deionized water (DIW) and a highly caustic 7.8 M Na Ave LAW simulant. In general, the data show that the selected getters are effective in DIW but their performance is comprised when experiments are performed with the 7.8 M Na Ave LAW simulant. Reasons for the mitigated performance in the LAW simulant may be due to competition with Cr present in the 7.8 M Na Ave LAW simulant and to a pH effect.« less

  20. A comparison of the accuracy of polyether, polyvinyl siloxane, and plaster impressions for long-span implant-supported prostheses.

    PubMed

    Hoods-Moonsammy, Vyonne J; Owen, Peter; Howes, Dale G

    2014-01-01

    The purpose of this study was to compare the capacity of different impression materials to accurately reproduce the positions of five implant analogs on a master model by comparing the resulting cast with the stainless steel master model. The study was motivated by the knowledge that distortions can occur during impression making and the pouring of casts and that this distortion may produce inaccuracies of subsequent restorations, especially long-span castings for implant superstructures. The master model was a stainless steel model with five implant analogs. The impression materials used were impression plaster (Plastogum, Harry J Bosworth), a polyether (Impregum Penta, 3M ESPE), and two polyvinyl siloxane (PVS) materials (Aquasil Monophase and Aquasil putty with light-body wash, Dentsply). Five impressions were made with each impression material and cast in die stone under strictly controlled laboratory conditions. The positions of the implants on the master model, the impression copings, and the implant analogs in the subsequent casts were measured using a coordinate measuring machine that measures within 4 μm of accuracy. Statistical analyses indicated that distortion occurred in all of the impression materials, but inconsistently. The PVS monophase material reproduced the master model most accurately. Although there was no significant distortion between the impressions and the master model or between the impressions and their casts, there were distortions between the master model and the master casts, which highlighted the cumulative effects of the distortions. The polyether material proved to be the most reliable in terms of predictability. The impression plaster displayed cumulative distortion, and the PVS putty with light body showed the least reliability. Some of the distortions observed are of clinical significance and likely to contribute to a lack of passive fit of any superstructure. The inaccuracy of these analog materials and procedures suggested that greater predictability may lie in digital technology.

  1. Development of volume deposition on cast iron by additive manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Niyanth; Dehoff, Ryan R.; Jordan, Brian H.

    2016-11-10

    ORNL partnered with Cummins to demonstrate the feasibility of using additive manufacturing techniques to help develop repair techniques for refurbished cast iron engine blocks. Cummins is interested in the refurbished engine business due to the increased cost savings and reduced emissions. It is expected that by refurbishing engines could help reduce the green house gas emissions by as much as 85%. Though such repair techniques are possible in principle there has been no major industry in the automotive sector that has deployed this technology. Therefore phase-1 would seek to evaluate the feasibility of using the laser directed energy deposition techniquemore » to repair cast iron engine blocks. The objective of the phase-1 would be to explore various strategies and understand the challenges involved. During phase-1 deposits were made using Inconel-718, Nickel, Nr-Cr-B braze filler. Inconel 718 builds showed significant cracking in the heat-affected zone in the cast iron. Nickel was used to reduce the cracking in the cast iron substrate, however the Ni builds did not wet the substrate sufficiently resulting in poor dimensional tolerance. In order to increase wetting the Ni was alloyed with the Ni-Cr-B braze to decrease the surface tension of Ni. This however resulted in significant cracks in the build due to shrinkage stresses associated with multiple thermal cycling. Hence to reduce the residual stresses in the builds the DMD-103D equipment was modified and the cast iron block was pre heated using cartridge heaters. Inconel-718 alloyed with Ni was deposited on the engine block. The pre-heated deposits showed a reduced susceptibility to cracking. If awarded the phase-2 of the project would aim to develop process parameters to achieve a crack free deposit engine block.« less

  2. Population differentiation of southern Indian male lineages correlates with agricultural expansions predating the caste system.

    PubMed

    Arunkumar, Ganeshprasad; Soria-Hernanz, David F; Kavitha, Valampuri John; Arun, Varatharajan Santhakumari; Syama, Adhikarla; Ashokan, Kumaran Samy; Gandhirajan, Kavandanpatti Thangaraj; Vijayakumar, Koothapuli; Narayanan, Muthuswamy; Jayalakshmi, Mariakuttikan; Ziegle, Janet S; Royyuru, Ajay K; Parida, Laxmi; Wells, R Spencer; Renfrew, Colin; Schurr, Theodore G; Smith, Chris Tyler; Platt, Daniel E; Pitchappan, Ramasamy

    2012-01-01

    Previous studies that pooled Indian populations from a wide variety of geographical locations, have obtained contradictory conclusions about the processes of the establishment of the Varna caste system and its genetic impact on the origins and demographic histories of Indian populations. To further investigate these questions we took advantage that both Y chromosome and caste designation are paternally inherited, and genotyped 1,680 Y chromosomes representing 12 tribal and 19 non-tribal (caste) endogamous populations from the predominantly Dravidian-speaking Tamil Nadu state in the southernmost part of India. Tribes and castes were both characterized by an overwhelming proportion of putatively Indian autochthonous Y-chromosomal haplogroups (H-M69, F-M89, R1a1-M17, L1-M27, R2-M124, and C5-M356; 81% combined) with a shared genetic heritage dating back to the late Pleistocene (10-30 Kya), suggesting that more recent Holocene migrations from western Eurasia contributed <20% of the male lineages. We found strong evidence for genetic structure, associated primarily with the current mode of subsistence. Coalescence analysis suggested that the social stratification was established 4-6 Kya and there was little admixture during the last 3 Kya, implying a minimal genetic impact of the Varna (caste) system from the historically-documented Brahmin migrations into the area. In contrast, the overall Y-chromosomal patterns, the time depth of population diversifications and the period of differentiation were best explained by the emergence of agricultural technology in South Asia. These results highlight the utility of detailed local genetic studies within India, without prior assumptions about the importance of Varna rank status for population grouping, to obtain new insights into the relative influences of past demographic events for the population structure of the whole of modern India.

  3. Light weight and high strength materials made of recycled steel and aluminum

    NASA Astrophysics Data System (ADS)

    Nounezi, Thomas

    Recycling has proven not only to address today's economical, environmental and social issues, but also to be imperative for the sustainability of human technology. The current thesis has investigated the feasibility of a new philosophy for Recycling (Alloying-Recycling) using steel 1020 and aluminum 6061T6. The study was limited to the metallurgical aspects only and has highlighted the potential of recycled alloys made of recycled aluminum and steel to exhibit substantially increased wear resistance and strength-to-weight ratio as compared to initial primary materials. Three alloy-mixtures are considered: TN3 (5wt% 1020 +95wt% 6061T6); TN5 (0.7wt% 1020 + 99.3wt% 6061T6); and TN4 (10wt% 6061T6 + 90wt% 1020). A Tucker induction power supply system (3kW; 135-400 kHz) is used to melt the alloy mixtures for casting in graphite crucibles. Heat treatment of the cast samples is done using a radiation box furnace. Microscopy, Vickers hardness and pin-on-disc abrasive wear tests are performed. Casting destroyed the initial microstructures of the alloys leading to a hardness reduction in the as-cast and solution heat-treated aluminum rich samples to 60 Hv from 140 Hv. Ageing slightly increased the hardness of the cast samples and provided a wear resistance two times higher than that of the initial 6061T6 material. On the steel rich side, the hardness of the as-cast TN4 was 480 Hv, which is more than twice as high as the initial hardness of steel 1020 of 202 Hv; this hints to strong internal and residual stress, probably martensite formation during fast cooling following casting. Solution heat treatment lowered the hardness to the original value of steel 1020, but provided about ten (10) times higher wear resistance; this suggests higher ductility and toughness of normalised TN4 as compared to 1020. In addition, TN4 exhibits about 25% weight reduction as compared to 1020. The actual recycling process and the effect of non-metallic impurities shall be investigated in future works. Also, the casting and heat treatment processes need to be improved.

  4. Comparison of Growing Rod Instrumentation Versus Serial Cast Treatment for Early-Onset Scoliosis.

    PubMed

    Johnston, Charles E; McClung, Anna M; Thompson, George H; Poe-Kochert, Connie; Sanders, James O

    2013-09-01

    A comparison of 2 methods of early-onset scoliosis treatment using radiographic measures and complication rates. To determine whether a delaying tactic (serial casting) has comparable efficacy to a surgical method (insertion of growing rod instrumentation [GRI]) in the initial phase of early-onset deformity management. Serial casts are used in experienced centers to delay operative management of curves of surgical magnitude (greater than 50°) in children up to age 6 years. A total of 27 casted patients from 3 institutions were matched with 27 patients from a multicenter database according to age (within 6 months of each other), curve magnitude (within 10° of each other), and diagnosis. Outcomes were compared according to major curve magnitude, spine length (T1-S1), duration and number of treatment encounters, and complications. There was no difference in age (5.5 years) or initial curve magnitude (65°) between groups, which reflects the accuracy of the matching process. Six pairs of patients had neuromuscular diagnoses, 11 had idiopathic deformities, and 10 had syndromic scoliosis. Growing rod instrumentation patients had smaller curves (45.9° vs. 64.9°; p = .002) at follow-up, but there was no difference in absolute spine length (GRI = 32.0 cm; cast = 30.6 cm; p = .26), even though GRI patients had been under treatment for a longer duration (4.5 vs. 2.4 years; p < .0001) and had undergone a mean of 5.5 lengthenings compared with 4.0 casts. Growing rod instrumentation patients had a 44% complication rate, compared with 1 cast complication. Of 27 casted patients, 15 eventually had operative treatment after a mean delay of 1.7 years after casting. Cast treatment is a valuable delaying tactic for younger children with early-onset scoliosis. Spine deformity is adequately controlled, spine length is not compromised, and surgical complications associated with early GRI treatment are avoided. Copyright © 2013 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.

  5. A Critical Evaluation of the Updated Evidence for Casting for Equinus Deformity in Children with Cerebral Palsy.

    PubMed

    Tustin, Kylee; Patel, Anita

    2017-01-01

    Equinus deformity is common in ambulant children with cerebral palsy (CP). Although lower leg casting is frequently used, the physiological basis for casting and effects beyond range of motion (ROM) gains are unclear. This review critically evaluates the updated evidence for casting in the management of ankle equinus in children with CP. Comprehensive searches were conducted using electronic databases AMED, MEDLINE, CINAHL, Scopus, PEDro and the Cochrane Database of Systematic Reviews, publication years 2005-2014, in order to identify literature published since an earlier comprehensive systematic review. Only studies evaluating lower leg casting for conservative management of equinus deformity in children with CP were considered. Two independent raters critically appraised studies against the hierarchy of levels of evidence and rigour of study conduct questions proposed by the American Academy of Cerebral Palsy and Developmental Medicine's methodology for systematic review. Four relevant systematic reviews were identified, although these largely concerned earlier literature. Five original studies were included, all demonstrating improvement in dorsiflexion ROM. Combined treatment with botulinum toxin and casting offered greater and/or more sustained ROM gains than botulinum toxin alone in three studies. Effects on gait parameters and motor function were inconsistent. Participation outcomes were not evaluated. Methodological limitations make firm conclusions difficult. Recent years have offered little progress in the state of evidence for casting in the management of equinus deformity. Casting appears to offer at least short-term improvement in ankle dorsiflexion, although the proposition that this improves function or avoids surgery is not well substantiated. Future research needs to ensure more robust study design and broader evaluation across domains of the International Classification of Functioning, Disability and Health to determine the functional and long-term effect of casting for equinus deformity. Greater knowledge is required of the effect of casting on muscle structure and function in spastic CP. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  6. The Use of Underground Research Laboratories to Support Repository Development Programs. A Roadmap for the Underground Research Facilities Network.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacKinnon, Robert J.

