DOE Office of Scientific and Technical Information (OSTI.GOV)
Papadias, D. D.; Ahluwalia, R. K.; Kariuki, N.
The durability of Pt-Co alloy cathode catalysts supported on high surface area carbon is investigated by subjecting them to accelerated stress tests (ASTs). The catalysts had different initial Co contents and nanoparticle morphologies: a “spongy” porous morphology for the high-Co (H) content catalyst, and a fully alloyed crystalline morphology for the medium-Co (M) and low-Co (L) content catalysts. The specific activity of the catalysts depends on their initial Co content, morphology and nanoparticle size, and remained higher than 1000 μA/cm 2-Pt after 27–50% Co loss. The H-catalyst electrode showed the smallest kinetic overpotentials (η c s) due to higher initialmore » Pt loading than the other two electrodes, but it had the fastest increase in ηcs with AST cycling due to lower Co retention; the L-catalyst electrode showed higher η c s due to a lower initial Pt loading, but had a smaller increase in η c s with aging due to higher Co retention; the M-catalyst electrode showed a similar increase in η c s with aging, but this increase was due to the combined effects of Co dissolution and electrochemically active surface area (ECSA) loss. In conclusion, the modeled increase in mass transfer overpotentials with aging correlates with the initial Pt loading, ECSA loss and the initial catalyst morphology« less
Papadias, D. D.; Ahluwalia, R. K.; Kariuki, N.; ...
2018-03-17
The durability of Pt-Co alloy cathode catalysts supported on high surface area carbon is investigated by subjecting them to accelerated stress tests (ASTs). The catalysts had different initial Co contents and nanoparticle morphologies: a “spongy” porous morphology for the high-Co (H) content catalyst, and a fully alloyed crystalline morphology for the medium-Co (M) and low-Co (L) content catalysts. The specific activity of the catalysts depends on their initial Co content, morphology and nanoparticle size, and remained higher than 1000 μA/cm 2-Pt after 27–50% Co loss. The H-catalyst electrode showed the smallest kinetic overpotentials (η c s) due to higher initialmore » Pt loading than the other two electrodes, but it had the fastest increase in ηcs with AST cycling due to lower Co retention; the L-catalyst electrode showed higher η c s due to a lower initial Pt loading, but had a smaller increase in η c s with aging due to higher Co retention; the M-catalyst electrode showed a similar increase in η c s with aging, but this increase was due to the combined effects of Co dissolution and electrochemically active surface area (ECSA) loss. In conclusion, the modeled increase in mass transfer overpotentials with aging correlates with the initial Pt loading, ECSA loss and the initial catalyst morphology« less
Fang, Baizeng; Kim, Jung Ho; Kim, Minsik; Kim, Minwoo; Yu, Jong-Sung
2009-03-07
Hierarchical nanostructured spherical carbon with hollow macroporous core in combination with mesoporous shell has been explored to support Pt cathode catalyst with high metal loading in proton exchange membrane fuel cell (PEMFC). The hollow core-mesoporous shell carbon (HCMSC) has unique structural characteristics such as large specific surface area and mesoporous volume, ensuring uniform dispersion of the supported high loading (60 wt%) Pt nanoparticles with small particle size, and well-developed three-dimensionally interconnected hierarchical porosity network, facilitating fast mass transport. The HCMSC-supported Pt(60 wt%) cathode catalyst has demonstrated markedly enhanced catalytic activity toward oxygen reduction and greatly improved PEMFC polarization performance compared with carbon black Vulcan XC-72 (VC)-supported ones. Furthermore, the HCMSC-supported Pt(40 wt%) or Pt(60 wt%) outperforms the HCMSC-supported Pt(20 wt%) even at a low catalyst loading of 0.2 mg Pt cm(-2) in the cathode, which is completely different from the VC-supported Pt catalysts. The capability of supporting high loading Pt is supposed to accelerate the commercialization of PEMFC due to the anticipated significant reduction in the amount of catalyst support required, diffusion layer thickness and fabricating cost of the supported Pt catalyst electrode.
NASA Astrophysics Data System (ADS)
Saha, Shibely; Cabrera Rodas, José Andrés; Tan, Shuai; Li, Dongmei
2018-02-01
An alternative catalyst platform, consisting of a phase-pure transition carbide (TMC) support and Pt nanoparticles (NPs) in the range of subnanometer to < 2.7 nm, is established that can be used in both anode and cathode catalyst layers. While some TMCs with low Pt loadings have demonstrated similar activity as commercial Pt catalyst in idealized disk electrode screening tests, few to none have been applied in a realistic fuel cell membrane electrode assembly (MEA). We recently reported that β-Mo2C hollow nanotubes modified with Pt NPs via atomic layer deposition (ALD) possess better activity and durability than 20% Pt/C. This paper presents systematic evaluation of the Pt/Mo2C catalysts in a MEA, investigating effects of different MEA preparation techniques, gas diffusion layers (GDL) and various Pt loadings in the ultralow range (<0.04 mg/cm2) on MEA performance. Most importantly, we demonstrate, for the first time, that Pt/Mo2C catalyst on both anode and cathode, with a loading of 0.02 mg (Pt) cm-2, generated peak power density of 414 mW cm-2 that corresponds to 10.35 kWgPt-1 using hydrogen (H2) and oxygen (O2). Accelerated degradation tests (ADT) on Pt/Mo2C catalysts show 111% higher power density than commercial 20% Pt/C after the vigorous ADT.
High aspect ratio catalytic reactor and catalyst inserts therefor
Lin, Jiefeng; Kelly, Sean M.
2018-04-10
The present invention relates to high efficient tubular catalytic steam reforming reactor configured from about 0.2 inch to about 2 inch inside diameter high temperature metal alloy tube or pipe and loaded with a plurality of rolled catalyst inserts comprising metallic monoliths. The catalyst insert substrate is formed from a single metal foil without a central supporting structure in the form of a spiral monolith. The single metal foil is treated to have 3-dimensional surface features that provide mechanical support and establish open gas channels between each of the rolled layers. This unique geometry accelerates gas mixing and heat transfer and provides a high catalytic active surface area. The small diameter, high aspect ratio tubular catalytic steam reforming reactors loaded with rolled catalyst inserts can be arranged in a multi-pass non-vertical parallel configuration thermally coupled with a heat source to carry out steam reforming of hydrocarbon-containing feeds. The rolled catalyst inserts are self-supported on the reactor wall and enable efficient heat transfer from the reactor wall to the reactor interior, and lower pressure drop than known particulate catalysts. The heat source can be oxygen transport membrane reactors.
Statistical Simulation of the Performance and Degradation of a PEMFC Membrane Electrode Assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, David; Bellemare-Davis, Alexander; Karan, Kunal
2012-07-01
A 1-D MEA Performance model was developed that considered transport of liquid water, agglomerate catalyst structure, and the statistical variation of the MEA characteristic parameters. The model was validated against a low surface area carbon supported catalyst across various platinum loadings and operational conditions. The statistical variation was found to play a significant role in creating noise in the validation data and that there was a coupling effect between movement in material properties with liquid water transport. Further, in studying the low platinum loaded catalyst layers it was found that liquid water played a significant role in the increasing themore » overall transport losses. The model was then further applied to study platinum dissolution via potential cycling accelerated stress tests, in which the platinum was found to dissolve nearest the membrane effectively resulting in reaction distribution shifts within the layer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahluwalia, R. K.; Wang, X.; Peng, J. -K.
Here, the durability of de-alloyed platinum-nickel catalysts supported on high-surface area carbon (d-PtNi/C) in optimized electrodes and membrane electrode assemblies (MEAs) under an accelerated stress test (AST) protocol is investigated with the objective of developing a quantitative understanding of the degradation mechanisms and their relationship to the electrode structure, pre-conditioning, and operating conditions. It is found that the cell degradation can be mitigated by controlling the voltage cycle, acid washing the MEA to remove Ni contaminants that enter the electrode and membrane during fabrication, and monitoring the operating conditions. For example, the electrochemical surface area (ECSA) loss is <25% aftermore » 30,000 triangle cycles with 0.925 V upper potential limit if the MEA is acid washed and extensive diagnostics are avoided. The parameters that exacerbate the cell degradation also accelerate the rate at which Ni leaches out from the catalyst. A mechanistic model is presented for the degradation in performance of d-PtNi/C electrodes. The model correlates a) the degradation in ORR mass and specific activities with ECSA and Ni losses, b) the decrease in limiting current density ( iL), which is inversely proportional to the O 2 mass transport resistance, with the degradation in catalyst roughness factor, and c) the increase in mass transfer overpotentials with the reduced current density, i/iL .« less
Ahluwalia, R. K.; Wang, X.; Peng, J. -K.; ...
2018-04-25
Here, the durability of de-alloyed platinum-nickel catalysts supported on high-surface area carbon (d-PtNi/C) in optimized electrodes and membrane electrode assemblies (MEAs) under an accelerated stress test (AST) protocol is investigated with the objective of developing a quantitative understanding of the degradation mechanisms and their relationship to the electrode structure, pre-conditioning, and operating conditions. It is found that the cell degradation can be mitigated by controlling the voltage cycle, acid washing the MEA to remove Ni contaminants that enter the electrode and membrane during fabrication, and monitoring the operating conditions. For example, the electrochemical surface area (ECSA) loss is <25% aftermore » 30,000 triangle cycles with 0.925 V upper potential limit if the MEA is acid washed and extensive diagnostics are avoided. The parameters that exacerbate the cell degradation also accelerate the rate at which Ni leaches out from the catalyst. A mechanistic model is presented for the degradation in performance of d-PtNi/C electrodes. The model correlates a) the degradation in ORR mass and specific activities with ECSA and Ni losses, b) the decrease in limiting current density ( iL), which is inversely proportional to the O 2 mass transport resistance, with the degradation in catalyst roughness factor, and c) the increase in mass transfer overpotentials with the reduced current density, i/iL .« less
3D Analysis of Fuel Cell Electrocatalyst Degradation on Alternate Carbon Supports.
Sneed, Brian T; Cullen, David A; Reeves, Kimberly S; Dyck, Ondrej E; Langlois, David A; Mukundan, Rangachary; Borup, Rodney L; More, Karren L
2017-09-06
Understanding the mechanisms associated with Pt/C electrocatalyst degradation in proton exchange membrane fuel cell (PEMFC) cathodes is critical for the future development of higher-performing materials; however, there is a lack of information regarding Pt coarsening under PEMFC operating conditions within the cathode catalyst layer. We report a direct and quantitative 3D study of Pt dispersions on carbon supports (high surface area carbon (HSAC), Vulcan XC-72, and graphitized carbon) with varied surface areas, graphitic character, and Pt loadings ranging from 5 to 40 wt %. This is accomplished both before and after catalyst-cycling accelerated stress tests (ASTs) through observations of the cathode catalyst layer of membrane electrode assemblies. Electron tomography results show Pt nanoparticle agglomeration occurs predominantly at junctions and edges of aggregated graphitized carbon particles, leading to poor Pt dispersion in the as-prepared catalysts and increased coalescence during ASTs. Tomographic reconstructions of Pt/HSAC show much better initial Pt dispersions, less agglomeration, and less coarsening during ASTs in the cathode. However, a large loss of the electrochemically active surface area (ECSA) is still observed and is attributed to accelerated Pt dissolution and nanoparticle coalescence. Furthermore, a strong correlation between Pt particle/agglomerate size and measured ECSA is established and is proposed as a more useful metric than average crystallite size in predicting degradation behavior across different catalyst systems.
3D Analysis of Fuel Cell Electrocatalyst Degradation on Alternate Carbon Supports
Sneed, Brian T.; Cullen, David A.; Reeves, Kimberly S.; ...
2017-08-15
Understanding the mechanisms associated with Pt/C electrocatalyst degradation in proton exchange membrane fuel cell (PEMFC) cathodes is critical for the future development of higher-performing materials; however, there is a lack of information regarding Pt coarsening under PEMFC operating conditions within the cathode catalyst layer. We report a direct and quantitative 3D study of Pt dispersions on carbon supports (high surface area carbon (HSAC), Vulcan XC-72, and graphitized carbon) with varied surface areas, graphitic character, and Pt loadings ranging from 5 to 40 wt %. This is accomplished both before and after catalyst-cycling accelerated stress tests (ASTs) through observations of themore » cathode catalyst layer of membrane electrode assemblies. Electron tomography results show Pt nanoparticle agglomeration occurs predominantly at junctions and edges of aggregated graphitized carbon particles, leading to poor Pt dispersion in the as-prepared catalysts and increased coalescence during ASTs. Tomographic reconstructions of Pt/HSAC show much better initial Pt dispersions, less agglomeration, and less coarsening during ASTs in the cathode. However, a large loss of the electrochemically active surface area (ECSA) is still observed and is attributed to accelerated Pt dissolution and nanoparticle coalescence. Moreover, a strong correlation between Pt particle/agglomerate size and measured ECSA is established and is proposed as a more useful metric than average crystallite size in predicting degradation behavior across different catalyst systems.« less
3D Analysis of Fuel Cell Electrocatalyst Degradation on Alternate Carbon Supports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sneed, Brian T.; Cullen, David A.; Reeves, Kimberly S.
Understanding the mechanisms associated with Pt/C electrocatalyst degradation in proton exchange membrane fuel cell (PEMFC) cathodes is critical for the future development of higher-performing materials; however, there is a lack of information regarding Pt coarsening under PEMFC operating conditions within the cathode catalyst layer. We report a direct and quantitative 3D study of Pt dispersions on carbon supports (high surface area carbon (HSAC), Vulcan XC-72, and graphitized carbon) with varied surface areas, graphitic character, and Pt loadings ranging from 5 to 40 wt %. This is accomplished both before and after catalyst-cycling accelerated stress tests (ASTs) through observations of themore » cathode catalyst layer of membrane electrode assemblies. Electron tomography results show Pt nanoparticle agglomeration occurs predominantly at junctions and edges of aggregated graphitized carbon particles, leading to poor Pt dispersion in the as-prepared catalysts and increased coalescence during ASTs. Tomographic reconstructions of Pt/HSAC show much better initial Pt dispersions, less agglomeration, and less coarsening during ASTs in the cathode. However, a large loss of the electrochemically active surface area (ECSA) is still observed and is attributed to accelerated Pt dissolution and nanoparticle coalescence. Moreover, a strong correlation between Pt particle/agglomerate size and measured ECSA is established and is proposed as a more useful metric than average crystallite size in predicting degradation behavior across different catalyst systems.« less
Flowthrough Reductive Catalytic Fractionation of Biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Eric M.; Stone, Michael L.; Katahira, Rui
2017-11-01
Reductive catalytic fractionation (RCF) has emerged as a leading biomass fractionation and lignin valorization strategy. Here, flowthrough reactors were used to investigate RCF of poplar. Most RCF studies to date have been conducted in batch, but a flow-based process enables the acquisition of intrinsic kinetic and mechanistic data essential to accelerate the design, optimization, and scale-up of RCF processes. Time-resolved product distributions and yields obtained from experiments with different catalyst loadings were used to identify and deconvolute events during solvolysis and hydrogenolysis. Multi-bed RCF experiments provided unique insights into catalyst deactivation, showing that leaching, sintering, and surface poisoning are causesmore » for decreased catalyst performance. The onset of catalyst deactivation resulted in higher concentrations of unsaturated lignin intermediates and increased occurrence of repolymerization reactions, producing high-molecular-weight species. Overall, this study demonstrates the concept of flowthrough RCF, which will be vital for realistic scale-up of this promising approach.« less
Kim, Ok-Hee; Cho, Yoon-Hwan; Jeon, Tae-Yeol; Kim, Jung Won; Cho, Yong-Hun; Sung, Yung-Eun
2015-07-01
Core-shell structure nanoparticles have been the subject of many studies over the past few years and continue to be studied as electrocatalysts for fuel cells. Therefore, many excellent core-shell catalysts have been fabricated, but few studies have reported the real application of these catalysts in a practical device actual application. In this paper, we demonstrate the use of platinum (Pt)-exoskeleton structure nanoparticles as cathode catalysts with high stability and remarkable Pt mass activity and report the outstanding performance of these materials when used in membrane-electrode assemblies (MEAs) within a polymer electrolyte membrane fuel cell. The stability and degradation characteristics of these materials were also investigated in single cells in an accelerated degradation test using load cycling, which is similar to the drive cycle of a polymer electrolyte membrane fuel cell used in vehicles. The MEAs with Pt-exoskeleton structure catalysts showed enhanced performance throughout the single cell test and exhibited improved degradation ability that differed from that of a commercial Pt/C catalyst.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagle, Vanessa Lebarbier; Flake, Matthew D.; Lemmon, Teresa L.
A ternary Ag/ZrO 2/SiO 2 catalyst system was studied for single-step conversion of ethanol to butadiene by varying the catalyst composition (Ag, Ir, or Pt metal component, Ag/ZrO 2 loading, and choice of SiO 2 support) and operating conditions (space velocity and feed gas composition). Exceptional catalytic performance was achieved over a 1%Ag/4%ZrO 2/SiO 2-SBA-16 catalyst leading to 99% conversion and 71% butadiene selectivity while operating under mild conditions (325°C, 1 atm, and 0.23 h –1). Several classes of silica—silica gels, fumed silicas, mesoporous silicas)—were evaluated as catalyst supports, and SBA-16 was found to be the most promising choice. Themore » SiO 2 support was found to significantly influence both conversion and selectivity. A higher SiO 2 catalyst surface area facilitates increased Ag dispersion which leads to greater conversion due to the accelerated initial ethanol dehydrogenation reaction step. By independently varying Ag and ZrO 2 loading, Ag was found to be the main component that affects ethanol conversion. ZrO 2 loading and thus Lewis acid sites concentration was found to have little impact on the ethanol conversion. Butadiene selectivity depends on the concentration of Lewis acid site, which in turn differs depending on the choice of SiO 2 support material. We observed a direct relationship between butadiene selectivity and concentration of Lewis acid sites. Butadiene selectivity decreases as the concentration of Lewis acid sites increases, which corresponds to an increase in ethanol dehydration to ethylene and diethyl ether. Additionally, adding H 2 to the feed had little effect on conversion while improving catalytic stability; however, selectivity to butadiene decreased. Lastly, catalyst regenerability was successfully demonstrated for several cycles.« less
Dagle, Vanessa Lebarbier; Flake, Matthew D.; Lemmon, Teresa L.; ...
2018-05-19
A ternary Ag/ZrO 2/SiO 2 catalyst system was studied for single-step conversion of ethanol to butadiene by varying the catalyst composition (Ag, Ir, or Pt metal component, Ag/ZrO 2 loading, and choice of SiO 2 support) and operating conditions (space velocity and feed gas composition). Exceptional catalytic performance was achieved over a 1%Ag/4%ZrO 2/SiO 2-SBA-16 catalyst leading to 99% conversion and 71% butadiene selectivity while operating under mild conditions (325°C, 1 atm, and 0.23 h –1). Several classes of silica—silica gels, fumed silicas, mesoporous silicas)—were evaluated as catalyst supports, and SBA-16 was found to be the most promising choice. Themore » SiO 2 support was found to significantly influence both conversion and selectivity. A higher SiO 2 catalyst surface area facilitates increased Ag dispersion which leads to greater conversion due to the accelerated initial ethanol dehydrogenation reaction step. By independently varying Ag and ZrO 2 loading, Ag was found to be the main component that affects ethanol conversion. ZrO 2 loading and thus Lewis acid sites concentration was found to have little impact on the ethanol conversion. Butadiene selectivity depends on the concentration of Lewis acid site, which in turn differs depending on the choice of SiO 2 support material. We observed a direct relationship between butadiene selectivity and concentration of Lewis acid sites. Butadiene selectivity decreases as the concentration of Lewis acid sites increases, which corresponds to an increase in ethanol dehydration to ethylene and diethyl ether. Additionally, adding H 2 to the feed had little effect on conversion while improving catalytic stability; however, selectivity to butadiene decreased. Lastly, catalyst regenerability was successfully demonstrated for several cycles.« less
Stamatin, Serban N; Speder, Jozsef; Dhiman, Rajnish; Arenz, Matthias; Skou, Eivind M
2015-03-25
In the presented work, the electrochemical stability of platinized silicon carbide is studied. Postmortem transmission electron microscopy and X-ray photoelectron spectroscopy were used to document the change in the morphology and structure upon potential cycling of Pt/SiC catalysts. Two different potential cycle aging tests were used in order to accelerate the support corrosion, simulating start-up/shutdown and load cycling. On the basis of the results, we draw two main conclusions. First, platinized silicon carbide exhibits improved electrochemical stability over platinized active carbons. Second, silicon carbide undergoes at least mild oxidation if not even silicon leaching.
Recent Advances in Catalyst Accelerated Stress Tests for Polymer Electrolyte Membrane Fuel Cells
Stariha, Sarah; Macauley, Natalia; Sneed, Brian T.; ...
2018-03-15
The U.S. Department of Energy (DOE) set the 2020 durability target for polymer electrolyte membrane fuel cell transportation applications at 5000 hours. Since it is impractical to test every fuel cell for this length of time, there is ever increasing interest in developing accelerated stress tests (ASTs) that can accurately simulate the material component degradation in the membrane electrode assembly (MEA) observed under automotive operating conditions, but over a much shorter time frame. In this study, a square-wave catalyst AST was examined that shows a 5X time acceleration factor over the triangle-wave catalyst AST and a 25X time acceleration factormore » over the modified wet drive-cycle catalyst durability protocol, significantly decreasing the testing time. These acceleration factors were correlated to the platinum (Pt) particle size increase and associated decrease in electrochemical surface area (ECSA). This square-wave AST has been adopted by the DOE as a standard protocol to evaluate catalyst durability. We also compare three catalyst-durability protocols using state-of-the-art platinum-cobalt catalysts supported on high surface area carbon (SOA Pt-Co/HSAC) in the cathode catalyst layer. The results for each of the three tests showed both catalyst particle size increase and transition metal leaching. Moreover the acceleration factors for the alloy catalysts were smaller due to Co leaching being the predominant mechanism of voltage decay in ~5 nm PtCo/C catalysts. Finally, an extremely harsh carbon corrosion AST was run using the same SOA Pt-Co/HSAC catalyst. This showed minimal change in particle size and a low percentage Co loss from the cathode catalyst particles, despite a significant loss in catalyst layer thickness and cell performance. The carbon corrosion rates during these various ASTs were directly measured by monitoring the CO 2 emission from the cathode, further confirming the ability of the square-wave AST to evaluate the electro-catalyst independently of the support.« less
Recent Advances in Catalyst Accelerated Stress Tests for Polymer Electrolyte Membrane Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stariha, Sarah; Macauley, Natalia; Sneed, Brian T.
The U.S. Department of Energy (DOE) set the 2020 durability target for polymer electrolyte membrane fuel cell transportation applications at 5000 hours. Since it is impractical to test every fuel cell for this length of time, there is ever increasing interest in developing accelerated stress tests (ASTs) that can accurately simulate the material component degradation in the membrane electrode assembly (MEA) observed under automotive operating conditions, but over a much shorter time frame. In this study, a square-wave catalyst AST was examined that shows a 5X time acceleration factor over the triangle-wave catalyst AST and a 25X time acceleration factormore » over the modified wet drive-cycle catalyst durability protocol, significantly decreasing the testing time. These acceleration factors were correlated to the platinum (Pt) particle size increase and associated decrease in electrochemical surface area (ECSA). This square-wave AST has been adopted by the DOE as a standard protocol to evaluate catalyst durability. We also compare three catalyst-durability protocols using state-of-the-art platinum-cobalt catalysts supported on high surface area carbon (SOA Pt-Co/HSAC) in the cathode catalyst layer. The results for each of the three tests showed both catalyst particle size increase and transition metal leaching. Moreover the acceleration factors for the alloy catalysts were smaller due to Co leaching being the predominant mechanism of voltage decay in ~5 nm PtCo/C catalysts. Finally, an extremely harsh carbon corrosion AST was run using the same SOA Pt-Co/HSAC catalyst. This showed minimal change in particle size and a low percentage Co loss from the cathode catalyst particles, despite a significant loss in catalyst layer thickness and cell performance. The carbon corrosion rates during these various ASTs were directly measured by monitoring the CO 2 emission from the cathode, further confirming the ability of the square-wave AST to evaluate the electro-catalyst independently of the support.« less
NASA Astrophysics Data System (ADS)
Santoro, Carlo; Kodali, Mounika; Herrera, Sergio; Serov, Alexey; Ieropoulos, Ioannis; Atanassov, Plamen
2018-02-01
Platinum group metal-free (PGM-free) catalyst with different loadings was investigated in air breathing electrodes microbial fuel cells (MFCs). Firstly, the electrocatalytic activity towards oxygen reduction reaction (ORR) of the catalyst was investigated by rotating ring disk electrode (RRDE) setup with different catalyst loadings. The results showed that higher loading led to an increased in the half wave potential and the limiting current and to a further decrease in the peroxide production. The electrons transferred also slightly increased with the catalyst loading up to the value of ≈3.75. This variation probably indicates that the catalyst investigated follow a 2x2e- transfer mechanism. The catalyst was integrated within activated carbon pellet-like air-breathing cathode in eight different loadings varying between 0.1 mgcm-2 and 10 mgcm-2. Performance were enhanced gradually with the increase in catalyst content. Power densities varied between 90 ± 9 μWcm-2 and 262 ± 4 μWcm-2 with catalyst loading of 0.1 mgcm-2 and 10 mgcm-2 respectively. Cost assessments related to the catalyst performance are presented. An increase in catalyst utilization led to an increase in power generated with a substantial increase in the whole costs. Also a decrease in performance due to cathode/catalyst deterioration over time led to a further increase in the costs.
NASA Astrophysics Data System (ADS)
Zhu, Shiyao; Zheng, Junsheng; Huang, Jun; Dai, Ningning; Li, Ping; Zheng, Jim P.
2018-07-01
Polyelectrolyte poly(diallyldimethylammonium chloride) (PDDA) functionalized carbon nanotubes (CNTs) supported Pt electrocatalyst was synthesized as a substitute for commonly used Pt/C and Pt/CNTs (modified by harsh acid-oxidation treatment) catalysts. In addition, this catalyst was fabricated as the cathode catalyst layer (CL) with a unique double-layered structure for proton exchange membrane fuel cells (PEMFCs). Thermogravimetric analysis shows an enhanced thermal stability of Pt/PDDA-CNTs. The Pt/PDDA-CNTs catalyst with an average Pt particle size of ∼3.1 nm exhibits the best electrocatalytic activity and a significantly enhanced electrochemical stability. Scanning electron microscope, energy dispersive spectrometer and mercury intrusion porosimetry results demonstrate the gradient distribution of Pt content and pore size along the thickness of buckypaper catalyst layer (BPCL). The accelerated degradation test results of BPCLs indicate that this gradient structure can ensure a high Pt utilization in the BPCLs (up to 90%) and further improve the catalyst durability. In addition, the membrane electrode assembly (MEA) fabricated with cathode BPCL-PDDA shows the best single cell performance and long-term stability, and a reduction of Pt loading can be achieved. The feasibility of BPCL for improving the Pt utilization is also demonstrated by the cathode cyclic voltammetry in MEA.
Santoro, Carlo; Kodali, Mounika; Herrera, Sergio; Serov, Alexey; Ieropoulos, Ioannis; Atanassov, Plamen
2018-02-28
Platinum group metal-free (PGM-free) catalyst with different loadings was investigated in air breathing electrodes microbial fuel cells (MFCs). Firstly, the electrocatalytic activity towards oxygen reduction reaction (ORR) of the catalyst was investigated by rotating ring disk electrode (RRDE) setup with different catalyst loadings. The results showed that higher loading led to an increased in the half wave potential and the limiting current and to a further decrease in the peroxide production. The electrons transferred also slightly increased with the catalyst loading up to the value of ≈3.75. This variation probably indicates that the catalyst investigated follow a 2x2e - transfer mechanism. The catalyst was integrated within activated carbon pellet-like air-breathing cathode in eight different loadings varying between 0.1 mgcm -2 and 10 mgcm -2 . Performance were enhanced gradually with the increase in catalyst content. Power densities varied between 90 ± 9 μWcm -2 and 262 ± 4 μWcm -2 with catalyst loading of 0.1 mgcm -2 and 10 mgcm -2 respectively. Cost assessments related to the catalyst performance are presented. An increase in catalyst utilization led to an increase in power generated with a substantial increase in the whole costs. Also a decrease in performance due to cathode/catalyst deterioration over time led to a further increase in the costs.
Synthesis and Characterization of Mixed-Conducting Corrosion Resistant Oxide Supports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramani, Vijay K.
An extensive search and evaluation of electrochemically stable catalyst supports (including metal oxides like RuO2-SiO2, RuO2-TiO2, and ITO was perfomed during the 4 years of the project. The suports were also catalyzed by deposition of Pt and tested for its performance and electrochemical stability in RDE and fuel cell experiments. For testing the electrochemical stability and fuel cell performance of the catalysts and supports, we have employed the protocols in use at the Department of Energy and Nissan Technological Center North America (NTCNA). The use of such procedures allows a precise and reproducible estimation of the performance and stability ofmore » the materials and permits comparisons among laboratories and DOE funded projects. RuO2-SiO2 catalyst supports showed no loss in surface area during start-stop stability tests that were performed by cycling the electrode potential between 0 V to 1.8 V for 1000 cycles. Catalyzed support (40% Pt/RuO2-SiO2; 1:1 mole ratio) were tested in a PEFC, resulting in a current density of 750 mA/cm2 at 0.6 Volts, and a maximum power density of 570 mW/cm2. Measurements were conducted at 80 ºC with 75% relative humidity of the inlet gases (H2/O2); Pt loadings were 0.4 mg/cm2 at the cathode and 0.2 mg/cm2 at the anode. Start-stop stability tests for support and catalyzed support performed in RDE and PEFC set-ups have confirmed RuO2-TiO2 support stability. The beginning of life performance was exactly equal to end of life performance (in an MEA that has been subjected to severe start-stop cycling for 10,000 start/stop cycles between 1 V to 1.5 V). This result was in sharp contrast to baseline Pt/C catalyst that showed significant performance deterioration after accelerated stability tests. The Pt/TRO showed minimal loss in performance upon exposure to start-stop cycles. The loss in cell voltage at 1 A/cm2 at 100% RH was almost 700 mV for Pt/C whereas it was only ca. 15 mV for Pt/TRO. 40% RH data (of inlet gases) revealed a similar trend in terms of stability – exceptional stability for Pt/TRO as opposed to very poor stability for Pt/HSAC. These observations were attributed to the much higher stability of the TRO support compared to Carbon. The carbon dioxide concentration in the cathode exit stream during the accelerated degradation test with Pt/TRO (start-stop protocol) was extremely low (between 3 to 10 ppm of CO2). In contrast, the CO2 emission levels from a conventional Pt/C catalyst were found to be approx. 200 ppm. This observation was a clear indicator that the main source of carbon being oxidized to carbon dioxide in an MEA was the carbon catalyst support, and not the gas diffusion layer or the graphite flow fields. Indium tin oxide (ITO) was also evaluated as a catalyst support for PEFCs. Pt/ITO was very stable under start-up/shutdown accelerated degradation protocol (RDE tests in perchloric acid). The ECSA change was less than 4% over 10,000 cycles. The load cycling accelerated protocol (from 0.6 to 0.95 V vs. RHE) resulted in a loss of approximately 34% of the initial ECSA after 10,000 cycles. However, fuel cell testing resulted in a very low performing catalyst. XPS spectroscopy was employed to investigate the changes in the catalysts occuring during fuel cell operation. It was observed a shift of In 3d5/2 and In 3d3/2 peaks towards higher binding energies. This can be explained by the formation of hydroxides or oxy-hydroxides in the surface of the catalyst. O1s spectrum for Pt/ITO catalyst after being operated in the fuel cell, also confirmed the formation of significant amounts of surface hydroxides (12 to 16%). The presence of surface hydroxides in the catalyst increased the electrode resistivity affecting fuel cell performance. NTCNA performed a detailed analysis of transport phenomena (reactants and products to/from the Pt active sites) in both commercial catalyst and Pt/RTO (in order to have a better understanding at the basic level). The proton resistance (Rionomer) in Pt/C and Pt/RTO cathode catalyst layers were 150 and 12 mΩ-cm2, respectively. Pt/RTO catalyst layer has about an order or magnitude lower proton transfer resistance than Pt/C catalyst layer. Since the ionomer/support ratio that was used in formulating the ink for both catalysts was the same (0.9), it is expected that the volumetric coverage of ionomer of both catalysts will be significantly different due to the disparity in the surface areas (Pt/C had ~ 800 m2/g, while Pt/RTO had ~ 50 m2/g). The differences in the ionomer volumetric coverage and the ionomer film thickness may explain the significantly higher proton conductivity in the Pt/RTO catalyst layer when compared to Pt/HSAC. It is therefore very important to optimize the ionomer loadings when synthesizing new catalyst supports (and never rely on values for carbon-based commercial catalysts). Finally, NTCNA has elaborated a cost model for non-carbon support materials considering their durability benefits. Material costs for production of Pt/ RuO2-TiO2 electrodes were compared to Pt/C. RuO2-TiO2 support was more expensive than carbon but the total material cost was still dominated by platinum cost. Though ruthenium is considered a precious metal, its cost is far less than platinum. It should also be noted that ruthenium only makes up 38% of the mass of the support, while the rest is inexpensive TiO2. After considering the durability advantages of Pt/RTO, cost model showed that even with almost double the Pt loading (0.35 vs 0.18 mgPt/cm2), Pt/RTO ($22.7/kWnet) is only slightly more expensive than Pt/C ($21.9/kWnet).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagle, Vanessa; Flake, Matthew D.; Lemmon, Teresa
2018-05-18
A ternary Ag/ZrO2/SiO2 catalyst system was studied for the single-step conversion of ethanol to butadiene by varying the catalyst composition (Ag, Ir, or Pt metal component, Ag/ZrO2 loading, and choice of SiO2 support) and operating conditions (space velocity and feed gas composition). Exceptional catalytic performance was achieved over a 1%Ag/4%ZrO2/SiO2-SBA-16 catalyst leading to 99% conversion and 71% butadiene selectivity while operating under mild conditions (325ºC, 1 atm, 0.23 hr-1). Several classes of silica (i.e., silica gels, fumed silicas, meoporous silicas) were evaluated as support, and SBA-16 was found to be the most promising. The nature of the SiO2 support wasmore » found to have a strong influence on both conversion and selectivity. Higher SiO2 catalyst surface areas lead to greater conversion due to increased Ag dispersion thus accelerating the initial ethanol dehydrogenation reaction. By independently varying Ag and ZrO2 loading, Ag was found to be the main component affecting ethanol conversion. Butadiene selectivity varied depending on the concentration of ZrO2 and acidic characteristics of the SiO2 support. A direct relationship between butadiene selectivity and concentration of Lewis acid sites was evidenced. Also, adding H2 to the feed had little effect on conversion while improving catalytic stability, however, selectivity to butadiene was decreased. Finally, catalyst regenerability was successfully demonstrated for several cycles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagle, Vanessa Lebarbier; Flake, Matthew D.; Lemmon, Teresa L.
A ternary Ag/ZrO2/SiO2 catalyst system was studied for the single-step conversion of ethanol to butadiene by varying the catalyst composition (Ag, Ir, or Pt metal component, Ag/ZrO2 loading, and choice of SiO2 support) and operating conditions (space velocity and feed gas composition). Exceptional catalytic performance was achieved over a 1%Ag/4%ZrO2/SiO2-SBA-16 catalyst leading to 99% conversion and 71% butadiene selectivity while operating under mild conditions (325ºC, 1 atm, 0.23 hr-1). Several classes of silica (i.e., silica gels, fumed silicas, meoporous silicas) were evaluated as support, and SBA-16 was found to be the most promising. The nature of the SiO2 support wasmore » found to have a strong influence on both conversion and selectivity. Higher SiO2 catalyst surface areas lead to greater conversion due to increased Ag dispersion thus accelerating the initial ethanol dehydrogenation reaction. By independently varying Ag and ZrO2 loading, Ag was found to be the main component affecting ethanol conversion. Butadiene selectivity varied depending on the concentration of ZrO2 and acidic characteristics of the SiO2 support. A direct relationship between butadiene selectivity and concentration of Lewis acid sites was evidenced. Also, adding H2 to the feed had little effect on conversion while improving catalytic stability, however, selectivity to butadiene was decreased. Finally, catalyst regenerability was successfully demonstrated for several cycles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seong, Hee Je; Choi, Seungmok
2015-10-09
This is a 3-way CRADA project working together with Corning, Inc. and Hyundai Motor Co. (HMC). The project is to understand particulate emissions from gasoline direct-injection engines (GDI) and their physico-chemical properties. In addition, this project focuses on providing fundamental information about filtration and regeneration mechanisms occurring in gasoline particulate filter (GPF) systems. For the work, Corning provides most advanced filter substrates for GPF applications and HMC provides three-way catalyst (TWC) coating services of these filter by way of a catalyst coating company. Then, Argonne National Laboratory characterizes fundamental behaviors of filtration and regeneration processes as well as evaluated TWCmore » functionality for the coated filters. To examine aging impacts on TWC and GPF performance, the research team evaluates gaseous and particulate emissions as well as back-pressure increase with ash loading by using an engine-oil injection system to accelerate ash loading in TWC-coated GPFs.« less
Jung, Won Suk; Popov, Branko N
2017-07-19
In the bottom-up synthesis strategy performed in this study, the Co-catalyzed pyrolysis of chelate-complex and activated carbon black at high temperatures triggers the graphitization reaction which introduces Co particles in the N-doped graphitic carbon matrix and immobilizes N-modified active sites for the oxygen reduction reaction (ORR) on the carbon surface. In this study, the Co particles encapsulated within the N-doped graphitic carbon shell diffuse up to the Pt surface under the polymer protective layer and forms a chemically ordered face-centered tetragonal (fct) Pt-Co catalyst PtCo/CCCS catalyst as evidenced by structural and compositional studies. The fct-structured PtCo/CCCS at low-Pt loading (0.1 mg Pt cm -2 ) shows 6% higher power density than that of the state-of-the-art commercial Pt/C catalyst. After the MEA durability test of 30 000 potential cycles, the performance loss of the catalyst is negligible. The electrochemical surface area loss is less than 40%, while that of commercial Pt/C is nearly 80%. After the accelerated stress test, the uniform catalyst distribution is retained and the mean particle size increases approximate 1 nm. The results obtained in this study indicated that highly stable compositional and structural properties of chemically ordered PtCo/CCCS catalyst contribute to its exceptional catalyst durability.
Akbari, Azam; Omidkhah, Mohammadreza; Towfighi Darian, Jafar
2015-03-01
Oxidative desulfurization of thiophenic sulfur compounds of benzothiophene (BT), dibenzothiophene (DBT) and 4,6-dimethyl dibenzothiophene (4,6-DMDBT) with MoOx/Al₂O₃ catalyst and H₂O₂ oxidant has been facilitated and more selective under ultrasonic irradiation. The catalyst with the optimum 10% of Mo loading consisted of isolated tetrahedral molybdenum oxide species based on FTIR analysis. The increase of Mo loading to 15% and 20% caused to generation of polymolybdate and MoO₃ crystals which decreased desulfurization activity. Sonication enhanced the apparent reaction rate constants in oxidation of all three sulfur compounds. An increase in the Arrhenius factor (A0), which is the total number of collisions per second, could explain the acceleration in the rate constants by sonication. The apparent activated energy (Ea) of BT oxidation was reduced from 96.6 to 75.3 kJ/mol by using ultrasound. This indicated that ultrasound had also a chemical effect, like a catalytic influence, in the acceleration of BT removal. DBT oxidation was reduced when investigated in the presence of tetralin, naphthalene and 2-methyl naphthalene as the model aromatic compounds of actual light oils. A higher selectivity toward DBT elimination in the presence of aromatics was obtained by sonication when compared with the silent treatment. Ultrasound cleaned the catalyst surface from adsorbed aromatics. On the basis of the obtained results, a mechanistic proposal for this desulfurization was explained. Oxidation was performed by nucleophilic attack of sulfur atom to the molybdenum peroxide species of tetrahedral molybdates, which was more advanced by sonication. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stariha, Sarah; Macauley, Natalia; Sneed, Brian T.
The U.S. Department of Energy (DOE) set the 2020 durability target for polymer electrolyte membrane fuel cell transportation applications at 5000 hours. Since it is impractical to test every fuel cell for this length of time, there is ever increasing interest in developing accelerated stress tests (ASTs) that can accurately simulate the material component degradation in the membrane electrode assembly (MEA) observed under automotive operating conditions, but over a much shorter time frame. In this study, a square-wave catalyst AST was examined that shows a 5X time acceleration factor over the triangle-wave catalyst AST and a 25X time acceleration factormore » over the modified wet drive-cycle catalyst durability protocol, significantly decreasing the testing time. These acceleration factors were correlated to the platinum (Pt) particle size increase and associated decrease in electrochemical surface area (ECSA). This square-wave AST has been adopted by the DOE as a standard protocol to evaluate catalyst durability. We also compare three catalyst-durability protocols using state-of-the-art platinum-cobalt catalysts supported on high surface area carbon (SOA Pt-Co/HSAC) in the cathode catalyst layer. The results for each of the three tests showed both catalyst particle size increase and transition metal leaching. Moreover the acceleration factors for the alloy catalysts were smaller due to Co leaching being the predominant mechanism of voltage decay in ~5 nm PtCo/C catalysts. Finally, an extremely harsh carbon corrosion AST was run using the same SOA Pt-Co/HSAC catalyst. This showed minimal change in particle size and a low percentage Co loss from the cathode catalyst particles, despite a significant loss in catalyst layer thickness and cell performance. The carbon corrosion rates during these various ASTs were directly measured by monitoring the CO 2 emission from the cathode, further confirming the ability of the square-wave AST to evaluate the electro-catalyst independently of the support.« less
Zhang, Changkun; Yu, Hongmei; Li, Yongkun; Gao, Yuan; Zhao, Yun; Song, Wei; Shao, Zhigang; Yi, Baolian
2013-04-01
Hydrogen-treated TiO2 nanotube (H-TNT) arrays serve as highly ordered nanostructured electrode supports, which are able to significantly improve the electrochemical performance and durability of fuel cells. The electrical conductivity of H-TNTs increases by approximately one order of magnitude in comparison to air-treated TNTs. The increase in the number of oxygen vacancies and hydroxyl groups on the H-TNTs help to anchor a greater number of Pt atoms during Pt electrodeposition. The H-TNTs are pretreated by using a successive ion adsorption and reaction (SIAR) method that enhances the loading and dispersion of Pt catalysts when electrodeposited. In the SIAR method a Pd activator can be used to provide uniform nucleation sites for Pt and leads to increased Pt loading on the H-TNTs. Furthermore, fabricated Pt nanoparticles with a diameter of 3.4 nm are located uniformly around the pretreated H-TNT support. The as-prepared and highly ordered electrodes exhibit excellent stability during accelerated durability tests, particularly for the H-TNT-loaded Pt catalysts that have been annealed in ultrahigh purity H2 for a second time. There is minimal decrease in the electrochemical surface area of the as-prepared electrode after 1000 cycles compared to a 68 % decrease for the commercial JM 20 % Pt/C electrode after 800 cycles. X-ray photoelectron spectroscopy shows that after the H-TNT-loaded Pt catalysts are annealed in H2 for the second time, the strong metal-support interaction between the H-TNTs and the Pt catalysts enhances the electrochemical stability of the electrodes. Fuel-cell testing shows that the power density reaches a maximum of 500 mWcm(-2) when this highly ordered electrode is used as the anode. When used as the cathode in a fuel cell with extra-low Pt loading, the new electrode generates a specific power density of 2.68 kWg(Pt) (-1) . It is indicated that H-TNT arrays, which have highly ordered nanostructures, could be used as ordered electrode supports. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dehydration of glycerol over niobia-supported silicotungstic acid catalysts.
Lee, Young Yi; Ok, Hye Jeong; Moon, Dong Ju; Kim, Jong Ho; Park, Nam Cook; Kim, Young Chul
2013-01-01
Liquid-phase dehydration of glycerol to acrolein over nanosized niobia-supported silicotungstic acid catalysts was performed to investigate the effect of the silicotungstic acid loading on the catalytic performance of the catalysts. The catalysts were prepared by following an impregnation method with different HSiW loadings in the range of 10-50 wt%. The prepared catalysts were characterized by N2 physisorption, XRD, FT-IR, TPD of ammonia, and TGA. Dehydration of glycerol was conducted in an autoclave reactor under the conditions of controlled reaction temperatures under corresponding pressure. Increasing HSiW loading rapidly increased the acidity of HSiW/Nb205 catalyst and rate of glycerol conversion, but acrolein selectivity decreased due to enhanced deactivation of the catalyst by carbon deposit. Consequently, it was confirmed that catalytic activity for the dehydration of glycerol to acrolein was dependant on the acidity of catalyst and can be controlled by HSiW loading.
Catalysts as sensors--a promising novel approach in automotive exhaust gas aftertreatment.
Moos, Ralf
2010-01-01
Sensors that detect directly and in situ the status of automotive exhaust gas catalysts by monitoring the electrical properties of the catalyst coating itself are overviewed. Examples included in this review are the in-situ determination of the electrical impedance of three-way catalysts based on ceria-zirconia solutions and of lean NO(x) traps of earth-alkaline based coatings, as well as approaches to determine the ammonia loading in Fe-SCR-zeolites with electrical ac measurements. Even more sophisticated approaches based on interactions with electromagnetic waves are also reviewed. For that purpose, metallic stick-like antennas are inserted into the exhaust pipe. The catalyst properties are measured in a contactless manner, directly indicating the catalyst status. The radio frequency probes gauge the oxygen loading degree of three-way catalysts, the NO(x)-loading of lean NO(x) traps, and the soot loading of Diesel particulate filters.
Catalysts as Sensors—A Promising Novel Approach in Automotive Exhaust Gas Aftertreatment
Moos, Ralf
2010-01-01
Sensors that detect directly and in situ the status of automotive exhaust gas catalysts by monitoring the electrical properties of the catalyst coating itself are overviewed. Examples included in this review are the in-situ determination of the electrical impedance of three-way catalysts based on ceria-zirconia solutions and of lean NOx traps of earth-alkaline based coatings, as well as approaches to determine the ammonia loading in Fe-SCR-zeolites with electrical ac measurements. Even more sophisticated approaches based on interactions with electromagnetic waves are also reviewed. For that purpose, metallic stick-like antennas are inserted into the exhaust pipe. The catalyst properties are measured in a contactless manner, directly indicating the catalyst status. The radio frequency probes gauge the oxygen loading degree of three-way catalysts, the NOx-loading of lean NOx traps, and the soot loading of Diesel particulate filters. PMID:22163575
The role of fly-ash particulate material and oxide catalysts in stone degradation
NASA Astrophysics Data System (ADS)
Hutchinson, A. J.; Johnson, J. B.; Thompson, G. E.; Wood, G. C.; Sage, P. W.; Cooke, M. J.
Studies of fly-ash composition identified the presence of calcium and sulphur, indicating their potential role as sources of calcium sulphate. Residual acidity (particularly for oil fly ash) suggested the possibility of enhanced chemical reaction, and the presence of transition metals, probably as oxides, might accelerate the oxidation of SO 2 to SO 42-. Exposure tests in a laboratory-based rig simulating dry deposition on Portland and Monks Park limestone, either seeded or unseeded with fly-ash particulate material or transition metal oxide catalysts, were carried out using an SO 2-containing environment at 95% r.h. Enhanced sulphation of these seeded limestones due to the above factors was minimal; at high loadings of fly ash, there was even evidence of masking the limestone surface, reducing sulphation. However, pure CaCO 3 powder in the exposure rig showed increases in sulphation when seeded with metal oxide catalysts. Thus the limestones examined contained sufficient inherent catalysts for the oxidation of SO 2 to SO 42- to proceed at such a rate that external catalysts were superfluous. This implies that dissolution rate of SO 2 in moisture films controls the availability of species for reaction with these carbonate-based stones and that fly ash deposited from the atmosphere does not enhance the reaction.
Optimum Platinum Loading In Pt/SnO2 CO-Oxidizing Catalysts
NASA Technical Reports Server (NTRS)
Schryer, David R.; Upchurch, Billy T.; Davis, Patricia P.; Brown, Kenneth G.; Schryer, Jacqueline
1991-01-01
Platinum on tin oxide (Pt/SnO2) good catalyst for oxidation of carbon monoxide at or near room temperature. Catalytic activity peaks at about 17 weight percent Pt. Catalysts with platinum loadings as high as 46 percent fabricated by technique developed at Langley Research Center. Work conducted to determine optimum platinum loading for this type of catalyst. Major application is removal of unwanted CO and O2 in CO2 lasers.
Wang, Xiao-Hui; Bo, Long-Li; Liu, Hai-Nan; Zhang, Hao; Sun, Jian-Yu; Yang, Li; Cai, Li-Dong
2013-06-01
Molecular sieve loaded catalyst was prepared by impregnation method, microwave-absorbing material silicon carbide and the catalyst were investigated for catalytic oxidation of toluene by microwave irradiation. Research work examined effects of silicon carbide and molecular sieve loading Cu-V catalyst's mixture ratio as well as mixed approach changes on degradation of toluene, and characteristics of catalyst were measured through scanning electron microscope, specific surface area test and X-ray diffraction analysis. The result showed that the fixed bed reactor had advantages of both thermal storage property and low-temperature catalytic oxidation when 20% silicon carbide was filled at the bottom of the reactor, and this could effectively improve the utilization of microwave energy as well as catalytic oxidation efficiency of toluene. Under microwave power of 75 W and 47 W, complete-combustion temperatures of molecular sieve loaded Cu-V catalyst and Cu-V-Ce catalyst to toluene were 325 degrees C and 160 degrees C, respectively. Characteristics of the catalysts showed that mixture of rare-earth element Ce increased the dispersion of active components in the surface of catalyst, micropore structure of catalyst effectively guaranteed high adsorption capacity for toluene, while amorphous phase of Cu and V oxides increased the activity of catalyst greatly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winter, Lea R.; Gomez, Elaine; Yan, Binhang
CO 2 hydrogenation over Fe-modified Ni/CeO 2 catalysts was investigated in a batch reactor using time-resolved in situ FTIR spectroscopy. Low loading of Ni/CeO 2 was associated with high selectivity to CO over CH 4, while higher Ni loading improved CO 2 hydrogenation activity with a reduced CO selectivity. X-ray absorption near-edge structure (XANES) analysis revealed Ni to be metallic for all catalysts including the CO-selective low loading 0.5% Ni catalyst, suggesting that the selectivity trend is due to structural rather than oxidation state effects. The loading amount of 1.5% Ni was selected for co-impregnation with Fe, based on themore » significant shift in product selectivity towards CH 4 for that loading amount, in order to shift the selectivity towards CO while maintaining high activity. Temperature programmed reduction (TPR) results indicated bimetallic interactions between Ni and Fe, and XANES analysis showed that about 70% of Fe in the bimetallic catalysts was oxidized. The Ni-Fe catalysts demonstrated improved selectivity towards CO without significantly compromising activity, coupling the high activity of Ni catalysts and the high CO selectivity of Fe. The general trends in Ni loading and bimetallic modification should guide efforts to develop non-precious metal catalysts for the selective production of CO by CO 2 hydrogenation.« less
Shelf-Stable Adhesive for Reduction of Composite Repair Hazardous Waste
2008-09-01
1. Our microencapsulation approach is compatible with commonly used epoxy resins and catalyst accelerants 2. The microcapsules can be...thermally stable barrier to diffusion of accelerant and/or epoxy resin through the capsule’s walls [14]. 3.2 Microencapsulation Microcapsules ... microencapsulation of the catalyst accelerant. Thermal analysis of microcapsules made from carrageenan blends showed that they formed an effective
Winter, Lea R.; Gomez, Elaine; Yan, Binhang; ...
2017-10-16
CO 2 hydrogenation over Fe-modified Ni/CeO 2 catalysts was investigated in a batch reactor using time-resolved in situ FTIR spectroscopy. Low loading of Ni/CeO 2 was associated with high selectivity to CO over CH 4, while higher Ni loading improved CO 2 hydrogenation activity with a reduced CO selectivity. X-ray absorption near-edge structure (XANES) analysis revealed Ni to be metallic for all catalysts including the CO-selective low loading 0.5% Ni catalyst, suggesting that the selectivity trend is due to structural rather than oxidation state effects. The loading amount of 1.5% Ni was selected for co-impregnation with Fe, based on themore » significant shift in product selectivity towards CH 4 for that loading amount, in order to shift the selectivity towards CO while maintaining high activity. Temperature programmed reduction (TPR) results indicated bimetallic interactions between Ni and Fe, and XANES analysis showed that about 70% of Fe in the bimetallic catalysts was oxidized. The Ni-Fe catalysts demonstrated improved selectivity towards CO without significantly compromising activity, coupling the high activity of Ni catalysts and the high CO selectivity of Fe. The general trends in Ni loading and bimetallic modification should guide efforts to develop non-precious metal catalysts for the selective production of CO by CO 2 hydrogenation.« less
Chen, Xu; He, Daping; Wu, Hui; Zhao, Xiaofeng; Zhang, Jian; Cheng, Kun; Wu, Peng; Mu, Shichun
2015-01-01
For the first time a novel oxygen reduction catalyst with a 3D platinized graphene/nano-ceramic sandwiched architecture is successfully prepared by an unusual method. Herein the specific gravity of graphene nanosheets (GNS) is tailored by platinizing graphene in advance to shorten the difference in the specific gravity between carbon and SiC materials, and then nano-SiC is well intercalated into GNS interlayers. This nano-architecture with highly dispersed Pt nanoparticles exhibits a very high oxygen reduction reaction (ORR) activity and polymer electrolyte membrane (PEM) fuel cell performance. The mass activity of half cells is 1.6 times of that of the GNS supported Pt, and 2.4 times that of the commercial Pt/C catalyst, respectively. Moreover, after an accelerated stress test our catalyst shows a predominantly electrochemical stability compared with benchmarks. Further fuel cell tests show a maximum power density as high as 747 mW/cm2 at low Pt loading, which is more than 2 times higher than that of fuel cells with the pristine graphene electrode. PMID:26538366
Chen, Xu; He, Daping; Wu, Hui; Zhao, Xiaofeng; Zhang, Jian; Cheng, Kun; Wu, Peng; Mu, Shichun
2015-11-05
For the first time a novel oxygen reduction catalyst with a 3D platinized graphene/nano-ceramic sandwiched architecture is successfully prepared by an unusual method. Herein the specific gravity of graphene nanosheets (GNS) is tailored by platinizing graphene in advance to shorten the difference in the specific gravity between carbon and SiC materials, and then nano-SiC is well intercalated into GNS interlayers. This nano-architecture with highly dispersed Pt nanoparticles exhibits a very high oxygen reduction reaction (ORR) activity and polymer electrolyte membrane (PEM) fuel cell performance. The mass activity of half cells is 1.6 times of that of the GNS supported Pt, and 2.4 times that of the commercial Pt/C catalyst, respectively. Moreover, after an accelerated stress test our catalyst shows a predominantly electrochemical stability compared with benchmarks. Further fuel cell tests show a maximum power density as high as 747 mW/cm(2) at low Pt loading, which is more than 2 times higher than that of fuel cells with the pristine graphene electrode.
NASA Astrophysics Data System (ADS)
Chen, Xu; He, Daping; Wu, Hui; Zhao, Xiaofeng; Zhang, Jian; Cheng, Kun; Wu, Peng; Mu, Shichun
2015-11-01
For the first time a novel oxygen reduction catalyst with a 3D platinized graphene/nano-ceramic sandwiched architecture is successfully prepared by an unusual method. Herein the specific gravity of graphene nanosheets (GNS) is tailored by platinizing graphene in advance to shorten the difference in the specific gravity between carbon and SiC materials, and then nano-SiC is well intercalated into GNS interlayers. This nano-architecture with highly dispersed Pt nanoparticles exhibits a very high oxygen reduction reaction (ORR) activity and polymer electrolyte membrane (PEM) fuel cell performance. The mass activity of half cells is 1.6 times of that of the GNS supported Pt, and 2.4 times that of the commercial Pt/C catalyst, respectively. Moreover, after an accelerated stress test our catalyst shows a predominantly electrochemical stability compared with benchmarks. Further fuel cell tests show a maximum power density as high as 747 mW/cm2 at low Pt loading, which is more than 2 times higher than that of fuel cells with the pristine graphene electrode.
Study on the mechanism of a manganese-based catalyst for catalytic NOX flue gas denitration
NASA Astrophysics Data System (ADS)
Zhang, Lei; Wen, Xin; Lei, Zhang; Gao, Long; Sha, Xiangling; Ma, Zhenhua; He, Huibin; Wang, Yusu; Jia, Yang; Li, Yonghui
2018-04-01
Manganese-based bimetallic catalysts were prepared with self-made pyrolysis coke as carrier and its denitration performance of low-temperature SCR (selective catalyst reduction) was studied. The effects of different metal species, calcination temperature, calcination time and the metal load quantity on the denitration performance of the catalyst were studied by orthogonal test. The denitration mechanism of the catalyst was analyzed by XRD (X-ray diffraction), SEM (scanning electron microscope), BET test and transient test. The experiments show that: * The denitration efficiency of Mn-based bimetallic catalysts mainly relates to the metal type, the metal load quantity and the catalyst adjuvant type. * The optimal catalyst preparation conditions are as follows: the load quantity of monometallic MnO2 is 10%, calcined at 300°C for 4h, and then loaded with 8% CeO2, calcined at 350°Cfor 3h. * The denitration mechanism of manganese-based bimetallic oxide catalysts is stated as: NH3 is firstly adsorbed by B acid center Mn-OH which nears Mn4+==O to form NH4+, NH4+ was then attacked by the gas phase NO to form N2, H2O and Mn3+-OH. Finally, Mn3+-OH was oxidized by O2 to regenerate Mn4+.
Wang, Hong; Sofer, Zdeněk; Eng, Alex Yong Sheng; Pumera, Martin
2014-11-10
A novel concept of an iridium-based bubble-propelled Janus-particle-type graphene micromotor with very high surface area and with very low catalyst loading is described. The low loading of Ir catalyst (0.54 at %) allows for fast motion of graphene microparticles with high surface area of 316.2 m(2) g(-1). The micromotor was prepared with a simple and scalable method by thermal exfoliation of iridium-doped graphite oxide precursor composite in hydrogen atmosphere. Oxygen bubbles generated from the decomposition of hydrogen peroxide at the iridium catalytic sites provide robust propulsion thrust for the graphene micromotor. The high surface area and low iridium catalyst loading of the bubble-propelled graphene motors offer great possibilities for dramatically enhanced cargo delivery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Chao; Cheng, Xiaojing; Lu, Jiabin; Shen, Shuiyun; Yan, Xiaohui; Yin, Jiewei; Wei, Guanghua; Zhang, Junliang
2017-12-07
Remarkable progress has been made in reducing the cathodic Pt loading of PEMFCs; however, a huge performance loss appears at high current densities, indicating the existence of a large oxygen transport resistance associated with the ultralow Pt loading catalyst layer. To reduce the Pt loading without sacrificing cell performance, it is essential to illuminate the oxygen transport mechanism in the catalyst layer. Toward this goal, an experimental approach to measure the oxygen transport resistance in catalyst layers is proposed and realized for the first time in this study. The measuring approach involves a dual-layer catalyst layer design, which consists of a dummy catalyst layer and a practical catalyst layer, followed by changing the thickness of dummy layer to respectively quantify the local and bulk resistances via limiting current measurements combined with linear extrapolation. The experimental results clearly reveal that the local resistance dominates the total resistance in the catalyst layer.
NASA Astrophysics Data System (ADS)
Renzi, M.; D'Angelo, G.; Marassi, R.; Nobili, F.
2016-09-01
The catalytic activity of commercial Pt nanoparticles mixed with mesoporous polyoxometalate Cs3H2PMo10V2O40 towards oxygen reduction reaction is evaluated. The polyoxometalate co-catalyst is prepared by titration of an aqueous solution of phosphovanadomolibdic acid. SEM micrography shows reduction particle size to less than 300 nm, while XRD confirms that the resulting salt maintains the Kegging structure. The composite catalyst is prepared by mixing the POM salt with Pt/C by sonication. RRDE studies show better kinetics for ORR with low Pt loading at the electrode surface. A MEA is assembled by using a Pt/POM-based cathode, in order to assess performance in a working fuel cell. Current vs. potential curves reveals comparable or better performances at 100%, 62% and 17% relative humidity for the POM-modified MEA with respect to a commercial MEA with higher Pt loading at the cathode. Electrochemical impedance spectroscopy (EIS) confirms better kinetics at low relative humidity. Finally, an accelerated stress test (AST) with square wave (SW) between 0.4 V and 0.8 V is performed to evaluate MEA stability for at least 100 h and make predictions about lifetime, showing that after initial losses the catalytic system can retain stable performance and good morphological stability.
Catalytic Decarboxylation of Fatty Acids to Aviation Fuels over Nickel Supported on Activated Carbon
Wu, Jianghua; Shi, Juanjuan; Fu, Jie; Leidl, Jamie A.; Hou, Zhaoyin; Lu, Xiuyang
2016-01-01
Decarboxylation of fatty acids over non-noble metal catalysts without added hydrogen was studied. Ni/C catalysts were prepared and exhibited excellent activity and maintenance for decarboxylation. Thereafter, the effects of nickel loading, catalyst loading, temperature, and carbon number on the decarboxylation of fatty acids were investigated. The results indicate that the products of cracking increased with high nickel loading or catalyst loading. Temperature significantly impacted the conversion of stearic acid but did not influence the selectivity. The fatty acids with large carbon numbers tend to be cracked in this reaction system. Stearic acid can be completely converted at 370 °C for 5 h, and the selectivity to heptadecane was around 80%. PMID:27292280
Fatigue and creep to leak tests of proton exchange membranes using pressure-loaded blisters
NASA Astrophysics Data System (ADS)
Li, Yongqiang; Dillard, David A.; Case, Scott W.; Ellis, Michael W.; Lai, Yeh-Hung; Gittleman, Craig S.; Miller, Daniel P.
In this study, three commercially available proton exchange membranes (PEMs) are biaxially tested using pressure-loaded blisters to characterize their resistance to gas leakage under either static (creep) or cyclic fatigue loading. The pressurizing medium, air, is directly used for leak detection. These tests are believed to be more relevant to fuel cell applications than quasi-static uniaxial tensile-to-rupture tests because of the use of biaxial cyclic and sustained loading and the use of gas leakage as the failure criterion. They also have advantages over relative humidity cycling test, in which a bare PEM or catalyst coated membrane is clamped with gas diffusion media and flow field plates and subjected to cyclic changes in relative humidity, because of the flexibility in allowing controlled mechanical loading and accelerated testing. Nafion ® NRE-211 membranes are tested at three different temperatures and the time-temperature superposition principle is used to construct stress-lifetime master curve. Tested at 90 °C, 2%RH extruded Ion Power ® N111-IP membranes have a longer lifetime than Gore™-Select ® 57 and Nafion ® NRE-211 membranes.
Fremerey, Peter; Reiß, Sebastian; Geupel, Andrea; Fischerauer, Gerhard; Moos, Ralf
2011-01-01
Recently, it has been shown that the degree of loading of several types of automotive exhaust aftertreatment devices can be directly monitored in situ and in a contactless way by a microwave-based method. The goal of this study was to clarify whether this method can also be applied to NOx storage and reduction catalysts (lean NOx traps) in order to obtain further knowledge about the reactions occurring in the catalyst and to compare the results with those obtained by wirebound NOx loading sensors. It is shown that both methods are able to detect the different catalyst loading states. However, the sensitivity of the microwave-based method turned out to be small compared to that previously observed for other exhaust aftertreatment devices. This may limit the practical applicability of the microwave-based NOx loading detection in lean NOx traps. PMID:22164074
NO.sub.x catalyst and method of suppressing sulfate formation in an exhaust purification system
Balmer-Millar, Mari Lou [Chillicothe, IL; Park, Paul W [Peoria, IL; Panov, Alexander G [Peoria, IL
2007-06-26
The activity and durability of a zeolite lean-burn NOx catalyst can be increased by loading metal cations on the outer surface of the zeolite. However, the metal loadings can also oxidize sulfur dioxide to cause sulfate formation in the exhaust. The present invention is a method of suppressing sulfate formation in an exhaust purification system including a NO.sub.x catalyst. The NO.sub.x catalyst includes a zeolite loaded with at least one metal. The metal is selected from among an alkali metal, an alkaline earth metal, a lanthanide metal, a noble metal, and a transition metal. In order to suppress sulfate formation, at least a portion of the loaded metal is complexed with at least one of sulfate, phosphate, and carbonate.
NO.sub.x catalyst and method of suppressing sulfate formation in an exhaust purification system
Balmer-Millar, Mari Lou; Park, Paul W.; Panov, Alexander G.
2006-08-22
The activity and durability of a zeolite lean-bum NOx catalyst can be increased by loading metal cations on the outer surface of the zeolite. However, the metal loadings can also oxidize sulfur dioxide to cause sulfate formation in the exhaust. The present invention is a method of suppressing sulfate formation in an exhaust purification system including a NO.sub.x catalyst. The NO.sub.x catalyst includes a zeolite loaded with at least one metal. The metal is selected from among an alkali metal, an alkaline earth metal, a lanthanide metal, a noble metal, and a transition metal. In order to suppress sulfate formation, at least a portion of the loaded metal is complexed with at least one of sulfate, phosphate, and carbonate.
Exploration Of `Click' Chemistry For Microelectronic Applications
NASA Astrophysics Data System (ADS)
Musa, Osama M.; Sridhar, Laxmisha M.
The ‘Click’ chemistry was explored for low temperature snap cure and for possible use as an adhesion promoter in electronic applications. Several azide and alkyne resins were synthesized and their curing potential was evaluated with a special emphasis on exploring Cu(I) catalyst effect. The preliminary curing study in the absence of catalysts showed a strong dependence of cure temperatures on the electronic nature of alkynes. The cure temperatures showed a tendency to increase with decreasing electronegativity of the substituent on alkynes. The capability of Cu(I) catalysts to accelerate the ‘Click’ chemistry was demonstrated for the first time in bulk phase. Using several Cu(I) catalysts, the cure temperatures could be lowered by as much as 40-100°C compared to the control, depending on the nature of catalyst and the catalyst loading. We discovered a novel synergistic effect between Cu(I) and silver filler in lowering the cure temperatures. Using this combination, lower cure temperatures could be obtained than using either alone. Among several resins screened, one resin system has shown promise for 80°C snap-cure in which the aforementioned synergistic effect is operative. Solution phase ‘Click’ chemistry was employed for the synthesis of a hybrid triazole-epoxy resin system. This system was found to cure without added amine curative. The triazole group here serves as a linker as well as an internal adhesion promoter. To address the incompatibility and volatility issues, which arose during evaluation, a controlled oligomerization method has been developed using controlled heating of azides and alkynes in solution phase.
NASA Astrophysics Data System (ADS)
Chen, Ming; Wang, Meng; Yang, Zhaoyi; Wang, Xindong
2017-06-01
In this paper, an order-structured cathode catalyst layer consisting of Pt-TiO2@PANI core-shell nanowire arrays that in situ grown on commercial gas diffusion layer (GDL) are prepared and applied to membrane electrode assembly (MEA) of proton exchange membrane fuel cell (PEMFC). In order to prepare the TiO2@PANI core-shell nanowire arrays with suitable porosity and prominent conductivity, the morphologies of the TiO2 nanoarray and electrochemical polymerization process of aniline are schematically investigated. The MEA with order-structured cathode catalyst layer is assembled in the single cell to evaluate the electrochemical performance and durability of PEMFC. As a result, the PEMFC with order-structured cathode catalyst layer shows higher peak power density (773.54 mW cm-2) than conventional PEMFC (699.30 mW cm-2). Electrochemically active surface area (ECSA) and charge transfer impedance (Rct) are measured before and after accelerated degradation test (ADT), and the corresponding experimental results indicate the novel cathode structure exhibits a better stability with respect to conventional cathode. The enhanced electrochemical performance and durability toward PEMFC can be ascribed to the order-structured cathode nanoarray structure with high specific surface area increases the utilization of catalyst and reduces the tortuosity of transport pathways, and the synergistic effect between TiO2@PANI support and Pt nanoparticles promotes the high efficiency of electrochemical reaction and improves the stability of catalyst. This research provides a facile and controllable method to prepare order-structured membrane electrode with lower Pt loading for PEMFC in the future.
2017-01-01
The development of high-performance electrocatalytic systems for the controlled reduction of CO2 to value-added chemicals is a key goal in emerging renewable energy technologies. The lack of selective and scalable catalysts in aqueous solution currently hampers the implementation of such a process. Here, the assembly of a [MnBr(2,2′-bipyridine)(CO)3] complex anchored to a carbon nanotube electrode via a pyrene unit is reported. Immobilization of the molecular catalyst allows electrocatalytic reduction of CO2 under fully aqueous conditions with a catalytic onset overpotential of η = 360 mV, and controlled potential electrolysis generated more than 1000 turnovers at η = 550 mV. The product selectivity can be tuned by alteration of the catalyst loading on the nanotube surface. CO was observed as the main product at high catalyst loadings, whereas formate was the dominant CO2 reduction product at low catalyst loadings. Using UV–vis and surface-sensitive IR spectroelectrochemical techniques, two different intermediates were identified as responsible for the change in selectivity of the heterogenized Mn catalyst. The formation of a dimeric Mn0 species at higher surface loading was shown to preferentially lead to CO formation, whereas at lower surface loading the electrochemical generation of a monomeric Mn-hydride is suggested to greatly enhance the production of formate. These results emphasize the advantages of integrating molecular catalysts onto electrode surfaces for enhancing catalytic activity while allowing excellent control and a deeper understanding of the catalytic mechanisms. PMID:28885841
Cyclic alkyl amino carbene (CAAC) ruthenium complexes as remarkably active catalysts for ethenolysis
Marx, Vanessa M.; Sullivan, Alexandra H.; Melaimi, Mohand; ...
2014-12-17
In this paper, an expanded family of ruthenium-based metathesis catalysts bearing cyclic alkyl amino carbene (CAAC) ligands was prepared. These catalysts exhibited exceptional activity in the ethenolysis of the seed-oil derivative methyl oleate. In many cases, catalyst turnover numbers (TONs) of more than 100,000 were achieved, at a catalyst loading of only 3 ppm. Remarkably, the most active catalyst system was able to achieve a TON of 340 000, at a catalyst loading of only 1 ppm. Finally, this is the first time a series of metathesis catalysts has exhibited such high performance in cross-metathesis reactions employing ethylene gas, withmore » activities sufficient to render ethenolysis applicable to the industrial-scale production of linear α-olefins (LAOs) and other terminal-olefin products.« less
NASA Astrophysics Data System (ADS)
Glass, Dean E.; Olah, George A.; Prakash, G. K. Surya
2017-06-01
For the large scale fuel cell manufacture, the catalyst loading and layer thickness are critical factors affecting the performance and cost of membrane electrode assemblies (MEAs). The influence of catalyst layer thicknesses at the anode of a PEM based direct methanol fuel cell (DMFC) has been investigated. Catalysts were applied with the drawdown method with varied thicknesses ranging from 1 mil to 8 mils (1 mil = 25.4 μm) with a Pt/Ru anode loading of 0.25 mg cm-2 to 2.0 mg cm-2. The MEAs with the thicker individual layers (8 mils and 4 mils) performed better overall compared to the those with the thinner layers (1 mil and painted). The peak power densities for the different loading levels followed an exponential decrease of Pt/Ru utilization at the higher loading levels. The highest power density achieved was 49 mW cm-2 with the 4 mil layers at 2.0 mg cm-2 catalyst loading whereas the highest normalized power density was 116 mW mg-1 with the 8 mil layers at 0.25 mg cm-2 loading. The 8 mil drawdowns displayed a 50% and 23% increase in normalized power density compared to the 1 mil drawdowns at 0.25 mg cm-2 and 0.5 mg cm-2 loadings, respectively.
