Science.gov

Sample records for catalyst precursor anions

  1. The role of catalyst precursor anions in coal gasification

    SciTech Connect

    Abotsi, G.M.K.

    1992-01-01

    The aims of the proposed project are to enrich our understanding of the roles of various aqueous soluble catalyst precursor anions on the surface electrical properties of coal and to ascertain the influence of the surface charge on the adsorption, dispersion, and activities of calcium and potassium. These goals will be achieved by impregnating a lignite and its demineralized derivative with calcium or potassium catalyst precursors containing acetate (CH{sub 3}COO{minus}), chloride (Cl{minus}), nitrate (NO{sub 3}{minus}), sulfate (SO{sub 4}{sup 2{minus}}), and carbonate (CO{sub 3}{sup 2{minus}}) anions. Catalyst loading will be conducted under well-controlled conditions of solution pH and ionic strength.

  2. The role of catalyst precursor anions in coal gasification

    SciTech Connect

    Abotsi, G.M.K.

    1992-08-28

    The aims of the proposed project are to enrich our understanding of the roles of various aqueous soluble catalyst precursor anions on the surface electrical properties of coal and to ascertain the influence of the surface charge on the adsorption, dispersion, and activities of calcium and potassium. These goals will be achieved by impregnating a North Dakota lignite (PSOC 1482) and its demineralized derivative with calcium or potassium catalyst precursors containing acetate (CH{sub 3}COO{sup {minus}}), chloride (Cl{sup {minus}}), nitrate (NO{sub 3}{sup {minus}}), sulfate (SO{sub 4}{sup 2{minus}}), and carbonate (CO{sub 3}{sup 2{minus}}) anions. Catalyst loading will be conducted under well-controlled conditions of solution pH and ionic strength. In the last quarter, the surface charge properties of the coal was determined as a function of acetate (CH{sub 3}COO{sup {minus}}), chloride (Cl{sup {minus}}), nitrate (NO{sup 3}{sup {minus}}), carbonate (CO{sub 3}{sup 2{minus}}) or sulfate (SO{sub 4}{sup 2{minus}})concentration using the respective potassium salts of these anions. In general, low anion concentrations (10{sup {minus}3} or 10{sup {minus}2} mol/L) had little effect on the zeta potentials of the coals. However, the surface charge densities of the coal become less negative at 10-1 mol/L of the nitrate, carbonate or sulfate anions. These trends suggest that the surface charge density of the coal is controlled by the adsorption of potassium ions (K{sup +}) onto the coal particles. The net negative charge on the coal panicles creates a repulsive force between the anions and the coal surface and prevents the anions from exerting any significant effect on the coal's electrokinetic properties.

  3. The role of catalyst precursor anions in coal gasification. Third quarterly report

    SciTech Connect

    Abotsi, G.M.K.

    1992-08-28

    The aims of the proposed project are to enrich our understanding of the roles of various aqueous soluble catalyst precursor anions on the surface electrical properties of coal and to ascertain the influence of the surface charge on the adsorption, dispersion, and activities of calcium and potassium. These goals will be achieved by impregnating a North Dakota lignite (PSOC 1482) and its demineralized derivative with calcium or potassium catalyst precursors containing acetate (CH{sub 3}COO{sup {minus}}), chloride (Cl{sup {minus}}), nitrate (NO{sub 3}{sup {minus}}), sulfate (SO{sub 4}{sup 2{minus}}), and carbonate (CO{sub 3}{sup 2{minus}}) anions. Catalyst loading will be conducted under well-controlled conditions of solution pH and ionic strength. In the last quarter, the surface charge properties of the coal was determined as a function of acetate (CH{sub 3}COO{sup {minus}}), chloride (Cl{sup {minus}}), nitrate (NO{sup 3}{sup {minus}}), carbonate (CO{sub 3}{sup 2{minus}}) or sulfate (SO{sub 4}{sup 2{minus}})concentration using the respective potassium salts of these anions. In general, low anion concentrations (10{sup {minus}3} or 10{sup {minus}2} mol/L) had little effect on the zeta potentials of the coals. However, the surface charge densities of the coal become less negative at 10-1 mol/L of the nitrate, carbonate or sulfate anions. These trends suggest that the surface charge density of the coal is controlled by the adsorption of potassium ions (K{sup +}) onto the coal particles. The net negative charge on the coal panicles creates a repulsive force between the anions and the coal surface and prevents the anions from exerting any significant effect on the coal`s electrokinetic properties.

  4. The role of catalyst precursor anions in coal gasification. Fifth quarterly report

    SciTech Connect

    Abotsi, G.M.K.

    1993-04-01

    The aims of the proposed project are to enrich our understanding of the roles of various aqueous soluble catalyst precursor anions on the surface electrical properties of coal and to ascertain the influence of the surface charge on the adsorption, dispersion, and activities of calcium and potassium. These goals will be achieved by impregnating a demineralized North Dakota lignite (PSOC 1482) with calcium or potassium catalyst precursors containing acetate (CH{sub 3}COO{sup {minus}}), chloride (Cl{sup {minus}}), nitrate (NO{sub 3}{sup {minus}}), sulfate (SO{sub 4}{sup 2{minus}}), and carbonate (CO{sub 3}{sup 2{minus}}) anions. Demineralization of the coal has been completed. In the past quarter, the effects of chloride anion on the surface charge properties of the demineralized coal has been studied using calcium or potassium chlorides. Like the compounds investigated previously, increasing anion concentrations produce less negative charge on the coal surface through the interaction of calcium or potassium ions with the surface. To date, Fourier transform infrared studied aimed at an understanding of the interaction between the metal ions (Ca{sup 2+} or {sup K+}) and the coal surface oxygen functionality has not been very informative, most probably due to the high infrared absorption by coal. For this reason, we have procured a resin, Amberlite IRC-50, with carboxylic surface functionality (RCOOH, from Rohm and Haas Company) to be used for metal ion adsorption and the FTIR studies. We hope the similarity between the surface functionality on this resin and coal will provide insight on the mechanism of metal uptake by coal.

  5. The role of catalyst precursor anions in coal gasification. Second quarterly report, January 1, 1992--March 31, 1992

    SciTech Connect

    Abotsi, G.M.K.

    1992-07-01

    The aims of the proposed project are to enrich our understanding of the roles of various aqueous soluble catalyst precursor anions on the surface electrical properties of coal and to ascertain the influence of the surface charge on the adsorption, dispersion, and activities of calcium and potassium. These goals will be achieved by impregnating a lignite and its demineralized derivative with calcium or potassium catalyst precursors containing acetate (CH{sub 3}COO{minus}), chloride (Cl{minus}), nitrate (NO{sub 3}{minus}), sulfate (SO{sub 4}{sup 2{minus}}), and carbonate (CO{sub 3}{sup 2{minus}}) anions. Catalyst loading will be conducted under well-controlled conditions of solution pH and ionic strength.

  6. Supported Oxide Catalysts from Chelating Precursors

    NASA Astrophysics Data System (ADS)

    Prieto-Centurion, Dario

    Supported Fe catalysts and, in particular, Fe and substituted MFI zeolites have attracted industrial and academic attention due to their ability to promote selective catalytic reduction of NOx and selective partial oxidation of hydrocarbons. It is generally accepted that some form of highly dispersed, binuclear or atomically-isolated metal species are involved in the selective processes catalyzed these materials. Several studies have sought to reproduce the structures and reactivity of these substituted zeolites on dierent supports. Given that specialized reagents or preparation conditions that are required in some of these preparation methods, and that multiple surface structures are often formed, this dissertation aimed to develop a route to highly dispersed supported transition metals using commonly available reactants and synthesis routes. Described here is a straightforward and effective procedure to control dispersion and surface speciation of Fe on SiO2 and CeO2 through incipient wetness impregnation (IWI) of the support with aqueous, anionic complexes of Fe3+ and ethylenediaminetetraacetic acid (EDTA) followed by oxidative heat-treatment. On SiO2, this method preferentially creates isolated surface structures up to loading of 0.9 Fe nm-2 if using alkali counter-cations. This isolated species display classic 'single-site' behavior|constant turn over frequency (TOF) with increasing Fe surface density|in the oxidation of adamantane with H 2O2, indicating active sites are equally accessible and equally active within this range of surface density. Additionally, TOF increases linearly with electronegativity of the alkali counter-cation, suggesting electronic promotion. Conversely, IWI of unprotected Fe3+ produces agglomerates less active in this reaction. On CeO2, the sterics and negative charge imparted on Fe 3+ by EDTA4- inhibits incorporation of Fe into surface vacancies. Instead, formation of two-dimensional oligomeric structures which can undergo Fe3+-Fe2

  7. Production of the hydrogen by methane steam reforming over nickel catalysts prepared from hydrotalcite precursors

    NASA Astrophysics Data System (ADS)

    Fonseca, Alessandra; Assaf, Elisabete M.

    Catalysts were prepared from hydrotalcite precursors, characterized and tested in the reaction of methane steam reforming to produce hydrogen. The precursors were synthesized by: the traditional technique, with co-precipitation of Ni, Mg and Al nitrates with carbonate; co-precipitation of Mg and Al nitrates with pre-synthesized nickel chelate and anion-exchange of NO 3- of hydrotalcite with nickel chelate. The oxides were analyzed using atomic absorption spectrophotometry, specific surface area, X-ray diffraction (XRD), temperature programmed reduction (TPR) with H 2, catalytic tests and elemental analysis. The catalytic tests demonstrated high methane conversion, high activity for hydrogen production and high stability during the time of reaction for a molar ratio in the feed H 2O:CH 4 = 2:1.

  8. Anion exchange resins as a source of nitrosamines and nitrosamine precursors.

    PubMed

    Flowers, Riley C; Singer, Philip C

    2013-07-02

    Anion exchange resins are important tools for the removal of harmful anionic contaminants from drinking water, but their use has been linked to the presence of carcinogenic nitrosamines in treated drinking water. In bench-scale batch and column experiments, anion exchange resins from a large, representative group were investigated as sources of the nitrosamines N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), N-nitrosodi-n-propylamine (NDPA), and N-nitrosodi-n-butylamine (NDBA) and their precursors. Several resins were found to release high levels (up to >2000 ng/L, orders of magnitude above drinking water regulatory levels) of nitrosamines upon initial rinsing with lab-grade water, with levels subsiding within 50-100 bed volumes of rinsing. Resins released similarly high levels of nitrosamine precursors, with spikes in precursor release triggered by regeneration of resins with sodium chloride or by interruptions in flow resulting in prolonged contact times. Free chlorine or preformed monochloramine in feedwater led to the production of nitrosamines. Resins released different nitrosamines and precursors depending on their functional groups, with some resins releasing as many as three different nitrosamines and their precursors. These findings have significant implications for the pretreatment and appropriate use of anion exchange resins by drinking water utilities and for the production of anion exchange resins by manufacturers.

  9. Preparation of Tremorine and Gemini Surfactant Precursors with Cationic Ethynyl-Bridged Digold Catalysts.

    PubMed

    Grirrane, Abdessamad; Álvarez, Eleuterio; García, Hermenegildo; Corma, Avelino

    2017-02-24

    Tremorine and precursors of gemini surfactants were synthesised in a one-pot, three-step, double-catalytic A(3) coupling reaction and characterised by structural and spectroscopic methods. The cationic [Au(I) (L1)]SbF6 complex is a more active catalyst compared to neutral L2- and L3-Au(I) bis(trifluoromethanesulfonyl)imidate complexes (L1, L2=Buchwald-type biaryl phosphane; L3=triphenylphosphine) in promoting the double A(3) coupling of ethynyltrimethylsilane, secondary amines (cyclic, aliphatic, or aromatic) and formaldehyde. The solvent influences the catalytic performance by desilylation of silyl acetylene or deactivation of the catalyst by a halide anion. Acetylide-bridged cationic digold(I) L1 and L2 complexes were isolated and characterised by means of single-crystal X-ray structure analysis and their spectroscopic properties. Iodine in the acetylene reagent deactivates the Au(I) catalyst by formation of the less active iodido-bridged cationic digold(I) L1 complex, which was fully characterised by single-crystal X-ray crystal structure analysis and spectroscopy. The nature of the phosphine ligand of the gold complexes used as catalyst affects the stability and activity of the formed cationic ethynyl-bridged Au(I)2 -L intermediates, isolation of which lends support to the proposed double A(3) coupling mechanism.

  10. A high yield reverse micelle synthesis of catalysts and catalyst precursors

    SciTech Connect

    Linehan, J.C.; Matson, D.W.; Darab, J.G.

    1995-12-01

    Water-in-oil (w/o) microemulsions containing high ionic strengths in their aqueous cores have been produced by using a stabilizing co-surfactant. These {open_quotes}modified{close_quotes} w/o microemulsions have proven to be effective media in which to synthesize nanophase metal, metal oxide, metal sulfide, and mixed metal containing powders suitable for use as catalysts or catalyst precursors. Up to 10 grams of nanocrystalline powder can be produced per liter of the modified microemulsion because of the high reactant concentrations that can be attained using these systems. The nanocrystalline powders produced have been characterized by XRD, SEM, and TEM, as well as by other techniques where appropriate.

  11. Transesterification of propylene glycol methyl ether in chromatographic reactors using anion exchange resin as a catalyst.

    PubMed

    Oh, Jungmin; Sreedhar, Balamurali; Donaldson, Megan E; Frank, Timothy C; Schultz, Alfred K; Bommarius, Andreas S; Kawajiri, Yoshiaki

    2016-09-30

    Reactive chromatography using an anion exchange resin is proposed for a transesterification reaction of propylene glycol methyl ether (DOWANOL™ PM) with ethyl acetate to produce propylene glycol methyl ether acetate (DOWANOL™ PMA). This reaction is studied in batch and chromatographic reactors catalyzed by an anion exchange resin. Several anion exchange resins are tested and compared based on the performance of resin as an adsorbent and a catalyst. A chromatographic column is packed with a selected catalyst, AMBERLITE™ IRA904, and both reaction and chromatographic elution are studied at different temperatures and feed concentrations. The resulting chromatograms are fitted to a mathematical model to obtain adsorption equilibrium and reaction kinetic parameters by the inverse method. Compared to esterification investigated in a previous study, transesterification has advantages such as a higher conversion at lower temperature and easy removal of the byproduct which may lead to higher productivity. Deactivation of anion exchange resins is observed and potential solutions are suggested.

  12. Non-platinum group metal oxgyen reduction catalysts and their mechanism in both acid and alkaline media: The effect of the catalyst precursor and the ionomer on oxygen reduction

    NASA Astrophysics Data System (ADS)

    Robson, Michael H.

    Non-platinum catalysts are an attractive strategy for lowering the cost of fuel cells, but much more development is needed in order to replace platinum, especially at the cathode where oxygen is reduced. Research groups worldwide have donated material for a study in which precursor structure to catalyst activity correlations are made. The donated samples have been divided into three classes based on their precursor; macrocyclic chelates, small molecule, and polymeric precursors. The precursor is one activity-dictating factor among many, but it is one of the most influential. It was found that macrocyclic chelates on average produced the most active catalysts, having the highest limiting, diffusion-limited, kinetic, and exchange current densities, as well as the lowest overpotentials and H2O2 production. This suggests that the M-N4 atomic structure of the precursor remains largely static throughout heat treatment, as the M-Nx motif is the accepted active site conformation. The other classes were somewhat less active, but the breadth of precursor materials that range in structure and functionality, as well as low associated costs, make them attractive precursor materials. Careful precursor selection based on this analysis was applied to a new generation of catalyst derived from iron salt and 4-aminoantipyrine. An extensive investigation of the reduction of oxygen on the material performed in both acid and alkaline media, and it was found that reduction follows a two-step pathway. While the peroxide reducing step is also very fast, the first step is so rapid that, even at low active site density, the material is almost as active as platinum if all diffusion limitations are removed. In addition to bottom-up catalyst design, the catalyst:ionomer complex, by which catalyst is incorporated into the membrane electrode assembly, also affects reductive kinetics. A series of novel anionically conductive ionomers have been evaluated using a well-described cyanamide derived

  13. Mechanism-Guided Development of a Highly Active Bis-Thiourea Catalyst for Anion-Abstraction Catalysis.

    PubMed

    Kennedy, C Rose; Lehnherr, Dan; Rajapaksa, Naomi S; Ford, David D; Park, Yongho; Jacobsen, Eric N

    2016-10-05

    We describe the rational design of a linked, bis-thiourea catalyst with enhanced activity relative to monomeric analogs in a representative enantioselective anion-abstraction reaction. Mechanistic insights guide develop-ment of this linking strategy to favor substrate activation though the intramolecular cooperation of two thiourea sub-units while avoiding nonproductive aggregation. The resulting catalyst platform overcomes many of the practical limitations that have plagued hydrogen-bond donor catalysis and enables use of catalyst loadings as low as 0.05 mol %. Computational analyses of possible anion-binding modes provide detailed insight into the precise mechanism of anion-abstraction catalysis with this pseudo-dimeric thiourea.

  14. Thiophene Hydrodesulfurization over Nickel Phosphide Catalysts: Effect of the Precursor Composition and Support

    SciTech Connect

    Sawhill, Stephanie J.; Layman, Kathryn A.; Van Wyk, Daniel R.; Engelhard, Mark H.; Wang, Chong M.; Bussell, Mark E.

    2005-04-25

    Silica- and alumina-supported nickel phosphide (NixPy) catalysts have been prepared, characterized by bulk and surface sensitive techniques, and evaluated for the hydrodesulfurization (HDS) of thiophene. Series of 30 wt% NixPy/SiO2 and 20 wt% NixPy/Al2O3 catalysts were prepared from oxidic precursors having a range of P/Ni molar ratios by temperature programmed reduction (TPR) in flowing H2. Oxidic precursors with molar ratios of P/Ni = 0.8 and 2.0 yielded catalysts containing phase-pure Ni2P on the silica and alumina supports, respectively. At lower P/Ni ratios, significant Ni12P5 impurities were present in the NixPy/SiO2 and NixPy/Al2O3 catalysts as indicated by X-ray diffraction. The HDS activities of the NixPy/SiO2 and NixPy/Al2O3 catalysts depended strongly on the P/Ni molar ratio of the oxidic precursors with optimal activities obtained for catalysts containing phase pure Ni2P and minimal excess P. After 48 h on-stream, a Ni2P/SiO2 catalyst was 20 and 3.3 times more active than sulfided Ni/SiO2 and Ni-Mo/SiO2 catalysts, respectively. A Ni2P/Al2O3 catalyst was 2.7 times more active than a sulfided Ni/Al2O3 catalyst but only about half as active as a Ni-Mo/Al2O3 catalyst.

  15. Fabrication of CdS nanowires with increasing anionic precursor by SILAR method

    NASA Astrophysics Data System (ADS)

    Dariani, R. S.; Salehi, F.

    2016-05-01

    CdS nanowires were fabricated on glass substrate at room temperature by SILAR method with cadmium nitrate cationic and sodium sulfide anionic precursors. The deposition were done at different S:Cd concentration ratios of 1:1, 3:1, 5:1, and 7:1. Nanowires growth procedure was studied in the mentioned concentrations. The number of immersion cycles was kept constant at 15 cycles. EDX analysis showed that in all stoichiometric ratios, S/Cd composition ratio remains at about unity. Our results indicated that S:Cd concentration ratio of 7:1 had the longest nanowires with hexagonal structure. The main objective of this paper was to produce CdS nanowires with increasing concentration of sulfur.

  16. Stable amorphous georgeite as a precursor to a high-activity catalyst

    NASA Astrophysics Data System (ADS)

    Kondrat, Simon A.; Smith, Paul J.; Wells, Peter P.; Chater, Philip A.; Carter, James H.; Morgan, David J.; Fiordaliso, Elisabetta M.; Wagner, Jakob B.; Davies, Thomas E.; Lu, Li; Bartley, Jonathan K.; Taylor, Stuart H.; Spencer, Michael S.; Kiely, Christopher J.; Kelly, Gordon J.; Park, Colin W.; Rosseinsky, Matthew J.; Hutchings, Graham J.

    2016-03-01

    Copper and zinc form an important group of hydroxycarbonate minerals that include zincian malachite, aurichalcite, rosasite and the exceptionally rare and unstable—and hence little known and largely ignored—georgeite. The first three of these minerals are widely used as catalyst precursors for the industrially important methanol-synthesis and low-temperature water-gas shift (LTS) reactions, with the choice of precursor phase strongly influencing the activity of the final catalyst. The preferred phase is usually zincian malachite. This is prepared by a co-precipitation method that involves the transient formation of georgeite; with few exceptions it uses sodium carbonate as the carbonate source, but this also introduces sodium ions—a potential catalyst poison. Here we show that supercritical antisolvent (SAS) precipitation using carbon dioxide (refs 13, 14), a process that exploits the high diffusion rates and solvation power of supercritical carbon dioxide to rapidly expand and supersaturate solutions, can be used to prepare copper/zinc hydroxycarbonate precursors with low sodium content. These include stable georgeite, which we find to be a precursor to highly active methanol-synthesis and superior LTS catalysts. Our findings highlight the value of advanced synthesis methods in accessing unusual mineral phases, and show that there is room for exploring improvements to established industrial catalysts.

  17. Non-precious metal catalysts prepared from precursor comprising cyanamide

    SciTech Connect

    Chung, Hoon Taek; Zelenay, Piotr

    2015-10-27

    Catalyst comprising graphitic carbon and methods of making thereof; said graphitic carbon comprising a metal species, a nitrogen-containing species and a sulfur containing species. A catalyst for oxygen reduction reaction for an alkaline fuel cell was prepared by heating a mixture of cyanamide, carbon black, and a salt selected from an iron sulfate salt and an iron acetate salt at a temperature of from about 700.degree. C. to about 1100.degree. C. under an inert atmosphere. Afterward, the mixture was treated with sulfuric acid at elevated temperature to remove acid soluble components, and the resultant mixture was heated again under an inert atmosphere at the same temperature as the first heat treatment step.

