Klemm, W R; Block, H
1988-02-01
The dopaminergic role of D-1 and D-2 receptors in catalepsy was evaluated using drugs with preferential receptor affinities. The D-1 antagonist, SCH 23390, caused distinct catalepsy in mice at 1, 2, and 10 mg/kg, IP, but not at two lower doses. The selective D-1 blocker, molindone, also caused catalepsy at 5 and 10 mg/kg; and blockade of both receptor types produced additive cataleptogenic effects. Apomorphine (4 mg/kg), which is an agonist for both receptors, potentiated SCH 23390-induced catalepsy much more than it did the catalepsy induced by molindone; the potentiation was produced by higher, not lower, doses of apomorphine. To determine if the apomorphine potentiation was mediated by D-1 or D-2 receptors, we tested selective agonists in mice that were concurrently injected with selective blockers. SCH 23390-induced catalepsy was potentiated by a large dose of the D-2 agonist, bromocriptine. The catalepsy of D-2 blockade with molindone was not potentiated by the D-1 agonist, SKF 38393, which slightly disrupted the catalepsy of D-2 blockade. We conclude that catalepsy is not a simple D-2 blockade phenomenon and that preferential antagonism of either receptor type can cause catalepsy. Catalepsy is most profound when both receptor types are blocked. Dopamine agonists, in large concentrations, are known to promote movements, and thus it is not surprising that they tend to disrupt catalepsy.(ABSTRACT TRUNCATED AT 250 WORDS)
Neuroleptic-induced catalepsy: a D2 blockade phenomenon?
Klemm, W R
1985-12-01
Typical neuroleptics, such as haloperidol, are cataleptogenic. But since such drugs block both D1 and D2 receptors, it is not clear if there is a differential receptor role in catalepsy. To test this issue in a mouse model of catalepsy, these experiments tested molindone, a D2-blocking neuroleptic with almost no ability to block D1 receptors. If D1 receptor blockade is necessary for catalepsy, molindone should not cause catalepsy. But molindone was cataleptogenic, albeit less potent than haloperidol. There was also a "training effect" with haloperidol, but not saline or molindone, in that the catalepsy produced by 5 mg/kg of haloperidol was much greater when tests were performed repeatedly at short intervals after injection. Concurrent administration of apomorphine (4 or 8 mg/kg) markedly potentiated haloperidol catalepsy, but had no effect on molindone catalepsy. Such results are not readily interpretable solely in terms of current concepts of D1 and D2 receptors.
Oliveira, Lucas Rangel; Dias, Flávia Regina Cruz; Santos, Breno Garone; Silva, Jade Leal Loureiro; Carey, Robert J; Carrera, Marinete Pinheiro
2016-09-15
Haloperidol can induce catalepsy and this drug effect can be conditioned as well as sensitized to contextual cues. We used a paired/unpaired Pavlovian conditioning protocol to establish haloperidol catalepsy conditioned and sensitized responses. Groups of rats were given 10 daily catalepsy tests following administration of vehicle (n=24) or haloperidol (1.0mg/kg) either paired (n=18) or unpaired (n=18) to testing. Subsequently, testing for conditioning was conducted and conditioning and sensitization of catalepsy were observed selectively in the paired group. Immediately following a second test for catalepsy conditioning, the groups were subdivided into 4 vehicle groups, 3 unpaired haloperidol groups and 3 paired haloperidol groups and were given one of three post-trial treatments (vehicle, 0.05mg/kg or 2.0mg/kg apomorphine). One day later the conditioned catalepsy test 3 was carried out and on the next day, a haloperidol challenge test was performed. The post-trial apomorphine treatments had major effects on the paired groups upon both conditioning and the haloperidol challenge test. The low dose apomorphine post-trial treatment enhanced both the conditioned and the haloperidol sensitized catalepsy responses. The high dose apomorphine post-trial treatment eliminated conditioned catalepsy and eliminated the initial acute catalepsy response to haloperidol that was induced in the vehicle control groups. These results demonstrate the sensitivity of conditioned drug cues to modification by increases/decreases in activity of the dopamine system in the immediate post-trial interval after a conditioning trial. This demonstration that post-trial dopaminergic drug treatments can modify conditioned drug behavior has broad implications for conditioned drug effects. Copyright © 2016 Elsevier B.V. All rights reserved.
Context-dependent catalepsy intensification is due to classical conditioning and sensitization.
Amtage, J; Schmidt, W J
2003-11-01
Haloperidol-induced catalepsy represents a model of neuroleptic-induced Parkinsonism. Daily administration of haloperidol, followed by testing for catalepsy on a bar and grid, results in a day-to-day increase in catalepsy that is completely context dependent, resulting in a strong placebo effect and in a failure of expression after a change in context. The aim of this study was to analyse the associative learning process that underlies context dependency. Catalepsy intensification was induced by a daily threshold dose of 0.25 mg/kg haloperidol. Extinction training and retesting under haloperidol revealed that sensitization was composed of two components: a context-conditioning component, which can be extinguished, and a context-dependent sensitization component, which cannot be extinguished. Context dependency of catalepsy thus follows precisely the same rules as context dependency of psychostimulant-induced sensitization. Catalepsy sensitization is therefore due to conditioning and sensitization.
Sonego, Andreza B; Gomes, Felipe V; Del Bel, Elaine A; Guimaraes, Francisco S
2016-08-01
Cannabidiol (CBD) is a major non-psychoactive compound from Cannabis sativa plant. Given that CBD reduces psychotic symptoms without inducing extrapyramidal motor side-effects in animal models and schizophrenia patients, it has been proposed to act as an atypical antipsychotic. In addition, CBD reduced catalepsy induced by drugs with distinct pharmacological mechanisms, including the typical antipsychotic haloperidol. To further investigate this latter effect, we tested whether CBD (15-60mg/kg) would attenuate the catalepsy and c-Fos protein expression in the dorsal striatum induced by haloperidol (0.6mg/kg). We also evaluated if these effects occur through the facilitation of 5-HT1A receptor-mediated neurotransmission. For this, male Swiss mice were treated with CBD and haloperidol systemically and then subjected to the catalepsy test. Independent groups of animals were also treated with the 5-HT1A receptor antagonist WAY100635 (0.1mg/kg). As expected, haloperidol induced catalepsy throughout the experiments, an effect that was prevented by systemic CBD treatment 30min before haloperidol administration. Also, CBD, administered 2.5h after haloperidol, reversed haloperidol-induced catalepsy. Haloperidol also increased c-Fos protein expression in the dorsolateral striatum, an effect attenuated by previous CBD administration. CBD effects on catalepsy and c-Fos protein expression induced by haloperidol were blocked by the 5-HT1A receptor antagonist. We also evaluated the effects of CBD (60nmol) injection into the dorsal striatum on haloperidol-induced catalepsy. Similar to systemic administration, this treatment reduced catalepsy induced by haloperidol. Altogether, these results suggest that CBD acts in the dorsal striatum to improve haloperidol-induced catalepsy via postsynaptic 5-HT1A receptors. Copyright © 2016 Elsevier B.V. All rights reserved.
Further evaluation of the tropane analogs of haloperidol.
Sampson, Dinithia; Bricker, Barbara; Zhu, Xue Y; Peprah, Kwakye; Lamango, Nazarius S; Setola, Vincent; Roth, Bryan L; Ablordeppey, Seth Y
2014-09-01
Previous work from our labs has indicated that a tropane analog of haloperidol with potent D2 binding but designed to avoid the formation of MPP(+)-like metabolites, such as 4-(4-chlorophenyl)-1-(4-(4-fluorophenyl)-4-oxobutyl)pyridin-1-ium (BCPP(+)) still produced catalepsy, suggesting a strong role for the D2 receptor in the production of catalepsy in rats, and hence EPS in humans. This study tested the hypothesis that further modifications of the tropane analog to produce compounds with less potent binding to the D2 receptor than haloperidol, would produce less catalepsy. These tests have now revealed that while haloperidol produced maximum catalepsy, these compounds produced moderate to low levels of catalepsy. Compound 9, with the least binding affinity to the D2R, produced the least catalepsy and highest Minimum Adverse Effective Dose (MAED) of the analogs tested regardless of their affinities at other receptors including the 5-HT1AR. These observations support the hypothesis that moderation of the D2 binding of the tropane analogs could reduce catalepsy potential in rats and consequently EPS in man. Published by Elsevier Ltd.
Kleven, Mark S; Barret-Grévoz, Catherine; Bruins Slot, Liesbeth; Newman-Tancredi, Adrian
2005-08-01
Compounds possessing 5-HT(1A) agonist properties attenuate catalepsy induced by D(2) receptor blockade. Here we examined the role of 5-HT(1A) receptor agonism in the reduced cataleptogenic potential of several novel antipsychotic agents in the crossed leg position (CLP) and the bar catalepsy tests in rats. When administered alone, ziprasidone produced marked catalepsy, whereas aripiprazole, bifeprunox, SLV313, SSR181507 and sarizotan did not. However, when 5-HT(1A) receptors were blocked with the selective antagonist, WAY100635 (0.63 mg/kg, SC), robust cataleptogenic properties of SLV313, bifeprunox and sarizotan were unmasked and the catalepsy induced by ziprasidone was accentuated. In contrast, only modest catalepsy was induced by aripiprazole and SSR181507, even following a higher dose of WAY100635 (2.5 mg/kg). This suggests that these compounds possess other anti-cataleptic properties, such as partial agonism at dopamine D(2) receptors. The capacity to reverse neuroleptic-induced catalepsy was investigated in interaction studies with haloperidol (2.5 mg/kg, SC). Whereas ziprasidone and aripiprazole did not markedly reduce the effects of haloperidol, SLV313 and sarizotan attenuated CLP catalepsy. In contrast, SSR181507 and bifeprunox potently inhibited both CLP and bar catalepsy. Taken together, these data show that 5-HT(1A) receptor activation reduces the cataleptogenic potential of novel antipsychotic agents but indicate marked diversity in the contribution of 5-HT(1A) and/or other mechanisms to the profiles of the drugs.
Kulikov, Alexander V; Fursenko, Daria V; Khotskin, Nikita V; Bazovkina, Daria V; Kulikov, Victor A; Naumenko, Vladimir S; Bazhenova, Ekaterina Yu; Popova, Nina K
2014-07-01
Hereditary catalepsy in mice is accompanied with volume reduction of some brain structures and high vulnerability to inflammatory agents. Here an association between hereditary catalepsy and spatial learning deficit in the Morris water maze (MWM) in adult mouse males of catalepsy-resistant AKR, catalepsy-prone CBA and AKR.CBA-D13Mit76 (D13) strains was studied. Recombinant D13 strain was created by means of the transfer of the CBA-derived allele of the major gene of catalepsy to the AKR genome. D13 mice showed a low MWM performance in the acquisition test and high expression of the gene coding proinflammatory interleukin-6 (Il-6) in the hippocampus and cortex compared with mice of the parental AKR and CBA strains. An acute ivc administration of 300 ng of brain derived neurotrophic factor (BDNF) normalized the performance in the MWM, but did not decrease the high Il-6 gene expression in the brain of D13 mice. These results indicated a possible association between the hereditary catalepsy, MWM performance, BDNF and level of Il-6 mRNA in the brain, although the relation between these characteristics seems to be more complex. D13 recombinant mice with deficit of spatial learning is a promising model for study of the genetic and molecular mechanisms of learning disorders as well as for screening potential cognitive enhancers. Copyright © 2014 Elsevier Inc. All rights reserved.
On the role of brain serotonin in expression of genetic predisposition to catalepsy in animal models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popova, N.K.; Kulikov, A.V.
1995-06-19
The activity of the rate-limiting enzyme of serotonin biosynthesis, tryptophan hydroxylase, in the striatum but not in the hippocampus and midbrain of rats bred for predisposition to catalepsy was higher than in nonselected rats. Mice of the highly susceptible to catalepsy CBA strain also differed from other noncataleptic mouse strains by the highest tryptophan hydroxylase activity in the striatum. Inhibition of tryptophan hydroxylase with p-chlorophenylalanine and p-chloromethamphetamine drastically decreased immobility time in hereditary predisposed to catalepsy animals. A decrease in the {sup 3}H-ketanserin specific binding in the striatum of cataleptic rats and CBA mice was found. It was suggested thatmore » this decrease in 5-HT2A serotonin receptor density represented a down regulation of the receptors due to an activation of serotonergic transmission in striatum. It is suggested that hereditary catalepsy may be resulted from genetic changes in the regulation of serotonin metabolism in striatum. 32 refs., 6 figs.« less
Wolf, P
2000-12-01
Epilepsy and catalepsy were not clearly separated in the minds of people in the early 19th century, and catalepsy may have been used as a diagnostic euphemism for epilepsy. Tennyson, in "The Princess" describes, under the diagnosis of catalepsy, probable temporal lobe epileptic dreamy states with derealization which serve as a metaphor of sexual and moral ambivalence, the poem's central theme. It seems that Tennyson knew such seizures from his own father who had been given a diagnosis of catalepsy. Poe gave his Berenice in the novella of the same title a diagnosis of epilepsy as a reason for a premature burial. However, there was a good deal of unlikelyhood in this, and when he came to this theme in "The Fall of the House of Usher" and in "The Premature Burial" he chose instead a diagnosis of catalepsy which fitted better with the plot. The fits of the title character in George Eliot's Silas Marner, diagnosed as catalepsy, would today rather be seen as epileptic twilight states. It would seem that this author drew from contemporary dictionary descriptions which described conditions similar to Marner's fits under the heading of catalepsy. In Eliot's "legend with a realistic treatment", the twilight states are a central factor in the plot and explain Marner's reclusion and passivity. In Poor Miss Finch by English realist Wilkie Collins, the post-traumatic seizures of Oscar, one of the main characters, their cause, their treatment with silver nitrate, and the subsequent discoloration of his skin are central supporting elements of a perfectly constructed plot. Collins gives an exact description of a right versive seizure with secondary generalisation, and how to deal with it. In none of these works seizures are seen in a negative light. They rather evoke reactions of sympathy and support.
Effect of NR-ANX-C (a polyherbal formulation) on haloperidol induced catalepsy in albino mice.
Nair, Vinod; Arjuman, Albina; Dorababu, P; Gopalakrishna, H N; Chakradhar Rao, U; Mohan, Lalit
2007-11-01
Use of typical antipsychotics like haloperidol in treatment of schizophrenia is associated with a high incidence of extrapyramidal side effects. In rodents, administration of haloperidol leads to the development of a behavioural state called catalepsy, in which the animal is not able to correct an externally imposed posture. In the present study we evaluated the anticataleptic efficacy of NR-ANX-C, a polyherbal formulation containing bioactives of Withania somnifera, Ocimum sanctum, Camellia sinensis, triphala and shilajit in haloperidol induced catalepsy in mice. Five groups (n = 6) of male albino mice were used in the study. Catalepsy was induced by ip administration of haloperidol (1mg/kg). The degree of catalepsy (cataleptic score) was measured as the time the animal maintained an imposed posture. We compared the anticataleptic efficacy of NR-ANX-C (10, 25 and 50 mg/kg) with scopolamine (1 mg/kg). The superoxide dismutase (SOD) level in brain tissue was also estimated to correlate the levels of oxidative stress and degree of catalepsy in the animal. Significant (P<0.01) reduction in the cataleptic scores was observed in all NR-ANX-C treated groups and maximum reduction was observed in the NR-ANX-C (25 mg/kg) treated group. Significant (P<0.05) reduction in SOD activity was observed in NR-ANX-C (25 and 50 mg/kg) treated groups and maximum reduction was observed in NR-ANX-C (25mg/kg) treated group. In our study, maximum reduction in cataleptic score was observed in NR-ANX-C (25 mg/kg) treated group. The maximum reduction in SOD activity was also observed in the same group. These findings suggest a possible involvement of the antioxidant potential of NRANX- C in alleviating haloperidol induced catalepsy.
Effect of Tribulus terrestris on Haloperidol-induced Catalepsy in Mice.
Nishchal, B S; Rai, S; Prabhu, M N; Ullal, Sheetal D; Rajeswari, S; Gopalakrishna, H N
2014-01-01
Haloperidol, an antipsychotic drug, leads to the development of a behavioural state called catalepsy, in which the animal is not able to correct an externally imposed posture. In the present study we have attempted to evaluate the anticataleptic effect of Tribulus terrestris on haloperidol-induced catalepsy in albino mice. Mice were allocated to four groups, each group containing six animals. Both, the test drug, Tribulus terrestris and the standard drug trihexyphenidyl were uniformly suspended in 1% gum acacia solution. Catalepsy was induced in mice with haloperidol (1.0 mg/kg, intraperitoneally). The first group received the vehicle (10 ml/kg, orally), the second group received trihexyphenidyl (10 mg/kg, orally) and the remaining two groups received Tribulus terrestris (100, 200 mg/kg, orally). The animals were assessed after single and repeated dose administration for ten days, 30 min prior to haloperidol, using standard bar test. The result of the present study demonstrates Tribulus terrestris has a protective effect against haloperidol-induced catalepsy, which is comparable to the standard drug used for the same purpose. Our study indicates Tribulus terrestris can be used to prevent haloperidol-induced extrapyramidal side effects.
A novel automated rat catalepsy bar test system based on a RISC microcontroller.
Alvarez-Cervera, Fernando J; Villanueva-Toledo, Jairo; Moo-Puc, Rosa E; Heredia-López, Francisco J; Alvarez-Cervera, Margarita; Pineda, Juan C; Góngora-Alfaro, José L
2005-07-15
Catalepsy tests performed in rodents treated with drugs that interfere with dopaminergic transmission have been widely used for the screening of drugs with therapeutic potential in the treatment of Parkinson's disease. The basic method for measuring catalepsy intensity is the "standard" bar test. We present here an easy to use microcontroller-based automatic system for recording bar test experiments. The design is simple, compact, and has a low cost. Recording intervals and total experimental time can be programmed within a wide range of values. The resulting catalepsy times are stored, and up to five simultaneous experiments can be recorded. A standard personal computer interface is included. The automated system also permits the elimination of human error associated with factors such as fatigue, distraction, and data transcription, occurring during manual recording. Furthermore, a uniform criterion for timing the cataleptic condition can be achieved. Correlation values between the results obtained with the automated system and those reported by two independent observers ranged between 0.88 and 0.99 (P<0.0001; three treatments, nine animals, 144 catalepsy time measurements).
Formukong, E A; Evans, A T; Evans, F J
1988-02-01
Tetrahydrocannabinol (THC) induced catalepsy in mice, whereas a cannabis oil (6.68% w/w THC), four cannabinoids and a synthetic mixture did not. Cannabinol (CBN) and olivetol inhibited THC-induced catalepsy in the mornings and the evenings, but cannabidiol (CBD) exhibited this effect only in the evenings. A combination of CBN and CBD inhibited THC-induced catalepsy equal to that of CBN alone in the mornings, but this inhibition was greater than that produced by CBN alone in the evenings.
NASA Astrophysics Data System (ADS)
Eko Sardjono, Ratnaningsih; Khoerunnisa, Fitri; Musthopa, Iqbal; Khairunisa, Dinar; Astuti Suganda, Putri; Rachmawati, Rahmi
2018-01-01
This study aims to synthesize zinc nanoparticles using Indonesian velvet bean (Mucuna pruriens) seed extract and evaluate its potency in lowering catalepsy in mice. The research conducted consist of extraction of M. pruriens seed powder, synthesis of zinc-M. pruriens seed extract nanoparticles (Zn-MPn), characterization of Zn-MPn, and catalepsy test of Zn-MPn. M. pruriens seed powder was extracted by maceration using ethanol-water (1:1) at pH 3 adjusted with citric acid. The Zn-MPn was synthesized by reacting zinc acetate dihydrate (Zn(CH3COO2)2.2H2O) solution with M. pruriens seed extract for 40 min, dispersibility of the reaction was controlled by using sonication and ultrasonic homogenizer. The Zn-MPn obtained was characterized by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM), and Fourier-transform infrared (FTIR). Catalepsy test of Zn-MPn was conducted at doses of 5, 10, 15, 20 and 25 mg/kg body weight. The results of SEM-EDX and TEM analysis showed that the Zn-MPn formed nanoparticles with a particle diameter of 55 nm. Based on FTIR analysis, the absorption band at 464.8 cm-1 was a typical absorption indicated the Zn-O interaction on Zn-MPn. Catalepsy test showed that Zn-MPn on the all five doses were able to lower the catalepsy in mice with the best dose was 10 mg/kg body weight.
Effect of Tribulus terrestris on Haloperidol-induced Catalepsy in Mice
Nishchal, B. S.; Rai, S.; Prabhu, M. N.; Ullal, Sheetal D.; Rajeswari, S.; Gopalakrishna, H. N.
2014-01-01
Haloperidol, an antipsychotic drug, leads to the development of a behavioural state called catalepsy, in which the animal is not able to correct an externally imposed posture. In the present study we have attempted to evaluate the anticataleptic effect of Tribulus terrestris on haloperidol-induced catalepsy in albino mice. Mice were allocated to four groups, each group containing six animals. Both, the test drug, Tribulus terrestris and the standard drug trihexyphenidyl were uniformly suspended in 1% gum acacia solution. Catalepsy was induced in mice with haloperidol (1.0 mg/kg, intraperitoneally). The first group received the vehicle (10 ml/kg, orally), the second group received trihexyphenidyl (10 mg/kg, orally) and the remaining two groups received Tribulus terrestris (100, 200 mg/kg, orally). The animals were assessed after single and repeated dose administration for ten days, 30 min prior to haloperidol, using standard bar test. The result of the present study demonstrates Tribulus terrestris has a protective effect against haloperidol-induced catalepsy, which is comparable to the standard drug used for the same purpose. Our study indicates Tribulus terrestris can be used to prevent haloperidol-induced extrapyramidal side effects. PMID:25593394
Moore, N A; Blackman, A; Awere, S; Leander, J D
1993-06-11
In the present study, we investigated the ability of NMDA receptor antagonists to inhibit catalepsy induced by haloperidol, or SCH23390 and clebopride, selective dopamine D1 and D2 receptor antagonists respectively. Catalepsy was measured by recording the time the animal remained with its forepaws placed over a rod 6 cm above the bench. Pretreatment with either the non-competitive NMDA receptor antagonist, MK-801 (0.25-0.5 mg/kg i.p.) or the competitive antagonist, LY274614 (10-20 mg/kg i.p.) reduced the cataleptic response produced by haloperidol (10 mg/kg), SCH23390 (2.5-10 mg/kp i.p.) or clebopride (5-20 mg/kg i.p.). This demonstrates that NMDA receptor antagonists will reduce both dopamine D1 and D2 receptor antagonist-induced catalepsy. Muscle relaxant doses of chlordiazepoxide (10 mg/kg i.p.) failed to reduce the catalepsy induced by haloperidol, suggesting that the anticataleptic effect of the NMDA receptor antagonists was not due to a non-specific action. These results support the hypothesis that NMDA receptor antagonists may have beneficial effects in disorders involving reduced dopaminergic function, such as Parkinson's disease.
Kasture, Sanjay B; Gaikar, Mayur; Kasture, Veena; Arote, Sanjay; Salve, Balu; Rosas, Michela; Cotti, Elisabetta; Acquas, Elio
2015-02-01
Tea is the most popular beverage worldwide. Caffeine, the psychoactive principle of tea, pharmacologically interacts with several drugs and bioactive molecules. Epigallocatechin gallate (EGCG) is a major component of tea and its known interactions with caffeine make it worthwhile to further study them by investigating the influence of EGCG on the anticataleptic and locomotor-sensitizing effects of caffeine. In the present investigation, we observed that (a) administration of caffeine or EGCG alone inhibited haloperidol-induced catalepsy, a widely used animal model to study parkinsonism, and (b) a combination of caffeine and EGCG produced greater inhibition of haloperidol-induced catalepsy. Furthermore, after repeated administration of caffeine and EGCG, either alone or in combination, we observed that (c) caffeine and EGCG contrasted the sensitization of catalepsy observed after repeated haloperidol administration by significantly reducing the duration of catalepsy. Furthermore, as haloperidol-induced catalepsy was also associated with increased lipid peroxidation, we observed that (d) EGCG administration reduced striatal lipid peroxide levels in a dose-dependent manner and that (e) the combination of caffeine with EGCG was most effective in reducing haloperidol-increased striatal lipid peroxide. Finally, we observed that (f) chronic caffeine and EGCG significantly elicited locomotor sensitization and that (g) their combination resulted in significantly greater effects. In conclusion, EGCG potentiated the effects of caffeine on haloperidol-induced catalepsy and of caffeine-elicited locomotor sensitization. Overall, these observations indicate critical interactions between caffeine and EGCG in an animal model of parkinsonism and locomotor activity and suggest that tea consumption might reduce antipsychotic-induced side effects.
Jelovac, N; Sikiric, P; Rucman, R; Petek, M; Marovic, A; Perovic, D; Seiwerth, S; Mise, S; Turkovic, B; Dodig, G; Miklic, P; Buljat, G; Prkacin, I
1999-08-20
A gastric pentadecapeptide, BPC 157, with the amino acid sequence, Gly-Glu-Pro-Pro-Pro-Gly-Lys-Pro-Ala-Asp-Asp-Ala-Gly-Leu-Val, MW 1419, known to have a variety of protective effects in gastrointestinal tract and other organs, was recently shown to particularly affect dopamine systems. For instance, it blocks the stereotypy produced acutely by amphetamine in rats, and the development of haloperidol-induced supersensitivity to amphetamine in mice. Consequently, whether pentadecapeptide BPC 157, that by itself has no cataleptogenic effect in normal animals, may attenuate the immediate effects of neuroleptics application, particularly catalepsy, was the focus of the present report. Prominent catalepsy, otherwise consistently seen in the mice treated with haloperidol (0.625, 1.25, 2.5, 5.0 and 10.0 mg/kg b.w., i.p.) and fluphenazine (0.3125, 0.625, 1.25, 2.5 and 5.0 mg/kg b.w., i.p.) after 1.5, 3, 4.5, 6 and 7.5 h following administration, was markedly attenuated when pentadecapeptide BPC 157 (10 microg or 10 ng/kg b.w., i.p.) was coadministered with the neuroleptic. The number of cataleptic mice was markedly lower throughout most of the experimental period. Moreover, on challenge with lower doses of neuroleptics, catalepsy appearance was postponed and the mice, otherwise cataleptic since the earliest period, became cataleptic later, not before 3 or 4.5 h after neuroleptic administration, especially if protected with higher pentadecapeptide dose. Besides catalepsy, coadministration of the pentadecapeptide BPC 157, given in the above mentioned doses, reduced not only catalepsy but somatosensory disorientation (for 7.5 h after administration of a neuroleptic, assessed at intervals of 1.5 h, by a simple scoring system [0-5]) in haloperidol- or fluphenazine-challenged mice as it did in mice treated with sulpiride (20, 40, 80 and 160 mg/kg b.w., i.p.) or with clozapine (25, 50 and 100 mg/kg b.w., i.p.), in which case catalepsy was absent. In other experiments, considering the gastric origin of this pentadecapeptide, the focus was shifted to the evidence that a dose of haloperidol, cataleptogenic due to dopamine receptors blockade, induces gastric ulcers in rats. Coadministration of pentadecapeptide BPC 157 (10 microg, 10 ng, 1.0 ng, 100 pg/kg b.w., i.p.) to rats completely inhibited the lesions otherwise regularly evident 24 h after haloperidol (5.0 mg/kg b.w., i.p.) in control rats (18 of 20 rats had gastric lesions). This activity accompanied the antagonism of the haloperidol catalepsy in rats (assessed at 60-min intervals from I to 5 h after haloperidol), when 10-microg- or 10-ng regimens were given (lower doses could not influence catalepsy). Together, these findings indicate that pentadecapeptide BPC 157 fully interacts with the dopamine system, both centrally and peripherally, or at least, that BPC 157 interferes with some steps involved in catalepsy and/or ulcer formation.
Kulikova, E A; Bazovkina, D V; Antonov, Y V; Akulov, A E; Kulikov, A V; Kondaurova, E M
2017-04-01
Catalepsy is an inability to correct an externally imposed awkward posture; it is associated with schizophrenia and depression in human. We created new recombinant B6.CBA-D13Mit76C and B6.CBA-D13Mit76B mouse lines on the C57Bl/6 genome, carrying the 102.73-110.56Mbp fragment of chromosome 13 derived from the catalepsy-prone CBA strain and catalepsy-resistant C57BL/6 strain, respectively. We compared the behavior and brain morphology (11.7T BioSpec 117/16 USR tomograph, Germany) in these lines. The effects of acute emotional stress on corticosterone's level in the blood and mRNA expression of Bdnf and Arc genes in the brain were investigated. The B6.CBA-D13Mit76B mice were non-cataleptic, while about 17% of B6.CBA-D13Mit76C mice demonstrated catalepsy-like immobility. No difference between these lines was revealed in the open field and social interaction tests. In the Morris water maze test, both lines effectively found the platform on the fourth day; however B6.CBA-D13Mit76B mice achieved significantly better results than cataleptic-prone animals. B6.CBA-D13Mit76C mice were characterized by decreased volume of the total brain and reduced sizes of striatum, cerebellum and pituitary gland. The both lines showed the similar basal and stress-induced levels of corticosterone, while the brain expression of Bdnf and Arc genes was more vulnerable to stress in the catalepsy-prone B6.CBA-D13Mit76C line. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.
McMillen, B A; McDonald, C C
1983-03-01
The hypothesis that the nerve endings of the dopamine projection of the frontal cortex lack autoreceptors for regulation of tyrosine hydroxylase was tested by using the preferential inhibitors of dopamine autoreceptors, molindole and buspirone. In contrast to haloperidol, which elevates dopamine metabolism in the striatum and frontal cortex, both molindone and buspirone elicited little change in dopamine metabolism in the frontal cortex at doses up to 3.0 mg/kg, which cause the same maximal response in the corpus striatum as does haloperidol. Thus, the lack of autoreceptors in the frontal cortex is of pharmacological importance. That preferential inhibition of striatal dopamine autoreceptors may reverse catalepsy by enhancing synthesis and release of dopamine was tested by first inducing catalepsy with different drugs and then administering molindone or buspirone. Only buspirone (1.0 mg/kg) reversed catalepsy. This effect does not require presynaptic dopamine as catalepsy was reversed by buspirone in the dopamine-depleted rat (with 2.0 mg/kg R04-1284) as well as after postsynaptic dopamine receptor blockade by haloperidol of cis-flupenthixol. Thus, the mechanism for the reversal of catalepsy appears to be located efferent from the dopamine neuron. Buspirone, a non-benzodiazepine anti-anxiety drug, may prove useful for treatment of extrapyramidal motor disorders of either iatrogenic or idiosyncratic origin.
Trevizol, Fabiola; Benvegnú, Dalila M; Barcelos, Raquel C S; Pase, Camila S; Segat, Hecson J; Dias, Verônica Tironi; Dolci, Geisa S; Boufleur, Nardeli; Reckziegel, Patrícia; Bürger, Marilise E
2011-08-01
Acute reserpine and subchronic haloperidol are animal models of extrapyramidal disorders often used to study parkinsonism, akinesia and tardive dyskinesia. In humans, these usually irreversible and disabling extrapyramidal disorders are developed by typical antipsychotic treatment, whose pathophysiology has been related to oxidative damages development. So far, there is no treatment to prevent these problems of the psychiatric clinic, and therefore further studies are needed. Here we used the animal models of extrapyramidal disorders cited above, which were performed in two distinct experiments: orofacial dyskinesia (OD)/catalepsy induced by acute reserpine and subchronic haloperidol after (experiment 1) and before (experiment 2) oral treatment with pecan shell aqueous extract (AE), a natural and promissory antioxidant. When administered previously (exp.1), the AE prevented OD and catalepsy induced by both reserpine and haloperidol. When reserpine and haloperidol were administered before the extract (exp.2), the animals developed OD and catalepsy all the same. However, the orofacial parameter (but not catalepsy) in both animal models was reversed after 7 and 14 days of AE treatment. These results indicate that, acute reserpine and subchronic haloperidol administrations induced similar motor disorders, although through different mechanisms, and therefore are important animal models to study the physiopathology of extrapyramidal disorders. Comparatively, the pecan shell AE was able to both prevent and reverse OD but only to prevent catalepsy. These results reinforce the role of oxidative stress and validate the two animal models used here. Our findings also favor the idea of prevention of extrapyramidal disorders, rather than their reversal. Copyright © 2011 Elsevier B.V. All rights reserved.
Clark, Callie A M; Sacrey, Lori-Ann R; Whishaw, Ian Q
2009-09-15
External cues, including familiar music, can release Parkinson's disease patients from catalepsy but the neural basis of the effect is not well understood. In the present study, posturography, the study of posture and its allied reflexes, was used to develop an animal model that could be used to investigate the underlying neural mechanisms of this sound-induced behavioral activation. In the rat, akinetic catalepsy induced by a dopamine D2 receptor antagonist (haloperidol 5mg/kg) can model human catalepsy. Using this model, two experiments examined whether novel versus familiar sound stimuli could interrupt haloperidol-induced catalepsy in the rat. Rats were placed on a variably inclined grid and novel or familiar auditory cues (single key jingle or multiple key jingles) were presented. The dependent variable was movement by the rats to regain equilibrium as assessed with a movement notation score. The sound cues enhanced movements used to regain postural stability and familiar sound stimuli were more effective than unfamiliar sound stimuli. The results are discussed in relation to the idea that nonlemniscal and lemniscal auditory pathways differentially contribute to behavioral activation versus tonotopic processing of sound.