Huang, Yuanxing; Cui, Chenchen; Zhang, Daofang; Li, Liang; Pan, Ding
2015-01-01
Iron-loaded activated carbon was prepared and used as catalyst in heterogeneous catalytic ozonation of dibutyl phthalate (DBP). The catalytic activity of iron-loaded activated carbon was investigated under various conditions and the mechanisms of DBP removal were deduced. Characterization of catalyst indicated that the iron loaded on activated carbon was mainly in the form of goethite, which reduced its surface area, pore volume and pore diameter. The presence of metals on activated carbon positively contributed to its catalytic activity in ozonation of DBP. Iron loading content of 15% and initial water pH of 8 achieved highest DBP removal among all the tried conditions. Catalyst dosage of 10 mg L(-1) led to approximately 25% of increase in DBP (initial concentration 2 mg L(-1)) removal in 60 min as compared with ozone alone, and when catalyst dosage increased to 100 mg L(-1), the DBP removal was further improved by 46%. Based on a comparison of reaction rates for direct and indirect transformation of DBP, the increased removal of DBP in this study likely occurred via transformation of ozone into hydroxyl radicals on the catalyst surface. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hidayat, Arif; Rochmadi; Wijaya, Karna; Budiman, Arief
2016-01-01
In this research, the esterification of PFAD using the sulfonatedcoconut shell biochar catalyst was studied. Carbon solid catalysts were prepared by a sulfonation of carbonized coconut shells. The performances of the catalysts were evaluated in terms of the reaction temperatures, the molar ratios of methanol to PFAD, the catalyst loading and the reaction times. The reusability of the solid acid carbon catalysts was also studied in this work. The results indicated that the FFA conversion was significantly increased with increasing catalyst loading and reaction times. It can be concluded that the optimal conditions were an PFAD to methanol molar ratio of 1:12, the amount of catalyst of 10%w, and reaction temperature of 60oC.At this optimum condition, the conversion to biodieselreached 88%.
Study on novel and promising NH3-SCR catalysts on glass fiber cloth for industrial applications
NASA Astrophysics Data System (ADS)
Xie, Junlin; Li, Fengxiang; Hu, Hua; Qi, Kai; He, Feng; Fang, De
2017-05-01
MnO x , Mn/TiO2 and Fe-Mn/TiO2 catalysts were prepared by precipitation-impregnation method. The MnO x catalyst shows the highest activity for the reduction of NO with NH3 at the temperature range of 80 °C to 140 °C, and achieves more than 98% of NO conversion at 140 °C. The MnO x catalyst loaded on glass fiber cloth (GFC) was prepared by impregnation method, and the effects of preparation conditions were studied. It turns out that the catalyst particle size, loading capacity and catalyst varieties make a great difference to catalytic performance. In addition, the catalyst with aluminum sol as a binder has the higher catalytic activity but poor ability of anti-sulfur and anti-water poisoning, compared with the catalyst using silica sol binder. Further, MnO x , Mn/TiO2 and Fe-Mn/TiO2 powders were loaded onto GFC using XRD, HRTEM, TGA, SEM, BET, H2-TPR and NH3-TPD to systematically characterize the various physico-chemical properties and denitrition activity. The results indicate that the changes of active components, specific surface area, microstructure, reducibility and suface acidity of the three kinds of catalysts lead to different catalytic activities.
NASA Astrophysics Data System (ADS)
Jiang, Tingshun; Huang, Qiuyan; Li, Yingying; Fang, Minglan; Zhao, Qian
2018-02-01
Mesoporous molecular sieve (SBA-15) was modified using the trimethylchlorosilane as functional agent and the silylation SBA-15 mesoporous material was prepared in this work. The alcohol solution of perfluorinated sulfonic acid dissolved from the waste perfluorinated sulfonic acid ion exchange membrane (PFSIEM) was loaded onto the resulting mesoporous material by the impregnation method and their physicochemical properties were characterized by FT-IR, N2-physisorption, XRD, TG-DSC and TEM. The catalytic activities of these synthesized solid acid catalysts were evaluated by alkylation of phenol with tert-butyl alcohol. The influence of reaction temperature, weight hour space velocity (WHSV) and reaction time on the phenol conversion and product selectivity were assessed by means of a series of experiments. The results showed that with the increase of the active component of the catalyst, these catalysts still remained good mesoporous structure, but the mesoporous ordering decreased to some extent. These catalysts exhibited good catalytic performance for the alkylation of phenol with tert-butanol. The maximum phenol conversion of 89.3% with 70.9% selectivity to 4-t-butyl phenol (4-TBP) was achieved at 120 °C and the WHSV is 4 h-1. The methyl group was loaded on the surface of the catalyst by trimethylchlorosilane. This is beneficial to retard the deactivation of the catalyst. In this work, the alkylation of phenol with tert-butyl alcohol were carried out using the methyl modified SBA-15 mesoporous materials loaded perfluorinated sulfonic acid as catalysts. The results show that the resulting catalyst exhibited high catalytic activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knights, Shanna; Harvey, David
The durability of PEM fuel cells is a primary requirement for large scale commercialization of these power systems in transportation and stationary market applications which target operational lifetimes of 5,000 hours and 60,000 hours by 2020, respectively. Key degradation modes contributing to fuel cell lifetime limitations have been largely associated with the platinum-based cathode catalyst layer. Furthermore, as fuel cells are driven to low cost materials and lower catalyst loadings in order to meet the cost targets for commercialization, the catalyst durability has become even more important. While over the past few years significant progress has been made in identifyingmore » the underlying causes of fuel cell degradation and key parameters that greatly influence the degradation rates, many gaps with respect to knowledge of the driving mechanisms still exist; in particular, the acceleration of the mechanisms due to different membrane compositions remains an area not well understood. The focus of this project extension was to enhance the predictive capability of the PEM Fuel Cell Performance & Durability Model called FC-APOLLO (Application Package for Open-source Long Life Operation) by including interaction effects of membrane transport properties such as water transport, changes in proton conductivity, and overall water uptake/adsorption and the state of the catalyst layer local conditions to further understand the driving forces for platinum dissolution.« less
Kuhn, Kevin M.; Champagne, Timothy M.; Hong, Soon Hyeok; Wei, Wen-Hao; Nickel, Andrew; Lee, Choon Woo; Virgil, Scott C.; Grubbs, Robert H.; Pederson, Richard L.
2010-01-01
(eq 1) A series of ruthenium catalysts have been screened under ring closing metathesis (RCM) conditions to produce five-, six-, and seven-membered carbamate-protected cyclic amines. Many of these catalysts demonstrated excellent RCM activity and yields with as low as 500 ppm catalyst loadings. RCM of the five-membered carbamate-series could be run neat, the six-membered carbamate-series could be run at 1.0 M concentrations and the seven-membered carbamate-series worked best at 0.2 M to 0.05 M concentrations. PMID:20141172
Goggins, Sean; Marsh, Barrie J; Lubben, Anneke T; Frost, Christopher G
2015-08-01
Signal transduction and signal amplification are both important mechanisms used within biological signalling pathways. Inspired by this process, we have developed a signal amplification methodology that utilises the selectivity and high activity of enzymes in combination with the robustness and generality of an organometallic catalyst, achieving a hybrid biological and synthetic catalyst cascade. A proligand enzyme substrate was designed to selectively self-immolate in the presence of the enzyme to release a ligand that can bind to a metal pre-catalyst and accelerate the rate of a transfer hydrogenation reaction. Enzyme-triggered catalytic signal amplification was then applied to a range of catalyst substrates demonstrating that signal amplification and signal transduction can both be achieved through this methodology.
Liquid phase catalytic hydrodebromination of tetrabromobisphenol A on supported Pd catalysts
NASA Astrophysics Data System (ADS)
Wu, Ke; Zheng, Mengjia; Han, Yuxiang; Xu, Zhaoyi; Zheng, Shourong
2016-07-01
Tetrabromobisphenol A (TBBPA) is a widely used brominated flame retardant and reductive debromination is an effective method for the abatement of TBBPA pollution. In this study, Pd catalysts supported on TiO2, CeO2, Al2O3 and SiO2 were prepared by the impregnation (the resulting catalyst denoted as im-Pd/support), deposition-precipitation (the resulting catalyst denoted as dp-Pd/support), and photo-deposition (the resulting catalyst denoted as pd-Pd/support) methods. The catalysts were characterized by N2 adsorption-desorption isotherm, X-ray diffraction, transmission electron microscopy, measurement of zeta potential, CO chemisorption, and X-ray photoelectron spectroscopy. The results showed that at an identical Pd loading amount (2.0 wt.%) Pd particle size in dp-Pd/TiO2 was much smaller than those in im-Pd/TiO2 and pd-Pd/TiO2. Pd particle size of the dp-Pd/TiO2 catalyst increased with Pd loading amount. Additionally, Pd particles in the dp-Pd/TiO2 catalysts were positively charged due to the strong metal-support interaction, whereas the cationization effect was gradually attenuated with the increase of Pd loading amount. For the liquid phase catalytic hydrodebromination (HDB) of TBBPA, tri-bromobisphenol A (tri-BBPA), di-bromobisphenol A (di-BBPA), and mono-bromobisphenol A (mono-BBPA) were identified as the intermediate products, indicative of a stepwise debromination process. The catalytic HDB of TBBPA followed the Langmuir-Hinshelwood model, reflecting an adsorption enhanced catalysis mechanism. At an identical Pd loading amount, the Pd catalyst supported on TiO2 exhibited a much higher catalytic activity than those on other supports. Furthermore, dp-Pd/TiO2 was found to be more active than im-Pd/TiO2 and pd-Pd/TiO2.
Yahya, N; Kamarudin, S K; Karim, N A; Masdar, M S; Loh, K S
2017-11-25
This study presents a novel anodic PdAu/VGCNF catalyst for electro-oxidation in a glycerol fuel cell. The reaction conditions are critical issues affecting the glycerol electro-oxidation performance. This study presents the effects of catalyst loading, temperature, and electrolyte concentration. The glycerol oxidation performance of the PdAu/VGCNF catalyst on the anode side is tested via cyclic voltammetry with a 3 mm 2 active area. The morphology and physical properties of the catalyst are examined using X-ray diffraction (XRD), field emission scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Then, optimization is carried out using the response surface method with central composite experimental design. The current density is experimentally obtained as a response variable from a set of experimental laboratory tests. The catalyst loading, temperature, and NaOH concentration are taken as independent parameters, which were evaluated previously in the screening experiments. The highest current density of 158.34 mAcm -2 is obtained under the optimal conditions of 3.0 M NaOH concentration, 60 °C temperature and 12 wt.% catalyst loading. These results prove that PdAu-VGCNF is a potential anodic catalyst for glycerol fuel cells.
Nie, Longhui; Zheng, Yingqiu; Yu, Jiaguo
2014-09-14
Pt/honeycomb ceramic (Pt/HC) catalysts with ultra-low Pt content (0.005-0.055 wt%) were for the first time prepared by an impregnation of honeycomb ceramics with Pt precursor and NaBH4-reduction combined method. The microstructures, morphologies and textural properties of the resulting samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The obtained Pt/HC catalysts were used for catalytic oxidative decomposition of formaldehyde (HCHO) at room temperature. It was found that the as-prepared Pt/HC catalysts can efficiently decompose HCHO in air into CO2 and H2O at room temperature. The catalytic activity of the Pt/HC catalysts increases with increasing the Pt loading in the range of 0.005-0.013 wt%, and the further increase of the Pt loading does not obviously improve catalytic activity. From the viewpoint of cost and catalytic performance, 0.013 wt% Pt loading is the optimal Pt loading amount, and the Pt/HC catalyst with 0.013 wt% Pt loading also exhibited good catalytic stability. Considering practical applications, this work will provide new insights into the low-cost and large-scale fabrication of advanced catalytic materials for indoor air purification.
Terry, Tracy J.; Stack, T. Daniel P.
2009-01-01
Considerable attention has been devoted to the immobilization of discrete epoxidation catalysts onto solid supports due to the possible benefits of site isolation such as increased catalyst stability, catalyst recycling, and product separation. A synthetic metal-template/metal-exchange method to imprint a covalently attached bis-1,10-phenanthroline coordination environment onto high-surface area, mesoporous SBA-15 silica is reported herein along with the epoxidation reactivity once reloaded with manganese. Comparisons of this imprinted material with material synthesized by random grafting of the ligand show that the template method creates more reproducible, solution-like bis-1,10-phenanthroline coordination at a variety of ligand loadings. Olefin epoxidation with peracetic acid shows the imprinted manganese catalysts have improved product selectivity for epoxides, greater substrate scope, more efficient use of oxidant, and higher reactivity than their homogeneous or grafted analogues independent of ligand loading. The randomly grafted manganese catalysts, however, show reactivity that varies with ligand loading while the homogeneous analogue degrades trisubstituted olefins and produces trans-epoxide products from cis-olefins. Efficient recycling behavior of the templated catalysts is also possible. PMID:18351763
Studies on KIT-6 Supported Cobalt Catalyst for Fischer–Tropsch Synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnanamani, M.; Jacobs, G; Graham, U
2010-01-01
KIT-6 molecular sieve was used as a support to prepare cobalt catalyst for Fischer-Tropsch synthesis (FTS) using an incipient wetness impregnation method to produce cobalt loadings of 15 and 25 wt%. The catalysts were characterized by BET surface area, X-ray diffraction, scanning transmission election microscopy (STEM), extended X-ray absorption fine spectroscopy and X-ray absorption near edge spectroscopy. The catalytic properties for FTS were evaluated using a 1L CSTR reactor. XRD, pore size distribution, and STEM analysis indicate that the KIT-6 mesostructure remains stable during and after cobalt impregnation and tends to form smaller cobalt particles, probably located inside the mesopores.more » The mesoporous KIT-6 exhibited a slightly higher cobalt dispersion compared to amorphous SiO{sub 2} supported catalyst. With the higher Co loading (25 wt%) on KIT-6, partial structural collapse was observed after the FTS reaction. Compared to an amorphous SiO{sub 2} supported cobalt catalyst, KIT-6 supported cobalt catalyst displayed higher methane selectivity at a similar Co loading, likely due to diffusion effects.« less
Investigating the performance of catalyst layer micro-structures with different platinum loadings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khakaz-Baboli, Moben; Harvey, David; Pharoah, Jon
In this study a four-phase micro-structure of a PEFC catalyst layer was reconstructed by randomly placing overlapping spheres for each solid catalyst phase. The micro-structure was mirrored to make a micro-structure. A body-fit computational mesh was produced for the reconstructed micro-structure in OpenFOAM. Associated conservation equations were solved within all the phases with electrochemical reaction as the boundary condition at the interface between ionomer and platinum phases. The study is focused on the platinum loading of CL. The polarization curves of the micro-structure performance have been compared for different platinum loadings. This paper gives increased insight into the relatively greatermore » losses at decreased platinum loadings.« less
NASA Astrophysics Data System (ADS)
Esumike, Sunday Azubike
The alumina and hybrid alumina-silica FT catalyst were prepared by one-step solgel/oil-drop methods using metal-nitrate-solutions (method-I), and nanoparticle-metaloxides (method-2). The nanoparticle-metal-oxides did not participate in solubility equilibria in contrast to metal nitrate in method-1 causing no metal ion seepage; therefore, method-2 yields higher XRF metal loading efficiency than method-1. The thermal analysis confirmed that the metal loading by method-1 and method-2 involved two different pathways. Method-1 involves solubility equilibria in the conversion of metal-nitrate to metal- hydroxide and finally to metal-oxide, while in method-2 nanoparticle-metal-oxide remained intact during sol-gel-oil-drop and calcination steps. The alumina supported catalysts were dominated by gamma-alumina PXRD peaks in alumina catalysts while amorphous alumino-silicate phase was the bulk of hybrid alumina-silica catalysts. The presence of cobalt oxides (CoO, Co3O4) and iron oxides (FeO, Fe2O3) phases are confirmed in the catalysts prepared by method-1 and method-2. The PXRD analysis indicated weak peak intensities in catalysts with 5 wt. % total metal loading. PXRD pattern confirmed alloy formation in the bimetallic catalysts (CoFe2O4) on alumina support phase gamma-A12 O3. The surface area and pore diameter of hybrid alumina-silica granules (301 - 372 m2/g and 7.3 nm) showed better values than the alumina granules (251 - 256 m2/g and 6.5 nm). The support pore diameter of both types of granules is within the mesoporous range (1 - 50 nm). The morphology of all the catalysts is preserved upon metal loading and heat treatments. The surface characteristics of the sol-gel-oil-drop method prepared catalysts indicate there was no significant pore blockage of the support below 10 wt % total metal loading. The CO conversion of the FT catalysts was measured to screen catalytic active metals and determine the optimum temperatures of the FT reaction for the alumina catalysts. The alumina FT catalysts showed an optimum reaction temperature of 250 °C. Hydrocarbon production and CO conversion of alumina and hybrid alumina-silica FT catalysts were investigated. Among monometallic alumina catalysts, Co(5%) showed a higher CO conversion. The incorporation of Fe to Co increased CO conversion and hydrocarbon production. Increased Fe content in the bimetallic catalysts prepared by combined method-1&2, decreased CO conversion and hydrocarbon production, and increased CO 2 production. The bimetallic nano-Co(2.5%)nano-Fe(2.5%) prepared by method-2 alone showed higher CO conversion comparable to the Co(4%)nano-Fe(l %). Hybrid alumina-silica FT catalysts showed a higher CO conversion than the alumina FT catalysts due to better surface characteristics. The monometallic catalysts showed higher selectivity to C1-C4 hydrocarbon than bimetallic. The bimetallic alumina FT catalysts prepared by method-2 showed slightly higher C5+ selectivity compared to the higher Co catalysts prepared by combined method- I &2. The Ru promotion showed a significant effect on the CO conversion and 11 product distribution of the monometallic catalysts. There was no significant effect on the CO conversion on the (Co-Fe) bimetallic catalysts, but hydrocarbon production slightly increased when promoted by 0.5 wt.% Ru.
In Situ Characterization of Mesoporous Co/CeO 2 Catalysts for the High-Temperature Water-Gas Shift
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vovchok, Dimitriy; Guild, Curtis J.; Dissanayake, Shanka
Here, mesoporous Co/CeO 2 catalysts were found to exhibit significant activity for the high-temperature water-gas shift (WGS) reaction with cobalt loadings as low as 1 wt %. The catalysts feature a uniform dispersion of cobalt within the CeO 2 fluorite type lattice with no evidence of discrete cobalt phase segregation. In situ XANES and ambient pressure XPS experiments were used to elucidate the active state of the catalysts as partially reduced cerium oxide doped with oxidized cobalt atoms. In situ XRD and DRIFTS experiments suggest facile cerium reduction and oxygen vacancy formation, particularly with lower cobalt loadings. In situ DRIFTSmore » analysis also revealed the presence of surface carbonate and bidentate formate species under reaction conditions, which may be associated with additional mechanistic pathways for the WGS reaction. Deactivation behavior was observed with higher cobalt loadings. XANES data suggest the formation of small metallic cobalt clusters at temperatures above 400 °C may be responsible. Notably, this deactivation was not observed for the 1% cobalt loaded catalyst, which exhibited the highest activity per unit of cobalt.« less
In Situ Characterization of Mesoporous Co/CeO 2 Catalysts for the High-Temperature Water-Gas Shift
Vovchok, Dimitriy; Guild, Curtis J.; Dissanayake, Shanka; ...
2018-04-04
Here, mesoporous Co/CeO 2 catalysts were found to exhibit significant activity for the high-temperature water-gas shift (WGS) reaction with cobalt loadings as low as 1 wt %. The catalysts feature a uniform dispersion of cobalt within the CeO 2 fluorite type lattice with no evidence of discrete cobalt phase segregation. In situ XANES and ambient pressure XPS experiments were used to elucidate the active state of the catalysts as partially reduced cerium oxide doped with oxidized cobalt atoms. In situ XRD and DRIFTS experiments suggest facile cerium reduction and oxygen vacancy formation, particularly with lower cobalt loadings. In situ DRIFTSmore » analysis also revealed the presence of surface carbonate and bidentate formate species under reaction conditions, which may be associated with additional mechanistic pathways for the WGS reaction. Deactivation behavior was observed with higher cobalt loadings. XANES data suggest the formation of small metallic cobalt clusters at temperatures above 400 °C may be responsible. Notably, this deactivation was not observed for the 1% cobalt loaded catalyst, which exhibited the highest activity per unit of cobalt.« less
Cooling by conversion of para to ortho-hydrogen
NASA Technical Reports Server (NTRS)
Sherman, A. (Inventor)
1983-01-01
The cooling capacity of a solid hydrogen cooling system is significantly increased by exposing vapor created during evaporation of a solid hydrogen mass to a catalyst and thereby accelerating the endothermic para-to-ortho transition of the vapor to equilibrium hydrogen. Catalyst such as nickel, copper, iron or metal hydride gels of films in a low pressure drop catalytic reactor are suitable for accelerating the endothermic para-to-ortho conversion.
Carboxylic acid accelerated formation of diesters
Tustin, Gerald Charles; Dickson, Todd Jay
1998-01-01
This invention pertains to accelerating the rate of formation of 1,1-dicarboxylic esters from the reaction of an aldehyde with a carboxylic acid anhydride or a ketene in the presence of a non-iodide containing a strong Bronsted acid catalyst by the addition of a carboxylic acid at about one bar pressure and between about 0.degree. and 80.degree. C. in the substantial absence of a hydrogenation or carbonylation catalyst.
Carboxylic acid accelerated formation of diesters
Tustin, G.C.; Dickson, T.J.
1998-04-28
This invention pertains to accelerating the rate of formation of 1,1-dicarboxylic esters from the reaction of an aldehyde with a carboxylic acid anhydride or a ketene in the presence of a non-iodide containing a strong Bronsted acid catalyst by the addition of a carboxylic acid at about one bar pressure and between about 0 and 80 C in the substantial absence of a hydrogenation or carbonylation catalyst.
Massachusetts Lowell low speed wind tunnel (LSWT) test section
NASA Astrophysics Data System (ADS)
Anderson, Erik William
The alumina and hybrid alumina-silica FT catalyst were prepared by one-step solgel/oil-drop methods using metal-nitrate-solutions (method-I), and nanoparticle-metaloxides (method-2). The nanoparticle-metal-oxides did not participate in solubility equilibria in contrast to metal nitrate in method-1 causing no metal ion seepage; therefore, method-2 yields higher XRF metal loading efficiency than method-1. The thermal analysis confirmed that the metal loading by method-1 and method-2 involved two different pathways. Method-1 involves solubility equilibria in the conversion of metal-nitrate to metal- hydroxide and finally to metal-oxide, while in method-2 nanoparticle-metal-oxide remained intact during sol-gel-oil-drop and calcination steps. The alumina supported catalysts were dominated by gamma-alumina PXRD peaks in alumina catalysts while amorphous alumino-silicate phase was the bulk of hybrid alumina-silica catalysts. The presence of cobalt oxides (CoO, Co3O4) and iron oxides (FeO, Fe2O3) phases are confirmed in the catalysts prepared by method-1 and method-2. The PXRD analysis indicated weak peak intensities in catalysts with 5 wt. % total metal loading. PXRD pattern confirmed alloy formation in the bimetallic catalysts (CoFe2O4) on alumina support phase gamma-A12 O3. The surface area and pore diameter of hybrid alumina-silica granules (301 - 372 m2/g and 7.3 nm) showed better values than the alumina granules (251 - 256 m2/g and 6.5 nm). The support pore diameter of both types of granules is within the mesoporous range (1 - 50 nm). The morphology of all the catalysts is preserved upon metal loading and heat treatments. The surface characteristics of the sol-gel-oil-drop method prepared catalysts indicate there was no significant pore blockage of the support below 10 wt % total metal loading. The CO conversion of the FT catalysts was measured to screen catalytic active metals and determine the optimum temperatures of the FT reaction for the alumina catalysts. The alumina FT catalysts showed an optimum reaction temperature of 250 °C. Hydrocarbon production and CO conversion of alumina and hybrid alumina-silica FT catalysts were investigated. Among monometallic alumina catalysts, Co(5%) showed a higher CO conversion. The incorporation of Fe to Co increased CO conversion and hydrocarbon production. Increased Fe content in the bimetallic catalysts prepared by combined method-1&2, decreased CO conversion and hydrocarbon production, and increased CO 2 production. The bimetallic nano-Co(2.5%)nano-Fe(2.5%) prepared by method-2 alone showed higher CO conversion comparable to the Co(4%)nano-Fe(l %). Hybrid alumina-silica FT catalysts showed a higher CO conversion than the alumina FT catalysts due to better surface characteristics. The monometallic catalysts showed higher selectivity to C1-C4 hydrocarbon than bimetallic. The bimetallic alumina FT catalysts prepared by method-2 showed slightly higher C5+ selectivity compared to the higher Co catalysts prepared by combined method- I &2. The Ru promotion showed a significant effect on the CO conversion and 11 product distribution of the monometallic catalysts. There was no significant effect on the CO conversion on the (Co-Fe) bimetallic catalysts, but hydrocarbon production slightly increased when promoted by 0.5 wt.% Ru.
Sharma, Deepak; Prajapati, Abhinesh Kumar; Choudhary, Rumi; Kaushal, Rajesh Kumar; Pal, Dharm; Sawarkar, Ashish N
2017-08-16
CuO catalyst was prepared from copper sulfate by alkali precipitation method followed by drying and calcination. Characterization of CuO catalyst using X-ray diffraction, Brunauer-Emmett-Teller, and Barrett-Joyner-Halenda surface area analysis envisaged the effectiveness of CuO as a catalyst for the treatment of biodigester effluent (BDE) emanated from distilleries. The catalytic thermolysis is an efficient advance treatment method for distillery biodigester effluent (BDE). CT treatment of BDE was carried out in a 0.5 dm 3 thermolytic batch reactor using CuO as a catalyst at different pH (1-9), temperatures (80-110°C), and catalyst loadings (1-4 kg/m 3 ). With CuO catalyst, a temperature of 110°C, catalyst loading of 4 kg/m 3 , and pH of 2 was found to be optimal, providing a maximum reduction in chemical oxygen demand of 65%. The settling characteristics at different temperatures of CT-treated sludge were also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ledford, J.S.; Houalla, M.; Proctor, A.
1989-09-07
X-ray photoelectron spectroscopy (ESCA or XPS), X-ray diffraction (XRD), Raman spectroscopy, H{sub 2} chemisorption, and gravimetric analysis have been used to characterize three series of La/Al{sub 3}O{sub 3} and CoLa/Al{sub 2}O{sub 3} catalysts. CoLa/Al{sub 2}O{sub 3} catalysts were prepared by two methods: impregnation of La first followed by Co (designated CoLay) and impregnation of Co first followed by La (designated LayCo). The information obtained from surface and bulk characterization has been compared with CO hydrogenation activity and selectivity of the supported Co/Al{sub 2}O{sub 3} catalysts. For CoLay catalysts with low La loadings (La/Al atomic ratio {le} 0.026), the presence ofmore » La had little effect on the structure or CO hydrogenation activity. However, the selectivity to higher hydrocarbons and olefinic products increased with increasing La content. For CoLay catalysts with higher La loadings, Co{sub 3}O{sub 4} is suppressed in favor of an amorphous dispersed La-Co mixed oxide. ESCA and H{sub 2} chemisorption indicated higher dispersion of the metallic cobalt phase for high La loadings. The turnover frequency (TOF) for CO hydrogenation decreased dramatically for high La loadings. This has been correlated to the decrease in the amount of Co{sub 3}O{sub 4} present in the La-rich catalysts. Catalysts prepared by reverse impregnation (LayCo) showed little evidence of La-Co interaction. No significant variation in reducibility or cobalt metal dispersion was observed. Lanthanum addition had little effect on the TOF for CO hydrogenation or the selectivity to olefinic products and higher hydrocarbons.« less
NASA Astrophysics Data System (ADS)
Corradini, Patricia Gon; Pires, Felipe I.; Paganin, Valdecir A.; Perez, Joelma; Antolini, Ermete
2012-09-01
The effect of the relationship between particle size ( d), inter-particle distance ( x i ), and metal loading ( y) of carbon supported fuel cell Pt or PtRu catalysts on their catalytic activity, based on the optimum d (2.5-3 nm) and x i / d (>5) values, was evaluated. It was found that for y < 30 wt%, the optimum values of both d and x i / d can be always obtained. For y ≥ 30 wt%, instead, the positive effect of a thinner catalyst layer of the fuel cell electrode than that using catalysts with y < 30 wt% is concomitant to a decrease of the effective catalyst surface area due to an increase of d and/or a decrease of x i / d compared to their optimum values, with in turns gives rise to a decrease in the catalytic activity. The effect of the x i / d ratio has been successfully verified by experimental results on ethanol oxidation on PtRu/C catalysts with same particle size and same degree of alloying but different metal loading. Tests in direct ethanol fuel cells showed that, compared to 20 wt% PtRu/C, the negative effect of the lower x i / d on the catalytic activity of 30 and 40 wt% PtRu/C catalysts was superior to the positive effect of the thinner catalyst layer.
NASA Technical Reports Server (NTRS)
1981-01-01
Monolithic catalysts with higher available active surface areas and better thermal conductivity than conventional pellets beds, making possible the steam reforming of fuels heavier than naphtha, were examined. Performance comparisons were made between conventional pellet beds and honeycomb monolith catalysts using n-hexane as the fuel. Metal-supported monoliths were examined. These offer higher structural stability and higher thermal conductivity than ceramic supports. Data from two metal monoliths of different nickel catalyst loadings were compared to pellets under the same operating conditions. Improved heat transfer and better conversion efficiencies were obtained with the monolith having higher catalyst loading. Surface-gas interaction was observed throughout the length of the monoliths.
Sun, Pengfei; Wang, Wanglong; Weng, Xiaole; Dai, Xiaoxia; Wu, Zhongbiao
2018-06-05
Industrial combustion of chloroaromatics is likely to generate unintentional biphenyls (PCBs), polychlorinated dibenzo- p-dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs). This process involves a surface-mediated reaction and can be accelerated in the presence of a catalyst. In the past decade, the effect of surface nature of applied catalysts on the conversion of chloroaromatics to PCBs/PCDD/PCDF has been well explored. However, studies on how the flue gas interferent components affect such a conversion process remain insufficient. In this article, a critical flue gas interferent component, alkali potassium, was investigated to reveal its effect on the chloroaromatics oxidation at a typical solid acid-base catalyst, Mn x Ce 1- x O 2 /HZSM-5. The loading of alkali potassium was found to improve the Lewis acidity of the catalyst (by increasing the amounts of surface Mn 4+ after calcination), which thus promoted the CO 2 selectivity for catalytic chlorobenzene (CB) oxidation. The KOH with a high hydrophilicity has favored the adsorption/activation of H 2 O molecules that provided sufficient hydroxyl groups and possibly induced a hydrolysis process to promote the formation of HCl. The K ion also served as a potential sink for chorine ions immobilization (via forming KCl). Both of these inhibited the formation of phenyl polychloride byproducts, thereby blocking the conversion of CB to chlorophenol and then PCDDs/PCDFs, and potentially ensuring a durable operation and less secondary pollution for the catalytic chloroaromatics combustion in industry.
Catalytic ozonation of aqueous phenol over metal-loaded HZSM-5.
Amin, Nor Aishah Saidina; Akhtar, Javaid; Rai, H K
2011-01-01
The performances of HZSM-5 and transition metal-loaded HZSM-5 (Mn, Cu, Fe, Ti) catalysts during catalytic ozonation of phenol have been investigated. It was observed the performance order for removal of phenol and COD was Mn/HZSM-5 > Fe/HZSM-5 > Cu/HZSM-5 > Ti/HZSM-5 > HZSM-5. The presence of metals on HZSM-5 enhanced the phenol removal capability of HZSM-5. Mn loading on HZSM-5 was optimized due to its high phenol removal capability amongst metal-loaded HZSM-5 catalysts. Experimental results suggested that low amount of Mn loading on HZSM-5 was sufficient for HZSM-5 to act as catalyst and adsorbent. A maximum of 95.8 wt% phenols and 70.2 wt% COD were removed over 2 wt% Mn/HZSM-5 in 120 min. It was supposed that transition metals mainly acted as ozone decomposers due to their multiple oxidation states that enhanced the ozonation of phenol.
Degradation forecast for PEMFC cathode-catalysts under cyclic loads
NASA Astrophysics Data System (ADS)
Moein-Jahromi, M.; Kermani, M. J.; Movahed, S.
2017-08-01
Degradation of Fuel Cell (FC) components under cyclic loads is one of the biggest bottlenecks in FC commercialization. In this paper, a novel experimental based algorithm is presented to predict the Catalyst Layer (CL) performance loss during cyclic load. The algorithm consists of two models namely Models 1 and 2. The Model 1 calculates the Electro-Chemical Surface Area (ECSA) and agglomerate size (e.g. agglomerate radius, rt,agg) for the catalyst layer under cyclic load. The Model 2 is the already-existing model from our earlier studies that computes catalyst performance with fixed structural parameters. Combinations of these two Models predict the CL performance under an arbitrary cyclic load. A set of parametric/sensitivity studies is performed to investigate the effects of operating parameters on the percentage of Voltage Degradation Rate (VDR%) with rank 1 for the most influential one. Amongst the considered parameters (such as: temperature, relative humidity, pressure, minimum and maximum voltage of the cyclic load), the results show that temperature and pressure have the most and the least influences on the VDR%, respectively. So that, increase of temperature from 60 °C to 80 °C leads to over 20% VDR intensification, the VDR will also reduce 1.41% by increasing pressure from 2 atm to 4 atm.
Yang, Jianping; Zhao, Yongchun; Zhang, Junying; Zheng, Chuguang
2014-12-16
To remove Hg(0) in coal combustion flue gas and eliminate secondary mercury pollution of the spent catalyst, a new regenerable magnetic catalyst based on cobalt oxide loaded magnetospheres from fly ash (Co-MF) was developed. The catalyst, with an optimal loading of 5.8% cobalt species, attained approximately 95% Hg(0) removal efficiency at 150 °C under simulated flue gas atmosphere. O2 could enhance the Hg(0) removal activity of magnetospheres catalyst via the Mars-Maessen mechanism. SO2 displayed an inhibitive effect on Hg(0) removal capacity. NO with lower concentration could promote the Hg(0) removal efficiency. However, when increasing the NO concentration to 300 ppm, a slightly inhibitive effect of NO was observed. In the presence of 10 ppm of HCl, greater than 95.5% Hg(0) removal efficiency was attained, which was attributed to the formation of active chlorine species on the surface. H2O presented a seriously inhibitive effect on Hg(0) removal efficiency. Repeated oxidation-regeneration cycles demonstrated that the spent Co-MF catalyst could be regenerated effectively via thermally treated at 400 °C for 2 h.
Reducible oxide based catalysts
Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.
2010-04-06
A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.
Catalytic conversion of alcohols to hydrocarbons with low benzene content
Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin
2016-09-06
A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.
Catalytic conversion of alcohols to hydrocarbons with low benzene content
Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin
2016-03-08
A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.
Hydroisomerization of n-dodecane over Pt/Al-MCM-48 catalysts.
Yun, Soyoung; Park, Young-Kwon; Jeong, Soon-Yong; Han, Jeongsik; Jeon, Jong-Ki
2014-04-01
The objective of this study is to evaluate the catalytic potential of Pt/Al-MCM-48 catalysts in hydroisomerization of n-dodecane. The effects of the Si/Al ratio and platinum loading on the acid characteristics of Al-MCM-48 and the catalytic performance in n-dodecane hydroisomerization were analyzed. The catalysts were characterized by X-ray diffraction, nitrogen adsorption, infrared spectroscopy of pyridine adsorption, and temperature programmed desorption of ammonia. The number of weak strength acid sites on Al-MCM-48 increased with 0.5 wt% platinum loading. The weak strength acid sites of Pt/Al-MCM-48 catalysts were ascribed to Lewis acid sites, which can be confirmed by NH3-TPD and FTIR spectra of pyridine adsorption. Iso-dodecane can be produced with high selectivity in n-dodecane hydrosisomerization over Pt/Al-MCM-48 catalysts. This is attributed to the mild acidic properties of Pt/Al-MCM-48 catalysts.
NASA Astrophysics Data System (ADS)
Lemke, Adam J.; O'Toole, Alexander W.; Phillips, Richard S.; Eisenbraun, Eric T.
2014-06-01
The effect of ionomer content on the oxygen kinetics in fuel cells and metal-oxide batteries was investigated by varying ionomer loading with constant loadings of a silver nanowire catalyst. Silver nanowire inks were produced in which commercially available anionomer solution constituted 10, 25, 40, 50, and 75% of the total ink volume. Constant loadings of Ag nanowire catalyst were then deposited onto glassy carbon electrodes by varying the amount of ink deposited. These were then used in rotating disc electrode (RDE) experiments using a 0.1 M KOH electrolyte solution. From these experiments, using ORR polarization curves and Koutecky-Levich analysis, it was found that not only did the anionomer loading affect the total activity (given a constant Ag nanowire loading) but, that the anionomer content also had an impact upon the apparent kinetic limited current as well as whether the ORR proceeded through the 2e- or 4e- pathway. Although the total activity declined with very high anionomer loadings, the ORR appeared to proceed more through the 4e- pathway with increased anionomer content.
Need for optimizing catalyst loading for achieving affordable microbial fuel cells.
Singh, Inderjeet; Chandra, Amreesh
2013-08-01
Microbial fuel cell (MFC) technology is a promising technology for electricity production together with simultaneous water treatment. Catalysts play an important role in deciding the MFC performance. In most reports, effect of catalyst - both type and quantity is not optimized. In this paper, synthesis of nanorods of MnO2-catalyst particles for application in Pt-free MFCs is reported. The effect of catalyst loading i.e., weight ratio, with respect to conducting element and binder has been optimized by employing large number of combinations. Using simple theoretical model, it is shown that too high (or low) concentration of catalysts result in loss of MFC performance. The operation of MFC has been investigated using domestic wastewater as source of bio-waste for obtaining real world situation. Maximum power density of ∼61 mW/m(2) was obtained when weight ratio of catalyst and conducting species was 1:1. Suitable reasons are given to explain the outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lee, Hochun; Jung, Yongju; Kim, Seok
2012-02-01
In the present work, we had studied the graphite nanofibers as catalyst supports after a plasma treatment for studying the effect of surface modification. By controlling the plasma intensity, a surface functional group concentration was changed. The nanoparticle size, loading efficiency, and catalytic activity were studied, after Pt-Ru deposition by a chemical reduction. Pt-Ru catalysts deposited on the plasma-treated GNFs showed the smaller size, 3.58 nm than the pristine GNFs. The catalyst loading contents were enhanced with plasma power and duration time increase, meaning an enhanced catalyst deposition efficiency. Accordingly, cyclic voltammetry result showed that the specific current density was increased proportionally till 200 W and then the value was decreased. Enhanced activity of 40 (mA mg(-1)-catalyst) was accomplished at 200 W and 180 sec duration time. Consequently, it was found that the improved electroactivity was originated from the change of size or morphology of catalysts by controlling the plasma intensity.
Zeolite Y encapsulated with Fe-TiO2 for ultrasound-assisted degradation of amaranth dye in water.
Alwash, Atheel Hassan; Abdullah, Ahmad Zuhairi; Ismail, Norli
2012-09-30
A new heterogeneous catalyst for sonocatalytic degradation of amaranth dye in water was synthesized by introducing titania into the pores of zeolite (NaY) through ion exchange method while Fe (III) was immobilized on the encapsulated titanium via impregnation method. XRD results could not detect any peaks for titanium oxide or Fe(2)O(3) due to its low loading. The UV-vis analysis proved a blue shift toward shorter wavelength after the loading of Ti into NaY while a red shift was detected after the loading of Fe into the encapsulated titanium. Different reaction variables such as TiO(2) content, amount of Fe, pH values, amount of hydrogen peroxide, catalyst loading and the initial dye concentration were studied to estimate their effect on the decolorization efficiency of amaranth. The maximum decolorization efficiency achieved was 97.5% at a solution pH of 2.5, catalyst dosage of 2 g/L, 20 mmol/100 mL of H(2)O(2) and initial dye concentration of 10 mg/L. The new heterogeneous catalyst Fe/Ti-NaY was a promising catalyst for this reaction and showed minimum Fe leaching at the end of the reaction. Copyright © 2012 Elsevier B.V. All rights reserved.
Effect of Catalyst Loading on Photocatalytic Degradation of Phenol by Using N, S Co-doped TiO2
NASA Astrophysics Data System (ADS)
Yunus, N. N.; Hamzah, F.; So'aib, M. S.; Krishnan, J.
2017-06-01
The study on the effect of catalyst loading of photocatalytic degradation of phenol by using N, S co-doped TiO2 was investigated. The precursor of titania was Titanium (IV) isopropoxide (TTIP), while the sources of Nitrogen and Sulfur were ammonium nitrate and thiourea respectively. The photocatalyst were prepared by using dopant concentration at 1% of both Nitrogen and Sulphur that were prepared via sol-gel method. The photocatalyst were tested by different catalyst loading which were 1 g/L, 2g/L and 3 g/L. The gel obtained from the mixing process was dried and calcined at 600°C. The performance of the photocatalyst were tested by using phenol as a model pollutant. The mixture of photocatalyst and pollutant was left under visible light for five hours for irradiation time. The experiment showed that catalyst loading of 3 g/L able to fully degrade phenol while 1 g/L and 2 g/L of photocatalyst degraded phenol at 69.9% and 96.2% respectively.
Yang, M; Sun, Y; Xu, A H; Lu, X Y; Du, H Z; Sun, C L; Li, C
2007-07-01
Catalytic wet air of coke-plant wastewater was studied in a bubbling bed reactor. Two types of supported Ru-based catalysts, eggshell and uniform catalysts, were employed. Compared with the results in the wet air oxidation of coke-plant wastewater, supported Ru uniform catalysts showed high activity for chemical oxygen demand (COD) and ammonia/ammonium compounds (NH3-N) removal at temperature of 250 degrees C and pressure of 4.8 MPa, and it has been demonstrated that the catalytic activity of uniform catalyst depended strongly on the distribution of active sites of Ru on catalyst. Compared to the corresponding uniform catalysts with the same Ru loading (0.25 wt.% and 0.1 wt.%, respectively), the eggshell catalysts showed higher activities for CODcr removal and much higher activities for NH3-N degradation. The high activity of eggshell catalyst for treatment of coke-plant wastewater can be attributed to the higher density of active Ru sites in the shell layer than that of the corresponding uniform catalyst with the same Ru loading. It has been also evidenced that the active Ru sites in the internal core of uniform catalyst have very little or no contribution to CODcr and NH3-N removal in the total oxidation of coke-plant wastewater.
Hydrogenation of citral into its derivatives using heterogeneous catalyst
NASA Astrophysics Data System (ADS)
Sudiyarmanto, Hidayati, Luthfiana Nurul; Kristiani, Anis; Aulia, Fauzan
2017-11-01
Citral as known as a monoterpene can be found in plants and citrus fruits. The hydrogenation of citral into its derivatives become interesting area for scientist. This compound and its derivatives can be used for many application in pharmaceuticals and food areas. The development of heterogeneous catalysts become an important aspect in catalytic hydrogenation citral process. Nickel supported catalysts are well known as hydrogenation catalyst. These heterogeneous catalysts were tested their catalytic activity in hydrogenation of citral. The effect of various operation conditions, in term of feed concentration, catalyst loading, temperature, and reaction time were also studied. The liquid products produced were analyzed by using Gas Chromatography-Mass Spectroscopy (GC-MS). The result of catalytic activity tests showed nickel skeletal catalyst exhibits best catalytic activity in hydrogenation of citral. The optimum of operation condition was achieved in citral concentration 0.1 M with nickel skeletal catalyst loading of 10% (w/w) at 80 °C and 20 bar for 2 hours produced the highest conversion as of 64.20% and the dominant product resulted was citronellal as of 56.48%.
CuO/CeO2 catalysts for glycerol selective conversion to lactic acid.
Palacio, Ruben; Torres, Sebastian; Royer, Sébastien; Mamede, Anne Sophie; López, Diana; Hernández, Diana
2018-03-26
Ceria supported copper oxide catalysts were produced by a deposition-precipitation method, at a high copper loading (up to >25 wt%). These materials demonstrated excellent properties for glycerol selective conversion to lactic acid, with a conversion reaching up to 87% with a selectivity to lactic acid of 74% (8 h reaction, 220 °C, under N2 pressure). These catalysts also exhibited high stability upon 5 successive reaction cycles. The formation of a crystalline CuO phase was demonstrated in the nanocomposites at a high Cu loading, with elongated shaped particles formed on the cerium oxide surface. Such particles were however, not observed at low Cu loadings. XPS analysis revealed that Cu(ii) was the main Cu species on the fresh catalyst, and that this species was reduced to Cu(i) during the reaction. Complementary characterization over the spent catalyst clearly showed the morphological modifications of the CuO phase, however, did not impact significantly either glycerol conversion or selectivity to lactic acid upon recycling. For instance, apparently, the catalytic activity of CuO largely depends on the Cu(ii) species.
NASA Astrophysics Data System (ADS)
Al-asadi, M.; Miskolczi, N.
2018-05-01
In this work the pyrolysis of polyethylene terephthalate (PET) containing real waste plastic was investigated using different Ni loaded catalysts: Ni/ZSM-5, Ni/y-zeolite, Ni/β-zeolite and Ni/natural zeolite (clinoptilolite). Raw materials were pyrolyzed in a horizontal tubular reactor between 600 and 900°C using 10% of catalysts. It was found, that both temperature increasing and catalysts presence can increase the gas yields, however owing to gasification reactions, the pyrolysis oil yield decreased with increasing temperature. Ni/y-zeolite catalyst had the most benefit in gas yield increasing at low temperature; however Ni/ZSM-5 showed advanced property in gas yield increasing at high temperature. Gases contained hydrogen, carbon oxides and hydrocarbons, which composition was significantly affected by catalysts. Ni loaded zeolites favoured to the formation of hydrogen and branched hydrocarbons; furthermore the concentrations of both CO and CO2 were also increased as function of elevated temperature. That phenomenon was attributed to the further decomposition of PET, especially to the side chain scission reactions. Owing to the Boudouard reaction, the ratio of CO2/CO can increased with temperature. Pyrolysis oils were the mixtures of n-saturated, n-unsaturated, branched, oxygen free aromatics and oxygenated hydrocarbons. Temperature increasing has a significant effect to the aromatization and isomerization reactions, while the catalysts can efficiently decreased the concentration of oxygen containing compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vu, Thu Ha Thi, E-mail: ptntd2004@yahoo.fr; Tran, Thanh Thuy Thi, E-mail: tranthithanhthuygl@gmail.com; Le, Hong Ngan Thi
2016-01-15
Highlights: • Pt/rGO catalysts were successfully synthesized using either NaBH{sub 4} or ethylene glycol. • Synthesis using NaBH{sub 4} could improve electrocatalytic towards methanol oxidation of Pt/rGO catalyst. • 40%Pt/rGO synthesized using NaBH{sub 4} showed the best electrocatalytic performance. - Abstract: The synthesis processes of Platinum (Pt) on reduced graphene oxide (rGO) catalysts from graphene oxide (GO) using two reducing agents including sodium borohydride and ethylene glycol is reported. Structure and morphology of Pt/rGO catalysts are characterized by X-ray powder diffraction, transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. Electrocatalytic methanol oxidation properties of these catalysts are evaluated bymore » cyclic voltammetry and chronoamperometry. The results show that catalyst synthesized using sodium borohydride has a higher metallic Pt content and an improved catalytic performance in comparison to catalyst synthesized using ethylene glycol. Moreover, effect of Pt loading amount on electrocatalytic methanol oxidation performance of catalysts synthesized using sodium borohydride is systematically investigated. The optimal Pt loading amount on graphene is determined to be 40%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhary, V.R.; Mulla, S.A.R.; Uphade, B.S.
1998-06-01
The influence of catalyst carrier or support (with different chemical compositions and surface properties), catalyst deposition method (viz., impregnation and coating), precursor for strontium oxide (SrO; Sr-nitrate, acetate, hydroxide, and carbonate), and loading of SrO and lanthanum oxide (La{sub 2}O{sub 3}; 0--25 wt%) on the surface properties and performance of catalyst in oxidative coupling of methane (OCM; at 850 C, gas hourly space velocity = 1.02 {times} 10{sup 5} cm{sup 3}/g{center_dot}h and CH{sub 4}/O{sub 2} = 4 or 16) was thoroughly investigated. The basicity, acidity, and O{sub 2} chemisorption of the catalysts were studied by the temperature programmed desorption (TPD)more » of CO{sub 2}, NH{sub 3}, and O{sub 2}, respectively, from 50 to 950 C. The total and strong basic sites, acidity, and OCM activity of the supported catalyst were strongly influenced by the support used and also by the La{sub 2}O{sub 3} loading on the support. The catalyst with a sintered low surface area porous silica-Alumina support and high (20 wt%) La{sub 2}O{sub 3} and SrO loadings showed the best performance in the OCM process. The OCM activity was influenced by SrO loading, but to a smaller extent, and also by the method of SrO deposition. The OCM activity of the supported catalysts could be related to their strong basic sites (measured in terms of the CO{sub 2} desorbed between 500 and 950 C).« less
Osman, Ahmed I; Thompson, Jillian; Halawy, Samih A; Mohamed, Mohamed A
2017-01-01
Abstract BACKGROUND Methanol to dimethyl ether (MTD) is considered one of the main routes for the production of clean bio‐fuel. The effect of copper loading on the catalytic performance of different phases of alumina that formed by calcination at two different temperatures was examined for the dehydration of methanol to dimethyl ether (DME). RESULTS A range of Cu loadings of (1, 2, 4, 6, 10 and 15% Cu wt/wt) on Al2O3 calcined at 350 and 550 °C were prepared and characterized by TGA, XRD, BET, NH3‐TPD, TEM, H2‐TPR, SEM, EDX, XPS and DRIFT‐Pyridine techniques. The prepared catalysts were used in a fixed bed reactor under reaction conditions in which the temperature ranged from 180–300 °C with weight hourly space velocity (WHSV) = 12.1 h‐1. It was observed that all catalysts calcined at 550 °C (γ‐Al2O3 support phase) exhibited higher activity than those calcined at 350 °C (γ‐AlOOH), and this is due to the phase support change. Furthermore, the optimum Cu loading was found to be 6% Cu/γ‐Al2O3 with this catalyst also showing a high degree of stability under steady state conditions and this is attributed to the enhancement in surface acidity and hydrophobicity. CONCLUSION The addition of copper to the support improved the catalyst properties and activity. For all the copper modified catalysts, the optimum catalyst with high degree of activity and stability was 6% copper loaded on gamma alumina. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:29200585
Jeong, Gwi-Taek; Kim, Sung-Koo; Park, Don-Hee
2015-04-01
In this study, the hydrolysis of marine macro-algae Gracilaria verrucosa with a solid-acid catalyst was investigated. To optimize the hydrolysis, four reaction factors, including liquid-to-solid ratio, catalyst loading, reaction temperature, and reaction time, were investigated. In the results, the highest total reducing sugar (TRS) yield, 61 g/L (51.9%), was obtained under the following conditions: 1:7.5 solid-to-liquid ratio, 15% (w/v) catalyst loading, 140 °C reaction temperature, and 150 min reaction time. Under these conditions, 10.7 g/L of 5-HMF and 2.5 g/L of levulinic acid (LA) were generated. The application of solid-acid catalyst and marine macro-algae resources shows a very high potential for production of fermentable sugars. Copyright © 2015 Elsevier Ltd. All rights reserved.
Freiberg, Anna T. S.; Tucker, Michael C.; Weber, Adam Z.
2017-04-12
The reduction of platinum-loading on the cathode side of polymer-electrolyte fuel cells leads to a poorly understood increase in mass-transport resistance (MTR) at high current densities. This local resistance was measured using a facile hydrogen-pump technique with dilute active gases for membrane-electrode assemblies with catalyst layers of varying platinum-loading (0.03-0.40 mgPt/cm²). Furthermore, polarization curves in H 2/air were measured and corrected for the overpotential caused by the increased MTR for low loadings on the air side due to the reduced concentration of reactant gas at the catalyst surface. The difference in performance after correction for all resistances including the MTRmore » is minor, suggesting its origin to be diffusive in nature, and proving the meaningfulness of the facile hydrogen-pump technique for the characterization of the cathode catalyst layer under defined operation conditions.« less
Method of depositing a catalyst on a fuel cell electrode
Dearnaley, Geoffrey; Arps, James H.
2000-01-01
Fuel cell electrodes comprising a minimal load of catalyst having maximum catalytic activity and a method of forming such fuel cell electrodes. The method comprises vaporizing a catalyst, preferably platinum, in a vacuum to form a catalyst vapor. A catalytically effective amount of the catalyst vapor is deposited onto a carbon catalyst support on the fuel cell electrode. The electrode preferably is carbon cloth. The method reduces the amount of catalyst needed for a high performance fuel cell electrode to about 0.3 mg/cm.sup.2 or less.
Effect of vanadium contamination on the framework and micropore structure of ultra stable Y-zeolite.
Etim, U J; Xu, B; Ullah, Rooh; Yan, Z
2016-02-01
Y-zeolites are the main component of fluid catalytic cracking (FCC) catalyst for conversion of crude petroleum to products of high demand including transportation fuel. We investigated effects of vanadium which is present as one of the impurities in FCC feedstock on the framework and micropore structure of ultra-stable (US) Y-zeolite. The zeolite samples were prepared and characterized using standard techniques including: (1) X-ray diffraction, (2) N2 adsorption employing non local density functional theory method, NLDFT, (3) Transmittance and Pyridine FTIR, (4) Transmittance electron microscopy (TEM), and (5) (27)Al and (29)Si MAS-NMR. Results revealed that in the presence of steam, vanadium caused excessive evolution of non inter-crystalline mesopores and structural damage. The evolved mesopore size averaged about 25.0nm at 0.5wt.% vanadium loading, far larger than mesopore size in zeolitic materials with improved hydrothermal stability and performance for FCC catalyst. A mechanism of mesopore formation based on accelerated dealumination has been proposed and discussed. Vanadium immobilization experiments conducted to mitigate vanadium migration into the framework clearly showed vanadium is mobile at reaction conditions. From the results, interaction of vanadium with the passivator limits and decreases mobility and activity of vanadium into inner cavities of the zeolite capable of causing huge structure breakdown and acid sites destruction. This study therefore deepens insight into the causes of alteration in activity and selectivity of vanadium contaminated catalyst and hints on a possible mechanism of passivation in vanadium passivated FCC catalyst. Copyright © 2015 Elsevier Inc. All rights reserved.
Tan, Y L; Abdullah, A Z; Hameed, B H
2018-05-18
Silica-alumina catalyst was prepared and used in the catalytic fast pyrolysis of durian rind in a drop-type two-stage reactor. The effects of catalytic temperature (400 °C-600 °C) and catalyst-to-durian rind ratio (1:30-3:30) were evaluated. Bio-oil yield was increased with increased catalytic temperature due to considerable dehydration process, but it was reduced with high catalyst loading due to the overcracking of organics into light gases. Silica-alumina catalyst possessed good selectivity and the products changed according to the temperature. The major components in bio-oil were hydrocarbons, furan derivatives, and aromatic compounds at 400 °C, 500 °C, and 600 °C, respectively. The hydrogen and carbon contents of bio-oil were reduced with high catalyst loading due to the overcracking of organics, and the deoxygenation process became unfavorable. The silica-alumina catalyst worked well in catalytic fast pyrolysis of durian rind, and the condition may be adjusted based on the desired products. Copyright © 2018 Elsevier Ltd. All rights reserved.
High-performance hydrogen fuel cell using nitrate reduction reaction on a non-precious catalyst.
Han, Sang-Beom; Song, You-Jung; Lee, Young-Woo; Ko, A-Ra; Oh, Jae-Kyung; Park, Kyung-Won
2011-03-28
The H(2)-NO(3)(-) electrochemical cell using nitrate reduction on a non-precious cathode catalyst shows much improved efficiency despite ∼75% reduction of Pt metal loading as compared to typical PEMFCs using typical ORR on precious catalysts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budhi, Sridhar; Peeraphatdit, Chorthip; Pylypenko, Svitlana
2014-02-07
We report a novel method to increase the metal loading in SBA-15 silica matrix via direct synthesis. It was demonstrated through the synthesis and characterization of a series of molybdenum containing SBA-15 mesoporous silica catalysts prepared with and without diammonium hydrogen phosphate (DHP) as an additive. Catalysts prepared with DHP show a 2–3 times increase in incorporation of molybdenum in the silica matrix and pore size enlargement. The synthesized catalysts were characterized using nitrogen sorption, X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma–optical emission spectroscopy (ICP–OES). Themore » catalytic activity of catalysts prepared with DHP for alcoholysis of epoxides was superior than the catalyst prepared without DHP. Alcoholysis of epoxides was demonstrated for a range of alcohols and epoxides under ambient conditions in as little as 30 min with high selectivity.« less
Stable metal–organic framework-supported niobium catalysts
Ahn, Sol; Thornburg, Nicholas E.; Li, Zhanyong; ...
2016-10-31
In this study by developing structurally well-defined, supported oxide catalysts remains a significant challenge. Here, we report the grafting of Nb(V) oxide sites onto the nodes of the Zr-based metal organic framework (MOF) NU-1000 as a stable, well-defined catalyst support. Nb(V) oxide was deposited with loadings up to 1.6 mmol/g via two post-synthetic methods: atomic layer deposition in a MOF (AIM), and solution-phase grafting in a MOF (SIM). Difference envelope density (DED) measurements indicated that the two synthetic methods resulted in different local structures of the Nb(V) ions within NU-1000. Despite their high Nb(V) loadings, which were equivalent to >60%more » surface coverage, nearly all Nb(V) sites of the MOF-supported catalysts were active sites for alkene epoxidation, as confirmed by phenylphosphonic acid titration. The MOF-supported catalysts were more selective than the control Nb-ZrO 2 catalyst for cyclohexene epoxidation with aqueous H 2O 2, and were far more active on a gravimetric basis.« less
Yee, Kian Fei; Lee, Keat Teong; Ceccato, Riccardo; Abdullah, Ahmad Zuhairi
2011-03-01
This study reports the conversion of Jatrophacurcas L. oil to biodiesel catalyzed by sulfated zirconia loaded on alumina catalyst using response surface methodology (RSM), specifically to study the effect of interaction between process variables on the yield of biodiesel. The transesterification process variables studied were reaction temperature, reaction duration, molar ratio of methanol to oil and catalyst loading. Results from this study revealed that individual as well as interaction between variables significantly affect the yield of biodiesel. With this information, it was found that 4h of reaction at 150°C, methanol to oil molar ratio of 9.88 mol/mol and 7.61 wt.% for catalyst loading gave an optimum biodiesel yield of 90.32 wt.%. The fuel properties of Jatropha biodiesel were characterized and it indeed met the specification for biodiesel according to ASTM D6751. Copyright © 2010 Elsevier Ltd. All rights reserved.
Wang, Yu-Yuan; Chou, Hsin-Yu; Chen, Bing-Hung; Lee, Duu-Jong
2013-10-01
Optimization of sodium loading on zeolite HY for catalyzed transesterification of triolein in excess methanol to biodiesel was studied. Zeolite HY catalyst was activated by loading sodium ions to their surface via an ion-exchange method. The effects of ion-exchange process parameters, including the temperature, the process time, the pH value, as well as concentrations and sources of Na(+) cations (NaOH, NaCl and Na2SO4), on the conversion yield of triolein to biodiesel were investigated. Most of these Na(+)-activated zeolite HY catalysts could really facilitate the catalyzed transesterification reaction of triolein to biodiesel at a lower temperature near 65°C. Consequently, a high conversion yield of triglycerides to biodiesel at 97.3% was obtained at 65°C. Moreover, the durability of zeolite catalysts was examined as well. Catalytic performance tests of these zeolite catalysts in transesterification did not show a significant decrease in catalysis at least for three batch cycles. Copyright © 2013 Elsevier Ltd. All rights reserved.
External Catalyst Breakup Phenomena
1976-06-01
catalyst particle can cause high internal pressures which result in particle destruction. Analytical results suggest rhat erosion effects from solid...mechanisms. * Pressure Forces. High G loadings and bed pressure drops should be avoided. Bed pre-loads should be kept at a minimum value. Thruster...5.2.7.1 Failure Theories ............................ 243 5.2.7.2 Maximum Tension Stress Criterion ............ 244 5.2.7.3 Distortion Energy Approach
Chen, Xingxing; Eckhard, Kathrin; Zhou, Min; Bron, Michael; Schuhmann, Wolfgang
2009-09-15
A strategy for the screening of the electrocatalytic activity of electrocatalysts for possible application in fuel cells and other devices is presented. In this approach, metal nanoclusters (Pt, Au, Ru, and Rh and their codeposits) were prepared using a capillary-based droplet-cell by pulsed electrodeposition in a diffusion-restricted viscous solution. A glassy carbon surface was modified with carbon nanotubes (CNTs) by electrophoretic accumulation and was used as substrate for metal nanoparticle deposition. The formed catalyst spots on the CNT-modified glassy carbon surface were investigated toward their catalytic activity for oxygen reduction as a test reaction employing the redox competition mode of scanning electrochemical microscopy (RC-SECM). Qualitative information on the electrocatalytic activity of the catalysts was obtained by varying the potential applied to the substrate; semiquantitative evaluation was based on the determination of the electrochemically deposited catalyst loading by means of the charge transferred during the metal nanoparticle deposition. Qualitatively, Au showed the highest electrocatalytic activity toward the oxygen reduction reaction (ORR) in phosphate buffer among all investigated single metal catalysts which was attributed to the much higher loading of Au achieved during electrodeposition. Coelectrodeposited Au-Pt catalysts showed a more positive onset potential (-150 mV in RC-SECM experiments) of the ORR in phosphate buffer at pH 6.7. After normalizing the SECM image by the charge during the metal nanocluster deposition which represents the mass loading of the catalyst, Ru showed a higher electrocatalytic activity toward the ORR than Au.
Catalytic performance of V2O5-MoO3/γ-Al2O3 catalysts for partial oxidation of n-hexane1
NASA Astrophysics Data System (ADS)
Mahmoudian, R.; Khodadadi, Z.; Mahdavi, Vahid; Salehi, Mohammed
2016-01-01
In the current study, a series of V2O5-MoO3 catalyst supported on γ-Al2O3 with various V2O5 and MoO3 loadings was prepared by wet impregnation technique. The characterization of prepared catalysts includes BET surface area, powder X-ray diffraction (XRD), and oxygen chemisorptions. The partial oxidation of n-hexane by air over V2O5-MoO3/γ-Al2O3 catalysts was carried out under flow condition in a fixed bed glass reactor. The effect of V2O5 loading, temperature, MoO3 loading, and n-hexane LHSV on the n-hexane conversion and the product selectivity were investigated. The partial oxygenated products of n-hexane oxidation were ethanol, acetic anhydride, acetic acid, and acetaldehyde. The 10% V2O5-1%MoO3/γ-Al2O3 was found in most active and selective catalyst during partial oxidation of n-hexane. The results indicated that by increasing the temperature, the n-hexane conversion increases as well, although the selectivity of the products passes through a maximum by increasing the temperature.
Ho, Wilson Wei Sheng; Ng, Hoon Kiat; Gan, Suyin
2012-12-01
Novel heterogeneous catalysts from calcium oxide (CaO)/calcined calcium carbonate (CaCO(3)) loaded onto different palm oil mill boiler ashes were synthesised and used in the transesterification of crude palm oil (CPO) with methanol to yield biodiesel. Catalyst preparation parameters including the type of ash support, the weight percentage of CaO and calcined CaCO(3) loadings, as well as the calcination temperature of CaCO(3) were optimised. The catalyst prepared by loading of 15 wt% calcined CaCO(3) at a fixed temperature of 800°C on fly ash exhibited a maximum oil conversion of 94.48%. Thermogravimetric analysis (TGA) revealed that the CaCO(3) was transformed into CaO at 770°C and interacted well with the ash support, whereas rich CaO, Al(2)O(3) and SiO(2) were identified in the composition using X-ray diffraction (XRD). The fine morphology size (<5 μm) and high surface area (1.719 m(2)/g) of the fly ash-based catalyst rendered it the highest catalytic activity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Geiger, Simon; Kasian, Olga; Mingers, Andrea M; Nicley, Shannon S; Haenen, Ken; Mayrhofer, Karl J J; Cherevko, Serhiy
2017-09-18
In searching for alternative oxygen evolution reaction (OER) catalysts for acidic water splitting, fast screening of the material intrinsic activity and stability in half-cell tests is of vital importance. The screening process significantly accelerates the discovery of new promising materials without the need of time-consuming real-cell analysis. In commonly employed tests, a conclusion on the catalyst stability is drawn solely on the basis of electrochemical data, for example, by evaluating potential-versus-time profiles. Herein important limitations of such approaches, which are related to the degradation of the backing electrode material, are demonstrated. State-of-the-art Ir-black powder is investigated for OER activity and for dissolution as a function of the backing electrode material. Even at very short time intervals materials like glassy carbon passivate, increasing the contact resistance and concealing the degradation phenomena of the electrocatalyst itself. Alternative backing electrodes like gold and boron-doped diamond show better stability and are thus recommended for short accelerated aging investigations. Moreover, parallel quantification of dissolution products in the electrolyte is shown to be of great importance for comparing OER catalyst feasibility. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Transition metal sulfide loaded catalyst
Maroni, Victor A.; Iton, Lennox E.; Pasterczyk, James W.; Winterer, Markus; Krause, Theodore R.
1994-01-01
A zeolite based catalyst for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C.sub.2 + hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.
Choi, Hyeonhee; Bae, Jung-Hyun; Kim, Do Heui; Park, Young-Kwon; Jeon, Jong-Ki
2013-04-29
MCM-41 was used as a support and, by using atomic layer deposition (ALD) in the liquid phase, a catalyst was prepared by consecutively loading titanium oxide and vanadium oxide to the support. This research analyzes the effect of the loading amount of vanadium oxide on the acidic characteristics and catalytic performance in the dehydration of butanol. The physical and chemical characteristics of the TiO₂-V₂O₅/MCM-41 catalysts were analyzed using XRF, BET, NH₃-TPD, XRD, Py-IR, and XPS. The dehydration reaction of butanol was performed in a fixed bed reactor. For the samples with vanadium oxide loaded to TiO₂/MCM-41 sample using the liquid phase ALD method, it was possible to increase the loading amount until the amount of vanadium oxide reached 12.1 wt %. It was confirmed that the structural properties of the mesoporous silica were retained well after titanium oxide and vanadium loading. The NH₃-TPD and Py-IR results indicated that weak acid sites were produced over the TiO₂/MCM-41 samples, which is attributed to the generation of Lewis acid sites. The highest activity of the V₂O₅(12.1)-TiO₂/MCM-41 catalyst in 2-butanol dehydration is ascribed to it having the highest number of Lewis acid sites, as well as the highest vanadium dispersion.
NASA Astrophysics Data System (ADS)
González, J.; Chen, L. F.; Wang, J. A.; Manríquez, Ma.; Limas, R.; Schachat, P.; Navarrete, J.; Contreras, J. L.
2016-08-01
A series of vanadium oxide supported on Ti-MCM-41 catalysts was synthesized via the incipient impregnation method by varying the vanadia loading from 5 wt% to 10, 15, 20 and 25 wt%. These catalysts were characterized by a variety of advanced techniques for investigating their crystalline structure, textural properties, and surface chemistry information including surface acidity, reducibility, vanadium oxidation states, and morphological features. The catalytic activities of the catalysts were evaluated in a biphasic reaction system for oxidative desulfurization (ODS) of a model diesel containing 300 ppm of dibenzothiophene (DBT) where acetonitrile was used as extraction solvent and H2O2 as oxidant. ODS activity was found to be proportional to the V5+/(V4+ + V5+) values of the catalysts, indicating that the surface vanadium pentoxide (V2O5) was the active phase. Reaction temperature would influence significantly the ODS efficiency; high temperature, i.e., 80 °C, would lead to low ODS reaction due to the partial decomposition of oxidant. All the catalysts contained both Lewis and Brønsted acid sites but the former was predominant. The catalysts with low vanadia loading (5 or 10 wt%V2O5) had many Lewis acid sites and could strongly adsorb DBT molecule via the electron donation/acceptance action which resulted in an inhibition for the reaction of DBT with the surface peroxometallic species. The catalyst with high vanadia loading (25wt%V2O5/Ti-MCM-41) showed the highest catalytic activity and could remove 99.9% of DBT at 60 °C within 60 min.
Development of dynamic kinetic resolution on large scale for (±)-1-phenylethylamine.
Thalén, Lisa K; Bäckvall, Jan-E
2010-09-13
Candida antarctica lipase B (CALB) and racemization catalyst 4 were combined in the dynamic kinetic resolution (DKR) of (±)-1-phenylethylamine (1). Several reaction parameters have been investigated to modify the method for application on multigram scale. A comparison of isopropyl acetate and alkyl methoxyacetates as acyl donors was carried out. It was found that lower catalyst loadings could be used to obtain (R)-2-methoxy-N-(1-phenylethyl)acetamide (3) in good yield and high ee when alkyl methoxyacetates were used as acyl donors compared to when isopropyl acetate was used as the acyl donor. The catalyst loading could be decreased to 1.25 mol % Ru-catalyst 4 and 10 mg CALB per mmol 1 when alkyl methoxyacetates were used as the acyl donor.
NASA Astrophysics Data System (ADS)
Liu, Xin-Ling; Wang, Rong; Zhang, Ming-Yi; Yuan, Yu-Peng; Xue, Can
2015-10-01
The Ni/NiOx particles were in situ photodeposited on MIL-101 metal organic frameworks as catalysts for boosting H2 generation from Erythrosin B dye sensitization under visible-light irradiation. The highest H2 production rate of 125 μmol h-1 was achieved from the system containing 5 wt. % Ni-loaded MIL-101 (20 mg) and 30 mg Erythrosin B dye. Moreover, the Ni/NiOx catalysts show excellent stability for long-term photocatalytic reaction. The enhancement on H2 generation is attributed to the efficient charge transfer from photoexcited dye to the Ni catalyst via MIL-101. Our results demonstrate that the economical Ni/NiOx particles are durable and active catalysts for photocatalytic H2 generation.
Catalyst Development for Hydrogen Peroxide Rocket Engines
NASA Technical Reports Server (NTRS)
Morlan, P. W.; Wu, P.-K.; Ruttle, D. W.; Fuller, R. P.; Nejad, A. S.; Anderson, W. E.
