Tantalum-containing catalyst useful for producing alcohols from synthesis gas
Kinkade, N.E.
1992-04-07
A catalyst is described which is useful for selectively converting a mixture of carbon monoxide and hydrogen to a mixture of lower alkanols. The catalyst consists essentially of a mixture of molybdenum sulfide, an alkali metal compound and a tantalum compound.
Tantalum-containing catalyst useful for producing alcohols from synthesis gas
Kinkade, Nancy E.
1991-01-01
A catalyst useful for selectively converting a mixture of carbon monoxide and hydrogen to a mixture of lower alkanols consisting essentially of a mixture of molybdenum sulfide, an alkali metal compound and a tantalum compound.
Tantalum-containing catalyst useful for producing alcohols from synthesis gas
Kinkade, Nancy E.
1992-01-01
A catalyst useful for selectively converting a mixture of carbon monoxide and hydrogen to a mixture of lower alkanols consisting essentially of a mixture of molybdenum sulfide, an alkali metal compound and a tantalum compound.
Catalyst comprising Ir or Ir and Ru for hydrazine decomposition
NASA Technical Reports Server (NTRS)
Armstrong, Warren E. (Inventor); Voge, Hervey H. (Inventor); Ryland, Lloyd B. (Inventor)
1978-01-01
A catalyst for hydrazine decomposition consisting essentially of a carrier having a pore volume of at least 0.1 cubic centimeters per gram and a specific surface area, measured in square meters per gram, equal to 195 (C.sub.p + 0.013 + 0.736 V.sub.p) where C.sub.p is the specific heat capacity of the carrier at about 25.degree. C in calories per gram per degree and V.sub.p is the pore volume of the carrier in cubic centimeters per gram and metal of the group consisting of iridium, and mixtures consisting of iridium and ruthenium deposited on said carrier in an amount between 20% and about 40% by weight of the catalyst and distributed through the pores thereof in discrete particles sufficiently separated from each other so that they do not sinter or fuse together when the catalyst is at hydrazine decomposition temperature.
Catalytic oxidative dehydrogenation process
Schmidt, Lanny D.; Huff, Marylin
2002-01-01
A process for the production of a mono-olefin from a gaseous paraffinic hydrocarbon having at least two carbon atoms or mixtures thereof comprising reacting said hydrocarbons and molecular oxygen in the presence of a platinum catalyst. The catalyst consist essentially of platinum supported on alumina or zirconia monolith, preferably zirconia and more preferably in the absence of palladium, rhodium and gold.
Wang, Chao; Cheng, Xiaojing; Lu, Jiabin; Shen, Shuiyun; Yan, Xiaohui; Yin, Jiewei; Wei, Guanghua; Zhang, Junliang
2017-12-07
Remarkable progress has been made in reducing the cathodic Pt loading of PEMFCs; however, a huge performance loss appears at high current densities, indicating the existence of a large oxygen transport resistance associated with the ultralow Pt loading catalyst layer. To reduce the Pt loading without sacrificing cell performance, it is essential to illuminate the oxygen transport mechanism in the catalyst layer. Toward this goal, an experimental approach to measure the oxygen transport resistance in catalyst layers is proposed and realized for the first time in this study. The measuring approach involves a dual-layer catalyst layer design, which consists of a dummy catalyst layer and a practical catalyst layer, followed by changing the thickness of dummy layer to respectively quantify the local and bulk resistances via limiting current measurements combined with linear extrapolation. The experimental results clearly reveal that the local resistance dominates the total resistance in the catalyst layer.
Wang, Yang; Fu, Jing; Zhang, Yining; Li, Matthew; Hassan, Fathy Mohamed; Li, Guang; Chen, Zhongwei
2017-10-26
Exploring highly efficient bifunctional electrocatalysts toward the oxygen reduction and evolution reactions is essential for the realization of high-performance rechargeable zinc-air batteries. Herein, a novel nanofibrous bifunctional electrocatalyst film, consisting of metallic manganese sulfide and cobalt encapsulated by nitrogen-doped carbon nanofibers (CMS/NCNF), is prepared through a continuous electrospinning method followed by carbonization treatment. The CMS/NCNF bifunctional catalyst shows both comparable ORR and OER performances to those of commercial precious metal-based catalysts. Furthermore, the free-standing CMS/NCNF fibrous thin film is directly used as the air electrode in a solid-state zinc-air battery, which exhibits superior flexibility while retaining stable battery performance at different bending angles. This study provides a versatile design route for the rational design of free-standing bifunctional catalysts for direct use as the air electrode in rechargeable zinc-air batteries.
Yuan, Hao; Yoo, Woo-Jin; Miyamura, Hiroyuki; Kobayashi, Shū
2012-08-29
We have discovered a new class of cooperative catalytic system, consisting of heterogeneous polymer-immobilized bimetallic Pt/Ir alloyed nanoclusters (NCs) and 4-tert-butylcatechol, for the aerobic oxidation of amines to imines under ambient conditions. After optimization, the desired imines were obtained in good to excellent yields with broad substrate scope. The reaction rate was determined to be first-order with respect to the substrate and catechol and zero-order for the alloyed Pt/Ir NC catalyst. Control studies revealed that both the heterogeneous NC catalyst and 4-tert-butylcatechol are essential and act cooperatively to facilitate the aerobic oxidation under mild conditions.
NASA Astrophysics Data System (ADS)
Zhang, Jingqiong; Zhang, Wenbiao; He, Yuting; Yan, Yong
2016-11-01
The amount of coke deposition on catalyst pellets is one of the most important indexes of catalytic property and service life. As a result, it is essential to measure this and analyze the active state of the catalysts during a continuous production process. This paper proposes a new method to predict the amount of coke deposition on catalyst pellets based on image analysis and soft computing. An image acquisition system consisting of a flatbed scanner and an opaque cover is used to obtain catalyst images. After imaging processing and feature extraction, twelve effective features are selected and two best feature sets are determined by the prediction tests. A neural network optimized by a particle swarm optimization algorithm is used to establish the prediction model of the coke amount based on various datasets. The root mean square error of the prediction values are all below 0.021 and the coefficient of determination R 2, for the model, are all above 78.71%. Therefore, a feasible, effective and precise method is demonstrated, which may be applied to realize the real-time measurement of coke deposition based on on-line sampling and fast image analysis.
Process for detoxifying coal tars
Longwell, John P.; Peters, William A.
1983-01-01
A process for treating liquid hydrocarbons to remove toxic, mutagenic and/or carcinogenic aromatic hydrocarbons comprises feeding the hydrocarbons into a reactor where vapors are thermally treated in contact with a catalyst consisting essentially of calcium oxide or a calcium oxide containing mineral. Thermally treating liquid hydrocarbons in contact with calcium oxide preferentially increases the cracking of aromatics thus producing a product having a reduced amount of aromatic compounds.
Inaba, Masanori; Quinson, Jonathan; Bucher, Jan Rudolf; Arenz, Matthias
2018-03-16
We present a step-by-step tutorial to prepare proton exchange membrane fuel cell (PEMFC) catalysts, consisting of Pt nanoparticles (NPs) supported on a high surface area carbon, and to test their performance in thin film rotating disk electrode (TF-RDE) measurements. The TF-RDE methodology is widely used for catalyst screening; nevertheless, the measured performance sometimes considerably differs among research groups. These uncertainties impede the advancement of new catalyst materials and, consequently, several authors discussed possible best practice methods and the importance of benchmarking. The visual tutorial highlights possible pitfalls in the TF-RDE testing of Pt/C catalysts. A synthesis and testing protocol to assess standard Pt/C catalysts is introduced that can be used together with polycrystalline Pt disks as benchmark catalysts. In particular, this study highlights how the properties of the catalyst film on the glassy carbon (GC) electrode influence the measured performance in TF-RDE testing. To obtain thin, homogeneous catalyst films, not only the catalyst preparation, but also the ink deposition and drying procedures are essential. It is demonstrated that an adjustment of the ink's pH might be necessary, and how simple control measurements can be used to check film quality. Once reproducible TF-RDE measurements are obtained, determining the Pt loading on the catalyst support (expressed as Pt wt%) and the electrochemical surface area is necessary to normalize the determined reaction rates to either surface area or Pt mass. For the surface area determination, so-called CO stripping, or the determination of the hydrogen underpotential deposition (Hupd) charge, are standard. For the determination of the Pt loading, a straightforward and cheap procedure using digestion in aqua regia with subsequent conversion of Pt(IV) to Pt(II) and UV-vis measurements is introduced.
Inaba, Masanori; Quinson, Jonathan; Bucher, Jan Rudolf; Arenz, Matthias
2018-01-01
We present a step-by-step tutorial to prepare proton exchange membrane fuel cell (PEMFC) catalysts, consisting of Pt nanoparticles (NPs) supported on a high surface area carbon, and to test their performance in thin film rotating disk electrode (TF-RDE) measurements. The TF-RDE methodology is widely used for catalyst screening; nevertheless, the measured performance sometimes considerably differs among research groups. These uncertainties impede the advancement of new catalyst materials and, consequently, several authors discussed possible best practice methods and the importance of benchmarking. The visual tutorial highlights possible pitfalls in the TF-RDE testing of Pt/C catalysts. A synthesis and testing protocol to assess standard Pt/C catalysts is introduced that can be used together with polycrystalline Pt disks as benchmark catalysts. In particular, this study highlights how the properties of the catalyst film on the glassy carbon (GC) electrode influence the measured performance in TF-RDE testing. To obtain thin, homogeneous catalyst films, not only the catalyst preparation, but also the ink deposition and drying procedures are essential. It is demonstrated that an adjustment of the ink's pH might be necessary, and how simple control measurements can be used to check film quality. Once reproducible TF-RDE measurements are obtained, determining the Pt loading on the catalyst support (expressed as Pt wt%) and the electrochemical surface area is necessary to normalize the determined reaction rates to either surface area or Pt mass. For the surface area determination, so-called CO stripping, or the determination of the hydrogen underpotential deposition (Hupd) charge, are standard. For the determination of the Pt loading, a straightforward and cheap procedure using digestion in aqua regia with subsequent conversion of Pt(IV) to Pt(II) and UV-vis measurements is introduced. PMID:29608166
Palladium (Ii) Catalyzed Polymerization Of Norbornene And Acrylates
Sen, Ayusman; Kacker, Smita; Hennis, April; Polley, Jennifer D.
2001-10-09
Homopolymers or copolymers of acrylates, homopolymers or copolymers of norbornenes, and copolymers of acrylates with norbornenes, may be prepared by contacting acrylate and/or norbornene monomer reactant under polymerization conditions and in the presence of a solvent with a catalyst system consisting essentially of a Pd(II) dimer component having the formula: where L is a monodentate phosphorus or nitrogen ligand, X is an anionic group, and R is an alkyl or aryl group.
Palladium (II) catalyized polymerization of norbornene and acrylates
Sen, Ayusman; Kacker, Smita; Hennis, April; Polley, Jennifer D.
2000-08-29
Homopolymers or copolymers of acrylates, homopolymers or copolymers of norbornenes, and copolymers of acrylates with norbornenes, may be prepared by contacting acrylate and/or norbornene monomer reactant under polymerization conditions and in the presence of a solvent with a catalyst system consisting essentially of a Pd(II) dimer component having the formula: [(L)Pd(R)(X)].sub.2, where L is a monodentate phosphorus or nitrogen ligand, X is an anionic group, and R is an alkyl or aryl group.
Ruthenium on rutile catalyst, catalytic system, and method for aqueous phase hydrogenations
Elliot, Douglas C.; Werpy, Todd A.; Wang, Yong; Frye, Jr., John G.
2001-01-01
An essentially nickel- and rhenium-free catalyst is described comprising ruthenium on a titania support where the titania is greater than 75% rutile. A catalytic system containing a nickel-free catalyst comprising ruthenium on a titania support where the titania is greater than 75% rutile, and a method using this catalyst in the hydrogenation of an organic compound in the aqueous phase is also described.
Methods of producing porous platinum-based catalysts for oxygen reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erlebacher, Jonah D.; Snyder, Joshua D.
A porous metal that comprises platinum and has a specific surface area that is greater than 5 m 2/g and less than 75 m 2/g. A fuel cell includes a first electrode, a second electrode spaced apart from the first electrode, and an electrolyte arranged between the first and the second electrodes. At least one of the first and second electrodes is coated with a porous metal catalyst for oxygen reduction, and the porous metal catalyst comprises platinum and has a specific surface area that is greater than 5 m 2/g and less than 75 m 2/g. A method ofmore » producing a porous metal according to an embodiment of the current invention includes producing an alloy consisting essentially of platinum and nickel according to the formula Pt xNi 1-x, where x is at least 0.01 and less than 0.3; and dealloying the alloy in a substantially pH neutral solution to reduce an amount of nickel in the alloy to produce the porous metal.« less
Porous platinum-based catalysts for oxygen reduction
Erlebacher, Jonah D; Snyder, Joshua D
2014-11-25
A porous metal that comprises platinum and has a specific surface area that is greater than 5 m.sup.2/g and less than 75 m.sup.2/g. A fuel cell includes a first electrode, a second electrode spaced apart from the first electrode, and an electrolyte arranged between the first and the second electrodes. At least one of the first and second electrodes is coated with a porous metal catalyst for oxygen reduction, and the porous metal catalyst comprises platinum and has a specific surface area that is greater than 5 m.sup.2/g and less than 75 m.sup.2/g. A method of producing a porous metal according to an embodiment of the current invention includes producing an alloy consisting essentially of platinum and nickel according to the formula Pt.sub.xNi.sub.1-x, where x is at least 0.01 and less than 0.3; and dealloying the alloy in a substantially pH neutral solution to reduce an amount of nickel in the alloy to produce the porous metal.
Enhanced catalyst stability for cyclic co methanation operations
Risch, Alan P.; Rabo, Jule A.
1983-01-01
Carbon monoxide-containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is thereafter reacted with steam or hydrogen to form methane. Enhanced catalyst stability for long term, cyclic operation is obtained by the incorporation of an alkali or alkaline earth dopant in a silica binding agent added to the catalyst-support additive composition.
NASA Astrophysics Data System (ADS)
Mohamad Alosfur, Firas K.; Ridha, Noor J.; Hafizuddin Haji Jumali, Mohammad; Radiman, S.
2018-04-01
Mesoporous TiO2 hollow spherical nanostructures with high surface areas were successfully prepared using a microwave method. The prepared hollow spheres had a size range between 200 and 500 nm. The spheres consisted of numerous smaller TiO2 nanoparticles with an average diameter of 8 nm. The particles had an essentially mesoporous structure, with a pore size in the range of 2-50 nm. The results confirmed that the synthesised of anatase TiO2 nanoparticles with specific surface area approximately 172.3 m2 g-1. The effect of ultraviolet and visible light irradiation and catalyst dosage on the TiO2 photocatalytic activity was studied by measuring the degradation rate of methylene blue. The maximum dye degradation performances with low catalyst loading (30 mg) were 99% and 63.4% using the same duration of ultraviolet and visible light irradiation, respectively (120 min).
Ozonation of clofibric acid catalyzed by titanium dioxide.
Rosal, Roberto; Gonzalo, María S; Rodríguez, Antonio; García-Calvo, Eloy
2009-09-30
The removal of clofibric acid from aqueous solution has been investigated in catalytic and non-catalytic semicontinuous ozonation runs. Kinetic data were analyzed using second order expressions for the reaction between organics and ozone or hydroxyl radicals. Catalytic runs used a commercial titanium dioxide catalyst consisting of fumed colloidal particles. The kinetic constant of the non-catalytic ozonation of clofibric acid at pH 3 was 8.16 x 10(-3)+/-3.4 x 10(-4)L mmol(-1)s(-1). The extent of mineralization during non-catalytic runs ranged from 50% at pH 7 to 20% at pH 3 in a reaction that essentially took place during the first 10-20 min. The catalyst increased the total extent of mineralization, its effect being more important during the first part of the reaction. The pseudo-homogeneous catalytic rate constant was 2.17 x 10(-2) L mmol(-1)s(-1) at pH 3 and 6.80 x 10(-1)L mmol(-1)s(-1) at pH 5, with up to a threefold increase with respect to non-catalytic constants using catalyst load of 1g/L. A set of stopped-flow experiments were designed to elucidate the role of catalyst, whose effect was probably due to the adsorption of organics on catalytic sites rather than to the promotion of ozone decomposition.
Chen, Jia-Rong; Cao, Yi-Ju; Zou, You-Quan; Tan, Fen; Fu, Liang; Zhu, Xiao-Yu; Xiao, Wen-Jing
2010-03-21
A series of thiourea-amine bifunctional catalysts have been developed by a rational combination of prolines with cinchona alkaloids, which are connected by a thiourea motif. The catalyst 3a, prepared from L-proline and cinchonidine, was found to be a highly efficient catalyst for the conjugate addition of ketones/aldehydes to a wide range of nitroalkenes (up to 98/2 dr and 96% ee). The privileged cinchonidine backbone and the thiourea motif are essential to the reaction activity and enantioselectivity.
Application, Deactivation, and Regeneration of Heterogeneous Catalysts in Bio-Oil Upgrading
Cheng, Shouyun; Wei, Lin; Zhao, Xianhui; ...
2016-12-07
The massive consumption of fossil fuels and associated environmental issues are leading to an increased interest in alternative resources such as biofuels. The renewable biofuels can be upgraded from bio-oils that are derived from biomass pyrolysis. Catalytic cracking and hydrodeoxygenation (HDO) are two of the most promising bio-oil upgrading processes for biofuel production. Heterogeneous catalysts are essential for upgrading bio-oil into hydrocarbon biofuel. Although advances have been achieved, the deactivation and regeneration of catalysts still remains a challenge. This review focuses on the current progress and challenges of heterogeneous catalyst application, deactivation, and regeneration. The technologies of catalysts deactivation, reduction,more » and regeneration for improving catalyst activity and stability are discussed. Some suggestions for future research including catalyst mechanism, catalyst development, process integration, and biomass modification for the production of hydrocarbon biofuels are provided.« less
Application, Deactivation, and Regeneration of Heterogeneous Catalysts in Bio-Oil Upgrading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Shouyun; Wei, Lin; Zhao, Xianhui
The massive consumption of fossil fuels and associated environmental issues are leading to an increased interest in alternative resources such as biofuels. The renewable biofuels can be upgraded from bio-oils that are derived from biomass pyrolysis. Catalytic cracking and hydrodeoxygenation (HDO) are two of the most promising bio-oil upgrading processes for biofuel production. Heterogeneous catalysts are essential for upgrading bio-oil into hydrocarbon biofuel. Although advances have been achieved, the deactivation and regeneration of catalysts still remains a challenge. This review focuses on the current progress and challenges of heterogeneous catalyst application, deactivation, and regeneration. The technologies of catalysts deactivation, reduction,more » and regeneration for improving catalyst activity and stability are discussed. Some suggestions for future research including catalyst mechanism, catalyst development, process integration, and biomass modification for the production of hydrocarbon biofuels are provided.« less
Thompson, Levi T.; Patt, Jeremy; Moon, Dong Ju; Phillips, Cory
2003-09-23
Mono- and bimetallic transition metal carbides, nitrides and borides, and their oxygen containing analogs (e.g. oxycarbides) for use as water gas shift catalysts are described. In a preferred embodiment, the catalysts have the general formula of M1.sub.A M2.sub.B Z.sub.C O.sub.D, wherein M1 is selected from the group consisting of Mo, W, and combinations thereof; M2 is selected from the group consisting of Fe, Ni, Cu, Co, and combinations thereof; Z is selected from the group consisting of carbon, nitrogen, boron, and combinations thereof; A is an integer; B is 0 or an integer greater than 0; C is an integer; O is oxygen; and D is 0 or an integer greater than 0. The catalysts exhibit good reactivity, stability, and sulfur tolerance, as compared to conventional water shift gas catalysts. These catalysts hold promise for use in conjunction with proton exchange membrane fuel cell powered systems.
Stability of High-Performance Pt-Based Catalysts for Oxygen Reduction Reactions.
Lin, Rui; Cai, Xin; Zeng, Hao; Yu, Zhuoping
2018-04-01
Due to their environmental sustainability and high efficiency, proton-exchange-membrane fuel cells (PEMFCs) are expected to be an essential type of energy source for electric vehicles, energy generation, and the space industry in the coming decades. Here, the recent developments regarding shape-controlled nanostructure catalysts are reviewed, with a focus on the stability of high-performance Pt-based catalysts and related mechanisms. The catalysts, which possess great activity, are still far from meeting the requirements of their applications, due to stability issues, especially in membrane electrode assemblies (MEAs). Thus, solutions toward the comprehensive performance of Pt-based catalysts are discussed here. The research trends and related theories that can promote the application of Pt-based catalysts are also provided. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method for catalytic destruction of organic materials
Sealock, Jr., L. John; Baker, Eddie G.; Elliott, Douglas C.
1997-01-01
A method is disclosed for converting waste organic materials into an innocuous product gas. The method comprises maintaining, in a pressure vessel, in the absence of oxygen, at a temperature of 250.degree. C. to 500.degree. C. and a pressure of at least 50 atmospheres, a fluid organic waste material, water, and a catalyst consisting essentially of reduced nickel in an amount sufficient to catalyze a reaction of the organic waste material to produce an innocuous product gas composed primarily of methane and carbon dioxide. The methane in the product gas may be burned to preheat the organic materials.
Method for catalytic destruction of organic materials
Sealock, L.J. Jr.; Baker, E.G.; Elliott, D.C.
1997-05-20
A method is disclosed for converting waste organic materials into an innocuous product gas. The method comprises maintaining, in a pressure vessel, in the absence of oxygen, at a temperature of 250 to 500 C and a pressure of at least 50 atmospheres, a fluid organic waste material, water, and a catalyst consisting essentially of reduced nickel in an amount sufficient to catalyze a reaction of the organic waste material to produce an innocuous product gas composed primarily of methane and carbon dioxide. The methane in the product gas may be burned to preheat the organic materials. 7 figs.
Hydrazine Catalyst Production: Sustaining S-405 Technology
NASA Technical Reports Server (NTRS)
Wucherer, E. J.; Cook, Timothy; Stiefel, Mark; Humphries, Randy, Jr.; Parker, Janet
2003-01-01
The development of the iridium-based Shell 405 catalyst for spontaneous decomposition of hydrazine was one of the key enabling technologies for today's spacecraft and launch vehicles. To ensure that this crucial technology was not lost when Shell elected to exit the business, Aerojet, supported by NASA, has developed a dedicated catalyst production facility that will supply catalyst for future spacecraft and launch vehicle requirements. We have undertaken a program to transfer catalyst production from Shell Chemical USA (Houston, TX) to Aerojet's Redmond, WA location. This technology transition was aided by Aerojet's 30 years of catalyst manufacturing experience and NASA diligence and support in sustaining essential technologies. The facility has produced and tested S-405 catalyst to existing Shell 405 specifications and standards. Our presentation will describe the technology transition effort including development of the manufacturing facility, capture of the manufacturing process, test equipment validation, initial batch build and final testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.
Through the use of a metal catalyst, gasification of wet algae slurries can be accomplished with high levels of carbon conversion to gas at relatively low temperature (350 C). In a pressurized-water environment (20 MPa), near-total conversion of the organic structure of the algae to gases has been achieved in the presence of a supported ruthenium metal catalyst. The process is essentially steam reforming, as there is no added oxidizer or reagent other than water. In addition, the gas produced is a medium-heating value gas due to the synthesis of high levels of methane, as dictated by thermodynamic equilibrium. Asmore » opposed to earlier work, biomass trace components were removed by processing steps so that they did not cause processing difficulties in the fixed catalyst bed tubular reactor system. As a result, the algae feedstocks, even those with high ash contents, were much more reliably processed. High conversions were obtained even with high slurry concentrations. Consistent catalyst operation in these short-term tests suggested good stability and minimal poisoning effects. High methane content in the product gas was noted with significant carbon dioxide captured in the aqueous byproduct in combination with alkali constituents and the ammonia byproduct derived from proteins in the algae. High conversion of algae to gas products was found with low levels of byproduct water contamination and low to moderate loss of carbon in the mineral separation step.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onopchenki, A.; Sabourin, E.T.
1986-02-25
This patent describes a process for the production of a mixture of saturated and unstaurated silahydrocarbons. This process contacts an admixture consisting of (A) at least one alpha-olefin containing from 2 to about 20 carbon atoms per molecule, and (B) at least one alkylsilane selected from the group consisting of (i) a dialkylsilane (ii) a trialkylsilane (iii) mixtures thereof, with a catalyst consisting of a homogeneous monomeric rhodium-containing catalyst having a basicity substantially equal to or less than that provided by a rhodium-containing catalyst having a triphenyl phosphine ligand or a heterogeneous rhodium-containing catalyst in a halogen-free inert solvent. Themore » process conducted at a temperature of from about 30/sup 0/ to about 200/sup 0/C., a weight ratio of olefin to alkylsilane of from about 0.5 to about 20 to one and a catalyst concentration of from about 1 x 10-/sup 5/ to about 1 x 10-/sup 2/ millimoles of catalyst per millimole alkylsilane, to produce a mixture containing saturated silane hydrocarbons and an unsaturated silahydrocarbon. Inclusive with the proviso that the molecular weight of the unsaturated silane hydrocarbon is above 300.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favaro, Marco; Xiao, Hai; Cheng, Tao
A national priority is to convert CO 2 into high-value chemical products such as liquid fuels. Because current electrocatalysts are not adequate, we aim to discover new catalysts by obtaining a detailed understanding of the initial steps of CO 2 electroreduction on copper surfaces, the best current catalysts. Using ambient pressure X-ray photoelectron spectroscopy interpreted with quantum mechanical prediction of the structures and free energies, we show that the presence of a thin suboxide structure below the copper surface is essential to bind the CO 2 in the physisorbed configuration at 298 K, and we show that this suboxide ismore » essential for converting to the chemisorbed CO 2 in the presence of water as the first step toward CO 2 reduction products such as formate and CO. This optimum suboxide leads to both neutral and charged Cu surface sites, providing fresh insights into how to design improved carbon dioxide reduction catalysts.« less
Li, Hua; Li, Fei; Zhang, Biaobiao; Zhou, Xu; Yu, Fengshou; Sun, Licheng
2015-04-08
A highly active supramolecular system for visible light-driven water oxidation was developed with cyclodextrin-modified ruthenium complex as the photosensitizer, phenyl-modified ruthenium complexes as the catalysts, and sodium persulfate as the sacrificial electron acceptor. The catalysts were found to form 1:1 host-guest adducts with the photosensitizer. Stopped-flow measurement revealed the host-guest interaction is essential to facilitate the electron transfer from catalyst to sensitizer. As a result, a remarkable quantum efficiency of 84% was determined under visible light irradiation in neutral aqueous phosphate buffer. This value is nearly 1 order of magnitude higher than that of noninteraction system, indicating that the noncovalent incorporation of sensitizer and catalyst is an appealing approach for efficient conversion of solar energy into fuels.
Talley, Michael R; Stokes, Ryjul W; Walker, Whitney K; Michaelis, David J
2016-06-14
In situ formation of heterobimetallic Pt-Ti catalysts enables rapid room temperature catalysis in enyne cycloisomerization reactions. The Lewis acidic titanium atom in the ligand framework is shown to be essential for fast catalysis. A range of enyne substrates are efficiently cyclized to carbocycles and heterocycles in high yield.
Method For Selective Catalytic Reduction Of Nitrogen Oxides
Mowery-Evans, Deborah L.; Gardner, Timothy J.; McLaughlin, Linda I.
2005-02-15
A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.
Method for selective catalytic reduction of nitrogen oxides
Mowery-Evans, Deborah L [Broomfield, CO; Gardner, Timothy J [Albuquerque, NM; McLaughlin, Linda I [Albuquerque, NM
2005-02-15
A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.
Supported fischer-tropsch catalyst and method of making the catalyst
Dyer, Paul N.; Pierantozzi, Ronald; Withers, Howard P.
1987-01-01
A Fischer-Tropsch catalyst and a method of making the catalyst for a Fischer-Tropsch process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas, is selectively converted to higher hydrocarbons of relatively narrow carbon number range is disclosed. In general, the selective and notably stable catalyst, consist of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of a Fischer-Tropsch metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.
Heterogenised Molecular Catalysts for the Reduction of CO₂ to Fuels.
Windle, Christopher D; Reisner, Erwin
2015-08-19
CO2 conversion provides a possible solution to curtail the growing CO2 levels in our atmosphere and reduce dependence on fossil fuels. To this end, it is essential to develop efficient catalysts for the reduction of CO2. The structure and activity of molecular CO2 reduction catalysts can be tuned and they offer good selectivity with reasonable stability. Heterogenisation of these molecules reduces solvent restrictions, facilitates recyclability and can dramatically improve activity by preventing catalyst inactivation and perturbing the kinetics of intermediates. The nature and morphology of the solid-state material upon which the catalyst is immobilised can significantly influence the activity of the hybrid assembly. Although work in this area began forty years ago, it has only drawn substantial attention in recent years. This review article gives an overview of the historical development of the field.
Heterogenised Molecular Catalysts for the Reduction of CO2 to Fuels.
Windle, Christopher D; Reisner, Erwin
2015-01-01
CO(2) conversion provides a possible solution to curtail the growing CO(2) levels in our atmosphere and reduce dependence on fossil fuels. To this end, it is essential to develop efficient catalysts for the reduction of CO(2). The structure and activity of molecular CO(2) reduction catalysts can be tuned and they offer good selectivity with reasonable stability. Heterogenisation of these molecules reduces solvent restrictions, facilitates recyclability and can dramatically improve activity by preventing catalyst inactivation and perturbing the kinetics of intermediates. The nature and morphology of the solid-state material upon which the catalyst is immobilised can significantly influence the activity of the hybrid assembly. Although work in this area began forty years ago, it has only drawn substantial attention in recent years. This review article gives an overview of the historical development of the field.
Catalyst for selective conversion of synthesis gas and method of making the catalyst
Dyer, Paul N.; Pierantozzi, Ronald
1986-01-01
A Fischer-Tropsch (F-T) catalyst, a method of making the catalyst and an F-T process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas is selectively converted to higher hydrocarbons of relatively narrow carbon number range. In general, the selective and notably stable catalyst, consists of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of an F-T metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.
Process for the regeneration of metallic catalysts
Katzer, James R.; Windawi, Hassan
1981-01-01
A method for the regeneration of metallic hydrogenation catalysts from the class consisting of Ni, Rh, Pd, Ir, Pt and Ru poisoned with sulfur, with or without accompanying carbon deposition, comprising subjecting the catalyst to exposure to oxygen gas in a concentration of about 1-10 ppm. intermixed with an inert gas of the group consisting of He, A, Xe, Kr, N.sub.2 and air substantially free of oxygen to an extent such that the total oxygen molecule throughout is in the range of about 10 to 20 times that of the hydrogen sulfide molecular exposure producing the catalyst poisoning while maintaining the temperature in the range of about 300.degree. to 500.degree. C.
NASA Astrophysics Data System (ADS)
Park, Tae Jae; Jung, Gyu Il; Kim, Euk Hyun; Koo, Sang Man
2017-06-01
Development of mesoporous structures of composite silica particles with various organic functional groups was investigated by using a two-step process, consisting of one-pot sol-gel process in the presence and absence of ammonium hydroxide and a selective dissolution process with an ethanol-water mixture. Five different organosilanes, including methyltrimethoxysilane (MTMS), 3-mercaptopropyltrimethoxysilane (MPTMS), phenyltrimethoxysilane (PTMS), vinyltrimethoxysilane (VTMS), and 3-aminopropyltrimethoxysilane (APTMS) were employed. The mesoporous (organically modified silica) ORMOSIL particles were obtained even in the absence of ammonium hydroxide when the reaction mixture contained APTMS. The morphology of the particles, however, were different from those prepared with ammonia catalyst and the same organosilane mixtures, probably because the overall hydrolysis/condensation rates became slower. Co-existence of APTMS and VTMS was essential to prepare mesoporous particles from ternary organosilane mixtures. The work presented here demonstrates that organosilica particles with desired functionality and desired mesoporous structures can be obtained by selecting proper types of organosilane monomers and performing a facile and mild process either with or without ammonium hydroxide.
Afanasiev, Vladimir Vasilievich [Moscow, RU; Zefirov, Nikolai Serafimovich [Moscow, RU; Zalepugin, Dmitry Yurievich [Moscow, RU; Polyakov, Victor Stanislavovich [Moscow, RU; Tilkunova, Nataliya Alexandrovna [Moscow, RU; Tomilova, Larisa Godvigovna [Moscow, RU
2009-09-08
A continuous method of producing propylenecarbonate includes carboxylation of propylene oxide with carbon dioxide in presence of phthalocyanine catalyst on an inert carrier, using as the phthalocyanine catalyst at least one catalyst selected from the group consisting of not-substituted, methyl, ethyl, butyl, and tret butyl-substituted phthalocyanines of metals, including those containing counterions, and using as the carrier a hydrophobic carrier.
Favaro, Marco; Xiao, Hai; Cheng, Tao; Goddard, William A; Yano, Junko; Crumlin, Ethan J
2017-06-27
A national priority is to convert CO 2 into high-value chemical products such as liquid fuels. Because current electrocatalysts are not adequate, we aim to discover new catalysts by obtaining a detailed understanding of the initial steps of CO 2 electroreduction on copper surfaces, the best current catalysts. Using ambient pressure X-ray photoelectron spectroscopy interpreted with quantum mechanical prediction of the structures and free energies, we show that the presence of a thin suboxide structure below the copper surface is essential to bind the CO 2 in the physisorbed configuration at 298 K, and we show that this suboxide is essential for converting to the chemisorbed CO 2 in the presence of water as the first step toward CO 2 reduction products such as formate and CO. This optimum suboxide leads to both neutral and charged Cu surface sites, providing fresh insights into how to design improved carbon dioxide reduction catalysts.
Favaro, Marco; Yano, Junko; Crumlin, Ethan J.
2017-01-01
A national priority is to convert CO2 into high-value chemical products such as liquid fuels. Because current electrocatalysts are not adequate, we aim to discover new catalysts by obtaining a detailed understanding of the initial steps of CO2 electroreduction on copper surfaces, the best current catalysts. Using ambient pressure X-ray photoelectron spectroscopy interpreted with quantum mechanical prediction of the structures and free energies, we show that the presence of a thin suboxide structure below the copper surface is essential to bind the CO2 in the physisorbed configuration at 298 K, and we show that this suboxide is essential for converting to the chemisorbed CO2 in the presence of water as the first step toward CO2 reduction products such as formate and CO. This optimum suboxide leads to both neutral and charged Cu surface sites, providing fresh insights into how to design improved carbon dioxide reduction catalysts. PMID:28607092
Heterobimetallic catalysis in asymmetric 1,4-addition of O-alkylhydroxylamine to enones.
Yamagiwa, Noriyuki; Matsunaga, Shigeki; Shibasaki, Masakatsu
2003-12-31
A heterobimetallic YLi3tris(binaphthoxide) catalyst (YLB) promoted a 1,4-addition of O-methylhydroxylamine in high enantiomeric excess (up to 97% ee). Catalyst loading was reduced to as little as 0.5 mol %, still affording the 1,4-adduct in 96% yield and 96% ee. A high concentration of substrates and the scalability of the present system is also practically useful. The results suggested that the heterobimetallic catalysis was not deactivated even in the presence of excess amine under highly concentrated conditions. A Y and Li bimetallic cooperative function was essential for a high catalyst turnover number.
ERIC Educational Resources Information Center
Ulmer, Phillip Gregory
2015-01-01
Accreditation is an essential component in the history of education in the United States and is a central catalyst for quality education, continuous improvement, and positive growth in student achievement. Although previous researchers identified teachers as an essential component in meeting accreditation outcomes, additional information was…
Thin Film Catalyst Layers for Direct Methanol Fuel Cells
NASA Technical Reports Server (NTRS)
Witham, C. K.; Chun, W.; Ruiz, R.; Valdez, T. I.; Narayanan, S. R.
2000-01-01
One of the primary obstacles to the widespread use of the direct methanol fuel cell (DMFC) is the high cost of the catalyst. Therefore, reducing the catalyst loading well below the current level of 8-12 mg/cm 2 would be important to commercialization. The current methods for preparation of catalyst layers consisting of catalyst, ionomer and sometimes a hydrophobic additive are applied by either painting, spraying, decal transfer or screen printing processes. Sputter deposition is a coating technique widely used in manufacturing and therefore particularly attractive. In this study we have begun to explore sputtering as a method for catalyst deposition. Present experiments focus on Pt-Ru catalyst layers for the anode.
NASA Astrophysics Data System (ADS)
Liu, Yulin; Lin, Jinghuang; Jia, Henan; Chen, Shulin; Qi, Junlei; Qu, Chaoqun; Cao, Jian; Feng, Jicai; Fei, Weidong
2017-11-01
In order to confirm the key role of Ar+ ion bombardment in the growth feature of nanostructured carbon materials (NCMs), here we report a novel strategy to create different Ar+ ion states in situ in plasma enhanced chemical vapor deposition (PECVD) by separating catalyst film from the substrate. Different bombardment environments on either side of the catalyst film were created simultaneously to achieve multi-layered structural NCMs. Results showed that Ar+ ion bombardment is crucial and complex for the growth of NCMs. Firstly, Ar+ ion bombardment has both positive and negative effects on carbon nanotubes (CNTs). On one hand, Ar+ ions can break up the graphic structure of CNTs and suppress thin CNT nucleation and growth. On the other hand, Ar+ ion bombardment can remove redundant carbon layers on the surface of large catalyst particles which is essential for thick CNTs. As a result, the diameter of the CNTs depends on the Ar+ ion state. As for vertically oriented few-layer graphene (VFG), Ar+ ions are essential and can even convert the CNTs into VFG. Therefore, by combining with the catalyst separation method, specific or multi-layered structural NCMs can be obtained by PECVD only by changing the intensity of Ar+ ion bombardment, and these special NCMs are promising in many fields.
Liu, Yulin; Lin, Jinghuang; Jia, Henan; Chen, Shulin; Qi, Junlei; Qu, Chaoqun; Cao, Jian; Feng, Jicai; Fei, Weidong
2017-11-24
In order to confirm the key role of Ar + ion bombardment in the growth feature of nanostructured carbon materials (NCMs), here we report a novel strategy to create different Ar + ion states in situ in plasma enhanced chemical vapor deposition (PECVD) by separating catalyst film from the substrate. Different bombardment environments on either side of the catalyst film were created simultaneously to achieve multi-layered structural NCMs. Results showed that Ar + ion bombardment is crucial and complex for the growth of NCMs. Firstly, Ar + ion bombardment has both positive and negative effects on carbon nanotubes (CNTs). On one hand, Ar + ions can break up the graphic structure of CNTs and suppress thin CNT nucleation and growth. On the other hand, Ar + ion bombardment can remove redundant carbon layers on the surface of large catalyst particles which is essential for thick CNTs. As a result, the diameter of the CNTs depends on the Ar + ion state. As for vertically oriented few-layer graphene (VFG), Ar + ions are essential and can even convert the CNTs into VFG. Therefore, by combining with the catalyst separation method, specific or multi-layered structural NCMs can be obtained by PECVD only by changing the intensity of Ar + ion bombardment, and these special NCMs are promising in many fields.
Instruments for preparation of heterogeneous catalysts by an impregnation method
NASA Astrophysics Data System (ADS)
Yamada, Yusuke; Akita, Tomoki; Ueda, Atsushi; Shioyama, Hiroshi; Kobayashi, Tetsuhiko
2005-06-01
Instruments for the preparation of heterogeneous catalysts in powder form have been developed. The instruments consist of powder dispensing robot and an automated liquid handling machine equipped with an ultrasonic and a vortex mixer. The combination of these two instruments achieves the catalyst preparation by incipient wetness and ion exchange methods. The catalyst library prepared with these instruments were tested for dimethyl ether steam reforming and characterized by transmission electron microscopy observations.
Catalytic distillation structure
Smith, Jr., Lawrence A.
1984-01-01
Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.
Fluorination process using catalyst
Hochel, Robert C.; Saturday, Kathy A.
1985-01-01
A process for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3, AgF.sub.2 and NiF.sub.2, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3 and AgF.sub.2, whereby the fluorination is significantly enhanced.
Fluorination process using catalysts
Hochel, R.C.; Saturday, K.A.
1983-08-25
A process is given for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/, AgF/sub 2/ and NiF/sub 2/, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/ and AgF/sub 2/, whereby the fluorination is significantly enhanced.
Gutmann, Torsten; Ratajczyk, Tomasz; Dillenberger, Sonja; Xu, Yeping; Grünberg, Anna; Breitzke, Hergen; Bommerich, Ute; Trantzschel, Thomas; Bernarding, Johannes; Buntkowsky, Gerd
2011-09-01
It is shown that the para-hydrogen induced polarization (PHIP) phenomenon in homogenous solution containing the substrate styrene is also observable employing simple inorganic systems of the form MCl(3)·xH(2)O (M=Rh, Ir) as catalyst. Such observation confirms that already very simple metal complexes enable the creation of PHIP signal enhancement in solution. This opens up new pathways to increase the sensitivity of NMR and MRT by PHIP enhancement using cost-effective catalysts and will be essential for further mechanistic studies of simple transition metal systems. Copyright © 2011 Elsevier Inc. All rights reserved.
Catalysts for oxidation of mercury in flue gas
Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA
2010-08-17
Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).
Stoupin, Stanislav; Chung, Eun-Hyuk; Chattopadhyay, Soma; Segre, Carlo U; Smotkin, Eugene S
2006-05-25
In situ X-ray absorption spectroscopy, ex situ X-ray fluorescence, and X-ray powder diffraction enabled detailed core analysis of phase segregated nanostructured PtRu anode catalysts in an operating direct methanol fuel cell (DMFC). No change in the core structures of the phase segregated catalyst was observed as the potential traversed the current onset potential of the DMFC. The methodology was exemplified using a Johnson Matthey unsupported PtRu (1:1) anode catalyst incorporated into a DMFC membrane electrode assembly. During DMFC operation the catalyst is essentially metallic with half of the Ru incorporated into a face-centered cubic (FCC) Pt alloy lattice and the remaining half in an amorphous phase. The extended X-ray absorption fine structure (EXAFS) analysis suggests that the FCC lattice is not fully disordered. The EXAFS indicates that the Ru-O bond lengths were significantly shorter than those reported for Ru-O of ruthenium oxides, suggesting that the phases in which the Ru resides in the catalysts are not similar to oxides.
Investigating fuel-cell transport limitations using hydrogen limiting current
Spingler, Franz B.; Phillips, Adam; Schuler, Tobias; ...
2017-03-09
Reducing mass-transport losses in polymer-electrolyte fuel cells (PEFCs) is essential to increase their power density and reduce overall stack cost. At the same time, cost also motivates the reduction in expensive precious-metal catalysts, which results in higher local transport losses in the catalyst layers. Here, we use a hydrogen-pump limiting-current setup to explore the gas-phase transport losses through PEFC catalyst layers and various gas-diffusion and microporous layers. It is shown that the effective diffusivity in the gas-diffusion layers is a strong function of liquid saturation. Additionally, it is shown how the catalyst layer unexpectedly contributes significantly to the overall measuredmore » transport resistance. This is especially true for low catalyst loadings. It is also shown how the various losses can be separated into different mechanisms including diffusional processes and mass-dependent and independent ones, where the data suggests that a large part of the transport resistance in catalyst layers cannot be attributed to a gas-phase diffusional process. The technique is promising for deconvoluting transport losses in PEFCs.« less
2006-11-01
PHYSICAL PROPERTIES OF THE PLASMA SPRAYING PROCESS The sprayed -on material is formed by gradual deposition of separate discretely solidifying with great... deposition processes and their ecological purity. Essentially, the method of ion-plasma spraying is evaporation of a metal (or alloy ) atoms from the...29 5.1 PHYSICAL PROPERTIES OF THE PLASMA SPRAYING PROCESS ...................34 6. CATALYST SUPPORTERS FOR THE 1ST STAGE OF
Hu, Yang; Jensen, Jens Oluf; Zhang, Wei; Cleemann, Lars N; Xing, Wei; Bjerrum, Niels J; Li, Qingfeng
2014-04-01
Nonprecious metal catalysts for the oxygen reduction reaction are the ultimate materials and the foremost subject for low-temperature fuel cells. A novel type of catalysts prepared by high-pressure pyrolysis is reported. The catalyst is featured by hollow spherical morphologies consisting of uniform iron carbide (Fe3 C) nanoparticles encased by graphitic layers, with little surface nitrogen or metallic functionalities. In acidic media the outer graphitic layers stabilize the carbide nanoparticles without depriving them of their catalytic activity towards the oxygen reduction reaction (ORR). As a result the catalyst is highly active and stable in both acid and alkaline electrolytes. The synthetic approach, the carbide-based catalyst, the structure of the catalysts, and the proposed mechanism open new avenues for the development of ORR catalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
García-Melchor, Max; Vilella, Laia; López, Núria
2016-04-29
An attractive strategy to improve the performance of water oxidation catalysts would be to anchor a homogeneous molecular catalyst on a heterogeneous solid surface to create a hybrid catalyst. The idea of this combined system is to take advantage of the individual properties of each of the two catalyst components. We use Density Functional Theory to determine the stability and activity of a model hybrid water oxidation catalyst consisting of a dimeric Ir complex attached on the IrO 2(110) surface through two oxygen atoms. We find that homogeneous catalysts can be bound to its matrix oxide without losing significant activity.more » Hence, designing hybrid systems that benefit from both the high tunability of activity of homogeneous catalysts and the stability of heterogeneous systems seems feasible.« less
Catalytic distillation structure
Smith, L.A. Jr.
1984-04-17
Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.
Hydrogen production from bio-fuels using precious metal catalysts
NASA Astrophysics Data System (ADS)
Pasel, Joachim; Wohlrab, Sebastian; Rotov, Mikhail; Löhken, Katrin; Peters, Ralf; Stolten, Detlef
2017-11-01
Fuel cell systems with integrated autothermal reforming unit require active and robust catalysts for H2 production. Thus, an experimental screening of catalysts for autothermal reforming of commercial biodiesel fuel was performed. Catalysts consisted of a monolithic cordierite substrate, an oxide support (γ-Al2O3) and Pt, Ru, Ni, PtRh and PtRu as active phase. Experiments were run by widely varying the O2/C and H2O/C molar ratios at different gas hourly space velocities. Fresh and aged catalysts were characterized by temperature programmed methods and thermogravimetry to find correlations with catalytic activity and stability.
Favaro, Marco; Xiao, Hai; Cheng, Tao; ...
2017-06-12
A national priority is to convert CO 2 into high-value chemical products such as liquid fuels. Because current electrocatalysts are not adequate, we aim to discover new catalysts by obtaining a detailed understanding of the initial steps of CO 2 electroreduction on copper surfaces, the best current catalysts. Using ambient pressure X-ray photoelectron spectroscopy interpreted with quantum mechanical prediction of the structures and free energies, we show that the presence of a thin suboxide structure below the copper surface is essential to bind the CO 2 in the physisorbed configuration at 298 K, and we show that this suboxide ismore » essential for converting to the chemisorbed CO 2 in the presence of water as the first step toward CO 2 reduction products such as formate and CO. This optimum suboxide leads to both neutral and charged Cu surface sites, providing fresh insights into how to design improved carbon dioxide reduction catalysts.« less
Li, Jingkun; Alsudairi, Amell; Ma, Zi-Feng; Mukerjee, Sanjeev; Jia, Qingying
2017-02-01
Proper understanding of the major limitations of current catalysts for oxygen reduction reaction (ORR) is essential for further advancement. Herein by studying representative Pt and non-Pt ORR catalysts with a wide range of redox potential (E redox ) via combined electrochemical, theoretical, and in situ spectroscopic methods, we demonstrate that the role of the site-blocking effect in limiting the ORR varies drastically depending on the E redox of active sites; and the intrinsic activity of active sites with low E redox have been markedly underestimated owing to the overlook of this effect. Accordingly, we establish a general asymmetric volcano trend in the ORR activity: the ORR of the catalysts on the overly high E redox side of the volcano is limited by the intrinsic activity; whereas the ORR of the catalysts on the low E redox side is limited by either the site-blocking effect and/or intrinsic activity depending on the E redox .
Intermetallic nickel silicide nanocatalyst—A non-noble metal–based general hydrogenation catalyst
Pohl, Marga-Martina; Agapova, Anastasiya
2018-01-01
Hydrogenation reactions are essential processes in the chemical industry, giving access to a variety of valuable compounds including fine chemicals, agrochemicals, and pharmachemicals. On an industrial scale, hydrogenations are typically performed with precious metal catalysts or with base metal catalysts, such as Raney nickel, which requires special handling due to its pyrophoric nature. We report a stable and highly active intermetallic nickel silicide catalyst that can be used for hydrogenations of a wide range of unsaturated compounds. The catalyst is prepared via a straightforward procedure using SiO2 as the silicon atom source. The process involves thermal reduction of Si–O bonds in the presence of Ni nanoparticles at temperatures below 1000°C. The presence of silicon as a secondary component in the nickel metal lattice plays the key role in its properties and is of crucial importance for improved catalytic activity. This novel catalyst allows for efficient reduction of nitroarenes, carbonyls, nitriles, N-containing heterocycles, and unsaturated carbon–carbon bonds. Moreover, the reported catalyst can be used for oxidation reactions in the presence of molecular oxygen and is capable of promoting acceptorless dehydrogenation of unsaturated N-containing heterocycles, opening avenues for H2 storage in organic compounds. The generality of the nickel silicide catalyst is demonstrated in the hydrogenation of over a hundred of structurally diverse unsaturated compounds. The wide application scope and high catalytic activity of this novel catalyst make it a nice alternative to known general hydrogenation catalysts, such as Raney nickel and noble metal–based catalysts. PMID:29888329
Intermetallic nickel silicide nanocatalyst-A non-noble metal-based general hydrogenation catalyst.
Ryabchuk, Pavel; Agostini, Giovanni; Pohl, Marga-Martina; Lund, Henrik; Agapova, Anastasiya; Junge, Henrik; Junge, Kathrin; Beller, Matthias
2018-06-01
Hydrogenation reactions are essential processes in the chemical industry, giving access to a variety of valuable compounds including fine chemicals, agrochemicals, and pharmachemicals. On an industrial scale, hydrogenations are typically performed with precious metal catalysts or with base metal catalysts, such as Raney nickel, which requires special handling due to its pyrophoric nature. We report a stable and highly active intermetallic nickel silicide catalyst that can be used for hydrogenations of a wide range of unsaturated compounds. The catalyst is prepared via a straightforward procedure using SiO 2 as the silicon atom source. The process involves thermal reduction of Si-O bonds in the presence of Ni nanoparticles at temperatures below 1000°C. The presence of silicon as a secondary component in the nickel metal lattice plays the key role in its properties and is of crucial importance for improved catalytic activity. This novel catalyst allows for efficient reduction of nitroarenes, carbonyls, nitriles, N-containing heterocycles, and unsaturated carbon-carbon bonds. Moreover, the reported catalyst can be used for oxidation reactions in the presence of molecular oxygen and is capable of promoting acceptorless dehydrogenation of unsaturated N-containing heterocycles, opening avenues for H 2 storage in organic compounds. The generality of the nickel silicide catalyst is demonstrated in the hydrogenation of over a hundred of structurally diverse unsaturated compounds. The wide application scope and high catalytic activity of this novel catalyst make it a nice alternative to known general hydrogenation catalysts, such as Raney nickel and noble metal-based catalysts.
Sattler, Jesper J H B; Gonzalez-Jimenez, Ines D; Luo, Lin; Stears, Brien A; Malek, Andrzej; Barton, David G; Kilos, Beata A; Kaminsky, Mark P; Verhoeven, Tiny W G M; Koers, Eline J; Baldus, Marc; Weckhuysen, Bert M
2014-01-01
A novel catalyst material for the selective dehydrogenation of propane is presented. The catalyst consists of 1000 ppm Pt, 3 wt % Ga, and 0.25 wt % K supported on alumina. We observed a synergy between Ga and Pt, resulting in a highly active and stable catalyst. Additionally, we propose a bifunctional active phase, in which coordinately unsaturated Ga3+ species are the active species and where Pt functions as a promoter. PMID:24989975
Kandemir, Timur; Friedrich, Matthias; Parker, Stewart F.; ...
2016-04-14
We have investigated methanol synthesis with model supported copper catalysts, Cu/ZnO and Cu/MgO, using CO/H 2 and CO 2/H 2 as feedstocks. Under CO/H 2 both catalysts show chemisorbed methoxy as a stable intermediate, the Cu/MgO catalyst also shows hydroxyls on the support. Under CO 2/H 2 the catalysts behave differently, in that formate is also seen on the catalyst. For the Cu/ZnO catalyst hydroxyls are present on the metal whereas for the Cu/MgO hydroxyls are found on the support. Furthermore, these results are consistent with a recently published model for methanol synthesis and highlight the key role of ZnOmore » in the process.« less
NASA Astrophysics Data System (ADS)
Ke, Fei; Wang, Luhuan; Zhu, Junfa
2014-12-01
The recovery and reuse of expensive catalysts are important in both heterogeneous and homogeneous catalysis due to economic and environmental reasons. This work reports a novel multifunctional magnetic core-shell gold catalyst which can be easily prepared and shows remarkable catalytic properties in the reduction of 4-nitrophenol. The novel Au-Fe3O4@metal-organic framework (MOF) catalyst consists of a superparamagnetic Au-Fe3O4 core and a porous MOF shell with controllable thickness. Small Au nanoparticles (NPs) of 3-5 nm are mainly sandwiched between the Fe3O4 core and the porous MOF shell. Catalytic studies show that the core-shell structured Au-Fe3O4@MOF catalyst has a much higher catalytic activity than other reported Au-based catalysts toward the reduction of 4-nitrophenol. Moreover, this catalyst can be easily recycled due to the presence of the superparamagnetic core. Therefore, compared to conventional catalysts used in the reduction of 4-nitrophenol, this porous MOF-based magnetic catalyst is green, cheap and promising for industrial applications.The recovery and reuse of expensive catalysts are important in both heterogeneous and homogeneous catalysis due to economic and environmental reasons. This work reports a novel multifunctional magnetic core-shell gold catalyst which can be easily prepared and shows remarkable catalytic properties in the reduction of 4-nitrophenol. The novel Au-Fe3O4@metal-organic framework (MOF) catalyst consists of a superparamagnetic Au-Fe3O4 core and a porous MOF shell with controllable thickness. Small Au nanoparticles (NPs) of 3-5 nm are mainly sandwiched between the Fe3O4 core and the porous MOF shell. Catalytic studies show that the core-shell structured Au-Fe3O4@MOF catalyst has a much higher catalytic activity than other reported Au-based catalysts toward the reduction of 4-nitrophenol. Moreover, this catalyst can be easily recycled due to the presence of the superparamagnetic core. Therefore, compared to conventional catalysts used in the reduction of 4-nitrophenol, this porous MOF-based magnetic catalyst is green, cheap and promising for industrial applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05421k
Immune Cells and Microbiota Response to Iron Starvation.
Chieppa, Marcello; Giannelli, Gianluigi
2018-01-01
Metal ions are essential for life on Earth, mostly as crucial components of all living organisms; indeed, they are necessary for bioenergetics functions as crucial redox catalysts. Due to the essential role of iron in biological processes, body iron content is finely regulated and is the battlefield of a tug-of-war between the host and the microbiota.
40 CFR Appendix Vii to Part 86 - Standard Bench Cycle (SBC)
Code of Federal Regulations, 2011 CFR
2011-07-01
... procedures [Ref. § 86.1823-08(d)] consist of aging a catalyst-oxygen-sensor system on an aging bench which... bench with an engine as the source of feed gas for the catalyst. 3. The SBC is a 60-second cycle which... occurs in the hottest catalyst. Alternatively, the feed gas temperature may be measured and converted to...
40 CFR Appendix Vii to Part 86 - Standard Bench Cycle (SBC)
Code of Federal Regulations, 2010 CFR
2010-07-01
... procedures [Ref. § 86.1823-08(d)] consist of aging a catalyst-oxygen-sensor system on an aging bench which... bench with an engine as the source of feed gas for the catalyst. 3. The SBC is a 60-second cycle which... occurs in the hottest catalyst. Alternatively, the feed gas temperature may be measured and converted to...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khateeb, Siddique; Su, Dong; Guerreo, Sandra
This article presents the performance of palladium-platinum core-shell catalysts (Pt/Pd/C) for oxygen reduction synthesized in gram-scale batches in both liquid cells and polymer-electrolyte membrane fuel cells. Core-shell catalyst synthesis and characterization, ink fabrication, and cell assembly details are discussed. The Pt mass activity of the Pt/Pd core-shell catalyst was 0.95 A mg –1 at 0.9 V measured in liquid cells (0.1 M HClO4), which was 4.8 times higher than a commercial Pt/C catalyst. The performances of Pt/Pd/C and Pt/C in large single cells (315 cm 2) were assessed under various operating conditions. The core-shell catalyst showed consistently higher performance thanmore » commercial Pt/C in fuel cell testing. A 20–60 mV improvement across the whole current density range was observed on air. Sensitivities to temperature, humidity, and gas composition were also investigated and the core-shell catalyst showed a consistent benefit over Pt under all conditions. However, the 4.8 times activity enhancement predicated by liquid cell measurements was not fully realized in fuel cells.« less
Khateeb, Siddique; Su, Dong; Guerreo, Sandra; ...
2016-05-03
This article presents the performance of palladium-platinum core-shell catalysts (Pt/Pd/C) for oxygen reduction synthesized in gram-scale batches in both liquid cells and polymer-electrolyte membrane fuel cells. Core-shell catalyst synthesis and characterization, ink fabrication, and cell assembly details are discussed. The Pt mass activity of the Pt/Pd core-shell catalyst was 0.95 A mg –1 at 0.9 V measured in liquid cells (0.1 M HClO4), which was 4.8 times higher than a commercial Pt/C catalyst. The performances of Pt/Pd/C and Pt/C in large single cells (315 cm 2) were assessed under various operating conditions. The core-shell catalyst showed consistently higher performance thanmore » commercial Pt/C in fuel cell testing. A 20–60 mV improvement across the whole current density range was observed on air. Sensitivities to temperature, humidity, and gas composition were also investigated and the core-shell catalyst showed a consistent benefit over Pt under all conditions. However, the 4.8 times activity enhancement predicated by liquid cell measurements was not fully realized in fuel cells.« less
Ng, K. Y. Simon; Salley, Steve O.; Wang, Huali
2017-10-03
A catalyst comprises a carbide or nitride of a metal and a promoter element. The metal is selected from the group consisting of Mo, W, Co, Fe, Rh or Mn, and the promoter element is selected from the group consisting of Ni, Co, Al, Si, S or P, provided that the metal and the promoter element are different. The catalyst also comprises a mesoporous support having a surface area of at least about 170 m.sup.2 g.sup.-1, wherein the carbide or nitride of the metal and the promoter element is supported by the mesoporous support, and is in a non-sulfided form and in an amorphous form.
NASA Astrophysics Data System (ADS)
Liu, R. F.; Li, W. B.; Peng, A. Y.
2018-01-01
The quantum yields and efficiency(ACF) was prepared via a modified deposition-precipitation method to facilitate its photon absorption and of photogenerated charge carriers have been the major issues for photocatalysis on titania catalyst. The TiO2/ACF catalyst with anatase TiO2 uniformly dispersed on activated carbon fibers electron transfer, thus improve the quantum yields and efficiency of the photogenerated electrons and holes. XPS analysis on the catalyst demonstrates the existence of Ti3+ and Ti2+ species, Csbnd Ti bond and abundant hydroxyls, which are also proved by UV-vis DRS and TG-DSC analysis. It is believed that the acid environment in preparation plays an essential role in the formation of Csbnd Ti bond and surface hydroxyls, which can be tuned by changing hydrothermal synthesis time. The Csbnd Ti bond can improve the electron transfer in the catalyst and the substantial surface hydroxyls lead to high absorption for UV lines and enhanced adsorption of water and formaldehyde, resulting in more active OH free radicals and the outstanding photocatalytic activity of TiO2/ACF, which is much higher than the titania powder for photocatalytic removal of low concentration formaldehyde. The essential role of surface hydroxyls for photocatalytic activity was confirmed surpassing that of chemical bond between carbon and titanium in TiO2-carbon composite for the first time.
Application of a mixed metal oxide catalyst to a metallic substrate
NASA Technical Reports Server (NTRS)
Sevener, Kathleen M. (Inventor); Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Wisner, Daniel L. (Inventor)
2009-01-01
A method for applying a mixed metal oxide catalyst to a metallic substrate for the creation of a robust, high temperature catalyst system for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in propulsion systems. The method begins by forming a prepared substrate material consisting of a metallic inner substrate and a bound layer of a noble metal intermediate. Alternatively, a bound ceramic coating, or frit, may be introduced between the metallic inner substrate and noble metal intermediate when the metallic substrate is oxidation resistant. A high-activity catalyst slurry is applied to the surface of the prepared substrate and dried to remove the organic solvent. The catalyst layer is then heat treated to bind the catalyst layer to the surface. The bound catalyst layer is then activated using an activation treatment and calcinations to form the high-activity catalyst system.
Catalysts for conversion of methane to higher hydrocarbons
Siriwardane, Ranjani V.
1993-01-01
Catalysts for converting methane to higher hydrocarbons such as ethane and ethylene in the presence of oxygen at temperatures in the range of about 700.degree. to 900.degree. C. are described. These catalysts comprise calcium oxide or gadolinium oxide respectively promoted with about 0.025-0.4 mole and about 0.1-0.7 mole sodium pyrophosphate. A preferred reaction temperature in a range of about 800.degree. to 850.degree. C. with a preferred oxygen-to-methane ratio of about 2:1 provides an essentially constant C.sub.2 hydrocarbon yield in the range of about 12 to 19 percent over a period of time greater than about 20 hours.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spivey, James J.
The research summarized here has the goal of developing a fundamental understanding of how catalysts work. These materials are demonstrably essential to our daily life, from the cars we drive to the clothes we wear. Our Center advances the science behind how we prepare, analyze, and describe catalysts. This has been identified by one of the documents guiding Federal research objectives (Directing Matter and Energy: Five Challenges for Science and the Imagination): “Major challenges in heterogeneous catalysis are to more clearly define the nature of the active sites, to engineer at the molecular level catalysis with designed properties in threemore » dimensions, and to create new catalysts for new transformations.” This directly addresses this objective.« less
Ionic Liquids Enabling Revolutionary Closed-Loop Life Support
NASA Technical Reports Server (NTRS)
Brown, Brittany R.; Abney, Morgan B.; Karr, Laurel; Stanley, Christine M.; Paley, Steve
2017-01-01
Minimizing resupply from Earth is essential for future long duration manned missions. The current oxygen recovery system aboard the International Space Station is capable of recovering approximately 50% of the oxygen from metabolic carbon dioxide. For long duration manned missions, a minimum of 75% oxygen recovery is targeted with a goal of greater than 90%. Theoretically, the Bosch process can recover 100% of oxygen, making it a promising technology for oxygen recovery for long duration missions. However, the Bosch process produces elemental carbon which ultimately fouls the catalyst. Once the catalyst performance is compromised, it must be replaced resulting in undesired resupply mass. Based on the performance of a Bosch system designed by NASA in the 1990's, a three year Martian mission would require approximately 1315 kg (2850 lbs) of catalyst resupply. It may be possible to eliminate catalyst resupply with a fully regenerable system using an Ionic Liquid (IL)-based Bosch system. In 2016, we reported the feasibility of using ILs to produce an iron catalyst on a copper substrate and to regenerate the iron catalyst by extracting the iron from the copper substrate and product carbon. Additionally, we described a basic system concept for an IL-based Bosch. Here we report the results of efforts to scale catalyst preparation, to scale catalyst regeneration, and to scale the carbon formation processing rate of a single reactor.
Co-Liquefaction of Elbistan Lignite with Manure Biomass; Part 1. Effect of Catalyst Concentration
NASA Astrophysics Data System (ADS)
Koyunoglu, Cemil; Karaca, Hüseyin
2017-12-01
The hydrogenation of coal by molecular hydrogen has not been appreciable unless a catalyst has been used, especially at temperatures below 500 °C. Conversion under these conditions is essentially the result of the pyrolysis of coal, although hydrogen increases the yield of conversion due to the stabilization of radicals and other reactive species. Curtis and his co-workers has shown that highly effective and accessible catalyst are required to achieve high levels of oil production from the coprocessing of coal and heavy residua. In their work, powdered hydrotreating catalyst at high loadings an oil-soluble metal salts of organic acids as catalyst precursors achieved the highest levels of activity for coal conversion and oil production. Red mud which is iron-based catalysed has been used in several co-processing studies. It was used as an inexpensive sulphur sink for the H2S evolved to convert Fe into pyrrohotite during coal liquefaction. In this study, Elbistan Lignite (EL) processed with manure using red mud as a catalyst with the range of concentration from 3% to 12%. The main point of using red mud catalyst is to enhance oil products yield of coal liquefaction, which deals with its catalytic activity. On the other hand, red mud acts on EL liquefaction with manure as a catalyst and represents an environmental option to produce lower sulphur content oil products as well.
Ionic Liquids Enabling Revolutionary Closed-Loop Life Support
NASA Technical Reports Server (NTRS)
Brown, Brittany R.; Abney, Morgan B.; Karr, Laurel J.; Stanley, Christine M.; Donovan, Dave N.; Palsey, Mark S.
2017-01-01
Minimizing resupply from Earth is essential for future long duration manned missions. The current oxygen recovery system aboard the International Space Station is capable of recovering approximately 50% of the oxygen from metabolic carbon dioxide. For long duration manned missions, a minimum of 75% oxygen recovery is targeted with a goal of greater than 90%. Theoretically, the Bosch process can recover 100% of oxygen, making it a promising technology for oxygen recovery for long duration missions. However, the Bosch process produces elemental carbon which ultimately fouls the catalyst. Once the catalyst performance is compromised, it must be replaced resulting in undesired resupply mass. Based on the performance of a Bosch system designed by NASA in the 1990's, a three year Martian mission would require approximately 1315 kg (2850 lbs) of catalyst resupply. It may be possible to eliminate catalyst resupply with a fully regenerable system using an Ionic Liquid (IL)-based Bosch system. In 2016, we reported the feasibility of using ILs to produce an iron catalyst on a copper substrate and to regenerate the iron catalyst by extracting the iron from the copper substrate and product carbon. Additionally, we described a basic system concept for an IL-based Bosch. Here we report the results of efforts to scale catalyst preparation, catalyst regeneration, and to scale the carbon formation processing rate of a single reactor.
High-temperature catalyst for catalytic combustion and decomposition
NASA Technical Reports Server (NTRS)
Mays, Jeffrey A. (Inventor); Lohner, Kevin A. (Inventor); Sevener, Kathleen M. (Inventor); Jensen, Jeff J. (Inventor)
2005-01-01
A robust, high temperature mixed metal oxide catalyst for propellant composition, including high concentration hydrogen peroxide, and catalytic combustion, including methane air mixtures. The uses include target, space, and on-orbit propulsion systems and low-emission terrestrial power and gas generation. The catalyst system requires no special preheat apparatus or special sequencing to meet start-up requirements, enabling a fast overall response time. Start-up transients of less than 1 second have been demonstrated with catalyst bed and propellant temperatures as low as 50 degrees Fahrenheit. The catalyst system has consistently demonstrated high decomposition effeciency, extremely low decomposition roughness, and long operating life on multiple test particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardeman, D.; Esconjauregui, S., E-mail: cse28@cam.ac.uk; Cartwright, R.
2015-01-28
We report the growth of multi-walled carbon nanotube forests employing an active-active bimetallic Fe-Co catalyst. Using this catalyst system, we observe a synergistic effect by which—in comparison to pure Fe or Co—the height of the forests increases significantly. The homogeneity in the as-grown nanotubes is also improved. By both energy dispersive spectroscopy and in-situ x-ray photoelectron spectroscopy, we show that the catalyst particles consist of Fe and Co, and this dramatically increases the growth rate of the tubes. Bimetallic catalysts are thus potentially useful for synthesising nanotube forests more efficiently.
Investigation of Mixed Oxide Catalysts for NO Oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szanyi, Janos; Karim, Ayman M.; Pederson, Larry R.