Medeiros, P; de Freitas, R L; Silva, M O; Coimbra, N C; Melo-Thomas, L
2016-11-19
The inferior colliculus (IC), a midbrain structure that processes acoustic information of aversive nature, is distinguished from other auditory nuclei in the brainstem by its connections with structures of the motor system. Previous evidence relating the IC to motor behavior shows that glutamatergic and GABAergic mechanisms in the IC exert influence on systemic haloperidol-induced catalepsy. There is substantial evidence supporting a role played by the endocannabinoid system as a modulator of the glutamatergic neurotransmission, as well as the dopaminergic activity in the basal nuclei and therefore it may be considered as a potential pharmacological target for the treatment of movement disorders. The present study evaluated if the endocannabinoid system in the IC plays a role in the elaboration of systemic haloperidol-induced catalepsy. Male Wistar rats received intracollicular microinjection of either the endogenous cannabinoid anandamide (AEA) at different concentrations (5, 50 or 100pmol/0.2μl), the CB 1 cannabinoid receptor antagonist AM251 at 50, 100 or 200pmol/0.2μl or vehicle, followed by intraperitoneal (IP) administration of either haloperidol at 0.5 or 1mg/kg or physiological saline. Systemic injection of haloperidol at both doses (0.5 or 1mg/kg, IP) produced a cataleptic state, compared to vehicle/physiological saline-treated group, lasting 30 and 50min after systemic administration of the dopaminergic receptors non-selective antagonist. The midbrain microinjection of AEA at 50pmol/0.2μl increased the latency for stepping down from the horizontal bar after systemic administration of haloperidol. Moreover, the intracollicular administration of AEA at 50pmol/0.2μl was able to increase the duration of catalepsy as compared to AEA at 100pmol/0.2-μl-treated group. Intracollicular pretreatment with AM251 at the intermediate concentration (100pmol/0.2μl) was able to decrease the duration of catalepsy after systemic administration of haloperidol. However, neither the intracollicular microinjection of AM251 at the lowest (50pmol/0.2μl) nor at the highest (200pmol/0.2μl) concentration was able to block the systemic haloperidol-induced catalepsy. Furthermore, the intracollicular administration of AM251 at 100pmol/0.2μl was able to decrease the duration of catalepsy as compared to AM251 at 50pmol/0.2μl- and AM251 at 200pmol/0.2-μl-treated group. The latency for stepping down from the horizontal bar - induced by haloperidol administration - was decreased when microinjection of AEA at 50pmol/0.2μl was preceded with blockade of CB1 receptor with AM251 (100pmol/0.2μl). Our results strengthen the involvement of CB1-signaled endocannabinoid mechanisms of the IC in the neuromodulation of catalepsy induced by systemic administration of the dopaminergic receptors non-selective antagonist haloperidol. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Effects of Cannabis sativa extract on haloperidol-induced catalepsy and oxidative stress in the mice
Abdel-Salam, Omar M.E.; El-Sayed El-Shamarka, Marawa; Salem, Neveen A.; El-Din M. Gaafar, Alaa
2012-01-01
Haloperidol is a classic antipsychotic drug known for its propensity to cause extrapyramidal symptoms due to blockade of dopamine D2 receptors in the striatum. Interest in medicinal uses of cannabis is growing. Cannabis sativa has been suggested as a possible adjunctive in treatment of Parkinson's disease. The present study aimed to investigate the effect of repeated administration of an extract of Cannabis sativa on catalepsy and brain oxidative stress induced by haloperidol administration in mice. Cannabis extract was given by subcutaneous route at 5, 10 or 20 mg/kg (expressed as Δ9-tetrahydrocannabinol) once daily for 18 days and the effect on haloperidol (1 mg/kg, i.p.)-induced catalepsy was examined at selected time intervals using the bar test. Mice were euthanized 18 days after starting cannabis injection when biochemical assays were carried out. Malondialdehyde (MDA), reduced glutathione (GSH) and nitric oxide (the concentrations of nitrite/nitrate) were determined in brain and liver. In saline-treated mice, no catalepsy was observed at doses of cannabis up to 20 mg/kg. Mice treated with haloperidol at the dose of 1 mg/kg, exhibited significant cataleptic response. Mice treated with cannabis and haloperidol showed significant decrease in catalepsy duration, compared with the haloperidol only treated group. This decrease in catalepsy duration was evident on days 1-12 after starting cannabis injection. Later the effect of cannabis was not apparent. The administration of only cannabis (10 or 20 mg/kg) decreased brain MDA by 17.5 and 21.8 %, respectively. The level of nitric oxide decreased by 18 % after cannabis at 20 mg/kg. Glucose in brain decreased by 20.1 % after 20 mg/kg of cannabis extract. The administration of only haloperidol increased MDA (22.2 %), decreased GSH (25.7 %) and increased brain nitric oxide by 44.1 %. The administration of cannabis (10 or 20 mg/kg) to haloperidol-treated mice resulted in a significant decrease in brain MDA and nitric oxide as well as a significant increase in GSH and glucose compared with the haloperidol-control group. Cannabis had no significant effects on liver MDA, GSH, nitric oxide in saline or haloperidol-treated mice. It is concluded that cannabis improves catalepsy induced by haloperidol though the effect is not maintained on repeated cannabis administration. Cannabis alters the oxidative status of the brain in favor of reducing lipid peroxidation, but reduces brain glucose, which would impair brain energetics. PMID:27366134
Abdel-Salam, Omar M E; El-Sayed El-Shamarka, Marawa; Salem, Neveen A; El-Din M Gaafar, Alaa
2012-01-01
Haloperidol is a classic antipsychotic drug known for its propensity to cause extrapyramidal symptoms due to blockade of dopamine D2 receptors in the striatum. Interest in medicinal uses of cannabis is growing. Cannabis sativa has been suggested as a possible adjunctive in treatment of Parkinson's disease. The present study aimed to investigate the effect of repeated administration of an extract of Cannabis sativa on catalepsy and brain oxidative stress induced by haloperidol administration in mice. Cannabis extract was given by subcutaneous route at 5, 10 or 20 mg/kg (expressed as Δ(9)-tetrahydrocannabinol) once daily for 18 days and the effect on haloperidol (1 mg/kg, i.p.)-induced catalepsy was examined at selected time intervals using the bar test. Mice were euthanized 18 days after starting cannabis injection when biochemical assays were carried out. Malondialdehyde (MDA), reduced glutathione (GSH) and nitric oxide (the concentrations of nitrite/nitrate) were determined in brain and liver. In saline-treated mice, no catalepsy was observed at doses of cannabis up to 20 mg/kg. Mice treated with haloperidol at the dose of 1 mg/kg, exhibited significant cataleptic response. Mice treated with cannabis and haloperidol showed significant decrease in catalepsy duration, compared with the haloperidol only treated group. This decrease in catalepsy duration was evident on days 1-12 after starting cannabis injection. Later the effect of cannabis was not apparent. The administration of only cannabis (10 or 20 mg/kg) decreased brain MDA by 17.5 and 21.8 %, respectively. The level of nitric oxide decreased by 18 % after cannabis at 20 mg/kg. Glucose in brain decreased by 20.1 % after 20 mg/kg of cannabis extract. The administration of only haloperidol increased MDA (22.2 %), decreased GSH (25.7 %) and increased brain nitric oxide by 44.1 %. The administration of cannabis (10 or 20 mg/kg) to haloperidol-treated mice resulted in a significant decrease in brain MDA and nitric oxide as well as a significant increase in GSH and glucose compared with the haloperidol-control group. Cannabis had no significant effects on liver MDA, GSH, nitric oxide in saline or haloperidol-treated mice. It is concluded that cannabis improves catalepsy induced by haloperidol though the effect is not maintained on repeated cannabis administration. Cannabis alters the oxidative status of the brain in favor of reducing lipid peroxidation, but reduces brain glucose, which would impair brain energetics.
Kulikova, E A; Bazovkina, D V; Akulov, A E; Tsybko, A S; Fursenko, D V; Kulikov, A V; Naumenko, V S; Ponimaskin, E; Kondaurova, E M
2016-07-01
One important syndrome of psychiatric disorders in humans is catalepsy. Here, we created mice with different predispositions to catalepsy and analysed their pharmacological and behavioural properties. Two mouse lines, B6-M76C and B6-M76B, were created by transfer of the main locus of catalepsy containing the 5-HT1A receptor gene to the C57BL/6 genetic background. Behaviour, brain morphology, expression of key components of the serotoninergic system, and pharmacological responses to acute and chronic stimulation of the 5-HT1A receptor were compared. B6-M76B mice were not cataleptic, whereas 14% of B6-M76C mice demonstrated catalepsy and decreased depressive-like behaviour. Acute administration of the 5-HT1A receptor agonist 8-OH-DPAT resulted in dose-dependent hypothermia and in decreased locomotion in both lines. Chronic 8-OH-DPAT administration abolished the 5-HT1A receptor-mediated hypothermic response in B6-M76C mice and increased locomotor activity in B6-M76B mice. In addition, 5-HT metabolism was significantly reduced in the hippocampus of B6-M76C mice, and this effect was accompanied by an increased expression of the 5-HT1A receptor. Our findings indicate that transfer of the main locus of hereditary catalepsy containing the 5-HT1A receptor from CBA mice to the C57BL/6 genetic background led to increased postsynaptic and decreased presynaptic functional responses of the 5-HT1A receptor. This characteristic establishes the B6-M76C line as an attractive model for the pharmacological screening of 5-HT1A receptor-related drugs specifically acting on either pre- or postsynaptic receptors. This article is part of a themed section on Updating Neuropathology and Neuropharmacology of Monoaminergic Systems. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.13/issuetoc. © 2016 The British Pharmacological Society.
Bardin, Laurent; Kleven, Mark S; Barret-Grévoz, Catherine; Depoortère, Ronan; Newman-Tancredi, Adrian
2006-09-01
A new generation of proven or potential antipsychotics, including aripiprazole, bifeprunox, SSR181507 and SLV313, exhibit agonist actions at serotonin 5-HT1A receptors, but little comparative data are available on their pharmacological profiles. Here, we compared in mice the in vivo antipsychotic-like vs cataleptogenic activities of these compounds with those of drugs that exhibit little interaction at 5-HT1A receptors, such as haloperidol, olanzapine and risperidone. All the drugs dose-dependently reduced apomorphine-induced climbing or sniffing and, with the exception of ziprasidone, produced complete suppression of these responses. In the bar catalepsy test, when administered alone, haloperidol, olanzapine and risperidone produced marked catalepsy, whereas, at doses up to 40 mg/kg, aripiprazole, SLV313, SSR181507, and sarizotan produced little or no catalepsy. The latter compounds, therefore, displayed a large separation between doses with 'antipsychotic-like' and those with cataleptogenic actions. When 5-HT1A receptors were blocked by pretreatment with WAY100635 (2.5 mg/kg, s.c.), cataleptogenic properties of SSR181507 and sarizotan were unmasked, and the catalepsy induced by bifeprunox was enhanced. In the case of aripiprazole and SLV313, although WAY100635 produced upward shifts in their dose-response, the magnitude of catalepsy appeared to reach an asymptotic plateau, suggesting that other mechanisms may be involved in their low cataleptogenic liability. The present data confirm that 5-HT1A receptor activation reduces or even completely prevents the cataleptogenic potential of novel antipsychotic agents. Further, they indicate that the balance of affinity and/or efficacy between D2 and 5-HT1A receptors profoundly influences their pharmacological activities, and will likely impact their therapeutic profiles.
NASA Astrophysics Data System (ADS)
Sardjono, R. E.; Khoerunnisa, F.; Musthopa, I.; Akasum, N. S. M. M.; Rachmawati, R.
2018-05-01
Parkinson is one of the progressive neurodegenerative diseases. Various efforts are made in handling this disease, one of them is the utilization of plant extracts that have anti-Parkinson activity, for example, velvet bean (Mucuna pruriens L.). Changing the particle size of the extract into nanoscale particle is expected to increase its anti-parkinson activity. The research was conducted to synthesize silver-velvet bean (Mucuna pruriens L.) seed extract nanoparticles (AgMPn) and to evaluate its antiparkinson activity through the catalepsy test in mice. The research consisted of several stages i.e. extraction of velvet bean seed powder, synthesis and characterization of AgMPn, and catalepsy test of AgMPn. Velvet bean seed powder was extracted by maceration method using ethanol-water (1:1) at pH 3 adjusted with citric acid. AgMPn was synthesized by reacting the silver nitrate (AgNO3) solution with the extract of velvet bean seed for 40 min, dispersibility of solution during the reaction was controlled by using sonication and ultrasonic processor homogenizer. Characterization of AgMPn was done by using Fourier transform infrared (FT-IR), scanning electron microscopy-energy dispersive X-ray (SEM-EDX), and transmission electron microscopy (TEM). Catalepsy test was conducted on AgMpn at the doses of 5, 10, 15, 20 and 25 mg/kg body weight. The results of SEM-EDX and TEM showed that AgMPn formed aggregates with several shapes such as rectangle, oval, and spherical, with the average particle diameter was 36.5 nm. FT-IR spectra showed a band at 464.8 cm-1 absorbance area which is typical band indicated the interaction of Ag-O of AgMPn. Catalepsy test demonstrated that AgMPn at the doses of 5, 15, and 20 mg/kg body weight lowered the catalepsy symptoms in mice significantly, with the best dose was 5 mg/kg body weight.
Wolf, H; Bässler, U; Spiess, R; Kittmann, R
2001-11-01
The extremely slow return movements observed in stick insects (phasmids) after imposed changes in posture are termed catalepsy. In the literature, catalepsy is treated as a behavioural component of the twig mimesis observed in walking stick insects. It is produced by the high gain of the velocity-sensitive component of the relevant joint control systems and by the non-linear dependency of its time constant on movement velocity. The high gain, in turn, causes the system to work close to instability, and this may have driven the evolution of gain control mechanisms. Although these statements represent plausible assumptions, based on correlated occurrence, they remain largely hypothetical like many ideas concerning evolutionary tendencies. To test these hypotheses, we studied catalepsy and the relevant properties of the femur-tibia control system in the middle and hind legs of Prosarthria teretrirostris.cf. Prosarthria teretrirostris is a proscopiid closely related to grasshoppers and locusts. With its slender, green-to-brown body and legs, it shows clear morphological twig mimesis, which has evolved independently of the well-known twig mimesis in stick insects. The animals show clear catalepsy. The main properties of femur-tibia joint control are remarkably similar between proscopiids and stick insects (e.g. the marked sensitivity to movement velocity rather than to joint position and the non-linear dependency of the time constants of response decay on movement velocity), but there are also important differences (habituation and activity-related mechanisms of gain control are absent). Together, these results validate the main concepts that have been developed concerning the neural basis and evolution of catalepsy in stick insects and its relationship to twig mimesis, while demonstrating that ideas on the role of habituation and gain control should be refined.
Khisti, Rahul T; Deshpande, Laxmikant S; Chopde, Chandrabhan T
2002-05-01
The neurosteroid 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-THP) has been previously shown to induce catalepsy in mice that is modified by GABAergic, dopaminergic, adenosinergic and serotonergic agents. In light of the interaction of this endogenous neurosteroid with GABAergic and dopaminergic transmission, there is potential interest in the possible role of 3alpha,5alpha-THP in psychotic disorders. This study assessed the effect of 3alpha,5alpha-THP in certain dopamine-mediated behavioral paradigms that are widely used to predict antipsychotic-like activity. 3alpha,5alpha-THP (1-8 microg per animal, i.c.v.), the classic neuroleptic (dopamine receptor antagonist) haloperidol (0.25 mg/kg, i.p.), and the benzodiazepine diazepam (7 mg/kg, i.p.) were injected into different groups of animals, and their behavior was screened using the following animal tests: conditioned avoidance response, apomorphine-induced climbing, and amphetamine-induced motor hyperactivity. Separate groups of mice that received 3alpha,5alpha-THP (1-8 microg per animal, i.c.v.) were screened for catalepsy. Furthermore, the effect of a sub-cataleptic dose (0.1 microg per mouse, i.c.v.) of 3alpha,5alpha-THP, either alone or in combination with the GABA(A) receptor antagonist picrotoxin (0.8 mg/kg, i.p.) was measured on haloperidol-induced catalepsy. 3alpha,5alpha-THP like haloperidol reduced conditioned avoidance, apomorphine-induced cage climbing and amphetamine-induced motor hyperactivity. Diazepam only affected conditioned avoidance. 3alpha,5alpha-THP also induced dose-dependent catalepsy. Furthermore, sub-cataleptic doses of 3alpha,5alpha-THP potentiated haloperidol-induced catalepsy. This potentiation was blocked by prior treatment with the GABA(A) receptor antagonist picrotoxin. These findings suggest that 3alpha,5alpha-THP, by its action at the GABA(A) receptors, increases GABAergic tone leading to a behavioral profile similar to that of dopamine receptor antagonists.
Miksys, Sharon; Wadji, Fariba Baghai; Tolledo, Edgor Cole; Remington, Gary; Nobrega, Jose N; Tyndale, Rachel F
2017-08-01
Risk for side-effects after acute (e.g. parkinsonism) or chronic (e.g. tardive dyskinesia) treatment with antipsychotics, including haloperidol, varies substantially among people. CYP2D can metabolize many antipsychotics and variable brain CYP2D metabolism can influence local drug and metabolite levels sufficiently to alter behavioral responses. Here we investigated a role for brain CYP2D in acutely and chronically administered haloperidol levels and side-effects in a rat model. Rat brain, but not liver, CYP2D activity was irreversibly inhibited with intracerebral propranolol and/or induced by seven days of subcutaneous nicotine pre-treatment. The role of variable brain CYP2D was investigated in rat models of acute (catalepsy) and chronic (vacuous chewing movements, VCMs) haloperidol side-effects. Selective inhibition and induction of brain, but not liver, CYP2D decreased and increased catalepsy after acute haloperidol, respectively. Catalepsy correlated with brain, but not hepatic, CYP2D enzyme activity. Inhibition of brain CYP2D increased VCMs after chronic haloperidol; VCMs correlated with brain, but not hepatic, CYP2D activity, haloperidol levels and lipid peroxidation. Baseline measures, hepatic CYP2D activity and plasma haloperidol levels were unchanged by brain CYP2D manipulations. Variable rat brain CYP2D alters side-effects from acute and chronic haloperidol in opposite directions; catalepsy appears to be enhanced by a brain CYP2D-derived metabolite while the parent haloperidol likely causes VCMs. These data provide novel mechanistic evidence for brain CYP2D altering side-effects of haloperidol and other antipsychotics metabolized by CYP2D, suggesting that variation in human brain CYP2D may be a risk factor for antipsychotic side-effects. Copyright © 2017 Elsevier Inc. All rights reserved.
Byrnes, E M; Ughrin, Y; Bruno, J P
1996-12-01
D1- and D2-like antagonist-induced catalepsy and dorsal immobility were studied in pups (Day 10) and weanlings (Days 20, 28, or 35) that received intraventricular injection of 6-OHDA (50 micrograms/hemisphere) or its vehicle solution or postnatal Day 3. The ability of the D1 of D2 antagonists to induce immobility differed as a function of the lesion condition and the age at the time of testing. Moreover, the two behavioral measures exhibited differences in their specific D1 and D2 receptor modulation. Administration of the D1 antagonist SCH 23390 (0.2 or 1.0 mg/kg) or the D2 antagonist clebopride (1.0, 10.0, or 20.0 mg/kg) led to catalepsy and dorsal immobility in intact rats, regardless of test age. Both antagonists induced catalepsy and dorsal immobility in rats depleted of DA when tested on Day 10. However, the effects of each antagonist in DA-depleted rats were ether negligible or significantly less than in controls when animals were tested as weanlings. These data suggest lesion-induced changes in the DA receptor modulation of motor behavior and that this plasticity requires more than a week to become apparent.
ST 1535: a preferential A2A adenosine receptor antagonist.
Stasi, Maria Antonietta; Borsini, Franco; Varani, Katia; Vincenzi, Fabrizio; Di Cesare, Maria Assunta; Minetti, Patrizia; Ghirardi, Orlando; Carminati, Paolo
2006-10-01
Antagonism of the A2A adenosine function has proved beneficial in the treatment of Parkinson's disease, in that it increases L-dopa therapeutical effects without concomitant worsening of its side-effects. In this paper we describe a preferential A2A adenosine antagonist, ST 1535, with long-lasting pharmacodynamic effects. It competitively antagonizes the effects of the A2A adenosine agonist NECA on cAMP in cells cloned with the human A2A adenosine receptor (IC50=353+/-30 nM), and the effects of the A1 adenosine agonist CHA on cAMP in cells cloned with the human A1 adenosine receptor (IC50=510+/-38 nM). ST 1535, at oral doses of 5 and 10 mg/kg, antagonizes catalepsy induced by intracerebroventricular administration of the A2A adenosine agonist CGS 21680 (10 microg/5 microl) in mice. At oral doses ranging between 5 and 20 mg/kg, ST 1535 induces hypermotility and antagonizes haloperidol-induced catalepsy in mice up to 7 h. Oral ST 1535, at 1.25 and 2.5 mg/kg, potentiates L-dopa effects in reducing haloperidol-induced catalepsy. ST 1535 represents a potential new compound, with long-lasting activity, for the treatment of Parkinson's disease.
Sikiric, P; Marovic, A; Matoz, W; Anic, T; Buljat, G; Mikus, D; Stancic-Rokotov, D; Separovic, J; Seiwerth, S; Grabarevic, Z; Rucman, R; Petek, M; Ziger, T; Sebecic, B; Zoricic, I; Turkovic, B; Aralica, G; Perovic, D; Duplancic, B; Lovric-Bencic, M; Rotkvic, I; Mise, S; Jagic, V; Hahn, V
1999-12-01
The effect of a stomach pentadecapeptide, BPC 157, on Parkinson's disease in mice was investigated, along with its salutary activity on stomach lesions induced by parkinsongenic agents. Parkinsongenic agents, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (30.0 mg x kg(-1)b.w. i.p. once daily for 6d, and after 4d once 50.0 mg x kg(-1)b.w. i.p.) or reserpine (5.0 mg x kg(-1)b.w. i.p.) were applied i.p. BPC 157 (1.50 microg or 15.0 ng x kg(-1)b.w. i.p.) was applied 15 min before or alternatively 15 min after each MPTP administration. In reserpine studies, BPC 157 (10.0 microg or 10.0 ng x kg(-1)b.w. i.p.) was given either 15 min before reserpine or in the already established complete catalepsy 24 h thereafter. BPC 157 strongly improved the MPTP-impaired somatosensory orientation and reduced the MPTP-induced hyperactivity, and most importantly, MPTP-motor abnormalities (tremor, akinesia, catalepsy -otherwise very prominent in saline control), leading to almost complete abolition of otherwise regularly lethal course of MPTP treatment in controls. Likewise, in reserpine experiments, BPC 157 strongly prevented the development of otherwise very prominent catalepsy and when applied 24 h thereafter reversed the established catalepsy. In addition, a reduction of reserpine-hypothermy (BPC 157 pre-treatment) and reversal of further prominent temperature fall (BPC 157 post-treatment) have been consistently observed. Taking together these data, as the two most suitable animal models were consistently used and since the high effectiveness was demonstrated in pre- and post-treatment, microg and ng regimens, BPC 157 as an organoprotector should be further therapeutically investigated. Additionally, given in either regimen, pentadecapeptide BPC 157 strongly attenuated the stomach lesions in mice that otherwise consistently appeared in mice treated with the parkinsogenic neurotoxin MPTP.
Rodríguez de Fonseca, F; Martín Calderón, J L; Mechoulam, R; Navarro, M
1994-03-21
Dopaminergic and cannabinoid receptors are localized in the outflow nuclei of the basal ganglia. We have investigated the possible interrelation of these receptors in the regulation of motor activity in male rats. To this end we have first studied the behavioural effects of the highly potent cannabinoid receptor agonist (-)11-hydroxy-delta 8-tetrahydrocannabinol-dimethylheptyl (HU-210, 20 micrograms mg) after chronic stimulation of dopamine D1 and D2 receptors. The catalepsy induced by the synthetic cannabinoid, measured as the descent latency in the bar test, was enhanced in male rats chronically treated with the dopamine D1 receptor agonist SKF38393 (8 mg kg-1, twice a day during 21 days). However, animals exposed to the dopamine D2 agonist quinpirole (1 mg kg-1 daily during 21 days) displayed the same degree of catalepsy as those exposed to HU-210 alone. Although a possible involvement of D2 receptors cannot be excluded, this finding suggests a predominant role for dopamine D1 receptors in the regulation of the cataleptic response to cannabinoids. The possible cross-talk between dopamine D1 and cannabinoid receptors is further supported by the decreased responsiveness to the acute behavioural effects of SKF38393 (8 mg kg-1) observed in animals chronically exposed to HU-210 (20 micrograms kg-1 daily during 14 days).
Kukuia, Kennedy Kwami Edem; Adjei, Samuel; Akure, Obed Awintuma; Agbemelo-Tsomafo, Constance; Adu-Poku, Shirley Nyarko; Agyeman-Badu, Kenneth Yaw
2017-01-01
Background Albizia zygia is used in Ghanaian traditional medicine for the management of mental disorders. The present study tested the hypothesis that an extract of the leaves of Albizia zygia (AZE) may possess antipsychotic and antidepressant properties. Method The novelty- and apomorphine-induced locomotor and rearing behaviours of AZE in mice were explored in an open-field observational test system. The effects of AZE in apomorphine-induced cage climbing test, extract-induced catalepsy, and haloperidol-induced catalepsy on mice were also investigated. Lastly, the forced swimming and tail suspension tests in mice were employed to screen the possible antidepressant effects of AZE. Results AZE (100–3000 mg/kg) showed signs of central nervous system (CNS) depression under observation, with no lethality, 24 h after treatment in mice. AZE (100–1000 mg/kg) produced a significant decrease in the frequency of novelty- and apomorphine-induced locomotor activities in mice. The extract also significantly decreased the frequency and duration of apomorphine-induced climbing activities in mice. AZE, while failing to produce any cataleptic event in naïve mice, significantly enhanced haloperidol-induced catalepsy at a dose of 1000 mg/kg. However, AZE did not produce any significant antidepressant effects in the test models employed. Conclusion The extract of Albizia zygia exhibited an antipsychotic-like activity in mice. PMID:29234443
Vijeepallam, Kamini; Pandy, Vijayapandi; Kunasegaran, Thubasni; Murugan, Dharmani D.; Naidu, Murali
2016-01-01
In this study, we investigated the antipsychotic-like effect of methanolic extract of Mitragyna speciosa leaf (MMS) using in vivo and ex vivo studies. In vivo studies comprised of apomorphine-induced climbing behavior, haloperidol-induced catalepsy, and ketamine-induced social withdrawal tests in mice whereas the ex vivo study was conducted utilizing isolated rat vas deferens preparation. Acute oral administration of MMS (50–500 mg/kg) showed an inverted bell-shaped dose-response in apomorphine-induced cage climbing behavior in mice. The effective inhibitory doses of MMS (75 and 100 mg/kg, p.o.) obtained from the apomorphine study was further tested on haloperidol (subcataleptic dose; 0.1 mg/kg, i.p.)-induced catalepsy in the mouse bar test. MMS (75 and 100 mg/kg, p.o.) significantly potentiated the haloperidol-induced catalepsy in mice. Interestingly, MMS at the same effective doses (75 and 100 mg/kg, p.o.) significantly facilitated the social interaction in ketamine-induced social withdrawal mice. Furthermore, MMS inhibited the dopamine-induced contractile response dose-dependently in the isolated rat vas deferens preparations. In conclusion, this investigation provides first evidence that MMS exhibits antipsychotic-like activity with potential to alleviate positive as well as negative symptoms of psychosis in mice. This study also suggests the antidopaminergic activity of MMS that could be responsible for alleviating positive symptoms of psychosis. PMID:27999544
An ethanolic extract of Desmodium adscendens exhibits antipsychotic-like activity in mice.
Amoateng, Patrick; Adjei, Samuel; Osei-Safo, Dorcas; Kukuia, Kennedy K E; Karikari, Thomas K; Nyarko, Alexander K
2017-09-26
Desmodium adscendens extract (DAE) is used traditionally in Ghana for the management of psychosis. The present study aimed at providing pharmacological evidence for its ethnomedical use by testing the hypothesis that an ethanolic extract of Desmodium adscendens may possess antipsychotic properties. The primary behavioral effects of DAE on the central nervous system of mice were investigated using Irwin's test paradigm. Novelty-induced and apomorphine-induced locomotor and rearing behaviors in mice were explored in an open-field observational test system. Apomorphine-induced cage climbing test in mice was used as the antipsychotic animal model. The ability of DAE to induce catalepsy and enhance haloperidol-induced catalepsy was also investigated in mice. The DAE produced sedation, cholinergic-, and serotonergic-like effects in mice when evaluated using the Irwin's test. No lethality was observed after 24 h post-treatment. The LD50 in mice was estimated to be greater than 3000 mg/kg. The DAE significantly decreased the frequency of novelty- and apomorphine-induced rearing and locomotor activities in mice. It also significantly lowered the frequency and duration of apomorphine-induced climbing activities in mice. It did not induce any cataleptic event in naïve mice but only significantly enhanced haloperidol-induced catalepsy at a dose of 1000 mg/kg. The ethanolic extract of Desmodium adscendens exhibited antipsychotic-like activities in mice. Motor side effects are only likely to develop at higher doses of the extract.
Opiate and non-opiate aspects of morphine induced seizures.
Frenk, H; Liban, A; Balamuth, R; Urca, G
1982-12-16
The intraperitoneal administration of morphine hydrochloride at doses of 300 mg/kg produced analgesia, catalepsy, and electrographic spiking in rats that developed into electrographic seizure patterns after approximately 2.5 h. Whereas naltrexone (12 mg/kg) reversed analgesia and catalepsy, and diminished electrographic spiking, it precipitated electrographic seizure activity similar to that observed following intraperitoneal morphine alone. These seizures were accompanied by behavioral convulsions. No tolerance to these seizures developed with repeated paired administration of morphine and naltrexone or in morphine tolerant rats, but rather potentiation was observed. The epileptogenic effects were found to be potentiated in amygdaloid kindled rats, as well. It was concluded that morphine at these doses activates two different epileptogenic mechanisms, one mediated by opiate receptors, the other not. The possibility of the simultaneous activation of a morphine sensitive anticonvulsant mechanism is discussed.
Dubrovina, N I; Zinov'ev, D R; Zinov'eva, D V; Kulikov, A V
2009-06-01
This report presents results obtained from comparative analysis of learning and the dynamics of extinction of a conditioned passive avoidance response in ASC mice, which were bred for a high level of predisposition to catalepsy, and in CBA and AKR mice. The following findings were obtained: 1) impairments to the extinction of the memory of fear represent an important symptom of depression in ASC mice; 2) extinction is delayed in CBA mice; and 3) new inhibitory learning occurs quickly in AKR mice. Prolonged retention of the fear memory in ASC mice appears to be related to increased anxiety on prolonged testing without a punishment. The deficit of inhibition of the fear reaction in ASC mice allows this strain to be regarded as a genetic model of depression.
Atypical antipsychotic properties of blonanserin, a novel dopamine D2 and 5-HT2A antagonist.
Ohno, Yukihiro; Okano, Motoki; Imaki, Junta; Tatara, Ayaka; Okumura, Takahiro; Shimizu, Saki
2010-08-01
Blonanserin is a novel antipsychotic agent that preferentially interacts with dopamine D(2) and 5-HT(2A) receptors. To assess the atypical properties of blonanserin, we evaluated its propensity to induce extrapyramidal side effects (EPS) and to enhance forebrain Fos expression in mice. The actions of AD-6048, a primary metabolite of blonanserin, in modulating haloperidol-induced EPS were also examined. Blonanserin (0.3-10mg/kg, p.o.) did not significantly alter the pole-descending behavior of mice in the pole test or increase the catalepsy time, while haloperidol (0.3-3mg/kg, p.o.) caused pronounced bradykinesia and catalepsy. Blonanserin and haloperidol at the above doses significantly enhanced Fos expression in the shell (AcS) region of the nucleus accumbens and dorsolateral striatum (dlST). The extent of blonanserin-induced Fos expression in the AcS was comparable to that induced by haloperidol. However, the striatal Fos expression by blonanserin was less prominent as compared to haloperidol. Furthermore, combined treatment of AD-6048 (0.1-3mg/kg, s.c.) with haloperidol (0.5mg/kg, i.p.) significantly attenuated haloperidol-induced bradykinesia and catalepsy. The present results show that blonanserin behaves as an atypical antipsychotic both in inducing EPS and enhancing forebrain Fos expression. In addition, AD-6048 seems to contribute at least partly to the atypical properties of blonanserin. Copyright 2010 Elsevier Inc. All rights reserved.
Lilienthal, Hellmuth; van der Ven, Leo T M; Piersma, Aldert H; Vos, Josephus G
2009-02-25
Hexabromocyclododecane (HBCD) is a widely used brominated flame retardant which has been recently detected in many environmental matrices. Data from a subacute toxicity study indicated dose-related effects particularly on the pituitary thyroid-axis and retinoids in female rats. Brominated and chlorinated aromatic hydrocarbons are also reported to exert effects on the nervous system. Several investigations revealed a pronounced sensitivity of the dopaminergic system and auditory functions to polychlorinated biphenyls. Therefore, the present experiment should examine, whether or not HBCD affects these targets. Rats were exposed to 0, 0.1, 0.3, 1, 3, 10, 30 or 100 mg HBCD/kg body weight via the diet. Exposure started before mating and was continued during mating, gestation, lactation, and after weaning in offspring. Haloperidol-induced catalepsy and brainstem auditory evoked potentials (BAEPs) were used to assess dopamine-dependent behavior and hearing function in adult male and female offspring. On the catalepsy test, reduced latencies to movement onset were observed mainly in female offspring, indicating influences on dopamine-dependent behavior. The overall pattern of BAEP alterations, with increased thresholds and prolonged latencies of early waves, suggested a predominant cochlear effect. Effects were dose-dependent with lower bounds of benchmark doses (BMDL) between < or =1 and 10 mg/kg body weight for both catalepsy and BAEP thresholds. Tissue concentrations at the BMDL values obtained in this study were 3-4 orders of magnitude higher than current exposure levels in humans.
Ablordeppey, Seth Y.; Altundas, Ramazan; Bricker, Barbara; Zhu, Xue Y.; Eyunni, Suresh E. V. K.; Jackson, Tanise; Khan, Abdul; Roth, Bryan L.
2009-01-01
The synthesis and exploration of novel butyrophenones have led to the identification of a diazepane analog of haloperidol, 4-[4-(4-Chlorophenyl)-1,4-diazepan-1-yl]-1-(4-fluorophenyl)butan-1-one (Compound 13) with an interesting multireceptor binding profile. Compound 13 was evaluated for its binding affinities at DA subtype receptors, 5HT subtype receptors, H-1, M-1 receptors and at NET, DAT and SERT transporters. At each of these receptors, compound 13 was equipotent or better than several of the standards currently in use. In in vivo mouse and rat models to evaluate its efficacy and propensity to elicit catalepsy and hence EPS in humans, compound 13 showed similar efficacy as clozapine and did not produce catalepsy at five times its ED50 value. PMID:18595716
Melo-Thomas, Liana; Thomas, Uwe
2015-02-15
The inferior colliculus (IC) plays an important role in the normal processing of the acoustic message and is also involved in the filtering of acoustic stimuli of aversive nature. The neural substrate of the IC can also influence haloperidol-induced catalepsy. Considering that (i) paradoxical kinesia, observed in some parkinsonian patients, seems to be dependent of their emotional state and (ii) deep brain stimulation (DBS) represents an alternative therapeutic route for the relief of parkinsonian symptoms, the present study investigated the consequence of DBS at the IC on the catalepsy induced by haloperidol in rats. Additionally, we investigated if DBS of the IC can elicit motor responses in anesthetized rats and whether DBS elicits distinct neural firing patterns of activity at the dorsal cortex (DCIC) or central nucleus (CNIC) of the IC. A significant reduction of the catalepsy response was seen in rats previously given haloperidol and receiving DBS at the IC. In addition, electrical stimulation to the ventral part of the CNIC induced immediate motor responses in anesthetized rats. The neuronal spontaneous activity was higher at the ventral part of the CNIC than the dorsal part. DBS to the ventral part but not to the dorsal part of the CNIC increased the spike rate at neurons a few hundred microns away from the stimulation site. It is possible that the IC plays a role in the sensorimotor gating activated by emotional stimuli, and that DBS at the IC can be a promising new animal model to study paradoxical kinesia in rats. Copyright © 2014 Elsevier B.V. All rights reserved.
Tong, Qiang; Wu, Liang; Gao, Qing; Ou, Zhou; Zhu, Dongya; Zhang, Yingdong
2016-08-01
Two recent studies demonstrated that peroxisome proliferator-activated receptor β/δ (PPARβ/δ) agonists exerted neuroprotective effects in mouse model of Parkinson's disease (PD). However, the underlying mechanisms remain unknown. Endoplasmic reticulum (ER) stress plays a major role in rotenone-induced dopaminergic neuronal degeneration. In the present study, we explored whether GW501516, a selective and high-affinity PPARβ/δ agonist, could protect the dopaminergic neurons against degeneration and improve PD behavior via suppressing the ER stress in the rotenone rat model of PD. GW501516 was administered intracerebroventricular infusion. Catalepsy and open field tests were used to test catalepsy and locomotor activities. The levels of dopamine and its metabolites were determined using high-performance liquid chromatography. Western blot and immunohistochemistry analysis were performed to assess dopaminergic neuronal degeneration. Quantitative real-time RT-PCR and Western blot analysis were executed to detect ER stress. TUNEL and immunohistochemistry assays were used to detect ER stress-mediated apoptosis. Our results showed that GW501516 ameliorated the catalepsy symptom and increased locomotor activity. Meanwhile, GW501516 partially reversed the loss of dopaminergic neurons. Moreover, GW501516 suppressed the activation of ER stress markers including inositol-requiring enzyme 1α (IRE1α) and caspase-12. Furthermore, GW501516 inhibited caspase-12-mediated neuronal apoptosis. These findings suggest that GW501516 conferred neuroprotection of not only biochemical and pathological attenuation but also behavioral improvement in the rotenone rat model of PD. More importantly, we demonstrated for the first time that suppressing IRE1α-caspase-12-mediated ER stress pathway may represent one potential mechanism underlying the neuroprotective effects of PPARβ/δ agonist in the rotenone rat model of PD.