1999-01-01
The development of various catalysts of hydrogen peroxide was conducted for the applications of liquid rocket engines. The catalyst development includes silver screen technology, solid catalyst technology, and homogeneous catalyst technology. The silver screen technology development was performed with 85% (by weight) hydrogen peroxide. The results of this investigation were used as the basis for the catalyst design of a pressure-fed liquid-fueled upper stage engine. Both silver-plated nickel 200 screens and pure silver screens were used as the active metal catalyst during the investigation, The data indicate that a high decomposition efficiency (greater than 90%) of 85% hydrogen peroxide can be achieved at a bed loading of 0.5 lbm/sq in/sec with both pure silver and silver plated screens. Samarium oxide coating, however, was found to retard the decomposition process and the catalyst bed was flooded at lower bed loading. A throughput of 200 lbm of hydrogen peroxide (1000 second run time) was tested to evaluate the catalyst aging issue and performance degradation was observed starting at approximately 400 seconds. Catalyst beds of 3.5 inch in diameter was fabricated using the same configuration for a 1,000-lbf rocket engine. High decomposition efficiency was obtained with a low pressure drop across the bed. Solid catalyst using precious metal was also developed for the decomposition of hydrogen peroxide from 85% to 98% by weight. Preliminary results show that the catalyst has a strong reactivity even after 15 minutes of peroxide decomposition. The development effort also includes the homogeneous catalyst technology. Various non-toxic catalysts were evaluated with 98% peroxide and hydrocarbon fuels. The results of open cup drop tests indicate an ignition delay around 11 ms.
NASA Astrophysics Data System (ADS)
Ma, Yinbiao; Wei, Xiaojuan
2017-04-01
A novel method for the determination of platinum in waste platinum-loaded carbon catalyst samples was established by inductively coupled plasma optical emission spectrometry after samples digested by microwave oven with aqua regia. Such experiment conditions were investigated as the influence of sample digestion methods, digestion time, digestion temperature and interfering ions on the determination. Under the optimized conditions, the linear range of calibration graph for Pt was 0 ˜ 200.00 mg L-1, and the recovery was 95.67% ˜ 104.29%. The relative standard deviation (RSDs) for Pt was 1.78 %. The proposed method was applied to determine the same samples with atomic absorption spectrometry with the results consistently, which is suitable for the determination of platinum in waste platinum-loaded carbon catalyst samples.
Synthesis of high-quality diesel with furfural and 2-methylfuran from hemicellulose.
Li, Guangyi; Li, Ning; Wang, Zhiqiang; Li, Changzhi; Wang, Aiqin; Wang, Xiaodong; Cong, Yu; Zhang, Tao
2012-10-01
Hydroxyalkylation-alkylation (HAA) coupled with hydrodeoxygenation is a promising route for the synthesis of renewable high-quality diesel or jet fuel. In this work, a series of solid-acid catalysts were firstly used for HAA between lignocellulose-derived furan and carbonyl compounds. Among the investigated catalysts, Nafion-212 resin demonstrated the highest activity and stability. Owing to the high activity of the reactants and the advantage in industrial integration, the HAA of 2-methylfuran (2-MF) and furfural can be considered as a prospective route in future applications. Catalyst loading, reaction temperature, and time had evident effects on the HAA of 2-MF and furfural over Nafion-212 resin. Finally, the HAA product of 2-MF and furfural was hydrogenated over a Pd/C catalyst and hydrodeoxygenated over Pt-loaded solid-acid catalysts. Pt/zirconium phosphate (Pt/ZrP) was found to be the best catalyst for hydrodeoxygenation. Over the 4 % Pt/ZrP catalyst, a 94 % carbon yield of diesel and 75 % carbon yield of C15 hydrocarbons (with 6-butylundecane as the major component) was achieved. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bradley, Matthew J; Ananth, Ramagopal; Willauer, Heather D; Baldwin, Jeffrey W; Hardy, Dennis R; Williams, Frederick W
2017-09-20
Iron-based CO₂ catalysts have shown promise as a viable route to the production of olefins from CO₂ and H₂ gas. However, these catalysts can suffer from low conversion and high methane selectivity, as well as being particularly vulnerable to water produced during the reaction. In an effort to improve both the activity and durability of iron-based catalysts on an alumina support, copper (10-30%) has been added to the catalyst matrix. In this paper, the effects of copper addition on the catalyst activity and morphology are examined. The addition of 10% copper significantly increases the CO₂ conversion, and decreases methane and carbon monoxide selectivity, without significantly altering the crystallinity and structure of the catalyst itself. The FeCu/K catalysts form an inverse spinel crystal phase that is independent of copper content and a metallic phase that increases in abundance with copper loading (>10% Cu). At higher loadings, copper separates from the iron oxide phase and produces metallic copper as shown by SEM-EDS. An addition of copper appears to increase the rate of the Fischer-Tropsch reaction step, as shown by modeling of the chemical kinetics and the inter- and intra-particle transport of mass and energy.
Zhang, Yeshui; Nahil, Mohamad A; Wu, Chunfei; Williams, Paul T
2017-11-01
A stainless-steel mesh loaded with nickel catalyst was produced and used for the pyrolysis-catalysis of waste high-density polyethylene with the aim of producing high-value carbon products, including carbon nanotubes (CNTs). The catalysis temperature and plastic-to-catalyst ratio were investigated to determine the influence on the formation of different types of carbon deposited on the nickel-stainless-steel mesh catalyst. Increasing temperature from 700 to 900°C resulted in an increase in the carbon deposited on the nickel-loaded stainless-steel mesh catalyst from 32.5 to 38.0 wt%. The increase in sample-to-catalyst ratio reduced the amount of carbon deposited on the mesh catalyst in terms of g carbon g -1 plastic. The carbons were found to be largely composed of filamentous carbons, with negligible disordered (amorphous) carbons. Transmission electron microscopy analysis of the filamentous carbons revealed them to be composed of a large proportion (estimated at ∼40%) multi-walled carbon nanotubes (MWCNTs). The optimum process conditions for CNT production, in terms of yield and graphitic nature, determined by Raman spectroscopy, was catalysis temperature of 800°C and plastic-to-catalyst ratio of 1:2, where a mass of 334 mg of filamentous/MWCNTs g -1 plastic was produced.
Hydrothermally stable, low-temperature NO.sub.x reduction NH.sub.3-SCR catalyst
Narula, Chaitanya K.; Yang, Xiaofan
2016-10-25
A catalyst composition includes a heterobimetallic zeolite characterized by a chabazite structure loaded with copper ions and at least one trivalent metal ion other than Al.sup.3+. The catalyst composition decreases NO.sub.x emissions in diesel exhaust and is suitable for operation in a catalytic converter.
Hydrothermally stable, low-temperature NO.sub.x reduction NH.sub.3-SCR catalyst
Narula, Chaitanya K; Yang, Xiaofan
2015-03-24
A catalyst composition includes a heterobimetallic zeolite characterized by a chabazite structure loaded with copper ions and at least one trivalent metal ion other than Al.sup.3+. The catalyst composition decreases NO.sub.x emissions in diesel exhaust and is suitable for operation in a catalytic converter.
Transition metal sulfide loaded catalyst
Maroni, V.A.; Iton, L.E.; Pasterczyk, J.W.; Winterer, M.; Krause, T.R.
1994-04-26
A zeolite-based catalyst is described for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C[sub 2]+ hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.
Synthesis, characterization and catalytic activity of nanosized Ni complexed aminoclay
NASA Astrophysics Data System (ADS)
Ranchani, A. Amala Jeya; Parthasarathy, V.; Devi, A. Anitha; Meenarathi, B.; Anbarasan, R.
2017-11-01
A novel Ni complexed aminoclay (AC) catalyst was prepared by complexation method followed by reduction reaction. Various analytical techniques such as FTIR spectroscopy, UV-visible spectroscopy, DSC, TGA, SEM, HRTEM, EDX, XPS and WCA measurement are used to characterize the synthesized material. The AC-Ni catalyst system exhibited improved thermal stability and fiber-like morphology. The XPS results declared the formation of Ni nanoparticles. Thus, synthesized catalyst was tested towards the Schiff base formation reaction between various bio-medical polymers and aniline under air atmosphere at 85 °C for 24 h. The catalytic activity of the catalyst was studied by varying the % weight loading of the AC-Ni system towards the Schiff base formation. The Schiff base formation was quantitatively calculated by the 1H-NMR spectroscopy. While increasing the % weight loading of the AC-Ni catalyst, the % yield of Schiff base was also increased. The k app and Ti values were determined for the reduction of indole and α-terpineol in the presence of AC-Ni catalyst system. The experimental results were compared with the literature report.
Hydrogen production from biomass gasification using biochar as a catalyst/support.
Yao, Dingding; Hu, Qiang; Wang, Daqian; Yang, Haiping; Wu, Chunfei; Wang, Xianhua; Chen, Hanping
2016-09-01
Biochar is a promising catalyst/support for biomass gasification. Hydrogen production from biomass steam gasification with biochar or Ni-based biochar has been investigated using a two stage fixed bed reactor. Commercial activated carbon was also studied as a comparison. Catalyst was prepared with an impregnation method and characterized by X-ray diffraction, specific surface and porosity analysis, X-ray fluorescence and scanning electron micrograph. The effects of gasification temperature, steam to biomass ratio, Ni loading and bio-char properties on catalyst activity in terms of hydrogen production were explored. The Ni/AC catalyst showed the best performance at gasification temperature of 800°C, S/B=4, Ni loading of 15wt.%. Texture and composition characterization of the catalysts suggested the interaction between volatiles and biochar promoted the reforming of pyrolysis volatiles. Cotton-char supported Ni exhibited the highest activity of H2 production (64.02vol.%, 92.08mgg(-1) biomass) from biomass gasification, while rice-char showed the lowest H2 production. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Park, Jong Cheol; Choi, Chang Hyuck
2017-08-01
Non-precious metal catalysts (typically Fe(Co)-N-C catalysts) have been widely investigated for use as cost-effective cathode materials in low temperature fuel cells. Despite the high oxygen reduction activity and methanol-tolerance of graphene-based Fe(Co)-N-C catalysts in an acidic medium, their use in direct methanol fuel cells (DMFCs) has not yet been successfully implemented, and only a few studies have investigated this topic. Herein, we synthesized a nano-sized graphene-derived Fe/Co-N-C catalyst by physical ball-milling and a subsequent chemical modification of the graphene oxide. Twelve membrane-electrode-assemblies are fabricated with various cathode compositions to determine the effects of the methanol concentration, ionomer (i.e. Nafion) content, and catalyst loading on the DMFC performance. The results show that a graphene-based catalyst is capable of tolerating a highly-concentrated methanol feed up to 10.0 M. The optimized electrode composition has an ionomer content and catalyst loading of 66.7 wt% and 5.0 mg cm-2, respectively. The highest maximum power density is ca. 32 mW cm-2 with a relatively low PtRu content (2 mgPtRu cm-2). This study overcomes the drawbacks of conventional graphene-based electrodes using a nano-sized graphene-based catalyst and further shows the feasibility of their potential applications in DMFC systems.
NASA Astrophysics Data System (ADS)
Chen, Jinshe; Duan, Zunbin; Song, Zhaoyang; Zhu, Lijun; Zhou, Yulu; Xiang, Yuzhi; Xia, Daohong
2017-12-01
The amorphous NiP nanoparticles were synthesized and a novel amorphous NiP/Hβ catalyst was prepared successfully further. Due to the superior surface property of amorphous NiP/Hβ catalyst, it exhibited good catalytic application for n-hexane isomerization. The catalytic activity of amorphous NiP/Hβ catalyst was close to that of the prepared Pt/Hβ sample, and better than that of commercial catalyst and crystalline Ni2P/Hβ catalyst. What's more, the amorphous NiP/Hβ catalyst shows high resistance to different sulfur compounds and water on account of its unique surface property. The effect of loading amounts on surface property and catalytic performance was investigated, and the structure-function relationship among them was studied ulteriorly. The results demonstrate that loading amounts have effect on textural property and surface acid property, which further affect the catalytic performance. The 10 wt.% NiP/Hβ sample has appropriate pore structure and acid property with uniformly dispersed NiP nanoparticles on surface, which is helpful for providing suitable synergistic effect. The effects of reaction conditions on surface reactions and the mechanism for n-hexane isomerization were investigated further. Based on these results, the amorphous NiP/Hβ catalyst with superior surface property probably pavesa way to overcome the drawbacks of traditional noble metal catalyst, which shows good catalytic application prospects.
Carbon Corrosion in PEM Fuel Cells and the Development of Accelerated Stress Tests
Macauley, Natalia; Papadias, Dennis D.; Fairweather, Joseph; ...
2018-03-15
Here, carbon corrosion is an important degradation mechanism that can impair PEMFC performance through the destruction of catalyst connectivity, collapse of the electrode pore structure, loss of hydrophobic character, and an increase of the catalyst particle size. In this study, carbon corrosion was quantified in situ by measurement of carbon dioxide in the fuel cell exhaust gases through non-dispersive infrared spectroscopy during simulated drive cycle operations consisting of potential cycling with varying upper and lower potential limits. These studies were conducted for three different types of carbon supports. A reduction in the catalyst layer thickness was observed during a simulatedmore » drive cycle operation with a concomitant decrease in catalyst layer porosity, which led to performance losses due to increased mass transport limitations. The observed thickness reduction was primarily due to compaction of the catalyst layer, with the actual mass of carbon oxidation (loss) contributing only a small fraction (< 20%). The dynamics of carbon corrosion are presented along with a model that simulates the transient and dynamic corrosion rates observed in our experiments. Accelerated carbon corrosion stress tests are presented and their effects are compared to those observed for the drive cycle test.« less
Carbon Corrosion in PEM Fuel Cells and the Development of Accelerated Stress Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macauley, Natalia; Papadias, Dennis D.; Fairweather, Joseph
Here, carbon corrosion is an important degradation mechanism that can impair PEMFC performance through the destruction of catalyst connectivity, collapse of the electrode pore structure, loss of hydrophobic character, and an increase of the catalyst particle size. In this study, carbon corrosion was quantified in situ by measurement of carbon dioxide in the fuel cell exhaust gases through non-dispersive infrared spectroscopy during simulated drive cycle operations consisting of potential cycling with varying upper and lower potential limits. These studies were conducted for three different types of carbon supports. A reduction in the catalyst layer thickness was observed during a simulatedmore » drive cycle operation with a concomitant decrease in catalyst layer porosity, which led to performance losses due to increased mass transport limitations. The observed thickness reduction was primarily due to compaction of the catalyst layer, with the actual mass of carbon oxidation (loss) contributing only a small fraction (< 20%). The dynamics of carbon corrosion are presented along with a model that simulates the transient and dynamic corrosion rates observed in our experiments. Accelerated carbon corrosion stress tests are presented and their effects are compared to those observed for the drive cycle test.« less
NASA Astrophysics Data System (ADS)
Malla, Pavani
Ethylene is used as a starting point for many chemical intermediates in the petrochemical industry. It is predominantly produced through steam cracking of higher hydrocarbons (ethane, propane, butane, naphtha, and gas oil). During the cracking process, a small amount of acetylene is produced as a side product. However, acetylene must be removed since it acts as a poison for ethylene polymerization catalysts at even ppm concentrations (>5 ppm). Thus, the selective hydrogenation of acetylene to ethylene is an important process for the purification of ethylene. Conventional, low weight loading Pd catalysts are used for this selective reaction in high concentration ethylene streams. Gold was initially considered to be catalytically inactive for a long time. This changed when gold was seen in the context of the nanometric scale, which has indeed shown it to have excellent catalytic activity as a homogeneous or a heterogeneous catalyst. Gold is proved to have high selectivity to ethylene but poor at conversion. Bimetallic Au and Pd catalysts have exhibited superior activity as compared to Pd particles in semi-hydrogenation. Hydrogenation of acetylene was tested using this bimetallic combination. The Pd-on-Au bimetallic catalyst structure provides a new synthesis approach in improving the catalytic properties of monometallic Pd materials. TiO 2 as a support material and 0.05%Pd loading on 1%Au on titania support and used different treatment methods like washing plasma and reduction between the two metal loadings and was observed under 2:1 ratio. In my study there were two set of catalysts which were prepared by a modified incipient wetness impregnation technique. Out of all the reaction condition the catalyst which was reduced after impregnating gold and then impregnating palladium which was further treated in non-thermal hydrogen plasma and then pretreated in hydrogen till 250°C for 1 hour produced the best activity of 76% yield at 225°C. Stability tests were conducted on the catalysts which were followed by TGA analysis to analyze the coke formation on the catalyst in a period of time at a particular temperature. The catalysts were characterized by the hydrogen chemisorption and atomic absorption spectroscopy.
Zeolitic catalytic conversion of alochols to hydrocarbons
Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin
2017-01-03
A method for converting an alcohol to a hydrocarbon, the method comprising contacting said alcohol with a metal-loaded zeolite catalyst at a temperature of at least 100.degree. C. and up to 550.degree. C., wherein said alcohol can be produced by a fermentation process, said metal is a positively-charged metal ion, and said metal-loaded zeolite catalyst is catalytically active for converting said alcohol to said hydrocarbon.
Zeolitic catalytic conversion of alcohols to hydrocarbons
Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin
2018-04-10
A method for converting an alcohol to a hydrocarbon, the method comprising contacting said alcohol with a metal-loaded zeolite catalyst at a temperature of at least 100.degree. C. and up to 550.degree. C., wherein said alcohol can be produced by a fermentation process, said metal is a positively-charged metal ion, and said metal-loaded zeolite catalyst is catalytically active for converting said alcohol to said hydrocarbon.
Pd loaded amphiphilic COF as catalyst for multi-fold Heck reactions, C-C couplings and CO oxidation
Mullangi, Dinesh; Nandi, Shyamapada; Shalini, Sorout; Sreedhala, Sheshadri; Vinod, Chathakudath P.; Vaidhyanathan, Ramanathan
2015-01-01
COFs represent a class of polymers with designable crystalline structures capable of interacting with active metal nanoparticles to form excellent heterogeneous catalysts. Many valuable ligands/monomers employed in making coordination/organic polymers are prepared via Heck and C-C couplings. Here, we report an amphiphilic triazine COF and the facile single-step loading of Pd0 nanoparticles into it. An 18–20% nano-Pd loading gives highly active composite working in open air at low concentrations (Conc. Pd(0) <0.05 mol%, average TON 1500) catalyzing simultaneous multiple site Heck couplings and C-C couplings using ‘non-boronic acid’ substrates, and exhibits good recyclability with no sign of catalyst leaching. As an oxidation catalyst, it shows 100% conversion of CO to CO2 at 150 °C with no loss of activity with time and between cycles. Both vapor sorptions and contact angle measurements confirm the amphiphilic character of the COF. DFT-TB studies showed the presence of Pd-triazine and Pd-Schiff bond interactions as being favorable. PMID:26057044
Alloy catalysts for fuel cell-based alcohol sensors
NASA Astrophysics Data System (ADS)
Ghavidel, Mohammadreza Zamanzad
Direct ethanol fuel cells (DEFCs) are attractive from both economic and environmental standpoints for generating renewable energy and powering vehicles and portable electronic devices. There is a great interest recently in developing DEFC systems. The cost and performance of the DEFCs are mainly controlled by the Pt-base catalysts used at each electrode. In addition to energy conversion, DEFC technology is commonly employed in the fuel-cell based breath alcohol sensors (BrAS). BrAS is a device commonly used to measure blood alcohol concentration (BAC) and enforce drinking and driving laws. The BrAS is non-invasive and has a fast respond time. However, one of the most important drawback of the commercially available BrAS is the very high loading of Pt employed. One well-known and cost effective method to reduce the Pt loading is developing Pt-alloy catalysts. Recent studies have shown that Pt-transition metal alloy catalysts enhanced the electroactivity while decreasing the required loadings of the Pt catalysts. In this thesis, carbon supported Pt-Mn and Pt-Cu electrocatalysts were synthesized by different methods and the effects of heat treatment and structural modification on the ethanol oxidation reaction (EOR) activity, oxygen reduction reaction (ORR) activity and durability of these samples were thoroughly studied. Finally, the selected Pt-Mn and Pt-Cu samples with the highest EOR activity were examined in a prototype BrAS system and compared to the Pt/C and Pt 3Sn/C commercial electrocatalysts. Studies on the Pt-Mn catalysts produced with and without additives indicate that adding trisodium citrate (SC) to the impregnation solution improved the particle dispersion, decreased particle sizes and reduced the time required for heat treatment. Further studies show that the optimum weight ratio of SC to the metal loading in the impregnation solution was 2:1 and optimum results achieved at pH lower than 4. In addition, powder X-ray diffraction (XRD) analyses indicate that the optimum heat treatment temperature was 700 °C where a uniform ordered PtMn intermetallic phase was formed. Although the electrochemical active surface area (ECSA) decreased due to the heat treatment, the EOR activity of Pt-Mn samples was improved. Moreover, it was shown that the heat-treated samples prepared in the presence of SC showed superior the EOR activity compared to the samples made without SC. The Pt-Cu/C alloys were produced by three different methods: impregnation, impregnation in the presence of sodium citrate and microwave assisted polyol methods. These studies showed that the polyol method was the optimum method to produce the Pt-Cu alloy. The XRD analysis indicates that the heat treatment at 700 °C developed catalysts rich in the PtCu and PtCu3 ordered phases. The highest EOR activity was measured for the Pt-Cu/C-POL (sample made by the polyol method) and heat treated at 700 °C for 1h. Comparing the EOR activity of the Pt-Cu and Pt-Mn samples also demonstrates that the heat treated Pt-Cu/C-POL sample showed higher EOR activity compared to the Pt-Mn samples. These results indicate that the benefits of thermally treating alloy nanoparticles could outweigh any activity losses that may occur due to the particle size growth and the ECSA loss. Besides, accelerated stress tests (ASTs) illustrate that the heat treatment improved the durability of the Pt-Mn and Pt-Cu samples. The durability and EOR activity of the heat treated Pt-Mn and Pt-Cu samples was similar or better than commercial samples. On the other hand, the ORR activity of Pt-Mn and Pt-Cu after the heat treatment was slightly lower than the commercial samples but the ORR activity loss can be compensated by the economic benefits from using the lower Pt loading. Finally, studying the alcohol sensing characteristic of different samples shows that the heat treated Pt-Mn and Pt-Cu catalysts could be used for the ethanol sensing. Additionally, among the different commercial samples tested for ethanol sensing, Pt-Sn/C showed the highest sensitivity but with slightly higher standard deviation. Further studies on the Pt- Cu/C and Pt-Mn/C samples indicate that the heat treatment improved the sensitivity of these samples and the highest normalized sensitivity among all the samples belonged to the Pt- Cu/C-POL (sample produced by polyol method) and heat treated at 700 °C. It can be concluded that the heat treated Pt-Mn and Pt-Cu samples could be used as an alternative to replace Pt black in commercial sensors which would dramatically decrease the Pt loading. This could reduce the price and increase the sensitivity of commercial alcohol sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaidle, Joshua A.; Habas, Susan E.; Baddour, Frederick G.
Catalyst design, from idea to commercialization, requires multi-disciplinary scientific and engineering research and development over 10-20 year time periods. Historically, the identification of new or improved catalyst materials has largely been an empirical trial-and-error process. However, advances in computational capabilities (new tools and increased processing power) coupled with new synthetic techniques have started to yield rationally-designed catalysts with controlled nano-structures and tailored properties. This technological advancement represents an opportunity to accelerate the catalyst development timeline and to deliver new materials that outperform existing industrial catalysts or enable new applications, once a number of unique challenges associated with the scale-up ofmore » nano-structured materials are overcome.« less
Li, Xukai; Chen, Weirui; Tang, Yiming; Li, Laisheng
2018-05-12
Fe-MCM-48 catalyst with a three-dimensional cubic pore structure was directly synthesized via a hydrothermal method, and the mineralization efficiency of diclofenac (DCF) in the catalytic ozonation process (Fe-MCM-48/O 3 ) was assessed. X-ray diffraction (XRD), N 2 adsorption desorption, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) characterizations revealed that Fe existed in the framework of MCM-48, and Fe-MCM-48 possessed a large surface area and a highly ordered cubic mesoporous structure, which could accelerate reactants and products diffusion. Regarding mineralization efficiency, the addition of Fe-MCM-48 significantly improved total organic carbon (TOC) removal, and approximately 49.9% TOC were removed through the Fe-MCM-48/O 3 process at 60 min, which was 2.0 times higher than that in single ozonation. Due to this catalyst's superior structure, Fe-MCM-48 showed the better catalytic activity compared with Fe-MCM-41 and Fe loaded MCM-48 (Fe/MCM-48, Fe existed on the surface of MCM-48). DCF removal in the Fe-MCM-48/O 3 process was primarily based on ozone direct oxidation. The improvement of mineralization efficiency was attributed to the function of generated hydroxyl radicals (•OH), which indicated that the presence of Fe-MCM-48 accelerated ozone decomposition. Moreover, the negatively charged surface of Fe-MCM-48 and the proper pH value of the DCF solution played an essential role in OH generation. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Sol; Thornburg, Nicholas E.; Li, Zhanyong
In this study by developing structurally well-defined, supported oxide catalysts remains a significant challenge. Here, we report the grafting of Nb(V) oxide sites onto the nodes of the Zr-based metal organic framework (MOF) NU-1000 as a stable, well-defined catalyst support. Nb(V) oxide was deposited with loadings up to 1.6 mmol/g via two post-synthetic methods: atomic layer deposition in a MOF (AIM), and solution-phase grafting in a MOF (SIM). Difference envelope density (DED) measurements indicated that the two synthetic methods resulted in different local structures of the Nb(V) ions within NU-1000. Despite their high Nb(V) loadings, which were equivalent to >60%more » surface coverage, nearly all Nb(V) sites of the MOF-supported catalysts were active sites for alkene epoxidation, as confirmed by phenylphosphonic acid titration. The MOF-supported catalysts were more selective than the control Nb-ZrO 2 catalyst for cyclohexene epoxidation with aqueous H 2O 2, and were far more active on a gravimetric basis.« less
Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction
Jung, Suho; McCrory, Charles C. L.; Ferrer, Ivonne M.; ...
2016-11-27
Nanoparticulate metal-oxide catalysts are among the most prevalent systems for alkaline water oxidation. However, comparisons of the electrochemical performance of these materials have been challenging due to the different methods of attachment, catalyst loadings, and electrochemical test conditions reported in the literature. Here in this paper, we have leveraged a conventional drop-casting method that allows for the successful adhesion of a wide range of nanoparticulate catalysts to glassy-carbon electrode surfaces. We have applied this adhesion method to prepare catalyst films from 16 crystalline metal-oxide nanoparticles with a constant loading of 0.8 mg cm -2, and evaluated the resulting nanoparticulate filmsmore » for the oxygen evolution reaction under conditions relevant to an integrated solar fuels device. In general, the activities of the adhered nanoparticulate films are similar to those of thin-film catalysts prepared by electrodeposition or sputtering, achieving 10 mA cm -2 current densities per geometric area at overpotentials of ~0.35–0.5 V.« less
NASA Astrophysics Data System (ADS)
Zhang, Weidong; Pan, Feng; Li, Jinjun; Wang, Zhen; Ding, Wei; Qin, Yi; Wu, Feng
2018-06-01
Silica-supported highly dispersed cobalt oxides prepared by adsorption are likely to be poorly reducible Co-phyllosilicates or CoO species. Here we report the synthesis of silica-supported monodispersed spinel nano-Co3O4 catalysts by inner-sphere complexation using CoIII ammine hydroxo complexes as precursors. The precursors were facilely prepared by stirring ammoniacal CoII solutions exposed to air. The cobalt loadings (up to 188 mg/g) and particle sizes (3-10 nm) were tailored by successive complexation-calcination cycles. Such catalysts showed significantly superior reducibility and catalytic activity in complete propane oxidation in comparison to supported Co-phyllosilicates and CoO. A further development of this synthesis process may provide a variety of cobalt-based catalysts for important catalytic applications.
Ma, Guixia; Hu, Wenrong; Pei, Haiyan; Jiang, Liqun; Ji, Yan; Mu, Ruimin
2015-01-01
Heterogeneous KOH/Al2O3 catalysts, synthesized by the wet impregnation method with different KOH loadings (20-40 wt%) and calcination temperatures from 400°C to 800°C, were used to produce biodiesel from Chlorella vulgaris biomass by in situ transesterification. The highest yield of biodiesel of 89.53±1.58% was achieved at calcination temperature of 700°C for 2 h and 35 wt% loading of KOH, and at the optimal reaction condition of 10 wt% of catalyst content, 8 mL/g of methanol to biomass ratio and at 60°C for 5 h. The characteristics of the catalysts were analysed by X-ray diffraction, scanning electron microscopy and Brunauer-Emmett-Teller.
NASA Astrophysics Data System (ADS)
Abdulkadir, Bashir Abubakar; Uemura, Yoshimitsu; Ramli, Anita; Osman, Noridah B.; Kusakabe, Katsuki; Kai, Takami
2014-10-01
In this research, biodiesel is produced by in situ transesterification (direct transesterification) method from the rubber seeds using KOH as a catalyst. The influence of methanol to seeds mass ratio, duration of reaction, and catalyst loading was investigated. The result shows that, the best ratio of seeds to methanol is 1:6 (10 g seeds with 60 g methanol), 120 minutes reaction time and catalyst loading of 3.0 g. The maximum FAME yield obtain was 70 %. This findings support FAME production from the seeds of rubber tree using direct transesterifcation method from the seeds of rubber tree as an alternative to diesel fuel. Also, significant properties of biodiesel such as cloud point, density, pour point, specific gravity, and viscosity were investigated.
Theologides, C P; Theofilou, S P; Anayiotos, A; Costa, C N
2017-07-01
Ship ballast water (SBW) antimicrobial treatment is considered as a priority issue for the shipping industry. The present work investigates the possibility of utilizing antimicrobial catalysis as an effective method for the treatment of SBW. Taking into account the well-known antimicrobial properties of ionic silver (Ag + ), five silver-supported catalysts (Ag/γ-Al 2 O 3 ) with various loadings (0.05, 0.1, 0.2, 0.5, and 1 wt%) were prepared and examined for the antimicrobial treatment of SBW. The bactericidal activity of the aforementioned catalysts was investigated towards the inhibition of Escherichia coli (Gram-negative) and Escherichia faecalis (Gram-positive) bacteria. Catalytic experiments were conducted in a three-phase continuous flow stirred tank reactor, used in a semi-batch mode. It was found that using the catalyst with the lowest metal loading, the inhibition of E. coli reached 95.8% after 30 minutes of treatment of an E. coli bacterial solution, while the inhibition obtained for E. faecalis was 76.2% after 60 minutes of treatment of an E. faecalis bacterial solution. Even better results (100% inhibition after 5 min of reaction) were obtained using the catalysts with higher Ag loadings. The results of the present work indicate that the prepared monometallic catalysts exert their antimicrobial activity within a short period of time, revealing, for the first time ever, that the field of antimicrobial heterogeneous catalysis using deposited ionic silver on a solid support may prove decisive for the disinfection of SBW.
CATALYTIC STEAM REFORMING OF CHLOROCARBONS: CATALYST COMPARISONS. (R826694C633)
Catalyst candidates for steam reforming chlorocarbons have been screened for activity using methyl chloride as a model reactant. At 500°C, a H2O/C ratio of about 10 and a GHSV of 254 000 h-1, catalysts comprising 0.5% loading of the metals ...
Tao, Guiju; Hua, Zile; Gao, Zhe; Zhu, Yan; Zhu, Yan; Chen, Yu; Shu, Zhu; Zhang, Lingxia; Shi, Jianlin
2013-09-21
Using newly developed mesoporous Mg-Fe bi-metal oxides as supports, a novel kind of high performance transesterification catalysts for biodiesel production has been synthesized. More importantly, the impregnation solvent was for the first time found to substantially affect the structures and catalytic performances of the resultant transesterification catalysts.
Cationic Cyclizations and Rearrangements Promoted by a Heterogeneous Gold Catalyst
2015-01-01
A heterogeneous gold catalyst with remarkable activity for promoting the electrophilic reactions of aryl vinyl ketones and aryl dienyl ketones is described. The catalyst is easy to prepare, is robust, and can be recycled. Low loadings are effective for different types of cationic reactions, including Nazarov cyclizations, lactonizations, and [1,2] shifts. PMID:24432741
CATALYTIC STEAM REFORMING OF CHLOROCARBONS: CATALYST COMPARISONS. (R822721C633)
Catalyst candidates for steam reforming chlorocarbons have been screened for activity using methyl chloride as a model reactant. At 500°C, a H2O/C ratio of about 10 and a GHSV of 254 000 h-1, catalysts comprising 0.5% loading of the metals o...
Recent advances in CO2 laser catalysts
NASA Technical Reports Server (NTRS)
Upchurch, B. T.; Schryer, D. R.; Brown, K. G.; Kielin, E. J.; Hoflund, G. B.; Gardner, S. D.
1991-01-01
This paper discusses several recent advances in CO2 laser catalysts including comparisons of the activity of Au/MnO2 to Pt/SnO2 catalysts with possible explanations for observed differences. The catalysts are compared for the effect of test gas composition, pretreatment temperature, isotopic integrity, long term activity, and gold loading effects on the Au/MnO2 catalyst activity. Tests conducted to date include both long-term tests of up to six months continuous operation and short-term tests of one week or more that include isotopic integrity testing.
Reduction Reaction Activity on Pt-Monolayer-Shell PdIr/Ni-core Catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Liang; Vukmirovic, Miomir B.; Adzic, Radoslav R.
Platinum monolayer oxygen reduction reaction catalysts present promising way of reducing the Pt content without scarifying its fuel cell performance. We present a facile way of preparing Pt monolayer shell PdIr-based core catalysts, which showed much higher activity for oxygen reduction reaction than that of TKK 46.6% Pt/C catalyst. Among tested samples, PtMLPd2Ir/Ni/C performs the best with Pt and Platinum Group Metal mass activity around 9 and 0.25 times higher of that of TKK 46.6% Pt/C. In addition, accelerated aging test indicates its excellent durability.
Reduction Reaction Activity on Pt-Monolayer-Shell PdIr/Ni-core Catalysts
Song, Liang; Vukmirovic, Miomir B.; Adzic, Radoslav R.
2018-05-14
Platinum monolayer oxygen reduction reaction catalysts present promising way of reducing the Pt content without scarifying its fuel cell performance. We present a facile way of preparing Pt monolayer shell PdIr-based core catalysts, which showed much higher activity for oxygen reduction reaction than that of TKK 46.6% Pt/C catalyst. Among tested samples, PtMLPd2Ir/Ni/C performs the best with Pt and Platinum Group Metal mass activity around 9 and 0.25 times higher of that of TKK 46.6% Pt/C. In addition, accelerated aging test indicates its excellent durability.
NASA Astrophysics Data System (ADS)
Srouji, A. K.; Zheng, L. J.; Dross, R.; Aaron, D.; Mench, M. M.
2017-10-01
Limiting current measurements are used to evaluate oxygen transport resistance in the catalyst layer of a polymer electrolyte fuel cell (PEFC). The pressure independent oxygen transport resistance in the electrode is quantified for two cell architectures and two cathode Pt loadings (0.4 and 0.07 mgPt.cm-2). The compounded effect of the flow field and Pt loading is used to shed light on the nature of the observed transport resistance, especially its response to fundamentally different flow fields, which is shown to directly or indirectly scale with Pt loading in the open literature. By varying gas pressure and using low oxygen concentrations, the total oxygen transport resistance is divided into intermolecular gas diffusion (a pressure-dependent component) and a pressure independent component, which can be attributed to Knudsen diffusion or dissolution film resistance. The pressure-independent oxygen transport resistance in the catalyst layer varies between 13.3 and 34.4 s/m. It is shown that the pressure independent oxygen transport resistance increases with reduced Pt loading, but that effect is greatly exacerbated by using conventional channel/lands. The results indicate that open metallic element architecture improves the oxygen transport resistance in ultra-low Pt loading electrodes, likely due to enhanced water management at the catalyst layer.
Biomass Catalytic Pyrolysis on Ni/ZSM-5: Effects of Nickel Pretreatment and Loading
Yung, Matthew M.; Starace, Anne K.; Mukarakate, Calvin; ...
2016-04-25
Here in this work, Ni/ZSM-5 catalysts with varied nickel loadings were evaluated for their ability to produce aromatic hydrocarbons by upgrading of pine pyrolysis vapors. The effect of catalyst pretreatment by hydrogen reduction was also investigated. Results indicate that the addition of nickel increases the yield of aromatic hydrocarbons while simultaneously increasing the conversion of oxygenates, relative to ZSM-5, and these effects are more pronounced with increasing nickel loading. Additionally, while initial activity differences were observed between the oxidized and reduced forms of nickel on ZSM-5 (i.e., NiO/ZSM-5 versus Ni/ZSM-5), the activity of both catalysts converges with increasing time onmore » stream. These reaction results coupled with characterization of pristine and spent catalysts suggest that the catalysts reach similar active states during catalytic pyrolysis, regardless of pretreatment, as NiO undergoes in situ reduction to Ni by biomass pyrolysis vapors. This reduction of NiO to Ni was confirmed by reaction results and characterization by NH 3 temperature-programmed desorption, temperature-programmed reduction, and X-ray diffraction. This finding is significant in that the ability to reduce or eliminate the need for a pre-reaction H 2 reduction of Ni-modified zeolite catalysts could reduce process complexity and operating costs in a biorefinery-based vapor-phase upgrading process to produce biomass-derived fuels and chemicals. The ability to monitor catalyst activity in real time with a molecular beam mass spectrometer used to measure uncondensed, hot pyrolysis vapors allows for an improved understanding of the mechanism for improved activity with Ni addition to ZSM-5, which is attributed to the ability to prevent deactivation by deposition of coke and capping of zeolite micropores.« less
Thin Film Catalyst Layers for Direct Methanol Fuel Cells
NASA Technical Reports Server (NTRS)
Witham, C. K.; Chun, W.; Ruiz, R.; Valdez, T. I.; Narayanan, S. R.
2000-01-01
One of the primary obstacles to the widespread use of the direct methanol fuel cell (DMFC) is the high cost of the catalyst. Therefore, reducing the catalyst loading well below the current level of 8-12 mg/cm 2 would be important to commercialization. The current methods for preparation of catalyst layers consisting of catalyst, ionomer and sometimes a hydrophobic additive are applied by either painting, spraying, decal transfer or screen printing processes. Sputter deposition is a coating technique widely used in manufacturing and therefore particularly attractive. In this study we have begun to explore sputtering as a method for catalyst deposition. Present experiments focus on Pt-Ru catalyst layers for the anode.
Takahashi, Masaki; Imaoka, Takane; Hongo, Yushi; Yamamoto, Kimihisa
2013-12-07
A one-atom controlled platinum sub-nanocluster (under 1 nm) was synthesized using a phenylazomethine dendrimer template. This sub-nanocluster (SNC) catalyst exhibits a remarkable catalytic activity during reductive amination compared to the standard platinum nanoparticles of 2.2 ± 0.8 nm under mild conditions and a low catalyst loading. In addition, this catalyst has a remarkable poison-tolerance to amines without adding protic acid.
Kusche, Matthias; Bustillo, Karen; Agel, Friederike; ...
2015-01-29
Here, we describe an economical and convenient method to improve the performance of Pt/alumina catalysts for the water–gas shift reaction through surface modification of the catalysts with alkali hydroxides according to the solid catalyst with ionic liquid layer approach. The results are in agreement with our findings reported earlier for methanol steam reforming. This report indicates that alkali doping of the catalyst plays an important role in the observed catalyst activation. In addition, the basic and hygroscopic nature of the salt coating contributes to a significant improvement in the performance of the catalyst. During the reaction, a partly liquid filmmore » of alkali hydroxide forms on the alumina surface, which increases the availability of H 2O at the catalytically active sites. Kinetic studies reveal a negligible effect of the KOH coating on the rate dependence of CO and H 2O partial pressures. In conclusion, TEM studies indicate an agglomeration of the active Pt clusters during catalyst preparation; restructuring of Pt nanoparticles occurs under reaction conditions, which leads to a highly active and stable system over 240h time on stream. Excessive pore fillings with KOH introduce a mass transfer barrier as indicated in a volcano-shaped curve of activity versus salt loading. The optimum KOH loading was found to be 7.5wt%.« less
Catalytic destruction of PCDD/Fs over vanadium oxide-based catalysts.
Yu, Ming-Feng; Lin, Xiao-Qing; Li, Xiao-Dong; Yan, Mi; Prabowo, Bayu; Li, Wen-Wei; Chen, Tong; Yan, Jian-Hua
2016-08-01
Vanadium oxide-based catalysts were developed for the destruction of vapour phase PCDD/Fs (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans). A vapour phase PCDD/Fs generating system was designed to supply stable PCDD/Fs steam with initial concentration of 3.2 ng I-TEQ Nm(-3). Two kinds of titania (nano-TiO2 and conventional TiO2) and alumina were used as catalyst supports. For vanadium-based catalysts supported on nano-TiO2, catalyst activity is enhanced with operating temperature increasing from 160 to 300 °C and then reduces with temperature rising further to 350 °C. It is mainly due to the fact that high volatility of organic compounds at 350 °C suppresses adsorption of PCDD/Fs on catalysts surface and then further inhibits the reaction between catalyst and PCDD/Fs. The optimum loading of vanadium on nano-TiO2 support is 5 wt.% where vanadium oxide presents highly dispersed amorphous state according to the Raman spectra and XRD patterns. Excessive vanadium will block the pore space and form microcrystalline V2O5 on the support surface. At the vanadium loading of 5 wt.%, nano-TiO2-supported catalyst performs best on PCDD/Fs destruction compared to Al2O3 and conventional TiO2. Chemical states of vanadium in the fresh, used and reoxidized VOx(5 %)/TiO2 catalysts at different operating temperature are also analysed by XPS.
Lin, Kun-Yi Andrew; Chen, Bo-Chau
2016-02-28
To eliminate caffeine, one of the most common pharmaceuticals and personal care products, from water, Oxone (peroxymonosulfate salt) was proposed to degrade it. To accelerate the generation of sulfate radicals from Oxone, a magnetic cobalt/carbon nanocomposite (CCN) was prepared from a one-step carbonization of a cobalt-based Zeolitic Imidazolate Framework (ZIF-67). The resultant CCN exhibits immobilized cobalt and increased porosity, and can be magnetically manipulated. These characteristics make CCN a promising heterogeneous catalyst to activate Oxone for caffeine degradation. Factors affecting the caffeine degradation were investigated, including CCN loading, Oxone dosage, temperature, pH, surfactants, salts and inhibitors. A higher CCN loading, Oxone dosage and temperature greatly improved the caffeine degradation by CCN-activated Oxone. Acidic conditions were also preferable over basic conditions for caffeine degradation. The addition of cetyltrimethylammonium bromide (CTAB) and NaCl both significantly hindered caffeine degradation because bromide from CTAB and chloride from NaCl scavenged sulfate radicals. Based on the effects of inhibitors (i.e., methanol and tert-butyl alcohol), the caffeine degradation by CCN-activated Oxone was considered to primarily involve sulfate radicals and, less commonly, hydroxyl radicals. The intermediates generated during the caffeine degradation were analyzed using GC-MS and a possible degradation pathway was proposed. CCN was also able to activate Oxone for caffeine degradation for multiple cycles without changing its catalytic activity. These features reveal that CCN is an effective and promising catalyst for the activation of Oxone for the degradation of caffeine.
Ahmad, Mushtaq; Asghar, Anam; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri
2015-01-01
Fenton oxidation, an advanced oxidation process, is an efficient method for the treatment of recalcitrant wastewaters. Unfortunately, it utilizes H2O2 and iron-based homogeneous catalysts, which lead to the formation of high volumes of sludge and secondary pollutants. To overcome these problems, an alternate option is the usage of heterogeneous catalyst. In this study, a heterogeneous catalyst was developed to provide an alternative solution for homogeneous Fenton oxidation. Iron Zeolite Socony Mobile-5 (Fe-ZSM-5) was synthesized using a new two-step process. Next, the catalyst was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller analysis and tested against a model wastewater containing the azo dye Acid Blue 113. Results showed that the loading of iron particles reduced the surface area of the catalyst from 293.59 to 243.93 m2/g; meanwhile, the average particle size of the loaded material was 12.29 nm. Furthermore, efficiency of the developed catalyst was evaluated by performing heterogeneous Fenton oxidation. Taguchi method was coupled with principal component analysis in order to assess and optimize mineralization efficiency. Experimental results showed that under optimized conditions, over 99.7% degradation and 77% mineralization was obtained, with a 90% reduction in the consumption of the developed catalyst. Furthermore, the developed catalyst was stable and reusable, with less than 2% leaching observed under optimized conditions. Thus, the present study proved that newly developed catalyst has enhanced the oxidation process and reduced the chemicals consumption. PMID:26517827
Ahmad, Mushtaq; Asghar, Anam; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri
2015-01-01
Fenton oxidation, an advanced oxidation process, is an efficient method for the treatment of recalcitrant wastewaters. Unfortunately, it utilizes H2O2 and iron-based homogeneous catalysts, which lead to the formation of high volumes of sludge and secondary pollutants. To overcome these problems, an alternate option is the usage of heterogeneous catalyst. In this study, a heterogeneous catalyst was developed to provide an alternative solution for homogeneous Fenton oxidation. Iron Zeolite Socony Mobile-5 (Fe-ZSM-5) was synthesized using a new two-step process. Next, the catalyst was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller analysis and tested against a model wastewater containing the azo dye Acid Blue 113. Results showed that the loading of iron particles reduced the surface area of the catalyst from 293.59 to 243.93 m2/g; meanwhile, the average particle size of the loaded material was 12.29 nm. Furthermore, efficiency of the developed catalyst was evaluated by performing heterogeneous Fenton oxidation. Taguchi method was coupled with principal component analysis in order to assess and optimize mineralization efficiency. Experimental results showed that under optimized conditions, over 99.7% degradation and 77% mineralization was obtained, with a 90% reduction in the consumption of the developed catalyst. Furthermore, the developed catalyst was stable and reusable, with less than 2% leaching observed under optimized conditions. Thus, the present study proved that newly developed catalyst has enhanced the oxidation process and reduced the chemicals consumption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xin-Ling; Wang, Rong; Yuan, Yu-Peng, E-mail: yupengyuan@ahu.edu.cn, E-mail: cxue@ntu.edu.sg
2015-10-01
The Ni/NiO{sub x} particles were in situ photodeposited on MIL-101 metal organic frameworks as catalysts for boosting H{sub 2} generation from Erythrosin B dye sensitization under visible-light irradiation. The highest H{sub 2} production rate of 125 μmol h{sup −1} was achieved from the system containing 5 wt. % Ni-loaded MIL-101 (20 mg) and 30 mg Erythrosin B dye. Moreover, the Ni/NiO{sub x} catalysts show excellent stability for long-term photocatalytic reaction. The enhancement on H{sub 2} generation is attributed to the efficient charge transfer from photoexcited dye to the Ni catalyst via MIL-101. Our results demonstrate that the economical Ni/NiO{sub x}more » particles are durable and active catalysts for photocatalytic H{sub 2} generation.« less
Narula, Chaitanya K.; Yang, Xiaofan
2017-07-04
A catalyst composition includes a heterobimetallic zeolite characterized by a chabazite structure loaded with copper ions and at least one trivalent metal ion other than Al.sup.3+. The catalyst composition decreases NO.sub.x emissions in diesel exhaust and is suitable for operation in a catalytic converter.
Alhassan, Fatah H; Rashid, Umer; Taufiq-Yap, Yun Hin
2015-01-01
The utilization of ferric-manganese promoted molybdenum oxide/zirconia (Fe-Mn- MoO3/ZrO2) (FMMZ) solid acid catalyst for production of biodiesel was demonstrated. FMMZ is produced through impregnation reaction followed by calcination at 600°C for 3 h. The characterization of FMMZ had been done using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), transmission electron microscopy(TEM) and Brunner-Emmett-Teller (BET) surface area measurement. The effect of waste cooking oil methyl esters (WCOME's) yield on the reactions variables such as reaction temperature, catalyst loading, molar ratio of methanol/oil and reusability were also assessed. The catalyst was used to convert the waste cooking oil into corresponding methyl esters (95.6%±0.15) within 5 h at 200℃ reaction temperature, 600 rpm stirring speed, 1:25 molar ratio of oil to alcohol and 4% w/w catalyst loading. The reported catalyst was successfully recycled in six connective experiments without loss in activity. Moreover, the fuel properties of WCOME's were also reported using ASTM D 6751 methods.
Biodiesel Derive Bio-oil of Hermetia illucens Pre-pupae Catalysed by Sulphonated Biochar
NASA Astrophysics Data System (ADS)
Yoong Leong, Siew; Chong, Soo Shin; Chin, Kah Seng
2018-03-01
This study investigates the development of biochar catalyst from bamboo applied for biodiesel synthesis. A non-conventional biodiesel feedstock was used in the in-situ transesterification reaction. This non-conventional feedstock is obtained from an insect's fly, the Hermetia illucens fly. Biochar derived from bamboo has been investigated as a promising catalyst for biodiesel synthesis. The biochar acid catalysts were prepared by sulphonation via impregnation with concentrated sulphuric acid. The prepared catalysts were investigated for their performance to catalyse in-situ transesterification via ultra-sonication of Hermetia illucens bio-oil. The effects of carbonisation time (1 hour and 2 hour) and temperature (400°C, 500°C and 600°C) as well as catalyst loading (5-20 wt% on oil basis) on the transesterification yield were studied. Result showed that the highest yield of FAME obtained was 95.6% with catalyst loading of 15 wt% carbonized at 500°C for 2 hours. Sharp band of methyl ester functional groups were observed in the FTIR spectra at 1735-1750cm-1. The composition of this methyl ester was further deduced using gas chromatography and the fatty acid was predominantly lauric acid.
The effects of temperature and catalysts on the pyrolysis of industrial wastes (herb residue).
Wang, Pan; Zhan, Sihui; Yu, Hongbing; Xue, Xufang; Hong, Nan
2010-05-01
Pyrolysis of herb residue was investigated in a fixed-bed to determine the effects of pyrolysis temperature and catalysts (ZSM-5, Al-SBA-15 and alumina) on the products yields and the qualities of bio-oils. The results indicated that the maximum bio-oil yield of 34.26% was obtained at 450 degrees Celsius with 10 wt.% alumina catalyst loaded. The pyrolytic oils were examined by ultimate analysis and calorific values determination, and the results indicated that the presence of all catalysts decreased the oxygen content of bio-oils and increased the calorific values. The order of the catalytic effect for upgrading the pyrolytic oil was Al(2)O(3)>Al-SBA-15>ZSM-5. The bio-oil with the lowest oxygen content (26.71%) and the highest calorific value (25.94 MJ kg(-1)) was obtained with 20 wt.% alumina catalyst loaded. Furthermore, the gas chromatography/mass spectrometry (GC/MS) was used in order to investigate the components of obtained pyrolytic oils. It was found that the alumina catalyst could clearly enhance the formation of aliphatics and aromatics. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.
Cheng, Zhi-Lin; Sun, Wei
2015-01-01
N-doped ZnO nanoparticles were successfully assembled into hollow halloysite nanotubes (HNTs) by using the impregnation method. The catalysts based on N-doped ZnO-loaded HNTs nanocomposites (N-doped ZnO/HNTs) were characterized by X-ray diffraction (XRD), transmission electron microscopy-energy dispersive X-ray (TEM-EDX), scanning electron microscopy-energy dispersive X-ray (SEM-EDX), UV-vis and Fourier transform infrared spectroscopy (FT-IR) techniques. The XRD pattern showed ZnO nanoparticles with hexagonal structure loaded on HNTs. The TEM-EDX analysis indicated ZnO particles with the crystal size of ca.10 nm scattered in hollow structure of HNTs, and furthermore the concentration of N atom in nanocomposites was up to 2.31%. The SEM-EDX verified most of N-ZnO nanoparticles existing in hollow nanotubes of HNTs. Besides containing an obvious ultraviolet absorbance band, the UV-vis spectra of the N-doped ZnO/HNTs catalysts showed an available visible absorbance band by comparing to HNTs and non-doped ZnO/HNTs. The photocatalytic activity of the N-doped ZnO/HNTs catalysts was evaluated by the degradation of methyl orange (MO) solution with the concentration of 20 mg/L under the simulated solar-light irradiation. The result showed that the N-doped ZnO/HNTs catalyst exhibited a desirable solar-light photocatalytic activity.
Jiménez-Gómez, Carmen Pilar; Cecilia, Juan A; Moreno-Tost, Ramón; Maireles-Torres, Pedro
2017-04-10
Copper species have been incorporated in mesoporous silica (MS) through complexation with the amine groups of dodecylamine, which was used as a structure-directing agent in the synthesis. A series of Cu/SiO 2 catalysts (xCu-MS) with copper loadings (x) from 2.5 to 20 wt % was synthesized and evaluated in the gas-phase hydrogenation of furfural (FUR). The most suitable catalytic performance in terms of 2-methylfuran yield was obtained with an intermediate copper content (10 wt %). This 10Cu-MS catalyst exhibits a 2-methylfuran yield higher than 95 mol % after 5 h time-on-stream (TOS) at a reaction temperature of 210 °C with a H 2 /FUR molar ratio of 11.5 and a weight hourly space velocity (WHSV) of 1.5 h -1 . After 14 h TOS, this catalyst still showed a yield of 80 mol %. In all cases, carbonaceous deposits on the external surface were the cause of the catalyst deactivation, although sintering of the copper particles was observed for higher copper loadings. This intermediate copper loading (10 wt %) offered a suitable balance between resistance to sintering and tendency to form carbonaceous deposits. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Inaba, Masanori; Quinson, Jonathan; Bucher, Jan Rudolf; Arenz, Matthias
2018-03-16
We present a step-by-step tutorial to prepare proton exchange membrane fuel cell (PEMFC) catalysts, consisting of Pt nanoparticles (NPs) supported on a high surface area carbon, and to test their performance in thin film rotating disk electrode (TF-RDE) measurements. The TF-RDE methodology is widely used for catalyst screening; nevertheless, the measured performance sometimes considerably differs among research groups. These uncertainties impede the advancement of new catalyst materials and, consequently, several authors discussed possible best practice methods and the importance of benchmarking. The visual tutorial highlights possible pitfalls in the TF-RDE testing of Pt/C catalysts. A synthesis and testing protocol to assess standard Pt/C catalysts is introduced that can be used together with polycrystalline Pt disks as benchmark catalysts. In particular, this study highlights how the properties of the catalyst film on the glassy carbon (GC) electrode influence the measured performance in TF-RDE testing. To obtain thin, homogeneous catalyst films, not only the catalyst preparation, but also the ink deposition and drying procedures are essential. It is demonstrated that an adjustment of the ink's pH might be necessary, and how simple control measurements can be used to check film quality. Once reproducible TF-RDE measurements are obtained, determining the Pt loading on the catalyst support (expressed as Pt wt%) and the electrochemical surface area is necessary to normalize the determined reaction rates to either surface area or Pt mass. For the surface area determination, so-called CO stripping, or the determination of the hydrogen underpotential deposition (Hupd) charge, are standard. For the determination of the Pt loading, a straightforward and cheap procedure using digestion in aqua regia with subsequent conversion of Pt(IV) to Pt(II) and UV-vis measurements is introduced.
Inaba, Masanori; Quinson, Jonathan; Bucher, Jan Rudolf; Arenz, Matthias
2018-01-01
We present a step-by-step tutorial to prepare proton exchange membrane fuel cell (PEMFC) catalysts, consisting of Pt nanoparticles (NPs) supported on a high surface area carbon, and to test their performance in thin film rotating disk electrode (TF-RDE) measurements. The TF-RDE methodology is widely used for catalyst screening; nevertheless, the measured performance sometimes considerably differs among research groups. These uncertainties impede the advancement of new catalyst materials and, consequently, several authors discussed possible best practice methods and the importance of benchmarking. The visual tutorial highlights possible pitfalls in the TF-RDE testing of Pt/C catalysts. A synthesis and testing protocol to assess standard Pt/C catalysts is introduced that can be used together with polycrystalline Pt disks as benchmark catalysts. In particular, this study highlights how the properties of the catalyst film on the glassy carbon (GC) electrode influence the measured performance in TF-RDE testing. To obtain thin, homogeneous catalyst films, not only the catalyst preparation, but also the ink deposition and drying procedures are essential. It is demonstrated that an adjustment of the ink's pH might be necessary, and how simple control measurements can be used to check film quality. Once reproducible TF-RDE measurements are obtained, determining the Pt loading on the catalyst support (expressed as Pt wt%) and the electrochemical surface area is necessary to normalize the determined reaction rates to either surface area or Pt mass. For the surface area determination, so-called CO stripping, or the determination of the hydrogen underpotential deposition (Hupd) charge, are standard. For the determination of the Pt loading, a straightforward and cheap procedure using digestion in aqua regia with subsequent conversion of Pt(IV) to Pt(II) and UV-vis measurements is introduced. PMID:29608166
Surface chemistry and catalytic performance of amorphous NiB/Hβ catalyst for n-hexane isomerization
NASA Astrophysics Data System (ADS)
Chen, Jinshe; Cai, Tingting; Jing, Xiaohui; Zhu, Lijun; Zhou, Yulu; Xiang, Yuzhi; Xia, Daohong
2016-12-01
The amorphous NiB nanoparticles were synthesized and a novel type of NiB/Hβ catalyst was prepared for the isomerization of n-hexane. The optimum preparation conditions were investigated and the effect of preparation conditions on the surface chemistry information of catalysts was characterized by XRD, N2 sorption studies, XPS, TPD and other related means. It was demonstrated that the loading amounts of NiB have effect on textural properties and the acid properties of surface. The loading amounts of NiB were also related to the amount of strong Lewis acid sites and the ratios of weak acid to strong acid of samples. Meanwhile, calcination temperatures of samples were closely associated with the structure of active components that function as metal centers. When the loading amount of NiB was 5 wt.% and calcination temperature was 200 °C, the catalyst had proper surface acidity sites and metal active sites to provide suitable synergistic effects. The mechanism for n-hexane isomerization was also investigated and the existence of unique structure of Bsbnd Nisbnd H was proved, which could provide good hydrogenation-dehydrogenation functions.
Method of making metal-polymer composite catalysts
Zelena, Piotr [Los Alamos, NM; Bashyam, Rajesh [Los Alamos, NM
2009-06-23
A metal-polymer-carbon composite catalyst for use as a cathode electrocatalyst in fuel cells. The catalyst includes a heteroatomic polymer; a transition metal linked to the heteroatomic polymer by one of nitrogen, sulfur, and phosphorus, and a recast ionomer dispersed throughout the heteroatomic polymer-carbon composite. The method includes forming a heteroatomic polymer-carbon composite and loading the transition metal onto the composite. The invention also provides a method of making a membrane electrode assembly for a fuel cell that includes the metal-polymer-carbon composite catalyst.
Selective oxidation of carbon monoxide in fuel processor gas
NASA Astrophysics Data System (ADS)
Manasilp, Akkarat
The trace amount of CO present in the hydrogen-rich stream coming from fuel reformers poisons the platinum anode electrode of proton exchange membrane (PEM) fuel cells and reduces the power output. Removal of low levels of CO present in the reformed gas must take place before the gas enters the fuel cell. The tolerable level of CO is around 10 ppm. We investigated the performance of single step sol-gel prepared Pt/alumina catalyst and Pt supported on sol gel made alumina. The effect of water vapor, carbon dioxide, CO and oxygen concentrations, temperature, and Pt loading on the activity and selectivity are presented. Our results showed that a 2%Pt/alumina sol-gel catalyst can selectively oxide CO down to a few ppm with constant selectivity and high space velocity. Water vapor in the feed increases the activity of catalysts dramatically and in the absence of water vapor, CO2 in the feed stream decreases the activity of the catalysts significantly. We also found that the presence of potassium as an electron donor did not improve the performance of Pt/alumina catalyst to the selective CO oxidation. For Pt supported on sol gel made alumina, we found that the combination of CO2 and H2O in the gas feed has a strong effect on selective CO oxidation over Pt/Al2O3. It could be a positive or negative effect depending upon Pt loading in the catalyst. With high Pt loading, the CO2 effect tends to dominate the H2O effect resulting in the decrease in CO conversion. Moreover, the presence of CeO2 as an oxygen storage compound promotes the performance of Pt supported on alumina at low temperature ˜90°C when Pt loading was 5%. Amongst the examined catalysts, the 5%Pt/15%CeO2/Al 2O3 catalyst showed the highest selectivity, with high CO conversion at a low temperature ˜90°C. The beneficial effect of the addition of CeO2 is most likely due to spillover of O2 from CeO2 to Pt at the Pt sites at the interface of Pt and CeO 2.
Zeolite-based SCR catalysts and their use in diesel engine emission treatment
Narula, Chaitanya K.; Yang, Xiaofan
2016-08-02
A catalyst comprising a zeolite loaded with copper ions and at least one trivalent metal ion other than Al.sup.+3, wherein the catalyst decreases NO.sub.x emissions in diesel exhaust. The trivalent metal ions are selected from, for example, trivalent transition metal ions, trivalent main group metal ions, and/or trivalent lanthanide metal ions. In particular embodiments, the catalysts are selected from Cu--Fe-ZSM5, Cu--La-ZSM-5, Fe--Cu--La-ZSM5, Cu--Sc-ZSM-5, and Cu--In-ZSM5. The catalysts are placed on refractory support materials and incorporated into catalytic converters.
Zeolite-based SCR catalysts and their use in diesel engine emission treatment
Narula, Chaitanya K; Yang, Xiaofan
2015-03-24
A catalyst comprising a zeolite loaded with copper ions and at least one trivalent metal ion other than Al.sup.+3, wherein the catalyst decreases NO.sub.x emissions in diesel exhaust. The trivalent metal ions are selected from, for example, trivalent transition metal ions, trivalent main group metal ions, and/or trivalent lanthanide metal ions. In particular embodiments, the catalysts are selected from Cu--Fe-ZSM5, Cu--La-ZSM-5, Fe--Cu--La-ZSM5, Cu--Sc-ZSM-5, and Cu--In-ZSM5. The catalysts are placed on refractory support materials and incorporated into catalytic converters.
Calculations of the Acceleration of Centrifugal Loading on Adherent Cells
NASA Astrophysics Data System (ADS)
Chen, Kang; Song, Yang; Liu, Qing; Zhang, Chunqiu
2017-07-01
Studies have shown that the morphology and function of living cells are greatly affected by the state of different high acceleration. Based on the centrifuge, we designed a centrifugal cell loading machine for the mechanical biology of cells under high acceleration loading. For the machine, the feasibility of the experiment was studied by means of constant acceleration or variable acceleration loading in the Petri dish fixture and/or culture flask. Here we analyzed the distribution of the acceleration of the cells with the change of position and size of the culturing device quantitatively. It is obtained that Petri dish fixture and/or culture flask can be used for constant acceleration loading by experiments; the centripetal acceleration of the adherent cells increases with the increase of the distance between the rotor center of the centrifuge and the fixture of the Petri dish and the size of the fixture. It achieves the idea that the general biology laboratory can conduct the study of mechanical biology at high acceleration. It also provides a basis for more accurate study of the law of high acceleration on mechanobiology of cells.
Heterogeneous catalyst for the production of acetic anhydride from methyl acetate
Ramprasad, D.; Waller, F.J.
1999-04-06
This invention relates to a process for producing acetic anhydride by the reaction of methyl acetate, carbon monoxide, and hydrogen at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that contains an insoluble polymer having pendant quaternized phosphine groups, some of which phosphine groups are ionically bonded to anionic Group VIII metal complexes, the remainder of the phosphine groups being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled for consecutive runs without loss in activity. Bifunctional catalysts for use in carbonylating dimethyl ether are also provided.
Heterogeneous catalyst for the production of acetic anhydride from methyl acetate
Ramprasad, Dorai; Waller, Francis Joseph
1999-01-01
This invention relates to a process for producing acetic anhydride by the reaction of methyl acetate, carbon monoxide, and hydrogen at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that contains an insoluble polymer having pendant quaternized phosphine groups, some of which phosphine groups are ionically bonded to anionic Group VIII metal complexes, the remainder of the phosphine groups being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled for consecutive runs without loss in activity. Bifunctional catalysts for use in carbonylating dimethyl ether are also provided.
Yang, Jianping; Zhao, Yongchun; Chang, Lin; Zhang, Junying; Zheng, Chuguang
2015-07-07
Cobalt oxide loaded magnetospheres catalyst from fly ash (Co-MF catalyst) showed good mercury removal capacity and recyclability under air combustion flue gas in our previous study. In this work, the Hg(0) removal behaviors as well as the involved reactions mechanism were investigated in oxyfuel combustion conditions. Further, the recyclability of Co-MF catalyst in oxyfuel combustion atmosphere was also evaluated. The results showed that the Hg(0) removal efficiency in oxyfuel combustion conditions was relative high compared to that in air combustion conditions. The presence of enriched CO2 (70%) in oxyfuel combustion atmosphere assisted the mercury oxidation due to the oxidation of function group of C-O formed from CO2. Under both atmospheres, the mercury removal efficiency decreased with the addition of SO2, NO, and H2O. However, the enriched CO2 in oxyfuel combustion atmosphere could somewhat weaken the inhibition of SO2, NO, and H2O. The multiple capture-regeneration cycles demonstrated that the Co-MF catalyst also present good regeneration performance in oxyfuel combustion atmosphere.
Zhang, Shihong; Yang, Mingfa; Shao, Jingai; Yang, Haiping; Zeng, Kuo; Chen, Yingquan; Luo, Jun; Agblevor, Foster A; Chen, Hanping
2018-07-01
Light olefins are the key building blocks for the petrochemical industry. In this study, the effects of in-situ and ex-situ process, temperature, Fe loading, catalyst to feed ratio and gas flow rate on the olefins carbon yield and selectivity were explored. The results showed that Fe-modified ZSM-5 catalyst increased the olefins yield significantly, and the ex-situ process was much better than in-situ. With the increasing of temperature, Fe-loading amount, catalyst to feed ratio, and gas flow rate, the carbon yields of light olefins were firstly increased and further decreased. The maximum carbon yield of light olefins (6.98% C-mol) was obtained at the pyrolysis temperature of 600°C, catalyst to feed ratio of 2, gas flow rate of 100ml/min, and 3wt% Fe/ZSM-5 for cellulose. The selectivity of C 2 H 4 was more than 60% for all feedstock, and the total light olefins followed the decreasing order of cellulose, corn stalk, hemicelluloses and lignin. Copyright © 2018 Elsevier B.V. All rights reserved.
The reaction of neat 5- or 8-oxobenzopyran-2(1H)-ones with a variety of aromatic and heteroaromatic hydrazines are remarkable accelerated upon irradiation in a household microwave oven in the absence of any catalyst, solid support or solvent thus providing an environmentally frie...
Direct methanol feed fuel cell with reduced catalyst loading
NASA Technical Reports Server (NTRS)
Kindler, Andrew (Inventor)
1999-01-01
Improvements to direct feed methanol fuel cells include new protocols for component formation. Catalyst-water repellent material is applied in formation of electrodes and sintered before application of ionomer. A membrane used in formation of an electrode assembly is specially pre-treated to improve bonding between catalyst and membrane. The improved electrode and the pre-treated membrane are assembled into a membrane electrode assembly.
NASA Astrophysics Data System (ADS)
Meenan, B. J.; Brown, N. M. D.; Wilson, J. W.
1994-03-01
A PdCl 2/SnCl 2 metallisation catalyst system, of the type used to activate non-conducting surfaces for electroless metal deposition, has been characterised by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The substrate is a barium titanate (BaTiO 3)-based electroactive ceramic of the type used in the fabrication of multilayer ceramic capacitors (MLCC). The treatment of the substrate surface with the PdCl 2/SnCl 2 "sensitiser" solution leads to the adsorption of catalytically inactive compounds of palladium and tin. Subsequent treatment of this surface with an "accelerator" solution removes excess oxides, hydroxides and salts of tin thereby leaving the active catalyst species, Pd xSn y, on the surface. Such sites, on exposure to the appropriete electroless plating bath, are then responsible for the metal deposition. In this study, the chemical state and relative quantities of the various surface species present after each of the processing stages have been determined by XPS. The surface roughness of the substrate results in less of the tin compounds present thereon being removed on washing the catalysed surface in the accelerator solution than normally reported for such systems, thereby affecting the measured Pd: Sn ratio. SEM studies show that the accelerator solution treatment generates crystalline areas, which may be a result of coagulation of the Pd xSn y particles present, in the otherwise amorphous catalyst coating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manos Mavrikakis; James A. Dumesic; Amit A. Gokhale
2005-03-22
Efforts during this first year focused on four areas: (1) searching/summarizing published FTS mechanistic and kinetic studies of FTS reactions on iron catalysts; (2) construction of mass spectrometer-TPD and Berty CSTR reactor systems; (3) preparation and characterization of unsupported iron and alumina-supported iron catalysts at various iron loadings (4) Determination of thermochemical parameters such as binding energies of reactive intermediates, heat of FTS elementary reaction steps, and kinetic parameters such as activation energies, and frequency factors of FTS elementary reaction steps on a number of model surfaces. Literature describing mechanistic and kinetic studies of Fischer-Tropsch synthesis on iron catalysts wasmore » compiled in a draft review. Construction of the mass spectrometer-TPD system is 90% complete and of a Berty CSTR reactor system 98% complete. Three unsupported iron catalysts and three alumina-supported iron catalysts were prepared by nonaqueous-evaporative deposition (NED) or aqueous impregnation (AI) and characterized by chemisorption, BET, extent-of-reduction, XRD, and TEM methods. These catalysts, covering a wide range of dispersions and metal loadings, are well-reduced and relatively thermally stable up to 500-600 C in H{sub 2}, thus ideal for kinetic and mechanistic studies. The alumina-supported iron catalysts will be used for kinetic and mechanistic studies. In the coming year, adsorption/desorption properties, rates of elementary steps, and global reaction rates will be measured for these catalysts, with and without promoters, providing a database for understanding effects of dispersion, metal loading, and support on elementary kinetic parameters and for validation of computational models that incorporate effects of surface structure and promoters. Furthermore, using state-of-the-art self-consistent Density Functional Theory (DFT) methods, we have extensively studied the thermochemistry and kinetics of various elementary steps on three different model surfaces: (1) Fe(110), (2) Fe(110) modified by subsurface C, and (3) Fe surface modified with Pt adatoms. These studies have yielded valuable insights into the reactivity of Fe surfaces for FTS, and provided accurate estimates for the effect of Fe modifiers such as subsurface C and surface Pt.« less
Chen, Bolin; Garland, Nathaniel T; Geder, Jason; Pruessner, Marius; Mootz, Eric; Cargill, Allison; Leners, Anne; Vokshi, Granit; Davis, Jacob; Burns, Wyatt; Daniele, Michael A; Kogot, Josh; Medintz, Igor L; Claussen, Jonathan C
2016-11-16
Micro unmanned underwater vehicles (UUVs) need to house propulsion mechanisms that are small in size but sufficiently powerful to deliver on-demand acceleration for tight radius turns, burst-driven docking maneuvers, and low-speed course corrections. Recently, small-scale hydrogen peroxide (H 2 O 2 ) propulsion mechanisms have shown great promise in delivering pulsatile thrust for such acceleration needs. However, the need for robust, high surface area nanocatalysts that can be manufactured on a large scale for integration into micro UUV reaction chambers is still needed. In this report, a thermal/electrical insulator, silicon oxide (SiO 2 ) microfibers, is used as a support for platinum nanoparticle (PtNP) catalysts. The mercapto-silanization of the SiO 2 microfibers enables strong covalent attachment with PtNPs, and the resultant PtNP-SiO 2 fibers act as a robust, high surface area catalyst for H 2 O 2 decomposition. The PtNP-SiO 2 catalysts are fitted inside a micro UUV reaction chamber for vehicular propulsion; the catalysts can propel a micro UUV for 5.9 m at a velocity of 1.18 m/s with 50 mL of 50% (w/w) H 2 O 2 . The concomitance of facile fabrication, economic and scalable processing, and high performance-including a reduction in H 2 O 2 decomposition activation energy of 40-50% over conventional material catalysts-paves the way for using these nanostructured microfibers in modern, small-scale underwater vehicle propulsion systems.