2014-12-09
The oxidation of engine-generated NO to NO2 is an important step in the reduction of NOx in lean engine exhaust because NO2 is required for the performance of the LNT technology [2], and it enhances the activities of ammonia selective catalytic reduction (SCR) catalysts [1]. In particular, for SCR catalysts an NO:NO2 ratio of 1:1 is most effective for NOx reduction, whereas for LNT catalysts, NO must be oxidized to NO2 before adsorption on the storage components. However, NO2 typically constitutes less than 10% of NOx in lean exhaust, so catalytic oxidation of NO is essential. Platinum has been foundmore » to be especially active for NO oxidation, and is widely used in DOC and LNT catalysts. However, because of the high cost and poor thermal durability of Pt-based catalysts, there is substantial interest in the development of alternatives. The objective of this project, in collaboration with partner General Motors, is to develop mixed metal oxide catalysts for NO oxidation, enabling lower precious metal usage in emission control systems. [1] M. Koebel, G. Madia, and M. Elsener, Catalysis Today 73, 239 (2002). [2] C. H. Kim, G. S. Qi, K. Dahlberg, and W. Li, Science 327, 1624 (2010).« less
Duan, Lele; Wang, Lei; Li, Fusheng; Li, Fei; Sun, Licheng
2015-07-21
The oxygen evolving complex (OEC) of the natural photosynthesis system II (PSII) oxidizes water to produce oxygen and reducing equivalents (protons and electrons). The oxygen released from PSII provides the oxygen source of our atmosphere; the reducing equivalents are used to reduce carbon dioxide to organic products, which support almost all organisms on the Earth planet. The first photosynthetic organisms able to split water were proposed to be cyanobacteria-like ones appearing ca. 2.5 billion years ago. Since then, nature has chosen a sustainable way by using solar energy to develop itself. Inspired by nature, human beings started to mimic the functions of the natural photosynthesis system and proposed the concept of artificial photosynthesis (AP) with the view to creating energy-sustainable societies and reducing the impact on the Earth environments. Water oxidation is a highly energy demanding reaction and essential to produce reducing equivalents for fuel production, and thereby effective water oxidation catalysts (WOCs) are required to catalyze water oxidation and reduce the energy loss. X-ray crystallographic studies on PSII have revealed that the OEC consists of a Mn4CaO5 cluster surrounded by oxygen rich ligands, such as oxyl, oxo, and carboxylate ligands. These negatively charged, oxygen rich ligands strongly stabilize the high valent states of the Mn cluster and play vital roles in effective water oxidation catalysis with low overpotential. This Account describes our endeavors to design effective Ru WOCs with low overpotential, large turnover number, and high turnover frequency by introducing negatively charged ligands, such as carboxylate. Negatively charged ligands stabilized the high valent states of Ru catalysts, as evidenced by the low oxidation potentials. Meanwhile, the oxygen production rates of our Ru catalysts were improved dramatically as well. Thanks to the strong electron donation ability of carboxylate containing ligands, a seven-coordinate Ru(IV) species was isolated as a reaction intermediate, shedding light on the reaction mechanisms of Ru-catalyzed water oxidation chemistry. Auxiliary ligands have dramatic effects on the water oxidation catalysis in terms of the reactivity and the reaction mechanism. For instance, Ru-bda (H2bda = 2,2'-bipyridine-6,6'-dicarboxylic acid) water oxidation catalysts catalyze Ce(IV)-driven water oxidation extremely fast via the radical coupling of two Ru(V)═O species, while Ru-pda (H2pda = 1,10-phenanthroline-2,9-dicarboxylic acid) water oxidation catalysts catalyze the same reaction slowly via water nucleophilic attack on a Ru(V)═O species. With a number of active Ru catalysts in hands, light driven water oxidation was accomplished using catalysts with low catalytic onset potentials. The structures of molecular catalysts could be readily tailored to introduce additional functional groups, which favors the fabrication of state-of-the-art Ru-based water oxidation devices, such as electrochemical water oxidation anodes and photo-electrochemical anodes. The development of efficient water oxidation catalysts has led to a step forward in the sustainable energy system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Franklin
Two main categories of heterogeneous catalysts are metal and metal oxide which catalyze 80% chemical reactions at solid-gas and solid-liquid interfaces. Metal oxide catalysts are much more complicated than metal catalysts. The reason is that the cations of the metal atoms could exhibit a few different oxidation states on surface of the same catalyst particle such as Co 3O 4 or change of their oxidation states under different reactive environments. For a metal catalyst, there is only one oxidation state typically. In addition, surface of a metal oxide can be terminated with multiple surface functionalities including O atoms with differentmore » binding configurations and OH group. For metal, only metal atoms are exposed typically. Obviously, the complication of surface chemistry and structure of a metal oxide makes studies of surface of an oxide catalyst very challenging. Due to the complication of surface of a meal oxide, the electronic and geometric structures of surface of a metal oxide and the exposed species have received enormous attention since oxide catalysts catalyze at least 1/3 chemical reactions in chemical and energy industries. Understanding of catalytic reactions on early transition metal oxide-based catalysts is fundamentally intriguing and of great practical interest in energy- and environment-related catalysis. Exploration of surface chemistry of oxide-based catalysts at molecular level during catalysis has remained challenging though it is critical in deeply understanding catalysis on oxide-based catalysts and developing oxide-based catalysts with high activity and selectivity. Thus, the overall objective of this project is to explore surface chemistry and structure of early transition metal oxide-based catalysts through in-situ characterization of surface of catalysts, measurements of catalytic performances, and then build an intrinsic correlation of surface chemistry and structure with their catalytic performances in a few important catalytic reactions, and essentially fundamentally understand catalytic mechanism. Furthermore, this correlation will guide the design of catalysts with high activity and selectivity.« less
Bentrup, Ursula
2010-12-01
Several in situ techniques are known which allow investigations of catalysts and catalytic reactions under real reaction conditions using different spectroscopic and X-ray methods. In recent years, specific set-ups have been established which combine two or more in situ methods in order to get a more detailed understanding of catalytic systems. This tutorial review will give a summary of currently available set-ups equipped with multiple techniques for in situ catalyst characterization, catalyst preparation, and reaction monitoring. Besides experimental and technical aspects of method coupling including X-ray techniques, spectroscopic methods (Raman, UV-vis, FTIR), and magnetic resonance spectroscopies (NMR, EPR), essential results will be presented to demonstrate the added value of multitechnique in situ approaches. A special section is focussed on selected examples of use which show new developments and application fields.
Zhang, Miao; Frei, Heinz
2017-05-05
Water oxidation is an essential reaction of an artificial photosystem for solar fuel generation because it provides electrons needed to reduce carbon dioxide or protons to a fuel. Earth-abundant metal oxides are among the most attractive catalytic materials for this reaction because of their robustness and scalability, but their efficiency poses a challenge. Knowledge of catalytic surface intermediates gained by vibrational spectroscopy under reaction conditions plays a key role in uncovering kinetic bottlenecks and provides a basis for catalyst design improvements. Recent dynamic infrared and Raman studies reveal the molecular identity of transient surface intermediates of water oxidation on metal oxides. Combined with ultrafast infrared observations of how charges are delivered to active sites of the metal oxide catalyst and drive the multielectron reaction, spectroscopic advances are poised to play a key role in accelerating progress toward improved catalysts for artificial photosynthesis.
Flowthrough Reductive Catalytic Fractionation of Biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Eric M.; Stone, Michael L.; Katahira, Rui
2017-11-01
Reductive catalytic fractionation (RCF) has emerged as a leading biomass fractionation and lignin valorization strategy. Here, flowthrough reactors were used to investigate RCF of poplar. Most RCF studies to date have been conducted in batch, but a flow-based process enables the acquisition of intrinsic kinetic and mechanistic data essential to accelerate the design, optimization, and scale-up of RCF processes. Time-resolved product distributions and yields obtained from experiments with different catalyst loadings were used to identify and deconvolute events during solvolysis and hydrogenolysis. Multi-bed RCF experiments provided unique insights into catalyst deactivation, showing that leaching, sintering, and surface poisoning are causesmore » for decreased catalyst performance. The onset of catalyst deactivation resulted in higher concentrations of unsaturated lignin intermediates and increased occurrence of repolymerization reactions, producing high-molecular-weight species. Overall, this study demonstrates the concept of flowthrough RCF, which will be vital for realistic scale-up of this promising approach.« less
Carbon dioxide hydrogenation to formic acid by using a heterogeneous gold catalyst.
Preti, Debora; Resta, Claudio; Squarcialupi, Sergio; Fachinetti, Giuseppe
2011-12-23
AUROlite, consisting of gold supported on titania (picture shows extrudates in a steel net cage), is a robust catalyst for the production of catalyst-free HCOOH/NEt(3) adducts from H(2), CO(2), and neat NEt(3). Pure HCOOH is freed from the adducts by amine exchange. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, B.K.; Campbell, K.D.
Methane oxidative coupling studies were carried out in an atmospheric quartz reactor at temperatures between 700 and 800/degree/C. New catalysts prepared and studied included doped alkaline earth catalysts, lanthanide oxides, and proprietary catalysts. Neodymium oxide, Nd/sub 2/O/sub 3/, was found to be as active and selective as samarium oxide, Sm/sub 2/O/sub 3/, in contrast to literature reports. Proprietary Union Carbide catalysts (UCC-S:1) showed initial methane conversions and C/sub 2/ selectivities comparable to literature catalysts. Atypically low carbon dioxide to carbon monoxide ratios (typically ten times lower than those seen in the literature or other catalysts tested) and high ethylene tomore » ethane ratios (3 to 6 compared to typical literature ratios below 1) were obtained. These results are interesting because ethylene is more valuable than ethane and carbon monoxide is more valuable than carbon dioxide. With these UCC-S:1 catalysts, rapid deactivation was coupled with an observed shift in product ratios toward those more typical in the literature. Initial cases for process conceptualization studies were selected. The Comparison Case will consist of the conversion sequence from methane to synthesis gas to methanol to olefins to liquid hydrocarbon fuels. Case 1 will consist of the conversion of methane to ethylene and ethane. Case 2 will be the direct conversion of methane to C/sub 2/'s followed by conversion to liquid hydrocarbon fuels. 7 figs., 18 tabs.« less
Highly efficient and robust molecular ruthenium catalysts for water oxidation.
Duan, Lele; Araujo, Carlos Moyses; Ahlquist, Mårten S G; Sun, Licheng
2012-09-25
Water oxidation catalysts are essential components of light-driven water splitting systems, which could convert water to H(2) driven by solar radiation (H(2)O + hν → 1/2O(2) + H(2)). The oxidation of water (H(2)O → 1/2O(2) + 2H(+) + 2e(-)) provides protons and electrons for the production of dihydrogen (2H(+) + 2e(-) → H(2)), a clean-burning and high-capacity energy carrier. One of the obstacles now is the lack of effective and robust water oxidation catalysts. Aiming at developing robust molecular Ru-bda (H(2)bda = 2,2'-bipyridine-6,6'-dicarboxylic acid) water oxidation catalysts, we carried out density functional theory studies, correlated the robustness of catalysts against hydration with the highest occupied molecular orbital levels of a set of ligands, and successfully directed the synthesis of robust Ru-bda water oxidation catalysts. A series of mononuclear ruthenium complexes [Ru(bda)L(2)] (L = pyridazine, pyrimidine, and phthalazine) were subsequently synthesized and shown to effectively catalyze Ce(IV)-driven [Ce(IV) = Ce(NH(4))(2)(NO(3))(6)] water oxidation with high oxygen production rates up to 286 s(-1) and high turnover numbers up to 55,400.
Enhancement of Pt/SnO2 Catalysts by Addition of H2O
NASA Technical Reports Server (NTRS)
Schryer, David R.; Sidney, Barry D.; Van Norman, John D.; Brown, Kenneth G.; Schryer, Jacqueline; Upchurch, Billy T.
1990-01-01
Water vapor in pretreatment gas restores essential hydroxyl groups. Platinum on tin oxide (Pt/SnO2) is good catalyst for oxidation of carbon monoxide (CO) at temperatures from about 25 degrees C to 100 degress C. Activity of Pt/SnO2 for CO oxidation significantly enhanced by pretreating it at approximately 225 degrees C with reducing gas such as CO. Technique useful in manufacture of high-power CO2 lasers for industrial and scientific uses.
First principle chemical kinetics in zeolites: the methanol-to-olefin process as a case study.
Van Speybroeck, Veronique; De Wispelaere, Kristof; Van der Mynsbrugge, Jeroen; Vandichel, Matthias; Hemelsoet, Karen; Waroquier, Michel
2014-11-07
To optimally design next generation catalysts a thorough understanding of the chemical phenomena at the molecular scale is a prerequisite. Apart from qualitative knowledge on the reaction mechanism, it is also essential to be able to predict accurate rate constants. Molecular modeling has become a ubiquitous tool within the field of heterogeneous catalysis. Herein, we review current computational procedures to determine chemical kinetics from first principles, thus by using no experimental input and by modeling the catalyst and reacting species at the molecular level. Therefore, we use the methanol-to-olefin (MTO) process as a case study to illustrate the various theoretical concepts. This process is a showcase example where rational design of the catalyst was for a long time performed on the basis of trial and error, due to insufficient knowledge of the mechanism. For theoreticians the MTO process is particularly challenging as the catalyst has an inherent supramolecular nature, for which not only the Brønsted acidic site is important but also organic species, trapped in the zeolite pores, must be essentially present during active catalyst operation. All these aspects give rise to specific challenges for theoretical modeling. It is shown that present computational techniques have matured to a level where accurate enthalpy barriers and rate constants can be predicted for reactions occurring at a single active site. The comparison with experimental data such as apparent kinetic data for well-defined elementary reactions has become feasible as current computational techniques also allow predicting adsorption enthalpies with reasonable accuracy. Real catalysts are truly heterogeneous in a space- and time-like manner. Future theory developments should focus on extending our view towards phenomena occurring at longer length and time scales and integrating information from various scales towards a unified understanding of the catalyst. Within this respect molecular dynamics methods complemented with additional techniques to simulate rare events are now gradually making their entrance within zeolite catalysis. Recent applications have already given a flavor of the benefit of such techniques to simulate chemical reactions in complex molecular environments.
Composite catalyst for carbon monoxide and hydrocarbon oxidation
Liu, W.; Flytzani-Stephanopoulos, M.
1996-03-19
A method and composition are disclosed for the complete oxidation of carbon monoxide and/or hydrocarbon compounds. The method involves reacting the carbon monoxide and/or hydrocarbons with an oxidizing agent in the presence of a metal oxide composite catalyst. The catalyst is prepared by combining fluorite-type oxygen ion conductors with active transition metals. The fluorite oxide, selected from the group consisting of cerium oxide, zirconium oxide, thorium oxide, hafnium oxide, and uranium oxide, and may be doped by alkaline earth and rare earth oxides. The transition metals, selected from the group consisting of molybdenum, copper, cobalt, manganese, nickel, and silver, are used as additives. The atomic ratio of transition metal to fluorite oxide is less than one.
Composite catalyst for carbon monoxide and hydrocarbon oxidation
Liu, Wei; Flytzani-Stephanopoulos, Maria
1996-01-01
A method and composition for the complete oxidation of carbon monoxide and/or hydrocarbon compounds. The method involves reacting the carbon monoxide and/or hydrocarbons with an oxidizing agent in the presence of a metal oxide composite catalyst. The catalyst is prepared by combining fluorite-type oxygen ion conductors with active transition metals. The fluorite oxide, selected from the group consisting of cerium oxide, zirconium oxide, thorium oxide, hafnium oxide, and uranium oxide, and may be doped by alkaline earth and rare earth oxides. The transition metals, selected from the group consisting of molybdnum, copper, cobalt, maganese, nickel, and silver, are used as additives. The atomic ratio of transition metal to fluorite oxide is less than one.
A durable PtRu/C catalyst with a thin protective layer for direct methanol fuel cells.
Shimazaki, Yuzuru; Hayasaka, Sho; Koyama, Tsubasa; Nagao, Daisuke; Kobayashi, Yoshio; Konno, Mikio
2010-11-15
A methanol oxidation catalyst with improved durability in acidic environments is reported. The catalyst consists of PtRu alloy nanoparticles on a carbon support that were stabilized with a silane-coupling agent. The catalyst was prepared by reducing ions of Pt and Ru in the presence of a carbon support and the silane-coupling agent. The careful choice of preparatory conditions such as the concentration of the silane-coupling agent and solution pH resulted in the preparation of catalyst in which the PtRu nanoparticles were dispersively adsorbed onto the carbon support. The catalytic activity was similar to that of a commercial catalyst and was unchanged after immersion in sulfuric acid solution for 1000 h, suggesting the high durability of the PtRu catalyst for the anode of direct methanol fuel cells. Copyright © 2010 Elsevier Inc. All rights reserved.
Photoreactor with self-contained photocatalyst recapture
Gering, Kevin L.
2004-12-07
A system for the continuous use and recapture of a catalyst in liquid, comprising: a generally vertical reactor having a reaction zone with generally downwardly flowing liquid, and a catalyst recovery chamber adjacent the reaction zone containing a catalyst consisting of buoyant particles. The liquid in the reaction zone flows downward at a rate which exceeds the speed of upward buoyant migration of catalyst particles in the liquid, whereby catalyst particles introduced into the liquid in the reaction zone are drawn downward with the liquid. A slow flow velocity flotation chamber disposed below the reaction zone is configured to recapture the catalyst particles and allow them to float back into the catalyst recovery chamber for recycling into the reaction zone, rather than being swept downstream. A novel 3-dimensionally adjustable solar reflector directs light into the reaction zone to induce desired photocatalytic reactions within the liquid in the reaction zone.
Low temperature catalysts for methanol production
Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.
1986-09-30
A catalyst and process useful at low temperatures (below about 160 C) and preferably in the range 80--120 C used in the production of methanol from carbon monoxide and hydrogen are disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa-M(OAc)[sub 2] where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1--6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M = Ni and R = tertiary amyl). Mo(CO)[sub 6] is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.
Low temperature catalysts for methanol production
Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.
1986-10-28
A catalyst and process useful at low temperatures (below about 160 C) and preferably in the range 80--120 C used in the production of methanol from carbon monoxide and hydrogen are disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa-M(OAc)[sub 2] where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1-6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is NiC (where M = Ni and R = tertiary amyl). Mo(CO)[sub 6] is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.
Bogaerts, Thomas; Van Yperen-De Deyne, Andy; Liu, Ying-Ya; Lynen, Frederic; Van Speybroeck, Veronique; Van Der Voort, Pascal
2013-09-21
An enantioselective catalyst, consisting of a chiral Mn(III)salen complex entrapped in the MIL-101 metal organic framework, is reported. For the first time, we assemble a robust MOF-cage around a chiral complex. The heterogeneous catalyst shows the same selectivity as the homogeneous complex and is fully recyclable. Theoretical calculations provide insight into this retention of selectivity.
Monolithic Hydrogen Peroxide Catalyst Bed Development
NASA Technical Reports Server (NTRS)
Ponzo, J. B.
2003-01-01
With recent increased industry and government interest in rocket grade hydrogen peroxide as a viable propellant, significant effort has been expended to improve on earlier developments. This effort has been predominately centered in improving heterogeneous. typically catalyst beds; and homogeneous catalysts, which are typically solutions of catalytic substances. Heterogeneous catalyst beds have traditionally consisted of compressed wire screens plated with a catalytic substance, usually silver, and were used m many RCS applications (X-1, Mercury, and Centaur for example). Aerojet has devised a heterogeneous catalyst design that is monolithic (single piece), extremely compact, and has pressure drops equal to or less than traditional screen beds. The design consists of a bonded stack of very thin, photoetched metal plates, silver coated. This design leads to a high surface area per unit volume and precise flow area, resulting in high, stable, and repeatable performance. Very high throughputs have been demonstrated with 90% hydrogen peroxide. (0.60 lbm/s/sq in at 1775-175 psia) with no flooding of the catalyst bed. Bed life of over 900 seconds has also been demonstrated at throughputs of 0.60 lbm/s/sq in across varying chamber pressures. The monolithic design also exhibits good starting performance, short break-in periods, and will easily scale to various sizes.
Quantum Chemical Calculations of Amine-Catalyzed Polymerization of Silanol
NASA Astrophysics Data System (ADS)
Gu, Hongyu; Xu, Wenbin; Zhang, Jinlin; Qi, Zhenyi; Zhang, Tao; Song, Lixin
2018-03-01
Because of the technical importance of organosilicon materials, insight into the related synthetic processes is significantly essential. In this paper, the amine-catalyzed polymerization of silanol has been investigated by the density functional theory (DFT) method. Our data have shown that amines can catalytically promote the hydrogen transfer process by substantially reducing the energy barrier. The activation barrier via hydrogen transfer with catalysis is 38.32 kJ/mol, much lower than that of catalysis-free process (120.88 kJ/mol). The lower energy barrier is in agreement with the much more intense polymerization of silanols with amine catalysts. Based on the above results, amines and other catalysts capable of assisting hydrogen transfer are expected to be used as catalysts for silanol polymerization.
NASA Astrophysics Data System (ADS)
Sudiyarmanto, Hidayati, Luthfiana N.; Kristiani, Anis; Ghaisani, Almira; Sukandar, Dede; Adilina, Indri B.; Tursiloadi, Silvester
2017-11-01
Citronella oil is a kind of essential oil that contains three main components, namely citronellal, citronellol, and geraniol. The high demand of citronellal and geraniol derivative prompted scientists to develop methods which are stereo-selective synthesis. A hydrogenation reaction using heterogeneous catalyst is one way of synthesis of citronella oil derivatives. In this research, synthesis of citronellol oil derivatives using Ni based on natural zeolite (Ni/ZAB) catalyst which is expected to produce the compound of 3,7-dimethyl-1-octanol. The catalyst was prepared by supporting Ni on natural zeolite by impregnation method. The physical and chemical properties of Ni/ZAB catalyst have been characterized by TGA, BET, XRD and FTIR instrumentations. Variation of pressure and temperature reactions were conducted to determine the optimum conditions for the hydrogenation of citronellol. The products from this reaction were analyzed using GC-MS instrumentation. The yield and selectivity of 3,7-dimethyl-1-octanol compound were achieved with optimum conditions at 200°C and 20 bar during 3 hours which produced around 51.97% and 47.81% respectively.
Hydrogenation catalysts were derived from Mo(Co)/sub 6//alumina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, R.G.
1979-01-01
Alumina hydrogenation catalysts were derived from mo(CO)/sub 6//alumina with characteristics dependent upon the activation temperature, degree of alumina hydroxylation, and carrier gas used. Decomposition of Mo(CO)/sub 6/ at 100/sup 0/C on partially hydroxylated alumina in helium or hydrogen yielded Mo(CO)/sub 3//alumina, which catalyzed olefin metathesis in helium carrier and both metathesis and hydrogenation in hydrogen carrier. Decomposition of Mo(CO)/sub 6/ on dehydroxylated alumina at 100/sup 0/C in helium and in hydrogen resulted in complete decarbonylation and partial oxidation of molybdenum; this catalyst was 10 times as active as Mo(CO)/sub 3//alumina for hydrogenation. Decomposition of Mo(CO)/sub 6/ on dehydroxylated alumina atmore » 500/sup 0/C in helium gave essentially Mo(0)/alumina, which catalyzed hydrogenation, methanation, and hydrogenolysis in hydrogen. Catalysts activated on dehydroxylated alumina were ten times more active for methanation at 300/sup 0/C than catalyst activated on partially hydroxylated alumina and showed differences in selectivity for cyclopropane hydrogenolysis at 100/sup 0/C.« less
NASA Astrophysics Data System (ADS)
Amano, Tomoki; Kondo, Hiroki; Takeda, Keigo; Ishikawa, Kenji; Kano, Hiroyuki; Hiramatsu, Mineo; Sekine, Makoto; Hori, Masaru
2016-09-01
We recently have established ultrahigh-speed synthesis method of nanographene materials employing in-liquid plasma, and reported high durability of Pt/nanographene composites as a fuel cell catalyst. Crystallinity and domain size of nanographene materials were essential to their durability. However, their mechanism is not clarified yet. In this study, we investigated the oxygen reduction reaction using three-types of nanographene materials with different crystallinity and domain sizes, which were synthesized using ethanol, 1-propanol and 1-butanol, respectively. According to our previous studies, the nanographene material synthesized using the lower molecular weight alcohol has the higher crystallinity and larger domain size. Pt nanoparticles were supported on the nanographene surfaces by reducing 8 wt% H2PtCl6 diluted with H2O. Oxygen reduction current densities at a potential of 0.2 V vs. RHE were 5.43, 5.19 and 3.69 mA/cm2 for the samples synthesized using ethanol, 1-propanol and 1-butanol, respectively. This means that the higher crystallinity nanographene showed the larger oxygen reduction current density. The controls of crystallinity and domain size of nanographene materials are essential to not only their durability but also highly efficiency as catalyst electrodes.
Enhanced Oxidation Catalysts for Water Reclamation
NASA Technical Reports Server (NTRS)
Jolly, Clifford D.
1999-01-01
This effort seeks to develop and test high-performance, long operating life, physically stable catalysts for use in spacecraft water reclamation systems. The primary goals are to a) reduce the quantity of expendable water filters used to purify water aboard spacecraft, b) to extend the life of the oxidation catalysts used for eliminating organic contaminants in the water reclamation systems, and c) reduce the weight/volume of the catalytic oxidation systems (e.g. VRA) used. This effort is targeted toward later space station utilization and will consist of developing flight-qualifiable catalysts and long-term ground tests of the catalyst prior to their utilization in flight. Fixed -bed catalytic reactors containing 5% platinum on granular activated carbon have been subjected to long-term dynamic column tests to measure catalyst stability vs throughput. The data generated so far indicate that an order of magnitude improvement can be obtained with the treated catalysts vs the control catalyst, at only a minor loss (approx 10%) in the initial catalytic activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-31
The project involves the construction of an 80,000 gallon per day (260 tons per day (TPD)) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. The technology to be demonstrated is the product of a cooperative development effort by Air Products and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} process is ideally suited for directly processing gases producedmore » by modern-day coal gasifiers. Originally tested at a small (10 TPD), DOE-owned experimental unit in LaPorte, Texas, the technology provides several improvements essential for the economic coproduction of methanol and electricity directly from gasified coal. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology is being integrated with existing coal-gasifiers. A carefully developed test plan will allow operations at Eastman to simulate electricity demand load-following in coal-based IGCC facilities. The operations will also demonstrate the enhanced stability and heat dissipation of the conversion process, its reliable on/off operation, and its ability to produce methanol as a clean liquid fuel without additional upgrading.« less
Jia, Qingying; Caldwell, Keegan; Strickland, Kara; Ziegelbauer, Joseph M; Liu, Zhongyi; Yu, Zhiqiang; Ramaker, David E; Mukerjee, Sanjeev
2015-01-02
The development of active and durable catalysts with reduced platinum content is essential for fuel cell commercialization. Herein we report that the dealloyed PtCo/HSC and PtCo 3 /HSC nanoparticle (NP) catalysts exhibit the same levels of enhancement in oxygen reduction activity (~4-fold) and durability over pure Pt/C NPs. Surprisingly, ex situ high-angle annular dark field scanning transmission electron microscopy (HAADF STEM) shows that the bulk morphologies of the two catalysts are distinctly different: D-PtCo/HSC catalyst is dominated by NPs with solid Pt shells surrounding a single ordered PtCo core; however, the D-PtCo 3 /HSC catalyst is dominated by NPs with porous Pt shells surrounding multiple disordered PtCo cores with local concentration of Co. In situ X-ray absorption spectroscopy (XAS) reveals that these two catalysts possess similar Pt-Pt and Pt-Co bond distances and Pt coordination numbers (CNs), despite their dissimilar morphologies. The similar activity of the two catalysts is thus ascribed to their comparable strain, ligand, and particle size effects. Ex situ XAS performed on D-PtCo 3 /HSC under different voltage cycling stage shows that the continuous dissolution of Co leaves behind the NPs with a Pt-like structure after 30k cycles. The attenuated strain and/or ligand effects caused by Co dissolution are presumably counterbalanced by the particle size effects with particle growth, which likely accounts for the constant specific activity of the catalysts along with voltage cycling.
Jia, Qingying; Caldwell, Keegan; Strickland, Kara; ...
2014-11-19
The development of active and durable catalysts with reduced platinum content is essential for fuel cell commercialization. Here in this paper, we report that the dealloyed PtCo/HSC and PtCo 3/HSC nanoparticle (NP) catalysts exhibit the same levels of enhancement in oxygen reduction activity (~4-fold) and durability over pure Pt/C NPs. Surprisingly, ex situ high-angle annular dark field scanning transmission electron microscopy (HAADF STEM) shows that the bulk morphologies of the two catalysts are distinctly different: D-PtCo/HSC catalyst is dominated by NPs with solid Pt shells surrounding a single ordered PtCo core; however, the D-PtCo 3/HSC catalyst is dominated by NPsmore » with porous Pt shells surrounding multiple disordered PtCo cores with local concentration of Co. In situ X-ray absorption spectroscopy (XAS) reveals that these two catalysts possess similar Pt–Pt and Pt–Co bond distances and Pt coordination numbers (CNs), despite their dissimilar morphologies. The similar activity of the two catalysts is thus ascribed to their comparable strain, ligand, and particle size effects. Ex situ XAS performed on D-PtCo 3/HSC under different voltage cycling stage shows that the continuous dissolution of Co leaves behind the NPs with a Pt-like structure after 30k cycles. The attenuated strain and/or ligand effects caused by Co dissolution are presumably counterbalanced by the particle size effects with particle growth, which likely accounts for the constant specific activity of the catalysts along with voltage cycling.« less
Ghosh, Dwaipayan; Febriansyah, Benny; Gupta, Disha; Ng, Leonard Kia-Sheun; Xi, Shibo; Du, Yonghua; Baikie, Tom; Dong, ZhiLi; Soo, Han Sen
2018-05-22
Catalyst deactivation is a persistent problem not only for the scientific community but also in industry. Isolated single-site heterogeneous catalysts have shown great promise to overcome these problems. Here, a versatile anchoring strategy for molecular complex immobilization on a broad range of semiconducting or insulating metal oxide ( e. g., titanium dioxide, mesoporous silica, cerium oxide, and tungsten oxide) nanoparticles to synthesize isolated single-site catalysts has been studied systematically. An oxidatively stable anchoring group, maleimide, is shown to form covalent linkages with surface hydroxyl functionalities of metal oxide nanoparticles by photoclick chemistry. The nanocomposites have been thoroughly characterized by techniques including UV-visible diffuse reflectance spectroscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, infrared spectroscopy, and X-ray absorption spectroscopy (XAS). The IR spectroscopic studies confirm the covalent linkages between the maleimide group and surface hydroxyl functionalities of the oxide nanoparticles. The hybrid nanomaterials function as highly efficient catalysts for essentially quantitative oxidations of terminal and internal alkenes and show molecular catalyst product selectivities even in more eco-friendly solvents. XAS studies verify the robustness of the catalysts after several catalytic cycles. We have applied the photoclick anchoring methodology to precisely control the deposition of a luminescent variant of our catalyst on the metal oxide nanoparticles. Overall, we demonstrate a general approach to use irradiation to anchor molecular complexes on oxide nanoparticles to create recyclable, hybrid, single-site catalysts that function with high selectivity in a broad range of solvents. We have achieved a facile, spatially and temporally controllable photoclick method that can potentially be extended to other ligands, catalysts, functional molecules, and surfaces.
NASA Astrophysics Data System (ADS)
Li, Y. S.; Zhao, T. S.; Liang, Z. X.
In preparing low-temperature fuel cell electrodes, a polymer binder is essential to bind discrete catalyst particles to form a porous catalyst layer that simultaneously facilitates the transfer of ions, electrons, and reactants/products. For two types of polymer binder, namely, an A3-an anion conducting ionomer and a PTFE-a neutral polymer, an investigation is made of the effect of the content of each binder in the anode catalyst layer on the performance of an alkaline direct ethanol fuel cell (DEFC) with an anion-exchange membrane and non-platinum (non-Pt) catalysts. Experiments are performed by feeding either ethanol (C 2H 5OH) solution or ethanol-potassium hydroxide (C 2H 5OH-KOH) solution. The experimental results for the case of feeding C 2H 5OH solution without added KOH indicate that the cell performance varies with the A3 ionomer content in the anode catalyst layer, and a content of 10 wt.% exhibits the best performance. When feeding C 2H 5OH-KOH solution, the results show that: (i) in the region of low current density, the best performance is achieved for a membrane electrode assembly without any binder in the anode catalyst layer; (ii) in the region of high current density, the performance is improved with incorporation of PTFE binder in the anode catalyst layer; (iii) the PTFE binder yields better performance than does the A3 binder.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campos-Martin, J.M.; Fierro, J.L.G.; Guerrero-Ruiz, A.
1995-10-01
A series of copper-zinc-chromium catalysts of different compositions and calcination temperatures has been prepared, characterized by several techniques (BET specific surface area, XRD, gravimetric TPR, TPD-CO, and XPS), and tested under high alcohol synthesis (HAS) conditions. CO hydrogenation was carried out at reaction temperatures of 523-598 K and 50 bar total pressure. The influence of catalyst composition, calcination temperature, and surface characteristics on the HAS selectivity was studied. The optimum HAS yields were found in the low Cr content region, but chromium was needed. Although chromium oxide does not seem to be involved in the catalytic site, its presence inmore » the catalyst composition is essential, owing to the larger specific surfaces and catalyst stability obtained at the highest reaction temperatures. For low Cr content composition, the temperature-programmed reduction (TPR) profiles were shifted to higher temperatures and simultaneously larger CO{sub 2} amounts were found in the temperature-programmed desorption profiles of adsorbed CO (TPD-CO). Photoelectron spectra (XPS) revealed that the oxidation state of copper is Cu{sup 2+} in the calcined catalysts and Cu{sup O} in the reduced ones; Cu{sup +} was only stabilized in a CuCr{sub 2}O{sub 4} spinel in the Cr-rich catalysts. These features derived from catalyst characterization are discussed in the framework of the catalytic behaviour for HAS synthesis. 53 refs., 7 figs., 4 tabs.« less
Molecular metal catalysts on supports: organometallic chemistry meets surface science.
Serna, Pedro; Gates, Bruce C
2014-08-19
Recent advances in the synthesis and characterization of small, essentially molecular metal complexes and metal clusters on support surfaces have brought new insights to catalysis and point the way to systematic catalyst design. We summarize recent work unraveling effects of key design variables of site-isolated catalysts: the metal, metal nuclearity, support, and other ligands on the metals, also considering catalysts with separate, complementary functions on supports. The catalysts were synthesized with the goal of structural simplicity and uniformity to facilitate incisive characterization. Thus, they are essentially molecular species bonded to porous supports chosen for their high degree of uniformity; the supports are crystalline aluminosilicates (zeolites) and MgO. The catalytic species are synthesized in reactions of organometallic precursors with the support surfaces; the precursors include M(L)2(acetylacetonate)1-2, with M = Ru, Rh, Ir, or Au and the ligands L = C2H4, CO, or CH3. Os3(CO)12 and Ir4(CO)12 are used as precursors of supported metal clusters, and some such catalysts are made by ship-in-a-bottle syntheses to trap the clusters in zeolite cages. The simplicity and uniformity of the supported catalysts facilitate precise structure determinations, even in reactive atmospheres and during catalysis. The methods of characterizing catalysts in reactive atmospheres include infrared (IR), extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), and nuclear magnetic resonance (NMR) spectroscopies, and complementary methods include density functional theory and atomic-resolution aberration-corrected scanning transmission electron microscopy for imaging of individual metal atoms. IR, NMR, XANES, and microscopy data demonstrate the high degrees of uniformity of well-prepared supported species. The characterizations determine the compositions of surface metal complexes and clusters, including the ligands and the metal-support bonding and structure, which identify the supports as ligands with electron-donor properties that influence reactivity and catalysis. Each of the catalyst design variables has been varied independently, illustrated by mononuclear and tetranuclear iridium on zeolite HY and on MgO and by isostructural rhodium and iridium (diethylene or dicarbonyl) complexes on these supports. The data provide examples resolving the roles of the catalyst design variables and place the catalysis science on a firm foundation of organometallic chemistry linked with surface science. Supported molecular catalysts offer the advantages of characterization in the absence of solvents and with surface-science methods that do not require ultrahigh vacuum. Families of supported metal complexes have been made by replacement of ligands with others from the gas phase. Spectroscopically identified catalytic reaction intermediates help to elucidate catalyst performance and guide design. The methods are illustrated for supported complexes and clusters of rhodium, iridium, osmium, and gold used to catalyze reactions of small molecules that facilitate identification of the ligands present during catalysis: alkene dimerization and hydrogenation, H-D exchange in the reaction of H2 with D2, and CO oxidation. The approach is illustrated with the discovery of a highly active and selective MgO-supported rhodium carbonyl dimer catalyst for hydrogenation of 1,3-butadiene to give butenes.
Ordered Mesoporous NiCeAl Containing Catalysts for Hydrogenolysis of Sorbitol to Glycols
NASA Astrophysics Data System (ADS)
Zhou, Zhiwei; Zhang, Jiaqi; Qin, Juan; Li, Dong; Wu, Wenliang
2018-03-01
Cellulose-derived sorbitol is emerging as a feasible and renewable feedstock for the production of value-added chemicals. Highly active and stable catalyst is essential for sorbitol hydrogenolysis. Ordered mesoporous M- xNi yCeAl catalysts with different loadings of nickel and cerium species were successfully synthesized via one-pot evaporation-induced self-assembly strategy (EISA) and their catalytic performance were tested in the hydrogenolysis of sorbitol. The physical chemical properties for the catalysts were characterized by XRD, N2 physisorption, H2-TPR, H2 impulse chemisorption, ICP and TEM techniques. The results showed that the ordered mesopores with uniform pore sizes can be obtained and the Ni nanoparticles around 6 nm in size were homogeneously dispersed in the mesopore channels. A little amount of cerium species introduced would be beneficial to their textural properties resulting in higher Ni dispersion, metal area and smaller size of Ni nanoparticles. The M-10Ni2CeAl catalyst with Ni and Ce loading of 10.9 and 6.3 wt % shows better catalytic performance than other catalysts, and the yield of 1,2-PG and EG can reach 56.9% at 493 K and 6 MPa pressure for 8 h after repeating reactions for 12 times without obvious deterioration of physical and chemical properties. Ordered mesoporous M-NiCeAl catalysts are active and stable in sorbitol hydrogenolysis.
Dyer, Paul N.; Pierantozzi, Ronald; Withers, Howard P.
1987-01-01
A Fischer-Tropsch process utilizing a product selective and stable catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas is selectively converted to higher hydrocarbons of relatively narrow carbon number range is disclosed. In general, the selective and notably stable catalyst, consist of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of a Fischer-Tropsch metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.
Janus structured Pt–FeNC nanoparticles as a catalyst for the oxygen reduction reaction
Kuttiyiel, Kurian A.; Sasaki, Kotaro; Park, Gu -Gon; ...
2017-01-03
Here, we present a new Janus structured catalyst consisting of Pt nanoparticles on Fe–N–C nanoparticles encapsulated by graphene layers for the ORR. The ORR activity of the catalyst increases under potential cycling as the unique Janus nanostructure is further bonded due to a synergetic effect. The present study describes an important advanced approach for the future design of efficient, stable, and low-cost Pt-based electrocatalytic systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singleton, A.H.
1995-06-28
The goal of this project is the development of a commercially-viable, cobalt-based Fischer-Tropsch (F-T) catalyst for use in a slurry bubble column reactor. The major objectives of this work are (1) to develop a cobalt-based F-T catalyst with low (< 5%) methane selectivity, (2) to develop a cobalt-based F-T catalyst with water-gas shift activity, and (3) to combine both these improvements into one catalyst. The project consists of five major tasks: catalyst development; catalyst testing; catalyst reproducibility tests; catalyst aging tests; and preliminary design and cost estimate for a demonstrate scale catalyst production facility. Technical accomplishments during this reporting periodmore » include the following. It appears that the higher activity obtained for the catalysts prepared using an organic solution and reduced directly without prior calcination was the result of higher dispersions obtained under such pretreatment. A Ru-promoted Co catalyst on alumina with 30% Co loading exhibited a 4-fold increase in dispersion and a 2-fold increase in activity in the fixed-bed reactor from that obtained with the non-promoted catalyst. Several reactor runs have again focused on pushing conversion to higher levels. The maximum conversion obtained has been 49.7% with 26g catalyst. Further investigations of the effect of reaction temperature on the performance of Co catalysts during F-T synthesis were started using a low activity catalyst and one of the most active catalysts. The three 1 kg catalyst batches prepared by Calsicat for the reproducibility and aging studies were tested in both the fixed-bed and slurry bubble column reactors under the standard reaction conditions. The effects of adding various promoters to some cobalt catalysts have also been addressed. Results are presented and discussed.« less
NASA Astrophysics Data System (ADS)
Yuan, Jinlan; Wang, Jin; She, Yiyi; Hu, Jing; Tao, Pengpeng; Lv, Fucong; Lu, Zhouguang; Gu, Yingying
2014-10-01
BiOCl micro-assembles appearing spherical and plate-like in shape consisting of ultrafine nanoplates were successfully synthesized by a simple hydrothermal method. The obtained BiOCl micro-assembles were characterized as oxygen reduction reaction (ORR) catalyst for air electrode of aluminum air batteries by using linear polarization and constant-current discharge techniques. The effect of precursor concentration on the electrochemical properties of the air electrodes based on the synthesized BiOCl micro-assembles was intensively investigated. The results demonstrated that the BiOCl catalyst exhibited promising ORR performance. Koutecky-Levich analysis indicated that a two-electron reaction was favored for the ORR mechanism of the BiOCl (0.18) sample.
NASA Technical Reports Server (NTRS)
Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Sevener, Kathleen M. (Inventor)
2004-01-01
A method for designing and assembling a high performance catalyst bed gas generator for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in target, space, and on-orbit propulsion systems and low-emission terrestrial power and gas generation. The gas generator utilizes a sectioned catalyst bed system, and incorporates a robust, high temperature mixed metal oxide catalyst. The gas generator requires no special preheat apparatus or special sequencing to meet start-up requirements, enabling a fast overall response time. The high performance catalyst bed gas generator system has consistently demonstrated high decomposition efficiency, extremely low decomposition roughness, and long operating life on multiple test articles.
Shui, Jianglan; Chen, Chen; Grabstanowicz, Lauren; Zhao, Dan; Liu, Di-Jia
2015-01-01
Fuel cell vehicles, the only all-electric technology with a demonstrated >300 miles per fill travel range, use Pt as the electrode catalyst. The high price of Pt creates a major cost barrier for large-scale implementation of polymer electrolyte membrane fuel cells. Nonprecious metal catalysts (NPMCs) represent attractive low-cost alternatives. However, a significantly lower turnover frequency at the individual catalytic site renders the traditional carbon-supported NPMCs inadequate in reaching the desired performance afforded by Pt. Unconventional catalyst design aiming at maximizing the active site density at much improved mass and charge transports is essential for the next-generation NPMC. We report here a method of preparing highly efficient, nanofibrous NPMC for cathodic oxygen reduction reaction by electrospinning a polymer solution containing ferrous organometallics and zeolitic imidazolate framework followed by thermal activation. The catalyst offers a carbon nanonetwork architecture made of microporous nanofibers decorated by uniformly distributed high-density active sites. In a single-cell test, the membrane electrode containing such a catalyst delivered unprecedented volumetric activities of 3.3 A⋅cm−3 at 0.9 V or 450 A⋅cm−3 extrapolated at 0.8 V, representing the highest reported value in the literature. Improved fuel cell durability was also observed. PMID:26261338
Liu, Zongyuan; Yao, Siyu; Johnston-Peck, Aaron; ...
2017-08-25
Here, nickel-ceria has been reported as a very good catalysts for the reforming of methane. Here, the methanol steam reforming reaction on both powder (Ni-CeO 2) and model (Ni-CeO 2-x(111)) catalysts was investigated. The active phase evolution and surface species transformation on powder catalysts were studied via in situ X-ray diffraction (XRD) and diffuse reflectance infrared transform spectroscopy (DRIFTS). Phase transitions of NiO → NiC → Ni and CeO 2 → CeO 2-x were observed during the reaction. The simultaneous production of H 2/CO 2 demonstrates that the active phase of the catalysts contains metallic Ni supported over partially reducedmore » ceria. The DRIFTS experiments indicate that a methoxy to formate transition is associated with the reduction of ceria whereas the formation of carbonate species results from the presence of metallic Ni. A study of the reaction of methanol with Ni-CeO 2-x(111) by X-ray photoelectron spectroscopy (XPS) points to the essential role of metal-support interactions in an oxygen transfer from ceria to Ni that contributes to the high selectivity of the catalysts.« less
Shui, Jianglan; Chen, Chen; Grabstanowicz, Lauren; ...
2015-08-25
Fuel cell vehicles, the only all-electric technology with a demonstrated >300 miles per fill travel range, use Pt as the electrode catalyst. The high price of Pt creates a major cost barrier for large-scale implementation of polymer electrolyte membrane fuel cells. Nonprecious metal catalysts (NPMCs) represent attractive low-cost alternatives. However, a significantly lower turnover frequency at the individual catalytic site renders the traditional carbon-supported NPMCs inadequate in reaching the desired performance afforded by Pt. Unconventional catalyst design aiming at maximizing the active site density at much improved mass and charge transports is essential for the next-generation NPMC. We report heremore » a method of preparing highly efficient, nanofibrous NPMC for cathodic oxygen reduction reaction by electrospinning a polymer solution containing ferrous organometallics and zeolitic imidazolate framework followed by thermal activation. The catalyst offers a carbon nanonetwork architecture made of microporous nanofibers decorated by uniformly distributed high-density active sites. In a single-cell test, the membrane electrode containing such a catalyst delivered unprecedented volumetric activities of 3.3 A∙cm -3 at 0.9 V or 450 A∙cm -3 extrapolated at 0.8 V, representing the highest reported value in the literature. Improved fuel cell durability was also observed.« less
Shui, Jianglan; Chen, Chen; Grabstanowicz, Lauren; Zhao, Dan; Liu, Di-Jia
2015-08-25
Fuel cell vehicles, the only all-electric technology with a demonstrated >300 miles per fill travel range, use Pt as the electrode catalyst. The high price of Pt creates a major cost barrier for large-scale implementation of polymer electrolyte membrane fuel cells. Nonprecious metal catalysts (NPMCs) represent attractive low-cost alternatives. However, a significantly lower turnover frequency at the individual catalytic site renders the traditional carbon-supported NPMCs inadequate in reaching the desired performance afforded by Pt. Unconventional catalyst design aiming at maximizing the active site density at much improved mass and charge transports is essential for the next-generation NPMC. We report here a method of preparing highly efficient, nanofibrous NPMC for cathodic oxygen reduction reaction by electrospinning a polymer solution containing ferrous organometallics and zeolitic imidazolate framework followed by thermal activation. The catalyst offers a carbon nanonetwork architecture made of microporous nanofibers decorated by uniformly distributed high-density active sites. In a single-cell test, the membrane electrode containing such a catalyst delivered unprecedented volumetric activities of 3.3 A ⋅ cm(-3) at 0.9 V or 450 A ⋅ cm(-3) extrapolated at 0.8 V, representing the highest reported value in the literature. Improved fuel cell durability was also observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zongyuan; Yao, Siyu; Johnston-Peck, Aaron
Here, nickel-ceria has been reported as a very good catalysts for the reforming of methane. Here, the methanol steam reforming reaction on both powder (Ni-CeO 2) and model (Ni-CeO 2-x(111)) catalysts was investigated. The active phase evolution and surface species transformation on powder catalysts were studied via in situ X-ray diffraction (XRD) and diffuse reflectance infrared transform spectroscopy (DRIFTS). Phase transitions of NiO → NiC → Ni and CeO 2 → CeO 2-x were observed during the reaction. The simultaneous production of H 2/CO 2 demonstrates that the active phase of the catalysts contains metallic Ni supported over partially reducedmore » ceria. The DRIFTS experiments indicate that a methoxy to formate transition is associated with the reduction of ceria whereas the formation of carbonate species results from the presence of metallic Ni. A study of the reaction of methanol with Ni-CeO 2-x(111) by X-ray photoelectron spectroscopy (XPS) points to the essential role of metal-support interactions in an oxygen transfer from ceria to Ni that contributes to the high selectivity of the catalysts.« less
A recyclable fluorous organocatalyst for Diels-Alder reactions
Chu, Qianli; Zhang, Wei; Curran, Dennis P.
2007-01-01
Chiral fluorous imidazolidinone catalyst 2 provides consistently high enantioselectivities in Diels-Alder reactions of dienes and α, β-unsaturated aldehydes. The catalyst can be readily separated from the reaction products by fluorous solid-phase extraction, and recovered in excellent purity for direct reuse. PMID:17710220
Co-Production of Electricity and Hydrogen Using a Novel Iron-based Catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilaly, Ahmad; Georgas, Adam; Leboreiro, Jose
2011-09-30
The primary objective of this project was to develop a hydrogen production technology for gasification applications based on a circulating fluid-bed reactor and an attrition resistant iron catalyst. The work towards achieving this objective consisted of three key activities: Development of an iron-based catalyst suitable for a circulating fluid-bed reactor; Design, construction, and operation of a bench-scale circulating fluid-bed reactor system for hydrogen production; Techno-economic analysis of the steam-iron and the pressure swing adsorption hydrogen production processes. This report describes the work completed in each of these activities during this project. The catalyst development and testing program prepared and iron-basedmore » catalysts using different support and promoters to identify catalysts that had sufficient activity for cyclic reduction with syngas and steam oxidation and attrition resistance to enable use in a circulating fluid-bed reactor system. The best performing catalyst from this catalyst development program was produced by a commercial catalyst toll manufacturer to support the bench-scale testing activities. The reactor testing systems used during material development evaluated catalysts in a single fluid-bed reactor by cycling between reduction with syngas and oxidation with steam. The prototype SIP reactor system (PSRS) consisted of two circulating fluid-bed reactors with the iron catalyst being transferred between the two reactors. This design enabled demonstration of the technical feasibility of the combination of the circulating fluid-bed reactor system and the iron-based catalyst for commercial hydrogen production. The specific activities associated with this bench-scale circulating fluid-bed reactor systems that were completed in this project included design, construction, commissioning, and operation. The experimental portion of this project focused on technical demonstration of the performance of an iron-based catalyst and a circulating fluid-bed reactor system for hydrogen production. Although a technology can be technically feasible, successful commercial deployment also requires that a technology offer an economic advantage over existing commercial technologies. To effective estimate the economics of this steam-iron process, a techno-economic analysis of this steam iron process and a commercial pressure swing adsorption process were completed. The results from this analysis described in this report show the economic potential of the steam iron process for integration with a gasification plant for coproduction of hydrogen and electricity.« less
Catalyst for Carbon Monoxide Oxidation
NASA Technical Reports Server (NTRS)
Davis, Patricia; Brown, Kenneth; VanNorman, John; Brown, David; Upchurch, Billy; Schryer, David; Miller, Irvin
2010-01-01
In many applications, it is highly desirable to operate a CO2 laser in a sealed condition, for in an open system the laser requires a continuous flow of laser gas to remove the dissociation products that occur in the discharge zone of the laser, in order to maintain a stable power output. This adds to the operating cost of the laser, and in airborne or space applications, it also adds to the weight penalty of the laser. In a sealed CO2 laser, a small amount of CO2 gas is decomposed in the electrical discharge zone into corresponding quantities of CO and O2. As the laser continues to operate, the concentration of CO2 decreases, while the concentrations of CO and O2 correspondingly increase. The increasing concentration of O2 reduces laser power, because O2 scavenges electrons in the electrical discharge, thereby causing arcing in the electric discharge and a loss of the energetic electrons required to boost CO2 molecules to lasing energy levels. As a result, laser power decreases rapidly. The primary object of this invention is to provide a catalyst that, by composition of matter alone, contains chemisorbed water within and upon its structure. Such bound moisture renders the catalyst highly active and very long-lived, such that only a small quantity of it needs to be used with a CO2 laser under ambient operating conditions. This object is achieved by a catalyst that consists essentially of about 1 to 40 percent by weight of one or more platinum group metals (Pt, Pd, Rh, Ir, Ru, Os, Pt being preferred); about 1 to 90 percent by weight of one or more oxides of reducible metals having multiple valence states (such as Sn, Ti, Mn, Cu, and Ce, with SnO2 being preferred); and about 1 to 90 percent by weight of a compound that can bind water to its structure (such as silica gel, calcium chloride, magnesium sulfate, hydrated alumina, and magnesium perchlorate, with silica gel being preferred). Especially beneficial results are obtained when platinum is present in the catalyst composition in an amount of about 5 to 25 (especially 7) percent by weight, SnO2 is present in an amount of about 30 to 40 (especially 40) percent by weight, and silica gel is present in an amount of 45 to 55 (especially 50) percent by weight. The composition of this catalyst was suggested by preliminary experiments in which a Pt/SnO2 catalyst was needed for bound water to enhance its activity. These experimental results suggested that if the water were bound to the surface, this water would enhance and prolong catalyst activity for long time periods. Because the catalyst is to be exposed to a laser gas mixture, and because a CO2 laser can tolerate only a very small amount of moisture, a hygroscopic support for the catalyst would provide the needed H2O into the gas. Silica gel is considered to be superior because of its property to chemisorb water on its surface over a wide range of moisture content.
Geomaterials: their application to environmental remediation
Yamada, Hirohisa; Tamura, Kenji; Watanabe, Yujiro; Iyi, Nobuo; Morimoto, Kazuya
2011-01-01
Geomaterials are materials inspired by geological systems originating from the billion years long history of the Earth. This article reviews three important classes of geomaterials. The first one is smectites—layered silicates with a cation-exchange capacity. Smectites are useful for removing pollutants and as intercalation compounds, catalysts and polymer nanocomposites. The second class is layered double hydroxides (LDHs). They have an anion-exchange capacity and are used as catalysts, catalyst precursors, sorbents and scavengers for halogens. The third class of geomaterials is zeolites—microporous materials with a cation-exchange capacity which are used for removing harmful cations. Zeolite composites with LDHs can absorb ammonium and phosphate ions in rivers and lakes, whereas zeolite/apatite composites can immobilize the radioactive iodine. These geomaterials are essential for environmental remediation. PMID:27877455
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumura, Yukihiko; Nuessle, F.W.; Antal, M.J. Jr.
Recently, carbonaceous materials were proved to be effective catalysts for hazardous waste decomposition in supercritical water. Gasification of the carbonaceous catalyst itself is also expected, however, under supercritical conditions. Thus, it is essential to determine the gasification rate of the carbonaceous materials during this process to determine the active lifetime of the catalysts. For this purpose, the gasification characteristics of granular coconut shell activated carbon in supercritical water alone (600-650{degrees}C, 25.5-34.5 MPa) were investigated. The gasification rate at subatmospheric pressure agreed well with the gasification rate at supercritical conditions, indicating the same reaction mechanism. Methane generation under these conditions ismore » via pyrolysis, and thus is not affected by the water pressure. An iodine number increase of 25% was observed as a result of the supercritical water gasification.« less
Absorption of CO2 on Carbon-based Sensors: First-Principle Analysis
NASA Astrophysics Data System (ADS)
Tit, Nacir; Elezzi, Mohammed; Abdullah, Hasan; Bahlouli, Hocine; Yamani, Zain
We present first-principle investigation of the adsorption properties of CO and CO2 molecules on both graphene and carbon nano-tubes (CNTs) in presence of metal catalysis, mainly iron (Fe). The relaxations were carried out using the self-consistent-charge density-functional tight-binding (SCC-DFTB) code in neglect of heat effects. The results show the following: (1) Defected graphene is found to have high sensitivity and high selectivity towards chemisorption of CO molecules and weak physisorption with CO2 molecules. (2) In case of CNTs, the iron ``Fe'' catalyst plays an essential role in capturing CO2 molecules. The Fe ad-atoms on the surface of CNT introduce huge density of states at Fermi level, but the capture of CO2 molecules would reduce that density and consequently reduce conductivity and increase sensitivity. Concerning the selectivity, we have studied the sensitivity versus various gas molecules (such as: O2, N2, H2, H2O, and CO). Furthermore, to assess the effect of catalysis on sensitivity, we have studied the sensitivity of other metal catalysts (such as: Ni, Co, Ti, and Sc). We found that CNT-Fe is highly sensitive and selective towards detection of CO and CO2 molecules. CNT being conductive or semiconducting does not matter much on the adsorption properties.
Transition metal-free olefin polymerization catalyst
Sen, Ayusman; Wojcinski, II, Louis M.; Liu, Shengsheng
2001-01-01
Ethylene and/or propylene are polymerized to form high molecular weight, linear polymers by contacting ethylene and/or propylene monomer, in the presence of an inert reaction medium, with a catalyst system which consists essentially of (1) an aluminum alkyl component, such as trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-octylaluminum and diethylaluminum hydride and (2) a Lewis acid or Lewis acid derivative component, such as B (C.sub.6 F.sub.5).sub.3, [(CH.sub.3).sub.2 N (H) (C.sub.6 H.sub.5)].sup.+ [B (C.sub.6 F.sub.5)4].sup.-, [(C.sub.2 H.sub.5).sub.3 NH].sup.+ [B C.sub.6 F.sub.5).sub.4 ],.sup.-, [C(C.sub.6 F.sub.5).sub.3 ].sup.+ [B(C.sub.6 F.sub.5).sub.4 ].sup.-, (C.sub.2 H.sub.5).sub.2 Al(OCH.sub.3), (C.sub.2 H.sub.5).sub.2 Al(2,6-di-t-butyl-4-methylphenoxide), (C.sub.2 H.sub.5)Al(2,6 -di-t-butylphenoxide).sub.2, (C.sub.2 H.sub.5).sub.2 Al(2,6-di-t-butylphonoxide) , 2,6 -di-t-butylphenol.multidot.methylaluminoxane or an alkylaluminoxane, and which may be completely free any transition metal component(s).
Das, Biswanath; Orthaber, Andreas; Ott, Sascha; Thapper, Anders
2016-05-23
The development of molecular water oxidation catalysts based on earth-abundant, non-noble metals is essential for artificial photosynthesis research. Iron, which is the most abundant transition metal in the earth's crust, is a prospective candidate for this purpose. Herein, we report two iron complexes based on the polypyridyl ligand Py5OH (Py5OH=pyridine-2,6-diylbis [di(pyridin-2-yl)methanol]) that can catalyse water oxidation to produce O2 in Ru(III) -induced (at pH 8, highest turnover number (TON)=26.5; turnover frequency (TOF)=2.2 s(-1) ), Ce(IV) -induced (at pH≈1.5 highest TON=16; TOF=0.75 s(-1) ) and photo-induced (at pH 8, highest TON=43.5; TOF=0.6 s(-1) ) reactions. A chloride ligand in one of the iron complexes is shown to affect the activity strongly, improve stability and, thereby, the performance at pH 8 but it inhibits oxygen evolution at pH≈1.5. The observations are consistent with a change in mechanism for catalytic water oxidation with the Fe(Py5OH) complexes between acidic (Ce(IV) ) and near-neutral pH (Ru(III) ). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Liu, Xiang; Gregurec, Danijela; Irigoyen, Joseba; Martinez, Angel; Moya, Sergio; Ciganda, Roberto; Hermange, Philippe; Ruiz, Jaime; Astruc, Didier
2016-10-01
Understanding the relationship between the location of nanoparticles (NPs) in an organic matrix and their catalytic performances is essential for catalyst design. Here we show that catalytic activities of Au, Ag and CuNPs stabilized by dendrimers using coordination to intradendritic triazoles, galvanic replacement or stabilization outside dendrimers strongly depends on their location. AgNPs are found at the inner click dendrimer periphery, whereas CuNPs and AuNPs are encapsulated in click dendrimer nanosnakes. AuNPs and AgNPs formed by galvanic replacement are larger than precursors and only partly encapsulated. AuNPs are all the better 4-nitrophenol reduction catalysts as they are less sterically inhibited by the dendrimer interior, whereas on the contrary CuNPs are all the better alkyne azide cycloaddition catalysts as they are better protected from aerobic oxidation inside dendrimers. This work highlights the role of the location in macromolecules on the catalytic efficiency of metal nanoparticles and rationalizes optimization in catalyst engineering.
Yan, Bing; Concannon, Nolan M; Milshtein, Jarrod D; Brushett, Fikile R; Surendranath, Yogesh
2017-06-19
Polymer electrolyte membranes employed in contemporary fuel cells severely limit device design and restrict catalyst choice, but are essential for preventing short-circuiting reactions at unselective anode and cathode catalysts. Herein, we report that nickel sulfide Ni 3 S 2 is a highly selective catalyst for the oxygen reduction reaction in the presence of 1.0 m formate. We combine this selective cathode with a carbon-supported palladium (Pd/C) anode to establish a membrane-free, room-temperature formate fuel cell that operates under benign neutral pH conditions. Proof-of-concept cells display open circuit voltages of approximately 0.7 V and peak power values greater than 1 mW cm -2 , significantly outperforming the identical device employing an unselective platinum (Pt) cathode. The work establishes the power of selective catalysis to enable versatile membrane-free fuel cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Padmalekha, K. G.; Huang, H.; Ellmers, I.; Pérez Vélez, R.; van Leusen, J.; Brückner, A.; Grünert, W.; Schünemann, V.
2017-11-01
Iron loaded zeolites like Fe-ZSM-5 are potent candidates for the catalytic abatement of nitrogen oxides from car exhaust, e.g. from Diesel engines. Recent problems in this field show that there is an urgent need in further improvement of such catalysts, for which a full analysis of Fe species present in them under different conditions is highly desirable. We have studied Fe-ZSM-5 catalysts prepared via solid-state ion exchange by using field dependent Mössbauer spectroscopy at low temperature in order to identify the different iron species present in this type of catalyst in the fresh state and after use in catalysis. Mössbauer spectroscopy proved to be the key technique for a full understanding of species structures, but due to the complexity of structures, guidance by parallel EPR experiments and control by SQUID magnetometry were essential to prove reliability of derived species distributions.
Two stages catalytic pyrolysis of refuse derived fuel: production of biofuel via syncrude.
Miskolczi, N; Buyong, F; Angyal, A; Williams, P T; Bartha, L
2010-11-01
Thermo-catalytic pyrolysis of refuse derived fuels with different catalysts had been conducted in a two stages process due to its important potential value as fuel. The first stage was a pure thermal pyrolysis in a horizontal tubular reactor with feed rate of 0.5kg hourly. The second stage was a semi-batch process in the presence of catalysts. Results showed that the tested catalysts significantly have affected the quantity of products. E.g. gas yield could be increased with 350% related to the catalyst free case using ZSM-5, while that of pyrolytic oil was 115% over Y-zeolite. Gases consisted of mainly CO and CO(2) obtained from the tubular reactor, while dominantly hydrocarbons from the second stage. Ni-Mo-catalyst and Co-Mo-catalyst had shown activity in pyrolytic oil upgrading via in-situ hydrogenation-dehydrogenation reactions. Sulphur, nitrogen and chlorine level in pyrolytic oils could be significantly declined by using of catalysts.
Low temperature catalysts for methanol production
Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.
1985-03-12
A catalyst and process useful at low temperatures (below about 160/sup 0/C) and preferably in the range 80 to 120/sup 0/C used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH-RONa-M(OAc)/sub 2/ where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1 to 6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M = Ni and R = tertiary amyl). Mo(CO)/sub 6/ is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.
Low temperature catalysts for methanol production
Sapienza, Richard S.; Slegeir, William A.; O'Hare, Thomas E.; Mahajan, Devinder
1986-01-01
A catalyst and process useful at low temperatures (below about 160.degree. C.) and preferably in the range 80.degree.-120.degree. C. used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa--M(OAc).sub.2 where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1-6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M=Ni and R=tertiary amyl). Mo(CO).sub.6 is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.
Kerr, John B.; Zhu, Xiaobing; Hwang, Gi Suk; Martin, Zulima; He, Qinggang; Driscoll, Peter; Weber, Adam; Clark, Kyle
2016-09-27
Water soluble catalysts, (M)meso-tetra(N-Methyl-4-Pyridyl)Porphinepentachloride (M=Fe, Co, Mn & Cu), have been incorporated into the polymer binder of oxygen reduction cathodes in membrane electrode assemblies used in PEM fuel cells and found to support encouragingly high current densities. The voltages achieved are low compared to commercial platinum catalysts but entirely consistent with the behavior observed in electroanalytical measurements of the homogeneous catalysts. A model of the dynamics of the electrode action has been developed and validated and this allows the MEA electrodes to be optimized for any chemistry that has been demonstrated in solution. It has been shown that improvements to the performance will come from modifications to the structure of the catalyst combined with optimization of the electrode structure and a well-founded pathway to practical non-platinum group metal catalysts exists.
Wang, Ziyun; Wang, Hai-Feng; Hu, P
2015-10-01
The current theory of catalyst activity in heterogeneous catalysis is mainly obtained from the study of catalysts with mono-phases, while most catalysts in real systems consist of multi-phases, the understanding of which is far short of chemists' expectation. Density functional theory (DFT) and micro-kinetics simulations are used to investigate the activities of six mono-phase and nine bi-phase catalysts, using CO hydrogenation that is arguably the most typical reaction in heterogeneous catalysis. Excellent activities that are beyond the activity peak of traditional mono-phase volcano curves are found on some bi-phase surfaces. By analyzing these results, a new framework to understand the unexpected activities of bi-phase surfaces is proposed. Based on the framework, several principles for the design of multi-phase catalysts are suggested. The theoretical framework extends the traditional catalysis theory to understand more complex systems.
NASA Astrophysics Data System (ADS)
Sakita, Alan M. P.; Noce, Rodrigo Della; Vallés, Elisa; Benedetti, Assis V.
2018-03-01
A novel, ultra-fast, and one-step method for obtaining an effective catalyst for oxygen evolution reaction is proposed. The procedure consists in direct electrodeposition, in a free-nitrate bath, of CoFe alloy films covered with layered double hydroxides (LDH), by potentiostatic mode, in continuous or pulsed regime. The catalyst is directly formed on glassy carbon substrates. The best-prepared catalyst material reveals a mixed morphology with granular and dendritic CoFe alloy covered with a sponge of CoFe-LDH containing a Cl interlayer. An overpotential of η10 mA = 286 mV, with a Tafel slope of 48 mV dec-1, is obtained for the OER which displays the enhanced properties of the catalyst. These improved results demonstrate the competitiveness and efficacy of our proposal for the production of OER catalysts.
Catalytic cracking of model compounds of bio-oil over HZSM-5 and the catalyst deactivation.
Chen, Guanyi; Zhang, Ruixue; Ma, Wenchao; Liu, Bin; Li, Xiangping; Yan, Beibei; Cheng, Zhanjun; Wang, Tiejun
2018-08-01
The catalytic cracking upgrading reactions over HZSM-5 of different model compounds of bio-oil have been studied with a self-designed fluid catalytic cracking (FCC) equipment. Typical bio-oil model compounds, such as acetic acid, guaiacol, n-heptane, acetol and ethyl acetate, were chosen to study the products distribution, reaction pathway and deactivation of catalysts. The results showed: C 6 -C 8 aromatic hydrocarbons, C 2 -C 4 olefins, C 1 -C 5 alkanes, CO and CO 2 were the main products, and the selectivity of olefins was: ethylene>propylene>butylene. Catalyst characterization methods, such as FI-IR, TG-TPO and Raman, were used to study the deactivation mechanism of catalysts. According to the catalyst characterization results, a catalyst deactivation mechanism was proposed as follows: Firstly, the precursor which consisted of a large number of long chain saturated aliphatic hydrocarbons and a small amount CC of aromatics formed on the catalyst surface. Then the active sites of catalysts had been covered, the coke type changed from thermal coke to catalytic coke and gradually blocked the channels of the molecular sieve, which accelerated the deactivation of catalyst. Copyright © 2018 Elsevier B.V. All rights reserved.
Catalytic Synthesis of Oxygenates: Mechanisms, Catalysts and Controlling Characteristics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klier, Kamil; Herman, Richard G
2005-11-30
This research focused on catalytic synthesis of unsymmetrical ethers as a part of a larger program involving oxygenated products in general, including alcohols, ethers, esters, carboxylic acids and their derivatives that link together environmentally compliant fuels, monomers, and high-value chemicals. The catalysts studied here were solid acids possessing strong Brnsted acid functionalities. The design of these catalysts involved anchoring the acid groups onto inorganic oxides, e.g. surface-grafted acid groups on zirconia, and a new class of mesoporous solid acids, i.e. propylsulfonic acid-derivatized SBA-15. The former catalysts consisted of a high surface concentration of sulfate groups on stable zirconia catalysts. Themore » latter catalyst consists of high surface area, large pore propylsulfonic acid-derivatized silicas, specifically SBA-15. In both cases, the catalyst design and synthesis yielded high concentrations of acid sites in close proximity to one another. These materials have been well-characterization in terms of physical and chemical properties, as well as in regard to surface and bulk characteristics. Both types of catalysts were shown to exhibit high catalytic performance with respect to both activity and selectivity for the bifunctional coupling of alcohols to form ethers, which proceeds via an efficient SN2 reaction mechanism on the proximal acid sites. This commonality of the dual-site SN2 reaction mechanism over acid catalysts provides for maximum reaction rates and control of selectivity by reaction conditions, i.e. pressure, temperature, and reactant concentrations. This research provides the scientific groundwork for synthesis of ethers for energy applications. The synthesized environmentally acceptable ethers, in part derived from natural gas via alcohol intermediates, exhibit high cetane properties, e.g. methylisobutylether with cetane No. of 53 and dimethylether with cetane No. of 55-60, or high octane properties, e.g. diisopropylether with blending octane No. of 105, and can replace aromatics in liquid fuels.« less
NASA Astrophysics Data System (ADS)
Ha, T. M. P.; Luong, N. T.; Le, P. N.
2016-11-01
In Vietnam for recent years, a large amount of hazardous waste containing nickel (Ni) derived from discharged catalyst of fertilizer plants has caused environmental problems in landfill overloading and the risk of soil or surface water sources pollution. Taking advantage of discharged catalyst, recycling Ni components and then synthesizing new catalysts apply for mono-nitrogen oxides (NOx) treatments is an approach to bring about both economic and environmental benefits. This study was carried out with the main objective: Evaluate the performance of modified catalysts (using recovered Ni from the discharged RKS-2-7H catalyst of Phu My Fertilizer Plant) on NOx treatment. The catalysts was synthesized and modified with active phases consist of recovered Ni and commercial Barium oxide (BaO), Manganese dioxide (MnO2) / Cerium (IV) oxide (CeO2) on the support Aluminium oxide (γ-Al2O3). The results show that the modified catalysts with Ni, Ba, Ce was not more beneficial for NOx removal than which with Ni, Ba, Mn. 98% NOx removal at 350°C with the start temperature at 115°C and the T60 value at 307°C can be obtained with 10Ni10Ba10Mn/Al catalyst.
Cyclic process for producing methane with catalyst regeneration
Frost, Albert C.; Risch, Alan P.
1980-01-01
Carbon monoxide-containing gas streams are passed over a catalyst capable of catalyzing the disproportionation of carbon monoxide so as to deposit a surface layer of active surface carbon on the catalyst essentially without formation of inactive coke thereon. The surface layer is contacted with steam and is thus converted to methane and CO.sub.2, from which a relatively pure methane product may be obtained. For practical commercial operations utilizing the two-step process of the invention of a cyclic basis, nickel, cobalt, ruthenium, thenium and alloys thereof are especially prepared for use in a metal state, with CO disproportionation being carried out at temperatures up to about 350.degree. C. and with the conversion of active surface carbon to methane being carried out by reaction with steam. The catalyst is employed in such cyclic operations without the necessity for employing a regeneration step as part of each processing cycle. Inactive carbon or coke that tends to form on the catalyst over the course of continuous operations utilizing such cyclic process is effectively and advantageously removed, on a periodic basis, in place of conventional burn off with an inert stream containing a low concentration of oxygen.