From catalepsy to psychical research: The itinerary of Timothée Puel (1812-1890).
Evrard, Renaud; Pratte, Erika Annabelle
2017-02-01
The physician and botanist Timothée Puel (1812-1890) lived through a pivotal period of psychology (1848-1878), between the academic prohibition of the study of animal magnetism to its disjointed recovery in hypnotism and psychical research. One of his cases of "catalepsy complicated with somnambulism" triggered a lively debate on "extraordinary neuroses" within the young Société médico-psychologique [Medico-psychological Society]. In 1874, Puel founded the Revue de psychologie expérimentale [Journal of Experimental Psychology], the first of its kind in French, which he intended as the vehicle of international interest in psychical research, the scholarly and institutionalized study of "psychism" that prepared the way for the recognition of academic psychology. Puel circulated between these different currents by taking advantage of the polysemy of concepts like "sleep," "experimental psychology," and "psychism." This article discusses his role in the context of emerging French psychology in the mid- to late 19th century. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Negri, L; Erspamer, G F; Severini, C; Potenza, R L; Melchiorri, P; Erspamer, V
1992-08-01
Three naturally occurring dermorphin-like peptides from the skin of the frog Phyllomedusa bicolor, the related carboxyl-terminal amides, and some substituted analogs were synthesized, their binding profiles to opioid receptors were determined, and their biological activities were studied in isolated organ preparations and intact animals. The opioid binding profile revealed a very high selectivity of these peptides for mu sites and suggested the existence of two receptor subtypes, of high and low affinity. The peptides tested acted as potent mu opioid agonists on isolated organ preparations. They were several times more active in inhibiting electrically evoked contractions in guinea pig ileum than in mouse vas deferens. When injected into the lateral brain ventricle or peritoneum of rats, the high-affinity-site-preferring ligand, [Lys7-NH2]dermorphin, behaved as a potent analgesic agent. By contrast, the low-affinity-site-preferring ligand, [Trp4,Asn7-NH2]dermorphin, produced a weak antinociception but an intense catalepsy.
Negri, L; Erspamer, G F; Severini, C; Potenza, R L; Melchiorri, P; Erspamer, V
1992-01-01
Three naturally occurring dermorphin-like peptides from the skin of the frog Phyllomedusa bicolor, the related carboxyl-terminal amides, and some substituted analogs were synthesized, their binding profiles to opioid receptors were determined, and their biological activities were studied in isolated organ preparations and intact animals. The opioid binding profile revealed a very high selectivity of these peptides for mu sites and suggested the existence of two receptor subtypes, of high and low affinity. The peptides tested acted as potent mu opioid agonists on isolated organ preparations. They were several times more active in inhibiting electrically evoked contractions in guinea pig ileum than in mouse vas deferens. When injected into the lateral brain ventricle or peritoneum of rats, the high-affinity-site-preferring ligand, [Lys7-NH2]dermorphin, behaved as a potent analgesic agent. By contrast, the low-affinity-site-preferring ligand, [Trp4,Asn7-NH2]dermorphin, produced a weak antinociception but an intense catalepsy. PMID:1353890
Depoortère, R; Bardin, L; Auclair, A L; Kleven, M S; Prinssen, E; Colpaert, F; Vacher, B; Newman-Tancredi, A
2007-01-01
Background and purpose: F15063 is a high affinity D2/D3 antagonist, D4 partial agonist, and high efficacy 5-HT1A agonist, with little affinity (40-fold lower than for D2 receptors) at other central targets. Here, the profile of F15063 was evaluated in models of positive symptoms of schizophrenia and motor side-effects. Experimental approach: Rodent behavioural tests were based on reversal of hyperactivity induced by psychostimulants and on measures of induction of catalepsy and ‘serotonin syndrome'. Key results: F15063 potently (ED50s: 0.23 to 1.10 mg kg−1 i.p.) reversed methylphenidate-induced stereotyped behaviors, blocked d-amphetamine and ketamine hyperlocomotion, attenuated apomorphine-induced prepulse inhibition (PPI) deficits, and was active in the conditioned avoidance test. In mice, it reversed apomorphine-induced climbing (ED50 = 0.30 mg kg−1 i.p.). F15063, owing to its 5-HT1A agonism, did not produce (ED50 > 40 mg kg−1 i.p.) catalepsy in rats and mice, a behavior predictive of occurrence of extra-pyramidal syndrome (EPS) in man. This absence of cataleptogenic activity was maintained upon sub-chronic treatment of rats for 5 days at 40 mg kg−1 p.o. Furthermore, F15063 did not induce the ‘serotonin syndrome' in rats (flat body posture and forepaw treading: ED50 >32 mg kg−1 i.p.). Conclusions and implications: F15063 conformed to the profile of an atypical antipsychotic, with potent actions in models of hyperdopaminergic activity but without inducing catalepsy. These data suggest that F15063 may display potent antipsychotic actions with low EPS liability. This profile is complemented by a favourable profile in rodent models of negative symptoms and cognitive deficits of schizophrenia (companion paper). PMID:17375086
Zhao-Shea, Rubing; Cohen, Bruce N.; Just, Herwig; McClure-Begley, Tristan; Whiteaker, Paul; Grady, Sharon R.; Salminen, Outi; Gardner, Paul D.; Lester, Henry A.; Tapper, Andrew R.
2010-01-01
Recent studies suggest that high-affinity neuronal nicotinic acetylcholine receptors (nAChRs) containing α4 and β2 subunits (α4β2*) functionally interact with G-protein-coupled dopamine (DA) D2 receptors in basal ganglia. We hypothesized that if a functional interaction between these receptors exists, then mice expressing an M2 point mutation (Leu9′Ala) rendering α4 nAChRs hypersensitive to ACh may exhibit altered sensitivity to a D2-receptor agonist. When challenged with the D2R agonist, quinpirole (0.5–10 mg/kg), Leu9′Ala mice, but not wild-type (WT) littermates, developed severe, reversible motor impairment characterized by rigidity, catalepsy, akinesia, and tremor. While striatal DA tissue content, baseline release, and quinpirole-induced DA depletion did not differ between Leu9′Ala and WT mice, quinpirole dramatically increased activity of cholinergic striatal interneurons only in mutant animals, as measured by increased c-Fos expression in choline acetyltransferase (ChAT)-positive interneurons. Highlighting the importance of the cholinergic system in this mouse model, inhibiting the effects of ACh by blocking muscarinic receptors, or by selectively activating hypersensitive nAChRs with nicotine, rescued motor symptoms. This novel mouse model mimics the imbalance between striatal DA/ACh function associated with severe motor impairment in disorders such as Parkinson’s disease, and the data suggest that a D2R–α4*-nAChR functional interaction regulates cholinergic interneuron activity.—Zhao-Shea, R., Cohen, B. N., Just, H., McClure-Begley, T., Whiteaker, P., Grady, S. R., Salminen, O., Gardner, P. D., Lester, H. A., Tapper, A. R. Dopamine D2-receptor activation elicits akinesia, rigidity, catalepsy, and tremor in mice expressing hypersensitive α4 nicotinic receptors via a cholinergic-dependent mechanism. PMID:19720621
Anti-Parkinson Activity of Petroleum Ether Extract of Ficus religiosa (L.) Leaves
Bhangale, Jitendra O.; Acharya, Sanjeev R.
2016-01-01
In the present study, we evaluated anti-Parkinson's activity of petroleum ether extract of Ficus religiosa (PEFRE) leaves in haloperidol and 6 hydroxydopamine (6-OHDA) induced experimental animal models. In this study, effects of Ficus religiosa (100, 200, and 400 mg/kg, p.o.) were studied using in vivo behavioral parameters like catalepsy, muscle rigidity, and locomotor activity and its effects on neurochemical parameters (MDA, CAT, SOD, and GSH) in rats. The experiment was designed by giving haloperidol to induce catalepsy and 6-OHDA to induce Parkinson's disease-like symptoms. The increased cataleptic scores (induced by haloperidol) were significantly (p < 0.001) found to be reduced, with the PEFRE at a dose of 200 and 400 mg/kg (p.o.). 6-OHDA significantly induced motor dysfunction (muscle rigidity and hypolocomotion). 6-OHDA administration showed significant increase in lipid peroxidation level and depleted superoxide dismutase, catalase, and reduced glutathione level. Daily administration of PEFRE (400 mg/kg) significantly improved motor performance and also significantly attenuated oxidative damage. Thus, the study proved that Ficus religiosa treatment significantly attenuated the motor defects and also protected the brain from oxidative stress. PMID:26884755
Bortolozzi, A A; Duffard, R O; Evangelista de Duffard, A M
1999-01-01
The purpose of this study was to determine whether the behavioral development pattern was altered by a pre- and postnatal exposure to 2,4-Dichlorophenoxyacetic acid (2,4-D). Pregnant rats were daily orally exposed to 70 mg/kg/day of 2,4-D from gestation day (GD) 16 to postnatal day (PND) 23. After weaning, the pups were assigned to one of the two subgroups: T1 (fed with untreated diet until PND 90) and T2 (maintained with 2,4-D diet until PND 90). Effects on offsprings were evaluated with a neurotoxicological test battery. Neuromotor reflexes, spontaneous motor activity, serotonin syndrome, circling, and catalepsy were analyzed during various postnatal ages. 2,4-D neonatal exposure induced delay of the ontogeny of righting reflex and negative geotaxis accompanied by motor abnormalities, stereotypic behaviors (excessive grooming and vertical head movements), and hyperactivity in the open field. Adult rats of both sexes (T2 group) showed a diminution of ambulation and rearing, while excessive grooming responses were only observed in T2 males. Besides, these animals manifested serotonin syndrome behaviors, catalepsy, and right-turning preference. Some behaviors were reversible, but others were permanent, and some were only expressed after pharmacological challenges.
Wang, Xuebao; Han, Chao; Xu, Yong; Wu, Kaiqi; Chen, Shuangya; Hu, Mangsha; Wang, Luyao; Ye, Yun; Ye, Faqing
2017-06-17
The aim of this research was to prove the speculation that phenylxanthine (PX) derivatives possess adenosine A2A receptor (A2AR)-blocking properties and to screening and evaluate these PX derivatives as dual A2AR antagonists/MAO-B inhibitors for Parkinson's disease. To explore this hypothesis, two series of PX derivatives were prepared and their antagonism against A2AR and inhibition against MAO-B were determined in vitro. In order to evaluate further the antiparkinsonian properties, pharmacokinetic and haloperidol-induced catalepsy experiments were carried out in vivo. The PX-D and PX-E analogues acted as potent A2AR antagonists with Ki values ranging from 0.27 to 10 μM, and these analogues displayed relatively mild MAO-B inhibition potencies, with inhibitor dissociation constants (Ki values) ranging from 0.25 to 10 μM. Further, the compounds PX-D-P6 and PX-E-P8 displayed efficacious antiparkinsonian properties in haloperidol-induced catalepsy experiments, verifying that these two compounds were potent A2AR antagonists and MAO-B inhibitors. We conclude that PX-D and PX-E analogues are a promising candidate class of dual-acting compounds for treating Parkinson's disease.
Büschges, A; Wolf, H
1995-05-01
1. Locusts (Locusta migratoria) and stick insects (Carausius morosus) exhibit different strategies for predator avoidance. Locusts rely primarily on walking and jumping to evade predators, whereas stick insects become cataleptic, catalepsy forming a major component of the twig mimesis exhibited by this species. The neuronal networks that control postural leg movements in locusts and stick insects are tuned differently to their specific behavioral tasks. An important prerequisite for the production of catalepsy in the stick insect is the marked velocity dependency of the control network, which appears to be generated at the level of nonspiking local interneurons. We examined interneuronal pathways in the network controlling the femur-tibia joint of the locust middle leg and compared its properties with those described for the stick insect middle leg. It was our aim to identify possible neural correlates of the species-specific behavior with regard to postural leg motor control. 2. We obtained evidence that the neuronal networks that control the femur-tibia joints in the two species consist of morphologically and physiologically similar--and thus probably homologous--interneurons. Qualitatively, these interneurons receive the same input from the femoral chordotonal organ receptors and they drive the same pools of leg motoneurons in both species. 3. Pathways that contribute to the control of the femur-tibia joint include interneurons that support both "resisting" and "assisting" responses with respect to the motoneuron activity that is actually elicited during reflex movements. Signal processing via parallel, antagonistic pathways therefore appears to be a common principle in insect leg motor control. 4. Differences between the two insect species were found with regard to the processing of velocity information provided by the femoral chordotonal organ. Interneuronal pathways are sensitive to stimulus velocity in both species. However, in the locust there is no marked velocity dependency of the interneuronal responses, whereas in the same interneurons of the stick insect it is pronounced. This characteristic was maintained at the level of the motoneurons controlling the femur-tibia joint. Pathways for postural leg motor control in the locust thus lack an important prerequisite for the generation of catalepsy, that is, a marked velocity dependency.
Nootropic activity of tuber extract of Pueraria tuberosa (Roxb).
Rao, N Venkata; Pujar, Basavaraj; Nimbal, S K; Shantakumar, S M; Satyanarayana, S
2008-08-01
Nootropic effect of alcoholic (ALE; 50, 75, 100 mg/kg) and aqueous (AQE; 100, 200, 400 mg/kg) extracts of P. tuberosa was evaluated by using Elevated Plus Maze (EPM), scopolamine-induced amnesia (SIA), diazepam-induced amnesia (DIA), clonidine-induced (NA-mediated) hypothermia (CIH), lithium-induced (5-HT mediated) head twitches (LIH) and haloperidol-induced (DA- mediated) catalepsy (HIC) models. Piracetam was used as the standard drug. A significant increase in inflexion ratio (IR) was recorded in EPM, SIA and DIA models. A significant reversal effect was observed on rectal temperature in CIH model, reduction of head twitches in LIH models. However no significant reduction in catalepsy scores in HIC models were observed with test extracts and standard piracetam. The results indicate that nootropic activity observed with ALE and AQE of tuber extracts of P. tuberosa could be through improved learning and memory either by augmenting the noradrenaline (NA) transmission or by interfering with 5-hydroxytryptamine (5-HT) release. Further, the extracts neither facilitated nor blocked release of the dopamine (DA). Thus ALE and AQE elicited significant nootropic effect in mice and rats by interacting with cholinergic, GABAnergic, adrenergic and serotonergic systems. Phytoconstituents like flavonoids have been reported for their nootropic effect and these are present in both ALE and AQE extracts of tubers of P. tuberosa (Roxb) and these active principles may be responsible for nootropic activity.
Stress-opioid interactions: a comparison of morphine and methadone.
Taracha, Ewa; Mierzejewski, Paweł; Lehner, Małgorzata; Chrapusta, Stanisław J; Kała, Maria; Lechowicz, Wojciech; Hamed, Adam; Skórzewska, Anna; Kostowski, Wojciech; Płaźnik, Adam
2009-01-01
The utility of methadone and morphine for analgesia and of methadone for substitution therapy for heroin addiction is a consequence of these drugs acting as opioid receptor agonists.We compared the cataleptogenic and antinociceptive effects of single subcutaneous doses of methadone hydrochloride (1-4 mg/kg) and morphine sulfate (2.5-10 mg/kg) using catalepsy and hot-plate tests, and examined the effects of the highest doses of the drugs on Fos protein expression in selected brain regions in male Sprague-Dawley rats. Methadone had greater cataleptogenic and analgesic potency than morphine. Fos immunohistochemistry revealed substantial effects on the Fos response of both the stress induced by the experimental procedures and of the drug exposure itself. There were three response patterns identified: 1) drug exposure, but not stress, significantly elevated Fos-positive cell counts in the caudate-putamen; 2) stress alone and stress combined with drug exposure similarly elevated Fos-positive cell counts in the nucleus accumbens and cingulate cortex; and 3) methadone and morphine (to a lesser extent) counteracted the stimulatory effect of nonpharmacological stressors on Fos protein expression in the somatosensory cortex barrel field, and Fos-positive cell counts in this region correlated negatively with both the duration of catalepsy and the latency time in the hot-plate test. The overlap between brain regions reacting to nonpharmacological stressors and those responding to exogenous opioids suggests that stress contributes to opioid-induced neuronal activation.
de Araújo, Dayane Pessoa; Camboim, Thaisa Gracielle Martins; Silva, Ana Patrícia Magalhães; Silva, Caio da Fonseca; de Sousa, Rebeca Canuto; Barbosa, Mabson Delâno Alves; Oliveira, Lucidio Clebeson; Cavalcanti, José Rodolfo Lopes de Paiva; Lucena, Eudes Euler de Souza; Guzen, Fausto Pierdoná
2017-07-01
Tardive dyskinesia (TD) is characterized by involuntary movements of the lower portion of the face being related to typical antipsychotic therapy. TD is associated with the oxidative imbalance in the basal ganglia. Lipoic acid (LA) and omega-3 (ω-3) are antioxidants acting as enzyme cofactors, regenerating antioxidant enzymes. This study aimed to investigate behavioral and neurochemical effects of supplementation with LA (100 mg/kg) and ω-3 (1 g/kg) in the treatment of TD induced by chronic use of haloperidol (HAL) (1 mg/kg) in rats. Wistar male rats were used, weighing between 180-200 g. The animals were treated chronically (31 days) with LA alone or associated with HAL or ω-3. Motor behavior was assessed by open-field test, the catalepsy test, and evaluation of orofacial dyskinesia. Oxidative stress was accessed by determination of lipid peroxidation and concentration of nitrite. LA and ω-3 alone or associated caused an improvement in motor performance by increasing locomotor activity in the open-field test and decreased the permanence time on the bar in the catalepsy test and decreased the orofacial dyskinesia. LA and ω-3 showed antioxidant effects, decreasing lipid peroxidation and nitrite levels. Thus, the use of LA associated with ω-3 reduced the extrapyramidal effects produced by chronic use of HAL.
Cannabidiol Prevents Motor and Cognitive Impairments Induced by Reserpine in Rats.
Peres, Fernanda F; Levin, Raquel; Suiama, Mayra A; Diana, Mariana C; Gouvêa, Douglas A; Almeida, Valéria; Santos, Camila M; Lungato, Lisandro; Zuardi, Antônio W; Hallak, Jaime E C; Crippa, José A; Vânia, D'Almeida; Silva, Regina H; Abílio, Vanessa C
2016-01-01
Cannabidiol (CBD) is a non-psychotomimetic compound from Cannabis sativa that presents antipsychotic, anxiolytic, anti-inflammatory, and neuroprotective effects. In Parkinson's disease patients, CBD is able to attenuate the psychotic symptoms induced by L-DOPA and to improve quality of life. Repeated administration of reserpine in rodents induces motor impairments that are accompanied by cognitive deficits, and has been applied to model both tardive dyskinesia and Parkinson's disease. The present study investigated whether CBD administration would attenuate reserpine-induced motor and cognitive impairments in rats. Male Wistar rats received four injections of CBD (0.5 or 5 mg/kg) or vehicle (days 2-5). On days 3 and 5, animals received also one injection of 1 mg/kg reserpine or vehicle. Locomotor activity, vacuous chewing movements, and catalepsy were assessed from day 1 to day 7. On days 8 and 9, we evaluated animals' performance on the plus-maze discriminative avoidance task, for learning/memory assessment. CBD (0.5 and 5 mg/kg) attenuated the increase in catalepsy behavior and in oral movements - but not the decrease in locomotion - induced by reserpine. CBD (0.5 mg/kg) also ameliorated the reserpine-induced memory deficit in the discriminative avoidance task. Our data show that CBD is able to attenuate motor and cognitive impairments induced by reserpine, suggesting the use of this compound in the pharmacotherapy of Parkinson's disease and tardive dyskinesia.
Brandão, Luiz Eduardo Mateus; Nôga, Diana Aline Morais Ferreira; Dierschnabel, Aline Lima; Meurer, Ywlliane da Silva Rodrigues; Lima, Ramón Hypolito; Cavalcante, Jeferson Souza; Lima, Clésio Andrade; Marchioro, Murilo; Estevam, Charles dos Santos; Santos, José Ronaldo
2017-01-01
Passiflora cincinnata Masters is a Brazilian native species of passionflower. This genus is known in the American continent folk medicine for its diuretic and analgesic properties. Nevertheless, few studies investigated possible biological effects of P. cincinnata extracts. Further, evidence of antioxidant actions encourages the investigation of possible neuroprotective effects in animal models of neurodegenerative diseases. This study investigates the effect of the P. cincinnata ethanolic extract (PAS) on mice submitted to a progressive model of Parkinson's disease (PD) induced by reserpine. Male (6-month-old) mice received reserpine (0.1 mg/kg, s.c.), every other day, for 40 days, with or without a concomitant treatment with daily injections of PAS (25 mg/kg, i.p.). Catalepsy, open field, oral movements, and plus-maze discriminative avoidance evaluations were performed across treatment, and immunohistochemistry for tyrosine hydroxylase was conducted at the end. The results showed that PAS treatment delayed the onset of motor impairments and prevented the occurrence of increased catalepsy behavior in the premotor phase. However, PAS administration did not modify reserpine-induced cognitive impairments. Moreover, PAS prevented the decrease in tyrosine hydroxylase immunostaining in the substantia nigra pars compacta (SNpc) induced by reserpine. Taken together, our results suggested that PAS exerted a neuroprotective effect in a progressive model of PD. PMID:28835767
Effects of amantadine on modification of dopamine dependent behaviours by molindone.
Dhaware, B S; Balsara, J J; Nandal, N V; Chandorkar, A G
2000-08-01
Amantadine, a dopamine agonist is reported to act by releasing dopamine from the dopaminergic nerve terminals as an anti-Parkinsonian drug. In the present behavioural study in the rat, molindone-induced catalepsy and ptosis, which are dopamine dependent-behaviors are reversed by amantadine. Amantadine has also revered molindone-induced inhibition of traction response in mice. Our study indicates that amantadine, like other DA agonists, e.g. amphetamine and apomorphine can antagonize or even reverse the neuroleptic induced dopaminergic behaviors.
Marcus, Monica M; Jardemark, Kent; Malmerfelt, Anna; Björkholm, Carl; Svensson, Torgny H
2010-01-01
Preclinical data have shown that addition of the selective norepinephrine transporter (NET) inhibitor reboxetine increases the antipsychotic-like effect of the D2/3 antagonist raclopride and, in parallel, enhances cortical dopamine output. Subsequent clinical results suggested that adding reboxetine to stable treatments with various antipsychotic drugs (APDs) may improve positive, negative and depressive symptoms in schizophrenia. In this study, we investigated in rats the effects of adding reboxetine to the second-generation APD olanzapine on: (i) antipsychotic efficacy, using the conditioned avoidance response (CAR) test, (ii) extrapyramidal side effect (EPS) liability, using a catalepsy test, (iii) dopamine efflux in the medial prefrontal cortex and the nucleus accumbens, using in vivo microdialysis in freely moving animals and (iv) cortical N-methyl--aspartate (NMDA) receptor-mediated transmission, using intracellular electrophysiological recording in vitro. Reboxetine (6 mg/kg) enhanced the suppression of CAR induced by a suboptimal dose (1.25 mg/kg), but not an optimal (2.5 mg/kg) dose of olanzapine without any concomitant catalepsy. Addition of reboxetine to the low dose of olanzapine also markedly increased cortical dopamine outflow and facilitated prefrontal NMDA receptor-mediated transmission. Our data suggest that adjunctive treatment with a NET inhibitor may enhance the therapeutic effect of low-dose olanzapine in schizophrenia without increasing EPS liability and add an antidepressant action, thus in principle allowing for a dose reduction of olanzapine with a concomitant reduction of dose-related side effects, such as EPS and weight gain. PMID:20463659
Champatisingh, D; Sahu, P K; Pal, A; Nanda, G S
2011-04-01
To assess the anticataleptic and antiepileptic activity of leaves of Mucuna pruriens in albino rats. Haloperidol-induced catalepsy (HIC), maximum electro-shock (MES) method, pilocarpine-induced Status epilepticus (PISE) and single-dose effect of M. pruriens were employed. M. pruriens (100 mg/kg) had significant anticataleptic and antiepileptic activity in HIC, MES, and PISE. M. pruriens extract has the potential to be an anticataleptic and antiepileptic drug. Dopamine and 5-HT may have a role in such activity.
Balsara, J J; Gada, V P; Nandal, N V; Chandorkar, A G
1984-09-01
24 h pretreatment with molindone enhanced the behavioural effects of L-dopa and 5-HTP, precursors of biogenic amines (catecholamines and 5-HT respectively) preferentially deaminated by MAO-A, confirming that a metabolite of molindone inhibits MAO-A. 24 h pretreatment with molindone enhanced the behavioural effects of tryptamine and antagonized reserpine-induced ptosis, and in molindone-pretreated rats L-tryptophan induced behavioural effects, probably because of the MAO-A inhibitory activity exerted by a metabolite of molindone. Since 24 h pretreatment with molindone, unlike 30 min pretreatment with clomipramine, failed to antagonize fenfluramine and p-chloramphetamine-induced behavioural syndromes, it suggests that molindone and/or its metabolites most probably do not exert 5-HT neuronal uptake blocking activity and the potentiation of 5-HTP-induced behavioural syndrome is due to a metabolite's MAO-A inhibitory activity. As 2 h pretreatment with molindone induced catalepsy and antagonized apomorphine-induced climbing behaviour in mice and stereotypy in rats, while 24 h pretreatment failed to induce catalepsy and to antagonize apomorphine-induced behaviour, it appears that, at 24 h, the tissue levels of molindone are inadequate to block postsynaptic striatal and mesolimbic DA receptors and that, though a metabolite of molindone is biologically active so far as inhibition of MAO-A is concerned, the metabolites are devoid of neuroleptic activity. Further, since 2 h pretreatment with molindone failed to enhance the behavioural effects of L-dopa, it suggests that at 2 h the degree of MAO-A inhibition induced by molindone and/or the metabolite is not sufficient to counteract the neuroleptic activity of the parent compound.
Baladi, Michelle G; France, Charles P
2009-05-21
Nutritional status can impact dopamine systems in a manner that might be important to understanding possible common neurobiological mechanisms that mediate abnormal compulsive food (e.g., obesity) and drug taking. Limiting food intake, for example, can increase sensitivity to the behavioral effects of indirect-acting dopamine receptor agonists. Much less is known regarding possible diet-induced changes in sensitivity to direct-acting dopamine receptor drugs. The present study investigated the effects of a high fat diet and of food restriction on sensitivity of rats to the behavioral effects of a direct-acting dopamine receptor agonist and a dopamine receptor antagonist. Free access to high fat chow increased sensitivity to quinpirole-induced yawning without changing sensitivity to raclopride-induced catalepsy or quinpirole-induced hypothermia. Food restriction (10 g/day) decreased sensitivity to quinpirole-induced yawning and raclopride-induced catalepsy without affecting sensitivity to quinpirole-induced hypothermia. Free access to a standard chow restored sensitivity to the behavioral effects of both drugs in rats that were previously food-restricted but not in rats that previously ate a high fat diet. These data confirm that food restriction can decrease sensitivity to behavioral effects of direct-acting dopamine receptor drugs, they provide evidence (i.e., no change in hypothermic effects) indicating that these changes are not due to pharmacokinetic mechanisms, and they provide initial evidence showing enhanced sensitivity to behavioral effects of dopamine receptor drugs in rats eating a high fat diet. These changes in sensitivity of dopamine systems could be relevant to understanding the impact of nutrition on therapeutic and recreational drug use.
Baladi, Michelle G; France, Charles P
2009-01-01
Nutritional status can impact dopamine systems in a manner that might be important to understanding possible common neurobiological mechanisms that mediate abnormal compulsive food (e.g., obesity) and drug taking. Limiting food intake, for example, can increase sensitivity to the behavioral effects of indirect-acting dopamine receptor agonists. Much less is known regarding possible diet-induced changes in sensitivity to direct-acting dopamine receptor drugs. The present study investigated the effects of a high fat diet and of food restriction on sensitivity of rats to the behavioral effects of a direct-acting dopamine receptor agonist and a dopamine receptor antagonist. Free access to high fat chow increased sensitivity to quinpirole-induced yawning without changing sensitivity to raclopride-induced catalepsy or quinpirole-induced hypothermia. Food restriction (10 g/day) decreased sensitivity to quinpirole-induced yawning and raclopride-induced catalepsy without affecting sensitivity to quinpirole-induced hypothermia. Free access to a standard chow restored sensitivity to the behavioral effects of both drugs in rats that were previously food-restricted but not in rats that previously ate a high fat diet. These data confirm that food restriction can decrease sensitivity to behavioral effects of direct-acting dopamine receptor drugs, they provide evidence (i.e., no change in hypothermic effects) indicating that these changes are not due to pharmacokinetic mechanisms, and they provide initial evidence showing enhanced sensitivity to behavioral effects of dopamine receptor drugs in rats eating a high fat diet. These changes in sensitivity of dopamine systems could be relevant to understanding the impact of nutrition on therapeutic and recreational drug use. PMID:19327348
Behavioural and functional characterization of Kv10.1 (Eag1) knockout mice
Ufartes, Roser; Schneider, Tomasz; Mortensen, Lena Sünke; de Juan Romero, Camino; Hentrich, Klaus; Knoetgen, Hendrik; Beilinson, Vadim; Moebius, Wiebke; Tarabykin, Victor; Alves, Frauke; Pardo, Luis A.; Rawlins, J. Nicholas P.; Stuehmer, Walter
2013-01-01
Kv10.1 (Eag1), member of the Kv10 family of voltage-gated potassium channels, is preferentially expressed in adult brain. The aim of the present study was to unravel the functional role of Kv10.1 in the brain by generating knockout mice, where the voltage sensor and pore region of Kv10.1 were removed to render non-functional proteins through deletion of exon 7 of the KCNH1 gene using the ‘3 Lox P strategy’. Kv10.1-deficient mice show no obvious alterations during embryogenesis and develop normally to adulthood; cortex, hippocampus and cerebellum appear anatomically normal. Other tests, including general health screen, sensorimotor functioning and gating, anxiety, social behaviour, learning and memory did not show any functional aberrations in Kv10.1 null mice. Kv10.1 null mice display mild hyperactivity and longer-lasting haloperidol-induced catalepsy, but there was no difference between genotypes in amphetamine sensitization and withdrawal, reactivity to apomorphine and haloperidol in the prepulse inhibition tests or to antidepressants in the haloperidol-induced catalepsy. Furthermore, electrical properties of Kv10.1 in cerebellar Purkinje cells did not show any difference between genotypes. Bearing in mind that Kv10.1 is overexpressed in over 70% of all human tumours and that its inhibition leads to a reduced tumour cell proliferation, the fact that deletion of Kv10.1 does not show a marked phenotype is a prerequisite for utilizing Kv10.1 blocking and/or reduction techniques, such as siRNA, to treat cancer. PMID:23424202
Campêlo, Clarissa L C; Santos, José R; Silva, Anatildes F; Dierschnabel, Aline L; Pontes, André; Cavalcante, Jeferson S; Ribeiro, Alessandra M; Silva, Regina H
2017-06-15
Previous studies showed that the repeated administration with a low dose of reserpine (RES) induces a gradual appearance of motor signs and cognitive deficits compatible with parkinsonism in rodents. Environmental stimulation has neuroprotective effects in animal models of neurodegenerative damage, including acutely induced parkinsonism. We investigated the effects of exposure to an enriched environment (EE) on motor, cognitive and neuronal (levels of tyrosine hydroxylase, TH and brain derived neurotrophic factor, BDNF) deficits induced by a progressive model of Parkinson's disease (PD) in mice. Male mice were repeatedly treated with vehicle or 0.1mg/kg of RES (s.c) and kept under two housing conditions: standard environment (SE) and EE. In animals kept in SE, the treatment with RES induced deficits in motor function (catalepsy test, open field and oral movements), in novel object recognition (NOR) and plus-maze discriminative avoidance tasks. The environmental stimulation facilitated the recovery of motor deficits assessed by the catalepsy test after the end of treatment. Additionally, exposure to EE prevented the memory deficit in the NOR task. Treatment with RES induced a reduction in the number of TH positive cells in SNpc and VTA, which recovered 30days after the end of treatment. Finally, RES reduced the levels of BDNF in the striatum and the exposure to the EE prevented this effect. These results suggest that plastic brain changes induced by EE promote beneficial effects on the progression of neuronal impairment related to PD. Copyright © 2017 Elsevier B.V. All rights reserved.
Boules, M; McMahon, B; Warrington, L; Stewart, J; Jackson, J; Fauq, A; McCormick, D; Richelson, E
2001-11-16
Neurotensin (NT) is a tridecapeptide neurotransmitter in the central nervous system. It has been implicated in the therapeutic effects of neuroleptics. Central activity of NT can only be demonstrated by direct injection into the brain, since it is readily degraded by peptidases in the periphery. We have developed many NT(8-13) analogs that are resistant to peptidase degradation and can cross the blood-brain barrier (BBB). In this study, we report on one of these analogs, NT77L. NT77L induced hypothermia (ED(50)=6.5 mg/kg, i.p.) but induced analgesia only at the highest dose examined (20 mg/kg, i.p.). Like the atypical neuroleptic clozapine, NT77L blocked the climbing behavior in rats induced by the dopamine agonist apomorphine (600 microg/kg) with an ED(50) of 5.6 mg/kg (i.p.), without affecting the licking and the sniffing behaviors. By itself NT77L did not cause catalepsy, but it moderately reversed haloperidol-induced catalepsy with an ED(50) of 6.0 mg/kg (i.p.). Haloperidol alone did not lower body temperature, but it potentiated the body temperature lowering effect of NT77L. In studies using in vivo microdialysis NT77L showed similar effects on dopamine turnover to those of clozapine, and significantly different from those of haloperidol in the striatum. In the prefrontal cortex, NT77L significantly increased serotonergic transmission as evidenced by increased 5-hydroxyindole acetic acid:5-hydroxytryptamine (5-HIAA:5-HT) ratio. Thus, NT77L selectively caused hypothermia, over antinociception, while exhibiting atypical neuroleptic-like effects.
Preliminary screening of five ethnomedicinal plants of Guatemala.
Morales, C; Gomez-Serranillos, M P; Iglesias, I; Villar, A M; Cáceres, A
2001-01-01
We performed the Irwin test on some different extracts of the aerial parts of Tridax procumbens L., of the leaves of Neurolaena lobata (L.) R. Br., of the bark and leaves of Byrsonima crassifolia (L.) Kunth. and Gliricidia sepium Jacq. Walp. and of the root and leaves of Petiveria alliacea L. At a dosage of 1.25 g extract/100 g dried plant, the aqueous extracts of bark and leaves of Byrsonima crassifolia (L.) Kunth. and G. sepium Jacq. Walp. showed higher activity: decrease in motor activity, back tonus, reversible parpebral ptosis. catalepsy and strong hypothermia.
Champatisingh, D.; Sahu, P.K.; Pal, A.; Nanda, G.S.