    2015-10-26

    Under the auspices of the International Atomic Energy Agency (IAEA), nationally developed underground research laboratories (URLs) and associated research institutions are being offered for use by other nations. These facilities form an Underground Research Facilities (URF) Network for training in and demonstration of waste disposal technologies and the sharing of knowledge and experience related to geologic repository development, research, and engineering. In order to achieve its objectives, the URF Network regularly sponsors workshops and training events related to the knowledge base that is transferable between existing URL programs and to nations with an interest in developing a new URL. Thismore » report describes the role of URLs in the context of a general timeline for repository development. This description includes identification of key phases and activities that contribute to repository development as a repository program evolves from an early research and development phase to later phases such as construction, operations, and closure. This information is cast in the form of a matrix with the entries in this matrix forming the basis of the URF Network roadmap that will be used to identify and plan future workshops and training events.« less

  7. Advanced Gas Turbine (AGT) Technology Development Project

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This report is the eleventh in the series of Technical Summary reports for the Advanced Gas Turbine (AGT) Technology Development Project, authorized under NASA Contract DEN3-167, and sponsored by the Department of Energy (DOE). This report was prepared by Garrett Turbine Engine Company, A Division of the Garrett Corporation, and includes information provided by Ford Motor Company, the Standard Oil Company, and AiResearch Casting Company. This report covers plans and progress for the period July 1, 1985 through June 30, 1986. Technical progress during the reported period was highlighted by the 85-hour endurance run of an all-ceramic engine operating in the 2000 to 2250 F temperature regime. Component development continued in the areas of the combustion/fuel injection system, regenerator and seals system, and ceramic turbine rotor attachment design. Component rig testing saw further refinements. Ceramic materials showed continued improvements in required properties for gas turbine applications; however, continued development is needed before performance and reliability goals can be set.

  8. Geological-Technical and Geo-engineering Aspects of Dimensional Stone Underground Quarrying

    NASA Astrophysics Data System (ADS)

    Fornaro, Mauro; Lovera, Enrico

    Underground exploitation of dimensional stones is not a novelty, being long since practised, as proved by a number of historical documents and by a certain number of ancient quarrying voids throughout the world. Anyway, so far, open cast quarrying has been the most adopted practice for the excavation of dimensional stones. One primary reason that led to this situation is of course connected to the lower production costs of an open cast exploitation compared to an underground one. This cheapness has been supported by geological and technical motives: on the one hand, the relative availability of surface deposits and, on the other, the development of technologies, which often can be used only outdoor. But, nowadays, general costs of quarrying activities should be re-evaluated because new, and often proper, restrictions have been strongly rising during recent years. As a consequence of both environmental and technical restrictions, pressure will more and more arise to reduce open cast quarrying and to promote underground exploitations. The trend is already well marked for weak rocks - for instance in the extractive basin of Carrara, where about one hundred quarries are active, 30 per cent is working underground, but also in Spain, Portugal and Greece the number of underground marble quarries is increasing - but not yet for hard rock quarrying, where only few quarries are working underground all around the world. One reason has to be found in cutting technologies traditionally used. In weak rocks, diamond wire saw and chain cutter are usable, with few adaptations, in underground spaces, while drilling and blasting, the traditional exploitation method for hard stone, is not easily usable in a confined space, where often only one free face is available. Many technicians and researchers agree that two technologies will probably open the door to underground quarrying in hard rocks: diamond wire and water jet. The first one is already available; the second should still be improved. The paper refers to some of the most important and significant examples in Italy, and underlines the possibility of extending, by underground quarrying, the exploitation of important and well-appreciated natural stones, as the quartzite-sandstone of the Tosco-Emiliano Appennini (Firenzuola Stone) and the Alpine gneisses. In order to pass from the simple experimental stage (explorative drift) to the more complex 3D design of the underground voids, detailed geo-structural reconstruction of the rock body and specific lithological in situ surveys are needed: such important aspects represent a very interesting common field between mining engineers and geologists.

  9. Three-dimensional printing of transparent fused silica glass

    NASA Astrophysics Data System (ADS)

    Kotz, Frederik; Arnold, Karl; Bauer, Werner; Schild, Dieter; Keller, Nico; Sachsenheimer, Kai; Nargang, Tobias M.; Richter, Christiane; Helmer, Dorothea; Rapp, Bastian E.

    2017-04-01

    Glass is one of the most important high-performance materials used for scientific research, in industry and in society, mainly owing to its unmatched optical transparency, outstanding mechanical, chemical and thermal resistance as well as its thermal and electrical insulating properties. However, glasses and especially high-purity glasses such as fused silica glass are notoriously difficult to shape, requiring high-temperature melting and casting processes for macroscopic objects or hazardous chemicals for microscopic features. These drawbacks have made glasses inaccessible to modern manufacturing technologies such as three-dimensional printing (3D printing). Using a casting nanocomposite, here we create transparent fused silica glass components using stereolithography 3D printers at resolutions of a few tens of micrometres. The process uses a photocurable silica nanocomposite that is 3D printed and converted to high-quality fused silica glass via heat treatment. The printed fused silica glass is non-porous, with the optical transparency of commercial fused silica glass, and has a smooth surface with a roughness of a few nanometres. By doping with metal salts, coloured glasses can be created. This work widens the choice of materials for 3D printing, enabling the creation of arbitrary macro- and microstructures in fused silica glass for many applications in both industry and academia.

  10. Spherical primary optical telescope (SPOT) segments

    NASA Astrophysics Data System (ADS)

    Hall, Christopher; Hagopian, John; DeMarco, Michael

    2012-09-01

    The spherical primary optical telescope (SPOT) project is an internal research and development program at NASA Goddard Space Flight Center. The goals of the program are to develop a robust and cost effective way to manufacture spherical mirror segments and demonstrate a new wavefront sensing approach for continuous phasing across the segmented primary. This paper focuses on the fabrication of the mirror segments. Significant cost savings were achieved through the design, since it allowed the mirror segments to be cast rather than machined from a glass blank. Casting was followed by conventional figuring at Goddard Space Flight Center. After polishing, the mirror segments were mounted to their composite assemblies. QED Technologies used magnetorheological finishing (MRF®) for the final figuring. The MRF process polished the mirrors while they were mounted to their composite assemblies. Each assembly included several magnetic invar plugs that extended to within an inch of the face of the mirror. As part of this project, the interaction between the MRF magnetic field and invar plugs was evaluated. By properly selecting the polishing conditions, MRF was able to significantly improve the figure of the mounted segments. The final MRF figuring demonstrates that mirrors, in the mounted configuration, can be polished and tested to specification. There are significant process capability advantes due to polishing and testing the optics in their final, end-use assembled state.

  11. Exp_55_SpaceCast_Weekly_2018_068_1559_626555

    NASA Image and Video Library

    2018-03-12

    SpaceCast Weekly is a NASA Television broadcast from the Johnson Space Center in Houston featuring stories about NASA’s work in human spaceflight, including the International Space Station and its crews and scientific research activities, and the development of Orion and the Space Launch System, the nextgeneration American spacecraft being built to take humans farther into space than they’ve ever gone before.

  12. 4-27-18 SpaceCast Weekly_ 2018_117_1600_645761

    NASA Image and Video Library

    2018-04-27

    SpaceCast Weekly is a NASA Television broadcast from the Johnson Space Center in Houston featuring stories about NASA’s work in human spaceflight, including the International Space Station and its crews and scientific research activities, and the development of Orion and the Space Launch System, the nextgeneration American spacecraft being built to take humans farther into space than they’ve ever gone before.

  13. Predictive Capabilities of Multiphysics and Multiscale Models in Modeling Solidification of Steel Ingots and DC Casting of Aluminum

    NASA Astrophysics Data System (ADS)

    Combeau, Hervé; Založnik, Miha; Bedel, Marie

    2016-08-01

    Prediction of solidification defects, such as macrosegregation and inhomogeneous microstructures, constitutes a key issue for industry. The development of models of casting processes needs to account for several imbricated length scales and different physical phenomena. For example, the kinetics of the growth of microstructures needs to be coupled with the multiphase flow at the process scale. We introduce such a state-of-the-art model and outline its principles. We present the most recent applications of the model to casting of a heavy steel ingot and to direct chill casting of a large Al alloy sheet ingot. Their ability to help in the understanding of complex phenomena, such as the competition between nucleation and growth of grains in the presence of convection of the liquid and of grain motion is shown, and its predictive capabilities are discussed. Key issues for future developments and research are addressed.

  14. Control system of water flow and casting speed in continuous steel casting

    NASA Astrophysics Data System (ADS)

    Tirian, G. O.; Gheorghiu, C. A.; Hepuţ, T.; Chioncel, C.

    2017-05-01

    This paper presents the results of research based on real data taken from the installation process at Arcelor Mittal Hunedoara. Using Matlab Simulink an intelligent system is made that takes in data from the process and makes real time adjustments in the rate of flow of the cooling water and the speed of casting that eliminates fissures in the poured material from the secondary cooling of steel. Using Matlab Simulink simulation environment allowed for qualitative analysis for various real world situations. Thus, compared to the old method of approach for the problem of cracks forming in the crust of the steel in the continuous casting, this new method, proposed and developed, brings safety and precision in this complex process, thus removing any doubt on the existence or non-existence of cracks and takes the necessary steps to prevent and correct them.

  15. Using three-dimensional imaging to assess treatment outcomes in orthodontics: a progress report from the University of the Pacific.

    PubMed

    Baumrind, S; Carlson, S; Beers, A; Curry, S; Norris, K; Boyd, R L

    2003-01-01

    Past research in integrated three-dimensional (3D) craniofacial mapping at the Craniofacial Research Instrumentation Laboratory (CRIL) of the University of the Pacific is summarized in narrative form. The advantages and limitations of recent commercial developments in the application of cone beam geometry volumetric X-ray scanners in dentistry and surface digital mapping of study casts are discussed. The rationale for methods currently in development at CRIL for merging longitudinal information from existing 3D study casts and two-dimensional lateral X-ray cephalograms in studies of orthodontic treatment outcome is presented.

  16. Magnetically assisted slip casting of bioinspired heterogeneous composites

    NASA Astrophysics Data System (ADS)

    Le Ferrand, Hortense; Bouville, Florian; Niebel, Tobias P.; Studart, André R.

    2015-11-01

    Natural composites are often heterogeneous to fulfil functional demands. Manufacturing analogous materials remains difficult, however, owing to the lack of adequate and easily accessible processing tools. Here, we report an additive manufacturing platform able to fabricate complex-shaped parts exhibiting bioinspired heterogeneous microstructures with locally tunable texture, composition and properties, as well as unprecedentedly high volume fractions of inorganic phase (up to 100%). The technology combines an aqueous-based slip-casting process with magnetically directed particle assembly to create programmed microstructural designs using anisotropic stiff platelets in a ceramic, metal or polymer functional matrix. Using quantitative tools to control the casting kinetics and the temporal pattern of the applied magnetic fields, we demonstrate that this approach is robust and can be exploited to design and fabricate heterogeneous composites with thus far inaccessible microstructures. Proof-of-concept examples include bulk composites with periodic patterns of microreinforcement orientation, and tooth-like bilayer parts with intricate shapes exhibiting site-specific composition and texture.

  17. Europe Report, Science and Technology

    DTIC Science & Technology

    1986-12-01

    i) the absence of secondary oxidation of the liquid steel to the advantagf of the inclusional state; (ii) the possibility of more easily casting...processes, inclusions cannot become separated 11 from the bar, thus rising to the surface, which is why the inclusional state of the steel, that

  18. LOCATING LEAKS WITH ACOUSTIC TECHNOLOGY

    EPA Science Inventory

    Many water distribution systems in this country are almost 100 years old. About 26 percent of piping in these systems is made of unlined cast iron or steel and is in poor condition. Many methods that locate leaks in these pipes are time-consuming, costly, disruptive to operations...

  19. A new lead alloy for automotive batteries operating under high-temperature conditions

    NASA Astrophysics Data System (ADS)

    Albert, L.; Goguelin, A.; Jullian, E.