Zang, Hongjun; Yu, Songbai; Yu, Pengfei; Ding, Hongying; Du, Yannan; Yang, Yuchan; Zhang, Yiwen
2017-04-10
Here, N-acetyl-d-glucosamine (GlcNAc), the monomer composing the second most abundant biopolymer, chitin, was efficiently converted into 5-hydroxymethylfurfural (5-HMF) using ionic liquid (IL) catalysts in a water/dimethyl sulfoxide (DMSO) mixture solvent. Various reaction parameters, including reaction temperature and time, DMSO/water mass ratios and catalyst dosage were optimized. A series of ILs with different structures were analyzed to explore their impact on GlcNAc conversion. The substrate scope was expanded from GlcNAc to d-glucosamine, chitin, chitosan and monosaccharides, although 5-HMF yields obtained from polymers and other monosaccharides were generally lower than those from GlcNAc. Moreover, the IL N-methylimidazolium hydrogen sulfate ([Hmim][HSO 4 ]) exhibited the best catalyst performance (64.6% yield) when GlcNAc was dehydrated in a DMSO/water mixture at 180 °C for 6 h without the addition of extra catalysts. To summarize, these results could provide knowledge essential to the production of valuable chemicals that are derived from renewable marine resources and benefit biofuel-related applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
A bench-scale reactor consisting of a natural gas burner and an electrically heated reactor housing a selective catalytic reduction (SCR) catalyst was constructed for studying elemental mercury oxidation under SCR conditions. A low sulfur Power River Basin (PRB) coal combustion ...
Electrocatalyst for alcohol oxidation in fuel cells
Adzic, Radoslav R.; Marinkovic, Nebojsa S.
2001-01-01
Binary and ternary electrocatalysts are provided for oxidizing alcohol in a fuel cell. The binary electrocatalyst includes 1) a substrate selected from the group consisting of NiWO.sub.4 or CoWO.sub.4 or a combination thereof, and 2) Group VIII noble metal catalyst supported on the substrate. The ternary electrocatalyst includes 1) a substrate as described above, and 2) a catalyst comprising Group VIII noble metal, and ruthenium oxide or molybdenum oxide or a combination thereof, said catalyst being supported on said substrate.
A BGO detector for Positron Emission Profiling in catalysts
NASA Astrophysics Data System (ADS)
Mangnus, A. V. G.; van Ijzendoorn, L. J.; de Goeij, J. J. M.; Cunningham, R. H.; van Santen, R. A.; de Voigt, M. J. A.
1995-05-01
As part of a project to study the reaction kinetics in catalysts, a detector system has been designed and built. The detector will measure in one dimension the activity distribution of positron emitters in catalyst reactors under operational conditions as a function of time. The detector consists of two arrays of ten BGO crystals each and has the flexibility to measure with high sensitivity the activity profile in various reactor sizes; the position resolution that can be reached is 3 mm.
Iridium clusters in KLTL zeolite: Structure and catalytic selectivity for n-hexane aromatization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Triantafillou, N.D.; Miller, J.T.; Gates, B.C.
Catalysts consisting of Ir clusters in zeolite KLTL were prepared by reduction of [Ir(NH{sub 3}){sub 5}Cl]Cl{sub 2} in the zeolite with H{sub 2} at temperatures 300 or 500{degrees}C. The catalysts were tested for reactions of n-hexane and H{sub 2} at 400, 440 and 480{degrees}C and were characterized by temperature-programmed reduction, hydrogen chemisorption, transmission electron microscopy, infrared spectroscopy of adsorbed CO, and extended X-ray absorption fine structure spectroscopy. The clusters consist of 4 to 6 Ir atoms on average and are sufficiently small to reside within the pores of the zeolite. The infrared spectra characteristic of terminal CO suggest that themore » support environment is slightly basic and that the Ir clusters are electron rich relative to the bulk metal. Notwithstanding the small cluster size, the support basicity, and the confining geometry of the LTL zeolite pore structure, the catalytic performance is similar to those of other Ir catalysts, with a poor selectivity for aromatization and a high selectivity for hydrogenolysis. These results are consistent with the inference that the principal requirements for selective naphtha aromatization catalysts are both a nonacidic support and a metal with a low hydrogenolsis activity, i.e., Pt. 47 refs., 6 figs., 3 tabs.« less
Process for the synthesis of aliphatic alcohol-containing mixtures
Greene, Marvin I.; Gelbein, Abraham P.
1984-01-01
A process for the synthesis of mixtures which include saturated aliphatic alcohols is disclosed. In the first step of the process, the first catalyst activation stage, a catalyst, which comprises the oxides of copper, zinc, aluminum, potassium and one or two additional metals selected from the group consisting of chromium, magnesium, cerium, cobalt, thorium and lanthanum, is partially activated. In this step, a reducing gas stream, which includes hydrogen and at least one inert gas, flows past the catalyst at a space velocity of up to 5,000 liters (STP) per hour, per kilogram of catalyst. The partially activated catalyst is then subjected to the second step of the process, second-stage catalyst activation. In this step, the catalyst is contacted by an activation gas stream comprising hydrogen and carbon monoxide present in a volume ratio of 0.5:1 and 4:1, respectively, at a temperature of 200.degree. to 450.degree. C. and a pressure of between 35 and 200 atmospheres. The activation gas flows at a space velocity of from 1,000 to 20,000 liters (STP) per hour, per kilogram of catalyst. Second-stage activation continues until the catalyst is contacted with at least 500,000 liters (STP) of activation gas per kilogram of catalyst. The fully activated catalyst, in the third step of the process, contacts a synthesis gas stream comprising hydrogen and carbon monoxide.
Process for the synthesis of aliphatic alcohol-containing mixtures
Greene, M.I.; Gelbein, A.P.
1984-10-16
A process for the synthesis of mixtures which include saturated aliphatic alcohols is disclosed. In the first step of the process, the first catalyst activation stage, a catalyst, which comprises the oxides of copper, zinc, aluminum, potassium and one or two additional metals selected from the group consisting of chromium, magnesium, cerium, cobalt, thorium and lanthanum, is partially activated. In this step, a reducing gas stream, which includes hydrogen and at least one inert gas, flows past the catalyst at a space velocity of up to 5,000 liters (STP) per hour, per kilogram of catalyst. The partially activated catalyst is then subjected to the second step of the process, second-stage catalyst activation. In this step, the catalyst is contacted by an activation gas stream comprising hydrogen and carbon monoxide present in a volume ratio of 0.5:1 and 4:1, respectively, at a temperature of 200 to 450 C and a pressure of between 35 and 200 atmospheres. The activation gas flows at a space velocity of from 1,000 to 20,000 liters (STP) per hour, per kilogram of catalyst. Second-stage activation continues until the catalyst is contacted with at least 500,000 liters (STP) of activation gas per kilogram of catalyst. The fully activated catalyst, in the third step of the process, contacts a synthesis gas stream comprising hydrogen and carbon monoxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westover, Tyler; Emerson, Rachel Marie
Torrefaction is the thermal treatment of materials in the absence of oxygen in the temperature range of 200 to 300 °C and has been shown to improve handling and grinding properties, hydrophobicity, volatiles content, energy density, and combustion performance of renewable energy biomass feedstock materials. The disadvantages of torrefaction are its relative high cost compared to the low value input feedstock material and the energy that can be lost to volatized gases. This work will demonstrate a new technology developed by Advanced Torrefaction Systems (ATS), known as TorreCat™ Technology, that uses an oxidation catalyst in a closed system to combustmore » and destroy volatile organic compounds (VOCs) and other byproducts produced in the torrefaction process. An oxidation catalyst is a substance, or a combination of substances, that accelerate the rate of a chemical reaction without being consumed by the reaction. Catalytic combustion is a reaction that occurs at temperatures 50% lower than traditional combustion, such that essentially no NOx is created. The output of the oxidation catalyst (flue gas) consists mainly of superheated steam and inert gases (carbon dioxide and nitrogen), which can be used for heat in the thermal treatment process. INL has previously developed a pilot-scale Continuous-Feed Thermal Treatment System (CFTTS) that has 10 kg/hr capacity but does not reform the flue gas to reduce environmental concerns or capture all available heat from the biomass material. Using the TorreCat™ technology in INL’s thermal treatment system will demonstrate increased thermal efficiencies during the treatment process as well as reduced environmental impact and clean-up costs. The objective of this project is to determine the effectiveness of the Torrecat™ technology to reform the flue gas and capture as much of its heat content as possible.« less
Characterization of Deactivated Bio-oil Hydrotreating Catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Huamin; Wang, Yong
Deactivation of bio-oil hydrotreating catalysts remains a significant challenge because of the poor quality of pyrolysis bio-oil input for hydrotreating and understanding their deactivation mode is critical to developing improved catalysts and processes. In this research, we developed an understanding of the deactivation of two-step bio-oil hydrotreating catalysts (sulfided Ru/C and sulfided CoMo/C) through detailed characterization of the catalysts using various complimentary analytical techniques. Severe fouling of both catalysts by carbonaceous species was the major form of deactivation, which is consistent with the significant loss of surface area and pore volume of both deactivated catalysts and the significant increase ofmore » the bulk density. Further analysis of the carbonaceous species by thermogravimetric analysis and x-ray photoelectron spectroscopy indicated that the carbonaceous species was formed by condensation reaction of active species such as sugars and sugar derivatives (aldehydes and ketones) in bio-oil feedstock during bio-oil hydrotreating under the conditions and catalysts used. Microscopy results did not show metal sintering of the Ru/C catalyst. However, X-ray diffraction indicated a probable transformation of the highly-active CoMoS phase in the sulfided CoMo/C catalyst to Co8S9 and MoS2 phase with low activity. Loss of the active site by transport of inorganic elements from the bio-oil and the reactor construction material onto the catalyst surface also might be a cause of deactivation as indicated by elemental analysis of spent catalysts.« less
Role of catalysts in dehydrogenation of MgH2 nanoclusters
Larsson, Peter; Araújo, C. Moysés; Larsson, J. Andreas; Jena, Puru; Ahuja, Rajeev
2008-01-01
A fundamental understanding of the role of catalysts in dehydrogenation of MgH2 nanoclusters is provided by carrying out first-principles calculations based on density functional theory. It is shown that the transition metal atoms Ti, V, Fe, and Ni not only lower desorption energies significantly but also continue to attract at least four hydrogen atoms even when the total hydrogen content of the cluster decreases. In particular, Fe is found to migrate from the surface sites to the interior sites during the dehydrogenation process, releasing more hydrogen as it diffuses. This diffusion mechanism may account for the fact that a small amount of catalysts is sufficient to improve the kinetics of MgH2, which is essential for the use of this material for hydrogen storage in fuel-cell applications. PMID:18550815
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Duan, Lele; Araujo, Carlos Moyses; Ahlquist, Mårten S.G.; Sun, Licheng
2012-01-01
Water oxidation catalysts are essential components of light-driven water splitting systems, which could convert water to H2 driven by solar radiation (H2O + hν → 1/2O2 + H2). The oxidation of water (H2O → 1/2O2 + 2H+ + 2e-) provides protons and electrons for the production of dihydrogen (2H+ + 2e- → H2), a clean-burning and high-capacity energy carrier. One of the obstacles now is the lack of effective and robust water oxidation catalysts. Aiming at developing robust molecular Ru-bda (H2bda = 2,2′-bipyridine-6,6′-dicarboxylic acid) water oxidation catalysts, we carried out density functional theory studies, correlated the robustness of catalysts against hydration with the highest occupied molecular orbital levels of a set of ligands, and successfully directed the synthesis of robust Ru-bda water oxidation catalysts. A series of mononuclear ruthenium complexes [Ru(bda)L2] (L = pyridazine, pyrimidine, and phthalazine) were subsequently synthesized and shown to effectively catalyze CeIV-driven [CeIV = Ce(NH4)2(NO3)6] water oxidation with high oxygen production rates up to 286 s-1 and high turnover numbers up to 55,400. PMID:22753518
Wu, Chang-Hsun; Lin, Jyun-Ting; Lin, Kun-Yi Andrew
2018-05-01
Direct carbonization of cobalt complexes represents as a convenient approach to prepare magnetic carbon/cobalt nanocomposites (MCCNs) as heterogeneous environmental catalysts. However, most of MCCNs derived from consist of sheet-like carbon matrices with very sparse cobaltic nanoparticles (NPs), making them exhibit relatively low catalytic activities, porosity and magnetism. In this study, dipicolinic acid (DPA) is selected to prepare a 3-dimensional cobalt coordination polymer (CoDPA). MCCN derived from CoDPA can consist of a porous carbon matrix embedded with highly-dense Co 0 and Co 3 O 4 NPs. This magnetic Co 0 /Co 3 O 4 NP-anchored carbon composite (MCNC) appears as a promising heterogeneous catalyst for oxidative and reductive environmental catalytic reactions. As peroxymonosulfate (PMS) activation is selected as a model catalytic oxidative reaction, MCNC exhibits a much higher catalytic activity than Co 3 O 4 , a benchmark catalyst for PMS activation. The reductive catalytic activity of MCNC is demonstrated through 4-nitrophenol (4-NP) reduction in the presence of NaBH 4 . MCNC could rapidly react with NaBH 4 to generate H 2 for hydrogenation of 4-NP to 4-aminophenol (4-AP). In comparison with other precious metallic catalysts, MCNC also shows a relatively high catalytic activity. These results indicate that MCNC is a conveniently prepared and highly effective and stable carbon-supported cobaltic heterogeneous catalyst for versatile environmental catalytic applications. Copyright © 2018 Elsevier Inc. All rights reserved.
Leven, Matthias; Neudörfl, Jörg M
2013-01-01
Summary Four catalysts based on new amides of chiral 1,2-diamines and 2-sulfobenzoic acid have been developed. The alkali-metal salts of these betaine-like amides are able to form imines with enones, which are activated by Lewis acid interaction for nucleophilic attack by 4-hydroxycoumarin. The addition of 4-hydroxycoumarin to enones gives ee’s up to 83% and almost quantitative yields in many cases. This novel type of catalysis provides an effective alternative to conventional primary amino catalysis were strong acid additives are essential components. PMID:23400419
Sugiishi, Tsuyuka; Kimura, Akifumi; Nakamura, Hiroyuki
2010-04-21
Substitution reactions of propargylic amines proceed in the presence of copper(I) catalysts. Mechanistic studies showed that C(sp)-C(sp(3)) bond cleavage assisted by nitrogen lone-pair electrons is essential for the reaction, and the resulting iminium intermediates undergo amine exchange, aldehyde exchange, and alkyne addition reactions. Because iminium intermediates are key to aldehyde-alkyne-amine (A(3)) coupling reactions, this transformation is effective not only for reconstruction of propargylic amines but also for chiral induction of racemic compounds in the presence of chiral catalysts.
Highly Efficient Catalytic Cyclic Carbonate Formation by Pyridyl Salicylimines.
Subramanian, Saravanan; Park, Joonho; Byun, Jeehye; Jung, Yousung; Yavuz, Cafer T
2018-03-21
Cyclic carbonates as industrial commodities offer a viable nonredox carbon dioxide fixation, and suitable heterogeneous catalysts are vital for their widespread implementation. Here, we report a highly efficient heterogeneous catalyst for CO 2 addition to epoxides based on a newly identified active catalytic pocket consisting of pyridine, imine, and phenol moieties. The polymeric, metal-free catalyst derived from this active site converts less-reactive styrene oxide under atmospheric pressure in quantitative yield and selectivity to the corresponding carbonate. The catalyst does not need additives, solvents, metals, or co-catalysts, can be reused at least 10 cycles without the loss of activity, and scaled up easily to a kilogram scale. Density functional theory calculations reveal that the nucleophilicity of pyridine base gets stronger due to the conjugated imines and H-bonding from phenol accelerates the reaction forward by stabilizing the intermediate.
Pye, Dominic R; Cheng, Li-Jie; Mankad, Neal P
2017-07-01
A bimetallic system consisting of Cu-carbene and Mn-carbonyl co-catalysts was employed for carbonylative C-C coupling of arylboronic esters with alkyl halides, allowing for the convergent synthesis of ketones. The system operates under mild conditions and exhibits complementary reactivity to Pd catalysis. The method is compatible with a wide range of arylboronic ester nucleophiles and proceeds smoothly for both primary and secondary alkyl iodide electrophiles. Preliminary mechanistic experiments corroborate a hypothetical catalytic mechanism consisting of co-dependent cycles wherein the Cu-carbene co-catalyst engages in transmetallation to generate an organocopper nucleophile, while the Mn-carbonyl co-catalyst activates the alkyl halide electrophile by single-electron transfer and then undergoes reversible carbonylation to generate an acylmanganese electrophile. The two cycles then intersect with a heterobimetallic, product-releasing C-C coupling step.
Biomass-derived high-performance tungsten-based electrocatalysts on graphene for hydrogen evolution
Meng, Fanke; Hu, Enyuan; Zhang, Lihua; ...
2015-08-05
We report a new class of highly active and stable tungsten-based catalysts to replace noble metal materials for the hydrogen evolution reaction (HER) in an acidic electrolyte. The catalyst is produced by heating an earth-abundant and low-cost mixture of ammonium tungstate, soybean powder and graphene nanoplatelets (WSoyGnP). The catalyst compound consists of tungsten carbide (W₂C and WC) and tungsten nitride (WN) nanoparticles decorated on graphene nanoplatelets. The catalyst demonstrates an overpotential (η₁₀, the potential at a current density of 10 mA cm⁻²) of 0.105 V, which is the smallest among tungsten-based HER catalysts in acidic media. The coupling with graphenemore » significantly reduces the charge transfer resistance and increases the active surface area of the product, which are favorable for enhancing the HER activity. Therefore, the approach of employing biomass and other less expensive materials as precursors for the production of catalysts with high HER activity provides a new path for the design and development of efficient catalysts for the hydrogen production industry.« less
NASA Astrophysics Data System (ADS)
Asri, N. P.; Podjojono, B.; Fujiani, R.; Nuraini
2017-05-01
A solid CaO-based catalyst of waste eggshell was developed for biodiesel production from used cooking oil. The waste eggshell powder was calcined in air at 90° C for 4 h to convert calcium species in the eggshells into active CaO catalysts. The characterization of CaO catalyst was done by XRD and BET analysis. The CaO catalyst was then introduced for transesterification of used cooking oil (UCO) for testing of its catalytic activity. The experiment was conducted in batch type reactor that consists of three-neck glass equipped by reflux condenser and magnetic stirrer. Before tranesterification process, the UCO was treated by coconut coir powder in order to reduce the free fatty acid content. The result showed that the catalyst was potentially use for transesterification of used cooking oil into biodiesel with relatively high yield of 75.92% was achieved at reaction temperature, reaction time, molar ratio UCO to methanol and catalyst amount of 65° C, 7 h, 1:15 and 6%, respectively.
Anderson, Robin E; Colorado, Ramon; Crouse, Christopher; Ogrin, Douglas; Maruyama, Benji; Pender, Mark J; Edwards, Christopher L; Whitsitt, Elizabeth; Moore, Valerie C; Koveal, Dorothy; Lupu, Corina; Stewart, Michael P; Smalley, Richard E; Tour, James M; Barron, Andrew R
2006-07-07
The synthetic conditions for the isolation of the iron-molybdenum nanocluster FeMoC [HxPMo12O40 [subset]H4Mo72Fe30(O2CMe)15O254(H2O)98], along with its application as a catalyst precursor for VLS growth of SWNTs have been studied. As-prepared FeMoC is contaminated with the Keplerate cage [H4Mo72Fe30(O2CMe)15O254(H2O)98] without the Keggin [HxPMo12O40]n- template, however, isolation of pure FeMoC may be accomplished by Soxhlet extraction with EtOH. The resulting EtOH solvate is consistent with the replacement of the water ligands coordinated to Fe being substituted by EtOH. FeMoC-EtOH has been characterized by IR, UV-vis spectroscopy, MS, XPS and 31P NMR. The solid-state 31P NMR spectrum for FeMoC-EtOH (delta-5.3 ppm) suggests little effect of the paramagnetic Fe3+ centers in the Keplerate cage on the Keggin ion's phosphorous. The high chemical shift anisotropy, and calculated T1 (35 ms) and T2 (8 ms) values are consistent with a weak magnetic interaction between the Keggin ion's phosphorus symmetrically located within the Keplerate cage. Increasing the FeCl2 concentration and decreasing the pH of the reaction mixture optimizes the yield of FeMoC. The solubility and stability of FeMoC in H2O and MeOH-H2O is investigated. The TGA of FeMoC-EtOH under air, Ar and H2 (in combination with XPS) shows that upon thermolysis the resulting Fe : Mo ratio is highly dependent on the reaction atmosphere: thermolysis in air results in significant loss of volatile molybdenum components. Pure FeMoC-EtOH is found to be essentially inactive as a pre-catalyst for the VLS growth of single-walled carbon nanotubes (SWNTs) irrespective of the substrate or reaction conditions. However, reaction of FeMoC with pyrazine (pyz) results in the formation of aggregates that are found to be active catalysts for the growth of SWNTs. Activation of FeMoC may also be accomplished by the addition of excess iron. The observation of prior work's reported growth of SWNTs from FeMoC is discussed with respect to these results.
Ethical Development through Student Activities Programming.
ERIC Educational Resources Information Center
Brock, Carol S.
1991-01-01
Student activities programing, viewed as essential to the college experience, is defended by outlining some of the values and growth opportunities it provides for students. Several specific programing strategies useful as catalysts in values development are described, including values clarification exercises, multicultural programing, and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Gary; Pendyala, Venkat Ramana Rao; Martinelli, Michela
XANES K-edge spectra of potassium promoter in precipitated Fe catalysts were acquired following activation by carburization in CO and as a function of time on-stream during the course of a Fischer–Tropsch synthesis run for a 100Fe:2K catalyst by withdrawing catalysts, sealed in wax product, for analysis. CO-activated and end-of-run spectra of the catalyst were also obtained for a 100Fe:5K catalyst. Peaks representing electronic transitions and multiple scattering were observed and resembled reference spectra for potassium carbonate or potassium formate. The shift in the multiple scattering peak to higher energy was consistent with sintering of potassium promoter during the course ofmore » the reaction test. The catalyst, however, retained its carbidic state, as demonstrated by XANES and EXAFS spectra at the iron K-edge, suggesting that sintering of potassium did not adversely affect the carburization rate, which is important for preventing iron carbides from oxidizing. This method serves as a starting point for developing better understanding of the chemical state and changes in structure occurring with alkali promoter.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rankel, L.A.
1993-12-31
Arab Heavy 650{degrees}F{sup +} atmospheric resid has been hydroprocessed over different CoMo/activated carbon catalysts and the results compared to processing with a conventional CoMo/alumina catalyst. Demetallation activity for the activated carbon catalysts depends on the activated carbon chosen as well as the way the Co and Mo metals are applied to the carbon. Hydroprocessing Arab Heavy 650{degrees}F{sup +} resid at 1500 psig showed that 87% demetallation over CoMo/Darco activated carbon was produced vs {approximately}73% demetallation over CoMo/alumina at about the same 1000{degrees}F conversion with 200-400 SCF/BBL less H-consumption. Desulfurization activity and CCR conversion were 10-20% higher for CoMo/alumina vs CoMo/Darcomore » activated carbon, consistent with higher H-consumption. Potential advantages for resid processing over carbon supported catalysts induce high levels of demetallation, reduced costs for carbon vs alumina, and easy recovery of metals by catalysts combustion.« less
Mahajan, Devinder
2005-07-26
The invention provides a homogenous catalyst for the production of methanol from purified synthesis gas at low temperature and low pressure which includes a transition metal capable of forming transition metal complexes with coordinating ligands and an alkoxide, the catalyst dissolved in a methanol solvent system, provided the transition metal complex is not transition metal carbonyl. The coordinating ligands can be selected from the group consisting of N-donor ligands, P-donor ligands, O-donor ligands, C-donor ligands, halogens and mixtures thereof.
Gokhale, Rohan; Unni, Sreekuttan M; Puthusseri, Dhanya; Kurungot, Sreekumar; Ogale, Satishchandra
2014-03-07
Development of a highly durable, fuel-tolerant, metal-free electro-catalyst for oxygen reduction reaction (ORR) is essential for robust and cost-effective Anion Exchange Membrane Fuel Cells (AEMFCs). Herein, we report the development of a nitrogen-doped (N-doped) hierarchically porous carbon-based efficient ORR electrocatalyst from protein-rich pulses. The process involves 3D silica nanoparticle templating of the pulse flour(s) followed by their double pyrolysis. The detailed experiments are performed on gram flour (derived from chickpeas) without any in situ/ex situ addition of dopants. The N-doped porous carbon thus generated shows remarkable electrocatalytic activity towards ORR in the alkaline medium. The oxygen reduction on this material follows the desired 4-electron transfer mechanism involving the direct reduction pathway. Additionally, the synthesized carbon catalyst also exhibits good electrochemical stability and fuel tolerance. The results are also obtained and compared with the case of soybean flour having higher nitrogen content to highlight the significance of different parameters in the ORR catalyst performance.
Highly Dispersed Alloy Catalyst for Durability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vivek S. Murthi; Izzo, Elise; Bi, Wu
2013-01-08
Achieving DOE's stated 5000-hr durability goal for light-duty vehicles by 2015 will require MEAs with characteristics that are beyond the current state of the art. Significant effort was placed on developing advanced durable cathode catalysts to arrive at the best possible electrode for high performance and durability, as well as developing manufacturing processes that yield significant cost benefit. Accordingly, the overall goal of this project was to develop and construct advanced MEAs that will improve performance and durability while reducing the cost of PEMFC stacks. The project, led by UTC Power, focused on developing new catalysts/supports and integrating them withmore » existing materials (membranes and gas diffusion layers (GDLs)) using state-of-the-art fabrication methods capable of meeting the durability requirements essential for automotive applications. Specifically, the project work aimed to lower platinum group metals (PGM) loading while increasing performance and durability. Appropriate catalysts and MEA configuration were down-selected that protects the membrane, and the layers were tailored to optimize the movements of reactants and product water through the cell to maximize performance while maintaining durability.« less
Highly active non-PGM catalysts prepared from metal organic frameworks
Barkholtz, Heather M.; Chong, Lina; Kaiser, Zachary B.; ...
2015-06-11
Finding inexpensive alternatives to platinum group metals (PGMs) is essential for reducing the cost of proton exchange membrane fuel cells (PEMFCs). Numerous materials have been investigated as potential replacements of Pt, of which the transition metal and nitrogen-doped carbon composites (TM/N x/C) prepared from iron doped zeolitic imidazolate frameworks (ZIFs) are among the most active ones in catalyzing the oxygen reduction reaction based on recent studies. In this report, we demonstrate that the catalytic activity of ZIF-based TM/N x/C composites can be substantially improved through optimization of synthesis and post-treatment processing conditions. Ultimately, oxygen reduction reaction (ORR) electrocatalytic activity mustmore » be demonstrated in membrane-electrode assemblies (MEAs) of fuel cells. The process of preparing MEAs using ZIF-based non-PGM electrocatalysts involves many additional factors which may influence the overall catalytic activity at the fuel cell level. Evaluation of parameters such as catalyst loading and perfluorosulfonic acid ionomer to catalyst ratio were optimized. Our overall efforts to optimize both the catalyst and MEA construction process have yielded impressive ORR activity when tested in a fuel cell system.« less
Mathematical Modeling of Cellular Metabolism.
Berndt, Nikolaus; Holzhütter, Hermann-Georg
Cellular metabolism basically consists of the conversion of chemical compounds taken up from the extracellular environment into energy (conserved in energy-rich bonds of organic phosphates) and a wide array of organic molecules serving as catalysts (enzymes), information carriers (nucleic acids), and building blocks for cellular structures such as membranes or ribosomes. Metabolic modeling aims at the construction of mathematical representations of the cellular metabolism that can be used to calculate the concentration of cellular molecules and the rates of their mutual chemical interconversion in response to varying external conditions as, for example, hormonal stimuli or supply of essential nutrients. Based on such calculations, it is possible to quantify complex cellular functions as cellular growth, detoxification of drugs and xenobiotic compounds or synthesis of exported molecules. Depending on the specific questions to metabolism addressed, the methodological expertise of the researcher, and available experimental information, different conceptual frameworks have been established, allowing the usage of computational methods to condense experimental information from various layers of organization into (self-) consistent models. Here, we briefly outline the main conceptual frameworks that are currently exploited in metabolism research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artyushkova, Kateryna; Workman, Michael J.; Matanovic, Ivana
The role of the interaction between doped carbon-based materials and ionic conductors is essential in multiple technologies, from fuel cells and energy storage devices to conductive polymer composites. In this paper, we report how the surface chemistry of transition metal–nitrogen–carbon (MNC) electrocatalysts affects catalyst–ionomer interaction and the resulting structure of cathodes. The cathode structure resulting from these interactions is directly related to the performance in membrane electrode assembly (MEA) fuel cells. To advance the development of platinum group metal (PGM)-free electrodes for the oxygen reduction reaction it is necessary to understand the structure of the catalyst layers with focus onmore » chemistry and distribution of active sites and ionomer morphology. To assess catalyst interaction with an ionomer, X-ray photoelectron spectroscopy is applied to study the chemistry of catalyst layers while density functional theory (DFT) is used to calculate adsorption energies of the ionomer side chain on different nitrogen species. We report that a high surface concentration of hydrogenated nitrogen at the surface of MNC catalysts causes inefficient ionomer morphology, while an abundance of surface oxides promotes both an efficient distribution of active sites and an optimal ionomer–catalyst interface. The critical role of protonation of nitrogen within catalytic layers in inhibiting proton transport during fuel cell operation is also suggested. As a result, this is the first report of the effect the surface chemistry of MNC catalysts, in the presence of the ionomer, has on the structure and performance of MEA electrodes.« less
Artyushkova, Kateryna; Workman, Michael J.; Matanovic, Ivana; ...
2017-12-18
The role of the interaction between doped carbon-based materials and ionic conductors is essential in multiple technologies, from fuel cells and energy storage devices to conductive polymer composites. In this paper, we report how the surface chemistry of transition metal–nitrogen–carbon (MNC) electrocatalysts affects catalyst–ionomer interaction and the resulting structure of cathodes. The cathode structure resulting from these interactions is directly related to the performance in membrane electrode assembly (MEA) fuel cells. To advance the development of platinum group metal (PGM)-free electrodes for the oxygen reduction reaction it is necessary to understand the structure of the catalyst layers with focus onmore » chemistry and distribution of active sites and ionomer morphology. To assess catalyst interaction with an ionomer, X-ray photoelectron spectroscopy is applied to study the chemistry of catalyst layers while density functional theory (DFT) is used to calculate adsorption energies of the ionomer side chain on different nitrogen species. We report that a high surface concentration of hydrogenated nitrogen at the surface of MNC catalysts causes inefficient ionomer morphology, while an abundance of surface oxides promotes both an efficient distribution of active sites and an optimal ionomer–catalyst interface. The critical role of protonation of nitrogen within catalytic layers in inhibiting proton transport during fuel cell operation is also suggested. As a result, this is the first report of the effect the surface chemistry of MNC catalysts, in the presence of the ionomer, has on the structure and performance of MEA electrodes.« less
Fischer–Tropsch synthesis: Effect of ammonia on supported cobalt catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pendyala, Venkat Ramana Rao; Jacobs, Gary; Bertaux, Clement
The effect of ammonia in syngas on the performance of various supported cobalt catalysts (i.e., Al 2O 3, TiO 2 and SiO 2) was investigated during Fischer-Tropsch synthesis (FTS) using a continuously stirred tank reactor (CSTR). The addition of ammonia (10 ppmv NH 3) caused a significant deactivation for all supported cobalt catalysts, but the rate of deactivation was higher for the silica-supported catalysts relative to the alumina and titania-supported catalysts used in this work. Ammonia addition had a positive effect on product selectivity (i.e., lower light gas products and higher C 5+) for alumina and titania-supported catalysts compared tomore » ammonia free conditions, whereas, the addition of ammonia increased lighter hydrocarbon (C 1-C 4) products and decreased higher hydrocarbon (C 5+) selectivity compared to ammonia-free synthesis conditions for the silica-supported catalyst. For alumina and titania-supported catalysts, the activity almost recovered with mild in-situ hydrogen treatment of the ammonia exposed catalysts. For the silica-supported catalyst, the loss of activity is somewhat irreversible (i.e., cannot be regained after the mild hydrogen treatment). Addition of ammonia led to a significant loss in BET surface area and changes in pore diameter (consistent with pore collapse of a fraction of pores into the microporous range as described in the literature), as well as formation of catalytically inactive cobalt support compounds for the silica-supported catalyst. On the other hand, the pore characteristics of alumina and titania-supported catalysts were not significantly changed. In conclusion, XANES results of the ammonia exposed silica-supported catalysts further confirm the formation of cobalt-support compounds (cobalt silicates).« less
Fischer–Tropsch synthesis: Effect of ammonia on supported cobalt catalysts
Pendyala, Venkat Ramana Rao; Jacobs, Gary; Bertaux, Clement; ...
2016-02-22
The effect of ammonia in syngas on the performance of various supported cobalt catalysts (i.e., Al 2O 3, TiO 2 and SiO 2) was investigated during Fischer-Tropsch synthesis (FTS) using a continuously stirred tank reactor (CSTR). The addition of ammonia (10 ppmv NH 3) caused a significant deactivation for all supported cobalt catalysts, but the rate of deactivation was higher for the silica-supported catalysts relative to the alumina and titania-supported catalysts used in this work. Ammonia addition had a positive effect on product selectivity (i.e., lower light gas products and higher C 5+) for alumina and titania-supported catalysts compared tomore » ammonia free conditions, whereas, the addition of ammonia increased lighter hydrocarbon (C 1-C 4) products and decreased higher hydrocarbon (C 5+) selectivity compared to ammonia-free synthesis conditions for the silica-supported catalyst. For alumina and titania-supported catalysts, the activity almost recovered with mild in-situ hydrogen treatment of the ammonia exposed catalysts. For the silica-supported catalyst, the loss of activity is somewhat irreversible (i.e., cannot be regained after the mild hydrogen treatment). Addition of ammonia led to a significant loss in BET surface area and changes in pore diameter (consistent with pore collapse of a fraction of pores into the microporous range as described in the literature), as well as formation of catalytically inactive cobalt support compounds for the silica-supported catalyst. On the other hand, the pore characteristics of alumina and titania-supported catalysts were not significantly changed. In conclusion, XANES results of the ammonia exposed silica-supported catalysts further confirm the formation of cobalt-support compounds (cobalt silicates).« less
Heterogeneous Catalysis: The Horiuti-Polanyi Mechanism and Alkene Hydrogenation
ERIC Educational Resources Information Center
Mattson, Bruce; Foster, Wendy; Greimann, Jaclyn; Hoette, Trisha; Le, Nhu; Mirich, Anne; Wankum, Shanna; Cabri, Ann; Reichenbacher, Claire; Schwanke, Erika
2013-01-01
The hydrogenation of alkenes by heterogeneous catalysts has been studied for 80 years. The foundational mechanism was proposed by Horiuti and Polanyi in 1934 and consists of three steps: (i) alkene adsorption on the surface of the hydrogenated metal catalyst, (ii) hydrogen migration to the beta-carbon of the alkene with formation of a delta-bond…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsz-Keung, Cheung; d`Itri, J.L.; Lange, F.C.
1995-12-31
The primary goal of this project is to evaluate the potential value of solid superacid catalysts of the sulfated zirconia type for light hydrocarbon conversion. The key experiments catalytic testing of the performance of such catalysts in a flow reactor fed with streams containing, for example, n-butane or propane. Fe- and Mn-promoted sulfated zirconia was used to catalyze the conversion of n-butane at atmospheric pressure, 225-450{degrees}C, and n-butane partial pressures in the range of 0.0025-0.01 atm. At temperatures <225{degrees}C, these reactions were accompanied by cracking; at temperatures >350{degrees}C, cracking and isomerization occurred. Catalyst deactivation, resulting at least in part frommore » coke formation, was rapid. The primary cracking products were methane, ethane, ethylene, and propylene. The observation of these products along with an ethane/ethylene molar ratio of nearly 1 at 450{degrees}C is consistent with cracking occurring, at least in part, by the Haag-Dessau mechanism, whereby the strongly acidic catalyst protonates n-butane to give carbonium ions. The rate of methane formation from n-butane cracking catalyzed by Fe- and Mn-promoted sulfated zirconia at 450{degrees}C was about 3 x 10{sup -8} mol/(g of catalyst {center_dot}s). The observation of butanes, pentanes, and methane as products is consistent with Olah superacid chemistry, whereby propane is first protonated by a very strong acid to form a carbonium ion. The carbonium ion then decomposes into methane and an ethyl cation which undergoes oligocondensation reactions with propane to form higher molecular weight alkanes. The results are consistent with the identification of iron- and manganese-promoted sulfated zirconia as a superacid.« less
Nanostructured Platinum Alloys for Use as Catalyst Materials
NASA Technical Reports Server (NTRS)
Narayan, Sri R. (Inventor); Hays, Charles C. (Inventor)
2015-01-01
A series of binary and ternary Pt-alloys, that promote the important reactions for catalysis at an alloy surface; oxygen reduction, hydrogen oxidation, and hydrogen and oxygen evolution. The first two of these reactions are essential when applying the alloy for use in a PEMFC.
Nanostructured Platinum Alloys for Use as Catalyst Materials
NASA Technical Reports Server (NTRS)
Hays, Charles C. (Inventor); Narayan, Sri R. (Inventor)
2013-01-01
A series of binary and ternary Pt-alloys, that promote the important reactions for catalysis at an alloy surface; oxygen reduction, hydrogen oxidation, and hydrogen and oxygen evolution. The first two of these reactions are essential when applying the alloy for use in a PEMFC.
Directing Reaction Pathways through Controlled Reactant Binding at Pd-TiO2 Interfaces.
Zhang, Jing; Wang, Bingwen; Nikolla, Eranda; Medlin, J Will
2017-06-01
Recent efforts to design selective catalysts for multi-step reactions, such as hydrodeoxygenation (HDO), have emphasized the preparation of active sites at the interface between two materials having different properties. However, achieving precise control over interfacial properties, and thus reaction selectivity, has remained a challenge. Here, we encapsulated Pd nanoparticles (NPs) with TiO 2 films of regulated porosity to gain a new level of control over catalyst performance, resulting in essentially 100 % HDO selectivity for two biomass-derived alcohols. This catalyst also showed exceptional reaction specificity in HDO of furfural and m-cresol. In addition to improving HDO activity by maximizing the interfacial contact between the metal and metal oxide sites, encapsulation by the nanoporous oxide film provided a significant selectivity boost by restricting the accessible conformations of aromatics on the surface. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wet-oxidation waste management system for CELSS
NASA Technical Reports Server (NTRS)
Takahashi, Y.; Ohya, H.
1986-01-01
A wet oxidation system will be useful in the Closed Ecological Life Support System (CELSS) as a facility to treat organic wastes and to redistribute inorganic compounds and elements. However at rather higher temperatures needed in this reaction, for instance, at 260 deg C, only 80% of organic in a raw material can be oxidized, and 20% of it will remain in the liquid mainly as acetic acid, which is virtually noncombustible. Furthermore, nitrogen is transformed to ammonium ions which normally cannot be absorbed by plants. To resolve these problems, it becomes necessary to use catalysts. Noble metals such as Ru, Rh and so on have proved to be partially effective as these catalysts. That is, oxidation does not occur completely, and the unexpected denitrification, instead of the expected nitrification, occurs. So, it is essential to develop the catalysts which are able to realize the complete oxidation and the nitrification.
Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction
Yao, Siyu; Zhang, Xiao; Zhou, Wu; ...
2017-06-22
Here, the water-gas shift (WGS) reaction (where carbon monoxide plus water yields dihydrogen and carbon dioxide) is an essential process for hydrogen generation and carbon monoxide removal in various energy-related chemical operations. This equilibrium-limited reaction is favored at a low working temperature. Potential application in fuel cells also requires a WGS catalyst to be highly active, stable, and energy-efficient and to match the working temperature of on-site hydrogen generation and consumption units. We synthesized layered gold (Au) clusters on a molybdenum carbide (α-MoC) substrate to create an interfacial catalyst system for the ultralow-temperature WGS reaction. Water was activated over α-MoCmore » at 303 kelvin, whereas carbon monoxide adsorbed on adjacent Au sites was apt to react with surface hydroxyl groups formed from water splitting, leading to a high WGS activity at low temperatures.« less
Catalyst recognition of cis-1,2-diols enables site-selective functionalization of complex molecules
NASA Astrophysics Data System (ADS)
Sun, Xixi; Lee, Hyelee; Lee, Sunggi; Tan, Kian L.
2013-09-01
Carbohydrates and natural products serve essential roles in nature, and also provide core scaffolds for pharmaceutical agents and vaccines. However, the inherent complexity of these molecules imposes significant synthetic hurdles for their selective functionalization and derivatization. Nature has, in part, addressed these issues by employing enzymes that are able to orient and activate substrates within a chiral pocket, which increases dramatically both the rate and selectivity of organic transformations. In this article we show that similar proximity effects can be utilized in the context of synthetic catalysts to achieve general and predictable site-selective functionalization of complex molecules. Unlike enzymes, our catalysts apply a single reversible covalent bond to recognize and bind to specific functional group displays within substrates. By combining this unique binding selectivity and asymmetric catalysis, we are able to modify the less reactive axial positions within monosaccharides and natural products.
Catalysts Based on Earth-Abundant Metals for Visible Light-Driven Water Oxidation Reaction.
Lin, Junqi; Han, Qing; Ding, Yong
2018-06-04
Exploration of water oxidation catalyst (WOC) with excellent performance is the key for the overall water splitting reaction, which is a feasible strategy to convert solar energy to chemical energy. Although some compounds composed of noble metals, mainly Ru and Ir, have been reported to catalyze water oxidation with high efficiency, catalysts based on low-cost and earth-abundant transition metals are essential for realizing economical and large-scale light-driven water splitting. Various WOCs containing earth-abundant metals (mainly Mn, Fe, Co, Ni, Cu) have been utilized for visible light-driven water oxidation in recent years. In this Personal Account, we summarize our recent developments in WOCs based on earth-abundant transition metals including polyoxometalates (POMs), metal oxides or bimetal oxides, and metal complexes containing multidentate ligand scaffolds for visible light-driven water oxidation reaction. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Chamoun, R.; Demirci, U. B.; Cornu, D.; Zaatar, Y.; Khoury, A.; Khoury, R.; Miele, P.
2010-10-01
Shaped catalysts are crucial for technological applications. In this context, we have developed Co-αAl 2O 3 catalyst films deposited over Cu plates to be used in hydrogen generation by hydrolysis of sodium borohydride NaBH 4 in alkaline solution. The Co-αAl 2O 3 films were prepared by electrophoretic deposition according to six different routes. While five of them failed in fabricating adhering films, the sixth route, consisting of electrodepositing Co-impregnated αAl 2O 3, showed promising results. The as-obtained shaped catalysts were stable when hydrogen vigorously bubbled and catalyzed the NaBH 4 hydrolysis with attractive hydrogen generation rates. These results open an alternative route for preparing shaped catalysts in this reaction.
Contact structure for use in catalytic distillation
Jones, E.M. Jr.
1984-03-27
A method is described for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor, contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.
Contact structure for use in catalytic distillation
Jones, Jr., Edward M.
1985-01-01
A method and apparatus for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.
Contact structure for use in catalytic distillation
Jones, E.M. Jr.
1985-08-20
A method and apparatus are disclosed for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.
Hydroprocessing full-range of heavy oils and bitumen using ultradispersed catalysts at low severity
NASA Astrophysics Data System (ADS)
Peluso, Enzo
The progressive exhaustion of light crude oils is forcing the petroleum industry to explore new alternatives for the exploitation of unconventional oils. New approaches are searching for technologies able to produce, transport and refine these feedstocks at lower costs, in which symbiotic processes between the enhanced oil recovery (EOR) and the conventional upgrading technologies are under investigation. The process explored in this thesis is an interesting alternative for in-situ upgrading of these crude oils in the presence of ultradispersed (UD) catalysts, which are included as a disperse phase able to circulate along with the processed feed. The objectives of this work are: (a) study the performance of UD catalysts in the presence of a full range (non fractioned) heavy oil and bitumen and (b) evaluate the recyclability of the UD catalysts. Four different heavy crude oils were evaluated in the presence with UD catalysts at a total pressure of 2.8 MPa, residence time of 8 hours and reaction temperatures from 360 up to 400ºC. Thermal and catalytic hydro-processing were compared in terms of conversion and product stability. A comparison between the different crude oils was additionally derived in terms of SARA, initial micro-carbon content and virgin oil stability among other properties. Advantages of catalytic hydro-processing over thermal hydro-processing were evidenced, with UD catalysts playing an essential hydrogenating role while retarding coke formation; microcarbon and asphaltenes reduction in the presence of UD catalysts was observed. To evaluate the feasibility of recycling the UD catalysts, a micro-slurry recycled unit was developed as part of this research. These main results showed: (a) a successful design of this unit, (b) that temperature, LHSV and fractional recycling ratio have more impact on VGO conversion, while pressure has almost no effect, and (c) an UD catalysts agglomeration process was detected, however this process is slow and reversible.
Chiu, Chun-Hsiang; Hsi, Hsing-Cheng; Lin, Hong-Ping; Chang, Tien-Chin
2015-06-30
This research investigated the effects of manganese oxide (MnOx) impregnation on the physical/chemical properties and multi pollutant control effectiveness of Hg(0) and NO using a V2O5-WO3/TiO2-SiO2 selective catalytic reduction (SCR) catalyst. Raw and MnOx-treated SCR samples were bean-shaped nanoparticles with sizes within 10-30 nm. Impregnating MnOx of ≤ 5 wt% caused limited changes in physical properties of the catalyst. The decrease in surface area when the impregnated MnOx amount was 10 wt% may stem from the pore blockage and particle growth or aggregation of the catalyst. Mn(4+) was the main valence state of impregnated MnOx. Apparent crystallinity of MnOx was not observed based on X-ray diffraction. MnOx impregnation enhanced the Hg(0) oxidation and NO/SO2 removal of SCR catalyst. The 5 and 10% MnOx-impregnated samples had the greatest multi pollutant control potentials for Hg(0) oxidation and NO removal; however, the increasing SO2 removal that may be mainly due to SO2-SO3 conversion should be cautioned. HCl and O2 greatly promoted Hg(0) oxidation. SO2 enhanced Hg(0) oxidation at ≤ 200 ppm while NO and NH3 consistently inhibited Hg(0) oxidation. Elevating flue gas temperature enhanced Hg(0) oxidation. Overall, MnOx-impregnated catalysts show stable and consistent multi pollutant removal effectiveness under the test conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
Cat cracking technology with reduced discharge of harmful substances to the atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elshin, A.I.; Aliev, R.R.; Solyar, B.Z.
1995-11-01
The operation of cat crackers creates a number of ecological problems involving pollution of the atmosphere. In the regeneration of coked catalyst, up to 10 tonnes/day of sulfur oxides are discharged to the atmosphere, along with catalyst dust in amounts up to 2 tonnes/day and carbon monoxide up to 120 tonnes/day. With increasingly severe requirements for environmental protection, the problem of reducing harmful discharges to the atmosphere has become more acute, necessitating either preliminary hydrotreating of the feed or scrubber cleanup of the stack gas to remove sulfur oxides. The high cost of these processes has provided the impetus formore » proposing various types of bifunctional cracking catalysts and effective catalyst additives to bind sulfur oxides directly in the regenerator. Basic oxides (of aluminum, magnesium, calcium, etc.) react with sulfur oxides to form stable sulfates that are then reduced to hydrogen sulfide in the reactor, while re-forming the basic oxide. Binding sulfur oxides in the regenerator is favored by the presence of an oxidizing agent or by the introduction of a promoter for afterburning carbon monoxide to dioxide. Compositions consisting mainly of aluminum oxide ({>=}90% by weight) have been patented as catalyst additives for binding sulfur oxides; other compositions that have been patented consist of Group II metal oxides and other oxides that have oxidizing properties. The additives are introduced into the catalyst charge in amounts of 5-10% by weight. On the basis of research, an aluminium oxide additive, PS-17, has been developed for binding sulfur oxides in the course of cracking.« less
Jackson, Ariel; Strickler, Alaina; Higgins, Drew; Jaramillo, Thomas Francisco
2018-01-12
Improving the performance of oxygen reduction reaction (ORR) electrocatalysts is essential for the commercial efficacy of many renewable energy technologies, including low temperature polymer electrolyte fuel cells (PEFCs). Herein, we report highly active and stable carbon-supported Ru@Pt core-shell nanoparticles (Ru@Pt/C) prepared by a wet chemical synthesis technique. Through rotating disc electrode testing, the Ru@Pt/C achieves an ORR Pt mass-based activity of 0.50 A mg Pt -1 at 0.9 V versus the reversible hydrogen electrode (RHE), which exceeds the activity of the state-of-the-art commercial Pt/C catalyst as well as the Department of Energy 2020 PEFC electrocatalyst activity targets for transportation applications. The impact of various synthetic parameters, including Pt to Ru ratios and catalyst pretreatments (i.e., annealing) are thoroughly explored. Pt-based mass activity of all prepared Ru@Pt/C catalysts was found to exceed 0.4 mg Pt -1 across the range of compositions investigated, with the maximum activity catalyst having a Ru:Pt ratio of 1:1. This optimized composition of Ru@Pt/C catalyst demonstrated remarkable stability after 30,000 accelerated durability cycles (0.6 to 1.0 V vs. RHE at 125 mV s -1 ), maintaining 85% of its initial mass activity. Scanning transmission electron microscopy energy dispersive spectroscopy (STEM-EDS) analysis at various stages of electrochemical testing demonstrated that the Pt shell can provide sufficient protection against the dissolution of the otherwise unstable Ru core.
2015-01-01
Activation of a catalyst [IrCl(COD)(IMes)] (IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene; COD = cyclooctadiene)] for signal amplification by reversible exchange (SABRE) was monitored by in situ hyperpolarized proton NMR at 9.4 T. During the catalyst-activation process, the COD moiety undergoes hydrogenation that leads to its complete removal from the Ir complex. A transient hydride intermediate of the catalyst is observed via its hyperpolarized signatures, which could not be detected using conventional nonhyperpolarized solution NMR. SABRE enhancement of the pyridine substrate can be fully rendered only after removal of the COD moiety; failure to properly activate the catalyst in the presence of sufficient substrate can lead to irreversible deactivation consistent with oligomerization of the catalyst molecules. Following catalyst activation, results from selective RF-saturation studies support the hypothesis that substrate polarization at high field arises from nuclear cross-relaxation with hyperpolarized 1H spins of the hydride/orthohydrogen spin bath. Importantly, the chemical changes that accompanied the catalyst’s full activation were also found to endow the catalyst with water solubility, here used to demonstrate SABRE hyperpolarization of nicotinamide in water without the need for any organic cosolvent—paving the way to various biomedical applications of SABRE hyperpolarization methods. PMID:25372972
Method for magnesium sulfate recovery
Gay, Richard L.; Grantham, LeRoy F.
1987-01-01
A method of obtaining magnesium sulfate substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is then contacted with a concentrated sulfuric acid under certain prescribed conditions to produce a liquid product and a solid product. The particulate solid product and a minor amount of the liquid is then treated to produce a solid residue consisting essentially of magnesium sulfate substantially free of uranium and having a residual radioactivity level of less than 1000 pCi/gm. In accordance with the preferred embodiment of the invention, a catalyst and an oxidizing agent are used during the initial acid treatment and a final solid residue has a radioactivity level of less than about 50 pCi/gm.
Magnesium fluoride recovery method
Gay, Richard L.; McKenzie, Donald E.
1989-01-01
A method of obtaining magnesium fluoride substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is contacted with an acid under certain prescribed conditions to produce a liquid product and a particulate solid product. The particulate solid product is separated from the liquid and treated at least two more times with acid to produce a solid residue consisting essentially of magnesium fluoride substantially free of uranium and having a residual radioactivity level of less than about 1000 pCi/gm. In accordance with a particularly preferred embodiment of the invention a catalyst and an oxidizing agent are used during the acid treatment and preferably the acid is sulfuric acid having a strength of about 1.0 Normal.
Method for magnesium sulfate recovery
Gay, R.L.; Grantham, L.F.
1987-08-25
A method is described for obtaining magnesium sulfate substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7,000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is then contacted with a concentrated sulfuric acid under certain prescribed conditions to produce a liquid product and a solid product. The particulate solid product and a minor amount of the liquid is then treated to produce a solid residue consisting essentially of magnesium sulfate substantially free of uranium and having a residual radioactivity level of less than 1,000 pCi/gm. In accordance with the preferred embodiment of the invention, a catalyst and an oxidizing agent are used during the initial acid treatment and a final solid residue has a radioactivity level of less than about 50 pCi/gm.
DeKorver, Kyle A.; Johnson, Whitney L.; Zhang, Yu; Hsung, Richard P.; Dai, Huifang; Deng, Jun; Lohse, Andrew G.; Zhang, Yan-Shi
2011-01-01
A detailed study of amidine synthesis from N-allyl-N-sulfonyl ynamides is described here. Mechanistically, this is a fascinating reaction consisting of diverging pathways that could lead to deallylation or allyl transfer depending upon the oxidation state of palladium catalysts, the nucleophilicity of amines, and the nature of the ligands. It essentially constitutes a Pd(0)-catalyzed aza-Claisen rearrangement of N-allyl ynamides, which can also be accomplished thermally. An observation of N-to-C 1,3-sulfonyl shift was made when examining these aza-Claisen rearrangements thermally. This represents a useful approach to nitrile synthesis. While attempts to render this 1,3-sulfonyl shift stereoselective failed, we uncovered another set of tandem sigmatropic rearrangements, leading to vinyl imidate formation. Collectively, this work showcases the rich array of chemistry one can discover using these ynamides. PMID:21563776
Improved perfluoroalkyl ether fluid development
NASA Technical Reports Server (NTRS)
Jones, William R., Jr.; Paciorek, Kazimiera J. L.; Nakahara, James H.; Smythe, Mark E.; Kratzer, Reinhold H.
1987-01-01
The feasibility of transforming a commercial linear perfluoroalkylether fluid into a material stable in the presence of metals and metal alloys in oxidizing atmospheres at 300 C without the loss of the desirable viscosity temperature characteristics was determined. The approach consisted of thermal oxidative treatment in the presence of catalyst to remove weak links, followed by transformation of the created functional groups into phospha-s-triazine linkages. It is found that the experimental material obtained in 66 percent yield from the commercial fluid exhibits, over an 8 hr period at 300 C in the presence of Ti(4Al, 4Mn) alloy, thermal oxidative stability better by a factor of 2.6 x 1000 based on volatiles evolved than the commercial product. The viscosity and molecular weight of the developed fluid are unchanged and are essentially identical with the commercial material. No metal corrosion occurs with the experimental fluid at 300 C.
Achieving Biocompatible SABRE: An in vitro Cytotoxicity Study
Manoharan, Anand; Rayner, Peter J.; Iali, Wissam; Burns, Michael J.; Perry, V. Hugh
2018-01-01
Abstract Production of a biocompatible hyperpolarized bolus for signal amplification by reversible exchange (SABRE) could open the door to simple clinical diagnosis via magnetic resonance imaging. Essential to successful progression to preclinical/clinical applications is the determination of the toxicology profile of the SABRE reaction mixture. Herein, we exemplify the cytotoxicity of the SABRE approach using in vitro cell assays. We conclude that the main cause of the observed toxicity is due to the SABRE catalyst. We therefore illustrate two catalyst removal methods: one involving deactivation and ion‐exchange chromatography, and the second using biphasic catalysis. These routes produce a bolus suitable for future in vivo study. PMID:29232489
Jacobs, Gary; Pendyala, Venkat Ramana Rao; Martinelli, Michela; ...
2017-06-06
XANES K-edge spectra of potassium promoter in precipitated Fe catalysts were acquired following activation by carburization in CO and as a function of time on-stream during the course of a Fischer–Tropsch synthesis run for a 100Fe:2K catalyst by withdrawing catalysts, sealed in wax product, for analysis. CO-activated and end-of-run spectra of the catalyst were also obtained for a 100Fe:5K catalyst. Peaks representing electronic transitions and multiple scattering were observed and resembled reference spectra for potassium carbonate or potassium formate. The shift in the multiple scattering peak to higher energy was consistent with sintering of potassium promoter during the course ofmore » the reaction test. The catalyst, however, retained its carbidic state, as demonstrated by XANES and EXAFS spectra at the iron K-edge, suggesting that sintering of potassium did not adversely affect the carburization rate, which is important for preventing iron carbides from oxidizing. This method serves as a starting point for developing better understanding of the chemical state and changes in structure occurring with alkali promoter.« less
Iron, growth, and the global epidemic of obesity.
Abstract: Iron is an essential nutrient utilized in almost every aspect of cell function and its availability has previously limited life. Those same properties which allow iron to function as a catalyst in the reactions of life also present a threat via generation of oxygen-ba...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craje, M.W.J.; Kraan, A.M. van der; Beer, V.H.J. de
1993-10-01
The structure of hydrodesulfurization catalysts is relevant to many industries. The sulfidation of uncalcined and calcined alumina-supported cobalt and cobalt-molybdenum catalysts was systematically studied by means of in situ Moessbauer emission spectroscopy (MES) at room temperature. The spectra obtained during the stepwise sulfidation of the uncalcined catalysts clearly resemble those observed for carbon-supported ones. Hence, the interpretation of the spectra of the alumina-supported catalysts is based on the conclusions drawn from the MES studies of the carbon-supported catalysts, which are less complex because Co ions do not diffuse into the support. It is demonstrated that not only in sulfided CoMo/Al[submore » 2]O[sub 3], but also in sulfided Co/Al[sub 2]O[sub 3], catalysts Co-sulfide species with a [open quotes]Co-Mo-S[close quotes]-type quadrupole splitting can be formed. It is concluded that the Co-sulfide species formed in sulfided Co/Al[sub 2]O[sub 3] and CoMo/Al[sub 2]O[sub 3] catalysts are essentially the same, only the particle size and ordering of the Co-sulfide species may differ, as in the case of Co/C and CoMo/C catalysts. The function of the Mo, which is present as MoS[sub 2], is merely to stabilize very small Co-sulfide particles, which in the limit contain only one single Co atom. Furthermore, it turns out that the value of the electric quadrupole splitting (Q.S. value) of the Co-sulfide phase in the sulfided catalysts depends on the sulfiding temperature and Co content. This observation leads to the conclusion that large Q.S. values point to the presence of very small Co-sulfide entities or particles (the lower limit being [open quotes]particles[close quotes] containing only one Co atom, such as proposed in the [open quotes]Co-Mo-S[close quotes] model), whereas small Q.S. values point to the presence of large Co-sulfide particles (the upper limit being crystalline Co[sub 9]S[sub 8]). 28 refs., 7 figs., 6 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabyrov, Kairat; Musselwhite, Nathan; Melaet, Gérôme
As the impact of acids on catalytically driven chemical transformations is tremendous, fundamental understanding of catalytically relevant factors is essential for the design of more efficient solid acid catalysts. In this work, we employed a post-synthetic doping method to synthesize a highly selective hydroisomerization catalyst and to demonstrate the effect of acid strength and density, catalyst microstructure, and platinum nanoparticle size on the reaction rate and selectivity. Aluminum doped mesoporous silica catalyzed gas-phase n-hexadecane isomerization with remarkably high selectivity to monobranched isomers (~95%), producing a substantially higher amount of isomers than traditional zeolite catalysts. Mildly acidic sites generated by post-syntheticmore » aluminum grafting were found to be the main reason for its high selectivity. The flexibility of the post-synthetic doping method enabled us to systematically explore the effect of the acid site density on the reaction rate and selectivity, which has been extremely difficult to achieve with zeolite catalysts. We found that a higher density of Brønsted acid sites leads to higher cracking of n-hexadecane presumably due to an increased surface residence time. Furthermore, regardless of pore size and microstructure, hydroisomerization turnover frequency linearly increased as a function of Brønsted acid site density. In addition to strength and density of acid sites, platinum nanoparticle size affected catalytic activity and selectivity. The smallest platinum nanoparticles produced the most effective bifunctional catalyst presumably because of higher percolation into aluminum doped mesoporous silica, generating more 'intimate' metallic and acidic sites. Finally, the aluminum doped silica catalyst was shown to retain its remarkable selectivity towards isomers even at increased reaction conversions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Hai-Ying; Wei, Zhehao; Kollar, Marton
A comparative study was carried out on a small-pore CHA.Cu and a large-pore BEA.Cu zeolite catalyst to understand the lower N2O formation on small-pore zeolite supported Cu catalysts in the selective catalytic reduction (SCR) of NOx with NH3. On both catalysts, the N2O yield increases with an increase in the NO2/NOx ratios of the feed gas, suggesting N2O formation via the decomposition of NH4NO3. Temperature-programmed desorption experiments reveal that NH4NO3 is more stable on CHA.Cu than on BEA.Cu. In situ FTIR spectra following stepwise (NO2 + O2) and (15NO + NH3 + O2) adsorption and reaction, and product distribution analysismore » using isotope-labelled reactants, unambiguously prove that surface nitrate groups are essential for the formation of NH4NO3. Furthermore, CHA.Cu is shown to be considerably less active than BEA.Cu in catalyzing NO oxidation and the subsequent formation of surface nitrate groups. Both factors, i.e., (1) the higher thermal stability of NH4NO3 on CHA.Cu, and (2) the lower activity for this catalyst to catalyze NO oxidation and the subsequent formation of surface nitrates, likely contribute to the higher SCR selectivity with less N2O formation on this catalyst as compared to BEA.Cu. The latter is determined as the primary reason since surface nitrates are the source that leads to the formation of NH4NO3 on the catalysts.« less
Zhu, Feng-Xia; Wang, Wei; Li, He-Xing
2011-08-03
An operationally simple approach for the preparation of a new class of bifunctional Au nanoparticle-acid catalysts has been developed. In situ reduction of Au(3+) with HS-functionalized periodic mesoporous organosilicas (PMOs) creates robust, fine Au nanoparticles and concomitantly produces a sulfonic acid moiety strongly bonded to PMOs. Characterizations of the nanostructures reveal that Au nanoparticles are formed with uniformed, narrow size distribution around 1-2 nm, which is very critical for essential catalytic activities. Moreover, the Au nanoparticles are mainly attached onto the pore surface rather than onto the outer surface with ordered mesoporous channels, allowing for maximal exposure to reaction substrates while minimizing Au nanoparticle leaching. Their higher S(BET), V(P), and D(P) than either the Au-HS-PMO(Et) or the Au/SO(3)H-PMO(Et) render the catalyst with comparably even higher catalytic efficiency than its homogeneous counterparts. Furthermore, the unique amphiphilic compartment of the Au-HS/SO(3)H-PMO(Et) nanostructures enables organic reactions to proceed efficiently in a pure aqueous solution without using any organic solvents or even without water. As demonstrated experimentally, remarkably, the unique bifunctional Au-HS/SO(3)H-PMO(Et) catalyst displays higher efficiencies in promoting water-medium alkyne hydration, intramolecular hydroamination, styrene oxidation, and three-component coupling reactions and even the solvent-free alkyne hydration process than its homogeneous catalysts. The robust catalyst can be easily recycled and used repetitively at least 10 times without loss of catalytic efficiency. These features render the catalyst particularly attractive in the practice of organic synthesis in an environmentally friendly manner.
Sabyrov, Kairat; Musselwhite, Nathan; Melaet, Gérôme; ...
2017-01-01
As the impact of acids on catalytically driven chemical transformations is tremendous, fundamental understanding of catalytically relevant factors is essential for the design of more efficient solid acid catalysts. In this work, we employed a post-synthetic doping method to synthesize a highly selective hydroisomerization catalyst and to demonstrate the effect of acid strength and density, catalyst microstructure, and platinum nanoparticle size on the reaction rate and selectivity. Aluminum doped mesoporous silica catalyzed gas-phase n-hexadecane isomerization with remarkably high selectivity to monobranched isomers (~95%), producing a substantially higher amount of isomers than traditional zeolite catalysts. Mildly acidic sites generated by post-syntheticmore » aluminum grafting were found to be the main reason for its high selectivity. The flexibility of the post-synthetic doping method enabled us to systematically explore the effect of the acid site density on the reaction rate and selectivity, which has been extremely difficult to achieve with zeolite catalysts. We found that a higher density of Brønsted acid sites leads to higher cracking of n-hexadecane presumably due to an increased surface residence time. Furthermore, regardless of pore size and microstructure, hydroisomerization turnover frequency linearly increased as a function of Brønsted acid site density. In addition to strength and density of acid sites, platinum nanoparticle size affected catalytic activity and selectivity. The smallest platinum nanoparticles produced the most effective bifunctional catalyst presumably because of higher percolation into aluminum doped mesoporous silica, generating more 'intimate' metallic and acidic sites. Finally, the aluminum doped silica catalyst was shown to retain its remarkable selectivity towards isomers even at increased reaction conversions.« less
Gernigon, Nicolas; Al-Zoubi, Raed M; Hall, Dennis G
2012-10-05
The importance of amides as a component of biomolecules and synthetic products motivates the development of catalytic, direct amidation methods employing free carboxylic acids and amines that circumvent the need for stoichiometric activation or coupling reagents. ortho-Iodophenylboronic acid 4a has recently been shown to catalyze direct amidation reactions at room temperature in the presence of 4A molecular sieves as dehydrating agent. Herein, the arene core of ortho-iodoarylboronic acid catalysts has been optimized with regards to the electronic effects of ring substitution. Contrary to the expectation, it was found that electron-donating substituents are preferable, in particular, an alkoxy substituent positioned para to the iodide. The optimal new catalyst, 5-methoxy-2-iodophenylboronic acid (MIBA, 4f), was demonstrated to be kinetically more active than the parent des-methoxy catalyst 4a, providing higher yields of amide products in shorter reaction times under mild conditions at ambient temperature. Catalyst 4f is recyclable and promotes the formation of amides from aliphatic carboxylic acids and amines, and from heteroaromatic carboxylic acids and other functionalized substrates containing moieties like a free phenol, indole and pyridine. Mechanistic studies demonstrated the essential role of molecular sieves in this complex amidation process. The effect of substrate stoichiometry, concentration, and measurement of the catalyst order led to a possible catalytic cycle based on the presumed formation of an acylborate intermediate. The need for an electronically enriched ortho-iodo substituent in catalyst 4f supports a recent theoretical study (Marcelli, T. Angew. Chem. Int. Ed.2010, 49, 6840-6843) with a purported role for the iodide as a hydrogen-bond acceptor in the orthoaminal transition state.
NASA Astrophysics Data System (ADS)
Yuliusman; Ramadhan, I. T.; Huda, M.
2018-03-01
Catalyst are often used in the petroleum refinery industry, especially cobalt-based catalyst such as CoMoX. Every year, Indonesia’s oil industry produces around 1350 tons of spent hydrodesulphurization catalyst in which cobalt makes up for 7%wt. of them. Cobalt is a non-renewable and highly valuable resource. Taking into account the aforementioned reasons, this research was made to recover cobalt from spent hydrodesulphurization catalyst so that it can be reused by industries needing them. The methods used in the recovery of cobalt from the waste catalyst leach solution are liquid-liquid extraction using a synergistic system of VersaticTM 10 and Cyanex®272. Based on the experiments done using the aforementioned methods and materials, the optimum condition for the extraction process: concentration of VersaticTM 10 of 0.35 M, Cyanex®272 of 0.25 M, temperature of 23-25°C (room temperature), and pH of 6 with an extraction percentage of 98.80% and co-extraction of Ni at 93.51%.
Ateş, Funda; Miskolczi, Norbert; Borsodi, Nikolett
2013-04-01
Pyrolysis of municipal solid waste (MSW) and municipal plastic waste (MPW) have been investigated in batch reactor at 500, 550 and 600°C both in absence and presence of catalysts (Y-zeolite, β-zeolite, equilibrium FCC, MoO3, Ni-Mo-catalyst, HZSM-5 and Al(OH)3). The effect of the parameters on the product properties was investigated. Products were characterized using gas-chromatography, GC/MS, (13)C NMR. Yields of volatile fractions increased, while reaction time necessity for the total cracking decreased in the presence of catalysts. Catalysts have productivity and selectivity in converting aliphatic hydrocarbons to aromatic and cyclic compounds in oil products. Gases from MSW consisted of hydrogen CO, CO2, while exclusively hydrogen and hydrocarbons were detected from MPW. Catalyst efficiency was higher using MPW than MSW. Pyrolysis oils contained aliphatic hydrocarbons, aromatics, cyclic compounds and less ketones, alcohols, acids or esters depending on the raw materials. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kim, Ji Eun; Lim, Joonwon; Lee, Gil Yong; Choi, Sun Hee; Maiti, Uday Narayan; Lee, Won Jun; Lee, Ho Jin; Kim, Sang Ouk
2016-01-27
Electrochemical oxygen redox reactions are the crucial elements for energy conversion and storage including fuel cells and metal air batteries. Despite tremendous research efforts, developing high-efficient, low-cost, and durable bifunctional oxygen catalysts remains a major challenge. We report a new class of hybrid material consisting of subnanometer thick amorphous cobalt hydroxide anchored on NCNT as a durable ORR/OER bifunctional catalyst. Although amorphous cobalt species-based catalysts are known as good OER catalysts, hybridizing with NCNT successfully enhanced ORR activity by promoting a 4e reduction pathway. Abundant charge carriers in amorphous cobalt hydroxide are found to trigger the superior OER activity with high current density and low Tafel slope as low as 36 mV/decade. A remarkably high OER turnover frequency (TOF) of 2.3 s(-1) at an overpotential of 300 mV was obtained, one of the highest values reported so far. Moreover, the catalytic activity was maintained over 120 h of cycling. The unique subnanometer scale morphology of amorphous hydroxide cobalt species along with intimate cobalt species-NCNT interaction minimizes the deactivation of catalyst during prolonged repeated cycles.