2011-01-01
Objective: To assess the anticataleptic and antiepileptic activity of leaves of Mucuna pruriens in albino rats. Materials and Methods: Haloperidol-induced catalepsy (HIC), maximum electro-shock (MES) method, pilocarpine-induced Status epilepticus (PISE) and single-dose effect of M. pruriens were employed. Results: M. pruriens (100 mg/kg) had significant anticataleptic and antiepileptic activity in HIC, MES, and PISE. Conclusions: M. pruriens extract has the potential to be an anticataleptic and antiepileptic drug. Dopamine and 5-HT may have a role in such activity. PMID:21572658
Pandy, Vijayapandi; Narasingam, Megala; Vijeepallam, Kamini; Mohan, Syam; Mani, Vasudevan; Mohamed, Zahurin
2017-01-01
In earlier ex vivo studies, we reported the biphasic effect of a methanolic extract of unripe Morinda citrifolia fruit (MMC) on dopamine-induced contractility in isolated rat vas deferens preparations. The present in vivo study was designed and undertaken to further explore our earlier ex vivo findings. This study examined the effect of the ethyl acetate fraction of a methanolic extract of unripe Morinda citrifolia Linn. fruit (EA-MMC; 5–100 mg/kg, p.o.) on the dopaminergic system using mouse models of apomorphine-induced climbing time and climbing behavior, methamphetamine-induced stereotypy (sniffing, biting, gnawing, and licking) and haloperidol-induced catalepsy using the bar test. Acute treatment with EA-MMC at a low dose (25 mg/kg, p.o.) significantly attenuated the apomorphine-induced climbing time and climbing behavior in mice. Similarly, EA-MMC (5 and 10 mg/kg, p.o.) significantly inhibited methamphetamine-induced stereotyped behavior in mice. These results demonstrated that the antidopaminergic effect of EA-MMC was observed at relatively lower doses (<25 mg/kg, p.o.). On the other hand, EA-MMC showed dopaminergic agonistic activity at a high dose (3,000 mg/kg, p.o.), which was evident from alleviation of haloperidol (a dopamine D2 blocker)-induced catalepsy in mice. Therefore, it is concluded that EA-MMC might possess a biphasic effect on the dopaminergic system, i.e., an antagonistic effect at lower doses (<25 mg/kg, p.o.) and an agonistic effect at higher doses (>1,000 mg/kg, p.o.). However, further receptor-ligand binding assays are necessary to confirm the biphasic effects of M. citrifolia fruit on the dopaminergic system. PMID:28450692
Naumenko, V S; Kondaurova, E M; Bazovkina, D V; Tsybko, A S; Tikhonova, M A; Kulikov, A V; Popova, N K
2012-07-12
The effect of brain-derived neurotrophic factor (BDNF) on depressive-like behavior and serotonin (5-HT) system in the brain of antidepressant sensitive cataleptics (ASC)/Icg mouse strain, characterized by depressive-like behavior, in comparison with the parental nondepressive CBA/Lac mouse strain was examined. Significant decrease of catalepsy and tail suspension test (TST) immobility was shown 17days after acute central BDNF administration (300ng i.c.v.) in ASC mice. In CBA mouse strain, BDNF moderately decreased catalepsy without any effect on TST immobility time. Significant difference between ASC and CBA mice in the effect of BDNF on 5-HT system was revealed. It was shown that central administration of BDNF led to increase of 5-HT(1A) receptor gene expression but not 5-HT(1A) functional activity in ASC mice. Increased tryptophan hydroxylase-2 (Tph-2) and 5-HT(2A) receptor genes expression accompanied by 5-HT(2A) receptor sensitization was shown in BDNF-treated ASC but not in CBA mouse strain, suggesting BDNF-induced increase of the brain 5-HT system functional activity and activation of neurogenesis in "depressive" ASC mice. There were no changes found in the 5-HT transporter mRNA level in BDNF-treated ASC and CBA mice. In conclusion, central administration of BDNF produced prolonged ameliorative effect on depressive-like behavior accompanied by increase of the Tph-2, 5-HT(1A) and 5-HT(2A) genes expression and 5-HT(2A) receptor functional activity in animal model of hereditary behavior disorders. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Behavioral control by striatal adenosine A2A -dopamine D2 receptor heteromers.
Taura, J; Valle-León, M; Sahlholm, K; Watanabe, M; Van Craenenbroeck, K; Fernández-Dueñas, V; Ferré, S; Ciruela, F
2018-04-01
G protein-coupled receptors (GPCR) exhibit the ability to form receptor complexes that include molecularly different GPCR (ie, GPCR heteromers), which endow them with singular functional and pharmacological characteristics. The relative expression of GPCR heteromers remains a matter of intense debate. Recent studies support that adenosine A 2A receptors (A 2A R) and dopamine D 2 receptors (D 2 R) predominantly form A 2A R-D 2 R heteromers in the striatum. The aim of the present study was evaluating the behavioral effects of pharmacological manipulation and genetic blockade of A 2A R and D 2 R within the frame of such a predominant striatal heteromeric population. First, in order to avoid possible strain-related differences, a new D 2 R-deficient mouse with the same genetic background (CD-1) than the A 2A R knock-out mouse was generated. Locomotor activity, pre-pulse inhibition (PPI) and drug-induced catalepsy were then evaluated in wild-type, A 2A R and D 2 R knock-out mice, with and without the concomitant administration of either the D 2 R agonist sumanirole or the A 2A R antagonist SCH442416. SCH442416-mediated locomotor effects were demonstrated to be dependent on D 2 R signaling. Similarly, a significant dependence on A 2A R signaling was observed for PPI and for haloperidol-induced catalepsy. The results could be explained by the existence of one main population of striatal postsynaptic A 2A R-D 2 R heteromers, which may constitute a relevant target for the treatment of Parkinson's disease and other neuropsychiatric disorders. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Marcus, Monica M; Jardemark, Kent; Malmerfelt, Anna; Gertow, Jens; Konradsson-Geuken, Asa; Svensson, Torgny H
2012-04-01
Antidepressant drugs are frequently used to treat affective symptoms in schizophrenia. We have recently shown that escitalopram, but not citalopram or R-citalopram, increases firing rate and burst firing of midbrain dopamine neurons, potentiates cortical N-methyl-D-aspartate (NMDA) receptor-mediated transmission and enhances cognition, effects that might influence the outcome of concomitant antipsychotic medication. Here, we studied, in rats, the behavioral and neurobiological effects of adding escitalopram, citalopram, or R-citalopram to the second-generation antipsychotic drug risperidone. We examined antipsychotic efficacy using the conditioned avoidance response (CAR) test, extrapyramidal side effect (EPS) liability using a catalepsy test, dopamine outflow in the medial prefrontal cortex (mPFC) and nucleus accumbens using in vivo microdialysis in freely moving animals, and NMDA receptor-mediated transmission in the mPFC using intracellular electrophysiological recording in vitro. Only escitalopram (5 mg/kg), but not citalopram (10 mg/kg), or R-citalopram (10 mg/kg), dramatically enhanced the antipsychotic-like effect of a low dose of risperidone (0.25 mg/kg), without increasing catalepsy. Given alone, escitalopram, but not citalopram or R-citalopram, markedly enhanced both cortical dopamine output and NMDA receptor-mediated transmission. Addition of escitalopram and to some extent R-citalopram, but not citalopram, significantly enhanced both cortical dopamine output and cortical NMDA receptor-mediated transmission induced by a suboptimal dose/concentration of risperidone. These results suggest that adjunct treatment with escitalopram, but not citalopram, may enhance the effect of a subtherapeutic dose of risperidone on positive, negative, cognitive, and depressive symptoms in schizophrenia, yet without increased EPS liability. Copyright © 2011 Wiley Periodicals, Inc.
Pandy, Vijayapandi; Narasingam, Megala; Vijeepallam, Kamini; Mohan, Syam; Mani, Vasudevan; Mohamed, Zahurin
2017-08-05
In earlier ex vivo studies, we reported the biphasic effect of a methanolic extract of unripe Morinda citrifolia fruit (MMC) on dopamine-induced contractility in isolated rat vas deferens preparations. The present in vivo study was designed and undertaken to further explore our earlier ex vivo findings. This study examined the effect of the ethyl acetate fraction of a methanolic extract of unripe Morinda citrifolia Linn. fruit (EA-MMC; 5-100 mg/kg, p.o.) on the dopaminergic system using mouse models of apomorphine-induced climbing time and climbing behavior, methamphetamine-induced stereotypy (sniffing, biting, gnawing, and licking) and haloperidol-induced catalepsy using the bar test. Acute treatment with EA-MMC at a low dose (25 mg/kg, p.o.) significantly attenuated the apomorphine-induced climbing time and climbing behavior in mice. Similarly, EA-MMC (5 and 10 mg/kg, p.o.) significantly inhibited methamphetamine-induced stereotyped behavior in mice. These results demonstrated that the antidopaminergic effect of EA-MMC was observed at relatively lower doses (<25 mg/kg, p.o.). On the other hand, EA-MMC showed dopaminergic agonistic activity at a high dose (3,000 mg/kg, p.o.), which was evident from alleviation of haloperidol (a dopamine D 2 blocker)-induced catalepsy in mice. Therefore, it is concluded that EA-MMC might possess a biphasic effect on the dopaminergic system, i.e., an antagonistic effect at lower doses (<25 mg/kg, p.o.) and an agonistic effect at higher doses (>1,000 mg/kg, p.o.). However, further receptor-ligand binding assays are necessary to confirm the biphasic effects of M. citrifolia fruit on the dopaminergic system.
Marshell, R; Kearney-Ramos, T; Brents, L K; Hyatt, W S; Tai, S; Prather, P L; Fantegrossi, W E
2014-09-01
Human users of synthetic cannabinoids (SCBs) JWH-018 and JWH-073 typically smoke these drugs, but preclinical studies usually rely on injection for drug delivery. We used the cannabinoid tetrad and drug discrimination to compare in vivo effects of inhaled drugs with injected doses of these two SCBs, as well as with the phytocannabinoid Δ(9)-tetrahydrocannabinol (Δ(9)-THC). Mice inhaled various doses of Δ(9)-THC, JWH-018 or JWH-073, or were injected intraperitoneally (IP) with these same compounds. Rectal temperature, tail flick latency in response to radiant heat, horizontal bar catalepsy, and suppression of locomotor activity were assessed in each animal. In separate studies, mice were trained to discriminate Δ(9)-THC (IP) from saline, and tests were performed with inhaled or injected doses of the SCBs. Both SCBs elicited Δ(9)-THC-like effects across both routes of administration, and effects following inhalation were attenuated by pretreatment with the CB1 antagonist/inverse agonist rimonabant. No cataleptic effects were observed following inhalation, but all compounds induced catalepsy following injection. Injected JWH-018 and JWH-073 fully substituted for Δ(9)-THC, but substitution was partial (JWH-073) or required relatively higher doses (JWH-018) when drugs were inhaled. These studies demonstrate that the SCBs JWH-018 and JWH-073 elicit dose-dependent, CB1 receptor-mediated Δ(9)-THC-like effects in mice when delivered via inhalation or via injection. Across these routes of administration, differences in cataleptic effects and, perhaps, discriminative stimulus effects, may implicate the involvement of active metabolites of these compounds. Copyright © 2014 Elsevier Inc. All rights reserved.
Gentzel, Renee C; Toolan, Dawn; Roberts, Rhonda; Koser, Amy Jo; Kandebo, Monika; Hershey, James; Renger, John J; Uslaner, Jason; Smith, Sean M
2015-12-01
Phosphodiesterase 10A (PDE10A) has garnered attention as a potential therapeutic target for schizophrenia due to its prominent striatal expression and ability to modulate striatal signaling. The present study used the selective PDE10A inhibitor MP-10 and the dopamine D2 antagonist haloperidol to compare effects of PDE10A inhibition and dopamine D2 blockade on striatopallidal (D2) and striatonigral (D1) pathway activation. Our studies confirmed that administration of MP-10 significantly elevates expression of the immediate early genes (IEG) c-fos, egr-1, and arc in rat striatum. Furthermore, we demonstrated that MP-10 induced egr-1 expression was distributed evenly between enkephalin-containing D2-neurons and substance P-containing D1-neurons. In contrast, haloperidol (3 mg/kg) selectively activated egr-1 expression in enkephalin neurons. Co-administration of MP-10 and haloperidol (0.5 mg/kg) increased IEG expression to a greater extent than either compound alone. Similarly, in a rat catalepsy assay, administration of haloperidol (0.5 mg/kg) or MP-10 (3-30 mg/kg) did not produce cataleptic behavior when dosed alone, but co-administration of haloperidol with MP-10 (3 and 10 mg/kg) induced cataleptic behaviors. Interestingly, co-administration of haloperidol with a high dose of MP-10 (30 mg/kg) failed to produce cataleptic behavior. These findings are important for understanding the neural circuits involved in catalepsy and suggest that the behavioral effects produced by PDE10A inhibitors may be influenced by concomitant medication and the level of PDE10A inhibition achieved by the dose of the inhibitor. Copyright © 2015. Published by Elsevier Ltd.
Bruno, J P; Byrnes, E M; Johnson, B J
1995-11-01
The effects of systemic administration of DA receptor antagonists suggest that unconditioned motor behavior in rats depleted of DA as neonates continues to be dependent upon dopaminergic transmission, yet the specific contribution of D1 and D2 receptors to these behaviors has been altered. The purpose of the present study was to determine whether these depletion-induced receptor changes are occurring at the level of striatal DA terminals and their targets. The ability of bilateral intrastriatal injections (0.5 microliter) of DA receptor antagonists to induce motoric deficits was determined in adult rats treated with vehicle or 6-OHDA (100 micrograms, intraventricular) on postnatal day 3. Administration of the D1-like antagonist SCH 23390 (0.5-2.0 micrograms) or the D2-like antagonist clebopride (1.0-4.0 micrograms) induced dose-dependent akinesia, catalepsy, and somatosensory neglect in vehicle-treated controls. In contrast, neither antagonist produced deficits in rats depleted of forebrain DA as neonates. However, combined administration of SCH 23390 + clebopride induced similar akinesia, catalepsy, and somatosensory neglect in both controls and DA depleted animals. Animals depleted of DA were more sensitive than controls to the low doses of this combined D1 + D2 antagonism. These results demonstrate that activation of striatal DA receptors remains necessary for unconditioned motor behavior in rats depleted of DA as neonates. However, the specific contributions of D1- and D2-like receptors to these behaviors differ between intact animals and those depleted of DA as neonates. The ability of endogenous DA acting at either D1 or D2 receptors to support spontaneous motor behavior in rats depleted of DA as neonates may contribute to their relative sparing from parkinsonian deficits.
Johnson, Kari A.; Jones, Carrie K.; Tantawy, Mohammed N.; Bubser, Michael; Marvanova, Marketa; Ansari, M. Sib; Baldwin, Ronald M.; Conn, P. Jeffrey; Niswender, Colleen M.
2012-01-01
Metabotropic glutamate receptors (mGlus) are 7 Transmembrane Spanning Receptors (7TMs) that are differentially expressed throughout the brain and modulate synaptic transmission at both excitatory and inhibitory synapses. Recently, mGlus have been implicated as therapeutic targets for many disorders of the central nervous system, including Parkinson’s disease (PD). Previous studies have shown that nonselective agonists of group III mGlus have antiparkinsonian effects in several animal models of PD, suggesting that these receptors represent promising targets for treating the motor symptoms of PD. However, the relative contributions of different group III mGlu subtypes to these effects have not been fully elucidated. Here we report that intracerebroventricular (icv) administration of the mGlu8-selective agonist (S)-3,4-dicarboxyphenylglycine (DCPG [2.5, 10, or 30 nmol]) does not alleviate motor deficits caused by acute (two hour) treatment with haloperidol or reserpine. However, following prolonged pretreatment with haloperidol (three doses evenly spaced over 18–20 hours) or reserpine (18–20 hours), DCPG robustly reverses haloperidol-induced catalepsy and reserpine-induced akinesia. Furthermore, DCPG (10 nmol, icv) reverses the long-lasting catalepsy induced by 20 hour pretreatment with the decanoate salt of haloperidol. Finally, icv administration of DCPG ameliorates forelimb use asymmetry caused by unilateral 6-hydroxydopamine lesion of substantia nigra dopamine neurons. These findings suggest that mGlu8 may partially mediate the antiparkinsonian effects of group III mGlu agonists in animal models of PD in which dopamine depletion or blockade of D2-like dopamine receptors is prolonged and indicate that selective activation of mGlu8 may represent a novel therapeutic strategy for alleviating the motor symptoms of PD. PMID:22546615
Effect of montelukast in experimental model of Parkinson's disease.
Nagarajan, Vetrivel Babu; Marathe, Padmaja Anil
2018-06-06
Despite the availability of many drugs offering symptomatic relief in Parkinson's disease, there are no drugs available offering neuroprotective effect. Hence, it was decided to evaluate the neuroprotective effect of montelukast, an anti-inflammatory drug, in rotenone induced model of Parkinson's disease in rats. Forty eight male wistar rats were randomly divided into three groups. Group 1: Vehicle control, Group 2: Montelukast 5 mg/kg, Group 3: Montelukast 10 mg/kg. All the groups received rotenone 2.5 mg/kg intraperitoneally for 10 days as a disease inducing agent. The study drug montelukast was administered to respective groups orally from day 11 to day 24. On day 25, 24 h after 14 days of study drug administration, the rats were subjected to open field test, rota rod test and catalepsy test. Brain samples of rats from each group were collected for Malondialdehyde(MDA), Glutathione(GSH) and TNFα analysis. In the open field test both the doses of montelukast showed significant increase in the locomotor activity and also decreased the immobility time compared to vehicle (p < 0.05). In rotarod test, montelukast 5 mg/kg and 10 mg/kg showed significant increase in the time to fall, compared to vehicle (p < 0.05). In catalepsy test, both doses of montelukast significantly decreased the retraction time compared to vehicle(p < 0.05). The brain MDA levels were decreased and GSH levels were found to be higher in the two montelukast groups compared to vehicle (p < 0.05). TNFα levels too were decreased significantly on montelukast administration. Montelukast showed potential neuroprotective effect by virtue of its anti-oxidant and anti-inflammatory actions. Copyright © 2018 Elsevier B.V. All rights reserved.
[Identification and evaluation of the neuroleptic activity of phenotropil].
Akhapkina, V I; Akhapkin, R V
2013-01-01
The neuroleptic (antipsychotic) activity of phenotropil was studied in an experimental animal model. Phenotropil had a marked neuroleptic activity in models of positive (apomorphine-induced verticalization test) and negative (5-HTP-induced hyperkinesis test) symptoms of psychoses as well as in the m-cholinergic pathway hyperactivation (arecoline-induced tremor test). The compound markedly antagonized haloperidol catalepsy. Used in a single dose or as a course treatment, phenotropil did not provoke aggression nor intensify it. In contrast to typical and atypical antipsychotics, phenotropil had no sedative action and other adverse effects. It exhibited a positive effect on exploratory behavior and motor activity, had anxiolytic and antidepressant action.
Edaravone Guards Dopamine Neurons in a Rotenone Model for Parkinson's Disease
Chen, Chunnuan; Huang, Jinsha; Zhao, Ying; Zhang, Zhentao; Qiao, Xian; Feng, Yuan; Reesaul, Harrish; Zhang, Yongxue; Sun, Shenggang; Lin, Zhicheng; Wang, Tao
2011-01-01
3-methyl-1-phenyl-2-pyrazolin-5-one (edaravone), an effective free radical scavenger, provides neuroprotection in stroke models and patients. In this study, we investigated its neuroprotective effects in a chronic rotenone rat model for Parkinson's disease. Here we showed that a five-week treatment with edaravone abolished rotenone's activity to induce catalepsy, damage mitochondria and degenerate dopamine neurons in the midbrain of rotenone-treated rats. This abolishment was attributable at least partly to edaravone's inhibition of rotenone-induced reactive oxygen species production or apoptotic promoter Bax expression and its up-regulation of the vesicular monoamine transporter 2 (VMAT2) expression. Collectively, edaravone may provide novel clinical therapeutics for PD. PMID:21677777
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, Mesbah; Danysz, Wojciech; Schmidt, Werner Juergen
2009-10-15
Systemic inhibition of complex I by rotenone in rats represents a model of Parkinson's disease (PD). The aim of this study was to elucidate whether neramexane (NMDA, nicotinic {alpha}9/{alpha}10 and 5-HT{sub 3} receptor antagonist), idazoxan ({alpha}{sub 2}-adrenoceptor antagonist) or 2-methyl-6-(phenyl-ethyl)-pyrimidine (MPEP, metabotropic glutamate receptor 5 antagonist) prevents rotenone-induced parkinsonian-like behaviours and neurochemical changes in rats. Rotenone (2.5 mg/kg i.p. daily) was administered over 60 days together with saline, neramexane (5 mg/kg i.p., b.i.d.), idazoxan (2.5 mg/kg i.p., b.i.d.) or MPEP (2.5 mg/kg i.p., b.i.d.). The same doses of neramexane, idazoxan and MPEP were administered to rats treated with vehicle insteadmore » of rotenone. Treatment-related effects on parkinsonian-like behaviours, such as hypokinesia/rigidity and locomotor activity, were evaluated. Moreover, concentrations of dopamine, serotonin and their metabolites were measured in rats from each experimental group. Over the 60-day treatment period, the rotenone + saline treated animals developed hypokinesia, expressed as an increase in the bar and grid descent latencies in the catalepsy test, and a decrease in locomotor activity. Neramexane and idazoxan partially prevented the development of catalepsy in rotenone-treated rats. Co-administration of MPEP with rotenone resulted only in a decrease in descent latency in the grid test on day 60. Chronic rotenone treatment reduced concentrations of dopamine and serotonin in the anterior striatum, which was blocked by co-treatment with neramexane or idazoxan but not with MPEP. Only neramexane treatment blocked the rotenone-induced decrease in dopamine levels in the substantia nigra pars compacta. In conclusion, neramexane and idazoxan counteracted to some extent the development of parkinsonian symptoms and neurochemical alterations in the rotenone model of Parkinson's disease.« less
Jones, Carrie K.; Bubser, Michael; Thompson, Analisa D.; Dickerson, Jonathan W.; Turle-Lorenzo, Nathalie; Amalric, Marianne; Blobaum, Anna L.; Bridges, Thomas M.; Morrison, Ryan D.; Jadhav, Satyawan; Engers, Darren W.; Italiano, Kimberly; Bode, Jacob; Daniels, J. Scott; Lindsley, Craig W.; Hopkins, Corey R.; Conn, P. Jeffrey
2012-01-01
Parkinson's disease (PD) is a debilitating neurodegenerative disorder associated with severe motor impairments caused by the loss of dopaminergic innervation of the striatum. Previous studies have demonstrated that positive allosteric modulators (PAMs) of metabotropic glutamate receptor 4 (mGlu4), including N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide, can produce antiparkinsonian-like effects in preclinical models of PD. However, these early mGlu4 PAMs exhibited unsuitable physiochemical properties for systemic dosing, requiring intracerebroventricular administration and limiting their broader utility as in vivo tools to further understand the role of mGlu4 in the modulation of basal ganglia function relevant to PD. In the present study, we describe the pharmacologic characterization of a systemically active mGlu4 PAM, N-(3-chlorophenyl)picolinamide (VU0364770), in several rodent PD models. VU0364770 showed efficacy alone or when administered in combination with l-DOPA or an adenosine 2A (A2A) receptor antagonist currently in clinical development (preladenant). When administered alone, VU0364770 exhibited efficacy in reversing haloperidol-induced catalepsy, forelimb asymmetry-induced by unilateral 6-hydroxydopamine (6-OHDA) lesions of the median forebrain bundle, and attentional deficits induced by bilateral 6-OHDA nigrostriatal lesions in rats. In addition, VU0364770 enhanced the efficacy of preladenant to reverse haloperidol-induced catalepsy when given in combination. The effects of VU0364770 to reverse forelimb asymmetry were also potentiated when the compound was coadministered with an inactive dose of l-DOPA, suggesting that mGlu4 PAMs may provide l-DOPA-sparing activity. The present findings provide exciting support for the potential role of selective mGlu4 PAMs as a novel approach for the symptomatic treatment of PD and a possible augmentation strategy with either l-DOPA or A2A antagonists. PMID:22088953
Modification of dyskinesias following the intrastriatal injection of prostaglandins in the rodent.
Costall, B.; Holmes, S. W.; Kelly, M. E.; Naylor, R. J.
1985-01-01
The abilities of prostaglandin E1 (PGE1), PGE2, PGD2 and PGF2 alpha to antagonize striatal dopamine function were assessed following bilateral and unilateral injections into the striata of the rat and guinea-pig. Three tests were used to assess the effects of the bilateral injections, ability to antagonize dyskinetic biting induced by 2-di-n-propylamino-5,6-dihydroxytetralin (0.025 mg kg-1 s.c.), ability to antagonize stereotyped behaviour induced by apomorphine (0.5 or 2 mg kg-1 s.c.) and ability to induce catalepsy. Asymmetry/circling behaviour revealed on challenge with apomorphine (0.25 mg kg-1 s.c.) was measured following unilateral injection into the striatum. In the rat, dyskinetic biting induced by 2-di-n-propylamino-5,6-dihydroxytetralin was antagonized by PGE1 (0.001-1 micrograms) and PGE2 (0.00001-1 micrograms) but not by PGD2 or PGF2 alpha (1 microgram). Stereotyped behaviour induced by apomorphine was not antagonized by any of the prostaglandins. A weak catalepsy was induced by PGE1 (1 microgram only), PGE2 (0.001-1 micrograms) and PGD2 (0.001-1 micrograms) but not by PGF2 alpha. Asymmetry and circling behaviour was only observed following the unilateral injection into the striatum of PGE1 and PGD2 (0.01-1 microgram) and challenge with apomorphine. In the guinea-pig the actions of PGE1 and E2 were compared with those of PGF2 alpha. Dyskinetic biting induced by 2-di-n-propylamino-5,6-dihydroxytetralin was antagonized by bilateral injections into the striatum of PGE2 (0.001-1 microgram), but not PGE1 (0.5 micrograms) and PGF2 alpha (1 microgram) but not PGE, (0.5 micrograms) and PGF2 alpha (1 microgram).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3862460
Isackson, J; Wallace, M S; Ho, R J; Shen, D D; Yaksh, T L
1995-11-01
We have observed that spinal liposome administration in the rat resulted in in an allodynia evoked by light touch. We later determined that liposomes composed of D-isomer phospholipids were essentially non-toxic. This study examines the effects of alfentanil encapsulated in liposomes made from the natural L-isomer and synthetic D-isomer of dipalmitoyl phosphatidyl choline on antinoceiception, side effects, and algogenic behaviour. Both unilamellar and multilamellar liposomes were studied. Rats prepared with chronic intrathecal catheters received intrathecal injections of alfentanil (5 or 50 micrograms) in saline or encapsulated in liposomes composed of either L- or D-isomers of dipalmitoyl phosphatidyl choline (DPPC) in unilamellar or multilamellar liposome formulations. Antinociception was measured using the hot plate test (52.5 degrees). Side effects were measured by catalepsy, corneal responses, pinna response, righting reflex, and paw step. Allodynia was measured by lightly stroking the animal's back. Intrathecal alfentanil in saline or in the liposomes produced a dose-dependent increased latency in the hot plate response. Encapsulation of alfentanil in the liposomes produced a significant decrease in the loss of corneal, paw step and righting reflex and a slight decrease in catalepsy and loss of the pinna response. There was no significant difference between liposome preparations in preventing side effects. L-multilamellar-DPPC produced allodynia in 100% of the animals whereas significantly less allodynia was observed with the other preparations. This study indicates that liposomal preparations can significantly enhance the therapeutic ratio of a lipid soluble opioid after spinal delivery. However, the choice of lipids for the formulation of liposomes intended for spinal drug delivery must be considered since the L-isomer and larger lipid load of multilamellar liposomes have a direct spinal effect leading to alledynia. Previous studies have in fact shown that spinal lysolecithin can yield focal demyelination.
Neuropharmacological profile of ethnomedicinal plants of Guatemala.
Morales Cifuentes, C; Gómez-Serranillos, M P; Iglesias, I; Villar del Fresno, A M; Morales, C; Paredes, M E; Cáceres, A
2001-08-01
We carried out the Irwin's test with some different extracts of the aerial parts of Thidax procumbens L., the leaves of Neurolaena lobata (L.) R. Br., bark and leaves of Byrsonima crassifolia (L.) Kunth. and Gliricidia sepium Jacq. Walp., and root and leaves of Petiveria alliacea L. At dosage of 1.25 g dried plant/kg weight aqueous extracts of bark and leaves of Byrsonima crassifolia (L.) Kunth. and Gliricidia sepium Jacq. Walp. demonstrated the most activity: decrease in motor activity, back tonus, reversible parpebral ptosis, catalepsy and strong hypothermia. These extracts of both plants were assayed for effects on CNS and they caused very significant reductions in spontaneous locomotor activity, exploratory behavior and rectal temperature and they increased the sodium pentobarbital-induced sleeping time.
Dyskinesias differentiate autistic disorder from catatonia.
Brasic, J R; Barnett, J Y; Will, M V; Nadrich, R H; Sheitman, B B; Ahmad, R; Mendonca, M de F; Kaplan, D; Brathwaite, C
2000-12-01
Autistic disorder and catatonia are neuropsychiatric syndromes defined by impairments in social interaction, communication, and restricted, stereotypical motor routines. Assessments of children with these disorders are typically restricted in scope by the patients' limited ability to comprehend directions. The authors performed systematic assessments of dyskinesias on six prepubertal boys with autistic disorder and mental retardation and on one adolescent male with catatonia to determine if this type of information could be routinely obtained. The boys with autistic disorder had more stereotypies and tics, a greater degree of akathisia and hyperactivity, and more compulsions than the adolescent with catatonia. Catatonia was associated with catalepsy and dystonic postures. The authors conclude that the diagnostic accuracy and specificity of neuropsychiatric syndromes may be enhanced by the systematic assessment of the dyskinesias associated with each condition.
Renal Failure in Dementia with Lewy Bodies Presenting as Catatonia
Fekete, Robert
2013-01-01
Catatonia, originally described by Karl Kahlbaum in 1874, may be regarded as a set of clinical features found in a subtype of schizophrenia, but the syndrome may also stem from organic causes including vascular parkinsonism, brain masses, globus pallidus lesions, metabolic derangements, and pharmacologic agents, especially first generation antipsychotics. Catatonia may include paratonia, waxy flexibility (cerea flexibilitas), stupor, mutism, echolalia, and catalepsy (abnormal posturing). A case of catatonia as a result of acute renal failure in a patient with dementia with Lewy bodies is described. This patient recovered after intravenous fluid administration and reinstitution of the atypical dopamine receptor blocking agent quetiapine, but benzodiazepines and amantadine are additional possible treatments. Recognition of organic causes of catatonia leads to timely treatment and resolution of the syndrome. PMID:23466522
Assié, Marie-Bernadette; Dominguez, Hélène; Consul-Denjean, Nathalie; Newman-Tancredi, Adrian
2006-09-01
Interaction with dopamine D2-like receptors plays a major role in the therapeutic effects of antipsychotic drugs. We examined in vivo dopamine D2 receptor occupancy of various established and potential antipsychotics in mouse striatum and olfactory tubercles 1 h after administration of the compound, using [3H]nemonapride as a ligand. All the compounds reduced in vivo binding of [3H]nemonapride in the striatum. When administered systemically, conventional antipsychotics, D2 antagonists, nemonapride (ID50: 0.034 mg/kg), eticlopride (0.047), haloperidol (0.11) and raclopride (0.11) potently inhibited [3H]nemonapride binding. The 'atypical' antipsychotics, risperidone (0.18), ziprasidone (0.38), aripiprazole (1.6), olanzapine (0.99), and clozapine (11.1) were less potent for occupying D2-like receptors. New compounds, displaying marked agonism at 5-HT1A receptors in addition to D2 receptor affinity, exhibited varying D2 receptor occupancy: bifeprunox (0.25), SLV313 (0.78), SSR181507 (1.6) and sarizotan (6.7). ID50 values for inhibition of [3H]nemonapride binding in the striatum correlated with those in the olfactory tubercles (r=0.95, P<0.0001). These values also correlated with previously-reported in vitro affinity of the compounds at rat D2 receptors (r=0.85, P=0.0001) and with inhibition of apomorphine-induced climbing in mice (r=0.79 P=0.0005). In contrast, there was no significant correlation between ID50 values herein and previously-reported ED50 values for catalepsy in mice. These data indicate that: (1) there is no difference in D2 receptor occupancy in limbic versus striatal regions between most classical and atypical or potential antipsychotics; and (2) high occupancy of D2 receptors can be dissociated from catalepsy, if the drugs also activate 5-HT1A receptors. Taken together, these data support the strategy of simultaneously targeting D2 receptor blockade and 5-HT1A receptor activation for new antipsychotics.
[Evolutionary aspects of sleep and stress interaction: phylo-, ontogenetic approach].
Aristakesian, E A
2009-01-01
This work deals the comparative behavioral, somatosensor and neurophysiological characteristics of these forms of passive defensive behavior included in amphibian's sleep-wakefulness cycle and their developmental dynamics in the ascending vertebrates secale. Sleep formation in early postnatal ontogenesis of mature- and immature-born mammals - from undifferent sleep to the mature sleep divided into two phases as well as stress formation are considered in parallel. Comparative phylo-, and ontogenetic analysis of several aspects of stress-reactions, sleep, and immobility phenomenon of cataleptic type allows concluding that amphibians and reptilians catalepsy can be interpreted as preadaptive from of behavior underlying in the stress of homoeothermic animals. Another word, the cataleptic state can be considered as the homologic state of stress-reaction. Catalepsy is the genetically programmed state of poykilothermic animals characterized by comparatively high alertness of animal, its freezing in immobile but active posture with a possibility of fast exit into waking state and alongside with other somatosensor and neurophysiological characteristics determines the entire subsequent complex of evolutionary morphofunctional, neurophysiological and hormonal changes in nomoyptherms. This in many aspects unspecific behavioral adaptive reaction in poykilotherms is realized on the corresponding hormonal and neurophysiological levels of development and promotes to fast mobilization and stabilization their homeostasis. At the higher evolutionary scale after development of most brain neurotransmitter and hypothalamo-pituitary-adrenal systems the leading role in stress regulation begins to be predominent the hormonal reaction. Only in the alertness phase of stress-reaction the elements of activation of extrapyramidal regulatory system of locomotion are observed. This is manifested by the cateleptic immobility. Thus the stress as the general adaptational syndrome reflects the evolutionary regularities of development of specific functions supporting the total homeostasis. The scheme of evolution of sleep-wakefulness cycle in vertebrates is presented; according to it, the immobility state of cataleptic type on one hand may to considered as a part of wakefulness providing mainly specific elements of stress-reaction, while on other hand it is a certain step of inhibitory processes in CNS for subsequent involvement of sleep-regulatory systems for the compensation and maintenance of recovery reactions.