  18. Syntheses of biodiesel precursors: sulfonic acid catalysts for condensation of biomass-derived platform molecules.

    PubMed

    Balakrishnan, Madhesan; Sacia, Eric R; Bell, Alexis T

    2014-04-01

    Synthesis of transportation fuel from lignocellulosic biomass is an attractive solution to the green alternative-energy problem. The production of biodiesel, in particular, involves the process of upgrading biomass-derived small molecules to diesel precursors containing a specific carbon range (C11 -C23). Herein, a carbon-upgrading process utilizing an acid-catalyzed condensation of furanic platform molecules from biomass is described. Various types of sulfonic acid catalysts have been evaluated for this process, including biphasic and solid supported catalysts. A silica-bound alkyl sulfonic acid catalyst has been developed for promoting carbon-carbon bond formation of biomass-derived carbonyl compounds with 2-methylfuran. This hydrophobic solid acid catalyst exhibits activity and selectivity that are comparable to those of a soluble acid catalyst. The catalyst can be readily recovered and recycled, possesses appreciable hydrolytic stability in the presence of water, and retains its acidity over multiple reaction cycles. Application of this catalyst to biomass-derived platform molecules led to the synthesis of a variety of furanic compounds, which are potential biodiesel precursors.

  19. Low-temperature precursors for ceramic oxide catalysts

    SciTech Connect

    Apblett, A.W.; Georgieva, G.D.; Mague, J.T.; Matta, E.J.; Reinhardt, L.E.

    1997-12-31

    Metal complexes of 2-oximinopropionates (M=Ce{sup 3+}, Sm{sup 3+}, Ni{sup 2+}, Fe{sup 2+}) are readily prepared by precipitation reactions of aqueous solutions of the metal salts with sodium 2-oximinopropionate. These complexes decompose at relatively low temperatures (110-164{degrees}C) to afford either carbonates (M=Ni, Sm) or oxides (M=Ce, Fe) as high surface area materials. The cerium and samarium complexes are isostructural and it is therefore possible to prepare a solid solution containing the two lanthanide metals which serves as a precursor for the oxide ion-conductor, Ce{sub 0.80}Sm{sub 0.20}O{sub 1.9}. Similarly, solid solutions of nickel and iron 2-oximinopropionates serves as precursors for nickel ferrite, NiFe{sub 2}O{sub 4}, in an unusual fibrous morphology which may be suitable as a high surface area catalytic support.

  20. Effect of Iron and Cobalt Catalysts on The Growth of Carbon Nanotubes from Palm Oil Precursor

    NASA Astrophysics Data System (ADS)

    Suriani, A. B.; Asli, N. A.; Salina, M.; Mamat, M. H.; Aziz, A. A.; Falina, A. N.; Maryam, M.; Shamsudin, M. S.; Nor, Roslan Md; Abdullah, S.; Rusop, M.

    2013-06-01

    Catalysts which are typically a transition metal is mandatory and plays an important role in the production of CNT. In this work, the effect of iron (Fe) and cobalt (Co) nitrate catalyst on the growth of carbon nanotubes (CNT) were systematically studied. Green bio-hydrocarbon precursor namely palm oil was used as a precursor. The synthesis was done using thermal chemical vapour deposition method at temperature of 750°C for 15 min synthesis time. The Fe and Co solution were spin-coated separately on silicon substrate at speed of 3000 rev.min-1. The CNT characteristics were analyzed using field emission scanning electron microscopy and micro-Raman spectroscopy. The experimental results revealed that CNT properties were strongly affected by the catalyst type. CNT catalyzed by Co yields large diameter, crooked tube and lower quality, whereas CNT produced by Fe catalyst results in the smallest diameter and reasonably good graphitization. As a conclusion, Fe was considered as the optimum catalyst for better CNT structure and crystallinity. This was due to efficient, uniform and stable Fe catalytic activity as compared to Co catalyst in producing CNT.

  1. Thermal Decomposition of Bulk K-CoMoSx Mixed Alcohol Catalyst Precursors and Effects on Catalyst Morphology and Performance

    SciTech Connect

    Menart, M. J.; Hensley, J. E.; Costelow, K. E.

    2012-09-26

    Cobalt molybdenum sulfide-type mixed alcohol catalysts were synthesized via calcination of precipitated bulk sulfides and studied with temperature programmed decomposition analysis. Precursors containing aqueous potassium were also considered. Precipitates thermally decomposed in unique events which released ammonia, carbon dioxide, and sulfur. Higher temperature treatments led to more crystalline and less active catalysts in general with ethanol productivity falling from 203 to 97 g (kg cat){sup -1} h{sup -1} when the calcination temperature was increased from 375 to 500 C. The addition of potassium to the precursor led to materials with crystalline potassium sulfides and good catalytic performance. In general, less potassium was required to promote alcohol selectivity when added before calcination. At calcination temperatures above 350 C, segregated cobalt sulfides were observed, suggesting that thermally decomposed sulfide precursors may contain a mixture of molybdenum and cobalt sulfides instead of a dispersed CoMoS type of material. When dimethyl disulfide was fed to the precursor during calcination, crystalline cobalt sulfides were not detected, suggesting an important role of free sulfur during decomposition.

  2. Anodic Deposition of a Robust Iridium-Based Water-Oxidation Catalyst from Organometallic Precursors

    SciTech Connect

    Blakemore, James D; Schley, Nathan D; Olack, G.; Incarvito, Christopher D; Brudvig, Gary W; Crabtree, Robert H

    2011-01-01

    Artificial photosynthesis, modeled on natural light-driven oxidation of water in Photosystem II, holds promise as a sustainable source of reducing equivalents for producing fuels. Few robust water-oxidation catalysts capable of mediating this difficult four-electron, four-proton reaction have yet been described. We report a new method for generating an amorphous electrodeposited material, principally consisting of iridium and oxygen, which is a robust and long-lived catalyst for water oxidation, when driven electrochemically. The catalyst material is generated by a simple anodic deposition from Cp*Ir aqua or hydroxo complexes in aqueous solution. This work suggests that organometallic precursors may be useful in electrodeposition of inorganic heterogeneous catalysts.

  3. Sodium salts of anionic chiral cobalt(III) complexes as catalysts of the enantioselective Povarov reaction.

    PubMed

    Yu, Jie; Jiang, Hua-Jie; Zhou, Ya; Luo, Shi-Wei; Gong, Liu-Zhu

    2015-09-14

    The sodium salts of anionic chiral cobalt(III) complexes (CCC(-) Na(+) ) have been found to be efficient catalysts of the asymmetric Povarov reaction of easily accessible dienophiles, such as 2,3-dihydrofuran, ethyl vinyl ether, and an N-protected 2,3-dihydropyrrole, with 2-azadienes. Ring-fused tetrahydroquinolines with up to three contiguous stereogenic centers were thus obtained in high yields, excellent diastereoselectivities (endo/exo up to >20:1), and high enantioselectivities (up to 95:5 e.r.).

  4. Lanthanide amidinates and guanidinates: from laboratory curiosities to efficient homogeneous catalysts and precursors for rare-earth oxide thin films.

    PubMed

    Edelmann, Frank T

    2009-08-01

    For decades, the organometallic chemistry of the rare earth elements was largely dominated by the cyclopentadienyl ligand and its ring-substituted derivatives. A hot topic in current organolanthanide chemistry is the search for alternative ligand sets which are able to satisfy the coordination requirements of the large lanthanide cations. Among the most successful approaches in this field is the use of amidinate ligands of the general type [RC(NR')(2)](-) (R = H, alkyl, aryl; R' = alkyl, cycloalkyl, aryl, SiMe(3)) which can be regarded as steric cyclopentadienyl equivalents. Closely related are the guanidinate anions of the general type [R(2)NC(NR')(2)](-) (R = alkyl, SiMe(3); R' = alkyl, cycloalkyl, aryl, SiMe(3)). Two amidinate or guanidinate ligands can coordinate to a lanthanide ion to form a metallocene-like coordination environment which allows the isolation and characterization of stable though very reactive amide, alkyl, and hydride species. Mono- and trisubstituted lanthanide amidinate and guanidinate complexes are also readily available. Various rare earth amidinates and guanidinates have turned out to be very efficient homogeneous catalysts e.g. for ring-opening polymerization reactions. Moreover, certain alkyl-substituted lanthanide tris(amidinates) and tris(guanidinates) were found to be highly volatile and could thus be promising precursors for ALD (= Atomic Layer Deposition) and MOCVD (= Metal-Organic Chemical Vapor Deposition) processes in materials science and nanotechnology. This tutorial review covers the success story of lanthanide amidinates and guanidinates and their transition from mere laboratory curiosities to efficient homogeneous catalysts as well as ALD and MOCVD precursors.

  5. Synthesis of silicon carbide nanorods by catalyst-assisted pyrolysis of polymeric precursor

    NASA Astrophysics Data System (ADS)

    Yang, Weiyou; Miao, Hezhuo; Xie, Zhipeng; Zhang, Ligong; An, Linan

    2004-01-01

    In this Letter, we report the synthesis of β-SiC nanorods by the pyrolysis of a polysilazane polymeric precursor in the presence of 3 wt% FeCl 2 as a catalyst. The precursor is completely converted to the nanorods after heat-treated at 1700 °C for 2 h, accompanied by ˜50% weight loss. Electron microscopy study reveals that the nanorods preferentially grow along [1 1 1] direction; and the diameters of the nanorods range from 80 to 200 nm and lengths are ˜4 μm. A solid-liquid-solid growth mechanism is proposed.

  6. A high yield reverse micelle synthesis of catalysts and catalyst precursors

    SciTech Connect

    Linehan, J.C.; Matson, D.W.; Darab, J.G.; Fulton, J.L.

    1995-04-01

    Reverse micelles or water-in-oil microemulsions have been prepared using a mixed AOT/SDS surfactant to increase the stability of the microemulsion and thereby allow a high loading of particle-forming precursors in the aqueous cores. The Modified Reverse Micelles (MRM), as these new binary surfactant microemulsions are called, have proven useful for the laboratory-scale synthesis of nanoscale metals, metal oxides, metal sulfides, and mixed metal materials. The system allows control over the phase and size of the precipitated crystallites and is ideal for producing nanocrystalline powders and suspensions.

  7. Evaluation of tungsten hexachloride as a ROMP active catalyst precursor for self-healing polymers

    NASA Astrophysics Data System (ADS)

    Kamphaus, Jason M.

    recrystallized catalyst loadings of 10 wt% with 15 wt% microcapsules. In fatigue, the benefits of the self-healing system becomes more evident. An in situ sample containing 10 wt% recrystallized catalyst and 15 wt% microcapsules showed no crack growth after 2.5 million cycles, and in fact exhibited a regression of the initial precrack. A drawback to current catalysts used in self-healing materials is the relatively low temperatures at which they deactivate. An advantage of WCl 6 is that the high melting temperature (Tm=275°C) allows for the use of the catalyst in higher temperature applications. Typical polymer and fiber reinforced plastic processing temperatures are 121 and 177°C. The ability of WCl6 catalyst to withstand these processing temperatures was probed. Several thermal analysis techniques were used to evaluate the activity of WCl6 after high temperature exposure. At both 121 and 177°C in an inert environment, the WCl6 retained sufficient activity for use as a ROMP precursor for self-healing applications. Mechanical evaluation through fracture experiments showed healing efficiencies as high as 92% if the processing and testing environment was carefully controlled.

  8. Study of NiMoS mixed phase from catalyst precursors in residue slurry-bed hydrocracking

    NASA Astrophysics Data System (ADS)

    Du, Juntao; Deng, Wenan; Li, Chuan; Zhang, Zailong; Sun, Qiang; Cao, Xiangpeng; Yang, Tengfei

    2017-03-01

    The evolution and role of NiMoS structures from catalyst precursors on residue hydrocracking was investigated. NiMoS mixed phase played important roles in unsupported catalyst and heavy oil development, such as synergy effect and coke inhibiting. The oil-soluble molybdenum naphthenate and nickel naphthenate were chosen as catalyst precursors. The mixtures of the precursor were compared to those of other monometallic oil-soluble precursor in an effort to evaluate the evolution and role of NiMoS phase in the slurry bed hydrocracking of heavy oil. The presence of NiMoS phase were characterized by X-ray diffraction (XRD), TEM and XPS. The series of tests in the slurry-phase reactor was to confirm the synergy effect of NiMoS mixed phase.

  9. A Molecular Precursor to Phosphaethyne and Its Application in Synthesis of the Aromatic 1,2,3,4-Phosphatriazolate Anion

    SciTech Connect

    Transue, Wesley J.; Velian, Alexandra; Nava, Matthew; Martin-Drumel, Marie-Aline; Womack, Caroline C.; Jiang, Jun; Hou, Gao-Lei; Wang, Xue-Bin; McCarthy, Michael C.; Field, Robert W.; Cummins, Christopher C.

    2016-06-01

    Dibenzo-7-phosphanorbornadiene Ph3PC(H)PA (1, A = C14H10, anthracene) is reported as a molecular precursor to phosphaethyne (HC≡P), produced together with anthracene and triphenylphosphine. HCP generated by thermolysis of 1 has been characterized by molecular beam mass spectrometry (MBMS), laser-induced fluorescence (LIF), microwave spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. In toluene, fragmentation of 1 has been found to proceed with activation parameters of ΔH = 25.5 kcal/mol and ΔS = ₋2.43 e.u., and is accompanied by formation of an orange insoluble precipitate. Results from computational studies of the mechanism of HCP generation are in good agreement with experimental data. This high temperature method of HCP generation has pointed to new reaction chemistry with azide anion to produce the 1,2,3,4-phosphatriazolate anion, HCPN3- , for which structural data have been obtained in a single-crystal Xray diffraction study. Negative ion photoelectron spectroscopy has shown the adiabatic detachment energy for this anion to be 3.555(10) eV. The aromaticity of HCPN3- has been assessed using nucleus-independent chemical shift (NICS), quantum theory of atoms in molecules (QTAIM), and natural bond orbital (NBO) methods.

  10. A Molecular Precursor to Phosphaethyne and Its Application in Synthesis of the Aromatic 1,2,3,4-Phosphatriazolate Anion.

    PubMed

    Transue, Wesley J; Velian, Alexandra; Nava, Matthew; Martin-Drumel, Marie-Aline; Womack, Caroline C; Jiang, Jun; Hou, Gao-Lei; Wang, Xue-Bin; McCarthy, Michael C; Field, Robert W; Cummins, Christopher C

    2016-06-01

    Dibenzo-7-phosphanorbornadiene Ph3PC(H)PA (1, A = C14H10, anthracene) is reported here as a molecular precursor to phosphaethyne (HC≡P), produced together with anthracene and triphenylphosphine. HCP generated by thermolysis of 1 has been observed by molecular beam mass spectrometry, laser-induced fluorescence, microwave spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. In toluene, fragmentation of 1 has been found to proceed with activation parameters of ΔH(⧧) = 25.5 kcal/mol and ΔS(⧧) = -2.43 eu and is accompanied by formation of an orange insoluble precipitate. Results from computational studies of the mechanism of HCP generation are in good agreement with experimental data. This high-temperature method of HCP generation has pointed to new reaction chemistry with azide anion to produce the 1,2,3,4-phosphatriazolate anion, HCPN3(-), for which structural data have been obtained in a single-crystal X-ray diffraction study. Negative-ion photoelectron spectroscopy has shown the adiabatic detachment energy for this anion to be 3.555(10) eV. The aromaticity of HCPN3(-) has been assessed using nucleus-independent chemical shift, quantum theory of atoms in molecules, and natural bond orbital methods.

  11. Copper complexes as catalyst precursors in the electrochemical hydrogen evolution reaction.

    PubMed

    Kügler, Merle; Scholz, Julius; Kronz, Andreas; Siewert, Inke

    2016-04-28

    Herein, we report the synthesis and species distribution of copper(ii) complexes based on two different ligand scaffolds and the application of the two complexes in the electrochemical proton reduction catalysis. The ligands bind to one or two copper(II) ions and the pH-dependent mono/dinuclear equilibrium depends on the steric bulk of the ligands. The two water soluble copper(II) complexes were investigated for their activities in the electrochemical hydrogen evolution reaction (HER). In both complexes the copper(ii) ions have a N4-coordination environment composed of N-heterocycles, although in different coordination geometries (SPY-5 and TBPY-5). The solutions of the complexes were highly active catalysts in water at acidic pH but the complexes decompose under catalytic conditions. They act as precursors for highly active copper(0) and Cu2O deposits at the electrode surface, which are in turn the active catalysts. The absence or presence of the ligands has neither an influence on the catalytic activity of the solutions nor an influence on the activity of the deposit formed during controlled potential electrolysis. Finally, we can draw some conclusions on the stability of copper catalysts in the aqueous electrochemical HER.

  12. Molecular Mixed-Metal Manganese Oxido Cubanes as Precursors to Heterogeneous Oxygen Evolution Catalysts.

    PubMed

    Suseno, Sandy; McCrory, Charles C L; Tran, Rosalie; Gul, Sheraz; Yano, Junko; Agapie, Theodor

    2015-09-14

    Well-defined mixed-metal [CoMn3 O4 ] and [NiMn3 O4 ] cubane complexes were synthesized and used as precursors for heterogeneous oxygen evolution reaction (OER) electrocatalysts. The discrete clusters were dropcasted onto glassy carbon (GC) and indium tin oxide (ITO) electrodes, and the OER activities of the resulting films were evaluated. The catalytic surfaces were analyzed by various techniques to gain insight into the structure-function relationships of the electrocatalysts' heterometallic composition. Depending on preparation conditions, the Co-Mn oxide was found to change metal composition during catalysis, while the Ni-Mn oxides maintained the NiMn3 ratio. XAS studies provided structural insights indicating that the electrocatalysts are different from the molecular precursors, but that the original NiMn3 O4 cubane-like geometry was maintained in the absence of thermal treatment (2-Ni). In contrast, the thermally generated 3-Ni develops an oxide-like extended structure. Both 2-Ni and 3-Ni undergo structural changes upon electrolysis, but they do not convert into the same material. The observed structural motifs in these heterogeneous electrocatalysts are reminiscent of the biological oxygen-evolving complex in Photosystem II, including the MMn3 O4 cubane moiety. The reported studies demonstrate the use of discrete heterometallic oxide clusters as precursors for heterogeneous water oxidation catalysts of novel composition and the distinct behavior of two sets of mixed metal oxides.

  13. Enhanced photodegradation of pentachlorophenol by single and mixed nonionic and anionic surfactants using graphene-TiO₂ as catalyst.

    PubMed

    Zhang, Yaxin; He, Xin; Zeng, Guangming; Chen, Tan; Zhou, Zeyu; Wang, Hongtao; Lu, Wenjing

    2015-11-01

    The photodegradation of pentachlorophenol (PCP) in a surfactant-containing (single and mixed) complex system using graphene-TiO2 (GT) as catalyst was investigated. The objective was to better understand the behavior of surfactants in a GT catalysis system for its possible use in remediation technology of soil contaminated by hydrophobic organic compounds (HOCs). In a single-surfactant system, surfactant molecules aggregated on GT via hydrogen bonding and electrostatic force; nonideal mixing between nonionic and anionic surfactants rendered GT surface with mixed admicelles in a mixed surfactant system. Both effects helped incorporating PCP molecules into surfactant aggregates on catalyst surface. Hence, the targeted pollutants were rendered easily available to photo-yielded oxidative radicals, and photodegradation efficiency was significantly enhanced. Finally, real soil washing-photocatalysis trials proved that anionic-nonionic mixed surfactant soil washing coupled with graphene-TiO2 photocatalysis can be one promising technology for HOC-polluted soil remediation.

  14. Particle size, precursor, and support effects in the hydrogenolysis of alkanes over supported rhodium catalysts

    SciTech Connect

    Coq, B.; Dutartre, R.; Figueras, F.; Tazi, T. )

    1990-04-01

    A series of Rh catalysts of widely varying dispersion has been prepared using {gamma}-alumina as support and Rh acetylacetonate (Rh(acac){sub 3}) as precursor. The hydrogenolyses of n-hexane (nH), methylcyclopentane (MCP), and 2,2,3,3-tetramethylbutane (TeMB) were investigated as model reactions. Clear dependence of turnover frequency on Rh particle size is observed for nH and MCP hydrogenolysis, but only slight changes of selectivities occur with these alkanes. By contrast, large modifications of both specific activity and selectivity appear when TeMB is reacted. TeMB hydrogenolysis is thus a reliable tool for studying modifications of the surface structure of rhodium particles. This probe was used to investigate the effects of precursor and support on rhodium catalysts. The effect of chlorine is appreciable and shifts the selectivity of TeMB hydrogenolysis toward that of large particles. This is attributed to a different morphology of the rhodium particles. When the effect of dispersion of the metal is taken into account, no support effect is observed when SiO{sub 2} or ZrO{sub 2} is used as support. The different properties of rhodium on MgO can also be attributed to a different morphology of the particles. For Rh/TiO{sub 2} prepared from RhCl{sub 3} {center dot} 3H{sub 2}O, the catalytic properties are similar to those of Rh/Al{sub 2}O{sub 3} of moderate dispersion whatever temperature is used for reduction. Rh/TiO{sub 2} prepared from Rh(acac){sub 3} and reduced at 573 and 773 K simulates the catalytic properties of particles smaller than indeed observed. This effect can be interpreted by a partial coverage of the Rh surface by TiO{sub x} species (SMSI). This SMSI effect disappears upon reduction at 873 K.

  15. A Facile Molecular Precursor Route to Metal Phosphide Nanoparticles and Their Evaluation as Hydrodeoxygenation Catalysts

    SciTech Connect

    Habas, Susan E.; Baddour, Frederick G.; Ruddy, Daniel A.; Nash, Connor P.; Wang, Jun; Pan, Ming; Hensley, Jesse E.; Schaidle, Joshua A.