Good Intentions!: Ten Great Books Which Introduce Readers To a Famous Writer.
ERIC Educational Resources Information Center
Van Deusen, Ann; Hepler, Susan
2000-01-01
Offers short descriptions of 10 books for children in which a famous writer appears as an essential character and a catalyst for the plot or content (while another character tells the story). Includes such famous writers as Benjamin Franklin, Emily Dickinson, and William Shakespeare. (SR)
Sustainability Education as a Catalyst for University and Community Partnerships
ERIC Educational Resources Information Center
Lishawa, Shane; Schubel, Adam; Varty, Alison; Tuchman, Nancy
2010-01-01
Universities are uniquely positioned to lead society toward sustainability and their collaborations with community organizations are essential to this transition. The Biodiesel Program at Loyola University at Chicago Center for Urban Environmental Research and Policy provides a case study of course-based service learning projects facilitating…
Using Response-to-Intervention to Enhance Outcomes for Children
ERIC Educational Resources Information Center
VanDerHeyden, Amanda M.; Jimerson, Shane R.
2005-01-01
Response to Intervention (RTI) models have substantial promise for screening, intervention service delivery, and to serve as catalysts for system change to enhance the educational outcomes of children. RTI represents a more flexible service delivery model; however, it is essential to articulate how RTI can be effectively implemented and…
Water oxidation: High five iron
NASA Astrophysics Data System (ADS)
Lloret-Fillol, Julio; Costas, Miquel
2016-03-01
The oxidation of water is essential to the sustainable production of fuels using sunlight or electricity, but designing active, stable and earth-abundant catalysts for the reaction is challenging. Now, a complex containing five iron atoms is shown to efficiently oxidize water by mimicking key features of the oxygen-evolving complex in green plants.
Guo, Sijie; Zhao, Siqi; Wu, Xiuqin; Li, Hao; Zhou, Yunjie; Zhu, Cheng; Yang, Nianjun; Jiang, Xin; Gao, Jin; Bai, Liang; Liu, Yang; Lifshitz, Yeshayahu; Lee, Shuit-Tong; Kang, Zhenhui
2017-11-28
Syngas, a CO and H 2 mixture mostly generated from non-renewable fossil fuels, is an essential feedstock for production of liquid fuels. Electrochemical reduction of CO 2 and H + /H 2 O is an alternative renewable route to produce syngas. Here we introduce the concept of coupling a hydrogen evolution reaction (HER) catalyst with a CDots/C 3 N 4 composite (a CO 2 reduction catalyst) to achieve a cheap, stable, selective and efficient route for tunable syngas production. Co 3 O 4 , MoS 2 , Au and Pt serve as the HER component. The Co 3 O 4 -CDots-C 3 N 4 electrocatalyst is found to be the most efficient among the combinations studied. The H 2 /CO ratio of the produced syngas is tunable from 0.07:1 to 4:1 by controlling the potential. This catalyst is highly stable for syngas generation (over 100 h) with no other products besides CO and H 2 . Insight into the mechanisms balancing between CO 2 reduction and H 2 evolution when applying the HER-CDots-C 3 N 4 catalyst concept is provided.
Kim, Jeong Yun; Kulik, Heather J
2018-05-10
We present a detailed study of nearly 70 Zn molecular catalysts for CO 2 hydration from four diverse ligand classes ranging from well-studied carbonic anhydrase mimics (e.g., cyclen) to new structures we obtain by leveraging diverse hits from large organic libraries. Using microkinetic analysis and establishing linear free energy relationships, we confirm that turnover is sensitive to the relative thermodynamic stability of reactive hydroxyl and bound bicarbonate moieties. We observe a wide range of thermodynamic stabilities for these intermediates, showing up to 6 kcal/mol improvement over well-studied cyclen catalysts. We observe a good correlation between the p K a of the Zn-OH 2 moiety and the resulting relative stability of hydroxyl moieties over bicarbonate, which may be rationalized by the dominant effect of the difference in higher Zn-OH bond order in comparison to weaker bonding in bicarbonate and water. A direct relationship is identified between isolated organic ligand p K a and the p K a of a bound water molecule on the catalyst. Thus, organic ligand p K a , which is intuitive, easy to compute or tabulate, and much less sensitive to electronic structure method choice than whole-catalyst properties, is a good quantitative descriptor for predicting the effect of through-bond electronic effects on relative CO 2 hydration energetics. We expect this to be applicable to other reactions where is it essential to stabilize turnover-determining hydroxyl species with respect to more weakly bound moieties. Finally, we note exceptions for rigid ligands (e.g., porphyrins) that are observed to preferentially stabilize hydroxyl over bicarbonate without reducing p K a values as substantially. We expect the strategy outlined here, to (i) curate diverse ligands from large organic libraries and (ii) identify when ligand-only properties can determine catalyst energetics, to be broadly useful for both experimental and computational catalyst design.
NASA Astrophysics Data System (ADS)
Albers, Peter W.; Parker, Stewart F.
The attractiveness of neutron scattering techniques for the detailed characterization of materials of high degrees of dispersity and structural complexity as encountered in the chemical industry is discussed. Neutron scattering picks up where other analytical methods leave off because of the physico-chemical properties of finely divided products and materials whose absorption behavior toward electromagnetic radiation and electrical conductivity causes serious problems. This is demonstrated by presenting typical applications from large-scale production technology and industrial catalysis. These include the determination of the proton-related surface chemistry of advanced materials that are used as reinforcing fillers in the manufacture of tires, where interrelations between surface chemistry, rheological properties, improved safety, and significant reduction of fuel consumption are the focus of recent developments. Neutron scattering allows surface science studies of the dissociative adsorption of hydrogen on nanodispersed, supported precious metal particles of fuel cell catalysts under in situ loading at realistic gas pressures of about 1 bar. Insight into the occupation of catalytically relevant surface sites provides valuable information about the catalyst in the working state and supplies essential scientific input for tailoring better catalysts by technologists. The impact of deactivation phenomena on industrial catalysts by coke deposition, chemical transformation of carbonaceous deposits, and other processes in catalytic hydrogenation processes that result in significant shortening of the time of useful operation in large-scale plants can often be traced back in detail to surface or bulk properties of catalysts or materials of catalytic relevance. A better understanding of avoidable or unavoidable aspects of catalyst deactivation phenomena under certain in-process conditions and the development of effective means for reducing deactivation leads to more energy-efficient and, therefore, environmentally friendly processes and helps to save valuable resources. Even small or gradual improvements in all these fields are of considerable economic impact.
NASA Astrophysics Data System (ADS)
Lee, Sudarat; Wen, Wen; Cheek, Quintin; Maldonado, Stephen
2018-01-01
Gallium phosphide (GaP) nanowire film electrodes have been prepared via solid sublimation of GaP powder using both gold (Au) and tin (Sn) nanoparticles as the vapor-liquid-solid (VLS) catalysts on Si(1 1 1) and GaP(1 1 1)B substrates. The resultant GaP nanowires are compared and contrasted in terms of structures and photoactivity in photoelectrochemical half cells. Raman spectra implicated a difference in the surface condition of the two types of nanowires. Complete wet etching removal of metallic VLS catalysts from the as-prepared GaP nanowires was possible with Sn catalysts but not with Au catalysts. The photoresponses of both Sn- and Au-seeded GaP nanowire films were collected and examined under 100 mW cm-2 white light illumination. Au-seeded nanowire films exhibited strong n-type characteristics when measured in nonaqueous electrolyte with ferrocene/ferricenium as the redox species while Sn-seeded nanowires showed behavior consistent with degenerate n-type doping.
Lithium-air batteries, method for making lithium-air batteries
Vajda, Stefan; Curtiss, Larry A.; Lu, Jun; Amine, Khalil; Tyo, Eric C.
2016-11-15
The invention provides a method for generating Li.sub.2O.sub.2 or composites of it, the method uses mixing lithium ions with oxygen ions in the presence of a catalyst. The catalyst comprises a plurality of metal clusters, their alloys and mixtures, each cluster consisting of between 3 and 18 metal atoms. The invention also describes a lithium-air battery which uses a lithium metal anode, and a cathode opposing the anode. The cathode supports metal clusters, each cluster consisting of size selected clusters, taken from a range of between approximately 3 and approximately 18 metal atoms, and an electrolyte positioned between the anode and the cathode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Ariel; Strickler, Alaina; Higgins, Drew
Improving the performance of oxygen reduction reaction (ORR) electrocatalysts is essential for the commercial efficacy of many renewable energy technologies, including low temperature polymer electrolyte fuel cells (PEFCs). Herein, we report highly active and stable carbon-supported Ru@Pt core-shell nanoparticles (Ru@Pt/C) prepared by a wet chemical synthesis technique. Through rotating disc electrode testing, the Ru@Pt/C achieves an ORR Pt mass-based activity of 0.50 A mg Pt -1 at 0.9 V versus the reversible hydrogen electrode (RHE), which exceeds the activity of the state-of-the-art commercial Pt/C catalyst as well as the Department of Energy 2020 PEFC electrocatalyst activity targets for transportation applications.more » The impact of various synthetic parameters, including Pt to Ru ratios and catalyst pretreatments (i.e., annealing) are thoroughly explored. Pt-based mass activity of all prepared Ru@Pt/C catalysts was found to exceed 0.4 mg Pt -1 across the range of compositions investigated, with the maximum activity catalyst having a Ru:Pt ratio of 1:1. This optimized composition of Ru@Pt/C catalyst demonstrated remarkable stability after 30,000 accelerated durability cycles (0.6 to 1.0 V vs. RHE at 125 mV s -1), maintaining 85% of its initial mass activity. Scanning transmission electron microscopy energy dispersive spectroscopy (STEM-EDS) analysis at various stages of electrochemical testing demonstrated that the Pt shell can provide sufficient protection against the dissolution of the otherwise unstable Ru core.« less
Yang, Chia Cheng; Chang, Shu Hao; Hong, Bao Zhen; Chi, Kai Hsien; Chang, Moo Been
2008-10-01
Development of effective PCDD/F (polychlorinated dibenzo-p-dioxin and dibenzofuran) control technologies is essential for environmental engineers and researchers. In this study, a PCDD/F-containing gas stream generating system was developed to investigate the efficiency and effectiveness of innovative PCDD/F control technologies. The system designed and constructed can stably generate the gas stream with the PCDD/F concentration ranging from 1.0 to 100ng TEQ Nm(-3) while reproducibility test indicates that the PCDD/F recovery efficiencies are between 93% and 112%. This new PCDD/F-containing gas stream generating device is first applied in the investigation of the catalytic PCDD/F control technology. The catalytic decomposition of PCDD/Fs was evaluated with two types of commercial V(2)O(5)-WO(3)/TiO(2)-based catalysts (catalyst A and catalyst B) at controlled temperature, water vapor content, and space velocity. 84% and 91% PCDD/F destruction efficiencies are achieved with catalysts A and B, respectively, at 280 degrees C with the space velocity of 5000h(-1). The results also indicate that the presence of water vapor inhibits PCDD/F decomposition due to its competition with PCDD/F molecules for adsorption on the active vanadia sites for both catalysts. In addition, this study combined integral reaction and Mars-Van Krevelen model to calculate the activation energies of OCDD and OCDF decomposition. The activation energies of OCDD and OCDF decomposition via catalysis are calculated as 24.8kJmol(-1) and 25.2kJmol(-1), respectively.
Jackson, Ariel; Strickler, Alaina; Higgins, Drew; ...
2018-01-12
Improving the performance of oxygen reduction reaction (ORR) electrocatalysts is essential for the commercial efficacy of many renewable energy technologies, including low temperature polymer electrolyte fuel cells (PEFCs). Herein, we report highly active and stable carbon-supported Ru@Pt core-shell nanoparticles (Ru@Pt/C) prepared by a wet chemical synthesis technique. Through rotating disc electrode testing, the Ru@Pt/C achieves an ORR Pt mass-based activity of 0.50 A mg Pt -1 at 0.9 V versus the reversible hydrogen electrode (RHE), which exceeds the activity of the state-of-the-art commercial Pt/C catalyst as well as the Department of Energy 2020 PEFC electrocatalyst activity targets for transportation applications.more » The impact of various synthetic parameters, including Pt to Ru ratios and catalyst pretreatments (i.e., annealing) are thoroughly explored. Pt-based mass activity of all prepared Ru@Pt/C catalysts was found to exceed 0.4 mg Pt -1 across the range of compositions investigated, with the maximum activity catalyst having a Ru:Pt ratio of 1:1. This optimized composition of Ru@Pt/C catalyst demonstrated remarkable stability after 30,000 accelerated durability cycles (0.6 to 1.0 V vs. RHE at 125 mV s -1), maintaining 85% of its initial mass activity. Scanning transmission electron microscopy energy dispersive spectroscopy (STEM-EDS) analysis at various stages of electrochemical testing demonstrated that the Pt shell can provide sufficient protection against the dissolution of the otherwise unstable Ru core.« less
NASA Astrophysics Data System (ADS)
Altarawneh, Rakan M.; Pickup, Peter G.
2017-10-01
Polarization curves, product distributions, and reaction stoichiometries have been measured for the oxidation of ethanol at anodes consisting of Pt and PtRu bilayers and a homogeneous mixture of the two catalysts. These anode structures all show synergies between the two catalysts that can be attributed to the oxidation of acetaldehyde produced at the PtRu catalyst by the Pt catalyst. The use of a PtRu layer over a Pt layer produces the strongest effect, with higher currents than a Pt on PtRu bilayer, mixed layer, or either catalyst alone, except for Pt at high potentials. Reaction stoichiometries (average number of electrons transferred per ethanol molecule) were closer to the values for Pt alone for both of the bilayer configurations but much lower for PtRu and mixed anodes. Although Pt alone would provide the highest overall fuel cell efficiency at low power densities, the PtRu on Pt bilayer would provide higher power densities without a significant loss of efficiency. The origin of the synergy between the Pt and PtRu catalysts was elucidated by separation of the total current into the individual components for generation of carbon dioxide and the acetaldehyde and acetic acid byproducts.
Mechanism of Copper(I)/TEMPO-Catalyzed Aerobic Alcohol Oxidation
Hoover, Jessica M.; Ryland, Bradford L.; Stahl, Shannon S.
2013-01-01
Homogeneous Cu/TEMPO catalyst systems (TEMPO = 2,2,6,6-tetramethylpiperidine-N-oxyl) have emerged as some of the most versatile and practical catalysts for aerobic alcohol oxidation. Recently, we disclosed a (bpy)CuI/TEMPO/NMI catalyst system (NMI = N-methylimidazole) that exhibits fast rates and high selectivities, even with unactivated aliphatic alcohols. Here, we present a mechanistic investigation of this catalyst system, in which we compare the reactivity of benzylic and aliphatic alcohols. This work includes analysis of catalytic rates by gas-uptake and in situ IR kinetic methods and characterization of the catalyst speciation during the reaction by EPR and UV–visible spectroscopic methods. The data support a two-stage catalytic mechanism consisting of (1) “catalyst oxidation” in which CuI and TEMPO–H are oxidized by O2 via a binuclear Cu2O2 intermediate and (2) “substrate oxidation” mediated by CuII and the nitroxyl radical of TEMPO via a CuII-alkoxide intermediate. Catalytic rate laws, kinetic isotope effects, and spectroscopic data show that reactions of benzylic and aliphatic alcohols have different turnover-limiting steps. Catalyst oxidation by O2 is turnover limiting with benzylic alcohols, while numerous steps contribute to the turnover rate in the oxidation of aliphatic alcohols. PMID:23317450
Gao, Wenpei; Hood, Zachary D; Chi, Miaofang
2017-04-18
Developing novel catalysts with high efficiency and selectivity is critical for enabling future clean energy conversion technologies. Interfaces in catalyst systems have long been considered the most critical factor in controlling catalytic reaction mechanisms. Interfaces include not only the catalyst surface but also interfaces within catalyst particles and those formed by constructing heterogeneous catalysts. The atomic and electronic structures of catalytic surfaces govern the kinetics of binding and release of reactant molecules from surface atoms. Interfaces within catalysts are introduced to enhance the intrinsic activity and stability of the catalyst by tuning the surface atomic and chemical structures. Examples include interfaces between the core and shell, twin or domain boundaries, or phase boundaries within single catalyst particles. In supported catalyst nanoparticles (NPs), the interface between the metallic NP and support serves as a critical tuning factor for enhancing catalytic activity. Surface electronic structure can be indirectly tuned and catalytically active sites can be increased through the use of supporting oxides. Tuning interfaces in catalyst systems has been identified as an important strategy in the design of novel catalysts. However, the governing principle of how interfaces contribute to catalyst behavior, especially in terms of interactions with intermediates and their stability during electrochemical operation, are largely unknown. This is mainly due to the evolving nature of such interfaces. Small changes in the structural and chemical configuration of these interfaces may result in altering the catalytic performance. These interfacial arrangements evolve continuously during synthesis, processing, use, and even static operation. A technique that can probe the local atomic and electronic interfacial structures with high precision while monitoring the dynamic interfacial behavior in situ is essential for elucidating the role of interfaces and providing deeper insight for fine-tuning and optimizing catalyst properties. Scanning transmission electron microscopy (STEM) has long been a primary characterization technique used for studying nanomaterials because of its exceptional imaging resolution and simultaneous chemical analysis. Over the past decade, advances in STEM, that is, the commercialization of both aberration correctors and monochromators, have significantly improved the spatial and energy resolution. Imaging atomic structures with subangstrom resolution and identifying chemical species with single-atom sensitivity are now routine for STEM. These advancements have greatly benefitted catalytic research. For example, the roles of lattice strain and surface elemental distribution and their effect on catalytic stability and reactivity have been well documented in bimetallic catalysts. In addition, three-dimensional atomic structures revealed by STEM tomography have been integrated in theoretical modeling for predictive catalyst NP design. Recent developments in stable electronic and mechanical devices have opened opportunities to monitor the evolution of catalysts in operando under synthesis and reaction conditions; high-speed direct electron detectors have achieved sub-millisecond time resolutions and allow for rapid structural and chemical changes to be captured. Investigations of catalysts using these latest microscopy techniques have provided new insights into atomic-level catalytic mechanisms. Further integration of new microscopy methods is expected to provide multidimensional descriptions of interfaces under relevant synthesis and reaction conditions. In this Account, we discuss recent insights on understanding catalyst activity, selectivity, and stability using advanced STEM techniques, with an emphasis on how critical interfaces dictate the performance of precious metal-based heterogeneous catalysts. The role of extended interfacial structures, including those between core and shell, between separate phases and twinned grains, between the catalyst surface and gas, and between metal and support are discussed. We also provide an outlook on how emerging electron microscopy techniques, such as vibrational spectroscopy and electron ptychography, will impact future catalysis research.
Rare isotope studies involving catalytic oxidation of CO over platinum-tin oxide
NASA Technical Reports Server (NTRS)
Upchurch, Billy T.; Wood, George M., Jr.; Hess, Robert V.; Hoyt, Ronald F.
1987-01-01
Results of studies utilizing normal and rare oxygen isotopes in the catalytic oxidation of carbon monoxide over a platinum-tin oxide catalyst substrate are presented. Chemisorption of labeled carbon monoxide on the catalyst followed by thermal desorption yielded a carbon dioxide product with an oxygen-18 composition consistent with the formation of a carbonate-like intermediate in the chemisorption process. The efficacy of a method developed for the oxygen-18 labeling of the platinum-tin oxide catalyst surface for use in closed cycle pulsed care isotope carbon dioxide lasers is demonstrated for the equivalent of 10 to the 6th power pulses at 10 pulses per second.
Schilling, Mauro; Böhler, Michael; Luber, Sandra
2018-05-21
In order to rationally design water oxidation catalysts (WOCs), an in-depth understanding of the reaction mechanism is essential. In this study we showcase the complexity of catalytic water oxidation, by elucidating how modifications of the pentapyridyl (Py5) ligand-framework influence the thermodynamics and kinetics of the process. In the reaction mechanism the pyridine-water exchange was identified as a key reaction which appears to determine the reactivity of the Py5-WOCs. Exploring the capabilities of in silico design we show which modifications of the ligand framework appear promising when attempting to improve the catalytic performance of WOCs derived from Py5.
A Dual-Catalysis Approach to Enantioselective [2+2] Photocycloadditions Using Visible Light
Du, Juana; Skubi, Kazimer L.; Schultz, Danielle M.; Yoon, Tehshik P.
2015-01-01
In contrast to the wealth of catalytic systems that are available to control the stereochemistry of thermally promoted cycloadditions, few similarly effective methods exist for the stereocontrol of photochemical cycloadditions. A major unsolved challenge in the design of enantioselective catalytic photocycloaddition reactions has been the difficulty of controlling racemic background reactions that occur by direct photoexcitation of substrates while unbound to catalyst. Here we describe a strategy for eliminating the racemic background reaction in asymmetric [2+2] photocycloadditions of α,β-unsaturated ketones to the corresponding cyclobutanes by employing a dual-catalyst system consisting of a visible light-absorbing transition metal photocatalyst and a stereocontrolling Lewis acid co-catalyst. The independence of these two catalysts enables broader scope, greater stereochemical flexibility, and better efficiency than previously reported methods for enantioselective photochemical cycloadditions. PMID:24763585
Zuend, Stephan J; Jacobsen, Eric N
2009-10-28
An experimental and computational investigation of amido-thiourea promoted imine hydrocyanation has revealed a new and unexpected mechanism of catalysis. Rather than direct activation of the imine by the thiourea, as had been proposed previously in related systems, the data are consistent with a mechanism involving catalyst-promoted proton transfer from hydrogen isocyanide to imine to generate diastereomeric iminium/cyanide ion pairs that are bound to catalyst through multiple noncovalent interactions; these ion pairs collapse to form the enantiomeric alpha-aminonitrile products. This mechanistic proposal is supported by the observation of a statistically significant correlation between experimental and calculated enantioselectivities induced by eight different catalysts (P < 0.01). The computed models reveal a basis for enantioselectivity that involves multiple stabilizing and destabilizing interactions between substrate and catalyst, including thiourea-cyanide and amide-iminium interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yarrington, R M; Feins, I R; Hwang, H S
1979-01-01
The work done under this contract in the last quarter of 1978 was concerned with Phase I, which involved preliminary catalyst and process evaluation. The processes under study are hydrogen assisted steam reforming (HASR), catalytic partial oxidation (CPO), and autothermal steam reforming (ATR). Existing Engelhard test units were modified to carry out preliminary runs using the first two processes. Technical analysis to support work in this area consisted of heat and material balances constrained by equilibrium considerations. In a third task, the steam reforming of methanol to produce hydrogen was studied over two commercial low-temperature shift catalysts. Aging runs indicatedmore » good initial performance on both catalysts, but methanol conversion started to decline after a few hundred hours on stream.« less
Dynamics of ultrathin V-oxide layers on Rh(111) in catalytic oxidation of ammonia and CO.
von Boehn, B; Preiss, A; Imbihl, R
2016-07-20
Catalytic oxidation of ammonia and CO has been studied in the 10(-4) mbar range using a catalyst prepared by depositing ultra-thin vanadium oxide layers on Rh(111) (θV ≈ 0.2 MLE). Using photoemission electron microscopy (PEEM) as a spatially resolving method, we observe that upon heating in an atmosphere of NH3 and O2 the spatial homogeneity of the VOx layer is removed at 800 K and a pattern consisting of macroscopic stripes develops; at elevated temperatures this pattern transforms into a pattern of circular VOx islands. Under reaction conditions the neighboring VOx islands become attracted by each other and coalesce. Similar processes of pattern formation and island coalescence are observed in catalytic CO oxidation. Reoxidation of the reduced VOx catalyst proceeds via surface diffusion of oxygen adsorbed onto Rh(111). A pattern consisting of macroscopic circular VOx islands can also be obtained by heating a Rh(111)/VOx catalyst in pure O2.
Pye, Dominic R.; Cheng, Li-Jie
2017-01-01
A bimetallic system consisting of Cu-carbene and Mn-carbonyl co-catalysts was employed for carbonylative C–C coupling of arylboronic esters with alkyl halides, allowing for the convergent synthesis of ketones. The system operates under mild conditions and exhibits complementary reactivity to Pd catalysis. The method is compatible with a wide range of arylboronic ester nucleophiles and proceeds smoothly for both primary and secondary alkyl iodide electrophiles. Preliminary mechanistic experiments corroborate a hypothetical catalytic mechanism consisting of co-dependent cycles wherein the Cu-carbene co-catalyst engages in transmetallation to generate an organocopper nucleophile, while the Mn-carbonyl co-catalyst activates the alkyl halide electrophile by single-electron transfer and then undergoes reversible carbonylation to generate an acylmanganese electrophile. The two cycles then intersect with a heterobimetallic, product-releasing C–C coupling step. PMID:28966784
A Method for Analyzing the Coherence of High School Biology Textbooks
ERIC Educational Resources Information Center
Roseman, Jo Ellen; Stern, Luli; Koppal, Mary
2010-01-01
Because textbooks have the potential to be powerful catalysts for improving science teaching and learning, having reliable methods for analyzing important textbook features, such as their coherence, is essential. This study reports on the development of a method in which trained reviewers, following a set of guidelines defining the ideas to be…
ERIC Educational Resources Information Center
Mbugua, Stephen Ngugi; Kiboss, Joel; Tanui, Edward
2015-01-01
Teachers must understand the context within which students' performance improvement takes place. Operational effectiveness and strategy are both essential to superior performance and strategy execution is crucial for quality and better students' academic result. ICT can be a catalyst by providing tools which teachers use to improve teaching and…
Education and Middle Manpower Development in Malaysia.
ERIC Educational Resources Information Center
Harris, Norman C.
One of the essential factors in the economic development of nations is the attainment of a manpower mix which is strategically suited to current development problems, and which will also provide a catalyst for improvement and change. A review of the literature indicates that, although education per se is important, individual countries must…
NASA Astrophysics Data System (ADS)
Gao, Bing; Zhang, Linda; Zheng, Qinheng; Zhou, Feng; Klivansky, Liana M.; Lu, Jianmei; Liu, Yi; Dong, Jiajia; Wu, Peng; Sharpless, K. Barry
2017-11-01
Polysulfates and polysulfonates possess exceptional mechanical properties making them potentially valuable engineering polymers. However, they have been little explored due to a lack of reliable synthetic access. Here we report bifluoride salts (Q+[FHF]-, where Q+ represents a wide range of cations) as powerful catalysts for the sulfur(VI) fluoride exchange (SuFEx) reaction between aryl silyl ethers and aryl fluorosulfates (or alkyl sulfonyl fluorides). The bifluoride salts are significantly more active in catalysing the SuFEx reaction compared to organosuperbases, therefore enabling much lower catalyst-loading (down to 0.05 mol%). Using this chemistry, we are able to prepare polysulfates and polysulfonates with high molecular weight, narrow polydispersity and excellent functional group tolerance. The process is practical with regard to the reduced cost of catalyst, polymer purification and by-product recycling. We have also observed that the process is not sensitive to scale-up, which is essential for its future translation from laboratory research to industrial applications.
Delbecq, Frederic; Wang, Yantao; Muralidhara, Anitha; El Ouardi, Karim; Marlair, Guy; Len, Christophe
2018-01-01
Biobased production of furfural has been known for decades. Nevertheless, bioeconomy and circular economy concepts is much more recent and has motivated a regain of interest of dedicated research to improve production modes and expand potential uses. Accordingly, this review paper aims essentially at outlining recent breakthroughs obtained in the field of furfural production from sugars and polysaccharides feedstocks. The review discusses advances obtained in major production pathways recently explored splitting in the following categories: (i) non-catalytic routes like use of critical solvents or hot water pretreatment, (ii) use of various homogeneous catalysts like mineral or organic acids, metal salts or ionic liquids, (iii) feedstock dehydration making use of various solid acid catalysts; (iv) feedstock dehydration making use of supported catalysts, (v) other heterogeneous catalytic routes. The paper also briefly overviews current understanding of furfural chemical synthesis and its underpinning mechanism as well as safety issues pertaining to the substance. Eventually, some remaining research topics are put in perspective for further optimization of biobased furfural production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mistry, Hemma; Choi, Yong-Wook; Bagger, Alexander
Efficient, stable catalysts with high selectivity for a single product are essential if electroreduction of CO 2 is to become a viable route to the synthesis of industrial feedstocks and fuels. A plasma oxidation pre-treatment of silver foil enhances the number of low-coordinated catalytically active sites, which dramatically lowers the overpotential and increases the activity of CO 2 electroreduction to CO. At -0.6 V versus RHE more than 90 % Faradaic efficiency towards CO was achieved on a pre-oxidized silver foil. While transmission electron microscopy (TEM) and operando X-ray absorption spectroscopy showed that oxygen species can survive in the bulkmore » of the catalyst during the reaction, quasi in situ X-ray photoelectron spectroscopy showed that the surface is metallic under reaction conditions. Finally, DFT calculations reveal that the defect-rich surface of the plasma-oxidized silver foils in the presence of local electric fields drastically decrease the overpotential of CO 2 electroreduction.« less
Kataoka, Michihiko; Miyakawa, Takuya; Shimizu, Sakayu; Tanokura, Masaru
2016-07-01
Biocatalysts (enzymes) have many advantages as catalysts for the production of useful compounds as compared to chemical catalysts. The stereoselectivity of the enzymes is one advantage, and thus the stereoselective production of chiral compounds using enzymes is a promising approach. Importantly, industrial application of the enzymes for chiral compound production requires the discovery of a novel useful enzyme or enzyme function; furthermore, improving the enzyme properties through protein engineering and directed evolution approaches is significant. In this review, the significance of several enzymes showing stereoselectivity (quinuclidinone reductase, aminoalcohol dehydrogenase, old yellow enzyme, and threonine aldolase) in chiral compound production is described, and the improvement of these enzymes using protein engineering and directed evolution approaches for further usability is discussed. Currently, enzymes are widely used as catalysts for the production of chiral compounds; however, for further use of enzymes in chiral compound production, improvement of enzymes should be more essential, as well as discovery of novel enzymes and enzyme functions.
NASA Astrophysics Data System (ADS)
Delbecq, Frederic; Wang, Yantao; Muralidhara, Anitha; El Ouardi, Karim; Marlair, Guy; Len, Christophe
2018-05-01
Biobased production of furfural has been known for decades. Nevertheless, bioeconomy and circular economy concepts is much more recent and has motivated a regain of interest of dedicated research to improve production modes and expand potential uses. Accordingly, this review paper aims essentially at outlining recent breakthroughs obtained in the field of furfural production from sugars and polysaccharides feedstocks. The review discusses advances obtained in major production pathways recently explored splitting in the following categories: i) non-catalytic routes like use of critical solvents or hot water pretreatment, ii) use of various homogeneous catalysts like mineral or organic acids, metal salts or ionic liquids, iii) feedstock dehydration making use of various solid acid catalysts; iv) feedstock dehydration making use of supported catalysts, v) other heterogeneous catalytic routes. The paper also briefly overviews current understanding of furfural chemical synthesis and its underpinning mechanism as well as safety issues pertaining to the substance. Eventually, some remaining research topics are put in perspective for further optimization of biobased furfural production.
Moessbauer spectra of ferrite catalysts used in oxidative dehydrogenation
NASA Technical Reports Server (NTRS)
Cares, W. R.; Hightower, J. W.
1971-01-01
Room temperature Mossbauer spectroscopy was used to examine bulk changes which occur in low surface area CoFe2O4 and CuFe2O4 catalysts as a result of contact with various mixtures of trans-2-butene and O2 during oxidative dehydrogenation reactions at about 420 C. So long as there was at least some O2 in the gas phase, the CoFe2O4 spectrum was essentially unchanged. However, the spectrum changed from a random spinel in the oxidized state to an inverse spinel as it was reduced by oxide ion removal. The steady state catalyst lies very near the fully oxidized state. More dramatic solid state changes occurred as the CuFe2O4 underwent reduction. Under severe reduction, the ferrite was transformed into Cu and Fe3O4, but it could be reversibly recovered by oxidation. An intense doublet located near zero velocity persisted in all spectra of CuFe2O4 regardless of the state of reduction.
Liu, Yijin; Meirer, Florian; Krest, Courtney M.; ...
2016-08-30
To understand how hierarchically structured functional materials operate, analytical tools are needed that can reveal small structural and chemical details in large sample volumes. Often, a single method alone is not sufficient to get a complete picture of processes happening at multiple length scales. Here we present a correlative approach combining three-dimensional X-ray imaging techniques at different length scales for the analysis of metal poisoning of an individual catalyst particle. The correlative nature of the data allowed establishing a macro-pore network model that interprets metal accumulations as a resistance to mass transport and can, by tuning the effect of metalmore » deposition, simulate the response of the network to a virtual ageing of the catalyst particle. In conclusion, the developed approach is generally applicable and provides an unprecedented view on dynamic changes in a material’s pore space, which is an essential factor in the rational design of functional porous materials.« less
Liang, Zibin; Qu, Chong; Xia, Dingguo; Zou, Ruqiang; Xu, Qiang
2018-02-19
Metal sites play an essential role for both electrocatalytic and photocatalytic energy conversion applications. The highly ordered arrangements of the organic linkers and metal nodes and the well-defined pore structures of metal-organic frameworks (MOFs) make them ideal substrates to support atomically dispersed metal sites (ADMSs) located in their metal nodes, linkers, and pores. Besides, porous carbon materials doped with ADMSs can be derived from these ADMS-incorporated MOF precursors through controlled treatments. These ADMSs incorporated in pristine MOFs and MOF-derived carbon materials possess unique merits over the molecular or the bulk metal-based catalysts, bridging the gap between homogeneous and heterogeneous catalysts for energy conversion applications. In this review, recent progress and perspective of design and incorporation of ADMSs in pristine MOFs and MOF-derived materials for energy conversion applications are highlighted, which will hopefully promote further developments of advanced MOF-based catalysts in foreseeable future. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mistry, Hemma; Choi, Yong-Wook; Bagger, Alexander; ...
2017-07-14
Efficient, stable catalysts with high selectivity for a single product are essential if electroreduction of CO 2 is to become a viable route to the synthesis of industrial feedstocks and fuels. A plasma oxidation pre-treatment of silver foil enhances the number of low-coordinated catalytically active sites, which dramatically lowers the overpotential and increases the activity of CO 2 electroreduction to CO. At -0.6 V versus RHE more than 90 % Faradaic efficiency towards CO was achieved on a pre-oxidized silver foil. While transmission electron microscopy (TEM) and operando X-ray absorption spectroscopy showed that oxygen species can survive in the bulkmore » of the catalyst during the reaction, quasi in situ X-ray photoelectron spectroscopy showed that the surface is metallic under reaction conditions. Finally, DFT calculations reveal that the defect-rich surface of the plasma-oxidized silver foils in the presence of local electric fields drastically decrease the overpotential of CO 2 electroreduction.« less
NASA Astrophysics Data System (ADS)
Yoo, Seung Hwa; Joh, Han-Ik; Lee, Sungho
2017-04-01
Porous carbon nanofibers (PCNFs) with CNF branches (PCNF/bCNF) were synthesized by a simple heat treatment method. Conventional methods to synthesize this unique structure usually follow a typical route, which consists of CNF preparation, catalyst deposition, and secondary CNF growth. In contrast, our method utilized a one-step carbonization process of polymer nanofibers, which were electrospun from a one-pot solution consisted of polyacrylonitrile, polystyrene (PS), and iron acetylacetonate. Various structures of PCNF/CNF were synthesized by changing the solution composition and molecular weight of PS. It was verified that the content and molecular weight of PS were critical for the growth of catalyst particles and subsequent growth of CNF branches. The morphology, phase of catalyst, and carbon structure of PCNF/bCNF were analyzed at different temperature steps during carbonization. It was found that pores were generated by the evaporation of PS and the catalyst particles were formed on the surface of PCNF at 700 °C. The gases originated from the evaporation of PS acted as a carbon source for the growth of CNF branches that started at 900 °C. Finally, when the carbonization process was finished at 1200 °C, uniform and abundant CNF branches were formed on the surface of PCNF.
Angelici, Carlo; Velthoen, Marjolein E Z; Weckhuysen, Bert M; Bruijnincx, Pieter C A
2014-09-01
Silica-magnesia (Si/Mg=1:1) catalysts were studied in the one-pot conversion of ethanol to butadiene. The catalyst synthesis method was found to greatly influence morphology and performance, with materials prepared through wet-kneading performing best both in terms of ethanol conversion and butadiene yield. Detailed characterization of the catalysts synthesized through co-precipitation or wet-kneading allowed correlation of activity and selectivity with morphology, textural properties, crystallinity, and acidity/basicity. The higher yields achieved with the wet-kneaded catalysts were attributed to a morphology consisting of SiO2 spheres embedded in a thin layer of MgO. The particle size of the SiO2 catalysts also influenced performance, with catalysts with smaller SiO2 spheres showing higher activity. Temperature-programmed desorption (TPD) measurements showed that best butadiene yields were obtained with SiO2-MgO catalysts characterized by an intermediate amount of acidic and basic sites. A Hammett indicator study showed the catalysts' pK(a) value to be inversely correlated with the amount of dehydration by-products formed. Butadiene yields could be further improved by the addition of 1 wt% of CuO as promoter to give butadiene yields and selectivities as high as 40% and 53%, respectively. The copper promoter boosts the production of the acetaldehyde intermediate changing the rate-determining step of the process. TEM-energy-dispersive X-ray (EDX) analyses showed CuO to be present on both the SiO2 and MgO components. UV/Vis spectra of promoted catalysts in turn pointed at the presence of cluster-like CuO species, which are proposed to be responsible for the increased butadiene production. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pendyala, Venkat Ramana Rao; Jacobs, Gary; Ma, Wenping; ...
2016-07-23
The effect of co-fed hydrogen chloride (HCl) in syngas on the performance of iron and cobalt-based Fischer-Tropsch (FT) catalysts was investigated in our earlier studies [ACS Catal. 5 (2015) 3124-3136 and DOE final report 2011; Catal. Lett. 144 (2014) 1127-1133]. For an iron catalyst, lower HCl concentrations (< 2.0 ppmw of HCl)) in syngas did not significantly affect the activity, whereas rapid deactivation occurred at higher concentrations (~20 ppmw). With cobalt catalysts, even low concentrations of HCl (100 ppbw) caused catalyst deactivation, and the deactivation rate increased with increasing HCl concentration in the syngas. The deactivation of the catalysts ismore » explained by the chloride being adsorbed on the catalyst surface to (1) block the active sites and/or (2) electronically modify the sites. In this study, XANES spectroscopy was employed to investigate HCl poisoning mechanism on the iron and cobalt catalysts. Cl K-edge normalized XANES results indicate that Cl is indeed present on the catalyst following HCl poisoning and exhibits a structure similar to the family of compounds MCl; two main peaks are formed, with the second peak consisting of a main peak and a higher energy shoulder. At the Co K and Fe K edges, the white line was observed to be slightly increased relative to the same catalyst under clean conditions. There is then the additional possibility that Cl adsorption may act in part to intercept electron density from the FT metallic function (e.g.,cobalt or iron carbide). If so, this would result in less back-donation and therefore hinder the scission of molecules such as CO.« less
Platinum/zeolite catalyst for reforming n-hexane: Kinetic and mechanistic considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane, G.S.; Modica, F.S.; Miller, J.T.
A platinum/L-zeolite-reforming catalyst exhibits activity and selectivity for converting n-hexane into benzene than other Pt catalyst. The reaction pathways indicate that for all catalysts, e.g., Pt/K L or Pt/K Y, benzene is formed as a primary product by one-six-ring closure and methylcyclopentane is formed as a primary product via one-five-ring closure. The ratio for one-six to one-five-ring closure, however, is about two times greater for the Pt/K L than for the Pt/K Y, or other platinum catalysts. The preference for the one-six-ring closure in L zeolite appears to be related to the optimum pore size of the L zeolite. Inmore » addition to an increased selectivity for one-six-ring closure, the Pt/K L-zeolite catalyst also displays increased reactivity. For example, the turnover frequency of the Pt/K L-zeolite catalyst is 10 times higher for formation of benzene and 3.3 times higher for formation of methylcyclopentane compared with the Pt/K Y-zeolite catalyst. Although the Pt/K L is more reactive than Pt/K Y, the apparent activation energies, 54 kcal/mol for one-six-ring closure and 39 kcal/mol for one-five-ring closure, are the same for both catalysts. Differences in reactivity are associated with an increase in the preexponential term for the Pt/K L catalyst. The increased aromatics selectivity for Pt/K L is consistent with the confinement model which proposes that n-hexane is adsorbed as a six-ring pseudo-cycle resembling the transition state for one-six-ring closure.« less
Zhou, Haiqing; Yu, Fang; Sun, Jingying; He, Ran; Chen, Shuo; Chu, Ching-Wu; Ren, Zhifeng
2017-01-01
Commercial hydrogen production by electrocatalytic water splitting will benefit from the realization of more efficient and less expensive catalysts compared with noble metal catalysts, especially for the oxygen evolution reaction, which requires a current density of 500 mA/cm2 at an overpotential below 300 mV with long-term stability. Here we report a robust oxygen-evolving electrocatalyst consisting of ferrous metaphosphate on self-supported conductive nickel foam that is commercially available in large scale. We find that this catalyst, which may be associated with the in situ generated nickel–iron oxide/hydroxide and iron oxyhydroxide catalysts at the surface, yields current densities of 10 mA/cm2 at an overpotential of 177 mV, 500 mA/cm2 at only 265 mV, and 1,705 mA/cm2 at 300 mV, with high durability in alkaline electrolyte of 1 M KOH even after 10,000 cycles, representing activity enhancement by a factor of 49 in boosting water oxidation at 300 mV relative to the state-of-the-art IrO2 catalyst. PMID:28507120
Development of Ternary and Quaternary Catalysts for the Electrooxidation of Glycerol
Artem, L. M.; Santos, D. M.; De Andrade, A. R.; Kokoh, K. B.; Ribeiro, J.
2012-01-01
This work consisted in the preparation of platinum-based catalysts supported on carbon (Vulcan XC-72) and investigation of their physicochemical and electrochemical properties. Catalysts of the C/Pt-Ni-Sn-Me (Me = Ru or Ir) type were prepared by the Pechini method at temperature of 350°C. Four different compositions were homemade: C/Pt60Sn10Ni30, C/Pt60Sn10Ni20Ru10, C/Pt60Sn10Ni10Ru20, and C/Pt60Sn10Ni10Ir20. These catalysts were electrochemically and physically characterized by cyclic voltammetry (CV), chronoamperometry (CA) in the presence of glycerol 1.0 mol dm−3, X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM). XRD results showed the main peaks of face-centered cubic Pt. The particle sizes obtained from XRD and HRTEM experiments were close to values ranging from 3 to 8.5 nm. The CV results indicate behavior typical of Pt-based catalysts in acid medium. The CV and CA data reveal that quaternary catalysts present the highest current density for the electrooxidation of glycerol. PMID:22623905
Ferreira-Aparicio, Paloma; Chaparro, Antonio M; Folgado, M Antonia; Conde, Julio J; Brightman, Edward; Hinds, Gareth
2017-03-29
Degradation of a polymer electrolyte membrane fuel cell (PEMFC) with electrosprayed cathode catalyst layers is investigated during cyclic start-up and shut-down events. The study is carried out within a single cell incorporating an array of reference electrodes that enables measurement of cell current as a function of local cathode potential (localized polarization curves). Accelerated degradation of the cell by start-up/shut-down cycling gives rise to inhomogeneous performance loss, which is more severe close to the gas outlet and occurs predominantly during start-up. The degradation consists primarily of loss of cathode catalyst activity and increase in cell internal resistance, which is attributed to carbon corrosion and Pt aggregation in both anode and cathode. Cells with an electrosprayed cathode catalyst layer show lower degradation rates during the first 100 cycles, compared with those of a conventional gas diffusion electrode. This difference in behavior is attributed to the high hydrophobicity of the electrosprayed catalyst layer microstructure, which retards the kinetics of corrosion of the carbon support. In the long term, however, the degradation rate is dominated by the Pt/C ratio in the cathode catalyst layer.
Ye, Weichun; Shi, Xuezhao; Zhang, Yane; Hong, Chenghui; Wang, Chunming; Budzianowski, Wojciech M; Xue, Desheng
2016-02-10
Palladium-cobalt alloy nanoparticles were synthesized and dispersed on carbon black support, aiming to have a less expensive catalyst. Catalytic behaviors of PdCo/C catalyst for the oxidation of hydroquinone (HQ) with H2O2 in aqueous solution were evaluated using high-performance liquid chromatography (HPLC). The results revealed that PdCo/C catalyst had better catalytic activity than an equal amount of commercial Pd/C and Co/C catalysts because of the d-band hybridization between Pd and Co. The effects of pH value, solvent, and various interferents including inorganic and organic compounds on the efficiency of HQ oxidation were further investigated. Furthermore, on the basis of mixed potential theory, comprehensive electrochemical measurements such as the open-circuit potential-time (OCP-t) technique and Tafel plot were efficient to assess the catalytic activity of the catalyst, and the results obtained were consistent with those of HPLC measurements. The efficient HQ oxidation was closely associated with the catalytic activity of PdCo nanoparticles because they accelerated the electron-transfer process and facilitated the generation of OH radicals.
Alternative Fuel Research in Fischer-Tropsch Synthesis
NASA Technical Reports Server (NTRS)
Surgenor, Angela D.; Klettlinger, Jennifer L.; Yen, Chia H.; Nakley, Leah M.
2011-01-01
NASA Glenn Research Center has recently constructed an Alternative Fuels Laboratory which is solely being used to perform Fischer-Tropsch (F-T) reactor studies, novel catalyst development and thermal stability experiments. Facility systems have demonstrated reliability and consistency for continuous and safe operations in Fischer-Tropsch synthesis. The purpose of this test facility is to conduct bench scale Fischer-Tropsch (F-T) catalyst screening experiments while focusing on reducing energy inputs, reducing CO2 emissions and increasing product yields within the F-T process. Fischer-Tropsch synthesis is considered a gas to liquid process which reacts syn-gas (a gaseous mixture of hydrogen and carbon monoxide), over the surface of a catalyst material which is then converted into liquids of various hydrocarbon chain length and product distributions1. These hydrocarbons can then be further processed into higher quality liquid fuels such as gasoline and diesel. The experiments performed in this laboratory will enable the investigation of F-T reaction kinetics to focus on newly formulated catalysts, improved process conditions and enhanced catalyst activation methods. Currently the facility has the capability of performing three simultaneous reactor screening tests, along with a fourth fixed-bed reactor used solely for cobalt catalyst activation.
NiMg/Ceria-Zirconia Cylindrical Pellet Catalysts for Tri-reforming of Surrogate Biogas
Zhao, Xianhui; Walker, Devin; Maiti, Debtanu; ...
2017-12-22
Cylindrical NiMg/Ce 0.6Zr 0.4O 2 pellet catalysts with two different sizes (large: radius = 1.59 mm; and small: radius = 0.75 mm) were produced by extrusion of powder catalysts. The small catalyst pellets had a higher specific surface area, pore volume, average pore size, radial crush strength, and resistance to breakage than the large ones. Tri-reforming tests with surrogate biogas were conducted at 3 bar and 882 °C, with the feed molar ratios of CH 4: CO 2: air fixed at 1.0: 0.7: 0.95 and the H 2O/CH 4 molar feed ratio (0.35 – 1.16) varied. The small catalyst pelletsmore » exhibited lower internal mass transfer resistance and higher coking resistance, compared to the large ones. CO 2 conversion decreased and H 2/CO molar ratio increased with the increase of H 2O/CH 4 molar feed ratio, which are consistent with the trends predicted by thermodynamic equilibrium calculations. Finally, the results indicate that the NiMg/Ce 0.6Zr 0.4O 2 catalyst pellets are promising for commercial scale applications.« less
NASA Astrophysics Data System (ADS)
Christwardana, Marcelinus; Kim, Do-Heyoung; Chung, Yongjin; Kwon, Yongchai
2018-01-01
A novel hybrid biocatalyst is synthesized by the enzyme composite consisting of silver nanoparticle (AgNP), naphthalene-thiol based couplers (Naph-SH) and glucose oxidase (GOx), which is then bonded with the supporter consisting of polyethyleneimine (PEI) and carbon nanotube (CNT) (CNT/PEI/AgNPs/Naph-SH/GOx) to facilitate glucose oxidation reaction (GOR). Here, the AgNPs play a role in obstructing denaturation of the GOx molecules from the supporter because of Ag-thiol bond, while the PEIs have the AgNPs keep their states without getting ionized by hydrogen peroxide produced during anodic reaction. The Naph-SHs also prevent ionization of the AgNP by forming self-assembled monolayer on their surface. Such roles of each component enable the catalyst to form (i) hydrophobic interaction between the GOx molecules and supporter and (ii) π-conjugated electron pathway between the GOx molecules and AgNP, promoting electron transfer. Catalytic nature of the catalyst is characterized by measuring catalytic activity and performance of enzymatic biofuel cell (EBC) using the catalyst. Regarding the catalytic activity, the catalyst leads to high electron transfer rate constant (9.6 ± 0.4 s-1), low Michaelis-Menten constant (0.51 ± 0.04 mM), and low charge transfer resistance (7.3 Ω cm2) and high amount of immobilized GOx (54.6%), while regarding the EBC performance, high maximum power density (1.46 ± 0.07 mW cm-2) with superior long-term stability result are observed.
Akbari, Azam; Omidkhah, Mohammadreza; Darian, Jafar Towfighi
2014-03-01
A new heterogeneous sonocatalytic system consisting of a MoO3/Al2O3 catalyst and H2O2 combined with ultrasonication was studied to improve and accelerate the oxidation of model sulfur compounds of diesel, resulting in a significant enhancement in the process efficiency. The influence of ultrasound on properties, activity and stability of the catalyst was studied in detail by means of GC-FID, PSD, SEM and BET techniques. Above 98% conversion of DBT in model diesel containing 1000 μg/g sulfur was obtained by new ultrasound-assisted desulfurization at H2O2/sulfur molar ratio of 3, temperature of 318 K and catalyst dosage of 30 g/L after 30 min reaction, contrary to the 55% conversion obtained during the silent process. This improvement was considerably affected by operation parameters and catalyst properties. The effects of main process variables were investigated using response surface methodology in silent process compared to ultrasonication. Ultrasound provided a good dispersion of catalyst and oxidant by breakage of hydrogen bonding and deagglomeration of them in the oil phase. Deposition of impurities on the catalyst surface caused a quick deactivation in silent experiments resulting only 5% of DBT oxidation after 6 cycles of silent reaction by recycled catalyst. Above 95% of DBT was oxidized after 6 ultrasound-assisted cycles showing a great improvement in stability by cleaning the surface during ultrasonication. A considerable particle size reduction was also observed after 3 h sonication that could provide more dispersion of catalyst in model fuel.
Device for staged carbon monoxide oxidation
Vanderborgh, Nicholas E.; Nguyen, Trung V.; Guante, Jr., Joseph
1993-01-01
A method and apparatus for selectively oxidizing carbon monoxide in a hydrogen rich feed stream. The method comprises mixing a feed stream consisting essentially of hydrogen, carbon dioxide, water and carbon monoxide with a first predetermined quantity of oxygen (air). The temperature of the mixed feed/oxygen stream is adjusted in a first the heat exchanger assembly (20) to a first temperature. The mixed feed/oxygen stream is sent to reaction chambers (30,32) having an oxidation catalyst contained therein. The carbon monoxide of the feed stream preferentially absorbs on the catalyst at the first temperature to react with the oxygen in the chambers (30,32) with minimal simultaneous reaction of the hydrogen to form an intermediate hydrogen rich process stream having a lower carbon monoxide content than the feed stream. The elevated outlet temperature of the process stream is carefully controlled in a second heat exchanger assembly (42) to a second temperature above the first temperature. The process stream is then mixed with a second predetermined quantity of oxygen (air). The carbon monoxide of the process stream preferentially reacts with the second quantity of oxygen in a second stage reaction chamber (56) with minimal simultaneous reaction of the hydrogen in the process stream. The reaction produces a hydrogen rich product stream having a lower carbon monoxide content than the process stream. The product stream is then cooled in a third heat exchanger assembly (72) to a third predetermined temperature. Three or more stages may be desirable, each with metered oxygen injection.
How to make an efficient and robust molecular catalyst for water oxidation.
Garrido-Barros, Pablo; Gimbert-Suriñach, Carolina; Matheu, Roc; Sala, Xavier; Llobet, Antoni
2017-10-16
Energy has been a central subject for human development from Homo erectus to date. The massive use of fossil fuels during the last 50 years has generated a large CO 2 concentration in the atmosphere that has led to the so-called global warming. It is very urgent to come up with C-neutral energy schemes to be able to preserve Planet Earth for future generations to come and still preserve our modern societies' life style. One of the potential solutions is water splitting with sunlight (hν-WS) that is also associated with "artificial photosynthesis", since its working mode consists of light capture followed by water oxidation and proton reduction processes. The hydrogen fuel generated in this way is named as "solar fuel". For this set of reactions, the catalytic oxidation of water to dioxygen is one of the crucial processes that need to be understood and mastered in order to build up potential devices based on hν-WS. This tutorial describes the different important aspects that need to be considered to come up with efficient and oxidatively robust molecular water oxidation catalysts (Mol-WOCs). It is based on our own previous work and completed with essential contributions from other active groups in the field. We mainly aim at describing how the ligands can influence the properties of the Mol-WOCs and showing a few key examples that overall provide a complete view of today's understanding in this field.
Metal–organic and covalent organic frameworks as single-site catalysts
Rogge, S. M. J.; Bavykina, A.; Hajek, J.; Garcia, H.; Olivos-Suarez, A. I.; Sepúlveda-Escribano, A.; Vimont, A.; Clet, G.; Bazin, P.; Kapteijn, F.
2017-01-01
Heterogeneous single-site catalysts consist of isolated, well-defined, active sites that are spatially separated in a given solid and, ideally, structurally identical. In this review, the potential of metal–organic frameworks (MOFs) and covalent organic frameworks (COFs) as platforms for the development of heterogeneous single-site catalysts is reviewed thoroughly. In the first part of this article, synthetic strategies and progress in the implementation of such sites in these two classes of materials are discussed. Because these solids are excellent playgrounds to allow a better understanding of catalytic functions, we highlight the most important recent advances in the modelling and spectroscopic characterization of single-site catalysts based on these materials. Finally, we discuss the potential of MOFs as materials in which several single-site catalytic functions can be combined within one framework along with their potential as powerful enzyme-mimicking materials. The review is wrapped up with our personal vision on future research directions. PMID:28338128
NASA Astrophysics Data System (ADS)
Barbosa, Isaltino A.; Zanatta, Lucas D.; Espimpolo, Daniela M.; da Silva, Douglas L.; Nascimento, Leandro F.; Zanardi, Fabrício B.; de Sousa Filho, Paulo C.; Serra, Osvaldo A.; Iamamoto, Yassuko
2017-10-01
We explored the potential use of diatomite/Fe2O3/TiO2 composites as catalysts for heterogeneous photo-Fenton degradation of methylene blue under neutral pH. Such system consists in magnetic solids synthesized by co-precipitation with Fe2+/Fe3+ in the presence of diatomite, followed by impregnation of TiO2. The results showed that the optimal amount of the catalyst was 2.0 g L-1, since aggregation phenomena become significant above this concentration, which decreases the photodegradation activity. The catalyst is highly efficient in the degradation of methylene blue and shows an easy recovery by an external magnetic field. This allows for an effective catalyst reuse without significant loss of activity in catalytic cycles, which is a highly interesting prospect for recyclable dye degradation systems.
Method of producing pyrolysis gases from carbon-containing materials
Mudge, Lyle K.; Brown, Michael D.; Wilcox, Wayne A.; Baker, Eddie G.
1989-01-01
A gasification process of improved efficiency is disclosed. A dual bed reactor system is used in which carbon-containing feedstock materials are first treated in a gasification reactor to form pyrolysis gases. The pyrolysis gases are then directed into a catalytic reactor for the destruction of residual tars/oils in the gases. Temperatures are maintained within the catalytic reactor at a level sufficient to crack the tars/oils in the gases, while avoiding thermal breakdown of the catalysts. In order to minimize problems associated with the deposition of carbon-containing materials on the catalysts during cracking, a gaseous oxidizing agent preferably consisting of air, oxygen, steam, and/or mixtures thereof is introduced into the catalytic reactor at a high flow rate in a direction perpendicular to the longitudinal axis of the reactor. This oxidizes any carbon deposits on the catalysts, which would normally cause catalyst deactivation.
Zuend, Stephan J; Jacobsen, Eric N
2007-12-26
The mechanism of the enantioselective cyanosilylation of ketones catalyzed by tertiary amino-thiourea derivatives was investigated using a combination of experimental and theoretical methods. The kinetic analysis is consistent with a cooperative mechanism in which both the thiourea and the tertiary amine of the catalyst are involved productively in the rate-limiting cyanide addition step. Density functional theory calculations were used to distinguish between mechanisms involving thiourea activation of ketone or of cyanide in the enantioselectivity-determining step. The strong correlation obtained between experimental and calculated ee's for a range of substrates and catalysts provides support for the most favorable calculated transition structures involving amine-bound HCN adding to thiourea-bound ketone. The calculations suggest that enantioselectivity arises from direct interactions between the ketone substrate and the amino-acid derived portion of the catalyst. On the basis of this insight, more enantioselective catalysts with broader substrate scope were prepared and evaluated experimentally.
Zuend, Stephan J.
2009-01-01
An experimental and computational investigation of amido-thiourea promoted imine hydrocyanation has revealed a new and unexpected mechanism of catalysis. Rather than direct activation of the imine by the thiourea, as had been proposed previously in related systems, the data are consistent with a mechanism involving catalyst-promoted proton transfer from hydrogen isocyanide to imine to generate diastereomeric iminium/cyanide ion pairs that are bound to catalyst through multiple non-covalent interactions; these ion pairs collapse to form the enantiomeric α-aminonitrile products. This mechanistic proposal is supported by the observation of a statistically significant correlation between experimental and calculated enantioselectivities induced by eight different catalysts (P ≪ 0.01). The computed models reveal a basis for enantioselectivity that involves multiple stabilizing and destabilizing interactions between substrate and catalyst, including thiourea-cyanide and amide-iminium interactions. PMID:19778044
Low temperature catalyst system for methanol production
Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.
1984-04-20
This patent discloses a catalyst and process useful at low temperatures (150/sup 0/C) and preferably in the range 80 to 120/sup 0/C used in the production of methanol from carbon monoxide and hydrogen. The catalyst components are used in slurry form and comprise (1) a complex reducing agent derived from the component structure NaH-ROH-M(OAc)/sub 2/ where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1 to 6 carbon atoms and (2) a metal carbonyl of a group VI (Mo, Cr, W) metal. For the first component, Nic is preferred (where M = Ni and R = tertiary amyl). For the second component, Mo(CO)/sub 6/ is preferred. The mixture is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.
Human Augmentation of Reasoning Through Patterning (HARP)
2008-04-01
develop what we then referred to as “ Uber - CIM,” in which a set of independent but tightly-joined CIM models could be developed. However, although that...analysts to apply “tags” (keywords) to Web-based resources, and to see and leverage the tags and tagged resources of others. Catalyst is a modeling ...issues. Catalyst models consist of nodes of information organized into hierarchical tree structures. Nodes can contain attachments or links to tags
Liu, Xian-Wei; Sun, Xue-Fei; Huang, Yu-Xi; Sheng, Guo-Ping; Zhou, Kang; Zeng, Raymond J; Dong, Fang; Wang, Shu-Guang; Xu, An-Wu; Tong, Zhong-Hua; Yu, Han-Qing
2010-10-01
Microbial fuel cells (MFCs) provide new opportunities for the simultaneous wastewater treatment and electricity generation. Enhanced oxygen reduction capacity of cost-effective metal-based catalysts in an air cathode is essential for the scale-up and commercialization of MFCs in the field of wastewater treatment. We demonstrated that a nano-structured MnO(x) material, prepared by an electrochemically deposition method, could be an effective catalyst for oxygen reduction in an MFC to generate electricity with the maximum power density of 772.8 mW/m(3) and remove organics when the MFC was fed with an acetate-laden synthetic wastewater. The nano-structured MnO(x) with the controllable size and morphology could be readily obtained with the electrochemical deposition method. Both morphology and manganese oxidation state of the nano-scale catalyst were largely dependent on the electrochemical preparation process, and they governed its catalytic activity and the cathodic oxygen reduction performance of the MFC accordingly. Furthermore, cyclic voltammetry (CV) performed on each nano-structured material suggests that the MnO(x) nanorods had an electrochemical activity towards oxygen reduction reaction via a four-electron pathway in a neutral pH solution. This work provides useful information on the facile preparation of cost-effective cathodic catalysts in a controllable way for the single-chamber air-cathode MFC for wastewater treatment. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Khoshnevis, Hamed; Mint, Sandar Myo; Yedinak, Emily; Tran, Thang Q.; Zadhoush, Ali; Youssefi, Mostafa; Pasquali, Matteo; Duong, Hai M.
2018-02-01
In this study, we apply an advanced floating catalyst method to fabricate carbon nanotube (CNT) aerogels at super high deposition rate for oil spill cleaning. The aerogels consist of 3D porous network of stacking double-walled CNT bundles with low catalyst impurity (9%) and high thermal stability (650 °C). With high porosity, surface areas, and water contact angles, the CNT aerogels exhibit a high oil adsorption of up to 107 g/g and good reusability of up to four adsorption-burning cycles. This work suggests that the lightweight, porous, and super hydrophobic CNT aerogels can be promising sorbent materials for environmental applications.
Contact structure for use in catalytic distillation
Jones, Jr., Edward M.
1984-01-01
A method for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catatlyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.
Sources of deactivation during glycerol conversion on Ni/γ-Al 2 O 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chimentão, R. J.; Miranda, B. C.; Szanyi, J.
Hydrogenolysis of glycerol was studied using a diluted aqueous solution of glycerol in gas phase and atmospheric pressure on Ni/γ-Al2O3 catalyst. The catalytic transformation of glycerol generates products derived from dehydration, dehydrogenation, hydrogenolysis and condensation reactions. Deep hydrogenolysis route to produce CH4 prevails in the first few hours of reaction. As the reaction time progress, dehydration-dehydrogenation products start to appear. Here, a description of the deactivation sources and its effects on the catalytic performance of Ni catalyst was proposed. The catalyst was characterized before and after the catalytic reaction by high-resolution transmission electron microscopy (HRTEM) and by employing Fourier transformedmore » infrared spectroscopy (FTIR) of adsorbed CO. A source of deactivation was due to carbonaceous deposition. FTIR at low CO dosing pressure reveal bands assignments species essentially due to linear and bridge carbonyls, whereas high pressure CO dosing produces a complex spectra due to polycarbonyls. X-ray absorption near edge structure (XANES) analysis was employed to reveal the initial degree of reduction of the fresh catalyst. The oxidation of metallic Ni in the course of reaction may also be considered as a source of deactivation. Ni oxide species promote dehydration routes. Alumina support facilitates nickel species to be more active toward interacting with glycerol. Dehydration, which takes place on the acid sites, is the mainly route related to the generation of carbon deposition and to the observed catalyst deactivation. Another source of deactivation was due to carbiding of Ni to form Ni3C. The regeneration of used Ni catalyst was achieved by oxidation-reduction steps at 723 K.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yung, Matthew M.; Stanton, Alexander R.; Iisa, Kristiina
Metal-impregnated (Ni or Ga) ZSM-5 catalysts were studied for biomass pyrolysis vapor upgrading to produce hydrocarbons using three reactors constituting a 100 000x change in the amount of catalyst used in experiments. Catalysts were screened for pyrolysis vapor phase upgrading activity in two small-scale reactors: (i) a Pyroprobe with a 10 mg catalyst in a fixed bed and (ii) a fixed-bed reactor with 500 mg of catalyst. The best performing catalysts were then validated with a larger scale fluidized-bed reactor (using ~1 kg of catalyst) that produced measurable quantities of bio-oil for analysis and evaluation of mass balances. Despite somemore » inherent differences across the reactor systems (such as residence time, reactor type, analytical techniques, mode of catalyst and biomass feed) there was good agreement of reaction results for production of aromatic hydrocarbons, light gases, and coke deposition. Relative to ZSM-5, Ni or Ga addition to ZSM-5 increased production of fully deoxygenated aromatic hydrocarbons and light gases. In the fluidized bed reactor, Ga/ZSM-5 slightly enhanced carbon efficiency to condensed oil, which includes oxygenates in addition to aromatic hydrocarbons, and reduced oil oxygen content compared to ZSM-5. Ni/ZSM-5, while giving the highest yield of fully deoxygenated aromatic hydrocarbons, gave lower overall carbon efficiency to oil but with the lowest oxygen content. Reaction product analysis coupled with fresh and spent catalyst characterization indicated that the improved performance of Ni/ZSM-5 is related to decreasing deactivation by coking, which keeps the active acid sites accessible for the deoxygenation and aromatization reactions that produce fully deoxygenated aromatic hydrocarbons. The addition of Ga enhances the dehydrogenation activity of the catalyst, which leads to enhanced olefin formation and higher fully deoxygenated aromatic hydrocarbon yields compared to unmodified ZSM-5. Catalyst characterization by ammonia temperature programmed desorption, surface area measurements, and postreaction temperature-programmed oxidation (TPO) also showed that the metal-modified zeolites retained a greater percentage of their initial acidity and surface area, which was consistent between the reactor scales. These results demonstrate that the trends observed with smaller (milligram to gram) catalyst reactors are applicable to larger, more industrially relevant (kg) scales to help guide catalyst research toward application.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Xianhui; Walker, Devin; Maiti, Debtanu
Cylindrical NiMg/Ce 0.6Zr 0.4O 2 pellet catalysts with two different sizes (large: radius = 1.59 mm; and small: radius = 0.75 mm) were produced by extrusion of powder catalysts. The small catalyst pellets had a higher specific surface area, pore volume, average pore size, radial crush strength, and resistance to breakage than the large ones. Tri-reforming tests with surrogate biogas were conducted at 3 bar and 882 °C, with the feed molar ratios of CH 4: CO 2: air fixed at 1.0: 0.7: 0.95 and the H 2O/CH 4 molar feed ratio (0.35 – 1.16) varied. The small catalyst pelletsmore » exhibited lower internal mass transfer resistance and higher coking resistance, compared to the large ones. CO 2 conversion decreased and H 2/CO molar ratio increased with the increase of H 2O/CH 4 molar feed ratio, which are consistent with the trends predicted by thermodynamic equilibrium calculations. Finally, the results indicate that the NiMg/Ce 0.6Zr 0.4O 2 catalyst pellets are promising for commercial scale applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornburg, Nicholas E.; Notestein, Justin M.
Supported metal oxide catalysts are versatile materials for liquid-phase oxidations, including alkene epoxidation and thioether sulfoxidation with H2O2. Periodic trends in H2O2 activation was recently demonstrated for alkene epoxidation, highlighting Nb-SiO2 as a more active and selective catalyst than Ti-SiO2. Three representative catalysts are studied consisting of NbV, TiIV, and ZrIV on silica, each made through a molecular precursor approach that yields highly dispersed oxide sites, for thioanisole oxidation by H2O2. Initial rates trend Nb>Ti>>Zr, as for epoxidation, and Nb outperforms Ti for a number of other thioethers. In contrast, selectivity to sulfoxide vs. sulfone trends Ti>Nb>>Zr at all conversions.more » Modifying the Nb-SiO2 catalyst with phenylphosphonic acid does not completely remove sulfoxidation reactivity, as it did for photooxidation and epoxidation, and results in an unusual material active for sulfoxidation but neither epoxidation nor overoxidation to the sulfone.« less
Synthesis and acid catalysis of cellulose-derived carbon-based solid acid
NASA Astrophysics Data System (ADS)
Suganuma, Satoshi; Nakajima, Kiyotaka; Kitano, Masaaki; Yamaguchi, Daizo; Kato, Hideki; Hayashi, Shigenobu; Hara, Michikazu
2010-06-01
SO 3H-bearing amorphous carbon, prepared by partial carbonization of cellulose followed by sulfonation in fuming H 2SO 4, was applied as a solid catalyst for the acid-catalyzed hydrolysis of β-1,4 glucan, including cellobiose and crystalline cellulose. Structural analyses revealed that the resulting carbon material consists of graphene sheets with 1.5 mmol g -1 of SO 3H groups, 0.4 mmol g -1 of COOH, and 5.6 mmol g -1 of phenolic OH groups. The carbon catalyst showed high catalytic activity for the hydrolysis of β-1,4 glycosidic bonds in both cellobiose and crystalline cellulose. Pure crystalline cellulose was not hydrolyzed by conventional strong solid Brønsted acid catalysts such as niobic acid, Nafion ® NR-50, and Amberlyst-15, whereas the carbon catalyst efficiently hydrolyzes cellulose into water-soluble saccharides. The catalytic performance of the carbon catalyst is due to the large adsorption capacity for hydrophilic reactants and the adsorption ability of β-1,4 glucan, which is not adsorbed to other solid acids.
Gold-supported cerium-doped NiO x catalysts for water oxidation
Ng, Jia Wei Desmond; García-Melchor, Max; Bajdich, Michal; ...