Cu3(BTC)2: CO oxidation over MOF based catalysts.
Ye, Jing-yun; Liu, Chang-jun
2011-02-21
Crystalline and amorphized MOFs (Cu(3)(BTC)(2)) have been demonstrated to be excellent catalysts for CO oxidation. The catalytic activity can be further improved by loading PdO(2) nanoparticles onto the amorphized Cu(3)(BTC)(2).
Photocatalytic degradation of diclofenac using TiO2-SnO2 mixed oxide catalysts.
Mugunthan, E; Saidutta, M B; Jagadeeshbabu, P E
2017-12-26
The complex nature of diclofenac limits its biological degradation, posing a serious threat to aquatic organisms. Our present work aims to eliminate diclofenac from wastewater through photocatalytic degradation using TiO 2 -SnO 2 mixed-oxide catalysts under various operating conditions such as catalyst loading, initial diclofenac concentration and initial pH. Different molar ratios of Ti-Sn (1:1, 5:1, 10:1, 20:1 and 30:1) were prepared by the hydrothermal method and were characterized. The results indicated that addition of Sn in small quantity enhances the catalytic activity of TiO 2 . Energy Band gap of the TiO 2 -SnO 2 catalysts was found to increase with an increase in Tin content. TiO 2 -SnO 2 catalyst with a molar ratio of 20:1 was found to be the most effective when compared to other catalysts. The results suggested that initial drug concentration of 20 mg/L, catalyst loading of 0.8 g/L and pH 5 were the optimum operating conditions for complete degradation of diclofenac. Also, the TiO 2 -SnO 2 catalyst was effective in complete mineralization of diclofenac with a maximum total organic carbon removal of 90% achieved under ultraviolet irradiation. The repeatability and stability results showed that the TiO 2 -SnO 2 catalyst exhibited an excellent repeatability and better stability over the repeated reaction cycles. The photocatalytic degradation of diclofenac resulted in several photoproducts, which were identified through LC-MS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharifi, Mahdi; Reactor and Catalysis Research Center; Haghighi, Mohammad, E-mail: haghighi@sut.ac.ir
2014-12-15
Highlights: • Synthesis of nanostructured Ni/Y catalyst by sonochemical and impregnation methods. • Enhancement of size distribution and active phase dispersion by employing sonochemical method. • Evaluation of biogas reforming over Ni/Y catalyst with different Ni-loadings. • Preparation of highly active and stable catalyst with low Ni content for biogas reforming. • Getting H{sub 2}/CO very close to equilibrium ratio by employing sonochemical method. - Abstract: The effect of ultrasound irradiation and various Ni-loadings on dispersion of active phase over zeolite Y were evaluated in biogas reforming for hydrogen production. X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray,more » Brunauer–Emmett–Teller, Fourier transform infrared analysis and TEM analysis were employed to observe the characteristics of nanostructured catalysts. The characterizations implied that utilization of ultrasound irradiation enhanced catalyst physicochemical properties including high dispersion of Ni on support, smallest particles size and high catalyst surface area. The reforming reactions were carried out at GHSV = 24 l/g.h, P = 1 atm, CH{sub 4}/CO{sub 2} = 1 and temperature range of 550–850 °C. Activity test displayed that ultrasound irradiated Ni(5 wt.%)/Y had the best performance and the activity remained stable during 600 min. Furthermore, the proposed reaction mechanism showed that there are three major reaction channels in biogas reforming.« less
NH3-SCR denitration catalyst performance over vanadium-titanium with the addition of Ce and Sb.
Xu, Chi; Liu, Jian; Zhao, Zhen; Yu, Fei; Cheng, Kai; Wei, Yuechang; Duan, Aijun; Jiang, Guiyuan
2015-05-01
Selective catalytic reduction technology using NH3 as a reducing agent (NH3-SCR) is an effective control method to remove nitrogen oxides. TiO2-supported vanadium oxide catalysts with different levels of Ce and Sb modification were prepared by an impregnation method and were characterized by X-ray diffractometer (XRD), Brunauer-Emmett-Teller (BET), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), Raman and Hydrogen temperature-programmed reduction (H2-TPR). The catalytic activities of V5CexSby/TiO2 catalysts for denitration were investigated in a fixed bed flow microreactor. The results showed that cerium, vanadium and antimony oxide as the active components were well dispersed on TiO2, and the catalysts exhibited a large number of d-d electronic transitions, which were helpful to strengthen SCR reactivity. The V5CexSby/TiO2 catalysts exhibited a good low temperature NH3-SCR catalytic activity. In the temperature range of 210 to 400°C, the V5CexSby/TiO2 catalysts gave NO conversion rates above 90%. For the best V5Ce35Sb2/TiO2 catalyst, at a reaction temperature of 210°C, the NO conversion rate had already reached 90%. The catalysts had different catalytic activity with different Ce loadings. With the increase of Ce loading, the NO conversion rate also increased. Copyright © 2015. Published by Elsevier B.V.
Emission reduction from diesel engine using fumigation methanol and diesel oxidation catalyst.
Zhang, Z H; Cheung, C S; Chan, T L; Yao, C D
2009-07-15
This study is aimed to investigate the combined application of fumigation methanol and a diesel oxidation catalyst for reducing emissions of an in-use diesel engine. Experiments were performed on a 4-cylinder naturally-aspirated direct-injection diesel engine operating at a constant speed of 1800 rev/min for five engine loads. The experimental results show that at low engine loads, the brake thermal efficiency decreases with increase in fumigation methanol; but at high loads, it slightly increases with increase in fumigation methanol. The fumigation method results in a significant increase in hydrocarbon (HC), carbon monoxide (CO), and nitrogen dioxide (NO(2)) emissions, but decrease in nitrogen oxides (NO(x)), smoke opacity and the particulate mass concentration. For the submicron particles, the total number of particles decreases. In all cases, there is little change in geometrical mean diameter of the particles. After catalytic conversion, the HC, CO, NO(2), particulate mass and particulate number concentrations were significantly reduced at medium to high engine loads; while the geometrical mean diameter of the particles becomes larger. Thus, the combined use of fumigation methanol and diesel oxidation catalyst leads to a reduction of HC, CO, NO(x), particulate mass and particulate number concentrations at medium to high engine loads.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Zhenye; Yang, Gaoqiang; Mo, Jingke
2018-05-01
Proton exchange membrane electrolyzer cells (PEMECs) have received great attention for hydrogen/oxygen production due to their high efficiencies even at low-temperature operation. Because of the high cost of noble platinum-group metal (PGM) catalysts (Ir, Ru, Pt, etc.) that are widely used in water splitting, a PEMEC with low catalyst loadings and high catalyst utilizations is strongly desired for its wide commercialization. In this study, the ultrafast and multiscale hydrogen evolution reaction (HER) phenomena in an operating PEMEC is in-situ observed for the first time. The visualization results reveal that the HER and hydrogen bubble nucleation mainly occur on catalyst layersmore » at the rim of the pores of the thin/tunable liquid/gas diffusion layers (TT-LGDLs). This indicates that the catalyst material of the conventional catalyst-coated membrane (CCM) that is located in the middle area of the LGDL pore is underutilized/inactive. Based on this discovery, a novel thin and tunable gas diffusion electrode (GDE) with a Pt catalyst thickness of 15 nm and a total thickness of about 25 um has been proposed and developed by taking advantage of advanced micro/nano manufacturing. The novel thin GDEs are comprehensively characterized both ex-situ and in-situ, and exhibit excellent PEMEC performance. More importantly, they achieve catalyst mass activity of up to 58 times higher than conventional CCM at 1.6 V under the operating conditions of 80 degrees C and 1 atm. This study demonstrates a promising concept for PEMEC electrode development, and provides a direction of future catalyst designs and fabrications for electrochemical devices.« less
Kang, Zhenye; Yang, Gaoqiang; Mo, Jingke; ...
2018-03-09
Proton exchange membrane electrolyzer cells (PEMECs) have received great attention for hydrogen/oxygen production due to their high efficiencies even at low-temperature operation. Because of the high cost of noble platinum-group metal (PGM) catalysts (Ir, Ru, Pt, etc.) that are widely used in water splitting, a PEMEC with low catalyst loadings and high catalyst utilizations is strongly desired for its wide commercialization. In this study, the ultrafast and multiscale hydrogen evolution reaction (HER) phenomena in an operating PEMEC is in-situ observed for the first time. The visualization results reveal that the HER and hydrogen bubble nucleation mainly occur on catalyst layersmore » at the rim of the pores of the thin/tunable liquid/gas diffusion layers (TT-LGDLs). This indicates that the catalyst material of the conventional catalyst-coated membrane (CCM) that is located in the middle area of the LGDL pore is underutilized/inactive. Based on this discovery, a novel thin and tunable gas diffusion electrode (GDE) with a Pt catalyst thickness of 15 nm and a total thickness of about 25 um has been proposed and developed by taking advantage of advanced micro/nano manufacturing. The novel thin GDEs are comprehensively characterized both ex-situ and in-situ, and exhibit excellent PEMEC performance. More importantly, they achieve catalyst mass activity of up to 58 times higher than conventional CCM at 1.6 V under the operating conditions of 80 degrees C and 1 atm. This study demonstrates a promising concept for PEMEC electrode development, and provides a direction of future catalyst designs and fabrications for electrochemical devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Zhenye; Yang, Gaoqiang; Mo, Jingke
Proton exchange membrane electrolyzer cells (PEMECs) have received great attention for hydrogen/oxygen production due to their high efficiencies even at low-temperature operation. Because of the high cost of noble platinum-group metal (PGM) catalysts (Ir, Ru, Pt, etc.) that are widely used in water splitting, a PEMEC with low catalyst loadings and high catalyst utilizations is strongly desired for its wide commercialization. In this study, the ultrafast and multiscale hydrogen evolution reaction (HER) phenomena in an operating PEMEC is in-situ observed for the first time. The visualization results reveal that the HER and hydrogen bubble nucleation mainly occur on catalyst layersmore » at the rim of the pores of the thin/tunable liquid/gas diffusion layers (TT-LGDLs). This indicates that the catalyst material of the conventional catalyst-coated membrane (CCM) that is located in the middle area of the LGDL pore is underutilized/inactive. Based on this discovery, a novel thin and tunable gas diffusion electrode (GDE) with a Pt catalyst thickness of 15 nm and a total thickness of about 25 um has been proposed and developed by taking advantage of advanced micro/nano manufacturing. The novel thin GDEs are comprehensively characterized both ex-situ and in-situ, and exhibit excellent PEMEC performance. More importantly, they achieve catalyst mass activity of up to 58 times higher than conventional CCM at 1.6 V under the operating conditions of 80 degrees C and 1 atm. This study demonstrates a promising concept for PEMEC electrode development, and provides a direction of future catalyst designs and fabrications for electrochemical devices.« less
Mizuno, T; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Watanabe, K; Dairaku, M; Sakamoto, K; Inoue, T
2010-02-01
Heat load on acceleration grids by secondary particles such as electrons, neutrals, and positive ions, is a key issue for long pulse acceleration of negative ion beams. Complicated behaviors of the secondary particles in multiaperture, multigrid (MAMuG) accelerator have been analyzed using electrostatic accelerator Monte Carlo code. The analytical result is compared to experimental one obtained in a long pulse operation of a MeV accelerator, of which second acceleration grid (A2G) was removed for simplification of structure. The analytical results show that relatively high heat load on the third acceleration grid (A3G) since stripped electrons were deposited mainly on A3G. This heat load on the A3G can be suppressed by installing the A2G. Thus, capability of MAMuG accelerator is demonstrated for suppression of heat load due to secondary particles by the intermediate grids.
Ordered Mesoporous NiCeAl Containing Catalysts for Hydrogenolysis of Sorbitol to Glycols
NASA Astrophysics Data System (ADS)
Zhou, Zhiwei; Zhang, Jiaqi; Qin, Juan; Li, Dong; Wu, Wenliang
2018-03-01
Cellulose-derived sorbitol is emerging as a feasible and renewable feedstock for the production of value-added chemicals. Highly active and stable catalyst is essential for sorbitol hydrogenolysis. Ordered mesoporous M- xNi yCeAl catalysts with different loadings of nickel and cerium species were successfully synthesized via one-pot evaporation-induced self-assembly strategy (EISA) and their catalytic performance were tested in the hydrogenolysis of sorbitol. The physical chemical properties for the catalysts were characterized by XRD, N2 physisorption, H2-TPR, H2 impulse chemisorption, ICP and TEM techniques. The results showed that the ordered mesopores with uniform pore sizes can be obtained and the Ni nanoparticles around 6 nm in size were homogeneously dispersed in the mesopore channels. A little amount of cerium species introduced would be beneficial to their textural properties resulting in higher Ni dispersion, metal area and smaller size of Ni nanoparticles. The M-10Ni2CeAl catalyst with Ni and Ce loading of 10.9 and 6.3 wt % shows better catalytic performance than other catalysts, and the yield of 1,2-PG and EG can reach 56.9% at 493 K and 6 MPa pressure for 8 h after repeating reactions for 12 times without obvious deterioration of physical and chemical properties. Ordered mesoporous M-NiCeAl catalysts are active and stable in sorbitol hydrogenolysis.
Choi, Seon-Jin; Kim, Sang-Joon; Cho, Hee-Jin; Jang, Ji-Soo; Lin, Yi-Min; Tuller, Harry L; Rutledge, Gregory C; Kim, Il-Doo
2016-02-17
A novel catalyst functionalization method, based on protein-encapsulated metallic nanoparticles (NPs) and their self-assembly on polystyrene (PS) colloid templates, is used to form catalyst-loaded porous WO3 nanofibers (NFs). The metallic NPs, composed of Au, Pd, or Pt, are encapsulated within a protein cage, i.e., apoferritin, to form unagglomerated monodispersed particles with diameters of less than 5 nm. The catalytic NPs maintain their nanoscale size, even following high-temperature heat-treatment during synthesis, which is attributed to the discrete self-assembly of NPs on PS colloid templates. In addition, the PS templates generate open pores on the electrospun WO3 NFs, facilitating gas molecule transport into the sensing layers and promoting active surface reactions. As a result, the Au and Pd NP-loaded porous WO3 NFs show superior sensitivity toward hydrogen sulfide, as evidenced by responses (R(air)/R(gas)) of 11.1 and 43.5 at 350 °C, respectively. These responses represent 1.8- and 7.1-fold improvements compared to that of dense WO3 NFs (R(air)/R(gas) = 6.1). Moreover, Pt NP-loaded porous WO3 NFs exhibit high acetone sensitivity with response of 28.9. These results demonstrate a novel catalyst loading method, in which small NPs are well-dispersed within the pores of WO3 NFs, that is applicable to high sensitivity breath sensors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mahyari, Mojtaba; Laeini, Mohammad Sadegh; Shaabani, Ahmad
2014-07-25
Copper(ii) tetrasulfophthalocyanine supported on three-dimensional nitrogen-doped graphene-based frameworks was synthesized and introduced as a bifunctional catalyst for selective aerobic oxidation of alkyl arenes and alcohols to the corresponding carbonyl compounds. The ease of catalyst separation, high turnover, low catalyst loading and recyclability could potentially render it applicable in industrial setting.
Electrocatalytic performance of fuel cell reactions at low catalyst loading and high mass transport.
Zalitis, Christopher M; Kramer, Denis; Kucernak, Anthony R
2013-03-28
An alternative approach to the rotating disk electrode (RDE) for characterising fuel cell electrocatalysts is presented. The approach combines high mass transport with a flat, uniform, and homogeneous catalyst deposition process, well suited for studying intrinsic catalyst properties at realistic operating conditions of a polymer electrolyte fuel cell (PEFC). Uniform catalyst layers were produced with loadings as low as 0.16 μgPt cm(-2) and thicknesses as low as 200 nm. Such ultra thin catalyst layers are considered advantageous to minimize internal resistances and mass transport limitations. Geometric current densities as high as 5.7 A cm(-2)Geo were experimentally achieved at a loading of 10.15 μgPt cm(-2) for the hydrogen oxidation reaction (HOR) at room temperature, which is three orders of magnitude higher than current densities achievable with the RDE. Modelling of the associated diffusion field suggests that such high performance is enabled by fast lateral diffusion within the electrode. The electrodes operate over a wide potential range with insignificant mass transport losses, allowing the study of the ORR at high overpotentials. Electrodes produced a specific current density of 31 ± 9 mA cm(-2)Spec at a potential of 0.65 V vs. RHE for the oxygen reduction reaction (ORR) and 600 ± 60 mA cm(-2)Spec for the peak potential of the HOR. The mass activity of a commercial 60 wt% Pt/C catalyst towards the ORR was found to exceed a range of literature PEFC mass activities across the entire potential range. The HOR also revealed fine structure in the limiting current range and an asymptotic current decay for potentials above 0.36 V. These characteristics are not visible with techniques limited by mass transport in aqueous media such as the RDE.
NASA Astrophysics Data System (ADS)
Baran, Talat; Menteş, Ayfer
2017-04-01
In this paper we described the fabrication, characterization and application of a new biopolymer (chitosan)-based pincer-type Pd(II) catalyst in Suzuki cross coupling reactions using a non-toxic, cheap, eco-friendly and practical method. The catalytic activity tests showed remarkable product yields as well as TON (19800) and TOF (330000) values with a small catalyst loading. In addition, the catalyst indicated good recyclability in the Suzuki C-C reaction. This biopolymer supported catalyst can be used with various catalyst systems due to its unique properties, such as being inert, green in nature, low cost and chemically durable.
Tang, Yiming; Pan, Zhaoqi; Li, Laisheng
2017-12-15
Mesoporous siliceous MCM-41 immobilized with Co and Mn metal ions (Co-Mn-MCM-41) was synthesized using a hydrothermal method. The structural regularity and the valence states of the metal species were measured by X-ray diffractometer and X-ray photoelectron spectrometer. The resultant bimetallic Co-Mn-MCM-41 catalyst was tested for the degradation of dimethyl phthalate (DMP) via a catalytic ozonation mechanism, demonstrating that the catalytic properties of Co-Mn-MCM-41 catalyst significantly accelerated the ozonation process. Total organic carbon (TOC) and DMP removal efficiency reached 94% and 99.7% at 15min under the optimal conditions. The oxidation pathways were proposed after identifying the intermediate products from ozonation using a gas chromatography-mass spectrometer. The enhanced catalytic reactivity was attributed to the highly-dispersive cobalt and manganese species in MCM-41 scaffolds, which promoted the ozone decomposition and hydroxyl radicals' generation in catalytic ozonation and accelerated the degradation of DMP. Bimetallic Co-Mn-MCM-41 catalyst remained stable in mild acidic conditions and continued to show high activity after repeated runs. Copyright © 2017 Elsevier Inc. All rights reserved.
Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells
2014-01-01
Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li+Cl–), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li+Cl– catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA. PMID:24748912
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sneed, Brian T.; Cullen, David A.; Mukundan, R.
Development of Pt catalysts alloyed with transition metals has led to a new class of state-of-the-art electrocatalysts for oxygen reduction at the cathode of proton exchange membrane fuel cells; however, the durability of Pt-based alloy catalysts is challenged by poor structural and chemical stability. There is a need for better understanding of the morphological and compositional changes that occur to the catalyst under fuel cell operation. In this work, we report in-depth characterization results of a Pt-Co electrocatalyst incorporated in the cathode of membrane electrode assemblies, which were evaluated before and after accelerated stress tests designed specifically to enhance catalystmore » degradation. Electron microscopy, spectroscopy, and 3D electron tomography analyses of the Pt-Co nanoparticle structures suggest that the small- and intermediate-sized Pt-Co particles, which are typically Pt-rich in the fresh condition, undergo minimal morphological changes, whereas intermediate- and larger-sized Pt-Co nanoparticles that exhibit a porous “spongy” morphology and initially have a higher Co content, transform into hollowed-out shells, which is driven by continuous leaching of Co from the Pt-Co catalysts. We further show how these primary Pt-Co nanoparticle morphologies group toward a lower Co, larger size portion of the size vs. composition distribution, and provide details of their nanoscale morphological features.« less
Sneed, Brian T.; Cullen, David A.; Mukundan, R.; ...
2018-03-01
Development of Pt catalysts alloyed with transition metals has led to a new class of state-of-the-art electrocatalysts for oxygen reduction at the cathode of proton exchange membrane fuel cells; however, the durability of Pt-based alloy catalysts is challenged by poor structural and chemical stability. There is a need for better understanding of the morphological and compositional changes that occur to the catalyst under fuel cell operation. In this work, we report in-depth characterization results of a Pt-Co electrocatalyst incorporated in the cathode of membrane electrode assemblies, which were evaluated before and after accelerated stress tests designed specifically to enhance catalystmore » degradation. Electron microscopy, spectroscopy, and 3D electron tomography analyses of the Pt-Co nanoparticle structures suggest that the small- and intermediate-sized Pt-Co particles, which are typically Pt-rich in the fresh condition, undergo minimal morphological changes, whereas intermediate- and larger-sized Pt-Co nanoparticles that exhibit a porous “spongy” morphology and initially have a higher Co content, transform into hollowed-out shells, which is driven by continuous leaching of Co from the Pt-Co catalysts. We further show how these primary Pt-Co nanoparticle morphologies group toward a lower Co, larger size portion of the size vs. composition distribution, and provide details of their nanoscale morphological features.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abney, Carter W.; Patterson, Jacob T.; Gilhula, James C.
Precise control over the chemical structure of hard-matter materials is a grand challenge of basic science and a prerequisite for the development of advanced catalyst systems. In this work we report the application of a sacrificial metal-organic framework (MOF) template for the synthesis of a porous supported metal oxide catalyst, demonstrating proof-of-concept for a highly generalizable approach to the preparation new catalyst materials. Application of 2,2’-bipyridine-5,5’-dicarboxylic acid as the organic strut in the Ce MOF precursor results in chelation of Cu 2+ and affords isolation of the metal oxide precursor. Following pyrolysis of the template, homogeneously dispersed CuO nanoparticles aremore » formed in the resulting porous CeO 2 support. By partially substituting non-chelating 1,1’-biphenyl-4,4’-dicarboxylic acid, the Cu 2+ loading and dispersion can be finely tuned, allowing precise control over the CuO/CeO 2 interface in the final catalyst system. Characterization by x-ray diffraction, x-ray absorption fine structure spectroscopy, and in situ IR spectroscopy/mass spectrometry confirm control over interface formation to be a function of template composition, constituting the first report of a MOF template being used to control interfacial properties in a supported metal oxide. Using CO oxidation as a model reaction, the system with the greatest number of interfaces possessed the lowest activation energy and better activity under differential conditions, but required higher temperature for catalytic onset and displayed inferior efficiency at 100 °C than systems with higher Cu-loading. This finding is attributable to greater CO adsorption in the more heavily-loaded systems, and indicates catalyst performance for these supported oxide systems to be a function of at least two parameters: size of adsorption site and extent of interface. In conclusion, optimization of catalyst materials thus requires precise control over synthesis parameters, such as is demonstrated by this MOF-templating method.« less
Golkhatmi, Faezeh Mahdinejad; Bahramian, Bahram; Mamarabadi, Mojtaba
2017-09-01
Newly, magnetic nanoparticles have extensively been used as alternative catalyst supports, in the view of their high surface area which results in high catalyst loading capacity, high dispersion, low toxicity, environmental preservation, distinguished stability, and suitable catalyst reusing. In the present study, the magnetite nanoparticles, NiFe 2 O 4 @Ag and NiFe 2 O 4 @Mo, were synthesized and characterized. The antimicrobial activities and catalytic properties of synthesized nanoparticles were tested afterwards. For synthetizing the nanoparticle NiFe 2 O 4 @Ag, silver ions were loaded onto the surface of the modified NiFe 2 O 4 and reduced to silver crystal by adding NaBH 4 . The antibacterial effects of NiFe 2 O 4 @Ag were examined against two species of soil and plant related bacteria named Bacillus subtilis (gram positive) and Pseudomonas syringae (gram negative), respectively. The antifungal activity of this nanoparticle was evaluated against two species of plant pathogenic fungi called Alternaria solani and Fusarium oxysporum. Biological results indicated that the synthesized material has shown an excellent antibacterial and antifungal activity against all examined bacteria and fungi so that, their growth were completely inhibited 24h after treatment with NiFe 2 O 4 @Ag. For the synthesis of a heterogeneous catalyst NiFe 2 O 4 @Mo, complex Mo(CO) 6 was loaded onto the surface of the modified NiFe 2 O 4 nanoparticle. This catalyst was found as an efficient catalyst for epoxidation of cis-cyclooctene and a wide variety of alkenes, including aromatic and aliphatic terminal ones using tert-butyl hydroperoxide as oxidant. This new heterogenized catalyst could easily be recovered by using a magnetic separator and reused four consecutive and loss only 13% of its catalytic activity. Copyright © 2017 Elsevier B.V. All rights reserved.
Joshi, Saurabh; Gogate, Parag R; Moreira, Paulo F; Giudici, Reinaldo
2017-11-01
In the present work, high speed homogenizer has been used for the intensification of biodiesel synthesis from soybean oil and waste cooking oil (WCO) used as a sustainable feedstock. High acid value waste cooking oil (27mg of KOH/g of oil) was first esterified with methanol using sulphuric acid as catalyst in two stages to bring the acid value to desired value of 1.5mg of KOH/g of oil. Transesterification of soybean oil (directly due to lower acid value) and esterified waste cooking oil was performed in the presence of heterogeneous catalyst (CaO) for the production of biodiesel. Various experiments were performed for understanding the effect of operating parameters viz. molar ratio, catalyst loading, reaction temperature and speed of rotation of the homogenizer. For soybean oil, the maximum biodiesel yield as 84% was obtained with catalyst loading of 3wt% and molar ratio of oil to methanol of 1:10 at 50°C with 12,000rpm as the speed of rotation in 30min. Similarly biodiesel yield of 88% was obtained from waste cooking oil under identical operating conditions except for the catalyst loading which was 1wt%. Significant increase in the rate of biodiesel production with yields from soybean oil as 84% (in 30min) and from WCO as 88% (30min) was established due to the use of high speed homogenizer as compared to the conventional stirring method (requiring 2-3h for obtaining similar biodiesel yield). The observed intensification was attributed to the turbulence caused at microscale and generation of fine emulsions due to the cavitational effects. Overall it can be concluded from this study that high speed homogenizer can be used as an alternate cavitating device to efficiently produce biodiesel in the presence of heterogeneous catalysts. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Wei; Yuan, Fulong; Niu, Xiaoyu; Zhu, Yujun
2016-01-01
In this work, a series of palladium supported on the La0.8Sr0.2MnO3.15 perovskite catalysts (Pd/LSM-x) with different Pd loading were prepared by microwave irradiation processing plus incipient wetness impregnation method and characterized by XRD, TEM, H2-TPR and XPS. These catalysts were evaluated on the lean CH4 combustion. The results show that the Pd/LSM-x samples prepared by microwave irradiation processing possess relative higher surface areas than LSM catalyst. The addition of Pd to the LSM leads to the increase in the oxygen vacancy content and the enhancement in the mobility of lattice oxygen which play an important role on the methane combustion. The Pd/LSM-3 catalysts with 4.2wt% Pd loading exhibited the best performance for CH4 combustion that temperature for 10% and 90% of CH4 conversion is 315 and 520 °C. PMID:26781628
Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases
Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng
2013-01-01
The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay. PMID:23907148
NASA Astrophysics Data System (ADS)
Padmalekha, K. G.; Huang, H.; Ellmers, I.; Pérez Vélez, R.; van Leusen, J.; Brückner, A.; Grünert, W.; Schünemann, V.
2017-11-01
Iron loaded zeolites like Fe-ZSM-5 are potent candidates for the catalytic abatement of nitrogen oxides from car exhaust, e.g. from Diesel engines. Recent problems in this field show that there is an urgent need in further improvement of such catalysts, for which a full analysis of Fe species present in them under different conditions is highly desirable. We have studied Fe-ZSM-5 catalysts prepared via solid-state ion exchange by using field dependent Mössbauer spectroscopy at low temperature in order to identify the different iron species present in this type of catalyst in the fresh state and after use in catalysis. Mössbauer spectroscopy proved to be the key technique for a full understanding of species structures, but due to the complexity of structures, guidance by parallel EPR experiments and control by SQUID magnetometry were essential to prove reliability of derived species distributions.
Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases.
Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng
2013-01-01
The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay.
Witoon, Thongthai; Bumrungsalee, Sittisut; Vathavanichkul, Peerawut; Palitsakun, Supaphorn; Saisriyoot, Maythee; Faungnawakij, Kajornsak
2014-03-01
Calcium oxide-loaded porous materials have shown promise as catalysts in transesterification. However, the slow diffusion of bulky triglycerides through the pores limited the activity of calcium oxide (CaO). In this work, bimodal meso-macroporous silica was used as a support to enhance the accessibility of the CaO dispersed inside the pores. Unimodal porous silica having the identical mesopore diameter was employed for the purpose of comparison. Effects of CaO content and catalyst pellet size on the yield of fatty acid methyl esters (FAME) were investigated. The basic strength was found to increase with increasing the CaO content. The CaO-loaded bimodal porous silica catalyst with the pellet size of 325μm achieved a high %FAME of 94.15 in the first cycle, and retained an excellent %FAME of 88.87 after five consecutive cycles. Copyright © 2014 Elsevier Ltd. All rights reserved.
Maximum von Mises Stress in the Loading Environment of Mass Acceleration Curve
NASA Technical Reports Server (NTRS)
Glaser, Robert J.; Chen, Long Y.
2006-01-01
Method for calculating stress due to acceleration loading: 1) Part has been designed by FEA and hand calculation in one critical loading direction judged by the analyst; 2) Maximum stress can be due to loading in another direction; 3) Analysis procedure to be presented determines: a) The maximum Mises stress at any point; and b) The direction of maximum loading associated with the "stress". Concept of Mass Acceleration Curves (MAC): 1) Developed by JPL to perform preliminary structural sizing (i.e. Mariners, Voyager, Galileo, Pathfinder, MER,...MSL); 2) Acceleration of physical masses are bounded by a curve; 3) G-levels of vibro-acoustic and transient environments; 4) Convergent process before the couple loads cycle; and 5) Semi-empirical method to effectively bound the loads, not a simulation of the actual response.
Heterogeneous catalyst for the production of ethylidene diacetate from acetic anhydride
Ramprasad, D.; Waller, F.J.
1998-06-16
This invention relates to a process for producing ethylidene diacetate by the reaction of acetic anhydride, acetic acid, hydrogen and carbon monoxide at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that is stable to hydrogenation and comprises an insoluble polymer having pendant quaternized heteroatoms, some of which heteroatoms are ionically bonded to anionic Group VIII metal complexes, the remainder of the heteroatoms being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled without loss in activity.
Heterogeneous catalyst for the production of ethylidene diacetate from acetic anhydride
Ramprasad, Dorai; Waller, Francis Joseph
1998-01-01
This invention relates to a process for producing ethylidene diacetate by the reaction of acetic anhydride, acetic acid, hydrogen and carbon monoxide at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that is stable to hydrogenation and comprises an insoluble polymer having pendant quaternized heteroatoms, some of which heteroatoms are ionically bonded to anionic Group VIII metal complexes, the remainder of the heteroatoms being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled without loss in activity.
Baran, Talat; Sargin, Idris; Kaya, Murat; Menteş, Ayfer
2016-11-05
In green catalyst systems, both the catalyst and the technique should be environmentally safe. In this study we designed a green palladium(II) catalyst for microwave-assisted Suzuki CC coupling reactions. The catalyst support was produced from biopolymers; chitosan and cellulose. The catalytic activity of the catalyst was tested on 16 substrates in solvent-free media and compared with those of commercial palladium salts. Reusability tests were done. The catalyst was also used in conventional reflux-heating system to demonstrate the efficiency of microwave heating method. We recorded high activity, selectivity and excellent TONs (6600) and TOFs (82500) just using a small catalyst loading (1.5×10(-3)mol%) in short reaction time (5min). The catalyst exhibited a long lifetime (9 runs). The findings indicated that both green chitosan/cellulose-Pd(II) catalyst and the microwave heating are suitable for synthesis of biaryl compounds by using Suzuki CC coupling reactions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shaffer, David W.; Xie, Yan; Szalda, David J.; ...
2017-09-24
Here, a critical step in creating an artificial photosynthesis system for energy storage is designing catalysts that can thrive in an assembled device. Single-site catalysts have an advantage over bimolecular catalysts because they remain effective when immobilized. Hybrid water oxidation catalysts described here, combining the features of single-site bis-phosphonate catalysts and fast bimolecular bis-carboxylate catalysts, have reached turnover frequencies over 100 s –1, faster than both related catalysts under identical conditions. The new [(bpHc)Ru(L) 2] (bpH 2cH = 2,2'-bipyridine-6-phosphonic acid-6'-carboxylic acid, L = 4-picoline or isoquinoline) catalysts proceed through a single-site water nucleophilic attack pathway. The pendant phosphonate base mediatesmore » O–O bond formation via intramolecular atom-proton transfer with a calculated barrier of only 9.1 kcal/mol. Additionally, the labile carboxylate group allows water to bind early in the catalytic cycle, allowing intramolecular proton-coupled electron transfer to lower the potentials for oxidation steps and catalysis. That a single-site catalyst can be this fast lends credence to the possibility that the oxygen evolving complex adopts a similar mechanism.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaffer, David W.; Xie, Yan; Szalda, David J.
Here, a critical step in creating an artificial photosynthesis system for energy storage is designing catalysts that can thrive in an assembled device. Single-site catalysts have an advantage over bimolecular catalysts because they remain effective when immobilized. Hybrid water oxidation catalysts described here, combining the features of single-site bis-phosphonate catalysts and fast bimolecular bis-carboxylate catalysts, have reached turnover frequencies over 100 s –1, faster than both related catalysts under identical conditions. The new [(bpHc)Ru(L) 2] (bpH 2cH = 2,2'-bipyridine-6-phosphonic acid-6'-carboxylic acid, L = 4-picoline or isoquinoline) catalysts proceed through a single-site water nucleophilic attack pathway. The pendant phosphonate base mediatesmore » O–O bond formation via intramolecular atom-proton transfer with a calculated barrier of only 9.1 kcal/mol. Additionally, the labile carboxylate group allows water to bind early in the catalytic cycle, allowing intramolecular proton-coupled electron transfer to lower the potentials for oxidation steps and catalysis. That a single-site catalyst can be this fast lends credence to the possibility that the oxygen evolving complex adopts a similar mechanism.« less
Yang, Yi; Zhang, Huiping; Yan, Ying
2018-03-01
Fe 2 O 3 -ZSM-5 catalysts (0.6 wt% Fe load) prepared by metal-organic chemical vapour deposition (MOCVD) method were evaluated in the catalytic wet peroxide oxidation (CWPO) of m -cresol in a batch reactor. The catalysts have a good iron dispersion and small iron crystalline size, and exhibit high stability during reaction. In addition, the kinetics of the reaction were studied and the initial oxidation rate equation was given. Catalysts were first characterized by N 2 adsorption-desorption isotherms, scanning electronic microscopy, energy-dispersive spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Results show that extra-framework Fe 3+ species (presenting in the form of Fe 2 O 3 ) are successfully loaded on ZSM-5 supports by MOCVD method. Performances of catalysts were tested and effects of different temperature, stirring rate, catalyst amount on hydrogen peroxide, m -cresol, total organic carbon (TOC) conversion and Fe leaching concentration were studied. Results reveal that catalytic activity increased with higher temperature, faster stirring rate and larger catalyst amount. In all circumstances, m -cresol conversion could reach 99% in 0.5-2.5 h, and the highest TOC removal (80.5%) is obtained after 3 h under conditions of 60°C, 400 r.p.m. and catalyst amount of 2.5 g l -1 . The iron-leaching concentrations are less than 1.1 mg l -1 under all conditions. The initial oxidation rate equation [Formula: see text] is obtained for m -cresol degradation with Fe 2 O 3 -ZSM-5 catalysts.
Silver doped catalysts for treatment of exhaust
Park, Paul Worn [Peoria, IL; Boyer, Carrie L [Shiloh, IL
2006-12-26
A method of making an exhaust treatment catalyst includes dispersing a metal-based material in a first solvent to form a first slurry and allowing polymerization of the first slurry to occur. Polymerization of the first slurry may be quenched and the first slurry may be allowed to harden into a solid. This solid may be redistributed in a second solvent to form a second slurry. The second slurry may be loaded with a silver-based material, and a silver-loaded powder may be formed from the second slurry.
Cluster-based MOFs with accelerated chemical conversion of CO2 through C-C bond formation.
Xiong, Gang; Yu, Bing; Dong, Jie; Shi, Ying; Zhao, Bin; He, Liang-Nian
2017-05-30
Investigations on metal-organic frameworks (MOFs) as direct catalysts have been well documented, but direct catalysis of the chemical conversion of terminal alkynes and CO 2 as chemical feedstock by MOFs into valuable chemical products has never been reported. We report here two cluster-based MOFs I and II assembled from a multinuclear Gd-cluster and Cu-cluster, displaying high thermal and solvent stabilities. I and II as heterogeneous catalysts possess active catalytic centers [Cu 12 I 12 ] and [Cu 3 I 2 ], respectively, exhibiting excellent catalytic performance in the carboxylation reactions of CO 2 with 14 kinds of terminal alkynes under 1 atm and mild conditions. For the first time catalysis of the carboxylation reaction of terminal alkynes with CO 2 by MOF materials without any cocatalyst/additive is reported. This work not only reduces greenhouse gas emission but also provides highly valuable materials, opening a wide space in seeking recoverable catalysts to accelerate the chemical conversion of CO 2 .
Sheybani, Roya; Meng, Ellis
2015-01-01
Recombination of electrolysis gases (oxidation of hydrogen and reduction of oxygen) is an important factor in operation efficiency of devices employing electrolysis such as actuators and also unitized regenerative fuel cells. Several methods of improving recombination speed and repeatability were developed for application to electrolysis microactuators with Nafion®-coated catalytic electrodes. Decreasing the electrolysis chamber volume increased the speed, consistency, and repeatability of the gas recombination rate. To further improve recombination performance, methods to increase the catalyst surface area, hydrophobicity, and availability were developed and evaluated. Of these, including in the electrolyte pyrolyzed-Nafion®-coated Pt segments contained in the actuator chamber accelerated recombination by increasing the catalyst surface area and decreasing the gas transport diffusion path. This approach also reduced variability in recombination encountered under varying actuator orientation (resulting in differing catalyst/gas bubble proximity) and increased the rate of recombination by 2.3 times across all actuator orientations. Repeatability of complete recombination for different generated gas volumes was studied through cycling. PMID:26251561
Esterification of oleic acid with alcohols over Cu-MMT K10 and Fe-MMT K10 as acid catalysts
NASA Astrophysics Data System (ADS)
Harun, Farah Wahida; Jihadi, Nurul â.Izzati Mohd; Ramli, Shaima'; Hassan, Nurul Rabiatul Adawiyah; Zubir, â.Nur'Atikah Mat
2018-06-01
The esterification of free fatty acids with alcohols using montmorillonite (MMT) clay as heterogeneous catalyst is one of the methods to produce fatty acid alkyl ester that can be used as alternative renewable biofuels. However, the unmodified MMT gives low conversion of free fatty due to the limitation of acid sites in the clay structure. This work focuses on preparation of an environmental friendly catalyst from montmorillonite K10 (MMT K10) clay catalyst for the esterification of oleic acid with various alcohols. Esterification of oleic acid with alcohols has been carried out in the presence of metal exchanged MMT K10 (M-MMT K10; M = Fe3+ and Cu2+). The concentrations of both Fe3+ and Cu2+ precursors were varied at 1 M and 4 M. The effect of different alcohols used, molar ratio of reactants and catalyst loading on the esterification reaction was investigated. Among the exchanged clay catalysts, 4 M Fe-MMT K10 was found to be more active for the esterification of oleic acid with methanol. The maximum oleic acid conversion (ca. 68.5%) was achieved after 3 hours of reaction at the reaction temperature of 60 oC with molar ratio of methanol to oleic acid of 10:1 and catalyst loading of 5 wt% relative to the mass of oleic acid. The catalytic activity was found to be directly related to the amount of cation used in the modification step and Brønsted acidity of metal exchanged MMT K10 clay catalyst.
Hydrogen production from steam reforming of ethylene glycol over iron loaded on MgO
NASA Astrophysics Data System (ADS)
Chen, Mingqiang; Wang, Yishuang; Liang, Tian; Yang, Jie; Yang, Zhonglian
2017-01-01
In this study, a series of Fe-based catalysts loaded on MgO were prepared by a precipitation technique. And they were tested in hydrogen production from steam reforming of ethylene glycol (SRE), which was a representative model compound of fast bio-oil. The catalysts were characterized by XRD, SEM and H2-TPR analysis. The results showed that the crystalline phases of catalysts contained Fe2O3 (Hematite), Fe3O4 (Magnetite), Fe2MgO4 (iron magnesium oxide) and MgO, and morphology of MgO was changed from the rugby-ball like particles to spherical particles with the addition of Fe. In addition, the catalytic test results indicated that the 18%Fe/MgO catalyst exhibited the highest ethylene glycol conversion (˜99.8%) and H2 molar percent (˜77%) during at the following conditions: H2O/C molar ratio is 5˜7, the feeding rate is 14 mL/h and the reaction temperature at 600˜650°C. Furthermore, the 18%Fe/MgO catalyst can keep outstanding stability during SRE for 12 h.
NASA Astrophysics Data System (ADS)
Jing, Guojuan; Zhang, Xuejiao; Zhang, Aiai; Li, Meng; Zeng, Shanghong; Xu, Changjin; Su, Haiquan
2018-03-01
The supports of copper slices with three-kind morphologies Cu2O layers were prepared by the hydrothermal method. The Cu2O layers are rod-like structure, three-dimensional reticular and porous morphology as well as flower-like morphology, respectively. The CeO2-CuO/Cu2O/Cu monolithic catalysts present porous and network structure or foam morphology after loading CeO2 and CuO. Cu and Ce elements are uniformly dispersed onto the support surface. It is found that the monolithic catalyst with flower-like Cu2O layer displays better low-temperature activity because of highly-dispersed CuO and high Olatt concentration. The monolithic catalysts with rod-like or reticular-morphology Cu2O layers present high-temperature activity due to larger CuO crystallite sizes and good synergistic effect at copper-ceria interfacial sites. The as-prepared CeO2-CuO/Cu2O/Cu monolithic catalysts show good performance in the CO-PROX reaction. The generation of Cu2O layers with three-kind morphologies is beneficial to the loading and dispersion of copper oxides and ceria.
Kuss Middle School: Expanding Time to Accelerate School Improvement
ERIC Educational Resources Information Center
Massachusetts 2020, 2012
2012-01-01
In 2004, Kuss Middle School became the first school declared "Chronically Underperforming" by the state of Massachusetts. But by 2010, Kuss had transformed itself into a model for schools around the country seeking a comprehensive turnaround strategy. Kuss is using increased learning time as the primary catalyst to accelerate learning,…
Highly Efficient Catalytic Cyclic Carbonate Formation by Pyridyl Salicylimines.
Subramanian, Saravanan; Park, Joonho; Byun, Jeehye; Jung, Yousung; Yavuz, Cafer T
2018-03-21
Cyclic carbonates as industrial commodities offer a viable nonredox carbon dioxide fixation, and suitable heterogeneous catalysts are vital for their widespread implementation. Here, we report a highly efficient heterogeneous catalyst for CO 2 addition to epoxides based on a newly identified active catalytic pocket consisting of pyridine, imine, and phenol moieties. The polymeric, metal-free catalyst derived from this active site converts less-reactive styrene oxide under atmospheric pressure in quantitative yield and selectivity to the corresponding carbonate. The catalyst does not need additives, solvents, metals, or co-catalysts, can be reused at least 10 cycles without the loss of activity, and scaled up easily to a kilogram scale. Density functional theory calculations reveal that the nucleophilicity of pyridine base gets stronger due to the conjugated imines and H-bonding from phenol accelerates the reaction forward by stabilizing the intermediate.
Fabrication of fuel cell electrodes and other catalytic structures
Smith, J.L.
1987-02-11
A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte. 1 fig.
Fabrication of catalytic electrodes for molten carbonate fuel cells
Smith, James L.
1988-01-01
A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte.
Electrochemical water splitting using nano-zeolite Y supported tungsten oxide electrocatalysts
NASA Astrophysics Data System (ADS)
Anis, Shaheen Fatima; Hashaikeh, Raed
2018-02-01
Zeolites are often used as supports for metals and metal oxides because of their well-defined microporous structure and high surface area. In this study, nano-zeolite Y (50-150 nm range) and micro-zeolite Y (500-800 nm range) were loaded with WO3, by impregnating the zeolite support with ammonium metatungstate and thermally decomposing the salt thereafter. Two different loadings of WO3 were studied, 3 wt.% and 5 wt.% with respect to the overall catalyst. The prepared catalysts were characterized for their morphology, structure, and surface areas through scanning electron microscope (SEM), XRD, and BET. They were further compared for their electrocatalytic activity for hydrogen evolution reaction (HER) in 0.5 M H2SO4. On comparing the bare micro-zeolite particles with the nano-form, the nano-zeolite Y showed higher currents with comparable overpotentials and lower Tafel slope of 62.36 mV/dec. WO3 loading brought about a change in the electrocatalytic properties of the catalyst. The overpotentials and Tafel slopes were observed to decrease with zeolite-3 wt.% WO3. The smallest overpotential of 60 mV and Tafel slope of 31.9 mV/dec was registered for nano-zeolite with 3 wt.% WO3, while the micro-zeolite gave an overpotential of 370 mV and a Tafel slope of 98.1 mV/dec. It was concluded that even with the same metal oxide loading, nano-zeolite showed superior performance, which is attributed to its size and hence easier escape of hydrogen bubbles from the catalyst.
Luo, Si; Barrio, Laura; Nguyen-Phan, Thuy-Duong; ...
2017-03-15
CO 2 and H 2 production from the water–gas shift (WGS) reaction was studied over Pt/CeO x–TiO 2 catalysts with incremental loadings of CeO x, which adopts variations in the local morphology. The lowest loading of CeO x (1 wt % to 0.5 at. %) that is configured in its smallest dimensions exhibited the best WGS activity over larger dimensional structures. We attribute this to several factors including the ultrafine dispersed one-dimensional nanocluster geometry, a large concentration of Ce 3+ and enhanced reducibility of the low loadings. We utilized several in situ experiments to monitor the active state of themore » catalyst during the WGS reaction. X-ray diffraction (XRD) results showed lattice expansion that indicated reduced ceria was prevalent during the WGS reaction. On the surface, Ce 3+ related hydroxyl groups were identified by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The enhanced reducibility of the catalyst with the introduction of ceria was further revealed by H 2-temperature programed reduction (H 2-TPR) and good thermal stability was confirmed by in situ environmental transmission electron microscopy (ETEM). Finally, we also investigated the formation of the low dimensional structures during catalyst preparation, through a two-stage crystal growth of ceria crystallite on TiO 2 nanoparticle: fine crystallites ~1D formed at ~250 °C, followed by crystal growth into 2D chain and 3D particle from 250–400 °C.« less
Catalytic cracking of model compounds of bio-oil over HZSM-5 and the catalyst deactivation.
Chen, Guanyi; Zhang, Ruixue; Ma, Wenchao; Liu, Bin; Li, Xiangping; Yan, Beibei; Cheng, Zhanjun; Wang, Tiejun
2018-08-01
The catalytic cracking upgrading reactions over HZSM-5 of different model compounds of bio-oil have been studied with a self-designed fluid catalytic cracking (FCC) equipment. Typical bio-oil model compounds, such as acetic acid, guaiacol, n-heptane, acetol and ethyl acetate, were chosen to study the products distribution, reaction pathway and deactivation of catalysts. The results showed: C 6 -C 8 aromatic hydrocarbons, C 2 -C 4 olefins, C 1 -C 5 alkanes, CO and CO 2 were the main products, and the selectivity of olefins was: ethylene>propylene>butylene. Catalyst characterization methods, such as FI-IR, TG-TPO and Raman, were used to study the deactivation mechanism of catalysts. According to the catalyst characterization results, a catalyst deactivation mechanism was proposed as follows: Firstly, the precursor which consisted of a large number of long chain saturated aliphatic hydrocarbons and a small amount CC of aromatics formed on the catalyst surface. Then the active sites of catalysts had been covered, the coke type changed from thermal coke to catalytic coke and gradually blocked the channels of the molecular sieve, which accelerated the deactivation of catalyst. Copyright © 2018 Elsevier B.V. All rights reserved.
Galedari, Naghmeh Abuali; Rahmani, Mohammad; Tasbihi, Minoo
2017-05-01
In the current study, ZnO@SiO 2 core-shell structured catalyst was synthesized for photocatalytic degradation of phenol from aqueous samples. The synthesized catalyst was characterized by Fourier transform infrared spectra, X-ray diffraction, energy-dispersive X-ray spectroscopy, UV-Vis-NIR diffuse reflectance spectroscopy, transmission electron microscopy, BET surface area, zeta potential, and field emission scanning electron microscopy. The effect of catalyst loading, initial phenol concentration, pH, UV light intensity and weight ratio of ZnO/(SiO 2 + ZnO) were studied towards photocatalytic degradation of phenol. Moreover, photocatalytic activities of bare ZnO and ZnO@SiO 2 were compared. The results advocated that ZnO@SiO 2 catalyst showed high photocatalytic performance for degradation of phenol (96 % after 120 min) at an initial pH of 5.9, catalyst loading of 0.5 g/L and initial phenol concentration of 25 mg/L. Increase in the weight ratio of ZnO/(SiO 2 + ZnO) from 0.2 to 0.33 significantly enhanced the photodegradation of phenol from 84 to 94 %. It was also found that photocatalytic activity of ZnO@SiO 2 was higher than bare ZnO nanoparticles. Graphical abstract ᅟ.
Hunt, Sean T; Román-Leshkov, Yuriy
2018-05-15
Conspecuts Commercial and emerging renewable energy technologies are underpinned by precious metal catalysts, which enable the transformation of reactants into useful products. However, the noble metals (NMs) comprise the least abundant elements in the lithosphere, making them prohibitively scarce and expensive for future global-scale technologies. As such, intense research efforts have been devoted to eliminating or substantially reducing the loadings of NMs in various catalytic applications. These efforts have resulted in a plethora of heterogeneous NM catalyst morphologies beyond the traditional supported spherical nanoparticle. In many of these new architectures, such as shaped, high index, and bimetallic particles, less than 20% of the loaded NMs are available to perform catalytic turnovers. The majority of NM atoms are subsurface, providing only a secondary catalytic role through geometric and ligand effects with the active surface NM atoms. A handful of architectures can approach 100% NM utilization, but severe drawbacks limit general applicability. For example, in addition to problems with stability and leaching, single atom and ultrasmall cluster catalysts have extreme metal-support interactions, discretized d-bands, and a lack of adjacent NM surface sites. While monolayer thin films do not possess these features, they exhibit such low surface areas that they are not commercially relevant, serving predominantly as model catalysts. This Account champions core-shell nanoparticles (CS NPs) as a vehicle to design highly active, stable, and low-cost materials with high NM utilization for both thermo- and electrocatalysis. The unique benefits of the many emerging NM architectures could be preserved while their fundamental limitations could be overcome through reformulation via a core-shell morphology. However, the commercial realization of CS NPs remains challenging, requiring concerted advances in theory and manufacturing. We begin by formulating seven constraints governing proper core material design, which naturally point to early transition metal ceramics as suitable core candidates. Two constraints prove extremely challenging. The first relates to the core modifying the shell work function and d-band. To properly investigate materials that could satisfy this constraint, we discuss our development of a new heat, quench, and exfoliation (HQE) density functional theory (DFT) technique to model heterometallic interfaces. This technique is used to predict how transition metal carbides can favorably tune the catalytic properties of various NM monolayer shell configurations. The second challenging constraint relates to the scalable manufacturing of CS NP architectures with independent synthetic control of the thickness and composition of the shell and the size and composition of the core. We discuss our development of a synthetic method that enables high temperature self-assembly of tunable CS NP configurations. Finally, we discuss how these principles and methods were used to design catalysts for a variety of applications. These include the design of a thermally stable sub-monolayer CS catalyst, a highly active methanol electrooxidation catalyst, CO-tolerant Pt catalysts, and a hydrogen evolution catalyst that is less expensive than state-of-the-art NM-free catalysts. Such core-shell architectures offer the promise of ultralow precious metal loadings while ceramic cores hold the promise of thermodynamic stability and access to unique catalytic activity/tunability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Do Heui; Szanyi, Janos; Kwak, Ja Hun
2009-04-03
Desulfation by hydrogen of pre-sulfated Pt(2wt%) BaO(20wt%)/Al2O3 with various sulfur loading (S/Ba = 0.12, 0.31 and 0.62) were investigated by combining H2 temperature programmed reaction (TPRX), x-ray photoelectron spectroscopy (XPS), in-situ sulfur K-edge x-ray absorption near-edge spectroscopy (XANES), and synchrotron time-resolved x-ray diffraction (TR-XRD) techniques. We find that the amount of H2S desorbed during the desulfation in the H2 TPRX experiments is not proportional to the amount of initial sulfur loading. The results of both in-situ sulfur K-edge XANES and TR-XRD show that at low sulfur loadings, sulfates were transformed to a BaS phase and remained in the catalyst, rathermore » than being removed as H2S. On the other hand, when the deposited sulfur level exceeded a certain threshold (at least S/Ba = 0.31) sulfates were reduced to form H2S, and the relative amount of the residual sulfide species in the catalyst was much less than at low sulfur loading. Unlike samples with high sulfur loading (e.g., S/Ba = 0.62), H2O did not promote the desulfation for the sample with S/Ba of 0.12, implying that the formed BaS species originating from the reduction of sulfates at low sulfur loading are more stable to hydrolysis. The results of this combined spectroscopy investigation provide clear evidence to show that sulfates at low sulfur loadings are less likely to be removed as H2S and have a greater tendency to be transformed to BaS on the material, leading to the conclusion that desulfation behavior of Pt BaO/Al2O3 lean NOx trap catalysts is markedly dependent on the sulfation levels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, D.H.; Hanson, J.; Szanyi, J.
2009-04-30
Desulfation by hydrogen of presulfated Pt (2 wt %)-BaO(20 wt %)/Al{sub 2}O{sub 3} with various sulfur loading (S/Ba = 0.12, 0.31, and 0.62) were investigated by combining H{sub 2} temperature programmed reaction (TPRX), X-ray photoelectron spectroscopy (XPS), in situ sulfur K-edge X-ray absorption near-edge spectroscopy (XANES), and synchrotron time-resolved X-ray diffraction (TR-XRD) techniques. We find that the amount of H{sub 2}S desorbed during the desulfation in the H{sub 2} TPRX experiments is not proportional to the amount of initial sulfur loading. The results of both in situ sulfur K-edge XANES and TR-XRD show that at low sulfur loadings, sulfates weremore » transformed to a BaS phase and remained in the catalyst rather than being removed as H{sub 2}S. On the other hand, when the deposited sulfur level exceeded a certain threshold (at least S/Ba = 0.31) sulfates were reduced to form H{sub 2}S, and the relative amount of the residual sulfide species in the catalyst was much less than at low sulfur loading. Unlike samples with high sulfur loading (e.g., S/Ba = 0.62), H{sub 2}O did not promote the desulfation for the sample with S/Ba of 0.12, implying that the formed BaS species originating from the reduction of sulfates at low sulfur loading are more stable to hydrolysis. The results of this combined spectroscopy investigation provide clear evidence to show that sulfates at low sulfur loadings are less likely to be removed as H{sub 2}S and have a greater tendency to be transformed to BaS on the material, leading to the conclusion that desulfation behavior of Pt-BaO/Al{sub 2}O{sub 3} lean NO{sub x} trap catalysts is markedly dependent on the sulfation levels.« less
Ramprasad, D.; Waller, F.J.
1998-04-28
This invention relates to a process for producing ethylidene diacetate by the reaction of dimethyl ether, acetic acid, hydrogen and carbon monoxide at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that is stable to hydrogenation and comprises an insoluble polymer having pendant quaternized heteroatoms, some of which heteroatoms are ionically bonded to anionic Group VIII metal complexes, the remainder of the heteroatoms being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled for 3 consecutive runs without loss in activity.
Ramprasad, Dorai; Waller, Francis Joseph
1998-01-01
This invention relates to a process for producing ethylidene diacetate by the reaction of dimethyl ether, acetic acid, hydrogen and carbon monoxide at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that is stable to hydrogenation and comprises an insoluble polymer having pendant quaternized heteroatoms, some of which heteroatoms are ionically bonded to anionic Group VIII metal complexes, the remainder of the heteroatoms being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled for 3 consecutive runs without loss in activity.
NASA Astrophysics Data System (ADS)
Tan, Qiang; Du, Chunyu; Sun, Yongrong; Du, Lei; Yin, Geping; Gao, Yunzhi
2015-08-01
A novel palladium-doped ceria and carbon core-sheath nanowire network (Pd-CeO2@C CSNWN) is synthesized by a template-free and surfactant-free solvothermal process, followed by high temperature carbonization. This hierarchical network serves as a new class of catalyst support to enhance the activity and durability of noble metal catalysts for alcohol oxidation reactions. Its supported Pd nanoparticles, Pd/(Pd-CeO2@C CSNWN), exhibit >9 fold increase in activity toward the ethanol oxidation over the state-of-the-art Pd/C catalyst, which is the highest among the reported Pd systems. Moreover, stability tests show a virtually unchanged activity after 1000 cycles. The high activity is mainly attributed to the superior oxygen-species releasing capability of Pd-doped CeO2 nanowires by accelerating the removal of the poisoning intermediate. The unique interconnected one-dimensional core-sheath structure is revealed to facilitate immobilization of the metal catalysts, leading to the improved durability. This core-sheath nanowire network opens up a new strategy for catalyst performance optimization for next-generation fuel cells.A novel palladium-doped ceria and carbon core-sheath nanowire network (Pd-CeO2@C CSNWN) is synthesized by a template-free and surfactant-free solvothermal process, followed by high temperature carbonization. This hierarchical network serves as a new class of catalyst support to enhance the activity and durability of noble metal catalysts for alcohol oxidation reactions. Its supported Pd nanoparticles, Pd/(Pd-CeO2@C CSNWN), exhibit >9 fold increase in activity toward the ethanol oxidation over the state-of-the-art Pd/C catalyst, which is the highest among the reported Pd systems. Moreover, stability tests show a virtually unchanged activity after 1000 cycles. The high activity is mainly attributed to the superior oxygen-species releasing capability of Pd-doped CeO2 nanowires by accelerating the removal of the poisoning intermediate. The unique interconnected one-dimensional core-sheath structure is revealed to facilitate immobilization of the metal catalysts, leading to the improved durability. This core-sheath nanowire network opens up a new strategy for catalyst performance optimization for next-generation fuel cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03023d
Bulk Preparation of Holey Graphene via Controlled Catalytic Oxidation
NASA Technical Reports Server (NTRS)
Connell, John (Inventor); Watson, Kent (Inventor); Ghose, Sayata (Inventor); Lin, Yi (Inventor)
2015-01-01
A scalable method allows preparation of bulk quantities of holey carbon allotropes with holes ranging from a few to over 100 nm in diameter. Carbon oxidation catalyst nanoparticles are first deposited onto a carbon allotrope surface in a facile, controllable, and solvent-free process. The catalyst-loaded carbons are then subjected to thermal treatment in air. The carbons in contact with the carbon oxidation catalyst nanoparticles are selectively oxidized into gaseous byproducts such as CO or CO.sub.2, leaving the surface with holes. The catalyst is then removed via refluxing in diluted nitric acid to obtain the final holey carbon allotropes. The average size of the holes correlates strongly with the size of the catalyst nanoparticles and is controlled by adjusting the catalyst precursor concentration. The temperature and time of the air oxidation step, and the catalyst removal treatment conditions, strongly affect the morphology of the holes.
Chaiyut, Nattawut; Worawanitchaphong, Phatsakon
2013-01-01
The waste shell was utilized as a bioresource of calcium oxide (CaO) in catalyzing a transesterification to produce biodiesel (methyl ester). The economic and environmen-friendly catalysts were prepared by a calcination method at 700–1,000°C for 4 h. The heterogeneous catalysts were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and the Brunauer-Emmett-Teller (BET) method. The effects of reaction variables such as reaction time, reaction temperature, methanol/oil molar ratio, and catalyst loading on the yield of biodiesel were investigated. Reusability of waste shell catalyst was also examined. The results indicated that the CaO catalysts derived from waste shell showed good reusability and had high potential to be used as biodiesel production catalysts in transesterification of palm oil with methanol. PMID:24453854
Choi, M; Han, C; Kim, I T; An, J C; Lee, J J; Lee, H K; Shim, J
2011-01-01
To improve the catalytic activity of palladium (Pd) as a cathode catalyst in direct methanol fuel cells (DMFCs), we prepared palladium-titanium oxide (Pd-TiO2) catalysts which the Pd and TiO2 nanoparticles were simultaneously impregnated on carbon. We selected Pd and TiO2 as catalytic materials because of their electrochemical stability in acid solution. The crystal structure and the loading amount of Pd and TiO2 on carbon were characterized by X-ray diffraction (XRD) and energy dispersive X-ray microanalysis (EDX). The electrochemical characterization of Pd-TiO2/C catalysts for the oxygen reduction reaction was carried out in half and single cell systems. The catalytic activities of the Pd-TiO2 catalysts were strongly influenced by the TiO2 content. In the single cell test, the Pd-TiO2 catalysts showed very comparable performance to the Pt catalyst.
Activity of Highly Dispersed Co/SBA-15 Catalysts (Low Content) in Carbon Black Oxidation
NASA Astrophysics Data System (ADS)
Hassan, Nissrine El; Casale, Sandra; Aouad, Samer; Hanein, Theodor; Jabbour, Karam; Chidiac, Elvis; Khoury, Bilal el; Zakhem, Henri El; Nakat, Hanna El
Cobalt supported on mesoporous silica SBA-15 (0.75, 1.5 and 3 wt% Co) were used as catalysts for the oxidation of carbon black. Catalysts were characterized by N2 sorption, XRD, TEM and TPR. The catalytic activity in CB oxidation was measured. It has been shown that only small cobalt domains (less than 5 nm) are present on all samples. A homogeneous dispersion was obtained for all catalysts. With increasing cobalt loading, crystalline species start to appear. Using an intermediate contact between the CB and the catalyst, the best activity is that of 0.75Co/SBA-15 catalyst where the oxidation reaches the maximum (Tmax) 68 K before the non-catalyzed reaction. On the same catalyst used in tight contact mode with CB, even if Tmax didn't decrease for more than additional 12 K but the Ti decreases by 38K and thus starts 83 K before.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoang, Son; Lu, Xingxu; Tang, Wenxiang
High performance of an ultra-low Pt loading diesel oxidation catalyst can be achieved by using a combination of novel nano-array structured support, precise control of ultrafine active Pt particles, and an addition of H 2 as a promoter into the exhausts. Highly stable mesoporous rutile TiO 2 nano-array was uniformly grown on three-dimensional (3-D) cordierite honeycomb monoliths using a solvothermal synthesis. Atomic layer deposition was employed for precise dispersion of ultrafine Pt particles (0.95 ± 0.24 nm) on TiO 2 nano-array with a Pt loading of 1.1 g/ft 3. Despite low Pt loading, the Pt/TiO 2 nano-array catalyst shows impressivemore » low-temperature oxidation reactivity, with the conversion of CO and total hydrocarbon (THC) reaching 50% at 224 and 285 °C, respectively, in the clean diesel combustion (CDC) simulated exhaust conditions. The excellent activity is attributed to the unique nano-array structure that promotes gas-solid interaction and ultra-small Pt particle dispersion that increase surface Pt atoms. We also demonstrate that addition of more H 2 into the exhaust can lower light-off temperature for CO and THC by up to ~60 °C and ~30 °C, respectively.« less
Hoang, Son; Lu, Xingxu; Tang, Wenxiang; ...
2017-11-15
High performance of an ultra-low Pt loading diesel oxidation catalyst can be achieved by using a combination of novel nano-array structured support, precise control of ultrafine active Pt particles, and an addition of H 2 as a promoter into the exhausts. Highly stable mesoporous rutile TiO 2 nano-array was uniformly grown on three-dimensional (3-D) cordierite honeycomb monoliths using a solvothermal synthesis. Atomic layer deposition was employed for precise dispersion of ultrafine Pt particles (0.95 ± 0.24 nm) on TiO 2 nano-array with a Pt loading of 1.1 g/ft 3. Despite low Pt loading, the Pt/TiO 2 nano-array catalyst shows impressivemore » low-temperature oxidation reactivity, with the conversion of CO and total hydrocarbon (THC) reaching 50% at 224 and 285 °C, respectively, in the clean diesel combustion (CDC) simulated exhaust conditions. The excellent activity is attributed to the unique nano-array structure that promotes gas-solid interaction and ultra-small Pt particle dispersion that increase surface Pt atoms. We also demonstrate that addition of more H 2 into the exhaust can lower light-off temperature for CO and THC by up to ~60 °C and ~30 °C, respectively.« less
Sureshkumar, Devarajulu; Hashimoto, Kazuki; Kumagai, Naoya; Shibasaki, Masakatsu
2013-11-15
A recyclable asymmetric metal-based catalyst is a rare entity among the vast collection of asymmetric catalysts developed so far. Recently we found that the combination of a self-assembling metal-based asymmetric catalyst and multiwalled carbon nanotubes (MWNTs) produced a highly active and recyclable catalyst in which the catalytically active metal complex was dispersed in the MWNT network. Herein we describe an improved preparation procedure and full details of a Nd/Na heterobimetallic complex confined in MWNTs. Facilitated self-assembly of the catalyst with MWNTs avoided the sacrificial use of excess chiral ligand for the formation of the heterobimetallic complex, improving the loading ratio of the catalyst components. Eighty-five percent of the catalyst components were incorporated onto MWNTs to produce the confined catalyst, which was a highly efficient and recyclable catalyst for the anti-selective asymmetric nitroaldol reaction. The requisite precautions for the catalyst preparation to elicit reproducible catalytic performance are summarized. Superior catalytic profiles over the prototype catalyst without MWNTs were revealed in the synthesis of optically active 1,2-nitroalkanols, which are key intermediates for the synthesis of therapeutics.
Pd-catalysts for DFAFC prepared by magnetron sputtering
NASA Astrophysics Data System (ADS)
Bieloshapka, I.; Jiricek, P.; Vorokhta, M.; Tomsik, E.; Rednyk, A.; Perekrestov, R.; Jurek, K.; Ukraintsev, E.; Hruska, K.; Romanyuk, O.; Lesiak, B.
2017-10-01
Samples of a palladium catalyst for direct formic acid fuel cell (DFAFC) applications were prepared on the Elat® carbon cloth by magnetron sputtering. The quantity of Pd was equal to 3.6, 120 and 720 μg/cm2. The samples were tested in a fuel cell for electro-oxidation of formic acid, and were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The XPS measurements revealed a high contribution of PdCx phase formed at the Pd/Elat® surface interface, with carbon concentration in PdCx from x = 9.9-14.6 at.%, resulting from the C substrate and CO residual gases. Oxygen groups, e.g. hydroxyl (-OH), carbonyl (Cdbnd O) and carboxyl (COOH), resulted from the synthesis conditions due to the presence of residual gases, electro-oxidation during the reaction and oxidation in the atmosphere. Because of the formation of CO and CO2 on the catalysts during the reaction, or because of poisoning by impurities containing the -CH3 group, together with the risk of Pd losses due to dissolution in formic acid, there was a negative effect of catalyst degradation on the active area surface. The effect of different loadings of Pd layers led to increasing catalyst efficiency. Current-voltage curves showed that different amounts of catalyst did not increase the DFAFC power to a great extent. One reason for this was the catalyst structure formed on the carbon cloth. AFM and SEM measurements showed a layer-by-layer growth with no significant variations in morphology. The results for electric power recalculated for the Pd loading per 1 mg of catalyst layers in comparison to carbon substrates decorated by Pd nanoparticles showed that there is potential for applying anodes for formic acid fuel cells prepared by magnetron sputtering.
Cell module and fuel conditioner development
NASA Technical Reports Server (NTRS)
Hoover, D. Q., Jr.
1981-01-01
The test results of and post test analysis of Stack 559 are reported. The design features and construction status of Stacks 560, 561, 562 and 563 are described. The measurements of cell materials compressibility are rationalized and summarized and an explanation of their uses is given. Preliminary results of a manifold material/coating survey are given. The results of shift converter catalyst performance tests and reforming catalyst aging tests are reported. State points for full load and part load operation of the fuel conditioning subsystem tabulated. Work on the data base for the fuel conditioner ancillary subsystems is summarized.
Li, Jiang; Liu, Jun-Ling; Liu, He-Yang; Xu, Guang-Yue; Zhang, Jun-Jie; Liu, Jia-Xing; Zhou, Guang-Lin; Li, Qin; Xu, Zhi-Hao; Fu, Yao
2017-04-10
This work provided the first example of selective hydrodeoxygenation of 5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran (DMF) over heterogeneous Fe catalysts. A catalyst prepared by the pyrolysis of an Fe-phenanthroline complex on activated carbon at 800 °C was demonstrated to be the most active heterogeneous Fe catalyst. Under the optimal reaction conditions, complete conversion of HMF was achieved with 86.2 % selectivity to DMF. The reaction pathway was investigated thoroughly, and the hydrogenation of the C=O bond in HMF was demonstrated to be the rate-determining step during the hydrodeoxygenation, which could be accelerated greatly by using alcohol solvents as additional H-donors. The excellent stability of the Fe catalyst, which was probably a result of the well-preserved active species and the pore structure of the Fe catalyst in the presence of H 2 , was demonstrated in batch and continuous flow fixed-bed reactors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogdanor, J.M.