    2015-11-05

    Metal phosphides have been identified as a promising class of materials for the catalytic upgrading of bio-oils, which are renewable and potentially inexpensive sources for liquid fuels. Herein, we report the facile synthesis of a series of solid, phase-pure metal phosphide nanoparticles (NPs) (Ni2P, Rh2P, and Pd3P) utilizing commercially available, air-stable metal–phosphine complexes in a one-pot reaction. This single-source molecular precursor route provides an alternative method to access metal phosphide NPs with controlled phases and without the formation of metal NP intermediates that can lead to hollow particles. The formation of the Ni2P NPs was shown to proceed through an amorphous Ni–P intermediate, leading to the desired NP morphology and metal-rich phase. This low-temperature, rapid route to well-defined metal NPs is expected to have broad applicability to a variety of readily available or easily synthesized metal–phosphine complexes with high decomposition temperatures. Hydrodeoxygenation of acetic acid, an abundant bio-oil component, was performed to investigate H2 activation and deoxygenation pathways under conditions that are relevant to ex situ catalytic fast pyrolysis (high temperatures, low pressures, and near-stoichiometric H2 concentrations). The catalytic performance of the silica-supported metal phosphide NPs was compared to the analogous incipient wetness (IW) metal and metal phosphide catalysts over the range 200–500 °C. Decarbonylation was the primary pathway for H2 incorporation in the presence of all of the catalysts except NP-Pd3P, which exhibited minimal productive activity, and IW-Ni, which evolved H2. The highly controlled NP-Ni2P and NP-Rh2P catalysts, which were stable under these conditions, behaved comparably to the IW-metal phosphides, with a slight shift to higher product onset temperatures, likely due to the presence of

  16. A Facile Molecular Precursor Route to Metal Phosphide Nanoparticles and Their Evaluation as Hydrodeoxygenation Catalysts

    DOE PAGES

    Habas, Susan E.; Baddour, Frederick G.; Ruddy, Daniel A.; ...

    2015-11-05

    Metal phosphides have been identified as a promising class of materials for the catalytic upgrading of bio-oils, which are renewable and potentially inexpensive sources for liquid fuels. Herein, we report the facile synthesis of a series of solid, phase-pure metal phosphide nanoparticles (NPs) (Ni2P, Rh2P, and Pd3P) utilizing commercially available, air-stable metal–phosphine complexes in a one-pot reaction. This single-source molecular precursor route provides an alternative method to access metal phosphide NPs with controlled phases and without the formation of metal NP intermediates that can lead to hollow particles. The formation of the Ni2P NPs was shown to proceed through anmore » amorphous Ni–P intermediate, leading to the desired NP morphology and metal-rich phase. This low-temperature, rapid route to well-defined metal NPs is expected to have broad applicability to a variety of readily available or easily synthesized metal–phosphine complexes with high decomposition temperatures. Hydrodeoxygenation of acetic acid, an abundant bio-oil component, was performed to investigate H2 activation and deoxygenation pathways under conditions that are relevant to ex situ catalytic fast pyrolysis (high temperatures, low pressures, and near-stoichiometric H2 concentrations). The catalytic performance of the silica-supported metal phosphide NPs was compared to the analogous incipient wetness (IW) metal and metal phosphide catalysts over the range 200–500 °C. Decarbonylation was the primary pathway for H2 incorporation in the presence of all of the catalysts except NP-Pd3P, which exhibited minimal productive activity, and IW-Ni, which evolved H2. The highly controlled NP-Ni2P and NP-Rh2P catalysts, which were stable under these conditions, behaved comparably to the IW-metal phosphides, with a slight shift to higher product onset temperatures, likely due to the presence of surface ligands. Most importantly, the NP-Ni2P catalyst exhibited H2 activation and

  17. The role of carbon precursor on carbon nanotube chirality in floating catalyst chemical vapour deposition.

    PubMed

    Barnard, J S; Paukner, C; Koziol, K K

    2016-10-06

    We have studied the influence of different carbon precursors (methane, ethanol and toluene) on the type, diameter and chiral angle distributions of carbon nanotubes (CNTs) grown with the floating catalyst technique in a horizontal gas-flow reactor. Using electron diffraction to study their atomic structures, we found that ethanol and toluene precursors gave high single-wall CNT yields (92% and 89% respectively), with narrow diameter distributions: 1.1 nm to 1.7 nm (ethanol); 1.3 nm to 2.1 nm (toluene), with a propensity for armchair-type chiral angles. In contrast, methane-grown CNTs gave high double-wall CNT yields (75%) with broader diameter populations: 1.2 to 4.6 nm (inner CNT) and 2.2 to 5.3 nm (outer CNT) with a more uniform spread of chiral angles, but weakly peaked around 15 to 20 degrees. These observations agree with known growth models. However, double-wall CNTs grown with toluene showed an unusually narrow interlayer spacing of 0.286 ± 0.003 nm with suggestions of large, 20° to 25°, differences between inner and outer CNT chiral angles. Methane gave a large interlayer spacing (0.385 ± 0.002 nm) with suggestions of small 5° to 10° inter-tube chirality correlations.

  18. Nanostructured manganese oxides as highly active water oxidation catalysts: a boost from manganese precursor chemistry.

    PubMed

    Menezes, Prashanth W; Indra, Arindam; Littlewood, Patrick; Schwarze, Michael; Göbel, Caren; Schomäcker, Reinhard; Driess, Matthias

    2014-08-01

    We present a facile synthesis of bioinspired manganese oxides for chemical and photocatalytic water oxidation, starting from a reliable and versatile manganese(II) oxalate single-source precursor (SSP) accessible through an inverse micellar molecular approach. Strikingly, thermal decomposition of the latter precursor in various environments (air, nitrogen, and vacuum) led to the three different mineral phases of bixbyite (Mn2 O3 ), hausmannite (Mn3 O4 ), and manganosite (MnO). Initial chemical water oxidation experiments using ceric ammonium nitrate (CAN) gave the maximum catalytic activity for Mn2 O3 and MnO whereas Mn3 O4 had a limited activity. The substantial increase in the catalytic activity of MnO in chemical water oxidation was demonstrated by the fact that a phase transformation occurs at the surface from nanocrystalline MnO into an amorphous MnOx (1catalysts has been proposed by determining the amount of accessible manganese centers.

  19. Partial oxidation of methane to synthesis gas using LnCoO{sub 3} perovskites as catalyst precursors

    SciTech Connect

    Lago, R.; Pena, M.A.; Fierro, J.L.G.

    1997-04-01

    In this work, a series of cobalt-containing perovskites LnCoO{sub 3} (Ln = La, Pr, Nd, Sm, and Gd) has been studied as catalyst precursors for the partial oxidation of methane to synthesis gas. All the perovskite precursors were prereduced in situ, producing cobalt metal finely dispersed over the rare earth sesquioxide support described here as Ln-Co-O. Of the catalyst tested, the system Gd-Co-O showed exceptionally better performance for CO and H{sub 2} production (with methane conversion of 73% and selectivities of 79 and 81% for CO and H{sub 2}, respectively, at 1009 K). The production of synthesis gas over the other catalysts decreased in the following order: Sm-Co-O {much_gt} Nd-Co-O > Pr-Co-O. The catalyst La-Co-O was active for methane combustion and only traces of CO and H{sub 2} were observed under the reaction conditions. Based on results obtained here, it is proposed that the deactivation of the catalysts Ln-Co-O by reoxidation of cobalt metal is related to the thermodynamic stability of the parent perovskite structure. The authors also present evidence that hydroxyl groups on the rare earth oxide, specially in the La-Co-O system, might make some contribution to the reoxidation of cobalt metal during the reaction via a reverse spillover process. 48 refs., 12 figs., 2 tabs.

  20. Electrochemical and fuel cell evaluation of Co based catalyst for oxygen reduction in anion exchange polymer membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Mamlouk, M.; Kumar, S. M. Senthil; Gouerec, Pascal; Scott, Keith

    Co based catalyst were evaluated for oxygen reduction (ORR) in liquid KOH and alkaline anion exchange membrane fuel cells (AAEMFCs). In liquid KOH solution the catalyst exhibited good performance with an onset potential 120 mV more negative than platinum and a Tafel slope of ca. 120 mV dec -1. The hydrogen peroxide generated, increased from 5 to 50% as the electrode potential decreased from 175 to -300 mV vs. SHE. In an AAEMFC environment, one catalyst (GP2) showed promising performance for ORR, i.e. at 50 mA cm -2 the differences in cell potential between the stable performance for platinum (more positive) and cobalt cathodes with air and oxygen, were only 45 and 67 mV respectively. The second catalyst (GP4) achieved the same stable power density as with platinum, of 200 and 145 mW cm -2, with air at 1 bar (gauge) pressure and air (atm) cathode feed (60 °C), respectively. However the efficiency was lower (i.e. cell voltage was lower) i.e. 40% in comparison to platinum 47.5%.

  1. A chromium precursor for the Phillips ethylene trimerization catalyst: (2-ethylhexanoate)2CrOH.

    PubMed

    Jeon, Jong Yeob; Park, Dong Sik; Lee, Dong Hwan; Eo, Seong Chan; Park, Seong Yeon; Jeong, Myoung Sun; Kang, Yi Young; Lee, Junseong; Lee, Bun Yeoul

    2015-06-28

    The conventional Phillips ethylene trimerization catalyst prepared by reacting Cr(EH)3 (EH = 2-ethylhexanoate), 2,5-dimethylpyrrole (Me2C4H2NH), Et3Al, and Et2AlCl in an aromatic hydrocarbon solvent was improved to obtain a congener composed of a new chromium precursor (EH)2CrOH, (Me2C4H2N)AlEt2, and Et3Al·ClAlEt2. Reaction of CrCl3 with 3 equiv. Na(EH) in water did not generate Cr(EH)3, but unexpectedly produced (EH)2CrOH. In comparison with the erratic catalytic performance of the original Phillips system, due to the ill-defined nature of the Cr(EH)3 source (16 or 6.8 × 10(6) g per mol-Cr h depending on the source), the improved system exhibited consistently high activity (54 × 10(6) g per mol-Cr h). Reaction of (EH)2CrOH with (Me2C4H2N)AlMe2·OEt2 afforded the dimeric Cr(II)-complex (6) coordinated by (η(5)-Me2C4H2N)AlMe2(NC4H2Me2) and μ2-κ(1):η(2)-Me2C4H2N ligands. 6 provided highly active species when activated with Et3Al·ClAlEt2.

  2. Anionic liposome template synthesis of raspberry-like hollow silica particle under ambient conditions with basic catalyst.

    PubMed

    Ishii, Haruyuki; Sato, Kumi; Nagao, Daisuke; Konno, Mikio

    2012-04-01

    Hollow silica particle was obtained with a vesicle template synthesis in water under ambient conditions in the presence of ammonia. Biomimetic vesicles, liposomes were used, which consisted of a zwitterionic phospholipid, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and a tiny amount of charged amphiphiles, hexadecylamine (HDA) or dicetylphosphate (DCP). Aggregation of silica occurred for DPPC or cationic DPPC/HDA liposome, whereas well-dispersed hollow silica particle could be obtained for anionic DPPC/DCP liposome. The hollow particle synthesized with the anionic liposome had single-layered and raspberry-like structures. Electrostatic repulsion between anionic vesicles maintained stable dispersion of the as-synthesized particles during the reaction. Formation of the raspberry-like morphology is explained by silica particle precipitation selectively induced around the liposomes under basic conditions due to affinity of silica precursors for the liposomes. Synthesis of well-dispersed hollow silica particle with a raspberry-like morphology is the first report in vesicle template syntheses.

  3. Engineering Favorable Morphology and Structure of Fe-N-C Oxygen-Reduction Catalysts through Tuning of Nitrogen/Carbon Precursors.

    PubMed

    Gupta, Shiva; Zhao, Shuai; Ogoke, Ogechi; Lin, Ye; Xu, Hui; Wu, Gang

    2017-02-22

    Structures and morphologies of Fe-N-C catalysts are believed to be crucial because of the number of active sites and local bonding structures governing the overall catalyst performance for the oxygen reduction reaction (ORR). However, the knowledge how to rationally design catalysts is still lacking. By combining different nitrogen/carbon precursors, including polyaniline (PANI), dicyandiamide (DCDA), and melamine (MLMN), we aim to tune catalyst morphology and structure to facilitate the ORR. Instead of the commonly studied single precursors, multiple precursors were used during the synthesis; this provides a new opportunity to promote catalyst activity and stability through a likely synergistic effect. The best-performing Fe-N-C catalyst derived from PANI+DCDA is superior to the individual PANI or DCDA-derived ones. In particular, when compared to the extensively explored PANI-derived catalysts, the binary precursors have an increased half-wave potential of 0.83 V and an enhanced electrochemical stability in challenging acidic media, indicating a significantly increased number of active sites and strengthened local bonding structures. Multiple key factors associated with the observed promotion are elucidated, including the optimal pore size distribution, highest electrochemically active surface area, presence of dominant amorphous carbon, and thick graphitic carbon layers with more pyridinic nitrogen edge sites likely bonded with active atomic iron.

  4. Nickel-carbon nanocomposites prepared using castor oil as precursor: A novel catalyst for ethanol steam reforming

    NASA Astrophysics Data System (ADS)

    Carreño, Neftalí L. V.; Garcia, Irene T. S.; Raubach, Cristiane W.; Krolow, Mateus; Santos, Cláudia C. G.; Probst, Luiz F. D.; Fajardo, Humberto V.

    A novel and simple method to prepare nickel-based catalysts for ethanol steam reforming is proposed. The present method was developed using castor oil as a precursor. The results clarify that the nickel-carbon (Ni/C) catalyst has a high activity for ethanol steam reforming. It was observed that the catalytic behavior could be modified according to the experimental conditions employed. Moreover, it is interesting to note that the increase in the catalytic activity of the Ni/C nanocomposite over time, at 500 and 600 °C of reaction temperature, may be associated with the formation of filamentous carbon. The preliminary results indicate that the novel methodology used, led to the obtainment of materials with important properties that can be extended to applications in different catalytic process.

  5. Effects of different manganese precursors as promoters on catalytic performance of CuO-MnOx/TiO2 catalysts for NO removal by CO.

    PubMed

    Sun, Chuanzhi; Tang, Yingjie; Gao, Fei; Sun, Jingfang; Ma, Kaili; Tang, Changjin; Dong, Lin

    2015-06-28

    Two different precursors, manganese nitrate (MN) and manganese acetate (MA), were employed to prepare two series of catalysts, i.e., xCuyMn(N)/TiO2 and xCuyMn(A)/TiO2, by a co-impregnation method. The catalysts were characterized by XRD, LRS, CO-TPR, XPS and EPR spectroscopy. The results suggest that: (1) both xCuyMn(N)/TiO2 and xCuyMn(A)/TiO2 catalysts exhibit much higher catalytic activities than an unmodified Cu/TiO2 catalyst in the NO + CO reaction. Furthermore, the activities of catalysts modified with the same amount of manganese are closely dependent on manganese precursors. (2) The enhancement of activities for Mn-modified catalysts should be attributed to the formation of the surface synergetic oxygen vacancy (SSOV) Cu(+)-□-Mn(y+) in the reaction process. Moreover, since the formation of the SSOV (Cu(+)-□-Mn(3+)) in the xCuyMn(N)/TiO2 catalyst is easier than that (Cu(+)-□-Mn(2+)) in the xCuyMn(A)/TiO2 catalyst, the activity of the xCuyMn(N)/TiO2 catalyst is higher than that of the xCuyMn(A)/TiO2 catalyst. This conclusion is well supported by the XPS and EPR results.

  6. Influence of the metal precursor on the catalytic behavior of Pt/ceria catalysts in the preferential oxidation of CO in the presence of H₂ (PROX).

    PubMed

    Jardim, Erika O; Rico-Francés, Soledad; Coloma, Fernando; Anderson, James A; Silvestre-Albero, Joaquín; Sepúlveda-Escribano, Antonio

    2015-04-01

    The effect of the metal precursor (presence or absence of chlorine) on the preferential oxidation of CO in the presence of H2 over Pt/CeO2 catalysts has been studied. The catalysts are prepared using (Pt(NH3)4)(NO3)2 and H2PtCl6, as precursors, in order to ascertain the effect of the chlorine species on the chemical properties of the support and on the catalytic behavior of these systems in the PROX reaction. The results show that chloride species exert an important effect on the redox properties of the oxide support due to surface chlorination. Consequently, the chlorinated catalyst exhibits a poorer catalytic activity at low temperatures compared with the chlorine-free catalyst, and this is accompanied by a higher selectivity to CO2 even at high reaction temperatures. It is proposed that the CO oxidation mechanism follows different pathways on each catalyst.

  7. A novel semiconductor compatible path for nano-graphene synthesis using CBr4 precursor and Ga catalyst

    PubMed Central

    Wang, S. M.; Gong, Q.; Li, Y. Y.; Cao, C. F.; Zhou, H. F.; Yan, J. Y.; Liu, Q. B.; Zhang, L. Y.; Ding, G. Q.; Di, Z. F.; Xie, X. M.

    2014-01-01

    We propose a novel semiconductor compatible path for nano-graphene synthesis using precursors containing C-Br bonding and liquid catalyst. The unique combination of CBr4 as precursor and Ga as catalyst leads to efficient C precipitation at a synthesis temperature of 200°C or lower. The non-wetting nature of liquid Ga on tested substrates limits nano-scale graphene to form on Ga droplets and substrate surfaces at low synthesis temperatures of T ≤ 450°C and at droplet/substrate interfaces by C diffusion via droplet edges when T ≥ 400°C. Good quality interface nano-graphene is demonstrated and the quality can be further improved by optimization of synthesis conditions and proper selection of substrate type and orientation. The proposed method provides a scalable and transfer-free route to synthesize graphene/semiconductor heterostructures, graphene quantum dots as well as patterned graphene nano-structures at a medium temperature range of 400–700°C suitable for most important elementary and compound semiconductors. PMID:24722194

  8. Salt anions promote the conversion of HypF-N into amyloid-like oligomers and modulate the structure of the oligomers and the monomeric precursor state.

    PubMed

    Campioni, Silvia; Mannini, Benedetta; López-Alonso, Jorge P; Shalova, Irina N; Penco, Amanda; Mulvihill, Estefania; Laurents, Douglas V; Relini, Annalisa; Chiti, Fabrizio

    2012-12-07

    An understanding of the solution factors contributing to the rate of aggregation of a protein into amyloid oligomers, to the modulation of the conformational state populated prior to aggregation and to the structure/morphology of the resulting oligomers is one of the goals of present research in this field. We have studied the influence of six different salts on the conversion of the N-terminal domain of Escherichiacoli HypF (HypF-N) into amyloid-like oligomers under conditions of acidic pH. Our results show that salts having different anions (NaCl, NaClO(4), NaI, Na(2)SO(4)) accelerate oligomerization with an efficacy that follows the electroselectivity series of the anions (SO(4)(2-)≥ ClO(4)(-)>I(-)>Cl(-)). By contrast, salts with different cations (NaCl, LiCl, KCl) have similar effects. We also investigated the effect of salts on the structure of the final and initial states of HypF-N aggregation. The electroselectivity series does not apply to the effect of anions on the structure of the oligomers. By contrast, it applies to their effect on the content of secondary structure and on the exposure of hydrophobic clusters of the monomeric precursor state. The results therefore indicate that the binding of anions to the positively charged residues of HypF-N at low pH is the mechanism by which salts modulate the rate of oligomerization and the structure of the monomeric precursor state but not the structure of the resulting oligomers. Overall, the data contribute to rationalize the effect of salts on amyloid-like oligomer formation and to explain the role of charged biological macromolecules in protein aggregation processes.

  9. Ionic Attachment as a Feasible Approach to Heterogenizing Anionic Solution Catalysts. The Carbonylation of Methanol,

    DTIC Science & Technology

    1980-08-01

    at19 8 a d2060cm - i n (16) 1988 and CH3COOH ). However, isolation of the yellow catalyst derived from RhCl33H30 in excess CO and iodide resulted in an...CH30H ! (no Dowex) I (P) 0.390 0.31(HI) 90 15 30ml CH3COOH 20ml CH30H 5.00g BioRex 9(CI form) 9 (H) filtrate from 0.31(HI) 180 0 30ml CH3COOH run 3...lO0m]. CH30H +7.Og sieves(2lmmole H) 15 0.28 0.01l(an Dowex beads) 24 0 60rn] CH3COOH 60m1 CH30H 42m1 H20 4.00g Dowex (iodo form) 16 0.190 0.013(on

  10. The acrylation of glycerol over solid base catalysts: A precursor to functionalized lipids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transesterification of lipids using lipases is a common strategy used to incorporate novel acids into triacylglycerides. This approach, however, is limited to acids with pKa’s similar to common fatty acids. To overcome this limitation, we have used heterogeneous basic catalysts for the synthesis o...

  11. Crystallization of an amorphous B-C-N precursor with a Li-B-N catalyst at high pressures and temperatures

    SciTech Connect

    Li Dongxu; Yu Dongli; Wang Peng; Li Yingmei; He Julong; Xu Bo; Liu Zhongyuan; Tian Yongjun

    2009-11-15

    An orthorhombic B-C-N compound was synthesized using an amorphous B-C-N precursor and a Li-B-N catalyst at 6 GPa and 1773 K. The results of energy dispersive spectrometry and electronic energy loss spectrometry suggest a stoichiometry of B:C:N = 1:3.3:1. In addition, the Li-B-N catalyst improves the crystallizations of the B-C-N compound, graphite and BN and therefore might be a profitable catalyst in ultrahigh pressure experiments.

  12. Influence of the nature of the catalyst precursor on the carbon deposition characteristics during ethylene decomposition over copper-cobalt

    SciTech Connect

    Chambers, A.; Baker, R.T.K.

    1996-01-01

    In the present study the authors have monitored the conversion of ethylene to filamentous carbon during interaction with copper-cobalt bimetallics prepared from both nitrate and chloride precursors in an attempt to determine any possible changes in the catalytic activity induced by the halide. The key steps involved in the formation of this type of carbon are as follows: (a) dissociative chemisorption of the hydrocarbon molecule at a certain set of faces of the metal particle, (b) diffusion of carbon species produced during the decomposition reaction, through the catalyst particle, and (c) precipitation of solid carbon at other metal faces to create a fibrous structure. It is generally accepted that carbon diffusion through the metal particle is the rate-controlling step in the growth process. 20 refs., 4 figs., 1 tab.