    The operating conditions of automotive and some industrial batteries are involving increasingly higher temperatures and heavier duty cycles. These place stress on the positive-grid materials which are presently not sufficiently resistant to corrosion and to creep. Conventional lead-calcium-tin-aluminium alloys can usually be optimized by a proper choice of calcium and tin contents for each specific manufacturing technology. With the new requirements of customers and the typical behaviour of these conventional alloys, however, there is no more room for improvement without searching for additional alloying elements. The work reported here shows how the doping of conventional lead-calcium-tin-aluminium alloys with barium improves mechanical properties (tensile strength and creep resistance) and increases corrosion resistance at temperatures between 50 and 75°C. Grid materials prepared by two manufacturing technologies (gravity cast; continuous cast followed by expansion) are investigated. Both the mechanical properties and the corrosion behaviour of the resulting grids are evaluated.

  20. Accuracy of a Real-Time, Computerized, Binocular, Three-Dimensional Trajectory-Tracking Device for Recording Functional Mandibular Movements

    PubMed Central

    Zhao, Tian; Yang, Huifang; Sui, Huaxin; Salvi, Satyajeet Sudhir; Wang, Yong; Sun, Yuchun

    2016-01-01

    Objective Developments in digital technology have permitted researchers to study mandibular movements. Here, the accuracy of a real-time, computerized, binocular, three-dimensional (3D) trajectory-tracking device for recording functional mandibular movements was evaluated. Methods An occlusal splint without the occlusal region was created based on a plaster cast of the lower dentition. The splint was rigidly connected with a target on its labial side and seated on the cast. The cast was then rigidly attached to the stage of a high-precision triaxial electronic translator, which was used to move the target-cast-stage complex. Half-circular movements (5.00-mm radius) in three planes (XOY, XOZ, YOZ) and linear movements along the x-axis were performed at 5.00 mm/s. All trajectory points were recorded with the binocular 3D trajectory-tracking device and fitted to arcs or lines, respectively, with the Imageware software. To analyze the accuracy of the trajectory-tracking device, the mean distances between the trajectory points and the fitted arcs or lines were measured, and the mean differences between the lengths of the fitted arcs’ radii and a set value (5.00 mm) were then calculated. A one-way analysis of variance was used to evaluate the spatial consistency of the recording accuracy in three different planes. Results The mean distances between the trajectory points and fitted arcs or lines were 0.076 ± 0.033 mm or 0.089 ± 0.014 mm. The mean difference between the lengths of the fitted arcs’ radii and the set value (5.00 mm) was 0.025 ± 0.071 mm. A one-way ANOVA showed that the recording errors in three different planes were not statistically significant. Conclusion These results suggest that the device can record certain movements at 5.00 mm/s, which is similar to the speed of functional mandibular movements. In addition, the recordings had an error of <0.1 mm and good spatial consistency. Thus, the device meets some of the requirements necessary for recording human mandibular movements. PMID:27701462

  1. Multi-gel casting apparatus for vertical polyacrylamide gels with in-built solution flow system and liquid level detectors.

    PubMed

    Maurye, Praveen; Basu, Arpita; Bandyopadhyay, Tapas Kumar; Biswas, Jayanta Kumar; Mohanty, Bimal Prasana

    2017-08-01

    PAGE is the most widely used technique for the separation and biochemical analysis of biomolecules. The ever growing field of proteomics and genomics necessitates the analysis of many proteins and nucleic acid samples to understand further about the structure and function of cells. Simultaneous analysis of multiple protein samples often requires casting of many PAGE gels. Several variants of multi-gel casting/electrophoresis apparatuses are frequently used in research laboratories. Requirement of supplementary gels to match the growing demand for analyzing additional protein samples sometimes become a cause of concern. Available apparatuses are not amenable to and therefore, not recommended for any modification to accommodate additional gel casting units other than what is prescribed by the manufacturer. A novel apparatus is described here for casting multiple PAGE gels comprising four detachable components that provide enhanced practicability and performance of the apparatus. This newly modified apparatus promises to be a reliable source for making multiple gels in less time without hassle. Synchronized functioning of unique components broaden the possibilities of developing inexpensive, safe, and time-saving multi-gel casting apparatus. This apparatus can be easily fabricated and modified to accommodate desired number of gel casting units. The estimated cost (∼$300) for fabrication of the main apparatus is very competitive and effortless assembly procedure can be completed within ∼30 min. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Playing with data at EPA—ToxCast, ExpoCast, HTTK, and the ...

    EPA Pesticide Factsheets

    This is a lecture for the Emory Exposome Summer Course in Atlanta, Georgia. The focus will be on how CSS research and tools inform research on exposomics, particularly with identifying relevant chemicals and chemicals pathways from non-targeted monitoring data. This is an opportunity to reach a broad audience of researchers. There will be a live demo of the CSS Chemistry dashboard and CPcat at the end of the presentation. This is a lecture for the Emory Exposome Summer Course in Atlanta, Georgia. The focus will be on how CSS research and tools inform research on exposomics, particularly with identifying relevant chemicals and chemicals pathways from non-targeted monitoring data. This is an opportunity to reach a broad audience of researchers. There will be a live demo of the CSS Chemistry dashboard and CPcat at the end of the presentation.

  3. Hybrid digital-analog video transmission in wireless multicast and multiple-input multiple-output system

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Lin, Xiaocheng; Fan, Nianfei; Zhang, Lin

    2016-01-01

    Wireless video multicast has become one of the key technologies in wireless applications. But the main challenge of conventional wireless video multicast, i.e., the cliff effect, remains unsolved. To overcome the cliff effect, a hybrid digital-analog (HDA) video transmission framework based on SoftCast, which transmits the digital bitstream with the quantization residuals, is proposed. With an effective power allocation algorithm and appropriate parameter settings, the residual gains can be maximized; meanwhile, the digital bitstream can assure transmission of a basic video to the multicast receiver group. In the multiple-input multiple-output (MIMO) system, since nonuniform noise interference on different antennas can be regarded as the cliff effect problem, ParCast, which is a variation of SoftCast, is also applied to video transmission to solve it. The HDA scheme with corresponding power allocation algorithms is also applied to improve video performance. Simulations show that the proposed HDA scheme can overcome the cliff effect completely with the transmission of residuals. What is more, it outperforms the compared WSVC scheme by more than 2 dB when transmitting under the same bandwidth, and it can further improve performance by nearly 8 dB in MIMO when compared with the ParCast scheme.

  4. Manufacturing and operational issues with lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Rand, D. A. J.; Boden, D. P.; Lakshmi, C. S.; Nelson, R. F.; Prengaman, R. D.

    An expert panel replies to questions on lead-acid technology and performance asked by delegates to the Ninth Asian Battery Conference. The subjects are as follows. Grid alloys: effects of calcium and tin levels on microstructure, corrosion, mechanical and electrochemical properties; effect of alloy-fabrication process on mechanical strength and corrosion resistance; low dross-make during casting of lead-calcium-tin alloys; future of book-mould casting; effect of increasing levels of silver; stability of continuously processed grids at high temperature. Negative-plate expanders: function of lignosulfonates and barium sulfate; benefits of pre-blended expanders; optimum expander formulations. Valve-regulated batteries: effect of oxygen cycle; optimum methods for float charging; charging and deep-cycle lifetimes; reliability testing.

  5. From 'automation' to 'autonomy': the importance of trust repair in human-machine interaction.

    PubMed

    de Visser, Ewart J; Pak, Richard; Shaw, Tyler H

    2018-04-09

    Modern interactions with technology are increasingly moving away from simple human use of computers as tools to the establishment of human relationships with autonomous entities that carry out actions on our behalf. In a recent commentary, Peter Hancock issued a stark warning to the field of human factors that attention must be focused on the appropriate design of a new class of technology: highly autonomous systems. In this article, we heed the warning and propose a human-centred approach directly aimed at ensuring that future human-autonomy interactions remain focused on the user's needs and preferences. By adapting literature from industrial psychology, we propose a framework to infuse a unique human-like ability, building and actively repairing trust, into autonomous systems. We conclude by proposing a model to guide the design of future autonomy and a research agenda to explore current challenges in repairing trust between humans and autonomous systems. Practitioner Summary: This paper is a call to practitioners to re-cast our connection to technology as akin to a relationship between two humans rather than between a human and their tools. To that end, designing autonomy with trust repair abilities will ensure future technology maintains and repairs relationships with their human partners.

  6. 12 CFR 611.100 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... means a ballot cast by regular or electronic mail. (d) Online meeting means a meeting that is conducted over the Internet through the use of mediating technologies, such as online services, computer hardware... way during the course of the meeting. (e) Online meeting space means an online environment where Farm...

  7. 12 CFR 611.100 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... means a ballot cast by regular or electronic mail. (d) Online meeting means a meeting that is conducted over the Internet through the use of mediating technologies, such as online services, computer hardware... way during the course of the meeting. (e) Online meeting space means an online environment where Farm...

  8. Defining the taxonomic domain of applicability for mammalian-based high-throughput screening assays

    EPA Science Inventory

    Cell-based high throughput screening (HTS) technologies are becoming mainstream in chemical safety evaluations. The US Environmental Protection Agency (EPA) Toxicity Forecaster (ToxCastTM) and the multi-agency Tox21 Programs have been at the forefront in advancing this science, m...

  9. Manufacturing Methods and Technology Project Summary Reports

    DTIC Science & Technology

    1983-06-01

    Proposal will be prepared by Solar Turbines, Inc. for introduction of cast titanium impellers into T62T-40 production. Detroit Diesel Allison will...microprocessor con- trol, RS 232 serial zommunications ports, binary I/O ports, floppy disk mass storage and cor.-rol panal . A component pickup

  10. Effectiveness of Removable Walker Cast Versus Nonremovable Fiberglass Off-Bearing Cast in the Healing of Diabetic Plantar Foot Ulcer

    PubMed Central

    Faglia, Ezio; Caravaggi, Carlo; Clerici, Giacomo; Sganzaroli, Adriana; Curci, Vincenzo; Vailati, Wanda; Simonetti, Daniele; Sommalvico, Francesco

    2010-01-01

    OBJECTIVE To evaluate the efficacy of a removable cast walker compared with that of a nonremovable fiberglass off-bearing cast in the treatment of diabetic plantar foot ulcer. RESEARCH DESIGN AND METHODS Forty-five adult diabetic patients with nonischemic, noninfected neuropathic plantar ulcer were randomly assigned for treatment with a nonremovable fiberglass off-bearing cast (total contact cast [TCC] group) or walker cast (Stabil-D group). Treatment duration was 90 days. Percent reduction in ulcer surface area and total healing rates were evaluated after treatment. RESULTS A total of 48 patients were screened; however, 2 patients in the TCC group and 1 patient in the Stabil-D group did not complete the study and were considered dropouts. There were no significant differences in demographic and clinic characteristics of the 45 patients completing the study. Ulcer surface decreased from 1.41 to 0.21 cm2 (P < 0.001) in the TCC group and from 2.18 to 0.45 cm2 (P < 0.001) in the Stabil-D group, with no significant differences between groups (P = 0.722). Seventeen patients (73.9%) in the TCC group and 16 patients (72.7%) in the Stabil-D group achieved healing (P = 0.794). Average healing time was 35.3 ± 3.1 and 39.7 ± 4.2 days in the TCC and Stabil-D group, respectively (P = 0.708). CONCLUSIONS The Stabil-D cast walker, although removable, was equivalent in efficacy to the TCC in terms of ulcer size reduction and total healing rate. The easier use of Stabil-D may help increase the use of off-loading devices in the management of plantar neuropathic diabetic foot ulcers. PMID:20357377

  11. Study of FES/CAST/HGS

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Cummings, Rick; Jones, Brian

    1992-01-01

    The microgravity materials processing program has been instrumental in providing the crystal growth community with an experimental environment to better understand the phenomena associated with the growing of crystals. In many applications one may pursue the growth of large single crystals which cannot be grown on earth due to convective driven flows. A microgravity environment is characterized by neither convection of buoyancy. Consequently superior crystals are able to be grown in space. On the other hand, since neither convection nor buoyancy dominates the fluid flow in a microgravity environment, then lesser dominating phenomena can affect crystal growth, such as surface driven flows or diffusion limited solidification. In the case of experiments that are to be flown in space using the Fluid Experiments System (FES), diffusion limited growth should be the dominating phenomenon. The use of holographic and Schlieren optical techniques for studying the concentration gradients in solidification processes has been used by several investigators over the years. The Holographic Ground System (HGS) facility at MSFC has been a primary resource in researching this capability. Consequently scientific personnel have been able to utilize these techniques in both ground based research and in space experiments. An important event in the scientific utilization of the HGS facilities was the TGS (triglycine sulfate) Crystal Growth and the Casting and Solidification Technology (CAST) experiments that were flown on the International Microgravity Lab (IML) mission in March of this year. The preparation and processing of these space observations are the primary experiments reported in this work. This project provides some ground-based studies to optimize on the holographic techniques used to acquire information about the crystal growth processes flown on IML. Since the ground-based studies will be compared with the space-based experimental results, it is necessary to conduct sufficient ground based studies to best determine how the experiment in space worked. The current capabilities in computer based systems for image processing and numerical computation have certainly assisted in those efforts. As anticipated, this study has certainly shown that these advanced computing capabilities are helpful in the data analysis of such experiments.