1984-01-01
Information concerning the morphology and behavior of active components on commercially aged catalyst, the effects of regeneration conditions on activity, and insights into the nature of coke and contaminant metal deposits could lead to improved catalysts and operating conditions , yielding significant economic returns. Spent Ni-Mo/Al2O3 hydrotreating catalyst from a commercial hydrotreater was examined using TGA, SEM, STEM, XPS, and a microreactor. Information concerning intraparticle distributions of active components, characteristics of the coke and metal deposits, and catalytic activity for fresh, spent and regenerated catalyst was used to draw general conclusions concerning hydrotreating catalyst deactivation. It was found that catalyticmore » activity was reduced and the nature of the hydrogenation function was altered due to bulk migration and agglomeration of molybdenum. This process was found to be accelerated by high-temperature regeneration. Results also indicated that iron deposits might catalyze formation of coke. Tentative generalizations and suggestions on improved reactor operation are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Do Heui; Mudiyanselage, Kumudu K.; Szanyi, Janos
2013-10-25
We have investigated nitrate formation and decomposition processes, and measured NOx storage performance on Pt-K2O/Al2O3 catalysts as a function of potassium loading. After NO2 adsorption at room temperature, ionic and bidentate nitrates were observed by fourier transform infra-red (FTIR) spectroscopy. The ratio of the former to the latter species increased with increasing potassium loading up to 10 wt%, and then stayed almost constant with additional K, demonstrating a clear dependence of loading on the morphology of the K species. Although both K2O(10)/Al2O3 and K2O(20)/Al2O3 samples have similar nitrate species after NO2 adsorption, the latter has more thermally stable nitrate speciesmore » as evidenced by FTIR and NO2 temperature programmed desorption (TPD) results. With regard to NOx storage performance, the temperature of maximum NOx uptake (Tmax) is 573 K up to a potassium loading of 10 wt%. As the potassium loading increases from 10 wt% to 20 wt%, Tmax shifted from 573 K to 723 K. Moreover, the amount of NO uptake (38 cm3 NOx/g catal) at Tmax increased more than three times, indicating that efficiency of K in storing NOx is enhanced significantly at higher temperature, in good agreement with the NO2 TPD and FTIR results. Thus, a combination of characterization and NOx storage performance results demonstrates an unexpected effect of potassium loading on nitrate formation and decomposition processes; results important for developing Pt-K2O/Al2O3 for potential applications as high temperature NOx storage-reduction catalysts.« less
NASA Astrophysics Data System (ADS)
Shen, Shaohua; Chen, Xiaobo; Ren, Feng; Kronawitter, Coleman X.; Mao, Samuel S.; Guo, Liejin
2011-12-01
A series of Pt-loaded MS/ZnIn2S4 (MS = transition-metal sulfide: Ag2S, SnS, CoS, CuS, NiS, and MnS) photocatalysts was investigated to show various photocatalytic activities depending on different transition-metal sulfides. Thereinto, CoS, NiS, or MnS-loading lowered down the photocatalytic activity of ZnIn2S4, while Ag2S, SnS, or CuS loading enhanced the photocatalytic activity. After loading 1.0 wt.% CuS together with 1.0 wt.% Pt on ZnIn2S4, the activity for H2 evolution was increased by up to 1.6 times, compared to the ZnIn2S4 only loaded with 1.0 wt.% Pt. Here, transition-metal sulfides such as CuS, together with Pt, acted as the dual co-catalysts for the improved photocatalytic performance. This study indicated that the application of transition-metal sulfides as effective co-catalysts opened up a new way to design and prepare high-efficiency and low-cost photocatalysts for solar-hydrogen conversion.
PREPARATION, CHARACTERIZATION AND ACTIVITY OF AL2O3-SUPPORTED V2O5 CATALYSTS
A series of activated alumina supported vanadium oxide catalysts with various V2O5 loadings ranging from 5 to 25 wt% has been prepared by wet impregnation technique. A combination of various physico-chemical techniques such as BET surface areas, oxygen chemisorption, X-ray diffra...
Helaïli, N; Boudjamaa, A; Kebir, M; Bachari, K
2017-03-01
The present study focused on the evaluation of photo-catalytic and photo-electrochemical properties of the photo-catalyst based on nickel tungstate material prepared by a nitrate method through the degradation of malachite green (MG) dye's. The effect of catalyst loading and dye concentration was examined. Physico-chemical, optical, electrical, electrochemical, and photo-electrochemical properties of the prepared material were analyzed by X-ray diffraction (XRD), fourier transform-infrared spectroscopy (FTIR), BET analysis, optical reflectance diffuse (DR), scanning electron microscopy (SEM/EDX), electrical conductivity, cyclic voltammetry (CV), current intensity, mott-shottky, and nyquist. XRD revealed the formation of monoclinic structure with a small particle size. BET surface area of the sample was around 10 m 2 /g. The results show that the degradation of MG was more than 80%, achieved after 3 h of irradiation at pH 4.6 and with a catalyst loading of 75 mg. Also, it was found that the dye photo-degradation obeyed the pseudo-first order kinetic via Langmuir Hinshelwood model.
Budi, Canggih Setya; Wu, Hung-Chi; Chen, Ching-Shiun; Saikia, Diganta; Kao, Hsien-Ming
2016-09-08
Ni nanoparticles (around 4 nm diameter) were successfully supported on cage-type mesoporous silica SBA-16 (denoted as Ni@SBA-16) via wet impregnation at pH 9, followed by the calcination-reduction process. The Ni@SBA-16 catalyst with a very high Ni loading amount (22.9 wt %) exhibited exceptionally high CH4 selectivity for CO2 hydrogenation. At a nearly identical loading amount, the Ni@SBA-16 catalysts with smaller particle size of Ni NPs surprisingly exhibited a higher catalytic activity of CO2 hydrogenation and also led to a higher selectivity on CH4 formation than the Ni@SiO2 catalysts. This enhanced activity of the Ni@SBA-16 catalyst is suggested to be an accumulative result of the advantageous structural properties of the support SBA-16 and the well confined Ni NPs within the support; both induced a favorable reaction pathway for high selectivity of CH4 in CO2 hydrogenation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Asadi, Beheshteh; Landarani-Isfahani, Amir; Mohammadpoor-Baltork, Iraj; Tangestaninejad, Shahram; Moghadam, Majid; Mirkhani, Valiollah; Amiri Rudbari, Hadi
2017-06-12
Unsymmetrical 1,2,5,6-tetrahydropyridine-3-carboxylates were obtained for the first time from a five-component Fe 3 O 4 @TDSN-Bi(III)-catalyzed reaction of aryl aldehydes, aryl amines, and ethyl acetoacetate. This magnetically separable catalyst enabled the selective incorporation of two different aryl amines or two different aryl aldehydes into the product, and provided excellent yields, short reaction times, mild reaction conditions, satisfactory catalyst recyclability, and low catalyst loading.
Carbon nanocages: a new support material for Pt catalyst with remarkably high durability.
Wang, Xiao Xia; Tan, Zhe Hua; Zeng, Min; Wang, Jian Nong
2014-03-24
Low durability is the major challenge hindering the large-scale implementation of proton exchange membrane fuel cell (PEMFC) technology, and corrosion of carbon support materials of current catalysts is the main cause. Here, we describe the finding of remarkably high durability with the use of a novel support material. This material is based on hollow carbon nanocages developed with a high degree of graphitization and concurrent nitrogen doping for oxidation resistance enhancement, uniform deposition of fine Pt particles, and strong Pt-support interaction. Accelerated degradation testing shows that such designed catalyst possesses a superior electrochemical activity and long-term stability for both hydrogen oxidation and oxygen reduction relative to industry benchmarks of current catalysts. Further testing under conditions of practical fuel cell operation reveals almost no degradation over long-term cycling. Such a catalyst of high activity, particularly, high durability, opens the door for the next-generation PEMFC for "real world" application.
Yin, Yi; Zhong, Hui-Huang; Liu, Jin-Liang; Ren, He-Ming; Yang, Jian-Hua; Zhang, Xiao-Ping; Hong, Zhi-qiang
2010-09-01
A radial-current aqueous resistive solution load was applied to characterize a laser triggered transformer-type accelerator. The current direction in the dummy load is radial and is different from the traditional load in the axial. Therefore, this type of dummy load has smaller inductance and fast response characteristic. The load was designed to accommodate both the resistance requirement of accelerator and to allow optical access for the laser. Theoretical and numerical calculations of the load's inductance and capacitance are given. The equivalent circuit of the dummy load is calculated in theory and analyzed with a PSPICE code. The simulation results agree well with the theoretical analysis. At last, experiments of the dummy load applied to the high power spiral pulse forming line were performed; a quasisquare pulse voltage is obtained at the dummy load.
NASA Astrophysics Data System (ADS)
Yin, Yi; Zhong, Hui-Huang; Liu, Jin-Liang; Ren, He-Ming; Yang, Jian-Hua; Zhang, Xiao-Ping; Hong, Zhi-qiang
2010-09-01
A radial-current aqueous resistive solution load was applied to characterize a laser triggered transformer-type accelerator. The current direction in the dummy load is radial and is different from the traditional load in the axial. Therefore, this type of dummy load has smaller inductance and fast response characteristic. The load was designed to accommodate both the resistance requirement of accelerator and to allow optical access for the laser. Theoretical and numerical calculations of the load's inductance and capacitance are given. The equivalent circuit of the dummy load is calculated in theory and analyzed with a PSPICE code. The simulation results agree well with the theoretical analysis. At last, experiments of the dummy load applied to the high power spiral pulse forming line were performed; a quasisquare pulse voltage is obtained at the dummy load.
Hashmi, A Stephen K; Lauterbach, Tobias; Nösel, Pascal; Vilhelmsen, Mie Højer; Rudolph, Matthias; Rominger, Frank
2013-01-14
A series of dinuclear gold σ,π-propyne acetylide complexes were prepared and tested for their catalytic ability in dual gold catalysis that was based on the reaction of an electrophilic π-complex of gold with a gold acetylide. The air-stable and storable catalysts can be isolated as silver-free catalysts in their activated form. These dual catalysts allow a fast initiation phase for the dual catalytic cycles without the need for additional additives for acetylide formation. Because propyne serves as a throw-away ligand, no traces of the precatalyst are generated. Based on the fast initiation process, side products are minimized and reaction rates are higher for these catalysts. A series of test reactions were used to demonstrate the general applicability of these catalysts. Lower catalyst loadings, faster reaction rates, and better selectivity, combined with the practicability of these catalysts, make them ideal catalysts for dual gold catalysis. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shen, Qilong; Ogata, Tokutaro; Hartwig, John F.
2010-01-01
We describe a systematic study of the scope and relationship between ligand structure and activity for a highly efficient and selective class of catalysts for the amination of heteroaryl and aryl chlorides, bromides and iodides containing sterically hindered chelating alkylphosphines. In the presence of this catalyst, aryl and heteroaryl chlorides, bromides and iodides react with many primary amines in high yields with part-per-million quantities of palladium precursor and ligand. Many reactions of primary amines with both heteroaryl and aryl chlorides, bromides and iodides occur to completion with 0.0005-0.05 mol % catalysts. A comparison of the reactivity of this catalyst for coupling of primary amines at these loadings is made with catalysts generated from hindered monophosphines and carbenes, and these data illustrate the benefits of chelation. Thus, these complexes constitute a fourth-generation catalyst for the amination of aryl halides, whose activity complements catalysts based on monophosphines and carbenes. PMID:18444639
Methanol Steam Reforming Promoted by Molten Salt-Modified Platinum on Alumina Catalysts
Kusche, Matthias; Agel, Friederike; Ní Bhriain, Nollaig; Kaftan, Andre; Laurin, Mathias; Libuda, Jörg; Wasserscheid, Peter
2014-01-01
We herein describe a straight forward procedure to increase the performance of platinum-on-alumina catalysts in methanol steam reforming by applying an alkali hydroxide coating according to the “solid catalyst with ionic liquid layer” (SCILL) approach. We demonstrate by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature-programmed desorption (TPD) studies that potassium doping plays an important role in the catalyst activation. Moreover, the hygroscopic nature and the basicity of the salt modification contribute to the considerable enhancement in catalytic performance. During reaction, a partly liquid film of alkali hydroxides/carbonates forms on the catalyst/alumina surface, thus significantly enhancing the availability of water at the catalytically active sites. Too high catalyst pore fillings with salt introduce a considerable mass transfer barrier into the system as indicated by kinetic studies. Thus, the optimum interplay between beneficial catalyst modification and detrimental mass transfer effects had to be identified and was found on the applied platinum-on-alumina catalyst at KOH loadings around 7.5 mass %. PMID:25124120
dos Santos, Antonio Rodolfo; Kunz, Ulrich; Turek, Thomas
2011-01-01
Summary In this contribution we present for the first time a continuous process for the production of highly active Pt catalysts supported by carbon nanotubes by use of an electrically heated tubular reactor. The synthesized catalysts show a high degree of dispersion and narrow distributions of cluster sizes. In comparison to catalysts synthesized by the conventional oil-bath method a significantly higher electrocatalytic activity was reached, which can be attributed to the higher metal loading and smaller and more uniformly distributed Pt particles on the carbon support. Our approach introduces a simple, time-saving and cost-efficient method for fuel cell catalyst preparation in a flow reactor which could be used at a large scale. PMID:22043252
NASA Technical Reports Server (NTRS)
Jagow, R. B.; Katan, T.; Ray, C. D.; Lamparter, R. A.
1977-01-01
Carbon monoxide generation rates related to the use of commerical equipment in Spacelab, added to the normal metabolic and subsystem loads, will produce carbon monoxide levels in excess of the maximum allowable concentration. In connection with the sensitivity of carbon monoxide oxidation catalysts to poisoning at room temperature, catalysts for an oxidation of carbon monoxide at low temperatures have been investigated. It was found that platinum and palladium are the only effective room temperature catalysts which are effective at 333 K. Hopcalite was ineffective at ambient temperatures, but converted CO with 100 percent efficiency at 333 K. Poisoning tests showed the noble metal catalysts to be very sensitive, and Hopcalite to be very resistant to poisoning.
Long-term hydrogen oxidation catalysts in alkaline fuel cells
NASA Astrophysics Data System (ADS)
Kiros, Y.; Schwartz, S.
Pt/Pd bimetallic combination and Raney Ni catalysts were employed in long-term electrochemical assessment of the hydrogen oxidation reaction (HOR) in 6 M KOH. Steady-state current vs. potential measurements of the gas diffusion electrodes have shown high activity for these types of catalysts. Durability tests of the electrodes have shown increased stability for the Pt/Pd-based catalysts than the Raney Ni at a constant load of 100 mA/cm 2 and at temperatures of 55°C and 60°C, respectively. Surface, structural and chemical analyses by BET surface area, transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) were used to characterize the composite electrode/catalyst both before and after the electrochemical testing.
Synthesis and characterization of non-noble nanocatalysts for hydrogen production in microreactors
NASA Astrophysics Data System (ADS)
Shetty, Krithi; Zhao, Shihuai; Cao, Wei; Siriwardane, Upali; Seetala, Naidu V.; Kuila, Debasish
Nanoscale Co and Ni catalysts in silica were synthesized using sol-gel method for hydrogen production from steam reforming of methanol (SRM) in silicon microreactors with 50 μm channels. Silica sol-gel support with porous structure gives specific surface area of 452.35 m 2 g -1 for Ni/SiO 2 and 337.72 m 2 g -1 for Co/SiO 2. TEM images show the particles size of Ni and Co catalysts to be <10 nm. The EDX results indicate Co and Ni loadings of 5-6 wt.% in silica which is lower than the intended loading of 12 wt.%. The DTA and XRD data suggest that 450 °C is an optimum temperature for catalyst calcination when most of the metal hydroxides are converted to metal oxides without significant particle aggregation to form larger crystallites. SRM reactions show 53% methanol conversion with 74% hydrogen selectivity at 5 μL min -1 and 200 °C for Ni/SiO 2 catalyst, which is higher than that for Co/SiO 2. The activity of the metal catalysts decrease significantly after SRM reactions over 10 h, and it is consistent with the magnetization (VSM) results indicating that ∼90% of Co and ∼85% of Ni become non-ferromagnetic after 10 h.
Syamsuddin, Y; Murat, M N; Hameed, B H
2016-08-01
The synthesis of fatty acid methyl ester (FAME) from the high- and low-acid-content feedstock of crude palm oil (CPO) and karanj oil (KO) was conducted over CaO-La2O3-Al2O3 mixed-oxide catalyst. Various reaction parameters were investigated using a batch reactor to identify the best reaction condition that results in the highest FAME yield for each type of oil. The transesterification of CPO resulted in a 97.81% FAME yield with the process conditions of 170°C reaction temperature, 15:1 DMC-to-CPO molar ratio, 180min reaction time, and 10wt.% catalyst loading. The transesterification of KO resulted in a 96.77% FAME yield with the conditions of 150°C reaction temperature, 9:1 DMC-to-KO molar ratio, 180min reaction time, and 5wt.% catalyst loading. The properties of both products met the ASTM D6751 and EN 14214 standard requirements. The above results showed that the CaO-La2O3-Al2O3 mixed-oxide catalyst was suitable for high- and low-acid-content vegetable oil. Copyright © 2016 Elsevier Ltd. All rights reserved.
Co-production of hydrogen and carbon nanotubes on nickel foam via methane catalytic decomposition
NASA Astrophysics Data System (ADS)
Ping, Dan; Wang, Chaoxian; Dong, Xinfa; Dong, Yingchao
2016-04-01
The co-production of COx-free hydrogen and carbon nanotubes (CNTs) was achieved on 3-dimensional (3D) macroporous nickel foam (NF) via methane catalytic decomposition (MCD) over nano-Ni catalysts using chemical vapor deposition (CVD) technique. By a simple coating of a NiO-Al2O3 binary mixture sol followed by a drying-calcination-reduction treatment, NF supported composite catalysts (denoted as NiyAlOx/NF) with Al2O3 transition-layer incorporated with well-dispersed nano-Ni catalysts were successfully prepared. The effects of Ni loading, calcination temperature and reaction temperature on the performance for simultaneous production of COx-free hydrogen and CNTs were investigated in detail. Catalysts before and after MCD were characterized by XRD, TPR, SEM, TEM, TG and Raman spectroscopy technology. Results show that increasing Ni loading, lowering calcination temperature and optimizing MCD reaction temperature resulted in high production efficiency of COx-free H2 and carbon, but broader diameter distribution of CNTs. Through detailed parameter optimization, the catalyst with a Ni/Al molar ratio of 0.1, calcination temperature of 550 °C and MCD temperature of 650 °C was favorable to simultaneously produce COx-free hydrogen with a growth rate as high as 10.3% and CNTs with uniform size on NF.
Ebshish, Ali; Yaakob, Zahira; Taufiq-Yap, Yun Hin; Bshish, Ahmed
2014-03-19
In this work; a response surface methodology (RSM) was implemented to investigate the process variables in a hydrogen production system. The effects of five independent variables; namely the temperature (X₁); the flow rate (X₂); the catalyst weight (X₃); the catalyst loading (X₄) and the glycerol-water molar ratio (X₅) on the H₂ yield (Y₁) and the conversion of glycerol to gaseous products (Y₂) were explored. Using multiple regression analysis; the experimental results of the H₂ yield and the glycerol conversion to gases were fit to quadratic polynomial models. The proposed mathematical models have correlated the dependent factors well within the limits that were being examined. The best values of the process variables were a temperature of approximately 600 °C; a feed flow rate of 0.05 mL/min; a catalyst weight of 0.2 g; a catalyst loading of 20% and a glycerol-water molar ratio of approximately 12; where the H₂ yield was predicted to be 57.6% and the conversion of glycerol was predicted to be 75%. To validate the proposed models; statistical analysis using a two-sample t -test was performed; and the results showed that the models could predict the responses satisfactorily within the limits of the variables that were studied.
Effect of water and alkali modifications on ETS-10 for the cycloaddition of CO2 to propylene oxide.
Doskocil, Eric J
2005-02-17
Sodium oxide (NaOx) impregnated Engelhard Titanosilicate-10 (ETS-10) molecular sieve catalysts were prepared to enhance the basicity associated with ETS-10 and subsequently investigated for the cycloaddition of carbon dioxide to propylene oxide to produce propylene carbonate. For dry NaOx-modified ETS-10 catalysts that contained no adsorbed water, a maximum yield of propylene carbonate was achieved at a loading of 2.0 excess NaOx species per unit cell. However, the greatest enhancements in the rate of reaction were observed when small amounts of water were adsorbed onto the unmodified ETS-10 catalyst immediately prior to reaction. Surface-bound water appears to enhance the surface Bronsted acidity of the unmodified ETS-10 catalyst via the formation of surface -OH groups at lower water loadings, producing a surface of better-tuned acid-base bifunctional characteristics for the cycloaddition reaction. At levels of hydration greater than 12.5% by mass, the yield of propylene carbonate was further enhanced, but at a smaller rate than that observed at lower rehydration levels, which is more indicative of an enhanced transport effect. Adsorption microcalorimetry of carbon dioxide indicated that, at loadings less than 2.0 NaOx per unit cell, the total uptake of the CO2 adsorption sites required for the reaction were less than in the parent ETS-10 material. However, at higher levels of NaOx occlusion, where the total uptake and strength of the adsorption sites exceeded those observed for the as-received ETS-10 material, the cycloaddition activity of this catalyst suffered due to the reduced pore volume and surface area. It appears that precise tuning of both the surface acidity and basicity is crucial in creating an effective acid-base bifunctional ETS-10 catalyst for the cycloaddition reaction investigated.
NASA Astrophysics Data System (ADS)
Santoro, Carlo; Kodali, Mounika; Kabir, Sadia; Soavi, Francesca; Serov, Alexey; Atanassov, Plamen
2017-07-01
Three-dimensional graphene nanosheets (3D-GNS) were used as cathode catalysts for microbial fuel cells (MFCs) operating in neutral conditions. 3D-GNS catalysts showed high performance towards oxygen electroreduction in neutral media with high current densities and low hydrogen peroxide generation compared to activated carbon (AC). 3D-GNS was incorporated into air-breathing cathodes based on AC with three different loadings (2, 6 and 10 mgcm-2). Performances in MFCs showed that 3D-GNS had the highest performances with power densities of 2.059 ± 0.003 Wm-2, 1.855 ± 0.007 Wm-2 and 1.503 ± 0.005 Wm-2 for loading of 10, 6 and 2 mgcm-2 respectively. Plain AC had the lowest performances (1.017 ± 0.009 Wm-2). The different cathodes were also investigated in supercapacitive MFCs (SC-MFCs). The addition of 3D-GNS decreased the ohmic losses by 14-25%. The decrease in ohmic losses allowed the SC-MFC with 3D-GNS (loading 10 mgcm-2) to have the maximum power (Pmax) of 5.746 ± 0.186 Wm-2. At 5 mA, the SC-MFC featured an "apparent" capacitive response that increased from 0.027 ± 0.007 F with AC to 0.213 ± 0.026 F with 3D-GNS (loading 2 mgcm-2) and further to 1.817 ± 0.040 F with 3D-GNS (loading 10 mgcm-2).
Mei, Xueyi; Yan, Qinghua; Lu, Peng; Wang, Junya; Cui, Yuhan; Nie, Yu; Umar, Ahmad; Wang, Qiang
2017-01-01
Pt/K2CO3/MgAlOx–reduced graphene oxide (Pt/K/MgAlOx–rGO) hybrids were synthesized, characterized and tested as a promising NOx storage and reduction (NSR) catalyst. Mg–Al layered double hydroxides (LDHs) were grown on rGO via in situ hydrothermal crystallization. The structure and morphology of samples were thoroughly characterized using various techniques. Isothermal NOx adsorption tests indicated that MgAlOx–rGO hybrid exhibited better NOx trapping performance than MgAlOx, from 0.44 to 0.61 mmol · g−1, which can be attributed to the enhanced particle dispersion and stabilization. In addition, a series of MgAlOx–rGO loaded with 2 wt% Pt and different loadings (5, 10, 15, and 20 wt%) of K2CO3 (denoted as Pt/K/MgAlOx–rGO) were obtained by sequential impregnation. The influence of 5% H2O on the NOx storage capacity of MgAlOx–rGO loaded with 2 wt% Pt and 10% K2CO3 (2Pt/10 K/MgAlOx–rGO) catalyst was also evaluated. In all, the 2Pt/10 K/MgAlOx–rGO catalyst not only exhibited high thermal stability and NOx storage capacity of 1.12 mmol · g−1, but also possessed excellent H2O resistance and lean–rich cycling performance, with an overall 78.4% of NOx removal. This work provided a new scheme for the preparation of highly dispersed MgAlOx–rGO hybrid based NSR catalysts. PMID:28205630
Koo, Won-Tae; Yu, Sunmoon; Choi, Seon-Jin; Jang, Ji-Soo; Cheong, Jun Young; Kim, Il-Doo
2017-03-08
The increase of surface area and the functionalization of catalyst are crucial to development of high-performance semiconductor metal oxide (SMO) based chemiresistive gas sensors. Herein, nanoscale catalyst loaded Co 3 O 4 hollow nanocages (HNCs) by using metal-organic framework (MOF) templates have been developed as a new sensing platform. Nanoscale Pd nanoparticles (NPs) were easily loaded on the cavity of Co based zeolite imidazole framework (ZIF-67). The porous structure of ZIF-67 can restrict the size of Pd NPs (2-3 nm) and separate Pd NPs from each other. Subsequently, the calcination of Pd loaded ZIF-67 produced the catalytic PdO NPs functionalized Co 3 O 4 HNCs (PdO-Co 3 O 4 HNCs). The ultrasmall PdO NPs (3-4 nm) are well-distributed in the wall of Co 3 O 4 HNCs, the unique structure of which can provide high surface area and high catalytic activity. As a result, the PdO-Co 3 O 4 HNCs exhibited improved acetone sensing response (R gas /R air = 2.51-5 ppm) compared to PdO-Co 3 O 4 powders (R gas /R air = 1.98), Co 3 O 4 HNCs (R gas /R air = 1.96), and Co 3 O 4 powders (R gas /R air = 1.45). In addition, the PdO-Co 3 O 4 HNCs showed high acetone selectivity against other interfering gases. Moreover, the sensor array clearly distinguished simulated exhaled breath of diabetics from healthy people's breath. These results confirmed the novel synthesis of MOF templated nanoscale catalyst loaded SMO HNCs for high performance gas sensors.
Membrane catalyst layer for fuel cells
Wilson, Mahlon S.
1993-01-01
A gas reaction fuel cell incorporates a thin catalyst layer between a solid polymer electrolyte (SPE) membrane and a porous electrode backing. The catalyst layer is preferably less than about 10 .mu.m in thickness with a carbon supported platinum catalyst loading less than about 0.35 mgPt/cm.sup.2. The film is formed as an ink that is spread and cured on a film release blank. The cured film is then transferred to the SPE membrane and hot pressed into the surface to form a catalyst layer having a controlled thickness and catalyst distribution. Alternatively, the catalyst layer is formed by applying a Na.sup.+ form of a perfluorosulfonate ionomer directly to the membrane, drying the film at a high temperature, and then converting the film back to the protonated form of the ionomer. The layer has adequate gas permeability so that cell performance is not affected and has a density and particle distribution effective to optimize proton access to the catalyst and electronic continuity for electron flow from the half-cell reaction occurring at the catalyst.
Fremerey, Peter; Jess, Andreas; Moos, Ralf
2015-10-23
In order to study the sulfidation of a catalyst fixed bed, an in operando single pellet sensor was designed. A catalyst pellet from the fixed bed was electrically contacted and its electrical response was correlated with the catalyst behavior. For the sulfidation tests, a nickel catalyst was used and was sulfidized with H₂S. This catalyst had a very low conductivity in the reduced state. During sulfidation, the conductivity of the catalyst increased by decades. A reaction from nickel to nickel sulfide occurred. This conductivity increase by decades during sulfidation had not been expected since both nickel and nickel sulfides behave metallic. Only by assuming a percolation phenomenon that originates from a volume increase of the nickel contacts when reacting to nickel sulfides, this effect can be explained. This assumption was supported by sulfidation tests with differently nickel loaded catalysts and it was quantitatively estimated by a general effective media theory. The single pellet sensor device for in operando investigation of sulfidation can be considered as a valuable tool to get further insights into catalysts under reaction conditions.
Study of catalysis for solid oxide fuel cells and direct methanol fuel cells
NASA Astrophysics Data System (ADS)
Jiang, Xirong
Fuel cells offer the enticing promise of cleaner electricity with lower environmental impact than traditional energy conversion technologies. Driven by the interest in power sources for portable electronics, and distributed generation and automotive propulsion markets, active development efforts in the technologies of both solid oxide fuel cell (SOFC) and direct methanol fuel cell (DMFC) devices have achieved significant progress. However, current catalysts for fuel cells are either of low catalytic activity or extremely expensive, presenting a key barrier toward the widespread commercialization of fuel cell devices. In this thesis work, atomic layer deposition (ALD), a novel thin film deposition technique, was employed to apply catalytic Pt to SOFC, and investigate both Pt skin catalysts and Pt-Ru catalysts for methanol oxidation, a very important reaction for DMFC, to increase the activity and utilization levels of the catalysts while simultaneously reducing the catalyst loading. For SOFCs, we explored the use of ALD for the fabrication of electrode components, including an ultra-thin Pt film for use as the electrocatalyst, and a Pt mesh structure for a current collector for SOFCs, aiming for precise control over the catalyst loading and catalyst geometry, and enhancement in the current collect efficiency. We choose Pt since it has high chemical stability and excellent catalytic activity for the O2 reduction reaction and the H2 oxidation reaction even at low operating temperatures. Working SOFC fuel cells were fabricated with ALD-deposited Pt thin films as an electrode/catalyst layer. The measured fuel cell performance reveals that comparable peak power densities were achieved for ALD-deposited Pt anodes with only one-fifth of the Pt loading relative to a DC-sputtered counterpart. In addition to the continuous electrocatalyst layer, a micro-patterned Pt structure was developed via the technique of area selective ALD. By coating yttria-stabilized zirconia, a typical solid oxide electrolyte, with patterned (octadecyltrichlorosilane) ODTS self-assembled monolayers (SAMs), Pt thin films were grown selectively on the SAM-free surface regions. Features with sizes as small as 2 mum were deposited by this combined ALD-muCP method. The micro-patterned Pt structure deposited by area selective ALD was applied to SOFCs as a current collector grid/patterned catalyst. An improvement in the fuel cell performance by a factor of 10 was observed using the Pt current collector grids/patterned catalyst integrated onto cathodic La0.6Sr 0.4Co0.2Fe0.8O3-delta. For possible catalytic anodes in DMFCs employing a 1:1 stoichiometric methanol-water reforming mixture, two strategies were employed in this thesis. One approach is to fabricate skin catalysts, where ALD Pt films of various thicknesses were used to coat sputtered Ru films forming Pt skin catalysts for study of methanol oxidation. Another strategy is to replace or alloy Pt with Ru; for this effort, both dc-sputtering and atomic layer deposition were employed to fabricate Pt-Ru catalysts of various Ru contents. The electrochemical behavior of all of the Pt skin catalysts, the DC co-sputtered Pt-Ru catalysts and the ALD co-deposited Pt-Ru catalysts were evaluated at room temperature for methanol oxidation using cyclic voltammetry and chronoamperometry in highly concentrated 16.6 M MeOH, which corresponds to the stoichiometric fuel that will be employed in next generation DMFCs that are designed to minimize or eliminate methanol crossover. The catalytic activity of sputtered Ru catalysts toward methanol oxidation is strongly enhanced by the ALD Pt overlayer, with such skin layer catalysts displaying superior catalytic activity over pure Pt. For both the DC co-sputtered catalysts and ALD co-deposited catalysts, the electrochemical studies illustrate that the optimal stoichiometry ratio for Pt to Ru is approximately 1:1, which is in good agreement with most literature.
Nanosized IrO2 electrocatalysts for oxygen evolution reaction in an SPE electrolyzer
NASA Astrophysics Data System (ADS)
Cruz, J. C.; Baglio, V.; Siracusano, S.; Ornelas, R.; Ortiz-Frade, L.; Arriaga, L. G.; Antonucci, V.; Aricò, A. S.
2011-04-01
Nanosized IrO2 electrocatalysts ( d 7-9 nm) with specific surface area up to 100 m2 g-1 were synthesized and characterized for the oxygen evolution reaction in a solid polymer electrolyte (SPE) electrolyzer. The catalysts were prepared by a colloidal method in aqueous solution and a subsequent thermal treatment. An iridium hydroxide hydrate precursor was obtained at 100 °C, which was, successively, calcined at different temperatures from 200 to 500 °C. The physico-chemical characterization was carried out by X-ray diffraction (XRD), thermogravimetry-differential scanning calorimetry (TG-DSC) and transmission electron microscopy (TEM). IrO2 catalysts were sprayed onto a Nafion 115 membrane up to a loading of 3 mg cm-2. A Pt catalyst was used at the cathode compartment with a loading of 0.6 mg cm-2. The electrochemical activity for water electrolysis of the membrane-electrode assemblies (MEAs) was investigated in a single cell SPE electrolyzer by steady-state polarization curves, impedance spectroscopy and chrono-amperometric measurements. A maximum current density of 1.3 A cm-2 was obtained at 1.8 V and 80 °C for the IrO2 catalyst calcined at 400 °C for 1 h. A stable performance was recorded in single cell for this anode catalyst at 80 °C. The suitable catalytic activity and stability of the most performing catalyst were interpreted in terms of proper combination between nanostructure and suitable morphology.
Weng, Junfei; Lu, Xingxu; Gao, Pu-Xian
2017-08-28
The monolithic catalyst, namely the structured catalyst, is one of the important categories of catalysts used in various fields, especially in catalytic exhaust after-treatment. Despite its successful application in conventional wash-coated catalysts in both mobile and stationary catalytic converters, washcoat-based technologies are facing multi-fold challenges, including: (1) high Pt-group metals (PGM) material loading being required, driving the market prices; (2) less-than ideal distribution of washcoats in typically square-shaped channels associated with pressure drop sacrifice; and (3) far from clear correlations between macroscopic washcoat structures and their catalytic performance. To tackle these challenges, the well-defined nanostructure array (nano-array)-integrated structured catalysts whichmore » we invented and developed recently have been proven to be a promising class of cost-effective and efficient devices that may complement or substitute wash-coated catalysts. This new type of structured catalysts is composed of honeycomb-structured monoliths, whose channel surfaces are grown in situ with a nano-array forest made of traditional binary transition metal oxide support such as Al 2O 3, CeO 2, Co 3O 4, MnO 2, TiO 2, and ZnO, or newer support materials including perovskite-type ABO3 structures, for example LaMnO 3, LaCoO 3, LaNiO, and LaFeO 3. The integration strategy parts from the traditional washcoat technique. Instead, an in situ nanomaterial assembly method is utilized, such as a hydro (solva-) thermal synthesis approach, in order to create sound structure robustness, and increase ease and complex-shaped substrate adaptability. Specifically, the critical fabrication procedures for nano-array structured catalysts include deposition of seeding layer, in situ growth of nano-array, and loading of catalytic materials. The generic methodology utilization in both the magnetic stirring batch process and continuous flow reactor synthesis offers the nano-array catalysts with great potential to be scaled up readily and cost-effectively. The tunability of the structure and catalytic performance could be achieved through morphology and geometry adjustment and guest atoms and defect manipulation, as well as composite nano-array catalyst manufacture. Excellent stabilities under various conditions were also present compared to conventional wash-coated catalysts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weng, Junfei; Lu, Xingxu; Gao, Pu-Xian
The monolithic catalyst, namely the structured catalyst, is one of the important categories of catalysts used in various fields, especially in catalytic exhaust after-treatment. Despite its successful application in conventional wash-coated catalysts in both mobile and stationary catalytic converters, washcoat-based technologies are facing multi-fold challenges, including: (1) high Pt-group metals (PGM) material loading being required, driving the market prices; (2) less-than ideal distribution of washcoats in typically square-shaped channels associated with pressure drop sacrifice; and (3) far from clear correlations between macroscopic washcoat structures and their catalytic performance. To tackle these challenges, the well-defined nanostructure array (nano-array)-integrated structured catalysts whichmore » we invented and developed recently have been proven to be a promising class of cost-effective and efficient devices that may complement or substitute wash-coated catalysts. This new type of structured catalysts is composed of honeycomb-structured monoliths, whose channel surfaces are grown in situ with a nano-array forest made of traditional binary transition metal oxide support such as Al 2O 3, CeO 2, Co 3O 4, MnO 2, TiO 2, and ZnO, or newer support materials including perovskite-type ABO3 structures, for example LaMnO 3, LaCoO 3, LaNiO, and LaFeO 3. The integration strategy parts from the traditional washcoat technique. Instead, an in situ nanomaterial assembly method is utilized, such as a hydro (solva-) thermal synthesis approach, in order to create sound structure robustness, and increase ease and complex-shaped substrate adaptability. Specifically, the critical fabrication procedures for nano-array structured catalysts include deposition of seeding layer, in situ growth of nano-array, and loading of catalytic materials. The generic methodology utilization in both the magnetic stirring batch process and continuous flow reactor synthesis offers the nano-array catalysts with great potential to be scaled up readily and cost-effectively. The tunability of the structure and catalytic performance could be achieved through morphology and geometry adjustment and guest atoms and defect manipulation, as well as composite nano-array catalyst manufacture. Excellent stabilities under various conditions were also present compared to conventional wash-coated catalysts.« less
An excellent visible light activated Ag and S doped TiO2 nanocatalyst was prepared by using AgNO3 and garlic (Allium sativum) as Ag+ and sulfur sources, respectively. The catalyst resisted the change from anatase to rutile phase even at calcination at 700 oC. The photocatalytic e...
Deng, Jing; Chen, Yi-Jing; Lu, Yu-An; Ma, Xiao-Yan; Feng, Shan-Fang; Gao, Naiyun; Li, Jun
2017-06-01
CoFe 2 O 4 /ordered mesoporous carbon (OMC) nanocomposites were synthesized and tested as heterogeneous peroxymonosulfate (PMS) activator for the removal of rhodamine B. Characterization confirmed that CoFe 2 O 4 nanoparticles were tightly bonded to OMC, and the hybrid catalyst possessed high surface area, pore volume, and superparamagnetism. Oxidation experiments demonstrated that CoFe 2 O 4 /OMC nanocomposites displayed favorable catalytic activity in PMS solution and rhodamine B degradation could be well described by pseudo-first-order kinetic model. Sulfate radicals (SO 4 - ·) were verified as the primary reactive species which was responsible for the decomposition of rhodamine B. The optimum loading ratio of CoFe 2 O 4 and OMC was determined to be 5:1. Under optimum operational condition (catalyst dosage 0.05 g/L, PMS concentration 1.5 mM, pH 7.0, and 25 °C), CoFe 2 O 4 /OMC-activated peroxymonosulfate system could achieve almost complete decolorization of 100 mg/L rhodamine B within 60 min. The enhanced catalytic activity of CoFe 2 O 4 /OMC nanocomposites compared to that of CoFe 2 O 4 nanoparticles could be attributable to the increased adsorption capacity and accelerated redox cycles between Co(III)/Co(II) and Fe(III)/Fe(II).
Bo, Longli; Quan, Xie; Wang, Xiaochang; Chen, Shuo
2008-08-30
Granular activated carbon-supported platinum (Pt/GAC) catalysts were prepared by microwave irradiation and characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). Pt particles dispersing onto the surface of GAC could be penetrated by microwave and acted as "reaction centre" in the degradations of p-nitrophenol (PNP) and pentachlorophenol (PCP) in aqueous solution by microwave-assisted catalytic oxidation. The reaction was carried out through a packed bed reactor under ambient pressure and continuous flow mode. Under the conditions of microwave power 400 W, influent flow 6.4 mL min(-1) and air flow 120 mL min(-1), phenolic solutions with high concentration (initial concentrations of PNP and PCP solutions were 1469 and 1,454 mg L(-1), respectively) were treated effectively by Pt/GAC, 86% PNP and 90% PCP were degraded and total organic carbon (TOC) removal reached 85% and 71%, respectively. Compared with GAC, loaded Pt apparently accelerated oxidative reaction so that Pt/GAC had a better degrading and mineralizing efficiencies for PNP. Hydraulic retention time was only 16 min in experiment, which was shortened greatly compared with catalytic wet air oxidation. Pyrolysis and oxidation of phenolic pollutants occurred simultaneously on the surface of Pt/GAC by microwave irradiation.
Zr-doped ceria additives for enhanced PEM fuel cell durability and radical scavenger stability
Baker, Andrew M.; Williams, Stefan Thurston DuBard; Mukundan, Rangachary; ...
2017-06-06
Doped ceria compounds demonstrate excellent radical scavenging abilities and are promising additives to improve the chemical durability of polymer electrolyte membrane (PEM) fuel cells. Here in this paper, Ce 0.85Zr 0.15O 2 (CZO) nanoparticles were incorporated into the cathode catalyst layers (CLs) of PEM fuel cells (based on Nafion XL membranes containing 6.0 μg cm -2 ion-exchanged Ce) at loadings of 10 and 55 μg cm -2. When compared to a CZO-free baseline, CZO-containing membrane electrode assemblies (MEAs) demonstrated extended lifetimes during PEM chemical stability accelerated stress tests (ASTs), exhibiting reduced electrochemical gas crossover, open circuit voltage decay, and fluoridemore » emission rates. The MEA with high CZO loading (55 μg cm -2) demonstrated performance losses, which are attributed to Ce poisoning of the PEM and CL ionomer regions, which is supported by X-ray fluorescence (XRF) analysis. In the MEA with the low CZO loading (10 μg cm -2), both the beginning of life (BOL) performance and the performance after 500 hours of ASTs were nearly identical to the BOL performance of the CZO-free baseline MEA. XRF analysis of the MEA with low CZO loading reveals that the BOL PEM Ce concentrations are preserved after 1408 hours of ASTs and that Ce contents in the cathode CL are not significant enough to reduce performance. Therefore, employing a highly effective radical scavenger such as CZO, at a loading of 10 μg cm -2 in the cathode CL, dramatically mitigates degradation effects, which improves MEA chemical durability and minimizes performance losses.« less
Zr-doped ceria additives for enhanced PEM fuel cell durability and radical scavenger stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Andrew M.; Williams, Stefan Thurston DuBard; Mukundan, Rangachary
Doped ceria compounds demonstrate excellent radical scavenging abilities and are promising additives to improve the chemical durability of polymer electrolyte membrane (PEM) fuel cells. Here in this paper, Ce 0.85Zr 0.15O 2 (CZO) nanoparticles were incorporated into the cathode catalyst layers (CLs) of PEM fuel cells (based on Nafion XL membranes containing 6.0 μg cm -2 ion-exchanged Ce) at loadings of 10 and 55 μg cm -2. When compared to a CZO-free baseline, CZO-containing membrane electrode assemblies (MEAs) demonstrated extended lifetimes during PEM chemical stability accelerated stress tests (ASTs), exhibiting reduced electrochemical gas crossover, open circuit voltage decay, and fluoridemore » emission rates. The MEA with high CZO loading (55 μg cm -2) demonstrated performance losses, which are attributed to Ce poisoning of the PEM and CL ionomer regions, which is supported by X-ray fluorescence (XRF) analysis. In the MEA with the low CZO loading (10 μg cm -2), both the beginning of life (BOL) performance and the performance after 500 hours of ASTs were nearly identical to the BOL performance of the CZO-free baseline MEA. XRF analysis of the MEA with low CZO loading reveals that the BOL PEM Ce concentrations are preserved after 1408 hours of ASTs and that Ce contents in the cathode CL are not significant enough to reduce performance. Therefore, employing a highly effective radical scavenger such as CZO, at a loading of 10 μg cm -2 in the cathode CL, dramatically mitigates degradation effects, which improves MEA chemical durability and minimizes performance losses.« less
Li, Xingang; San, Xiaoguang; Zhang, Yi; Ichii, Takashi; Meng, Ming; Tan, Yisheng; Tsubaki, Noritatsu
2010-10-25
Ethanol was directly synthesized from dimethyl ether (DME) and syngas with the combined H-Mordenite and Cu/ZnO catalysts that were separately loaded in a dual-catalyst bed reactor. Methyl acetate (MA) was formed by DME carbonylation over the H-Mordenite catalyst. Thereafter, ethanol and methanol were produced by MA hydrogenation over the Cu/ZnO catalyst. With the reactant gas containing 1.0% DME, the optimized temperature for the reaction was at 493 K to reach 100% conversion. In the products, the yield of methanol and ethanol could reach 46.3% and 42.2%, respectively, with a small amount of MA, ethyl acetate, and CO(2). This process is environmentally friendly as the main byproduct methanol can be recycled to DME by a dehydration reaction. In contrast, for the physically mixed catalysts, the low conversion of DME and high selectivity of methanol were observed.
Biodiesel production from used cooking oil by two-step heterogeneous catalyzed process.
Srilatha, K; Prabhavathi Devi, B L A; Lingaiah, N; Prasad, R B N; Sai Prasad, P S
2012-09-01
The present study demonstrates the production of biodiesel from used cooking oil containing high free fatty acid by a two-step heterogeneously catalyzed process. The free fatty acids were first esterified with methanol using a 25 wt.% TPA/Nb(2)O(5) catalyst followed by transesterification of the oil with methanol over ZnO/Na-Y zeolite catalyst. The catalysts were characterized by XRD, FT-IR, BET surface area and CO(2)-TPD. In the case of transesterification the effect of reaction parameters, such as catalyst concentration, methanol to oil molar ratio and reaction temperature, on the yield of ester were investigated. The catalyst with 20 wt.% ZnO loading on Na-Y exhibited the highest activity among the others. Both the solid acid and base catalysts were found to be reusable for several times indicating their efficacy in the two-step process. Copyright © 2012 Elsevier Ltd. All rights reserved.
Nitrogen-based catalysts for the electrochemical reduction of CO2 to CO.
Tornow, Claire E; Thorson, Michael R; Ma, Sichao; Gewirth, Andrew A; Kenis, Paul J A
2012-12-05
The synthesis and application of carbon-supported, nitrogen-based organometallic silver catalysts for the reduction of CO(2) is studied using an electrochemical flow reactor. Their performance toward the selective formation of CO is similar to the performance achieved when using Ag as the catalyst, but comparatively at much lower silver loading. Faradaic efficiencies of the organometallic catalyst are higher than 90%, which are comparable to those of Ag. Furthermore, with the addition of an amine ligand to Ag/C, the partial current density for CO increases significantly, suggesting a possible co-catalyst mechanism. Additional improvements in activity and selectivity may be achieved as greater insight is obtained on the mechanism of CO(2) reduction and on how these complexes assemble on the carbon support.
NASA Astrophysics Data System (ADS)
Shinozaki, Kazuma; Morimoto, Yu; Pivovar, Bryan S.; Kocha, Shyam S.
2016-09-01
The impact of Nafion on the oxygen reduction reaction (ORR) activity is studied for Pt/C and Pt-alloy/C catalysts using thin-film rotating disk electrode (TF-RDE) methods in 0.1 M HClO4. Ultrathin uniform catalyst layers and standardized activity measurement protocols are employed to obtain accurate and reproducible ORR activity. Nafion lowers the ORR activity which plateaus with increasing loading on Pt catalysts. Pt particle size is found not to have significant influence on the extent of the SA decrease upon Nafion incorporation. Catalysts using high surface area carbon (HSC) support exhibit attenuated activity loss resulting from lower ionomer coverage on catalyst particles located within the deep pores. The impact of metallic composition on the activity loss due to Nafion incorporation is also discussed.
Catalytic conversion of alcohols having at least three carbon atoms to hydrocarbon blendstock
Narula, Chaitanya K.; Davison, Brian H.
2018-04-17
A method for producing a hydrocarbon blendstock, the method comprising contacting at least one saturated acyclic alcohol having at least three and up to ten carbon atoms with a metal-loaded zeolite catalyst at a temperature of at least 100.degree. C. and up to 550.degree. C., wherein the metal is a positively-charged metal ion, and the metal-loaded zeolite catalyst is catalytically active for converting the alcohol to the hydrocarbon blendstock, wherein the method directly produces a hydrocarbon blendstock having less than 1 vol % ethylene and at least 35 vol % of hydrocarbon compounds containing at least eight carbon atoms.
Catalytic conversion of alcohols having at least three carbon atoms to hydrocarbon blendstock
Narula, Chaitanya K.; Davison, Brian H.
2015-11-13
A method for producing a hydrocarbon blendstock, the method comprising contacting at least one saturated acyclic alcohol having at least three and up to ten carbon atoms with a metal-loaded zeolite catalyst at a temperature of at least 100°C and up to 550°C, wherein the metal is a positively-charged metal ion, and the metal-loaded zeolite catalyst is catalytically active for converting the alcohol to the hydrocarbon blendstock, wherein the method directly produces a hydrocarbon blendstock having less than 1 vol % ethylene and at least 35 vol % of hydrocarbon compounds containing at least eight carbon atoms.
NASA Astrophysics Data System (ADS)
Sulaiman, Fatah; Sari, Denni Kartika; Kustiningsih, Indar
2017-05-01
Effect of ozone on the photocatalytic degradation of phenol using TiO2 photocatalyst which supported Bayah Natural Zeolite has been investigated. Phenol (merk Pro analys) was used as waste solution. TiO2 photocatalyst was obtained from Titanium isopropoxide using sol gel method which supported by Bayah Natural Zeolite. The influence of temperature of calcination and catalyst loading have been conducted. The calcination temperature of photocatalyst was 450°C, 500°C, 550°C dan 600°C while the catalyst loading of 0,1g/L; 0,3 g/L; 0,6 g/L; 1 g/L dan 1,2 g/L. Analysis of phenol concentration was used Hach Spechtrophotometer. To determine the effect of ozone on photocatalytic degradation during process ozone was flowed into reactor. The result showed the optimum calcination temperature was obtained at 500°C. The optimum catalyst loading to degrade the phenolic compounds was equal to 1g/L. In these optimum condition the conversion of phenol degradation was 87% after 5 hours. By adding ozone during the degradation process, the conversion reached 100% after 2 hours.
UV-vis-DR study of VO x/SiO 2 catalysts prepared by sol-gel method
NASA Astrophysics Data System (ADS)
Moussa, N.; Ghorbel, A.
2008-12-01
Vanadia-silica catalysts with different vanadium loadings were prepared by sol-gel process. UV-vis diffuse-reflectance spectroscopy was used to elucidate the effect of drying mode (i.e., xerogel vs. aerogel), vanadium loading and calcination on the molecular structure of supported vanadium species. The results indicate that for vanadium loading ranging from 2.8 to 11.2 wt.%, the band-gap energies of all catalysts varying from 2.28 to 2.68 eV which demonstrate that vanadium oxides are predominantly in octahedral structure with the presence of tetrahedral species. The discrimination of different surface VO x species has been based on their characteristic Ligand to Metal Charge Transfer (LMCT) O → V(V) and d-d transition. It was found that the LMCT band position of V dbnd O bond is not affected by calcination either in xerogels or in aerogels but the position and the shape of bands relative to bridging V sbnd O sbnd V bonds are affected by vanadium loading, calcination and drying mode. For the same V/Si ratio, band-gap energy of xerogel is lower than that of aerogel which indicate that vanadium species are more dispersed in aerogels than in xerogels. Drying and calcination led to rearrangement, dehydration, cleavage and crystallization of vanadium species which explain the presence of some amount of crystalline V 2O 5 in calcined samples.
High Performance Fe- and N- Doped Carbon Catalyst with Graphene Structure for Oxygen Reduction
NASA Astrophysics Data System (ADS)
Peng, Hongliang; Mo, Zaiyong; Liao, Shijun; Liang, Huagen; Yang, Lijun; Luo, Fan; Song, Huiyu; Zhong, Yiliang; Zhang, Bingqing
2013-05-01
Proton exchange membrane fuel cells are promising candidates for a clean and efficient energy conversion in the future, the development of carbon based inexpensive non-precious metal ORR catalyst has becoming one of the most attractive topics in fuel cell field. Herein we report a Fe- and N- doped carbon catalyst Fe-PANI/C-Mela with graphene structure and the surface area up to 702 m2 g-1. In 0.1 M HClO4 electrolyte, the ORR onset potential for the catalyst is high up to 0.98 V, and the half-wave potential is only 60 mV less than that of the Pt/C catalyst (Loadings: 51 μg Pt cm-2). The catalyst shows high stability after 10,000 cyclic voltammetry cycles. A membrane electrode assembly made with the catalyst as a cathode is tested in a H2-air single cell, the maximum power density reached ~0.33 W cm2 at 0.47 V.
Pang, H L; Zhang, X H; Zhong, X X; Liu, B; Wei, X G; Kuang, Y F; Chen, J H
2008-03-01
Ru-doped SnO2 nanoparticles were prepared by chemical precipitation and calcinations at 823 K. Due to high stability in diluted acidic solution, Ru-doped SnO2 nanoparticles were selected as the catalyst support and second catalyst for methanol electrooxidation. The micrograph, elemental composition, and structure of the Ru-doped SnO2 nanoparticles were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction, respectively. The electrocatalytic properties of the Ru-doped SnO2-supported Pt catalyst (Pt/Ru-doped SnO2) for methanol oxidation have been investigated by cyclic voltammetry. Under the same loading mass of Pt, the Pt/Ru-doped SnO2 catalyst shows better electrocatalytic performance than the Pt/SnO2 catalyst and the best atomic ratio of Ru to Sn in Ru-doped SnO2 is 1/75. Additionally, the Pt/Ru-doped SnO2 catalyst possesses good long-term cycle stability.
Schultz, Mitchell J.; Hamilton, Steven S.; Jensen, David R.; Sigman, Matthew S.
2009-01-01
Three catalysts for aerobic oxidation of alcohols are discussed and the effectiveness of each is evaluated for allylic, benzylic, aliphatic, and functionalized alcohols. Additionally, chiral nonracemic substrates as well as chemoselective and diastereoselective oxidations are investigated. In this study, the most convenient system for the Pd-catalyzed aerobic oxidation of alcohols is Pd(OAc)2 in combination with triethylamine. This system functions effectively for the majority of alcohols tested and uses mild conditions (3 to 5 mol % of catalyst, room temperature). Pd(IiPr)(OAc)2(H2O) (1) also successfully oxidizes the majority of alcohols evaluated. This system has the advantage of significantly lowering catalyst loadings but requires higher temperatures (0.1 to 1 mol % of catalyst, 60 °C). A new catalyst is also disclosed, Pd(IiPr)(OPiv)2 (2). This catalyst operates under very mild conditions (1 mol %, room temperature, and air as the O2 source) but with a more limited substrate scope. PMID:15844968
Environmentally benign Friedel-Crafts benzylation over nano-TiO2/SO4 2-
NASA Astrophysics Data System (ADS)
Devi, Kalathiparambil RPS; Sreeja, Puthenveetil B.; Sugunan, Sankaran
2013-05-01
During the past decade, much attention has been paid to the replacement of homogeneous catalysts by solid acid catalysts. Friedel-Crafts benzylation of toluene with benzyl chloride (BC) in liquid phase was carried out over highly active, nano-crystalline sulfated titania systems. These catalysts were prepared using the sol gel method. Modification was done by loading 3% of transition metal oxides over sulfated titania. Reaction parameters such as catalyst mass, molar ratio, temperature, and time have been studied. More than 80% conversion of benzyl chloride and 100% selectivity are shown by all the catalysts under optimum conditions. Catalytic activity is correlated with Lewis acidity obtained from perylene adsorption studies. The reaction appears to proceed by an electrophile, which involves the reaction of BC with the acidic titania catalyst. The catalyst was regenerated and reused up to four reaction cycles with equal efficiency as in the first run. The prepared systems are environmentally friendly and are easy to handle.
Oxidation of methane over palladium catalysts: effect of the support.
Escandón, Lara S; Ordóñez, Salvador; Vega, Aurelio; Díez, Fernando V
2005-01-01
This work is focused on the deep catalytic oxidation of methane over supported palladium catalysts. The influences of the metal loading, oxidation state of palladium, nature of supports, presence of promoters in the supports (for zirconia-based supports), and thermal stability have been studied experimentally. Catalysts were prepared by incipient wetness of commercially available supports with aqueous solutions of palladium nitrate. For gamma-alumina support, it was observed that the optimal amount of palladium is between 0.5% and 2%, with higher amounts leading to a loss in specific activity. Concerning the oxidation state of the catalyst, it is concluded that for all the supports tested in the present work, a reduction of the catalyst is not needed, yielding the same conversion at steady state catalysts reduced and oxidised. The thermal stability of various supported catalysts were also studied, zirconia supports being the most active. These supports, specially Y-modified zirconia support, do not suffer appreciable deactivation below 500 degrees C.
Xu, Zhiping; Li, Wenzhi; Du, Zhijie; Wu, Hao; Jameel, Hasan; Chang, Hou-Min; Ma, Longlong
2015-12-01
A novel solid acid catalyst was prepared by the copolymerization of p-toluenesulfonic acid and paraformaldehyde and then characterized by FT-IR, TG/DTG, HRTEM and N2-BET. Furfural was successfully produced by the dehydration of xylose and xylan using the novel catalyst in γ-valerolactone. This investigation focused on effects of various reaction conditions including solvent, acid catalyst, reaction temperature, residence time, water concentration, xylose loading and catalyst dosage on the dehydration of xylose to furfural. It was found that the solid catalyst displayed extremely high activity for furfural production. 80.4% furfural yield with 98.8% xylose conversion was achieved at 170°C for 10 min. The catalyst could be recycled at least five times without significant loss of activity. Furthermore, 83.5% furfural yield and 19.5% HMF yield were obtained from raw corn stalk under more severe conditions (190°C for 100 min). Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yung, Matthew M.; Starace, Anne K.; Mukarakate, Calvin
Here in this work, Ni/ZSM-5 catalysts with varied nickel loadings were evaluated for their ability to produce aromatic hydrocarbons by upgrading of pine pyrolysis vapors. The effect of catalyst pretreatment by hydrogen reduction was also investigated. Results indicate that the addition of nickel increases the yield of aromatic hydrocarbons while simultaneously increasing the conversion of oxygenates, relative to ZSM-5, and these effects are more pronounced with increasing nickel loading. Additionally, while initial activity differences were observed between the oxidized and reduced forms of nickel on ZSM-5 (i.e., NiO/ZSM-5 versus Ni/ZSM-5), the activity of both catalysts converges with increasing time onmore » stream. These reaction results coupled with characterization of pristine and spent catalysts suggest that the catalysts reach similar active states during catalytic pyrolysis, regardless of pretreatment, as NiO undergoes in situ reduction to Ni by biomass pyrolysis vapors. This reduction of NiO to Ni was confirmed by reaction results and characterization by NH 3 temperature-programmed desorption, temperature-programmed reduction, and X-ray diffraction. This finding is significant in that the ability to reduce or eliminate the need for a pre-reaction H 2 reduction of Ni-modified zeolite catalysts could reduce process complexity and operating costs in a biorefinery-based vapor-phase upgrading process to produce biomass-derived fuels and chemicals. The ability to monitor catalyst activity in real time with a molecular beam mass spectrometer used to measure uncondensed, hot pyrolysis vapors allows for an improved understanding of the mechanism for improved activity with Ni addition to ZSM-5, which is attributed to the ability to prevent deactivation by deposition of coke and capping of zeolite micropores.« less
NASA Astrophysics Data System (ADS)
Pech-Pech, I. E.; Gervasio, Dominic F.; Godínez-Garcia, A.; Solorza-Feria, O.; Pérez-Robles, J. F.
2015-02-01
Silver (Ag) nanoparticles enriched with platinum (Pt) and palladium (Pd) on their surfaces (Ag@Pt0.1Pd0.1) are supported on Vulcan XC-72 carbon (C) to form a new catalyst (Ag@Pt0.1Pd0.1/C) for the oxygen reduction reaction (ORR) in acid electrolytes. This catalyst is prepared in one pot by reducing Ag and then Pt and Pd metal salts with sodium borohydride in the presence of trisodium citrate then adding XC-72 while applying intense ultrasound. The metallic Ag@Pt0.1Pd0.1 nanoparticles contain 2 weight percent of Pt, are spherical and have an average size less than 10 nm as determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). At the ORR potentials, Ag nanoparticles on carbon (Ag/C) rapidly lose Ag by dissolution and show no more catalytic activity for the ORR than the carbon support, whereas Ag@Pt0.1Pd0.1/C is a stable catalyst and exhibits 1.4 and 1.6 fold greater specific activity, also 3.6 and 2.8 fold greater mass activity for ORR in 0.5 M H2SO4 solution than comparable Pt/C and Pt0.5Pd0.5/C catalysts with the same Pt loading as determined for thin-films of these catalysts on a rotating-disk electrode (TF-RDE). Using silver nanoparticles increases Pt utilization and therefore decreases Pt-loading and cost of a catalyst for a proton exchange membrane fuel cell (PEMFC) electrode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Zhen; Overbury, Steven; Dai, Sheng
Au/TiO2 catalysts are active for CO oxidation, but they suffer from high-temperature sintering of the gold particles, and few attempts have been made to promote or stabilize Au/TiO2. Our recent communication addressed these issues by loading gold onto Al2O3/TiO2 prepared via surface-sol-gel processing of Al(sec-OC4H9)3 on TiO2. In our current full paper, Au/Al2O3/TiO2 catalysts were prepared alternatively by thermal decomposition of Al(NO3)3 on TiO2 followed by loading gold, and the influences of the decomposition temperature and Al2O3 content were systematically surveyed. This facile method was subsequently extended to the preparation of a battery of metal oxide-modified Au/TiO2 catalysts virtually notmore » reported. It was found that Au/TiO2 modified by CaO, NiO, ZnO, Ga2O3, Y2O3, ZrO2, La2O3, Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Dy2O3, Ho2O3, Er2O3, or Yb2O3 could retain significant activity at ambient temperature even after aging in O2-He at 500 C, whereas unmodified Au/TiO2 lost its activity. Moreover, some 200 C-calcined promoted catalysts showed high activity even at about -100 C. The deactivation and regeneration of some of these new catalysts were studied. This work furnished novel catalysts for further fundamental and applied research.« less
DOT National Transportation Integrated Search
2011-12-01
Accelerated pavement testing (APT) has been increasingly used by state highway agencies in recent years for evaluating pavement structures and/or materials. However, running an APT experiment is expensive. It requires costly accelerated loading devic...
Diaminophosphine oxide ligand enabled asymmetric nickel-catalyzed hydrocarbamoylations of alkenes.
Donets, Pavel A; Cramer, Nicolai
2013-08-14
Chiral trivalent phosphorus species are the dominant class of ligands and the key controlling element in asymmetric homogeneous transition-metal catalysis. Here, novel chiral diaminophosphine oxide ligands are described. The arising catalyst system with nickel(0) and trimethylaluminum efficiently activates formamide C-H bonds under mild conditions providing pyrrolidones via intramolecular hydrocarbamoylation in a highly enantioselective manner with as little as 0.25% mol catalyst loading. Mechanistically, the secondary phosphine oxides behave as bridging ligands for the nickel center and the Lewis acidic organoaluminum center to give a heterobimetallic catalyst with superior reactivity.
Non-noble metal Cu-loaded TiO2 for enhanced photocatalytic H2 production.
Foo, Wei Jian; Zhang, Chun; Ho, Ghim Wei
2013-01-21
Here we have demonstrated the preparation of high-quality, monodispersed and tunable phases of Cu nanoparticles. Structural and chemical composition studies depict the evolution of Cu-Cu(2)O-CuO nanoparticles at various process stages. The loading of Cu and Cu oxide nanoparticles on TiO(2) catalyst has enhanced the photocatalytic H(2) production. Comparatively, H(2) treatment produces well-dispersed Cu nanoparticles with thin oxide shells that show the highest H(2) production amongst the samples. The relatively higher photocatalytic performance is deemed to result from reduced structural defects, higher surface area and dispersivity as well as favorable charge transfer, which inhibits recombination. The Cu nanoparticles are shown to be a promising alternative to noble metal-loaded TiO(2) catalyst systems due to their low cost and high performance in photocatalytic applications.
Methanol steam reforming promoted by molten salt-modified platinum on alumina catalysts.
Kusche, Matthias; Agel, Friederike; Ní Bhriain, Nollaig; Kaftan, Andre; Laurin, Mathias; Libuda, Jörg; Wasserscheid, Peter
2014-09-01
We herein describe a straight forward procedure to increase the performance of platinum-on-alumina catalysts in methanol steam reforming by applying an alkali hydroxide coating according to the "solid catalyst with ionic liquid layer" (SCILL) approach. We demonstrate by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature-programmed desorption (TPD) studies that potassium doping plays an important role in the catalyst activation. Moreover, the hygroscopic nature and the basicity of the salt modification contribute to the considerable enhancement in catalytic performance. During reaction, a partly liquid film of alkali hydroxides/carbonates forms on the catalyst/alumina surface, thus significantly enhancing the availability of water at the catalytically active sites. Too high catalyst pore fillings with salt introduce a considerable mass transfer barrier into the system as indicated by kinetic studies. Thus, the optimum interplay between beneficial catalyst modification and detrimental mass transfer effects had to be identified and was found on the applied platinum-on-alumina catalyst at KOH loadings around 7.5 mass%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Tian, Hongjing; Guo, Qingjie; Xu, Dongyan
An attapulgite clay-supported cobalt-boride (Co-B) catalyst used in portable fuel cell fields is prepared in this paper by impregnation-chemical reduction method. The cost of attapulgite clay is much lower compared with some other inert carriers, such as activated carbon and carbon nanotube. Its microstructure and catalytic activity are analyzed in this paper. The effects of NaOH concentration, NaBH 4 concentration, reacting temperature, catalyst loadings and recycle times on the performance of the catalysts in hydrogen production from alkaline NaBH 4 solutions are investigated. Furthermore, characteristics of these catalysts are carried out in SEM, XRD and TEM analysis. The high catalytic activity of the catalyst indicates that it is a promising and practical catalyst. Activation energy of hydrogen generation using such catalysts is estimated to be 56.32 kJ mol -1. In the cycle test, from the 1st cycle to the 9th cycle, the average hydrogen generation rate decreases gradually from 1.27 l min -1 g -1 Co-B to 0.87 l min -1 g -1 Co-B.
Baran, Talat; Inanan, Tülden; Menteş, Ayfer
2016-07-10
The aim of this study is to analyze the synthesis of a new chitosan supported Pd catalyst and examination of its catalytic activity in: Pd catalyst was synthesized using chitosan as a biomaterial and characterized with FTIR, TG/DTG, XRD, (1)H NMR, (13)C NMR, SEM-EDAX, ICP-OES, Uv-vis spectroscopies, and magnetic moment, along with molar conductivity analysis. Biomaterial supported Pd catalyst indicated high activity and long life time as well as excellent turnover number (TON) and turnover frequency (TOF) values in Suzuki reaction. Biomaterial supported Pd catalyst catalyzed H2O2 decomposition reaction with considerable high activity using comparatively small loading catalyst (10mg). Redox potential of biomaterial supported Pd catalyst was still high without negligible loss (13% decrease) after 10 cycles in reusability tests. As a consequence, eco-friendly biomaterial supported Pd catalyst has superior properties such as high thermal stability, long life time, easy removal from reaction mixture and durability to air, moisture and high temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.
PEO-b-P4VP/Yttrium Hydroxide Hybrid Nanotubes as Supporter for Catalyst Gold Nanoparticles
NASA Astrophysics Data System (ADS)
Yang, Qian; Chen, Dao-yong
2012-06-01
The adsorption of poly (ethylene oxide)-b-poly(4-vinylpyridine)(PEO-b-P4VP) micelles onto the surface of yttrium hydroxide nanotubes (YNTs) resulted in the hybrid nanotubes with a dense P4VP inner layer and a stretched PEO outer layer surrounding YNTs. The dense P4VP layer was further stabilized by the crosslinking using 1,4-dibromobutane as the crosslinker. Then, the crosslinked hybrid nanotubes (CHNTs) were used as a novel nano supporter for loading the catalyst gold nanoparticles (GNPs) within the crosslinked P4VP layer. The resultant GNPs/CHNTs (GNTs loaded on CHNTs) were applied to catalyze the reduction reaction of p-nitrophenol. The results indicate that this novel nano supporter has advantages such as good dispersity in the suspension, high capacity in loading GNPs (0.87 mmol/g), high catalytic activity of the loaded GNPs (12.9 μmol-1min-1), and good reusability of GNTs/CHNTs.
Weng, Ko-Wei; Chen, Yung-Lin; Chen, Ya-Chi; Lin, Tai-Nan
2009-02-01
Direct methanol fuel cells (DMFC) have been widely studied owing to their simple cell configuration, high volume energy density, short start-up time, high operational reliability and other favorable characteristics. However, major limitations include high production cost, poisoning of the catalyst and methanol crossover. This study adopts a simple technique for preparing Pt-Ru/C multilayer catalysts, including magnetron sputtering (MS) and metal-plasma ion implantation (MPII). The Pt catalysts were sputtered onto the gas diffusion layer (GDL), followed by the implantation of Ru catalysts using MPII (at an accelerating voltage of 20 kV and an implantation dose of 1 x 10(16) ions/cm2). Pt-Ru is repeatedly processed to prepare Pt-Ru/C multilayer catalysts. The catalyst film structure and microstructure were analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electronic microscopy (SEM), respectively. The cell performance was tested using a potential stat/galvano-stat. The results reveal that the membrane electrode assembly (MEA) of four multilayer structures enhances the cell performance of DMFC. The measured power density is 2.2 mW/cm2 at a methanol concentration of 2 M, with an OCV of 0.493 V.
Catalytic oxidation of low-concentration CO at ambient temperature over supported Pd-Cu catalysts.
Wang, Fagen; Zhang, Haojie; He, Dannong
2014-01-01
The CO catalytic oxidation at ambient temperature and high space velocity was studied over the Pd-Cu/MOx (MOx = TiO2 and AI203) catalysts. The higher Brunauer-Emmett-Teller area surface of the A1203 support facilitates the dispersion of Pd2+ species, and the presence of Cu2Cl(OH)3 accelerates the re-oxidation of Pd0 to Pd2+ over the Pd-Cu/Al203 catalyst, which contributed to better performance of CO catalytic oxidation. The poorer activity of the Pd-Cu/TiO2 catalyst was attributed to the lower dispersion of Pd2+ species because of the less surface area and the non-formation of Cu2CI(OH)3 species. The presence of saturated moisture showed a negative effect on CO conversion over the two catalysts. This might be because of the competitive adsorption, the formation of carbonate species and the transformation of Cu2CI(OH)3 to inactive CuCI over the Pd-Cu/AI2O3 catalyst, which facilitates the aggregation of PdO species over the Pd-Cu/TiO2 catalyst under the moisture condition.
Homogeneous catalyst formulations for methanol production
Mahajan, Devinder; Sapienza, Richard S.; Slegeir, William A.; O'Hare, Thomas E.
1991-02-12
There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.-), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.
Homogeneous catalyst formulations for methanol production
Mahajan, Devinder; Sapienza, Richard S.; Slegeir, William A.; O'Hare, Thomas E.
1990-01-01
There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.13 ), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.
Ultrasound accelerated Claisen Schmidt condensation: A green route to chalcones
NASA Astrophysics Data System (ADS)
Calvino, V.; Picallo, M.; López-Peinado, A. J.; Martín-Aranda, R. M.; Durán-Valle, C. J.
2006-06-01
Chalcones have been synthesized under sonochemical irradiation by Claisen-Schmidt condensation between benzaldehyde and acetophenone. Two basic activated carbons (Na and Cs-Norit) have been used as catalysts. The effect of the ultrasound activation has been studied. A substantial enhancing effect in the yield was observed when the carbon catalyst was activated under ultrasonic waves. This "green" method (combination of alkaline-doped carbon catalyst and ultrasound waves) has been applied to the synthesis of several chalcones with antibacterial properties achieving, in all cases, excellent activities and selectivities. A comparative study under non-sonic activation has showed that the yields are lower in silent conditions, indicating that the sonication exerts a positive effect on the activity of the catalyst. Cs-doped carbon is presented as the optimum catalyst, giving excellent activity for this type of condensation. Cs-Norit carbon catalyst can compete with the traditional NaOH/EtOH when the reaction is carried out under ultrasounds. The role of solvent in this reaction was studied with ethanol. High conversion was obtained in absence of solvent. The carbons were characterized by thermal analysis, nitrogen adsorption and X-ray photoelectron spectroscopy.
Process and catalyst for carbonylating olefins
Zoeller, Joseph Robert
1998-06-02
Disclosed is an improved catalyst system and process for preparing aliphatic carbonyl compounds such as aliphatic carboxylic acids, alkyl esters of aliphatic carboxylic acids and anhydrides of aliphatic carboxylic acids by carbonylating olefins in the presence of a catalyst system comprising (1) a first component selected from at least one Group 6 metal, i.e., chromium, molybdenum, and/or tungsten and (2) a second component selected from at least one of certain halides and tertiary and quaternary compounds of a Group 15 element, i.e., nitrogen, phosphorus and/or arsenic, and (3) as a third component, a polar, aprotic solvent. The process employing the improved catalyst system is carried out under carbonylating conditions of pressure and temperature discussed herein. The process constitutes and improvement over known processes since it can be carried out at moderate carbonylation conditions without the necessity of using an expensive noble metal catalyst, volatile, toxic materials such as nickel tetracarbonyl, formic acid or a formate ester. Further, the addition of a polar, aprotic solvent to the catalyst system significantly increases, or accelerates, the rate at which the carbonylation takes place.