  13. Unveiling N-protonation and anion-binding effects on Fe/N/C-catalysts for O2 reduction in PEM fuel cells

    PubMed Central

    Herranz, Juan; Jaouen, Frédéric; Lefèvre, Michel; Kramm, Ulrike I.; Proietti, Eric; Dodelet, Jean-Pol; Bogdanoff, Peter; Fiechter, Sebastian; Abs-Wurmbach, Irmgard; Bertrand, Patrick; Arruda, Thomas M.; Mukerjee, Sanjeev

    2013-01-01

    The high cost of proton-exchange-membrane fuel cells would be considerably reduced if platinumbased catalysts were replaced by iron-based substitutes, which have recently demonstrated comparable activity for oxygen reduction, but whose cause of activity decay in acidic medium has been elusive. Here, we reveal that the activity of Fe/N/C-catalysts prepared through a pyrolysis in NH3 is mostly imparted by acid-resistant FeN4-sites whose turnover frequency for the O2 reduction can be regulated by fine chemical changes of the catalyst surface. We show that surface N-groups protonate at pH 1 and subsequently bind anions. This results in decreased activity for the O2 reduction. The anions can be removed chemically or thermally, which restores the activity of acid-resistant FeN4-sites. These results are interpreted as an increased turnover frequency of FeN4-sites when specific surface N-groups protonate. These unprecedented findings provide new perspective for stabilizing the most active Fe/N/C-catalysts known to date. PMID:24179561

  14. Performance of supported catalysts based on a new copper vanadate-type precursor for catalytic oxidation of toluene.

    PubMed

    Palacio, L A; Silva, E R; Catalão, R; Silva, J M; Hoyos, D A; Ribeiro, F R; Ribeiro, M F

    2008-05-01

    A new copper vanadate precursor with the formula NH(4)[Cu(2.5)V(2)O(7)(OH)(2)] . H(2)O was synthesized and deposited on two different supports, ZSM-5 and amorphous SiO(2), by a hydrothermal method or by mechanical mixture. The catalytic behaviour was evaluated in the total oxidation of toluene and the characterization was performed by H(2)-temperature-programmed reduction (H(2)-TPR), thermogravimetric analysis, elemental analysis, UV-vis diffuse reflectance spectroscopy and X-ray diffraction. It was found that the copper vanadate phase comprises two mixed oxides, one of them crystalline, the Ziesite phase, and the other one amorphous. The supported catalysts presented a content of copper vanadate phase of about 9-11 wt.%. The copper vanadate deposited on ZSM-5 by the hydrothermal method evidences the best performance in the oxidation of toluene. This behaviour can be associated with the smaller size and higher dispersion of the particles on the support, which was confirmed by their better reducibility and higher band gap energy value compared with the other series of studied catalysts.

  15. Selenium-containing organic nanoparticles as silent precursors for ultra-sensitive thiol-responsive transmembrane anion transport

    NASA Astrophysics Data System (ADS)

    Lang, Chao; Zhang, Xin; Dong, Zeyuan; Luo, Quan; Qiao, Shanpeng; Huang, Zupeng; Fan, Xiaotong; Xu, Jiayun; Liu, Junqiu

    2016-01-01

    An anion transporter with a selenoxide group was able to form nanoparticles in water, whose activity was fully turned off due to the aggregation effect. The formed nanoparticles have a uniform size and can be readily dispersed in water at high concentrations. Turn-on of the nanoparticles by reducing molecules is proposed to be a combined process, including the reduction of selenoxide to selenide, disassembly of the nanoparticles and location of the transporter to the lipid membrane. Accordingly, a special acceleration phase can be observed in the turn-on kinetic curves. Since turn-on of the nanoparticles is quantitatively related to the amount of reductant, the nanoparticles can be activated in a step-by-step manner. Due to the sensibility of this system to thiols, cysteine can be detected at low nanomolar concentrations. This ultra-sensitive thiol-responsive transmembrane anion transport system is quite promising in biological applications.An anion transporter with a selenoxide group was able to form nanoparticles in water, whose activity was fully turned off due to the aggregation effect. The formed nanoparticles have a uniform size and can be readily dispersed in water at high concentrations. Turn-on of the nanoparticles by reducing molecules is proposed to be a combined process, including the reduction of selenoxide to selenide, disassembly of the nanoparticles and location of the transporter to the lipid membrane. Accordingly, a special acceleration phase can be observed in the turn-on kinetic curves. Since turn-on of the nanoparticles is quantitatively related to the amount of reductant, the nanoparticles can be activated in a step-by-step manner. Due to the sensibility of this system to thiols, cysteine can be detected at low nanomolar concentrations. This ultra-sensitive thiol-responsive transmembrane anion transport system is quite promising in biological applications. Electronic supplementary information (ESI) available: Synthetic procedure and

  16. Enhanced nanoscale catalyst precursor powders generated using a flow-through hydrothermal process

    SciTech Connect

    Darab, J.G.; Linehan, J.C.; Matson, D.W.

    1994-08-01

    A novel flow-through hydrothermal process, termed the Rapid Thermal Decomposition of precursors in Solution (RTDS), has been used to generate large quantities of ultra-fine, nano-crystalline hematite ({alpha}-Fe{sub 2}O{sub 3}), 6-line ferrihydrite (5Fe{sub 2}O{sub 3}{center_dot}9H{sub 2}O) and ferric oxyhydroxysulfate powders. The heterogeneous catalytic activity of these powders towards C-C bond scission in the model compound naphthyl bibenzylmethane and in the first-stage liquefaction of Blind Canyon seam coal was investigated. The effects of the crystalline phase and the agglomerate size of these powders on their catalytic activity are reported.

  17. Microwave-hydrothermal synthesis and characterization of nanostructured copper substituted ZnM2O4 (M = Al, Ga) spinels as precursors for thermally stable Cu catalysts.

    PubMed

    Conrad, Franziska; Massue, Cyriac; Kühl, Stefanie; Kunkes, Edward; Girgsdies, Frank; Kasatkin, Igor; Zhang, Bingsen; Friedrich, Matthias; Luo, Yuan; Armbrüster, Marc; Patzke, Greta R; Behrens, Malte

    2012-03-21

    Nanostructured Cu(x)Zn(1-x)Al(2)O(4) with a Cu:Zn ratio of ¼:¾ has been prepared by a microwave-assisted hydrothermal synthesis at 150 °C and used as a precursor for Cu/ZnO/Al(2)O(3)-based catalysts. The spinel nanoparticles exhibit an average size of approximately 5 nm and a high specific surface area (above 250 m(2) g(-1)). Cu nanoparticles of an average size of 3.3 nm can be formed by reduction of the spinel precursor in hydrogen and the accessible metallic Cu(0) surface area of the reduced catalyst was 8 m(2) g(-1). The catalytic performance of the material in CO(2) hydrogenation and methanol steam reforming was compared with conventionally prepared Cu/ZnO/Al(2)O(3) reference catalysts. The observed lower performance of the spinel-based samples is attributed to a lack of synergetic interaction of the Cu nanoparticles with ZnO due to the incorporation of Zn(2+) in the stable spinel lattice. Despite its lower performance, however, the nanostructured nature of the spinel catalyst was stable after thermal treatment up to 500 °C in contrast to other Cu-based catalysts. Furthermore, a large fraction of the re-oxidized copper migrates back into the spinel upon calcination of the reduced catalyst, thereby enabling a regeneration of sintered catalysts after prolonged usage at high temperatures. Similarly prepared samples with Ga instead of Al exhibit a more crystalline catalyst with a spinel particle size around 20 nm. The slightly decreased Cu(0) surface area of 3.2 m(2) g(-1) due to less copper incorporation is not a significant drawback for the methanol steam reforming.

  18. Imidazolium-Based Poly(Ionic Liquid)s Featuring Acetate Counter Anions: Thermally Latent and Recyclable Precursors of Polymer-Supported N-Heterocyclic Carbenes for Organocatalysis.

    PubMed

    Lambert, Romain; Coupillaud, Paul; Wirotius, Anne-Laure; Vignolle, Joan; Taton, Daniel

    2016-07-01

    Statistical copoly(ionic liquid)s (coPILs), namely, poly(styrene)-co-poly(4-vinylbenzylethylimidazolium acetate) are synthesized by free-radical copolymerization in methanolic solution. These coPILs serve to in situ generate polymer-supported N-heterocyclic carbenes (NHCs), referred to as polyNHCs, due to the noninnocent role of the weakly basic acetate counter-anion interacting with the proton in C2-position of pendant imidazolium rings. Formation of polyNHCs is first evidenced through the quantitative formation of NHC-CS2 units by chemical postmodification of acetate-containing coPILs, in the presence of CS2 as electrophilic reagent (= stoichiometric functionalization of polyNHCs). The same coPILs are also employed as masked precursors of polyNHCs in organocatalyzed reactions, including a one-pot two-step sequential reaction involving benzoin condensation followed by addition of methyl acrylate, cyanosilylation, and transesterification reactions. The catalytic activity can be switched on and off successively upon thermal activation, thanks to the deprotonation/reprotonation equilibrium in C2-position. NHC species are thus in situ released upon heating at 80 °C (deprotonation), while regeneration of the coPIL precursor occurs at room temperature (reprotonation), triggering its precipitation in tetrahydrofuran. This also allows recycling the coPIL precatalyst by simple filtration, and reusing it for further catalytic cycles. The different organocatalyzed reactions tested can thus be performed with excellent yields after several cycles.

  19. Self-assembled 3D-hierarchical structure Cu2ZnSnS4 photocathodes by tuning anion ratios in precursor solution

    NASA Astrophysics Data System (ADS)

    Wen, Xin; Luo, Wenjun; Guan, Zhongjie; Shao, Hansen; Fu, Gao; Zhou, Yong; Zou, Zhigang

    2016-03-01

    Cu2ZnSnS4 (CZTS) is one of the most promising light capture materials for solar cells or solar fuels. Construction of 3D hierarchical structure is very important for efficient optoelectronic devices. It is challenging to directly fabricate 3D hierarchical structure CZTS film by a facile solution method. Herein, we present a one-step sol-gel method for fabrication of CZTS thin films with 3D hierarchical structures. For the first time, it is found that the morphologies of thin films can be adjusted between dense, porous and 3D hierarchical structures by tuning anion ratios of Cl-/Ac- in precursor solution. Further analysis suggests the formation of intermediate phases of SnO2 nanoparticles and SnS2 nanosheets by tuning ratios of Cl-/Ac- in precursor solution, which has important effects on the formation of different nanostructures of CZTS. This study can deepen understanding of anion’ effect on morphologies of samples using a solution method and forms a reference to prepare novel nanostructures of other materials.

  20. Dry reforming of methane on Ni-Mg-Al nano-spheroid oxide catalysts prepared by the sol-gel method from hydrotalcite-like precursors

    NASA Astrophysics Data System (ADS)

    González, Albert R.; Asencios, Yvan J. O.; Assaf, Elisabete M.; Assaf, José M.

    2013-09-01

    Nanocapsular hydrotalcites (layered double hydroxides - LDHs) were synthesized by the sol-gel method and used as precursors of nano-structured mixed oxides containing various nickel loads (4, 15 and 19 wt%). The best conditions for the preparation of LDHs were analyzed and the structures of the resulting mixed oxides were studied. The optimal nickel load and calcining conditions were optimized. Finally, the resulting catalysts were tested in the dry reforming of methane for 8 h at 800 °C under atmospheric pressure. These materials showed high activity and stability, and the coke deposits were minimal on the catalyst prepared under optimal conditions (19 wt% nickel load and thermal treatment at 650 °C). The best catalyst formed amorphous carbon, which seems not to be prejudicial to the reaction.

  1. Mulliken Hush elucidation of the encounter (precursor) complex in intermolecular electron transfer via self-exchange of tetracyanoethylene anion-radical

    NASA Astrophysics Data System (ADS)

    Rosokha, S. V.; Newton, M. D.; Head-Gordon, M.; Kochi, J. K.

    2006-05-01

    The paramagnetic [1:1] encounter complex (TCNE)2-rad is established as the important precursor in the kinetics and mechanism of electron-transfer for the self-exchange between tetracyanoethylene acceptor ( TCNE) and its radical-anion as the donor. Spectroscopic observation of the dimeric complex (TCNE)2-rad by its intervalence absorption band at the solvent-dependent wavelength of λIV ˜ 1500 nm facilitates the application of Mulliken-Hush theory which reveals the significant electronic interaction extant between the pair of cofacial TCNE moieties with the sizable coupling of HDA = 1000 cm -1. The transient existence of such an encounter complex provides the critical link in the electron-transfer kinetics by lowering the classical Marcus reorganization barrier by the amount of HDA in this strongly adiabatic system. Ab initio quantum-mechanical methods as applied to independent theoretical computations of both the reorganization energy ( λ) and the electronic coupling element ( HDA) confirm the essential correctness of the Mulliken-Hush formalism for fast electron transfer via strongly coupled donor/acceptor encounter complexes.

  2. Surface properties of the Ni-silica gel catalyst precursors for the vegetable oil hydrogenation process: N2 sorption and XPS studies

    NASA Astrophysics Data System (ADS)

    Nikolova, D.; Krstić, J.; Spasov, L.; Simeonov, D.; Lončarević, D.; Stefanov, Pl.; Jovanović, D.

    2011-12-01

    The effect of the type of the silica gel pore structure on the surface properties of the Ni-silica gel catalyst precursors for the vegetable oil hydrogenation process has been examined applying N2 sorption and X-ray photoelectron spectroscopy techniques. The nickel catalyst precursors with identical composition (SiO2/Ni = 1.0) has been synthesized by precipitation of Ni(NO3)2 · 6H2O solution with Na2CO3 solution on the three types of silica gel with different pore structures. It is shown that the usage of the silica gel supports with different texture as source of SiO2 causes different location of Ni-species into the support pores and on the external surface area. The XPS data confirm the formation of surface species with different strength of interaction and different dispersion. These surface characteristics of the precursors will predetermine the formation of the active nickel metallic phase as well as the mass transfer of the reactants and products to and from the catalytic sites.

  3. Continuous-Flow O-Alkylation of Biobased Derivatives with Dialkyl Carbonates in the Presence of Magnesium-Aluminium Hydrotalcites as Catalyst Precursors.

    PubMed

    Cattelan, Lisa; Perosa, Alvise; Riello, Piero; Maschmeyer, Thomas; Selva, Maurizio

    2017-01-31

    The base-catalysed reactions of OH-bearing biobased derivatives (BBDs) including glycerol formal, solketal, glycerol carbonate, furfuryl alcohol and tetrahydrofurfuryl alcohol with non-toxic dialkyl carbonates (dimethyl and diethyl carbonate) were explored under continuous-flow (CF) conditions in the presence of three Na-exchanged Y- and X-faujasites (FAUs) and four Mg-Al hydrotalcites (HTs). Compared to previous etherification protocols mediated by dialkyl carbonates, the reported procedure offers substantial improvements not only in terms of (chemo)selectivity but also for the recyclability of the catalysts, workup, ease of product purification and, importantly, process intensification. Characterisation studies proved that both HT30 and KW2000 hydrotalcites acted as catalyst precursors: during the thermal activation pre-treatments, the typical lamellar structure of the hydrotalcite was broken down gradually into a MgO-like phase (periclase) or rather a magnesia-alumina solid solution, which was the genuine catalytic phase.

  4. A Pd/C-CeO2 Anode Catalyst for High-Performance Platinum-Free Anion Exchange Membrane Fuel Cells.

    PubMed

    Miller, Hamish A; Lavacchi, Alessandro; Vizza, Francesco; Marelli, Marcello; Di Benedetto, Francesco; D'Acapito, Francesco; Paska, Yair; Page, Miles; Dekel, Dario R

    2016-05-10

    One of the biggest obstacles to the dissemination of fuel cells is their cost, a large part of which is due to platinum (Pt) electrocatalysts. Complete removal of Pt is a difficult if not impossible task for proton exchange membrane fuel cells (PEM-FCs). The anion exchange membrane fuel cell (AEM-FC) has long been proposed as a solution as non-Pt metals may be employed. Despite this, few examples of Pt-free AEM-FCs have been demonstrated with modest power output. The main obstacle preventing the realization of a high power density Pt-free AEM-FC is sluggish hydrogen oxidation (HOR) kinetics of the anode catalyst. Here we describe a Pt-free AEM-FC that employs a mixed carbon-CeO2 supported palladium (Pd) anode catalyst that exhibits enhanced kinetics for the HOR. AEM-FC tests run on dry H2 and pure air show peak power densities of more than 500 mW cm(-2) .

  5. Anions in Cometary Comae

    NASA Technical Reports Server (NTRS)

    Charnley, Steven B.

    2011-01-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions 0-, OH-, C-, CH- and CN- have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu (Chaizy et al. 1991). Organic molecular anions are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been explored. We present details of the first attempt to model the chemistry of anions in cometary comae. Based on the combined chemical and hydro dynamical model of Rodgers & Charnley (2002), we investigate the role of large carbon-chain anions in cometary coma chemistry. We calculate the effects of these anions on coma thermodynamics, charge balance and examine their impact on molecule formation.

  6. A Polyoxoniobate-Polyoxovanadate Double-Anion Catalyst for Simultaneous Oxidative and Hydrolytic Decontamination of Chemical Warfare Agent Simulants.

    PubMed

    Dong, Jing; Hu, Jufang; Chi, Yingnan; Lin, Zhengguo; Zou, Bo; Yang, Song; Hill, Craig L; Hu, Changwen

    2017-03-21

    A novel double-anion complex, H13 [(CH3 )4 N]12 [PNb12 O40 (V(V) O)2 ⋅(V(IV)4 O12 )2 ]⋅22 H2 O (1), based on bicapped polyoxoniobate and tetranuclear polyoxovanadate was synthesized, characterized by routine techniques and used in the catalytic decontamination of chemical warfare agents. Under mild conditions, 1 catalyzes both hydrolysis of the nerve agent simulant, diethyl cyanophosphonate (DECP) and selective oxidation of the sulfur mustard simulant, 2-chloroethyl ethyl sulfide (CEES). In the oxidative decontamination system 100 % CEES was transformed selectively to nontoxic 2-chloroethyl ethyl sulfoxide and vinyl ethyl sulfoxide using nearly stoichiometric 3 % aqueous H2 O2 with a turnover frequency (TOF) of 16 000 h(-1) . Importantly, the catalytic activity is maintained even after ten recycles and CEES is completely decontaminated in 3 mins without formation of the highly toxic sulfone by-product. A three-step oxidative mechanism is proposed.

  7. Hydrothermally synthesised Fe2O3 nanoparticles as catalyst precursors for the CVD production of graphitic nanofibres

    NASA Astrophysics Data System (ADS)

    Edwards, H. K.; Evans, E.; McCaldin, S.; Blood, P.; Gregory, D. H.; Poliakoff, M.; Lester, E.; Walker, G. S.; Brown, P. D.

    2006-02-01

    Graphitic nanofibres (GNFs) have been grown by chemical vapour deposition at 500°C and 700°C, using 6 nm and 20 nm particles of Fe2O3 produced by supercritical water hydrothermal synthesis (scWHS). The morphologies of catalyst and GNFs have been examined using the combined techniques of conventional transmission electron microscopy, high resolution electron microscopy, selected area electron diffraction and powder X-ray diffraction. GNF production varied from well ordered nanofibres with an average diameter of 100 nm, to very large, disordered fibres with diameters ranging from 500 nm to ~2 µm. Larger fibres were found to have a compound structure composed of discreet domains of graphite and multiwall nanotubes. 20 nm particles produced by scWHS were associated with significant increases in the yield of GNFs as compared with traditional catalyst precipitation routes.

  8. Characterization and reactivity of nanoscale La(Co,Cu)O 3 perovskite catalyst precursors for CO hydrogenation

    NASA Astrophysics Data System (ADS)

    Tien-Thao, Nguyen; Alamdari, Houshang; Kaliaguine, Serge

    2008-08-01

    The characterization of La(Co,Cu)O 3 perovskites has been performed by several techniques including XRD, BET, H 2-TPR, O 2-TPO, TPRS, and the solids tested as catalysts for the hydrogenation of CO. The reducibility of the perovskites is strongly affected by the preparation route, calcination temperature, catalyst morphology, and the amount of remnant alkali. Compared with the citrate-derived perovskite, LaCoO 3 sample prepared by mechano-synthesis has various distinct Co 3+ ions in perovskite lattice, which are reduced at different temperatures. Under typical conditions, the reduction of cobalt ions occurs in two consecutive steps: Co 3+/Co 2+ and Co 2+/Co 0, while the intra-lattice copper ions are directly reduced from Cu 2+ to Cu 0. The reducibility of cobalt ions is promoted by the presence of metallic copper, which is formed at a lower reduction temperature. The re-oxidation of the reduced lanthanum cobaltite perovskite could regenerate the original structure, whereas that of the reduced Co-Cu-based samples is less reversible under the same experimental conditions. The cobalt atom in the reduced perovskites plays an important role in the dissociation of CO, but the presence of a neighboring copper along with remnant sodium ions on the catalyst surface has remarkably affected the reactivity of cobalt for CO hydrogenation. The addition of copper into the perovskite framework leads to a change in the product distribution of CO hydrogenation and a decrease in reaction temperature. An increased copper content leads to a substantial decline in the rate of methanation and an increase in the formation of higher alcohols. A close proximity between cobalt and copper sites on the Na +-modified catalyst surface of the reduced nanocrystalline Co-Cu-based perovskites plays a crucial role in the synthesis of higher alcohols from syngas.

  9. Development of a simple method for the preparation of novel egg-shell type Pt catalysts using hollow silica nanostructures as supporting precursors

    SciTech Connect

    Wang Jiexin; Chen Jianfeng

    2008-04-01

    A simple method for the preparation of novel egg-shell type platinum catalysts was developed and achieved by utilizing unique hollow silica nanostructures, i.e., hollow silica nanospheres and nanotubes, as supports. The observation by transmission electron microscopy indicated that the well-dispersed hollow silica supported Pt catalysts with a Pt particle diameter of 8-14 nm can be successfully prepared by wet impregnation process and heat treatment. The Pt-loaded hollow silica nanostructures were also characterized by inductively coupled plasma, X-ray diffraction, specific surface area, Fourier transformation infrared spectroscopy, X-ray photoelectron spectroscopy and energy dispersive spectroscopy. It was thus demonstrated that a higher Pt loading amount (0.392%) could be obtained under the same conditions except the addition of ammonia, which was found to be more effective than that (0.061%) with the addition of HCl in the immobilization of Pt. In addition, the effect of soaking time, Pt precursor concentration and calcination temperature on the loading of Pt in hollow silica nanostructures were investigated as well.