Deng, Liting; Cornett, Benjamin L; Mackie, Ken; Hohmann, Andrea G
2015-07-01
Cannabinoids suppress neuropathic pain through activation of cannabinoid CB1 and/or CB2 receptors; however, unwanted CB1-mediated cannabimimetic effects limit clinical use. We asked whether CP55,940 [(-)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-(3-hydroxypropyl)cyclohexanol], a potent cannabinoid that binds with similar affinity to CB1 and CB2 in vitro, produces functionally separable CB1- and CB2-mediated pharmacological effects in vivo. We evaluated antiallodynic effects, possible tolerance, and cannabimimetic effects (e.g., hypothermia, catalepsy, CB1-dependent withdrawal signs) after systemic CP55,940 treatment in a mouse model of toxic neuropathy produced by a chemotherapeutic agent, paclitaxel. The contribution of CB1 and CB2 receptors to in vivo actions of CP55,940 was evaluated using CB1 knockout (KO), CB2KO, and wild-type (WT) mice. Low-dose CP55,940 (0.3 mg/kg daily, i.p. ) suppressed paclitaxel-induced allodynia in WT and CB2KO mice, but not CB1KO mice. Low-dose CP55,940 also produced hypothermia and rimonabant-precipitated withdrawal in WT, but not CB1KO, mice. In WT mice, tolerance developed to CB1-mediated hypothermic effects of CP55,940 earlier than to antiallodynic effects. High-dose CP55,940 (10 mg/kg daily, i.p.) produced catalepsy in WT mice, which precluded determination of antiallodynic efficacy but produced sustained CB2-mediated suppression of paclitaxel-induced allodynia in CB1KO mice; these antiallodynic effects were blocked by the CB2 antagonist 6-iodopravadoline (AM630). High-dose CP55,940 did not produce hypothermia or rimonabant-precipitated withdrawal in CB1KO mice. Our results using the mixed CB1/CB2 agonist CP55,940 document that CB1 and CB2 receptor activations produce mechanistically distinct suppression of neuropathic pain. Our study highlights the therapeutic potential of targeting cannabinoid CB2 receptors to bypass unwanted central effects associated with CB1 receptor activation. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Khurana, Navneet; Gajbhiye, Asmita
2013-12-01
Present study focused on the evaluation of aqueous extract of Sida cordifolia (AESC), and its different fractions; hexane (HFSC), chloroform (CFSC) and aqueous (AFSC), against rotenone induced biochemical, neurochemical, histopathological and behavioral alterations in a rat model of Parkinson's disease (PD). An estimation of the level of thiobarbituric acid reactive substances (TBARS), glutathione (GSH) and catalase (CAT) along with superoxide anion generation (SAG) in different brain regions (cortex, midbrain and cerebellum) was carried out to assess biochemical changes. Behavioral evaluation tests (catalepsy, rearing behavior and posture instability) and neurochemical estimations (norepinephrine, dopamine and serotonin level) along with histopathological evaluations of different brain regions were also performed. The varying doses (50, 100, 250mg/kg; p.o.) of different test treatments (AESC, HFSC, CFSC and AFSC) were co-administered along with rotenone (2mg/kg; s.c.), for a period of 35 days to rats of various groups and compared with rotenone per se (negative control) and l-deprenyl (positive control; 10mg/kg; p.o.) treated groups for the above mentioned parameters. The increase in catalepsy and posture instability along with decrease in rearing behavior observed due to rotenone treatment was significantly attenuated by co-treatment with varying doses of AESC and AFSC. Results of the histopathological studies of different brain regions of rats showed eosinophilic lesions in the mid brain region due to rotenone treatment. The eosinophilic lesions were significantly attenuated in co-treated groups of AESC-100mg/kg and AFSC-100mg/kg. Rotenone induced oxidative damage, revealed by increased level of TBARS, SAG and decreased level of GSH and CAT in mid brain region of rats, was attenuated by the co-treatment of AESC and AFSC. The rotenone induced decrease of dopamine level in the midbrain region of rats was also attenuated by co-treatment of AESC-100mg/kg and AFSC-100mg/kg. The maximum effect in all the above activities was observed in AFSC (100mg/kg) treated group, which was comparable to l-deprenyl treated group. The HFSC and CFSC co-treatment failed to show significant attenuation of rotenone induced damage. These results indicate the possible therapeutic potential of most polar fraction of AESC i.e. AFSC in PD by virtue of its antioxidative actions. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Band, L.; Xu, Heng; Bykov, V.
The present study demonstrates that pretreatment of rat brain membranes with (+)-cis-3-methylfentanyl ((+)-cis-MF), followed by extensive washing of the membranes, produces a wash-resistant decreasing in the binding of ({sup 3}H)-(D-ala{sup 2}, D-leu{sup 5})enkephalin to the d binding site of the opioid receptor complex ({delta}{sub cx} binding site). Intravenous administration of (+)-cis-MF (50 {mu}g/kg) to rats produced a pronounced catalepsy and also produced a wash-resistant masking of {delta}{sub cx} and {mu} binding sites in membranes prepared 120 min post-injection. Administration of 1 mg/kg i.v. of the opioid antagonist, 6-desoxy-6{beta}-fluoronaltrexone (cycloFOXY), 100 min after the injection of (+)-cis-MF (20 min prior tomore » the preparation of membranes) completely reversed the catatonia and restored masked {delta}{sub cx} binding sites to control levels. This was not observed with (+)-cycloFOXY. The implications of these and other findings for the mechanism of action of (+)-cis-MF and models of the opioid receptors are discussed.« less
Pekala, Ronald J; Kumar, V K; Maurer, Ronald; Elliott-Carter, Nancy; Moon, Edward; Mullen, Karen
2010-04-01
This study sought to determine if self-reported hypnotic depth (srHD) could be predicted from the variables of the Phenomenology of Consciousness Inventory - Hypnotic Assessment Procedure (PCI-HAP) (Pekala, 1995a, 1995b; Pekala & Kumar, 2007; Pekala et al., 2010), assessing several of the processes theorized by researchers to be associated with hypnotism: trance (altered state effects), suggestibility, and expectancy. One hundred and eighty participants completed the PCI-HAP. Using regression analyses, srHD scores were predicted from the PCI-HAP pre-hypnotic and post-hypnotic assessment items, and several other variables. The results suggested that the srHD scores were found to be a function of imagoic suggestibility, expectancy (both estimated hypnotic depth and expected therapeutic efficacy), and trance state and eye catalepsy effects; effects that appear to be additive and not (statistically) interactive. The results support the theorizing of many investigators concerning the involvement of the aforementioned component processes with this particular aspect of hypnotism, the self-reported hypnotic depth score.
Chen, Xiao-Wen; Sun, Yuan-Yuan; Fu, Lei; Li, Jian-Qi
2016-11-10
A series of novel benzisothiazolylpiperazine derivatives combining potent dopamine D2 and D3, and serotonin 5-HT1A and 5-HT2A receptor properties were synthesized and evaluated for their potential antipsychotic properties. The most-promising derivative was 9j. The unique pharmacological features of 9j were a high affinity for D2, D3, 5-HT1A, and 5-HT2A receptors, together with a 20-fold selectivity for the D3 versus D2 subtype, and a low affinity for muscarinic M1 (reducing the risk of anticholinergic side effects), and for hERG channels (reducing incidence of QT interval prolongation). In animal behavioral models, 9j inhibited the locomotor-stimulating effects of phencyclidine, blocked conditioned avoidance response, and improved the cognitive deficit in the novel object recognition tests in rats. 9j exhibited a low potential for catalepsy, consistent with results with risperidone. In addition, favorable brain penetration of 9j in rats was detected. These studies have demonstrated that 9j is a potential atypical antipsychotic candidate. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Wu, Liang; Tian, You-Yong; Shi, Jing-Ping; Xie, Wei; Shi, Jian-Quan; Lu, Jie; Zhang, Ying-Dong
2013-08-26
Recent studies indicated that angiotensin II (Ang II) receptor blockers could reduce neurotoxins-induced dopaminergic (DA) cell death, but the underlying mechanisms are still unclear. Given that endoplasmic reticulum (ER) stress plays a major role in rotenone-induced neuronal apoptosis, we investigated whether candesartan cilexetil, a selective and high-affinity Ang II receptor antagonist, could protect the DA neuron via reducing ER stress in a chronic rotenone rat model for Parkinson's disease (PD). Our data showed that candesartan cilexetil could ameliorate the descent latency in catalepsy tests, and decrease rotenone-induced DA neuron apoptosis. Moreover, candesartan cilexetil has been found to play a protective role via down-regulating the expression of activating transcription factor 4 (ATF4), the CCAAT-enhancer-binding protein (C/EBP) homologous protein (CHOP), and p53 upregulated modulator of apoptosis (Puma). Thus, our experiments strongly suggest that administration of candesartan cilexetil protects DA neuron involving blocking ER stress, possibly via inhibiting activation of the ATF4-CHOP-Puma pathway, which could provide new insight into clinical therapeutics for PD. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Krüger, Stephanie; Bagby, R Michael; Höffler, Jürgen; Bräunig, Peter
2003-01-01
Catatonia is a frequent psychomotor syndrome, which has received increasing recognition over the last decade. The assessment of the catatonic syndrome requires systematic rating scales that cover the complex spectrum of catatonic motor signs and behaviors. The Catatonia Rating Scale (CRS) is such an instrument, which has been validated and which has undergone extensive reliability testing. In the present study, to further validate the CRS, the items composing this scale were submitted to principal components factor extraction followed by a varimax rotation. An analysis of variance (ANOVA) was performed to assess group differences on the extracted factors in patients with schizophrenia, pure mania, mixed mania, and major depression (N=165). Four factors were extracted, which accounted for 71.5% of the variance. The factors corresponded to the clinical syndromes of (1) catatonic excitement, (2) abnormal involuntary movements/mannerisms, (3) disturbance of volition/catalepsy, and (4) catatonic inhibition. The ANOVA revealed that each of the groups showed a distinctive catatonic symptom pattern and that the overlap between diagnostic groups was minimal. We conclude that this four-factor symptom structure of catatonia challenges the current conceptualization, which proposes only two symptom subtypes.
Fathi-Moghaddam, Hadi; Shafiee Ardestani, Mehdi; Saffari, Mostafa; Jabbari Arabzadeh, Ali; Elmi, Mitra
2010-01-01
A substantial amount of evidence has proposed an important role for Cyclooxygenase-2 (COX-2) enzyme in brain diseases and affiliate disorders. The purpose of this research was studying the effects of COX-2 selective inhibition on haloperidol-induced catatonia in an animal model of drug overdose and Parkinson’s disease (PD). In this study, the effect of acute and Sub-chronic oral administration of a new selective COX-2 inhibitor, i.e. the compound 11b or 1-(Phenyl)-5-(4-methylsulfonylphenyl)-2-ethylthioimidazole, in a dosage of 2, 4 and 8 mg/kg on haloperidol-induced catatonia was evaluated and compared to the standard drug scopolamine (1 mg/kg) by microanalysis of Striatum dopaminergic neurotransmission. The results showed a very high potency for 11b in improving the catalepsy by enhancing the dopaminergic neurotranmission (p < 0.05). In addition, statistical analysis showed the dose- and time-dependent behavior of the observed protective effect of 11b against the haloperidol-induced catatonia and enhancement of the dopaminergic neurotransmission. These findings are additional pharmacological data that suggest the effectiveness of COX-2 inhibition in treatment of schizophreny-associated rigidity. PMID:24381603
Melo-Thomas, L; Gil-Martínez, A L; Cuenca, L; Estrada, C; Gonzalez-Cuello, A; Schwarting, R K; Herrero, M T
2018-03-01
The inferior colliculus (IC) is an important midbrain relay station for the integration of descending and ascending auditory information. Additionally, the IC has been implicated in processing sensorimotor responses. Glutamatergic and GABAergic manipulations in the IC can improve motor deficits as demonstrated by the animal model of haloperidol-induced catalepsy. However, how the IC influences motor function remains unclear. We investigated the effects of either intracollicular deep brain stimulation (DBS) or microinjection of the glutamatergic antagonist MK-801 or the agonist NMDA in C57BL/6J mice chronically treated with saline or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). After DBS or microinjections, the mice were submitted to rotarod and open field tests, respectively. DBS in the IC was effective to increase the time spent on the rotarod in MPTP-treated mice. After unilateral microinjection of MK-801, but not NMDA, MPTP-treated mice increased the distance travelled in the open field (p < 0.05). In conclusion, intracollicular DBS or MK-801 microinjection can improve motor performance in parkinsonian mice suggesting the IC as a new and non-conventional therapeutic target in motor impairment. Copyright © 2018 Elsevier B.V. All rights reserved.
Azmy, Mariama S; Menze, Esther T; El-Naga, Reem N; Tadros, Mariane G
2018-01-11
All current treatments of Parkinson's disease (PD) focus on enhancing the dopaminergic effects and providing symptomatic relief; however, they cannot delay the disease progression. Filgrastim, a recombinant methionyl granulocyte colony-stimulating factor, demonstrated neuroprotection in many neurodegenerative and neurological diseases. This study aimed to assess the neuroprotective effects of filgrastim in rotenone-induced rat model of PD and investigate the potential underlying mechanisms of filgrastim actions. The effects of two doses of filgrastim (20 and 40 μg/kg) on spontaneous locomotion, catalepsy, body weight, histology, and striatal dopamine (DA) content, as well as tyrosine hydroxylase (TH) and α-synuclein expression, were evaluated. Then, the effective dose was further tested for its potential anti-inflammatory, neurotrophic, and antiapoptotic effects. Filgrastim (40 μg/kg) prevented rotenone-induced motor deficits, weight reduction, striatal DA depletion, and histological damage. Besides, it significantly inhibited rotenone-induced decrease in TH expression and increase in α-synuclein immunoreactivity in the midbrains and striata of the rats. These effects were associated with reduction of rotenone-induced neuroinflammation, apoptosis, and brain-derived neurotrophic factor depletion. Collectively, these results suggest that filgrastim might be a good candidate for management of PD.
Reynoso-Moreno, Inés; Najar-Guerrero, Israel; Escareño, Noé; Flores-Soto, Mario Eduardo; Gertsch, Jürg; Viveros-Paredes, Juan Manuel
2017-11-01
Guineensine is a dietary N-isobutylamide widely present in black and long pepper (Piper nigrum and Piper longum) previously shown to inhibit cellular endocannabinoid uptake. Given the role of endocannabinoids in inflammation and pain reduction, here we evaluated guineensine in mouse models of acute and inflammatory pain and endotoxemia. Significant dose-dependent anti-inflammatory effects (95.6 ± 3.1% inhibition of inflammatory pain at 2.5 mg/kg ip and 50.0 ± 15.9% inhibition of edema formation at 5 mg/kg ip) and acute analgesia (66.1 ± 28.1% inhibition at 5.0 mg/kg ip) were observed. Moreover, guineensine inhibited proinflammatory cytokine production in endotoxemia. Intriguingly, guineensine and LPS independently induced catalepsy, but in combination this effect was abolished. Both hypothermia and analgesia were blocked by the CB1 receptor inverse agonist rimonabant, but the pronounced hypolocomotion was CB1 receptor-independent. A subsequent screen of 45 CNS-related receptors, ion channels, and transporters revealed apparent interactions of guineensine with the dopamine transporter DAT, 5HT2A, and sigma receptors, uncovering its prospective polypharmacology. The described potent pharmacological effects of guineensine might relate to the reported anti-inflammatory effects of pepper.
Obiri, David D; Osafo, Newman
2013-07-30
Xylopia aethiopica has been traditionally used in the form of the dried fruit decoction to treat bronchitis, asthma, arthritis and rheumatism in Ghana, Nigeria and Cameroon. Aim of the study is to evaluate the anti-anaphylactic and anti-inflammatory effects of a 70% aqueous ethanol extract of the fruits of Xylopia aethiopica. Systemic anaphylaxis was induced by the injection of either compound 48/80 or lipopolysaccharide, LPS and survival rates of mice monitored for 1 h or 7 days respectively while IgE-mediated anaphylaxis in a local allergic reaction was studied in the pinnal inflammation model in mice. Clonidine-induced catalepsy in mice was used to evaluate the indirect antihistamine effect of Xylopia aethiopica, XAE. The effects of XAE assessed on the maximal and total oedema responses in the carrageenan-induced paw oedema in mice was used to evaluate the anti-inflammatory action of the extract. Administered at 30, 100, 300 and 1000 mg kg(-1) p.o., XAE dose dependently suppressed compound 48/80-induced mouse systemic anaphylactic shock and offered 63% protection to mice against LPS-induced endotoxic shock at a dose of 300 mg kg(-1). In addition, the extract (30-300 mg kg(-1)) in a dose dependent manner significantly inhibited by 23-62% the mouse pinnal inflammation. Clonidine-induced catalepsy in mice was significantly suppressed in a dose and time dependent manner when administered both prophylactically and therapeutically. In the same doses, when administered before the induction of the mouse carrageenan-induced paw oedema, the mean maximal swelling attained during 6 h was reduced to 41.02±6.94%, 35.61±4.30%, and 29.09±4.90% of the inflamed control response respectively and total paw swellings induced over the 6 h were also dose-dependently and significantly suppressed to 74.84±14.84%, 63.95±9.37%, and 48.13±10.90% of the inflamed control response respectively. Administered after the induction of the carrageenan paw oedema the mean maximal swelling attained during 6 h was suppressed to 49.84±3.95%, 43.62±1.01%, and 35.97±1.34% of the inflamed control response respectively while the total paw swellings induced over the 6 h were also dose-dependently and significantly suppressed at 100 and 300 mg kg(-1) to 72.39±4.38% and 60.81±3.25% of the inflamed control response respectively. These findings suggest that XAE inhibits mast cell-dependent immediate allergic reactions and exhibit anti-inflammatory actions through the inhibition of histamine release from mast cells via stabilizing the cell membrane. Our results contribute towards validation of the traditional use of Xylopia aethiopica in the treatment of bronchitis, asthma, arthritis and rheumatism. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Safety and side effects of cannabidiol, a Cannabis sativa constituent.
Bergamaschi, Mateus Machado; Queiroz, Regina Helena Costa; Zuardi, Antonio Waldo; Crippa, José Alexandre S
2011-09-01
Cannabidiol (CBD), a major nonpsychotropic constituent of Cannabis, has multiple pharmacological actions, including anxiolytic, antipsychotic, antiemetic and anti-inflammatory properties. However, little is known about its safety and side effect profile in animals and humans. This review describes in vivo and in vitro reports of CBD administration across a wide range of concentrations, based on reports retrieved from Web of Science, Scielo and Medline. The keywords searched were "cannabinoids", "cannabidiol" and "side effects". Several studies suggest that CBD is non-toxic in non-transformed cells and does not induce changes on food intake, does not induce catalepsy, does not affect physiological parameters (heart rate, blood pressure and body temperature), does not affect gastrointestinal transit and does not alter psychomotor or psychological functions. Also, chronic use and high doses up to 1,500 mg/day of CBD are reportedly well tolerated in humans. Conversely, some studies reported that this cannabinoid can induce some side effects, including inhibition of hepatic drug metabolism, alterations of in vitro cell viability, decreased fertilization capacity, and decreased activities of p-glycoprotein and other drug transporters. Based on recent advances in cannabinoid administration in humans, controlled CBD may be safe in humans and animals. However, further studies are needed to clarify these reported in vitro and in vivo side effects.
Zajdel, Paweł; Kos, Tomasz; Marciniec, Krzysztof; Satała, Grzegorz; Canale, Vittorio; Kamiński, Krzysztof; Hołuj, Małgorzata; Lenda, Tomasz; Koralewski, Robert; Bednarski, Marek; Nowiński, Leszek; Wójcikowski, Jacek; Daniel, Władysława A; Nikiforuk, Agnieszka; Nalepa, Irena; Chmielarz, Piotr; Kuśmierczyk, Justyna; Bojarski, Andrzej J; Popik, Piotr
2018-02-10
Currently used antipsychotics are characterized by multireceptor mode of action. While antagonism of dopamine D 2 receptors is responsible for the alleviation of "positive" symptoms of schizophrenia and the effects at other, particularly serotonergic receptors are necessary for their additional therapeutic effects, there is no consensus regarding an "ideal" target engagement. Here, a detailed SAR analysis in a series of 45 novel azinesulfonamides of cyclic amine derivatives, involving the aryl-piperazine/piperidine pharmacophore, central alicyclic amine and azinesulfonamide groups has led to the selection of (S)-4-((2-(2-(4-(benzo[b]thiophen-4-yl)piperazin-1-yl)ethyl)pyrrolidin-1-yl)sulfonyl)isoquinoline (62). The polypharmacology profile of 62, characterized by partial 5-HT 1A R agonism, 5-HT 2A /5-HT 7 /D 2 /D 3 R antagonism, and blockade of SERT, reduced the "positive"-like, and "negative"-like symptoms of psychoses. Compound 62 produced no catalepsy, demonstrated a low hyperprolactinemia liability and displayed pro-cognitive effects in the novel object recognition task and attentional set-shifting test. While association of in vitro features with the promising in vivo profile of 62 is still not fully established, its clinical efficacy should be verified in further stages of development. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Chatterjee, Manavi; Singh, Seema; Kumari, Reena; Verma, Anil Kumar; Palit, Gautam
2012-04-01
The search for novel pharmacotherapy from medicinal plants for psychiatric illnesses has progressed significantly from the past few decades and their therapeutic potential has been assessed in a variety of animal models. The aim of our study was to screen one such plant, Panax quinquefolium (PQ), with significant neuroactive properties for its antipsychotic potential. A graded dose study with PQ at 12.5-200 mg/kg, p. o. showed differential effects against the ketamine induced hyperactivity in the Digiscan animal activity monitor. Nevertheless at 100 mg/kg, p.o., PQ blocked ketamine induced memory impairment in the passive avoidance paradigm. In the chronic studies, PQ reduced the ketamine induced enhanced immobility in the forced swim test and did not show extra-pyramidal side effects in bar test and wood block test of catalepsy. These behavioural effects were compared with standard drugs haloperidol and clozapine. Further PQ reduced DA and 5-HT content after chronic treatment, but not after acute administration. In addition, PQ extract reduced acetylcholinesterase activity and nitrate levels, however increased glutamate levels in hippocampus. Overall our findings suggest that PQ possess antipsychotic like properties, which may leads to future studies with its specific constituents which may particularly be beneficial in predominant negative and cognitive symptoms of schizophrenia.
Sengupta, T; Vinayagam, J; Nagashayana, N; Gowda, B; Jaisankar, P; Mohanakumar, K P
2011-01-01
Hyoscyamus species is one of the four plants used in Ayurveda for the treatment of Parkinson's disease (PD). Since Hyoscyamus niger was found to contain negligible levels of L-DOPA, we evaluated neuroprotective potential, if any, of characterized petroleum ether and aqueous methanol extracts of its seeds in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD in mice. Air dried authenticated H. niger seeds were sequentially extracted using petroleum ether and aqueous methanol and were characterized employing HPLC-electrochemistry and LCMS. Parkinsonian mice were treated daily twice with the extracts (125-500 mg/kg, p.o.) for two days and motor functions and striatal dopamine levels were assayed. Administration of the aqueous methanol extract (containing 0.03% w/w of L-DOPA), but not petroleum ether extract, significantly attenuated motor disabilities (akinesia, catalepsy and reduced swim score) and striatal dopamine loss in MPTP treated mice. Since the extract caused significant inhibition of monoamine oxidase activity and attenuated 1-methyl-4-phenyl pyridinium (MPP+)-induced hydroxyl radical (·OH) generation in isolated mitochondria, it is possible that the methanolic extract of Hyoscyamus niger seeds protects against parkinsonism in mice by means of its ability to inhibit increased ·OH generated in the mitochondria.
Motor neurone responses during a postural reflex in solitarious and gregarious desert locusts.
Blackburn, Laura M; Ott, Swidbert R; Matheson, Tom; Burrows, Malcolm; Rogers, Stephen M
2010-08-01
Desert locusts show extreme phenotypic plasticity and can change reversibly between two phases that differ radically in morphology, physiology and behaviour. Solitarious locusts are cryptic in appearance and behaviour, walking slowly with the body held close to the ground. Gregarious locusts are conspicuous in appearance and much more active, walking rapidly with the body held well above the ground. During walking, the excursion of the femoro-tibial (F-T) joint of the hind leg is smaller in solitarious locusts, and the joint is kept more flexed throughout an entire step. Under open loop conditions, the slow extensor tibiae (SETi) motor neurone of solitarious locusts shows strong tonic activity that increases at more extended F-T angles. SETi of gregarious locusts by contrast showed little tonic activity. Simulated flexion of the F-T joint elicits resistance reflexes in SETi in both phases, but regardless of the initial and final position of the leg, the spiking rate of SETi during these reflexes was twice as great in solitarious compared to gregarious locusts. This increased sensory-motor gain in the neuronal networks controlling postural reflexes in solitarious locusts may be linked to the occurrence of pronounced behavioural catalepsy in this phase similar to other cryptic insects such as stick insects. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
The Antinociceptive and Anti-Inflammatory Activities of Aspidosperma tomentosum (Apocynaceae)
de Aquino, Anansa Bezerra; Cavalcante-Silva, Luiz Henrique Agra; da Matta, Carolina Barbosa Brito; Epifânio, Willians Antônio do Nascimento; Aquino, Pedro Gregório Vieira; Santana, Antônio Euzébio Goulart; Alexandre-Moreira, Magna Suzana; de Araújo-Júnior, João Xavier
2013-01-01
We investigated the antinociceptive and anti-inflammatory activities of the crude ethanolic extract (CEE), its fractions, and the flavonoid isorhamnetin from Aspidosperma tomentosum using models of nociception and inflammation in mice. In the writhing test, the CEE and its fractions (except for soluble phase, CHCl3 100% and EtAcO 100%) at 100 mg/kg p.o. induced antinociceptive activity. Isorhamnetin (100 μmol/kg, p.o.) was also active. In the hot plate test, only the treatment with the fractions Hex : CHCl3 50%, CHCl3 100%, and CHCl3 : MeOH 5% (100 mg/kg, p.o.) increased the latency time, reversed by the opioid antagonist naloxone. Fractions that were active in the hot plate test did not show catalepsy condition. It was observed that CEE, all fractions, and isorhamnetin reduced the formalin effects in the neurogenic phase. In the inflammatory phase, only CEE, isorhamnetin, and CHCl3 100% and CHCl3 : MeOH 5% fractions were active. CEE and all fractions, except for CHCl3 : MeOH 10% fraction, isorhamnetin, and soluble fraction were able to produce an antioedematogenic activity in the ear capsaicin-induced edema test. In the thioglycolate-induced peritonitis, only EtAcO 100% fraction was not active. The results demonstrate that A. tomentosum has antinociceptive and anti-inflammatory activities in animal models. PMID:23781151
Hirjak, D; Thomann, P A; Northoff, G; Kubera, K M; Wolf, R C
2017-07-01
The clinical picture of catatonia includes impressive motor phenomena, such as rigidity, dyskinesia, festination, negativism, posturing, catalepsy, stereotypies and mannerisms, along with affective (e. g. aggression, anxiety, anhedonism or emotional lability) and behavioral symptoms (e.g. mutism, autism, excitement, echolalia or echopraxia). In English speaking countries seven catatonia rating scales have been introduced, which are widely used in clinical and scientific practice. In contrast, only one validated catatonia rating scale is available in Germany so far. In this paper, we introduce the German version of the Northoff catatonia rating scale (NCRS-dv). The original English version of the NCRS consists of 40 items describing motor (13 items), affective (12 items) and behavioral (15 items) catatonic symptoms. The NCRS shows high internal reliability (Crombachs alpha = 0.87), high interrater (r = 0.80-0.96) and high intrarater (r = 0.80-0.95) reliability. Factor analysis of the NCRS revealed four domains: affective, hyperactive or excited, hypoactive or retarded and behavior with individual eigenvalues of 8.98, 3.61, 2.98 and 2.82, respectively, which explained 21.5 %, 9.3 %, 7.6 % and 7.2 % of variance, respectively. In conclusion, the NCRS-dv represents a second validated instrument which can be used by German clinicians and scientists for the assessment of catatonic symptoms.
Kaneko, Shuji
2017-01-01
From 2012 to 2014 in Japan, 214 cases of motor vehicle collisions were attributed to the use of illegal drugs. In 93 out of 96 investigated cases, the causative agents were a variety of synthetic cannabinoids (SCs). These SCs can be classified into three groups according to the lineage of the chemical structures: (1) naphthoyl indoles, such as MAM-2201, (2) quinolinyl ester indoles, such as 5F-PB-22, and (3) indazole carboxamides, such as 5F-AB-PINACA, 5F-AMB, and 5F-ADB. These SCs became available sequentially with increasing cannabinoid CB 1 agonist potencies and reached a nationwide outbreak in the summer of 2014. They caused acute intoxication with impaired consciousness, anterograde amnesia (impaired memory), catalepsy with muscle rigidity, tachycardia, and vomiting or drooling soon after smoking. Drivers who had abused one of these SCs might unexpectedly experience the acute intoxication that caused uncontrolled driving. These SCs were generally difficult to detect from body fluid samples. It is thought that the highly lipophilic SCs disappear from the blood via rapid degradation by liver enzymes and selective accumulation into adipose tissues. Thus, much effort should be directed to the development of fast and sensitive chemical detection of the drug usage.
An effective novel delivery strategy of rasagiline for Parkinson's disease.
Fernández, Marcos; Negro, Sofía; Slowing, Karla; Fernández-Carballido, Ana; Barcia, Emilia
2011-10-31
This is the first report on the efficacy of a new controlled release system developed for rasagiline mesylate (RM) in a rotenone-induced rat model of Parkinson's disease (PD). PLGA microspheres in vitro released RM at a constant rate of 62.3 μg/day for two weeks. Intraperitoneal injection of rotenone (2 mg/kg/day) to Wistar rats produced typical PD symptoms. Catalepsy, akinesia and swim tests outcomes in animals receiving RM either in solution or within microspheres showed a reversal in descent latency when compared to rotenone-treated animals, being this reversal specially pronounced in animals receiving RM microspheres (dose equivalent to 1 mg/kg/day RM injected i.p. every 15 days). Nissl-staining of brain sections showed selective degeneration of the substantia nigra (SNc) dopaminergic neurons in rotenone-treated animals which was markedly reverted by RM microspheres. PET/CT with (18)F-DG resulted in mean increases of accumulation of radiotracer in striatum and SNc of around 40% in animals treated with RM microspheres which also had significant beneficial effects on Bcl-2, Bax, TNF-α mRNA and SOD2 levels as detected by real-time RT-PCR. Our results confirm the robust effect achieved by the new controlled release system developed for RM which exhibited better in vivo efficacy than RM given in solution. Copyright © 2011 Elsevier B.V. All rights reserved.
2010-01-01
Background In recent years, several lines of evidence have shown an increase in Parkinson's disease prevalence in rural environments where pesticides are heavily used. Although, the underlying mechanism for neuronal degeneration in sporadic PD remains unknown, mitochondrial dysfunction, oxidative stress and proteasomal dysfunction are proposed as contributing factors. In this study rats were chronically and continuously exposed to the pesticide, dichlorvos to identify the molecular mechanism of nigrostaital neuronal degeneration. Result Chronic dichlorvos exposure (2.50 mg/kg b.wt.s.c/daily for 12 weeks) caused nigrostriatal dopaminergic degeneration. The degenerative changes were accompanied by a loss of 60-80% of the nigral dopamine neurons and 60-70% reduction in striatal dopamine and tyrosine hydroxylase levels. Dichlorvos exposed animals also showed α -synuclein and ubiquitin positive inclusions along with swollen, dystrophic neurites and mitochondrial abnormalities like decreased complex I&IV activities, increased mitochondrial size, axonal degeneration and presence of electron dense perinuclear cytoplasmic inclusions in the substantia nigra of rats. These animals also showed evidence of oxidative stress, including increased mitochondrial ROS levels, decreased MnSOD activity and increased lipid peroxidation. Measurable impairments in neurobehavioral indices were also observed. Notable exacerbations in motor impairments, open field and catalepsy were also evident in dichlorvos exposed animals. Conclusion All these findings taken together indicate that chronic dichlorvos exposure may cause nigrostaital neurodegenaration and significant behavioral impairments. PMID:21073741
Inhalation Exposure Method for Illegal Drugs.
Inomata, Akiko; Ogata, Akio; Tada, Yukie; Nagasawa, Akemichi; Yuzawa, Katsuhiro; Ando, Hiroshi; Kubo, Yoshikazu; Takahashi, Hiroshi; Kaihoko, Fujifumi; Tanaka, Kazuyoshi; Nakajima, Jun'ichi; Suzuki, Atsuko; Uemura, Nozomi; Moriyasu, Takako; Watanabe, Daisuke; Ishihara, Kei; Usami, Takashi; Kamei, Satoru; Kohno, Yasuaki
2017-01-01
We developed a new inhalation exposure method to evaluate effects of synthetic cannabimimetics that are being distributed as new, unregulated drugs in the Tokyo area. We selected the commercial product "SOUTOU" containing AB-CHMINACA and 5F-AMB as the test drug and dried marshmallow (Althaea officinalis) leaves as the negative control. A half cigarette packed with dried marshmallow leaves or SOUTOU was ignited, then mainstream smoke from each was delivered to five mice in an exposure box. After the cigarettes were fully consumed, neurobehavioral observations and a catalepsy test were performed at 15, 30 and 60 min after exposure. The effluent air from the exposure box was poured into impingers containing acetonitrile (first impinger) and dimethyl sulfoxide (second impinger). The resulting solutions were analyzed to assess decomposition of the synthetic cannabimimetics. Mice exposed to SOUTOU smoke showed many excitement behaviors and some suppressive behaviors at 15, 30 and 60 min. These clearly included cannabimimetic specific pharmacological actions. Negative control mice also showed some suppressive behaviors at 15 min but these were attenuated at later times, nearly disappearing at 60 min. In addition, the behavioral effects observed in controls were less pronounced than those in SOUTOU exposed mice. The inhalation exposure method developed in our study would be effective for determining cannabinoid specific pharmacological effects of illegal drugs, as well as for assessing the presence of active compound(s) by comparing the test substance with a negative control.
Protective effect of vinpocetine against neurotoxicity of manganese in adult male rats.
Nadeem, Rania I; Ahmed, Hebatalla I; El-Sayeh, Bahia M
2018-04-18
Manganese (Mn) is required for many essential biological processes as well as in the development and functioning of the brain. Extensive accumulation of Mn in the brain may cause central nervous system dysfunction known as manganism, a motor disorder associated with cognitive and neuropsychiatric deficits similar to parkinsonism. Vinpocetine, a synthetic derivative of the alkaloid vincamine, is used to improve the cognitive function in cerebrovascular diseases. It possesses antioxidant and antiinflammatory properties. The present work was designed to explore the potential neuroprotective mechanisms exerted by vinpocetine in the Mn-induced neurotoxicity in rats. Rats were allocated into four groups. First group was given saline. The other three groups were given MnCl 2 ; two of them were treated with either L-dopa, the gold standard antiparkinsonian drug, or vinpocetine. Rats receiving MnCl 2 exhibited lengthened catalepsy duration in the grid and bar tests, motor impairment in the open-field test and short-term memory deficit in the Y-maze test. Additionally, histological examination revealed structural alterations and degeneration in different brain regions. Besides, striatal monoamines and mitochondrial complex I contents were declined, apoptotic biomarker caspase-3 expression and acetylcholinesterase activity were elevated. Moreover, oxidative stress and inflammation were detected in the striata. L-dopa or vinpocetine exerted protective effects against MnCl 2 -induced neurotoxicity. It could be hypothesized that modulation of monoamines, upregulation of mitochondrial complex I, antioxidant, antiinflammatory, and antiapoptotic activities are significant mechanisms underlying the neuroprotective effect of vinpocetine in the Mn-induced neurotoxicity model in rats.
Combination Chemistry: Structure-Activity Relationships of Novel Psychoactive Cannabinoids.
Wiley, Jenny L; Marusich, Julie A; Thomas, Brian F
2017-01-01
Originally developed as research tools for use in structure-activity relationship studies, synthetic cannabinoids contributed to significant scientific advances in the cannabinoid field. Unfortunately, a subset of these compounds was diverted for recreational use beginning in the early 2000s. As these compounds were banned, they were replaced with additional synthetic cannabinoids with increasingly diverse chemical structures. This chapter focuses on integration of recent results with those covered in previous reviews. Whereas most of the early compounds were derived from the prototypic naphthoylindole JWH-018, currently popular synthetic cannabinoids include tetramethylcyclopropyl ketones and indazole-derived cannabinoids (e.g., AB-PINACA, AB-CHMINACA). Despite their structural differences, psychoactive synthetic cannabinoids bind with high affinity to CB 1 receptors in the brain and, when tested, have been shown to activate these receptors and to produce a characteristic profile of effects, including suppression of locomotor activity, antinociception, hypothermia, and catalepsy, as well as Δ 9 -tetrahydrocannabinol (THC)-like discriminative stimulus effects in mice. When they have been tested, synthetic cannabinoids are often found to be more efficacious at activation of the CB 1 receptor and more potent in vivo. Further, their chemical alteration by thermolysis during use and their uncertain stability and purity may result in exposure to degradants that differ from the parent compound contained in the original product. Consequently, while their intoxicant effects may be similar to those of THC, use of synthetic cannabinoids may be accompanied by unpredicted, and sometimes harmful, effects.