Tan, Qiang; Du, Chunyu; Sun, Yongrong; Du, Lei; Yin, Geping; Gao, Yunzhi
2015-08-28
A novel palladium-doped ceria and carbon core-sheath nanowire network (Pd-CeO2@C CSNWN) is synthesized by a template-free and surfactant-free solvothermal process, followed by high temperature carbonization. This hierarchical network serves as a new class of catalyst support to enhance the activity and durability of noble metal catalysts for alcohol oxidation reactions. Its supported Pd nanoparticles, Pd/(Pd-CeO2@C CSNWN), exhibit >9 fold increase in activity toward the ethanol oxidation over the state-of-the-art Pd/C catalyst, which is the highest among the reported Pd systems. Moreover, stability tests show a virtually unchanged activity after 1000 cycles. The high activity is mainly attributed to the superior oxygen-species releasing capability of Pd-doped CeO2 nanowires by accelerating the removal of the poisoning intermediate. The unique interconnected one-dimensional core-sheath structure is revealed to facilitate immobilization of the metal catalysts, leading to the improved durability. This core-sheath nanowire network opens up a new strategy for catalyst performance optimization for next-generation fuel cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Jinyong; Gao, Feng; Karim, Ayman M.
MgAlOx mixed oxides were employed as supports for potassium-based lean NOx traps (LNTs) targeted for high temperature applications. Effects of support compositions, K/Pt loadings, thermal aging and catalyst regeneration on NOx storage capacity were systematically investigated. The catalysts were characterized by XRD, NOx-TPD, TEM, STEM-HAADF and in-situ XAFS. The results indicate that MgAlOx mixed oxides have significant advantages over conventional gamma-Al2O3-supports for LNT catalysts, in terms of high temperature NOx trapping capacity and thermal stability. First, as a basic support, MgAlOx stabilizes stored nitrates (in the form of KNO3) to much higher temperatures than mildly acidic gamma-Al2O3. Second, MgAlOx minimizesmore » Pt sintering during thermal aging, which is not possible for gamma-Al2O3 supports. Notably, combined XRD, in-situ XAFS and STEM-HAADF results indicate that Pt species in the thermally aged Pt/MgAlOx samples are finely dispersed in the oxide matrix as isolated atoms. This strong metal-support interaction stabilizes Pt and minimizes the extent of sintering. However, such strong interactions result in Pt oxidation via coordination with the support so that NO oxidation activity can be adversely affected after aging which, in turn, decreases NOx trapping ability for these catalysts. Interestingly, a high-temperature reduction treatment regenerates essentially full NOx trapping performance. In fact, regenerated Pt/K/MgAlOx catalyst exhibits much better NOx trapping performance than fresh Pt/K/Al2O3 LNTs over the entire temperature range investigated here. In addition to thermal aging, Pt/K loading effects were systemically studied over the fresh samples. The results indicate that NOx trapping is kinetically limited at low temperatures, while thermodynamically limited at high temperatures. A simple conceptual model was developed to explain the Pt and K loading effects on NOx storage. An optimized K loading, which allows balancing between the stability of nitrates and exposed Pt surface, gives the best NOx trapping capability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yi Y.; Kung, Harold H.
The decomposition of 2-propanol was studied over SiO2, SiO2 with an overlayer of TiO2 (Ti/SiO2), Au/SiO2, and Au/SiO2 with an overlayer of TiO2 (Ti/[Au/SiO2]) at 170–190 °C. There was no reaction on SiO2. Propene was the only product on Ti/SiO2, and its rate of formation increased proportionally with the Ti content. Acetone was the major product (selectivity 65–99%) on all Au-containing catalysts. Its rate of formation also increased with Ti loading. In addition, small amounts of propene were also formed on Ti/[Au/SiO2] the rate of which increased with Ti loading. Characterization of the catalysts with N2 adsorption, STEM, DR-UV-vis spectroscopy,more » XPS, XANES and EXAFS suggested that the Ti formed an amorphous TiO2 overlayer on the catalyst. At high Ti loadings (4–5 wt.%), there were patches of thick porous TiO2 layer, and some microdomains of crystalline TiO2 could be detected. Au was present as 1–3 nm nanoparticles on all catalysts, before and after used in reaction. Only Lewis acid sites were detected based on results from pyridine adsorption, and their quantities increased with Ti loading. Based on the comparison of reaction rates, the dependence of the kinetics on 2-propanol partial pressure, the apparent activation energies, and the effect of co-feeding O2 among different catalysts, it was concluded that propene was formed on the TiO2 overlayer, acetone was formed primarily at the Au-TiO2 interfacial perimeter sites, and α-C-H bond breaking preceding acetone formation was more facile on Au at the interfacial site than other surface Au atoms. Implication of these results to the selective acetone formation in the oxidation of propane in the presence of a O2/H2 mixture was discussed.« less
Ebshish, Ali; Yaakob, Zahira; Taufiq-Yap, Yun Hin; Bshish, Ahmed
2014-01-01
In this work; a response surface methodology (RSM) was implemented to investigate the process variables in a hydrogen production system. The effects of five independent variables; namely the temperature (X1); the flow rate (X2); the catalyst weight (X3); the catalyst loading (X4) and the glycerol-water molar ratio (X5) on the H2 yield (Y1) and the conversion of glycerol to gaseous products (Y2) were explored. Using multiple regression analysis; the experimental results of the H2 yield and the glycerol conversion to gases were fit to quadratic polynomial models. The proposed mathematical models have correlated the dependent factors well within the limits that were being examined. The best values of the process variables were a temperature of approximately 600 °C; a feed flow rate of 0.05 mL/min; a catalyst weight of 0.2 g; a catalyst loading of 20% and a glycerol-water molar ratio of approximately 12; where the H2 yield was predicted to be 57.6% and the conversion of glycerol was predicted to be 75%. To validate the proposed models; statistical analysis using a two-sample t-test was performed; and the results showed that the models could predict the responses satisfactorily within the limits of the variables that were studied. PMID:28788567
Zheng, Huanyu; Ding, Yangyue; Xu, Hui; Zhang, Lin; Cui, Yueting; Han, Jianchun; Zhu, Xiuqing; Yu, Dianyu; Jiang, Lianzhou; Liu, Lilai
2018-08-01
Pt/CNTs were synthesized with an ethylene glycol reduction method, and the effects of carboxyl functionalization, ultrasonic power and the concentration of chloroplatinic acid on the catalytic activity of Pt/CNTs were investigated. The optimal performance of the Pt/CNTs catalyst was obtained when the ultrasonic power was 300 W and the concentration of chloroplatinic acid was 40 mg/mL. The durability and stability of the Pt/CNTs catalyst were considerably better compared to Pt/C, as shown by cyclic voltammetry measurement results. The trans fatty acids content of the obtained hydrogenated soybean oil (IV: 108.4 gl2/100 g oil) using Pt/CNTs as the cathode catalyst in a solid polymer electrolyte reactor was only 1.49%. The IV of hydrogenated soybean oil obtained using CNTs as carrier with Pt loading 0.1 mg/cm2 (IV: 108.4 gl2/100 g oil) was lower than carbon with a Pt loading of 0.8 mg/cm2 (IV: 109.9 gl2/100 g oil). Thus, to achive the same IV, the usage of Pt was much less when carbon nanotubes were selected as catalyst carrier compared to traditional carbon carrier. The changes of fatty acid components and the hydrogenated selectivity of octadecenoic acid were also discussed.
The effect of Fe-Rh alloying on CO hydrogenation to C 2+ oxygenates
Palomino, Robert; Magee, Joseph W.; Llorca, Jordi; ...
2015-05-20
A combination of reactivity and structural studies using X-ray diffraction (XRD), pair distribution function (PDF), and transmission electron microscopy (TEM) was used to identify the active phases of Fe-modified Rh/TiO 2 catalysts for the synthesis of ethanol and other C 2+ oxygenates from CO hydrogenation. XRD and TEM confirm the existence of Fe–Rh alloys for catalyst with 1–7 wt% Fe and ~2 wt% Rh. Rietveld refinements show that FeRh alloy content increases with Fe loading up to ~4 wt%, beyond which segregation to metallic Fe becomes favored over alloy formation. Catalysts that contain Fe metal after reduction exhibit some carburizationmore » as evidenced by the formation of small amounts of Fe 3C during CO hydrogenation. Analysis of the total Fe content of the catalysts also suggests the presence of FeO x also increased under reaction conditions. Reactivity studies show that enhancement of ethanol selectivity with Fe loading is accompanied by a significant drop in CO conversion. Comparison of the XRD phase analyses with selectivity suggests that higher ethanol selectivity is correlated with the presence of Fe–Rh alloy phases. As a result, the interface between Fe and Rh serves to enhance the selectivity of ethanol, but suppresses the activity of the catalyst which is attributed to the blocking or modifying of Rh active sites.« less
Li, Huiyuan; Li, Yanli; Xiang, Luojing; Huang, Qianqian; Qiu, Juanjuan; Zhang, Hui; Sivaiah, Matte Venkata; Baron, Fabien; Barrault, Joel; Petit, Sabine; Valange, Sabine
2015-04-28
A ferric smectite clay material was synthesized and further intercalated with Al2O3 pillars for the first time with the aim of evaluating its ability to be used as heterogeneous catalyst for the photo-Fenton decolorization of azo dye Orange II. UV irradiation was found to enhance the activity of the catalyst in the heterogeneous photo-Fenton process. Catalyst loading of 0.5g/L and hydrogen peroxide concentration of 13.5mM yielded a remarkable color removal, accompanied by excellent catalyst stability. The decolorization of Orange II followed the pseudo-first-order kinetics for initial dye concentrations from 20 to 160mg/L. The central composite design (CCD) based on the response surface methodology (RSM) was applied to evaluate the effects of several operating parameters, namely initial pH, catalyst loading and hydrogen peroxide concentration, on the decolorization efficiency. The RSM model was derived and the response surface plots were developed based on the results. Moreover, the main intermediate products were separated and identified using gas chromatography-mass spectrometry (GC-MS) and a possible degradation pathway was proposed accordingly. The acute toxicity experiments illustrated that the Daphniamagna immobilization rate continuously decreased during 150min reaction, indicating that the effluent was suitable for sequential biological treatment. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prikhodko, Vitaly Y.; Parks, James E.; Pihl, Josh A.
Lean gasoline engines offer greater fuel economy than common stoichiometric gasoline engines. However, excess oxygen prevents the use of the current three-way catalyst (TWC) to control nitrogen oxide (NO X) emissions in lean exhaust. A passive SCR concept, introduced by General Motors Global R&D, makes use of a TWC that is already onboard to generate NH 3 under slightly rich conditions, which is stored on the downstream SCR. The stored NH 3 is then used to reduce NO X emissions when the engine switches to lean operation. In this work, the effect of engine parameters, such as air-fuel equivalence ratiomore » and spark timing, on NH 3 generation over a commercial Pd-only TWC with no dedicated oxygen storage component was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine. NO X reduction, NH 3 formation, and reductant utilization processes were evaluated, and fuel efficiency was assessed and compared to the stoichiometric engine operation case. We found air-fuel equivalence ratio to be one of the most important parameters in controlling the NH 3 production; however, the rich operation necessary for NH 3 production results in a fuel consumption penalty. The fuel penalty can be minimized by adjusting spark timing to increase rich-phase engine out NO X emissions and, thereby, NH 3 levels. Additionally, higher engine out NO X during engine load increase to simulate acceleration resulted in additional fuel savings. Ultimately, a 10% fuel consumption benefit was achieved with the passive SCR approach by optimizing rich air-fuel equivalence ratio and spark timing while also utilizing acceleration load conditions.« less
Prikhodko, Vitaly Y.; Parks, James E.; Pihl, Josh A.; ...
2016-02-18
Lean gasoline engines offer greater fuel economy than common stoichiometric gasoline engines. However, excess oxygen prevents the use of the current three-way catalyst (TWC) to control nitrogen oxide (NO X) emissions in lean exhaust. A passive SCR concept, introduced by General Motors Global R&D, makes use of a TWC that is already onboard to generate NH 3 under slightly rich conditions, which is stored on the downstream SCR. The stored NH 3 is then used to reduce NO X emissions when the engine switches to lean operation. In this work, the effect of engine parameters, such as air-fuel equivalence ratiomore » and spark timing, on NH 3 generation over a commercial Pd-only TWC with no dedicated oxygen storage component was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine. NO X reduction, NH 3 formation, and reductant utilization processes were evaluated, and fuel efficiency was assessed and compared to the stoichiometric engine operation case. We found air-fuel equivalence ratio to be one of the most important parameters in controlling the NH 3 production; however, the rich operation necessary for NH 3 production results in a fuel consumption penalty. The fuel penalty can be minimized by adjusting spark timing to increase rich-phase engine out NO X emissions and, thereby, NH 3 levels. Additionally, higher engine out NO X during engine load increase to simulate acceleration resulted in additional fuel savings. Ultimately, a 10% fuel consumption benefit was achieved with the passive SCR approach by optimizing rich air-fuel equivalence ratio and spark timing while also utilizing acceleration load conditions.« less
Characteristics of Pt-K/MgAl2O4 lean NOx trap catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Do Heui; Mudiyanselage, Kumudu K.; Szanyi, Janos
2012-04-30
We report the various characteristics of Pt-K/MgAl{sub 2}O{sub 4} lean NOx trap (LNT) catalysts including the effect of K loading on nitrate formation/decomposition, NOx storage activity and durability. Upon the adsorption of NO{sub 2} on K/MgAl{sub 2}O{sub 4} samples, potassium nitrates formed on Mg-related sites in MgAl{sub 2}O{sub 4} support are observed, in addition to the typical two potassium nitrates (ionic and bidentate) formed also on Al{sub 2}O{sub 3} supported sample. Based on NO{sub 2} TPD and FTIR results, the Mg-bound KNO{sub 3} thermally decompose at higher temperature than Al-bound KNO{sub 3}, implying its superior thermal stability. At a potassiummore » loading of 5wt%, the temperature of maximum NOx uptake (T{sub max}) is 300 C. Increasing the potassium loading from 5wt% to 10 wt%, the T{sub max} gradually shifted from 300 C to 450 C, indicating the dependence of T{sub max} on the potassium loading. However, increase in potassium loading above 10 wt% only gives rise to the reduction in the overall NOx storage capacity. This work also underlines the obstacles these materials have prior to their practical application (e.g., durability and sulfur poisoning/ removal). This work provides fundamental understanding of Pt-K/MgAl{sub 2}O{sub 4}-based lean NOx trap catalysts, which could be good candidates for high temperature LNT applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Jinyong; Gao, Feng; Kim, Do Heui
2014-03-31
The effects of K loading and thermal aging on the structural properties and high temperature performance of Pt/K/Al2O3 lean NOx trap (LNT) catalysts were investigated using in situ X-ray diffraction (XRD), temperature-programmed decomposition/desorption of NOx (NOx-TPD), transmission electron microscopy (TEM), NO oxidation and NOx storage tests. In situ XRD results demonstrate that KNO3 becomes extremely mobile on the Al2O3 surface, and experiences complex transformations between orthorhombic and rhombohedral structures, accompanied by sintering, melting and thermal decomposition upon heating. NOx storage results show an optimum K loading around 10% for the best performance at high temperatures. At lower K loadings wheremore » the majority of KNO3 stays as a surface layer, the strong interaction between KNO3 and Al2O3 promotes KNO3 decomposition and deteriorates high-temperature performance. At K loadings higher than 10%, the performance drop is not caused by NOx diffusion limitations as for the case of barium-based LNTs, but rather from the blocking of Pt sites by K species, which adversely affects NO oxidation. Thermal aging at 800 ºC severely deactivates the Pt/K/Al2O3 catalysts due to Pt sintering. However, in the presence of potassium, some Pt remains in a dispersed and oxidized form. These Pt species interact strongly with K and, therefore, do not sinter. After a reduction treatment, these Pt species remain finely dispersed, contributing to a partial recovery of NOx storage performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wessel, Silvia; Harvey, David
2013-06-28
The durability of PEM fuel cells is a primary requirement for large scale commercialization of these power systems in transportation and stationary market applications that target operational lifetimes of 5,000 hours and 40,000 hours by 2015, respectively. Key degradation modes contributing to fuel cell lifetime limitations have been largely associated with the platinum-based cathode catalyst layer. Furthermore, as fuel cells are driven to low cost materials and lower catalyst loadings in order to meet the cost targets for commercialization, the catalyst durability has become even more important. While over the past few years significant progress has been made in identifyingmore » the underlying causes of fuel cell degradation and key parameters that greatly influence the degradation rates, many gaps with respect to knowledge of the driving mechanisms still exist; in particular, the acceleration of the mechanisms due to different structural compositions and under different fuel cell conditions remains an area not well understood. The focus of this project was to address catalyst durability by using a dual path approach that coupled an extensive range of experimental analysis and testing with a multi-scale modeling approach. With this, the major technical areas/issues of catalyst and catalyst layer performance and durability that were addressed are: 1. Catalyst and catalyst layer degradation mechanisms (Pt dissolution, agglomeration, Pt loss, e.g. Pt in the membrane, carbon oxidation and/or corrosion). a. Driving force for the different degradation mechanisms. b. Relationships between MEA performance, catalyst and catalyst layer degradation and operational conditions, catalyst layer composition, and structure. 2. Materials properties a. Changes in catalyst, catalyst layer, and MEA materials properties due to degradation. 3. Catalyst performance a. Relationships between catalyst structural changes and performance. b. Stability of the three-phase boundary and its effect on performance/catalyst degradation. The key accomplishments of this project are: • The development of a molecular-dynamics based description of the carbon supported-Pt and ionomer system • The development of a composition-based, 1D-statistical Unit Cell Performance model • A modified and improved multi-pathway ORR model • An extension of the existing micro-structural catalyst model to transient operation • The coupling of a Pt Dissolution model to the modified ORR pathway model • The Development A Semi-empirical carbon corrosion model • The integration and release of an open-source forward predictive MEA performance and degradation model • Completion of correlations of BOT (beginning of test) and EOT (end of test) performance loss breakdown with cathode catalyst layer composition, morphology, material properties, and operational conditions • Catalyst layer durability windows and design curves • A design flow path of interactions from materials properties and catalyst layer effective properties to performance loss breakdown for virgin and degraded catalyst layers In order to ensure the best possible user experience we will perform a staged release of the software leading up to the webinar scheduled in October 2013. The release schedule will be as follows (please note that the manual will be released with the beta release as direct support is provided in Stage 1): • Stage 0 - Internal Ballard Release o Cross check of compilation and installation to ensure machine independence o Implement code on portable virtual machine to allow for non-UNIX use (pending) • Stage 1 - Alpha Release o The model code will be made available via a GIT, sourceforge, or other repository (under discussion at Ballard) for download and installation by a small pre-selected group of users o Users will be given three weeks to install, apply, and evaluate features of the code, providing feedback on issues or software bugs that require correction prior to beta release • Stage 2 - Beta Release o The model code repository is opened to the general public on a beta release concept, with a mechanism for bug tracking and feedback from a large user group o Code will be tracked and patched for any discovered bugs or relevant feedback from the user community, upon the completion of three months without a major bug submission the code will be moved to a full version release • Stage 3 - Full Version Release o Code is version to revision 1.0 and that version is frozen in development/patching« less
NASA Astrophysics Data System (ADS)
Nanlohy, Hendry Y.; Wardana, I. N. G.; Hamidi, N.; Yuliati, L.
2018-01-01
Combustion characteristics of crude jatropha oil droplet at room temperature with and without catalyst have been studied experimentally. Its combustion characteristics have been observed by igniting the oil droplet on a junction of a thermocouple, and the combustion characteristics of oil droplets are observed using a high-speed camera. The results show that the uniqueness of crude jatropha oil as alternative fuel is evidenced by the different stages of combustion caused by thermal cracking in burning droplets. The results also show that the role of the catalyst is not only an accelerator agent, but there are other unique functions and roles as a stabilizer. Moreover, the results also found that the catalyst was able to shorten the ignition timing and burnout time. This phenomenon proves that the presence of catalysts alters and weakens the structure of the triglyceride geometry so that the viscosity and flash point is reduced, the fuel absorbs heat well and flammable.
Process intensification of biodiesel production by using microwave and ionic liquids as catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Handayani, Prima Astuti; Chemical Engineering Program, Faculty of Engineering, Semarang State University; Abdullah
The energy crisis pushes the development and intensification of biodiesel production process. Biodiesel is produced by transesterification of vegetable oils or animal fats and conventionally produced by using acid/base catalyst. However, the conventional method requires longer processing time and obtains lower yield of biodiesel. The microwave has been intensively used to accelerate production process and ionic liquids has been introduced as source of catalyst. This paper discusses the overview of the development of biodiesel production through innovation using microwave irradiation and ionic liquids catalyst to increase the yield of biodiesel. The potential microwave to reduce the processing time will bemore » discussed and compared with other energy power, while the ionic liquids as a new generation of catalysts in the chemical industry will be also discussed for its use. The ionic liquids has potential to enhance the economic and environmental aspects because it has a low corrosion effect, can be recycled, and low waste form.« less
Carbon nanocages: A new support material for Pt catalyst with remarkably high durability
Wang, Xiao Xia; Tan, Zhe Hua; Zeng, Min; Wang, Jian Nong
2014-01-01
Low durability is the major challenge hindering the large-scale implementation of proton exchange membrane fuel cell (PEMFC) technology, and corrosion of carbon support materials of current catalysts is the main cause. Here, we describe the finding of remarkably high durability with the use of a novel support material. This material is based on hollow carbon nanocages developed with a high degree of graphitization and concurrent nitrogen doping for oxidation resistance enhancement, uniform deposition of fine Pt particles, and strong Pt-support interaction. Accelerated degradation testing shows that such designed catalyst possesses a superior electrochemical activity and long-term stability for both hydrogen oxidation and oxygen reduction relative to industry benchmarks of current catalysts. Further testing under conditions of practical fuel cell operation reveals almost no degradation over long-term cycling. Such a catalyst of high activity, particularly, high durability, opens the door for the next-generation PEMFC for “real world” application. PMID:24658614
Process intensification of biodiesel production by using microwave and ionic liquids as catalyst
NASA Astrophysics Data System (ADS)
Handayani, Prima Astuti; Abdullah, dan Hadiyanto
2015-12-01
The energy crisis pushes the development and intensification of biodiesel production process. Biodiesel is produced by transesterification of vegetable oils or animal fats and conventionally produced by using acid/base catalyst. However, the conventional method requires longer processing time and obtains lower yield of biodiesel. The microwave has been intensively used to accelerate production process and ionic liquids has been introduced as source of catalyst. This paper discusses the overview of the development of biodiesel production through innovation using microwave irradiation and ionic liquids catalyst to increase the yield of biodiesel. The potential microwave to reduce the processing time will be discussed and compared with other energy power, while the ionic liquids as a new generation of catalysts in the chemical industry will be also discussed for its use. The ionic liquids has potential to enhance the economic and environmental aspects because it has a low corrosion effect, can be recycled, and low waste form.
Fremerey, Peter; Jess, Andreas; Moos, Ralf
2015-01-01
In order to study the sulfidation of a catalyst fixed bed, an in operando single pellet sensor was designed. A catalyst pellet from the fixed bed was electrically contacted and its electrical response was correlated with the catalyst behavior. For the sulfidation tests, a nickel catalyst was used and was sulfidized with H2S. This catalyst had a very low conductivity in the reduced state. During sulfidation, the conductivity of the catalyst increased by decades. A reaction from nickel to nickel sulfide occurred. This conductivity increase by decades during sulfidation had not been expected since both nickel and nickel sulfides behave metallic. Only by assuming a percolation phenomenon that originates from a volume increase of the nickel contacts when reacting to nickel sulfides, this effect can be explained. This assumption was supported by sulfidation tests with differently nickel loaded catalysts and it was quantitatively estimated by a general effective media theory. The single pellet sensor device for in operando investigation of sulfidation can be considered as a valuable tool to get further insights into catalysts under reaction conditions. PMID:26512669
Liu, Yangyang; Moon, Su-Young; Hupp, Joseph T; Farha, Omar K
2015-12-22
The nanocrystals of a porphyrin-based zirconium(IV) metal-organic framework (MOF) are used as a dual-function catalyst for the simultaneous detoxification of two chemical warfare agent simulants at room temperature. Simulants of nerve agent (such as GD, VX) and mustard gas, dimethyl 4-nitrophenyl phosphate and 2-chloroethyl ethyl sulfide, have been hydrolyzed and oxidized, respectively, to nontoxic products via a pair of pathways catalyzed by the same MOF. Phosphotriesterase-like activity of the Zr6-containing node combined with photoactivity of the porphyrin linker gives rise to a versatile MOF catalyst. In addition, bringing the MOF crystals down to the nanoregime leads to acceleration of the catalysis.
The ASTRO-1 preliminary design review coupled load analysis
NASA Technical Reports Server (NTRS)
Mcghee, D. S.
1984-01-01
Results of the ASTRO-1 preliminary design review coupled loads analysis are presented. The M6.0Y Generic Shuttle mathematical models were used. Internal accelerations, interface forces, relative displacements, and net e.g., accelerations were recovered for two ASTRO-1 payloads in a tandem configuration. Twenty-seven load cases were computed and summarized. Load exceedences were found and recommendations made.
Remarkable support effect on the reactivity of Pt/In2O3/MOx catalysts for methanol steam reforming
NASA Astrophysics Data System (ADS)
Liu, Xin; Men, Yong; Wang, Jinguo; He, Rong; Wang, Yuanqiang
2017-10-01
Effects of supports over Pt/In2O3/MOx catalysts with extremely low loading of Pt (1 wt%) and In2O3 loadings (3 wt%) are investigated for the hydrogen production of methanol steam reforming (MSR) in the temperature range of 250-400 °C. Under practical conditions without the pre-reduction, the 1Pt/3In2O3/CeO2 catalyst shows the highly efficient catalytic performance, achieving almost complete methanol conversion (98.7%) and very low CO selectivity of 2.6% at 325 °C. The supported Pt/In2O3 catalysts are characterized by means of Brunauer-Emmett-Teller (BET) surface area, X-ray diffraction (XRD), high-resolution transmission microscopy (HRTEM), temperature programmed reduction with hydrogen (H2-TPR), CO pulse chemisorption, temperature programmed desorption of methanol and water (CH3OH-TPD and H2O-TPD). These demonstrate that the nature of catalyst support of Pt/In2O3/MOx plays crucial roles in the Pt dispersion associated by the strong interaction among Pt, In2O3 and supporting materials and the surface redox properties at low temperature, and thus affects their capability to activate the reactants and determines the catalytic activity of methanol steam reforming. The superior 1Pt/3In2O3/CeO2 catalyst, exhibiting a remarkable reactivity and stability for 32 h on stream, demonstrates its potential for efficient hydrogen production of methanol steam reforming in mobile and de-centralized H2-fueled PEMFC systems.
Jothiramalingam, R; Wang, M K
2007-08-17
The present study describes the photocatalytic degradation of toluene in gas phase on different porous manganese oxide doped titanium dioxide. As synthesized birnessite and cryptomelane type porous manganese oxide were doped with titania and tested for photocatalytic decomposition of toluene in gas phase. The effects of the inlet concentration of toluene, flow rate (retention time) were examined and the relative humidity was maintained constantly. Thermal and textural characterization of manganese oxide doped titania materials were characterized by X-ray diffraction (XRD), thermogravemetry (TG), BET and TEM-EDAX studies. The aim of the present study is to synthesize the porous manganese oxide doped titania and to study its photocatalytic activity for toluene degradation in gas phase. Cryptomelane doped titania catalyst prepared in water medium [K-OMS-2 (W)] is shown the good toluene degradation with lower catalysts loading compared to commercial bulk titania in annular type photo reactor. The higher photocatalytic activity due to various factors such as catalyst preparation method, experimental conditions, catalyst loading, surface area, etc. In the present study manganese oxide OMS doped titania materials prepared by both aqueous and non-aqueous medium, aqueous medium prepared catalyst shows the good efficiency due to the presence of OH bonded groups on the surface of catalyst. The linear forms of different kinetic equations were applied to the adsorption data and their goodness of fit was evaluated based on the R2 and standard error. The goodness to the linear fit was observed for Elovich model with high R2 (>or=0.9477) value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Gregory R.; Bell, Alexis T.
2015-11-17
The effects of Zr promotion on the structure and performance of Co-based Fischer-Tropsch synthesis (FTS) catalysts were investigated. Inclusion of Zr in the catalysts was found to increase the FTS turnover frequency and the selectivity to C 5+ hydrocarbons and to decrease the selectivity to methane under most operating conditions. These improvements to the catalytic performance are a function of Zr loading up to an atomic ratio of Zr/Co = 1.0, above which the product selectivity is insensitive to higher concentrations of the promoter. Characterization of the Co nanoparticles by different methods demonstrated that the optimal Zr loading corresponds tomore » half monolayer coverage of the Co surface by the promoter. Measurements of the rate of FTS at different pressures and temperatures established that the kinetics data for both the Zr-promoted and unpromoted catalysts are described by a two-parameter Langmuir-Hinshelwood expression. The parameters used to fit this rate law to the experimental data indicate that the apparent rate coefficient and the CO adsorption constant for the Zr-promoted catalysts are higher than those for the unpromoted catalyst. Elemental mapping by means of STEM-EDS provided evidence that Zr is highly dispersed over the catalyst surface and has limited preference for association with the Co nanoparticles. In situ X-ray absorption spectroscopy confirmed the absence of mixing between the Zr and Co in the nanoparticles. Here, these results suggest that Zr exists as a partial layer of ZrO 2 on the surface of the Co metal nanoparticles. Accordingly, it is proposed that Zr promotion effects originate from sites of enhanced activity at the interface between Co and ZrO 2. The possibility that ZrO 2 acts as a Lewis acid to assist in CO dissociation as well as to increase the ratio of CO to H adsorbed on the catalyst surface is discussed.« less
Activity of Cu-activated carbon fiber catalyst in wet oxidation of ammonia solution.
Hung, Chang-Mao
2009-07-30
Aqueous solutions of 200-1000 mg/L of ammonia were oxidized in a trickle-bed reactor using Cu-activated carbon fiber (ACF) catalysts, which were prepared by incipient wet impregnation with aqueous solutions of copper nitrate that was deposited on ACF substrates. The results reveal that the conversion of ammonia by wet oxidation in the presence of Cu-ACF catalysts was a function of the metal loading weight ratio of the catalyst. The total conversion efficiency of ammonia was 95% during wet oxidation over the catalyst at 463 K at an oxygen partial pressure of 3.0 MPa. Moreover, the effect of the initial concentration of ammonia and the reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid space velocity of less than 3.0 h(-1).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinozaki, Kazuma; Morimoto, Yu; Pivovar, Bryan S.
The impact of Nafion on the oxygen reduction reaction (ORR) activity is studied for Pt/C and Pt-alloy/C catalysts using thin-film rotating disk electrode (TF-RDE) methods in 0.1 M HClO4. Ultrathin uniform catalyst layers and standardized activity measurement protocols are employed to obtain accurate and reproducible ORR activity. Nafion lowers the ORR activity which plateaus with increasing loading on Pt catalysts. Pt particle size is found not to have significant influence on the extent of the SA decrease upon Nafion incorporation. Catalysts using high surface area carbon (HSC) support exhibit attenuated activity loss resulting from lower ionomer coverage on catalyst particlesmore » located within the deep pores. The impact of metallic composition on the activity loss due to Nafion incorporation is also discussed.« less
Pt monolayer shell on nitrided alloy core — A path to highly stable oxygen reduction catalyst
Hu, Jue; Kuttiyiel, Kurian A.; Sasaki, Kotaro; ...
2015-07-22
The inadequate activity and stability of Pt as a cathode catalyst under the severe operation conditions are the critical problems facing the application of the proton exchange membrane fuel cell (PEMFC). Here we report on a novel route to synthesize highly active and stable oxygen reduction catalysts by depositing Pt monolayer on a nitrided alloy core. The prepared Pt MLPdNiN/C catalyst retains 89% of the initial electrochemical surface area after 50,000 cycles between potentials 0.6 and 1.0 V. By correlating electron energy-loss spectroscopy and X-ray absorption spectroscopy analyses with electrochemical measurements, we found that the significant improvement of stability ofmore » the Pt MLPdNiN/C catalyst is caused by nitrogen doping while reducing the total precious metal loading.« less
NASA Astrophysics Data System (ADS)
Du, Mingming; Huang, Jiale; Sun, Daohua; Li, Qingbiao
2016-03-01
The Au/TS-1 catalysts with different Au nanoparticles (NPs) sizes ranging from 3.1 to 8.4 nm but the same Au loading of 0.5 wt% were prepared by Cinnamomum camphora (CC) extract, and were used for propylene epoxidation. The results showed that the interaction between Au and TS-1 support surface is important for propylene epoxidation and much smaller Au NPs (<3 nm) are the dominant active sites. After reaction of 100 h, there is no decreasing in both the activity and the PO selectivity for the Au/TS-1 catalysts, and only 1.8 wt% of the carbonaceous deposits on the surface of the catalyst after reaction, suggesting that the desorption of the product from the modified catalysts surface by residual biomolecules is much easier.
In situ DRIFTS investigation of NH3-SCR reaction over CeO2/zirconium phosphate catalyst
NASA Astrophysics Data System (ADS)
Zhang, Qiulin; Fan, Jie; Ning, Ping; Song, Zhongxian; Liu, Xin; Wang, Lanying; Wang, Jing; Wang, Huimin; Long, Kaixian
2018-03-01
A series of ceria modified zirconium phosphate catalysts were synthesized for selective catalytic reduction of NO with ammonia (NH3-SCR). Over 98% NOx conversion and 98% N2 selectivity were obtained by the CeO2/ZrP catalyst with 20 wt.% CeO2 loading at 250-425 °C. The interaction between CeO2 and zirconium phosphate enhanced the redox abilities and surface acidities of the catalysts, resulting in the improvement of NH3-SCR activity. The in situ DRIFTS results indicated that the NH3-SCR reaction over the catalysts followed both Eley-Rideal and Langmuir-Hinshelwood mechanisms. The amide (sbnd NH2) groups and the NH4+ bonded to Brønsted acid sites were the important intermediates of Eley-Rideal mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singleton, A.H.
1995-06-28
The goal of this project is the development of a commercially-viable, cobalt-based Fischer-Tropsch (F-T) catalyst for use in a slurry bubble column reactor. The major objectives of this work are (1) to develop a cobalt-based F-T catalyst with low (< 5%) methane selectivity, (2) to develop a cobalt-based F-T catalyst with water-gas shift activity, and (3) to combine both these improvements into one catalyst. The project consists of five major tasks: catalyst development; catalyst testing; catalyst reproducibility tests; catalyst aging tests; and preliminary design and cost estimate for a demonstrate scale catalyst production facility. Technical accomplishments during this reporting periodmore » include the following. It appears that the higher activity obtained for the catalysts prepared using an organic solution and reduced directly without prior calcination was the result of higher dispersions obtained under such pretreatment. A Ru-promoted Co catalyst on alumina with 30% Co loading exhibited a 4-fold increase in dispersion and a 2-fold increase in activity in the fixed-bed reactor from that obtained with the non-promoted catalyst. Several reactor runs have again focused on pushing conversion to higher levels. The maximum conversion obtained has been 49.7% with 26g catalyst. Further investigations of the effect of reaction temperature on the performance of Co catalysts during F-T synthesis were started using a low activity catalyst and one of the most active catalysts. The three 1 kg catalyst batches prepared by Calsicat for the reproducibility and aging studies were tested in both the fixed-bed and slurry bubble column reactors under the standard reaction conditions. The effects of adding various promoters to some cobalt catalysts have also been addressed. Results are presented and discussed.« less
Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator.
Hiratsuka, Junichi; Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Miyamoto, Kenji; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki
2016-02-01
To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ∼16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles.
DOT National Transportation Integrated Search
2008-03-01
The main objective of this study was to determine the most beneficial and cost-effective accelerated load facility that can be used in conjunction with LTRCs Accelerated Load Facility (ALF). The facility will be used primarily for conducting preli...
Effects of Sulfation Level on the Desulfation Behavior of Presulfated Pt-BaO/Al2O3 Lean
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, D.; Szanyi, J; Kwak, J
2009-01-01
Desulfation by hydrogen of presulfated Pt (2 wt %)-BaO(20 wt %)/Al2O3 with various sulfur loading (S/Ba = 0.12, 0.31, and 0.62) were investigated by combining H2 temperature programmed reaction (TPRX), X-ray photoelectron spectroscopy (XPS), in situ sulfur K-edge X-ray absorption near-edge spectroscopy (XANES), and synchrotron time-resolved X-ray diffraction (TR-XRD) techniques. We find that the amount of H2S desorbed during the desulfation in the H2 TPRX experiments is not proportional to the amount of initial sulfur loading. The results of both in situ sulfur K-edge XANES and TR-XRD show that at low sulfur loadings, sulfates were transformed to a BaS phasemore » and remained in the catalyst rather than being removed as H2S. On the other hand, when the deposited sulfur level exceeded a certain threshold (at least S/Ba = 0.31) sulfates were reduced to form H2S, and the relative amount of the residual sulfide species in the catalyst was much less than at low sulfur loading. Unlike samples with high sulfur loading (e.g., S/Ba = 0.62), H2O did not promote the desulfation for the sample with S/Ba of 0.12, implying that the formed BaS species originating from the reduction of sulfates at low sulfur loading are more stable to hydrolysis. The results of this combined spectroscopy investigation provide clear evidence to show that sulfates at low sulfur loadings are less likely to be removed as H2S and have a greater tendency to be transformed to BaS on the material, leading to the conclusion that desulfation behavior of Pt-BaO/Al2O3 lean NOx trap catalysts is markedly dependent on the sulfation levels.« less
NASA Astrophysics Data System (ADS)
Shuai, Danmeng
Pd-based catalytic reduction has emerged as an advanced treatment technology for drinking water decontamination, and a suite of persistent contaminants including oxyanions, N-nitrosoamines, and halogenated compounds are amenable to catalytic reduction. The primary goal of this study is to develop novel Pd-based catalysts with enhanced performance (i.e., activity, selectivity, and sustainability) to remove contaminants from drinking water. The effects of water quality (i.e., co-contaminants in water matrix), catalyst support, and catalyst metal were explored, and they provide insights for preparing catalysts with faster kinetics, higher selectivity, and extended lifetime. Azo dyes are wide-spread contaminants, and they are potentially co-exisiting with target contaminants amenable for catalytic removal. The probe azo dye methyl orange (MO) enhanced catalytic reduction kinetics of a suite of oxyanions (i.e., nitrate, nitrite, bromate, chlorate, and perchlorate) and diatrizoate significantly but not N-nitrosodimethylamine (NDMA) with a variety of Pd-based catalysts. Nitrate was selected as a probe contaminant, and several different azo dyes (i.e., (methyl orange, methyl red, fast yellow AB, metanil yellow, acid orange 7, congo red, eriochrome black T, acid red 27, acid yellow 11, and acid yellow 17) were evaluated for their ability to enhance reduction. A hydrogen atom shuttling mechanism was proposed and a kinetic model was proposed based on Bronsted-Evans-Polanyi (BEP) theory, and they suggest sorbed azo dyes and reduced hydrazo dyes shuttle hydrogen atoms to oxyanions or diatrizoate to enhance their reduction kinetics. Next, vapor-grown carbon nanofiber (CNF) supports were used to explore the effects of Pd nanoparticle size and interior versus exterior loading on nitrite reduction activity and selectivity (i.e., dinitrogen over ammonia production). In order to evaluate the amount of interior versus exterior loading of Pd nanoparticles, a fast and accurate geometric model was developed based on two-dimensional transmission electron microscopy (2D TEM). Results from my method agree adequately with 3D scanning transmission electron microscopy (3D TEM), which is recognized as a convincing method to evaluate interior versus exterior loading. By using Pd CNF catalysts for nitrite reduction, results show that both activity and selectivity are not significantly impacted by Pd interior versus exterior loading. Turnover frequencies (TOFs) among all CNF catalysts are consistent, suggesting faster kinetics are achieved on catalysts with smaller Pd nanoparticles, and suggesting nitrite reduction is neither sensitive to Pd location on CNFs nor Pd structure. However selectivity to dinitrogen is more favorable on larger Pd nanoparticles. Therefore, an optimum Pd nanoparticle size on CNFs balances high reduction kinetics and selectivity to dinitrogen. CNF Pd catalysts perform better than conventional activated or alumina supported Pd catalysts in term of kinetics and selectivity for nitrite reduction, and they maintain consistent activity during multiple reduction cycles. Lastly, the structure-sensitivity of catalytic activity and selectivity for contaminant nitrite, NDMA, and diatrizoate removal were investigated on shape- and size-controlled Pd nanoparticles. Results show that TOFs for nitrite, NDMA, and diatrizoate are dependent on coordination numbers of surface Pd sites at low contaminant concentration, but TOFs for nitrite at high concentration are consistent. Selectivity to ammonia for nitrite reduction decreases with increasing surface Pd sites, i.e., decreasing Pd nanoparticle size irrespective of nitrite concentration, but NDMA reduction is neither shape- nor size-specific, and it exclusively proceeds to ammonia and dimethylamine. Diatrizoate reduction selectivity is also likely to be nonspecific to shape and size, and a series of deiodinated intermediates, 3,5-diacetamidobenzoic acid, and iodide are the produced. Hence, this study suggests that contaminant reduction kinetics and selectivity are Pd shape and size dependent, and the dependence varies by contaminant type and concentration. In summary, Pd-based catalysts can be tailored for enhanced activity, selectivity, and longevity, and catalytic treatment holds the promise for advanced drinking water treatment.
NASA Astrophysics Data System (ADS)
Botchwey, Christian
This thesis summarizes the methods and major findings of Ni-W(P)/gamma-Al 2O3 nitride catalyst synthesis, characterization, hydrotreating activity, kinetic analysis and correlation of the catalysts' activities to their synthesis parameters and properties. The range of parameters for catalyst synthesis were W (15-40 wt%), Ni (0-8 wt%), P (0-5 wt%) and nitriding temperature (TN) (500-900 °C). Characterization techniques used included: N2 sorption studies, chemisorption, elemental analysis, temperature programmed studies, x-ray diffraction, scanning electron microscopy, energy dispersive x-ray, infrared spectroscopy, transmission electron microscopy and x-ray absorption near edge structure. Hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatization (HDA) were performed at: temperature (340-380 °C), pressure (6.2-9.0 MPa), liquid hourly space velocity (1-3 h-1) and hydrogen to oil ratio (600 ml/ml, STP). The predominant species on the catalyst surface were Ni3N, W2N and bimetallic Ni2W3N. The bimetallic Ni-W nitride species was more active than the individual activities of the Ni3N and W2N. P increased weak acid sites while nitriding temperature decreased amount of strong acid sites. Low nitriding temperature enhanced dispersion of metal particles. P interacted with Al 2O3 which increased the dispersion of metal nitrides on the catalyst surface. HDN activity increased with Ni and P loading but decreased with increase in nitriding temperature (optimum conversion; 60 wt%). HDS and HDA activities went through a maximum with increase in the synthesis parameters (optimum conversions; 88. wt% for HDS and 47 wt% for HDA). Increase in W loading led to increase in catalyst activity. The catalysts were stable to deactivation and had the nitride structure conserved during hydrotreating in the presence of hydrogen sulfide. The results showed good correlation between hydrotreating activities (HDS and HDN) and the catalyst nitrogen content, number of exposed active sites, catalyst particle size and BET surface area. HDS and HDN kinetic analyses, using Langmuir-Hinshelwood models, gave activation energies of 66 and 32 kJ/mol, respectively. There were no diffusion limitations in the reaction process. Two active sites were involved in HDS reaction while one site was used for HDN. HDS and HDN activities of the Ni-W(P)/gamma-Al 2O3 nitride catalysts were comparable to the corresponding sulfides.
NASA Astrophysics Data System (ADS)
Atwan, Mohammed H.; Macdonald, Charles L. B.; Northwood, Derek O.; Gyenge, Elod L.
Supported colloidal Au and Au-alloys (Au-Pt and Au-Pd, 1:1 atomic ratio) on Vulcan XC-72 (with 20 wt% metal load) were prepared by the Bönneman method. The electrocatalytic activity of the colloidal metals with respect to borohydride electro-oxidation for fuel cell applications was investigated by voltammetry on static and rotating electrodes, chronoamperometry, chronopotentiometry and fuel cell experiments. The fundamental electrochemical techniques showed that alloying Au, a metal that leads to the maximum eight-electron oxidation of BH 4 -, with Pd or Pt, well-known catalysts of dehydrogenation reactions, improved the electrode kinetics of BH 4 - oxidation. Fuel cell experiments corroborated the kinetic studies. Using 5 mg cm -2 colloidal metal load on the anode, it was found that Au-Pt was the most active catalyst giving a cell voltage of 0.47 V at 100 mA cm -2 and 333 K, while under identical conditions the cell voltage using colloidal Au was 0.17 V.
Padulo, Johnny; Di Giminiani, Riccardo; Dello Iacono, Antonio; Zagatto, Alessandro M; Migliaccio, Gian M; Grgantov, Zoran; Ardigò, Luca P
2016-01-01
We investigated the electromyographic response to synchronous indirect-localized vibration interventions in international and national table tennis players. Twenty-six male table tennis players, in a standing position, underwent firstly an upper arms maximal voluntary contraction and thereafter two different 30-s vibration interventions in random order: high acceleration load (peak acceleration = 12.8 g, frequency = 40 Hz; peak-to-peak displacement = 4.0 mm), and low acceleration load (peak acceleration = 7.2 g, frequency = 30 Hz, peak-to-peak displacement = 4.0 mm). Surface electromyography root mean square from brachioradialis, extensor digitorum, flexor carpi radialis, and flexor digitorum superficialis recorded during the two vibration interventions was normalized to the maximal voluntary contraction recording. Normalized surface electromyography root mean square was higher in international table tennis players with respect to national ones in all the interactions between muscles and vibration conditions (P < 0.05), with the exception of flexor carpi radialis (at low acceleration load, P > 0.05). The difference in normalized surface electromyography root mean square between international table tennis players and national ones increased in all the muscles with high acceleration load (P < 0.05), with the exception of flexor digitorum superficialis (P > 0.05). The muscle activation during indirect-localized vibration seems to be both skill level and muscle dependent. These results can optimize the training intervention in table tennis players when applying indirect-localized vibration to lower arm muscles. Future investigations should discriminate between middle- and long-term adaptations in response to specific vibration loads.
Padulo, Johnny; Di Giminiani, Riccardo; Dello Iacono, Antonio; Zagatto, Alessandro M.; Migliaccio, Gian M.; Grgantov, Zoran; Ardigò, Luca P.
2016-01-01
We investigated the electromyographic response to synchronous indirect-localized vibration interventions in international and national table tennis players. Twenty-six male table tennis players, in a standing position, underwent firstly an upper arms maximal voluntary contraction and thereafter two different 30-s vibration interventions in random order: high acceleration load (peak acceleration = 12.8 g, frequency = 40 Hz; peak-to-peak displacement = 4.0 mm), and low acceleration load (peak acceleration = 7.2 g, frequency = 30 Hz, peak-to-peak displacement = 4.0 mm). Surface electromyography root mean square from brachioradialis, extensor digitorum, flexor carpi radialis, and flexor digitorum superficialis recorded during the two vibration interventions was normalized to the maximal voluntary contraction recording. Normalized surface electromyography root mean square was higher in international table tennis players with respect to national ones in all the interactions between muscles and vibration conditions (P < 0.05), with the exception of flexor carpi radialis (at low acceleration load, P > 0.05). The difference in normalized surface electromyography root mean square between international table tennis players and national ones increased in all the muscles with high acceleration load (P < 0.05), with the exception of flexor digitorum superficialis (P > 0.05). The muscle activation during indirect-localized vibration seems to be both skill level and muscle dependent. These results can optimize the training intervention in table tennis players when applying indirect-localized vibration to lower arm muscles. Future investigations should discriminate between middle- and long-term adaptations in response to specific vibration loads. PMID:27378948
TiO2 used as photocatalyst for rhodamine B degradation under solar radiation
NASA Astrophysics Data System (ADS)
Ariyanti, Dessy; Maillot, Mathilde; Gao, Wei
2017-07-01
Transition metal oxide photocatalysis is a relatively new method representing advanced oxidation process to be applied in industrial wastewater treatment especially for degradation of organic pollutants. We investigate TiO2 as a photocatalyst for the photocatalytic degradation of Rhodamine B (RhB) under simulated sunlight. Various parameters and their effectiveness have been studied. The effects of processing parameters including catalyst loading and feed concentration were investigated; and the degradation pathway was proposed based on the UHPLC-MS analysis. The result showed that a higher kinetic rate can be obtained by employing low catalyst loading and feed concentration, i.e., 0.5 g/L of TiO2 loading and 5 ppm of RhB concentration, respectively. For this particular system, the optimum degradation rate (k) can achieve 0.297/min. The effectiveness of solar light-TiO2 system for RhB degradation shows this method can be used for wastewater treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Cheol-Woo W.; Kwak, Ja Hun; Peden, Charles H.F.
2007-09-21
Modern surface science techniques have been commonly applied to understand issues arising from practical catalytic systems.[1-4] However, the applicability of most of the results obtained from model systems has been limited, due, primarily, to the vastly different conditions studies on model and practical systems are carried out (catalyst composition, reaction conditions etc.).[5, 6] Therefore, the need to conduct experiments on compositionally similar systems (model and practical) is necessary to obtain valuable information on the workings of real catalysts. In this communication we demonstrate the utility of surface science studies on model catalysts in understanding the properties of high surface area,more » BaO-based NO x storage-reduction (NSR) catalysts.[7] We present evidence for the facile formation of surface barium aluminate-like species even at very low coverages of BaO. This Ba-aluminate layer, however, can react with NO 2 resulting in the formation of a bulk-like Ba(NO 3) 2 phase. In order to construct model catalysts that are representative of the practical NO x storage systems, we first needed to estimate the BaO covareges on the high surface area catalysts. Since the publication of the work by Fanson et al.[8], BaO loadings of 8 – 10 wt.% on a γ-alumina support (200 m 2/g) have been regarded as corresponding to one monolayer (ML) coverage, based on the unit cell size of bulk BaO. The coverage equivalent of one ML, however, was significantly underestimated. Assuming complete spreading of the BaO layer and using a Ba–O distance of ~ 2.77 Å (one unit of BaO occupies 1.53 × 10 -19 m 2), 10 wt.% loading of BaO would cover only about 1/3 of the alumina surface. Table 1 shows our calculated estimates of two-dimensional BaO coverages as a function of loading on a -Al 2O 3 surface (200 m 2/g) based on the lattice parameters of bulk BaO[9] (5.54 Å). Based on these values, for our model system studies we prepared BaO/Al 2O 3/NiAl(110) materials in which the BaO coverages were very close to those of 4, 8, and 20 wt.% BaO/γ-Al 2O 3 high surface area catalysts used in prior studies.« less
Optimization and fabrication of porous carbon electrodes for Fe/Cr redox flow cells
NASA Technical Reports Server (NTRS)
Jalan, V.; Morriseau, B.; Swette, L.
1982-01-01
Negative electrode development for the NASA chromous/ferric Redox battery is reported. The effects of substrate material, gold/lead catalyst composition and loading, and catalyzation procedures on the performance of the chromium electrode were investigated. Three alternative catalyst systems were also examined, and 1/3 square foot size electrodes were fabricated and delivered to NASA at the conclusion of the program.
Accelerating research into bio-based FDCA-polyesters by using small scale parallel film reactors.
Gruter, Gert-Jan M; Sipos, Laszlo; Adrianus Dam, Matheus
2012-02-01
High Throughput experimentation has been well established as a tool in early stage catalyst development and catalyst and process scale-up today. One of the more challenging areas of catalytic research is polymer catalysis. The main difference with most non-polymer catalytic conversions is the fact that the product is not a well defined molecule and the catalytic performance cannot be easily expressed only in terms of catalyst activity and selectivity. In polymerization reactions, polymer chains are formed that can have various lengths (resulting in a molecular weight distribution rather than a defined molecular weight), that can have different compositions (when random or block co-polymers are produced), that can have cross-linking (often significantly affecting physical properties), that can have different endgroups (often affecting subsequent processing steps) and several other variations. In addition, for polyolefins, mass and heat transfer, oxygen and moisture sensitivity, stereoregularity and many other intrinsic features make relevant high throughput screening in this field an incredible challenge. For polycondensation reactions performed in the melt often the viscosity becomes already high at modest molecular weights, which greatly influences mass transfer of the condensation product (often water or methanol). When reactions become mass transfer limited, catalyst performance comparison is often no longer relevant. This however does not mean that relevant experiments for these application areas cannot be performed on small scale. Relevant catalyst screening experiments for polycondensation reactions can be performed in very efficient small scale parallel equipment. Both transesterification and polycondensation as well as post condensation through solid-stating in parallel equipment have been developed. Next to polymer synthesis, polymer characterization also needs to be accelerated without making concessions to quality in order to draw relevant conclusions.
Microstructural Analysis and Transport Resistances of Low-Platinum-Loaded PEFC Electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cetinbas, Firat C.; Wang, Xiaohua; Ahluwalia, Rajesh K.
In this study, we present microstructural characterization for polymer electrolyte fuel cell (PEFC) cathodes with low platinum loadings (low-PGM). The characterization results are used to quantify the contribution of mass transport resistances to cell voltage losses observed in polarization curve data. Three-dimensional pore morphology and ionomer distribution are resolved using nano-scale X-ray computed tomography (nano-CT). Electrode structural properties are reported along with analysis of the impact of microstructure on the effective charge and reactant transport properties. These characterizations are incorporated with a two-dimensional multi-physics model that accounts for energy, charge, and mass transport along with the effect of liquid watermore » flooding. Defining a total mass transport resistance for the whole polarization curve, contributions of transport mechanisms are identified. Analysis of the experimental polarization curves at different operating pressures and temperatures indicates that the mass transport resistance in the cathode is dominated by the transport processes in the electrode. It is shown that flooding in the electrode is a major contributor to transport losses especially at elevated operating pressures while the pressure-independent resistance at the catalyst surface due to transport through the ionomer film plays a significant role, especially at low temperatures and low catalyst loading. In addition, by performing a parametric study for varying catalyst loadings, the importance of electrode roughness (i.e, electrochemically-active surface area/geometric electrode area) in determining the mass transport losses is highlighted.« less
Microstructural Analysis and Transport Resistances of Low-Platinum-Loaded PEFC Electrodes
Cetinbas, Firat C.; Wang, Xiaohua; Ahluwalia, Rajesh K.; ...
2017-12-09
In this study, we present microstructural characterization for polymer electrolyte fuel cell (PEFC) cathodes with low platinum loadings (low-PGM). The characterization results are used to quantify the contribution of mass transport resistances to cell voltage losses observed in polarization curve data. Three-dimensional pore morphology and ionomer distribution are resolved using nano-scale X-ray computed tomography (nano-CT). Electrode structural properties are reported along with analysis of the impact of microstructure on the effective charge and reactant transport properties. These characterizations are incorporated with a two-dimensional multi-physics model that accounts for energy, charge, and mass transport along with the effect of liquid watermore » flooding. Defining a total mass transport resistance for the whole polarization curve, contributions of transport mechanisms are identified. Analysis of the experimental polarization curves at different operating pressures and temperatures indicates that the mass transport resistance in the cathode is dominated by the transport processes in the electrode. It is shown that flooding in the electrode is a major contributor to transport losses especially at elevated operating pressures while the pressure-independent resistance at the catalyst surface due to transport through the ionomer film plays a significant role, especially at low temperatures and low catalyst loading. In addition, by performing a parametric study for varying catalyst loadings, the importance of electrode roughness (i.e, electrochemically-active surface area/geometric electrode area) in determining the mass transport losses is highlighted.« less
Dumbre, Deepa K; Choudhary, Vasant R; Patil, Nilesh S; Uphade, Balu S; Bhargava, Suresh K
2014-02-01
Gold nanoparticles are deposited on basic CaO supports as catalysts for the selective conversion of styrene into styrene oxide. Synthetic methods, gold loading and calcination temperatures are varied to permit an understanding of their influence on gold nanoparticle size, the presence of cationic gold species and the nature of interaction between the gold nanoparticles and the CaO support. Based on these studies, optimal conditions are designed to make the Au/CaO catalyst efficient for the selective epoxidation of styrene. Copyright © 2013 Elsevier Inc. All rights reserved.
Preparation, characterization, and activity of α-Ti(HPO4)2 supported metallocene catalysts
NASA Astrophysics Data System (ADS)
Shi, Yasai; Yuan, Yuan; Xu, Qinghong; Yi, Jianjun
2016-10-01
A series of heterogeneous catalysts by loading metallocenes on surface of α-Ti(HPO4)2, a kind of solid acid, has been synthesized. Polymerization of alkenes, including ethylene and propylene, based on participation of the heterogeneous catalysts were studied and the results were compared to metallocenes supported on silica gel, α-Zr(HPO4)2 and clay. Higher catalytic activity, larger polymer molecular weight and narrow distribution of polymer molecular weight were obtained. Acidic strength of the support and its influence to metallocenes were studied to discover intrinsic factors in the polymerizations.
Heterobimetallic catalysis in asymmetric 1,4-addition of O-alkylhydroxylamine to enones.
Yamagiwa, Noriyuki; Matsunaga, Shigeki; Shibasaki, Masakatsu
2003-12-31
A heterobimetallic YLi3tris(binaphthoxide) catalyst (YLB) promoted a 1,4-addition of O-methylhydroxylamine in high enantiomeric excess (up to 97% ee). Catalyst loading was reduced to as little as 0.5 mol %, still affording the 1,4-adduct in 96% yield and 96% ee. A high concentration of substrates and the scalability of the present system is also practically useful. The results suggested that the heterobimetallic catalysis was not deactivated even in the presence of excess amine under highly concentrated conditions. A Y and Li bimetallic cooperative function was essential for a high catalyst turnover number.
Durability test with fuel starvation using a Pt/CNF catalyst in PEMFC.
Jung, Juhae; Park, Byungil; Kim, Junbom
2012-01-05
In this study, a catalyst was synthesized on carbon nanofibers [CNFs] with a herringbone-type morphology. The Pt/CNF catalyst exhibited low hydrophilicity, low surface area, high dispersion, and high graphitic behavior on physical analysis. Electrodes (5 cm2) were prepared by a spray method, and the durability of the Pt/CNF was evaluated by fuel starvation. The performance was compared with a commercial catalyst before and after accelerated tests. The fuel starvation caused carbon corrosion with a reverse voltage drop. The polarization curve, EIS, and cyclic voltammetry were analyzed in order to characterize the electrochemical properties of the Pt/CNF. The performance of a membrane electrode assembly fabricated from the Pt/CNF was maintained, and the electrochemical surface area and cell resistance showed the same trend. Therefore, CNFs are expected to be a good support in polymer electrolyte membrane fuel cells.
Durability test with fuel starvation using a Pt/CNF catalyst in PEMFC
2012-01-01
In this study, a catalyst was synthesized on carbon nanofibers [CNFs] with a herringbone-type morphology. The Pt/CNF catalyst exhibited low hydrophilicity, low surface area, high dispersion, and high graphitic behavior on physical analysis. Electrodes (5 cm2) were prepared by a spray method, and the durability of the Pt/CNF was evaluated by fuel starvation. The performance was compared with a commercial catalyst before and after accelerated tests. The fuel starvation caused carbon corrosion with a reverse voltage drop. The polarization curve, EIS, and cyclic voltammetry were analyzed in order to characterize the electrochemical properties of the Pt/CNF. The performance of a membrane electrode assembly fabricated from the Pt/CNF was maintained, and the electrochemical surface area and cell resistance showed the same trend. Therefore, CNFs are expected to be a good support in polymer electrolyte membrane fuel cells. PMID:22221426
Zhang, Miao; Frei, Heinz
2017-05-05
Water oxidation is an essential reaction of an artificial photosystem for solar fuel generation because it provides electrons needed to reduce carbon dioxide or protons to a fuel. Earth-abundant metal oxides are among the most attractive catalytic materials for this reaction because of their robustness and scalability, but their efficiency poses a challenge. Knowledge of catalytic surface intermediates gained by vibrational spectroscopy under reaction conditions plays a key role in uncovering kinetic bottlenecks and provides a basis for catalyst design improvements. Recent dynamic infrared and Raman studies reveal the molecular identity of transient surface intermediates of water oxidation on metal oxides. Combined with ultrafast infrared observations of how charges are delivered to active sites of the metal oxide catalyst and drive the multielectron reaction, spectroscopic advances are poised to play a key role in accelerating progress toward improved catalysts for artificial photosynthesis.
Development of low-loading, carbon monoxide tolerant PEM fuel cell electrodes
NASA Astrophysics Data System (ADS)
Haug, Andrew Thomas
This work discusses the problems of, and potential solutions to, high catalyst cost of and carbon monoxide (CO) poisoning of the proton-exchange membrane fuel cell (PEMFC). As this is a comprehensive work, background on fuel cells and specifically PEMFCs is first presented. A discussion of the current status of PEMFCs is presented showing ongoing work for stationary, transportation, portable and military applications. This leads into two of the more significant problems preventing widespread commercialization of PEMFC technology: poisoning of the catalyst by CO and the cost of the catalyst. A thorough examination of CO poisoning of the PEMFC anode is presented from how CO comes to be present in the feed stream of the PEMFC anode to how it then poisons the PEMFC anode. The first work presented here describes the development of a novel CO tolerant anode (the Ruthenium filter). It shows that by placing a layer of carbon-supported Ruthenium catalyst between the Pt catalyst and the anode flow field to form a filter, tolerance to CO will be increased relative to a Pt:Ru alloy when oxygen is added to the anode fuel stream. Secondly, after an introduction to catalyst preparation techniques used today and a brief discussion of catalyst-cost in PEMFCs, it is shown how sputter-deposition technology may be used to create more kinetically active PEMFC catalyst electrodes versus standard ink-based techniques. The technologies of the Ru filter and sputter-deposition are then combined to create a low-loading, CO tolerant anode for the PEMFC. In the final work, the effect of the airbleed on CO oxidation is then modeled. In the concluding chapter, it is shown how the work presented can lead the PEMFC closer to large-scale commercialization. The Appendix A provides a detailed method by which PEMFC MEAs were manufactured using catalyst inks. This method served as the basis for all original works presented. Appendix B--F provide further background and information on the mathematical model developed, including a printout of the Fortran code used to generate the model results.
Optimization of levulinic acid from lignocellulosic biomass using a new hybrid catalyst.
Ya'aini, Nazlina; Amin, Nor Aishah Saidina; Asmadi, Mohd
2012-07-01
Conversion of glucose, empty fruit bunch (efb) and kenaf to levulinic acid over a new hybrid catalyst has been investigated in this study. The characterization and catalytic performance results revealed that the physico-chemical properties of the new hybrid catalyst comprised of chromium chloride and HY zeolite increased the levulinic acid production from glucose compared to the parent catalysts. Optimization of the glucose conversion process using two level full factorial designs (2(3)) with two center points reported 55.2% of levulinic acid yield at 145.2 °C, 146.7 min and 12.0% of reaction temperature, reaction time and catalyst loading, respectively. Subsequently, the potential of efb and kenaf for producing levulinic acid at the optimum conditions was established after 53.2% and 66.1% of efficiencies were reported. The observation suggests that the hybrid catalyst has a potential to be used in biomass conversion to levulinic acid. Copyright © 2012 Elsevier Ltd. All rights reserved.
Olutoye, M A; Hameed, B H
2011-02-01
Fatty acid methyl ester was produced from used vegetable cooking oil using Mg(1-)(x) Zn(1+)(x)O(2) solid catalyst and the performance monitored in terms of ester content obtained. Used vegetable cooking oil was employed to reduce operation cost of biodiesel. The significant operating parameters which affect the overall yield of the process were studied. The highest ester content, 80%, was achieved with the catalyst during 4h 15 min reaction at 188°C with methanol to oil ratio of 9:1 and catalyst loading of 2.55 wt% oil. Also, transesterification of virgin oil gave higher yield with the heterogeneous catalyst and showed high selectivity towards ester production. The used vegetable cooking oil did not require any rigorous pretreatment. Catalyst stability was examined and there was no leaching of the active components, and its performance was as good at the fourth as at the first cycle. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Baran, Talat
2017-08-01
In this study, a new heterogeneous palladium (II) catalyst that contains O-carboxymethyl chitosan Schiff base has been designed for Suzuki coupling reactions. The chemical structures of the synthesized catalyst were characterized with the FTIR, TG/DTG, ICP-OES, SEM/EDAX, 1H NMR, 13C NMR, GC/MS, XRD, and magnetic moment techniques. The reusability and catalytic behavior of heterogeneous catalyst was tested towards Suzuki reactions. As a result of the tests, excellent selectivity was obtained, and by-products of homo coupling were not seen in the spectra. The biaryls products were identified on a GC/MS. In addition, it was determined in the reusability tests that the catalysts could be used several times (seven runs). More importantly, with very low catalyst loading (6 × 10-3 mol %) in very short reaction time (5 min), chitosan Schiff base supported Pd(II) complex gave high TON and TOF values. These findings showed that Schiff base supported Pd(II) catalyst is suitable for Suzuki cross coupling reactions.
Olutoye, M A; Hameed, B H
2013-03-01
An active heterogeneous Al2O3 modified MgZnO (MgZnAlO) catalyst was prepared and the catalytic activity was investigated for the transesterification of different vegetable oils (refined palm oil, waste cooking palm oil, palm kernel oil and coconut oil) with methanol to produce biodiesel. The catalyst was characterized by using X-ray diffraction, Fourier transform infrared spectra, thermo gravimetric and differential thermal analysis to ascertain its versatility. Effects of important reaction parameters such as methanol to oil molar ratio, catalyst dosage, reaction temperature and reaction time on oil conversion were examined. Within the range of studied variability, the suitable transesterification conditions (methanol/oil ratio 16:1, catalyst loading 3.32 wt.%, reaction time 6h, temperature 182°C), the oil conversion of 98% could be achieved with reference to coconut oil in a single stage. The catalyst can be easily recovered and reused for five cycles without significant deactivation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Enhanced furfural production from raw corn stover employing a novel heterogeneous acid catalyst.
Li, Wenzhi; Zhu, Yuanshuai; Lu, Yijuan; Liu, Qiyu; Guan, Shennan; Chang, Hou-Min; Jameel, Hasan; Ma, Longlong
2017-12-01
With the aim to enhance the direct conversion of raw corn stover into furfural, a promising approach was proposed employing a novel heterogeneous strong acid catalyst (SC-CaC t -700) in different solvents. The novel catalyst was characterized by elemental analysis, N 2 adsorption-desorption, FT-IR, XPS, TEM and SEM. The developed catalytic system demonstrated superior efficacy for furfural production from raw corn stover. The effects of reaction temperature, residence time, catalyst loading, substrate concentration and solvent were investigated and optimized. 93% furfural yield was obtained from 150mg corn stover at 200°C in 100min using 45mg catalyst in γ-valerolactone (GVL). In comparison, 51.5% furfural yield was achieved in aqueous media under the same conditions (200°C, 5h, and 45mg catalyst), which is of great industrial interest. Furfural was obtained from both hemicelluloses and cellulose in corn stover, which demonstrated a promising routine to make the full use of biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.
Catalytic liquid-phase nitrite reduction: Kinetics and catalyst deactivation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pintar, A.; Bercic, G.; Levec, J.
1998-10-01
Liquid-phase reduction using a solid catalyst provides a potential technique for the removal of nitrites from waters. Activity and selectivity measurements were performed for a wide range of reactant concentrations and reaction conditions in an isothermal semi-batch slurry reactor, which was operated at temperatures below 298 K and atmospheric pressure. The effects of catalyst loading and initial nitrite concentration on the reaction rate were also investigated. The Pd monometallic catalysts were found to be advantageous over the Pd-Cu bimetallic catalyst with respect to either reaction activity or selectivity. Among the catalysts tested, minimum ammonia formation was observed for the Pd(1more » wt.%)/{gamma}-Al{sub 2}O{sub 3} catalyst. The proposed intrinsic rate expression for nitrite disappearance over the most selective catalyst is based on the steady-state adsorption model of Hinshelwood, which accounts for a dissociative hydrogen adsorption step on the catalyst surface and an irreversible surface reaction step between adsorbed hydrogen species and nitrite ions in the Helmholtz layer. Both processes occur at comparable rates. An exponential decay in the activity of Pd(1 wt. %)/{gamma}-Al{sub 2}O{sub 3} catalyst has been observed during the liquid-phase nitrite reduction. This is attributed to the catalyst surface deprotonation, which occurs due to the partial neutralization of stoichiometrically produced hydroxide ions with carbon dioxide.« less
Zhang, Nan; Zhao, He; Zhang, Guangming; Chong, Shan; Liu, Yucan; Sun, Liyan; Chang, Huazhen; Huang, Ting
2017-02-01
High efficiency and facile separation are desirable for catalysts used in water treatment. In this study, a magnetic catalyst (nitrogen doped iron/activated carbon) was prepared and used for pharmaceutical wastewater treatment. The catalyst was characterized using BET, SEM, XRD, VSM and XPS. Results showed that iron and nitrogen were successfully loaded and doped, magnetic Fe 2 N was formed, large amount of active surface oxygen and Fe(II) were detected, and the catalyst could be easily separated from water. Diclofenac was then degraded using the catalyst in ultrasound system. The catalyst showed high catalytic activity with 95% diclofenac removal. Analysis showed that ·OH attack of diclofenac was a main pathway, and then ·OH generation mechanism was clarified. The effects of catalyst dosage, sonication time, ultrasonic density, initial pH, and inorganic anions on diclofenac degradation were studied. Sulfate anion enhanced the degradation of diclofenac. Mechanism in the catalytic ultrasonic process was analyzed and reactions were clarified. Large quantity of oxidants was generated on the catalyst surface, including ·OH, O 2 - , O - and HO 2 ·, which degraded diclofenac efficiently. In the solution and interior of cavitation bubbles, ·OH and "hot spot" effects contributed to the degradation of diclofenac. Reuse of the catalyst was further investigated to enhance its economy, and the catalyst maintained activity after seven uses. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fischer-Tropsch Cobalt Catalyst Activation and Handling Through Wax Enclosure Methods
NASA Technical Reports Server (NTRS)
Klettlinger, Jennifer L. S.; Yen, Chia H.; Nakley, Leah M.; Surgenor, Angela D.
2016-01-01
Fischer-Tropsch (F-T) synthesis is considered a gas to liquid process which converts syn-gas, a gaseous mixture of hydrogen and carbon monoxide, into liquids of various hydrocarbon chain length and product distributions. Cobalt based catalysts are used in F-T synthesis and are the focus of this paper. One key concern with handling cobalt based catalysts is that the active form of catalyst is in a reduced state, metallic cobalt, which oxidizes readily in air. In laboratory experiments, the precursor cobalt oxide catalyst is activated in a fixed bed at 350 ?C then transferred into a continuous stirred tank reactor (CSTR) with inert gas. NASA has developed a process which involves the enclosure of active cobalt catalyst in a wax mold to prevent oxidation during storage and handling. This improved method allows for precise catalyst loading and delivery into a CSTR. Preliminary results indicate similar activity levels in the F-T reaction in comparison to the direct injection method. The work in this paper was supported by the NASA Fundamental Aeronautics Subsonics Fixed Wing Project.