  10. Surface Modified Coals for Enhanced Catalyst Dispersion and Liquefaction

    SciTech Connect

    Yaw D. Yeboah

    1998-12-04

    The aim of this study is to enhance catalyst loading and dispersion in coal for improved liquefaction by preadsorption of surfactants and catalysts on to the coal. During this reporting period, the effects of dodecyl dimethyl ethyl ammonium bromide (DDAB) (a cationic surfactant), sodium dodecyl sulfate (SDS) (an anionic surfactant), Triton X-100 (a neutral surfactant), and ferrous sulfate (as a catalyst precursor) on the coal surface charge at various pH values were determined. The results of the zeta potential measurements suggest that ferrous sulfate as catalyst precursor creates a distinctly different condition on the coal surface compared to that of molybdenum as reported in the previous progress reports. The effects of the adsorption of the surfactants also varied distinctly with the type of surfactant. With the adsorption of DDAB, the cationic surfactant, the surface charge was more positive. The opposite effect was observed for the SDS, the anionic surfactant. The coals treated with Triton X-100, the neutral surfactant, also showed an overall negative surface charge density. The adsorption of the catalyst precursor (ferrous sulfate) resulted in a net negative charge on the coal surface.

  11. Exploring Pd adsorption, diffusion, permeation, and nucleation on bilayer SiO2/Ru as a function of hydroxylation and precursor environment: From UHV to catalyst preparation

    NASA Astrophysics Data System (ADS)

    Pomp, Sascha; Kaden, William E.; Sterrer, Martin; Freund, Hans-Joachim

    2016-10-01

    The hydroxylation-dependent permeability of bilayer SiO2 supported on Ru(0001) was investigated by XPS and TDS studies in a temperature range of 100 K to 600 K. For this, the thermal behavior of Pd evaporated at 100 K, which results in surface and sub-surface (Ru-supported) binding arrangements, was examined relative to the extent of pre-hydroxylation. Samples containing only defect-mediated hydroxyls showed no effect on Pd diffusion through the film at low temperature. If, instead, the concentration of strongly bound hydroxyl groups and associated weakly bound water molecules was enriched by an electron-assisted hydroxylation procedure, the probability for Pd diffusion through the film is decreased via a pore-blocking mechanism. Above room temperature, all samples showed similar behavior, reflective of particle nucleation above the film and eventual agglomeration with any metal atoms initially binding beneath the film. When depositing Pd onto the same SiO2/Ru model support via adsorption of [Pd(NH3)4]Cl2 from alkaline (pH 12) precursor solution, we observe notably different adsorption and nucleation mechanisms. The resultant Pd adsorption complexes follow established decomposition pathways to produce model catalyst systems compatible with those created exclusively within UHV despite lacking the ability to penetrate the film due to the increased size of the initial Pd precursor groups.

  12. Effect of the support and the reduction temperature on the formation of metallic nickel phase in Ni/silica gel precursors of vegetable oil hydrogenation catalysts

    NASA Astrophysics Data System (ADS)

    Gabrovska, M.; Krstić, J.; Tzvetkov, P.; Tenchev, K.; Shopska, M.; Vukelić, N.; Jovanović, D.

    2011-12-01

    Ni/SiO2 materials with identical composition (SiO2/Ni = 1.0) have been synthesized by precipitation of Ni(NO3)2 · 6H2O solution with Na2CO3 solution on the silica gel, obtained at three different pH values. The present investigation was undertaken in an endeavor to study the effects of the silica gel support type and the reduction temperature on the formation and dispersion of the metallic nickel phase in the reduced Ni/SiO2 precursors of the vegetable oil hydrogenation catalyst. The physicochemical characterization of the unreduced and reduced precursors has been accomplished appropriately by powder X-ray diffraction, infrared spectroscopy, temperature programmed reduction and H2-chemisorption techniques. It can be stated that the texture peculiarities of the silica gels used as supports influence on the crystalline state and distribution of the deposited Ni-containing phases during the preparation of the precursors, on the reduction temperature of the investigated solids as well as on the bulk size and surface dispersion of the arising metallic nickel particles. It was shown that two types of Ni2+-species are formed during the synthesis procedure, namely basic nickel carbonate-like and Ni-phyllosilicate with different extent of presence, location and strength of interaction. The different location of these species is supposed to result in various strength of Ni-O and Ni-O-Si interaction, thus determining the overall reducibility of the precursors. It was specified that the Ni2+-species are strongly bonded to the surface of the silica gel obtained at neutral pH value and weakly bonded to the surface of those prepared in acidic and alkaline conditions. It was established that the precursor, derivates from the silica gel obtained at alkaline conditions, demonstrates both significant reduction of the Ni2+ ions at 430°C and finely dispersed metallic nickel particles on its surface. High dispersion of the metallic nickel might be the crucial reason for achieving of

  13. Kinetics of NiO and NiCl2 Hydrogen Reduction as Precursors and Properties of Produced Ni/Al2O3 and Ni-Pd/Al2O3 Catalysts

    PubMed Central

    Sokić, Miroslav; Kamberović, Željko; Nikolić, Vesna; Marković, Branislav; Korać, Marija; Anđić, Zoran; Gavrilovski, Milorad

    2015-01-01

    The objects of this investigation were the comparative kinetic analysis of the NiO and NiCl2 reduction by hydrogen during an induction period and elimination of the calcination during the synthesis of Ni/Al2O3 catalysts. The effect of temperature and time on NiO and NiCl2 reduction degrees was studied. Avrami I equation was selected as the most favorable kinetic model and used to determine activation energy of the NiO and NiCl2 reduction for the investigated temperature range (623–923 K) and time intervals (1–5 minutes). The investigation enabled reaching conclusions about the reaction ability and rate of the reduction processes. Afterward, Ni/Al2O3 catalysts were obtained by using oxide and chloride precursor for Ni. The catalysts were supported on alumina-based foam and prepared via aerosol route. Properties of the samples before and after low-temperature hydrogen reduction (633 K) were compared. Obtained results indicated that the synthesis of Ni/Al2O3 catalysts can be more efficient if chloride precursor for Ni is directly reduced by hydrogen during the synthesis process, without the calcination step. In addition, Ni-Pd/Al2O3 catalysts with different metal content were prepared by using chloride precursors. Lower reduction temperature was utilized and the chlorides were almost completely reduced at 533 K. PMID:25789335

  14. Three-way catalytic performance of Pd/Ce0.67Zr0.33O2-Al2O3 catalysts: Role of the different Pd precursors

    NASA Astrophysics Data System (ADS)

    Lin, Siyu; Yang, Xue; Yang, Linyan; Zhou, Renxian

    2015-02-01

    Catalytic performance of Pd/Ce0.67Zr0.33O2-Al2O3 catalysts for CO, HC and NOx elimination is greatly influenced by Pd precursors. Pd/CZA(Cl) catalyst prepared with H2PdCl4 as precursor exhibits a good catalytic performance for HC and NO conversion. PdOx species are mainly dispersed on Al2O3 surface with larger PdOx particle size and higher electron density. Residual Cl species in the catalyst could be removed and PdOx species would migrate to (Ce,Zr)xO2-rich gain surface after aging treatment, promoting catalyst thermal stability. While Pd/CZA(NO) and Pd/CZA(NH) catalysts prepared with Pd(NO3)2 or Pd(NH3)4(NO3)2 as precursor promote CO oxidation at low temperature. PdOx species are mainly dispersed on (Ce,Zr)xO2-rich gain surface with smaller Pd particle size and strong Pd-support interaction. Surface chemistry under reaction conditions is revealed by in situ DRIFTS studies. PdOx species dispersed on Al2O3 surface in Pd/CZA(Cl) could be partly reduced during reaction, promoting NO adsorption and dissociation. CO is more easily adsorbed than NO on metallic Pd sites dispersed in (Ce,Zr)xO2-rich gain surface, inhibiting NO conversion for Pd/CZA(NO) and Pd/CZA(NH).

  15. Colloidal nickel/gallium nanoalloys obtained from organometallic precursors in conventional organic solvents and in ionic liquids: noble-metal-free alkyne semihydrogenation catalysts

    NASA Astrophysics Data System (ADS)

    Schütte, Kai; Doddi, Adinarayana; Kroll, Clarissa; Meyer, Hajo; Wiktor, Christian; Gemel, Christian; van Tendeloo, Gustaaf; Fischer, Roland A.; Janiak, Christoph

    2014-04-01

    Efforts to replace noble-metal catalysts by low-cost alternatives are of constant interest. The organometallic, non-aqueous wet-chemical synthesis of various hitherto unknown nanocrystalline Ni/Ga intermetallic materials and the use of NiGa for the selective semihydrogenation of alkynes to alkenes are reported. Thermal co-hydrogenolysis of the all-hydrocarbon precursors [Ni(COD)2] (COD = 1,5-cyclooctadiene) and GaCp* (Cp* = pentamethylcyclopentadienyl) in high-boiling organic solvents mesitylene and n-decane in molar ratios of 1 : 1, 2 : 3 and 3 : 1 yields the nano-crystalline powder materials of the over-all compositions NiGa, Ni2Ga3 and Ni3Ga, respectively. Microwave induced co-pyrolysis of the same precursors without additional hydrogen in the ionic liquid [BMIm][BF4] (BMIm = 1-butyl-3-methyl-imidazolium) selectively yields the intermetallic phases NiGa and Ni3Ga from the respective 1 : 1 and 3 : 1 molar ratios of the precursors. The obtained materials are characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), IR, powder X-ray diffraction (PXRD) and atomic absorption spectroscopy (AAS). The single-source precursor [Ni(GaCp*)(PMe3)3] with a fixed Ni : Ga stoichiometry of 1 : 1 was employed as well. In comparison with the co-hydrogenolytic dual precursor source approach it turned out to be less practical due to inefficient nickel incorporation caused by the parasitic formation of stable [Ni(PMe3)4]. The use of ionic liquid [BMIm][BF4] as a non-conventional solvent to control the reaction and stabilize the nanoparticles proved to be particularly advantageous and stable colloids of the nanoalloys NiGa and Ni3Ga were obtained. A phase-selective Ni/Ga colloid synthesis in conventional solvents and in the presence of surfactants such as hexadecylamine (HDA) was not feasible due to the undesired reactivity of HDA with GaCp* leading to inefficient gallium incorporation. Recyclable NiGa nanoparticles selectively

  16. Effects of precursor and support variation in the genesis of uranium oxide catalysts for CO oxidation and selective reduction of NO: Synthesis and characterization.

    PubMed

    Campbell, Tom; Newton, Mark A; Boyd, Vicky; Lee, Darren F; Evans, John

    2005-02-24

    A range of uranium oxide-based catalysts, derived from UO2(NO3)2.6H2O and UCl4 precursors, and supported on gamma-Al2O3, SiO2 and mesoporous H1SiO2, have been synthesized and then characterized using the following methods: isothermal nitrogen adsorption/desorption measurements, diffuse reflectance infrared spectroscopy (DRIFTS), gas titration of surface hydroxyl groups using Grignard reagents, U L(III) extended X-ray absorption fine structure (EXAFS), powder X-ray diffraction (PXRD), and thermogravimetric and differential thermal analysis. Brij76-templated H1SiO2 mesoporous silicas are found to be essentially stable under flowing oxygen after 16 h at 1073 K. At temperatures above this, however, extensive structural collapse, together with extensive dehydroxylation, ensues. Titration of the accessible hydroxyl group concentrations shows that in these materials the density of OH groups is considerably lower than in their amorphous counterparts. The adsorption of uranyl nitrate onto these dispersants results in a supported, and partially dehydrated, phase of the parent molecule with little obvious structural distortion; however, the adsorption of UCl4 leads to a complex adstructure which may best be described as U(O)2Cl2. The subsequent formation of the uranium oxide phase, nominally active for the oxidation of CO and selective reduction of NO (generally accepted to be U3O8), is found to be a considerable function of both the precursor and support system employed. Calcination of such systems to 1073 K results in extensive extrusion of the supported uranium phase from mesoporous supports, resulting in the formation of very large orthorhombic U3O8 domains. PXRD, however, shows that on amorphous SiO2 and gamma-Al2O3 similar treatment results in the formation of a hexagonal phase of U3O8. The formation of U3O8 is found to be promoted in mesoporous systems and by the presence of Cl in the catalyst make up. Some evidence is also found that suggests that a persistence of Cl

  17. Functional anion concept: effect of fluorine anion on hydrogen storage of sodium alanate.

    PubMed

    Yin, Li-Chang; Wang, Ping; Kang, Xiang-Dong; Sun, Cheng-Hua; Cheng, Hui-Ming

    2007-03-28

    Doping NaAlH(4) with Ti-catalyst has produced a promising hydrogen storage system that can be reversibly operated at moderate temperature conditions. Of the various dopant precursors, TiCl(3) was well recognized due to its pronounced catalytic effect on the reversible dehydrogenation processes of sodium aluminium hydrides. Quite recently we experimentally found that TiF(3) was even better than TiCl(3) in terms of the critical hydrogen storage properties of the doped hydrides, in particular the dehydriding performance at Na(3)AlH(6)/NaH + Al step at moderate temperature. We present here the DFT calculation results of the TiF(3) or TiCl(3) doped Na(3)AlH(6). Our computational studies have demonstrated that F(-) and Cl(-) anions differ substantially from each other with regard to the state and function in the doped sodium aluminium hydride. In great contrast to the case of chloride doping where Cl(-) anion constitutes the "dead weight" NaCl, the fluoride doping results in a substitution of H(-) by F(-) anion in the hydride lattice and accordingly, a favorable thermodynamics adjustment. These results well explain the observed dehydriding performance associated with TiF(3)/TiCl(3)-doping. More significantly, the coupled computational and experimental efforts allow us to put forward a "functional anion" concept. This renews the current mechanism understanding in the catalytically enhanced sodium alanate.

  18. Anion-π catalysis.

    PubMed

    Zhao, Yingjie; Beuchat, César; Domoto, Yuya; Gajewy, Jadwiga; Wilson, Adam; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2014-02-05

    The introduction of new noncovalent interactions to build functional systems is of fundamental importance. We here report experimental and theoretical evidence that anion-π interactions can contribute to catalysis. The Kemp elimination is used as a classical tool to discover conceptually innovative catalysts for reactions with anionic transition states. For anion-π catalysis, a carboxylate base and a solubilizer are covalently attached to the π-acidic surface of naphthalenediimides. On these π-acidic surfaces, transition-state stabilizations up to ΔΔGTS = 31.8 ± 0.4 kJ mol(-1) are found. This value corresponds to a transition-state recognition of KTS = 2.7 ± 0.5 μM and a catalytic proficiency of 3.8 × 10(5) M(-1). Significantly increasing transition-state stabilization with increasing π-acidity of the catalyst, observed for two separate series, demonstrates the existence of "anion-π catalysis." In sharp contrast, increasing π-acidity of the best naphthalenediimide catalysts does not influence the more than 12 000-times weaker substrate recognition (KM = 34.5 ± 1.6 μM). Together with the disappearance of Michaelis-Menten kinetics on the expanded π-surfaces of perylenediimides, this finding supports that contributions from π-π interactions are not very important for anion-π catalysis. The linker between the π-acidic surface and the carboxylate base strongly influences activity. Insufficient length and flexibility cause incompatibility with saturation kinetics. Moreover, preorganizing linkers do not improve catalysis much, suggesting that the ideal positioning of the carboxylate base on the π-acidic surface is achieved by intramolecular anion-π interactions rather than by an optimized structure of the linker. Computational simulations are in excellent agreement with experimental results. They confirm, inter alia, that the stabilization of the anionic transition states (but not the neutral ground states) increases with the π-acidity of the

  19. Structural synthesis: Precursor and catalyst

    NASA Technical Reports Server (NTRS)

    Schmit, L. A.

    1984-01-01

    More than twenty five years have elapsed since it was recognized that a rather general class of structural design optimization tasks could be properly posed as an inequality constrained minimization problem. It is suggested that, independent of primary discipline area, it will be useful to think about: (1) posing design problems in terms of an objective function and inequality constraints; (2) generating design oriented approximate analysis methods (giving special attention to behavior sensitivity analysis); (3) distinguishing between decisions that lead to an analysis model and those that lead to a design model; (4) finding ways to generate a sequence of approximate design optimization problems that capture the essential characteristics of the primary problem, while still having an explicit algebraic form that is matched to one or more of the established optimization algorithms; (5) examining the potential of optimum design sensitivity analysis to facilitate quantitative trade-off studies as well as participation in multilevel design activities. It should be kept in mind that multilevel methods are inherently well suited to a parallel mode of operation in computer terms or to a division of labor between task groups in organizational terms. Based on structural experience with multilevel methods general guidelines are suggested.

  20. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    NASA Astrophysics Data System (ADS)

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-02-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  1. Selective conversion of {Mo132} Keplerate ion into 4-electron reduced crown-capped Keggin derivative [Te5Mo15O57](8-). A key intermediate to single-phase M1 multielement MoVTeO light-alkanes oxidation catalyst.

    PubMed

    Canioni, Romain; Marchal-Roch, Catherine; Leclerc-Laronze, Nathalie; Haouas, Mohamed; Taulèlle, Francis; Marrot, Jérôme; Paul, Sebastien; Lamonier, Carole; Paul, Jean-François; Loridant, Stéphane; Millet, Jean-Marc M; Cadot, Emmanuel

    2011-06-14

    {Mo(132)} Keplerate anion reacts with tellurites to give a soluble precursor to produce in hydrothermal conditions single-phase M1 MoVTeO light-alkanes oxidation catalyst. Characterization of this Te-containing intermediate by single-crystal X-ray diffraction, (125)Te NMR, UV-visible and redox titration reveals a molybdotellurite anion as a crown-capped Keggin derivative.

  2. Relation between hydrodesulfurization activity and the state of promoters in precursor calcined Ni-Co-Mo/Al/sub 2/O/sub 3/ catalysts

    SciTech Connect

    Caceres, C.; Fierro, J.L.G.; Agudo, A.L.; Severino, F.; Laine, J.

    1986-01-01

    Two series of NiCo-Mo/Al/sub 2/O/sub 3/ hydrodesulfurization (HDS) catalysts prepared by different procedures were investigated. In each series the Mo loading and the total content of promoters (Co + Ni) were kept constant but the Co/(Co + Ni) atomic ratio was varied from 0 to 1. The two series of catalysts were prepared by a sequential wet impregnation technique. In series I, the impregnations of both Mo and promoters were carried out at the pH of the impregnating aqueous solutions, employing an intermediate calcination; in series II, Mo was impregnated at pH 10, while the promoters were added in aqueous ethanol solutions without intermediate calcination. Catalysts in their calcined state were characterized by reduction in H/sub 2/ at 500/sup 0/C, O/sub 2/ chemisorption, and infrared spectroscopy of adsorbed NO. The HDS activity and the optimum Co/(Co + Ni) atomic ratio were different for the two series, in agreement with the previous studies, HDS activity being generally higher for series II than for series I. Dispersion of Mo (as estimated from O/sub 2/ chemisorption) and NO adsorption on Mo in reduced catalysts (as judged from the intensity of the band at about 1705 cm/sup -1/) were not substantially different for the two series of catalysts and did not correlate with HDS activity. However, adsorbed NO on promoters in oxidized catalysts (bands at about 1880 and 1800 cm/sup -1/) followed roughly the same trend as HDS activity, suggesting that the active sites may be related to the Co and Ni atoms adsorbing NO. Possible reasons for the differences between HDS activity of the two series are considered.

  3. Acyl anion free N-heterocyclic carbene organocatalysis.

    PubMed

    Ryan, Sarah J; Candish, Lisa; Lupton, David W

    2013-06-21

    Reaction discovery using N-heterocyclic carbene organocatalysis has been dominated by the chemistry of acyl anion equivalents. Recent studies demonstrate that NHCs are far more diverse catalysts, with a variety of reactions discovered that proceed without acyl anion equivalent formation. In this tutorial review selected examples of acyl anion free NHC catalysis using carbonyl compounds are presented.

  4. Electron-Withdrawing Trifluoromethyl Groups in Combination with Hydrogen Bonds in Polyols: Brønsted Acids, Hydrogen-Bond Catalysts, and Anion Receptors

    SciTech Connect

    Shokri, Alireza; Wang, Xue B.; Kass, Steven R.

    2013-06-26

    Electron withdrawing trifluoromethyl groups were characterized in combination with hydrogen bond interactions in three polyols (i.e., CF3CH(OH)CH2CH(OH)CF3, 1; (CF3)2C(OH)C(OH)(CF3)2, 2; ((CF3)2C(OH)CH2)2CHOH, 3) by pKa measurements in DMSO and H2O, negative ion photoelectron spectroscopy and binding constant determinations with Cl–. Their catalytic behavior in several reactions were also examined and compared to a BrØnsted acid (HOAc) and a commonly employed thiourea ((3,5-(CF3)3C6H3NH)2CS). The combination of inductive stabilization and hydrogen bonds was found to afford potent acids which are effective catalysts. It also appears that hydrogen bonds can transmit the inductive effect over distance even in an aqueous environment, and this has far reaching implications.

  5. Co-generation of electricity and syngas on proton-conducting solid oxide fuel cell with a perovskite layer as a precursor of a highly efficient reforming catalyst

    NASA Astrophysics Data System (ADS)

    Wan, Tingting; Zhu, Ankang; Guo, Youmin; Wang, Chunchang; Huang, Shouguo; Chen, Huili; Yang, Guangming; Wang, Wei; Shao, Zongping

    2017-04-01

    In this study, a proton conducting solid oxide fuel cell (layered H+-SOFC) is prepared by introducing a La2NiO4perovskite oxide with a Ruddlesden-Popper structure as a catalyst layer onto a conventional NiO + BaZr0.4Ce0.4Y0.2O3-δ (NiO + BZCY4) anode for in situ CO2 dry reforming of methane. The roles of the La2NiO4 catalyst layer on the reforming activity, coking tolerance, electrocatalytic activity and operational stability of the anodes are systematically studied. The La2NiO4 catalyst layer exhibits greater catalytic performance than the NiO + BZCY4 anode during the CO2 dry reforming of methane. An outstanding coking resistance capability is also demonstrated. The layered H+-SOFC consumes H2 produced in situ at the anode and delivers a much higher power output than the conventional cell with the NiO + BZCY4 anode. The improved coking resistance of the layered H+-SOFC results in a steady output voltage of ∼0.6 V under a constant current density of 200 mA cm-2. In summary, the H+-SOFC with La2NiO4 perovskite oxide is a potential energy conversion device for CO2 conversion and utilization with co-generation of electricity and syngas.