Saito, Shinnosuke; Yamaga, Kuniaki; Kobayashi, Toshiyuki; Kato, Satoshi
2011-01-01
We report the case of an adolescent male who presented with mutism, immobility, catalepsy, and mannerisms. The patient was admitted to our hospital with suspected catatonic schizophrenia; however, he was subsequently diagnosed with catatonia due to Asperger's disorder. The patient was a 16-year-old male. More than six months before presentation, his grandfather displayed bizarre and violent behavior. Subsequently, he began to experience catatonia, which eventually led to hospitalization. Treatment with diazepam improved his condition and, as no causal disorders other than Asperger's disorder were identified, he was diagnosed with catatonia. The patient had experienced persistent abuse by his mother during childhood; therefore, it is important to consider reactive attachment disorder (DSM-IV-TR) as a differential diagnosis. Among child and adolescent psychiatrists, catatonia is considered to occur at a high frequency among patients with autistic spectrum disorders. In contrast, general psychiatrists tend to consider catatonia as related to schizophrenia, which may be the reason why the diagnosis of our patient was difficult. We assume that the pathogenesis of catatonia in this case was death mimicry due to the subjective perception of a life-threatening situation. For the treatment of catatonia with autistic spectrum disorders, the efficacy of benzodiazepines and electroconvulsive therapy has been established. When a patient with an autistic spectrum disorder presents with motor functional disturbances, it is important to consider these disturbances as catatonia. Furthermore, it is also important to begin the treatment mentioned above even in the presence of definite psychogenic or situational factors.
Differential effects of THC- or CBD-rich cannabis extracts on working memory in rats.
Fadda, Paola; Robinson, Lianne; Fratta, Walter; Pertwee, Roger G; Riedel, Gernot
2004-12-01
Cannabinoid receptors in the brain (CB(1)) take part in modulation of learning, and are particularly important for working and short-term memory. Here, we employed a delayed-matching-to-place (DMTP) task in the open-field water maze and examined the effects of cannabis plant extracts rich in either Delta(9)-tetrahydrocannabinol (Delta(9)-THC), or rich in cannabidiol (CBD), on spatial working and short-term memory formation in rats. Delta(9)-THC-rich extracts impaired performance in the memory trial (trial 2) of the DMTP task in a dose-dependent but delay-independent manner. Deficits appeared at doses of 2 or 5 mg/kg (i.p.) at both 30 s and 4 h delays and were similar in severity compared with synthetic Delta(9)-THC. Despite considerable amounts of Delta(9)-THC present, CBD-rich extracts had no effect on spatial working/short-term memory, even at doses of up to 50 mg/kg. When given concomitantly, CBD-rich extracts did not reverse memory deficits of the additional Delta(9)-THC-rich extract. CBD-rich extracts also did not alter Delta(9)-THC-rich extract-induced catalepsy as revealed by the bar test. It appears that spatial working/short-term memory is not sensitive to CBD-rich extracts and that potentiation and antagonism of Delta(9)-THC-induced spatial memory deficits is dependent on the ratio between CBD and Delta(9)-THC.
The first fossil leaf insect: 47 million years of specialized cryptic morphology and behavior
Wedmann, Sonja; Bradler, Sven; Rust, Jes
2007-01-01
Stick and leaf insects (insect order Phasmatodea) are represented primarily by twig-imitating slender forms. Only a small percentage (≈1%) of extant phasmids belong to the leaf insects (Phylliinae), which exhibit an extreme form of morphological and behavioral leaf mimicry. Fossils of phasmid insects are extremely rare worldwide. Here we report the first fossil leaf insect, Eophyllium messelensis gen. et sp. nov., from 47-million-year-old deposits at Messel in Germany. The new specimen, a male, is exquisitely preserved and displays the same foliaceous appearance as extant male leaf insects. Clearly, an advanced form of extant angiosperm leaf mimicry had already evolved early in the Eocene. We infer that this trait was combined with a special behavior, catalepsy or “adaptive stillness,” enabling Eophyllium to deceive visually oriented predators. Potential predators reported from the Eocene are birds, early primates, and bats. The combination of primitive and derived characters revealed by Eophyllium allows the determination of its exact phylogenetic position and illuminates the evolution of leaf mimicry for this insect group. It provides direct evidence that Phylliinae originated at least 47 Mya. Eophyllium enlarges the known geographical range of Phylliinae, currently restricted to southeast Asia, which is apparently a relict distribution. This fossil leaf insect bears considerable resemblance to extant individuals in size and cryptic morphology, indicating minimal change in 47 million years. This absence of evolutionary change is an outstanding example of morphological and, probably, behavioral stasis. PMID:17197423
Schmidt, Azriel; Vogel, Robert; Rutledge, Su Jane; Opas, Evan E; Rodan, Gideon A; Friedman, Eitan
2005-03-01
Nuclear receptors are transcription factors that usually interact, in a ligand-dependent manner, with specific DNA sequences located within promoters of target genes. The nuclear receptors can also be controlled in a ligand-independent manner via the action of membrane receptors and cellular signaling pathways. 5-Tetradecyloxy-2-furancarboxylic acid (TOFA) was shown to stimulate transcription from the MMTV promoter via chimeric receptors that consist of the DNA binding domain of GR and the ligand binding regions of the PPARbeta or LXRbeta nuclear receptors (GR/PPARbeta and GR/LXRbeta). TOFA and hydroxycholesterols also modulate transcription from NF-kappaB- and AP-1-controlled reporter genes and induce neurite differentiation in PC12 cells. In CV-1 cells that express D(1) dopamine receptors, D(1) dopamine receptor stimulation was found to inhibit TOFA-stimulated transcription from the MMTV promoter that is under the control of chimeric GR/PPARbeta and GR/LXRbeta receptors. Treatment with the D(1) dopamine receptor antagonist, SCH23390, prevented dopamine-mediated suppression of transcription, and by itself increased transcription controlled by GR/LXRbeta. Furthermore, combined treatment of CV-1 cells with TOFA and SCH23390 increased transcription controlled by the GR/LXRbeta chimeric receptor synergistically. The significance of this in vitro synergy was demonstrated in vivo, by the observation that SCH23390 (but not haloperidol)-mediated catalepsy in rats was potentiated by TOFA, thus showing that an agent that mimics the in vitro activities of compounds that activate members of the LXR and PPAR receptor families can influence D1 dopamine receptor elicited responses.
Atypical antipsychotic properties of AD-6048, a primary metabolite of blonanserin.
Tatara, Ayaka; Shimizu, Saki; Masui, Atsushi; Tamura, Miyuki; Minamimoto, Shoko; Mizuguchi, Yuto; Ochiai, Midori; Mizobe, Yusuke; Ohno, Yukihiro
2015-11-01
Blonanserin is a new atypical antipsychotic drug that shows high affinities to dopamine D2 and 5-HT2 receptors; however, the mechanisms underlying its atypicality are not fully understood. In this study, we evaluated the antipsychotic properties of AD-6048, a primary metabolite of blonanserin, to determine if it contributes to the atypicality of blonanserin. Subcutaneous administration of AD-6048 (0.3-1mg/kg) significantly inhibited apomorphine (APO)-induced climbing behavior with an ED50 value of 0.200mg/kg, the potency being 1/3-1/5 times that of haloperidol (HAL). AD-6048 did not cause extrapyramidal side effects (EPS) even at high doses (up to 10mg/kg, s.c.), whereas HAL at doses of 0.1-3mg/kg (s.c.) significantly induced bradykinesia and catalepsy in a dose-dependent manner. Thus, the therapeutic index (potency ratios of anti-APO action to that of EPS induction) of AD-6048 was much higher than that of haloperidol, illustrating that AD-6048 per se possesses atypical antipsychotic properties. In addition, immunohistochemical analysis of Fos protein expression revealed that both AD-6048 and HAL significantly increased Fos expression in the shell part of the nucleus accumbens and the striatum. However, in contrast to HAL which preferentially enhanced striatal Fos expression, AD-6048 showed a preferential action to the nucleus accumbens. These results indicate that AD-6048 acts as an atypical antipsychotic, which seems to at least partly contribute to the atypicality of blonanserin. Copyright © 2015 Elsevier Inc. All rights reserved.
Antinociceptive effects of JWH015 in female and male rats.
Craft, Rebecca M; Greene, Nicholas Z; Wakley, Alexa A
2018-04-01
Despite greater chronic pain prevalence in females compared with males, and the analgesic potential of cannabinoid receptor type 2 (CB2) agonists, CB2 agonists have rarely been tested in females. The aim of the present study was to compare the antinociceptive effects of a CB2-preferring agonist, (2-methyl-1-propyl-1H-indol-3-yl)-1-naphthalenylmethanone (JWH015), in female and male rats against acute pain and persistent inflammatory pain. JWH015 (5-20 mg/kg, intraperitoneally) produced dose-dependent and time-dependent increases in latency to respond on the tail withdrawal and paw pressure tests that did not differ statistically between the sexes. JWH015 dose-dependently decreased locomotor activity in both sexes, but was more potent in females than males. JWH015 produced little catalepsy in either sex. In females, the antinociceptive effects of JWH015 against acute pain were blocked by rimonabant and SR144528, whereas locomotor suppression was antagonized by rimonabant. When administered 3 days after intraplantar injection of complete Freund's adjuvant, JWH015 produced a significantly greater antiallodynic effect in females at the highest dose tested (10 mg/kg, intraperitoneally). Antiallodynic effects of JWH015 were antagonized by rimonabant and SR144528 in both sexes. These studies indicate that systemically administered JWH015 produced antinociception that was both CB1 and CB2 receptor-mediated in both sexes. Unlike [INCREMENT]-9-tetrahydrocannabinol and other nonselective cannabinoid agonists, the CB2-preferring agonist JWH015 may produce more equivalent antinociception in females and males.
Modulation of the subthalamic nucleus activity by serotonergic agents and fluoxetine administration.
Aristieta, A; Morera-Herreras, T; Ruiz-Ortega, J A; Miguelez, C; Vidaurrazaga, I; Arrue, A; Zumarraga, M; Ugedo, L
2014-05-01
Within the basal ganglia, the subthalamic nucleus (STN) is the only glutamatergic structure and occupies a central position in the indirect pathway. In rat, the STN receives serotonergic input from the dorsal raphe nucleus and expresses serotonergic receptors. This study examined the consequences of serotonergic neurotransmission modulation on STN neuron activity. In vivo single-unit extracellular recordings, HPLC determination, and rotarod and bar test were performed in control, 4-chloro-DL-phenylalanine methyl ester hydrochloride- (pCPA, a serotonin synthesis inhibitor) and chronically fluoxetine-treated rats. The pCPA treatment and the administration of serotonin (5-HT) receptor antagonists increased number of bursting neurons in the STN. The systemic administration of the 5-HT(1A) agonist, 8-OH-DPAT, decreased the firing rate and increased the coefficient of variation of STN neurons in pCPA-treated rats but not in control animals. Additionally, microinjection of 8-OH-DPAT into the STN reduced the firing rate of STN neurons, while microinjection of the 5-HT(2C) agonist, Ro 60-0175, increased the firing rate in both control and fluoxetine-treated animals. Finally, the fluoxetine challenge increased the firing rate of STN neurons in fluoxetine-treated rats and induced catalepsy. Our results indicate that the depletion and the blockage of 5-HT modify STN neuron firing pattern. STN neuron activity is under the control of 5-HT(1A) and 5-HT(2C) receptors located both inside and outside the STN. Finally, fluoxetine increases STN neuron activity in chronically fluoxetine-treated rats, which may explain the role of this nucleus in fluoxetine-induced extrapyramidal side effects.
Mu opioid receptors in GABAergic forebrain neurons moderate motivation for heroin and palatable food
Charbogne, Pauline; Gardon, Olivier; Martín-García, Elena; Keyworth, Helen L.; Matsui, Aya; Mechling, Anna E.; Bienert, Thomas; Nasseef, Taufiq; Robé, Anne; Moquin, Luc; Darcq, Emmanuel; Ben Hamida, Sami; Robledo, Patricia; Matifas, Audrey; Befort, Katia; Gavériaux-Ruff, Claire; Harsan, Laura-Adela; Von Everfeldt, Dominik; Hennig, Jurgen; Gratton, Alain; Kitchen, Ian; Bailey, Alexis; Alvarez, Veronica A.; Maldonado, Rafael; Kieffer, Brigitte L.
2016-01-01
BACKGROUND Mu opioid receptors (MORs) are central to pain control, drug reward and addictive behaviors, but underlying circuit mechanisms have been poorly explored by genetic approaches. Here we investigate the contribution of MORs expressed in GABAergic forebrain neurons to major biological effects of opiates, and also challenge the canonical disinhibition model of opiate reward. METHODS We used Dlx5/6-mediated recombination to create conditional Oprm1 mice in GABAergic forebrain neurons. We characterized the genetic deletion by histology, electrophysiology and microdialysis, probed neuronal activation by c-Fos immunohistochemistry and resting state-functional magnetic resonance imaging, and investigated main behavioral responses to opiates, including motivation to obtain heroin and palatable food. RESULTS Mutant mice showed MOR transcript deletion mainly in the striatum. In the ventral tegmental area (VTA), local MOR activity was intact, and reduced activity was only observed at the level of striatonigral afferents. Heroin-induced neuronal activation was modified at both sites, and whole-brain functional networks were altered in live animals. Morphine analgesia was not altered, neither was physical dependence to chronic morphine. In contrast, locomotor effects of heroin were abolished, and heroin-induced catalepsy was increased. Place preference to heroin was not modified, but remarkably, motivation to obtain heroin and palatable food was enhanced in operant self-administration procedures. CONCLUSIONS Our study reveals dissociable MOR functions across mesocorticolimbic networks. Thus beyond a well-established role in reward processing, operating at the level of local VTA neurons, MORs also moderate motivation for appetitive stimuli within forebrain circuits that drive motivated behaviors. PMID:28185645
In Vitro and In Vivo Characterization of the Alkaloid Nuciferine.
Farrell, Martilias S; McCorvy, John D; Huang, Xi-Ping; Urban, Daniel J; White, Kate L; Giguere, Patrick M; Doak, Allison K; Bernstein, Alison I; Stout, Kristen A; Park, Su Mi; Rodriguiz, Ramona M; Gray, Bradley W; Hyatt, William S; Norwood, Andrew P; Webster, Kevin A; Gannon, Brenda M; Miller, Gary W; Porter, Joseph H; Shoichet, Brian K; Fantegrossi, William E; Wetsel, William C; Roth, Bryan L
2016-01-01
The sacred lotus (Nelumbo nucifera) contains many phytochemicals and has a history of human use. To determine which compounds may be responsible for reported psychotropic effects, we used in silico predictions of the identified phytochemicals. Nuciferine, an alkaloid component of Nelumbo nucifera and Nymphaea caerulea, had a predicted molecular profile similar to antipsychotic compounds. Our study characterizes nuciferine using in vitro and in vivo pharmacological assays. Nuciferine was first characterized in silico using the similarity ensemble approach, and was followed by further characterization and validation using the Psychoactive Drug Screening Program of the National Institute of Mental Health. Nuciferine was then tested in vivo in the head-twitch response, pre-pulse inhibition, hyperlocomotor activity, and drug discrimination paradigms. Nuciferine shares a receptor profile similar to aripiprazole-like antipsychotic drugs. Nuciferine was an antagonist at 5-HT2A, 5-HT2C, and 5-HT2B, an inverse agonist at 5-HT7, a partial agonist at D2, D5 and 5-HT6, an agonist at 5-HT1A and D4 receptors, and inhibited the dopamine transporter. In rodent models relevant to antipsychotic drug action, nuciferine blocked head-twitch responses and discriminative stimulus effects of a 5-HT2A agonist, substituted for clozapine discriminative stimulus, enhanced amphetamine induced locomotor activity, inhibited phencyclidine (PCP)-induced locomotor activity, and rescued PCP-induced disruption of prepulse inhibition without induction of catalepsy. The molecular profile of nuciferine was similar but not identical to that shared with several approved antipsychotic drugs suggesting that nuciferine has atypical antipsychotic-like actions.
Batool, Farhat; Shah, Asad Hussain; Ahmed, Syed Dilnawaz; Saify, Zafar Saeid; Haleem, Darakhshan Jabeen
2010-08-01
Long-term treatment of haloperidol, a neuroleptic, induces neurodegeneration specifically in the striatum (caudate and putamen), which plays an important role in the development of orofacial dyskinesia, a putative model of tardive dyskinesia (TD). This study investigated the protective effects of a concomitant treatment of aqueous fruit extract of Sea buckthorn (Hippophae rhamnoides L. spp. Turkestanica) (SBT-FE) (40 mg/kg, orally) plus haloperidol (3.0 mg/kg, ip) administration on an animal model of TD and on striatal neuronal alterations. Rats received daily haloperidol (3.0 mg/kg ip) and saline injections for 15 days. Seven-day posttreatment, aqueous SBT-FE (40 mg/kg) was administered daily via a feeding tube. Hypolocomotive effects (home cage activity, exploratory activity, catalepsy, and vacuous chewing movements) were monitored consecutively in each group. On the last day of the experiments, changes in extracellular levels of striatal dopamine (DA), dihydroxyphenyl acetic acid (DOPAC) and homovanillic acid (HVA) were determined by HPLC-EC. Aqueous SBT-FE attenuated haloperidol-induced VCMs after second week of treatment and locomotor activity was greater in rats treated with SBT-FE compared with the controls. The results indicate that DA and HVA levels in the striatum were significantly (P <.01) altered in rats given SBT-FE before injections of haloperidol. Hippophae rhamnoides fruit extract has a protective role against haloperidol-induced orofacial dyskinesia. Consequently, use of Hippophae rhamnoides as a possible therapeutic agent for the treatment of tardive dyskinesia should be considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binukumar, BK; Gupta, Nidhi; Bal, Amanjit
Numerous epidemiological studies have shown an association between pesticide exposure and increased risk of developing Parkinson's diseases. Oxidative stress generated as a result of mitochondrial dysfunction has been implicated as an important factor in the etiology of Parkinson's disease. Previously, we reported that chronic dichlorvos exposure causes mitochondrial impairments and nigrostriatal neuronal death in rats. The present study was designed to test whether Coenzyme Q{sub 10} (CoQ{sub 10}) administration has any neuroprotective effect against dichlorvos mediated nigrostriatal neuronal death, {alpha}-synuclein aggregation, and motor dysfunction. Male albino rats were administered dichlorvos by subcutaneous injection at a dose of 2.5 mg/kg bodymore » weight over a period of 12 weeks. Results obtained there after showed that dichlorvos exposure leads to enhanced mitochondrial ROS production, {alpha}-synuclein aggregation, decreased dopamine and its metabolite levels resulting in nigrostriatal neurodegeneration. Pretreatment by Coenzyme Q{sub 10} (4.5 mg/kg ip for 12 weeks) to dichlorvos treated animals significantly attenuated the extent of nigrostriatal neuronal damage, in terms of decreased ROS production, increased dopamine and its metabolite levels, and restoration of motor dysfunction when compared to dichlorvos treated animals. Thus, the present study shows that Coenzyme Q{sub 10} administration may attenuate dichlorvos induced nigrostriatal neurodegeneration, {alpha}-synuclein aggregation and motor dysfunction by virtue of its antioxidant action. - Highlights: > CoQ{sub 10} administration attenuates dichlorvos induced nigrostriatal neurodegenaration. > CoQ{sub 10} pre treatment leads to preservation of TH-IR neurons. > CoQ{sub 10} may decrease oxidative damage and {alpha}-synuclin aggregation. > CoQ{sub 10} treatment enhances motor function and protects rats from catalepsy.« less
Geed, Milind; Garabadu, Debapriya; Ahmad, Ausaf; Krishnamurthy, Sairam
2014-02-01
Silymarin commonly known for its hepatoprotective effect is reported to show protection against 6-hydroxydopamine-induced neurotoxicity. Silibinin forms the major active constituent of silymarin. Therefore, the neuroprotective effect of silibinin (50, 100 and 200 mg/kg) was evaluated in the unilaterally injected 1-methyl-4-phenylpyridinium (MPP(+))-induced dopaminergic neurotoxicity in male rats. A battery of tests such as elevated plus maze (EPM), narrow beam walk, open field, bar catalepsy, grip strength, and foot print analysis was performed to evaluate the behavioral symptoms of striatal dopaminergic toxicity. Furthermore, the mechanism of action of silibinin was investigated by evaluating the mitochondrial complex enzyme activities, mitochondrial integrity and oxidative status. Striatal caspase-3 and NFκB were expressed to evaluate the effect of silibinin on apoptosis and inflammation respectively. Silibinin (100 and 200 mg/kg) protected against MPP(+)-induced dopamine depletion in striatum. Silibinin reversed MPP(+)-induced decrease in transfer latency indicating memory consolidation in the EPM test. Silibinin (100 and 200 mg/kg) attenuated MPP(+)-induced motor deficits, such as fine motor movements and gait. MPP(+)-induced mitochondrial dysfunction, loss of integrity and oxidative stress were attenuated by silibinin. Silibinin decreased striatal caspase-3 and NFκB expression indicating potential anti-apoptotic and anti-inflammatory effects respectively. Hence, silibinin exhibited neuroprotective effect in the MPP(+) induced striatal toxicity augmenting dopamine levels. The mechanism of action may be linked to maintenance of mitochondrial bioenergetics and integrity apart from anti-apoptotic and anti-inflammatory activities. Copyright © 2013 Elsevier Inc. All rights reserved.
Singh, Alpana; Verma, Poonam; Balaji, Gillela; Samantaray, Supriti; Mohanakumar, Kochupurackal P
2016-10-01
Parkinson's disease (PD), the most common progressive neurodegenerative movement disorder, results from loss of dopaminergic neurons of substantia nigra pars compacta. These neurons exhibit Cav1.3 channel-dependent pacemaking activity. Epidemiological studies suggest reduced risk for PD in population under long-term antihypertensive therapy with L-type calcium channel antagonists. These prompted us to investigate nimodipine, an L-type calcium channel blocker for neuroprotective effect in cellular and animal models of PD. Nimodipine (0.1-10 μM) significantly attenuated 1-methyl-4-phenyl pyridinium ion-induced loss in mitochondrial morphology, mitochondrial membrane potential and increases in intracellular calcium levels in SH-SY5Y neuroblastoma cell line as measured respectively employing Mitotracker green staining, TMRM, and Fura-2 fluorescence, but only a feeble neuroprotective effect was observed in MTT assay. Nimodipine dose-dependently reduced 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonian syndromes (akinesia and catalepsy) and loss in swimming ability in Balb/c mice. It attenuated MPTP-induced loss of dopaminergic tyrosine hydroxylase positive neurons in substantia nigra, improved mitochondrial oxygen consumption and inhibited reactive oxygen species production in the striatal mitochondria measured using dichlorodihydrofluorescein fluorescence, but failed to block striatal dopamine depletion. These results point to an involvement of L-type calcium channels in MPTP-induced dopaminergic neuronal death in experimental parkinsonism and more importantly provide evidences for nimodipine to improve mitochondrial integrity and function. Copyright © 2016 Elsevier Ltd. All rights reserved.
Long, Jonathan Z.; Nomura, Daniel K.; Vann, Robert E.; Walentiny, D. Matthew; Booker, Lamont; Jin, Xin; Burston, James J.; Sim-Selley, Laura J.; Lichtman, Aron H.; Wiley, Jenny L.; Cravatt, Benjamin F.
2009-01-01
Δ9-Tetrahydrocannabinol (THC), the psychoactive component of marijuana, and other direct cannabinoid receptor (CB1) agonists produce a number of neurobehavioral effects in mammals that range from the beneficial (analgesia) to the untoward (abuse potential). Why, however, this full spectrum of activities is not observed upon pharmacological inhibition or genetic deletion of either fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), enzymes that regulate the two major endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG), respectively, has remained unclear. Here, we describe a selective and efficacious dual FAAH/MAGL inhibitor, JZL195, and show that this agent exhibits broad activity in the tetrad test for CB1 agonism, causing analgesia, hypomotilty, and catalepsy. Comparison of JZL195 to specific FAAH and MAGL inhibitors identified behavioral processes that were regulated by a single endocannabinoid pathway (e.g., hypomotility by the 2-AG/MAGL pathway) and, interestingly, those where disruption of both FAAH and MAGL produced additive effects that were reversed by a CB1 antagonist. Falling into this latter category was drug discrimination behavior, where dual FAAH/MAGL blockade, but not disruption of either FAAH or MAGL alone, produced THC-like responses that were reversed by a CB1 antagonist. These data indicate that AEA and 2-AG signaling pathways interact to regulate specific behavioral processes in vivo, including those relevant to drug abuse, thus providing a potential mechanistic basis for the distinct pharmacological profiles of direct CB1 agonists and inhibitors of individual endocannabinoid degradative enzymes. PMID:19918051
Interactions between THC and cannabidiol in mouse models of cannabinoid activity.
Varvel, S A; Wiley, J L; Yang, R; Bridgen, D T; Long, K; Lichtman, A H; Martin, B R
2006-06-01
Interest persists in characterizing potential interactions between Delta(9)-tetrahydocannabinol (THC) and other marijuana constituents such as cannabidiol (CBD). Such interactions may have important implications for understanding the long-term health consequences of chronic marijuana use as well as for attempts to develop therapeutic uses for THC and other CB(1) agonists. We investigated whether CBD may modulate the pharmacological effects of intravenously administered THC or inhaled marijuana smoke on hypoactivity, antinociception, catalepsy, and hypothermia, the well characterized models of cannabinoid activity. Intravenously administered CBD possessed very little activity on its own and, at a dose equal to a maximally effective dose of THC (3 mg/kg), failed to alter THC's effects on any measure. However, higher doses of CBD (ED(50)=7.4 mg/kg) dose-dependently potentiated the antinociceptive effects of a low dose of THC (0.3 mg/kg). Pretreatment with 30 mg/kg CBD, but not 3 mg/kg, significantly elevated THC blood and brain levels. No interactions between THC and CBD were observed in several variations of a marijuana smoke exposure model. Either quantities of CBD were applied directly to marijuana, CBD and THC were both applied to placebo plant material, or mice were pretreated intravenously with 30 mg/kg CBD before being exposed to marijuana smoke. As the amount of CBD found in most marijuana strains in the US is considerably less than that of THC, these results suggest that CBD concentrations relevant to what is normally found in marijuana exert very little, if any, modulatory effects on CB(1)-receptor-mediated pharmacological effects of marijuana smoke.
Jobelyn® pretreatment ameliorates symptoms of psychosis in experimental models.
Omogbiya, Itivere Adrian; Umukoro, Solomon; Aderibigbe, Adegbuyi Oladele; Bakre, Adewale Ganiyu
2013-01-01
Psychosis is a chronic neurological disorder and it remains a major medical and social problem in most African countries. Individuals with psychotic illness in this region tend to seek help from traditional medical practitioners, who prescribe herbal remedies as alternative forms of treatment for the disease. Jobelyn® (JB) is a commercial polyherbal formulation that has been acclaimed to show beneficial effects in neurological disorders. However, its usefulness in psychosis has not been scientifically validated. Thus, this study was undertaken to evaluate its effects on animal models predictive of human psychosis. Antipsychotic activity of JB was assessed based on the inhibition of stereotyped behavior induced by amphetamine or apomorphine in mice. Amphetamine-induced hyperactivity and lethality in aggregated mice were additional tests employed to further evaluate the antipsychotic property of JB. The effect of JB on catalepsy was also assessed, using the inclined plane paradigm. JB (5-50 mg/kg, p.o.) significantly (p<0.05) inhibited stereotypy induced by amphetamine (10.0 mg/kg, i.p.) or apomorphine (1 mg/kg, i.p.), which suggests antipsychotic activity. Furthermore, JB (5-50 mg/kg, p.o.) reduced lethality in aggregated mice and inhibited hyperactivity induced by amphetamine, respectively. However, JB (5-50 mg/kg, p.o.) did not cause cataleptic behavior, as it failed to alter the duration of stay of the animals on the inclined plane. Taken together, these findings suggest that JB exhibits antipsychotic-like activity, devoid of the adverse effect of cataleptic behavior, and may offer some beneficial effects in the symptomatic relief of psychotic ailments.
Behavioral evidence for the interaction of oleamide with multiple neurotransmitter systems.
Fedorova, I; Hashimoto, A; Fecik, R A; Hedrick, M P; Hanus, L O; Boger, D L; Rice, K C; Basile, A S
2001-10-01
While the endogenous fatty acid amide oleamide has hypnotic properties, neither the breadth of its behavioral actions nor the mechanism(s) by which these behaviors may be mediated has been elucidated. Therefore, the effects of oleamide on the performance of rats in tests of motor function, analgesia, and anxiety were investigated. Oleamide reduced the distance traveled in the open field (ED50 = 14, 10-19 mg/kg, mean, 95% confidence interval), induced analgesia and hypothermia, but did not cause catalepsy. Moreover, a dose of oleamide without effect on motor function was anxiolytic in the social interaction test and elevated plus-maze. These actions of a single dose of oleamide lasted for 30 to 60 min. While rats became tolerant to oleamide following 8 days of repeated administration, oleamide is a poor inducer of physical dependence. Pretreatment with antagonists of the serotonin (5HT)1A, 5HT2C, and vanilloid receptors did not modify oleamide's effects. However, the cannabinoid receptor antagonist SR 141716A inhibited oleamide-induced analgesia in the tail-flick assay, the gamma-aminobutyric acid (GABA)A receptor antagonist bicuculline reversed the analgesia and hypothermia, and the dopamine D2 receptor antagonist L 741626 blocked oleamide's locomotor and analgesic actions. Interestingly, oleamide analogs resistant to hydrolysis by fatty acid amide hydrolase (FAAH) maintained but did not show increased behavioral potency or duration of action, whereas two FAAH inhibitors produced analogous behavioral effects. Thus, oleamide induces behaviors reminiscent of the actions of endogenous cannabinoids, but the involvement of GABAergic and dopaminergic systems, either directly or indirectly, in the actions of oleamide cannot be ruled out.
Actions of the dual FAAH/MAGL inhibitor JZL195 in a murine neuropathic pain model
Adamson Barnes, Nicholas S.; Mitchell, Vanessa A.; Kazantzis, Nicholas P.
2015-01-01
Background and Purpose While cannabinoids have been proposed as a potential treatment for neuropathic pain, they have limitations. Cannabinoid receptor agonists have good efficacy in animal models of neuropathic pain; they have a poor therapeutic window. Conversely, selective fatty acid amide hydrolase (FAAH) inhibitors that enhance the endocannabinoid system have a better therapeutic window, but lesser efficacy. We examined whether JZL195, a dual inhibitor of FAAH and monacylglycerol lipase (MAGL), could overcome these limitations. Experimental Approach C57BL/6 mice underwent the chronic constriction injury (CCI) model of neuropathic pain. Mechanical and cold allodynia, plus cannabinoid side effects, were assessed in response to systemic drug application. Key Results JZL195 and the cannabinoid receptor agonist WIN55212 produced dose‐dependent reductions in CCI‐induced mechanical and cold allodynia, plus side effects including motor incoordination, catalepsy and sedation. JZL195 reduced allodynia with an ED50 at least four times less than that at which it produced side effects. By contrast, WIN55212 reduced allodynia and produce side effects with similar ED50s. The maximal anti‐allodynic effect of JZL195 was greater than that produced by selective FAAH, or MAGL inhibitors. The JZL195‐induced anti‐allodynia was maintained during repeated treatment. Conclusions and Implications These findings suggest that JZL195 has greater anti‐allodynic efficacy than selective FAAH, or MAGL inhibitors, plus a greater therapeutic window than a cannabinoid receptor agonist. Thus, dual FAAH/MAGL inhibition may have greater potential in alleviating neuropathic pain, compared with selective FAAH and MAGL inhibitors, or cannabinoid receptor agonists. PMID:26398331
Liu, Haixia; Jia, Lu; Chen, Xiaoyan; Shi, Limin; Xie, Junxia
2018-03-01
The excitability of dopaminergic neurons in the substantia nigra pars compacta (SNc) that supply the striatum with dopamine (DA) determines the function of the nigrostriatal system for motor coordination. We previously showed that 4-pyridinylmethyl-9(10H)-anthracenone (XE991), a specific blocker of Kv7/KCNQ channels, enhanced the excitability of nigral DA neurons and resulted in attenuation of haloperidol-induced catalepsy in a Parkinson's disease (PD) rat model. However, whether XE991 exhibits neuroprotective effects towards DA neuron degeneration remains unknown. The aim of this study was to investigate the effects of Kv7/KCNQ channel blocker, XE991, on 6-hydroxydopamine (6-OHDA)-induced nigral DA neuron degeneration and motor dysfunction. Using immunofluorescence staining and western blotting, we showed that intracerebroventricular administration of XE991 prevented the 6-OHDA-induced decrease in tyrosine hydroxylase (TH)-positive neurons and TH protein expression in the SNc. High-performance liquid chromatography with electrochemical detection (HPLC-ECD) also revealed that XE991 partly restored the levels of DA and its metabolites in the striatum. Moreover, XE991 decreased apomorphine (APO)-induced contralateral rotations, enhanced balance and coordination, and attenuated muscle rigidity in 6-OHDA-treated rats. Importantly, all neuroprotective effects by XE991 were abolished by co-application of Kv7/KCNQ channel opener retigabine and XE991. Thus, Kv7/KCNQ channel inhibition by XE991 can exert neuroprotective effects against 6-OHDA-induced degeneration of the nigrostriatal DA system and motor dysfunction. Copyright © 2017. Published by Elsevier Inc.
Strinic, Dean; Belosic Halle, Zeljka; Luetic, Kresimir; Nedic, Ana; Petrovic, Igor; Sucic, Mario; Zivanovic Posilovic, Gordana; Balenovic, Dijana; Strbe, Sanja; Udovicic, Mario; Drmic, Domagoj; Stupnisek, Mirjana; Lovric Bencic, Martina; Seiwerth, Sven; Sikiric, Predrag
2017-10-01
Commonly, neuroleptics and prokinetics induce a prolonged QTc interval. In this study, stable gastric pentadecapeptide BPC 157 counteracts the prolongation of the QTc interval in Wistar rats that underwent daily administration of dopamine neuroleptics or prokinetics. Previously, in rats and mice, BPC 157 counteracted neuroleptic-induced catalepsy and gastric ulcers. To counteract neuroleptic- or prokinetic-induced prolongation of the QTc interval, rats were given a BPC 157 regimen once daily over seven days (10μg, 10ng/kg ip) immediately after each administrations of haloperidol (0.625, 6.25, 12.5, and 25.0mg/kg ip), fluphenazine (0.5, 5.0mg/kg ip), clozapine (1.0, 10.0mg/kg ip), quetiapine (1.0, 10.0mg/kg ip), sulpiride (1.6, 16.0mg/kg ip), metoclopramide (2.5, 25.0mg/kg ip) or (1.0, 10.0mg/kg ip). Controls simultaneously received saline (5ml/kg ip). To assess the ECG presentation before and after neuroleptic/prokinetic medication, the assessment was at 1, 2, 3, 4, 5, 10, 15, 20 and 30min (first administration) as well as at 30min, 60min and 24h (first administration and subsequent administrations) and the ECG recording started prior to drug administration. Since very early, a prolonged QTc interval has been continually noted with haloperidol, fluphenazine, clozapine, olanzapine, quetiapine, sulpiride, and metoclopramide in rats as a central common effect not seen with domperidone. Consistent counteraction appears with the stable gastric pentadecapeptide BPC 157. Thus, BPC 157 rapidly and permanently counteracts the QTc prolongation induced by neuroleptics and prokinetics. Pentadecapeptide BPC 157 is suited for counteracting a prolonged QT interval. Copyright © 2017 Elsevier Inc. All rights reserved.