Fang, Hui; Xiao, Qing; Wu, Fanghui; Floreancig, Paul E.; Weber, Stephen G.
2010-01-01
A high-throughput screening system for homogeneous catalyst discovery has been developed by integrating a continuous-flow capillary-based microreactor with ultra-high pressure liquid chromatography (UHPLC) for fast online analysis. Reactions are conducted in distinct and stable zones in a flow stream that allows for time and temperature regulation. UHPLC detection at high temperature allows high throughput online determination of substrate, product, and byproduct concentrations. We evaluated the efficacies of a series of soluble acid catalysts for an intramolecular Friedel-Crafts addition into an acyliminium ion intermediate within one day and with minimal material investment. The effects of catalyst loading, reaction time, and reaction temperature were also screened. This system exhibited high reproducibility for high-throughput catalyst screening and allowed several acid catalysts for the reaction to be identified. Major side products from the reactions were determined through off-line mass spectrometric detection. Er(OTf)3, the catalyst that showed optimal efficiency in the screening, was shown to be effective at promoting the cyclization reaction on a preparative scale. PMID:20666502
NASA Astrophysics Data System (ADS)
Ko, Younji; Kim, Donghee; Kwon, Cheong Hoon; Cho, Jinhan
2018-04-01
In this study, we introduce hydrophobic and hydrophilic graphene oxide nanosheet (GON) catalysts prepared by consecutive ligand replacement of hydrophobically stabilized magnetic and catalytic nanoparticles (NPs); it exhibits high catalytic activity, fast magnetic response, and good dispersion in both nonpolar and aqueous media, allowing high loading amount of magnetic and catalytic NPs onto GON sheets. More specifically, these GON catalysts showed a high product yield of 66-99% and notable recyclability (93% of the initial product yield after 10 reaction cycles) in a Suzuki-Miyaura reaction in nonpolar media, outperforming the performance of the conventional hydrophilic GON catalysts. Additional coating of a hydrophilic layer onto GON catalysts also showed the notable performance (product yield ∼99%) in catalytic reactions performed in aqueous media. Given that ligand-controlled catalytic NPs adsorbed onto 2D nanosheets can be used as hydrophobic and hydrophilic stabilizers as well as catalysts, our approach can provide a tool for developing and designing 2D-nanosheet catalysts with high performance in nonpolar and polar media.
Preparation and characterizaton of CaO nanoparticle for biodiesel production
NASA Astrophysics Data System (ADS)
Gupta, Jharna; Agarwal, Madhu
2016-04-01
Nanoparticle of CaO from calcium Nitrate (CaO/CaN) and Snail shell (CaO/SS) are successfully synthesized by method as described in the literature and used as an active and stable catalyst for the biodiesel production. These catalysts are characterized by Fourier-transform infrared spectra (FT-IR), X-ray diffraction (XRD), and thermal gravimetric analysis (TGA). The average crystalline size in nanometer was also calculated by Debye-Scherrer equation. The performance of the CaO/CaN and CaO/SS were tested for their catalytic activity via transesterification process and it was found that biodiesel yield has been increased from 93 to 96%. The optimum conditions for the highest yield were 8wt% catalyst loading, 65°C temperature, 12:1 methanol/oil molar ratio, and 6 h for reaction time. The nano catalyst from snail shell exhibits excellent catalytic activity and stability for the transesterification reaction, which suggested that this catalyst would be potentially used as a solid base nano catalyst for biodiesel production. In order to examine the reusability of catalyst developed from snail shell, five transesterification reaction cycles were also performed.
NASA Astrophysics Data System (ADS)
Yao, Fang; Li, Xiao; Wan, Chao; Xu, Lixin; An, Yue; Ye, Mingfu; Lei, Zhao
2017-12-01
Bimetallic AgPd nanoparticles with various molar ratios immobilized on graphitic carbon nitride (g-C3N4) were successfully synthesized via a facile co-reduction approach. The powder XRD, XPS, TEM, EDX, ICP-AES and BET were employed to characterize the structure, size, composition and loading metal electronic states of the AgPd/g-C3N4 catalysts. The catalytic property of as-prepared catalysts for the dehydrogenation of formic acid (FA) with sodium formate (SF) as the additive was investigated. The performance of these catalysts, as indicated by the turnover frequency (TOF), depended on the composition of the prepared catalysts. Among all the AgPd/g-C3N4 catalysts tested, Ag9Pd91/g-C3N4 was found to be an exceedingly high activity for decomposing FA into H2 with TOF up to 480 h-1 at 323 K. The prepared catalyst is thus a potential candidate for triggering the widespread use of FA for H2 storage.
NASA Astrophysics Data System (ADS)
Hong, Sangyeob; Kumar, D. Praveen; Reddy, D. Amaranatha; Choi, Jiha; Kim, Tae Kyu
2017-02-01
Charge carrier recombination and durability issues are major problems in photocatalytic hydrogen (H2) evolution processes. Thus, there is a very important necessitate to extend an efficient photocatalyst to control charge-carrier dynamics in the photocatalytic system. We have developed copper molybdenum sulfide (Cu2MoS4) nanosheets as co-catalysts with CdS nanorods for controlling charge carriers without recombination for use in photocatalytic H2 evolution under simulated solar light irradiation. Effective control and utilization of charge carriers are possible by loading Cu2MoS4 nanosheets onto the CdS nanorods. The loading compensates for the restrictions of CdS, and stimulated synergistic effects, such as efficient photoexcited charge separation, lead to an improvement in photostability because of the layered structure of the Cu2MoS4nanosheets. These layered Cu2MoS4 nanosheets have emerged as novel and active replacements for precious noble metal co-catalysts in photocatalytic H2 production by water splitting. We have obtained superior H2 production rates by using Cu2MoS4 loaded CdS nanorods. The physicochemical properties of the composites are analyzed by diverse characterization techniques.
Rizzo, Luigi
2009-06-15
In this study the potential application of TiO(2) photocatalysis as primary disinfection system of drinking water was investigated in terms of coliform bacteria inactivation and injury. As model water the effluent of biological denitrification unit for nitrate removal from groundwater, which is characterized by high organic matter and bacteria release, was used. The injury of photocatalysis on coliform bacteria was characterized by means of selective (mEndo) and less selective (mT7) culture media. Different catalyst loadings as well as photolysis and adsorption effects were investigated. Photocatalysis was effective in coliform bacteria inactivation (91-99% after 60 min irradiation time, depending on both catalyst loading and initial density of coliform bacteria detected by mEndo), although no total removal was observed after 60 min irradiation time. The contribution of adsorption mechanism was significant (60-98% after 60 min, depending on catalyst loading) compared to previous investigations probably due to the nature of source water rich in particulate organic matter and biofilm. Photocatalysis process did not result in any irreversible injury (98.8% being the higher injury) under investigated conditions, thus a bacteria regrowth may take place under optimum environment conditions if any final disinfection process (e.g., chlorine or chlorine dioxide) is not used.
Wang, Ying; Liang, Mingxing; Fang, Jiasheng; Fu, Jun; Chen, Xiaochun
2017-09-01
In this study, α-FeOOH on reduced graphene oxide (rGO-α-FeOOH) supported on an Al-doped MCM-41 catalyst (RFAM) was optimized for the visible-light photo-Fenton oxidation of phenol at neutral pH. The stability of the catalysts, effect of bubbling aeration, and degradation intermediates were investigated. Results indicated that RFAM with a large Brunauer-Emmett-Teller (BET) area and mesoporous structure displayed excellent catalytic activity for the visible-light-driven (VLD) photo-Fenton process. Phenol degradation was well described by a pseudo-first-order reaction kinetics model. Raman analysis demonstrated that an rGO-α-FeOOH (RF) composite is formed during the ferrous-ion-induced self-assembly process. Al-MCM-41 could uniformly disperse RF nanosheets and promote the mobility and diffusion of matter. The activity of the main catalyst α-FeOOH was enhanced after the incorporation of rGO nanosheets. The α-FeOOH crystal in RFAM showed catalytic activity superior to those of Fe 3 O 4 and Fe 2 O 3 . The RFAM catalyst, with an optimal GO-Fe 2+ mass ratio of 2.33, exhibited a larger BET area, pore size, and pore volume, and thus exhibited high performance and energy utilization efficiency in the VLD photo-Fenton reaction with remarkable stability. Bubbling N 2 inhibited catalytic performance, while bubbling O 2 or air only slightly accelerated the phenol degradation. Visible light played an important role in accelerating the formation of reactive oxygen species (·OH) for the highly efficient phenol degradation. Analysis of degradation intermediates indicated a high phenol mineralization level and the formation of low-molecular-weight organic acids. This work would be helpful in providing an insight into a new type of catalyst assembly and a possible route to a promising heterogeneous catalyst applicable in the visible light photo-Fenton process for effective wastewater remediation at neutral pH. Copyright © 2017. Published by Elsevier Ltd.
Petawatt pulsed-power accelerator
Stygar, William A.; Cuneo, Michael E.; Headley, Daniel I.; Ives, Harry C.; Ives, legal representative; Berry Cottrell; Leeper, Ramon J.; Mazarakis, Michael G.; Olson, Craig L.; Porter, John L.; Wagoner; Tim C.
2010-03-16
A petawatt pulsed-power accelerator can be driven by various types of electrical-pulse generators, including conventional Marx generators and linear-transformer drivers. The pulsed-power accelerator can be configured to drive an electrical load from one- or two-sides. Various types of loads can be driven; for example, the accelerator can be used to drive a high-current z-pinch load. When driven by slow-pulse generators (e.g., conventional Marx generators), the accelerator comprises an oil section comprising at least one pulse-generator level having a plurality of pulse generators; a water section comprising a pulse-forming circuit for each pulse generator and a level of monolithic triplate radial-transmission-line impedance transformers, that have variable impedance profiles, for each pulse-generator level; and a vacuum section comprising triplate magnetically insulated transmission lines that feed an electrical load. When driven by LTD generators or other fast-pulse generators, the need for the pulse-forming circuits in the water section can be eliminated.
Bimetallic Nanocatalysts in Mesoporous Silica for Hydrogen Production from Coal-Derived Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuila, Debasish; Ilias, Shamsuddin
2013-02-13
In steam reforming reactions (SRRs) of alkanes and alcohols to produce H 2, noble metals such as platinum (Pt) and palladium (Pd) are extensively used as catalyst. These metals are expensive; so, to reduce noble-metal loading, bi-metallic nanocatalysts containing non-noble metals in MCM-41 (Mobil Composition of Material No. 41, a mesoporous material) as a support material with high-surface area were synthesized using one-pot hydrothermal procedure with a surfactant such as cetyltrimethylammonium bromide (CTAB) as a template. Bi-metallic nanocatalysts of Pd-Ni and Pd-Co with varying metal loadings in MCM-41 were characterized by x-ray diffraction (XRD), N 2 adsorption, and Transmission electronmore » microscopy (TEM) techniques. The BET surface area of MCM-41 (~1000 m 2/g) containing metal nanoparticles decreases with the increase in metal loading. The FTIR studies confirm strong interaction between Si-O-M (M = Pd, Ni, Co) units and successful inclusion of metal into the mesoporous silica matrix. The catalyst activities were examined in steam reforming of methanol (SRM) reactions to produce hydrogen. Reference tests using catalysts containing individual metals (Pd, Ni and Co) were also performed to investigate the effect of the bimetallic system on the catalytic behavior in the SRM reactions. The bimetallic system remarkably improves the hydrogen selectivity, methanol conversion and stability of the catalyst. The results are consistent with a synergistic behavior for the Pd-Ni-bimetallic system. The performance, durability and thermal stability of the Pd-Ni/MCM-41 and Pd-Co/MCM-41 suggest that these materials may be promising catalysts for hydrogen production from biofuels. A part of this work for synthesis and characterization of Pd-Ni-MCM-41 and its activity for SRM reactions has been published (“Development of Mesoporous Silica Encapsulated Pd-Ni Nanocatalyst for Hydrogen Production” in “Production and Purification of Ultraclean Transportation Fuels”; Hu, Y., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2011.)« less
Duan, Qiannan; Lee, Jianchao; Chen, Han; Zheng, Yunyun
2017-12-01
A novel magnetically separable magnetic activated carbon supporting-copper (MCAC) catalyst for catalytic wet peroxide oxidation (CWPO) was prepared by chemical impregnation. The prepared samples were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) method, and scanning electron microscopy (SEM) equipped with energy dispersive spectrometry (EDS). The catalytic performance of the catalysts was evaluated by direct violet (D-BL) degradation in CWPO experiments. The influence of preparative and operational parameters (dipping conditions, calcination temperature, catalyst loading H 2 O 2 dosage, pH, reaction temperature, additive salt ions and initial D-BL concentration) on degradation performance of CWPO process was investigated. The resulting MCAC catalyst showed higher reusability in direct violet oxidation than the magnetic activated carbon (MAC). Besides, dynamic tests also showed the maximal degradation rate reached 90.16% and its general decoloring ability of MCAC was 34 mg g -1 for aqueous D-BL.
Nafion induced surface confinement of oxygen in carbon-supported oxygen reduction catalysts
Chlistunoff, Jerzy; Sansinena, Jose -Maria
2016-11-17
We studied the surface confinement of oxygen inside layers of Nafion self-assembled on carbon-supported oxygen reduction reaction (ORR) catalysts. It is demonstrated that oxygen accumulates in the hydrophobic component of the polymer remaining in contact with the carbon surface. Furthermore, the amount of surface confined oxygen increases with the degree of carbon surface graphitization, which promotes the self-assembly of the polymer. Planar macrocyclic ORR catalysts possessing a delocalized system of π electrons such as Co and Fe porphyrins and phthalocyanines have virtually no effect on the surface confinement of oxygen, in accordance with their structural similarity to graphitic carbon surfacesmore » where they adsorb. Platinum particles in carbon-supported ORR catalysts with high metal contents (20%) disrupt the self-assembly of Nafion and virtually eliminate the oxygen confinement, but the phenomenon is still observed for low Pt loading (4.8%) catalysts.« less
Olutoye, M A; Lee, S C; Hameed, B H
2011-12-01
Fatty acid methyl esters (FAME) were produced from palm oil using eggshell modified with magnesium and potassium nitrates to form a composite, low-cost heterogeneous catalyst for transesterification. The catalyst, prepared by the combination of impregnation/co-precipitation was calcined at 830 °C for 4 h. Transesterification was conducted at a constant temperature of 65 °C in a batch reactor. Design of experiment (DOE) was used to optimize the reaction parameters, and the conditions that gave highest yield of FAME (85.8%) was 5.35 wt.% catalyst loading at 4.5 h with 16:1 methanol/oil molar ratio. The results revealed that eggshell, a solid waste, can be utilized as low-cost catalyst after modification with magnesium and potassium nitrates for biodiesel production. Copyright © 2011 Elsevier Ltd. All rights reserved.
Nafion induced surface confinement of oxygen in carbon-supported oxygen reduction catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chlistunoff, Jerzy; Sansinena, Jose -Maria
We studied the surface confinement of oxygen inside layers of Nafion self-assembled on carbon-supported oxygen reduction reaction (ORR) catalysts. It is demonstrated that oxygen accumulates in the hydrophobic component of the polymer remaining in contact with the carbon surface. Furthermore, the amount of surface confined oxygen increases with the degree of carbon surface graphitization, which promotes the self-assembly of the polymer. Planar macrocyclic ORR catalysts possessing a delocalized system of π electrons such as Co and Fe porphyrins and phthalocyanines have virtually no effect on the surface confinement of oxygen, in accordance with their structural similarity to graphitic carbon surfacesmore » where they adsorb. Platinum particles in carbon-supported ORR catalysts with high metal contents (20%) disrupt the self-assembly of Nafion and virtually eliminate the oxygen confinement, but the phenomenon is still observed for low Pt loading (4.8%) catalysts.« less
Modified silica-based heterogeneous catalysts for etherification of glycerol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gholami, Zahra, E-mail: zahra.gholami@petronas.com.my; Abdullah, Ahmad Zuhairi, E-mail: chzuhairi@usm.my; Gholami, Fatemeh, E-mail: fgholami59@gmail.com
2015-07-22
The advent of mesoporous silicas such as MCM-41 has provided new opportunities for research into supported metal catalysis. The loading of metals into framework structures and particularly into the pores of porous molecular sieves, has long been of interest because of their potential catalytic activity. Stable heterogeneous mesoporous basic catalysts were synthesized by wet impregnation of MCM-41 with calcium nitrate and lanthanum nitrate. The surface and structural properties of the prepared catalysts were characterized using BET surface analysis, SEM and TEM. MCM-41 and modified MCM-41 were used in the solventless etherification of glycerol to produce diglycerol as the desired product.more » The reaction was performed at 250 °C for 8 h, and catalyst activity was evaluated. Catalytic etherification over the 20%Ca{sub 1.6}La{sub 0.6}/MCM-41 catalyst resulted in the highest glycerol conversion of 91% and diglycerol yield of 43%.« less
Khairudin, Nor Fazila; Sukri, Mohd Farid Fahmi; Khavarian, Mehrnoush; Mohamed, Abdul Rahman
2018-01-01
Dry reforming of methane (DRM) is one of the more promising methods for syngas (synthetic gas) production and co-utilization of methane and carbon dioxide, which are the main greenhouse gases. Magnesium is commonly applied in a Ni-based catalyst in DRM to improve catalyst performance and inhibit carbon deposition. The aim of this review is to gain better insight into recent developments on the use of Mg as a support or promoter for DRM catalysts. Its high basicity and high thermal stability make Mg suitable for introduction into the highly endothermic reaction of DRM. The introduction of Mg as a support or promoter for Ni-based catalysts allows for good metal dispersion on the catalyst surface, which consequently facilitates high catalytic activity and low catalyst deactivation. The mechanism of DRM and carbon formation and reduction are reviewed. This work further explores how different constraints, such as the synthesis method, metal loading, pretreatment, and operating conditions, influence the dry reforming reactions and product yields. In this review, different strategies for enhancing catalytic activity and the effect of metal dispersion on Mg-containing oxide catalysts are highlighted.
Khairudin, Nor Fazila; Sukri, Mohd Farid Fahmi; Khavarian, Mehrnoush
2018-01-01
Dry reforming of methane (DRM) is one of the more promising methods for syngas (synthetic gas) production and co-utilization of methane and carbon dioxide, which are the main greenhouse gases. Magnesium is commonly applied in a Ni-based catalyst in DRM to improve catalyst performance and inhibit carbon deposition. The aim of this review is to gain better insight into recent developments on the use of Mg as a support or promoter for DRM catalysts. Its high basicity and high thermal stability make Mg suitable for introduction into the highly endothermic reaction of DRM. The introduction of Mg as a support or promoter for Ni-based catalysts allows for good metal dispersion on the catalyst surface, which consequently facilitates high catalytic activity and low catalyst deactivation. The mechanism of DRM and carbon formation and reduction are reviewed. This work further explores how different constraints, such as the synthesis method, metal loading, pretreatment, and operating conditions, influence the dry reforming reactions and product yields. In this review, different strategies for enhancing catalytic activity and the effect of metal dispersion on Mg-containing oxide catalysts are highlighted. PMID:29719767
NASA Astrophysics Data System (ADS)
Tahir, Muhammad; Tahir, Beenish; Saidina Amin, Nor Aishah; Alias, Hajar
2016-12-01
Photocatalytic CO2 reduction by H2O and/or H2 reductant to selective fuels over Cu-promoted In2O3/TiO2 photocatalyst has been investigated. The samples, prepared via a simple and direct sol-gel method, were characterized by XRD, SEM, TEM, XPS, N2 adsorption-desorption, UV-vis diffuse reflectance, Raman and PL spectroscopy. Cu and In loaded into TiO2, oxidized as Cu2+ and In3+, promoted efficient separation of photo-generated electron/hole pairs (e-/h+). The results indicate that the reduction rate of CO2 by H2O to CH4 approached to 181 μmol g-1 h-1 using 0.5% Cu-3% In2O3/TiO2 catalyst, a 1.53 fold higher than the production rate over the 3% In2O3/TiO2 and 5 times the amount produced over the pure TiO2. In addition, Cu was found to promote efficient production of CH3OH and yield rate reached to 68 μmol g-1 h-1 over 1% Cu-3% In2O3/TiO2 catalyst. This improvement was attributed to charge transfer property and suppressed recombination rate by Cu-metal. More importantly, H2 reductant was less favorable for CH4 production, yet a significant amount of CH4 and CH3OH were obtained using a mixture of H2O/H2 reductant. Therefore, Cu-loaded In2O3/TiO2 catalyst has shown to be capable for methanol production, whereas product selectivity was greatly depending on the amount of Cu-loading and the type of reductant. A photocatalytic reaction mechanism was proposed to understand the experimental results over the Cu-loaded In2O3/TiO2 catalyst.
Santoro, Carlo; Kodali, Mounika; Kabir, Sadia; Soavi, Francesca; Serov, Alexey; Atanassov, Plamen
2017-07-15
Three-dimensional graphene nanosheets (3D-GNS) were used as cathode catalysts for microbial fuel cells (MFCs) operating in neutral conditions. 3D-GNS catalysts showed high performance towards oxygen electroreduction in neutral media with high current densities and low hydrogen peroxide generation compared to activated carbon (AC). 3D-GNS was incorporated into air-breathing cathodes based on AC with three different loadings (2, 6 and 10 mgcm -2 ). Performances in MFCs showed that 3D-GNS had the highest performances with power densities of 2.059 ± 0.003 Wm -2 , 1.855 ± 0.007 Wm -2 and 1.503 ± 0.005 Wm -2 for loading of 10, 6 and 2 mgcm -2 respectively. Plain AC had the lowest performances (1.017 ± 0.009 Wm -2 ). The different cathodes were also investigated in supercapacitive MFCs (SC-MFCs). The addition of 3D-GNS decreased the ohmic losses by 14-25%. The decrease in ohmic losses allowed the SC-MFC with 3D-GNS (loading 10 mgcm -2 ) to have the maximum power (P max ) of 5.746 ± 0.186 Wm -2 . At 5 mA, the SC-MFC featured an "apparent" capacitive response that increased from 0.027 ± 0.007 F with AC to 0.213 ± 0.026 F with 3D-GNS (loading 2 mgcm -2 ) and further to 1.817 ± 0.040 F with 3D-GNS (loading 10 mgcm -2 ).
NASA Astrophysics Data System (ADS)
Moradiyan, Eshagh; Halladj, Rouein; Askari, Sima; Moghimpour Bijani, Parisa
2017-08-01
SAPO-34 as a catalyst has high selectivity and hydrothermal stability, but it is rapidly deactivated by the formation of coke in its micropores. Evaluating the natural Clinoptilolite capability as a binder in nanocomposite catalysts is of interest because of its low cost, and accelerating the reaction. The SAPO-34/Clinoptilolite (S/C) nanocomposite catalysts were synthesized via ultrasonic-assisted hydrothermal method using Clinoptilolite as a binder. Subsequent performance of the catalyst was investigated in the methanol to olefins (MTO) reaction. The structures of synthesized nanocomposite were characterized with several methods such as XRD, XRF, FESEM, TEM, NH3-TPD, FT-IR, and nitrogen adsorption techniques. The modified Clinoptilolite was attained using nitric acid treatment. Although the physicochemical analysis indicated that HNO3-treatment decreases the crystallinity of the Clinoptilolite, the specific surface area of natural zeolite enhances considerably from 20.07 to 187.8 m2/g. The nanocomposite catalysts showed high selectivity toward light olefins with 100% conversion and 90% selectivity to light olefins as desired products at 450 °C. Nanocomposite with the additional diffusion paths for mass transfer provided by binder-filled space ascend to higher catalytic lifetimes in compare with free SAPO-34 catalyst.
NASA Astrophysics Data System (ADS)
Niu, Mengying; Xu, Wence; Zhu, Shengli; Liang, Yanqin; Cui, Zhenduo; Yang, Xianjin; Inoue, Akihisa
2017-09-01
Nanoporous CuO/TiO2/Pd-NiO-x (x = 0, 1, 3, 5, 7 at%) catalysts have been synthesized by dealloying Cu-Ti-Pd-Ni alloy ribbons in acid solution. The nanoporous structure and chemical composition of the catalysts distribute uniformly. Based on the electrochemical active area (EASA), electrocatalytic activity and stability, the np-CuO/TiO2/Pd-NiO-3 catalyst possesses the best performance for methanol and ethanol electro-oxidation. For methanol and ethanol electro-oxidation, the anodic current densities in forward scan of the np-CuO/TiO2/Pd-NiO-3 catalyst are about 5.6 times and 2.1 times larger than that of the np-CuO/TiO2/Pd catalyst, respectively. The introduction of NiO provides more electrochemical active sites due to the improved geometrical and bifunctional mechanism. NiO promotes the adsorption of oxygen-containing species (OHads) on the catalyst surface, and electron effect between Pd and Ni is favorable for charge transfer. This accelerates the removal of intermediate products during the oxidation process. The electrocatalytic processes of methanol and ethanol oxidation in alkaline solution are controlled by both charge transfer and diffusion.
Improved Anode for a Direct Methanol Fuel Cell
NASA Technical Reports Server (NTRS)
Valdez, Thomas; Narayanan, Sekharipuram
2005-01-01
A modified chemical composition has been devised to improve the performance of the anode of a direct methanol fuel cell. The main feature of the modified composition is the incorporation of hydrous ruthenium oxide into the anode structure. This modification can reduce the internal electrical resistance of the cell and increase the degree of utilization of the anode catalyst. As a result, a higher anode current density can be sustained with a smaller amount of anode catalyst. These improvements can translate into a smaller fuel-cell system and higher efficiency of conversion. Some background information is helpful for understanding the benefit afforded by the addition of hydrous ruthenium oxide. The anode of a direct methanol fuel cell sustains the electro-oxidation of methanol to carbon dioxide in the reaction CH3OH + H2O--->CO2 + 6H(+) + 6e(-). An electrocatalyst is needed to enable this reaction to occur. The catalyst that offers the highest activity is an alloy of approximately equal numbers of atoms of the noble metals platinum and ruthenium. The anode is made of a composite material that includes high-surface-area Pt/Ru alloy particles and a proton-conducting ionomeric material. This composite is usually deposited onto a polymer-electrolyte (proton-conducting) membrane and onto an anode gas-diffusion/current-collector sheet that is subsequently bonded to the proton-conducting membrane by hot pressing. Heretofore, the areal density of noble-metal catalyst typically needed for high performance has been about 8 mg/cm2. However, not all of the catalyst has been utilized in the catalyzed electro-oxidation reaction. Increasing the degree of utilization of the catalyst would make it possible to improve the performance of the cell for a given catalyst loading and/or reduce the catalyst loading (thereby reducing the cost of the cell). The use of carbon and possibly other electronic conductors in the catalyst layer has been proposed for increasing the utilization of the catalyst by increasing electrical connectivity between catalyst particles. However, the relatively low density of carbon results in thick catalyst layers that impede the mass transport of methanol to the catalytic sites. Also, the electrical conductivity of carbon is less than 1/300th of typical metals. Furthermore, the polymer-electrolyte membrane material is acidic and most metals are not chemically stable in contact with it. Finally, a material that conducts electrons (but not protons) does not contribute to the needed transport of protons produced in the electro-oxidation reaction.
NASA Astrophysics Data System (ADS)
Su, Huaneng; Jao, Ting-Chu; Barron, Olivia; Pollet, Bruno G.; Pasupathi, Sivakumar
2014-12-01
This paper reports use of an ultrasonic-spray for producing low Pt loadings membrane electrode assemblies (MEAs) with the catalyst coated substrate (CCS) fabrication technique. The main MEA sub-components (catalyst, membrane and gas diffusion layer (GDL)) are supplied from commercial manufacturers. In this study, high temperature (HT) MEAs with phosphoric acid (PA)-doped poly(2,5-benzimidazole) (AB-PBI) membrane are fabricated and tested under 160 °C, hydrogen and air feed 100 and 250 cc min-1 and ambient pressure conditions. Four different Pt loadings (from 0.138 to 1.208 mg cm-2) are investigated in this study. The experiment data are determined by in-situ electrochemical methods such as polarization curve, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The high Pt loading MEA exhibits higher performance at high voltage operating conditions but lower performances at peak power due to the poor mass transfer. The Pt loading 0.350 mg cm-2 GDE performs the peak power density and peak cathode mass power to 0.339 W cm-2 and 0.967 W mgPt-1, respectively. This work presents impressive cathode mass power and high fuel cell performance for high temperature proton exchange membrane fuel cells (HT-PEMFCs) with low Pt loadings.
Roles of K2O on the CaO-ZnO Catalyst and Its Influence on Catalyst Basicity for Biodiesel Production
NASA Astrophysics Data System (ADS)
Buchori, Luqman; Istadi, I.; Purwanto; Marpaung, Louis Claudia; Safitri, Rahmatika Luthfiani
2018-02-01
This research aimed to study the effect of K2O impregnation on the basicity of the CaO-ZnO catalyst and its effect on biodiesel production. The effect of mole ratio of CaO to ZnO catalyst and %wt K2O were also studied. The mole ratio of CaO to ZnO catalyst was varied at 1:1, 1:1.5, 1:2, 1:3, and 3:1, while the %wt K2O was varied at 1, 3, and 5 %. The catalyst basicity was determined by titration method. The basicity of the catalyst increased after the CaO-ZnO catalyst was impregnated with K2O in all mole ratios of CaO-ZnO catalyst. The addition of K2O as a promoter also increase the basicity. The highest basicity was obtained at the CaO-ZnO mole ratio of 3:1 and 5%wt K2O. The tranesterification process was carried out in a batch reactor at a methanol to oil mole ratio of 15:1, a reaction temperature of 60°C, a reaction time of 4 h, and a catalyst loading of 5%wt oil. The FAME yields obtained were 41.33%. These results proved that K2O plays a role in enhancing the catalyst basicity. In addition, K2O also serves as a binding agent to improve the mechanical properties of the catalyst.
Overview of High Power Vacuum Dry RF Load Designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasnykh, Anatoly
2015-08-27
A specific feature of RF linacs based on the pulsed traveling wave (TW) mode of operation is that only a portion of the RF energy is used for the beam acceleration. The residual RF energy has to be terminated into an RF load. Higher accelerating gradients require higher RF sources and RF loads, which can stably terminate the residual RF power. RF feeders (from the RF source though the accelerating section to the load) are vacuumed to transmit multi-megawatt high power RF. This overview will outline vacuumed RF loads only. A common method to terminate multi-MW RF power is tomore » use circulated water (or other liquid) as an absorbing medium. A solid dielectric interface (a high quality ceramic) is required to separate vacuum and liquid RF absorber mediums. Using such RF load approaches in TW linacs is troubling because there is a fragile ceramic window barrier and a failure could become catastrophic for linac vacuum and RF systems. Traditional loads comprising of a ceramic disk have limited peak and average power handling capability and are therefore not suitable for high gradient TW linacs. This overview will focus on ''vacuum dry'' or ''all-metal'' loads that do not employ any dielectric interface between vacuum and absorber. The first prototype is an original design of RF loads for the Stanford Two-Mile Accelerator.« less
Lewis, Ryan C; Gaffney, Shannon H; Le, Matthew H; Unice, Ken M; Paustenbach, Dennis J
2012-09-01
Workers handle catalysts extensively at petroleum refineries throughout the world each year; however, little information is available regarding the airborne concentrations and plausible exposures during this type of work. In this paper, we evaluated the airborne concentrations of 15 metals and total dust generated during solid catalyst loading and unloading operations at one of the largest petroleum refineries in the world using historical industrial hygiene samples collected between 1989 and 2006. The total dust and metals, which included aluminum, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, platinum, silicon, silver, vanadium, and zinc, were evaluated in relation to the handling of four different types of solid catalysts associated with three major types of catalytic processes. Consideration was given to the known components of the solid catalysts and any metals that were likely deposited onto them during use. A total of 180 analytical results were included in this analysis, representing 13 personal and 54 area samples. Of the long-term personal samples, airborne concentrations of metals ranged from <0.001 to 2.9mg/m(3), and, in all but one case, resulted in concentrations below the current U.S. Occupational Safety and Health Administration's Permissible Exposure Limits and the American Conference of Governmental Industrial Hygienists' Threshold Limit Values. The arithmetic mean total dust concentration resulting from long-term personal samples was 0.31mg/m(3). The data presented here are the most complete set of its kind in the open literature, and are useful for understanding the potential exposures during solid catalyst handling activities at this petroleum refinery and perhaps other modern refineries during the timeframe examined. Copyright © 2011 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Jang, Won-Jun; Jung, You-Shick; Shim, Jae-Oh; Roh, Hyun-Seog; Yoon, Wang Lai
2018-02-01
Steam reforming of methane (SRM) is conducted using a series of Ni-MgO-Al2O3 catalysts for direct internal reforming (DIR) in molten carbonate fuel cells (MCFCs). Ni-MgO-Al2O3 catalysts are prepared by the homogeneous precipitation method with a variety of MgO loading amounts ranging from 3 to 15 wt%. In addition, each precursor concentrations are systemically changed (Ni: 1.2-4.8 mol L-1; Mg: 0.3-1.2 mol L-1; Al: 0.4-1.6 mol L-1) at the optimized composition (10 wt% MgO). The effects of MgO loading and precursor concentration on the catalytic performance and resistance against poisoning of the catalyst by potassium (K) are investigated. The Ni-MgO-Al2O3 catalyst with 10 wt% MgO and the original precursor concentration (Ni: 1.2 mol L-1; Mg: 0.3 mol L-1; Al: 0.4 mol L-1) exhibits the highest CH4 conversion and resistance against K poisoning even at the extremely high gas space velocity (GHSV) of 1,512,000 h-1. Excellent SRM performance of the Ni-MgO-Al2O3 catalyst is attributed to strong metal (Ni) to alumina support interaction (SMSI) when magnesium oxide (MgO) is co-precipitated with the Ni-Al2O3. The enhanced interaction of the Ni with MgO-Al2O3 support is found to protect the active Ni species against K poisoning.
Ferreira-Aparicio, Paloma; Chaparro, Antonio M; Folgado, M Antonia; Conde, Julio J; Brightman, Edward; Hinds, Gareth
2017-03-29
Degradation of a polymer electrolyte membrane fuel cell (PEMFC) with electrosprayed cathode catalyst layers is investigated during cyclic start-up and shut-down events. The study is carried out within a single cell incorporating an array of reference electrodes that enables measurement of cell current as a function of local cathode potential (localized polarization curves). Accelerated degradation of the cell by start-up/shut-down cycling gives rise to inhomogeneous performance loss, which is more severe close to the gas outlet and occurs predominantly during start-up. The degradation consists primarily of loss of cathode catalyst activity and increase in cell internal resistance, which is attributed to carbon corrosion and Pt aggregation in both anode and cathode. Cells with an electrosprayed cathode catalyst layer show lower degradation rates during the first 100 cycles, compared with those of a conventional gas diffusion electrode. This difference in behavior is attributed to the high hydrophobicity of the electrosprayed catalyst layer microstructure, which retards the kinetics of corrosion of the carbon support. In the long term, however, the degradation rate is dominated by the Pt/C ratio in the cathode catalyst layer.
Ye, Weichun; Shi, Xuezhao; Zhang, Yane; Hong, Chenghui; Wang, Chunming; Budzianowski, Wojciech M; Xue, Desheng
2016-02-10
Palladium-cobalt alloy nanoparticles were synthesized and dispersed on carbon black support, aiming to have a less expensive catalyst. Catalytic behaviors of PdCo/C catalyst for the oxidation of hydroquinone (HQ) with H2O2 in aqueous solution were evaluated using high-performance liquid chromatography (HPLC). The results revealed that PdCo/C catalyst had better catalytic activity than an equal amount of commercial Pd/C and Co/C catalysts because of the d-band hybridization between Pd and Co. The effects of pH value, solvent, and various interferents including inorganic and organic compounds on the efficiency of HQ oxidation were further investigated. Furthermore, on the basis of mixed potential theory, comprehensive electrochemical measurements such as the open-circuit potential-time (OCP-t) technique and Tafel plot were efficient to assess the catalytic activity of the catalyst, and the results obtained were consistent with those of HPLC measurements. The efficient HQ oxidation was closely associated with the catalytic activity of PdCo nanoparticles because they accelerated the electron-transfer process and facilitated the generation of OH radicals.
Molecular Transporters for Desalination Applications
2014-08-02
Collaborative and commercially available state-of-the-art test Zeolite template based synthesis II. Summary of key results and challenges For the...size setting CNT diameter. The tightest distribution of SWCNTs reported (Lu group, Duke Univ.) was achieved by loading catalyst into zeolite with the...pore size nominally acting to set the size of catalyst on the surface. However nano particles and CNTs grow on the surface of the zeolite , thus
2012-02-28
Interaction Model based on Accelerated Reactive Molecular Dynamics for Hypersonic conditions including Thermal Conduction FA9550-09-1-0157 Schwartzentruber...Dynamics for Hypersonic Conditions including Thermal Conduction Grant/Contract Number: FA9550-09-1-0157 Program Manager: Dr. John Schmisseur PI...through the boundary layer and may chemically react with the vehicle’s thermal protection system (TPS). Many TPS materials act as a catalyst for the
Ionic Liquids as Novel Lubricants and /or Lubricant Additives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, J.; Viola, M. B.
2013-10-31
This ORNL-GM CRADA developed ionic liquids (ILs) as novel lubricants or oil additives for engine lubrication. A new group of oil-miscible ILs have been designed and synthesized with high thermal stability, non-corrosiveness, excellent wettability, and most importantly effective anti-scuffing/anti-wear and friction reduction characteristics. Mechanistic analysis attributes the superior lubricating performance of IL additives to their physical and chemical interactions with metallic surfaces. Working with a leading lubricant formulation company, the team has successfully developed a prototype low-viscosity engine oil using a phosphonium-phosphate IL as an anti-wear additive. Tribological bench tests of the IL-additized formulated oil showed 20-33% lower friction inmore » mixed and elastohydrodynamic lubrication and 38-92% lower wear in boundary lubrication when compared with commercial Mobil 1 and Mobil Clean 5W-30 engine oils. High-temperature, high load (HTHL) full-size engine tests confirmed the excellent anti-wear performance for the IL-additized engine oil. Sequence VID engine dynamometer tests demonstrated an improved fuel economy by >2% for this IL-additized engine oil benchmarked against the Mobil 1 5W-30 oil. In addition, accelerated catalyst aging tests suggest that the IL additive may potentially have less adverse impact on three-way catalysts compared to the conventional ZDDP. Follow-on research is needed for further development and optimization of IL chemistry and oil formulation to fully meet ILSAC GF-5 specifications and further enhance the automotive engine efficiency and durability.« less
An Exploration of Geometric and Electronic Effects in Metal Nanoparticle Catalysts
NASA Astrophysics Data System (ADS)
Childers, David
The goal of this thesis is to investigate the influence geometric and electronic effects on metal nanoparticle catalysis. There are three main methods which alter a catalyst's properties: changing support material, changing nanoparticle size and alloying a second metal. This work will focus on the latter two methods using Pt-group metals and alloys. Platinum and palladium were chosen as the active metals due to a large amount of industry significance and prior literature to draw upon. Neopentane conversion and propane dehydrogenation were the two probe reactions used to evaluate these catalysts mainly due to their relative simplicity and ease of operation on a laboratory scale. The effect of particle size was studied with Pt and Pd monometallic catalysts using neopentane hydrogenolysis/isomerization as the probe reaction. Particle size studies have been done previously using this reaction so there is literature data to compare this study's results. This data will also be used as comparison for the bimetallic studies conducted later so that particle size effects can be accounted for when attempting to determine the effect of alloying a second metal. Bimetallic catalysts have several different possible structures depending on a number of factors from the identity of the two metals to the synthesis procedure. Homogeneous, core-shell and intermetallic alloys are the three structures evaluated in this work. Determining the surface composition of a homogeneous alloy can be difficult especially if both metals adsorb CO. PtPd homogeneous alloys were used to evaluate the ability of EXAFS to give information about surface composition using CO adsorption. These catalysts were also tested using neopentane conversion to evaluate changes in catalytic performance. Core-shell catalysts can also exhibit unique properties although it is not clear whether the identity of the core metal is relevant or if surface changes are most important to changing catalytic behavior. PdAu catalysts were synthesized with varying Pd loadings to determine if the Au-rich core would continue to influence neopentane conversion performance with increasing Pd layers on the surface of the nanoparticle. Finally, intermetallic alloys have produced some very interesting literature results and can drastically alter catalyst surface structure. PdZn showed the potential to improve neopentane isomerization selectivity past that of Pt based on calculated electronic properties. Two PdZn catalysts with different loadings were synthesized to evaluate the electronic and geometric effects using both neopentane conversion and propane dehydrogenation.
2016-11-01
acceleration at a cross-section was used as a measure of the wave impact load in units of g. Later developments included publication of the envelope...Republic, 4 – 7 October 2004. PICKFORD, E.V., MAHONE, R.R., WOLK, H.L. (1975). Slam/Shock Isolation Pedestal, United States Patent Number, 3,912,248, 14...accelerations. The rigid body peak acceleration is a measure of the impact load in units of g. In the following plots the data corresponds to head-sea
Effects of copper loading on NH3-SCR and NO oxidation over Cu impregnated CHA zeolite
Akter, Nusnin; Chen, Xianyin; Parise, John; ...
2017-11-25
Cu/CHA catalysts with various Cu loadings (0.5 wt%–6.0 wt%) were synthesized via incipient wetness impregnation. The catalysts were then applied to the selective catalytic reduction (SCR) of NO with NH 3 and NO oxidation reaction. XRD and N 2 adsorption-desorption data showed that CHA structure was maintained with the incorporation of Cu, while specific surface areas decreased with increasing Cu loading. At intermediate Cu loading, 4 wt%, the highest NH 3-SCR activity was observed with ~98% N2 selectivity from 150°C to 300°C. Small amounts of water, 2%, slightly increased NO conversion in addition to the remarkable N 2O and NOmore » 2 reduction at high temperature. Water effects are attributed to the improved Cu ion reducibility and mobility. NO oxidation results provided no relation between NO 2 formation and SCR activity. Physicochemical properties, NO conversion, N 2 selectivity, and activation energy data showed that impregnated samples’ molecular structure and catalytic activity are comparable to the conventional ion-exchanged (IE) samples’ ones.« less
Development of a fast curing tissue adhesive for meniscus tear repair.
Bochyńska, Agnieszka Izabela; Hannink, Gerjon; Janssen, Dennis; Buma, Pieter; Grijpma, Dirk W
2017-01-01
Isocyanate-terminated adhesive amphiphilic block copolymers are attractive materials to treat meniscus tears due to their tuneable mechanical properties and good adhesive characteristics. However, a drawback of this class of materials is their relatively long curing time. In this study, we evaluate the use of an amine cross-linker and addition of catalysts as two strategies to accelerate the curing rates of a recently developed biodegradable reactive isocyanate-terminated hyper-branched adhesive block copolymer prepared from polyethylene glycol (PEG), trimethylene carbonate, citric acid and hexamethylene diisocyanate. The curing kinetics of the hyper-branched adhesive alone and in combination with different concentrations of spermidine solutions, and after addition of 2,2-dimorpholinodiethylether (DMDEE) or 1,4-diazabicyclo [2.2.2] octane (DABCO) were determined using FTIR. Additionally, lap-shear adhesion tests using all compositions at various time points were performed. The two most promising compositions of the fast curing adhesives were evaluated in a meniscus bucket handle lesion model and their performance was compared with that of fibrin glue. The results showed that addition of both spermidine and catalysts to the adhesive copolymer can accelerate the curing rate and that firm adhesion can already be achieved after 2 h. The adhesive strength to meniscus tissue of 3.2-3.7 N was considerably higher for the newly developed compositions than for fibrin glue (0.3 N). The proposed combination of an adhesive component and a cross-linking component or catalyst is a promising way to accelerate curing rates of isocyanate-terminated tissue adhesives.
Life Support Catalyst Regeneration Using Ionic Liquids and In Situ Resources
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Karr, Laurel J.; Paley, Mark S.; Donovan, David N.; Kramer, Teersa J.
2016-01-01
Oxygen recovery from metabolic carbon dioxide is an enabling capability for long-duration manned space flight. Complete recovery of oxygen (100%) involves the production of solid carbon. Catalytic approaches for this purpose, such as Bosch technology, have been limited in trade analyses due in part to the mass penalty for high catalyst resupply caused by carbon fouling of the iron or nickel catalyst. In an effort to mitigate this challenge, several technology approaches have been proposed. These approaches have included methods to prolong the life of the catalysts by increasing the total carbon mass loading per mass catalyst, methods for simplified catalyst introduction and removal to limit the resupply container mass, methods of using in situ resources, and methods to regenerate catalyst material. Research and development into these methods is ongoing, but only use of in situ resources and/or complete regeneration of catalyst material has the potential to entirely eliminate the need for resupply. The use of ionic liquids provides an opportunity to combine these methods in a technology approach designed to eliminate the need for resupply of oxygen recovery catalyst. Here we describe the results of an initial feasibility study using ionic liquids and in situ resources for life support catalyst regeneration, we discuss the key challenges with the approach, and we propose future efforts to advance the technology.
Du, Shoucheng; Tang, Wenxiang; Guo, Yanbing; ...
2016-12-30
Monolithic catalysts have been widely used in automotive, chemical, and energy relevant industries. Nano-array based monolithic catalysts have been developed, demonstrating high catalyst utilization efficiency and good thermal/mechanical robustness. Compared with the conventional wash-coat based monolithic catalysts, they have shown advances in precise and optimum microstructure control and feasibility in correlating materials structure with properties. Recently, the nano-array based monolithic catalysts have been studied for low temperature oxidation of automotive engine exhaust and exhibited interesting and promising catalytic activities. Here, this review focuses on discussing the key catalyst structural parameters that affect the catalytic performance from the following aspects, (1)more » geometric shape and crystal planes, (2) guest atom doping and defects, (3) array size and size-assisted active species loading, and (4) the synergy effect of metal oxide in composite nano-arrays. Prior to the discussion, an overview of the current status of synthesis and development of the nano-array based monolithic catalysts is introduced. The performance of these materials in low temperature simulated engine exhaust oxidation is also demonstrated. Finally, we hope this review will elucidate the science and chemistry behind the good oxidation performance of the nanoarray- based monolithic catalysts, and serve as a timely and useful research guide for rational design and further improvement of the nano-array based monolithic catalysts for automobile emission control.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Shoucheng; Tang, Wenxiang; Guo, Yanbing
Monolithic catalysts have been widely used in automotive, chemical, and energy relevant industries. Nano-array based monolithic catalysts have been developed, demonstrating high catalyst utilization efficiency and good thermal/mechanical robustness. Compared with the conventional wash-coat based monolithic catalysts, they have shown advances in precise and optimum microstructure control and feasibility in correlating materials structure with properties. Recently, the nano-array based monolithic catalysts have been studied for low temperature oxidation of automotive engine exhaust and exhibited interesting and promising catalytic activities. Here, this review focuses on discussing the key catalyst structural parameters that affect the catalytic performance from the following aspects, (1)more » geometric shape and crystal planes, (2) guest atom doping and defects, (3) array size and size-assisted active species loading, and (4) the synergy effect of metal oxide in composite nano-arrays. Prior to the discussion, an overview of the current status of synthesis and development of the nano-array based monolithic catalysts is introduced. The performance of these materials in low temperature simulated engine exhaust oxidation is also demonstrated. Finally, we hope this review will elucidate the science and chemistry behind the good oxidation performance of the nanoarray- based monolithic catalysts, and serve as a timely and useful research guide for rational design and further improvement of the nano-array based monolithic catalysts for automobile emission control.« less
System catalytic neutralization control of combustion engines waste gases in mining technologies
NASA Astrophysics Data System (ADS)
Korshunov, G. I.; Solnitsev, R. I.
2017-10-01
The paper presents the problems solution of the atmospheric air pollution with the exhaust gases of the internal combustion engines, used in mining technologies. Such engines are used in excavators, bulldozers, dump trucks, diesel locomotives in loading and unloading processes and during transportation of minerals. NOx, CO, CH emissions as the waste gases occur during engine operation, the concentration of which must be reduced to the standard limits. The various methods and means are used for the problem solution, one of which is neutralization based on platinum catalysts. A mathematical model of a controlled catalytic neutralization system is proposed. The simulation results confirm the increase in efficiency at start-up and low engine load and the increase in the catalyst lifetime.
Catalysts synthesized by selective deposition of Fe onto Pt for the water-gas shift reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aragao, Isaias Barbosa; Ro, Insoo; Liu, Yifei
FePt bimetallic catalysts with intimate contact between the two metals were synthesized by controlled surface reactions (CSR) of (cyclohexadiene)iron tricarbonyl with hydrogen-treated supported Pt nanoparticles. Adsorption of the iron precursor on a Pt/SiO2 catalyst was studied, showing that the Fe loading could be increased by performing multiple CSR cycles, and the efficiency of this process was linked to the renewal of adsorption sites by a reducing pretreatment. The catalytic activity of these bimetallic catalysts for the water gas shift reaction was improved due to promotion by iron, likely linked to H2O activation on FeOx species at or near the Ptmore » surface, mostly in the (II) oxidation state.« less
Catalysts synthesized by selective deposition of Fe onto Pt for the water-gas shift reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aragao, Isaias Barbosa; Ro, Insoo; Liu, Yifei
FePt bimetallic catalysts with intimate contact between the two metals were synthesized by controlled surface reactions (CSR) of (cyclohexadiene)iron tricarbonyl with hydrogen-treated supported Pt nanoparticles. Adsorption of the iron precursor on a Pt/SiO 2 catalyst was studied, showing that the Fe loading could be increased by performing multiple CSR cycles, and the efficiency of this process was linked to the renewal of adsorption sites by a reducing pretreatment. Here, the catalytic activity of these bimetallic catalysts for the water gas shift reaction was improved due to promotion by iron, likely linked to H 2O activation on FeO x species atmore » or near the Pt surface, mostly in the (II) oxidation state.« less
Catalysts synthesized by selective deposition of Fe onto Pt for the water-gas shift reaction
Aragao, Isaias Barbosa; Ro, Insoo; Liu, Yifei; ...
2017-10-04
FePt bimetallic catalysts with intimate contact between the two metals were synthesized by controlled surface reactions (CSR) of (cyclohexadiene)iron tricarbonyl with hydrogen-treated supported Pt nanoparticles. Adsorption of the iron precursor on a Pt/SiO 2 catalyst was studied, showing that the Fe loading could be increased by performing multiple CSR cycles, and the efficiency of this process was linked to the renewal of adsorption sites by a reducing pretreatment. Here, the catalytic activity of these bimetallic catalysts for the water gas shift reaction was improved due to promotion by iron, likely linked to H 2O activation on FeO x species atmore » or near the Pt surface, mostly in the (II) oxidation state.« less
Lee, You-Jin; Kim, Eun-Sang; Kim, Jeong-Rang; Kim, Joo-Wan; Kim, Tae-Wan; Chae, Ho-Jeong; Kim, Chul-Ung; Lee, Chang-Ha; Jeong, Soon-Yong
2016-05-01
Bi-functional catalysts were prepared using HY zeolites with various SiO2/Al2O3 ratios for acidic function, NiW for metallic function, and K for acidity control. 1-Methylnaphthalene was selected as a model compound for multi-ring aromatics in heavy oil, and its selective ring opening reaction was investigated using the prepared bi-functional catalysts with different levels of acidity in a fixed bed reactor system. In NiW/HY catalysts without K addition, the acidity decreased with the SiO2/Al2O3 mole ratio of the HY zeolite. Ni1.1W1.1/HY(12) catalyst showed the highest acidity but slightly lower yields for the selective ring opening than Ni1.1W1.1/HY(30) catalyst. The acidity of the catalyst seemed to play an important role as the active site for the selective ring opening of 1-methylnaphthalene but there should be some optimum catalyst acidity for the reaction. Catalyst acidity could be controlled between Ni1.1W1.1/HY(12) and Ni1.1W1.1/HY(30) by adding a moderate amount of K to Ni1.1W1.1/HY(12) catalyst. K0.3Ni1.1W1.1/HY(12) catalyst should have the optimum acidity for the selective ring opening. The addition of a moderate amount of K to the NiW/HY catalyst must improve the catalytic performance due to the optimization of catalyst acidity.
Evaluation of stone/RAP interlayers under accelerated loading : tech summary.
DOT National Transportation Integrated Search
2008-08-01
The first Louisiana accelerated loading experiment, Evaluation of Louisianas Conventional and Alternative Base Courses, showed that pavement performance could be enhanced signifi cantly if a layer of stone was placed over the cement stabilized sub...
Evaluation of stone/RAP interlayers under accelerated loading : tech summary.
DOT National Transportation Integrated Search
2008-08-01
The fi rst Louisiana accelerated loading experiment, Evaluation of Louisianas Conventional and Alternative Base Courses, : showed that pavement performance could be enhanced signifi cantly if a layer of stone was placed over the cement : stabilize...
Development of a Dielectric-Loaded Accelerator Test Facility Based on an X-Band Magnicon Amplifier
NASA Astrophysics Data System (ADS)
Gold, S. H.; Kinkead, A. K.; Gai, W.; Power, J. G.; Konecny, R.; Jing, C.; Tantawi, S. G.; Nantista, C. D.; Hu, Y.; Du, X.; Tang, C.; Lin, Y.; Bruce, R. W.; Bruce, R. L.; Fliflet, A. W.; Lewis, D.
2006-01-01
The Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), are developing a dielectric-loaded accelerator (DLA) test facility powered by the 11.424-GHz magnicon amplifier that was developed jointly by NRL and Omega-P, Inc. Thus far, DLA structures developed by ANL have been tested at the NRL Magnicon Facility without injected electrons, including tests of alumina and magnesium calcium titanate structures at gradients up to ˜8 MV/m. The next step is to inject electrons in order to build a compact DLA test accelerator. The Accelerator Laboratory of Tsinghua University in Beijing, China has developed a 5-MeV electron injector for the accelerator, and SLAC is developing a means to combine the two magnicon output arms, and to drive the injector and an accelerator section with separate control of the power ratio and relative phase. Also, RWBruce Associates, working with NRL, is developing a means to join ceramic tubes to produce long accelerating sections using a microwave brazing process. The installation and commissioning of the first dielectric-loaded test accelerator, including injector, DLA structure, and spectrometer, should take place within the next year.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2017-06-22
The starting point for many consumer products is the industrial manufacture of platform chemicals. The recent boom in domestic shale gas production makes it possible to envision a new resource for chemical manufacturing. Catalysts are the accelerants behind most industrial chemical reactions. A sophisticated research technique using a Temporal Analysis of Products (or TAP) reactor can now help. By shedding light on a catalyst’s fundamental step-by-step process, a TAP reactor can help chemists and chemical engineers understand why a new catalyst works better in the lab than in the chemical plant.
NASA Astrophysics Data System (ADS)
Rostamnia, Sadegh; Kholdi, Saba
2017-12-01
The silica based hollow nanosphere (silica-HNS) containing polymer of polyaniline was synthesized and chosen as a promising support for PdNPs. Then it was applied as a green catalyst in the reaction of Heck coupling with high yield. TEM and SEM-EDX/mapping images were used to study the structure and morphology. FT-IR spectroscopy, Thermal gravimetry analysis (TGA), and BET were used to characterize and investigate the catalyst. Also, the amounts of Pd loading were characterized by ICP-AES technique. Catalyst recyclability showed 5 successful runs for the reaction.
Titanium-containing Raney nickel catalyst for hydrogen electrodes in alkaline fuel cell systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mund, K.; Richter, G.; von Sturm, F.
In alkaline hydrogen-oxygen fuel cells Raney nickel is employed as catalyst for hydrogen electrodes. The rate of anodic hydrogen conversion has been increased significantly by using a titanium-containing Raney nickel. The properties of the catalyst powder, the influence of particle diameter, and the behavior of electrodes under load are described. Impedance measurements have been used to characterize the electrodes. In fuel cell systems the supported electrodes are normally operated at current densities up to 0.4 A . cm/sup -2/; the overload current density of 1 A . cm/sup -2/ can be maintained for several hours. (15 fig.)
Intensified synthesis of medium chain triglycerides using ultrasonic reactors at a capacity of 4L.
Mohod, Ashish V; Gogate, Parag R
2018-04-01
Lipids are considered as one of the most crucial nutrients for humans and among the various classes, medium chain triglycerides (MCTs) are considered as the most important functional foods and nutraceuticals. The present work deals with the intensification of synthesis of MCTs at a large capacity of 4L based on the use of ultrasonic bath and ultrasonic longitudinal horn. The effect of operating parameters like molar ratio of the reactants, type of catalyst and catalyst loading as well as the temperature on the extent of conversion has been investigated. The effect of molar ratio of lauric acid and glycerol was investigated over the range of 1:2 to 1:8 whereas the effect of loading of sulfuric acid was studied over the range of 4 ml/L-10 ml/L and zinc chloride loading over the range of 1 g/L-4 g/L. The effect of temperature was also studied using the conventional approach where it has been observed that 90 °C is an optimum temperature giving the extent of conversion as 72%. Also, the use of homogeneous catalyst as sulphuric acid was found to be more effective as compared to the solid catalyst as zinc chloride. It was observed that the maximum extent of conversion as 77.5% was obtained at 8 ml/L of sulfuric acid and molar ratio of 1:6 using ultrasonic longitudinal horn with US bath giving lower conversion as compared to US longitudinal horn but higher than the conventional approach under same operating conditions. The present work clearly established the intensification benefits in terms of reduction in time and higher conversion using cavitational reactors. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Klein, M.; Reynolds, J.; Ricks, E.
1989-01-01
Load and stress recovery from transient dynamic studies are improved upon using an extended acceleration vector in the modal acceleration technique applied to structural analysis. Extension of the normal LTM (load transformation matrices) stress recovery to automatically compute margins of safety is presented with an application to the Hubble space telescope.
Ema, Tadashi; Nanjo, Yoshiko; Shiratori, Sho; Terao, Yuta; Kimura, Ryo
2016-11-04
The intermolecular or intramolecular asymmetric benzoin reaction was catalyzed by a small amount of N-heterocyclic carbene (NHC) (0.2-1 mol %) under solvent-free conditions. The solvent-free intramolecular asymmetric Stetter reaction also proceeded efficiently with NHC (0.2-1 mol %). In some cases, even solid-to-solid or solid-to-liquid conversions took place with low catalyst loading (0.2-1 mol %).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pang, Haobo; Gallou, Fabrice; Sohn, Hyuntae
A remarkable synergistic effect has been uncovered between ppm levels of Pd and Ni embedded within iron nanoparticles that leads to mild and selective catalytic reductions of nitro-containing aromatics and heteroaromatics in water at room temperature. NaBH4 serves as the source of inexpensive hydride. Broad substrate scope is documented, along with several other features including: low catalyst loading, low residual metal in the products, and recycling of the catalyst and reaction medium, highlight the green nature of this new technology.
NASA Astrophysics Data System (ADS)
Chhina, H.; Campbell, S.; Kesler, O.
The oxidation of carbon catalyst supports to carbon dioxide gas leads to degradation in catalyst performance over time in proton exchange membrane fuel cells (PEMFCs). The electrochemical stability of Pt supported on tungsten carbide has been evaluated on a carbon-based gas diffusion layer (GDL) at 80 °C and compared to that of HiSpec 4000™ Pt/Vulcan XC-72R in 0.5 M H 2SO 4. Due to other electrochemical processes occurring on the GDL, detailed studies were also performed on a gold mesh substrate. The oxygen reduction reaction (ORR) activity was measured both before and after accelerated oxidation cycles between +0.6 V and +1.8 V vs. RHE. Tafel plots show that the ORR activity remained high even after accelerated oxidation tests for Pt/tungsten carbide, while the ORR activity was extremely poor after accelerated oxidation tests for HiSpec 4000™. In order to make high surface area tungsten carbide, three synthesis routes were investigated. Magnetron sputtering of tungsten on carbon was found to be the most promising route, but needs further optimization.
Using piezo-electric material to simulate a vibration environment
Jepsen, Richard A.; Davie, Neil T.; Vangoethem, Douglas J.; Romero, Edward F.
2010-12-14
A target object can be vibrated using actuation that exploits the piezo-electric ("PE") property. Under combined conditions of vibration and centrifugal acceleration, a centrifugal load of the target object on PE vibration actuators can be reduced by using a counterweight that offsets the centrifugal loading. Target objects are also subjected to combinations of: spin, vibration, and acceleration; spin and vibration; and spin and acceleration.
NASA Astrophysics Data System (ADS)
Huang, Xiaoming
Direct methanol fuel cell (DMFC) is an attractive power source for portable applications in the near future, due to the high energy density of liquid methanol. Towards commercialization of the DMFC, several technical and economic challenges need to be addressed though. The present study aims at developing and characterizing high performance membrane electrode assemblies (MEAs) for the DMFCs by using a hydrocarbon type membrane (PolyFuel 62) and supported catalysts (PtRu/C). First, methanol and water transport properties in the PolyFuel 62 membrane were examined by various material characterization methods. Compared with the currently used perflurosulfonated Nafion 212 membrane, the PolyFuel membrane has lower methanol crossover, especially at high testing temperature. In addition, based on results of water diffusivity test, water diffusion through the PolyFuel membrane was also lower compared with the Nafion membrane. In order to check the possible impacts of the low methanol and water diffusivities in the PolyFuel membrane, a MEA with this new type of membrane was developed and its performance was compared with a Nafion MEA with otherwise identical electrodes and GDLs. The results showed anode performance was identical, while cathode performance of the PolyFuel MEA was lower. More experiments combined with a transmission line model revealed that low water transport through the PolyFuel membrane resulted in a higher proton resistance in the cathode electrode and thus, leading to a low cathode performance. Thus increasing the water content in the cathode electrode is critical for using the PolyFuel membrane in the DMFC MEA. Then, a low loading carbon supported catalyst, PtRu/C, was prepared and tested as the anode electrode in a MEA of the DMFC. Compared with performance of an unsupported MEA, we could find that lower performance in the supported MEA was due to methanol transport limitation because of the denser and thicker supported catalyst layer. Accordingly, an addition of a pore former, Li 2CO3, was proposed during the catalyst ink preparation. This was proved to be very effective, largely improving anode performance with only 1/3 of catalyst loading. Finally, the PolyFuel membrane and supported catalysts were ready to be applied in the new MEA for the DMFCs. The new made MEA, with the catalyst loading of 2.6-time lower than a reference MEA, showed a very promising result, about only 10mV performance loss under the current density of 150mA/cm² compared with the reference MEA. Moreover, a short-term decay test indicated that the new MEA may have better durability and life because of its low methanol crossover on the cathode electrode due the PolyFuel membrane.
Jiang, Weidong; Xu, Bin; Fan, Guangyin; Zhang, Kaiming; Xiang, Zhen; Liu, Xiaoqiang
2018-01-01
Supported Pd-based catalyst over active nickel oxide (NiO) was repared using the impregnation method companying with UV-light irradiation. Moreover, the catalytic performance of the obtained Pd-based catalysts was evaluated towards the hydrogenation of o-chloronitrobenzene (o-CNB). Observations indicate that the as-prepared UV-irradiated Pd/NiO catalyst with a mole fraction 0.2% (0.2%Pd/NiO) has higher activity and selectivity in the o-CNB hydrogenation. Especially, UV-light irradiation played a positive role in the improvement of catalytic activity of 0.2%Pd/NiO catalyst, exhibiting an excess 11-fold activity superiority in contrast with non-UV-irradiated 0.2%Pd/NiO catalyst. In addition, it was investigated that effects of varied factors (i.e., reaction time, temperature, o-CNB/Pd ratio, Pd loading, hydrogen pressure) on the selective hydrogenation of ο-CNB catalyzed by UV-irradiated 0.2%Pd/NiO catalyst. Under the reaction conditions of 60 °C, 0.5 h, 1 MPa H2 pressure, 100% conversion of o-CNB, and 81.1% o-CAN selectivity were obtained, even at high molar ratio (8000:1) of o-CNB to Pd. PMID:29662004
Development of Advanced ISS-WPA Catalysts for Organic Oxidation at Reduced Pressure/Temperature
NASA Technical Reports Server (NTRS)
Yu, Ping; Nalette, Tim; Kayatin, Matthew
2016-01-01
The Water Processor Assembly (WPA) at International Space Station (ISS) processes a waste stream via multi-filtration beds, where inorganic and non-volatile organic contaminants are removed, and a catalytic reactor, where low molecular weight organics not removed by the adsorption process are oxidized at elevated pressure in the presence of oxygen and elevated temperature above the normal water boiling point. Operation at an elevated pressure requires a more complex system design compared to a reactor that could operate at ambient pressure. However, catalysts currently available have insufficient activity to achieve complete oxidation of the organic load at a temperature less than the water boiling point and ambient pressure. Therefore, it is highly desirable to develop a more active and efficient catalyst at ambient pressure and a moderate temperature that is less than water boiling temperature. This paper describes our efforts in developing high efficiency water processing catalysts. Different catalyst support structures and coating metals were investigated in subscale reactors and results were compared against the flight WPA catalyst. Detailed improvements achieved on alternate metal catalysts at ambient pressure and 200 F will also be presented in the paper.
Wang, Hongliang; Ruan, Hao; Feng, Maoqi; Qin, Yuling; Job, Heather; Luo, Langli; Wang, Chongmin; Engelhard, Mark H; Kuhn, Erik; Chen, Xiaowen; Tucker, Melvin P; Yang, Bin
2017-04-22
The synthesis of high-efficiency and low-cost catalysts for hydrodeoxygenation (HDO) of waste lignin to advanced biofuels is crucial for enhancing current biorefinery processes. Inexpensive transition metals, including Fe, Ni, Cu, and Zn, were severally co-loaded with Ru on HY zeolite to form bimetallic and bifunctional catalysts. These catalysts were subsequently tested for HDO conversion of softwood lignin and several lignin model compounds. Results indicated that the inexpensive earth-abundant metals could modulate the hydrogenolysis activity of Ru and decrease the yield of low-molecular-weight gaseous products. Among these catalysts, Ru-Cu/HY showed the best HDO performance, affording the highest selectivity to hydrocarbon products. The improved catalytic performance of Ru-Cu/HY was probably a result of the following three factors: (1) high total and strong acid sites, (2) good dispersion of metal species and limited segregation, and (3) high adsorption capacity for polar fractions, including hydroxyl groups and ether bonds. Moreover, all bifunctional catalysts proved to be superior over the combination catalysts of Ru/Al 2 O 3 and HY zeolite. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Preparation and characterizaton of CaO nanoparticle for biodiesel production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Jharna, E-mail: onlinejharna@gmail.com; Agarwal, Madhu, E-mail: madhunaresh@gmail.com
Nanoparticle of CaO from calcium Nitrate (CaO/CaN) and Snail shell (CaO/SS) are successfully synthesized by method as described in the literature and used as an active and stable catalyst for the biodiesel production. These catalysts are characterized by Fourier-transform infrared spectra (FT-IR), X-ray diffraction (XRD), and thermal gravimetric analysis (TGA). The average crystalline size in nanometer was also calculated by Debye–Scherrer equation. The performance of the CaO/CaN and CaO/SS were tested for their catalytic activity via transesterification process and it was found that biodiesel yield has been increased from 93 to 96%. The optimum conditions for the highest yield weremore » 8wt% catalyst loading, 65°C temperature, 12:1 methanol/oil molar ratio, and 6 h for reaction time. The nano catalyst from snail shell exhibits excellent catalytic activity and stability for the transesterification reaction, which suggested that this catalyst would be potentially used as a solid base nano catalyst for biodiesel production. In order to examine the reusability of catalyst developed from snail shell, five transesterification reaction cycles were also performed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hongliang; Ruan, Hao; Feng, Maoqi
2017-02-22
Here, the synthesis of high-efficiency and low-cost catalysts for hydrodeoxygenation (HDO) of waste lignin to advanced biofuels is crucial for enhancing current biorefinery processes. Inexpensive transition metals, including Fe, Ni, Cu, and Zn, were severally co-loaded with Ru on HY zeolite to form bimetallic and bifunctional catalysts. These catalysts were subsequently tested for HDO conversion of softwood lignin and several lignin model compounds. Results indicated that the inexpensive earth-abundant metals could modulate the hydrogenolysis activity of Ru and decrease the yield of low-molecular-weight gaseous products. Among these catalysts, Ru-Cu/HY showed the best HDO performance, affording the highest selectivity to hydrocarbonmore » products. The improved catalytic performance of Ru-Cu/HY was probably a result of the following three factors: (1) high total and strong acid sites, (2) good dispersion of metal species and limited segregation, and (3) high adsorption capacity for polar fractions, including hydroxyl groups and ether bonds. Moreover, all bifunctional catalysts proved to be superior over the combination catalysts of Ru/Al 2O 3 and HY zeolite.« less
Jiang, Weidong; Xu, Bin; Fan, Guangyin; Zhang, Kaiming; Xiang, Zhen; Liu, Xiaoqiang
2018-04-14
Supported Pd-based catalyst over active nickel oxide (NiO) was repared using the impregnation method companying with UV-light irradiation. Moreover, the catalytic performance of the obtained Pd-based catalysts was evaluated towards the hydrogenation of o -chloronitrobenzene ( o -CNB). Observations indicate that the as-prepared UV-irradiated Pd/NiO catalyst with a mole fraction 0.2% (0.2%Pd/NiO) has higher activity and selectivity in the o -CNB hydrogenation. Especially, UV-light irradiation played a positive role in the improvement of catalytic activity of 0.2%Pd/NiO catalyst, exhibiting an excess 11-fold activity superiority in contrast with non-UV-irradiated 0.2%Pd/NiO catalyst. In addition, it was investigated that effects of varied factors (i.e., reaction time, temperature, o -CNB/Pd ratio, Pd loading, hydrogen pressure) on the selective hydrogenation of ο -CNB catalyzed by UV-irradiated 0.2%Pd/NiO catalyst. Under the reaction conditions of 60 °C, 0.5 h, 1 MPa H₂ pressure, 100% conversion of o -CNB, and 81.1% o -CAN selectivity were obtained, even at high molar ratio (8000:1) of o -CNB to Pd.
NASA Astrophysics Data System (ADS)
Dianursanti, Hayati, Siti Zahrotul; Putri, Dwini Normayulisa
2017-11-01
Microalgae from the Chlorophyta division such as Nannochloropsis oculata and Chlorella vulgaris are highly potential to be developed as biodiesel feedstocks because they have a high oil content up to 58%. Biodiesel is produced by transesterification of triglycerides and alcohols with the aid of homogeneous catalysts such as KOH. However, the use of KOH catalysts produces soaps in the biodiesel synthesis. Heterogeneous catalysts are known to solve this problem. One of them is natural zeolite. Zeolite can be used as a catalyst and as a support catalyst. Loading KOH on the zeolite surface is expected to increase alkalinity in KOH/Zeolite catalysts so as to increase the activity of KOH/Zeolite catalyst in transesterification of triglyceride with methanol. In this experimental lipid of microalgae will be used for produced biodiesel via transesterification reaction with methanol and KOH/Zeolite as a catalyst heterogeneous at 60 °C for 3h and utilized catalyst modificated KOH/Zeolite with variation 0.5 M, 1 M and 1.5 M KOH. The modified zeolite was then analyzed by XRF, XRD and BET. The result showed that the yield of biodiesel from lipid N.oculata was 81,09% by 0.5KOH/Zeolite catalyst, 86,53% by 1KOH/Zeolite catalyst, 1,5KOH/Zeolite and 88,13% by 1.5KOH/Zeolit, while the biodiesel produced from lipid C.vulgaris was 59.29% by 0.5KOH/Zeolite, 82.27% by 1KOH/Zeolite and 83.72% by 1.5KOH/Zeolite.