  12. MACHINING ELIMINATION THROUGH APPLICATION OF THREAD FORMING FASTENERS IN NET SHAPED CAST HOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleaver, Ryan J; Cleaver, Todd H; Talbott, Richard

    The ultimate objective of this work was to eliminate approximately 30% of the machining performed in typical automotive engine and transmission plants by using thread forming fasteners in as-cast holes of aluminum and magnesium cast components. The primary issues at the source of engineers reluctance to implementing thread forming fasteners in lightweight castings are: * Little proof of consistency of clamp load vs. input torque in either aluminum or magnesium castings. * No known data to understand the effect on consistency of clamp load as casting dies wear. The clamp load consistency concern is founded in the fact that amore » portion of the input torque used to create clamp load is also used to create threads. The torque used for thread forming may not be consistent due to variations in casting material, hole size and shape due to tooling wear and process variation (thermal and mechanical). There is little data available to understand the magnitude of this concern or to form the basis of potential solutions if the range of clamp load variation is very high (> +/- 30%). The range of variation that can be expected in as-cast hole size and shape over the full life cycle of a high pressure die casting die was established in previous work completed by Pacific Northwest National Laboratory, (PNNL). This established range of variation was captured in a set of 12 cast bosses by designing core pins at the size and draft angles identified in the sited previous work. The cast bosses were cut into nuts that could be used in the Ford Fastener Laboratory test-cell to measure clamp load when a thread forming fastener was driven into a cast nut. There were two sets of experiments run. First, a series of cast aluminum nuts were made reflecting the range of shape and size variations to be expected over the life cycle of a die casting die. Taptite thread forming fasteners, (a widely used thread forming fastener suitable for aluminum applications), were driven into the various cored, as-cast nuts at a constant input torque and resulting clamp loads were recorded continuously. The clamp load data was used to determine the range of clamp loads to be expected. The bolts were driven to failure. The clamp load corresponding to the target input of 18.5 Nm was recorded for each fastener. In a like fashion, a second set of experiments were run with cast magnesium nuts and ALtracs thread forming fasteners, (a widely used thread forming fastener suitable for magnesium applications). Again all clamp loads were recorded and analyzed similarly to the Taptites in aluminum cast nuts. Results from previous work performed on the same test cell for a Battelle project using standard M8 bolts into standard M8 nuts were included as a comparator for a standard bolt and nut application. The results for the thread forming fasteners in aluminum cast holes were well within industry expectations of +/- 30% for out of the box and robustness range testing. The results for the dry and lubed extreme conditions were only slightly higher than industry expectations at +/- 35.6%. However, when compared to the actual Battelle results (+/- 40%) for a standard bolt and nut the tread forming fasteners performed slightly better. The results for the thread forming fasteners in magnesium cast holes were all well within industry expectations of +/- 30% for all three conditions. The robustness range (.05mm larger and smaller holes than the expected wear pattern of a die casting die at full life cycle) results also fell within the industry expectations for standard threaded fasteners. These results were very encouraging. It was concluded that this work showed that clamp load variation with thread forming fasteners is consistent with industry expectations for standard steel bolts and nuts at +/- 30%. There does not appear to be any significant increase in clamp load variation due to the application of thread forming fasteners in as-cast holes of aluminum or magnesium over the effective life of a die casting mold. The fully implemented potential benefit of thread forming fasteners in as-cast holes of aluminum and magnesium is estimated to be 6 trillion Btu per year for North America. Economic benefit is estimated to be nearly $800 million per year. Environmental benefits and quality improvements will also result from full implementation of this technology.« less

  13. Photovoltaic research and development in Japan

    NASA Technical Reports Server (NTRS)

    Shimada, K.

    1983-01-01

    The status of the Japanese photovoltaic (PV) R&D activities was surveyed through literature searches, private communications, and site visits in 1982. The results show that the Japanese photovoltaic technology is maturing rapidly, consistent with the steady government funding under the Sunshine Project. Two main thrusts of the Project are: (1) completion of the solar panel production pilot plants using cast ingot and sheet silicon materials, and (2) development of large area amorphous silicon solar cells with acceptable efficiency (10 to 12%). An experimental automated solar panel production plant rated at 500 kW/yr is currently under construction for the Sunshine Project for completion in March 1983. Efficiencies demonstrated by experimental large are amorphous silicon solar cells are approaching 8%. Small area amorphous silicon solar cells are, however, currently being mass produced and marketed by several companies at an equivalent annual rate of 2 MW/yr for consumer electronic applications. There is no evidence of an immediate move by the Japanese PV industry to enter extensively into the photovoltaic power market, domestic or otherwise. However, the photovoltaic technology itself could become ready for such an entry in the very near future, especially by making use of advanced process automation technologies.

  14. Small Scale Turbopump Manufacturing Technology and Material Processes

    NASA Technical Reports Server (NTRS)

    Alvarez, Erika; Morgan, Kristin; Wells, Doug; Zimmerman, Frank

    2011-01-01

    As part of an internal research and development project, NASA Marshall Space Flight Center (MSFC) has been developing a high specific impulse 9,000-lbf LOX/LH2 pump-fed engine testbed with the capability to throttle 10:1. A Fuel Turbopump (FTP) with the ability to operate across a speed range of 30,000-rpm to 100,000-rpm was developed and analyzed. This small size and flight-like Fuel Turbopump has completed the design and analysis phase and is currently in the manufacturing phase. This paper highlights the manufacturing and processes efforts to fabricate an approximately 20-lb turbopump with small flow passages, intricately bladed components and approximately 3-in diameter impellers. As a result of the small scale and tight tolerances of the hardware on this turbopump, several unique manufacturing and material challenges were encountered. Some of the technologies highlighted in this paper include the use of powder metallurgy technology to manufacture small impellers, electron beam welding of a turbine blisk shroud, and casting challenges. The use of risk reduction efforts such as non-destructive testing (NDT) and evaluation (NDE), fractography, material testing, and component spin testing are also discussed in this paper.

  15. Additive Layer Manufacturing for Launcher's Applications

    NASA Astrophysics Data System (ADS)

    Vilanova, J.; Romera, P.; Lasagni, F.; Zorrilla, A.; Perinan, A.

    2014-06-01

    In the next years the European space industry has the challenge of maintaining its competitiveness in launch vehicles (LV) production, due to the growth of competition worldwide. It has to assure its position developing new applied technologies. In this field the effort is focussed on the production of short series of customized products, like payloads, flight components or launcher parts. ALM (Additive Layer Manufacturing) could be a powerful tool that offers new competitiveness factors for this industry, comprising a set of emerging technologies that are becoming a competitor to forming, casting and machining as well as being utilised directly as a complementary alternative.Originally used for prototypes and models, now ALM becomes a very useful technology capable to fabricate functional parts for the space industrial sector. Its demands on rapid technologies are different to "earth" industries, and they aren't so easily satisfied because space is a field with different requirements depending on its application: launchers, reusable vehicles, satellites, probes, low gravity researches, manned spacecraft, or even moon and planetary exploration.This paper reports on the ALM potential applications, under ESA requirements, exploring the challenges and possibilities for its use in the launchers market, trying to answer two basic questions: the first one, whether ALM is a mature technology to be ready for its use as flight hardware; and the second one, if it can be used to reduce the product cycle, and consequently, the development, production and operational costs.

  16. Development and Technology of Large Thickness TMCP Steel Plate with 390MPA Grade Used for Engineering Machinery

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoshu; Zhang, Zhijun; Zhang, Peng

    Recently, with the rapid upgrading of the equipment in the steel Corp, the rolling technology of TMCP has been rapidly developed and widely applied. A large amount of steel plate has been produced by using the TMCP technology. The TMCP processes have been used more and more widely and replaced the heat treatment technology of normalizing, quenching and tempering heat process. In this paper, low financial input is considered in steel plate production and the composition of the steel has been designed with low C component, a limited alloy element of the Nb, and certain amounts of Mn element. During the continuous casting process, the size of the continuous casting slab section is 300 mm × 2400 mm. The rolling technology of TMCP is controlled at a lower rolling and red temperature to control the transformation of the microstructure. Four different rolling treatments are chosen to test its effects on the 390MPa grade low carbon steel of bainitic microstructure and properties. This test manages to produce a proper steel plate fulfilling the standard mechanical properties. Specifically, low carbon bainite is observed in the microstructure of the steel plate and the maximum thickness of steel plate under this TMCP technology is up to 80mm. The mechanical property of the steel plate is excellent and the KV2 at -40 °C performs more than 200 J. Moreover, the production costs are greatly reduced when the steel plate is produced by this TMCP technology when replacing the current production process of quenching and tempering. The low cost steel plate could well meet the requirements of producing engineering machinery in the steel market.

  17. Scaleable Clean Aluminum Melting Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Q.; Das, S.K.

    2008-02-15

    The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. Themore » objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.« less

  18. Re-Casting the U.S.-Mexico Border Security Net

    DTIC Science & Technology

    2014-03-01

    the best fence money can buy , and they counter us with a 2,500-year-old technology.214 The incident proved that these organizations are extremely...created a demand that has attracted illicit activity. DTOs have expanded their franchises to increase the size of their profits. Border security

  19. Student Cooperative Training Units. Business Partnerships Final Performance Report.

    ERIC Educational Resources Information Center

    Wheeles, Rebecca

    The North Clackamas School District (Oregon) conducted the Student Cooperative Training Units (CTU) program. The CTU program addressed two key issues that disrupted the development and maintenance of local high technology businesses: (1) The aerospace parts casting, health care, and graphic reproduction industries have experienced a shortage of…

  20. Using ToxCast data to reconstruct dynamic cell state trajectories and estimate toxicological points of departure

    EPA Science Inventory

    AbstractBackground. High-throughput in vitro screening is an important tool for evaluating the potential biological activity of the thousands of existing chemicals in commerce and the hundreds more introduced each year. Among the assay technologies available, high-content imaging...

  1. Internet's Potential to Affect Social Studies and Democracy

    ERIC Educational Resources Information Center

    Friedman, Adam M.

    2006-01-01

    Technology, and the Internet in particular, is bringing constant change to American society, including the potential to enhance democracy by fostering participation in the electoral process. Because of the wealth of information available on candidates, issues, and policies, the Internet may foster citizens' ability to cast a more informed vote. As…

  2. Extrapolating toxicity data across species using U.S. EPA SeqAPASS tool

    EPA Science Inventory

    In vitro high-throughput screening (HTS) and in silico technologies have emerged as 21st century tools for chemical hazard identification. In 2007 the U.S. Environmental Protection Agency (EPA) launched the ToxCast Program, which has screened thousands of chemicals in hundreds of...

  3. Effect of forging on mechanical properties of rice husk ash-silicon carbide reinforced Al1100 hybrid composites

    NASA Astrophysics Data System (ADS)

    Ghanaraja, S.; Gireesha, B. L.; Ravikumar, K. S.; Likith, P.