  6. A new class of organocatalysts: sulfenate anions.

    PubMed

    Zhang, Mengnan; Jia, Tiezheng; Yin, Haolin; Carroll, Patrick J; Schelter, Eric J; Walsh, Patrick J

    2014-09-26

    Sulfenate anions are known to act as highly reactive species in the organic arena. Now they premiere as organocatalysts. Proof of concept is offered by the sulfoxide/sulfenate-catalyzed (1-10 mol%) coupling of benzyl halides in the presence of base to generate trans-stilbenes in good to excellent yields (up to 99%). Mechanistic studies support the intermediacy of sulfenate anions, and the deprotonated sulfoxide was determined to be the resting state of the catalyst.

  7. Model Ziegler-type hydrogenation catalyst precursors, [(1,5-COD)M(mu-O2C8H15)]2 (M = Ir and Rh): synthesis, characterization, and demonstration of catalytic activity en route to identifying the true industrial hydrogenation catalysts.

    PubMed

    Alley, William M; Girard, Chase W; Ozkar, Saim; Finke, Richard G

    2009-02-02

    The compounds [(1,5-COD)M(mu-O2C8H15)]2 (COD = cyclooctadiene, M = Ir (1) or Rh (2), O2C8H15 = 2-ethylhexanoate) were synthesized by addition of Bu3NH(2-ethylhexanoate) or Na(2-ethylhexanoate) to acetone suspensions of [(1,5-COD)Ir(mu-Cl)]2 or [(1,5-COD)Rh(mu-Cl)]2, respectively. The synthesis of such well-defined second and third row model precursors is key to determining the true nature of commercial Ziegler-type hydrogenation catalysts (i.e., catalysts made from the combination of a non-zerovalent, group 8-10 transition metal precatalyst and a trialkylaluminum cocatalyst), an unsolved, approximately 40 year old problem. The characterizations of 1 and 2 were accomplished by elemental analysis, melting point, FAB-MS, FT-IR, UV-vis, NMR spectroscopy, and single crystal X-ray diffraction. The complexes, C32H54Ir2O4 and C32H54O4Rh2, are isostructural: monoclinic, P2(1)/n, Z = 4. The lattice constants for 1 are a = 15.7748(5) A, b = 9.8962(3) A, c = 20.8847(7) A, beta = 108.408(2) degrees. The lattice constants for 2 are a = 15.7608(4) A, b = 9.9032(3) A, c = 20.8259(5) A, beta = 108.527(1) degrees. Complexes 1 and 2 are dimeric, bridged by the 2-ethylhexanoates, and with one 1,5-COD ligand bound to each metal. The formally 16 electron metal atoms are in square ligand planes with dihedral angles between the planes of 56.5 degrees for 1 and 58.1 degrees for 2. The M-M distances of 3.2776(2) and 3.3390(4) A for 1 and 2, respectively, fall in the range of similar structures thought to have some M-M interaction despite the lack of a formal M-M bond. Demonstration that active Ziegler-type hydrogenation catalysts are made when 1 or 2 combine with AlEt3 is provided, results that open the door to the use of 1 and 2 as well-defined third and second row congeners, respectively, of Ziegler-type hydrogenation catalysts. These compounds have proven important in addressing the previously unsolved problem of the true nature of the catalyst in industrial Ziegler-type hydrogenation

  8. Heteroatom-free arene-cobalt and arene-iron catalysts for hydrogenations.

    PubMed

    Gärtner, Dominik; Welther, Alice; Rad, Babak Rezaei; Wolf, Robert; Jacobi von Wangelin, Axel

    2014-04-01

    75 years after the discovery of hydroformylation, cobalt catalysts are now undergoing a renaissance in hydrogenation reactions. We have evaluated arene metalates in which the low-valent metal species is--conceptually different from heteroatom-based ligands--stabilized by π coordination to hydrocarbons. Potassium bis(anthracene)cobaltate 1 and -ferrate 2 can be viewed as synthetic precursors of quasi-"naked" anionic metal species; their aggregation is effectively impeded by (labile) coordination to the various π acceptors present in the hydrogenation reactions of unsaturated molecules (alkenes, arenes, carbonyl compounds). Kinetic studies, NMR spectroscopy, and poisoning studies of alkene hydrogenations support the formation of a homogeneous catalyst derived from 1 which is stabilized by the coordination of alkenes. This catalyst concept complements the use of complexes with heteroatom donor ligands for reductive processes.

  9. Vibrational spectroscopy of the double complex salt Pd(NH3)4(ReO4)2, a bimetallic catalyst precursor

    NASA Astrophysics Data System (ADS)

    Thompson, Simon T.; Lamb, H. Henry; Delley, Bernard; Franzen, Stefan

    2017-02-01

    Tetraamminepalladium(II) perrhenate, a double complex salt, has significant utility in PdRe catalyst preparation; however, the vibrational spectra of this readily prepared compound have not been described in the literature. Herein, we present the infrared (IR) and Raman spectra of tetraamminepalladium(II) perrhenate and several related compounds. The experimental spectra are complemented by an analysis of normal vibrational modes that compares the experimentally obtained spectra with spectra calculated using DFT (DMol3). The spectra are dominated by features due to the ammine groups and the Resbnd O stretch in Td ReO4-; lattice vibrations due to the D4h Pd(NH3)42+ are also observed in the Raman spectrum. Generally, we observe good agreement between ab initio calculations and experimental spectra. The calculated IR spectrum closely matches experimental results for peak positions and their relative intensities. The methods for calculating resonance Raman intensities are implemented using the time correlator formalism using two methods to obtain the excited state displacements and electron-vibration coupling constants, which are the needed inputs in addition to the normal mode wave numbers. Calculated excited state energy surfaces of Raman-active modes correctly predict relative intensities of the peaks and Franck-Condon activity; however, the position of Raman bands are predicted at lower frequencies than observed. Factor group splitting of Raman peaks observed in spectra of pure compounds is not predicted by DFT.

  10. Vibrational spectroscopy of the double complex salt Pd(NH3)4(ReO4)2, a bimetallic catalyst precursor.

    PubMed

    Thompson, Simon T; Lamb, H Henry; Delley, Bernard; Franzen, Stefan

    2017-02-15

    Tetraamminepalladium(II) perrhenate, a double complex salt, has significant utility in PdRe catalyst preparation; however, the vibrational spectra of this readily prepared compound have not been described in the literature. Herein, we present the infrared (IR) and Raman spectra of tetraamminepalladium(II) perrhenate and several related compounds. The experimental spectra are complemented by an analysis of normal vibrational modes that compares the experimentally obtained spectra with spectra calculated using DFT (DMol(3)). The spectra are dominated by features due to the ammine groups and the ReO stretch in Td ReO4(-); lattice vibrations due to the D4h Pd(NH3)4(2+) are also observed in the Raman spectrum. Generally, we observe good agreement between ab initio calculations and experimental spectra. The calculated IR spectrum closely matches experimental results for peak positions and their relative intensities. The methods for calculating resonance Raman intensities are implemented using the time correlator formalism using two methods to obtain the excited state displacements and electron-vibration coupling constants, which are the needed inputs in addition to the normal mode wave numbers. Calculated excited state energy surfaces of Raman-active modes correctly predict relative intensities of the peaks and Franck-Condon activity; however, the position of Raman bands are predicted at lower frequencies than observed. Factor group splitting of Raman peaks observed in spectra of pure compounds is not predicted by DFT.

  11. Anion permselective membrane

    NASA Technical Reports Server (NTRS)

    Hodgdon, R. B.; Waite, W. A.

    1982-01-01

    The synthesis and fabrication of polymeric anion permselective membranes for redox systems are discussed. Variations of the prime candidate anion membrane formulation to achieve better resistance and/or lower permeability were explored. Processing parameters were evaluated to lower cost and fabricate larger sizes. The processing techniques to produce more membranes per batch were successfully integrated with the fabrication of larger membranes. Membranes of about 107 cm x 51 cm were made in excellent yield. Several measurements were made on the larger sample membranes. Among the data developed were water transport and transference numbers for these prime candidate membranes at 20 C. Other work done on this system included characterization of a number of specimens of candidate membranes which had been returned after service lives of up to sixteen months. Work with new polymer constituents, with new N.P.'s, catalysts and backing fabrics is discussed. Some work was also done to evaluate other proportions of the ingredients of the prime candidate system. The adoption of a flow selectivity test at elevated temperature was explored.

  12. Asymmetric Anion-π Catalysis on Perylenediimides.

    PubMed

    Wang, Chao; Miros, François N; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2016-11-07

    Anion-π catalysis, that is the stabilization of anionic transition states on π-acidic aromatic surfaces, has so far been developed with naphthalenediimides (NDIs). This report introduces perylenediimides (PDIs) to anion-π catalysis. The quadrupole moment of PDIs (+23.2 B) is found to exceed that of NDIs and reach new records with acceptors in the core (+70.9 B), and their larger surface provides space to better accommodate chemical transformations. Unlike NDIs, the activity of PDI catalysts for enolate and enamine addition is determined by the twist of their π surface rather than their reducibility. These results, further strengthened by nitrate inhibition and circular dichroism spectroscopy, support an understanding of anion-π interactions centered around quadrupole moments, i.e., electrostatic contributions, rather than redox potentials and charge transfer. The large PDI surfaces provide access to the highest enantioselectivities observed so far in anion-π catalysis (96 % ee).

  13. Catalyst Of A Metal Heteropoly Acid Salt That Is Insoluble In A Polar Solvent On A Non-Metallic Porous Support And Method Of Making

    DOEpatents

    Wang. Yong; Peden. Charles H. F.; Choi. Saemin

    2004-11-09

    The present invention includes a catalyst having (a) a non-metallic support having a plurality of pores; (b) a metal heteropoly acid salt that is insoluble in a polar solvent on the non-metallic support; wherein at least a portion of the metal heteropoly acid salt is dispersed within said plurality of pores. The present invention also includes a method of depositing a metal heteropoly acid salt that is insoluble in a polar solvent onto a non-metallic support having a plurality of pores. The method has the steps of: (a) obtaining a first solution containing a first precursor of a metal salt cation; (b) obtaining a second solution containing a second precursor of a heteropoly acid anion in a solvent having a limited dissolution potential for said first precursor; (c) impregnating the non-metallic support with the first precursor forming a first precursor deposit within the plurality of pores, forming a first precursor impregnated support; (d) heating said first precursor impregnated support forming a bonded first precursor impregnated support; (e) impregnating the second precursor that reacts with the precursor deposit and forms the metal heteropoly acid salt.

  14. Catalyst of a metal heteropoly acid salt that is insoluble in a polar solvent on a non-metallic porous support and method of making

    DOEpatents

    Wang, Yong [Richland, WA; Peden, Charles H. F. [West Richland, WA; Choi, Saemin [Richland, WA

    2002-10-29

    The present invention includes a catalyst having (a) a non-metallic support having a plurality of pores; (b) a metal heteropoly acid salt that is insoluble in a polar solvent on the non-metallic support; wherein at least a portion of the metal heteropoly acid salt is dispersed within said plurality of pores. The present invention also includes a method of depositing a metal heteropoly acid salt that is insoluble in a polar solvent onto a non-metallic support having a plurality of pores. The method has the steps of: (a) obtaining a first solution containing a first precursor of a metal salt cation; (b) obtaining a second solution containing a second precursor of a heteropoly acid anion in a solvent having a limited dissolution potential for said first precursor; (c) impregnating the non-metallic support with the first precursor forming a first precursor deposit within the plurality of pores, forming a first precursor impregnated support; (d) heating said first precursor impregnated support forming a bonded first precursor impregnated support; (e) impregnating the second precursor that reacts with the precursor deposit and forms the metal heteropoly acid salt.

  15. Skeletal Ru/Cu catalysts prepared from crystalline and quasicrystalline ternary alloy precursors: characterization by X-ray absorption spectroscopy and CO oxidation.

    PubMed

    Highfield, James; Liu, Tao; Loo, Yook Si; Grushko, Benjamin; Borgna, Armando

    2009-02-28

    The Ru/Cu system is of historical significance in catalysis. The early development and application of X-ray absorption spectroscopy (XAS) led to the original 'bimetallic cluster" concept for highly-immiscible systems. This work explores alkali leaching of Al-based ternary crystalline and quasicrystalline precursors as a potential route to bulk Ru/Cu alloys. Single-phase ternary alloys at 3 trial compositions; Al(71)Ru(22)Cu(7), Al(70.5)Ru(17)Cu(12.5), and Al(70)Ru(10)Cu(20), were prepared by arc melting of the pure metal components. After leaching, the bimetallic residues were characterized principally by transmission XAS, "as-leached" and after annealing in H(2) (and passivation) in a thermobalance. XRD and BET revealed a nanocrystalline product with a native structure of hexagonal Ru. XPS surface analysis of Ru(22)Cu(7) and Ru(17)Cu(12.5) found only slight enrichment by Cu in the as-leached forms, with little change upon annealing. Ru(10)Cu(20) was highly segregated as-leached. XANES data showed preferential oxidation of Cu in Ru(22)Cu(7), implying that it exists as an encapsulating layer. TG data supports this view since it does not show the distinct two-stage O(2) uptake characteristic of skeletal Ru. Cu K-edge EXAFS data for Ru(22)Cu(7) were unique in showing a high proportion of Ru neighbours. The spacing, d(CuRu) = 2.65 A, was that expected from a hypothetical (ideal) solid solution at this composition, but this is unlikely in such a bulk-immiscible system and Ru K-edge EXAFS failed to confirm bulk alloying. Furthermore its invariance under annealing was more indicative of an interfacial bond between bulk components, although partial alloying with retention of local order cannot entirely be ruled out. The XAS and XPS data were reconciled in a model involving surface and bulk segregation, Cu being present at both the grain exterior and in ultra-fine internal pores. This structure can be considered as the 3-dimensional analogue of the classical type

  16. Organometallic polymerization catalysts

    SciTech Connect

    Waymouth, R.M.

    1993-12-31

    Well-defined transition metal catalysts have resulted in exciting new opportunities in polymer synthesis. The stereochemistry of vinyl polymers can be rationally controlled with choice of the appropriate catalysts. Studies with optically active catalyst precursors have revealed considerable information on the absolute stereochemistry of olefin polymerization and have led to the synthesis of novel chiral polyolefins. The development of homogeneous olefin metathesis catalysts has also led to a variety of well-defined new polymer structures with controlled molecular weight and molecular weight distribution. Recent advances in understanding the mechanisms and stereochemistry of homogeneous transition metal catalyzed polymerization will be discussed. The ability to control polymer structure through catalyst design presents exciting opportunities in the synthesis of {open_quotes}tailor-made{close_quotes} macromolecules.

  17. Anatomy of gold catalysts: facts and myths

    PubMed Central

    Ranieri, Beatrice; Escofet, Imma

    2015-01-01

    This review article covers the main types of gold(i) complexes used as precatalysts under homogeneous conditions in organic synthesis and discusses the different ways of catalyst activation as well as ligand, silver, and anion effects. PMID:26055272

  18. Results of catalyst testing using iron-based catalysts

    SciTech Connect

    Linehan, J.C.; Darab, J.G.; Matson, D.W.

    1993-03-01

    As coal liquefaction catalysts, iron-based products are generally inferior to the more expensive molybdenum, cobalt, or nickel-based materials. However, the lower costs of production and recovery (or in the case of some iron catalysts, non-recovery) give the iron-based materials a potential economic advantage over the more efficient precious and semi-precious metal catalysts for this application. Recent research has shown that a number of different iron-containing materials can be successfully utilized as coal liquefaction catalysts or as catalyst. Pyrrhotite (Fe[sub 1-x]S) or a similar iron-sulfide phase is commonly believed to be the active catalyst in coal liquefaction and model compound pyrolysis reactions, although no specific phase has been yet been isolated as the actual catalyst species. The active iron-containing catalyst is usually generated in situ from an iron-oxide precursor and an elemental sulfur source under reducing conditions in the reactor vessel. Most research has concentrated on the use of common iron-oxide phases such as hematite or goethite (and their derivatives) as the iron-bearing precursor, or on non-specific iron materials produced by the reaction of various iron salts and compounds in the coal or liquefaction reactor. To our knowledge there has been no systematic effort to determine the optimum iron-containing precursor phase for producing active coal liquefaction catalysts, despite the fact that there are over ten iron-(hydroxy)oxide phases which can be easily synthesized in the laboratory. We have undertaken a systematic study to identify the most active iron-oxide catalyst precursor phases, the co-catalysts, and the coal pretreatments which will provide optimum yields in coal liquefaction processes.

  19. Mechanical Characterization of Anion Exchange Membranes Under Controlled Environmental Conditions

    DTIC Science & Technology

    2015-05-11

    membranes (AEM) have the potential to dramatically lower the cost of fuel cells by utilizing non-noble catalysts and a variety of fuel sources. Although...the cost of fuel cells by utilizing non-noble catalysts and a variety of fuel sources. Although chemical degradation typically dominates membrane...anion exchange membranes (AEM) have the potential to dramatically lower the cost of fuel cells by utilizing non-noble catalysts and a variety of

  20. Oxidation catalyst

    DOEpatents

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  1. Double N,B-Type Bidentate Boryl Ligands Enabling a Highly Active Iridium Catalyst for C-H Borylation.

    PubMed

    Wang, Guanghui; Xu, Liang; Li, Pengfei

    2015-07-01

    Boryl ligands hold promise in catalysis due to their very high electron-donating property. In this communication double N,B-type boryl anions were designed as bidentate ligands to promote an sp(2) C-H borylation reaction. A symmetric pyridine-containing tetraaminodiborane(4) compound (1) was readily prepared as the ligand precursor that could be used, in combination with [Ir(OMe)(COD)]2, to in situ generate a highly active catalyst for a broad range of (hetero)arene substrates including highly electron-rich and/or sterically hindered ones. This work provides the first example of a bidentate boryl ligand in supporting homogeneous organometallic catalysis.

  2. Topologically unique heterometallic Cu(II)/Li coordination polymers self-assembled from N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid biobuffer: versatile catalyst precursors for mild hydrocarboxylation of alkanes to carboxylic acids.

    PubMed

    Kirillova, Marina V; Kirillov, Alexander M; Martins, André N C; Graiff, Claudia; Tiripicchio, Antonio; Pombeiro, Armando J L

    2012-05-07

    The facile aqueous medium reactions of copper(II) nitrate with BES biobuffer [(HOCH(2)CH(2))(2)N(CH(2)CH(2)SO(3)H), hereinafter referred as H(3)bes] in the presence of various benzenecarboxylic acids [benzoic (Hba), 3-hydroxybenzoic (Hhba), and 3,5-dihydroxybenzoic (Hdhba) acid] and lithium hydroxide gave rise to the self-assembly generation of three new heterometallic Cu(II)/Li materials, [Li(H(2)O)(4)][Cu(4)(μ(2)-Hbes)(4)(μ(2)-ba)]·H(2)O (1) and [Cu(4)(μ(3)-Hbes)(4)(L){Li(H(2)O)(2)}](n)·3nH(2)O {L = μ(2)-hba (2) and μ(2)-dhba (3)}. They were isolated as air-stable crystalline solids and fully characterized by infrared (IR) and UV-vis spectroscopy and electrospray ionization (ESI)-MS(±), elemental, thermal, and single-crystal X-ray diffraction analyses. The latter revealed that 1-3 have comparable packing patterns and unit cell parameters, being composed of similar [Cu(4)(μ-Hbes)(4)(μ-carboxylate)](-) cores and [Li(H(2)O)(4)](+) cations (in 1) or [μ-Li(H(2)O)(2)](+) groups (in 2 and 3), which are arranged into discrete 0D aggregates in 1 or infinite 3D noninterpenetrating metal-organic networks in 2 and 3. The topological analysis of the coordination polymers 2 and 3 disclosed the trinodal 3,3,4-connected underlying nets with an unprecedented topology defined by the point symbol of (4.6.8)(4)(4(2).6)(2)(6(2).16(2).18(2)), further simplification of which resulted in the binodal 4,4-connected nets with the pts (PtS) topology. Apart from representing very rare examples of coordination compounds derived from H(3)bes, 1-3 feature solubility in water and were applied as efficient and versatile catalyst precursors for the mild (60 °C) single-pot hydrocarboxylation, by CO and H(2)O, of various gaseous, linear, and cyclic C(n) (n = 2-9) alkanes into the corresponding C(n+1) carboxylic acids, in H(2)O/MeCN medium under homogeneous conditions and in the presence of potassium peroxodisulfate. Total yields (based on alkane) of carboxylic acids up to 78% were

  3. Palladium-Catalyzed Arylation of Alkyl Sulfenate Anions.

    PubMed

    Jia, Tiezheng; Zhang, Mengnan; Jiang, Hui; Wang, Carol Y; Walsh, Patrick J

    2015-11-04

    A unique palladium-catalyzed arylation of alkyl sulfenate anions is introduced that affords aryl alkyl sulfoxides in high yields. Due to the base sensitivity of the starting sulfoxides, sulfenate anion intermediates, and alkyl aryl sulfoxide products, the use of a mild method to generate alkyl sulfenate anions was crucial to the success of this process. Thus, a fluoride triggered elimination strategy was employed with alkyl 2-(trimethylsilyl)ethyl sulfoxides to liberate the requisite alkyl sulfenate anion intermediates. In the presence of palladium catalysts with bulky monodentate phosphines (SPhos and Cy-CarPhos) and aryl bromides or chlorides, alkyl sulfenate anions were readily arylated. Moreover, the thermal fragmentation and the base promoted elimination of alkyl sulfoxides was overridden. The alkyl sulfenate anion arylation exhibited excellent chemoselectivity in the presence of functional groups, such as anilines and phenols, which are also known to undergo palladium catalyzed arylation reactions.