Wiebelhaus, Jason M; Poklis, Justin L; Poklis, Alphonse; Vann, Robert E; Lichtman, Aron H; Wise, Laura E
2012-12-01
Use of synthetic "marijuana" has increased in recent years, produced adverse effects and prompted the temporary DEA ban of five specific cannabinoid analogs, including JWH-018. The objectives of the current study include determining the chemical content of the herbal product, Buzz, assessing its behavioral effects upon inhalation exposure to mice, determining whether CB(1) receptors mediate its pharmacological activity, and ascertaining its biodisposition in blood and various organs. Using a nose-only exposure system, mice were exposed to smoke produced from combustion of an herbal incense product, Buzz, which contained 5.4% JWH-018. Cannabimimetic effects following smoke exposure were evaluated using the tetrad procedure, consisting of the following indices: hypomotility, antinociception, catalepsy, and hypothermia. Additionally, blood and tissues were collected for JWH-018 quantification. Inhalation exposure to Buzz produced dose-related tetrad effects similar to marijuana as well as dose-related increased levels of JWH-018 in the blood, brain, heart, kidney, liver, lung, and spleen. The behavioral effects were blocked by rimonabant, a CB(1) receptor antagonist. Effects produced by Buzz were similar in magnitude and time-course to those produced by marijuana, though equipotent doses of Buzz and marijuana yielded considerably lower brain levels of JWH-018 than THC for the respective materials. Inhalation exposure to a product containing JWH-018 penetrates into the brain and other organs and produces CB(1) receptor-mediated behavioral pharmacological effects in mice. The increased potency of JWH-018 compared to THC, the variable amount of drug added to various herbal products, and unknown toxicity, undoubtedly contribute to public health risks of synthetic cannabinoids. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Hadcock, John R; Griffith, David A; Iredale, Phillip A; Carpino, Phillip A; Dow, Robert L; Black, Shawn C; O'Connor, Rebecca; Gautreau, Denise; Lizano, Jeffrey S; Ward, Karen; Hargrove, Diane M; Kelly-Sullivan, Dawn; Scott, Dennis O
2010-04-02
Cannabinoid CB(1) receptor antagonists exhibit pharmacologic properties favorable for the treatment of metabolic disease. CP-945,598 (1-[9-(4-chlorophenyl)-8-(2-chlorophenyl)-9H-purin-6-yl]-4-ethylamino piperidine-4-carboxylic acid amide hydrochloride) is a recently discovered selective, high affinity, competitive CB(1) receptor antagonist that inhibits both basal and cannabinoid agonist-mediated CB(1) receptor signaling in vitro and in vivo. CP-945,598 exhibits sub-nanomolar potency at human CB(1) receptors in both binding (K(i)=0.7 nM) and functional assays (K(i)=0.2 nM). The compound has low affinity (K(i)=7600 nM) for human CB(2) receptors. In vivo, CP-945,598 reverses four cannabinoid agonist-mediated CNS-driven responses (hypo-locomotion, hypothermia, analgesia, and catalepsy) to a synthetic cannabinoid receptor agonist. CP-945,598 exhibits dose and concentration-dependent anorectic activity in two models of acute food intake in rodents, fast-induced re-feeding and spontaneous, nocturnal feeding. CP-945,598 also acutely stimulates energy expenditure in rats and decreases the respiratory quotient indicating a metabolic switch to increased fat oxidation. CP-945,598 at 10mg/kg promoted a 9%, vehicle adjusted weight loss in a 10 day weight loss study in diet-induced obese mice. Concentration/effect relationships combined with ex vivo brain CB(1) receptor occupancy data were used to evaluate efficacy in behavioral, food intake, and energy expenditure studies. Together, these in vitro, ex vivo, and in vivo data indicate that CP-945,598 is a novel CB(1) receptor competitive antagonist that may further our understanding of the endocannabinoid system. 2010 Elsevier Inc. All rights reserved.
Sengupta, T; Mohanakumar, K P
2010-11-01
Behavioral and neurochemical effects of chronic administration of high doses of 2-phenylethylamine (PEA; 25-75 mg/kg, i.p. for up to 7 days) have been investigated in Balb/c mice. Depression and anxiety, as demonstrated respectively by increased floating time in forced swim test, and reduction in number of entries and the time spent in the open arms in an elevated plus maze were observed in these animals. General motor disabilities in terms of akinesia, catalepsy and decreased swimming ability were also observed in these animals. Acute and sub-acute administration of PEA caused significant, dose-dependent depletion of striatal dopamine, and its metabolites levels. PEA caused dose-dependent generation of hydroxyl radicals in vitro in Fenton's reaction in test tubes, in isolated mitochondrial fraction, and in vivo in the striatum of mice. A significant inhibition of NADH-ubiquinone oxidoreductase (complex-I; EC: 1.6.5.3) activity suggests the inhibition in oxidative phosphorylation in the mitochondria resulting in hydroxyl radical generation. Nissl staining and TH immnunohistochemistry in brain sections failed to show any morphological aberrations in dopaminergic neurons or nerve terminals. Long-term over-consumption of PEA containing food items could be a neurological risk factor having significant pathological relevance to disease conditions such as depression or motor dysfunction. However, per-oral administration of higher doses of PEA (75-125 mg/kg; 7 days) failed to cause such overt neurochemical effects in rats, which suggested safe consumption of food items rich in this trace amine by normal population. Copyright © 2010 Elsevier Ltd. All rights reserved.
Kabel, Ahmed M; Omar, Mohamed S; Alhadhrami, A; Alharthi, Salman S; Alrobaian, Majed M
2018-05-01
Our aim was to assess the effect of different doses of linagliptin with or without l-dopa/Carbidopa on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in mice. Eighty Balb/c mice were divided into 8 equal groups: Control; MPTP; MPTP + l-dopa/Carbidopa; MPTP + linagliptin 3 mg/kg/day; MPTP + linagliptin 10 mg/kg/day; MPTP + Carboxymethyl cellulose; MPTP + l-dopa/Carbidopa + linagliptin 3 mg/kg/day and MPTP + l-dopa/Carbidopa + linagliptin 10 mg/kg/day. Striatal dopamine, tumor necrosis factor alpha (TNF-α), interleukin 10 (IL-10), transforming growth factor beta 1 (TGF-β1), toll-like receptor 4 (TLR4), antioxidant enzymes, adenosine triphosphate (ATP), glucagon-like peptide-1 (GLP-1), receptors of advanced glycation end products (RAGE), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), heme oxygenase-1 (HO-1), mitochondrial complex I activity, catalepsy and total swim scores were measured. Also, the substantia nigra was subjected to immunohistochemical examination. The combination of l-dopa/Carbidopa and linagliptin in a dose-dependent manner resulted in significant improvement of the behavioural changes, striatal dopamine, antioxidant parameters, Nrf2/HO-1 content, GLP-1, ATP and mitochondrial complex I activity with significant decrease in striatal RAGE, TGF-β1, TNF-α, IL-10, TLR4 and alleviated the immunohistochemical changes better than the groups that received either l-dopa/Carbidopa or linagliptin alone. The combination of l-dopa/Carbidopa and linagliptin might represent a promising therapeutic modality for management of parkinsonism. Copyright © 2018 Elsevier Inc. All rights reserved.
Maurice, Nicolas; Deltheil, Thierry; Melon, Christophe; Degos, Bertrand; Mourre, Christiane; Amalric, Marianne; Kerkerian-Le Goff, Lydia
2015-01-01
Recent evidence points to a neuroprotective action of bee venom on nigral dopamine neurons in animal models of Parkinson's disease (PD). Here we examined whether bee venom also displays a symptomatic action by acting on the pathological functioning of the basal ganglia in rat PD models. Bee venom effects were assessed by combining motor behavior analyses and in vivo electrophysiological recordings in the substantia nigra pars reticulata (SNr, basal ganglia output structure) in pharmacological (neuroleptic treatment) and lesional (unilateral intranigral 6-hydroxydopamine injection) PD models. In the hemi-parkinsonian 6-hydroxydopamine lesion model, subchronic bee venom treatment significantly alleviates contralateral forelimb akinesia and apomorphine-induced rotations. Moreover, a single injection of bee venom reverses haloperidol-induced catalepsy, a pharmacological model reminiscent of parkinsonian akinetic deficit. This effect is mimicked by apamin, a blocker of small conductance Ca2+-activated K+ (SK) channels, and blocked by CyPPA, a positive modulator of these channels, suggesting the involvement of SK channels in the bee venom antiparkinsonian action. In vivo electrophysiological recordings in the substantia nigra pars reticulata (basal ganglia output structure) showed no significant effect of BV on the mean neuronal discharge frequency or pathological bursting activity. In contrast, analyses of the neuronal responses evoked by motor cortex stimulation show that bee venom reverses the 6-OHDA- and neuroleptic-induced biases in the influence exerted by the direct inhibitory and indirect excitatory striatonigral circuits. These data provide the first evidence for a beneficial action of bee venom on the pathological functioning of the cortico-basal ganglia circuits underlying motor PD symptoms with potential relevance to the symptomatic treatment of this disease.
Phenomenology and treatment of Catatonia: A descriptive study from north India
Dutt, Alakananda; Grover, Sandeep; Chakrabarti, Subho; Avasthi, Ajit; Kumar, Suresh
2011-01-01
Background: Studies on clinical features of catatonia in the Indian population are few in number. Aim: To study the phenomenology, clinical profile and treatment response of subjects admitted to the psychiatry inpatient with catatonia. Materials and Methods: Detailed treatment records of all the inpatients were scanned for the period January 2004 to December 2008. Patients with catatonia (diagnosed as two symptoms as per the Bush Francis Catatonia Rating scale) were included. Results: During the study period, 1056 subjects were admitted in the inpatient unit, of which 51 (4.8% of the total admissions) had catatonic features and had been rated on the Bush Francis Catatonia Rating scale. The mean age of the sample was 30.02 years (SD=14.6; range 13-69), with an almost equal gender ratio. Most of the patients presenting with catatonia were diagnosed as having psychotic disorders (40; 74.8%), of which the most common diagnosis was schizophrenia (27; 52.9%) of the catatonic subtype (20; 39.2%). Three subjects with primary diagnosis of a psychotic disorder had comorbid depression. Other diagnoses included mood disorders (7; 13.72%) and organic brain syndromes (04; 7.9%). According to the Bush Francis Rating scale, the common signs and symptoms exhibited by the subjects were mutism (94.1%), followed by immobility/stupor (78.5%), staring (78.4%), negativism (74.5%), rigidity (63%) and posturing/catalepsy (61.8%). All the patients were initially treated with lorazepam. Electroconvulsive therapy was required in most cases (42; 82.35%). Conclusion: The common symptoms of catatonia are mutism, immobility/stupor, staring, posturing, negativism and rigidity. The most common underlying psychiatric diagnosis was schizophrenia. PMID:21431006
Canazza, Isabella; Ossato, Andrea; Vincenzi, Fabrizio; Gregori, Adolfo; Di Rosa, Fabiana; Nigro, Federica; Rimessi, Alessandro; Pinton, Paolo; Varani, Katia; Borea, Pier Andrea; Marti, Matteo
2017-05-01
5F-ADBINACA, AB-FUBINACA, and STS-135 are 3 novel third-generation fluorinate synthetic cannabinoids that are illegally marketed as incense, herbal preparations, or research chemicals for their psychoactive cannabis-like effects. The present study aims at investigating the in vitro and in vivo pharmacological activity of 5F-ADBINACA, AB-FUBINACA, and STS-135 in male CD-1 mice, comparing their in vivo effects with those caused by the administration of Δ 9 -THC and JWH-018. In vitro competition binding experiments revealed a nanomolar affinity and potency of the 5F-ADBINACA, AB-FUBINACA, and STS-135 on mouse and human CB 1 and CB 2 receptors. Moreover, these synthetic cannabinoids induced neurotoxicity in murine neuro-2a cells. In vivo studies showed that 5F-ADBINACA, AB-FUBINACA, and STS-135 induced hypothermia; increased pain threshold to both noxious mechanical and thermal stimuli; caused catalepsy; reduced motor activity; impaired sensorimotor responses (visual, acoustic, and tactile); caused seizures, myoclonia, and hyperreflexia; and promoted aggressiveness in mice. Behavioral and neurological effects were fully prevented by the selective CB 1 receptor antagonist/inverse agonist AM 251. Differently, the visual sensory response induced by STS-135 was only partly prevented by the AM 251, suggesting a CB 1 -independent mechanism. For the first time, the present study demonstrates the pharmaco-toxicological effects induced by the administration of 5F-ADBINACA, AB-FUBINACA, and STS-135 in mice and suggests their possible detrimental effects on human health. Copyright © 2017 John Wiley & Sons, Ltd.
Charbogne, Pauline; Gardon, Olivier; Martín-García, Elena; Keyworth, Helen L; Matsui, Aya; Mechling, Anna E; Bienert, Thomas; Nasseef, Taufiq; Robé, Anne; Moquin, Luc; Darcq, Emmanuel; Ben Hamida, Sami; Robledo, Patricia; Matifas, Audrey; Befort, Katia; Gavériaux-Ruff, Claire; Harsan, Laura-Adela; von Elverfeldt, Dominik; Hennig, Jurgen; Gratton, Alain; Kitchen, Ian; Bailey, Alexis; Alvarez, Veronica A; Maldonado, Rafael; Kieffer, Brigitte L
2017-05-01
Mu opioid receptors (MORs) are central to pain control, drug reward, and addictive behaviors, but underlying circuit mechanisms have been poorly explored by genetic approaches. Here we investigate the contribution of MORs expressed in gamma-aminobutyric acidergic forebrain neurons to major biological effects of opiates, and also challenge the canonical disinhibition model of opiate reward. We used Dlx5/6-mediated recombination to create conditional Oprm1 mice in gamma-aminobutyric acidergic forebrain neurons. We characterized the genetic deletion by histology, electrophysiology, and microdialysis; probed neuronal activation by c-Fos immunohistochemistry and resting-state functional magnetic resonance imaging; and investigated main behavioral responses to opiates, including motivation to obtain heroin and palatable food. Mutant mice showed MOR transcript deletion mainly in the striatum. In the ventral tegmental area, local MOR activity was intact, and reduced activity was only observed at the level of striatonigral afferents. Heroin-induced neuronal activation was modified at both sites, and whole-brain functional networks were altered in live animals. Morphine analgesia was not altered, and neither was physical dependence to chronic morphine. In contrast, locomotor effects of heroin were abolished, and heroin-induced catalepsy was increased. Place preference to heroin was not modified, but remarkably, motivation to obtain heroin and palatable food was enhanced in operant self-administration procedures. Our study reveals dissociable MOR functions across mesocorticolimbic networks. Thus, beyond a well-established role in reward processing, operating at the level of local ventral tegmental area neurons, MORs also moderate motivation for appetitive stimuli within forebrain circuits that drive motivated behaviors. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Poklis, Justin L.; Amira, Dorra; Wise, Laura E.; Wiebelhaus, Jason M.; Haggerty, Brenda J.; Lichtman, Aron H.; Poklis, Alphonse
2013-01-01
The disposition of the cannabimimetic naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018) in mice following inhalation of the smoke of the herbal incense product (HIP) ‘Buzz’ is presented. A high-pressure liquid chromatography with electrospray ionization triple quadrupole mass spectrometer (HPLC/MS/MS) method was validated for the analysis of JWH-018 in the specimens using deuterated Δ9-tetrahydrocannabinol (d3-THC) as the internal standard. JWH-018 was isolated by cold acetonitrile liquid–liquid extraction. Chromatographic separation was performed on a Zorbaz eclipse XDB-C18 column. The assay was linear from 1 to 1000 ng/mL. Six C57BL6 mice were sacrificed 20 min after exposure to the smoke of 200 mg ‘Buzz’ containing 5.4% JWH-018. Specimen concentrations of JWH-018 were: blood, 54–166 ng/mL (mean 82 ± 42 ng/mL); brain, 316–708 ng/g (mean 510 ± 166 ng/g); and liver, 1370–3220 ng/mL (mean 1990 ± 752 ng/mL). The mean blood to brain ratio for JWH-018 was 6.8 and ranged from 4.2 to 10.9. After exposure, the responses of the mice were consistent with cannabinoid receptor type 1 activity: body temperatures dropped 7.3 ± 1.1 °C, and catalepsy, hyperreflexia, straub tail and ptosis were observed. The brain concentrations and physiological responses are consistent with the hypothesis that the behavioral effects of ‘Buzz’ are attributable to JWH-018. PMID:22407432
Wierońska, Joanna M; Kłeczek, Natalia; Woźniak, Monika; Gruca, Piotr; Łasoń-Tyburkiewicz, Magdalena; Papp, Mariusz; Brański, Piotr; Burnat, Grzegorz; Pilc, Andrzej
2015-09-01
Diverse preclinical studies exploiting the modulation of the GABAergic and/or glutamatergic system in brain via metabotropic receptors suggest their potential therapeutic utility. GS39783 and CDPPB, positive allosteric modulators of GABAB and mGlu5 receptors, were previously shown to reverse behavioral phenotypes in animal models to mimic selected (predominantly positive) symptoms of schizophrenia. In the present study we investigated the activity of selected GABAB (GS39783 and CGP7930) and mGlu5 (CDPPB) positive allosteric modulators. We focused mainly on the aspects of their efficacy in the models of negative and cognitive symptoms of schizophrenia. We used modified swim test, social interactions (models of negative symptoms) and novel object recognition (model of cognitive disturbances). The activity of the compounds was also tested in haloperidol-induced catalepsy test. The mutual interaction between GABAB/mGlu5 ligands was investigated as well. In the second part of the study, DHPG-induced PI hydrolysis in the presence of GABAB receptor antagonist (SKF97541), and SKF97541-induced inhibition of cAMP formation in the presence of DHPG, was performed. Both mGlu5 and GABAB receptor modulators effectively reversed MK-801-induced deficits in behavioral models of schizophrenia. Moreover, the concomitant administration of sub-effective doses of CDPPB and GS39783 induced a clear antipsychotic-like effect in all the procedures used, except DOI-induced head twitches. The concomitant administration of group I mGlu and GABAB agonists did not displayed any synergistic effects in vitro. Summing up, an activation of both types of receptor may be a promising mechanism for the development of novel antipsychotic drugs, efficacious toward positive, negative and cognitive symptoms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liu, W; Jalewa, J; Sharma, M; Li, G; Li, L; Hölscher, C
2015-09-10
Glucagon-like peptide 1 (GLP-1) is a growth factor. GLP-1 mimetics are on the market as treatments for type 2 diabetes and are well tolerated. These drugs have shown neuroprotective properties in animal models of neurodegenerative disorders. In addition, the GLP-1 mimetic exendin-4 has shown protective effects in animal models of Parkinson's disease (PD), and a clinical trial in PD patients showed promising first results. Liraglutide and lixisenatide are two newer GLP-1 mimetics which have a longer biological half-life than exendin-4. We previously showed that these drugs have neuroprotective properties in an animal model of Alzheimer's disease. Here we demonstrate the neuroprotective effects in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. MPTP was injected once-daily (20mg/kg i.p.) for 7 days, and drugs were injected once-daily for 14 days i.p. When comparing exendin-4 (10 nmol/kg), liraglutide (25 nmol/kg) and lixisenatide (10 nmol/kg), it was found that exendin-4 showed no protective effects at the dose chosen. Both liraglutide and lixisenatide showed effects in preventing the MPTP-induced motor impairment (Rotarod, open-field locomotion, catalepsy test), reduction in tyrosine hydroxylase (TH) levels (dopamine synthesis) in the substantia nigra and basal ganglia, a reduction of the pro-apoptotic signaling molecule BAX and an increase in the anti-apoptotic signaling molecule B-cell lymphoma-2. The results demonstrate that in this study, both liraglutide and lixisenatide are superior to exendin-4, and both drugs show promise as a novel treatment of PD. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Sauer, A E; Büschges, A; Stein, W
1997-04-01
The femur-tibia (FT) joint of insects is governed by a neuronal network that controls activity in tibial motoneurons by processing sensory information about tibial position and movement provided by afferents of the femoral chordotonal organ (fCO). We show that central arborizations of fCO afferents receive presynaptic depolarizing synaptic inputs. With an average resting potential of -71.9 +/- 3.72 mV (n = 10), the reversal potential of these potentials is on average -62.8 +/- 2.3 mV (n = 5). These synaptic potentials occur either spontaneously or are related to movements at the fCO. They are thus induced by signals from other fCO afferents. Therefore, the synaptic inputs to fCO afferents are specific and depend on the sensitivity of the individual afferent affected. These potentials reduce the amplitude of concurrent afferent action potentials. Bath application of picrotoxin, a noncompetitive blocker of chloride ion channels, blocks these potentials, which indicates that they are mediated by chloride ions. From these results, it is concluded that these are inhibitory synaptic potentials generated in the central terminals of fCO afferents. Pharmacologic removal of these potentials affects the tuning of the complete FT control system. Following removal, the dependence of the FT control loop on the tibia position increases relative to the dependency on the velocity of tibia movements. This is due to changes in the relative weighting of the position and velocity signals in the parallel interneuronal pathways from the fCO onto tibial motoneurons. Consequently, the FT joint is no longer able to perform twig mimesis (i.e., catalepsy), which is known to rely on a low position compared to the high-velocity dependency of the FT control system.
Nicotine Reduces Antipsychotic-Induced Orofacial Dyskinesia in Rats
Bordia, Tanuja; McIntosh, J. Michael
2012-01-01
Antipsychotics are an important class of drugs for the management of schizophrenia and other psychotic disorders. They act by blocking dopamine receptors; however, because these receptors are present throughout the brain, prolonged antipsychotic use also leads to serious side effects. These include tardive dyskinesia, repetitive abnormal involuntary movements of the face and limbs for which there is little treatment. In this study, we investigated whether nicotine administration could reduce tardive dyskinesia because nicotine attenuates other drug-induced abnormal movements. We used a well established model of tardive dyskinesia in which rats injected with the commonly used antipsychotic haloperidol develop vacuous chewing movements (VCMs) that resemble human orofacial dyskinesias. Rats were first administered nicotine (minipump; 2 mg/kg per day). Two weeks later, they were given haloperidol (1 mg/kg s.c.) once daily. Nicotine treatment reduced haloperidol-induced VCMs by ∼20% after 5 weeks, with a significant ∼60% decline after 13 weeks. There was no worsening of haloperidol-induced catalepsy. To understand the molecular basis for this improvement, we measured the striatal dopamine transporter and nicotinic acetylcholine receptors (nAChRs). Both haloperidol and nicotine treatment decreased the transporter and α6β2* nAChRs (the asterisk indicates the possible presence of other nicotinic subunits in the receptor complex) when given alone, with no further decline with combined drug treatment. By contrast, nicotine alone increased, while haloperidol reduced α4β2* nAChRs in both vehicle and haloperidol-treated rats. These data suggest that molecular mechanisms other than those directly linked to the transporter and nAChRs underlie the nicotine-mediated improvement in haloperidol-induced VCMs in rats. The present results are the first to suggest that nicotine may be useful for improving the tardive dyskinesia associated with antipsychotic use. PMID:22144565
Bygrave, A M; Masiulis, S; Nicholson, E; Berkemann, M; Barkus, C; Sprengel, R; Harrison, P J; Kullmann, D M; Bannerman, D M; Kätzel, D
2016-01-01
It has been suggested that a functional deficit in NMDA-receptors (NMDARs) on parvalbumin (PV)-positive interneurons (PV-NMDARs) is central to the pathophysiology of schizophrenia. Supportive evidence come from examination of genetically modified mice where the obligatory NMDAR-subunit GluN1 (also known as NR1) has been deleted from PV interneurons by Cre-mediated knockout of the corresponding gene Grin1 (Grin1ΔPV mice). Notably, such PV-specific GluN1 ablation has been reported to blunt the induction of hyperlocomotion (a surrogate for psychosis) by pharmacological NMDAR blockade with the non-competitive antagonist MK-801. This suggests PV-NMDARs as the site of the psychosis-inducing action of MK-801. In contrast to this hypothesis, we show here that Grin1ΔPV mice are not protected against the effects of MK-801, but are in fact sensitized to many of them. Compared with control animals, Grin1ΔPVmice injected with MK-801 show increased stereotypy and pronounced catalepsy, which confound the locomotor readout. Furthermore, in Grin1ΔPVmice, MK-801 induced medial-prefrontal delta (4 Hz) oscillations, and impaired performance on tests of motor coordination, working memory and sucrose preference, even at lower doses than in wild-type controls. We also found that untreated Grin1ΔPVmice are largely normal across a wide range of cognitive functions, including attention, cognitive flexibility and various forms of short-term memory. Taken together these results argue against PV-specific NMDAR hypofunction as a key starting point of schizophrenia pathophysiology, but support a model where NMDAR hypofunction in multiple cell types contribute to the disease. PMID:27070406
A cannabinoid 2 receptor agonist attenuates bone cancer-induced pain and bone loss
Lozano, Alysia; Wright, Courtney; Vardanyan, Anna; King, Tamara; Largent-Milnes, Tally M.; Nelson, Mark; Jimenez-Andrade, Juan Miguel; Mantyh, Patrick W; Vanderah, Todd W.
2010-01-01
Aims Cannabinoid CB2 agonists have been shown to alleviate behavioral signs of inflammatory and neuropathic pain in animal models. AM1241, a CB2 agonist, does not demonstrate central nervous system side-effects seen with CB1 agonists such as hypothermia and catalepsy. Metastatic bone cancer causes severe pain in patients and is treated with analgesics such as opiates. Recent reports suggest that sustained opiates can produce paradoxical hyperalgesic actions and enhance bone destruction in a murine model of bone cancer. In contrast, CB2 selective agonists have been shown to reduce bone loss associated with a model of osteoporosis. Here we tested whether a CB2 agonist administered over a 7 day period inhibits bone cancer-induced pain as well as attenuates cancer-induced bone degradation. Main Methods A murine bone cancer model was used in which osteolytic sarcoma cells were injected into the intramedullary space of the distal end of the femur. Behavioral and radiographic image analysis was performed at days 7, 10 and 14 after injection of tumor cells into the femur. Key Findings Osteolytic sarcoma within the femur produced spontaneous and touch evoked behavioral signs of pain within the tumor-bearing limb. The systemic administration of AM1241 acutely or for 7 days significantly attenuated spontaneous and evoked pain in the inoculated limb. Sustained AM1241 significantly reduced bone loss and decreased the incidence of cancer-induced bone fractures. Significance These findings suggest a novel therapy for cancer-induced bone pain, bone loss and bone fracture while lacking many unwanted side effects seen with current treatments for bone cancer pain. PMID:20176037
Maurice, Nicolas; Deltheil, Thierry; Melon, Christophe; Degos, Bertrand; Mourre, Christiane
2015-01-01
Recent evidence points to a neuroprotective action of bee venom on nigral dopamine neurons in animal models of Parkinson’s disease (PD). Here we examined whether bee venom also displays a symptomatic action by acting on the pathological functioning of the basal ganglia in rat PD models. Bee venom effects were assessed by combining motor behavior analyses and in vivo electrophysiological recordings in the substantia nigra pars reticulata (SNr, basal ganglia output structure) in pharmacological (neuroleptic treatment) and lesional (unilateral intranigral 6-hydroxydopamine injection) PD models. In the hemi-parkinsonian 6-hydroxydopamine lesion model, subchronic bee venom treatment significantly alleviates contralateral forelimb akinesia and apomorphine-induced rotations. Moreover, a single injection of bee venom reverses haloperidol-induced catalepsy, a pharmacological model reminiscent of parkinsonian akinetic deficit. This effect is mimicked by apamin, a blocker of small conductance Ca2+-activated K+ (SK) channels, and blocked by CyPPA, a positive modulator of these channels, suggesting the involvement of SK channels in the bee venom antiparkinsonian action. In vivo electrophysiological recordings in the substantia nigra pars reticulata (basal ganglia output structure) showed no significant effect of BV on the mean neuronal discharge frequency or pathological bursting activity. In contrast, analyses of the neuronal responses evoked by motor cortex stimulation show that bee venom reverses the 6-OHDA- and neuroleptic-induced biases in the influence exerted by the direct inhibitory and indirect excitatory striatonigral circuits. These data provide the first evidence for a beneficial action of bee venom on the pathological functioning of the cortico-basal ganglia circuits underlying motor PD symptoms with potential relevance to the symptomatic treatment of this disease. PMID:26571268
Korner, Germaine; Noain, Daniela; Ying, Ming; Hole, Magnus; Flydal, Marte I; Scherer, Tanja; Allegri, Gabriella; Rassi, Anahita; Fingerhut, Ralph; Becu-Villalobos, Damasia; Pillai, Samyuktha; Wueest, Stephan; Konrad, Daniel; Lauber-Biason, Anna; Baumann, Christian R; Bindoff, Laurence A; Martinez, Aurora; Thöny, Beat
2015-10-01
Tyrosine hydroxylase catalyses the hydroxylation of L-tyrosine to l-DOPA, the rate-limiting step in the synthesis of catecholamines. Mutations in the TH gene encoding tyrosine hydroxylase are associated with the autosomal recessive disorder tyrosine hydroxylase deficiency, which manifests phenotypes varying from infantile parkinsonism and DOPA-responsive dystonia, also termed type A, to complex encephalopathy with perinatal onset, termed type B. We generated homozygous Th knock-in mice with the mutation Th-p.R203H, equivalent to the most recurrent human mutation associated with type B tyrosine hydroxylase deficiency (TH-p.R233H), often unresponsive to l-DOPA treatment. The Th knock-in mice showed normal survival and food intake, but hypotension, hypokinesia, reduced motor coordination, wide-based gate and catalepsy. This phenotype was associated with a gradual loss of central catecholamines and the serious manifestations of motor impairment presented diurnal fluctuation but did not improve with standard l-DOPA treatment. The mutant tyrosine hydroxylase enzyme was unstable and exhibited deficient stabilization by catecholamines, leading to decline of brain tyrosine hydroxylase-immunoreactivity in the Th knock-in mice. In fact the substantia nigra presented an almost normal level of mutant tyrosine hydroxylase protein but distinct absence of the enzyme was observed in the striatum, indicating a mutation-associated mislocalization of tyrosine hydroxylase in the nigrostriatal pathway. This hypomorphic mouse model thus provides understanding on pathomechanisms in type B tyrosine hydroxylase deficiency and a platform for the evaluation of novel therapeutics for movement disorders with loss of dopaminergic input to the striatum. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Canazza, Isabella; Ossato, Andrea; Trapella, Claudio; Fantinati, Anna; De Luca, Maria Antonietta; Margiani, Giulia; Vincenzi, Fabrizio; Rimondo, Claudia; Di Rosa, Fabiana; Gregori, Adolfo; Varani, Katia; Borea, Pier Andrea; Serpelloni, Giovanni; Marti, Matteo
2016-10-01
AKB48 and its fluorinate derivate 5F-AKB48 are two novel synthetic cannabinoids belonging to a structural class with an indazole core structure. They are marketed as incense, herbal preparations or chemical supply for their psychoactive Cannabis-like effects. The present study was aimed at investigating the in vitro and in vivo pharmacological activity of AKB48 and 5F-AKB48 in male CD-1 mice and comparing their in vivo effects with those caused by the administration of Δ 9 -THC and JWH-018. In vitro competition binding experiments performed on mouse and human CB 1 and CB 2 receptors revealed a nanomolar affinity and potency of the AKB48 and 5F-AKB48. In vivo studies showed that AKB48 and 5F-AKB48, induced hypothermia, increased pain threshold to both noxious mechanical and thermal stimuli, caused catalepsy, reduced motor activity, impaired sensorimotor responses (visual, acoustic and tactile), caused seizures, myoclonia, hyperreflexia and promoted aggressiveness in mice. Moreover, microdialysis study in freely moving mice showed that systemic administration of AKB48 and 5F-AKB48 stimulated dopamine release in the nucleus accumbens. Behavioural, neurological and neurochemical effects were fully prevented by the selective CB 1 receptor antagonist/inverse agonist AM 251. For the first time, the present study demonstrates the overall pharmacological effects induced by the administration of AKB48 and 5F-AKB48 in mice and suggests that the fluorination can increase the power and/or effectiveness of SCBs. Furthermore, this study outlines the potential detrimental effects of SCBs on human health.
Kołaczkowski, M; Mierzejewski, P; Bieńkowski, P; Wesołowska, A; Newman-Tancredi, A
2014-02-01
Many dementia patients exhibit behavioural and psychological symptoms (BPSD) that include psychosis, aggressivity, depression and anxiety. Antipsychotic drugs are frequently prescribed but fail to significantly attenuate mood deficits, may interfere with cognitive function and are associated with motor and cardiac side effects, which are problematic in elderly patients. A need therefore exists for drugs that are better suited for the treatment of BPSD. We used in vitro cellular and in vivo behavioural tests to characterize ADN-1184, a novel arylsulfonamide ligand with potential utility for treatment of BPSD. ADN-1184 exhibits substantial 5-HT6 /5-HT7 /5-HT2A /D2 receptor affinity and antagonist properties in vitro. In tests of antipsychotic-like activity, it reversed MK-801-induced hyperactivity and stereotypies and inhibited conditioned avoidance response (MED = 3 mg·kg(-1) i.p.). Remarkably, ADN-1184 also reduced immobility time in the forced swim test at low doses (0.3 and 1 mg·kg(-1) i.p.; higher doses were not significantly active). Notably, up to 30 mg·kg(-1) ADN-1184 did not impair memory performance in the passive avoidance test or elicit significant catalepsy and only modestly inhibited spontaneous locomotor activity (MED = 30 mg·kg(-1) i.p.). ADN-1184 combines antipsychotic-like with antidepressant-like properties without interfering with memory function or locomotion. This profile is better than that of commonly used atypical antipsychotics tested under the same conditions and suggests that it is feasible to identify drugs that improve BPSD, without exacerbating cognitive deficit or movement impairment, which are of particular concern in patients with dementia. © 2013 The British Pharmacological Society.
Depoortère, R; Auclair, A L; Bardin, L; Slot, L Bruins; Kleven, M S; Colpaert, F; Vacher, B; Newman-Tancredi, A
2007-01-01
Background and purpose: The D2/D3 receptor antagonist, D4 receptor partial agonist, and high efficacy 5-HT1A receptor agonist F15063 was shown to be highly efficacious and potent in rodent models of activity against positive symptoms of schizophrenia. However F15063 induced neither catalepsy nor the ‘serotonin syndrome'. Here, we evaluated its profile in rat models predictive of efficacy against negative symptoms/cognitive deficits of schizophrenia. Experimental approach: F15063, given i.p., was assessed in models of behavioural deficits induced by interference with the NMDA/glutamatergic (phencyclidine: PCP) or cholinergic (scopolamine) systems. Key results: Through 5-HT1A activation, F15063 partially alleviated (MED: 0.04 mg kg−1) PCP-induced social interaction deficit between two adult rats, without effect by itself, underlining its potential to combat negative symptoms. At doses above 0.16 mg kg−1, F15063 reduced interaction by itself. F15063 (0.16 mg kg−1) selectively re-established PCP-impaired ‘cognitive flexibility' in a reversal learning task, suggesting potential against adaptability deficits. F15063 (0.04–0.63 mg kg−1) also reversed scopolamine-induced amnesia in a juvenile-adult rat social recognition test, indicative of a pro-cholinergic influence. Activity in this latter test is consistent with its D4 partial agonism, as it was blocked by the D4 antagonist L745,870. Finally, F15063 up to 40 mg kg−1 did not disrupt basal prepulse inhibition of startle reflex in rats, a marker of sensorimotor gating. Conclusions and implications: The balance of D2/D3, D4 and 5-HT1A receptor interactions of F15063 yields a promising profile of activity in models of cognitive deficits and negative symptoms of schizophrenia. PMID:17375085
Rahn, E J; Makriyannis, A; Hohmann, A G
2007-01-01
Background and purpose: The ability of cannabinoids to suppress mechanical hypersensitivity (mechanical allodynia) induced by treatment with the chemotherapeutic agent vincristine was evaluated in rats. Sites of action were subsequently identified. Experimental approach: Mechanical hypersensitivity developed over the course of ten daily injections of vincristine relative to groups receiving saline at the same times. Effects of the CB1/CB2 receptor agonist WIN55,212-2, the receptor-inactive enantiomer WIN55,212-3, the CB2-selective agonist (R,S)-AM1241, the opiate agonist morphine and vehicle on chemotherapy-induced neuropathy were evaluated. WIN55,212-2 was administered intrathecally (i.t.) or locally in the hindpaw to identify sites of action. Pharmacological specificity was established using competitive antagonists for CB1 (SR141716) or CB2 receptors (SR144528). Key results: Systemic administration of WIN55,212-2, but not WIN55,212-3, suppressed vincristine-evoked mechanical allodynia. A leftward shift in the dose-response curve was observed following WIN55,212-2 relative to morphine treatment. The CB1 (SR141716) and CB2 (SR144528) antagonists blocked the anti-allodynic effects of WIN55,212-2. (R,S)-AM1241 suppressed vincristine-induced mechanical hypersensitivity through a CB2 mechanism. Both cannabinoid agonists suppressed vincristine-induced mechanical hypersensitivity without inducing catalepsy. Spinal sites of action are implicated in cannabinoid modulation of chemotherapy-induced neuropathy. WIN55,212-2, but not WIN55,212-3, administered i.t. suppressed vincristine-evoked mechanical hypersensitivity at doses that were inactive following local hindpaw administration. Spinal coadministration of both the CB1 and CB2 antagonists blocked the anti-allodynic effects of WIN55,212-2. Conclusions and implications: Cannabinoids suppress the maintenance of vincristine-induced mechanical allodynia through activation of CB1 and CB2 receptors. These anti-allodynic effects are mediated, at least in part, at the level of the spinal cord. PMID:17572696
5-HT2C Agonists Modulate Schizophrenia-Like Behaviors in Mice.