    2018-04-01

    During the past few years, material design has changed prominence to pursue light weight, environment friendliness, low cost, quality, higher service temperature, higher elastic modulus, improved wear resistance and performance. Straight monolithic materials have limitations in achieving the above decisive factors. To overcome these limitations and to convince the ever increasing demand of modern day technology, Attention has been shifted towards Metal Matrix Composites (MMC). Stir casting route is most hopeful for synthesizing discontinuous reinforcement aluminium matrix composites because of its relative simplicity and easy adaptability with all shape casting process used in metal casting industry. Hybridization of metal matrix composites is the introduction of more than one type/kind, size and shape of reinforcement during processing of composites. It is carried out to obtain synergistic properties of different reinforcements and matrix used, which may not be rea1ised in monolithic alloy or in conventional monocomposites. The present study involves synthesis of hybrid composites by addition of the desired amount of Silicon Carbide (SiC) and Rice Husk Ash (RHA) particles in to the molten Al 1100-Mg alloy through stir casting technique fallowed by hot forging of the cast composites. The influence of increasing in the wt% (3, 6, 9, 12 and 15 wt%) of SiC particles addition (3 wt% Rice husk ash kept constant) on evolution of microstructure is studied through XRD and SEM and their impact on the mechanical properties like hardness and tensile strength of the resulting forged hybrid composites has been investigated.

  4. Energy Saving Melting and Revert Reduction Technology: Aging of Graphitic Cast Irons and Machinability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richards, Von L.

    2012-09-19

    The objective of this task was to determine whether ductile iron and compacted graphite iron exhibit age strengthening to a statistically significant extent. Further, this effort identified the mechanism by which gray iron age strengthens and the mechanism by which age-strengthening improves the machinability of gray cast iron. These results were then used to determine whether age strengthening improves the machinability of ductile iron and compacted graphite iron alloys in order to develop a predictive model of alloy factor effects on age strengthening. The results of this work will lead to reduced section sizes, and corresponding weight and energy savings.more » Improved machinability will reduce scrap and enhance casting marketability. Technical Conclusions: Age strengthening was demonstrated to occur in gray iron ductile iron and compacted graphite iron. Machinability was demonstrated to be improved by age strengthening when free ferrite was present in the microstructure, but not in a fully pearlitic microstructure. Age strengthening only occurs when there is residual nitrogen in solid solution in the Ferrite, whether the ferrite is free ferrite or the ferrite lamellae within pearlite. Age strengthening can be accelerated by Mn at about 0.5% in excess of the Mn/S balance Estimated energy savings over ten years is 13.05 trillion BTU, based primarily on yield improvement and size reduction of castings for equivalent service. Also it is estimated that the heavy truck end use of lighter castings for equivalent service requirement will result in a diesel fuel energy savings of 131 trillion BTU over ten years.« less

  5. Melt-infiltrated Sic Composites for Gas Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Pujar, Vijay V.

    2004-01-01

    SiC-SiC ceramic matrix composites (CMCs) manufactured by the slurry -cast melt-infiltration (MI) process are leading candidates for many hot-section turbine engine components. A collaborative program between Goodrich Corporation and NASA-Glenn Research Center is aimed at determining and optimizing woven SiC/SiC CMC performance and reliability. A variety of composites with different fiber types, interphases and matrix compositions have been fabricated and evaluated. Particular focus of this program is on the development of interphase systems that will result in improved intermediate temperature stressed-oxidation properties of this composite system. The effect of the different composite variations on composite properties is discussed and, where appropriate, comparisons made to properties that have been generated under NASA's Ultra Efficient Engine Technology (UEET) Program.

  6. Augmented reality system

    NASA Astrophysics Data System (ADS)

    Lin, Chien-Liang; Su, Yu-Zheng; Hung, Min-Wei; Huang, Kuo-Cheng

    2010-08-01

    In recent years, Augmented Reality (AR)[1][2][3] is very popular in universities and research organizations. The AR technology has been widely used in Virtual Reality (VR) fields, such as sophisticated weapons, flight vehicle development, data model visualization, virtual training, entertainment and arts. AR has characteristics to enhance the display output as a real environment with specific user interactive functions or specific object recognitions. It can be use in medical treatment, anatomy training, precision instrument casting, warplane guidance, engineering and distance robot control. AR has a lot of vantages than VR. This system developed combines sensors, software and imaging algorithms to make users feel real, actual and existing. Imaging algorithms include gray level method, image binarization method, and white balance method in order to make accurate image recognition and overcome the effects of light.

  7. ABSTRACTS OF RESEARCH REPORTS.

    DTIC Science & Technology

    DENTISTRY, ABSTRACTS), TEETH, DISEASES, MOUTH, TRANSPLANTATION, HYGIENE, STERILIZATION, FLUORIDES, HISTOLOGY, SURGICAL IMPLANTATION, OXYTETRACYCLINE , GELATINS, CELLULOSE, CASTING, PROGRAMMED INSTRUCTION, TRAINING DEVICES

  8. Comparison of Fit of Dentures Fabricated by Traditional Techniques Versus CAD/CAM Technology.

    PubMed

    McLaughlin, J Bryan; Ramos, Van; Dickinson, Douglas P

    2017-11-14

    To compare the shrinkage of denture bases fabricated by three methods: CAD/CAM, compression molding, and injection molding. The effect of arch form and palate depth was also tested. Nine titanium casts, representing combinations of tapered, ovoid, and square arch forms and shallow, medium, and deep palate depths, were fabricated using electron beam melting (EBM) technology. For each base fabrication method, three poly(vinyl siloxane) impressions were made from each cast, 27 dentures for each method. Compression-molded dentures were fabricated using Lucitone 199 poly methyl methacrylate (PMMA), and injection molded dentures with Ivobase's Hybrid Pink PMMA. For CAD/CAM, denture bases were designed and milled by Avadent using their Light PMMA. To quantify the space between the denture and the master cast, silicone duplicating material was placed in the intaglio of the dentures, the titanium master cast was seated under pressure, and the silicone was then trimmed and recovered. Three silicone measurements per denture were recorded, for a total of 243 measurements. Each silicone measurement was weighed and adjusted to the surface area of the respective arch, giving an average and standard deviation for each denture. Comparison of manufacturing methods showed a statistically significant difference (p = 0.0001). Using a ratio of the means, compression molding had on average 41% to 47% more space than injection molding and CAD/CAM. Comparison of arch/palate forms showed a statistically significant difference (p = 0.023), with shallow palate forms having more space with compression molding. The ovoid shallow form showed CAD/CAM and compression molding had more space than injection molding. Overall, injection molding and CAD/CAM fabrication methods produced equally well-fitting dentures, with both having a better fit than compression molding. Shallow palates appear to be more affected by shrinkage than medium or deep palates. Shallow ovoid arch forms appear to benefit from the use of injection molding compared to CAD/CAM and compression molding. © 2017 by the American College of Prosthodontists.

  9. Computerized Adaptive Screening Test (CAST): Development for Use in Military Recruiting Stations

    DTIC Science & Technology

    1984-01-01

    testing ( CAT ) 20. ABSTRACT (Continuo on rover .. efdo II neco .. ., ond Identity bJ’ 11/oclr -llor) The Computerized Adaptive Screening Test (CAST...effort is in progress to develop a computerized adaptive testing ( CAT ) system and to evaluate its potential for use in the military entrance...U.S. Marine Corps) has been designated as lead service for CAT system development; and the Navy Personnel Research and Development Center, as lead

  10. High-Throughput Study of Diffusion and Phase Transformation Kinetics of Magnesium-Based Systems for Automotive Cast Magnesium Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Alan A; Zhao, Ji-Cheng; Riggi, Adrienne

    The objective of the proposed study is to establish a scientific foundation on kinetic modeling of diffusion, phase precipitation, and casting/solidification, in order to accelerate the design and optimization of cast magnesium (Mg) alloys for weight reduction of U.S. automotive fleet. The team has performed the following tasks: 1) study diffusion kinetics of various Mg-containing binary systems using high-throughput diffusion multiples to establish reliable diffusivity and mobility databases for the Mg-aluminum (Al)-zinc (Zn)-tin (Sn)-calcium (Ca)-strontium (Sr)-manganese (Mn) systems; 2) study the precipitation kinetics (nucleation, growth and coarsening) using both innovative dual-anneal diffusion multiples and cast model alloys to provide largemore » amounts of kinetic data (including interfacial energy) and microstructure atlases to enable implementation of the Kampmann-Wagner numerical model to simulate phase transformation kinetics of non-spherical/non-cuboidal precipitates in Mg alloys; 3) implement a micromodel to take into account back diffusion in the solid phase in order to predict microstructure and microsegregation in multicomponent Mg alloys during dendritic solidification especially under high pressure die-casting (HPDC) conditions; and, 4) widely disseminate the data, knowledge and information using the Materials Genome Initiative infrastructure (http://www.mgidata.org) as well as publications and digital data sharing to enable researchers to identify new pathways/routes to better cast Mg alloys.« less

  11. Homogenizing Advanced Alloys: Thermodynamic and Kinetic Simulations Followed by Experimental Results

    NASA Astrophysics Data System (ADS)

    Jablonski, Paul D.; Hawk, Jeffrey A.

    2017-01-01

    Segregation of solute elements occurs in nearly all metal alloys during solidification. The resultant elemental partitioning can severely degrade as-cast material properties and lead to difficulties during post-processing (e.g., hot shorts and incipient melting). Many cast articles are subjected to a homogenization heat treatment in order to minimize segregation and improve their performance. Traditionally, homogenization heat treatments are based upon past practice or time-consuming trial and error experiments. Through the use of thermodynamic and kinetic modeling software, NETL has designed a systematic method to optimize homogenization heat treatments. Use of the method allows engineers and researchers to homogenize casting chemistries to levels appropriate for a given application. The method also allows for the adjustment of heat treatment schedules to fit limitations on in-house equipment (capability, reliability, etc.) while maintaining clear numeric targets for segregation reduction. In this approach, the Scheil module within Thermo-Calc is used to predict the as-cast segregation present within an alloy, and then diffusion controlled transformations is used to model homogenization kinetics as a function of time and temperature. Examples of computationally designed heat treatments and verification of their effects on segregation and properties of real castings are presented.

  12. Micro-structural study and Rietveld analysis of fast reactor fuels: U-Mo fuels

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Choudhuri, G.; Banerjee, J.; Agarwal, Renu; Khan, K. B.; Kumar, Arun

    2015-12-01

    U-Mo alloys are the candidate fuels for both research reactors and fast breeder reactors. In-reactor performance of the fuel depends on the microstructural stability and thermal properties of the fuel. To improve the fuel performance, alloying elements viz. Zr, Mo, Nb, Ti and fissium are added in the fuel. The first reactor fuels are normally prepared by injection casting. The objective of this work is to compare microstructure, phase-fields and hardness of as-cast four different U-Mo alloy (2, 5, 10 and 33 at.% Mo) fuels with the equilibrium microstructure of the alloys. Scanning electron microscope with energy dispersive spectrometer and optical microscope have been used to characterize the morphology of the as-cast and annealed alloys. The monoclinic α'' phase in as-cast U-10 at.% Mo alloy has been characterized through Rietveld analysis. A comparison of metallographic and Rietveld analysis of as-cast (dendritic microstructure) and annealed U-33 at.% Mo alloy, corresponding to intermetallic compound, has been reported here for the first time. This study will provide in depth understanding of microstructural and phase evolution of U-Mo alloys as fast reactor fuel.

  13. Texture and anisotropy in ferroelectric lead metaniobate

    NASA Astrophysics Data System (ADS)

    Iverson, Benjamin John

    Ferroelectric lead metaniobate, PbNb2O6, is a piezoelectric ceramic typically used because of its elevated Curie temperature and anisotropic properties. However, the piezoelectric constant, d33, is relatively low in randomly oriented ceramics when compared to other ferroelectrics. Crystallographic texturing is often employed to increase the piezoelectric constant because the spontaneous polarization axes of grains are better aligned. In this research, crystallographic textures induced through tape casting are distinguished from textures induced through electrical poling. Texture is described using multiple quantitative approaches utilizing X-ray and neutron time-of-flight diffraction. Tape casting lead metaniobate with an inclusion of acicular template particles induces an orthotropic texture distribution. Templated grain growth from seed particles oriented during casting results in anisotropic grain structures. The degree of preferred orientation is directly linked to the shear behavior of the tape cast slurry. Increases in template concentration, slurry viscosity, and casting velocity lead to larger textures by inducing more particle orientation in the tape casting plane. The maximum 010 texture distributions were two and a half multiples of a random distribution. Ferroelectric texture was induced by electrical poling. Electric poling increases the volume of material oriented with the spontaneous polarization direction in the material. Samples with an initial paraelectric texture exhibit a greater change in the domain volume fraction during electrical poling than randomly oriented ceramics. In tape cast samples, the resulting piezoelectric response is proportional to the 010 texture present prior to poling. This results in property anisotropy dependent on initial texture. Piezoelectric properties measured on the most textured ceramics were similar to those obtained with a commercial standard.