  4. Sodium citrate-assisted anion exchange strategy for construction of Bi{sub 2}O{sub 2}CO{sub 3}/BiOI photocatalysts

    SciTech Connect

    Song, Peng-Yuan; Xu, Ming; Zhang, Wei-De

    2015-02-15

    Highlights: • Heterostructured Bi{sub 2}O{sub 2}CO{sub 3}/BiOI microspheres were prepared via anion exchange. • Sodium citrate-assisted anion exchange for construction of composite photocatalysts. • Bi{sub 2}O{sub 2}CO{sub 3}/BiOI composites show high visible light photocatalytic activity. - Abstract: Bi{sub 2}O{sub 2}CO{sub 3}/BiOI heterojuncted photocatalysts were constructed through a facile partial anion exchange strategy starting from BiOI microspheres and urea with the assistance of sodium citrate. The content of Bi{sub 2}O{sub 2}CO{sub 3} in the catalysts was regulated by modulating the amount of urea as a precursor, which was decomposed to generate CO{sub 3}{sup 2−} in the hydrothermal process. Citrate anion plays a key role in controlling the morphology and composition of the products. The Bi{sub 2}O{sub 2}CO{sub 3}/BiOI catalysts display much higher photocatalytic activity than pure BiOI and Bi{sub 2}O{sub 2}CO{sub 3} towards the degradation of rhodamine B (RhB) and bisphenol A (BPA). The enhancement of photocatalytic activity of the heterojuncted catalysts is attributed to the formation of p–n junction between p-BiOI and n-Bi{sub 2}O{sub 2}CO{sub 3}, which is favorable for retarding the recombination of photoinduced electron-hole pairs. Moreover, the holes are demonstrated to be the main active species for the degradation of RhB and BPA.

  5. Anion exchange membrane

    DOEpatents

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  6. Binary ferrihydrite catalysts

    DOEpatents

    Huffman, G.P.; Zhao, J.; Feng, Z.

    1996-12-03

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered. 3 figs.

  7. Binary ferrihydrite catalysts

    DOEpatents

    Huffman, Gerald P.; Zhao, Jianmin; Feng, Zhen

    1996-01-01

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered.

  8. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2003-04-08

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n }.sup.+ {A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, and SnR".sub.3 containing groups (R"=C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  9. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2007-01-09

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n}.sup.+{A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 C.sub.20 hydrocarbyl, SiR''.sub.3, NR''.sub.2, OR'', SR'', GeR''.sub.3, SnR''.sub.3, and C.dbd.C-containing groups (R''=C.sub.1 C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  10. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2003-12-30

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, SnR".sub.3, and C.dbd.C containing groups (R".dbd.C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  11. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2006-10-10

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n}.sup.+{A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 C.sub.20 hydrocarbyl, SiR''.sub.3, NR''.sub.2, OR'', SR'', GeR''.sub.3, SnR''.sub.3, and C.dbd.C-containing groups (R''=C.sub.1 C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  12. Cyclopentadienyl-Containing Low-Valent Early Transition Metal Olefin Polymerization Catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2004-06-08

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n }.sup.+ {A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, SnR".sub.3, and C.dbd.C-containing groups (R"=C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  13. Cationic ruthenium alkylidene catalysts bearing phosphine ligands.

    PubMed

    Endo, Koji; Grubbs, Robert H

    2016-02-28

    The discovery of highly active catalysts and the success of ionic liquid immobilized systems have accelerated attention to a new class of cationic metathesis catalysts. We herein report the facile syntheses of cationic ruthenium catalysts bearing bulky phosphine ligands. Simple ligand exchange using silver(i) salts of non-coordinating or weakly coordinating anions provided either PPh3 or chelating Ph2P(CH2)nPPh2 (n = 2 or 3) ligated cationic catalysts. The structures of these newly reported catalysts feature unique geometries caused by ligation of the bulky phosphine ligands. Their activities and selectivities in standard metathesis reactions were also investigated. These cationic ruthenium alkylidene catalysts reported here showed moderate activity and very similar stereoselectivity when compared to the second generation ruthenium dichloride catalyst in ring-closing metathesis, cross metathesis, and ring-opening metathesis polymerization assays.

  14. SURFACE-MODIFIED COALS FOR ENHANCED CATALYST DISPERSION AND LIQUEFACTION

    SciTech Connect

    Dr. Yaw D. Yeboah

    1999-09-01

    This is the final report of the Department of Energy Sponsored project DE-FGF22-95PC95229 entitled, surface modified coals for enhanced catalyst dispersion and liquefaction. The aims of the study were to enhance catalyst loading and dispersion in coal for improved liquefaction by preadsorption of surfactants and catalysts on the coal and to train and educate minority scientists in catalysts and separation science. Illinois No. 6 Coal (DEC-24) was selected for the study. The surfactants investigated included dodecyl dimethyl ethyl ammonium bromide (DDAB), a cationic surfactant, sodium dodecyl sulfate, an anionic surfactant, and Triton x-100, a neutral surfactant. Ammonium molybdate tetrahydrate was used as the molybdenum catalyst precursor. Zeta potential, BET, FTIR, AFM, UV-Vis and luminescence intensity measurements were undertaken to assess the surface properties and the liquefaction activities of the coal. The parent coal had a net negative surface charge over the pH range 2-12. However, in the presence of DDAB the negativity of the surface charge decreased. At higher concentrations of DDAB, a positive surface charge resulted. In contrast to the effect of DDAB, the zeta potential of the coal became more negative than the parent coal in the presence of SDS. Adsorption of Triton reduced the net negative charge density of the coal samples. The measured surface area of the coal surface was about 30 m{sup 2}/g compared to 77m{sup 2}/g after being washed with deionized water. Addition of the surfactants decreased the surface area of the samples. Adsorption of the molybdenum catalyst increased the surface area of the coal sample. The adsorption of molybdenum on the coal was significantly promoted by preadsorption of DDAB and SDS. Molybdenum adsorption showed that, over a wide range of concentrations and pH values, the DDAB treated coal adsorbed a higher amount of molybdenum than the samples treated with SDS. The infrared spectroscopy (FTIR) and the atomic force

  15. Tuning the Synthesis of Ternary Lead Chalcogenide Quantum Dots by Balancing Precursor Reactivity

    SciTech Connect

    Smith, Danielle K.; Luther, Joseph M; Semonin, Octavi Escala; Nozik, Arthur J; Beard, Matthew C

    2011-01-25

    We report the synthesis and characterization of composition-tunable ternary lead chalcogenide alloys PbSe{sub x}Te{sub 1-x}, PbS{sub x}Te{sub 1-x}, and PbS{sub x}Se{sub 1-x}. This work explores the relative reaction rates of chalcogenide precursors to produce alloyed quantum dots (QDs), and we find the highly reactive bis(trimethylsilyl) (TMS{sub 2})-based precursors allow for the homogeneous incorporation of anions. By varying the Pb to oleic acid ratio, we demonstrate size control of similar composition alloys. We find the resulting QDs are Pb-rich but the Pb/anion ratio is size- and composition-dependent in all alloyed QD as well as in PbSe, PbTe, and PbS QDs and is consistent with the reaction rates of the anion precursors. A more reactive anion precursor results in a lower Pb/anion ratio.

  16. DOE Award No. DE-FC36-03GO13108 NOVEL NON-PRECIOUS METAL CATALYSTS FOR PEMFC: CATALYST SELECTION THROUGH MOLECULAR MODELING AND DURABILITY STUDIES Final Report (September 2003 – October 2008)

    SciTech Connect

    Branko N. Popov

    2009-03-03

    The objective of this project is to develop novel non-precious metal electrocatalysts for oxygen reduction reaction (ORR), and demonstrate the potential of the catalysts to perform at least as good as conventional Pt catalysts currently in use in polymer electrolyte membrane fuel cell (PEMFC) with a cost at least 50 % less than a target of 0.2 g (Pt loading)/peak kW and with durability > 2,000 h operation with less than 10 % power degradation. A novel nitrogen-modified carbon-based catalyst was obtained by modifying carbon black with nitrogen-containing organic precursor in the absence of transition metal precursor. The catalyst shows the onset potential of approximately 0.76 V (NHE) for ORR and the amount of H2O2 of approximately 3% at 0.5 V (NHE). Furthermore, a carbon composite catalyst was achieved through the high-temperature pyrolysis of the precursors of transition metal (Co and Fe) and nitrogen supported on the nitrogen-modified carbon-based catalyst, followed by chemical post-treatment. This catalyst showed an onset potential for ORR as high as 0.87 V (NHE), and generated less than 1 % of H2O2. The PEM fuel cell exhibited a current density of 2.3 A cm-2 at 0.2 V for a catalyst loading of 6.0 mg cm-2. No significant performance degradation was observed for 480 h continuous operation. The characterization studies indicated that the metal-nitrogen chelate complexes decompose at the temperatures above 800 oC. During the pyrolysis, the transition metals facilitate the incorporation of pyridinic and graphitic nitrogen groups into the carbon matrix, and the carbon surface modified with nitrogen is active for ORR. In order to elucidate the role of transition metal precursor played in the formation of active sites in the non-precious metal catalysts, a novel ruthenium-based chelate (RuNx) catalyst was synthesized by using RuCl3 and propylene diammine as the Ru and N precursors, respectively, followed by high-temperature pyrolysis. This catalyst exhibited comparable

  17. DOE Award No. DE-FC36-03GO13108 NOVEL NON-PRECIOUS METAL CATALYSTS FOR PEMFC: CATALYST SELECTION THROUGH MOLECULAR MODELING AND DURABILITY STUDIES Final Report (September 2003 – October 2008)

    SciTech Connect

    Branko N. Popov

    2009-02-20

    The objective of this project is to develop novel non-precious metal electrocatalysts for oxygen reduction reaction (ORR), and demonstrate the potential of the catalysts to perform at least as good as conventional Pt catalysts currently in use in polymer electrolyte membrane fuel cell (PEMFC) with a cost at least 50 % less than a target of 0.2 g (Pt loading)/peak kW and with durability > 2,000 h operation with less than 10 % power degradation. A novel nitrogen-modified carbon-based catalyst was obtained by modifying carbon black with nitrogen-containing organic precursor in the absence of transition metal precursor. The catalyst shows the onset potential of approximately 0.76 V (NHE) for ORR and the amount of H2O2 of approximately 3% at 0.5 V (NHE). Furthermore, a carbon composite catalyst was achieved through the high-temperature pyrolysis of the precursors of transition metal (Co and Fe) and nitrogen supported on the nitrogen-modified carbon-based catalyst, followed by chemical post-treatment. This catalyst showed an onset potential for ORR as high as 0.87 V (NHE), and generated less than 1 % of H2O2. The PEM fuel cell exhibited a current density of 2.3 A cm-2 at 0.2 V for a catalyst loading of 6.0 mg cm-2. No significant performance degradation was observed for 480 h continuous operation. The characterization studies indicated that the metal-nitrogen chelate complexes decompose at the temperatures above 800 oC. During the pyrolysis, the transition metals facilitate the incorporation of pyridinic and graphitic nitrogen groups into the carbon matrix, and the carbon surface modified with nitrogen is active for ORR. In order to elucidate the role of transition metal precursor played in the formation of active sites in the non-precious metal catalysts, a novel ruthenium-based chelate (RuNx) catalyst was synthesized by using RuCl3 and propylene diammine as the Ru and N precursors, respectively, followed by high-temperature pyrolysis. This catalyst exhibited comparable

  18. Sterically shielded diboron-containing metallocene olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Ja, Li; Yang, Xinmin

    1995-09-05

    A non-coordinating anion, preferably containing a sterically shielded diboron hydride, if combined with a cyclopenta-dienyl-substituted metallocene cation component, such as a zirconocene metallocene, is a useful olefin polymerization catalyst component. The anion preferably has the formula ##STR1## where R is branched lower alkyl, such as t-butyl.

  19. Catalysts by the meter: rapid screening approach of N-heterocyclic carbene ligand based catalysts.

    PubMed

    Lang, Carolin; Gärtner, Ute; Trapp, Oliver

    2011-01-07

    Here, we demonstrate a versatile screening platform for NHC ligand based catalysts by coating fused-silica micro capillaries with a bonded 1,3-bismesityl-2-imidazolidinylidene ligand. Such micro capillaries can be efficiently converted into (pre)-catalysts from various organometallic precursors by solid-phase chemistry techniques and can be quantitatively screened using on-column reaction chromatography.

  20. Mechanistic study on the palladium(II)-catalyzed synthesis of 2,3-disubstituted indoles under aerobic conditions: anion effects and the development of a low-catalyst-loading process.

    PubMed

    Yao, Bo; Wang, Qian; Zhu, Jieping

    2014-09-15

    As a result of detailed mechanistic and kinetic studies, we have proposed that PdX2-catalyzed oxidative coupling of o-alkynylanilines 1 with terminal alkynes 2 under aerobic conditions is initiated by aminopalladation of 1 followed by ligand exchange of the resulting σ-indolylpalladium(II) complex with 2, reductive elimination and N-demethylation. Side reactions associated with intermediates on the way to 2,3-disubstituted indoles 3 were identified, and the roles of acetate and iodide in channeling the reaction towards the desired product were established. Based on kinetic and spectroscopic studies, the soluble iodide-ligated Pd(0) species was proposed to be the resting state of the catalyst and its oxidation to active Pd(II) species was the turnover-limiting step. Catalytic conditions with low loading of Pd(OAc)2 (0.0005 to 0.001 equiv) were subsequently developed.

  1. Bimetallic complexes and polymerization catalysts therefrom

    DOEpatents

    Patton, Jasson T.; Marks, Tobin J.; Li, Liting

    2000-11-28

    Group 3-6 or Lanthanide metal complexes possessing two metal centers, catalysts derived therefrom by combining the same with strong Lewis acids, Bronsted acid salts, salts containing a cationic oxidizing agent or subjected to bulk electrolysis in the presence of compatible, inert non-coordinating anions and the use of such catalysts for polymerizing olefins, diolefins and/or acetylenically unsaturated monomers are disclosed.

  2. Calcium-based Lewis acid catalysts.

    PubMed

    Begouin, Jeanne-Marie; Niggemann, Meike

    2013-06-17

    Recently, Lewis acidic calcium salts bearing weakly coordinating anions such as Ca(NTf₂)₂, Ca(OTf)₂, CaF₂ and Ca[OCH(CF₃)₂]₂ have been discovered as catalysts for the transformation of alcohols, olefins and carbonyl compounds. High stability towards air and moisture, selectivity and high reactivity under mild reaction conditions render these catalysts a sustainable and mild alternative to transition metals, rare-earth metals or strong Brønsted acids.

  3. Anions coordinating anions: analysis of the interaction between anionic Keplerate nanocapsules and their anionic ligands.

    PubMed

    Melgar, Dolores; Bandeira, Nuno A G; Bonet Avalos, Josep; Bo, Carles

    2017-02-15

    Keplerates are a family of anionic metal oxide spherical capsules containing up to 132 metal atoms and some hundreds of oxygen atoms. These capsules holding a high negative charge of -12 coordinate both mono-anionic and di-anionic ligands thus increasing their charge up to -42, even up to -72, which is compensated by the corresponding counter-cations in the X-ray structures. We present an analysis of the relative importance of several energy terms of the coordinate bond between the capsule and ligands like carbonate, sulphate, sulphite, phosphinate, selenate, and a variety of carboxylates, of which the overriding component is contributed by solvation/de-solvation effects.

  4. Hydrocracking and hydroisomerization of long-chain alkanes and polyolefins over metal-promoted anion-modified transition metal oxides

    SciTech Connect

    Venkatesh, Koppampatti R.; Hu, Jianli; Tierney, John W.; Wender, Irving

    1996-12-01

    A method is described for cracking a feedstock by contacting the feedstock with a metal-promoted anion-modified metal oxide catalyst in the presence of hydrogen gas. The metal oxide of the catalyst is one or more of ZrO{sub 2}, HfO{sub 2}, TiO{sub 2} and SnO{sub 2}, and the feedstock is principally chains of at least 20 carbon atoms. The metal-promoted anion-modified metal oxide catalyst contains one or more of Pt, Ni, Pd, Rh, Ir, Ru, (Mn and Fe) or mixtures of them present between about 0.2% to about 15% by weight of the catalyst. The metal-promoted anion-modified metal oxide catalyst contains one or more of SO{sub 4}, WO{sub 3}, or mixtures of them present between about 0.5% to about 20% by weight of the catalyst.

  5. Hydrocracking and hydroisomerization of long-chain alkanes and polyolefins over metal-promoted anion-modified transition metal oxides

    DOEpatents

    Venkatesh, Koppampatti R.; Hu, Jianli; Tierney, John W.; Wender, Irving

    2001-01-01

    A method of cracking a feedstock by contacting the feedstock with a metal-promoted anion-modified metal oxide catalyst in the presence of hydrogen gas. The metal oxide of the catalyst is one or more of ZrO.sub.2, HfO.sub.2, TiO.sub.2 and SnO.sub.2, and the feedstock is principally chains of at least 20 carbon atoms. The metal-promoted anion-modified metal oxide catalyst contains one or more of Pt, Ni, Pd, Rh, Ir, Ru, (Mn & Fe) or mixtures of them present between about 0.2% to about 15% by weight of the catalyst. The metal-promoted anion-modified metal oxide catalyst contains one or more of SO.sub.4, WO.sub.3, or mixtures of them present between about 0.5% to about 20% by weight of the catalyst.

  6. Hydrocarbon synthesis catalyst and method of preparation

    DOEpatents

    Sapienza, R.S.; Sansone, M.J.; Slegeir, W.A.R.

    1983-08-02

    A catalyst for the synthesis of hydrocarbons from carbon monoxide and hydrogen composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants. The catalyst is preferably used in dilute slurry form, which is desirable from a heat transfer standpoint. 9 figs.

  7. Hydrocarbon synthesis catalyst and method of preparation

    DOEpatents

    Sapienza, Richard S.; Sansone, Michael J.; Slegeir, William A. R.

    1983-08-02

    A catalyst for the synthesis of hydrocarbons from carbon monoxide and hydrogen composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants. The catalyst is preferably used in dilute slurry form, which is desirable from a heat transfer standpoint.

  8. R type anion channel

    PubMed Central

    Diatloff, Eugene; Peyronnet, Rémi; Colcombet, Jean; Thomine, Sébastien; Barbier-Brygoo, Hélène

    2010-01-01

    Plant genomes code for channels involved in the transport of cations, anions and uncharged molecules through membranes. Although the molecular identity of channels for cations and uncharged molecules has progressed rapidly in the recent years, the molecular identity of anion channels has lagged behind. Electrophysiological studies have identified S-type (slow) and R-type (rapid) anion channels. In this brief review, we summarize the proposed functions of the R-type anion channels which, like the S-type, were first characterized by electrophysiology over 20 years ago, but unlike the S-type, have still yet to be cloned. We show that the R-type channel can play multiple roles. PMID:21051946

  9. Reforming catalysts

    SciTech Connect

    Givens, E.N.; Plank, C.J.; Rosinski, E.J.

    1980-03-04

    Crystalline aluminosilicate zeolites are mixed with conventional reforming catalysts to produce new catalytic compositions with high catalytic activity and selectivity and excellent aging characteristics. These new catalytic compositions may be utilized alone or in conjunction with conventional reforming catalysts. The acidic activity of the total catalyst system is controlled within defined limits. When so controlled the utility of these catalyst systems in reforming hydrocarbon mixtures is to reduce the C1 and C2 concentrations in reformer gas product, while increasing the C3 and C4 concentrations and maintaining high liquid yield at high octane numbers.

  10. Graphene oxide grafted with Pd17Se15 nano-particles generated from a single source precursor as a recyclable and efficient catalyst for C-O coupling in O-arylation at room temperature.

    PubMed

    Joshi, Hemant; Sharma, Kamal Nayan; Sharma, Alpesh K; Prakash, Om; Singh, Ajai Kumar

    2013-09-04

    The Pd17Se15 nanoparticles, synthesized for the first time from a single source precursor [Pd(L)Cl2] {L = 1,3-bis(phenylselenyl)propan-2-ol} and grafted onto graphene oxide, show high catalytic activity in C-O coupling between aryl/heteroaryl chlorides/bromides and phenol at room temperature (Pd loading 1 mol%; yield up to 94%).

  11. Bimetallic Catalysts.

    ERIC Educational Resources Information Center

    Sinfelt, John H.

    1985-01-01

    Chemical reaction rates can be controlled by varying composition of miniscule clusters of metal atoms. These bimetallic catalysts have had major impact on petroleum refining, where work has involved heterogeneous catalysis (reacting molecules in a phase separate from catalyst.) Experimentation involving hydrocarbon reactions, catalytic…

  12. Oxyhydrochlorination catalyst

    DOEpatents

    Taylor, Charles E.; Noceti, Richard P.

    1992-01-01

    An improved catalyst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HCl and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride.

  13. Metallocene catalyst containing bulky organic group

    DOEpatents

    Marks, Tobin J.; Ja, Li; Yang, Xinmin

    1996-03-26

    An ionic metallocene catalyst for olefin polymerization which comprises: (1) a cyclopentadienyl-type ligand, a Group IVB transition metal, and alkyl, aryl, or hydride substituents, as a cation, and (2) a weakly coordinating anion comprising boron substituted with halogenated, such as tetra fluoro, aryl substituents preferably containing silylalkyl substitution, such as para-silyl t-butyldimethyl.

  14. Metallocene catalyst containing bulky organic group

    DOEpatents

    Marks, T.J.; Ja, L.; Yang, X.

    1996-03-26

    An ionic metallocene catalyst for olefin polymerization which comprises: (1) a cyclopentadienyl-type ligand, a Group IVB transition metal, and alkyl, aryl, or hydride substituents, as a cation, and (2) a weakly coordinating anion comprising boron substituted with halogenated, such as tetrafluoro-aryl substituents preferably containing silylalkyl substitution, such as para-silyl t-butyldimethyl.