Pogorelov, Vladimir M; Rodriguiz, Ramona M; Cheng, Jianjun; Huang, Mei; Schmerberg, Claire M; Meltzer, Herbert Y; Roth, Bryan L; Kozikowski, Alan P; Wetsel, William C
2017-10-01
All FDA-approved antipsychotic drugs (APDs) target primarily dopamine D 2 or serotonin (5-HT 2A ) receptors, or both; however, these medications are not universally effective, they may produce undesirable side effects, and provide only partial amelioration of negative and cognitive symptoms. The heterogeneity of pharmacological responses in schizophrenic patients suggests that additional drug targets may be effective in improving aspects of this syndrome. Recent evidence suggests that 5-HT 2C receptors may be a promising target for schizophrenia since their activation reduces mesolimbic nigrostriatal dopamine release (which conveys antipsychotic action), they are expressed almost exclusively in CNS, and have weight-loss-promoting capabilities. A difficulty in developing 5-HT 2C agonists is that most ligands also possess 5-HT 2B and/or 5-HT 2A activities. We have developed selective 5-HT 2C ligands and herein describe their preclinical effectiveness for treating schizophrenia-like behaviors. JJ-3-45, JJ-3-42, and JJ-5-34 reduced amphetamine-stimulated hyperlocomotion, restored amphetamine-disrupted prepulse inhibition, improved social behavior, and novel object recognition memory in NMDA receptor hypofunctioning NR1-knockdown mice, and were essentially devoid of catalepsy. However, they decreased motivation in a breakpoint assay and did not promote reversal learning in MK-801-treated mice. Somewhat similar effects were observed with lorcaserin, a 5-HT 2C agonist with potent 5-HT 2B and 5-HT 2A agonist activities, which is approved for treating obesity. Microdialysis studies revealed that both JJ-3-42 and lorcaserin reduced dopamine efflux in the infralimbic cortex, while only JJ-3-42 decreased it in striatum. Collectively, these results provide additional evidence that 5-HT 2C receptors are suitable drug targets with fewer side effects, greater therapeutic selectivity, and enhanced efficacy for treating schizophrenia and related disorders than current APDs.
Broom, Daniel C; Nitsche, Joshua F; Pintar, John E; Rice, Kenner C; Woods, James H; Traynor, John R
2002-11-01
Delta-opioid receptor-selective agonists produce antinociception and convulsions in several species, including mice. This article examines two hypotheses in mice: 1) that antinociception and convulsive activity are mediated through the same type of delta-receptor and 2) that greater delta-agonist efficacy is required for antinociception than for convulsive activity. Delta-mediated antinociception was evaluated in the acetic acid-induced abdominal constriction assay, which involves a low-intensity noxious stimulus; convulsive activity was indicated as a mild tonic-clonic convulsive episode followed by a period of catalepsy. In delta-opioid receptor knockout mice [DOR-1(-/-)], the nonpeptidic delta-agonists (+/-)-4-[(R*)-[(2S*,5R*)-2,5-dimethyl-4-(2-propenyl)-1- piperazinyl]-(3-hydroxyphenyl)methyl]-N,N-diethylbenzamide hydrochloride (BW373U86) and (+)-4-[(R)-[(2S,5R)-2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-methoxyphenyl)methyl]-N, N-diethylbenzamide (SNC80) failed to produce convulsive behavior demonstrating the absolute involvement of DOR-1 in this effect. In NIH Swiss mice expressing delta-opioid receptors, BW373U86 produced both antinociception and convulsive activity. These effects were antagonized by the putative delta(1)-receptor-selective antagonist 7-benzylidenenaltrexone and the putative delta(2)-receptor-selective antagonist naltriben. Tolerance developed to both the convulsive and antinociceptive effects of BW373U86. Tolerance to the convulsive, but not the antinociceptive, effects of BW373U86 was largely prevented when the antagonist naltrindole was given 20 min after each dose of the agonist in a 3-day treatment paradigm. The convulsive action of BW373U86 was also less sensitive than the antinociceptive action to treatment with the irreversible delta-antagonist naltrindole isothiocyanate. Collectively, these data suggest that the convulsive and antinociceptive activities of delta-agonists are mediated through the same receptor but that the receptor reserve for delta-mediated convulsive activity is greater than for delta-mediated antinociceptive activity.
NASA Astrophysics Data System (ADS)
Kumar, Shobhit; Ali, Javed; Baboota, Sanjula
2016-10-01
Selegiline is a monoamine oxidase B (MAO-B) inhibitor and is used in the treatment of Parkinson’s disease. The main problem associated with its oral administration is its low oral bioavailability (10%) due to its poor aqueous solubility and extensive first pass metabolism. The aim of the present research work was to develop a nanoemulsion loaded with selegiline for direct nose-to-brain delivery for the better management of Parkinson’s disease. A quality by design (QbD) approach was used in a statistical multivariate method for the preparation and optimization of nanoemulsion. In this study, four independent variables were chosen, in which two were compositions and two were process variables, while droplet size, transmittance, zeta potential and drug release were selected as response variables. The optimized formulation was assessed for efficacy in Parkinson’s disease using behavioural studies, namely forced swimming, locomotor, catalepsy, muscle coordination, akinesia and bradykinesia or pole test in Wistar rats. The observed droplet size, polydispersity index (PDI), refractive index, transmittance, zeta potential and viscosity of selegiline nanoemulsion were found to be 61.43 ± 4.10 nm, 0.203 ± 0.005, 1.30 ± 0.01, 99.80 ± 0.04%, -34 mV and 31.85 ± 0.24 mPas respectively. Surface characterization studies demonstrated a spherical shape of nanoemulsion which showed 3.7 times enhancement in drug permeation as compared to drug suspension. The results of behaviour studies showed that treatment of haloperidol induced Parkinson’s disease in rats with selegiline nanoemulsion (administered intranasally) showed significant improvement in behavioural activities in comparison to orally administered drug. These findings demonstrate that nanoemulsion could be a promising new drug delivery carrier for intranasal delivery of selegiline in the treatment of Parkinson’s disease.
Long, Leonora E; Chesworth, Rose; Huang, Xu-Feng; McGregor, Iain S; Arnold, Jonathon C; Karl, Tim
2010-08-01
Cannabis contains over 70 unique compounds and its abuse is linked to an increased risk of developing schizophrenia. The behavioural profiles of the psychotropic cannabis constituent Delta9-tetrahydrocannabinol (Delta9-THC) and the non-psychotomimetic constituent cannabidiol (CBD) were investigated with a battery of behavioural tests relevant to anxiety and positive, negative and cognitive symptoms of schizophrenia. Male adult C57BL/6JArc mice were given 21 daily intraperitoneal injections of vehicle, Delta9-THC (0.3, 1, 3 or 10 mg/kg) or CBD (1, 5, 10 or 50 mg/kg). Delta9-THC produced the classic cannabinoid CB1 receptor-mediated tetrad of hypolocomotion, analgesia, catalepsy and hypothermia while CBD had modest hyperthermic effects. While sedative at this dose, Delta9-THC (10 mg/kg) produced locomotor-independent anxiogenic effects in the open-field and light-dark tests. Chronic CBD produced moderate anxiolytic-like effects in the open-field test at 50 mg/kg and in the light-dark test at a low dose (1 mg/kg). Acute and chronic Delta9-THC (10 mg/kg) decreased the startle response while CBD had no effect. Prepulse inhibition was increased by acute treatment with Delta9-THC (0.3, 3 and 10 mg/kg) or CBD (1, 5 and 50 mg/kg) and by chronic CBD (1 mg/kg). Chronic CBD (50 mg/kg) attenuated dexamphetamine (5 mg/kg)-induced hyperlocomotion, suggesting an antipsychotic-like action for this cannabinoid. Chronic Delta9-THC decreased locomotor activity before and after dexamphetamine administration suggesting functional antagonism of the locomotor stimulant effect. These data provide the first evidence of anxiolytic- and antipsychotic-like effects of chronic but not acute CBD in C57BL/6JArc mice, extending findings from acute studies in other inbred mouse strains and rats.
Role of L-thyroxin in counteracting rotenone induced neurotoxicity in rats.
Salama, Mohamed; Helmy, Basem; El-Gamal, Mohamed; Reda, Amr; Ellaithy, Amr; Tantawy, Dina; Mohamed, Mie; El-Gamal, Aya; Sheashaa, Hussein; Sobh, Mohamed
2013-03-01
A key feature of Parkinson's disease is the dopaminergic neuronal cell loss in the substantia nigra pars compacta. Many triggering pathways have been incriminated in the pathogenesis of this disease including inflammation, oxidative stress, excitotoxicity and apoptosis. Thyroid hormone is an essential agent for the growth and maturation of neurons; moreover, it has variable mechanisms for neuroprotection. So, we tested the efficacy of (L)-thyroxin as a neuroprotectant in rotenone model of Parkinson's disease in rats. Thirty Sprague Dawley rats aged 3 months were divided into 3 equal groups. The first received daily intraperitoneal injections of 0.5% carboxymethyl cellulose (CMC) 3 mL/Kg. The second group received rotenone suspended in 0.5% CMC intraperitoneally at a dose of 3 mg/kg, daily. The third group received the same rotenone regimen subcutaneous l-thyroxine at a dose of 7.5 μg daily. All animals were evaluated regarding locomotor disturbance through blinded investigator who monitored akinesia, catalepsy, tremors and performance in open field test. After 35 days the animals were sacrificed and their brains were immunostained against anti-tyrosine hydroxylase and iba-1. Photomicrographs for coronal sections of the substantia nigra and striatum were taken and analyzed using image J software to evaluate cell count in SNpc and striatal fibers density and number of microglia in the nigrostriatal system. The results were then analyzed statistically. Results showed selective protective effects of thyroxin against rotenone induced neurotoxicity in striatum, however, failed to exert similar protection on SN. Moreover, microglial elevated number in nigrostriatal system that was induced by rotenone injections was diminished selectively in striatum only in the l-thyroxin treated group. One of the possible mechanisms deduced from this work was the selective regulation of microglia in striatal tissues. Thus, this study provides an insight into thyroxin neuroprotection warranting further investigation as therapeutic option for Parkinson's disease patients. Copyright © 2013 Elsevier B.V. All rights reserved.
Jash, Rajiv; Chowdary, K. Appana
2014-01-01
Background: An increased inclination has been observed for the use of herbal drugs in chronic and incurable diseases. Treatment of psychiatric diseases like schizophrenia is largely palliative and more importantly, a prominent adverse effect prevails with the majority of anti-psychotic drugs, which are the extrapyramidal motor disorders. Existing anti-psychotic drug therapy is not so promising, and their adverse effect is a matter of concern for continuing the therapy for long duration. Objective: This experimental study was done to evaluate the neuroleptic activity of the ethanolic extracts of two plants Alstonia Scholaris and Bacopa Monnieri with different anti-psychotic animal models with a view that these plant extracts shall have no or at least reduced adverse effect so that it can be used for long duration. Materials and Methods: Two doses of both the extracts (100 and 200 mg/kg) and also standard drug haloperidol (0.2 mg/kg) were administered to their respective groups once daily with 5 different animal models. After that, the concentration of the dopamine neurotransmitter was estimated in two different regions of the brain viz. frontal cortex and striatum. Results: The result of the study indicated a significant reduction of amphetamine-induced stereotype and conditioned avoidance response for both the extracts compared with the control group, but both did not have any significant effect in phencyclidine-induced locomotor activity and social interaction activity. However, both the extracts showed minor signs of catalepsy compared to the control group. The study also revealed that the neuroleptic effect was due to the reduction of the dopamine concentration in the frontal cortex region of the rat brain. The results largely pointed out the fact that both the extract may be having the property to alleviate the positive symptoms of schizophrenia by reducing the dopamine levels of dopaminergic neurons of the brain. Conclusion: The estimation of dopamine in the two major regions of brain indicated the alteration of dopamine levels was the reason for the anti-psychotic activity as demonstrated by the different animal models. PMID:24497742
Saine, Laurence; Hélie, Pierre; Vachon, Pascal
2016-01-01
Purpose Intracerebral hemorrhage (IH) and cephalalgia are common consequences of traumatic brain injury. One of the primary obstacles for patient recovery is the paucity of treatments to support an appropriate analgesic protocol. The present study aimed to assess pain and motor behaviors following different doses of fentanyl on a rat model of IH. Methods Twenty-one male Sprague Dawley rats underwent a stereotaxic surgery to produce a collagenase-induced IH in the right caudoputamen nucleus. The control group (n=6) received saline subcutaneously (SC), and experimental groups received either 5 (n=6), 10 (n=6), or 20 (n=3) µg/kg of fentanyl SC, 2 hours following surgery and on 2 subsequent days. Only 3 animals received 20 µg/kg because this dose caused catalepsy for 15–20 minutes following the injection. The rat grimace scale, a neurological examination, balance beam test, and rotarod test were performed for 5 consecutive days postoperatively to evaluate pain and motor performance. At the end of the experimentation, the brains were evaluated to determine hematoma volume, and the number of reactive astrocytes and necrotic neurons. Results When compared to controls, the grimace scale showed that 5 µg/kg fentanyl significantly alleviated pain on day 2 only (P<0.01) and that 10 µg/kg alleviated pain on days 1 (P<0.01), 2 (P<0.001), and 3 (P<0.01). For the rotarod test, only the 10 µg/kg group showed significant decreases in performance on days 5 (P<0.05) and 6 (P<0.02). The neurological examination was not significantly different between the groups, but only the hopping test showed poor recuperation for the 5 and 10 µg/kg fentanyl group when compared to saline (P<0.01). No differences were found between the groups for the balance beam test, the histopathological results. Conclusion Fentanyl, at a dose of 10 µg/kg SC, provides substantial analgesia following a collagenase-induced IH in rats; however, it can alter motor performance following analgesic treatments. PMID:27895509
Craft, R.M.; Haas, A.E.; Wiley, J.L.; Yu, Z.; Clowers, B.H.
2016-01-01
The gonadal hormones testosterone (T) in adult males and estradiol (E2) in adult females have been reported to modulate behavioral effects of Δ9-tetrahydrocannabinol (THC). This study determined whether activational effects of T and E2 are sex-specific, and whether hormones modulate production of the active metabolite 11-hydroxy-THC (11-OH-THC) and the inactive metabolite 11-nor-9-carboxy-THC (THC-COOH). Adult male and female rats were gonadectomized (GDX) and treated with nothing (0), T (10-mm Silastic capsule/100 g body weight), or E2 (1-mm Silastic capsule/rat). Three weeks later, saline or the cytochrome P450 inhibitor proadifen (25 mg/kg; to block THC metabolism and boost THC's effects) was injected i.p.; one h later, vehicle or THC (3 mg/kg females, 5 mg/kg males) was injected i.p., and rats were tested for antinociceptive and motoric effects 15-240 min post-injection. T did not consistently alter THC-induced antinociception in males, but decreased it in females (tail withdrawal test). Conversely, T decreased THC-induced catalepsy in males, but had no effect in females. E2 did not alter THC-induced antinociception in females, but enhanced it in males. The discrepant effects of T and E2 on males’ and females’ behavioral responses to THC suggests that sexual differentiation of THC sensitivity is not simply due to activational effects of hormones, but also occurs via organizational hormone or sex chromosome effects. Analysis of serum showed that proadifen increased THC levels, E2 increased 11-OH-THC in GDX males, and T decreased 11-OH-THC (and to a lesser extent, THC) in GDX females. Thus, hormone modulation of THC's behavioral effects is caused in part by hormone modulation of THC oxidation to its active metabolite. However, the fact that hormone modulation of metabolism did not alter THC sensitivity similarly on all behavioral measures within each sex suggests that other mechanisms also play a role in gonadal hormone modulation of THC sensitivity in adult rats. PMID:27670094
Marusich, Julie A.; Lefever, Timothy W.; Antonazzo, Kateland R.; Wallgren, Michael T.; Cortes, Ricardo A.; Patel, Purvi R.; Grabenauer, Megan; Moore, Katherine N.
2015-01-01
Diversion of synthetic cannabinoids for abuse began in the early 2000s. Despite legislation banning compounds currently on the drug market, illicit manufacturers continue to release new compounds for recreational use. This study examined new synthetic cannabinoids, AB-CHMINACA (N-[1-amino-3-methyl-oxobutan-2-yl]-1-[cyclohexylmethyl]-1H-indazole-3-carboxamide), AB-PINACA [N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-pentyl-1H-indazole-3-carboxamide], and FUBIMINA [(1-(5-fluoropentyl)-1H-benzo[d]imadazol-2-yl)(naphthalen-1-yl)methanone], with the hypothesis that these compounds, like those before them, would be highly susceptible to abuse. Cannabinoids were examined in vitro for binding and activation of CB1 receptors, and in vivo for pharmacological effects in mice and in Δ9-tetrahydrocannabinol (Δ9-THC) discrimination. AB-CHMINACA, AB-PINACA, and FUBIMINA bound to and activated CB1 and CB2 receptors, and produced locomotor suppression, antinociception, hypothermia, and catalepsy. Furthermore, these compounds, along with JWH-018 [1-pentyl-3-(1-naphthoyl)indole], CP47,497 [rel-5-(1,1-dimethylheptyl)-2-[(1R,3S)-3-hydroxycyclohexyl]-phenol], and WIN55,212-2 ([(3R)-2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenyl-methanone, monomethanesulfonate), substituted for Δ9-THC in Δ9-THC discrimination. Rank order of potency correlated with CB1 receptor-binding affinity, and all three compounds were full agonists in [35S]GTPγS binding, as compared with the partial agonist Δ9-THC. Indeed, AB-CHMINACA and AB-PINACA exhibited higher efficacy than most known full agonists of the CB1 receptor. Preliminary analysis of urinary metabolites of the compounds revealed the expected hydroxylation. AB-PINACA and AB-CHMINACA are of potential interest as research tools due to their unique chemical structures and high CB1 receptor efficacies. Further studies on these chemicals are likely to include research on understanding cannabinoid receptors and other components of the endocannabinoid system that underlie the abuse of synthetic cannabinoids. PMID:26105953
Oyemitan, Idris Ajayi; Olayera, Omotola Aanuoluwa; Alabi, Akeeb; Abass, Luqman Adewale; Elusiyan, Christianah Abimbola; Oyedeji, Adebola Omowumi; Akanmu, Moses Atanda
2015-05-26
Piper guineense Schum & Thonn (Piperaceae) is a medicinal plant used in the Southern States of Nigeria to treat fever, mental disorders and febrile convulsions. This study aims at determining the chemical composition and the central nervous system (CNS) activities of the essential oil obtained from the plant׳s fresh fruits in order to rationalize its folkloric use. Essential oil of P. guineense (EOPG) obtained by hydrodistillation was analysed by GC/MS. EOPG (50-200mg/kg, i.p.) was evaluated for behavioural, hypothermic, sedative, muscle relaxant, anti-psychotic and anticonvulsant activities using standard procedures. Analysis of the oil reveals 44 compounds of which 30 compounds constituting 84.7% were identified. The oil was characterized by sesquiterpenoids (64.4%) while only four monoterpeneoids (21.3%) were found present in the oil. Major compounds identified were β-sesquiphellandrene (20.9%), linalool (6.1%), limonene (5.8%), Z-β-bisabolene (5.4%) and α-pinene (5.3%). The EOPG (50-200mg/kg, i.p.) caused significant (p<0.01) inhibition on rearing {F(4,20)=43}, locomotor {F(4,20)=22} activity and decreased head dips in hole board {F(4,20)=7} indicating CNS depressant effect; decreased rectal temperature {F(4,20)=7-16}, signifying hypothermic activity; decreased ketamine-induced sleep latency {F(4,20)=7.8} and prolonged total sleeping time {F(4,20)=8.8}, indicating sedative effect; reduced muscular tone on the hind-limb grip test {F(4,20)=22}, inclined board {F(4,20)=4-49} and rota rod {F(4,20)=13-106}, implying muscle relaxant activity; induced catalepsy {F(4,20)=47-136}, inhibited apomorphine-induced climbing behaviour {F(4,20)=9} and inhibited apomorphine-induced locomotor {F(4,20)=16}, suggesting anti-psychotic effect; and protected mice against pentylenetetrazole-induced convulsions, indicating anticonvulsant potential. The most abundant component of the fresh fruits essential oil of P. guineense was β-sesquiphellandrene (20.9%); and the oil possesses CNS depressant, hypothermic, sedative, muscle relaxant, antipsychotic and anticonvulsant activities, thus providing scientific basis for its ethnomedicinal applications. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Fegade, Harshal A; Umathe, Sudhir N
2016-04-01
Blockade of dopamine D2 receptor by haloperidol is attributed for neuroleptic and cataleptic effects; and also for the release of gonadotropin releasing hormone (GnRH) from the hypothalamus. GnRH agonist is reported to exhibit similar behavioural effects as that of haloperidol, and pre-treatment with GnRH antagonist is shown to attenuate the effects of haloperidol, suggesting a possibility that GnRH might mediate the effects of haloperidol. To substantiate such possibility, the influence of haloperidol on GnRH immunoreactivity (GnRH-ir) in the brain was studied in vehicle/antide pre-treated mice by peroxidase-antiperoxidase method. Initially, an earlier reported antide-haloperidol interaction in rat was confirmed in mice, wherein haloperidol (250μg/kg, i.p.) exhibited suppression of conditioned avoidance response (CAR) on two-way shuttle box, and induced catalepsy in bar test; and pre-treatment with antide (50μg/kg, s.c., GnRH antagonist) attenuated both effects of haloperidol. Immunohistochemical study was carried out to identify GnRH-ir in the brain, isolated 1h after haloperidol treatment to mice pre-treated with vehicle/antide. The morphometric analysis of microphotographs of brain sections revealed that haloperidol treatment increased integrated density units of GnRH-ir in various regions of the limbic system. Considering basal GnRH-ir in vehicle treated group as 100%, the increase in GnRH-ir after haloperidol treatment was by 100.98% in the medial septum; 54.26% in the bed nucleus of the stria terminalis; 1152.85% in the anteroventral periventricular nucleus; 120.79% in the preoptic area-organum vasculosum of the lamina terminalis and 138.82% in the arcuate nucleus. Antide did not influence basal and haloperidol induced increase in GnRH-ir in any of the regions. As significant increase in GnRH-ir after haloperidol treatment was observed in such regions of the brain which are reported to directly or indirectly communicate with the hippocampus and basal ganglia, the regions respectively responsible for neuroleptic and cataleptic effects; and as GnRH antagonist eliminated the effects of haloperidol without affecting GnRH-ir, it appears that GnRH released by haloperidol mediates its neuroleptic and cataleptic effects. Copyright © 2015 Elsevier Ltd. All rights reserved.
Reynoso-Moreno, Inés; Chicca, Andrea; Flores-Soto, Mario E; Viveros-Paredes, Juan M; Gertsch, Jürg
2018-01-01
Different anandamide (AEA) transport inhibitors show antinociceptive and antiinflammatory effects in vivo , but due to their concomitant inhibition of fatty acid amide hydrolase (FAAH) and overall poor bioavailability, they cannot be used unequivocally to study the particular role of endocannabinoid (EC) transport in pathophysiological conditions in vivo . Here, the potent and selective endocannabinoid reuptake inhibitor WOBE437, which inhibits AEA and 2-arachidonoylglycerol (2-AG) transport, was tested for its oral bioavailability to the brain. WOBE437 is assumed to locally increase EC levels in tissues in which facilitated EC reuptake intermediates subsequent hydrolysis. Given the marked polypharmacology of ECs, we hypothesized to see differential effects on distinct EC receptors in animal models of acute and chronic pain/inflammation. In C57BL6/J male mice, WOBE437 was orally bioavailable with an estimated t max value of ≤20 min in plasma (C max ∼ 2000 pmol/mL after 50 mg/kg, p.o.) and brain (C max ∼ 500 pmol/g after 50 mg/kg, p.o.). WOBE437 was cleared from the brain after approximately 180 min. In addition, in BALB/c male mice, acute oral administration of WOBE437 (50 mg/kg) exhibited similar brain concentrations after 60 min and inhibited analgesia in the hot plate test in a cannabinoid CB1 receptor-dependent manner, without inducing catalepsy or affecting locomotion. WOBE437 significantly elevated AEA in the somatosensory cortex, while showing dose-dependent biphasic effects on 2-AG levels in plasma but no significant changes in N -acylethanolamines other than AEA in any of the tissues. In order to explore the presumed polypharmacology mediated via elevated EC levels, we tested this EC reuptake inhibitor in complete Freud's adjuvant induced monoarthritis in BALB/c mice as a model of chronic inflammation. Repetitive doses of WOBE437 (10 mg/kg, i.p.) attenuated allodynia and edema via cannabinoid CB2, CB1, and PPARγ receptors. The allodynia inhibition of WOBE437 treatment for 3 days was fully reversed by antagonists of any of the receptors. In the single dose treatment the CB2 and TRPV1 antagonists significantly blocked the effect of WOBE437. Overall, our results show the broad utility of WOBE437 for animal experimentation for both p.o. and i.p. administrations. Furthermore, the data indicate the possible involvement of EC reuptake/transport in pathophysiological processes related to pain and inflammation.
Antinociceptive effects of HUF-101, a fluorinated cannabidiol derivative.
Silva, Nicole R; Gomes, Felipe V; Fonseca, Miriam D; Mechoulam, Raphael; Breuer, Aviva; Cunha, Thiago M; Guimarães, Francisco S
2017-10-03
Cannabidiol (CBD) is a phytocannabinoid with multiple pharmacological effects and several potential therapeutic properties. Its low oral bioavailability, however, can limit its clinical use. Preliminary results indicate that fluorination of the CBD molecule increases its pharmacological potency. Here, we investigated whether HUF-101 (3, 10, and 30mg/kg), a fluorinated CBD analogue, would induce antinociceptive effects. HUF-101 effects were compared to those induced by CBD (10, 30, and 90mg/kg) and the cannabinoid CB 1/2 receptor agonist WIN55,212-2 (1, 3, and 5mg/kg). These drugs were tested in male Swiss mice submitted to the following models predictive to antinociceptive drugs: hot plate, acetic acid-induced writhing, and carrageenan-induced inflammatory hyperalgesia. To evaluate the involvement of CB 1 and CB 2 receptors in HUF-101 and CBD effects, mice received the CB 1 receptor antagonist AM251 (1 or 3mg/kg) or the CB 2 receptor antagonist AM630 (1 or 3mg/kg) 30min before HUF-101, CBD, or WIN55,212-2. In the hot plate test, HUF-101 (30mg/kg) and WIN55,212-2 (5mg/kg) induced antinociceptive effects, which were attenuated by the pretreatment with AM251 and AM630. In the abdominal writhing test, CBD (30 and 90mg/kg), HUF-101 (30mg/kg), and WIN55,212-2 (3 and 5mg/kg) induced antinociceptive effects indicated by a reduction in the number of writhing. Whereas the pretreatment with AM630 did not mitigate the effects induced by any drug in this test, the pretreatment with AM251 attenuated the effect caused by WIN55,212-2. In the carrageenan-induced hyperalgesia test, CBD (30 and 90mg/kg), HUF-101 (3, 10 and 30mg/kg) and WIN55,212-2 (1mg/kg) decreased the intensity of mechanical hyperalgesia measured by the electronic von Frey method. The effects of all compounds were attenuated by the pretreatment with AM251 and AM630. Additionally, we evaluated whether HUF-101 would induce the classic cannabinoid CB 1 receptor-mediated tetrad (hypolocomotion, catalepsy, hypothermia, and antinociception). Unlike WIN55,212-2, CBD and HUF-101 did not induce the cannabinoid tetrad. These findings show that HUF-101 produced antinociceptive effects at lower doses than CBD, indicating that the addition of fluoride improved its pharmacological profile. Furthermore, some of the antinociceptive effects of CBD and HUF-101 effects seem to involve the activation of CB 1 and CB 2 receptors. Copyright © 2017 Elsevier Inc. All rights reserved.
Patry, L; Guillem, E; Pontonnier, F; Ferreri, M
2003-01-01
We report on the case of a 20 year old woman with no previous psychiatric history, who displayed a first episode of catatonia with acute onset. Symptoms started plainly with sudden general impairment, intense asthenia, headache, abdominal pain and confusion. After 48 hours, the patient was first admitted to an emergency unit and transferred to an internal medicine ward afterwards. She kept confused. Her behaviour was bizarre with permanent swinging of pelvis, mannerism, answers off the point and increasingly poor. The general clinical examination was normal, except for the presence of a regular tachycardia (120 bpm). The paraclinical investigations also showed normal: biology, EEG, CT Scan, lumbar puncture. Confusion persisted. The patient remained stuporous, with fixed gazing and listening-like attitudes. She managed to eat and move with the help of nurses but remained bedridden. The neurological examination showed hypokinaesia, extended hypotonia, sweating, urinary incontinence, bilateral sharp reflexes with no Babinski's sign and an inexhaustible nasoorbicular reflex. The patient was mute and contrary, actively closed her eyes, but responded occasionally to simple instructions. For short moments, she suddenly engaged in inappropriate behaviors (wandering around) while connecting back to her environment answering the telephone and talking to her parents. The patient's temperature rose twice in the first days but with no specific etiology found. During the first 8 days of hospitalization, an antipsychotic treatment was administered: haloperidol 10 mg per os daily and cyamemazine 37.5 mg i.m. daily. Despite these medications, the patient worsened and was transferred to our psychiatric unit in order to manage this catatonic picture with rapid onset for which no organic etiology was found. On admission, the patient was stuporous, immobile, unresponsive to any instruction, with catalepsy, maintenance of postures, severe negativism and refusal to eat. A first treatment by benzodiazepine (clorazepate 20 mg i.v.) did not lead to any improvement. The organic investigations were completed with cerebral MRI and the ruling out of a Wilson's disease. Convulsive therapy was then decided. It proved dramatically effective from the first attempt; 4 shocks were carried out before the patient's relatives ask for her discharge from hospital. The patient revealed she had experienced low delirium during her catatonic state. The clinical picture that followed showed retardation with anxiety. She was scared with fear both for the other patients and the nursing team. She kept distant and expressed few affects. The treatment at the time of discharge was olanzapine 10 mg per os. She was discharged with a diagnosis of catatonia but with no specific psychiatric etiological diagnosis associated. She discontinued her follow-up a few weeks later. After one year, we had no information about her. Catatonia has now become rare but remains a problem for clinicians. We reviewed data concerning short term vital prognosis and psychiatric long term prognosis in catatonia. Lethal catatonia is associated with acute onset, both marked psychomotor and neurovegetative symptoms. In the light of literature, there is no proband clinical criterion during the episode that is of relevant diagnostic value to ascertain the psychiatric etiology.
[Catatonia: resurgence of a concept. A review of the international literature].
Pommepuy, N; Januel, D
2002-01-01
Catatonia was first described in 1874 by Kahlbaum as being a cyclic disease mixing motor features and mood variations. Because most cases ended in dementia, Kraepelin recognized catatonia as a form of dementia praecox and Bleuler included it within his wide group of schizophrenias. This view influenced the psychiatric practice for more than 70 years. But catatonia was recently reconsidered and this because of the definition of more precise diagnosis criteria, the discovery of a striking association with mood disorders, and the emphasis on effective therapeutics. Peralta et al empirically developed a performant diagnostic instrument with the 11 most discriminant signs among catatonic features. Diagnostic threshold is three or more signs with sensitivity of 100% and specificity of 99%. These signs are: immobility/stupor (extreme passivity, marked hypokinesia); mutism (includes inaudible whisper); negativism (resistance to instructions, contrary comportment to whose asked); oppositionism, other called gegenhalten (resistance to passive movement which increases with the force exerted); posturing (patient adopts spontaneously odd postures); catalepsy (patient retains limb positions passively imposed during examination; waxy flexibility); automatic obedience (exaggerated co-operation to instructed movements); echo phenomena (movements, mimic and speech of the examiner are copied with modification and amplifications); rigidity (increased muscular tone); verbigeration (continuous and directionless repetition of single words or phrases); withdrawal/refusal to eat or drink (turning away from examiner, no eye contact, refusal to take food or drink when offered). Using this diagnostic tool, prevalence of catatonic syndrome appears to be close to 8% of psychiatric admissions. Other signs are also common but less specific: staring, ambitendance, iterations, stereotypes, mannerism, overactivity/excitement, impulsivity, combativeness. Some authors complete this description by adding an affective dimension which is considered specific. Clinical forms are differentiated according to evolution: acute, chronic and periodic forms exist; and symptomatology: excited catatonias have a best prognostic than retarded catatonias. Malignant catatonia is the most studied form because of its severity and high rate of mortality (25%); catatonic patients develop autonomic disturbances with labile blood pressure, hyperthermia, diaphoresis, etc. Malignant catatonia requires ECT intervention in emergency. While catatonias due to general medical conditions are well admitted (first concerned are neurologic etiologies) and concern 14,1% of catatonias, psychiatric comorbidity remains a problem. The documented decline in the proportion of patients with schizophrenia diagnosed as catatonic is congruent with the fact that most studies highlight the strong association between catatonia and mood disorders. However, customary clinical practice continues to over value diagnostic of schizophrenia because catatonic symptoms are recognized as schizophrenic and schizophrenia corresponds to a pharmacological target. Other authors stress that on average 20 to 40% of catatonias are idiopathic. Conceptual proximity between catatonic symptomatology and extrapyramidal syndrome could give some ways for neurobiological grasp of the trouble; mesolimbic and mesostriatal dopaminergic imbalance in a frontal lobe-basal ganglia-brainstem system is supposed to be involved. Treatment procedure could be standardized as follows: 1) Withhold neuroleptic medication. Those drugs are proven to be lethal when catatonic symptoms are developed; 2) Investigations to exclude treatable physical disorders (including standard blood laboratory tests, urinary drug screening, electroencephalogram and brain computerized tomography); 3) Trial of lorazepam. This therapeutic is safe and 80% effective. We propose to administer an initial oral 2,5 mg challenge; catatonic signs are rated after the first hours. If necessary, the patient could receive 3 mg/day with a 6-day full dose treatment and then, treatment would progressively be reduced; 4) If the patient failed to respond to lorazepam, ECT are needed; 5) Earlier use of ECT is recommended if autonomic instability or hyperthermia appears and malignant catatonia is suspected. In conclusion, catatonia has always had an unstable and blurred place in the psychiatric nosography since its first description. It has been incorporated within the group of schizophrenias and underdiagnosed for a long time, but has been predominantly associated with mood disorders for the last ten years. Psychopathological considerations, particularly on cognitive and affective status of catatonic patients, should clarify the nosologic discussion.