  14. Influence of Solutocapillary Convection on Macrovoid Defect Formation in Polymeric Membranes

    NASA Technical Reports Server (NTRS)

    Greenberg, Alan R.; Krantz, William B.; Todd, Paul

    2003-01-01

    The focus of this research project involved the dry-cast process for polymeric membrane formation, whereby evaporation of solvent from an initially homogeneous polymer/solvent/ nonsolvent solution results in phase separation and the formation of polymer-rich and polymer-lean phases. Under certain conditions the polymer-lean phase gives rise to very large and usually undesirable, tear-drop-shaped pores (size approx. 10 - 50 microns) termed macrovoids (MVs). Although in many cases the presence of MV pores has deleterious effects on membrane performance, there are a number of innovative applications where the presence of such pores is highly desirable. Although researchers have proposed a variety of mechanisms for MV formation over the past three decades, two main hypotheses are currently favored: one asserts that MV growth can be attributed solely to diffusion (the diffusive growth hypothesis), whereas the other states that solutocapillary convection (the SC hypothesis) at the MV interface contributes to growth. The overall goal of this research was to obtain a more comprehensive understanding of the fundamental mechanism of MV growth. This research incorporates a coupled modeling and experimental approach to test a solutocapillary convection hypothesis for the growth of macrovoid pores in polymeric membranes. Specifically, we utilized a modification of the first principles model developed by two of the PIs (ARG and WBK) for dry-cast CA membranes. For the experimental component, two separate and mutually complementary approaches were used to study MV growth. In the first, membranes cast in a zero-g environment aboard the NASA KC-135 aircraft were compared with those cast on the ground to assess the effect of the buoyancy force on membrane morphology and MV size and shape. In the second approach, videomicroscopy flow visualization (VMFV) was utilized to observe MV formation and growth in real time and to assess the effect of surface tension on the MV growth dynamics. As a result of these fundamental studies, our research group advanced a new hypothesis for MV pore development in polymeric membranes.

  15. A versatile approach to vacuum injection casting for materials research and development.

    PubMed

    Xu, Donghua; Xu, Yifan

    2017-03-01

    Vacuum injection casting (VIC) is important for research and development (R&D) of materials that are prone to oxidation at high temperatures, particularly metals and metallic alloys (e.g., metallic glasses and high entropy alloys). VIC in R&D laboratories often involves initial melting/alloying in a prior step, transporting the sample to a dedicated vacuum chamber, re-melting the sample in a quartz tube, and finally injecting the melt with an inert gas to a dedicated mold. Here we present a new approach to laboratory VIC that requires no sample transfer (for a variety of materials), no dedicated vacuum chamber/space nor dedicated mold, and hence provides more versatility and higher efficiency and yet lowers the capital equipment cost. Our approach takes advantage of the exceptional portability, thermal and chemical stability, and thermoplastic processability of quartz glass and uses quartz tubes for all the melting, re-melting, injection casting, and molding. In addition, our approach includes oxygen gettering to remove residual oxygen for all the steps and allows for slow or fast cooling (e.g., water quenching) upon injection. This paper focuses on the design, the procedures, and the versatile features of this new approach while also demonstrating the practical implementation of this approach and computational modeling of the heat transfer and the cooling rates for two exemplary cases. The new approach is expected to bring notable expedition to sample fabrication and materials discovery, as well as wider adoption of vacuum injection casting in materials science and condensed matter physics research laboratories.

  16. A versatile approach to vacuum injection casting for materials research and development

    NASA Astrophysics Data System (ADS)

    Xu, Donghua; Xu, Yifan

    2017-03-01

    Vacuum injection casting (VIC) is important for research and development (R&D) of materials that are prone to oxidation at high temperatures, particularly metals and metallic alloys (e.g., metallic glasses and high entropy alloys). VIC in R&D laboratories often involves initial melting/alloying in a prior step, transporting the sample to a dedicated vacuum chamber, re-melting the sample in a quartz tube, and finally injecting the melt with an inert gas to a dedicated mold. Here we present a new approach to laboratory VIC that requires no sample transfer (for a variety of materials), no dedicated vacuum chamber/space nor dedicated mold, and hence provides more versatility and higher efficiency and yet lowers the capital equipment cost. Our approach takes advantage of the exceptional portability, thermal and chemical stability, and thermoplastic processability of quartz glass and uses quartz tubes for all the melting, re-melting, injection casting, and molding. In addition, our approach includes oxygen gettering to remove residual oxygen for all the steps and allows for slow or fast cooling (e.g., water quenching) upon injection. This paper focuses on the design, the procedures, and the versatile features of this new approach while also demonstrating the practical implementation of this approach and computational modeling of the heat transfer and the cooling rates for two exemplary cases. The new approach is expected to bring notable expedition to sample fabrication and materials discovery, as well as wider adoption of vacuum injection casting in materials science and condensed matter physics research laboratories.

  17. Evaluation of Technetium Getters to Improve the Performance of Cast Stone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Qafoku, Nikolla P.; Serne, R. Jeffrey

    2015-11-01

    Cast Stone has been selected as the preferred waste form for solidification of aqueous secondary liquid effluents from the Hanford Tank Waste Treatment and Immobilization Plant (WTP) process condensates and low-activity waste (LAW) melter off-gas caustic scrubber effluents. Cast Stone is also being evaluated as a supplemental immobilization technology to provide the necessary LAW treatment capacity to complete the Hanford tank waste cleanup mission in a timely and cost effective manner. One of the major radionuclides that Cast Stone has the potential to immobilize is technetium (Tc). The mechanism for immobilization is through the reduction of the highly mobile Tc(VII)more » species to the less mobile Tc(IV) species by the blast furnace slag (BFS) used in the Cast Stone formulation. Technetium immobilization through this method would be beneficial because Tc is one of the most difficult contaminants to address at the U.S. Department of Energy (DOE) Hanford Site due to its complex chemical behavior in tank waste, limited incorporation in mid- to high-temperature immobilization processes (vitrification, steam reformation, etc.), and high mobility in subsurface environments. In fact, the Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (TC&WM EIS) identifies technetium-99 ( 99Tc) as one of the radioactive tank waste components contributing the most to the environmental impact associated with the cleanup of the Hanford Site. The TC&WM EIS, along with an earlier supplemental waste-form risk assessment, used a diffusion-limited release model to estimate the release of different contaminants from the WTP process waste forms. In both of these predictive modeling exercises, where effective diffusivities based on grout performance data available at the time, groundwater at the 100-m down-gradient well exceeded the allowable maximum permissible concentrations for 99Tc. (900 pCi/L). Recent relatively short-term (63 day) leach tests conducted on both LAW and secondary waste Cast Stone monoliths indicated that 99Tc diffusivities were at or near diffusivities where the groundwater at the 100-m down-gradient well would exceed the allowable maximum permissible 99Tc concentrations. There is, therefore, a need and an opportunity to improve the retention of Tc in the Cast Stone waste form. One method to improve the performance of the Cast Stone waste form is through the addition of “getters” that selectively sequester Tc inside Cast Stone.« less

  18. Search for chameleons with CAST

    DOE PAGES

    Anastassopoulos, V.; Arik, M.; Aune, S.; ...

    2015-07-28

    In this paper we present a search for (solar) chameleons with the CERN Axion Solar Telescope (CAST). This novel experimental technique, in the field of dark energy research, exploits both the chameleon coupling to matter (β m) and to photons (β γ) via the Primakoff effect. By reducing the X-ray detection energy threshold used for axions from 1 keV to 400 eV CAST became sensitive to the converted solar chameleon spectrum which peaks around 600 eV. Even though we have not observed any excess above background, we can provide a 95% C.L. limit for the coupling strength of chameleons tomore » photons of β γ≲10 11 for 1< β m < 10 6.« less

  19. Convective Heat Transfer from Castings of Ice Roughened Surfaces in Horizontal Flight

    NASA Technical Reports Server (NTRS)

    Dukhan, Nihad; Vanfossen, G. James, Jr.; Masiulaniec, K. Cyril; Dewitt, Kenneth J.

    1995-01-01

    A technique was developed to cast frozen ice shapes that had been grown on a metal surface. This technique was applied to a series of ice shapes that were grown in the NASA Lewis Icing Research Tunnel on flat plates. Eight different types of ice growths, characterizing different types of roughness, were obtained from these plates, from which aluminum castings were made. Test strips taken from these castings were outfitted with heat flux gages, such that when placed in a dry wind tunnel, they could be used to experimentally map out the convective heat transfer coefficient in the direction of flow from the roughened surfaces. The effects on the heat transfer coefficient for parallel flow, which simulates horizontal flight, were studied. The results of this investigation can be used to help size heaters for wings, helicopter rotor blades, jet engine intakes, etc., or de-icing for anti-icing applications where the flow is parallel to the iced surface.

  20. Producing thin strips by twin-roll casting—part I: Process aspects and quality issues

    NASA Astrophysics Data System (ADS)

    Li, Ben Q.

    1995-05-01

    This two-part paper discusses recent advances in research and development for the direct production of coilable thin strips by twin-roll casting in both the aluminum and steel industries. While the former is empowering the casters to approach the theoretical productivity limit, the latter is striving to put pilot casters into commercial operation. These intensive R&D efforts are derived from the advantages, both economic and metallurgical, offered by the process. As twin-roll casting combines solidification and hot rolling into a single operation, the process requires low capital investment and low operational cost. Also, because of the high solidification rate attained in the process, the thin strips produced have a refined metallurgical structure, characterized by columnar and equiaxed zones with fine intermetallic particles. The enthusiasm about twin-roll casting is now being spread worldwide. This paper focuses on the process aspects and quality control of twin-roll casting. Part II, which will appear in the August issue, will review process modeling and pilot-plant development activities.

  1. Research on Soft Reduction Amount Distribution to Eliminate Typical Inter-dendritic Crack in Continuous Casting Slab of X70 Pipeline Steel by Numerical Model

    NASA Astrophysics Data System (ADS)

    Liu, Ke; Wang, Chang; Liu, Guo-liang; Ding, Ning; Sun, Qi-song; Tian, Zhi-hong

    2017-04-01

    To investigate the formation of one kind of typical inter-dendritic crack around triple point region in continuous casting(CC) slab during the operation of soft reduction, fully coupled 3D thermo-mechanical finite element models was developed, also plant trials were carried out in a domestic continuous casting machine. Three possible types of soft reduction amount distribution (SRAD) in the soft reduction region were analyzed. The relationship between the typical inter-dendritic cracks and soft reduction conditions is presented and demonstrated in production practice. Considering the critical strain of internal crack formation, a critical tolerance for the soft reduction amount distribution and related casing parameters have been proposed for better contribution of soft reduction to the internal quality of slabs. The typical inter-dendritic crack around the triple point region had been eliminated effectively through the application of proposed suggestions for continuous casting of X70 pipeline steel in industrial practice.

  2. The behaviour of entrainment defects formed in commercial purity Mg alloy cast under a cover gas of SF6

    NASA Astrophysics Data System (ADS)

    Li, T.; Griffiths, W. D.

    2016-03-01

    In the casting of light alloys, the oxidised film on the melt surface can be folded due to surface turbulence, thus forming entrainment defects that have a significant negative effect on the mechanical properties of castings. Previous researchers reported that the surface film of Mg alloys formed in an atmosphere containing SF6 had a complicated structure composed of MgO and MgF2. The work reported here aims to investigate the behaviour of entrainment defects formed in magnesium alloys protected by SF6-containing atmospheres. Tensile test bars of commercial purity Mg were cast in an unsealed environment under a cover gas of pure SF6. 34Scanning electron microscopy (SEM) of the fracture surface of the test bars indicated entrainment defects that consisted of symmetrical films containing MgO, but also sulphur and fluorine. The results of these examinations of the symmetrical films were used to infer the potential formation and development of entrainment defects in commercial purity Mg alloy.