2016-04-29
Here, the development of high-performance catalysts for the oxygen-evolution reaction (OER) is paramount for cost-effective conversion of renewable electricity to fuels and chemicals. Here we report the significant enhancement of the OER activity of electrodeposited NiO x films resulting from the combined effects of using cerium as a dopant and gold as a metal support. This NiCeO x–Au catalyst delivers high OER activity in alkaline media, and is among the most active OER electrocatalysts yet reported. On the basis of experimental observations and theoretical modelling, we ascribe the activity to a combination of electronic, geometric and support effects, where highlymore » active under-coordinated sites at the oxide support interface are modified by the local chemical binding environment and by doping the host Ni oxide with Ce. The NiCeO x–Au catalyst is further demonstrated in a device context by pairing it with a nickel–molybdenum hydrogen evolution catalyst in a water electrolyser, which delivers 50 mA consistently at 1.5 V over 24 h of continuous operation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Lei; Luo, Langli; Feng, Zhenxing
Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhancing reaction kinetics but are limited by their scarce resource. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides etc. are their low electronic conductivity and durability. Herein, we report a highly active (360 mV overpotential at 10 mA cm–2GEO) and durable (no degradation after 20000 cycles) OER catalyst derived from bimetallic metal–organic frameworks (MOFs) precursors. This catalyst consists ofmore » NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells. The electron-donation/deviation from Fe and tuned electronic structure of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity, whereas N concentration contributes negligibly. We further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by the chemical state of precursors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensley, Alyssa J. R.; Wang, Yong; Mei, Donghai
A mechanistic understanding of the roles of water is essential for developing highly active and selective catalysts for hydrodeoxygenation (HDO) reactions since water is ubiquitous in such reaction systems. Here, we present a study for phenol HDO on Fe catalysts using density functional theory which examines the effect of water on three elementary pathways for phenol HDO using an explicit solvation model. The presence of water is found to significantly decrease activation barriers required by hydrogenation reactions via two pathways. First, the proton transfer in the hydrogen bonding network of the liquid water phase is nearly barrierless, which significantly promotesmore » the direct through space tautomerization of phenol. Second, due to the high degree of oxophilicity on Fe, liquid water molecules are found to be easily dissociated into surface hydroxyl groups that can act as Brønsted acid sites. These sites dramatically promote hydrogenation reactions on the Fe surface. As a result, the hydrogen assisted dehydroxylation becomes the dominant phenol HDO pathway. This work provides new fundamental insights into aqueous phase HDO of biomass-derived oxygenates over Fe-based catalysts; e.g., the activity of Fe-based catalysts can be optimized by tuning the surface coverage of Brønsted acid sites via surface doping.« less
The Role of State Library Agencies in National Plans for Library and Information Services.
ERIC Educational Resources Information Center
Trezza, Alphonse F.
1978-01-01
A full-service national network of library and information services can only become a reality if there is careful articulation among local, state, multistate, and national planning and implementation activities. The role of the state library agency as coordinator, catalyst, initiator, and even-handed funding agency is essential, difficult, and…
Marshall Space Flight Center Research and Technology Report 2016
NASA Technical Reports Server (NTRS)
Tinker, M. L.; Abney, M. B. (Compiler); Reynolds, D. W. (Compiler); Morris, H. C. (Compiler)
2017-01-01
Marshall Space Flight Center is essential to human space exploration and our work is a catalyst for ongoing technological development. As we address the challenges facing human deep space exploration, we advance new technologies and applications here on Earth, expand scientific knowledge and discovery, create new economic opportunities, and continue to lead global space exploration.
ERIC Educational Resources Information Center
Gregor, Richard W.; Goj, Laurel A.
2011-01-01
The formation of carbon-carbon bonds is an essential theme throughout organic chemistry. The use of transition-metal catalysts to form carbon-carbon bonds, once relegated to more advanced texts, is now commonly found in introductory organic textbooks. However, commensurate laboratory experiments for first-year organic students are more limited.…
Coupling molecular catalysts with nanostructured surfaces for efficient solar fuel production
NASA Astrophysics Data System (ADS)
Jin, Tong
Solar fuel generation via carbon dioxide (CO2) reduction is a promising approach to meet the increasing global demand for energy and to minimize the impact of energy consumption on climate change. However, CO2 is thermodynamically stable; its activation often requires the use of appropriate catalysts. In particular, molecular catalysts with well-defined structures and tunability have shown excellent activity in photochemical CO2 reduction. These homogenous catalysts, however, suffer from poor stability under photochemical conditions and difficulty in recycling from the reaction media. Heterogenized molecular catalysts, particularly those prepared by coupling molecular catalysts with solid-state surfaces, have attracted more attention in recent years as potential solutions to address the issues associated with molecular catalysts. In this work, solar CO2 reduction is investigated using systems coupling molecular catalysts with robust nanostructured surfaces. In Chapter 2, heterogenization of macrocyclic cobalt(III) and nickel (II) complexes on mesoporous silica surface was achieved by different methods. Direct ligand derivatization significantly lowered the catalytic activity of Co(III) complex, while grafting the Co(III) complex onto silica surface through Si-O-Co linkage resulted in hybrid catalysts with excellent activity in CO2 reduction in the presence of p-terphenyl as a molecular photosensitizer. An interesting loading effect was observed, in which the optimal activity was achieved at a medium Co(III) surface density. Heterogenization of the Ni(II) complex on silica surface has also been implemented, the poor photocatalytic activity of the hybrid catalyst can be attributed to the intrinsic nature of the homogeneous analogue. This study highlighted the importance of appropriate linking strategies in preparing functional heterogenized molecular catalysts. Coupling molecular complexes with light-harvesting surfaces could avoid the use of expensive molecular photosensitizers. In Chapter 3, effective coupling of the macrocyclic Co(III) complex with titanium dioxide (TiO¬2) nanoparticles was achieved by two deposition methods. The synthesized hybrid photocatalysts were thoroughly characterized with a variety of techniques. Upon UV light irradiation, photoexcited electrons in TiO2 nanoparticles were transferred to the surface Co(III) catalyst for CO2 reduction. Production of carbon monoxide (CO) from CO2 was confirmed by isotope labeling combined with infrared spectroscopy. Deposition of the Co(III) catalyst through Ti-O-Co linkages was essential for the photo-induced electron transfer and CO2-reduction activity using the hybrid photocatalysts. In Chapter 4, molecular Re(I) and Co(II) catalysts were coupled with silicon-based photoelectrodes, including a silicon nanowire (SiNW) photoelectrode, to achieve photoelectrochemical CO2 reduction. Photovoltages between 300-600 mV were obtained using the molecular catalysts on the silicon photoelectrodes. SiNWs exhibited enhanced properties, including significantly higher photovoltages than a planar silicon photoelectrode, the ability to protect one of the molecular catalysts from photo-induced decomposition, and excellent selectivity towards CO production in CO2 reduction. Recent theoretical and experimental work have demonstrated low-energy, binuclear pathways for CO2-to-CO conversion using several molecular catalysts. In such binuclear pathways, two metal centers work cooperatively to achieve two-electron CO2 reduction. Chapter 5 describes our effort to promote the binuclear pathway by grafting the molecular Co(III) catalyst onto silica surfaces. Different linking strategies were attempted to achieve this goal by planting the surface Co(III) sites in close proximity.
Process and apparatus for the production of hydrogen by steam reforming of hydrocarbon
Sircar, Shivaji; Hufton, Jeffrey Raymond; Nataraj, Shankar
2000-01-01
In the steam reforming of hydrocarbon, particularly methane, under elevated temperature and pressure to produce hydrogen, a feed of steam and hydrocarbon is fed into a first reaction volume containing essentially only reforming catalyst to partially reform the feed. The balance of the feed and the reaction products of carbon dioxide and hydrogen are then fed into a second reaction volume containing a mixture of catalyst and adsorbent which removes the carbon dioxide from the reaction zone as it is formed. The process is conducted in a cycle which includes these reactions followed by countercurrent depressurization and purge of the adsorbent to regenerate it and repressurization of the reaction volumes preparatory to repeating the reaction-sorption phase of the cycle.
Achieving Biocompatible SABRE: An in vitro Cytotoxicity Study.
Manoharan, Anand; Rayner, Peter J; Iali, Wissam; Burns, Michael J; Perry, V Hugh; Duckett, Simon B
2018-02-20
Production of a biocompatible hyperpolarized bolus for signal amplification by reversible exchange (SABRE) could open the door to simple clinical diagnosis via magnetic resonance imaging. Essential to successful progression to preclinical/clinical applications is the determination of the toxicology profile of the SABRE reaction mixture. Herein, we exemplify the cytotoxicity of the SABRE approach using in vitro cell assays. We conclude that the main cause of the observed toxicity is due to the SABRE catalyst. We therefore illustrate two catalyst removal methods: one involving deactivation and ion-exchange chromatography, and the second using biphasic catalysis. These routes produce a bolus suitable for future in vivo study. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Robinson, Allison; Ferguson, Glen Allen; Gallagher, James R.; ...
2016-05-26
Supported bimetallic catalysts consisting of a noble metal (e.g., Pt) and an oxophilic metal (e.g., Mo) have received considerable attention for the hydrodeoxygenation of oxygenated aromatic compounds produced from biomass fast pyrolysis. Here, we report that PtMo can catalyze m-cresol deoxygenation via a pathway involving an initial tautomerization step. In contrast, the dominant mechanism on monometallic Pt/Al 2O 3 was found to be sequential Pt-catalyzed ring hydrogenation followed by dehydration on the support. Bimetallic Pt 10Mo 1 and Pt 1Mo 1 catalysts were found to produce the completely hydrogenated and deoxygenated product, methylcyclohexane (MCH), with much higher yields than monometallicmore » Pt catalysts with comparable metal loadings and surface areas. Over an inert carbon support, MCH formation was found to be slow over monometallic Pt catalysts, while deoxygenation was significant for PtMo catalysts even in the absence of an acidic support material. Experimental studies of m-cresol deoxygenation together with density functional theory calculations indicated that Mo sites on the PtMo bimetallic surface dramatically lower the barrier for m-cresol tautomerization and subsequent deoxygenation. The accessibility of this pathway arises from the increased interaction between the oxygen of m-cresol and the Mo sites in the Pt surface. This interaction significantly alters the configuration of the precursor and transition states for tautomerization. Lastly, a suite of catalyst characterization techniques including X-ray absorption spectroscopy (XAS) and temperature-programmed reduction (TPR) indicate that Mo was present in a reduced state on the bimetallic surface under conditions relevant for reaction. Overall, these results suggest that the use of bifunctional metal catalysts can result in new reaction pathways that are unfavorable on monometallic noble metal catalysts.« less
Gogate, Makarand Ratnakav; Spivey, James Jerome; Zoeller, Joseph Robert
1999-01-01
A process using a niobium catalyst includes the step of reacting an ester or carboxylic acid with oxygen and an alcohol in the presence a niobium catalyst to respectively produce an .alpha.,.beta.-unsaturated ester or carboxylic acid. Methanol may be used as the alcohol, and the ester or carboxylic acid may be passed over the niobium catalyst in a vapor stream containing oxygen and methanol. Alternatively, the process using a niobium catalyst may involve the step of reacting an ester and oxygen in the presence the niobium catalyst to produce an .alpha.,.beta.-unsaturated carboxylic acid. In this case the ester may be a methyl ester. In either case, niobium oxide may be used as the niobium catalyst with the niobium oxide being present on a support. The support may be an oxide selected from the group consisting of silicon oxide, aluminum oxide, titanium oxide and mixtures thereof. The catalyst may be formed by reacting niobium fluoride with the oxide serving as the support. The niobium catalyst may contain elemental niobium within the range of 1 wt % to 70 wt %, and more preferably within the range of 10 wt % to 30 wt %. The process may be operated at a temperature from 150 to 450.degree. C. and preferably from 250 to 350.degree. C. The process may be operated at a pressure from 0.1 to 15 atm. absolute and preferably from 0.5-5 atm. absolute. The flow rate of reactants may be from 10 to 10,000 L/kg.sub.(cat) /h, and preferably from 100 to 1,000 L/kg.sub.(cat) /h.
USD Catalysis Group for Alternative Energy - Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoefelmeyer, James
2014-10-03
I. Project Summary Catalytic processes are a major technological underpinning of modern society, and are essential to the energy sector in the processing of chemical fuels from natural resources, fine chemicals synthesis, and energy conversion. Advances in catalyst technology are enormously valuable since these lead to reduced chemical waste, reduced energy loss, and reduced costs. New energy technologies, which are critical to future economic growth, are also heavily reliant on catalysts, including fuel cells and photo-electrochemical cells. Currently, the state of South Dakota is underdeveloped in terms of research infrastructure related to catalysis. If South Dakota intends to participate inmore » significant economic growth opportunities that result from advances in catalyst technology, then this area of research needs to be made a high priority for investment. To this end, a focused research effort is proposed in which investigators from The University of South Dakota (USD) and The South Dakota School of Mines and Technology (SDSMT) will contribute to form the South Dakota Catalysis Group (SDCG). The multidisciplinary team of the (SDCG) include: (USD) Dan Engebretson, James Hoefelmeyer, Ranjit Koodali, and Grigoriy Sereda; (SDSMT) Phil Scott Ahrenkiel, Hao Fong, Jan Puszynski, Rajesh Shende, and Jacek Swiatkiewicz. The group is well suited to engage in a collaborative project due to the resources available within the existing programs. Activities within the SDCG will be monitored through an external committee consisting of three distinguished professors in chemistry. The committee will provide expert advice and recommendations to the SDCG. Advisory meetings in which committee members interact with South Dakota investigators will be accompanied by individual oral and poster presentations in a materials and catalysis symposium. The symposium will attract prominent scientists, and will enhance the visibility of research in the state of South Dakota. The SDCG requests funding through the Department of Energy (DoE) to establish this multidisciplinary research cluster in the area of catalysis. This long-term approach includes synthesis, characterization, catalyst evaluation, modeling, and scale-up. The project includes plans to acquire instrumentation critical to enabling competitive research. These acquisitions will complement existing resources in the state. The effect of implementation of the proposed efforts will be to significantly enhance state infrastructure in personnel and equipment, and lead to a nationally and internationally recognized research center.« less
NASA Astrophysics Data System (ADS)
Shuai, Danmeng
Pd-based catalytic reduction has emerged as an advanced treatment technology for drinking water decontamination, and a suite of persistent contaminants including oxyanions, N-nitrosoamines, and halogenated compounds are amenable to catalytic reduction. The primary goal of this study is to develop novel Pd-based catalysts with enhanced performance (i.e., activity, selectivity, and sustainability) to remove contaminants from drinking water. The effects of water quality (i.e., co-contaminants in water matrix), catalyst support, and catalyst metal were explored, and they provide insights for preparing catalysts with faster kinetics, higher selectivity, and extended lifetime. Azo dyes are wide-spread contaminants, and they are potentially co-exisiting with target contaminants amenable for catalytic removal. The probe azo dye methyl orange (MO) enhanced catalytic reduction kinetics of a suite of oxyanions (i.e., nitrate, nitrite, bromate, chlorate, and perchlorate) and diatrizoate significantly but not N-nitrosodimethylamine (NDMA) with a variety of Pd-based catalysts. Nitrate was selected as a probe contaminant, and several different azo dyes (i.e., (methyl orange, methyl red, fast yellow AB, metanil yellow, acid orange 7, congo red, eriochrome black T, acid red 27, acid yellow 11, and acid yellow 17) were evaluated for their ability to enhance reduction. A hydrogen atom shuttling mechanism was proposed and a kinetic model was proposed based on Bronsted-Evans-Polanyi (BEP) theory, and they suggest sorbed azo dyes and reduced hydrazo dyes shuttle hydrogen atoms to oxyanions or diatrizoate to enhance their reduction kinetics. Next, vapor-grown carbon nanofiber (CNF) supports were used to explore the effects of Pd nanoparticle size and interior versus exterior loading on nitrite reduction activity and selectivity (i.e., dinitrogen over ammonia production). In order to evaluate the amount of interior versus exterior loading of Pd nanoparticles, a fast and accurate geometric model was developed based on two-dimensional transmission electron microscopy (2D TEM). Results from my method agree adequately with 3D scanning transmission electron microscopy (3D TEM), which is recognized as a convincing method to evaluate interior versus exterior loading. By using Pd CNF catalysts for nitrite reduction, results show that both activity and selectivity are not significantly impacted by Pd interior versus exterior loading. Turnover frequencies (TOFs) among all CNF catalysts are consistent, suggesting faster kinetics are achieved on catalysts with smaller Pd nanoparticles, and suggesting nitrite reduction is neither sensitive to Pd location on CNFs nor Pd structure. However selectivity to dinitrogen is more favorable on larger Pd nanoparticles. Therefore, an optimum Pd nanoparticle size on CNFs balances high reduction kinetics and selectivity to dinitrogen. CNF Pd catalysts perform better than conventional activated or alumina supported Pd catalysts in term of kinetics and selectivity for nitrite reduction, and they maintain consistent activity during multiple reduction cycles. Lastly, the structure-sensitivity of catalytic activity and selectivity for contaminant nitrite, NDMA, and diatrizoate removal were investigated on shape- and size-controlled Pd nanoparticles. Results show that TOFs for nitrite, NDMA, and diatrizoate are dependent on coordination numbers of surface Pd sites at low contaminant concentration, but TOFs for nitrite at high concentration are consistent. Selectivity to ammonia for nitrite reduction decreases with increasing surface Pd sites, i.e., decreasing Pd nanoparticle size irrespective of nitrite concentration, but NDMA reduction is neither shape- nor size-specific, and it exclusively proceeds to ammonia and dimethylamine. Diatrizoate reduction selectivity is also likely to be nonspecific to shape and size, and a series of deiodinated intermediates, 3,5-diacetamidobenzoic acid, and iodide are the produced. Hence, this study suggests that contaminant reduction kinetics and selectivity are Pd shape and size dependent, and the dependence varies by contaminant type and concentration. In summary, Pd-based catalysts can be tailored for enhanced activity, selectivity, and longevity, and catalytic treatment holds the promise for advanced drinking water treatment.
Bhadra, Biswa Nath; Song, Ji Yoon; Khan, Nazmul Abedin; Jhung, Sung Hwa
2017-09-13
A new metal-organic framework (MOF) composite consisting of Ti- and Zn-based MOFs (ZIF-8(x)@H 2 N-MIL-125; in brief, ZIF(x)@MOF) was designed and synthesized. The pristine MOF [H 2 N-MIL-125 (MOF)]- and an MOF-composite [ZIF(30)@MOF]-derived mesoporous carbons consisting of TiO 2 nanoparticles were prepared by pyrolysis (named MDC-P and MDC-C, respectively). MDC-C showed a higher surface area, larger pore sizes, and larger mesopore volumes than MDC-P. In addition, the TiO 2 nanoparticles on MDC-C have more uniform shapes and sizes and are smaller than those of MDC-P. The obtained MDC-C and MDC-P [together with MOF, ZIF(30)@MOF, pure/nanocrystalline TiO 2 , and activated carbon] were applied in the oxidative desulfurization reaction of dibenzothiophene in a model fuel. The MDC-C, even with a lower TiO 2 content than that of MDC-P, showed an outstanding catalytic performance, especially with a very low catalyst dose (i.e., a very high quantity of dibenzothiophene was converted per unit weight of the catalyst), fast kinetics (∼3 times faster than that for MDC-P), and a low activation energy (lower than that for any reported catalyst) for the oxidation of dibenzothiophene. The large mesopores of MDC-C and the well-dispersed/small TiO 2 might be the dominant factors for the superior catalytic conversions. The oxidative desulfurization of other sulfur-containing organic compounds with various electron densities was also studied with MDC-C to understand the mechanism of catalysis. Moreover, the MDC-C catalyst can be reused many times in the oxidative desulfurization reaction after a simple washing with acetone. Finally, composing MOFs and subsequent pyrolysis is suggested as an effective way to prepare a catalyst with well-dispersed active sites, large pores, and high mesoporosity.
Catalyst-free, III-V nanowire photovoltaics
NASA Astrophysics Data System (ADS)
Davies, D. G.; Lambert, N.; Fry, P. W.; Foster, A.; Krysa, A. B.; Wilson, L. R.
2014-05-01
We report on room temperature, photovoltaic operation of catalyst-free GaAs p-i-n junction nanowire arrays. Growth studies were first performed to determine the optimum conditions for controlling the vertical and lateral growth of the nanowires. Following this, devices consisting of axial p-i-n junctions were fabricated by planarising the nanowire arrays with a hard baked polymer. We discuss the photovoltaic properties of this proof-of-concept device, and significant improvements to be made during the growth.
Catalyst for coal liquefaction process
Huibers, Derk T. A.; Kang, Chia-Chen C.
1984-01-01
An improved catalyst for a coal liquefaction process; e.g., the H-Coal Process, for converting coal into liquid fuels, and where the conversion is carried out in an ebullated-catalyst-bed reactor wherein the coal contacts catalyst particles and is converted, in addition to liquid fuels, to gas and residual oil which includes preasphaltenes and asphaltenes. The improvement comprises a catalyst selected from the group consisting of the oxides of nickel molybdenum, cobalt molybdenum, cobalt tungsten, and nickel tungsten on a carrier of alumina, silica, or a combination of alumina and silica. The catalyst has a total pore volume of about 0.500 to about 0.900 cc/g and the pore volume comprises micropores, intermediate pores and macropores, the surface of the intermediate pores being sufficiently large to convert the preasphaltenes to asphaltenes and lighter molecules. The conversion of the asphaltenes takes place on the surface of micropores. The macropores are for metal deposition and to prevent catalyst agglomeration. The micropores have diameters between about 50 and about 200 angstroms (.ANG.) and comprise from about 50 to about 80% of the pore volume, whereas the intermediate pores have diameters between about 200 and 2000 angstroms (.ANG.) and comprise from about 10 to about 25% of the pore volume, and the macropores have diameters between about 2000 and about 10,000 angstroms (.ANG.) and comprise from about 10 to about 25% of the pore volume. The catalysts are further improved where they contain promoters. Such promoters include the oxides of vanadium, tungsten, copper, iron and barium, tin chloride, tin fluoride and rare earth metals.
Microkinetic modeling of H 2SO 4 formation on Pt based diesel oxidation catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Hom N.; Sun, Yunwei; Glascoe, Elizabeth A.
The presence of water vapor and sulfur oxides in diesel engine exhaust leads to the formation of sulfuric acid (H 2SO 4), which severely impacts the performance of Pt/Pd based emissions aftertreatment catalysts. In this study, a microkinetic model is developed to investigate the reaction pathways of H 2SO 4 formation on Pt based diesel oxidation catalysts (DOCs). The microkinetic model consists of 14 elementary step reactions (7 reversible pairs) and yields prediction in excellent agreement with data obtained from experiments at practically relevant sulfur oxides environment in engine exhaust. The model simulation utilizing a steady-state plug flow reactor demonstratesmore » that it matches experimental data in both kinetically and thermodynamically controlled regions. Results clearly show the negative impact of SO 3 on the SO 2 oxidation light-off temperature, consistent with experimental observations. A reaction pathway analysis shows that the primary pathway of sulfuric acid formation on Pt surface involves SO 2* oxidation to form SO 3* with the subsequent interaction of SO 3* with H 2O* to form H 2SO 4*.« less
Microkinetic modeling of H 2SO 4 formation on Pt based diesel oxidation catalysts
Sharma, Hom N.; Sun, Yunwei; Glascoe, Elizabeth A.
2017-08-10
The presence of water vapor and sulfur oxides in diesel engine exhaust leads to the formation of sulfuric acid (H 2SO 4), which severely impacts the performance of Pt/Pd based emissions aftertreatment catalysts. In this study, a microkinetic model is developed to investigate the reaction pathways of H 2SO 4 formation on Pt based diesel oxidation catalysts (DOCs). The microkinetic model consists of 14 elementary step reactions (7 reversible pairs) and yields prediction in excellent agreement with data obtained from experiments at practically relevant sulfur oxides environment in engine exhaust. The model simulation utilizing a steady-state plug flow reactor demonstratesmore » that it matches experimental data in both kinetically and thermodynamically controlled regions. Results clearly show the negative impact of SO 3 on the SO 2 oxidation light-off temperature, consistent with experimental observations. A reaction pathway analysis shows that the primary pathway of sulfuric acid formation on Pt surface involves SO 2* oxidation to form SO 3* with the subsequent interaction of SO 3* with H 2O* to form H 2SO 4*.« less
Enhancing perovskite electrocatalysis through strain tuning of oxygen deficiency
Barron, Sara C.; Lee, Ho Nyung; Petrie, Jonathan R.; ...
2016-05-27
Oxygen vacancies in transition-metal oxides facilitate catalysis critical for energy storage and generation. However, promoting vacancies at the lower temperatures required for operation in devices such as metal–air batteries and portable fuel cells has proven elusive. Here we used thin films of perovskite-based strontium cobaltite (SrCoO x) to show that epitaxial strain is a powerful tool for manipulating the oxygen content under conditions consistent with the oxygen evolution reaction, yielding increasingly oxygen-deficient states in an environment where the cobaltite would normally be fully oxidized. The additional oxygen vacancies created through tensile strain enhance the cobaltite’s catalytic activity toward this importantmore » reaction by over an order of magnitude, equaling that of precious-metal catalysts, including IrO2. Lastly, our findings demonstrate that strain in these oxides can dictate the oxygen stoichiometry independent of ambient conditions, allowing unprecedented control over oxygen vacancies essential in catalysis near room temperature.« less
The Diversity of Ribonuclease P: Protein and RNA Catalysts with Analogous Biological Functions
Klemm, Bradley P.; Wu, Nancy; Chen, Yu; Liu, Xin; Kaitany, Kipchumba J.; Howard, Michael J.; Fierke, Carol A.
2016-01-01
Ribonuclease P (RNase P) is an essential endonuclease responsible for catalyzing 5’ end maturation in precursor transfer RNAs. Since its discovery in the 1970s, RNase P enzymes have been identified and studied throughout the three domains of life. Interestingly, RNase P is either RNA-based, with a catalytic RNA subunit, or a protein-only (PRORP) enzyme with differential evolutionary distribution. The available structural data, including the active site data, provides insight into catalysis and substrate recognition. The hydrolytic and kinetic mechanisms of the two forms of RNase P enzymes are similar, yet features unique to the RNA-based and PRORP enzymes are consistent with different evolutionary origins. The various RNase P enzymes, in addition to their primary role in tRNA 5’ maturation, catalyze cleavage of a variety of alternative substrates, indicating a diversification of RNase P function in vivo. The review concludes with a discussion of recent advances and interesting research directions in the field. PMID:27187488
Choudary, Boyapati M; Chowdari, Naidu S; Jyothi, Karangula; Kantam, Mannepalli L
2002-05-15
Exchanger-OsO(4) catalysts are prepared by an ion-exchange technique using layered double hydroxides and quaternary ammonium salts covalently bound to resin and silica as ion-exchangers. The ion-exchangers with different characteristics and opposite ion selectivities are specially chosen to produce the best heterogeneous catalyst that can operate using the various cooxidants in the asymmetric dihydroxylation reaction. LDH-OsO(4) catalysts composed of different compositions are evaluated for the asymmetric dihydroxylation of trans-stilbene. Resin-OsO(4) and SiO(2)-OsO(4) designed to overcome the problems associated with LDH-OsO(4) indeed show consistent activity and enantioselectivity in asymmetric dihydroxylation of olefins using K(3)Fe(CN)(6) and molecular oxygen as cooxidants. Compared to the Kobayashi heterogeneous systems, resin-OsO(4) is a very efficient catalyst for the dihydroxylation of a wide variety of aromatic, aliphatic, acyclic, cyclic, mono-, di-, and trisubstituted olefins to afford chiral vicinal diols with high yields and enantioselectivities irrespective of the cooxidant used. Resin-OsO(4) is recovered quantitatively by a simple filtration and reused for a number of cycles with consistent activity. The high binding ability of the heterogeneous osmium catalyst enables the use of an equimolar ratio of ligand to osmium to give excellent enantioselectives in asymmetric dihydroxylation in contrast to the homogeneous osmium system in which excess molar quantities of the expensive chiral ligand to osmium are invariably used. The complexation of the chiral ligand (DHQD)(2)PHAL, having very large dimension, a prerequisite to obtain higher ee, is possible only with the OsO(4)(2-) located on the surface of the supports.
Visible-Light-Responsive Catalysts Using Quantum Dot-Modified TiO2 for Air and Water Purification
NASA Technical Reports Server (NTRS)
Coutts, Janelle L.; Hintze, Paul E.; Clausen, Christian; Richards, Jeffrey Todd
2014-01-01
Photocatalysis, the oxidation or reduction of contaminants by light-activated catalysts, utilizing titanium dioxide (TiO2) as the catalytic substrate has been widely studied for trace contaminant control in both air and water applications. The interest in this process is due primarily to its low energy consumption and capacity for catalyst regeneration. Titanium dioxide requires ultraviolet light for activation due to its relatively large band gap energy of 3.2 eV. Traditionally, Hg-vapor fluorescent light sources are used in PCO reactors; however, the use of mercury precludes the use of this PCO technology in a spaceflight environment due to concerns over crew Hg exposure. The development of a visible-light responsive (VLR) TiO2-based catalyst would eliminate the concerns over mercury contamination. Further, VLR development would allow for the use of ambient visible solar radiation or highly efficient LEDs, both of which would make PCO approaches more efficient, flexible, economical, and safe. Though VLR catalyst development has been an active area of research for the past two decades, there are few commercially available VLR catalysts. Those VLR catalysts that are commercially available do not have adequate catalytic activity, in the visible region, to make them competitive with those operating under UV irradiation. This study was initiated to develop more effective VLR catalysts through a novel method in which quantum dots (QD) consisting of narrow band gap semiconductors (e.g., CdS, CdSe, PbS, ZnSe, etc.) are coupled to TiO2 via two preparation methods: 1) photodeposition and 2) mechanical alloying using a high-speed ball mill. A library of catalysts was developed and screened for gas and aqueous phase applications using ethanol and 4-chlorophenol as the target contaminants, respectively. Both target compounds are well studied in photocatalytic systems and served as model contaminants for this research. Synthesized catalysts were compared in terms of preparation method, nature of the quantum dots, and dosage of quantum dots.
Heterogeneous catalytic process for alcohol fuels from syngas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minahan, D.M.; Nagaki, D.A.
1995-12-31
This project is focused on the discovery and evaluation of novel heterogeneous catalyst for the production of oxygenated fuel enhancers from synthesis gas. Catalysts have been studied and optimized for the production of methanol and isobutanol mixtures which may be used for the downstream synthesis of MTBE or related oxygenates. Higher alcohols synthesis (HAS) from syngas was studied; the alcohols that are produced in this process may be used for the downstream synthesis of MTBE or related oxygenates. This work has resulted in the discovery of a catalyst system that is highly selective for isobutanol compared with the prior art.more » The catalysts operate at high temperature (400{degrees}C), and consist of a spinel oxide support (general formula AB{sub 2}O{sub 4}, where A=M{sup 2+} and B = M{sup 3+}), promoted with various other elements. These catalysts operate by what is believed to be an aldol condensation mechanism, giving a product mix of mainly methanol and isobutanol. In this study, the effect of product feed/recycle (methanol, ethanol. n-propanol, isopropanol, carbon dioxide and water) on the performance of 10-DAN-55 (spinel oxide based catalyst) at 400{degrees}C, 1000 psi, GHSV = 12,000 and syngas (H{sub 2}/CO) ratio = 1:2 (alcohol addition) and 1:1 (carbon dioxide and water addition) was studied. The effect of operation at high temperatures and pressures on the performance of an improved catalyst formulation was also examined.« less
NASA Astrophysics Data System (ADS)
Saha, Shibely; Cabrera Rodas, José Andrés; Tan, Shuai; Li, Dongmei
2018-02-01
An alternative catalyst platform, consisting of a phase-pure transition carbide (TMC) support and Pt nanoparticles (NPs) in the range of subnanometer to < 2.7 nm, is established that can be used in both anode and cathode catalyst layers. While some TMCs with low Pt loadings have demonstrated similar activity as commercial Pt catalyst in idealized disk electrode screening tests, few to none have been applied in a realistic fuel cell membrane electrode assembly (MEA). We recently reported that β-Mo2C hollow nanotubes modified with Pt NPs via atomic layer deposition (ALD) possess better activity and durability than 20% Pt/C. This paper presents systematic evaluation of the Pt/Mo2C catalysts in a MEA, investigating effects of different MEA preparation techniques, gas diffusion layers (GDL) and various Pt loadings in the ultralow range (<0.04 mg/cm2) on MEA performance. Most importantly, we demonstrate, for the first time, that Pt/Mo2C catalyst on both anode and cathode, with a loading of 0.02 mg (Pt) cm-2, generated peak power density of 414 mW cm-2 that corresponds to 10.35 kWgPt-1 using hydrogen (H2) and oxygen (O2). Accelerated degradation tests (ADT) on Pt/Mo2C catalysts show 111% higher power density than commercial 20% Pt/C after the vigorous ADT.
2015-01-01
The exomethylenes of 2,6-disubstituted bicyclo[3.3.1]nonan-9-ones 2 are readily isomerized over a palladium catalyst under an atmosphere of hydrogen to predominantly form the isomer 3 with C2 symmetry with very little formation of the analogous product with Cs symmetry. A hydrogen source is essential to effect the rearrangement. PMID:24720691
Embedding covalency into metal catalysts for efficient electrochemical conversion of CO2.
Lim, Hyung-Kyu; Shin, Hyeyoung; Goddard, William A; Hwang, Yun Jeong; Min, Byoung Koun; Kim, Hyungjun
2014-08-13
CO2 conversion is an essential technology to develop a sustainable carbon economy for the present and the future. Many studies have focused extensively on the electrochemical conversion of CO2 into various useful chemicals. However, there is not yet a solution of sufficiently high enough efficiency and stability to demonstrate practical applicability. In this work, we use first-principles-based high-throughput screening to propose silver-based catalysts for efficient electrochemical reduction of CO2 to CO while decreasing the overpotential by 0.4-0.5 V. We discovered the covalency-aided electrochemical reaction (CAER) mechanism in which p-block dopants have a major effect on the modulating reaction energetics by imposing partial covalency into the metal catalysts, thereby enhancing their catalytic activity well beyond modulations arising from d-block dopants. In particular, sulfur or arsenic doping can effectively minimize the overpotential with good structural and electrochemical stability. We expect this work to provide useful insights to guide the development of a feasible strategy to overcome the limitations of current technology for electrochemical CO2 conversion.
Highly active and efficient catalysts for alkoxycarbonylation of alkenes
Dong, Kaiwu; Fang, Xianjie; Gülak, Samet; Franke, Robert; Spannenberg, Anke; Neumann, Helfried; Jackstell, Ralf; Beller, Matthias
2017-01-01
Carbonylation reactions of alkenes constitute the most important industrial processes in homogeneous catalysis. Despite the tremendous progress in this transformation, the development of advanced catalyst systems to improve their activity and widen the range of feedstocks continues to be essential for new practical applications. Herein a palladium catalyst based on 1,2-bis((tert-butyl(pyridin-2-yl)phosphanyl)methyl)benzene L3 (pytbpx) is rationally designed and synthesized. Application of this system allows a general alkoxycarbonylation of sterically hindered and demanding olefins including all kinds of tetra-, tri- and 1,1-disubstituted alkenes as well as natural products and pharmaceuticals to the desired esters in excellent yield. Industrially relevant bulk ethylene is functionalized with high activity (TON: >1,425,000; TOF: 44,000 h−1 for initial 18 h) and selectivity (>99%). Given its generality and efficiency, we expect this catalytic system to immediately impact both the chemical industry and research laboratories by providing a practical synthetic tool for the transformation of nearly any alkene into a versatile ester product. PMID:28120947
Delbecq, Frederic; Wang, Yantao; Muralidhara, Anitha; El Ouardi, Karim; Marlair, Guy; Len, Christophe
2018-01-01
Biobased production of furfural has been known for decades. Nevertheless, bioeconomy and circular economy concepts is much more recent and has motivated a regain of interest of dedicated research to improve production modes and expand potential uses. Accordingly, this review paper aims essentially at outlining recent breakthroughs obtained in the field of furfural production from sugars and polysaccharides feedstocks. The review discusses advances obtained in major production pathways recently explored splitting in the following categories: (i) non-catalytic routes like use of critical solvents or hot water pretreatment, (ii) use of various homogeneous catalysts like mineral or organic acids, metal salts or ionic liquids, (iii) feedstock dehydration making use of various solid acid catalysts; (iv) feedstock dehydration making use of supported catalysts, (v) other heterogeneous catalytic routes. The paper also briefly overviews current understanding of furfural chemical synthesis and its underpinning mechanism as well as safety issues pertaining to the substance. Eventually, some remaining research topics are put in perspective for further optimization of biobased furfural production. PMID:29868554
Jia, Qingying; Ramaswamy, Nagappan; Hafiz, Hasnain; Tylus, Urszula; Strickland, Kara; Wu, Gang; Barbiellini, Bernardo; Bansil, Arun; Holby, Edward F; Zelenay, Piotr; Mukerjee, Sanjeev
2015-12-22
The commercialization of electrochemical energy conversion and storage devices relies largely upon the development of highly active catalysts based on abundant and inexpensive materials. Despite recent achievements in this respect, further progress is hindered by the poor understanding of the nature of active sites and reaction mechanisms. Herein, by characterizing representative iron-based catalysts under reactive conditions, we identify three Fe-N4-like catalytic centers with distinctly different Fe-N switching behaviors (Fe moving toward or away from the N4-plane) during the oxygen reduction reaction (ORR), and show that their ORR activities are essentially governed by the dynamic structure associated with the Fe(2+/3+) redox transition, rather than the static structure of the bare sites. Our findings reveal the structural origin of the enhanced catalytic activity of pyrolyzed Fe-based catalysts compared to nonpyrolyzed Fe-macrocycle compounds. More generally, the fundamental insights into the dynamic nature of transition-metal compounds during electron-transfer reactions will potentially guide rational design of these materials for broad applications.
Catalyst Interface Engineering for Improved 2D Film Lift-Off and Transfer
2016-01-01
The mechanisms by which chemical vapor deposited (CVD) graphene and hexagonal boron nitride (h-BN) films can be released from a growth catalyst, such as widely used copper (Cu) foil, are systematically explored as a basis for an improved lift-off transfer. We show how intercalation processes allow the local Cu oxidation at the interface followed by selective oxide dissolution, which gently releases the 2D material (2DM) film. Interfacial composition change and selective dissolution can thereby be achieved in a single step or split into two individual process steps. We demonstrate that this method is not only highly versatile but also yields graphene and h-BN films of high quality regarding surface contamination, layer coherence, defects, and electronic properties, without requiring additional post-transfer annealing. We highlight how such transfers rely on targeted corrosion at the catalyst interface and discuss this in context of the wider CVD growth and 2DM transfer literature, thereby fostering an improved general understanding of widely used transfer processes, which is essential to numerous other applications. PMID:27934130
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alptekin, Gokhan
2013-02-15
Co-gasification of biomass and coal in large-scale, Integrated Gasification Combined Cycle (IGCC) plants increases the efficiency and reduces the environmental impact of making synthesis gas ("syngas") that can be used in Coal-Biomass-to-Liquids (CBTL) processes for producing transportation fuels. However, the water-gas shift (WGS) and Fischer-Tropsch synthesis (FTS) catalysts used in these processes may be poisoned by multiple contaminants found in coal-biomass derived syngas; sulfur species, trace toxic metals, halides, nitrogen species, the vapors of alkali metals and their salts (e.g., KCl and NaCl), ammonia, and phosphorous. Thus, it is essential to develop a fundamental understanding of poisoning/inhibition mechanisms before investingmore » in the development of any costly mitigation technologies. We therefore investigated the impact of potential contaminants (H 2S, NH 3, HCN, AsH 3, PH 3, HCl, NaCl, KCl, AS 3, NH 4NO 3, NH 4OH, KNO 3, HBr, HF, and HNO 3) on the performance and lifetime of commercially available and generic (prepared in-house) WGS and FT catalysts.« less
Intermetallic structures with atomic precision for selective hydrogenation of nitroarenes
Pei, Yuchen; Qi, Zhiyuan; Goh, Tian Wei; ...
2017-11-14
It is essential to bridge the structure-properties relationship of bimetallic catalysts for the rational design of heterogeneous catalysts. Different from random alloys, intermetallic compounds (IMCs) present atomically-ordered structures, which is advantageous for catalytic mechanism studies. Here, we used Pt-based intermetallic nanoparticles (iNPs), individually encapsulated in mesoporous silica shells, as catalysts for the hydrogenation of nitroarenes to functionalized anilines. With the capping-free nature and ordered atomic structure, PtSn iNPs show >99% selectivity to hydrogenate the nitro group of 3-nitrostyrene albeit with a lower activity, in contrast to Pt 3Sn iNPs and Pt NPs. The geometric structure of PtSn iNPs in eliminatingmore » Pt threefold sites hampers the adsorption/dissociation of molecular H 2 and leads to a non-Horiuti-Polanyi hydrogenation pathway, while Pt 3Sn and Pt surfaces are saturated by atomic H. Calculations using density functional theory (DFT) suggest a preferential adsorption of the nitro group on the intermetallic PtSn surface contributing to its high selectivity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatia, S.C.; Cardelino, B.H.; Hall, J.H. Jr.
1990-01-31
This report consists of five quarterly progress reports from four participating universities. The titles of the projects are: Competition of NO and SO{sub 2} for OH generated within electrical aerosol analyzers; Dispersed iron catalysts for coal gasification; Catalytic gasification of coal chars by potassium sulfate and ferrous sulfate mixtures; Removal of certain toxic heavy metal ions in coal conversion process wastewaters; and Study of coal liquefaction catalysts. All reports have been indexed separately for inclusion on the data base. (CK)
Hierarchically ordered carbon tubes
NASA Astrophysics Data System (ADS)
Pan, Zheng-Wei; Zhu, Hao-Guo; Zhang, Zong-Tao; Im, Hee-Jung; Dai, Sheng; Beach, David B.; Lowndes, Douglas H.
2003-04-01
Micropatterns of hierarchically ordered carbon tubes (i.e., ordered carbon microtubes composed of aligned carbon nanotubes) were grown on a film-like iron/silica substrate consisting of ring-like catalyst patterns. The substrates were prepared by a combined technique, in which the sol-gel method was used to prepare catalyst film and transmission electron microscope grids were used as a shadow mask. In comparison with other techniques that involve sophisticated lithography, this approach represents a simple and low-cost way to the micropatterning of aligned carbon nanotubes.
Method for forming gold-containing catalyst with porous structure
Biener, Juergen; Hamza, Alex V; Baeumer, Marcus; Schulz, Christian; Jurgens, Birte; Biener, Monika M.
2014-07-22
A method for forming a gold-containing catalyst with porous structure according to one embodiment of the present invention includes producing a starting alloy by melting together of gold and at least one less noble metal that is selected from the group consisting of silver, copper, rhodium, palladium, and platinum; and a dealloying step comprising at least partial removal of the less noble metal by dissolving the at least one less noble metal out of the starting alloy. Additional methods and products thereof are also presented.
An intermolecular heterobimetallic system for photocatalytic water reduction.
Hansen, Sven; Klahn, Marcus; Beweries, Torsten; Rosenthal, Uwe
2012-04-01
Teamwork: A new intermolecular heterobimetallic system for photocatalytic water reduction, consisting of a photosensitizer of the type [Ru(bpy)(2)(L)](PF(6))(2) (L=bidentate ligand), a dichloro palladium complex PdCl(2)(L) serving as the water reduction catalyst, and triethyl amine as electron donor, is presented. Variations of the ligand as well as of the palladium source results in a significant improvement of the performance of the catalyst system. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yung, Matthew M.; Stanton, Alexander R.; Iisa, Kristiina; ...
2016-10-07
Metal-impregnated (Ni or Ga) ZSM-5 catalysts were studied for biomass pyrolysis vapor upgrading to produce hydrocarbons using three reactors constituting a 100 000x change in the amount of catalyst used in experiments. Catalysts were screened for pyrolysis vapor phase upgrading activity in two small-scale reactors: (i) a Pyroprobe with a 10 mg catalyst in a fixed bed and (ii) a fixed-bed reactor with 500 mg of catalyst. The best performing catalysts were then validated with a larger scale fluidized-bed reactor (using ~1 kg of catalyst) that produced measurable quantities of bio-oil for analysis and evaluation of mass balances. Despite somemore » inherent differences across the reactor systems (such as residence time, reactor type, analytical techniques, mode of catalyst and biomass feed) there was good agreement of reaction results for production of aromatic hydrocarbons, light gases, and coke deposition. Relative to ZSM-5, Ni or Ga addition to ZSM-5 increased production of fully deoxygenated aromatic hydrocarbons and light gases. In the fluidized bed reactor, Ga/ZSM-5 slightly enhanced carbon efficiency to condensed oil, which includes oxygenates in addition to aromatic hydrocarbons, and reduced oil oxygen content compared to ZSM-5. Ni/ZSM-5, while giving the highest yield of fully deoxygenated aromatic hydrocarbons, gave lower overall carbon efficiency to oil but with the lowest oxygen content. Reaction product analysis coupled with fresh and spent catalyst characterization indicated that the improved performance of Ni/ZSM-5 is related to decreasing deactivation by coking, which keeps the active acid sites accessible for the deoxygenation and aromatization reactions that produce fully deoxygenated aromatic hydrocarbons. The addition of Ga enhances the dehydrogenation activity of the catalyst, which leads to enhanced olefin formation and higher fully deoxygenated aromatic hydrocarbon yields compared to unmodified ZSM-5. Catalyst characterization by ammonia temperature programmed desorption, surface area measurements, and postreaction temperature-programmed oxidation (TPO) also showed that the metal-modified zeolites retained a greater percentage of their initial acidity and surface area, which was consistent between the reactor scales. These results demonstrate that the trends observed with smaller (milligram to gram) catalyst reactors are applicable to larger, more industrially relevant (kg) scales to help guide catalyst research toward application.« less
NASA Technical Reports Server (NTRS)
Akyurtlu, Ates; Akyurtlu, Jale F.; Ammons, Vaughnery; Battle, Taikelia; Gay, Amy; Bray, Kyle; Washington, Boe; Schryer, David (Technical Monitor); Jordan, Jeff (Technical Monitor)
2002-01-01
The Noble Metal Reducible Oxide (NMRO) catalysts for the low temperature oxidation of carbon monoxide were developed by NASA for the reoxidation of carbon monoxide which forms by the dissociation of carbon dioxide during the operation of sealed carbon dioxide lasers. The NMRO catalyst, which consists of a noble metal in conjunction with a reducible metal oxide, was evaluated under conditions that will be encountered in a CO2 laser operation, namely temperatures in the range 298 to 373 K and no significant reaction gas components other than CO, CO2 and O2. The NMRO catalysts may have significant potential for spin-off applications such as the prevention of carbon monoxide build-up in closed spaces as in space vehicle cabins or submarines, and the elimination of the cold start-up problem of automobile exhaust catalysts. The most significant difference in the conditions of these possible future applications is the high moisture content of the gases to be processed. Lack of understanding of the effects of water vapor and high temperature on catalyst activity and operation for extended periods are currently the main stumbling blocks for the transfer of this NASA technology to be used for commercial purposes. In the original proposal the following objectives were stated: To obtain experimental data on the adsorption, desorption and reaction characteristics of CO and CO2 the catalysts under high moisture conditions; to collect evidence on the presence of carbonate and hydroxyl surface species and their involvement in the CO oxidation mechanism; and to model the reaction system using a Monte-Carlo simulation to gain insight on the various steps involved. After the work has commenced the NASA technical monitor Mr. David Scheyer informed us that there was increased interest in the possible use of the NMRO catalysts as automobile exhaust catalysts and therefore NASA wanted to know whether the catalysts can operate at high temperatures as well as with high moisture gases. At that meeting it was decided that investigation of the high temperature performance of the NMRO catalysts should be given priority and replace the Monte-Carlo simulation objective. As a result, the modified objectives of the investigation were taken as the investigation of the high-temperature activity of the NMRO catalysts, and the effect of water vapor on the performance of these catalysts.
Low pressure catalytic co-conversion of biogenic waste (rapeseed cake) and vegetable oil.
Giannakopoulou, Kanellina; Lukas, Michael; Vasiliev, Aleksey; Brunner, Christoph; Schnitzer, Hans
2010-05-01
Zeolite catalysts of three types (H-ZSM-5, Fe-ZSM-5 and H-Beta) were tested in the catalytic co-conversion of rapeseed cake and safflower oil into bio-fuel. This low pressure process was carried out at the temperatures of 350 and 400 degrees Celsius. The yields and compositions of the product mixtures depended on the catalyst nature and the process temperatures. The produced organic phases consisted mainly of hydrocarbons, fatty acids and nitriles. This mixture possessed improved characteristics (e.g. heating value, water content, density, viscosity, pH) compared with the bio-oils, making possible its application as a bio-fuel. The most effective catalyst, providing the highest yield of organic liquid phase, was the highly acidic/wide-pore H-Beta zeolite. The products obtained on this catalyst demonstrated the highest degree of deoxygenation and the higher HHV (Higher Heating Value). The aqueous liquid phase contained water-soluble carboxylic acids, phenols and heterocyclic compounds. Copyright 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Takano, Hiroyuki; Izumiya, Koichi; Kumagai, Naokazu; Hashimoto, Koji
2011-07-01
The active catalysts for methane formation from the gas mixture of CO 2 + 4H 2 with almost 100% methane selectivity were prepared by reduction of the oxide mixture of NiO and ZrO 2 prepared by calcination of aqueous ZrO 2 sol with Sm(NO 3) 3 and Ni(NO 3) 2. The 50 at%Ni-50 at%(Zr-Sm oxide) catalyst consisting of 50 at%Ni-50 at%(Zr + Sm) with Zr/Sm = 5 calcined at 650 or 800 °C showed the highest activity for methanation. The active catalysts were Ni supported on tetragonal ZrO 2, and the activity for methanation increased by an increase in inclusion of Sm 3+ ions substituting Zr 4+ ions in the tetragonal ZrO 2 lattice as a result of an increase in calcination temperature. However, the increase in calcination temperature decreased BET surface area, metal dispersion and hydrogen uptake due to grain growth. Thus, the optimum calcination temperature existed.
Improvement of Pt/C/PTFE catalyst type used for hydrogen isotope separation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasut, F.; Preda, A.; Zamfirache, M.
2008-07-15
The CANDU reactor from the Nuclear Power plant Cernavoda (Romania)) is the most powerful tritium source from Europe. This reactor is moderated and cooled by heavy water that becomes continuously contaminated with tritium. Because of this reason, the National R and amp;D Inst. for Cryogenic and Isotopic Technologies developed a detritiation technology based on catalytic isotopic exchange and cryogenic distillation. The main effort of our Inst. was focused on finding more efficient catalysts with a longer operational life. Some of the tritium removal processes involved in Fusion Science and Technology use this type of catalyst 1. Several Pt/C/PTFE hydrophobic catalystsmore » that could be used in isotopic exchange process 2,3,4 were produced. The present paper presents a comparative study between the physical and morphological properties of different catalysts manufactured by impregnation at our institute. The comparison consists of a survey of specific surface, pores volume and pores distribution. (authors)« less
Boron-doped diamond synthesized at high-pressure and high-temperature with metal catalyst
NASA Astrophysics Data System (ADS)
Shakhov, Fedor M.; Abyzov, Andrey M.; Kidalov, Sergey V.; Krasilin, Andrei A.; Lähderanta, Erkki; Lebedev, Vasiliy T.; Shamshur, Dmitriy V.; Takai, Kazuyuki
2017-04-01
The boron-doped diamond (BDD) powder consisting of 40-100 μm particles was synthesized at 5 GPa and 1500-1600 °C from a mixture of 50 wt% graphite and 50 wt% Ni-Mn catalyst with an addition of 1 wt% or 5 wt% boron powder. The size of crystal domains of doped and non-doped diamond was evaluated as a coherent scattering region by X-ray diffraction (XRD) and using small-angle neutron scattering (SANS), being ≥180 nm (XRD) and 100 nm (SANS). Magnetic impurities of NiMnx originating from the catalyst in the synthesis, which prevent superconductivity, were detected by magnetization measurements at 2-300 K. X-ray photoelectron spectroscopy, the temperature dependence of the resistivity, XRD, and Raman spectroscopy reveal that the concentration of electrically active boron is as high as (2±1)×1020 cm-3 (0.1 at%). To the best of our knowledge, this is the highest boron content for BDD synthesized in high-pressure high-temperature process with metal catalysts.
NASA Astrophysics Data System (ADS)
Sun, Tai; Zhang, Zheye; Xiao, Junwu; Chen, Chen; Xiao, Fei; Wang, Shuai; Liu, Yunqi
2013-08-01
We report a facile and green method to synthesize a new type of catalyst by coating Pd nanoparticles (NPs) on reduced graphene oxide (rGO)-carbon nanotube (CNT) nanocomposite. An rGO-CNT nanocomposite with three-dimensional microstructures was obtained by hydrothermal treatment of an aqueous dispersion of graphene oxide (GO) and CNTs. After the rGO-CNT composites have been dipped in K2PdCl4 solution, the spontaneous redox reaction between the GO-CNT and PdCl42- led to the formation of nanohybrid materials consisting rGO-CNT decorated with 4 nm Pd NPs, which exhibited excellent and stable catalytic activity: the reduction of 4-nitrophenol to 4-aminophenol using NaBH4 as a catalyst was completed in only 20 s at room temperature, even when the Pd content of the catalyst was 1.12 wt%. This method does not require rigorous conditions or toxic agents and thus is a rapid, efficient, and green approach to the fabrication of highly active catalysts.
Meillisa, Aviannie; Woo, Hee-Chul; Chun, Byung-Soo
2015-03-15
Polysaccharides are the major components of brown seaweed, accounting for approximately 40-65% of the total mass. The majority of the brown seaweed polysaccharides consists of alginate (40% of dry matter), a linear hetero-polysaccharides commonly developed in fields. However, depolymerisation of alginate is required to recover high-value compounds. In this report, depolymerisation was performed using subcritical water hydrolysis (SWH) at 180-260°C, with a ratio of material to water of 1:25 (w/v) and 1% formic acid as a catalyst. Sugar recovery was higher at low temperatures in the presence of catalyst. The antioxidant properties of Saccharina japonica showed the best activity at 180°C in the presence of a catalyst. The mass spectra produced using MALDI-TOF showed that polysaccharides and oligosaccharides were produced during hydrothermal treatment. Hydrolysis treatment at 180°C in the presence of a catalyst may be useful for modifying the structure of S. japonica and purified alginate. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chloroform Hydrodechlorination over Palladium–Gold Catalysts: A First-Principles DFT Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Lang; Yao, Xiaoqian; Khan, Ahmad
2016-04-20
Hydrodechlorination is a promising method for treating toxic chlorocarbon compounds. Pd is among the most effective catalysts for chloroform hydrodechlorination, and experiments have shown that the Pd–Au alloy catalyst yields superior catalytic performance over pure Pd. In this paper, we examine the chloroform hydrodechlorination mechanism over Pd(1 1 1) and Pd ML/Au(1 1 1) surfaces using periodic, self-consistent density functional theory calculations (DFT, GGA–PW91) and maximum rate analysis. We suggest that the reaction occurs on both surfaces through complete dechlorination of chloroform followed by hydrogenation of CH* to methane, and that the initial dechlorination step is likely the rate-limiting step.more » Finally, on Pd(1 1 1), the chloroform dechlorination barrier is 0.24 eV higher than the desorption barrier, whereas on Pd ML/Au(1 1 1), the chloroform dechlorination barrier is 0.07 eV lower than the desorption barrier, which can explain the higher hydrodechlorination activity of the Pd–Au alloy catalyst.« less
Hierarchical Inorganic Assemblies for Artificial Photosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Wooyul; Edri, Eran; Frei, Heinz
Artificial photosynthesis is an attractive approach for renewable fuel generation because it offers the prospect of a technology suitable for deployment on highly abundant, non-arable land. Recent leaps forward in the development of efficient and durable light absorbers and catalysts for oxygen evolution and the growing attention to catalysts for carbon dioxide activation brings into focus the tasks of hierarchically integrating the components into assemblies for closing of the photosynthetic cycle. A particular challenge is the efficient coupling of the multi-electron processes of CO 2 reduction and H 2O oxidation. Among the most important requirements for a complete integrated systemmore » are catalytic rates that match the solar flux, efficient charge transport between the various components, and scalability of the photosynthetic assembly on the unprecedented scale of terawatts in order to have impact on fuel consumption. To address these challenges, we have developed in this paper a heterogeneous inorganic materials approach with molecularly precise control of light absorption and charge transport pathways. Oxo-bridged heterobinuclear units with metal-to-metal charge-transfer transitions absorbing deep in the visible act as single photon, single charge transfer pumps for driving multi-electron catalysts. A photodeposition method has been introduced for the spatially directed assembly of nanoparticle catalysts for selective coupling to the donor or acceptor metal of the light absorber. For CO 2 reduction, a Cu oxide cluster is coupled to the Zr center of a ZrOCo light absorber, while coupling of an Ir nanoparticle catalyst for water oxidation to the Co donor affords closing of the photosynthetic cycle of CO 2 conversion by H 2O to CO and O 2. Optical, vibrational, and X-ray spectroscopy provide detailed structural knowledge of the polynuclear assemblies. Time resolved visible and rapid-scan FT-IR studies reveal charge transfer mechanisms and transient surface intermediates under photocatalytic conditions for guiding performance improvements. Separation of the water oxidation and carbon dioxide reduction half reactions by a membrane is essential for efficient photoreduction of CO 2 by H 2O to liquid fuel products. A concept of a macroscale artificial photosystem consisting of arrays of Co oxide–silica core–shell nanotubes is introduced in which each tube operates as a complete, independent photosynthetic unit with built-in membrane separation. The ultrathin amorphous silica shell with embedded molecular wires functions as a proton conducting, molecule impermeable membrane. Photoelectrochemical and transient optical measurements confirm tight control of charge transport through the membrane by the orbital energetics of the wire molecules. Finally, hierarchical arrangement of the components is accomplished by a combination of photodeposition, controlled anchoring, and atomic layer deposition methods.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mammen, Nisha; Spanu, Leonardo; Tyo, Eric C.
Having the ability to tune the oxidation state of Cu nanoparticles is essential for their utility as catalysts. The degree of oxidation that maximizes product yield and selectivity is known to vary, depending on the particular reaction. Using first principles calculations and XANES measurements, we show that for subnanometer sizes in the gas phase, smaller Cu clusters are more resistant to oxidation. However, this trend is reversed upon deposition on an alumina support. We are able to explain this result in terms of strong cluster-support interactions, which differ significantly for the oxidized and elemental clusters. The stable cluster phases alsomore » feature novel oxygen stoichiometries. Our results suggest that one can tune the degree of oxidation of Cu catalysts by optimizing not just their size, but also the support they are deposited on.« less
Carbon Corrosion in PEM Fuel Cells and the Development of Accelerated Stress Tests
Macauley, Natalia; Papadias, Dennis D.; Fairweather, Joseph; ...
2018-03-15
Here, carbon corrosion is an important degradation mechanism that can impair PEMFC performance through the destruction of catalyst connectivity, collapse of the electrode pore structure, loss of hydrophobic character, and an increase of the catalyst particle size. In this study, carbon corrosion was quantified in situ by measurement of carbon dioxide in the fuel cell exhaust gases through non-dispersive infrared spectroscopy during simulated drive cycle operations consisting of potential cycling with varying upper and lower potential limits. These studies were conducted for three different types of carbon supports. A reduction in the catalyst layer thickness was observed during a simulatedmore » drive cycle operation with a concomitant decrease in catalyst layer porosity, which led to performance losses due to increased mass transport limitations. The observed thickness reduction was primarily due to compaction of the catalyst layer, with the actual mass of carbon oxidation (loss) contributing only a small fraction (< 20%). The dynamics of carbon corrosion are presented along with a model that simulates the transient and dynamic corrosion rates observed in our experiments. Accelerated carbon corrosion stress tests are presented and their effects are compared to those observed for the drive cycle test.« less
Carbon Corrosion in PEM Fuel Cells and the Development of Accelerated Stress Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macauley, Natalia; Papadias, Dennis D.; Fairweather, Joseph
Here, carbon corrosion is an important degradation mechanism that can impair PEMFC performance through the destruction of catalyst connectivity, collapse of the electrode pore structure, loss of hydrophobic character, and an increase of the catalyst particle size. In this study, carbon corrosion was quantified in situ by measurement of carbon dioxide in the fuel cell exhaust gases through non-dispersive infrared spectroscopy during simulated drive cycle operations consisting of potential cycling with varying upper and lower potential limits. These studies were conducted for three different types of carbon supports. A reduction in the catalyst layer thickness was observed during a simulatedmore » drive cycle operation with a concomitant decrease in catalyst layer porosity, which led to performance losses due to increased mass transport limitations. The observed thickness reduction was primarily due to compaction of the catalyst layer, with the actual mass of carbon oxidation (loss) contributing only a small fraction (< 20%). The dynamics of carbon corrosion are presented along with a model that simulates the transient and dynamic corrosion rates observed in our experiments. Accelerated carbon corrosion stress tests are presented and their effects are compared to those observed for the drive cycle test.« less
Ahn, Jun Myun; Peters, Jonas C; Fu, Gregory C
2017-12-13
Despite the long history of S N 2 reactions between nitrogen nucleophiles and alkyl electrophiles, many such substitution reactions remain out of reach. In recent years, efforts to develop transition-metal catalysts to address this deficiency have begun to emerge. In this report, we address the challenge of coupling a carbamate nucleophile with an unactivated secondary alkyl electrophile to generate a substituted carbamate, a process that has not been achieved effectively in the absence of a catalyst; the product carbamates can serve as useful intermediates in organic synthesis as well as bioactive compounds in their own right. Through the design and synthesis of a new copper-based photoredox catalyst, bearing a tridentate carbazolide/bisphosphine ligand, that can be activated upon irradiation by blue-LED lamps, we can achieve the coupling of a range of primary carbamates with unactivated secondary alkyl bromides at room temperature. Our mechanistic observations are consistent with the new copper complex serving its intended role as a photoredox catalyst, working in conjunction with a second copper complex that mediates C-N bond formation in an out-of-cage process.
NASA Technical Reports Server (NTRS)
Meier, Anne J.; Shah, Malay; Petersen, Elspeth; Hintze, Paul; Muscatello, Tony
2017-01-01
The Atmospheric Processing Module (APM) is a Mars In-Situ Resource Utilization (ISRU) technology designed to demonstrate conversion of the Martian atmosphere into methane and water. The Martian atmosphere consists of approximately 95 carbon dioxide (CO2) and residual argon and nitrogen. APM utilizes cryocoolers for CO2 acquisition from a simulated Martian atmosphere and pressure. The captured CO2 is sublimated and pressurized as a feedstock into the Sabatier reactor, which converts CO2 and hydrogen to methane and water. The Sabatier reaction occurs over a packed bed reactor filled with Ru/Al2O3 pellets. The long duration use of the APM system and catalyst was investigated for future scaling and failure limits. Failure of the catalyst was detected by gas chromatography and temperature sensors on the system. Following this, characterization and experimentation with the catalyst was carried out with analysis including x-ray photoelectron spectroscopy and scanning electron microscopy with elemental dispersive spectroscopy. This paper will discuss results of the catalyst performance, the overall APM Sabatier approach, as well as intrinsic catalyst considerations of the Sabatier reactor performance incorporated into a chemical model.
Stages in molecular beam epitaxy growth of GaAs nanowires studied by x-ray diffraction.
Mariager, Simon O; Lauridsen, Søren L; Sørensen, Claus B; Dohn, Asmus; Willmott, Phillip R; Nygård, Jesper; Feidenhans'l, Robert
2010-03-19
GaAs nanowires were grown by molecular beam epitaxy and studied by glancing-angle x-ray diffraction during five different stages of the growth process. An entire forest of randomly positioned epitaxial nanowires was sampled simultaneously and a large variation in the Au-Ga catalyst was found. Au, AuGa, AuGa(2) and the hexagonal beta phase were all identified in several orientations and in similar amounts. The nanowires are shown to consist of regular zinc blende crystal, its twin and the hexagonal wurtzite. The evolution of the various Au-Ga catalysts and the development in the twin to the wurtzite abundance ratio indicate that the Au catalyst is saturated upon initiation of growth leading to an increased amount of wurtzite structure in the wires. A specular x-ray scan identifies the various Au-Ga alloys, three Au lattice constants and a rough interface between nanowires and catalyst. Reciprocal space maps were obtained around Au Bragg points and show the development of the Au catalyst from a distribution largely oriented with respect to the lattice to a non-uniform distribution with several well-defined lattice constants.
NASA Astrophysics Data System (ADS)
Chen, Xiaoxiang; Li, Wuyi; Pan, Zhanchang; Xu, Yanbin; Liu, Gen; Hu, Guanghui; Wu, Shoukun; Li, Jinghong; Chen, Chun; Lin, Yingsheng
2018-05-01
Titanium cobalt nitride nanotubes (Ti0.95Co0.05N NTs) hybrid support, a novel robust non-carbon support material prepared by solvothermal and post-nitriding processes, is further decorated with Pt nanoparticles for the electrooxidation of methanol. The catalyst is characterized by X-ray diffraction (XRD), nitrogen adsorption/desorption, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. The morphology, structure and composition of the synthesized Ti0.95Co0.05N NTs suggest that the nanotube wall is porous and consists of homogeneous cohesively attached nitrides nanocube particles. Notable, Ti0.95Co0.05N NTs supported Pt catalyst exhibits significantly improved catalytic activity and durability for methanol electrooxidation compared with the conventional JM Pt/C catalyst. The experimental data indicate that enhanced catalytic activity and stability of Pt/Ti0.95Co0.05N NTs towards methanol electrooxidation might be mainly attributed to the tubular nanostructures and synergistic effect introduced by the Co doping. Both of them are playing an important role in improving the activity and durability of the Ti0.95Co0.05N NTs catalyst.
McCann, Scott D; Lumb, Jean-Philip; Arndtsen, Bruce A; Stahl, Shannon S
2017-04-26
A homogeneous Cu-based catalyst system consisting of [Cu(MeCN) 4 ]PF 6 , N , N '-di- tert -butylethylenediamine (DBED), and p -( N , N -dimethylamino)pyridine (DMAP) mediates efficient aerobic oxidation of alcohols. Mechanistic study of this reaction shows that the catalyst undergoes an in situ oxidative self-processing step, resulting in conversion of DBED into a nitroxyl that serves as an efficient cocatalyst for aerobic alcohol oxidation. Insights into this behavior are gained from kinetic studies, which reveal an induction period at the beginning of the reaction that correlates with the oxidative self-processing step, EPR spectroscopic analysis of the catalytic reaction mixture, which shows the buildup of the organic nitroxyl species during steady state turnover, and independent synthesis of oxygenated DBED derivatives, which are shown to serve as effective cocatalysts and eliminate the induction period in the reaction. The overall mechanism bears considerable resemblance to enzymatic reactivity. Most notable is the "oxygenase"-type self-processing step that mirrors generation of catalytic cofactors in enzymes via post-translational modification of amino acid side chains. This higher-order function within a synthetic catalyst system presents new opportunities for the discovery and development of biomimetic catalysts.
Schoen, Heidi R; Peyton, Brent M; Knighton, W Berk
2016-12-01
A novel analytical system was developed to rapidly and accurately quantify total volatile organic compound (VOC) production from microbial reactor systems using a platinum catalyst and a sensitive CO 2 detector. This system allows nearly instantaneous determination of total VOC production by utilizing a platinum catalyst to completely and quantitatively oxidize headspace VOCs to CO 2 in coordination with a CO 2 detector. Measurement of respiratory CO 2 by bypassing the catalyst allowed the total VOC content to be determined from the difference in the two signals. To the best of our knowledge, this is the first instance of a platinum catalyst and CO 2 detector being used to quantify the total VOCs produced by a complex bioreactor system. Continuous recording of these CO 2 data provided a record of respiration and total VOC production throughout the experiments. Proton transfer reaction-mass spectrometry (PTR-MS) was used to identify and quantify major VOCs. The sum of the individual compounds measured by PTR-MS can be compared to the total VOCs quantified by the platinum catalyst to identify potential differences in detection, identification and calibration. PTR-MS measurements accounted on average for 94 % of the total VOC carbon detected by the platinum catalyst and CO 2 detector. In a model system, a VOC producing endophytic fungus Nodulisporium isolate TI-13 was grown in a solid state reactor utilizing the agricultural byproduct beet pulp as a substrate. Temporal changes in production of major volatile compounds (ethanol, methanol, acetaldehyde, terpenes, and terpenoids) were quantified by PTR-MS and compared to the total VOC measurements taken with the platinum catalyst and CO 2 detector. This analytical system provided fast, consistent data for evaluating VOC production in the nonhomogeneous solid state reactor system.
DEVELOPMENT OF ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adeyinka A. Adeyiga
2003-12-01
Fischer-Tropsch (FT) synthesis to convert syngas (CO + H{sub 2}) derived from natural gas or coal to liquid fuels and wax is a well-established technology. For low H{sub 2} to CO ratio syngas produced from CO{sub 2} reforming of natural gas or from gasification of coal, the use of Fe catalysts is attractive because of their high water gas shift activity in addition to their high FT activity. Fe catalysts are also attractive due to their low cost and low methane selectivity. Because of the highly exothermic nature of the FT reaction, there has been a recent move away frommore » fixed-bed reactors toward the development of slurry bubble column reactors (SBCRs) that employ 30 to 90 {micro}m catalyst particles suspended in a waxy liquid for efficient heat removal. However, the use of Fe FT catalysts in an SBCR has been problematic due to severe catalyst attrition resulting in fines that plug the filter employed to separate the catalyst from the waxy product. Fe catalysts can undergo attrition in SBCRs not only due to vigorous movement and collisions but also due to phase changes that occur during activation and reaction. The objectives of this research were to develop a better understanding of the parameters affecting attrition of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. The catalysts were prepared by co-precipitation, followed by binder addition and spray drying at 250 C in a 1 m diameter, 2 m tall spray dryer. The binder silica content was varied from 0 to 20 wt %. The results show that use of small amounts of precipitated SiO{sub 2} alone in spray-dried Fe catalysts can result in good attrition resistance. All catalysts investigated with SiO{sub 2} wt% {le} 12 produced fines less than 10 wt% during the jet cup attrition test, making them suitable for long-term use in a slurry bubble column reactor. Thus, concentration rather than type of SiO{sub 2} incorporated into catalyst has a more critical impact on catalyst attrition resistance of spray-dried Fe catalysts. Lower amounts of SiO{sub 2} added to a catalyst give higher particle densities and therefore higher attrition resistances. In order to produce a suitable SBCR catalyst, however, the amount of SiO{sub 2} added has to be optimized to provide adequate surface area, particle density, and attrition resistance. Two of the catalysts with precipitated and binder silica were tested in Texas A&M University's CSTR (Autoclave Engineers). Spray-dried catalysts with compositions 100 Fe/5 Cu/4.2 K/11 (P) SiO{sub 2} and 100 Fe/5 Cu/4.2 K/1.1 (B) SiO{sub 2} have excellent selectivity characteristics (low methane and high C{sub 5}{sup +} yields), but their productivity and stability (deactivation rate) need to be improved. Mechanical integrity (attrition strength) of these two catalysts was markedly dependent upon their morphological features. The attrition strength of the catalyst made out of largely spherical particles (1.1 (B) SiO{sub 2}) was considerably higher than that of the catalyst consisting of irregularly shaped particles (11 (P) SiO{sub 2}).« less
Developing physicians as catalysts for change.