SOLVENT-FREE ACCELERATED ORGANIC SYNTHESES USING MICROWAVES
Abstract: A solvent-free approach for organic synthesis is described which involves microwave (MW) exposure of neat reactants (undiluted) either in presence of a catalyst or catalyzed by the surfaces of inexpensive and recyclable mineral supports such as alumina, silica, clay, or...
Melero, Juan A; Vicente, Gemma; Paniagua, Marta; Morales, Gabriel; Muñoz, Patricia
2012-01-01
The present study is focused on the etherification of biodiesel-derived glycerol with anhydrous ethanol over arenesulfonic acid-functionalized mesostructured silicas to produce ethyl ethers of glycerol that can be used as gasoline or diesel fuel biocomponents. Within the studied range, the best conditions to maximize glycerol conversion and yield towards ethyl-glycerols are: T=200 °C, ethanol/glycerol molar ratio=15/1, and catalyst loading=19 wt%. Under these reaction conditions, 74% glycerol conversion and 42% yield to ethyl ethers have been achieved after 4 h of reaction but with a significant presence of glycerol by-products. In contrast, lower reaction temperatures (T=160 °C) and moderate catalyst loading (14 wt%) in presence of a high ethanol concentration (ethanol/glycerol molar ratio=15/1) are necessary to avoid the formation of glycerol by-products and maximize ethyl-glycerols selectivity. Interestingly, a close catalytic performance to that achieved using high purity glycerol has been obtained with low-grade water-containing glycerol. Copyright © 2011 Elsevier Ltd. All rights reserved.
Shi, Yi; Zhou, Yue; Yang, Dong-Rui; Xu, Wei-Xuan; Wang, Chen; Wang, Feng-Bin; Xu, Jing-Juan; Xia, Xing-Hua; Chen, Hong-Yuan
2017-11-01
Water-splitting devices for hydrogen generation through electrolysis (hydrogen evolution reaction, HER) hold great promise for clean energy. However, their practical application relies on the development of inexpensive and efficient catalysts to replace precious platinum catalysts. We previously reported that HER can be largely enhanced through finely tuning the energy level of molybdenum sulfide (MoS 2 ) by hot electron injection from plasmonic gold nanoparticles. Under this inspiration, herein, we propose a strategy to improve the HER performance of MoS 2 by engineering its energy level via direct transition-metal doping. We find that zinc-doped MoS 2 (Zn-MoS 2 ) exhibits superior electrochemical activity toward HER as evidenced by the positively shifted onset potential to -0.13 V vs RHE. A turnover of 15.44 s -1 at 300 mV overpotential is achieved, which by far exceeds the activity of MoS 2 catalysts reported. The large enhancement can be attributed to the synergistic effect of electronic effect (energy level matching) and morphological effect (rich active sites) via thermodynamic and kinetic acceleration, respectively. This design opens up further opportunities for improving electrocatalysts by incorporating promoters, which broadens the understanding toward the optimization of electrocatalytic activity of these unique materials.
NASA Astrophysics Data System (ADS)
Ee, Tang Zo; Lim, Steven; Ling, Pang Yean; Huei, Wong Kam; Chyuan, Ong Hwai
2017-04-01
Experiment was carried out to study the feasibility of biomass derived solid acid catalyst for the production of biodiesel using Palm Fatty Acid Distillate (PFAD). Malaysia indigenous seaweed was selected as the biomass to be carbonized as the catalyst support. Sulfonation of seaweed based carbon material was carried out by thermal decomposition of ammonium sulfate, (NH4)2SO4. The effects of carbonization temperature at 200 to 600°C on the catalyst physical and chemical properties were studied. The effect of reaction parameters on the fatty acid methyl ester (FAME) yield was studied by varying the concentration of ammonium sulfate (5.0 to 40.0 w/v%) and thermal decomposition time (15 to 90 min). Characterizations of catalyst were carried out to study the catalyst surface morphology with Scanning Electron Microscope (SEM), acid density with back titration and functional group attached with FT-IR. Results showed that when the catalyst sulfonated with 10.0 w/v% ammonium sulfate solution and heated to 235°C for 30 min, the highest FAME yield achieved was 23.7% at the reaction condition of 5.0 wt.% catalyst loading, esterification time of 4 h, methanol to PFAD molar ratio of 20:1 at 100°C reaction temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hongliang; Ruan, Hao; Feng, Maoqi
2017-03-16
The synthesis of high-efficiency and low-cost multifunctional catalysts for hydrodeoxygenation (HDO) of waste lignin into advanced biofuels is crucial for enhancing current biorefinery processes. Inexpensive transition metals, including Fe, Ni, Cu, Zn, were severally co-loaded with Ru on HY zeolite to form bimetallic and bifunctional catalysts. These catalysts were subsequently tested for HDO conversion of softwood lignin and several lignin model compounds. Results indicated that the inexpensive earth abundant metals could modulate the hydrogenolysis activity of Ru and decrease the yield of low molecular weight gaseous side-products. Among all the prepared catalysts, Ru-Cu/HY showed the best HDO performance, giving themore » highest selectivity to hydrocarbon products. The improved catalytic performance of Ru-Cu/HY was probably due to the following three factors: (1) high total and strong acid sites, (2) good dispersion of metal species and limited segregation, (3) high adsorption capacity for polar fractions, including hydroxyl groups and ether bonds. Moreover, all the bifunctional catalysts were proven to be superior over the combination catalysts of Ru/Al2O3 and HY zeolite, and this could be attributed to the “intimacy criterion”. The practical use of the designed catalysts would be promising in lignin valorization.« less
Evaluation of stone/RAP interlayers under accelerated loading : technical summary.
DOT National Transportation Integrated Search
2008-08-01
The primary objective of this study was to determine the effectiveness of using an untreated RAP interlayer in lieu of a stone interlayer in a soil-cement asphalt pavement structure under accelerated loading. The secondary objective was to investigat...
NASA Astrophysics Data System (ADS)
Heeb, Norbert V.; Forss, Anna-Maria; Bach, Christian; Mattrel, Peter
Time-resolved chemical ionization mass spectrometry (CI-MS) has been used to investigate the velocity-dependent emission factors for benzene, toluene, the C 2-benzenes (xylenes and ethyl benzene) and nitrogen monoxide of a gasoline-driven passenger car (1.4 l, model year 1995) driven with or without catalytic exhaust gas treatment. A set of seven different driving cycles - including the European Driving Cycle (EDC), the US Urban (FTP 75) and the Highway driving cycles - with a total driving time of 12,000 s have been studied. From the obtained emission data, two sets of 15,300 and 17,200 data points which represent transient driving in the velocity range of 0-150 km h -1 and in an acceleration window of -2-3 m s -2 were explored to gain velocity-dependent emission factors. The passenger car, equipped with a regulated rhodium-platinum based three-way catalyst, showed optimal conversion efficiency (>95%) for benzene in the velocity range of 60-120 km h -1. The conversion of benzene was reduced (<80%) when driving below 50 km h -1 and the BTXE emissions significantly increased when driven at higher speed and engine load (>130 km h -1). Whereas the conversion efficiency for the class of C 2-benzenes was reduced to 10%, no net conversion could be found for toluene and benzene when driven above 130 km h -1. In contrast, the benzene and toluene emissions exceeded those of the untreated exhaust gas in the velocity range of 130-150 km h -1 by 50-92% and by 10-34%, respectively. Thus, benzene and toluene were formed across the examined three-way catalyst if the engine is operated for an extended time in a fuel-rich mode (lambda<1).
Seddigi, Zaki S; Bumajdad, Ali; Ansari, Shahid P; Ahmed, Saleh A; Danish, Ekram Y; Yarkandi, Naeema H; Ahmed, Shakeel
2014-01-15
A series of binary oxide catalysts (ceria-ZnO) were prepared and doped with different amounts of palladium in the range of 0.5%-1.5%. The prepared catalysts were characterized by SEM, TEM, XRD and XPS, as well as by N2 sorptiometry study. The XPS results confirmed the structure of the Pd CeO2-x-ZnO. The photocatalytic activity of these catalysts was evaluated for degradation of MTBE in water. These photocatalyst efficiently degrade a 100ppm aqueous solution of MTBE upon UV irradiation for 5h in the presence of 100mg of each of these photocatalysts. The removal of 99.6% of the MTBE was achieved with the ceria-ZnO catalyst doped with 1% Pd. In addition to the Pd loading, the N2 sorptiometry study introduced other factors that might affect the catalytic efficiency is the catalyst average pore sizes. The photoreaction was determined to be a first order reaction. Copyright © 2013 Elsevier B.V. All rights reserved.
Investigating fuel-cell transport limitations using hydrogen limiting current
Spingler, Franz B.; Phillips, Adam; Schuler, Tobias; ...
2017-03-09
Reducing mass-transport losses in polymer-electrolyte fuel cells (PEFCs) is essential to increase their power density and reduce overall stack cost. At the same time, cost also motivates the reduction in expensive precious-metal catalysts, which results in higher local transport losses in the catalyst layers. Here, we use a hydrogen-pump limiting-current setup to explore the gas-phase transport losses through PEFC catalyst layers and various gas-diffusion and microporous layers. It is shown that the effective diffusivity in the gas-diffusion layers is a strong function of liquid saturation. Additionally, it is shown how the catalyst layer unexpectedly contributes significantly to the overall measuredmore » transport resistance. This is especially true for low catalyst loadings. It is also shown how the various losses can be separated into different mechanisms including diffusional processes and mass-dependent and independent ones, where the data suggests that a large part of the transport resistance in catalyst layers cannot be attributed to a gas-phase diffusional process. The technique is promising for deconvoluting transport losses in PEFCs.« less
Ngaini, Zainab; Shahrom, Farra Diana; Jamil, Nurfarahen; Wahi, Rafeah; Ahmad, Zainal Abiddin
2016-06-01
Biodiesel from palm oil mill sludge (POMS) was prepared in the presence of novel silica-based heterogeneous catalysts derived from Imperata cylindrica sp. Imperatacid and Imperatabase are two types of heterogeneous catalysts derived from Imperata cylindrica sp and characterized using scanning electron microscopy, Energy Dispersive X-ray, Brunauer-Emmett-Teller surface area and pore size measurement. Imperatacid has particle size of 43.1-83.9 µm while Imperatabase in the range of 89-193 µm. Imperatacid was conveniently applied in esterification step to afford > 90 wt% oil in 1:3 (oil/methanol) and 10 wt% catalyst, followed by transesterification with 1 wt% Imperatabase and 1:1 (oil/methanol) for 1 h at 65°C to afford 80% biodiesel with higher percentage of methyl palmitate (48.97%) and methyl oleate (34.14%) compare to conventional homogeneous catalyst. Reusability of the catalyst up to three times afforded biodiesel ranging from 78-80% w/w. The biodiesel was demonstrated onto alternative diesel engine (Megatech(®)-Mark III) and showed proportional increased of torque (ɽ) to biodiesel loading.
Zhao, Heng; Dai, Zhengyi; Xu, Xiaoyong; Pan, Jing; Hu, Jingguo
2018-06-22
Loading the electro-catalysts at the semiconductor-electrolyte interface is one of promising strategies to develop photoelectrochemical (PEC) water splitting cells. However, the assembly of compatible and synergistic heterojunction between the semiconductor and the selected catalyst remains challenging. Here, we report a hierarchical p-Si/ReS2 heterojunction photocathode fabricated through uniform growth vertically standing ReS2 nanosheets (NSs) on planar p-Si substrate for solar-driven hydrogen evolution reaction (HER). The laden ReS2 NSs not only serve as a high-activity HER catalyst but also render a suitable electronic band coupled with p-Si into a Ⅱ-type heterojunction, which facilitates the photo-induced charge production, separation and utilization. As a result, the assembled p-Si/ReS2 photocathode exhibits a 23-fold-increased photocurrent density at 0 VRHE and a 35-fold-enhanced photoconversion efficiency compared to pure p-Si counterpart. The bifunctional ReS2 as catalyst and semiconductor enables multi effects in improving light harvesting, charge separation and catalytic kinetics, highlighting the potential of semiconducting catalysts integrated into solar water splitting devices.
Characterization of three-way automotive catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenik, E.A.; More, K.L.; LaBarge, W.
1997-04-01
The CRADA between Delphi Automotive Systems (Delphi; formerly General Motors - AC Delco, Systems) and Lockheed Martin Energy Research (LMER) on automotive catalysts was completed at the end of FY96, after a ten month, no-cost extension. The CRADA was aimed at improved performance and lifetime of noble metal based three-way-catalysts (TWC), which are the primary catalytic system for automotive emission control systems. While these TWC can meet the currently required emission standards, higher than optimum noble metal loadings are often required to meet lifetime requirements. In addition, more stringent emission standards will be imposed in the near future, demanding improvedmore » performance and service life from these catalysts. Understanding the changes of TWC conversion efficiency with ageing is a critical need in improving these catalysts. Initially in a fresh catalyst, the active material is often distributed on a very fine scale, approaching single atoms or small atomic clusters. As such, a wide range of analytical techniques have been employed to provide high spatial resolution characterization of the evolving state of the catalytic material.« less
Achievement and improvement of the JT-60U negative ion source for JT-60 Super Advanced (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kojima, A.; Hanada, M.; Tanaka, Y.
2010-02-15
Developments of the large negative ion source have been progressed in the high-energy, high-power, and long-pulse neutral beam injector for JT-60 Super Advanced. Countermeasures have been studied and tested for critical issues of grid heat load and voltage holding capability. As for the heat load of the acceleration grids, direct interception of D{sup -} ions was reduced by adjusting the beamlet steering. As a result, the heat load was reduced below an allowable level for long-pulse injections. As for the voltage holding capability, local electric field was mitigated by tuning gap lengths between large-area acceleration grids in the accelerator. Asmore » a result, the voltage holding capability was improved up to the rated value of 500 kV. To investigate the voltage holding capability during beam acceleration, the beam acceleration test is ongoing with new extended gap.« less
Microwave-Induced Inactivation of DNA-Based Hybrid Catalyst in Asymmetric Catalysis
Zhao, Hua; Shen, Kai
2015-01-01
DNA-based hybrid catalysts have gained strong interests in asymmetric reactions. However, to maintain the high enantioselectivity, these reactions are usually conducted at relatively low temperatures (e.g. < 5 °C) for 2–3 days. Aiming to improve the reaction’s turnover rate, we evaluated microwave irradiation with simultaneous cooling as potential energy source since this method has been widely used to accelerate various chemical and enzymatic reactions. However, our data indicated that microwave irradiation induced an inactivation of DNA-based hybrid catalyst even at low temperatures (such as 5 °C). Circular dichroism (CD) spectra and gel electrophoresis of DNA suggest that microwave exposure degrades DNA molecules and disrupts DNA double-stranded structures, causing changes of DNA–metal ligand binding properties and thus poor DNA catalytic performance. PMID:26712696
Multipactor Physics, Acceleration, and Breakdown in Dielectric-Loaded Accelerating Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, Richard P.; Gold, Steven H.
2016-07-01
The objective of this 3-year program is to study the physics issues associated with rf acceleration in dielectric-loaded accelerating (DLA) structures, with a focus on the key issue of multipactor loading, which has been found to cause very significant rf power loss in DLA structures whenever the rf pulsewidth exceeds the multipactor risetime (~10 ns). The experiments are carried out in the X-band magnicon laboratory at the Naval Research Laboratory (NRL) in collaboration with Argonne National Laboratory (ANL) and Euclid Techlabs LLC, who develop the test structures with support from the DoE SBIR program. There are two main elements inmore » the research program: (1) high-power tests of DLA structures using the magnicon output (20 MW @11.4 GHz), and (2) tests of electron acceleration in DLA structures using relativistic electrons from a compact X-band accelerator. The work during this period has focused on a study of the use of an axial magnetic field to suppress multipactor in DLA structures, with several new high power tests carried out at NRL, and on preparation of the accelerator for the electron acceleration experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhouyang; Liu, Xin; Lee, Joo-Youp
2015-09-01
In our previous studies, CuCl2 demonstrated excellent Hg(0) oxidation capability and holds potential for Hg(0) oxidation in coal-fired power plants. In this study, the properties and performances of CuCl2 supported onto gamma-Al2O3 with high surface area were investigated. From various characterization techniques using XPS, XAFS, XRD, TPR, SEM and TGA, the existence of multiple copper species was identified. At low CuCl2 loadings, CuCl2 forms copper aluminate species with gamma-Al2O3 and is inactive for Hg(0) oxidation. At high loadings, amorphous CuCl2 forms onto the gamma-Al2O3 surface, working as a redox catalyst for Hg(0) oxidation by consuming Cl to be converted intomore » CuCl and then being regenerated back into CuCl2 in the presence of O-2 and HCl gases. The 10%(wt) CuCl2/gamma-Al2O3 catalyst showed excellent Hg(0) oxidation performance and SO2 resistance at 140 degrees C under simulated flue gas conditions containing 6%(v) O-2 and 10 ppmv HCl. The oxidized Hg(0) in the form of HgCl2 has a high solubility in water and can be easily captured by other air pollution control systems such as wet scrubbers in coal-fired power plants. The CuCl2/gamma-Al2O3 catalyst can be used as a low temperature Hg(0) oxidation catalyst. (C) 2015 Elsevier B.V. All rights reserved.« less
NASA Astrophysics Data System (ADS)
Li, Haiyan; Cai, Shengnan; Yang, Pengfei; Bai, Yan; Dang, Dongbin
2018-06-01
With nanotube titanic acid (abbreviated as NTA) and the 12-tungstophosphoric acid (H3PW12O40• xH2O, denoted as HPW) as start materials, respectively, according to a simple hydrothermal process in acid medium, we successfully prepared HPW modified VO •-TiO2 composite photocatalysts. During heat treatment companied by the transformation of NTA to TiO2, a kind of single-electron-trapped oxygen vacancy (VO •) could be formed contributing to the visible light absorption of catalysts. The morphology, phase and chemical structure, optical and electronic properties, and so on of the produced catalysts with various HPW loadings are characterized. The size range of synthesized photocatalyst nanoparticles are about 10 50 nm. Taking aqueous rhodamine B (RhB) dye as model pollutant, we carried out photocatalytic activity test of the achieved catalysts, revealing that the hybrid photocatalysts display significantly enhanced visible light-driven ( λ ≥ 420 nm) photocatalytic activity for degradation of RhB. Among various catalysts, HPWN-0.1-120 composite with nominal loading of 0.1 g HPW and heat treatment temperature of 120 °C possesses the highest photocatalytic performance in visible light, which is closely related to the co-effect of phase heterojunction of rutile/anatase, surface heterojunction of anatase/HPW, and oxygen vacancy (VO •). The two types of heterojunction promote greatly the separation efficiency of photoelectrons and photoholes and oxygen vacancy lures response of catalysts to visible light.
Surendranath, Yogesh; Bediako, D. Kwabena; Nocera, Daniel G.
2012-01-01
An artificial leaf can perform direct solar-to-fuels conversion. The construction of an efficient artificial leaf or other photovoltaic (PV)-photoelectrochemical device requires that the power curve of the PV material and load curve of water splitting, composed of the catalyst Tafel behavior and cell resistances, be well-matched near the thermodynamic potential for water splitting. For such a condition, we show here that the current density-voltage characteristic of the catalyst is a key determinant of the solar-to-fuels efficiency (SFE). Oxidic Co and Ni borate (Co-Bi and Ni-Bi) thin films electrodeposited from solution yield oxygen-evolving catalysts with Tafel slopes of 52 mV/decade and 30 mV/decade, respectively. The consequence of the disparate Tafel behavior on the SFE is modeled using the idealized behavior of a triple-junction Si PV cell. For PV cells exhibiting similar solar power-conversion efficiencies, those displaying low open circuit voltages are better matched to catalysts with low Tafel slopes and high exchange current densities. In contrast, PV cells possessing high open circuit voltages are largely insensitive to the catalyst’s current density-voltage characteristics but sacrifice overall SFE because of less efficient utilization of the solar spectrum. The analysis presented herein highlights the importance of matching the electrochemical load of water-splitting to the onset of maximum current of the PV component, drawing a clear link between the kinetic profile of the water-splitting catalyst and the SFE efficiency of devices such as the artificial leaf. PMID:22689962
Samudrala, Shanthi Priya; Kandasamy, Shalini; Bhattacharya, Sankar
2018-05-10
Direct C-O hydrogenolysis of bioglycerine to produce 1,3-propanediol selectively is a vital technology that can expand the scope of biodiesel industry and green chemical production from biomass. Herein we report sulphuric acid-activated montmorillonite clay supported platinum nanoparticles as highly effective solid acid catalysts for the selective production of 1,3-propanediol from glycerol. The catalytic performances of the catalysts were investigated in the hydrogenolysis of glycerol with a fixed bed reactor under ambient pressure. The results were found promising and showed that the activation of montmorillonite by sulphuric acid incorporated Brønsted acidity in the catalyst and significantly improved the selectivity to 1,3-propanediol. The catalytic performance of different platinum loaded catalysts was examined and 2 wt% Pt/S-MMT catalyst presented superior activity among others validating 62% 1,3-propanediol selectivity at 94% glycerol conversion. The catalytic activity of 2Pt/S-MMT was systematically investigated under varying reaction parameters including reaction temperature, hydrogen flow rate, glycerol concentration, weight hourly space velocity, and contact time to derive the optimum conditions for the reaction. The catalyst stability, reusability and structure-activity correlation were also elucidated. The high performance of the catalyst could be ascribed to well disperse Pt nanoparticles immobilized on acid-activated montmorillonite, wider pore-structure and appropriate acid sites of the catalyst.
NASA Astrophysics Data System (ADS)
Helwani, Z.; Fatra, W.; Saputra, E.; Maulana, R.
2018-03-01
A palm fly ash supported calcium oxide (CaO) catalyst was prepared and used in transesterification from off-grade palm oil for biodiesel production. The catalyst synthesized by loading CaO of calcium nitrate tetrahydrate (Ca(NO3)2.4H2O) into fly ash through impregnation method. The optimum catalyst preparation conditions were determined by influence of calcination temperature and weight ratio of Ca(NO3)2.4H2O and fly ash. Catalyst with highest catalytic activity was achieved when calcined at 800 °C and proportion of Ca(NO3)2.4H2O to fly ash is 80:20. Under the conditions of oil : methanol ratio of 1:6, catalyst dosage of 6 wt% and temperature of 70 °C for 2 h, the biodiesel yield reaches to 71.77%. CaO, SiO2, Ca(OH)2 and Ca2SiO4 were found in the catalyst through X-ray diffraction (XRD) while the basic strength of the catalyst H_ in the range 9.3 – 11. Surface area of the developed catalyst is 24.342 m2/g through Brunauer-Emmett-Teller (BET). Characteristics of biodiesel such as density, kinematic viscosity, acid value, flash point has been matched with standard for biodiesel specification of Indonesia.
Akbari, Azam; Omidkhah, Mohammadreza; Darian, Jafar Towfighi
2014-03-01
A new heterogeneous sonocatalytic system consisting of a MoO3/Al2O3 catalyst and H2O2 combined with ultrasonication was studied to improve and accelerate the oxidation of model sulfur compounds of diesel, resulting in a significant enhancement in the process efficiency. The influence of ultrasound on properties, activity and stability of the catalyst was studied in detail by means of GC-FID, PSD, SEM and BET techniques. Above 98% conversion of DBT in model diesel containing 1000 μg/g sulfur was obtained by new ultrasound-assisted desulfurization at H2O2/sulfur molar ratio of 3, temperature of 318 K and catalyst dosage of 30 g/L after 30 min reaction, contrary to the 55% conversion obtained during the silent process. This improvement was considerably affected by operation parameters and catalyst properties. The effects of main process variables were investigated using response surface methodology in silent process compared to ultrasonication. Ultrasound provided a good dispersion of catalyst and oxidant by breakage of hydrogen bonding and deagglomeration of them in the oil phase. Deposition of impurities on the catalyst surface caused a quick deactivation in silent experiments resulting only 5% of DBT oxidation after 6 cycles of silent reaction by recycled catalyst. Above 95% of DBT was oxidized after 6 ultrasound-assisted cycles showing a great improvement in stability by cleaning the surface during ultrasonication. A considerable particle size reduction was also observed after 3 h sonication that could provide more dispersion of catalyst in model fuel.
NASA Astrophysics Data System (ADS)
Hitchcock, Adam P.; Berejnov, Viatcheslav; Lee, Vincent; West, Marcia; Colbow, Vesna; Dutta, Monica; Wessel, Silvia
2014-11-01
Scanning Transmission X-ray Microscopy (STXM) at the C 1s, F 1s and S 2p edges has been used to investigate degradation of proton exchange membrane fuel cell (PEM-FC) membrane electrode assemblies (MEA) subjected to accelerated testing protocols. Quantitative chemical maps of the catalyst, carbon support and ionomer in the cathode layer are reported for beginning-of-test (BOT), and end-of-test (EOT) samples for two types of carbon support, low surface area carbon (LSAC) and medium surface area carbon (MSAC), that were exposed to accelerated stress testing with upper potentials (UPL) of 1.0, 1.2, and 1.3 V. The results are compared in order to characterize catalyst layer degradation in terms of the amounts and spatial distributions of these species. Pt agglomeration, Pt migration and corrosion of the carbon support are all visualized, and contribute to differing degrees in these samples. It is found that there is formation of a distinct Pt-in-membrane (PTIM) band for all EOT samples. The cathode thickness shrinks due to loss of the carbon support for all MSAC samples that were exposed to the different upper potentials, but only for the most aggressive testing protocol for the LSAC support. The amount of ionomer per unit volume significantly increases indicating it is being concentrated in the cathode as the carbon corrosion takes place. S 2p spectra and mapping of the cathode catalyst layer indicates there are still sulfonate groups present, even in the most damaged material.
NASA Astrophysics Data System (ADS)
Li, Ming-yuan; Guo, Rui-tang; Hu, Chang-xing; Sun, Peng; Pan, Wei-guo; Liu, Shu-ming; Sun, Xiao; Liu, Shuai-wei; Liu, Jian
2018-04-01
The deactivation of SCR catalyst caused by K species contained in the fly ash would suppress its DeNOx performance. In this study, it was manifested that the modification of Ce/TiO2 catalyst with P could enhance its K tolerance. To understand the promotion mechanism, the fresh and poisoned catalyst samples were subjected to the characterization techniques including BET, XRD, XPS, H2-TPR, NH3-TPD and in situ DRIFT. The results elucidated that the introduction of P species could increase the reducibility of Ce species and generate more surface chemisorbed oxygen, along with the strengthened surface acidity for NH3 adsorption. It seemed that the NH3-SCR reaction mechanism over Ce/TiO2 catalyst was a combination of L-H mechanism (<200 °C) and E-R mechanism (≥200 °C). After the addition of P species, the NO oxidation over Ce/TiO2 catalyst was also accelerated, accompanied by the broadened temperature window for the NH3-SCR reaction under the control of L-H mechanism. The promoted NH3 species adsorption and the generated more NO2 over P-Ce/TiO2 catalyst were conducive to the NH3-SCR reaction through L-H pathway, which might be the primary reason for its good K resistance.
Ciszek, Benjamin; Fleischer, Ivana
2018-04-12
Herein we report the first homogeneous palladium-based transfer hydrogenolysis of benzylic alcohols using an in situ formed palladium-phosphine complex and formic acid as reducing agent. The reaction requires a catalyst loading as low as only 1 mol% of palladium and just a slight excess of reductant to obtain the deoxygenated alkylarenes in good to excellent yields. Besides demonstrating the broad applicability for primary, secondary and tertiary benzylic alcohols, a reaction intermediate could be identified. Additionally, it could be shown that partial oxidation of the applied phosphine ligand was beneficial for the course of the reaction, presumably by stabilizing the active catalyst. Reaction profiles and catalyst poisoning experiments were used to characterize the catalyst, the results indicate a homogeneous metal complex as active species. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wang, Shan; Gao, Shasha; Tang, Yakun; Wang, Lei; Jia, Dianzeng; Liu, Lang
2018-04-01
Coal-based activated carbons (AC) were acted as the support, Cu/AC catalysts were synthesized by a facile solid-state reaction combined with subsequent heat treatment. In Cu/AC composites, highly dispersed Cu nanospheres were anchored on AC. The catalytic activity for 4-nitrophenol (4-NP) was investigated, the effects of activation temperature and copper loading on the catalytic performance were studied. The catalysts exhibited very high catalytic activity and moderate chemical stability due to the unique characteristics of the particle-assembled nanostructures, the high surface area and the porous structure of coal-based AC and the good dispersion of metal particles. Design and preparation of non-noble metal composite catalysts provide a new direction for improving the added value of coal.
DOT National Transportation Integrated Search
1998-08-01
The report describes the first testing series, Phase, of the first project, Experiment 1, with the Louisiana Transportation Research Center Accelerated Loading Facility. The background to the project is described and details of the trial pavements si...
DOT National Transportation Integrated Search
2001-11-01
This report describes the test results of the first project at the Louisiana Transportation Research Center's Accelerated Loading Facility (ALF). In 1995, 9 test lanes were constructed at the Louisiana Pavement Research Facility in Port Allen. These ...
Wise, Anna M.; Richardson, Peter W.; Price, Stephen W. T.; ...
2017-12-27
In situ EXAFS and XRD have been used to study the electrochemical formation of hydride phases, H abs, in 0.5 M H 2SO 4 for a Pd/C catalyst and a series of Pd@Pt core-shell catalysts with varying Pt shell thickness, from 0.5 to 4 monolayers. Based on the XRD data a 3% lattice expansion is observed for the Pd/C core catalyst upon hydride formation at 0.0 V. In contrast, the expansion was ≤0.6% for all of the core-shell catalysts. The limited extent of the lattice expansion observed suggests that hydride formation, which may occur during periodic active surface area measurementsmore » conducting during accelerated aging tests or driven by H 2 crossover in PEM fuel cells, is unlikely to contribute significantly to the degradation of Pd@Pt core-shell electrocatalysts in contrast to the effects of oxide formation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wise, Anna M.; Richardson, Peter W.; Price, Stephen W. T.
In situ EXAFS and XRD have been used to study the electrochemical formation of hydride phases, H abs, in 0.5 M H 2SO 4 for a Pd/C catalyst and a series of Pd@Pt core-shell catalysts with varying Pt shell thickness, from 0.5 to 4 monolayers. Based on the XRD data a 3% lattice expansion is observed for the Pd/C core catalyst upon hydride formation at 0.0 V. In contrast, the expansion was ≤0.6% for all of the core-shell catalysts. The limited extent of the lattice expansion observed suggests that hydride formation, which may occur during periodic active surface area measurementsmore » conducting during accelerated aging tests or driven by H 2 crossover in PEM fuel cells, is unlikely to contribute significantly to the degradation of Pd@Pt core-shell electrocatalysts in contrast to the effects of oxide formation.« less
Nanoceria Supported Single-Atom Platinum Catalysts for Direct Methane Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Pengfei; Pu, Tiancheng; Nie, Anmin
Nanoceria-supported atomic Pt catalysts (denoted as Pt 1@CeO 2) have been synthesized and demonstrated with advanced catalytic performance for the non-oxidative, direct conversion of methane. These catalysts were synthesized by calcination of Pt-impregnated porous ceria nanoparticles at high temperature (ca. 1,000 °C), with the atomic dispersion of Pt characterized by combining aberra-tion-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), X-ray photoelectron spectroscopy (XPS), X-ray absorption spec-troscopy (XAS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analyses. The Pt 1@CeO 2 catalysts exhibited much superior catalytic performance to its nanoparticulated counterpart, achieving 14.4% of methane conversion at 975 °C andmore » 74.6% selectivity toward C 2 products (ethane, ethylene and acetylene). Comparative studies of the Pt1@CeO 2 catalysts with different loadings as well as the nanoparticulated counterpart reveal the single-atom Pt to be the active sites for selective conversion of methane into C 2 hydrocarbons.« less
Nanoceria Supported Single-Atom Platinum Catalysts for Direct Methane Conversion
Xie, Pengfei; Pu, Tiancheng; Nie, Anmin; ...
2018-04-03
Nanoceria-supported atomic Pt catalysts (denoted as Pt 1@CeO 2) have been synthesized and demonstrated with advanced catalytic performance for the non-oxidative, direct conversion of methane. These catalysts were synthesized by calcination of Pt-impregnated porous ceria nanoparticles at high temperature (ca. 1,000 °C), with the atomic dispersion of Pt characterized by combining aberra-tion-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), X-ray photoelectron spectroscopy (XPS), X-ray absorption spec-troscopy (XAS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analyses. The Pt 1@CeO 2 catalysts exhibited much superior catalytic performance to its nanoparticulated counterpart, achieving 14.4% of methane conversion at 975 °C andmore » 74.6% selectivity toward C 2 products (ethane, ethylene and acetylene). Comparative studies of the Pt1@CeO 2 catalysts with different loadings as well as the nanoparticulated counterpart reveal the single-atom Pt to be the active sites for selective conversion of methane into C 2 hydrocarbons.« less
Nitrogen-doped microporous carbon: An efficient oxygen reduction catalyst for Zn-air batteries
NASA Astrophysics Data System (ADS)
Zhang, Li-Yuan; Wang, Meng-Ran; Lai, Yan-Qing; Li, Xiao-Yan
2017-08-01
N-doped microporous carbon as an exceptional metal-free catalyst from waste biomass (banana peel as representative) was obtained via fast catalysis carbonization, followed by N-doping modification. The method achieves a relatively high C conversion efficiency of ∼41.9%. The final carbon materials are doped by N (∼3 at.%) and possess high surface area (∼1097 m2 g-1) and abundant micropores. Compared to commercial Pt/C materials, the as-prepared carbon catalyst exhibits a comparable electrocatalytic activity and much better stability. Furthermore, the metal-free catalyst loaded Zn-air battery possesses higher discharge voltage and power density as compared with that of commercial Pt/C. This novel technique can also be readily applied to produce metal-free carbon catalysts from other typical waste biomass (e.g., orange peel, leaves) as the carbon sources. The method can be developed as a potentially general and effective industrial route to transform waste biomass into high value-added microporous carbon with superior functionalities.
NASA Astrophysics Data System (ADS)
Safaei-Ghomi, Javad; Javidan, Abdollah; Ziarati, Abolfazl; Shahbazi-Alavi, Hossein
2015-08-01
In the present paper, we report the successful synthesis of nanocrystalline MIIZr4(PO4)6 ceramics (M: Mn, Ni, Fe, Co). These nano-structures were characterized by X-ray diffraction, scanning electron microscopy, and vibrating sample magnetometer (VSM). Size of nano-structures was in the range of 20-150 nm. Nano-MIIZr4(PO4)6 as an efficient and green catalyst has been used for the preparation of 2-amino-4H-pyran-3,5-dicarboxylate derivatives by the three-component condensation reaction of ethyl cyanoacetate, ethyl acetoacetate, and various aromatic aldehydes under microwave irradiation. Extraordinarily, the best results were obtained using MnZr4(PO4)6 nanocrystallines as an efficient catalyst. This method provides several advantages including easy work-up, excellent yields, short reaction times, using of microwave as green method, recoverability of the catalyst, and little catalyst loading.
NASA Astrophysics Data System (ADS)
Bo, Zheng; Hao, Han; Yang, Shiling; Zhu, Jinhui; Yan, Jianhua; Cen, Kefa
2018-04-01
This work reports the catalytic performance of vertically-oriented graphenes (VGs) supported manganese oxide catalysts toward toluene decomposition in post plasma-catalysis (PPC) system. Dense networks of VGs were synthesized on carbon paper (CP) via a microwave plasma-enhanced chemical vapor deposition (PECVD) method. A constant current approach was applied in a conventional three-electrode electrochemical system for the electrodeposition of Mn3O4 catalysts on VGs. The as-obtained catalysts were characterized and investigated for ozone conversion and toluene decomposition in a PPC system. Experimental results show that the Mn3O4 catalyst loading mass on VG-coated CP was significantly higher than that on pristine CP (almost 1.8 times for an electrodeposition current of 10 mA). Moreover, the decoration of VGs led to both enhanced catalytic activity for ozone conversion and increased toluene decomposition, exhibiting a great promise in PPC system for the effective decomposition of volatile organic compounds.
Wang, Wenzheng; Wang, Honglei; Zhu, Tianle; Fan, Xing
2015-07-15
Ag/HZSM-5, Mn/HZSM-5, Ce/HZSM-5, Ag-Mn/HZSM-5 and Ce-Mn/HZSM-5 were prepared by impregnation method. Both their adsorption capacity and catalytic activity were investigated for the removal of gas phase low-concentration toluene by periodical operation of adsorption and non-thermal plasma regeneration. Results show that catalysts loaded with Ag (Ag/HZSM-5 and Ag-Mn/HZSM-5) had larger adsorption capacity for toluene than the other catalysts. And Ag-Mn/HZSM-5 displayed the best catalytic performance for both toluene oxidation by non-thermal plasma and byproducts suppression. On the other hand, the deactivated catalyst can be fully regenerated by calcining in air stream when its adsorption capacity and catalytic activity of the Ag-Mn/HZSM-5 catalyst was found to be decreased after 10 cycles of periodical adsorption and non-thermal regeneration. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Kristianto, H.; Arie, A. A.; Susanti, R. F.; Halim, M.; Lee, J. K.
2016-11-01
In this study the effect of activated carbon support modification to synthesis of CNSs was observed. Modification of activated carbon was done by using nitric acid. The effect of modification was analyzed from its FTIR spectra. The Fe catalysts were deposited on to the support by using urea deposition precipitation method at various initial catalysts concentration. CNSs was synthesized by utilizing cooking palm oil as renewable carbon source, and pyrolized at 700°C for 1 hour under nitrogen atmosphere. The products obtained then analyzed using SEM-EDS, TEM, XRD, and Raman spectroscopy. The modification of activated carbon support had increased the oxygen functional group. This increase resulted on increase of metal catalysts deposited on activated carbon surface. Peak of C (100) was observed, while ID/IG of samples were obtained around 0.9, which is commonly obtained for CNSs. High catalysts loading on modified activated carbon support caused decomposition of CNSs and formation carbon onion.
Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts
NASA Astrophysics Data System (ADS)
Zhou, W. J.; Zhou, B.; Li, W. Z.; Zhou, Z. H.; Song, S. Q.; Sun, G. Q.; Xin, Q.; Douvartzides, S.; Goula, M.; Tsiakaras, P.
Low-temperature polymer electrolyte membrane fuel cells directly fed by methanol and ethanol were investigated employing carbon supported Pt, PtSn and PtRu as anode catalysts, respectively. Employing Pt/C as anode catalyst, both direct methanol fuel cell (DMFC) and direct ethanol fuel cell (DEFC) showed poor performances even in presence of high Pt loading on anode. It was found that the addition of Ru or Sn to the Pt dramatically enhances the electro-oxidation of both methanol and ethanol. It was also found that the single cell adopting PtRu/C as anode shows better DMFC performance, while PtSn/C catalyst shows better DEFC performance. The single fuel cell using PtSn/C as anode catalyst at 90 °C shows similar power densities whenever fueled by methanol or ethanol. The cyclic voltammetry (CV) and single fuel cell tests indicated that PtRu is more suitable for DMFC while PtSn is more suitable for DEFC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tackett, Brian M.; Sheng, Wenchao; Kattel, Shyam
Here, the oxygen evolution reaction (OER) has broad applications in electrochemical devices, but it often requires expensive and scarce Ir-based catalysts in acid electrolyte. Presented here is a framework to reduce Ir loading by combining core–shell iridium/metal nitride morphologies using in situ experiments and density functional theory (DFT) calculations. Several group VIII transition metal (Fe, Co, and Ni) nitrides are studied as core materials, with Ir/Fe 4N core–shell particles showing enhancement in both OER activity and stability. In situ X-ray absorption fine structure measurements are used to determine the structure and stability of the core–shell catalysts under OER conditions. DFTmore » calculations are used to demonstrate adsorbate binding energies as descriptors of the observed activity trends.« less
Tackett, Brian M.; Sheng, Wenchao; Kattel, Shyam; ...
2018-02-16
Here, the oxygen evolution reaction (OER) has broad applications in electrochemical devices, but it often requires expensive and scarce Ir-based catalysts in acid electrolyte. Presented here is a framework to reduce Ir loading by combining core–shell iridium/metal nitride morphologies using in situ experiments and density functional theory (DFT) calculations. Several group VIII transition metal (Fe, Co, and Ni) nitrides are studied as core materials, with Ir/Fe 4N core–shell particles showing enhancement in both OER activity and stability. In situ X-ray absorption fine structure measurements are used to determine the structure and stability of the core–shell catalysts under OER conditions. DFTmore » calculations are used to demonstrate adsorbate binding energies as descriptors of the observed activity trends.« less
NASA Astrophysics Data System (ADS)
Rajesh, B.; Ravindranathan Thampi, K.; Bonard, J.-M.; Mathieu, H. J.; Xanthopoulos, N.; Viswanathan, B.
The electronically conducting hybrid material based on transition metal oxide and conducting polymer has been used as the catalyst support for Pt nanoparticles. The Pt nanoparticles loaded hybrid organic (polyaniline)-inorganic (vanadium pentoxide) composite has been used as the electrode material for methanol oxidation, a reaction of importance for the development of direct methanol fuel cells (DMFC). The hybrid material exhibited excellent electrochemical and thermal stability in comparison to the physical mixture of conducting polymer and transition metal oxide. The Pt nanoparticles loaded hybrid material exhibited high electrocatalytic activity and stability for methanol oxidation in comparison to the Pt supported on the Vulcan XC 72R carbon support. The higher activity and stability is attributed to the better CO tolerance of the composite material.
NASA Astrophysics Data System (ADS)
Yakoumis, I.; Moschovi, A. M.; Giannopoulou, I.; Panias, D.
2018-03-01
The real life experimental protocol for the preparation of spent automobile catalyst samples for elemental analysis is thoroughly described in the following study. Collection, sorting and dismantling, homogenization and sample preparation for X-Ray fluorescence spectroscopy and Atomic Adsorption Spectroscopy combined with Inductive coupled plasma mass spectrometry are discussed in detail for both ceramic and metallic spent catalysts. The concentrations of Platinum Group Metals (PGMs) in spent catalytic converters are presented based on typical consignments of recycled converters (more than 45,000 pieces) from the Greek Market. The conclusions clearly denoted commercial metallic catalytic foil contains higher PGMs loading than ceramic honeycombs. On the other hand, the total PGMs loading in spent ceramic catalytic converters has been found higher than the corresponding value for the metallic ones.
NASA Astrophysics Data System (ADS)
Kim, Minjoong; Kwon, Chorong; Eom, Kwangsup; Kim, Jihyun; Cho, Eunae
2017-03-01
This study explores a facile method to prepare an efficient and durable support for Pt catalyst of polymer electrolyte membrane fuel cell (PEMFC). As a candidate, Nb-doped TiO2 (Nb-TiO2) nanofibers are simply fabricated using an electrospinning technique, followed by a heat treatment. Doping Nb into the TiO2 nanofibers leads to a drastic increase in electrical conductivity with doping level of up to 25 at. % (Nb0.25Ti0.75O2). Pt nanoparticles are synthesized on the prepared 25 at. % Nb-doped TiO2-nanofibers (Pt/Nb-TiO2) as well as on a commercial powdered carbon black (Pt/C). The Pt/Nb-TiO2 nanofiber catalyst exhibits similar oxygen reaction reduction (ORR) activity to that of the Pt/C catalyst. However, during an accelerated stress test (AST), the Pt/Nb-TiO2 nanofiber catalyst retained more than 60% of the initial ORR activity while the Pt/C catalyst lost 65% of the initial activity. The excellent durability of the Pt/Nb-TiO2 nanofiber catalyst can be attributed to high corrosion resistance of TiO2 and strong interaction between Pt and TiO2.
Kim, MinJoong; Kwon, ChoRong; Eom, KwangSup; Kim, JiHyun; Cho, EunAe
2017-03-14
This study explores a facile method to prepare an efficient and durable support for Pt catalyst of polymer electrolyte membrane fuel cell (PEMFC). As a candidate, Nb-doped TiO 2 (Nb-TiO 2 ) nanofibers are simply fabricated using an electrospinning technique, followed by a heat treatment. Doping Nb into the TiO 2 nanofibers leads to a drastic increase in electrical conductivity with doping level of up to 25 at. % (Nb 0.25 Ti 0.75 O 2 ). Pt nanoparticles are synthesized on the prepared 25 at. % Nb-doped TiO 2 -nanofibers (Pt/Nb-TiO 2 ) as well as on a commercial powdered carbon black (Pt/C). The Pt/Nb-TiO 2 nanofiber catalyst exhibits similar oxygen reaction reduction (ORR) activity to that of the Pt/C catalyst. However, during an accelerated stress test (AST), the Pt/Nb-TiO 2 nanofiber catalyst retained more than 60% of the initial ORR activity while the Pt/C catalyst lost 65% of the initial activity. The excellent durability of the Pt/Nb-TiO 2 nanofiber catalyst can be attributed to high corrosion resistance of TiO 2 and strong interaction between Pt and TiO 2 .
Kim, MinJoong; Kwon, ChoRong; Eom, KwangSup; Kim, JiHyun; Cho, EunAe
2017-01-01
This study explores a facile method to prepare an efficient and durable support for Pt catalyst of polymer electrolyte membrane fuel cell (PEMFC). As a candidate, Nb-doped TiO2 (Nb-TiO2) nanofibers are simply fabricated using an electrospinning technique, followed by a heat treatment. Doping Nb into the TiO2 nanofibers leads to a drastic increase in electrical conductivity with doping level of up to 25 at. % (Nb0.25Ti0.75O2). Pt nanoparticles are synthesized on the prepared 25 at. % Nb-doped TiO2-nanofibers (Pt/Nb-TiO2) as well as on a commercial powdered carbon black (Pt/C). The Pt/Nb-TiO2 nanofiber catalyst exhibits similar oxygen reaction reduction (ORR) activity to that of the Pt/C catalyst. However, during an accelerated stress test (AST), the Pt/Nb-TiO2 nanofiber catalyst retained more than 60% of the initial ORR activity while the Pt/C catalyst lost 65% of the initial activity. The excellent durability of the Pt/Nb-TiO2 nanofiber catalyst can be attributed to high corrosion resistance of TiO2 and strong interaction between Pt and TiO2. PMID:28290503
Effects of Loading and Doping on Iron-Based CO2 Hydrogenation Catalysts
2009-08-24
dopant had on the overall catalyst’s activity and production distribution. 24-08-2009 Memorandum Report Naval Research Laboratory, Code 6183 4555...approach in producing a greater yield of hydrocarbon (HC) products above methane. The use of traditional Fischer-Tropsch synthesis (FTS) cobalt ...previous work done by our group [14] it is apparent that direct hydrogenation of CO2 over a general Cobalt -based FTS catalyst (namely Co-Pt/Al2O3
NASA Astrophysics Data System (ADS)
Li, Hailong; Gao, Yan; Xiong, Zhuo; Liao, Chen; Shih, Kaimin
2018-05-01
A series of Au-g-C3N4 (Au-CN) catalysts were prepared through a NaBH4-reduction method using g-C3N4 (CN) from pyrolysis of urea as precursor. The catalysts' surface area, crystal structure, surface morphology, chemical state, functional group composition and optical properties were characterized by X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, ultraviolet visible (UV-vis) diffuse reflectance spectra, fourier transform infrared, photoluminescence and transient photocurrent analysis. The carbon dioxide (CO2) photoreduction activities under ultraviolet visible (UV-vis) light irradiation were significantly enhanced when gold (Au) was loaded on the surface of CN. 2Au-CN catalyst with Au to CN mole ratio of 2% showed the best catalytic activity. After 2 h UV-vis light irradiation, the methane (CH4) yield over the 2Au-CN catalyst was 9.1 times higher than that over the pure CN. The CH4 selectivity also greatly improved for the 2Au-CN compared to the CN. The deposited Au nanoparticles facilitated the separation of electron-hole pairs on the CN surface. Moreover, the surface plasmon resonance effect of Au further promoted the generation of hot electrons and visible light absorption. Therefore, Au loading significantly improved CO2 photoreduction performance of CN under UV-vis light irradiation.
NASA Astrophysics Data System (ADS)
Gokul, Paramasivam; Vinoth, Ramalingam; Neppolian, Bernaurdshaw; Anandhakumar, Sundaramurthy
2017-10-01
We report reduced graphene oxide (rGO) supported binary metal oxide (CuO-TiO2/rGO) nanoparticle (NP) incorporated multilayer thin films based on Layer-by-Layer (LbL) assembly for enhanced sono-photocatalytic degradation of methyl orange under exposure to UV radiation. Multilayer thin films were fabricated on glass and quartz slides, and investigated using scanning electron microscopy and UV-vis spectroscopy. The loading of catalyst NPs on the film resulted in the change of morphology of the film from smooth to rough with uniformly distributed NPs on the surface. The growth of the control and NP incorporated films followed a linear regime as a function of number of layers. The%degradation of methyl orange as a function of time was investigated by UV-vis spectroscopy and total organic carbon (TOC) measurements. Complete degradation of methyl orange was achieved within 13 h. The amount of NP loading in the film significantly influenced the%degradation of methyl orange. Catalyst reusability studies revealed that the catalyst thin films could be repeatedly used for up to five times without any change in photocatalytic activity of the films. The findings of the present study support that the binary metal oxide catalyst films reported here are very useful for continuous systems, and thus, making it an option for scale up.
Efficient solar light-driven degradation of Congo red with novel Cu-loaded Fe3O4@TiO2 nanoparticles.
Arora, Priya; Fermah, Alisha; Rajput, Jaspreet Kaur; Singh, Harminder; Badhan, Jigyasa
2017-08-01
In this work, Cu-loaded Fe 3 O 4 @TiO 2 core shell nanoparticles were prepared in a single pot by coating of TiO 2 on Fe 3 O 4 nanoparticles followed by Cu loading. X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), Brunauer-Emmett- Teller (BET), vibrating sample magnetometry (VSM), X-ray photoelectron spectroscopy (XPS), and valence band X-ray photoelectron spectroscopy (VB XPS) techniques were used for characterization of as prepared nanoparticles. Synergism between copper and titania was evaluated by studying the solar light-driven photodegradation of Congo red dye solution in the presence of Fe 3 O 4 @TiO 2 nanoparticles on one side and Cu-loaded Fe 3 O 4 @TiO 2 nanoparticles on the other side. The latter performed better than the former catalyst, indicating the enhanced activity of copper-loaded catalyst. Further photodegradation was studied by three means, i.e., under ultraviolet (UV), refluxing, and solar radiations. Cu-loaded Fe 3 O 4 @TiO 2 enhanced the degradation efficiency of Congo red dye. Thus, Cu act possibly by reducing the band gap of TiO 2 and widening the optical response of semiconductor, as a result of which solar light could be used to carry out photocatalysis. Graphical abstract Photodegradation of congo red over Cu-loaded Fe 3 O 4 @TiO 2 nanoparticles.
A multiscale approach to accelerate pore-scale simulation of porous electrodes
NASA Astrophysics Data System (ADS)
Zheng, Weibo; Kim, Seung Hyun
2017-04-01
A new method to accelerate pore-scale simulation of porous electrodes is presented. The method combines the macroscopic approach with pore-scale simulation by decomposing a physical quantity into macroscopic and local variations. The multiscale method is applied to the potential equation in pore-scale simulation of a Proton Exchange Membrane Fuel Cell (PEMFC) catalyst layer, and validated with the conventional approach for pore-scale simulation. Results show that the multiscale scheme substantially reduces the computational cost without sacrificing accuracy.
DOT National Transportation Integrated Search
1992-09-01
The Louisiana Transportation Research Center has established a Pavement Research Facility (PRF). The core of the PRF is a testing machine that is capable of conducting full-scale simulated and accelerated load testing of pavement materials, construct...
Fernández-Rodríguez, Manuel A.; Hartwig, John F.
2010-01-01
The cross-coupling reaction of aryl bromides and iodides with aliphatic and aromatic thiols catalyzed by palladium complexes of the bisphosphine ligand CyPF-tBu (1) is reported. Reactions occur in excellent yields, broad scope, high tolerance of functional groups and with turnover numbers that exceed those of previous catalysts by two or three orders of magnitude. These couplings of bromo- and iodoarenes are more efficient than the corresponding reactions of chloroarenes and could be conducted with less catalyst loading and/or milder reaction conditions. Consequently, limitations regarding scope and functional group tolerance previously reported in the coupling of aryl chlorides are now overcome. PMID:19154131
Studies on Nano-Engineered TiO2 Photo Catalyst for Effective Degradation of Dye
NASA Astrophysics Data System (ADS)
Sowmya, S. R.; Madhu, G. M.; Hashir, Mohammed
2018-02-01
All Heterogeneous photo catalysis employing efficient photo-catalyst is the advanced dye degradation technology for the purification of textile effluent. The present work focuses on Congo red dye degradation employing synthesized Ag doped TiO2 nanoparticles as photocatalyst which is characterized using SEM, XRD and FTIR. Studies are conducted to study the effect of various parameters such as initial dye concentration, catalyst loading and pH of solution. Ag Doped TiO2 photocatalyst improve the efficacy of TiO2 by reducing high band gap and electron hole recombination of TiO2. The reaction kinetics is analyzed and the process is found to follow pseudo first order kinetics.
NASA Astrophysics Data System (ADS)
Jang, Ji-Soo; Kim, Sang-Joon; Choi, Seon-Jin; Kim, Nam-Hoon; Hakim, Meggie; Rothschild, Avner; Kim, Il-Doo
2015-10-01
Bio-inspired Pt (~2 nm) and Au (~2.7 nm) catalysts encapsulated by a protein shell, i.e., Pt-apoferritin (Pt@AF) and Au-apoferriten (Au@AF), were synthesized via the hollow protein nanocage (apoferritin) templating route and directly functionalized on the interior and exterior walls of electrospun SnO2 nanotubes (NTs) during controlled single-nozzle electrospinning followed by high temperature calcination with heating rate control. Fast crystallization of the exterior shell and outward diffusion of the interior Sn precursors and crystallites result in the continued growth of a tubular wall, which is related to rapid heating driven Ostwald-ripening behavior. Very importantly, the Pt and Au nanoparticles (NPs) were immobilized onto thin-walled SnO2 NTs with a diameter of ~350 nm and a shell thickness of ~40 nm without any aggregation of catalysts due to high dispersibility, which originated from repulsive electrostatic (Coulombic) forces acting on the surface charged protein shells, leading to an enhanced catalytic effect and outstanding gas sensing properties. Pt-loaded SnO2 NTs exhibited superior acetone response (Rair/Rgas = 92 at 5 ppm) compared to pure SnO2 NFs (Rair/Rgas = 4.8 at 5 ppm) and SnO2 NTs (Rair/Rgas = 11 at 5 ppm) while Au-loaded SnO2 NTs showed a high response when exposed to hydrogen sulfide (Rair/Rgas = 34 at 5 ppm), offering selective gas detection with minimal cross-sensitivity against other interfering gases such as NH3, CO, NO, C6H5CH3, and C5H12. Our results provide a new insight into facile, cost-effective, and highly dispersible catalyst loading on the interior and exterior walls of hollow metal oxide NTs via simple electrospinning as a potential breath analyzer.Bio-inspired Pt (~2 nm) and Au (~2.7 nm) catalysts encapsulated by a protein shell, i.e., Pt-apoferritin (Pt@AF) and Au-apoferriten (Au@AF), were synthesized via the hollow protein nanocage (apoferritin) templating route and directly functionalized on the interior and exterior walls of electrospun SnO2 nanotubes (NTs) during controlled single-nozzle electrospinning followed by high temperature calcination with heating rate control. Fast crystallization of the exterior shell and outward diffusion of the interior Sn precursors and crystallites result in the continued growth of a tubular wall, which is related to rapid heating driven Ostwald-ripening behavior. Very importantly, the Pt and Au nanoparticles (NPs) were immobilized onto thin-walled SnO2 NTs with a diameter of ~350 nm and a shell thickness of ~40 nm without any aggregation of catalysts due to high dispersibility, which originated from repulsive electrostatic (Coulombic) forces acting on the surface charged protein shells, leading to an enhanced catalytic effect and outstanding gas sensing properties. Pt-loaded SnO2 NTs exhibited superior acetone response (Rair/Rgas = 92 at 5 ppm) compared to pure SnO2 NFs (Rair/Rgas = 4.8 at 5 ppm) and SnO2 NTs (Rair/Rgas = 11 at 5 ppm) while Au-loaded SnO2 NTs showed a high response when exposed to hydrogen sulfide (Rair/Rgas = 34 at 5 ppm), offering selective gas detection with minimal cross-sensitivity against other interfering gases such as NH3, CO, NO, C6H5CH3, and C5H12. Our results provide a new insight into facile, cost-effective, and highly dispersible catalyst loading on the interior and exterior walls of hollow metal oxide NTs via simple electrospinning as a potential breath analyzer. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04487a
NCAP test improvements with pretensioners and load limiters.
Walz, Marie
2004-03-01
New Car Assessment Program (NCAP) test scores, measured by the United States Department of Transportation's (USDOT) National Highway Traffic Safety Administration (NHTSA), were analyzed in order to assess the benefits of equipping safety belt systems with pretensioners and load limiters. Safety belt pretensioners retract the safety belt almost instantly in a crash to remove excess slack. They tie the occupant to the vehicle's deceleration early during the crash, reducing the peak load experienced by the occupant. Load limiters and other energy management systems allow safety belts to yield in a crash, preventing the shoulder belt from directing too much energy on the chest of the occupant. In NCAP tests, vehicles are crashed into a fixed barrier at 35 mph. During the test, instruments measure the accelerations of the head and chest, as well as the force on the legs of anthropomorphic dummies secured in the vehicle by safety belts. NCAP data from model year 1998 through 2001 cars and light trucks were examined. The combination of pretensioners and load limiters is estimated to reduce Head Injury Criterion (HIC) by 232, chest acceleration by an average of 6.6 g's, and chest deflection (displacement) by 10.6 mm, for drivers and right front passengers. The unit used to measure chest acceleration (g) is defined as a unit of force equal to the force exerted by gravity. All of these reductions are statistically significant. When looked at individually, pretensioners are more effective in reducing HIC scores for both drivers and right front passengers, as well as chest acceleration and chest deflection scores for drivers. Load limiters show greater reductions in chest acceleration and chest deflection scores for right front passengers. By contrast, in make-models for which neither load limiters nor pretensioners have been added, there is little change during 1998 to 2001 in HIC, chest acceleration, or chest deflection values in NCAP tests.
NASA Astrophysics Data System (ADS)
Ahmad, Amirah; Razali, Mohd Hasmizam; Amin, Khairul Anuar Mat
2017-09-01
One of the exciting developments in science today is the design and synthesis of carbon nanotubes (CNTs) that possess novel properties and not exhibited by other individual organic and inorganic materials. CNTs are prepared using a chemical vapor deposition method with acetylene and synthesized mesoporous Ni-MCM41 as the carbon source and catalyst, respectively, and are then functionalized using 3-aminopropyltriethoxysilane (APTES) through the co-condensation method and loaded with commercial TiO2. Mesoporous Ni-MCM41 catalyst is first synthesized by hydrothermal method using sodium metasilicate as silica source and cetyltrimethylammonium bromide (CTABr) as a template. Results of Raman spectroscopy confirm that the synthesized carbon nanotubes are multi-walled. The type IV nitrogen adsorption-desorption isotherm and narrow pore size distribution proved that the functionalized-MWNTs loaded TiO2 is in mesopore range. Field Emission Scanning Electron Microscopy reveals that good dispersions of TiO2 nanoparticles onto functionalized-MWNTs with hair-like structure in between 3-8 nm. BET results indicate that functionalized-MWNTs loaded TiO2 possessed high surface area thus has considerable potential as an adsorbent and photocatalyst in environmental applications.
Le, Chi Chip; Wismer, Michael K; Shi, Zhi-Cai; Zhang, Rui; Conway, Donald V; Li, Guoqing; Vachal, Petr; Davies, Ian W; MacMillan, David W C
2017-06-28
Photocatalysis for organic synthesis has experienced an exponential growth in the past 10 years. However, the variety of experimental procedures that have been reported to perform photon-based catalyst excitation has hampered the establishment of general protocols to convert visible light into chemical energy. To address this issue, we have designed an integrated photoreactor for enhanced photon capture and catalyst excitation. Moreover, the evaluation of this new reactor in eight photocatalytic transformations that are widely employed in medicinal chemistry settings has confirmed significant performance advantages of this optimized design while enabling a standardized protocol.
Long pulse acceleration of MeV class high power density negative H{sup −} ion beam for ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umeda, N., E-mail: umeda.naotaka@jaea.go.jp; Kojima, A.; Kashiwagi, M.
2015-04-08
R and D of high power density negative ion beam acceleration has been carried out at MeV test facility in JAEA to realize ITER neutral beam accelerator. The main target is H{sup −} ion beam acceleration up to 1 MeV with 200 A/m{sup 2} for 60 s whose pulse length is the present facility limit. For long pulse acceleration at high power density, new extraction grid (EXG) has been developed with high cooling capability, which electron suppression magnet is placed under cooling channel similar to ITER. In addition, aperture size of electron suppression grid (ESG) is enlarged from 14 mmmore » to 16 mm to reduce direct interception on the ESG and emission of secondary electron which leads to high heat load on the upstream acceleration grid. By enlarging ESG aperture, beam current increased 10 % at high current beam and total acceleration grid heat load reduced from 13 % to 10 % of input power at long pulse beam. In addition, heat load by back stream positive ion into the EXG is measured for the first time and is estimated as 0.3 % of beam power, while heat load by back stream ion into the source chamber is estimated as 3.5 ~ 4.0 % of beam power. Beam acceleration up to 60 s which is the facility limit, has achieved at 683 keV, 100 A/m{sup 2} of negative ion beam, whose energy density increases two orders of magnitude since 2011.« less
Yoganandan, Narayan; Pintar, Frank A; Schlick, Michael; Humm, John R; Voo, Liming; Merkle, Andrew; Kleinberger, Michael
2015-09-18
The objective of the study was to develop a simple device, Vertical accelerator (Vertac), to apply vertical impact loads to Post Mortem Human Subject (PMHS) or dummy surrogates because injuries sustained in military conflicts are associated with this vector; example, under-body blasts from explosive devices/events. The two-part mechanically controlled device consisted of load-application and load-receiving sections connected by a lever arm. The former section incorporated a falling weight to impact one end of the lever arm inducing a reaction at the other/load-receiving end. The "launch-plate" on this end of the arm applied the vertical impact load/acceleration pulse under different initial conditions to biological/physical surrogates, attached to second section. It is possible to induce different acceleration pulses by using varying energy absorbing materials and controlling drop height and weight. The second section of Vertac had the flexibility to accommodate different body regions for vertical loading experiments. The device is simple and inexpensive. It has the ability to control pulses and flexibility to accommodate different sub-systems/components of human surrogates. It has the capability to incorporate preloads and military personal protective equipment (e.g., combat helmet). It can simulate vehicle roofs. The device allows for intermittent specimen evaluations (x-ray and palpation, without changing specimen alignment). The two free but interconnected sections can be used to advance safety to military personnel. Examples demonstrating feasibilities of the Vertac device to apply vertical impact accelerations using PMHS head-neck preparations with helmet and booted Hybrid III dummy lower leg preparations under in-contact and launch-type impact experiments are presented. Published by Elsevier Ltd.
Debler, Erik W.; Müller, Roger; Hilvert, Donald; Wilson, Ian A.
2009-01-01
Design of catalysts featuring multiple functional groups is a desirable, yet formidable goal. Antibody 13G5, which accelerates the cleavage of unactivated benzisoxazoles, is one of few artificial enzymes that harness an acid and a base to achieve efficient proton transfer. X-ray structures of the Fab-hapten complexes of wild-type 13G5 and active-site variants now afford detailed insights into its mechanism. The parent antibody preorganizes AspH35 and GluL34 to abstract a proton from substrate and to orient a water molecule for leaving group stabilization, respectively. Remodeling the environment of the hydrogen bond donor with a compensatory network of ordered waters, as seen in the GluL34 to alanine mutant, leads to an impressive 109-fold rate acceleration over the nonenzymatic reaction with acetate, illustrating the utility of buried water molecules in bifunctional catalysis. Generalization of these design principles may aid in creation of catalysts for other important chemical transformations. PMID:19846764
Debler, Erik W; Müller, Roger; Hilvert, Donald; Wilson, Ian A
2009-11-03
Design of catalysts featuring multiple functional groups is a desirable, yet formidable goal. Antibody 13G5, which accelerates the cleavage of unactivated benzisoxazoles, is one of few artificial enzymes that harness an acid and a base to achieve efficient proton transfer. X-ray structures of the Fab-hapten complexes of wild-type 13G5 and active-site variants now afford detailed insights into its mechanism. The parent antibody preorganizes Asp(H35) and Glu(L34) to abstract a proton from substrate and to orient a water molecule for leaving group stabilization, respectively. Remodeling the environment of the hydrogen bond donor with a compensatory network of ordered waters, as seen in the Glu(L34) to alanine mutant, leads to an impressive 10(9)-fold rate acceleration over the nonenzymatic reaction with acetate, illustrating the utility of buried water molecules in bifunctional catalysis. Generalization of these design principles may aid in creation of catalysts for other important chemical transformations.
Recovering bridge deflections from collocated acceleration and strain measurements
NASA Astrophysics Data System (ADS)
Bell, M.; Ma, T. W.; Xu, N. S.
2015-04-01
In this research, an internal model based method is proposed to estimate the displacement profile of a bridge subjected to a moving traffic load using a combination of acceleration and strain measurements. The structural response is assumed to be within the linear range. The deflection profile is assumed to be dominated by the fundamental mode of the bridge, therefore only requiring knowledge of the first mode. This still holds true under a multiple vehicle loading situation as the high mode shapes don't impact the over all response of the structure. Using the structural modal parameters and partial knowledge of the moving vehicle load, the internal models of the structure and the moving load can be respectively established, which can be used to form an autonomous state-space representation of the system. The structural displacements, velocities, and accelerations are the states of such a system, and it is fully observable when the measured output contains structural accelerations and strains. Reliable estimates of structural displacements are obtained using the standard Kalman filtering technique. The effectiveness and robustness of the proposed method has been demonstrated and evaluated via numerical simulation of a simply supported single span concrete bridge subjected to a moving traffic load.
Villani, Kenneth; Vermandel, Walter; Smets, Koen; Liang, Duoduo; van Tendeloo, Gustaaf; Martens, Johan A
2006-04-15
Platinum metal was dispersed on microporous, mesoporous, and nonporous support materials including the zeolites Na-Y, Ba-Y, Ferrierite, ZSM-22, ETS-10, and AIPO-11, alumina, and titania. The oxidation of carbon black loosely mixed with catalyst powder was monitored gravimetrically in a gas stream containing nitric oxide, oxygen, and water. The carbon oxidation activity of the catalysts was found to be uniquely related to the Pt dispersion and little influenced by support type. The optimum dispersion is around 3-4% corresponding to relatively large Pt particle sizes of 20-40 nm. The carbon oxidation activity reflects the NO oxidation activity of the platinum catalyst, which reaches an optimum in the 20-40 nm Pt particle size range. The lowest carbon oxidation temperatures were achieved with platinum loaded ZSM-22 and AIPO-11 zeolite crystallites bearing platinum of optimum dispersion on their external surfaces.
Parihar, Sanjay; Pathan, Soyeb; Jadeja, R N; Patel, Anjali; Gupta, Vivek K
2012-01-16
1-Phenyl-3-methyl-4-touloyl-5-pyrazolone (ligand) was synthesized and used to prepare an oxovanadium(IV) complex. The complex was characterized by single-crystal X-ray analysis and various spectroscopic techniques. The single-crystal X-ray analysis of the complex shows that the ligands are coordinated in a syn configuration to each other and create a distorted octahedral environment around the metal ion. A heterogeneous catalyst comprising an oxovanadium(IV) complex and hydrous zirconia was synthesized, characterized by various physicochemical techniques, and successfully used for the solvent-free oxidation of styrene. The influence of the reaction parameters (percent loading, molar ratio of the substrate to H(2)O(2), amount of catalyst, and reaction time) was studied. The catalyst was reused three times without any significant loss in the catalytic activity.
Carbon dioxide hydrogenation catalysed by well-defined Mn(i) PNP pincer hydride complexes.
Bertini, Federica; Glatz, Mathias; Gorgas, Nikolaus; Stöger, Berthold; Peruzzini, Maurizio; Veiros, Luis F; Kirchner, Karl; Gonsalvi, Luca
2017-07-01
The catalytic reduction of carbon dioxide is of great interest for its potential as a hydrogen storage method and to use carbon dioxide as C-1 feedstock. In an effort to replace expensive noble metal-based catalysts with efficient and cheap earth-abundant counterparts, we report the first example of Mn(i)-catalysed hydrogenation of CO 2 to HCOOH. The hydride Mn(i) catalyst [Mn(PNP NH - i Pr)(H)(CO) 2 ] showed higher stability and activity than its Fe(ii) analogue. TONs up to 10 000 and quantitative yields were obtained after 24 h using DBU as the base at 80 °C and 80 bar total pressure. At catalyst loadings as low as 0.002 mol%, TONs greater than 30 000 could be achieved in the presence of LiOTf as the co-catalyst, which are among the highest activities reported for base-metal catalysed CO 2 hydrogenations to date.
NASA Astrophysics Data System (ADS)
Bauer, Alex; Gyenge, Előd L.; Oloman, Colin W.
Pressed graphite felt (thickness ∼350 μm) with electrodeposited PtRu (43 g m -2, 1.4:1 atomic ratio) or PtRuMo (52 g m -2, 1:1:0.3 atomic ratio) nanoparticle catalysts was investigated as an anode for direct methanol fuel cells. At temperatures above 333 K the fuel cell performance of the PtRuMo catalyst was superior compared to PtRu. The power density was 2200 W m -2 with PtRuMo at 5500 A m -2 and 353 K while under the same conditions PtRu yielded 1925 W m -2. However, the degradation rate of the Mo containing catalyst formulation was higher. Compared to conventional gas diffusion electrodes with comparable PtRu catalyst composition and load, the graphite felt anodes gave higher power densities mainly due to the extended reaction zone for methanol oxidation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shendage, Suresh S., E-mail: sureshsshendage@gmail.com; Singh, Abilash S.; Nagarkar, Jayashree M., E-mail: jm.nagarkar@ictmumbai.edu.in
2015-10-15
Highlights: • Electrochemical deposition of bimetallic PdAu NPs. • Highly loaded PdAu NPs are obtained. • Nafion–graphene supported PdAu NPs shows good activity for ethanol electrooxidation. - Abstract: A nafion–graphene ribbon (Nf–GR) supported bimetallic PdAu nanoparticles (PdAu/Nf–GR) catalyst was prepared by electrochemical codeposition of Pd and Au at constant potential. The prepared catalyst was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). The average particle size of PdAu nanoparticles (NPs) determined from XRD was 3.5 nm. The electrocatalytic activity of the PdAu/Nf–GR catalyst was examined by cyclic voltametry.more » It was observed that the as prepared catalyst showed efficient activity and good stability for ethanol electrooxidation in alkaline medium.« less