  3. Three-Dimensional Printing in Orthopedic Surgery.

    PubMed

    Eltorai, Adam E M; Nguyen, Eric; Daniels, Alan H

    2015-11-01

    Three-dimensional (3D) printing is emerging as a clinically promising technology for rapid prototyping of surgically implantable products. With this commercially available technology, computed tomography or magnetic resonance images can be used to create graspable objects from 3D reconstructed images. Models can enhance patients' understanding of their pathology and surgeon preoperative planning. Customized implants and casts can be made to match an individual's anatomy. This review outlines 3D printing, its current applications in orthopedics, and promising future directions. Copyright 2015, SLACK Incorporated.

  4. Additive Manufacturing of Biomedical Constructs with Biomimetic Structural Organizations.

    PubMed

    Li, Xiao; He, Jiankang; Zhang, Weijie; Jiang, Nan; Li, Dichen

    2016-11-09

    Additive manufacturing (AM), sometimes called three-dimensional (3D) printing, has attracted a lot of research interest and is presenting unprecedented opportunities in biomedical fields, because this technology enables the fabrication of biomedical constructs with great freedom and in high precision. An important strategy in AM of biomedical constructs is to mimic the structural organizations of natural biological organisms. This can be done by directly depositing cells and biomaterials, depositing biomaterial structures before seeding cells, or fabricating molds before casting biomaterials and cells. This review organizes the research advances of AM-based biomimetic biomedical constructs into three major directions: 3D constructs that mimic tubular and branched networks of vasculatures; 3D constructs that contains gradient interfaces between different tissues; and 3D constructs that have different cells positioned to create multicellular systems. Other recent advances are also highlighted, regarding the applications of AM for organs-on-chips, AM-based micro/nanostructures, and functional nanomaterials. Under this theme, multiple aspects of AM including imaging/characterization, material selection, design, and printing techniques are discussed. The outlook at the end of this review points out several possible research directions for the future.

  5. USHPRR FUEL FABRICATION PILLAR: FABRICATION STATUS, PROCESS OPTIMIZATIONS, AND FUTURE PLANS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wight, Jared M.; Joshi, Vineet V.; Lavender, Curt A.

    The Fuel Fabrication (FF) Pillar, a project within the U.S. High Performance Research Reactor Conversion program of the National Nuclear Security Administration’s Office of Material Management and Minimization, is tasked with the scale-up and commercialization of high-density monolithic U-Mo fuel for the conversion of appropriate research reactors to use of low-enriched fuel. The FF Pillar has made significant steps to demonstrate and optimize the baseline co-rolling process using commercial-scale equipment at both the Y-12 National Security Complex (Y-12) and BWX Technologies (BWXT). These demonstrations include the fabrication of the next irradiation experiment, Mini-Plate 1 (MP-1), and casting optimizations at Y-12.more » The FF Pillar uses a detailed process flow diagram to identify potential gaps in processing knowledge or demonstration, which helps direct the strategic research agenda of the FF Pillar. This paper describes the significant progress made toward understanding the fuel characteristics, and models developed to make informed decisions, increase process yield, and decrease lifecycle waste and costs.« less

  6. Suggestions in maternal and child health for the National Technology Assessment Programme: a consideration of consumer and professional priorities.

    PubMed

    Johanson, R; Rigby, C; Newburn, M; Stewart, M; Jones, P

    2002-03-01

    In North Staffordshire, the Achieving Sustainable Quality in Maternity (ASQUAM) meetings provide the programme for clinical guidelines and audit over the following year. The ASQUAM clinical effectiveness programme has attempted to address a number of the issues identified as obstacles to informed democratic prioritization. For example, it became clear that a number of topics raised were actually research questions. The organizers therefore decided to split the fourth ASQUAM day into an 'audit' morning and a 'research' afternoon. The meeting organized by RJ, CR and PJ in partnership with the Midwives Information and Resource Service and the National Childbirth Trust, was timed to allow the research ideas to feed into the national Health Technology Assessment (HTA) programme. This meeting was designed to increase the profile of ASQUAM amongst consumers and to increase their representation at the meeting. Objectives were to choose a new set of research priorities for the year 2000, and to ascertain the voting pattern of comparison to health professionals. There was overall agreement in terms of priorities, with the consumer group prioritizing 8 of the 10 topics chosen by the professionals (or 10 of the 11). No significant differences between the proportions of voted cast for each topic by professionals and consumers were found apart from topic 20. The numbers of consumers were small which does limit the number the validity of statistical comparisons. Nevertheless, it is clear that voting patterns were similar. Overall the process suggests that democratic prioritization is a viable option and one that may become essential within the framework of clinical and research governance.

  7. Positivist Dogmas, Rhetoric, and the Education Science Question

    ERIC Educational Resources Information Center

    Howe, Kenneth R.

    2009-01-01

    Explicit versions of positivism were cast off some time ago in philosophy, but a tacit form continues to thrive in education research, exemplified by the "new scientific orthodoxy" codified in the National Research Council's "Scientific Research in Education" (2002) and reinforced in the American Educational Research Association's "Standards for…

  8. Microstructure, Friction and Wear of Aluminum Matrix Composites

    NASA Astrophysics Data System (ADS)

    Florea, R. M.

    2018-06-01

    MMCs are made by dispersing a reinforcing material into a metal matrix. They are prepared by casting, although several technical challenges exist with casting technology. Achieving a homogeneous distribution of reinforcement within the matrix is one such challenge, and this affects directly on the properties and quality of composite. The aluminum alloy composite materials consist of high strength, high stiffness, more thermal stability, more corrosion and wear resistance, and more fatigue life. Aluminum alloy materials found to be the best alternative with its unique capacity of designing the materials to give required properties. In this work a composite is developed by adding silicon carbide in Aluminum metal matrix by mass ratio 5%, 10% and 15%. Mechanical tests such as hardness test and microstructure test are conducted.

  9. Using special additions to preparation of the moulding mixture for casting steel parts of drive wheel type

    NASA Astrophysics Data System (ADS)

    Josan, A.; Pinca Bretotean, C.

    2015-06-01

    The paper presents the possibility of using special additions to the execution of moulding mixtures for steel castings, drive wheel type. Critical analysis of moulding technology leads to the idea that most defects appear due to using improper moulding mixture. Using a improper moulding mixture leads to penetration of steel in moulding mixture, resulting in the formation of adherences, due to inadequate refractarity of the mould and core mixtures. Using only the unique mixture to the moulding leads to increasing consumption of new sand, respectively to the increase of price of piece. Acording to the dates registered in the industrial practice is necessary to use the special additions to obtain the moulding mixtures, carbonaceous materials respectively.

  10. Adaptation and micro-structure of Co-Cr alloy maxillary complete denture base plates fabricated by selective laser melting technique.

    PubMed

    Ye, Ye; Jiao, Ting; Zhu, Jiarui; Sun, Jian

    2018-01-24

    The purpose of the study was to evaluate the adaptation and micro-structure of Co-Cr alloy maxillary complete denture base plates fabricated by the selective laser melting (SLM) technique. Twenty pairs of edentulous casts were randomly and evenly divided into two groups, and manufacturing of the Co-Cr alloy maxillary complete denture base was conducted either by the SLM technique or by the conventional method. The base-cast sets were transversally sectioned into three sections at the distal canines, mesial of the first molars and the posterior palatal zone. The gap between the metal base and cast was measured in these three sections with a stereoscopic microscope, and the data were analysed using t tests. A total of five specimens of 5 mm diameter were fabricated with the Co-Cr alloy by SLM and the traditional casting technology. A scanning electron microscope (SEM) was used to evaluate the differences in microstructure between these specimens. There was no statistical difference between the three sections in all four groups (P > 0.05). At the region of the canines, the clearance value for the SLM Co-Cr alloy group was larger than that of the conventional method group (P < 0.05). At the mesial of the first molar region and the posterior palatal zone, there was no statistical difference between the gaps observed in the two groups (P > 0.05). The SLM Co-Cr alloy has a denser microstructure behaviour and less casting defect than the cast Co-Cr alloy. The SLM technique showed initial feasibility for the manufacture of dental bases of complete dentures, but large sample studies are needed to prove its reliability in clinical applications. The mechanical properties and microstructure of the denture frameworks prepared by selective laser melting indicate that these dentures are appropriate for clinical use.

  11. Freeze cast porous barium titanate for enhanced piezoelectric energy harvesting

    NASA Astrophysics Data System (ADS)

    Roscow, J. I.; Zhang, Y.; Kraśny, M. J.; Lewis, R. W. C.; Taylor, J.; Bowen, C. R.

    2018-06-01

    Energy harvesting is an important developing technology for a new generation of self-powered sensor networks. This paper demonstrates the significant improvement in the piezoelectric energy harvesting performance of barium titanate by forming highly aligned porosity using freeze casting. Firstly, a finite element model demonstrating the effect of pore morphology and angle with respect to poling field on the poling behaviour of porous ferroelectrics was developed. A second model was then developed to understand the influence of microstructure-property relationships on the poling behaviour of porous freeze cast ferroelectric materials and their resultant piezoelectric and energy harvesting properties. To compare with model predictions, porous barium titanate was fabricated using freeze casting to form highly aligned microstructures with excellent longitudinal piezoelectric strain coefficients, d 33. The freeze cast barium titanate with 45 vol.% porosity had a d 33  =  134.5 pC N‑1 compared to d 33  =  144.5 pC N‑1 for dense barium titanate. The d 33 coefficients of the freeze cast materials were also higher than materials with uniformly distributed spherical porosity due to improved poling of the aligned microstructures, as predicted by the models. Both model and experimental data indicated that introducing porosity provides a large reduction in the permittivity () of barium titanate, which leads to a substantial increase in energy harvesting figure of merit, , with a maximum of 3.79 pm2 N‑1 for barium titanate with 45 vol.% porosity, compared to only 1.40 pm2 N‑1 for dense barium titanate. Dense and porous barium titanate materials were then used to harvest energy from a mechanical excitation by rectification and storage of the piezoelectric charge on a capacitor. The porous barium titanate charged the capacitor to a voltage of 234 mV compared to 96 mV for the dense material, indicating a 2.4-fold increase that was similar to that predicted by the energy harvesting figures of merit.

  12. Population Differentiation of Southern Indian Male Lineages Correlates with Agricultural Expansions Predating the Caste System

    PubMed Central

    Arun, Varatharajan Santhakumari; Syama, Adhikarla; Ashokan, Kumaran Samy; Gandhirajan, Kavandanpatti Thangaraj; Vijayakumar, Koothapuli; Narayanan, Muthuswamy; Jayalakshmi, Mariakuttikan; Ziegle, Janet S.; Royyuru, Ajay K.; Parida, Laxmi; Wells, R. Spencer; Renfrew, Colin; Schurr, Theodore G.; Smith, Chris Tyler; Platt, Daniel E.; Pitchappan, Ramasamy

    2012-01-01

    Previous studies that pooled Indian populations from a wide variety of geographical locations, have obtained contradictory conclusions about the processes of the establishment of the Varna caste system and its genetic impact on the origins and demographic histories of Indian populations. To further investigate these questions we took advantage that both Y chromosome and caste designation are paternally inherited, and genotyped 1,680 Y chromosomes representing 12 tribal and 19 non-tribal (caste) endogamous populations from the predominantly Dravidian-speaking Tamil Nadu state in the southernmost part of India. Tribes and castes were both characterized by an overwhelming proportion of putatively Indian autochthonous Y-chromosomal haplogroups (H-M69, F-M89, R1a1-M17, L1-M27, R2-M124, and C5-M356; 81% combined) with a shared genetic heritage dating back to the late Pleistocene (10–30 Kya), suggesting that more recent Holocene migrations from western Eurasia contributed <20% of the male lineages. We found strong evidence for genetic structure, associated primarily with the current mode of subsistence. Coalescence analysis suggested that the social stratification was established 4–6 Kya and there was little admixture during the last 3 Kya, implying a minimal genetic impact of the Varna (caste) system from the historically-documented Brahmin migrations into the area. In contrast, the overall Y-chromosomal patterns, the time depth of population diversifications and the period of differentiation were best explained by the emergence of agricultural technology in South Asia. These results highlight the utility of detailed local genetic studies within India, without prior assumptions about the importance of Varna rank status for population grouping, to obtain new insights into the relative influences of past demographic events for the population structure of the whole of modern India. PMID:23209694

  13. Vertical misfit of laser-sintered and vacuum-cast implant-supported crown copings luted with definitive and temporary luting agents.