George, Aaron E; Frush, Karen; Michener, J Lloyd
2013-11-01
Failures in care coordination are a reflection of larger systemic shortcomings in communication and in physician engagement in shared team leadership. Traditional medical care and medical education neither focus on nor inspire responses to the challenges of coordinating care across episodes and sites. The authors suggest that the absence of attention to gaps in the continuum of care has led physicians to attempt to function as the glue that holds the health care system together. Further, medical students and residents have little opportunity to provide feedback on care processes and rarely receive the training and support they need to assess and suggest possible improvements.The authors argue that this absence of opportunity has driven cynicism, apathy, and burnout among physicians. They support a shift in culture and medical education such that students and residents are trained and inspired to act as catalysts who initiate and expedite positive changes. To become catalyst physicians, trainees require tools to partner with patients, staff, and faculty; training in implementing change; and the perception of this work as inherent to the role of the physician.The authors recommend that medical schools consider interprofessional training to be a necessary component of medical education and that future physicians be encouraged to grow in areas outside the "purely clinical" realm. They conclude that both physician catalysts and teamwork are essential for improving care coordination, reducing apathy and burnout, and supporting optimal patient outcomes.
Ir/KLTL zeolites: Structural characterization and catalysis on n-hexane reforming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Triantafillou, N.D.; Gates, B.C.
Ir/KLTL zeolite catalysts were prepared by incipient wetness impregnation of LTL zeolites with [Ir(NH{sub 3}){sub 5}Cl]Cl{sub 2}. The catalysts were characterized by extended X-ray absorption fine structure (EX-AFS) spectroscopy, infrared spectroscopy, and H{sub 2} chemisorption. EXAFS data show that the average Ir cluster size (after treatment at 300{degrees}C in H{sub 2}) increased from about 7 to 20 {Angstrom} as the zeolite K:Al atomic ratio increased from 0.34 to 1.56. Infrared spectra of adsorbed CO show that the electron donation to the Ir increased as the K:Al ratio increased. In contrast to the performance reported for Pt/KLTL zeolites with metal clustersmore » as small as those observed in the present experiments, the Ir/KLTL catalyst has a low selectivity for dehydrocyclization of n-hexane at 440-480{degrees}C and 1 atm with a H{sub 2}: n-hexane feed molar ratio of 6. Instead, the catalysts are selective for hydrogenolysis. The selectivity is insensitive to the K:Al ratio, but the activity for dehydrocyclization is a maximum at a K:Al atomic ratio of about 1. The results show that even the smallest Ir clusters to which electron donation is significant still behave essentially like metallic Ir in the catalytic reactions. 49 refs., 4 figs., 7 tabs.« less
Du, Lei; Luo, Langli; Feng, Zhenxing; ...
2017-07-05
Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhancing reaction kinetics but are limited by their scarcity. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides are their low electronic conductivity and durability. The carbon encapsulating transition metal nanoparticles are expected to address these challenges. However, the relationship between precursor compositions and catalyst properties, and the intrinsic functions of each component has been rarely studied. In this paper,more » we report a highly durable (no degradation after 20,000 cycles) and highly active (360 mV overpotential at 10 mA cm –2 GEO) OER catalyst derived from bimetallic metal–organic frameworks (MOFs) precursors. This catalyst consists of NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells. The electron–donation/deviation from Fe and tuned lattice and electronic structures of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity, whereas N concentration contributes negligibly. Finally, we further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by the chemical state of precursors.« less
Dub, Pavel A; Scott, Brian L; Gordon, John C
2017-01-25
Molecular metal/NH bifunctional Noyori-type catalysts are remarkable in that they are among the most efficient artificial catalysts developed to date for the hydrogenation of carbonyl functionalities (loadings up to ∼10 -5 mol %). In addition, these catalysts typically exhibit high C═O/C═C chemo- and enantioselectivities. This unique set of properties is traditionally associated with the operation of an unconventional mechanism for homogeneous catalysts in which the chelating ligand plays a key role in facilitating the catalytic reaction and enabling the aforementioned selectivities by delivering/accepting a proton (H + ) via its N-H bond cleavage/formation. A recently revised mechanism of the Noyori hydrogenation reaction (Dub, P. A. et al. J. Am. Chem. Soc. 2014, 136, 3505) suggests that the N-H bond is not cleaved but serves to stabilize the turnover-determining transition states (TDTSs) via strong N-H···O hydrogen-bonding interactions (HBIs). The present paper shows that this is consistent with the largely ignored experimental fact that alkylation of the N-H functionality within M/NH bifunctional Noyori-type catalysts leads to detrimental catalytic activity. The purpose of this work is to demonstrate that decreasing the strength of this HBI, ultimately to the limit of its complete absence, are conditions under which the same alkylation may lead to beneficial catalytic activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Lei; Luo, Langli; Feng, Zhenxing
Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhancing reaction kinetics but are limited by their scarcity. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides are their low electronic conductivity and durability. The carbon encapsulating transition metal nanoparticles are expected to address these challenges. However, the relationship between precursor compositions and catalyst properties, and the intrinsic functions of each component has been rarely studied. In this paper,more » we report a highly durable (no degradation after 20,000 cycles) and highly active (360 mV overpotential at 10 mA cm –2 GEO) OER catalyst derived from bimetallic metal–organic frameworks (MOFs) precursors. This catalyst consists of NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells. The electron–donation/deviation from Fe and tuned lattice and electronic structures of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity, whereas N concentration contributes negligibly. Finally, we further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by the chemical state of precursors.« less
Dub, Pavel; Gordon, John Cameron; Scott, Brian Lindley
2017-01-25
Molecular metal/NH bifunctional Noyori-type catalysts are remarkable in that they are among the most efficient artificial catalysts developed to date for the hydrogenation of carbonyl functionalities (loadings up to ~10 –5 mol %). In addition, these catalysts typically exhibit high C$=$O/C$=$C chemo- and enantioselectivities. This unique set of properties is traditionally associated with the operation of an unconventional mechanism for homogeneous catalysts in which the chelating ligand plays a key role in facilitating the catalytic reaction and enabling the aforementioned selectivities by delivering/accepting a proton (H +) via its N–H bond cleavage/formation. A recently revised mechanism of the Noyori hydrogenationmore » reaction (Dub, P. A. et al. J. Am. Chem. Soc. 2014, 136, 3505) suggests that the N–H bond is not cleaved but serves to stabilize the turnover-determining transition states (TDTSs) via strong N–H···O hydrogen-bonding interactions (HBIs). Here, the present paper shows that this is consistent with the largely ignored experimental fact that alkylation of the N–H functionality within M/NH bifunctional Noyori-type catalysts leads to detrimental catalytic activity. Finally, the purpose of this work is to demonstrate that decreasing the strength of this HBI, ultimately to the limit of its complete absence, are conditions under which the same alkylation may lead to beneficial catalytic activity.« less
Christwardana, Marcelinus; Kim, Ki Jae; Kwon, Yongchai
2016-07-18
Mediatorless and membraneless enzymatic biofuel cells (EBCs) employing new catalytic structure are fabricated. Regarding anodic catalyst, structure consisting of glucose oxidase (GOx), poly(ethylenimine) (PEI) and carbon nanotube (CNT) is considered, while three cathodic catalysts consist of glutaraldehyde (GA), laccase (Lac), PEI and CNT that are stacked together in different ways. Catalytic activities of the catalysts for glucose oxidation and oxygen reduction reactions (GOR and ORR) are evaluated. As a result, it is confirmed that the catalysts work well for promotion of GOR and ORR. In EBC tests, performances of EBCs including 150 μm-thick membrane are measured as references, while those of membraneless EBCs are measured depending on parameters like glucose flow rate, glucose concentration, distance between two electrodes and electrolyte pH. With the measurements, how the parameters affect EBC performance and their optimal conditions are determined. Based on that, best maximum power density (MPD) of membraneless EBC is 102 ± 5.1 μW · cm(-2) with values of 0.5 cc · min(-1) (glucose flow rate), 40 mM (glucose concentration), 1 mm (distance between electrodes) and pH 3. When membrane and membraneless EBCs are compared, MPD of the membraneless EBC that is run at the similar operating condition to EBC including membrane is speculated as about 134 μW · cm(-2).
NASA Astrophysics Data System (ADS)
Christwardana, Marcelinus; Kim, Ki Jae; Kwon, Yongchai
2016-07-01
Mediatorless and membraneless enzymatic biofuel cells (EBCs) employing new catalytic structure are fabricated. Regarding anodic catalyst, structure consisting of glucose oxidase (GOx), poly(ethylenimine) (PEI) and carbon nanotube (CNT) is considered, while three cathodic catalysts consist of glutaraldehyde (GA), laccase (Lac), PEI and CNT that are stacked together in different ways. Catalytic activities of the catalysts for glucose oxidation and oxygen reduction reactions (GOR and ORR) are evaluated. As a result, it is confirmed that the catalysts work well for promotion of GOR and ORR. In EBC tests, performances of EBCs including 150 μm-thick membrane are measured as references, while those of membraneless EBCs are measured depending on parameters like glucose flow rate, glucose concentration, distance between two electrodes and electrolyte pH. With the measurements, how the parameters affect EBC performance and their optimal conditions are determined. Based on that, best maximum power density (MPD) of membraneless EBC is 102 ± 5.1 μW · cm-2 with values of 0.5 cc · min-1 (glucose flow rate), 40 mM (glucose concentration), 1 mm (distance between electrodes) and pH 3. When membrane and membraneless EBCs are compared, MPD of the membraneless EBC that is run at the similar operating condition to EBC including membrane is speculated as about 134 μW · cm-2.
Silicate-catalyzed chemical grouting compositions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1972-09-28
Chemical grouting compositions for stabilizing earth, sand, and other porous particulate formations or agglomerates of solids are described. The composition for producing a chemically grouting structure consists of an aqueous base solution of: (1) vegetative polyphenolic material consisting of condensed type tannins, and an aqueous catalyst solution of (2) a water-soluble alkali metal silicate. The polyphenolic material is present in an amount from 5% to 40% based on the weight of the base solution, and the water- soluble alkali metal silicate is present in an amount to provide from 1% to 15% SiOD2U in the silicate compound based on themore » weight of the polyphenolic material. These grouting compositions are completely safe to operating personnel and to surrounding environment, since the potassium or sodium silicate catalysts are nontoxic. (15 claims)« less
A dual-catalysis approach to enantioselective [2 + 2] photocycloadditions using visible light.
Du, Juana; Skubi, Kazimer L; Schultz, Danielle M; Yoon, Tehshik P
2014-04-25
In contrast to the wealth of catalytic systems that are available to control the stereochemistry of thermally promoted cycloadditions, few similarly effective methods exist for the stereocontrol of photochemical cycloadditions. A major unsolved challenge in the design of enantioselective catalytic photocycloaddition reactions has been the difficulty of controlling racemic background reactions that occur by direct photoexcitation of substrates while unbound to catalyst. Here, we describe a strategy for eliminating the racemic background reaction in asymmetric [2 + 2] photocycloadditions of α,β-unsaturated ketones to the corresponding cyclobutanes by using a dual-catalyst system consisting of a visible light-absorbing transition-metal photocatalyst and a stereocontrolling Lewis acid cocatalyst. The independence of these two catalysts enables broader scope, greater stereochemical flexibility, and better efficiency than previously reported methods for enantioselective photochemical cycloadditions.
Father Presence and Educational Attainment: Dad as a Catalyst for High School Graduations
ERIC Educational Resources Information Center
Mackey, Bonnie; Mackey, Wade C.
2012-01-01
The role of the on-going social father in America has received increased attention in the last quarter century. In some quarters, the U.S. father has been viewed as supernumerary or optional. In other quarters, the U.S. father has been perceived to be essential to the optimum development of his children. Still other factions have been intermediate…
Catalyst Complexed Carbon Slurry Fuel Development.
1981-01-01
materials of fine particle size made by procedures denoted as furnace, channel , thermal, and lamp. Car- bon black materials are composed essentially of...far the largest group of commercially available materials, and are prepared by partial combustion of heavy hydrocarbon liquids. Channel blacks are...manufactured by impingement of natural gas flames on cold channel irons. Thermal blacks are produced by thermal decomposition of natural gas, while
Catalytic and electrocatalytic oxidation of ethanol over palladium-based nanoalloy catalysts.
Yin, Jun; Shan, Shiyao; Ng, Mei Shan; Yang, Lefu; Mott, Derrick; Fang, Weiqin; Kang, Ning; Luo, Jin; Zhong, Chuan-Jian
2013-07-23
The control of the nanoscale composition and structure of alloy catalysts plays an important role in heterogeneous catalysis. This paper describes novel findings of an investigation for Pd-based nanoalloy catalysts (PdCo and PdCu) for ethanol oxidation reaction (EOR) in gas phase and alkaline electrolyte. Although the PdCo catalyst exhibits a mass activity similar to Pd, the PdCu catalyst is shown to display a much higher mass activity than Pd for the electrocatalytic EOR in alkaline electrolyte. This finding is consistent with the finding on the surface enrichment of Pd on the alloyed PdCu surface, in contrast to the surface enrichment of Co in the alloyed PdCo surface. The viability of C-C bond cleavage was also probed for the PdCu catalysts in both gas-phase and electrolyte-phase EOR. In the gas-phase reaction, although the catalytic conversion rate for CO2 product is higher over Pd than PdCu, the nanoalloy PdCu catalyst appears to suppress the formation of acetic acid, which is a significant portion of the product in the case of pure Pd catalyst. In the alkaline electrolyte, CO2 was detected from the gas phase above the electrolyte upon acid treatment following the electrolysis, along with traces of aldehyde and acetic acid. An analysis of the electrochemical properties indicates that the oxophilicity of the base metal alloyed with Pd, in addition to the surface enrichment of metals, may have played an important role in the observed difference of the catalytic and electrocatalytic activities. In comparison with Pd alloyed with Co, the results for Pd alloyed with Cu showed a more significant positive shift of the reduction potential of the oxygenated Pd species on the surface. These findings have important implications for further fine-tuning of the Pd nanoalloys in terms of base metal composition toward highly active and selective catalysts for EOR.
Xiao, Chaoxian; Maligal-Ganesh, Raghu V; Li, Tao; Qi, Zhiyuan; Guo, Zhiyong; Brashler, Kyle T; Goes, Shannon; Li, Xinle; Goh, Tian Wei; Winans, Randall E; Huang, Wenyu
2013-10-01
We report the synthesis, structural characterization, thermal stability study, and regeneration of nanostructured catalysts made of 2.9 nm Pt nanoparticles sandwiched between a 180 nm SiO2 core and a mesoporous SiO2 shell. The SiO2 shell consists of 2.5 nm channels that are aligned perpendicular to the surface of the SiO2 core. The nanostructure mimics Pt nanoparticles that sit in mesoporous SiO2 wells (Pt@MSWs). By using synchrotron-based small-angle X-ray scattering, we were able to prove the ordered structure of the aligned mesoporous shell. By using high-temperature cyclohexane dehydrogenation as a model reaction, we found that the Pt@MSWs of different well depths showed stable activity at 500 °C after the induction period. Conversely, a control catalyst, SiO2 -sphere-supported Pt nanoparticles without a mesoporous SiO2 shell (Pt/SiO2 ), was deactivated. We deliberately deactivated the Pt@MSWs catalyst with a 50 nm deep well by using carbon deposition induced by a low H2 /cyclohexane ratio. The deactivated Pt@MSWs catalyst was regenerated by calcination at 500 °C with 20 % O2 balanced with He. After the regeneration treatments, the activity of the Pt@MSWs catalyst was fully restored. Our results suggest that the nanostructured catalysts-Pt nanoparticles confined inside mesoporous SiO2 wells-are stable and regenerable for treatments and reactions that require high temperatures. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reaction pathways of biomass-derived oxygenates on noble metal surfaces
NASA Astrophysics Data System (ADS)
McManus, Jesse R.
As the global demand for energy continues to rise, the environmental concerns associated with increased fossil fuel consumption have motivated the use of biomass as an alternative, carbon-renewable energy feedstock. Controlling reactive chemistry of the sugars that comprise biomass through the use of catalysis becomes essential in effectively producing green fuels and value-added chemicals. Recent work on biomass conversion catalysts have demonstrated the efficacy of noble metal catalyst systems for the reforming of biomass to hydrogen fuel, and the hydrodeoxygenation of biomass-derived compounds to value-added chemicals. In particular, Pt and Pd surfaces have shown considerable promise as reforming catalysts in preliminary aqueous phase reforming studies. It becomes important to understand the mechanisms by which these molecules react on the catalyst surfaces in order to determine structure-activity relationships and bond scission energetics as to provide a framework for engineering more active and selective catalysts. Fundamental surface science techniques provide the tools to do this; however, work in this field has been so far limited to simple model molecules like ethanol and ethylene glycol. Herein, temperature programmed desorption and high resolution electron energy loss spectroscopy are utilized in an ultra-high vacuum surface science study of the biomass-derived sugar glucose on Pt and Pd single crystal catalysts. Overall, it was determined that the aldehyde function of a ring-open glucose molecule plays an integral part in the initial bonding and reforming reaction pathway, pointing to the use of aldoses glycolaldehyde and glyceraldehyde as the most appropriate model compounds for future studies. Furthermore, the addition of adatom Zn to a Pt(111) surface was found to significantly decrease the C-H and C-C bond scission activity in aldehyde containing compounds, resulting in a preferred deoxygenation pathway in opposition to the decarbonylation pathway common on clean Pt(111). This has implications in the hydrodeoxygenation of biomass-derived compounds for the production of value-added chemicals like 2-methylfuran from furfural, or the catalytic upgrading of sugars. Ultimately, identification of the reactive mechanisms of biomass-derived molecules on different unique surfaces has lead to a greater understanding for what makes a more selective catalyst for specific chemical pathways.
Rodriguez, José A; Hanson, Jonathan C; Stacchiola, Dario; Senanayake, Sanjaya D
2013-08-07
In this perspective article, we show how a series of in situ techniques {X-ray diffraction (XRD), pair-distribution-function analysis (PDF), X-ray absorption fine structure (XAFS), environmental transmission electron microscopy (ETEM), infrared spectroscopy (IR), ambient-pressure X-ray photoelectron spectroscopy (AP-XPS)} can be combined to perform detailed studies of the structural, electronic and chemical properties of metal oxide catalysts used for the production of hydrogen through the water-gas shift reaction (WGS, CO + H2O → H2 + CO2). Under reaction conditions most WGS catalysts undergo chemical transformations that drastically modify their composition with respect to that obtained during the synthesis process. Experiments of time-resolved in situ XRD, XAFS, and PDF indicate that the active phase of catalysts which combine Cu, Au or Pt with oxides such as ZnO, CeO2, TiO2, CeOx/TiO2 and Fe2O3 essentially involves nanoparticles of the reduced noble metals. The oxide support undergoes partial reduction and is not a simple spectator, facilitating the dissociation of water and in some cases modifying the chemical properties of the supported metal. Therefore, to optimize the performance of these catalysts one must take into consideration the properties of the metal and oxide phases. IR and AP-XPS have been used to study the reaction mechanism for the WGS on metal oxide catalysts. Data of IR spectroscopy indicate that formate species are not necessarily involved in the main reaction path for the water-gas shift on Cu-, Au- and Pt-based catalysts. Thus, a pure redox mechanism or associative mechanisms that involve either carbonate-like (CO3, HCO3) or carboxyl (HOCO) species should be considered. In the last two decades, there have been tremendous advances in our ability to study catalytic materials under reaction conditions and we are moving towards the major goal of fully understanding how the active sites for the production of hydrogen through the WGS actually work.
Ogura, Yuta; Sato, Katsutoshi; Miyahara, Shin-ichiro; Kawano, Yukiko; Toriyama, Takaaki; Yamamoto, Tomokazu; Matsumura, Syo; Hosokawa, Saburo
2018-01-01
Ammonia is an important feedstock for producing fertiliser and is also a potential energy carrier. However, the process currently used for ammonia synthesis, the Haber–Bosch process, consumes a huge amount of energy; therefore the development of new catalysts for synthesising ammonia at a high rate under mild conditions (low temperature and low pressure) is necessary. Here, we show that Ru/La0.5Ce0.5O1.75 pre-reduced at an unusually high temperature (650 °C) catalysed ammonia synthesis at extremely high rates under mild conditions; specifically, at a reaction temperature of 350 °C, the rates were 13.4, 31.3, and 44.4 mmol g–1 h–1 at 0.1, 1.0, and 3.0 MPa, respectively. Kinetic analysis revealed that this catalyst is free of hydrogen poisoning under the conditions tested. Electron energy loss spectroscopy combined with O2 absorption capacity measurements revealed that the reduced catalyst consisted of fine Ru particles (mean diameter < 2.0 nm) that were partially covered with partially reduced La0.5Ce0.5O1.75 and were dispersed on a thermostable support. Furthermore, Fourier transform infrared spectra measured after N2 addition to the catalyst revealed that N2 adsorption on Ru atoms that interacted directly with the reduced La0.5Ce0.5O1.75 weakened the N 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 N bond and thus promoted its cleavage, which is the rate-determining step for ammonia synthesis. Our results indicate that high-temperature pre-reduction of this catalyst, which consists of Ru supported on a thermostable composite oxide with a cubic fluorite structure and containing reducible cerium, resulted in the formation of many sites that were highly active for N2 reduction by hydrogen. PMID:29719696
Stereospecific olefin polymerization catalysts
Bercaw, John E.; Herzog, Timothy A.
1998-01-01
A metallocene catalyst system for the polymerization of .alpha.-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula ##STR1## wherein: R.sup.1, R.sup.2, and R.sup.3 are independently selected from the group consisting of hydrogen, C.sub.1 to C.sub.10 alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C.sub.1 to C.sub.10 alkyls as a substituent, C.sub.6 to C.sub.15 aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R.sup.8).sub.3 where R.sup.8 is selected from the group consisting of C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; R.sup.4 and R.sup.6 are substituents both having van der Waals radii larger than the van der Waals radii of groups R.sup.1 and R.sup.3 ; R.sup.5 is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E.sup.1, E.sup.2 are independently selected from the group consisting of Si(R.sup.9).sub.2, Si(R.sup.9).sub.2 --Si(R.sup.9).sub.2, Ge(R.sup.9).sub.2, Sn(R.sup.9).sub.2, C(R.sup.9).sub.2, C(R.sup.9).sub.2 --C(R.sup.9).sub.2, where R.sup.9 is C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; and the ligand may have C.sub.S or C.sub.1 -symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from .alpha.-olefin monomers.
Stereospecific olefin polymerization catalysts
Bercaw, J.E.; Herzog, T.A.
1998-01-13
A metallocene catalyst system is described for the polymerization of {alpha}-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula shown wherein: R{sup 1}, R{sup 2}, and R{sup 3} are independently selected from the group consisting of hydrogen, C{sub 1} to C{sub 10} alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C{sub 1} to C{sub 10} alkyls as a substituent, C{sub 6} to C{sub 15} aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R{sup 8}){sub 3} where R{sup 8} is selected from the group consisting of C{sub 1} to C{sub 10} alkyl, C{sub 6} to C{sub 15} aryl or C{sub 3} to C{sub 10} cycloalkyl; R{sup 4} and R{sup 6} are substituents both having van der Waals radii larger than the van der Waals radii of groups R{sup 1} and R{sup 3}; R{sup 5} is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E{sup 1}, E{sup 2} are independently selected from the group consisting of Si(R{sup 9}){sub 2}, Si(R{sup 9}){sub 2}--Si(R{sup 9}){sub 2}, Ge(R{sup 9}){sub 2}, Sn(R{sup 9}){sub 2}, C(R{sup 9}){sub 2}, C(R{sup 9}){sub 2}--C(R{sup 9}){sub 2}, where R{sup 9} is C{sub 1} to C{sub 10} alkyl, C{sub 6} to C{sub 15} aryl or C{sub 3} to C{sub 10} cycloalkyl; and the ligand may have C{sub S} or C{sub 1}-symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from {alpha}-olefin monomers.
Cu/Nitroxyl Catalyzed Aerobic Oxidation of Primary Amines into Nitriles at Room Temperature
Kim, Jinho; Stahl, Shannon S.
2013-01-01
An efficient catalytic method has been developed for aerobic oxidation of primary amines to the corresponding nitriles. The reactions proceed at room temperature and employ a catalyst consisting of (4,4′-tBu2bpy)CuI/ABNO (ABNO = 9-azabicyclo[3.3.1]nonan-3-one N-oxyl). The reactions exhibit excellent functional group compatibility and substrate scope, and are effective with benzylic, allylic and aliphatic amines. Preliminary mechanistic studies suggest that aerobic oxidation of the Cu catalyst is the turnover-limiting step of the reaction. PMID:24015373
Increasing the Aromatic Selectivity of Quinoline Hydrogenolysis Using Pd/MOx–Al2O3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachrach, Mark; Morlanes-Sanchez, Natalia; Canlas, Christian P.
2014-09-11
Catalysts consisting of Pd nanoparticles supported on highly dispersed TiOx–Al2O3, TaOx–Al2O3, and MoOx–Al2O3 are studied for catalytic quinoline hydrogenation and selective C–N bond cleavage at 275 °C and 20 bar H2. The Pd/MOx–Al2O3 materials exhibit significantly greater aromatic product selectivity and thus 10–15 % less required H2 for a given level of denitrogenation relative to an unmodified Pd/Al2O3 catalyst.
Cu/Nitroxyl Catalyzed Aerobic Oxidation of Primary Amines into Nitriles at Room Temperature.
Kim, Jinho; Stahl, Shannon S
2013-07-05
An efficient catalytic method has been developed for aerobic oxidation of primary amines to the corresponding nitriles. The reactions proceed at room temperature and employ a catalyst consisting of (4,4'- t Bu 2 bpy)CuI/ABNO (ABNO = 9-azabicyclo[3.3.1]nonan-3-one N -oxyl). The reactions exhibit excellent functional group compatibility and substrate scope, and are effective with benzylic, allylic and aliphatic amines. Preliminary mechanistic studies suggest that aerobic oxidation of the Cu catalyst is the turnover-limiting step of the reaction.
Attrition resistant fluidizable reforming catalyst
Parent, Yves O [Golden, CO; Magrini, Kim [Golden, CO; Landin, Steven M [Conifer, CO; Ritland, Marcus A [Palm Beach Shores, FL
2011-03-29
A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.
Raoufmoghaddam, Saeed; Drent, Eite; Bouwman, Elisabeth
2013-09-01
A rhodium/xantphos homogeneous catalyst system has been developed for direct chemo- and regioselective mono-N-alkylation of primary amides with 1-alkenes and syngas through catalytic hydroamidomethylation with 1-pentene and acetamide as model substrates. For appropriate catalyst performance, it appears to be essential that catalytic amounts of a strong acid promoter, such as p-toluenesulfonic acid (HOTs), as well as larger amounts of a weakly acidic protic promoter, particularly hexafluoroisopropyl alcohol (HOR(F) ) are applied. Apart from the product N-1-hexylacetamide, the isomeric unsaturated intermediates, hexanol and higher mass byproducts, as well as the corresponding isomeric branched products, can be formed. Under optimized conditions, almost full alkene conversion can be achieved with more than 80% selectivity to the product N-1-hexylamide. Interestingly, in the presence of a relatively high concentration of HOR(F) , the same catalyst system shows a remarkably high selectivity for the formation of hexanol from 1-pentene with syngas, thus presenting a unique example of a selective rhodium-catalyzed hydroformylation-hydrogenation tandem reaction under mild conditions. Time-dependent product formation during hydroamidomethylation batch experiments provides evidence for aldehyde and unsaturated intermediates; this clearly indicates the three-step hydroformylation/condensation/hydrogenation reaction sequence that takes place in hydroamidomethylation. One likely role of the weakly acidic protic promoter, HOR(F) , in combination with the strong acid HOTs, is to establish a dual-functionality rhodium catalyst system comprised of a neutral rhodium(I) hydroformylation catalyst species and a cationic rhodium(III) complex capable of selectively reducing the imide and/or ene-amide intermediates that are in a dynamic, acid-catalyzed condensation equilibrium with the aldehyde and amide in a syngas environment. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Junjun; Zhang, Shiran; Choksi, Tej
2016-12-05
Catalytic performance of a bimetallic catalyst is determined by geometric structure and electronic state of the surface or even the near-surface region of the catalyst. Here we report that single and sequential postsynthesis reactions of an as-synthesized bimetallic nanoparticle catalyst in one or more gas phases can tailor surface chemistry and structure of the catalyst in a gas phase, by which catalytic performance of this bimetallic catalyst can be tuned. Pt–Cu regular nanocube (Pt–Cu RNC) and concave nanocube (Pt–Cu CNC) are chosen as models of bimetallic catalysts. Surface chemistry and catalyst structure under different reaction conditions and during catalysis weremore » explored in gas phase of one or two reactants with ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The newly formed surface structures of Pt–Cu RNC and Pt–Cu CNC catalysts strongly depend on the reactive gas(es) used in the postsynthesis reaction(s). A reaction of Pt–Cu RNC-as synthesized with H2 at 200 °C generates a near-surface alloy consisting of a Pt skin layer, a Cu-rich subsurface, and a Pt-rich deep layer. This near-surface alloy of Pt–Cu RNC-as synthesized-H2 exhibits a much higher catalytic activity in CO oxidation in terms of a low activation barrier of 39 ± 4 kJ/mol in contrast to 128 ± 7 kJ/mol of Pt–Cu RNC-as synthesized. Here the significant decrease of activation barrier demonstrates a method to tune catalytic performances of as-synthesized bimetallic catalysts. A further reaction of Pt–Cu RNC-as synthesized-H2 with CO forms a Pt–Cu alloy surface, which exhibits quite different catalytic performance in CO oxidation. It suggests the capability of generating a different surface by using another gas. The capability of tuning surface chemistry and structure of bimetallic catalysts was also demonstrated in restructuring of Pt–Cu CNC-as synthesized.« less
A Study of Iron-Nitrogen-Carbon Fuel Cell Catalysts: Chemistry - Nanostructure - Performance
NASA Astrophysics Data System (ADS)
Workman, Michael J., Jr.
Fuel cells have the potential to be a pollution-free, low-cost, and energy efficient alternative to the internal combustion engine for transportation and small-scale stationary power applications. The current state of fuel cell technology has already achieved two of these three lofty goals. The remaining barrier to wide-scale deployment is the high cost, which is primarily caused by dependence on large amounts of platinum to catalyze the energy conversion reactions. To overcome this barrier and facilitate the integration of fuel cells into mainstream applications, research into a new class of catalyst materials that do not require platinum is needed. There has been a significant amount of research effort directed toward the development of platinum-group metal free (PGM-free) catalysts, yet there is a lack of consensus on both the engineering parameters necessary to improve the technology and the fundamental science that would facilitate rational design. I have engaged in research on PGM-free catalysts based on inexpensive and abundant reagents, specifically: nicarbazin and iron. Catalysts made from these precursors have previously proven to be among the best PGM-free catalysts, but their continued advancement suffered from the same lack of understanding that besets all catalysts in this class. The work I have performed address both engineering concerns and fundamental underlying principles. I present results demonstrating correlations between physical structure, chemical speciation, and synthesis parameters, as well as addressing active site chemistry and likely locations. My research presented herein introduces new morphology analysis techniques and elucidates several key structure-to-property characteristics of catalysts derived from iron and nicarbazin. I discuss the development and application of a new length-scale specific surface analysis technique that allows for analysis of well-defined size ranges from a few nm to several microns. The existing technique of focused ion beam tomography is modified and optimized for platinum-group metal free catalyst layers, facilitating direct observation of catalyst integration into catalyst layers. I present evidence supporting the hypothesis that atomically dispersed iron coordinated with nitrogen are the dominant active sites in these catalysts. Further, that the concentration of surface oxides in the carbon structure, which can be directly influenced by synthesis parameters, correlates with both the concentration of active sites in the material and with fuel cell performance. Catalyst performance is hindered by the addition of carbon nanotubes and by the presence of metallic iron. Evidence consistent with the catalytic active sites residing in the graphitic plane is also presented.
NASA Astrophysics Data System (ADS)
Hejral, U.; Franz, D.; Volkov, S.; Francoual, S.; Strempfer, J.; Stierle, A.
2018-03-01
Pt-Rh alloy nanoparticles on oxide supports are widely employed in heterogeneous catalysis with applications ranging from automotive exhaust control to energy conversion. To improve catalyst performance, an atomic-scale correlation of the nanoparticle surface structure with its catalytic activity under industrially relevant operando conditions is essential. Here, we present x-ray diffraction data sensitive to the nanoparticle surface structure combined with in situ mass spectrometry during near ambient pressure CO oxidation. We identify the formation of ultrathin surface oxides by detecting x-ray diffraction signals from particular nanoparticle facets and correlate their evolution with the sample's enhanced catalytic activity. Our approach opens the door for an in-depth characterization of well-defined, oxide-supported nanoparticle based catalysts under operando conditions with unprecedented atomic-scale resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Siyu; Zhang, Xiao; Zhou, Wu
Here, the water-gas shift (WGS) reaction (where carbon monoxide plus water yields dihydrogen and carbon dioxide) is an essential process for hydrogen generation and carbon monoxide removal in various energy-related chemical operations. This equilibrium-limited reaction is favored at a low working temperature. Potential application in fuel cells also requires a WGS catalyst to be highly active, stable, and energy-efficient and to match the working temperature of on-site hydrogen generation and consumption units. We synthesized layered gold (Au) clusters on a molybdenum carbide (α-MoC) substrate to create an interfacial catalyst system for the ultralow-temperature WGS reaction. Water was activated over α-MoCatmore » 303 kelvin, whereas carbon monoxide adsorbed on adjacent Au sites was apt to react with surface hydroxyl groups formed from water splitting, leading to a high WGS activity at low temperatures.« less
Synthesis and characterization of non-noble nanocatalysts for hydrogen production in microreactors
NASA Astrophysics Data System (ADS)
Shetty, Krithi; Zhao, Shihuai; Cao, Wei; Siriwardane, Upali; Seetala, Naidu V.; Kuila, Debasish
Nanoscale Co and Ni catalysts in silica were synthesized using sol-gel method for hydrogen production from steam reforming of methanol (SRM) in silicon microreactors with 50 μm channels. Silica sol-gel support with porous structure gives specific surface area of 452.35 m 2 g -1 for Ni/SiO 2 and 337.72 m 2 g -1 for Co/SiO 2. TEM images show the particles size of Ni and Co catalysts to be <10 nm. The EDX results indicate Co and Ni loadings of 5-6 wt.% in silica which is lower than the intended loading of 12 wt.%. The DTA and XRD data suggest that 450 °C is an optimum temperature for catalyst calcination when most of the metal hydroxides are converted to metal oxides without significant particle aggregation to form larger crystallites. SRM reactions show 53% methanol conversion with 74% hydrogen selectivity at 5 μL min -1 and 200 °C for Ni/SiO 2 catalyst, which is higher than that for Co/SiO 2. The activity of the metal catalysts decrease significantly after SRM reactions over 10 h, and it is consistent with the magnetization (VSM) results indicating that ∼90% of Co and ∼85% of Ni become non-ferromagnetic after 10 h.
NASA Astrophysics Data System (ADS)
Sun, Kai; Wang, Peng; Bian, Zhongkai; Huang, Wei
2018-01-01
Aluminum isopropoxide (AIP) is a vital raw material to produce high surface area alumina catalyst, which is used for catalytic applications, such as hydrocracking, Fischer-Tropsch and STD (syngas to dimethyl ether) reactions. However, the different existing states have an effect on hydrolysis and condensation in the process of precursor preparation. The Cu/Zn/Al slurry catalysts were prepared by aluminum isopropoxide, which were liquid state, crystalline state and solid state, utilizing a complete liquid phase preparation technology. In the dimethyl ether (DME) synthesis reaction, the aluminum resource of crystalline state was prepared for slurry catalyst, which presented high CO conversion and DME selectivity of 54.32% and 69.74%, respectively. Characterization results indicated that different forms of AIP have the variant coordination numbers of Al-O and polymerization degrees, and the catalyst prepared by crystalline state consists amount of tetra-coordinated Al and few hexa-coordinated Al, which can exert different hydrolysis and condensation process compared with other aluminum sources, and finally it contributes to the strong interaction between active site copper species and Zn/Al species, confirming more Cu+ is responsible for the synthesis of DME in the slurry reactor.
Oh, Kwang Seok; Woo, Seong Ihl
2011-01-01
A chemiluminescence-based analyzer of NOx gas species has been applied for high-throughput screening of a library of catalytic materials. The applicability of the commercial NOx analyzer as a rapid screening tool was evaluated using selective catalytic reduction of NO gas. A library of 60 binary alloys composed of Pt and Co, Zr, La, Ce, Fe or W on Al2O3 substrate was tested for the efficiency of NOx removal using a home-built 64-channel parallel and sequential tubular reactor. The NOx concentrations measured by the NOx analyzer agreed well with the results obtained using micro gas chromatography for a reference catalyst consisting of 1 wt% Pt on γ-Al2O3. Most alloys showed high efficiency at 275 °C, which is typical of Pt-based catalysts for selective catalytic reduction of NO. The screening with NOx analyzer allowed to select Pt-Ce(X) (X=1–3) and Pt–Fe(2) as the optimal catalysts for NOx removal: 73% NOx conversion was achieved with the Pt–Fe(2) alloy, which was much better than the results for the reference catalyst and the other library alloys. This study demonstrates a sequential high-throughput method of practical evaluation of catalysts for the selective reduction of NO. PMID:27877438
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dub, Pavel; Gordon, John Cameron; Scott, Brian Lindley
Molecular metal/NH bifunctional Noyori-type catalysts are remarkable in that they are among the most efficient artificial catalysts developed to date for the hydrogenation of carbonyl functionalities (loadings up to ~10 –5 mol %). In addition, these catalysts typically exhibit high C$=$O/C$=$C chemo- and enantioselectivities. This unique set of properties is traditionally associated with the operation of an unconventional mechanism for homogeneous catalysts in which the chelating ligand plays a key role in facilitating the catalytic reaction and enabling the aforementioned selectivities by delivering/accepting a proton (H +) via its N–H bond cleavage/formation. A recently revised mechanism of the Noyori hydrogenationmore » reaction (Dub, P. A. et al. J. Am. Chem. Soc. 2014, 136, 3505) suggests that the N–H bond is not cleaved but serves to stabilize the turnover-determining transition states (TDTSs) via strong N–H···O hydrogen-bonding interactions (HBIs). Here, the present paper shows that this is consistent with the largely ignored experimental fact that alkylation of the N–H functionality within M/NH bifunctional Noyori-type catalysts leads to detrimental catalytic activity. Finally, the purpose of this work is to demonstrate that decreasing the strength of this HBI, ultimately to the limit of its complete absence, are conditions under which the same alkylation may lead to beneficial catalytic activity.« less
Highly tunable porous organic polymer (POP) supports for metallocene-based ethylene polymerization
NASA Astrophysics Data System (ADS)
Wang, Xiong; Li, Zhenyou; Han, Xiaoyu; Han, Zhengang; Bai, Yongxiao
2017-10-01
Porous organic Polymers (POPs) can not only exhibit high specific surface area and pore volume, but also tunable pore size distribution. Herein, copolymers of 2-hydroxyethylmethylacrylate (HEMA) and divinylbenzene (DVB) with specific pore structure were synthesized via a dispersion polymerization strategy, and then immobilized metallocene catalysts with well-defined pore structure were obtained on the produced POP supports. The nitrogen sorption and Gel permeation chromatography (GPC) results demonstrate that the pore structure of the immobilized metallocene catalyst is highly dependent on the pore structure of the POPs, and the pore structure of metallocene catalysts or the POPs has a significant influence on the molecular chain growth of the produced polyethylene. By tuning the distribution of the active species scattered in the micro- and the narrow meso-pore range (roughly ≤4 nm), the chain growth of the polyolefin can be tailored effectively during the polymerization process, although differential scanning calorimetry (DSC) and temperature rising elution fractionation (TREF) results show that the chemical composition distributions (CCDs) of produced PE from the POPs-supported metallocene catalysts are not determined by polymerization activity or molecule chain length, but mainly by the active site species scattered in the supported catalysts. Scanning electron micrograph (SEM) shows that the produced polyethylene has highly porous fabric which consists of nanofiber and spherical beads of micron dimension.
The kinetics and mechanism of the organo-iridium catalysed racemisation of amines.
Stirling, Matthew J; Mwansa, Joseph M; Sweeney, Gemma; Blacker, A John; Page, Michael I
2016-08-07
The dimeric iodo-iridium complex [IrCp*I2]2 (Cp* = pentamethylcyclopentadiene) is an efficient catalyst for the racemisation of secondary and tertiary amines at ambient and higher temperatures with a low catalyst loading. The racemisation occurs with pseudo-first-order kinetics and the corresponding four rate constants were obtained by monitoring the time dependence of the concentrations of the (R) and (S) enantiomers starting with either pure (R) or (S) and show a first-order dependence on catalyst concentration. Low temperature (1)H NMR data is consistent with the formation of a 1 : 1 complex with the amine coordinated to the iridium and with both iodide anions still bound to the metal-ion, but at the higher temperatures used for kinetic studies binding is weak and so no saturation zero-order kinetics are observed. A cross-over experiment with isotopically labelled amines demonstrates the intermediate formation of an imine which can dissociate from the iridium complex. Replacing the iodides in the catalyst by other ligands or having an amide substituent in Cp* results in a much less effective catalysts for the racemisation of amines. The rate constants for a deuterated amine yield a significant primary kinetic isotope effect kH/kD = 3.24 indicating that hydride transfer is involved in the rate-limiting step.
Liu, Xuejun; Piao, Xianglan; Wang, Yujun; Zhu, Shenlin
2010-03-25
Modeling of the transesterification of vegetable oils to biodiesel using a solid base as a catalyst is very important because the mutual solubilities of oil and methanol will increase with the increasing biodiesel yield. The heterogeneous liquid-liquid-solid reaction system would become a liquid-solid system when the biodiesel reaches a certain content. In this work, we adopted a two-film theory and a steady state approximation assumption, then established a heterogeneous liquid-liquid-solid model in the first stage. After the diffusion coefficients on the liquid-liquid interface and the liquid-solid interface were calculated on the basis of the properties of the system, the theoretical value of biodiesel productivity changing with time was obtained. The predicted values were very near the experimental data, which indicated that the proposed models were suitable for the transesterification of soybean oil to biodiesel when solid bases were used as catalysts. Meanwhile, the model indicated that the transesterification reaction was controlled by both mass transfer and reaction. The total resistance will decrease with the increase in biodiesel yield in the liquid-liquid-solid stage. The solid base catalyst exhibited an activation energy range of 9-20 kcal/mol, which was consistent with the reported activation energy range of homogeneous catalysts.
2017-01-01
A homogeneous Cu-based catalyst system consisting of [Cu(MeCN)4]PF6, N,N′-di-tert-butylethylenediamine (DBED), and p-(N,N-dimethylamino)pyridine (DMAP) mediates efficient aerobic oxidation of alcohols. Mechanistic study of this reaction shows that the catalyst undergoes an in situ oxidative self-processing step, resulting in conversion of DBED into a nitroxyl that serves as an efficient cocatalyst for aerobic alcohol oxidation. Insights into this behavior are gained from kinetic studies, which reveal an induction period at the beginning of the reaction that correlates with the oxidative self-processing step, EPR spectroscopic analysis of the catalytic reaction mixture, which shows the buildup of the organic nitroxyl species during steady state turnover, and independent synthesis of oxygenated DBED derivatives, which are shown to serve as effective cocatalysts and eliminate the induction period in the reaction. The overall mechanism bears considerable resemblance to enzymatic reactivity. Most notable is the “oxygenase”-type self-processing step that mirrors generation of catalytic cofactors in enzymes via post-translational modification of amino acid side chains. This higher-order function within a synthetic catalyst system presents new opportunities for the discovery and development of biomimetic catalysts. PMID:28470049
Fuel cell anode configuration for CO tolerance
Uribe, Francisco A.; Zawodzinski, Thomas A.
2004-11-16
A polymer electrolyte fuel cell (PEFC) is designed to operate on a reformate fuel stream containing oxygen and diluted hydrogen fuel with CO impurities. A polymer electrolyte membrane has an electrocatalytic surface formed from an electrocatalyst mixed with the polymer and bonded on an anode side of the membrane. An anode backing is formed of a porous electrically conductive material and has a first surface abutting the electrocatalytic surface and a second surface facing away from the membrane. The second surface has an oxidation catalyst layer effective to catalyze the oxidation of CO by oxygen present in the fuel stream where at least the layer of oxidation catalyst is formed of a non-precious metal oxidation catalyst selected from the group consisting of Cu, Fe, Co, Tb, W, Mo, Sn, and oxides thereof, and other metals having at least two low oxidation states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okolie, Chukwuemeka; Belhseine, Yasmeen F.; Lyu, Yimeng
Direct conversion of methane into alcohols is a promising technology for converting stranded methane reserves into liquids that can be transported in pipelines and upgraded to value-added chemicals. We demonstrate that a catalyst consisting of small nickel oxide clusters supported on ceria-zirconia (NiO/CZ) can selectively oxidize methane to methanol and ethanol in a single, steady-state process at 723 K using O2 as an abundantly available oxidant. The presence of steam is required to obtain alcohols rather than CO2 as the product of catalytic combustion. The unusual activity of this catalyst is attributed to the synergy between the small Lewis acidicmore » NiO clusters and the redox-active CZ support, which also stabilizes the small NiO clusters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okolie, Chukwuemeka; Belhseine, Yasmeen F.; Lyu, Yimeng
Here, the conversion of methane into alcohols under moderate reaction conditions is a promising technology for converting stranded methane reserves into liquids that can be transported in pipelines and upgraded to value-added chemicals. We demonstrate that a catalyst consisting of small nickel oxide clusters supported on ceria-zirconia (NiO/CZ) can convert methane to methanol and ethanol in a single, steady-state process at 723 K using O 2 as an abundantly available oxidant. The presence of steam is required to obtain alcohols rather than CO 2 as the product of catalytic combustion. The unusual activity of this catalyst is attributed to themore » synergy between the small Lewis acidic NiO clusters and the redox-active CZ support, which also stabilizes the small NiO clusters.« less
Okolie, Chukwuemeka; Belhseine, Yasmeen F.; Lyu, Yimeng; ...
2017-08-08
Here, the conversion of methane into alcohols under moderate reaction conditions is a promising technology for converting stranded methane reserves into liquids that can be transported in pipelines and upgraded to value-added chemicals. We demonstrate that a catalyst consisting of small nickel oxide clusters supported on ceria-zirconia (NiO/CZ) can convert methane to methanol and ethanol in a single, steady-state process at 723 K using O 2 as an abundantly available oxidant. The presence of steam is required to obtain alcohols rather than CO 2 as the product of catalytic combustion. The unusual activity of this catalyst is attributed to themore » synergy between the small Lewis acidic NiO clusters and the redox-active CZ support, which also stabilizes the small NiO clusters.« less
NASA Astrophysics Data System (ADS)
Ma, Yinbiao; Wei, Xiaojuan
2017-04-01
A novel method for the determination of platinum in waste platinum-loaded carbon catalyst samples was established by inductively coupled plasma optical emission spectrometry after samples digested by microwave oven with aqua regia. Such experiment conditions were investigated as the influence of sample digestion methods, digestion time, digestion temperature and interfering ions on the determination. Under the optimized conditions, the linear range of calibration graph for Pt was 0 ˜ 200.00 mg L-1, and the recovery was 95.67% ˜ 104.29%. The relative standard deviation (RSDs) for Pt was 1.78 %. The proposed method was applied to determine the same samples with atomic absorption spectrometry with the results consistently, which is suitable for the determination of platinum in waste platinum-loaded carbon catalyst samples.
Wendlandt, Alison E; Stahl, Shannon S
2014-01-08
Copper amine oxidases are a family of enzymes with quinone cofactors that oxidize primary amines to aldehydes. The native mechanism proceeds via an iminoquinone intermediate that promotes high selectivity for reactions with primary amines, thereby constraining the scope of potential biomimetic synthetic applications. Here we report a novel bioinspired quinone catalyst system consisting of 1,10-phenanthroline-5,6-dione/ZnI2 that bypasses these constraints via an abiological pathway involving a hemiaminal intermediate. Efficient aerobic dehydrogenation of non-native secondary amine substrates, including pharmaceutically relevant nitrogen heterocycles, is demonstrated. The ZnI2 cocatalyst activates the quinone toward amine oxidation and provides a source of iodide, which plays an important redox-mediator role to promote aerobic catalytic turnover. These findings provide a valuable foundation for broader development of aerobic oxidation reactions employing quinone-based catalysts.
Spongy Raney nickel hydrogen electrodes for alkaline fuel cells
NASA Astrophysics Data System (ADS)
Tomida, Tahei; Nakabayashi, Ichiro
1989-11-01
Spongy Raney nickel catalysts for use as hydrogen electrodes of fuel cells were prepared by a new method. In this method molten aluminum was sprayed on both sides of a spongy plate of nickel as substrate with an acetylene-oxygen flame gun. Then, the spongy nickel electrodes were activated by alloying at a given temperature of from 550 to 750 C, and leaching the aluminum from the alloy in alkaline solution. This type of catalyst showed good thermal and electrical conductivity and also mechanical strength by itself. Its polarization resistance was very low, and the characteristics of the electrodes improved with increase in the temperature of heat-treatment for alloying. The finding that activity depended on the alloying temperature was consistent with observations by scanning electron microscope on the surface textures of catalysts alloyed at different temperatures.
Direct and continuous strain control of catalysts with tunable battery electrode materials
Wang, Haotian; Xu, Shicheng; Tsai, Charlie; ...
2016-11-24
We report a method for using battery electrode materials to directly and continuously control the lattice strain of platinum (Pt) catalyst and thus tune its catalytic activity for the oxygen reduction reaction (ORR). Whereas the common approach of using metal overlayers introduces ligand effects in addition to strain, by electrochemically switching between the charging and discharging status of battery electrodes the change in volume can be precisely controlled to induce either compressive or tensile strain on supported catalysts. Lattice compression and tension induced by the lithium cobalt oxide substrate of ~5% were directly observed in individual Pt nanoparticles with aberration-correctedmore » transmission electron microscopy. As a result, we observed 90% enhancement or 40% suppression in Pt ORR activity under compression or tension, respectively, which is consistent with theoretical predictions.« less
Weidenhof, B; Reiser, M; Stöwe, K; Maier, W F; Kim, M; Azurdia, J; Gulari, E; Seker, E; Barks, A; Laine, R M
2009-07-08
We describe here the use of liquid-feed flame spray pyrolysis (LF-FSP) to produce high surface area, nonporous, mixed-metal oxide nanopowders that were subsequently subjected to high-throughput screening to assess a set of materials for deNO(x) catalysis and hydrocarbon combustion. We were able to easily screen some 40 LF-FSP produced materials. LF-FSP produces nanopowders that very often consist of kinetic rather than thermodynamic phases. Such materials are difficult to access or are completely inaccessible via traditional catalyst preparation methods. Indeed, our studies identified a set of Ce(1-x)Zr(x)O(2) and Al(2)O(3)-Ce(1-x)Zr(x)O(2) nanopowders that offer surprisingly good activities for both NO(x) reduction and propane/propene oxidation both in high-throughput screening and in continuous flow catalytic studies. All of these catalysts offer activities comparable to traditional Pt/Al(2)O(3) catalysts but without Pt. Thus, although Pt-free, they are quite active for several extremely important emission control reactions, especially considering that these are only first generation materials. Indeed, efforts to dope the active catalysts with Pt actually led to lower catalytic activities. Thus the potential exists to completely change the materials used in emission control devices, especially for high-temperature reactions as these materials have already been exposed to 1500 degrees C; however, much research must be done before this potential is verified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelkar, A.A.; Ubale, R.S.; Deshpande, R.M.
The carbonylation of alcohols to give carboxylic acids is of commercial importance, as evidenced by the Monsanto process for the manufacture of acetic acid. Several transition metal complexes consisting of Co, Rh, Ir, Ru, and Ni are known to catalyze the carbonylation of alcohols, but Rh was found to be the most active and selective catalyst. Recent reports described Ni catalyzed carbonylation of methanol at lower temperatures and pressures giving high activity and selectivity. This development is particularly important as it will provide a cheaper and alternative catalyst to rhodium. For NiI{sub 2}-PPh{sub 3} and Ni(PPh{sub 3}){sup 2}(CO){sub 2}-PPh{sub 3}more » catalysts with methyl iodide as a promoter, methanol conversion of 98% with a selectivity of 75 to 90% has been reported. Further, Kelkar et al. have reported that Ni(isoq){sub 4}Cl{sub 2} as a catalyst is highly active with 99% conversion and 90-98% selectivity for carbonylation of methanol as well as higher alcohols. Rizkalla has also investigated the influence of catalyst, methyl iodide, methanol, and water concentrations and partial pressure of CO and hydrogen on the rate of reaction for NiI{sub 2}-PPh{sub 3} system; however, this study was limited to only one temperature (453 K) and no rate equation has been proposed. The present work was undertaken to study the intrinsic kinetics of the reaction using the Ni-isoquinoline catalyst system to develop a rate equation. 14 refs., 8 figs., 1 tab.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Fangfang; Yu, Gang; Shan, Shiyao
2017-01-01
The ability to tune the alloying properties and faceting characteristics of bimetallic nanocatalysts is essential for designing catalysts with enhanced activity and stability through optimizing strain and ligand effects, which is an important frontier for designing advanced materials as catalysts for fuel cell applications. This report describes composition-controlled alloying and faceting of platinum–nickel nanowires (PtNi NWs) for the electrocatalytic oxygen reduction reaction. The PtNi NWs are synthesized by a surfactant-free method and are shown to display bundled morphologies of nano-tetrahedra or nanowires, featuring an ultrathin and irregular helix morphology with composition-tunable facets. Using high-energy synchrotron X-ray diffraction coupled with atomicmore » pair distribution function analysis, lattice expansion and shrinking are revealed, with the Pt : Ni ratio of ~3 : 2 exhibiting a clear expansion, which coincides with the maximum electrocatalytic activity for the ORR. In comparison with PtNi nanoparticles (NPs), the PtNi NWs display remarkably higher electrocatalytic activity and stability as a result of the composition dependent atomic-scale alloying and faceting, demonstrating a new pathway to the design of alloy nanocatalysts with enhanced activity and durability for fuel cells.« less
NASA Astrophysics Data System (ADS)
Wang, Qin; Li, Yingjun; Liu, Baocang; Xu, Guangran; Zhang, Geng; Zhao, Qi; Zhang, Jun
2015-11-01
A series of well-dispersed bimetallic Pd@Pt nanodendrites uniformly supported on XC-72 carbon black are fabricated by using different capping agents. These capping agents are essential for the branched morphology control. However, the surfactant adsorbed on the nanodendrites surface blocks the access of reactant molecules to the active surface sites, and the catalytic activities of these bimetallic nanodendrites are significantly restricted. Herein, a facile reflux procedure to effectively remove the capping agent molecules without significantly affecting their sizes is reported for activating supported nanocatalysts. More significantly, the structure and morphology of the nanodendrites can also be retained, enhancing the numbers of active surface sites, catalytic activity and stability toward methanol and ethanol electro-oxidation reactions. The as-obtained hot water reflux-treated Pd@Pt/C catalyst manifests superior catalytic activity and stability both in terms of surface and mass specific activities, as compared to the untreated catalysts and the commercial Pt/C and Pd/C catalysts. We anticipate that this effective and facile removal method has more general applicability to highly active nanocatalysts prepared with various surfactants, and should lead to improvements in environmental protection and energy production.
Enhanced carbon monoxide utilization in methanation process
Elek, Louis F.; Frost, Albert C.
1984-01-01
Carbon monoxide - containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is subsequently reacted with steam or hydrogen to form methane. Surprisingly, hydrogen and water vapor present in the feed gas do not adversely affect CO utilization significantly, and such hydrogen actually results in a significant increase in CO utilization.
Direct conversion of alcohols to α-chloro aldehydes and α-chloro ketones.
Jing, Yuanyuan; Daniliuc, Constantin G; Studer, Armido
2014-09-19
Direct conversion of primary and secondary alcohols into the corresponding α-chloro aldehydes and α-chloro ketones using trichloroisocyanuric acid, serving both as stoichiometric oxidant and α-halogenating reagent, is reported. For primary alcohols, TEMPO has to be added as an oxidation catalyst, and for the transformation of secondary alcohols (TEMPO-free protocol), MeOH as an additive is essential to promote chlorination of the intermediary ketones.
Asikainen, Martta; Munter, Tony; Linnekoski, Juha
2015-09-01
Bio-based fuels are becoming more and more important due to the depleting fossil resources. The production of biodiesel from algae oil is challenging compared to terrestrial vegetable oils, as algae oil consists of polar fatty acids, such as phospholipids and glycolipids, as well as non-polar triglycerides and free fatty acids common in vegetable oils. It is shown that a single sulphonated solid acid catalyst can perform the esterification and transesterification reactions of both polar and non-polar lipids. In mild reaction conditions (60-70 °C) Nafion NR50 catalyst produces methyl palmitate (FAME) from the palmitic acid derivatives of di-, and tri-glyceride, free fatty acid, and phospholipid with over 80% yields, with the glycolipid derivative giving nearly 40% yields of FAME. These results demonstrate how the polar and non-polar lipid derivatives of algal oil can be utilised as feedstocks for biodiesel production with a single catalyst in one reaction step. Copyright © 2015 Elsevier Ltd. All rights reserved.
Production of bioadditives from glycerol esterification over zirconia supported heteropolyacids.
Zhu, Shanhui; Zhu, Yulei; Gao, Xiaoqing; Mo, Tao; Zhu, Yifeng; Li, Yongwang
2013-02-01
The synthesis of bioadditives for biofuels from glycerol esterification with acetic acid was performed over zirconia supported heteropolyacids catalysts using H(4)SiW(12)O(40) (HSiW), H(3)PW(12)O(40) (HPW) and H(3)PMo(12)O(40) (HPMo) as active compounds. The as-prepared catalysts were characterized by N(2)-physisorption, XRD, Raman spectroscopy, NH(3)-TPD, FTIR of pyridine adsorption and H(2)O-TPD. Among the catalysts tested, HSiW/ZrO(2) achieved the best catalytic performance owing to the better combination of surface Brønsted acid sites and hydrothermal stability. A 93.6% combined selectivity of glyceryl diacetate and glyceryl triacetate with complete glycerol conversion was obtained at 120°C and 4h of reaction time in the presence of HSiW/ZrO(2). This catalyst also presented consistent activity for four consecutive reaction cycles, while HPW/ZrO(2) and HPMo/ZrO(2) exhibited distinct deactivation after reusability tests. In addition, HSiW/ZrO(2) can be resistant to the impurities present in bulk glycerol. Copyright © 2012 Elsevier Ltd. All rights reserved.
Lyu, Lai; Yu, Guangfei; Zhang, Lili; Hu, Chun; Sun, Yong
2018-01-16
Metal-containing Fenton catalysts have been widely investigated. Here, we report for the first time a highly effective stable metal-free Fenton-like catalyst with dual reaction centers consisting of 4-phenoxyphenol-functionalized reduced graphene oxide nanosheets (POP-rGO NSs) prepared through surface complexation and copolymerization. Experimental and theoretical studies verified that dual reaction centers are formed on the C-O-C bridge of POP-rGO NSs. The electron-rich center around O is responsible for the efficient reduction of H 2 O 2 to • OH, while the electron-poor center around C captures electrons from the adsorbed pollutants and diverts them to the electron-rich area via the C-O-C bridge. By these processes, pollutants are degraded and mineralized quickly in a wide pH range, and a higher H 2 O 2 utilization efficiency is achieved. Our findings address the problems of the classical Fenton reaction and are useful for the development of efficient Fenton-like catalysts using organic polymers for different fields.
Liu, Zongyuan; Grinter, David C.; Lustemberg, Pablo G.; ...
2016-05-04
Ni-CeO 2 is a highly efficient, stable and non-expensive catalyst for methane dry reforming at relative low temperatures (700 K). The active phase of the catalyst consists of small nanoparticles of nickel dispersed on partially reduced ceria. Experiments of ambient pressure XPS indicate that methane dissociates on Ni/CeO 2 at temperatures as low as 300 K, generating CH x and CO x species on the surface of the catalyst. Strong metal–support interactions activate Ni for the dissociation of methane. The results of density-functional calculations show a drop in the effective barrier for methane activation from 0.9 eV on Ni(111) tomore » only 0.15 eV on Ni/CeO 2–x(111). At 700 K, under methane dry reforming conditions, no signals for adsorbed CH x or C species are detected in the C1s XPS region. As a result, the reforming of methane proceeds in a clean and efficient way.« less
NASA Astrophysics Data System (ADS)
Kugai, Junichiro
The post-processing of reformate is an important step in producing hydrogen (H2) with low carbon monoxide (CO) for low temperature fuel cells from syn-gas. However, the conventional process consists of three steps, i.e. two steps of water gas shift (WGS) and preferential oxidation (PROX) of CO, and it is not suitable for mobile applications due to the large volume of water gas shift (WGS) catalysts and conditioning and/or regeneration necessary for these catalysts. Aiming at replacing those three steps by a simple one-step process, small amount of oxygen was added to WGS (the reaction called oxygen-enhanced water gas shift or OWGS) to promote the reaction kinetics and low pyrophoric ceria-supported bimetallic catalysts were employed for stable performance in this reaction. Not only CO conversion, but also H2 yield was found to increase by the O2 addition on CeO2-supported catalysts. The characteristics of OWGS, high H2 production rate at 200 to 300°C at short contact time where unreacted O2 exists, evidenced the impact of O2 addition on surface species on the catalyst. Around 1.5 of reaction order in CO for various CeO2-supported metal catalysts for OWGS compared to reaction orders in CO ranging from -0.1 to 0.6 depending on metal species for WGS shows O2 addition decreases CO coverage to free up the active sites for co-reactant (H2O) adsorption and activation. Among the monometallic and bimetallic catalysts, Pt-Cu and Pd-Cu bimetallic catalysts were superior to monometallic catalysts in OWGS. These bimetallic components were found to form alloys where noble metal is surrounded mainly by Cu to have strong interaction between noble metal and copper resulting in high OWGS activity and low pyrophoric property. The metal loadings were optimized for CeO2-supported Pd-Cu bimetallic system and 2 wt% Pd with 5 -- 10 wt% Cu were found to be the optimum for the present OWGS condition. In the kinetic study, Pd in Pd-Cu was shown to increase the active sites for H2O dissociation and/or the subsequent reaction with chemisorbed CO as well as Pd keeps Cu in reduced state. Cu was found to keep Pd dispersed, suppress H2 activation on Pd, and facilitate CO 2 desorption from catalyst surface. While composition and structure of metal have large impacts on OWGS performance, CeO2 was shown to create new sites for H2O activation at metal-ceria interfacial region in concert with metal. These new sites strongly activate H2O to drive OWGS and WGS compared to the pure metallic sites which are present in majority on Al2O3-supported catalyst. The observed two regimes of turnover rate, the one dependent on catalyst surface area and the other independent of surface area, strongly suggested bifunctional reaction pathway where the reaction rate is determined by activation of H2O and by association of chemisorbed CO and H 2O. The associative route was also evidenced by pulse response study where the reaction occurs only when CO and H2O pulses are supplied together, and thus pre-adsorbed species such as formate and carbonate identified by FT-IR are proven to be spectators. No correlation between WGS rate and isotopic exchange rate of molecularly adsorbed D2O with H 2 showed H2O dissociation is necessary for WGS to occur. Long duration tests revealed CeO2-supported Pd-Cu, Pt-Cu and Cu catalysts are stable in OWGS condition compared to Pt, Pd, and Al 2O3-supported Pd-Cu catalysts which exhibited continuous deactivation during about 70 hours of test. The addition of Cu prevents agglomeration of monometallic Pd and carbonate formation on monometallic Pt during the reaction. The better activity and stability of Pd-Cu and Pt-Cu bimetallic catalysts in the realistic OWGS condition were ascribed to the unique active sites consisting of highly dispersed Pd in Cu or Pt in Cu on CeO2, which are good for H2O activation with low reaction inhibition by the product gases. Pt monometallic catalyst showed and highest activity in OWGS in the absence of product gases, but this was found vulnerable in the presence of product gases due to strong adsorption of H2 and CO2 on this catalyst. (Abstract shortened by UMI.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marker, Terry; Roberts, Michael; Linck, Martin
The goal of this Bioincubator Project was to improve the pyrolysis of biomass through the use of methane. Our initial concept was to use methane as a fluidizing gas with a hydrogen transfer catalyst. The results of the experiments did show that methane as a fluidizing gas, with a hydrogen transfer catalyst, does enhance catalytic pyrolysis over that which is achieved with an inert fluidizing gas. Using methane as a fluidizing gas, with a hydrogen transfer catalyst, consistently produced better products with lower oxygen content than the products produced when an inert gas was used. These improvements were also consistentmore » with the results obtained through pure component testing as well. However, the improvement was too small to justify any significant expense. The addition of hydrogen with a hydrogen transfer catalyst consistently showed a much greater, more significant effect than methane. This indicates that hydropyrolysis is a more effective approach to improved catalytic pyrolysis than methane addition. During the course of this project, another way to significantly increase biogenic liquid yields from pyrolysis through the use of methane was discovered. We discovered a remarkably stable CO2/steam reforming catalyst which directly makes a 2:1 H2/CO synthesis gas from the CO, CO2, methane, ethane and propane product gas from integrated hydropyrolysis and hydroconversion (IH2®). The biogenic synthesis gas can then be converted to liquid hydrocarbons using Fischer Tropsch. The hydrogen for the IH2 unit would then be provided through the use of added methane. By utilizing the biogenic gas to make liquids, 40% more biogenic liquid hydrocarbons can be made from wood, thereby increasing liquid yields from IH2 from 86GPT to 126GPT. It also simplifies the hydrogen plant since no CO or CO2 removal is required.« less
Modeling of cobalt-based catalyst use during CSS for low-temperature heavy oil upgrading
NASA Astrophysics Data System (ADS)
Kadyrov, R.; Sitnov, S.; Gareev, B.; Batalin, G.
2018-05-01
One of the methods, which is actively used on deposits of heavy oils of the Upper Kungurian (Ufimian) sandstones of the Republic of Tatarstan, is cyclic steam simulation (CSS). This method consists of 3 stages: injection, soaking, and production. Steam is injected into a well at a temperature of 300 to 340° C for a period of weeks to months. Then, the well is allowed to sit for days to weeks to allow heat to soak into the formation. Finally, the hot oil is pumped out of the well for a period of weeks or months. Once the production rate falls off, the well is put through another cycle. The injection of the catalyst solution before the injection of steam opens the possibility for upgrading the heavy oil in the process of aquathermolysis directly in the reservoir. In this paper, the possibility of using a catalyst precursor based on cobalt for upgrading the hydrocarbons of this field in the process of their extraction is represented. SARA analysis on oil saturated sandstones shows an increase in the proportion of saturated hydrocarbons by 11.1% due to the hydrogenation of aromatic hydrocarbons and their derivatives, the content of resins and asphaltenes are remained practically unchanged. A new method for estimating the adsorption of a catalyst based on taking into account the change in the concentration of the base metal before and after simulation of catalyst injection in the thermobaric conditions of the reservoir is proposed. During the study of catalyst adsorption in the rock, when simulating the CSS process, it is found that almost 28% of the cobalt, which is the main element of the catalyst precursor, is retained in the rock.