    PubMed

    Castillo-de-Oyagüe, Raquel; Sánchez-Turrión, Andrés; López-Lozano, José-Francisco; Albaladejo, Alberto; Torres-Lagares, Daniel; Montero, Javier; Suárez-García, Maria-Jesús

    2012-07-01

    This study aimed to evaluate the vertical discrepancy of implant-supported crown structures constructed with vacuum-casting and Direct Metal Laser Sintering (DMLS) technologies, and luted with different cement types. Crown copings were fabricated using: (1) direct metal laser sintered Co-Cr (LS); (2) vacuum-cast Co-Cr (CC); and (3) vacuum-cast Ti (CT). Frameworks were luted onto machined implant abutments under constant seating pressure. Each alloy group was randomly divided into 5 subgroups (n = 10 each) according to the cement system utilized: Subgroup 1 (KC) used resin-modified glass-ionomer Ketac Cem Plus; Subgroup 2 (PF) used Panavia F 2.0 dual-cure resin cement; Subgroup 3 (RXU) used RelyX Unicem 2 Automix self-adhesive dual-cure resin cement; Subgroup 4 (PIC) used acrylic/urethane-based temporary Premier Implant Cement; and Subgroup 5 (DT) used acrylic/urethane-based temporary DentoTemp cement. Vertical misfit was measured by scanning electron microscopy (SEM). Two-way ANOVA and Student-Newman-Keuls tests were run to investigate the effect of alloy/fabrication technique, and cement type on vertical misfit. The statistical significance was set at α = 0.05. The alloy/manufacturing technique and the luting cement affected the vertical discrepancy (p < 0.001). For each cement type, LS samples exhibited the best fit (p < 0.01) whereas CC and CT frames were statistically similar. Within each alloy group, PF and RXU provided comparably greater discrepancies than KC, PIC, and DT, which showed no differences. Laser sintering may be an alternative to vacuum-casting of base metals to obtain passive-fitting implant-supported crown copings. The best marginal adaptation corresponded to laser sintered structures luted with glass-ionomer KC, or temporary PIC or DT cements. The highest discrepancies were recorded for Co-Cr and Ti cast frameworks bonded with PF or RXU resinous agents. All groups were within the clinically acceptable misfit range.

  14. Custom hip prostheses by integrating CAD and casting technology

    NASA Astrophysics Data System (ADS)

    Silva, Pedro F.; Leal, Nuno; Neto, Rui J.; Lino, F. Jorge; Reis, Ana

    2012-09-01

    Total Hip Arthroplasty (THA) is a surgical intervention that is being achieving high rates of success, leaving room to research on long run durability, patient comfort and costs reduction. Even so, up to the present, little research has been done to improve the method of manufacturing customized prosthesis. The common customized prostheses are made by full machining. This document presents a different approach methodology which combines the study of medical images, through CAD (Computer Aided Design) software, SLadditive manufacturing, ceramic shell manufacture, precision foundry with Titanium alloys and Computer Aided Manufacturing (CAM). The goal is to achieve the best comfort for the patient, stress distribution and the maximum lifetime of the prosthesis produced by this integrated methodology. The way to achieve this desiderate is to make custom hip prosthesis which are adapted to each patient needs and natural physiognomy. Not only the process is reliable, but also represents a cost reduction comparing to the conventional full machined custom hip prosthesis.

  15. Research and Development Project Priotization. An Annotated Bibliography.

    DTIC Science & Technology

    1980-04-01

    matrix) theory provides the answer in any particular 17 problem. The matrix used is a table to express the number of votes cast for each motion...the majority-rule model and the game model. In 1964, Aumana’s chapter in Shelly and Bryan’s book [187] briefly described ordinal utility ranking...propositions to cast doubt on the existence of Bergson-Samuelson SWFs. They demonstrated that it was impossible to find a "reasonable" Bergson

  16. Development of High-Performance Cast Crankshafts. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Mark E

    The objective of this project was to develop technologies that would enable the production of cast crankshafts that can replace high performance forged steel crankshafts. To achieve this, the Ultimate Tensile Strength (UTS) of the new material needs to be 850 MPa with a desired minimum Yield Strength (YS; 0.2% offset) of 615 MPa and at least 10% elongation. Perhaps more challenging, the cast material needs to be able to achieve sufficient local fatigue properties to satisfy the durability requirements in today’s high performance gasoline and diesel engine applications. The project team focused on the development of cast steel alloysmore » for application in crankshafts to take advantage of the higher stiffness over other potential material choices. The material and process developed should be able to produce high-performance crankshafts at no more than 110% of the cost of current production cast units, perhaps the most difficult objective to achieve. To minimize costs, the primary alloy design strategy was to design compositions that can achieve the required properties with minimal alloying and post-casting heat treatments. An Integrated Computational Materials Engineering (ICME) based approach was utilized, rather than relying only on traditional trial-and-error methods, which has been proven to accelerate alloy development time. Prototype melt chemistries designed using ICME were cast as test specimens and characterized iteratively to develop an alloy design within a stage-gate process. Standard characterization and material testing was done to validate the alloy performance against design targets and provide feedback to material design and manufacturing process models. Finally, the project called for Caterpillar and General Motors (GM) to develop optimized crankshaft designs using the final material and manufacturing processing path developed. A multi-disciplinary effort was to integrate finite element analyses by engine designers and geometry-specific casting simulations with existing materials models to optimize crankshaft cost and performance. Prototype crankshafts of the final design were to be produced and validated using laboratory bench testing and on-engine durability testing. ICME process simulation tools were used to investigate a broad range of processing concepts. These concepts included casting orientation, various mold and core materials, and various filling and feeding strategies. Each crankshaft was first simulated without gating and risers, which is termed natural solidification. The natural solidification results were used as a baseline for strategy development of each concept. Casting process simulations and ICME tools were proven to be reasonable predictors of real world results. Potential alloys were developed that could meet the project material property goals with appropriate normalization and temper treatments. For the alloys considered, post-normalization temper treatments proved to be necessary to achieve the desired yield strengths and elongations and appropriate heat treatments were designed using ICME tools. The experimental data of all the alloys were analyzed in combination with ICME tools to establish chemistry-process-structure relations. Several GM small gas engine (SGE) crankshafts were successfully cast in sand molds using two different sprue, runner, gate, riser, chill designs. These crankshafts were cast in two different steel alloys developed during the project, but casting finishing (e.g. riser removal) remains a cost challenge. A long list of future work was left unfinished when this project was unexpectedly terminated.« less

  17. Cognitive and sociocultural aspects of robotized technology: innovative processes of adaptation

    NASA Astrophysics Data System (ADS)

    Kvesko, S. B.; Kvesko, B. B.; Kornienko, M. A.; Nikitina, Y. A.; Pankova, N. M.

    2018-05-01

    The paper dwells upon interaction between socio-cultural phenomena and cognitive characteristics of robotized technology. The interdisciplinary approach was employed in order to cast light on the manifold and multilevel identity of scientific advance in terms of robotized technology within the mental realm. Analyzing robotized technology from the viewpoint of its significance for the modern society is one of the upcoming trends in the contemporary scientific realm. The robots under production are capable of interacting with people; this results in a growing necessity for the studies on social status of robotized technological items. Socio-cultural aspect of cognitive robotized technology is reflected in the fact that the nature becomes ‘aware’ of itself via human brain, a human being tends to strives for perfection in their intellectual and moral dimensions.

  18. Mechanical Testing of IN718 Lattice Block Structures

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Whittenberger, John D.; Kantzos, Pete T.; Hebsur, Mohan G.

    2002-01-01

    Lattice block construction produces a flat, structurally rigid panel composed of thin ligaments of material arranged in a three-dimensional triangulated truss-like structure. Low-cost methods of producing cast metallic lattice block panels are now available that greatly expand opportunities for using this unique material system in today's high-performance structures. Additional advances are being made in NASA's Ultra Efficient Engine Technology (UEET) program to extend the lattice block concept to superalloy materials. Advantages offered by this combination include high strength, light weight, high stiffness, and elevated temperature capabilities. Recently under UEET, the nickel-based superalloy Inconel 718 (IN718) was investment cast into lattice block panels with great success. To evaluate casting quality and lattice block architecture merit, individual ligaments, and structural subelement specimens were extracted from the panels. Tensile tests, structural compression, and bending strength tests were performed on these specimens. Fatigue testing was also completed for several bend test specimens. This paper first presents metallurgical and optical microscopy analysis of the castings. This is followed by mechanical test results for the tensile ligament tests and the subelement compression and bending strength tests, as well as for the fatigue tests that were performed. These tests generally showed comparable properties to base IN718 with the same heat treatment, and they underscored the benefits offered by lattice block materials. These benefits might be extended with improved architecture such as face sheets.

  19. Thermal Stress and Heat Transfer Coefficient for Ceramics Stalk Having Protuberance Dipping into Molten Metal

    NASA Astrophysics Data System (ADS)

    Noda, Nao-Aki; Hendra; Li, Wenbin; Takase, Yasushi; Ogura, Hiroki; Higashi, Yusuke

    Low pressure die casting is defined as a net shape casting technology in which the molten metal is injected at high speeds and pressure into a metallic die. The low pressure die casting process plays an increasingly important role in the foundry industry as a low-cost and high-efficiency precision forming technique. In the low pressure die casting process is that the permanent die and filling systems are placed over the furnace containing the molten alloy. The filling of the cavity is obtained by forcing the molten metal, by means of a pressurized gas, to rise into a ceramic tube having protuberance, which connects the die to the furnace. The ceramics tube, called stalk, has high temperature resistance and high corrosion resistance. However, attention should be paid to the thermal stress when the stalk having protuberance is dipped into the molten aluminum. It is important to reduce the risk of fracture that may happen due to the thermal stresses. In this paper, thermo-fluid analysis is performed to calculate surface heat transfer coefficient. The finite element method is applied to calculate the thermal stresses when the stalk having protuberance is dipped into the crucible with varying dipping speeds. It is found that the stalk with or without protuberance should be dipped into the crucible slowly to reduce the thermal stress.

  20. Fundamental phenomena on fuel decomposition and boundary layer combustion processes with applications to hybrid rocket motors

    NASA Technical Reports Server (NTRS)

    Kuo, Kenneth K.; Lu, Y. C.; Chiaverini, Martin J.; Harting, George C.

    1994-01-01

    An experimental study on the fundamental processes involved in fuel decomposition and boundary layer combustion in hybrid rocket motors is being conducted at the High Pressure Combustion Laboratory of the Pennsylvania State University. This research should provide a useful engineering technology base in the development of hybrid rocket motors as well as a fundamental understanding of the complex processes involved in hybrid propulsion. A high pressure slab motor has been designed and manufactured for conducting experimental investigations. Oxidizer (LOX or GOX) supply and control systems have been designed and partly constructed for the head-end injection into the test chamber. Experiments using HTPB fuel, as well as fuels supplied by NASA designated industrial companies will be conducted. Design and construction of fuel casting molds and sample holders have been completed. The portion of these items for industrial company fuel casting will be sent to the McDonnell Douglas Aerospace Corporation in the near future. The study focuses on the following areas: observation of solid fuel burning processes with LOX or GOX, measurement and correlation of solid fuel regression rate with operating conditions, measurement of flame temperature and radical species concentrations, determination of the solid fuel subsurface temperature profile, and utilization of experimental data for validation of a companion theoretical study (Part 2) also being conducted at PSU.

Top