Fu, Wen Gan
2018-05-02
Artificial photosynthesis has attracted wide attention, particularly the development of efficient solar light-driven methods to reduce CO2 to form energy-rich carbon-based products. Because CO2 reduction is an uphill process with a large energy barrier, suitable catalysts are necessary to achieve this transformation. In addition, CO2 adsorption on a catalyst and proton transfer to CO2 are two important factors for the conversion reaction,and catalysts with high surface area and more active sites are required to improve the efficiency of CO2 reduction. Here, we report a visible light-driven system for CO2-to-CO conversion that consists of a heterogeneous hybrid catalyst of Co and Co2P nanoparticles embedded in carbon nanolayers codoped with N and P (Co-Co2P@NPC) and a homogeneous Ru(II)-based complex photosensitizer. The average generation rate of CO of the system was up to 35,000 μmol h-1 g-1 with selectivity of 79.1% in 3 h. Linear CO production at an exceptionally high rate of 63,000 μmol h-1 g-1 was observed in the first hour of reaction. Inspired by this highly active catalyst, we also synthesized Co@NC and Co2P@NPC materials and explored their structure, morphology, and catalytic properties for CO2 photoreduction. The results showed that the nanoparticle size, partially adsorbed H2O molecules on the catalyst surface, and the hybrid nature of the systems influenced their photocatalytic CO2 reduction performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isoda, Takaaki; Nagao, Shinichi; Ma, Xiaoliang
1995-12-31
It has been revealed that significant desulfurization of refractory 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene (4,6-DMDBT) is very essential to achive the low sulfur level of gas oil requested by the current regulation. Their direct desulfurization through the interaction of their sulfur atom with the catalyst surface is sterically hindered by its neighbouring methyl groups. The substrate is found kinetically to be hydrogenated at one of its phenyl rings prior to the desulfurization in order to reduce the steric hindrance through non-planaring configuration (2-4). NiMo / Al{sub 2}O{sub 3} was reported to be superior to CoMo / Al{sub 2}O{sub 3} in the deepmore » desulufurization, because of its higher hydrogenation activity. However, such a hydrogenation route suffers severe inhibition by aromatic species in their dominant presence, because 4,6-DMDBT must compete with the aromatic species to the hydrogenation sites on the catalysts. The aromatic species up to 30 wt % in the gas oil was that completely stop the desulfurization of the particular substrate. The catalyst for the selective hydrogenation of 4,6-DMDBT in the dominant aromatic partners is most wanted to achive its extensive desulfurization in the gas oil, although there have been reported activities of various transition metal sulfides for HDS of dibenzothiophene, and hydrogenation of aromatic hydrocarbons.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seol, Yongkoo; Javandel, Iraj
Fenton's reagent, a solution of hydrogen peroxide and ferrous iron catalyst, is used for an in-situ chemical oxidation of organic contaminants. Sulfuric acid is commonly used to create an acidic condition needed for catalytic oxidation. Fenton's reaction often involves pressure buildup and precipitation of reaction products, which can cause safety hazards and diminish efficiency. We selected citric acid, a food-grade substance, as an acidifying agent to evaluate its efficiencies for organic contaminant removal in Fenton's reaction, and examined the impacts of using citric acid on the unwanted reaction products. A series of batch and column experiments were performed with varyingmore » H{sub 2}O{sub 2} concentrations to decompose selected chlorinated ethylenes. Either dissolved iron from soil or iron sulfate salt was added to provide the iron catalyst in the batch tests. Batch experiments revealed that both citric and sulfuric acid systems achieved over 90% contaminant removal rates, and the presence of iron catalyst was essential for effective decontamination. Batch tests with citric acid showed no signs of pressure accumulation and solid precipitations, however the results suggested that an excessive usage of H{sub 2}O{sub 2} relative to iron catalysts (Fe{sup 2+}/H{sub 2}O{sub 2} < 1/330) would result in lowering the efficiency of contaminant removal by iron chelations in the citric acid system. Column tests confirmed that citric acid could provide suitable acidic conditions to achieve higher than 55% contaminant removal rates.« less
Insights into structure and dynamics of (Mn,Fe)Ox-promoted Rh nanoparticles.
Dimitrakopoulou, Maria; Huang, Xing; Kröhnert, Jutta; Teschner, Detre; Praetz, Sebastian; Schlesiger, Christopher; Malzer, Wolfgang; Janke, Christiane; Schwab, Ekkehard; Rosowski, Frank; Kaiser, Harry; Schunk, Stephan; Schlögl, Robert; Trunschke, Annette
2018-05-29
The mutual interaction between Rh nanoparticles and manganese/iron oxide promoters in silica-supported Rh catalysts for the hydrogenation of CO to higher alcohols was analyzed by applying a combination of integral techniques including temperature-programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS) and Fourier transform infrared (FTIR) spectroscopy with local analysis by using high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) in combination with energy dispersive X-ray spectroscopy (EDX). The promoted catalysts show reduced CO adsorption capacity as evidenced through FTIR spectroscopy, which is attributed to a perforated core-shell structure of the Rh nano-particles in accordance with the microstructural analysis from electron microscopy. Iron and manganese occur in low formal oxidation states between 2+ and zero in the reduced catalysts as shown by using TPR and XAS. Infrared spectroscopy measured in diffuse reflectance at reaction temperature and pressure indicates that partial coverage of the Rh particles is maintained at reaction temperature under operation and that the remaining accessible metal adsorption sites might be catalytically less relevant because the hydrogenation of adsorbed carbonyl species at 523 K and 30 bar hydrogen essentially failed. It is concluded that Rh0 is poisoned due to the adsorption of CO under the reaction conditions of CO hydrogenation. The active sites are associated either with a (Mn,Fe)Ox (x < 0.25) phase or species at the interface between Rh and its co-catalyst (Mn,Fe)Ox.
Surface modification processes during methane decomposition on Cu-promoted Ni–ZrO2 catalysts
Wolfbeisser, Astrid; Klötzer, Bernhard; Mayr, Lukas; Rameshan, Raffael; Zemlyanov, Dmitry; Bernardi, Johannes; Rupprechter, Günther
2015-01-01
The surface chemistry of methane on Ni–ZrO2 and bimetallic CuNi–ZrO2 catalysts and the stability of the CuNi alloy under reaction conditions of methane decomposition were investigated by combining reactivity measurements and in situ synchrotron-based near-ambient pressure XPS. Cu was selected as an exemplary promoter for modifying the reactivity of Ni and enhancing the resistance against coke formation. We observed an activation process occurring in methane between 650 and 735 K with the exact temperature depending on the composition which resulted in an irreversible modification of the catalytic performance of the bimetallic catalysts towards a Ni-like behaviour. The sudden increase in catalytic activity could be explained by an increase in the concentration of reduced Ni atoms at the catalyst surface in the active state, likely as a consequence of the interaction with methane. Cu addition to Ni improved the desired resistance against carbon deposition by lowering the amount of coke formed. As a key conclusion, the CuNi alloy shows limited stability under relevant reaction conditions. This system is stable only in a limited range of temperature up to ~700 K in methane. Beyond this temperature, segregation of Ni species causes a fast increase in methane decomposition rate. In view of the applicability of this system, a detailed understanding of the stability and surface composition of the bimetallic phases present and the influence of the Cu promoter on the surface chemistry under relevant reaction conditions are essential. PMID:25815163
Reaction pathways for the deoxygenation of vegetable oils and related model compounds.
Gosselink, Robert W; Hollak, Stefan A W; Chang, Shu-Wei; van Haveren, Jacco; de Jong, Krijn P; Bitter, Johannes H; van Es, Daan S
2013-09-01
Vegetable oil-based feeds are regarded as an alternative source for the production of fuels and chemicals. Paraffins and olefins can be produced from these feeds through catalytic deoxygenation. The fundamentals of this process are mostly studied by using model compounds such as fatty acids, fatty acid esters, and specific triglycerides because of their structural similarity to vegetable oils. In this Review we discuss the impact of feedstock, reaction conditions, and nature of the catalyst on the reaction pathways of the deoxygenation of vegetable oils and its derivatives. As such, we conclude on the suitability of model compounds for this reaction. It is shown that the type of catalyst has a significant effect on the deoxygenation pathway, that is, group 10 metal catalysts are active in decarbonylation/decarboxylation whereas metal sulfide catalysts are more selective to hydrodeoxygenation. Deoxygenation studies performed under H2 showed similar pathways for fatty acids, fatty acid esters, triglycerides, and vegetable oils, as mostly deoxygenation occurs indirectly via the formation of fatty acids. Deoxygenation in the absence of H2 results in significant differences in reaction pathways and selectivities depending on the feedstock. Additionally, using unsaturated feedstocks under inert gas results in a high selectivity to undesired reactions such as cracking and the formation of heavies. Therefore, addition of H2 is proposed to be essential for the catalytic deoxygenation of vegetable oil feeds. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Seol, Yongkoo; Javandel, Iraj
2008-06-01
Fenton's reagent, a solution of hydrogen peroxide and ferrous iron catalyst, is used for an in situ chemical oxidation of organic contaminants. Sulfuric acid is commonly used to create an acidic condition needed for catalytic oxidation. Fenton's reaction often involves pressure buildup and precipitation of reaction products, which can cause safety hazards and diminish efficiency. We selected citric acid, a food-grade substance, as an acidifying agent to evaluate its efficiencies for organic contaminant removal in Fenton's reaction, and examined the impacts of using citric acid on the unwanted reaction products. A series of batch and column experiments were performed with varying H2O2 concentrations to decompose selected chlorinated ethylenes. Either dissolved iron from soil or iron sulfate salt was added to provide the iron catalyst in the batch tests. Batch experiments revealed that both citric and sulfuric acid systems achieved over 90% contaminant removal rates, and the presence of iron catalyst was essential for effective decontamination. Batch tests with citric acid showed no signs of pressure accumulation and solid precipitations, however the results suggested that an excessive usage of H2O2 relative to iron catalysts (Fe2+/H2O2<1/330) would result in lowering the efficiency of contaminant removal by iron chelation in the citric acid system. Column tests confirmed that citric acid could provide suitable acidic conditions to achieve higher than 55% contaminant removal rates.
Methanation of gas streams containing carbon monoxide and hydrogen
Frost, Albert C.
1983-01-01
Carbon monoxide-containing gas streams having a relatively high concentration of hydrogen are pretreated so as to remove the hydrogen in a recoverable form for use in the second step of a cyclic, essentially two-step process for the production of methane. The thus-treated streams are then passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. This active carbon is reacted with said hydrogen removed from the feed gas stream to form methane. The utilization of the CO in the feed gas stream is appreciably increased, enhancing the overall process for the production of relatively pure, low-cost methane from CO-containing waste gas streams.
Yang, Nuoya; Medford, Andrew J.; Liu, Xinyan; ...
2016-01-31
Synthesis gas (CO + H 2) conversion is a promising route to converting coal, natural gas, or biomass into synthetic liquid fuels. Rhodium has long been studied as it is the only elemental catalyst that has demonstrated selectivity to ethanol and other C 2+ oxygenates. However, the fundamentals of syngas conversion over rhodium are still debated. In this work a microkinetic model is developed for conversion of CO and H 2 into methane, ethanol, and acetaldehyde on the Rh (211) and (111) surfaces, chosen to describe steps and close-packed facets on catalyst particles. The model is based on DFT calculationsmore » using the BEEF-vdW functional. The mean-field kinetic model includes lateral adsorbate–adsorbate interactions, and the BEEF-vdW error estimation ensemble is used to propagate error from the DFT calculations to the predicted rates. The model shows the Rh(211) surface to be ~6 orders of magnitude more active than the Rh(111) surface, but highly selective toward methane, while the Rh(111) surface is intrinsically selective toward acetaldehyde. A variety of Rh/SiO 2 catalysts are synthesized, tested for catalytic oxygenate production, and characterized using TEM. The experimental results indicate that the Rh(111) surface is intrinsically selective toward acetaldehyde, and a strong inverse correlation between catalytic activity and oxygenate selectivity is observed. Furthermore, iron impurities are shown to play a key role in modulating the selectivity of Rh/SiO 2 catalysts toward ethanol. The experimental observations are consistent with the structure-sensitivity predicted from theory. As a result, this work provides an improved atomic-scale understanding and new insight into the mechanism, active site, and intrinsic selectivity of syngas conversion over rhodium catalysts and may also guide rational design of alloy catalysts made from more abundant elements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Nuoya; Medford, Andrew J.; Liu, Xinyan
Synthesis gas (CO + H 2) conversion is a promising route to converting coal, natural gas, or biomass into synthetic liquid fuels. Rhodium has long been studied as it is the only elemental catalyst that has demonstrated selectivity to ethanol and other C 2+ oxygenates. However, the fundamentals of syngas conversion over rhodium are still debated. In this work a microkinetic model is developed for conversion of CO and H 2 into methane, ethanol, and acetaldehyde on the Rh (211) and (111) surfaces, chosen to describe steps and close-packed facets on catalyst particles. The model is based on DFT calculationsmore » using the BEEF-vdW functional. The mean-field kinetic model includes lateral adsorbate–adsorbate interactions, and the BEEF-vdW error estimation ensemble is used to propagate error from the DFT calculations to the predicted rates. The model shows the Rh(211) surface to be ~6 orders of magnitude more active than the Rh(111) surface, but highly selective toward methane, while the Rh(111) surface is intrinsically selective toward acetaldehyde. A variety of Rh/SiO 2 catalysts are synthesized, tested for catalytic oxygenate production, and characterized using TEM. The experimental results indicate that the Rh(111) surface is intrinsically selective toward acetaldehyde, and a strong inverse correlation between catalytic activity and oxygenate selectivity is observed. Furthermore, iron impurities are shown to play a key role in modulating the selectivity of Rh/SiO 2 catalysts toward ethanol. The experimental observations are consistent with the structure-sensitivity predicted from theory. As a result, this work provides an improved atomic-scale understanding and new insight into the mechanism, active site, and intrinsic selectivity of syngas conversion over rhodium catalysts and may also guide rational design of alloy catalysts made from more abundant elements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirschon, A.S.; Wilson, R.B.
We analyzed two sets of liquefaction experiments, one involved the liquefaction of Black Thunder Coal with the corresponding recycle vehicle, and the second set of liquefaction runs involved the liquefaction of Argonne North Dakota Lignite. We compared coal conversions of Black Thunder coal and recycle solvent using Fe(CO){sub 5} and carbon monoxide/hydrogen atmospheres and a MolyVanL molybdenum catalyst under a hydrogen atmosphere. We also continued our investigation of the effect of water on the conversions. We found that addition of water seemed to decrease the amount of oils; we determined the effect of water with the recycle solvent alone, (nomore » coal added) under similar conditions, and again produced a decrease in oil yields. FIMS analyses of the hexane and toluene soluble fractions seem to indicate that in the experiment when water was added, a considerable amount of light material remained behind in the toluene layer, suggesting that somehow the addition of water decreased the amount of extracted material, perhaps by increasing the amount of polarity of the product. When the conversion was conducted with the MolyVanL molybdenum catalyst a good quality product in terms of lower viscosity was produced; however, conversions to THF soluble material was not increased. We believe the molybdenum catalyst hydrogenated the recycle vehicle rather than effectively converted the coal. In order to eliminate the effect of solvent we have often conducted experiments in an inert solvent with Argonne coals. We conducted several coal conversions experiments using an Argonne North Dakota lignite. We compared several dispersed Fe catalysts and in addition, a nickel catalyst. We investigated nickel as a catalyst since we believe this metal may be more effective in decarboxylating low rank coals. Consistent with this premise we found that the nickel catalyst gave the highest conversions.« less
Core–Shell Au@Metal-Oxide Nanoparticle Electrocatalysts for Enhanced Oxygen Evolution
Strickler, Alaina L.; Escudero-Escribano, Marı́a; Jaramillo, Thomas F.
2017-09-25
Enhanced catalysis for electrochemical oxygen evolution is essential for the efficacy of many renewable energy technologies, including water electrolyzers and metal–air batteries. Recently, Au supports have been shown to enhance the activity of many 3d transition metal-oxide thin films for the oxygen evolution reaction (OER) in alkaline media. In this paper, we translate the beneficial impact of Au supports to high surface area, device-ready core–shell nanoparticles consisting of a Au-core and a metal-oxide shell (Au@M xO y where M = Ni, Co, Fe, and CoFe). Through a systematic evaluation, we establish trends in performance and illustrate the universal activity enhancementmore » when employing the Au-core in the 3d transition metal-oxide nanoparticles. Finally, the highest activity particles, Au@CoFeO x, demonstrate an overpotential of 328 ± 3 mV over a 2 h stability test at 10 mA cm –2, illustrating that strategically coupling Au support and mixed metal-oxide effects in a core–shell nanoparticle morphology is a promising avenue to achieve device-ready, high-performance OER catalysts.« less
Core–Shell Au@Metal-Oxide Nanoparticle Electrocatalysts for Enhanced Oxygen Evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strickler, Alaina L.; Escudero-Escribano, Marı́a; Jaramillo, Thomas F.
Enhanced catalysis for electrochemical oxygen evolution is essential for the efficacy of many renewable energy technologies, including water electrolyzers and metal–air batteries. Recently, Au supports have been shown to enhance the activity of many 3d transition metal-oxide thin films for the oxygen evolution reaction (OER) in alkaline media. In this paper, we translate the beneficial impact of Au supports to high surface area, device-ready core–shell nanoparticles consisting of a Au-core and a metal-oxide shell (Au@M xO y where M = Ni, Co, Fe, and CoFe). Through a systematic evaluation, we establish trends in performance and illustrate the universal activity enhancementmore » when employing the Au-core in the 3d transition metal-oxide nanoparticles. Finally, the highest activity particles, Au@CoFeO x, demonstrate an overpotential of 328 ± 3 mV over a 2 h stability test at 10 mA cm –2, illustrating that strategically coupling Au support and mixed metal-oxide effects in a core–shell nanoparticle morphology is a promising avenue to achieve device-ready, high-performance OER catalysts.« less
Pt skin on AuCu intermetallic substrate: a strategy to maximize Pt utilization for fuel cells.
Wang, Gongwei; Huang, Bing; Xiao, Li; Ren, Zhandong; Chen, Hao; Wang, Deli; Abruña, Héctor D; Lu, Juntao; Zhuang, Lin
2014-07-09
The dependence on Pt catalysts has been a major issue of proton-exchange membrane (PEM) fuel cells. Strategies to maximize the Pt utilization in catalysts include two main approaches: to put Pt atoms only at the catalyst surface and to further enhance the surface-specific catalytic activity (SA) of Pt. Thus far there has been no practical design that combines these two features into one single catalyst. Here we report a combined computational and experimental study on the design and implementation of Pt-skin catalysts with significantly improved SA toward the oxygen reduction reaction (ORR). Through screening, using density functional theory (DFT) calculations, a Pt-skin structure on AuCu(111) substrate, consisting of 1.5 monolayers of Pt, is found to have an appropriately weakened oxygen affinity, in comparison to that on Pt(111), which would be ideal for ORR catalysis. Such a structure is then realized by substituting the Cu atoms in three surface layers of AuCu intermetallic nanoparticles (AuCu iNPs) with Pt. The resulting Pt-skinned catalyst (denoted as Pt(S)AuCu iNPs) has been characterized in depth using synchrotron XRD, XPS, HRTEM, and HAADF-STEM/EDX, such that the Pt-skin structure is unambiguously identified. The thickness of the Pt skin was determined to be less than two atomic layers. Finally the catalytic activity of Pt(S)AuCu iNPs toward the ORR was measured via rotating disk electrode (RDE) voltammetry through which it was established that the SA was more than 2 times that of a commercial Pt/C catalyst. Taking into account the ultralow Pt loading in Pt(S)AuCu iNPs, the mass-specific catalytic activity (MA) was determined to be 0.56 A/mg(Pt)@0.9 V, a value that is well beyond the DOE 2017 target for ORR catalysts (0.44 A/mg(Pt)@0.9 V). These findings provide a strategic design and a realizable approach to high-performance and Pt-efficient catalysts for fuel cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manos Mavrikakis; James A. Dumesic; Amit A. Gokhale
2005-03-22
Efforts during this first year focused on four areas: (1) searching/summarizing published FTS mechanistic and kinetic studies of FTS reactions on iron catalysts; (2) construction of mass spectrometer-TPD and Berty CSTR reactor systems; (3) preparation and characterization of unsupported iron and alumina-supported iron catalysts at various iron loadings (4) Determination of thermochemical parameters such as binding energies of reactive intermediates, heat of FTS elementary reaction steps, and kinetic parameters such as activation energies, and frequency factors of FTS elementary reaction steps on a number of model surfaces. Literature describing mechanistic and kinetic studies of Fischer-Tropsch synthesis on iron catalysts wasmore » compiled in a draft review. Construction of the mass spectrometer-TPD system is 90% complete and of a Berty CSTR reactor system 98% complete. Three unsupported iron catalysts and three alumina-supported iron catalysts were prepared by nonaqueous-evaporative deposition (NED) or aqueous impregnation (AI) and characterized by chemisorption, BET, extent-of-reduction, XRD, and TEM methods. These catalysts, covering a wide range of dispersions and metal loadings, are well-reduced and relatively thermally stable up to 500-600 C in H{sub 2}, thus ideal for kinetic and mechanistic studies. The alumina-supported iron catalysts will be used for kinetic and mechanistic studies. In the coming year, adsorption/desorption properties, rates of elementary steps, and global reaction rates will be measured for these catalysts, with and without promoters, providing a database for understanding effects of dispersion, metal loading, and support on elementary kinetic parameters and for validation of computational models that incorporate effects of surface structure and promoters. Furthermore, using state-of-the-art self-consistent Density Functional Theory (DFT) methods, we have extensively studied the thermochemistry and kinetics of various elementary steps on three different model surfaces: (1) Fe(110), (2) Fe(110) modified by subsurface C, and (3) Fe surface modified with Pt adatoms. These studies have yielded valuable insights into the reactivity of Fe surfaces for FTS, and provided accurate estimates for the effect of Fe modifiers such as subsurface C and surface Pt.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du W.; Su D.; Wang Q.
2011-08-03
Ethanol is a promising fuel for low-temperature direct fuel cell reactions due to its low toxicity, ease of storage and transportation, high-energy density, and availability from biomass. However, the implementation of ethanol fuel cell technology has been hindered by the lack of low-cost, highly active anode catalysts. In this paper, we have studied Iridium (Ir)-based binary catalysts as low-cost alternative electrocatalysts replacing platinum (Pt)-based catalysts for the direct ethanol fuel cell (DEFC) reaction. We report the synthesis of carbon supported Ir{sub 71}Sn{sub 29} catalysts with an average diameter of 2.7 {+-} 0.6 nm through a 'surfactant-free' wet chemistry approach. Themore » complementary characterization techniques, including aberration-corrected scanning transmission electron microscopy equipped with electron energy loss spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy, are used to identify the 'real' heterogeneous structure of Ir{sub 71}Sn{sub 29}/C particles as Ir/Ir-Sn/SnO{sub 2}, which consists of an Ir-rich core and an Ir-Sn alloy shell with SnO{sub 2} present on the surface. The Ir{sub 71}Sn{sub 29}/C heterogeneous catalyst exhibited high electrochemical activity toward the ethanol oxidation reaction compared to the commercial Pt/C (ETEK), PtRu/C (Johnson Matthey) as well as PtSn/C catalysts. Electrochemical measurements and density functional theory calculations demonstrate that the superior electro-activity is directly related to the high degree of Ir-Sn alloy formation as well as the existence of nonalloyed SnO{sub 2} on surface. Our cross-disciplinary work, from novel 'surfactant-free' synthesis of Ir-Sn catalysts, theoretical simulations, and catalytic measurements to the characterizations of 'real' heterogeneous nanostructures, will not only highlight the intriguing structure-property correlations in nanosized catalysts but also have a transformative impact on the commercialization of DEFC technology by replacing Pt with low-cost, highly active Ir-based catalysts.« less
Effect of SLP properties of vanadium SO/sub 2/ oxidation on reaction mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, K.C.; Nobile, A. Jr.
The SLP properties of a K/sub 2/SO/sub 4/-V/sub 2/O/sub 5/ catalysts during SO/sub 2/ oxidation and the intrinsic kinetics of the reaction on the SLPC were investigated and measured. The reason for the sudden drop in activation energy in the temperature range 440-470/sup 0/C is explained from the results of an investigation of the thermal and electrical behavior of the catalyst, and the distribution of active melt components. A reaction mechanism and rate equation consistent with the results are proposed and developed.
Increasing the Aromatic Selectivity of Quinoline Hydrogenolysis Using Pd/MO x–Al 2O 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachrach, Mark; Morlanes-Sanchez, Natalia; Canlas, Christian P.
2014-09-11
Catalysts consisting of Pd nanoparticles supported on highly dispersed TiO x–Al 2O 3, TaO x–Al 2O 3, and MoO x–Al 2O 3 are studied for catalytic quinoline hydrogenation and selective C–N bond cleavage at 275 °C and 20 bar H 2. Lastly, the Pd/MO x–Al 2O 3 materials exhibit significantly greater aromatic product selectivity and thus 10–15 % less required H 2 for a given level of denitrogenation relative to an unmodified Pd/Al 2O 3 catalyst.
Selective aerobic alcohol oxidation method for conversion of lignin into simple aromatic compounds
Stahl, Shannon S; Rahimi, Alireza
2015-03-03
Described is a method to oxidize lignin or lignin sub-units. The method includes oxidation of secondary benzylic alcohol in the lignin or lignin sub-unit to a corresponding ketone in the presence of unprotected primarily aliphatic alcohol in the lignin or lignin sub-unit. The optimal catalyst system consists of HNO.sub.3 in combination with another Bronsted acid, in the absence of a metal-containing catalyst, thereby yielding a selectively oxidized lignin or lignin sub-unit. The method may be carried out in the presence or absence of additional reagents including TEMPO and TEMPO derivatives.
Low-Temperature Catalytic Process To Produce Hydrocarbons From Sugars
Cortright, Randy D.; Dumesic, James A.
2005-11-15
Disclosed is a method of producing hydrogen from oxygenated hydrocarbon reactants, such as methanol, glycerol, sugars (e.g. glucose and xylose), or sugar alcohols (e.g. sorbitol). The method takes place in the condensed liquid phase. The method includes the steps of reacting water and a water-soluble oxygenated hydrocarbon in the presence of a metal-containing catalyst. The catalyst contains a metal selected from the group consisting of Group VIIIB transitional metals, alloys thereof, and mixtures thereof. The disclosed method can be run at lower temperatures than those used in the conventional steam reforming of alkanes.
R'Mili, Badr; Boréave, Antoinette; Meme, Aurelie; Vernoux, Philippe; Leblanc, Mickael; Noël, Ludovic; Raux, Stephane; D'Anna, Barbara
2018-03-06
Diesel particulate filters (DPFs) are commonly employed in modern passenger cars to comply with current particulate matter (PM) emission standards. DPFs requires periodic regeneration to remove the accumulated matter. During the process, high-concentration particles, in both nucleation and accumulation modes, are emitted. Here, we report new information on particle morphology and chemical composition of fine (FPs) and ultrafine particles (UFPs) measured downstream of the DPF during active regeneration of two Euro 5 passenger cars. The first vehicle was equipped with a close-coupled diesel oxidation catalyst (DOC) and noncatalyzed DPF combined with fuel borne catalyst and the second one with DOC and a catalyzed-diesel particle filter (CDPF). Differences in PM emission profiles of the two vehicles were related to different after treatment design, regeneration strategies, and vehicle characteristics and mileage. Particles in the nucleation mode consisted of ammonium bisulfate, sulfate and sulfuric acid, suggesting that the catalyst desulfation is the key process in the formation of UFPs. Larger particles and agglomerates, ranging from 90 to 600 nm, consisted of carbonaceous material (soot and soot aggregates) coated by condensable material including organics, ammonium bisulfate and sulfuric acid. Particle emission in the accumulation mode was due to the reduced filtration efficiency (soot cake oxidation) throughout the regeneration process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiberg, Gustav K. H., E-mail: gustav.wiberg@gmail.com, E-mail: m.arenz@chem.ku.dk; Fleige, Michael; Arenz, Matthias, E-mail: gustav.wiberg@gmail.com, E-mail: m.arenz@chem.ku.dk
2015-02-15
We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allowsmore » an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.« less
NASA Astrophysics Data System (ADS)
Na, HeYa; Zhang, Lei; Qiu, HaiXia; Wu, Tao; Chen, MingXi; Yang, Nian; Li, LingZhi; Xing, FuBao; Gao, JianPing
2015-08-01
Palladium-copper nanoparticles (Pd-Cu NPs) supported on reduced graphene oxide (RGO) with different Pd/Cu ratios (Pd-Cu/RGO) were prepared by a two step method. The Pd-Cu/RGO hybrids were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction and thermogravimetric analyses. Cyclic voltammetry and chronoamperometry were used to investigate the electrochemical activities and stabilities of the Pd-Cu/RGO catalysts for the electro-oxidation of methanol and ethanol in alkaline media. The Pd-Cu/RGO catalysts exhibited high catalytic activities and good stabilities. This is because the catalysts have a bimetallic structure consisting of a small Pd-Cu core surrounded by a thin Pd-rich shell which improves the catalytic activities of the Pd-Cu/RGO hybrids. Thus they should be useful in direct methanol and ethanol fuel cells.
Aricò, Antonino S; Stassi, Alessandro; D'Urso, Claudia; Sebastián, David; Baglio, Vincenzo
2014-08-18
A composite Pd-based electrocatalyst consisting of a surface layer of Pt (5 wt.%) supported on a core Pd3Co1 alloy (95 wt.%) and dispersed as nanoparticles on a carbon black support (50 wt.% metal content) was prepared by using a sulphite-complex route. The structure, composition, morphology, and surface properties of the catalyst were investigated by XRD, XRF, TEM, XPS and low-energy ion scattering spectroscopy (LE-ISS). The catalyst showed an enrichment of Pt on the surface and a smaller content of Co in the outermost layers. These characteristics allow a decrease the Pt content in direct methanol fuel cell cathode electrodes (from 1 to 0.06 mg cm(-2)) without significant decay in performance, due also to a better tolerance to methanol permeated through the polymer electrolyte membrane. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Morphology control of layer-structured gallium selenide nanowires.
Peng, Hailin; Meister, Stefan; Chan, Candace K; Zhang, Xiao Feng; Cui, Yi
2007-01-01
Layer-structured group III chalcogenides have highly anisotropic properties and are attractive materials for stable photocathodes and battery electrodes. We report the controlled synthesis and characterization of layer-structured GaSe nanowires via a catalyst-assisted vapor-liquid-solid (VLS) growth mechanism during GaSe powder evaporation. GaSe nanowires consist of Se-Ga-Ga-Se layers stacked together via van der Waals interactions to form belt-shaped nanowires with a growth direction along the [11-20], width along the [1-100], and height along the [0001] direction. Nanobelts exhibit a variety of morphologies including straight, zigzag, and saw-tooth shapes. These morphologies are realized by controlling the growth temperature and time so that the actual catalysts have a chemical composition of Au, Au-Ga alloy, or Ga. The participation of Ga in the VLS catalyst is important for achieving different morphologies of GaSe. In addition, GaSe nanotubes are also prepared by a slow growth process.
Wendlandt, Alison E.; Stahl, Shannon S.
2014-01-01
Copper amine oxidases are a family of enzymes with quinone cofactors that oxidize primary amines to aldehydes. The native mechanism proceeds via an iminoquinone intermediate that promotes high selectivity for reactions with primary amines, thereby constraining the scope of potential biomimetic synthetic applications. Here, we report a novel bioinspired quinone catalyst system, consisting of 1,10-phenanthroline-5,6-dione/ZnI2, that bypasses these constraints via an abiological pathway involving a hemiaminal intermediate. Efficient aerobic dehydrogenation of non-native secondary amine substrates, including pharmaceutically relevant nitrogen heterocycles, is demonstrated. The ZnI2 cocatalyst activates the quinone toward amine oxidation and provides a source of iodide, which plays an important redox-mediator role to promote aerobic catalytic turnover. These findings provide a valuable foundation for broader development of aerobic oxidation reactions employing quinone-based catalysts. PMID:24328193
NASA Astrophysics Data System (ADS)
Jayaraman, Shrisudersan; Baeck, Sung-Hyeon; Jaramillo, Thomas F.; Kleiman-Shwarsctein, Alan; McFarland, Eric W.
2005-06-01
An automated system for high-throughput electrochemical synthesis and screening of fuel cell electro-oxidation catalysts is described. This system consists of an electrode probe that contains counter and reference electrodes that can be positioned inside an array of electrochemical cells created within a polypropylene block. The electrode probe is attached to an automated of X-Y-Z motion system. An externally controlled potentiostat is used to apply the electrochemical potential to the catalyst substrate. The motion and electrochemical control are integrated using a user-friendly software interface. During automated synthesis the deposition potential and/or current may be controlled by a pulse program triggered by the software using a data acquisition board. The screening includes automated experiments to obtain cyclic voltammograms. As an example, a platinum-tungsten oxide (Pt-WO3) library was synthesized and characterized for reactivity towards methanol electro-oxidation.
NASA Astrophysics Data System (ADS)
Wiberg, Gustav K. H.; Fleige, Michael; Arenz, Matthias
2015-02-01
We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allows an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.
Value recovery from spent alumina-base catalyst
Hyatt, David E.
1987-01-01
A process for the recovery of aluminum and at least one other metal selected from the group consisting of molybdenum, nickel and cobalt from a spent hydrogenation catalyst comprising (1) adding about 1 to 3 parts H.sub.2 SO.sub.4 to each part of spent catalyst in a reaction zone of about 20.degree. to 200.degree. C. under sulfide gas pressure between about 1 and about 35 atmospheres, (2) separating the resultant Al.sub.2 (SO.sub.4).sub.3 solution from the sulfide precipitate in the mixture, (3) oxidizing the remaining sulfide precipitate as an aqueous slurry at about 20.degree. to 200.degree. C. in an oxygen-containing atmosphere at a pressure between about 1 and about 35 atmospheres, (4) separating the slurry to obtain solid molybdic acid and a sulfate liquor containing said at least one metal, and (5) recovering said at least one metal from the sulfate liquor in marketable form.
Insights into gold-catalyzed plasma-assisted CVD growth of silicon nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wanghua, E-mail: wanghua.chen@polytechnique.edu; Roca i Cabarrocas, Pere
2016-07-25
Understanding and controlling effectively the behavior of metal catalyst droplets during the Vapor-Liquid-Solid growth of nanowires are crucial for their applications. In this work, silicon nanowires are produced by plasma-assisted Chemical Vapor Deposition using gold as a catalyst. The influence of hydrogen plasma on nanowire growth is investigated experimentally and theoretically. Interestingly, in contrast to conventional chemical vapor deposition, the growth rate of silicon nanowires shows a decrease as a function of their diameters, which is consistent with the incorporation of silicon via sidewall diffusion. We show that Ostwald ripening of catalyst droplets during nanowire growth is inhibited in themore » presence of a hydrogen plasma. However, when the plasma is off, the diffusion of Au atoms on the nanowire sidewall can take place. Based on this observation, we have developed a convenient method to grow silicon nanotrees.« less
Method for the catalytic conversion of organic materials into a product gas
Elliott, D.C.; Sealock, L.J. Jr.; Baker, E.G.
1997-04-01
A method for converting organic material into a product gas includes: (a) providing a liquid reactant mixture containing liquid water and liquid organic material within a pressure reactor; (b) providing an effective amount of a reduced metal catalyst selected from the group consisting of ruthenium, rhodium, osmium and iridium or mixtures thereof within the pressure reactor; and (c) maintaining the liquid reactant mixture and effective amount of reduced metal catalyst in the pressure reactor at temperature and pressure conditions of from about 300 C to about 450 C; and at least 130 atmospheres for a period of time, the temperature and pressure conditions being effective to maintain the reactant mixture substantially as liquid, the effective amount of reduced metal catalyst and the period of time being sufficient to catalyze a reaction of the liquid organic material to produce a product gas composed primarily of methane, carbon dioxide and hydrogen. 5 figs.
Method for the catalytic conversion of organic materials into a product gas
Elliott, Douglas C.; Sealock, Jr., L. John; Baker, Eddie G.
1997-01-01
A method for converting organic material into a product gas includes: a) providing a liquid reactant mixture containing liquid water and liquid organic material within a pressure reactor; b) providing an effective amount of a reduced metal catalyst selected from the group consisting of ruthenium, rhodium, osmium and iridium or mixtures thereof within the pressure reactor; and c) maintaining the liquid reactant mixture and effective amount of reduced metal catalyst in the pressure reactor at temperature and pressure conditions of from about 300.degree. C. to about 450.degree. C.; and at least 130 atmospheres for a period of time, the temperature and pressure conditions being effective to maintain the reactant mixture substantially as liquid, the effective amount of reduced metal catalyst and the period of time being sufficient to catalyze a reaction of the liquid organic material to produce a product gas composed primarily of methane, carbon dioxide and hydrogen.
Ahmadi Daryakenari, Ahmad; Hosseini, Davood; Ho, Ya-Lun; Saito, Takumi; Apostoluk, Aleksandra; Müller, Christoph R; Delaunay, Jean-Jacques
2016-06-29
A single-step electrophoretic deposition (EPD) process is used to fabricate catalyst layers which consist of nickel oxide nanoparticles attached on the surface of nanographitic flakes. Magnesium ions present in the colloid charge positively the flake's surface as they attach on it and are also used to bind nanographitic flakes together. The fabricated catalyst layers showed a very low onset voltage (-0.2 V vs Ag/AgCl) in the electro-oxidation of ethanol. To clarify the occurring catalytic mechanism, we performed annealing treatment to produce samples having a different electrochemical behavior with a large onset voltage. Temperature dependence measurements of the layer conductivity pointed toward a charge transport mechanism based on hopping for the nonannealed layers, while the drift transport is observed in the annealed layers. The hopping charge transport is responsible for the appearance of the low onset voltage in ethanol electro-oxidation.
A Unique 3D Nitrogen-Doped Carbon Composite as High-Performance Oxygen Reduction Catalyst
Karunagaran, Ramesh; Tung, Tran Thanh; Tran, Diana; Coghlan, Campbell; Doonan, Christian
2017-01-01
The synthesis and properties of an oxygen reduction catalyst based on a unique 3-dimensional (3D) nitrogen doped (N-doped) carbon composite are described. The composite material is synthesised via a two-step hydrothermal and pyrolysis method using bio-source low-cost materials of galactose and melamine. Firstly, the use of iron salts and galactose to hydrothermally produceiron oxide (Fe2O3) magnetic nanoparticle clusters embedded carbon spheres. Secondly, magnetic nanoparticles diffused out of the carbon sphere when pyrolysed in the presence of melamine as nitrogen precursor. Interestingly, many of these nanoparticles, as catalyst-grown carbon nanotubes (CNTs), resulted in the formation of N-doped CNTs and N-doped carbon spheres under the decomposition of carbon and a nitrogen environment. The composite material consists of integrated N-doped carbon microspheres and CNTs show high ORR activity through a predominantly four-electron pathway. PMID:28792432
Attrition Resistant Iron-Based Catalysts For F-T SBCRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adeyinka A. Adeyiga
2006-01-31
The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+ H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. The use of iron-(FE) based catalysts is attractive not only due to their low cost and ready availability, but also due to their high water-gas shift activity which makes it possible to use these catalysts with low H{sub 2}/CO ratios. However, a serious problem withmore » the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment; makes the separation of catalyst from the oil/wax product very difficult, if not impossible; and results in a steady loss of catalyst from the reactor. Under a previous Department of Energy (DOE)/University Research Grant (UCR) grant, Hampton University reported, for the first time, the development of demonstrably attrition-resistant Fe F-T synthesis catalysts having good activity, selectivity, and attrition resistance. These catalysts were prepared by spray drying Fe catalysts with potassium (K), copper (Cu), and silica (SiO{sub 2}) as promoters. SiO{sub 2} was also used as a binder for spray drying. These catalysts were tested for activity and selectivity in a laboratory-scale fixed-bed reactor. Fundamental understanding of attrition is being addressed by incorporating suitable binders into the catalyst recipe. This has resulted in the preparation of a spray dried HPR-43 catalyst having average particle size (aps) of 70 {micro}m with high attrition resistance. This HPR-43 attrition resistant, active and selective catalyst gave 95% CO conversion through 125 hours of testing in a fixed-bed at 270 C, 1.48 MPa, H{sub 2}/CO=0.67 and 2.0 NL/g-cat/h with C{sub 5+} selectivity of >78% and methane selectivity of less than 5% at an {alpha} of 0.9. Research is proposed to enable further development and optimization of these catalysts by (1) better understanding the role and interrelationship of various catalyst composition and preparation parameters on attrition resistance, activity, and selectivity of these catalysts, (2) the presence of sulfide ions on a precipitated iron catalyst, and (3) the effect of water on sulfided iron F-T catalysts for its activity, selectivity, and attrition. Catalyst preparations will be based on spray drying. The research employed, among other measurements, attrition testing and F-T synthesis at high pressure. Catalyst activity and selectivity is evaluated using a small fixed-bed reactor and a continuous stirred tank reactor (CSTR). The catalysts were prepared by co-precipitation, followed by binder addition and spray drying at 250 C in a 1-m-diameter, 2-m-tall spray dryer. The binder silica content was varied from 0 to 20 wt%. The results show that the use of small amounts of precipitated SiO{sub 2} alone in spray-dried Fe catalysts can result in good attrition resistance. All catalysts investigated with SiO2 wt% {le} 12 produced fines less than 10 wt% during the jet cup attrition test, making them suitable for long-term use in a slurry bubble column reactor. Thus, concentration rather than the type of SiO{sub 2} incorporated into catalyst has a more critical impact on catalyst attrition resistance of spray-dried Fe catalysts. Lower amounts of SiO{sub 2} added to a catalyst give higher particle densities and therefore higher attrition resistances. In order to produce a suitable SBCR catalyst, however, the amount of SiO{sub 2} added has to be optimized to provide adequate surface area, particle density, and attrition resistance. Two of the catalysts with precipitated and binder silica were tested in Texas A&M University's CSTR (Autoclave Engineers). The two catalysts were also tested at The Center for Applied Energy Research in Lexington, Kentucky of the University of Kentucky. Spray-dried catalysts with compositions 100 Fe/5 Cu/4.2 K/11 (P) SiO{sub 2} and 100 Fe/5 Cu/4.2 K/1.1 (B) SiO{sub 2} have excellent selectivity characteristics (low methane and high C{sub 5+} yields), but their productivity and stability (deactivation rate) need to be improved. Mechanical integrity (attrition strength) of these two catalysts was markedly dependent upon their morphological features. The attrition strength of the catalyst made out of largely spherical particles (1.1 (B) SiO{sub 2}) was considerably higher than that of the catalyst consisting of irregularly shaped particles (11 (P) SiO{sub 2}).« less
Catalyst-layer ionomer imaging of fuel cells
Guetaz, Laure; Lopez-Haro, M.; Escribano, S.; ...
2015-09-14
Investigation of membrane/electrode assembly (MEA) microstructure has become an essential step to optimize the MEA components and manufacturing processes or to study the MEA degradation. For these investigations, transmission electron microscopy (TEM) is a tool of choice as it provides direct imaging of the different components. TEM is then widely used for analyzing the catalyst nanoparticles and their carbon support. However, the ionomer inside the electrode is more difficult to be imaged. The difficulties come from the fact that the ionomer forms an ultrathin layer surrounding the carbon particles and in addition, these two components, having similar density, present nomore » difference in contrast. In this paper, we show how the recent progresses in TEM techniques as spherical aberration (Cs) corrected HRTEM, electron tomography and X-EDS elemental mapping provide new possibilities for imaging this ionomer network and consequently to study its degradation.« less
Corona method and apparatus for altering carbon containing compounds
Sharma, Amit K.; Camaioni, Donald M.; Josephson, Gary B.
1999-01-01
The present invention is a method and apparatus for altering a carbon containing compound in an aqueous mixture. According to a first aspect of the present invention, it has been discovered that for an aqueous mixture having a carbon containing compound with an ozone reaction rate less than the ozone reaction rate of pentachlorophenol, use of corona discharge in a low or non-oxidizing atmosphere increases the rate of destruction of the carbon containing compound compared to corona discharge an oxidizing atmosphere. For an aqueous mixture containing pentachlorphenol, there was essentially no difference in destruction between atmospheres. According to a second aspect of the present invention, it has been further discovered that an aqueous mixture having a carbon containing compound in the presence of a catalyst and oxygen resulted in an increased destruction rate of the carbon containing compound compared to no catalyst.
Corona Method And Apparatus For Altering Carbon Containing Compounds
Sharma, Amit K.; Camaioni, Donald M.; Josephson; Gary B.
2004-05-04
The present invention is a method and apparatus for altering a carbon-containing compound in an aqueous mixture. According to a first aspect of the present invention, it has been discovered that for an aqueous mixture having a carbon containing compound with an ozone reaction rate less than the ozone reaction rate of pentachlorophenol, use of corona discharge in a low or non-oxidizing atmosphere increases the rate of destruction of the carbon containing compound compared to corona discharge an oxidizing atmosphere. For an aqueous mixture containing pentachlorphenol, there was essentially no difference in destruction between atmospheres. According to a second aspect of the present invention, it has been further discovered that an aqueous mixture having a carbon-containing compound in the presence of a catalyst and oxygen resulted in an increased destruction rate of the carbon containing compound compared to no catalyst.
Oxidation-induced structural changes in sub-nanometer platinum supported on alumina
DeBusk, Melanie Moses; Allard, Jr, Lawrence Frederick; Blom, Douglas Allen; ...
2015-06-26
Platinum supported on alumina is an essential component of emission treatment catalysts used in transportation. Theoretical, experimental, and mechanistic aspects of platinum particles supported on a variety of supports have been extensively studied; however, available experimental information on the behavior of single vs. sub-nanometer platinum is extremely limited. To bridge the knowledge gap between single supported platinum and well-formed supported platinum nanoparticles, we have carried out synthesis, characterization, and CO and NO oxidation studies of sub-nanometer platinum supported on α, θ, and γ-Al 2O 3 and monitored changes in structure upon exposure to CO and NO oxidation conditions. Furthermore, wemore » find that sub-nanometer Pt is highly effective for CO oxidation due to high platinum dispersion but is not very efficient as NO oxidation catalyst. Lastly, sub-nanometer platinum agglomerates rapidly under CO or NO oxidation conditions to form nanoparticles.« less
Cui, Xinjiang; Surkus, Annette-Enrica; Junge, Kathrin; Topf, Christoph; Radnik, Jörg; Kreyenschulte, Carsten; Beller, Matthias
2016-01-01
Selective hydrogenations of (hetero)arenes represent essential processes in the chemical industry, especially for the production of polymer intermediates and a multitude of fine chemicals. Herein, we describe a new type of well-dispersed Ru nanoparticles supported on a nitrogen-doped carbon material obtained from ruthenium chloride and dicyanamide in a facile and scalable method. These novel catalysts are stable and display both excellent activity and selectivity in the hydrogenation of aromatic ethers, phenols as well as other functionalized substrates to the corresponding alicyclic reaction products. Furthermore, reduction of the aromatic core is preferred over hydrogenolysis of the C–O bond in the case of ether substrates. The selective hydrogenation of biomass-derived arenes, such as lignin building blocks, plays a pivotal role in the exploitation of novel sustainable feedstocks for chemical production and represents a notoriously difficult transformation up to now. PMID:27113087
Mineral resource of the month: bismuth
Carlin, James F.
2006-01-01
Bismuth compounds are most known for their soothing effects on the stomach, wounds and sores. These properties make the compounds an essential part of many medicinal and cosmetic preparations, which until 1930 accounted for about 90 percent of the bismuth used. The subsequent development of low-melting alloys and chemical catalysts containing bismuth, as well as its use as an additive to casting alloys, has resulted in a wider variety of industrial applications for bismuth.
Liu, Jing Hua; Jeon, Min Ku; Lee, Ki Rak; Woo, Seong Ihl
2010-12-14
A combinatorial library of membrane-electrode-assemblies (MEAs) which consisted of 27 different compositions was fabricated to optimize the multilayer structure of direct methanol fuel cells. Each spot consisted of three layers of ink and a gradient was generated by employing different concentrations of the three components (Pt catalyst, Nafion® and polytetrafluoroethylene (PTFE)) of each layer. For quick evaluation of the library, a high-throughput optical screening technique was employed for methanol electro-oxidation reaction (MOR) activity. The screening results revealed that gradient layers could lead to higher MOR activity than uniform layers. It was found that the MOR activity was higher when the concentrations of Pt catalyst and Nafion ionomer decreased downward from the top layer to the bottom layer. On the other hand, higher MOR activity was observed when PTFE concentration increased downward from the top to the bottom layer.
NASA Astrophysics Data System (ADS)
Ayat, Moulkheir; Belbachir, Mohamed; Rahmouni, Abdelkader
2017-07-01
The aim of this study was to develop the efficient and versatile method for the synthesis of block copolymers consists by cationic polymerization vinylidene chloride (VDC) and alpha-methylstyrene (alpha-MS) in the presence of a natural Algerian montmorillonite clay modified by 0.05-0.35 M H2SO4 (Algerian MMT-H+). It was found that H2SO4 concentration allows controlling the chemical composition, the porous structure of the acid-activated clays and their catalytic performance. The maximal yield of polymer is observed in the presence of Algerian MMT modified by 0.25 M H2SO4. Effects of VDC/MS molar ration, catalyst concentration, reaction time, reaction temperature and polarity medium on yield and molecular weight of polymer were revealed in the presence of the most active sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamil Klier; Richard G. Herman; Alessandra Beretta
1999-04-01
Methanol synthesis from H{sub 2}/CO has been carried out at 7.6 MPa over zirconia-supported copper catalysts. Catalysts with nominal compositions of 10/90 mol% and 30/70 mol% Cu/ZrO{sub 2} were used in this study. Additionally, a 3 mol% cesium-doped 10/90 catalyst was prepared to study the effect of doping with heavy alkali, and this promoter greatly increased the methanol productivity. The effects of CO{sub 2} addition, water injection, reaction temperature, and H{sub 2}/C0 ratio have been investigated. Both CO{sub 2} addition to the synthesis gas and cesium doping of the catalyst promoted methanol synthesis, while inhibiting the synthesis of dimethyl ether.more » Injection of water, however, was found to slightly suppress methanol and dimethyl ether formation while being converted to CO{sub 2} via the water gas shift reaction over these catalysts. There was no clear correlation between copper surface area and catalyst activity. Surface analysis of the tested samples revealed that copper tended to migrate and enrich the catalyst surface. The concept of employing a double-bed reactor with a pronounced temperature gradient to enhance higher alcohol synthesis was explored, and it was found that utilization of a Cs-promoted Cu/ZnO/Cr{sub 2}O{sub 3} catalyst as a first lower temperature bed and a Cs-promoted ZnO/Cr{sub 2}O{sub 3} catalyst as a second high-temperature bed significantly promoted the productivity of 2-methyl-1-propanol (isobutanol) from H{sub 2}/CO synthesis gas mixtures. While the conversion of CO to C{sub 2+} oxygenates over the double-bed configuration was comparable to that observed over the single Cu-based catalyst, major changes in the product distribution occurred by the coupling to the zinc chromite catalyst; that is, the productivity of the C{sub 1}-C{sub 3} alcohols decreased dramatically, and 2-methyl branched alcohols were selectively formed. The desirable methanol/2-methyl oxygenate molar ratios close to 1 were obtained in the present double-bed system that provides the feedstock for the synthesis of high octane and high cetane ethers, where the isobutanol productivity was as high as 139 g/kg cat/hr. Higher alcohol synthesis has been investigated over a Cs/Cu/ZnO/Cr{sub 2}O{sub 3} catalyst at temperatures higher (up to 703K) than those previously utilized, and no sintering of the catalyst was observed during the short-term testing. However, the higher reaction temperatures led to lower CO conversion levels and lower yield of alcohols, especially of methanol, because of equilibrium limitations. With the double catalyst bed configuration, the effect of pressure in the range of 7.6--12.4 MPa on catalyst activity and selectivity was studied. The upper bed was composed of the copper-based catalyst at 598K, and the lower bed consisted of a copper-free Cs-ZnO/Cr{sub 2}O{sub 3} catalyst at a high temperature of 678K. High pressure was found to increase CO conversion to oxygenated products, although the increase in isobutanol productivity did not keep pace with that of methanol. It was also shown that the Cs/Cu/ZnO/Cr{sub 2}O{sub 3} catalyst could be utilized to advantage as the second-bed catalyst at 613--643K instead of the previously used copper-free Cs-ZnO/ Cr{sub 2}O{sub 3} catalyst at higher temperature, With double Cs/Cu/ZnO/Cr{sub 2}O{sub 3} catalysts, high space time yields of up to 202 g/kg cat/hr, with high selectivity to isobutanol, were achieved.« less
NASA Astrophysics Data System (ADS)
Chen, Ming; Wang, Meng; Yang, Zhaoyi; Wang, Xindong
2017-06-01
In this paper, an order-structured cathode catalyst layer consisting of Pt-TiO2@PANI core-shell nanowire arrays that in situ grown on commercial gas diffusion layer (GDL) are prepared and applied to membrane electrode assembly (MEA) of proton exchange membrane fuel cell (PEMFC). In order to prepare the TiO2@PANI core-shell nanowire arrays with suitable porosity and prominent conductivity, the morphologies of the TiO2 nanoarray and electrochemical polymerization process of aniline are schematically investigated. The MEA with order-structured cathode catalyst layer is assembled in the single cell to evaluate the electrochemical performance and durability of PEMFC. As a result, the PEMFC with order-structured cathode catalyst layer shows higher peak power density (773.54 mW cm-2) than conventional PEMFC (699.30 mW cm-2). Electrochemically active surface area (ECSA) and charge transfer impedance (Rct) are measured before and after accelerated degradation test (ADT), and the corresponding experimental results indicate the novel cathode structure exhibits a better stability with respect to conventional cathode. The enhanced electrochemical performance and durability toward PEMFC can be ascribed to the order-structured cathode nanoarray structure with high specific surface area increases the utilization of catalyst and reduces the tortuosity of transport pathways, and the synergistic effect between TiO2@PANI support and Pt nanoparticles promotes the high efficiency of electrochemical reaction and improves the stability of catalyst. This research provides a facile and controllable method to prepare order-structured membrane electrode with lower Pt loading for PEMFC in the future.
Indra, Arindam; Menezes, Prashanth W; Schuster, Felix; Driess, Matthias
2015-11-01
Development of efficient bio-inspired water oxidation system with transition metal oxide catalyst has been considered as the one of the most challenging task in the recent years. As the oxygen evolving center of photosystem II consists of Mn4CaO5 cluster, most of the water oxidation study was converged to build up manganese oxide based catalysts. Here we report the synthesis of efficient artificial water oxidation catalysts by transferring the inactive manganese monooxide (MnO) under highly oxidizing conditions with ceric ammonium nitrate (CAN) and ozone (O3). MnO was partially oxidized to form mixed-valent manganese oxide (MnOx) with CAN whereas completely oxidized to mineral phase of ε-MnO2 (Akhtenskite) upon treatment of O3 in acidic solution, which we explore first time as a water oxidation catalyst. Chemical water oxidation, as well as the photochemical water oxidation in the presence of sacrificial electron acceptor and photosensitizer with the presented catalysts were carried out that followed the trends: MnOx>MnO2>MnO. Structural and activity correlation reveals that the presence of larger extent of Mn(III) in MnOx is the responsible factor for higher activity compared to MnO2. Mn(III) species in octahedral system with eg(1) configuration furnishes and facilitates the Mn-O and Mn-Mn bond enlargement with required structural flexibility and disorder in the manganese oxide structure which indeed facilitates water oxidation. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Muñoz, M. A.; Calvino, J. J.; Rodríguez-Izquierdo, J. M.; Blanco, G.; Arias, D. C.; Pérez-Omil, J. A.; Hernández-Garrido, J. C.; González-Leal, J. M.; Cauqui, M. A.; Yeste, M. P.
2017-12-01
Ni/CeO2/YSZ and Ni/Ce0.15Zr0.85O2 have been investigated as catalysts for the dry reforming of methane at 750 °C. Ni was incorporated by the impregnation method. The supports were previously activated by using a thermo-chemical protocol consisting on a severe reduction (H2/Ar) at 950 °C followed by a mild oxidation (O2/He) at 500 °C. According to TPR results, this protocol leads to the development of unique redox properties in the case of the CeO2/YSZ oxide. Two types of CO2 + CH4 (1:1) mixtures (helium-diluted and undiluted) were used to feed the reactor. When using the Ni/Ce0.15Zr0.85O2 catalyst with undiluted feed, the reactor became plugged by coke. By contrast, Ni/CeO2/YSZ behaved as an active and stable catalyst even under the most severe operation conditions. The characterization of the spent Ni/CeO2/YSZ using TGA, TEM, Raman and XPS spectroscopy revealed that only a limited amount of graphitic carbon, in form of nanotubes, was formed. No evidences of deactivating carbonaceous forms were obtained. The singular redox properties of the activated CeO2/YSZ oxides are proposed as a key for designing Ni catalysts highly stable in reforming processes.
NASA Astrophysics Data System (ADS)
Nozaki, Tomohiro; Tsukijihara, Hiroyuki; Fukui, Wataru; Okazaki, Ken
2006-10-01
Although huge amounts of biogas, which consists of 20-60% of CH4 in CO2/N2, can be obtained from landfills, coal mines, and agricultural residues, most of them are simply flared and wasted: because global warming potential of biogas is 5-15 times as potent as CO2. Poor combustibility of such biogas makes it difficult to utilize in conventional energy system. The purpose of this project is to promote the profitable recovery of methane from poor biogas via non-thermal plasma technology. We propose low-temperature steam reforming of biogas using DBD generated in catalyst beds. Methane is partially converted into hydrogen, and then fed into internal combustion engines for improved ignition stability as well as efficient operation. Low-temperature steam reforming is beneficial because exhaust gas from an engine can be used to activate catalyst beds. Space velocity (3600-15000 hr-1), reaction temperature (300-650^oC), and energy cost (30-150 kJ per mol CH4) have been investigated with simulated biogas (20-60% CH4 in mixtures of CO2/N2). The DBD enhances reaction rate of CH4 by a factor of ten at given catalyst temperatures, which is a rate-determining step of methane steam reforming, while species concentration of upgraded biogas was governed by thermodynamic equilibrium in the presence of catalyst.
Fischer-Tropsch synthesis in near-critical n-hexane: Pressure-tuning effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bochniak, D.J.; Subramaniam, B.
For Fe-catalyzed Fischer-Tropsch (FT) synthesis with near-critical n-hexane (P{sub c} = 29.7 bar; T{sub c} = 233.7 C) as the reaction medium, isothermal pressure tuning from 1.2--2.4 P{sub c} (for n-hexane) at the reaction temperature (240 C) significantly changes syngas conversion and product selectivity. For fixed feed rates of syngas (H{sub 2}/CO = 0.5; 50 std. cm{sup 3}/g catalyst) and n-hexane (1 mL/min), syngas conversion attains a steady state at all pressures, increasing roughly threefold in this pressure range. Effective rate constants, estimated assuming a first-order dependence of syngas conversion on hydrogen, reveal that the catalyst effectiveness increases with pressuremore » implying the alleviation of pore-diffusion limitations. Pore accessibilities increase at higher pressures because the extraction of heavier hydrocarbons from the catalyst pores is enhanced by the liquid-like densities, yet better-than-liquid transport properties, of n-hexane. This explanation is consistent with the single {alpha} (= 0.78) Anderson-Schulz-Flory product distribution, the constant chain termination probability, and the higher primary product (1-olefin) selectivities ({approximately}80%) observed at the higher pressures. Results indicate that the pressure tunability of the density and transport properties of near-critical reaction media offers a powerful tool to optimize catalyst activity and product selectivity during FT reactions on supported catalysts.« less
Templated Synthesis of Single-Walled Carbon Nanotubes with Specific Structure.
Yang, Feng; Wang, Xiao; Li, Meihui; Liu, Xiyan; Zhao, Xiulan; Zhang, Daqi; Zhang, Yan; Yang, Juan; Li, Yan
2016-04-19
Single-walled carbon nanotubes (SWNTs) have shown great potential in various applications attributed to their unique structure-dependent properties. Therefore, the controlled preparation of chemically and structurally pristine SWNTs is a crucial issue for their advanced applications (e.g., nanoelectronics) and has been a great challenge for two decades. Epitaxial growth from well-defined seeds has been shown to be a promising strategy to control the structure of SWNTs. Segments of carbon nanotubes, including short pipes from cutting of preformed nanotubes and caps from opening of fullerenes or cyclodehydrogenation of polycyclic hydrocarbon precursors, have been used as the seeds to grow SWNTs. Single-chirality SWNTs were obtained with both presorted chirality-pure SWNT segments and end caps obtained from polycyclic hydrocarbon molecules with designed structure. The main challenges of nanocarbon-segment-seeded processes are the stability of the seeds, yield, and efficiency. Catalyst-mediated SWNT growth is believed to be more efficient. The composition and morphology of the catalyst nanoparticles have been widely reported to affect the chirality distribution of SWNTs. However, chirality-specific SWNT growth is hard to achieve by alternating catalysts. The specificity of enzyme-catalyzed reactions brings us an awareness of the essentiality of a unique catalyst structure for the chirality-selective growth of SWNTs. Only catalysts with the desired atomic arrangements in their crystal planes can act as structural templates for chirality-specific growth of SWNTs. We have developed a new family of catalysts, tungsten-based intermetallic compounds, which have high melting points and very special crystal structures, to facilitate the growth of SWNTs with designed chirality. By the use of W6Co7 catalysts, (12,6) SWNTs were directly grown with purity higher than 92%. Both high-resolution transmission electron microscopy measurements and density functional theory simulations show that the selective growth of (12,6) tubes is due to a good structural match between the carbon atom arrangement around the nanotube circumference and the metal atom arrangement of (0 0 12) planes in the catalyst. Similarly, (16,0) SWNTs exhibit a good structural match to the (116) planes of the W6Co7 catalyst. By optimization of the chemical vapor deposition (CVD) conditions, zigzag (16,0) SWNTs, which are generally known as a kinetically unfavorable species in CVD growth, were obtained with a purity of ∼80%. Generally speaking, the chirality-specific growth of SWNTs is realized by the cooperation of two factors: the structural match between SWNTs and the catalysts makes the growth of SWNTs with specific chirality thermodynamically favorable, and further manipulation of the CVD conditions results in optimized growth kinetics for SWNTs with this designed chirality. We expect that this advanced epitaxial growth strategy will pave the way for the ultimate goal of chirality-specified growth of SWNTs and will also be applicable in the controlled preparation of other nanomaterials.
Noble Metal Aerogels—Synthesis, Characterization, and Application as Electrocatalysts
2015-01-01
Conspectus Metallic and catalytically active materials with high surface area and large porosity are a long-desired goal in both industry and academia. In this Account, we summarize the strategies for making a variety of self-supported noble metal aerogels consisting of extended metal backbone nanonetworks. We discuss their outstanding physical and chemical properties, including their three-dimensional network structure, the simple control over their composition, their large specific surface area, and their hierarchical porosity. Additionally, we show some initial results on their excellent performance as electrocatalysts combining both high catalytic activity and high durability for fuel cell reactions such as ethanol oxidation and the oxygen reduction reaction (ORR). Finally, we give some hints on the future challenges in the research area of metal aerogels. We believe that metal aerogels are a new, promising class of electrocatalysts for polymer electrolyte fuel cells (PEFCs) and will also open great opportunities for other electrochemical energy systems, catalysis, and sensors. The commercialization of PEFCs encounters three critical obstacles, viz., high cost, insufficient activity, and inadequate long-term durability. Besides others, the sluggish kinetics of the ORR and alcohol oxidation and insufficient catalyst stability are important reasons for these obstacles. Various approaches have been taken to overcome these obstacles, e.g., by controlling the catalyst particle size in an optimized range, forming multimetallic catalysts, controlling the surface compositions, shaping the catalysts into nanocrystals, and designing supportless catalysts with extended surfaces such as nanostructured thin films, nanotubes, and porous nanostructures. These efforts have produced plenty of excellent electrocatalysts, but the development of multisynergetic functional catalysts exhibiting low cost, high activity, and high durability still faces great challenges. In this Account, we demonstrate that the sol–gel process represents a powerful “bottom-up” strategy for creating nanostructured materials that tackles the problems mentioned above. Aerogels are unique solid materials with ultralow densities, large open pores, and ultimately high inner surface areas. They magnify the specific properties of nanomaterials to the macroscale via self-assembly, which endow them with superior properties. Despite numerous investigations of metal oxide aerogels, the investigation of metal aerogels is in the early stage. Recently, aerogels including Fe, Co, Ni, Sn, and Cu have been obtained by nanosmelting of hybrid polymer–metal oxide aerogels. We report here exclusively on mono-, bi- and multimetallic noble metal aerogels consisting of Ag, Au, Pt, and Pd and their application as electrocatalysts. PMID:25611348
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Pimphan A.; Snowden-Swan, Lesley J.; Rappé, Kenneth G.
This work shows preliminary results from techno-economic analysis and life cycle greenhouse gas analysis of the conversion of seven (7) biomass feedstocks to produce liquid transportation fuels via fast pyrolysis and upgrading via hydrodeoxygenation. The biomass consists of five (5) pure feeds (pine, tulip poplar, hybrid poplar, switchgrass, corn stover) and two blends. Blend 1 consists of equal weights of pine, tulip poplar and switchgrass, and blend 2 is 67% pine and 33% hybrid poplar. Upgraded oil product yield is one of the most significant parameters affecting the process economics, and is a function of both fast pyrolysis oil yieldmore » and hydrotreating oil yield. Pure pine produced the highest overall yield, while switchgrass produced the lowest. Interestingly, herbaceous materials blended with woody biomass performed nearly as well as pure woody feedstock, suggesting a non-trivial relationship between feedstock attributes and production yield. Production costs are also highly dependent upon hydrotreating catalyst-related costs. The catalysts contribute an average of ~15% to the total fuel cost, which can be reduced through research and development focused on achieving performance at increased space velocity (e.g., reduced catalyst loading) and prolonging catalyst lifetime. Green-house-gas reduction does not necessarily align with favorable economics. From the greenhouse gas analysis, processing tulip poplar achieves the largest GHG emission reduction relative to petroleum (~70%) because of its lower hydrogen consumption in the upgrading stage that results in a lower natural gas requirement for hydrogen production. Conversely, processing blend 1 results in the smallest GHG emission reduction from petroleum (~58%) because of high natural gas demand for hydrogen production.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, C.W.; Gutterman, C.; Chander, S.
The overall objective of this project is to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and carrying out a technical assessment including an economic evaluation. The primary coal of this program, Black Thunder subbituminous coal, can be effectively beneficiated to about 3.5 wt % ash using aqueous sulfurous acid pretreatment. This treated coal can be further beneficiated to about 2 wt % ash usingmore » commercially available procedures. All three coals used in this study (Black Thunder, Burning Star bituminous, and Martin Lake lignite) are effectively swelled by a number of solvents. The most effective solvents are those having hetero-functionality. laboratory- and bench-scale liquefaction experimentation is underway using swelled and catalyst impregnated coal samples. Higher coal conversions were observed for the SO{sub 2}-treated subbituminous coal than the raw coal, regardless of catalyst type. Conversions of swelled coal were highest when Molyvan L, molybdenum naphthenate, and nickel octoate, respectively, were added to the liquefaction solvent. The study of bottoms processing consists of combining the ASCOT process which consists of coupling solvent deasphalting with delayed coking to maximize the production of coal-derived liquids while rejecting solids within the coke drum. The asphalt production phase has been completed; representative product has been evaluated. The solvent system for the deasphalting process has been established. Two ASCOT tests produced overall liquid yields (63.3 wt % and 61.5 wt %) that exceeded the combined liquid yields from the vacuum tower and ROSE process.« less
Silicon/Carbon Nanotube Photocathode for Splitting Water
NASA Technical Reports Server (NTRS)
Amashukeli, Xenia; Manohara, Harish; Greer, Harold F.; Hall, Lee J.; Gray, Harry B.; Subbert, Bryan
2013-01-01
A proof-of-concept device is being developed for hydrogen gas production based on water-splitting redox reactions facilitated by cobalt tetra-aryl porphyrins (Co[TArP]) catalysts stacked on carbon nanotubes (CNTs) that are grown on n-doped silicon substrates. The operational principle of the proposed device is based on conversion of photoelectron energy from sunlight into chemical energy, which at a later point, can be turned into electrical and mechanical power. The proposed device will consist of a degenerately n-doped silicon substrate with Si posts covering the surface of a 4-in. (approximately equal to 10cm) wafer. The substrate will absorb radiation, and electrons will move radially out of Si to CNT. Si posts are designed such that the diameters are small enough to allow considerable numbers of electrons to transport across to the CNT layer. CNTs will be grown on top of Si using conformal catalyst (Fe/Ni) deposition over a thin alumina barrier layer. Both metallic and semiconducting CNT will be used in this investigation, thus allowing for additional charge generation from CNT in the IR region. Si post top surfaces will be masked from catalyst deposition so as to prevent CNT growth on the top surface. A typical unit cell will then consist of a Si post covered with CNT, providing enhanced surface area for the catalyst. The device will then be dipped into a solution of Co[TArP] to enable coating of CNT with Co(P). The Si/CNT/Co [TArP] assembly then will provide electrons for water splitting and hydrogen gas production. A potential of 1.23 V is needed to split water, and near ideal band gap is approximately 1.4 eV. The combination of doped Si/CNT/Co [TArP] will enable this redox reaction to be more efficient.
Development and Progress in Enabling the Photocatalyst Ti02 Visible-Light-Active
NASA Technical Reports Server (NTRS)
Levine, Lanfang H.; Coutts, Janelle L.; Clausen, Christian A.
2011-01-01
Photocatalytic oxidation (PCO) of organic contaminants is a promising air and water quality management approach which offers energy and cost savings compared to thermal catalytic oxidation (TCO). The most widely used photocatalyst, anatase TiO2, has a wide band gap (3.2 eV) and is activated by UV photons. Since solar radiation consists of less than 4% UV, but contains 45% visible light, catalysts capable of utilizing these visible photons need to be developed to make peo approaches more efficient, economical, and safe. Researchers have attempted various approaches to enable TiO2 to be visible-light-active with varied degrees of success'. Strategies attempted thus far fall into three categories based on their electrochemical' mechanisms: 1) narrowing the band gap of TiO2 by implantation of transition metal elements or nonmetal elements such as N, S, and C, 2) modifying electron-transfer processes during PCO by adsorbing sensitizing dyes, and 3) employing light-induced interfacial electron transfer in the heteronanojunction systems consisting of narrow band gap semiconductors represented by metal sulfides and TiO2. There are diverse technical approaches to implement each of these strategies. This paper presents a review of these approaches and results of the photocatalytic activity and photonic efficiency of the end .products under visible light. Although resulting visible-light-active (VLA) photocatalysts show promise, there is often no comparison with unmodified TiO2 under UV. In a limited number of studies where such comparison was provided, the UV-induced catalytic activity of bare TiO2 is much greater than the visible-light-induced catalytic activity of the VLA catalyst. Furthermore, VLA-catalysts have much lower quantum efficiency compared to the approx.50% quantum efficiency of UV-catalysts. This stresses the need for continuing research in this area.
Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
Stacchiola, Darío J
2015-07-21
Studying catalytic processes at the molecular level is extremely challenging, due to the structural and chemical complexity of the materials used as catalysts and the presence of reactants and products in the reactor's environment. The most common materials used on catalysts are transition metals and their oxides. The importance of multifunctional active sites at metal/oxide interfaces has been long recognized, but a molecular picture of them based on experimental observations is only recently emerging. The initial approach to interrogate the surface chemistry of catalysts at the molecular level consisted of studying metal single crystals as models for reactive metal centers, moving later to single crystal or well-defined thin film oxides. The natural next iteration consisted in the deposition of metal nanoparticles on well-defined oxide substrates. Metal nanoparticles contain undercoordinated sites, which are more reactive. It is also possible to create architectures where oxide nanoparticles are deposited on top of metal single crystals, denominated inverse catalysts, leading in this case to a high concentration of reactive cationic sites in direct contact with the underlying fully coordinated metal atoms. Using a second oxide as a support (host), a multifunctional configuration can be built in which both metal and oxide nanoparticles are located in close proximity. Our recent studies on copper-based catalysts are presented here as an example of the application of these complementary model systems, starting from the creation of undercoordinated sites on Cu(111) and Cu2O(111) surfaces, continuing with the formation of mixed-metal copper oxides, the synthesis of ceria nanoparticles on Cu(111) and the codeposition of Cu and ceria nanoparticles on TiO2(110). Catalysts have traditionally been characterized before or after reactions and analyzed based on static representations of surface structures. It is shown here how dynamic changes on a catalyst's chemical state and morphology can be followed during a reaction by a combination of in situ microscopy and spectroscopy. In addition to determining the active phase of a catalyst by in situ methods, the presence of weakly adsorbed surface species or intermediates generated only in the presence of reactants can be detected, allowing in turn the comparison of experimental results with first principle modeling of specific reaction mechanisms. Three reactions are used to exemplify the approach: CO oxidation (CO + 1/2O2 → CO2), water gas shift reaction (WGSR) (CO + H2O → CO2 + H2), and methanol synthesis (CO2 + 3H2 → CH3OH + H2O). During CO oxidation, the full conversion of Cu(0) to Cu(2+) deactivates an initially outstanding catalyst. This can be remedied by the formation of a TiCuOx mixed-oxide that protects the presence of active partially oxidized Cu(+) cations. It is also shown that for the WGSR a switch occurs in the reaction mechanism, going from a redox process on Cu(111) to a more efficient associative pathway at the interface of ceria nanoparticles deposited on Cu(111). Similarly, the activation of CO2 at the ceria/Cu(111) interface allows its facile hydrogenation to methanol. Our combined studies emphasize the need of searching for optimal metal/oxide interfaces, where multifunctional sites can lead to new efficient catalytic reaction pathways.
Lu, An-Hui; Nitz, Joerg-Joachim; Comotti, Massimiliano; Weidenthaler, Claudia; Schlichte, Klaus; Lehmann, Christian W; Terasaki, Osamu; Schüth, Ferdi
2010-10-13
Uniform and highly dispersed γ-Fe(2)O(3) nanoparticles with a diameter of ∼6 nm supported on CMK-5 carbons and C/SBA-15 composites were prepared via simple impregnation and thermal treatment. The nanostructures of these materials were characterized by XRD, Mössbauer spectroscopy, XPS, SEM, TEM, and nitrogen sorption. Due to the confinement effect of the mesoporous ordered matrices, γ-Fe(2)O(3) nanoparticles were fully immobilized within the channels of the supports. Even at high Fe-loadings (up to about 12 wt %) on CMK-5 carbon no iron species were detected on the external surface of the carbon support by XPS analysis and electron microscopy. Fe(2)O(3)/CMK-5 showed the highest ammonia decomposition activity of all previously described Fe-based catalysts in this reaction. Complete ammonia decomposition was achieved at 700 °C and space velocities as high as 60,000 cm(3) g(cat)(-1) h(-1). At a space velocity of 7500 cm(3) g(cat)(-1) h(-1), complete ammonia conversion was maintained at 600 °C for 20 h. After the reaction, the immobilized γ-Fe(2)O(3) nanoparticles were found to be converted to much smaller nanoparticles (γ-Fe(2)O(3) and a small fraction of nitride), which were still embedded within the carbon matrix. The Fe(2)O(3)/CMK-5 catalyst is much more active than the benchmark NiO/Al(2)O(3) catalyst at high space velocity, due to its highly developed mesoporosity. γ-Fe(2)O(3) nanoparticles supported on carbon-silica composites are structurally much more stable over extended periods of time but less active than those supported on carbon. TEM observation reveals that iron-based nanoparticles penetrate through the carbon layer and then are anchored on the silica walls, thus preventing them from moving and sintering. In this way, the stability of the carbon-silica catalyst is improved. Comparison with the silica supported iron oxide catalyst reveals that the presence of a thin layer of carbon is essential for increased catalytic activity.
Aysu, Tevfik; Maroto-Valer, M Mercedes; Sanna, Aimaro
2016-05-01
Pyrolysis of microcrystalline cellulose, egg white powder, palm-jojoba oils mixtures Thalassiosira weissflogii model compounds was performed with CeO2 at 500°C, to evaluate its catalytic upgrading mechanism. Light organics, aromatics and aliphatics were originated from carbohydrates, proteins and lipids, respectively. Dehydration and decarboxylation were the main reactions involved in the algae and model compounds deoxygenation, while nitrogen was removed as NH3 and HCN. CeO2 increased decarbonylation reactions compared to in absence of catalyst, with production of ketones. The results showed that the catalysts had a significant effect on the pyrolysis products composition of T. weissflogii. CeO2, NiCeAl2O3 and MgCe/Al2O3 catalysts increased the aliphatics and decreased the oxygen content in bio-oils to 6-7 wt% of the algae starting O2 content. Ceria catalysts were also able to consistently reduce the N-content in the bio-oil to 20-38% of that in the parent material, with NiCe/Al2O3 being the most effective. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mathematical Model of Heat Transfer in the Catalyst Granule with Point Reaction Centers
NASA Astrophysics Data System (ADS)
Derevich, I. V.; Fokina, A. Yu.
2018-01-01
This paper considers a catalyst granule with a porous ceramic chemically inert base and active point centers, at which an exothermic reaction of synthesis takes place. The rate of a chemical reaction depends on temperature by the Arrhenius law. The heat is removed from the catalyst granule surface to the synthesis products by heat transfer. Based on the idea of self-consistent field, a closed system of equations is constructed for calculating the temperatures of the active centers. As an example, a catalyst granule of the Fischer-Tropsch synthesis with active metallic cobalt particles is considered. The stationary temperatures of the active centers are calculated by the timedependent technique by solving a system of ordinary differential equations. The temperature distribution inside the granule has been found for the local centers located on one diameter of the granule and distributed randomly in the granule's volume. The existence of the critical temperature inside the reactor has been established, the excess of which leads to substantial superheating of local centers. The temperature distribution with local reaction centers differs qualitatively from the granule temperature calculated in the homogeneous approximation. The results of calculations are given.
Bulusheva, Lyubov G; Fedorovskaya, Ekaterina O; Shubin, Yury V; Plyusnin, Pavel E; Lonchambon, Pierre; Senkovskiy, Boris V; Ismagilov, Zinfer R; Flahaut, Emmanuel; Okotrub, Alexander V
2017-01-01
Novel nitrogen-doped carbon hybrid materials consisting of multiwalled nanotubes and porous graphitic layers have been produced by chemical vapor deposition over magnesium-oxide-supported metal catalysts. CNx nanotubes were grown on Co/Mo, Ni/Mo, or Fe/Mo alloy nanoparticles, and MgO grains served as a template for the porous carbon. The simultaneous formation of morphologically different carbon structures was due to the slow activation of catalysts for the nanotube growth in a carbon-containing gas environment. An analysis of the obtained products by means of transmission electron microscopy, thermogravimetry and X-ray photoelectron spectroscopy methods revealed that the catalyst's composition influences the nanotube/porous carbon ratio and concentration of incorporated nitrogen. The hybrid materials were tested as electrodes in a 1M H2SO4 electrolyte and the best performance was found for a nitrogen-enriched material produced using the Fe/Mo catalyst. From the electrochemical impedance spectroscopy data, it was concluded that the nitrogen doping reduces the resistance at the carbon surface/electrolyte interface and the nanotubes permeating the porous carbon provide fast charge transport in the cell. PMID:29354339
NASA Astrophysics Data System (ADS)
Yang, Henglong; Lung, Louis; Wei, Yu-Chien; Huang, Yi-Bo; Chen, Zi-Yu; Chou, Yu-Yang; Lin, Anne-Chin
2017-08-01
The feasibility of applying ultraviolet light-emitting diodes (UV-LED's) as triggering sources of photo-catalyst based on titanium dioxide (TiO2) nano-coating specifically for water-cleaning process in an aquaponics system was designed and proposed. The aquaponics system is a modern farming system to integrate aquaculture and hydroponics into a single system to establish an environmental-friendly and lower-cost method for farming fish and vegetable all together in urban area. Water treatment in an aquaponics system is crucial to avoid mutual contamination. we proposed a modularized watercleaning device composed of all commercially available components and parts to eliminate organic contaminants by using UV-LED's for TiO2 photo-catalyst reaction. This water-cleaning module consisted of two coaxial hollowed cylindrical pipes can be submerged completely in water for water treatment and cooling UV-LED's. The temperature of the UV-LED after proper thermal management can be reduced about 16% to maintain the optimal operation condition. Our preliminary experimental result by using Methylene Blue solution to simulate organic contaminants indicated that TiO2 photo-catalyst triggered by UV-LED's can effectively decompose organic compound and decolor Methylene Blue solution.
Atomic layer deposited cobalt oxide: An efficient catalyst for NaBH{sub 4} hydrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandi, Dip K.; Manna, Joydev; Dhara, Arpan
2016-01-15
Thin films of cobalt oxide are deposited by atomic layer deposition using dicobalt octacarbonyl [Co{sub 2}(CO){sub 8}] and ozone (O{sub 3}) at 50 °C on microscope glass substrates and polished Si(111) wafers. Self-saturated growth mechanism is verified by x-ray reflectivity measurements. As-deposited films consist of both the crystalline phases; CoO and Co{sub 3}O{sub 4} that gets converted to pure cubic-Co{sub 3}O{sub 4} phase upon annealing at 500 °C under ambient condition. Elemental composition and uniformity of the films is examined by x-ray photoelectron spectroscopy and secondary ion-mass spectroscopy. Both as-deposited and the annealed films have been successfully tested as a catalyst formore » hydrogen evolution from sodium borohydride hydrolysis. The activation energy of the hydrolysis reaction in the presence of the as-grown catalyst is found to be ca. 38 kJ mol{sup −1}. Further implementation of multiwalled carbon nanotube, as a scaffold layer, improves the hydrogen generation rate by providing higher surface area of the deposited catalyst.« less
Vanin, Adriana B; Orlando, Tainara; Piazza, Suelen P; Puton, Bruna M S; Cansian, Rogério L; Oliveira, Debora; Paroul, Natalia
2014-10-01
This work reports the maximization of eugenyl acetate production by esterification of essential oil of clove in a solvent-free system using Novozym 435 as catalyst. The antimicrobial and antioxidant activities of clove essential oil and eugenyl acetate produced were determined. The conditions that maximized eugenyl acetate production were 60 °C, essential oil of clove to acetic anhydride ratio of 1:5, 150 rpm, and 10 wt% of enzyme, with a conversion of 99.87 %. A kinetic study was performed to assess the influence of substrates' molar ratio, enzyme concentration, and temperature on product yield. Results show that an excess of anhydride, enzyme concentration of 5.5 wt%, 50 °C, and essential oil of clove to acetic anhydride ratio of 1:5 afforded nearly a complete conversion after 2 h of reaction. Comparing the antibacterial activity of the essential oil of clove before and after esterification, we observed a decrease in the antimicrobial activity of eugenyl acetate, particularly with regard to minimum inhibitory concentration (MIC). Both eugenyl acetate and clove essential oil were most effective to the gram-negative than gram-positive bacteria group. The results showed a high antioxidant potential for essential oil before and particularly after the esterification reaction thus becoming an option for the formulation of new antioxidant products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Min, E-mail: zoumin3362765@163.com; Wang, Xin, E-mail: wangx@mail.njust.edu.cn; Jiang, Xiaohong, E-mail: jxh0668@sina.com
2014-05-01
Catalyzed thermal decomposition process of ammonium perchlorate (AP) over neodymium oxide (Nd{sub 2}O{sub 3}) was investigated. Catalytic performances of nanometer-sized Nd{sub 2}O{sub 3} and micrometer-sized Nd{sub 2}O{sub 3} were evaluated by differential scanning calorimetry (DSC). In contrast to universal concepts, catalysts in different sizes have nearly similar catalytic activities. Based on structural and morphological variation of the catalysts during the reaction, combined with mass spectrum analyses and studies of unmixed style, a new understanding of this catalytic process was proposed. We believed that the newly formed chloride neodymium oxide (NdOCl) was the real catalytic species in the overall thermal decompositionmore » of AP over Nd{sub 2}O{sub 3}. Meanwhile, it was the “self-distributed” procedure which occurred within the reaction that also worked for the improvement of overall catalytic activities. This work is of great value in understanding the roles of micrometer-sized catalysts used in heterogeneous reactions, especially the solid–solid reactions which could generate a large quantity of gaseous species. - Graphical abstract: In-situ and self-distributed reaction process in thermal decomposition of AP catalyzed by Nd{sub 2}O{sub 3}. - Highlights: • Micro- and nano-Nd{sub 2}O{sub 3} for catalytic thermal decomposition of AP. • No essential differences on their catalytic performances. • Structural and morphological variation of catalysts digs out catalytic mechanism. • This catalytic process is “in-situ and self-distributed” one.« less
Lin, Kun-Yi Andrew; Lin, Jyun-Ting; Yang, Hongta
2017-10-01
While ferrocene (Fc) is a promising heterogeneous catalyst for activating persulfate (PS) to degrade organic contaminants, chemical reagent-grade Fc is nanoscale and direct usage of Fc leads to operational and recovery issues. In this study, chitosan (CS) is selected as a support to immobilize Fc as CS is abundant, and environmental benign fishery waste. The amine group of CS also allows the formation of covalent bond between Fc-based reagent (i.e., Fc-CHO) and CS to form Fc-modified CS (Fc-CS). This Fc-CS can be more advantageous than Fc because of its easier recovery by precipitation and filtration. To evaluate Fc-CS for PS activation, degradation of Amaranth (AMR) dye by PS is selected as a model test. The resulting Fc-CS exhibits a higher catalytic activity than pristine Fc possibly because Fc can be evenly dispersed on CS and CS can also exhibit affinity toward AMR. AMR can be also fully decomposed by Fc-CS activated PS. Through the Electron paramagnetic resonance (EPR) spectroscopic analysis, the AMR degradation can be attributed to both sulfate and hydroxyl radicals. Fc-CS had been also proven to activate PS for AMR degradation over multiple times without loss of catalytic activity. These features indicate that Fc-CS can be a promising catalyst and CS appears to be a naturally available and environmentally friendly waste-derived support for immobilizing Fc. The results and findings in this study are essential for CS-supported metal catalysts in environmental applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Senanayake, Sanjaya D.; Ramirez, Pedro J.; Waluyo, Iradwikanari; ...
2016-01-06
The role of the interface between a metal and oxide (CeO x–Cu and ZnO–Cu) is critical to the production of methanol through the hydrogenation of CO 2 (CO 2 + 3H 2 → CH 3OH + H 2O). The deposition of nanoparticles of CeO x or ZnO on Cu(111), θ oxi < 0.3 monolayer, produces highly active catalysts for methanol synthesis. The catalytic activity of these systems increases in the sequence: Cu(111) < ZnO/Cu(111) < CeO x/Cu(111). The apparent activation energy for the CO 2 → CH 3OH conversion decreases from 25 kcal/mol on Cu(111) to 16 kcal/mol on ZnO/Cu(111)more » and 13 kcal/mol on CeO x/Cu(111). The surface chemistry of the highly active CeO x–Cu(111) interface was investigated using ambient pressure X-ray photoemission spectroscopy (AP-XPS) and infrared reflection absorption spectroscopy (AP-IRRAS). Both techniques point to the formation of formates (HCOO –) and carboxylates (CO 2 δ–) during the reaction. Our results show an active state of the catalyst rich in Ce 3+ sites which stabilize a CO 2 δ– species that is an essential intermediate for the production of methanol. Furthermore, the inverse oxide/metal configuration favors strong metal–oxide interactions and makes possible reaction channels not seen in conventional metal/oxide catalysts.« less
Transesterification process to manufacture ethyl ester of rape oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korus, R.A.; Hoffman, D.S.; Bam, N.
1993-12-31
A process for the production of the ethyl ester of winter rape [EEWR] for use as a biodiesel fuel has been studied. The essential part of the process is the transesterification of rape oil with ethanol, in the presence of a catalyst, to yield the ethyl ester of rape oil as a product and glycerin as a by-product. Experiments have been performed to determine the optimum conditions for the preparation of EEWR. The process variables were: (1) temperature, (2) catalyst, (3) rate of agitation, (4) water content of the alcohol used, and (5) the amount of excess alcohol used. Themore » optimum conditions were: (1) room temperature, (2) 0.5% sodium methoxide or 1% potassium hydroxide catalyst by weight of rapeseed oil, (3) extremely vigorous agitation with some splashing during the initial phase of the reaction and agitation was not necessary after the reaction mixture became homogeneous, (4) absolute ethanol was necessary for high conversion, and (5) 50% excess ethanol with NaOCH{sub 3} or 100% excess with KOH gave a maximum conversion. Viscosity, cloud point and pour point of the EEWR were measured. A preliminary break-even cost for the commercial production of EEWR was found to be $0.55/liter [$2.08/US gallon].« less
Lustemberg, Pablo G.; Palomino, Robert M.; Gutierrez, Ramon A.; ...
2018-05-28
The transformation of methane into methanol or higher alcohols at moderate temperature and pressure conditions is of great environmental interest and remains a challenge despite many efforts. Extended surfaces of metallic nickel are inactive for a direct CH 4 → CH 3OH conversion. This experimental and computational study provides clear evidence that low Ni loadings on a CeO 2(111) support can perform a direct catalytic cycle for the generation of methanol at low temperature using oxygen and water as reactants, with a higher selectivity than ever reported for ceria-based catalysts. On the basis of ambient pressure X-ray photoemission spectroscopy andmore » density functional theory calculations, we demonstrate that water plays a crucial role in blocking catalyst sites where methyl species could fully decompose, an essential factor for diminishing the production of CO and CO 2, and in generating sites on which methoxy species and ultimately methanol can form. In addition to water-site blocking, one needs the effects of metal-support interactions to bind and activate methane and water. Lastly, these findings should be considered when designing metal/oxide catalysts for converting methane to value-added chemicals and fuels.« less
Zhang, Sen; Hao, Yizhou; Su, Dong; ...
2014-10-28
We report a size-controllable synthesis of monodisperse core/shell Ni/FePt nanoparticles (NPs) via a seed-mediated growth and their subsequent conversion to Ni/Pt NPs. Preventing surface oxidation of the Ni seeds is essential for the growth of uniform FePt shells. These Ni/FePt NPs have a thin (≈ 1 nm) FePt shell, and can be converted to Ni/Pt by acetic acid wash to yield active catalysts for oxygen reduction reaction (ORR). Tuning the core size allow for optimization of their electrocatalytic activity. The specific activity and mass activity of 4.2 nm/0.8 nm core/shell Ni/FePt reach 1.95 mA/cm² and 490 mA/mg Pt at 0.9more » V ( vs. reversible hydrogen electrode, RHE), which are much higher than those of benchmark commercial Pt catalyst (0.34 mA/cm² and 92 mA/mg Pt at 0.9 V). Our studies provide a robust approach to monodisperse core/shell NPs with non-precious metal core, making it possible to develop advanced NP catalysts with ultralow Pt content for ORR and many other heterogeneous reactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Mingxia; Cheng, Lei; Choi, Jae-Soon
Density functional theory (DFT) calculations were used to investigate the effect of Ni dopants on the removal of chemisorbed oxygen (O*) from the Mo-terminated (T-Mo) and C-terminated (Tc) Mo2C(001) surfaces. The removal of adsorbed oxygen from the catalytic site is essential to maintain the long-term activity and selectivity of the carbide catalysts in the deoxygenation process related to bio-oil stabilization and upgrading. In this contribution, the computed reaction energetics and reaction barriers of O* removal were compared among undoped and Ni-doped Mo2C(001) surfaces. The DFT calculations indicate that selected Ni-doped surfaces such as Ni adsorbed on T-Mo and Tc Mo2C(001)more » surfaces enable weaker binding of important reactive intermediates (O*, OH*) compared to the undoped counterparts, which is beneficial for the O* removal from the catalyst surface. This study thus confirms the promoting effect of the Ni dopant on O* removal reaction on the T-Mo Mo2C(001) and Tc Mo2C(001) surfaces. This computational prediction has been confirmed by the temperature-programmed reduction profiles of Mo2C and Ni-doped Mo2C catalysts, which had been passivated and stored in an oxygen environment.« less
He, Qianping; Chen, Jihua; Keffer, David J; Joy, David C
2014-01-01
Electron microscopy is an essential tool for the evaluation of microstructure and properties of the catalyst layer (CL) of proton exchange membrane fuel cells (PEMFCs). However, electron microscopy has one unavoidable drawback, which is radiation damage. Samples suffer temporary or permanent change of the surface or bulk structure under radiation damage, which can cause ambiguity in the characterization of the sample. To better understand the mechanism of radiation damage of CL samples and to be able to separate the morphological features intrinsic to the material from the consequences of electron radiation damage, a series of experiments based on high-angle annular dark-field-scanning transmission scanning microscope (HAADF-STEM), energy filtering transmission scanning microscope (EFTEM), and electron energy loss spectrum (EELS) are conducted. It is observed that for thin samples (0.3-1 times λ), increasing the incident beam energy can mitigate the radiation damage. Platinum nanoparticles in the CL sample facilitate the radiation damage. The radiation damage of the catalyst sample starts from the interface of Pt/C or defective thin edge and primarily occurs in the form of mass loss accompanied by atomic displacement and edge curl. These results provide important insights on the mechanism of CL radiation damage. Possible strategies of mitigating the radiation damage are provided. © 2013 Wiley Periodicals, Inc.
2013-01-01
A series of non-precious metal electrocatalysts, namely pyrolyzed carbon-supported cobalt-polypyrrole, Co-PPy-TsOH/C, are synthesized with various cobalt precursors, including cobalt acetate, cobalt nitrate, cobalt oxalate, and cobalt chloride. The catalytic performance towards oxygen reduction reaction (ORR) is comparatively investigated with electrochemical techniques of cyclic voltammogram, rotating disk electrode and rotating ring-disk electrode. The results are analyzed and discussed employing physiochemical techniques of X-ray diffraction, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, inductively coupled plasma, elemental analysis, and extended X-ray absorption fine structure. It shows that the cobalt precursor plays an essential role on the synthesis process as well as microstructure and performance of the Co-PPy-TsOH/C catalysts towards ORR. Among the studied Co-PPy-TsOH/C catalysts, that prepared with cobalt acetate exhibits the best ORR performance. The crystallite/particle size of cobalt and its distribution as well as the graphitization degree of carbon in the catalyst greatly affects the catalytic performance of Co-PPy-TsOH/C towards ORR. Metallic cobalt is the main component in the active site in Co-PPy-TsOH/C for catalyzing ORR, but some other elements such as nitrogen are probably involved, too. PMID:24229351
Ryu, Won-Hee; Yoon, Taek-Han; Song, Sung Ho; Jeon, Seokwoo; Park, Yong-Joon; Kim, Il-Doo
2013-09-11
Designing a highly efficient catalyst is essential to improve the electrochemical performance of Li-O2 batteries for long-term cycling. Furthermore, these batteries often show significant capacity fading due to the irreversible reaction characteristics of the Li2O2 product. To overcome these limitations, we propose a bifunctional composite catalyst composed of electrospun one-dimensional (1D) Co3O4 nanofibers (NFs) immobilized on both sides of the 2D nonoxidized graphene nanoflakes (GNFs) for an oxygen electrode in Li-O2 batteries. Highly conductive GNFs with noncovalent functionalization can facilitate a homogeneous dispersion in solution, thereby enabling simple and uniform attachment of 1D Co3O4 NFs on GNFs without restacking. High first discharge capacity of 10 500 mAh/g and superior cyclability for 80 cycles with a limited capacity of 1000 mAh/g were achieved by (i) improved catalytic activity of 1D Co3O4 NFs with large surface area, (ii) facile electron transport via interconnected GNFs functionalized by Co3O4 NFs, and (iii) fast O2 diffusion through the ultrathin GNF layer and porous Co3O4 NF networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lustemberg, Pablo G.; Palomino, Robert M.; Gutierrez, Ramon A.
The transformation of methane into methanol or higher alcohols at moderate temperature and pressure conditions is of great environmental interest and remains a challenge despite many efforts. Extended surfaces of metallic nickel are inactive for a direct CH 4 → CH 3OH conversion. This experimental and computational study provides clear evidence that low Ni loadings on a CeO 2(111) support can perform a direct catalytic cycle for the generation of methanol at low temperature using oxygen and water as reactants, with a higher selectivity than ever reported for ceria-based catalysts. On the basis of ambient pressure X-ray photoemission spectroscopy andmore » density functional theory calculations, we demonstrate that water plays a crucial role in blocking catalyst sites where methyl species could fully decompose, an essential factor for diminishing the production of CO and CO 2, and in generating sites on which methoxy species and ultimately methanol can form. In addition to water-site blocking, one needs the effects of metal-support interactions to bind and activate methane and water. Lastly, these findings should be considered when designing metal/oxide catalysts for converting methane to value-added chemicals and fuels.« less
Catalysis applications of size-selected cluster deposition
Vajda, Stefan; White, Michael G.
2015-10-23
In this Perspective, we review recent studies of size-selected cluster deposition for catalysis applications performed at the U.S. DOE National Laboratories, with emphasis on work at Argonne National Laboratory (ANL) and Brookhaven National Laboratory (BNL). The focus is on the preparation of model supported catalysts in which the number of atoms in the deposited clusters is precisely controlled using a combination of gas-phase cluster ion sources, mass spectrometry, and soft-landing techniques. This approach is particularly effective for investigations of small nanoclusters, 0.5-2 nm (<200 atoms), where the rapid evolution of the atomic and electronic structure makes it essential to havemore » precise control over cluster size. Cluster deposition allows for independent control of cluster size, coverage, and stoichiometry (e.g., the metal-to-oxygen ratio in an oxide cluster) and can be used to deposit on any substrate without constraints of nucleation and growth. Examples are presented for metal, metal oxide, and metal sulfide cluster deposition on a variety of supports (metals, oxides, carbon/diamond) where the reactivity, cluster-support electronic interactions, and cluster stability and morphology are investigated. Both UHV and in situ/operando studies are presented that also make use of surface-sensitive X-ray characterization tools from synchrotron radiation facilities. Novel applications of cluster deposition to electrochemistry and batteries are also presented. This review also highlights the application of modern ab initio electronic structure calculations (density functional theory), which can essentially model the exact experimental system used in the laboratory (i.e., cluster and support) to provide insight on atomic and electronic structure, reaction energetics, and mechanisms. As amply demonstrated in this review, the powerful combination of atomically precise cluster deposition and theory is able to address fundamental aspects of size-effects, cluster-support interactions, and reaction mechanisms of cluster materials that are central to how catalysts function. Lastly, the insight gained from such studies can be used to further the development of novel nanostructured catalysts with high activity and selectivity.« less
Bifunctional air electrodes containing elemental iron powder charging additive
Liu, Chia-tsun; Demczyk, Brian G.; Gongaware, Paul R.
1982-01-01
A bifunctional air electrode for use in electrochemical energy cells is made, comprising a hydrophilic layer and a hydrophobic layer, where the hydrophilic layer essentially comprises a hydrophilic composite which includes: (i) carbon; (ii) elemental iron particles having a particle size of between about 25 microns and about 700 microns diameter; (iii) an oxygen evolution material; (iv) a nonwetting agent; and (v) a catalyst, where at least one current collector is formed into said composite.
Compact assembly generates plastic foam, inflates flotation bag
NASA Technical Reports Server (NTRS)
1965-01-01
Device for generating plastic foam consists of an elastomeric bag and two containers with liquid resin and a liquid catalyst. When the walls of the containers are ruptured the liquids come into contact producing foam which inflates the elastomeric bag.
Hydrogen recombiner catalyst test supporting data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Britton, M.D.
1995-01-19
This is a data package supporting the Hydrogen Recombiner Catalyst Performance and Carbon Monoxide Sorption Capacity Test Report, WHC-SD-WM-TRP-211, Rev 0. This report contains 10 appendices which consist of the following: Mass spectrometer analysis reports: HRC samples 93-001 through 93-157; Gas spectrometry analysis reports: HRC samples 93-141 through 93-658; Mass spectrometer procedure PNL-MA-299 ALO-284; Alternate analytical method for ammonia and water vapor; Sample log sheets; Job Safety analysis; Certificate of mixture analysis for feed gases; Flow controller calibration check; Westinghouse Standards Laboratory report on Bois flow calibrator; and Sorption capacity test data, tables, and graphs.
NASA Astrophysics Data System (ADS)
Botta, Lorenzo; Mattia Bizzarri, Bruno; Piccinino, Davide; Fornaro, Teresa; Robert Brucato, John; Saladino, Raffaele
2017-07-01
The photochemical transformation of formamide in the presence of a mixture of TiO2 and ZnO metal oxides as catalysts afforded a large panel of molecules of biological relevance, including carboxylic acids, amino acids and nucleic acid bases. The reaction was less effective when performed in the presence of only one mineral, highlighting the role of synergic effects between the photoactive catalysts. Taken together, these results suggest that the synthesis of chemical precursors for both the genetic and the metabolic apparatuses might have occurred in a simple environment, consisting of formamide, photoactive metal oxides and UV-radiation.
Characterization of LaRhO3 perovskites for dry (CO2) reforming of methane (DRM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johansson, Ted; Pakhare, Devendra; Haynes, Daniel
2014-01-01
Abstract This work reports on the characterization of LaRhO3 perovskite as a catalyst for dry reforming of methane. The catalyst was studied using CH4-temperature programmed reduction (TPR), H2-TPR, and temperature programmed surface reaction (TPSR), and the changes in the crystal structure of the catalyst due to these treatments were studied by X-ray diffraction (XRD). XRD pattern of the freshly calcined perovskites showed the formation of highly crystalline LaRhO3 and La2O3 phases. H2-TPR of the fresh calcined catalyst showed a shoulder at 342°C and a broad peak at 448°C, suggesting that the reduction of Rh in perovskite occurs in multiple steps.more » XRD pattern of the reduced catalyst suggests complete reduction of the LaRhO3 phase and the formation of metallic Rh and minor amounts of La(OH)3. The CH4-TPR data show qualitatively similar results as H2-TPR, with a shoulder and a broad peak in the same temperature range. Following the H2-TPR up to 950°C, the same batch of catalyst was oxidized by flowing 5 vol. % O2/He up to 500°C and a second H2-TPR (also up to 950°C) was conducted. This second H2-TPR differed significantly from that of the fresh calcined catalyst. The single sharp peak at 163°C in the second H2-TPR suggests a significant change in the catalyst, probably causedby the transformation of about 90 % of the perovskite into Rh/La2O3. This was confirmed by the XRD studies of the catalyst reduced after the oxidation at 500°C. TPSR of the dry reforming reaction on the fresh calcined catalyst showed CO and H2 formation starting at 400°C, with complete consumption of the reactants at 650°C. The uneven consumption of reactants between 400°C and 650°C suggests that reactions other than DRM occur, including reverse water gas shift (RWGS) and the Boudouard reaction (BR), probably as a result of in-situ changes in the catalyst, consistent with the H2-TPR results. TPSR, after a H2-TPR up to 950°C, showed that the dry reforming reaction did not light off until 570°C, which is much higher temperature than the one observed using fresh calcined catalyst. This shows that the uniform sites produced during the 950°C H2-TPR are catalytically less active than those of the fresh calcined catalyst, and that no significant side reactions such as RWGS or the Boudouard reaction occur. This suggests that reduction leads to the formation of a single type of sites which do not catalyze simultaneous side reactions.« less
NASA Astrophysics Data System (ADS)
Setyopratomo, P.; Wulan, Praswasti P. D. K.; Sudibandriyo, M.
2016-06-01
Carbon nanotubes were produced by chemical vapor deposition method to meet the specifications for hydrogen storage. So far, the various catalyst had been studied outlining their activities, performances, and efficiencies. In this work, tri-metallic catalyst consist of Fe-Co-Mo supported on MgO was used. The catalyst was prepared by wet-impregnation method. Liquefied Petroleum Gas (LPG) was used as carbon source. The synthesis was conducted in atmospheric fixed bed reactor at reaction temperature range 750 - 850 °C for 30 minutes. The impregnation method applied in this study successfully deposed metal component on the MgO support surface. It found that the deposited metal components might partially replace Mg(OH)2 or MgO molecules in their crystal lattice. Compare to the original MgO powder; it was significant increases in pore volume and surface area has occurred during catalyst preparation stages. The size of obtained carbon nanotubes is ranging from about 10.83 nm OD/4.09 nm ID up to 21.84 nm OD/6.51 nm ID, which means that multiwall carbon nanotubes were formed during the synthesis. Yield as much as 2.35 g.CNT/g.catalyst was obtained during 30 minutes synthesis and correspond to carbon nanotubes growth rate of 0.2 μm/min. The BET surface area of the obtained carbon nanotubes is 181.13 m2/g and around 50 % of which is contributed by mesopores. Micropore with half pore width less than 1 nm contribute about 10% volume of total micro and mesopores volume of the carbon nanotubes. The existence of these micropores is very important to increase the hydrogen storage capacity of the carbon nanotubes.
Evaluation of malt spent rootlets biochar as catalyst for biodiesel production.
NASA Astrophysics Data System (ADS)
Pantiora, Dimitra
2014-05-01
Evaluation of malt spent rootlets biochar as catalyst for biodiesel production. Dimitra Pantiora1, Hrissi K. Karapanagioti1, Ioannis D. Manariotis2, Alexis Lycourghiotis1, Christos Kordulis1,3 (1) University of Patras, Department of Chemistry, GR 26500, Patras, Greece, (2) University of Patras, Department of Civil Engineering, Patras, Greece, (3) Institute of Chemical Engineering Science (FORTH/ ICE-HT), Stadiou Str., Platani, GR 26500, Patras, Greece Biodiesel is an attractive renewable fuel, environmentally friendly, and can readily be synthesized from the triglycerides found in animal fats and vegetable oils. It can be used in existing engines. Biodiesel consists of fatty acid alkyl esters. Conversion of triglycerides to biodiesel fuel is commonly achieved through a series of transesterification reactions involving the reaction of an alkoxy group of an ester (i.e., mono-, di-, or triglyceride) with that of a small alcohol (usually methanol). This reaction is traditionally catalyzed by homogeneous catalysts, such as bases or mineral acids. Basic catalysts have been proved to be much more active than acidic ones. However, due to environmental (waste water) and economic concerns (catalyst separation and product and by-product cleaning), heterogeneous catalysts are much more desirable. In the present study we have evaluated the use of biochar, produced from malt spent rootlets, as a potential basic catalyst, for transesterification of triglycerides using triacetin as a probe molecule. The biochar used in this study was prepared by heating malt spent rootlets in an oxygen-limited environment. It is a carbon rich material, containing 66% C, 22% O, 0.45% Mg, 0.86% Si, 5.7% K, 1.5% Cl, 0.61% Ca, and 2.4% P. Aqueous suspension of this material equilibrates at pH= 10. This is probably due to high K content. Furthermore, it exhibits high specific surface area (SSA= 183 m2g-1). The above described characteristics make this material very promising catalyst for transesterification reactions. Indeed, the corresponding catalytic tests showed that 100% transesterification of triacetin can be achieved into 0.5 hour. This activity was maintained at least for 4 successive catalytic runs.
Catalysts For Hydrogenation And Hydrosilylation Methods Of Making And Using The Same
Dioumaev, Vladimir K.; Bullock, R. Morris
2004-05-18
A compound is provided including an organometallic complex represented by the formula I: wherein M is an atom of molybdenum or tangsten, Cp is substituted or unsubstituted cyclopentadienyl radical represented by the formula [C.sub.5 Q.sup.1 Q.sup.2 Q.sup.3 Q.sup.4 Q.sup.5 ], wherein Q.sup.1 to Q.sup.5 are independently selected from the group consisting of H radical, C.sub.1-20 hydrocarbyl radical, substituted hydrocarbyl radical, halogen radical, halogen-substituted hydrocarbyl radical, --OR, --C(O)R', --CO.sub.2 R', --SiR'.sub.3 and --NR'R", wherein R' and R" are independently selected from the group consisting of H radical, C.sub.1-20 hydrocarbyl radical, halogen radical, and halogen-substituted hydrocarbyl radical, wherein said Q.sup.1 to Q.sup.5 radicals are optionally linked to each other to form a stable bridging group, NHC is any N-heterocyclic carbene ligand, L is either any neutral electron donor ligand, wherein k is a number from 0 to 1 or L is an anionic ligand wherein k is 2, and A.sup.- is an anion. Processes using the organometallic complex as catalyst for hydrogenation of aldehydes and ketones are provided. Processes using the organometallic complex as catalyst for the hydrosilylation of aldehydes, ketones and esters are also provided.
Nellist, Michael R; Laskowski, Forrest A L; Lin, Fuding; Mills, Thomas J; Boettcher, Shannon W
2016-04-19
Light-absorbing semiconductor electrodes coated with electrocatalysts are key components of photoelectrochemical energy conversion and storage systems. Efforts to optimize these systems have been slowed by an inadequate understanding of the semiconductor-electrocatalyst (sem|cat) interface. The sem|cat interface is important because it separates and collects photoexcited charge carriers from the semiconductor. The photovoltage generated by the interface drives "uphill" photochemical reactions, such as water splitting to form hydrogen fuel. Here we describe efforts to understand the microscopic processes and materials parameters governing interfacial electron transfer between light-absorbing semiconductors, electrocatalysts, and solution. We highlight the properties of transition-metal oxyhydroxide electrocatalysts, such as Ni(Fe)OOH, because they are the fastest oxygen-evolution catalysts known in alkaline media and are (typically) permeable to electrolyte. We describe the physics that govern the charge-transfer kinetics for different interface types, and show how numerical simulations can explain the response of composite systems. Emphasis is placed on "limiting" behavior. Electrocatalysts that are permeable to electrolyte form "adaptive" junctions where the interface energetics change during operation as charge accumulates in the catalyst, but is screened locally by electrolyte ions. Electrocatalysts that are dense, and thus impermeable to electrolyte, form buried junctions where the interface physics are unchanged during operation. Experiments to directly measure the interface behavior and test the theory/simulations are challenging because conventional photoelectrochemical techniques do not measure the electrocatalyst potential during operation. We developed dual-working-electrode (DWE) photoelectrochemistry to address this limitation. A second electrode is attached to the catalyst layer to sense or control current/voltage independent from that of the semiconductor back ohmic contact. Consistent with simulations, electrolyte-permeable, redox-active catalysts such as Ni(Fe)OOH form "adaptive" junctions where the effective barrier height for electron exchange depends on the potential of the catalyst. This is in contrast to sem|cat interfaces with dense electrolyte-impermeable catalysts, such as nanocrystalline IrOx, that behave like solid-state buried (Schottky-like) junctions. These results elucidate a design principle for catalyzed photoelectrodes. The buried heterojunctions formed by dense catalysts are often limited by Fermi-level pinning and low photovoltages. Catalysts deposited by "soft" methods, such as electrodeposition, form adaptive junctions that tend to provide larger photovoltages and efficiencies. We also preview efforts to improve theory/simulations to account for the presence of surface states and discuss the prospect of carrier-selective catalyst contacts.
Yan, Yibo; Li, Kaixin; Chen, Xiaoping; Yang, Yanhui; Lee, Jong-Min
2017-12-01
Expedition of electron transfer efficiency and optimization of surface reactant adsorption products desorption processes are two main challenges for developing non-noble catalysts in the oxygen reduction reaction (ORR) and CO 2 reduction reaction (CRR). A heterojunction prototype on Co 3 S 4 @Co 3 O 4 core-shell octahedron structure is established via hydrothermal lattice anion exchange protocol to implement the electroreduction of oxygen and carbon dioxide with high performance. The synergistic bifunctional catalyst consists of p-type Co 3 O 4 core and n-type Co 3 S 4 shell, which afford high surface electron density along with high capacitance without sacrificing mechanical robustness. A four electron ORR process, identical to the Pt catalyzed ORR, is validated using the core-shell octahedron catalyst. The synergistic interaction between cobalt sulfide and cobalt oxide bicatalyst reduces the activation energy to convert CO 2 into adsorbed intermediates and hereby enables CRR to run at a low overpotential, with formate as the highly selective main product at a high faraday efficiency of 85.3%. The remarkable performance can be ascribed to the synergistic coupling effect of the structured co-catalysts; heterojunction structure expedites the electron transfer efficiency and optimizes surface reactant adsorption product desorption processes, which also provide theoretical and pragmatic guideline for catalyst development and mechanism explorations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Labiadh, Lazhar; Oturan, Mehmet A; Panizza, Marco; Hamadi, Nawfel Ben; Ammar, Salah
2015-10-30
The mineralization of a new azo dye - the (4-amino-3-hydroxy-2-p-tolylazo-naphthalene-1-sulfonic acid) (AHPS) - has been studied by a novel electrochemical advanced oxidation process (EAOP), consisting in electro-Fenton (EF) oxidation, catalyzed by pyrite as the heterogeneous catalyst - the so-called 'pyrite-EF'. This solid pyrite used as heterogeneous catalyst instead of a soluble iron salt, is the catalyst the system needs for production of hydroxyl radicals. Experiments were performed in an undivided cell equipped with a BDD anode and a commercial carbon felt cathode to electrogenerate in situ H2O2 and regenerate ferrous ions as catalyst. The effects on operating parameters, such as applied current, pyrite concentration and initial dye content, were investigated. AHPS decay and mineralization efficiencies were monitored by HPLC analyses and TOC measurements, respectively. Experimental results showed that AHPS was quickly oxidized by hydroxyl radicals (OH) produced simultaneously both on BDD surface by water discharge and in solution bulk from electrochemically assisted Fenton's reaction with a pseudo-first-order reaction. AHPS solutions with 175 mg L(-1) (100 mg L(-1) initial TOC) content were then almost completely mineralized in 8h. Moreover, the results demonstrated that, under the same conditions, AHPS degradation by pyrite electro-Fenton process was more powerful than the conventional electro-Fenton process. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lei, Libin; Tao, Zetian; Hong, Tao; Wang, Xiaoming; Chen, Fanglin
2018-06-01
The sluggish reaction kinetics in the cathode usually leads to considerable cathode polarization resistance, hindering the development of proton conducting solid oxide fuel cells (H-SOFCs) operated at intermediate temperatures (400-650 °C). To address this problem, for the first time, a novel hybrid catalyst consisting of PrNi0.5Mn0.5O3 and PrOx is impregnated in the (La0.60Sr0.40)0.95Co0.20Fe0.80O3-δ (LSCF) cathode of H-SOFCs, resulting in significant enhancement of the cathode reaction kinetics. Single cells with impregnated LSCF cathode and BaZr0.8Y0.2O3 (BZY) electrolyte yield a maximum power density (MPD) of 0.198 W cm-2 at 600 °C, more than doubled of that with blank LSCF cathode (0.083 W cm-2). ECR and EIS studies reveal that the hybrid catalyst can substantially accelerate the oxygen-ion transfer and oxygen dissociation-absorption processes in the cathode, resulting in significantly lower polarization resistance and higher MPD. In addition, the hybrid catalyst possesses good chemical and microstructural stability at 600 °C. Consequently, the single cells with impregnated LSCF cathode show excellent durability. This study shows that the impregnation of this novel hybrid catalyst in the cathode could be a promising approach to improve the performance and stability of H-SOFCs.
Propitious Dendritic Cu2O-Pt Nanostructured Anodes for Direct Formic Acid Fuel Cells.
El-Nagar, Gumaa A; Mohammad, Ahmad M; El-Deab, Mohamed S; El-Anadouli, Bahgat E
2017-06-14
This study introduces a novel competent dendritic copper oxide-platinum nanocatalyst (nano-Cu 2 O-Pt) immobilized onto a glassy carbon (GC) substrate for formic acid (FA) electro-oxidation (FAO); the prime reaction in the anodic compartment of direct formic acid fuel cells (DFAFCs). Interestingly, the proposed catalyst exhibited an outstanding improvement for FAO compared to the traditional platinum nanoparticles (nano-Pt) modified GC (nano-Pt/GC) catalyst. This was evaluated from steering the reaction mechanism toward the desired direct route producing carbon dioxide (CO 2 ); consistently with mitigating the other undesired indirect pathway producing carbon monoxide (CO); the potential poison deteriorating the catalytic activity of typical Pt-based catalysts. Moreover, the developed catalyst showed a reasonable long-term catalytic stability along with a significant lowering in onset potential of direct FAO that ultimately reduces the polarization and amplifies the fuel cell's voltage. The observed catalytic enhancement was believed to originate bifunctionally; while nano-Pt represented the base for the FA adsorption, nanostructured copper oxide (nano-Cu 2 O) behaved as a catalytic mediator facilitating the charge transfer during FAO and providing the oxygen atmosphere inspiring the poison's (CO) oxidation at relatively lower potential. Surprisingly, moreover, nano-Cu 2 O induced a surface retrieval of nano-Pt active sites by capturing the poisoning CO via "a spillover mechanism" to renovate the Pt surface for the direct FAO. Finally, the catalytic tolerance of the developed catalyst toward halides' poisoning was discussed.
Escaño, Mary Clare Sison; Arevalo, Ryan Lacdao; Gyenge, Elod; Kasai, Hideaki
2014-09-03
The electrocatalysis of borohydride oxidation is a complex, up-to-eight-electron transfer process, which is essential for development of efficient direct borohydride fuel cells. Here we review the progress achieved by density functional theory (DFT) calculations in explaining the adsorption of BH4(-) on various catalyst surfaces, with implications for electrocatalyst screening and selection. Wherever possible, we correlate the theoretical predictions with experimental findings, in order to validate the proposed models and to identify potential directions for further advancements.
NASA Astrophysics Data System (ADS)
Sison Escaño, Mary Clare; Lacdao Arevalo, Ryan; Gyenge, Elod; Kasai, Hideaki
2014-09-01
The electrocatalysis of borohydride oxidation is a complex, up-to-eight-electron transfer process, which is essential for development of efficient direct borohydride fuel cells. Here we review the progress achieved by density functional theory (DFT) calculations in explaining the adsorption of BH4- on various catalyst surfaces, with implications for electrocatalyst screening and selection. Wherever possible, we correlate the theoretical predictions with experimental findings, in order to validate the proposed models and to identify potential directions for further advancements.
Fuel processing for PEM fuel cells: transport and kinetic issues of system design
NASA Astrophysics Data System (ADS)
Zalc, J. M.; Löffler, D. G.
In light of the distribution and storage issues associated with hydrogen, efficient on-board fuel processing will be a significant factor in the implementation of PEM fuel cells for automotive applications. Here, we apply basic chemical engineering principles to gain insight into the factors that limit performance in each component of a fuel processor. A system consisting of a plate reactor steam reformer, water-gas shift unit, and preferential oxidation reactor is used as a case study. It is found that for a steam reformer based on catalyst-coated foils, mass transfer from the bulk gas to the catalyst surface is the limiting process. The water-gas shift reactor is expected to be the largest component of the fuel processor and is limited by intrinsic catalyst activity, while a successful preferential oxidation unit depends on strict temperature control in order to minimize parasitic hydrogen oxidation. This stepwise approach of sequentially eliminating rate-limiting processes can be used to identify possible means of performance enhancement in a broad range of applications.
Sheybani, Roya; Meng, Ellis
2015-01-01
Recombination of electrolysis gases (oxidation of hydrogen and reduction of oxygen) is an important factor in operation efficiency of devices employing electrolysis such as actuators and also unitized regenerative fuel cells. Several methods of improving recombination speed and repeatability were developed for application to electrolysis microactuators with Nafion®-coated catalytic electrodes. Decreasing the electrolysis chamber volume increased the speed, consistency, and repeatability of the gas recombination rate. To further improve recombination performance, methods to increase the catalyst surface area, hydrophobicity, and availability were developed and evaluated. Of these, including in the electrolyte pyrolyzed-Nafion®-coated Pt segments contained in the actuator chamber accelerated recombination by increasing the catalyst surface area and decreasing the gas transport diffusion path. This approach also reduced variability in recombination encountered under varying actuator orientation (resulting in differing catalyst/gas bubble proximity) and increased the rate of recombination by 2.3 times across all actuator orientations. Repeatability of complete recombination for different generated gas volumes was studied through cycling. PMID:26251561
Electrochemical device for converting carbon dioxide to a reaction product
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masel, Richard I.; Chen, Qingmei; Liu, Zengcai
An electrochemical device converts carbon dioxide to a reaction product. The device includes an anode and a cathode, each comprising a quantity of catalyst. The anode and cathode each has reactant introduced thereto. A polymer electrolyte membrane is interposed between the anode and the cathode. At least a portion of the cathode catalyst is directly exposed to gaseous carbon dioxide during electrolysis. The average current density at the membrane is at least 20 mA/cm.sup.2, measured as the area of the cathode gas diffusion layer that is covered by catalyst, and CO selectivity is at least 50% at a cell potentialmore » of 3.0 V. In some embodiments, the polymer electrolyte membrane comprises a polymer in which a constituent monomer is (p-vinylbenzyl)-R, where R is selected from the group consisting of imidazoliums, pyridiniums and phosphoniums. In some embodiments, the polymer electrolyte membrane is a Helper Membrane comprising a polymer containing an imidazolium ligand, a pyridinium ligand, or a phosphonium ligand.« less
Synthesis of Different Layers of Graphene on Stainless Steel Using the CVD Method
NASA Astrophysics Data System (ADS)
Ghaemi, Ferial; Abdullah, Luqman Chuah; Tahir, Paridah Md; Yunus, Robiah
2016-11-01
In this study, different types of graphene, including single-, few-, and multi-layer graphene, were grown on a stainless steel (SS) mesh coated with Cu catalyst by using the chemical vapor deposition (CVD) method. Even though the SS mesh consisted of different types of metals, such as Fe, Ni, and Cr, which can also be used as catalysts, the reason for coating Cu catalyst on the SS surface had been related to the nature of the Cu, which promotes the growth of graphene with high quality and quantity at low temperature and time. The reaction temperature and run time, as the most important parameters of the CVD method, were varied, and thus led to the synthesis of different layers of graphene. Moreover, the presence of single-, few-, and multi-layer graphene was confirmed by employing two techniques, namely transmission electron microscopy (TEM) and Raman spectroscopy. On top of that, electron dispersive X-ray (EDX) was further applied to establish the influence of the CVD parameters on the growth of graphene.
Synthesis of Different Layers of Graphene on Stainless Steel Using the CVD Method.
Ghaemi, Ferial; Abdullah, Luqman Chuah; Tahir, Paridah Md; Yunus, Robiah
2016-12-01
In this study, different types of graphene, including single-, few-, and multi-layer graphene, were grown on a stainless steel (SS) mesh coated with Cu catalyst by using the chemical vapor deposition (CVD) method. Even though the SS mesh consisted of different types of metals, such as Fe, Ni, and Cr, which can also be used as catalysts, the reason for coating Cu catalyst on the SS surface had been related to the nature of the Cu, which promotes the growth of graphene with high quality and quantity at low temperature and time. The reaction temperature and run time, as the most important parameters of the CVD method, were varied, and thus led to the synthesis of different layers of graphene. Moreover, the presence of single-, few-, and multi-layer graphene was confirmed by employing two techniques, namely transmission electron microscopy (TEM) and Raman spectroscopy. On top of that, electron dispersive X-ray (EDX) was further applied to establish the influence of the CVD parameters on the growth of graphene.
Gustafson, Karl P J; Lihammar, Richard; Verho, Oscar; Engström, Karin; Bäckvall, Jan-E
2014-05-02
A catalyst consisting of palladium nanoparticles supported on amino-functionalized siliceous mesocellular foam (Pd-AmP-MCF) was used in chemoenzymatic dynamic kinetic resolution (DKR) to convert primary amines to amides in high yields and excellent ee's. The efficiency of the nanocatalyst at temperatures below 70 °C enables reaction conditions that are more suitable for enzymes. In the present study, this is exemplified by subjecting 1-phenylethylamine (1a) and analogous benzylic amines to DKR reactions using two commercially available lipases, Novozyme-435 (Candida antartica Lipase B) and Amano Lipase PS-C1 (lipase from Burkholderia cepacia) as biocatalysts. The latter enzyme has not previously been used in the DKR of amines because of its low stability at temperatures over 60 °C. The viability of the heterogeneous Pd-AmP-MCF was further demonstrated in a recycling study, which shows that the catalyst can be reused up to five times.
Active sites and mechanisms for H2O2 decomposition over Pd catalysts
Plauck, Anthony; Stangland, Eric E.; Dumesic, James A.; Mavrikakis, Manos
2016-01-01
A combination of periodic, self-consistent density functional theory (DFT-GGA-PW91) calculations, reaction kinetics experiments on a SiO2-supported Pd catalyst, and mean-field microkinetic modeling are used to probe key aspects of H2O2 decomposition on Pd in the absence of cofeeding H2. We conclude that both Pd(111) and OH-partially covered Pd(100) surfaces represent the nature of the active site for H2O2 decomposition on the supported Pd catalyst reasonably well. Furthermore, all reaction flux in the closed catalytic cycle is predicted to flow through an O–O bond scission step in either H2O2 or OOH, followed by rapid H-transfer steps to produce the H2O and O2 products. The barrier for O–O bond scission is sensitive to Pd surface structure and is concluded to be the central parameter governing H2O2 decomposition activity. PMID:27006504
Park, Paul W.
2004-03-16
A lean NOx catalyst and method of preparing the same is disclosed. The lean NOx catalyst includes a ceramic substrate, an oxide support material, preferably .gamma.-alumina, deposited on the substrate and a metal promoter or dopant introduced into the oxide support material. The metal promoters or dopants are selected from the group consisting of indium, gallium, tin, silver, germanium, gold, nickel, cobalt, copper, iron, manganese, molybdenum, chromium, cerium, vanadium, oxides thereof, and combinations thereof. The .gamma.-alumina preferably has a pore volume of from about 0.5 to about 2.0 cc/g; a surface area of between about 80 to 350 m.sup.2 /g; an average pore size diameter of between about 3 to 30 nm; and an impurity level of less than or equal to 0.2 weight percent. In a preferred embodiment the .gamma.-alumina is prepared by a sol-gel method, with the metal doping of the .gamma.-alumina preferably accomplished using an incipient wetness impregnation technique.
Supercritical fluid attachment of palladium nanoparticles on aligned carbon nanotubes.
Ye, Xiang-Rong; Lin, Yuehe; Wai, Chien M; Talbot, Jan B; Jin, Sungho
2005-06-01
Nanocomposite materials consisting of Pd nanoparticles deposited on aligned multi-walled carbon nanotubes have been fabricated through hydrogen reduction of palladium-beta-diketone precursor in supercritical carbon dioxide. The supercritical fluid processing allowed deposition of high-density Pd nanoparticles (approximately 5-10 nm) on both as-grown (unfunctionalized) and functionalized (using HNO3 oxidation) nanotubes. However, the wet processing for functionalization results in pre-agglomerated, bundle-shaped nanotubes, thus significantly reducing the effective surface area for Pd particle deposition, although the bundling provides more secure, lock-in-place positioning of nanotubes and Pd catalyst particles. The nanotube bundling is substantially mitigated by Pd nanoparticle deposition on the unfunctionalized and geometrically separated nanotubes, which provides much higher catalyst surface area. Such nanocomposite materials utilizing geometrically secured and aligned nanotubes can be useful for providing much enhanced catalytic activities to chemical and electrochemical reactions (e.g., fuel cell reactions), and eliminate the need for tedious catalyst recovery process after the reaction is completed.
CONTROL TECHNOLOGIES: PILOT- & FULL-SCALE TESTS
Two different project are to be supported in FY03. The first project is being conducted by the North Dakota Energy and Environmental Research Center (ND-EERC). This project consists of tests on coal-fired utility boilers to determine the effects of SCR catalysts and ammonia in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumta, Prashant N.; Kadakia, Karan Sandeep; Datta, Moni Kanchan
The invention provides electro-catalyst compositions for an anode electrode of a proton exchange membrane-based water electrolysis system. The compositions include a noble metal component selected from the group consisting of iridium oxide, ruthenium oxide, rhenium oxide and mixtures thereof, and a non-noble metal component selected from the group consisting of tantalum oxide, tin oxide, niobium oxide, titanium oxide, tungsten oxide, molybdenum oxide, yttrium oxide, scandium oxide, cooper oxide, zirconium oxide, nickel oxide and mixtures thereof. Further, the non-noble metal component can include a dopant. The dopant can be at least one element selected from Groups III, V, VI and VIImore » of the Periodic Table. The compositions can be prepared using a surfactant approach or a sol gel approach. Further, the compositions are prepared using noble metal and non-noble metal precursors. Furthermore, a thin film containing the compositions can be deposited onto a substrate to form the anode electrode.« less
NASA Astrophysics Data System (ADS)
Kweun, Joshua Minwoo; Li, Chenzhe; Zheng, Yongping; Cho, Maenghyo; Kim, Yoon Young; Cho, Kyeongjae
2016-05-01
Designing metal-oxides consisting of earth-abundant elements has been a crucial issue to replace precious metal catalysts. To achieve efficient screening of metal-oxide catalysts via bulk descriptors rather than surface descriptors, we investigated the relationship between the electronic structure of bulk and that of the surface for lanthanum-based perovskite oxides, LaMO3 (M = Ti, V, Cr, Mn, Fe, Co, Ni, Cu). Through density functional theory calculations, we examined the d-band occupancy of the bulk and surface transition-metal atoms (nBulk and nSurf) and the adsorption energy of an oxygen atom (Eads) on (001), (110), and (111) surfaces. For the (001) surface, we observed strong correlation between the nBulk and nSurf with an R-squared value over 94%, and the result was interpreted in terms of ligand field splitting and antibonding/bonding level splitting. Moreover, the Eads on the surfaces was highly correlated with the nBulk with an R-squared value of more than 94%, and different surface relaxations could be explained by the bulk electronic structure (e.g., LaMnO3 vs. LaTiO3). These results suggest that a bulk-derived descriptor such as nBulk can be used to screen metal-oxide catalysts.
Recovery of useful chemicals from palm oil mill wastewater
NASA Astrophysics Data System (ADS)
Ratanaporn, Yuangsawad; Duangkamol, Na-Ranong; Teruoki, Tago; Takao, Masuda
2017-11-01
A two-step process consisting of pyrolysis of dried sludge and catalytic upgrading of pyrolysed liquid was proposed. Wastewater from a palm oil mill was separated to solid cake and liquid by filtration. The solid cake was dried and pyrolysed at 773 K. Liquid product obtained from the pyrolysis had two immiscible aqueous and oil phases (PL-A and PL-O). Identification of chemicals in PL-A and PL-O indicated that both phases contained various chemicals with unsaturated bonds, such as carboxylic acids and alcohols, however, most of the chemicals could not be identified. Catalytic upgrading of PL-A and PL-O over ZrO2·FeOx were separately performed using a fixed bed reactor at various conditions, T = 513-723 K and mass of catalyst to feed rate = 0.25-10 h. The main components in the liquid products of PL-A upgrading were methanol and acetone whereas they were acetone and phenol in the case of PL-O upgrading. More than 15% of carbon in raw material was deposited on the catalyst. To reduce the carbon deposition, the used catalyst was treated with air at 823 K. This simple treatment could reasonably regenerate the catalyst only for the case of PL-A catalytic upgrading.
Degradation forecast for PEMFC cathode-catalysts under cyclic loads
NASA Astrophysics Data System (ADS)
Moein-Jahromi, M.; Kermani, M. J.; Movahed, S.
2017-08-01
Degradation of Fuel Cell (FC) components under cyclic loads is one of the biggest bottlenecks in FC commercialization. In this paper, a novel experimental based algorithm is presented to predict the Catalyst Layer (CL) performance loss during cyclic load. The algorithm consists of two models namely Models 1 and 2. The Model 1 calculates the Electro-Chemical Surface Area (ECSA) and agglomerate size (e.g. agglomerate radius, rt,agg) for the catalyst layer under cyclic load. The Model 2 is the already-existing model from our earlier studies that computes catalyst performance with fixed structural parameters. Combinations of these two Models predict the CL performance under an arbitrary cyclic load. A set of parametric/sensitivity studies is performed to investigate the effects of operating parameters on the percentage of Voltage Degradation Rate (VDR%) with rank 1 for the most influential one. Amongst the considered parameters (such as: temperature, relative humidity, pressure, minimum and maximum voltage of the cyclic load), the results show that temperature and pressure have the most and the least influences on the VDR%, respectively. So that, increase of temperature from 60 °C to 80 °C leads to over 20% VDR intensification, the VDR will also reduce 1.41% by increasing pressure from 2 atm to 4 atm.
Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J
2014-09-23
This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.
Marker, Terry L.; Felix, Larry G.; Linck, Martin B.; Roberts, Michael J.
2016-12-06
This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.
Wu, Chunfei; Nahil, Mohamad A; Miskolczi, Norbert; Huang, Jun; Williams, Paul T
2014-01-01
Producing both hydrogen and high-value carbon nanotubes (CNTs) derived from waste plastics is reported here using a pyrolysis-reforming technology comprising a two-stage reaction system, in the presence of steam and a Ni-Mn-Al catalyst. The waste plastics consisted of plastics from a motor oil container (MOC), commercial waste high density polyethylene (HDPE) and regranulated HDPE waste containing polyvinyl chloride (PVC). The results show that hydrogen can be produced from the pyrolysis-reforming process, but also carbon nanotubes are formed on the catalyst. However, the content of 0.3 wt.% polyvinyl chloride in the waste HDPE (HDPE/PVC) has been shown to poison the catalyst and significantly reduce the quantity and purity of CNTs. The presence of sulfur has shown less influence on the production of CNTs in terms of quantity and CNT morphologies. Around 94.4 mmol H2 g(-1) plastic was obtained for the pyrolysis-reforming of HDPE waste in the presence of the Ni-Mn-Al catalyst and steam at a reforming temperature of 800 °C. The addition of steam in the process results in an increase of hydrogen production and reduction of carbon yield; in addition, the defects of CNTs, for example, edge dislocations were found to be increased with the introduction of steam (from Raman analysis).
Alkali/TX[sub 2] catalysts for CO/H[sub 2] conversion to C[sub 1]-C[sub 4] alcohols
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klier, K.; Herman, R.G.; Richards-Babb, M.
1993-03-01
The objective of this research is to determine the patterns of variations of catalyst activity and selectivity for the synthesis of alcohols from H[sub 2]/CO synthesis gas. Since the source of carbon can be coal-derived synthesis gas, this research makes a contribution to the technology for high quality clean transportation fuels and for basic chemicals from coal. Catalysts prepared were principally based on MoS[sub 2], RuS[sub 2], TaS[sub 2], and NbS[sub 2]. Catalytic testing of these materials was carried out both before and after surface doping with Cs. In alcohol synthesis activation of hydrogen by the catalyst surface is essential.more » Knowledge of transition metal disulfide surface properties is important before the mechanism of hydrogen dissociation can be addressed. The electronic structures of MoS[sub 2], RuS[sub 2], and NbS[sub 2] were studied both theoretically and experimentally. Experimental valence bands were obtained by high resolution electron spectroscopy for chemical analysis (HR-ESCA, also referred to as x-ray photoelectron spectroscopy) and theoretical valence bands were calculated using solid state extended Hueckel theory. Comparison of two-dimensional (2-D) MoS[sub 2] theoretical valence bands with the experimental HR-ESCA valence bands of polycrystalline MoS[sub 2] led to parametrization of the S 3s, S 3p, and Mo 4d atomic ionization potentials and Slater-type coefficients and exponents. The S 3s and S 3p parameters obtained for MoS[sub 2] were used to obtain the NbS[sub 2] and RuS[sub 2] theoretical valence bands.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klier, K.; Herman, R.G.; Richards-Babb, M.
1993-03-01
The objective of this research is to determine the patterns of variations of catalyst activity and selectivity for the synthesis of alcohols from H{sub 2}/CO synthesis gas. Since the source of carbon can be coal-derived synthesis gas, this research makes a contribution to the technology for high quality clean transportation fuels and for basic chemicals from coal. Catalysts prepared were principally based on MoS{sub 2}, RuS{sub 2}, TaS{sub 2}, and NbS{sub 2}. Catalytic testing of these materials was carried out both before and after surface doping with Cs. In alcohol synthesis activation of hydrogen by the catalyst surface is essential.more » Knowledge of transition metal disulfide surface properties is important before the mechanism of hydrogen dissociation can be addressed. The electronic structures of MoS{sub 2}, RuS{sub 2}, and NbS{sub 2} were studied both theoretically and experimentally. Experimental valence bands were obtained by high resolution electron spectroscopy for chemical analysis (HR-ESCA, also referred to as x-ray photoelectron spectroscopy) and theoretical valence bands were calculated using solid state extended Hueckel theory. Comparison of two-dimensional (2-D) MoS{sub 2} theoretical valence bands with the experimental HR-ESCA valence bands of polycrystalline MoS{sub 2} led to parametrization of the S 3s, S 3p, and Mo 4d atomic ionization potentials and Slater-type coefficients and exponents. The S 3s and S 3p parameters obtained for MoS{sub 2} were used to obtain the NbS{sub 2} and RuS{sub 2} theoretical valence bands.« less
Electrocatalytic Oxidation of Formate by [Ni(P R 2N R' 2) 2(CH 3CN)] 2+ Complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galan, Brandon R.; Schöffel, Julia; Linehan, John C.
2011-08-17
[Ni(P R 2N R' 2) 2(CH 3CN)] 2+ complexes with R = Ph, R' = 4-MeOPh or R = Cy, R' = Ph , and a mixed-ligand [Ni(P R 2N R' 2)(P R" 2N R' 2)(CH 3CN)] 2+ with R = Cy, R' = Ph, R" = Ph, have been synthesized and characterized by single-crystal X-ray crystallography. These and previously reported complexes are shown to be electrocatalysts for the oxidation of formate in solution to produce CO 2, protons, and electrons, with rates that are first-order in catalyst and formate at formate concentrations below ~0.04 M (34 equiv). At concentrationsmore » above ~0.06 M formate (52 equiv), catalytic rates become nearly independent of formate concentration. For the catalysts studied, maximum observed turnover frequencies vary from <1.1 to 15.8 s –1 at room temperature, which are the highest rates yet reported for formate oxidation by homogeneous catalysts. These catalysts are the only base-metal electrocatalysts as well as the only homogeneous electrocatalysts reported to date for the oxidation of formate. An acetate complex demonstrating an η 1-OC(O)CH 3 binding mode to nickel has also been synthesized and characterized by single-crystal X-ray crystallography. Based on this structure and the electrochemical and spectroscopic data, a mechanistic scheme for electrocatalytic formate oxidation is proposed which involves formate binding followed by a rate-limiting proton and two-electron transfer step accompanied by CO 2 liberation. Finally, the pendant amines have been demonstrated to be essential for electrocatalysis, as no activity toward formate oxidation was observed for the similar [Ni(depe) 2] 2+ (depe = 1,2-bis(diethylphosphino)ethane) complex.« less
Electrocatalytic oxidation of formate by [Ni(P(R)2N(R')2)2(CH3CN)]2+ complexes.
Galan, Brandon R; Schöffel, Julia; Linehan, John C; Seu, Candace; Appel, Aaron M; Roberts, John A S; Helm, Monte L; Kilgore, Uriah J; Yang, Jenny Y; DuBois, Daniel L; Kubiak, Clifford P
2011-08-17
[Ni(P(R)(2)N(R')(2))(2)(CH(3)CN)](2+) complexes with R = Ph, R' = 4-MeOPh or R = Cy, R' = Ph , and a mixed-ligand [Ni(P(R)(2)N(R')(2))(P(R''(2))N(R'(2)))(CH(3)CN)](2+) with R = Cy, R' = Ph, R'' = Ph, have been synthesized and characterized by single-crystal X-ray crystallography. These and previously reported complexes are shown to be electrocatalysts for the oxidation of formate in solution to produce CO(2), protons, and electrons, with rates that are first-order in catalyst and formate at formate concentrations below ∼0.04 M (34 equiv). At concentrations above ∼0.06 M formate (52 equiv), catalytic rates become nearly independent of formate concentration. For the catalysts studied, maximum observed turnover frequencies vary from <1.1 to 15.8 s(-1) at room temperature, which are the highest rates yet reported for formate oxidation by homogeneous catalysts. These catalysts are the only base-metal electrocatalysts as well as the only homogeneous electrocatalysts reported to date for the oxidation of formate. An acetate complex demonstrating an η(1)-OC(O)CH(3) binding mode to nickel has also been synthesized and characterized by single-crystal X-ray crystallography. Based on this structure and the electrochemical and spectroscopic data, a mechanistic scheme for electrocatalytic formate oxidation is proposed which involves formate binding followed by a rate-limiting proton and two-electron transfer step accompanied by CO(2) liberation. The pendant amines have been demonstrated to be essential for electrocatalysis, as no activity toward formate oxidation was observed for the similar [Ni(depe)(2)](2+) (depe = 1,2-bis(diethylphosphino)ethane) complex.