  15. Low temperature catalysts for methanol production

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1986-09-30

    A catalyst and process useful at low temperatures (below about 160 C) and preferably in the range 80--120 C used in the production of methanol from carbon monoxide and hydrogen are disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa-M(OAc)[sub 2] where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1--6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M = Ni and R = tertiary amyl). Mo(CO)[sub 6] is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  16. Alkaline direct alcohol fuel cells using an anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Matsuoka, Koji; Iriyama, Yasutoshi; Abe, Takeshi; Matsuoka, Masao; Ogumi, Zempachi

    Alkaline direct alcohol fuel cells using an OH-form anion exchange membrane and polyhydric alcohols were studied. A high open circuit voltage of ca. 800 mV was obtained for a cell using Pt-Ru/C (anode) and Pt/C (cathode) at 323 K, which was about 100-200 mV higher than that for a DMFC using Nafion ®. The maximum power densities were in the order of ethylene glycol > glycerol > methanol > erythritol > xylitol. Silver catalysts were used as a cathode catalyst to fabricate alkaline fuel cells, since silver catalyst is almost inactive in the oxidation of polyhydric alcohols. Alkaline direct ethylene glycol fuel cells using silver as a cathode catalyst gave excellent performance because higher concentrations of fuel could be supplied to the anode.

  17. A dimeric molecular precursor [(tBuO)2Ti mu-O2Si[OSi(OtBu)3]2]2to Ti(IV)/SiO2 catalysts for selective cyclohexene epoxidation

    SciTech Connect

    Brutchey, Richard L.; Mork, Benjamin V.; Sirbuly, Donald J.; Yang, Peidong; Tilley, T. Don

    2005-04-20

    The new dimeric complex [(tBuO)2Ti({mu}-O2Si[OSi(OtBu)3]2)]2 (1), prepared via silanolysis of Ti(OtBu)4 with (HO)2Si[OSi(OtBu)3]2, is a structural and spectroscopic (NMR, FT-IR, UV-vis, XPS) model for Ti(IV)/SiO2. The molecular complex was used to prepare titanium-containing silica materials through both the thermolytic molecular precursor method (yielding TiO2{center_dot}3SiO2) or by grafting 1 onto mesoporous SBA-15 silica. Grafting 1 onto SBA-15 yields mostly isolated Ti(IV) sites, as evidenced by DRUV-vis and photoluminescence spectroscopies. The resulting materials were found to be active and highly selective in the epoxidation of cyclohexene, yielding up to 71% of cyclohexene oxide based on oxidant (cumene hydroperoxide) after 2 h at 65 C in toluene.

  18. Design of hybrid titania nanocrystallites as supports for gold catalysts.

    PubMed

    Mendez, Violaine; Caps, Valérie; Daniele, Stéphane

    2009-06-07

    Citrate-functionalized titania nanocrystallites are successfully synthesized from a heteroleptic titanium alkoxide precursor in a low temperature, hydrolytic process and used as gold catalyst supports for CO oxidation and aerobic stilbene epoxidation.

  19. Formation of carbon nanosheets via simultaneous activation and catalytic carbonization of macroporous anion-exchange resin for supercapacitors application.

    PubMed

    Peng, Hui; Ma, Guofu; Sun, Kanjun; Mu, Jingjing; Zhang, Zhe; Lei, Ziqiang

    2014-12-10

    Two-dimensional mesoporous carbon nanosheets (CNSs) have been prepared via simultaneous activation and catalytic carbonization route using macroporous anion-exchange resin (AER) as carbon precursor and ZnCl2 and FeCl3 as activating agent and catalyst, respectively. The iron catalyst in the skeleton of the AER may lead to carburization to form a sheetlike structure during the carbonization process. The obtained CNSs have a large number of mesopores, a maximum specific surface area of 1764.9 m(2) g(-1), and large pore volume of 1.38 cm(3) g(-1). As an electrode material for supercapacitors application, the CNSs electrode possesses a large specific capacitance of 283 F g(-1) at 0.5 A g(-1) and excellent rate capability (64% retention ratio even at 50 A g(-1)) in 6 mol L(-1) KOH. Furthermore, CNSs symmetric supercapacitor exhibits specific energies of 17.2 W h kg(-1) at a power density of 224 W kg(-1) operated in the voltage range of 0-1.8 V in 0.5 mol L(-1) Na2SO4 aqueous electrolyte, and outstanding cyclability (retains about 96% initial capacitance after 5000 cycles).

  20. Complex anion inclusion compounds: flexible anion-exchange materials.

    PubMed

    Williams, Edward R; Leithall, Rebecca M; Raja, Robert; Weller, Mark T

    2013-01-11

    Copper chloropyrophosphate frameworks have been synthesised with a wide variety of complex inorganic anions trapped in a large, flexible, one-dimensional pore, with anions including chloride, bromide, phosphate and the complex metal halo-anions PtCl(4)(2-), PdBr(4)(2-), CuCl(4)(2-) and AuCl(4)(-).

  1. Catalyst mixtures

    DOEpatents

    Masel, Richard I.; Rosen, Brian A.

    2017-02-14

    Catalysts that include at least one catalytically active element and one helper catalyst can be used to increase the rate or lower the overpotential of chemical reactions. The helper catalyst can simultaneously act as a director molecule, suppressing undesired reactions and thus increasing selectivity toward the desired reaction. These catalysts can be useful for a variety of chemical reactions including, in particular, the electrochemical conversion of CO.sub.2 or formic acid. The catalysts can also suppress H.sub.2 evolution, permitting electrochemical cell operation at potentials below RHE. Chemical processes and devices using the catalysts are also disclosed, including processes to produce CO, OH.sup.-, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, O.sub.2, H.sub.2, (COOH).sub.2, or (COO.sup.-).sub.2, and a specific device, namely, a CO.sub.2 sensor.

  2. Ruthenium-based olefin metathesis catalysts bearing pH-responsive ligands: External control of catalyst solubility and activity

    NASA Astrophysics Data System (ADS)

    Balof, Shawna Lynn

    2011-12-01

    Sixteen novel, Ru-based olefin metathesis catalysts bearing pH responsive ligands were synthesized. The pH-responsive groups employed with these catalysts included dimethylamino (NMe2) modified NHC ligands as well as N-donor dimethylaminopyridine (DMAP) and 3-(o-pyridyl)propylidene ligands. These pH-responsive ligands provided the means by which the solubility and/or activity profiles of the catalysts produced could be controlled via acid addition. The main goal of this dissertation was to design catalyst systems capable of performing ring opening metathesis (ROMP) and ring closing metathesis (RCM) reactions in both organic and aqueous media. In an effort to quickly gain access to new catalyst structures, a template synthesis for functionalized NHC ligand precursors was designed, in addition to other strategies, to obtain ligand precursors with ancillary NMe2 groups. Kinetic studies for the catalysts produced from these precursors showed external control of catalyst solubility was afforded via protonation of the NMe2 groups of their NHC ligands. Additionally, this protonation afforded external control of catalyst propagation rates for several catalysts. This is the first known independent external control for the propagation rates of ROMP catalysts. The incorporation of pH-responsive N-donor ligands into catalyst structures also provided the means for the external control of metathesis activity, as the protonation of these ligands resulted in an increased initiation rate based on their fast and irreversible dissociation from the metal center. The enhanced external control makes these catalysts applicable to a wide range of applications, some of which have been explored by us and/or through collaboration. Three of the catalysts designed showed remarkable metathesis activity in aqueous media. These catalysts displayed comparable RCM activity in aqueous media to a class of water-soluble catalysts reported by Grubbs et al., considered to be the most active catalyst for

  3. Photo-oxidation catalysts

    DOEpatents

    Pitts, J. Roland; Liu, Ping; Smith, R. Davis

    2009-07-14

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  4. Catalyst containing oxygen transport membrane

    DOEpatents

    Lane, Jonathan A.; Wilson, Jamie R.; Christie, Gervase Maxwell; Petigny, Nathalie; Sarantopoulos, Christos

    2017-02-07

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a microstructure exhibiting substantially uniform pore size distribution as a result of using PMMA pore forming materials or a bi-modal particle size distribution of the porous support layer materials. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  5. Catalyst containing oxygen transport membrane

    DOEpatents

    Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

    2012-12-04

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  6. Laser-activated gold catalysts for liquid-phase growth of cadmium selenide nanowires.

    PubMed

    Huang, C; Mao, J; Chen, X M; Yang, J; Du, X W

    2015-02-07

    A laser-activated-catalyst (LAC) technique was developed to grow CdSe nanowires in liquid medium at room temperature. The gold catalysts dispersed in the precursor solution were activated by a pulsed laser so as to decompose the precursor and catalyse the nanowire growth simultaneously. The LAC technique can achieve accurate positioning of nanowires, which is beneficial for device fabrication.

  7. Encapsulation of a catalytic imidazolium salt into avidin: towards the development of a biohybrid catalyst active in ionic liquids.

    PubMed

    Gauchot, Vincent; Branca, Mathieu; Schmitzer, Andreea

    2014-02-03

    Herein, we report the development of biohybrid catalysts that are capable of catalyzing the aldol reaction. The use of biotinylated imidazolium salts in combination with racemic or enantiomerically pure catalytic anions allowed us to study the adaptive and cooperative positioning of the anionic catalyst inside the protein. Supramolecular encapsulation of the biotinylated catalyst into avidin resulted in good selectivity for the aldol reaction performed in ionic liquid/water mixtures.

  8. Dependence of the single walled carbon nanotube length with growth temperature and catalyst density by chemical vapor deposition.

    PubMed

    López, Vicente; Welte, Lorena; Fernández, Miguel A; Moreno-Moreno, Miriam; Gómez-Herrero, Julio; de Pablo, Pedro J; Zamora, Félix

    2009-05-01

    We report the growth of isolated single walled carbon nanotubes (SWCNTs) on a silicon surface by chemical vapor deposition, in the temperature range from 800 to 950 degrees C using two different iron catalyst precursors, Fe(NO3)3 x 9H2O and Fe(CO)5. The results show that while for the first catalyst precursor temperature is the key factor in determining nanotube length, for the second it is the density of catalyst precursor on the surface. Solutions of Fe(CO)5 adsorbed on silicon oxide result in a suitable catalyst precursor to obtain SWCNTs of controllable diameter and with clean surfaces.

  9. Photodetachment of Lanthanide Oxide Anions

    NASA Astrophysics Data System (ADS)

    Covington, A. M.; Emmons, E. D.; Kraus, R. G.; Thompson, J. S.; Calabrese, D.; Davis, V. T.

    2007-06-01

    Laser photodetached electron spectroscopy (LPES) has been used to study the structure and collision properties of lanthanide oxide anions including LaOn^- and CeOn^-. Preliminary photoelectron spectra from these anions will be presented along with ion beam production data from these and other lanthanide oxide anions.

  10. The copper-catalysed Suzuki-Miyaura coupling of alkylboron reagents: disproportionation of anionic (alkyl)(alkoxy)borates to anionic dialkylborates prior to transmetalation.

    PubMed

    Basnet, Prakash; Thapa, Surendra; Dickie, Diane A; Giri, Ramesh

    2016-09-25

    We report the first example of Cu(I)-catalysed coupling of alkylboron reagents with aryl and heteroaryl iodides that affords products in good to excellent yields. Preliminary mechanistic studies with alkylborates indicate that the anionic (alkoxy)(alkyl)borates, generated from alkyllithium and alkoxyboron reagents, undergo disproportionation to anionic dialkylborates and that both anionic alkylborates are active for transmetalation to a Cu(I)-catalyst. Results from a radical clock experiment and the Hammett plot imply that the reaction likely proceeds via a non-radical pathway.

  11. Lignin Depolymerization with Nitrate-Intercalated Hydrotalcite Catalysts

    SciTech Connect

    Kruger, Jacob S.; Cleveland, Nicholas S.; Zhang, Shuting; Katahira, Rui; Black, Brenna A.; Chupka, Gina M.; Lammens, Tijs; Hamilton, Phillip G.; Biddy, Mary J.; Beckham, Gregg T.

    2016-01-13

    Hydrotalcites (HTCs) exhibit multiple adjustable parameters to tune catalytic activity, including interlayer anion composition, metal hydroxide layer composition, and catalyst preparation methods. Here in this paper, we report the influence of several of these parameters on β-O-4 bond scission in a lignin model dimer, 2-phenoxy-1-phenethanol (PE), to yield phenol and acetophenone. We find that the presence of both basic and NO3anions in the interlayer increases the catalyst activity by 2–3-fold. In contrast, other anions or transition metals do not enhance catalytic activity in comparison to blank HTC. The catalyst is not active for C–C bond cleavage on lignin model dimers and has no effect on dimers without an α-OH group. Most importantly, the catalyst is highly active in the depolymerization of two process-relevant lignin substrates, producing a significant amount of low-molecular-weight aromatic species. The catalyst can be recycled until the NO3anions are depleted, after which the activity can be restored by replenishing the NO3– reservoir and regenerating the hydrated HTC structure. These results demonstrate a route to selective lignin depolymerization in a heterogeneous system with an inexpensive, earth-abundant, commercially relevant, and easily regenerated catalyst.

  12. Lignin Depolymerization with Nitrate-Intercalated Hydrotalcite Catalysts

    DOE PAGES

    Kruger, Jacob S.; Cleveland, Nicholas S.; Zhang, Shuting; ...

    2016-01-13

    Hydrotalcites (HTCs) exhibit multiple adjustable parameters to tune catalytic activity, including interlayer anion composition, metal hydroxide layer composition, and catalyst preparation methods. Here in this paper, we report the influence of several of these parameters on β-O-4 bond scission in a lignin model dimer, 2-phenoxy-1-phenethanol (PE), to yield phenol and acetophenone. We find that the presence of both basic and NO3– anions in the interlayer increases the catalyst activity by 2–3-fold. In contrast, other anions or transition metals do not enhance catalytic activity in comparison to blank HTC. The catalyst is not active for C–C bond cleavage on lignin modelmore » dimers and has no effect on dimers without an α-OH group. Most importantly, the catalyst is highly active in the depolymerization of two process-relevant lignin substrates, producing a significant amount of low-molecular-weight aromatic species. The catalyst can be recycled until the NO3– anions are depleted, after which the activity can be restored by replenishing the NO3– reservoir and regenerating the hydrated HTC structure. These results demonstrate a route to selective lignin depolymerization in a heterogeneous system with an inexpensive, earth-abundant, commercially relevant, and easily regenerated catalyst.« less

  13. Heterogenization of Homogeneous Catalysts: the Effect of the Support

    SciTech Connect

    Earl, W.L.; Ott, K.C.; Hall, K.A.; de Rege, F.M.; Morita, D.K.; Tumas, W.; Brown, G.H.; Broene, R.D.

    1999-06-29

    We have studied the influence of placing a soluble, homogeneous catalyst onto a solid support. We determined that such a 'heterogenized' homogeneous catalyst can have improved activity and selectivity for the asymmetric hydrogenation of enamides to amino acid derivatives. The route of heterogenization of RhDuPhos(COD){sup +} cations occurs via electrostatic interactions with anions that are capable of strong hydrogen bonding to silica surfaces. This is a novel approach to supported catalysis. Supported RhDuPhos(COD){sup +} is a recyclable, non-leaching catalyst in non-polar media. This is one of the few heterogenized catalysts that exhibits improved catalytic performance as compared to its homogeneous analog.

  14. Hydrated hydride anion clusters

    NASA Astrophysics Data System (ADS)

    Lee, Han Myoung; Kim, Dongwook; Singh, N. Jiten; Kołaski, Maciej; Kim, Kwang S.

    2007-10-01

    On the basis of density functional theory (DFT) and high level ab initio theory, we report the structures, binding energies, thermodynamic quantities, IR spectra, and electronic properties of the hydride anion hydrated by up to six water molecules. Ground state DFT molecular dynamics simulations (based on the Born-Oppenheimer potential surface) show that as the temperature increases, the surface-bound hydride anion changes to the internally bound structure. Car-Parrinello molecular dynamics simulations are also carried out for the spectral analysis of the monohydrated hydride. Excited-state ab initio molecular dynamics simulations show that the photoinduced charge-transfer-to-solvent phenomena are accompanied by the formation of the excess electron-water clusters and the detachment of the H radical from the clusters. The dynamics of the detachment process of a hydrogen radical upon the excitation is discussed.

  15. Anion permselective membrane

    NASA Astrophysics Data System (ADS)

    Hodgdon, R. B.; Waite, W. A.; Alexander, S. S.

    1984-07-01

    Two polymer ion exchange membranes were synthesized to fulfill the needs of both electrical resistivity and anolyte/catholyte separation for utility load leveling utilizing the DOE/NASA mixed electrolyte REDOX battery. Both membranes were shown to meet mixed electrolyte utility load leveling criteria. Several modifications of an anion exchange membrane failed to meet utility load leveling REDOX battery criteria using the unmixed electrolyte REDOX cell.

  16. Anion permselective membrane

    NASA Technical Reports Server (NTRS)

    Hodgdon, R. B.; Waite, W. A.; Alexander, S. S.

    1984-01-01

    Two polymer ion exchange membranes were synthesized to fulfill the needs of both electrical resistivity and anolyte/catholyte separation for utility load leveling utilizing the DOE/NASA mixed electrolyte REDOX battery. Both membranes were shown to meet mixed electrolyte utility load leveling criteria. Several modifications of an anion exchange membrane failed to meet utility load leveling REDOX battery criteria using the unmixed electrolyte REDOX cell.

  17. Synthetic carbon precursor materials

    SciTech Connect

    Frame, B.J.

    1986-03-01

    Synthetic carbon precursor systems offer advantages over natural petroleum and coal-tar pitch precursors in that they can reproducibly provide a material with a known and uniform composition. They also permit controlled modifications of the derived carbon's properties through variations in the precursor's properties and processing conditions. Extensive research efforts at Oak Ridge have been directed toward the production and characterization of synthetic carbon precursors and the correlations that exist between carbon precursor properties and the properties of the ultimate carbon. This report describes how synthetic carbon precursors can be used to tailor and develop reproducible carbon structures for advanced materials applications. The potential and capability for performing carbon material development at Oak Ridge is also described.

  18. Highly dispersed metal catalyst

    DOEpatents

    Xiao, Xin; West, William L.; Rhodes, William D.

    2016-11-08

    A supported catalyst having an atomic level single atom structure is provided such that substantially all the catalyst is available for catalytic function. A process of forming a single atom catalyst unto a porous catalyst support is also provided.

  19. Reforming catalyst

    SciTech Connect

    Baird, W.C. Jr.; Swan, G.A.

    1991-11-19

    This patent describes a catalyst useful for reforming a naphtha feed at high severity reforming conditions. It comprises the metals, platinum, rhenium and iridium on a refractory porous inorganic oxide support, the support consisting essentially of alumina, wherein the concentration by weight of each of the metals platinum and rhenium is at least 0.1 percent and iridium at least 0.15 percent and at least one of the metals is present in a concentration of at least 0.3 percent, and the sum-total; concentration of the metals is greater than 0.9 percent, and wherein each catalyst particle contains all three of the metals platinum, rhenium and iridium. This patent also describes this composition wherein the catalyst contains from about 0.1 percent to about 3 percent of a halogen and from about 0.05 percent to about 0.02 percent sulfur.

  20. Attrition resistant bulk iron catalysts and processes for preparing and using same

    DOEpatents

    Jothimurugesan, Kandaswamy; Goodwin, Jr., James G.; Gangwal, Santosh K.

    2007-08-21

    An attrition resistant precipitated bulk iron catalyst is prepared from iron oxide precursor and a binder by spray drying. The catalysts are preferably used in carbon monoxide hydrogenation processes such as Fischer-Tropsch synthesis. These catalysts are suitable for use in fluidized-bed reactors, transport reactors and, especially, slurry bubble column reactors.

  1. Coking characteristics of reforming catalysts

    SciTech Connect

    Mieville, R.L.

    1986-08-01

    Coking rates were measured for two different ..gamma..-aluminas, each with and without platinum, under near commercial conditions using a gravimetric reactor. Coke on catalyst was characterized by a Temperature-Programmed Oxidation (TPO) technique. With a naphtha feed, coke formed on both aluminas at rates related to the respective population of ..cap alpha..-sites as measured by IR. For the corresponding Pt on alumina catalysts, coke, as measured by TPO, predominantly formed on sites associated with alumina (alumina coke), while coke associated with Pt (Pt coke), was relatively minor. With a n-heptane feed, under the same conditions, coke formation on both aluminas was much less than with the naphtha feed. However, the corresponding Pt on alumina catalysts generated comparatively more coke with a higher proportion associated with Pt. A correspondence between this proportion of Pt coke and the decline in reforming activity was observed. It is postulated that most of the coke produced during naphtha reforming with an active catalyst is formed by a reaction between ..cap alpha..-sites on alumina and certain components in the feed via a polymerization mechanism. This type of coke has minimal effect on the reforming reactivity of the catalyst. However, in n-heptane reforming, about 50% of the coke also results from precursors formed from reactions with Pt. In either case, coke associated with Pt appears to be the probable cause of deactivation. 22 references.

  2. Effects of common inorganic anions on the rates of photocatalytic degradation of sodium dodecylbenzenesulfonate over illuminated titanium dioxide.

    PubMed

    Xia, Xing-hui; Xu, Jia-lin; Yun, Ying

    2002-04-01

    Experiments were carried out to study the effects of several anions on the photocatalytic degradation rates of sodium dodecylbenzene sulphonate (DBS) with TiO2 as catalyst. The anions were added as Na2SO4, NaNO3, NaCl, NaHCO3, NaH2PO4 and Na3PO4, and two levels of anion content, i.e. 12 mmol/L and 36 mmol/L in terms of Na+, were studied. The results revealed that: Cl-, SO4(2-), NO3- and HCO3- retarded the rates of DBS degradation to different degrees; PO4(3-) increased the DBS degradation rate at low concentration and decreased the rate at high concentration; H2PO4- accelerated the rate of DBS degradation. The mechanism of the effects of anions on DBS degradation was concluded as the following three aspects: anions compete for the radicals; anions are absorbed on the surface of catalyst and block the active site of catalyst; anions added to the solution change the pH value and influence the formation of .OH radicals and the adsorption of DBS on catalyst.

  3. Cu-Ce-O mixed oxides from Ce-containing layered double hydroxide precursors: Controllable preparation and catalytic performance

    SciTech Connect

    Chang Zheng; Zhao Na; Liu Junfeng; Li Feng; Evans, David G.; Duan Xue; Forano, Claude; Roy, Marie de

    2011-12-15

    Cu/Zn/Al layered double hydroxide (LDH) precursors have been synthesized using an anion exchange method with anionic Ce complexes containing the dipicolinate (pyridine-2,6-dicarboxylate) ligand. Cu-Ce-O mixed oxides were obtained by calcination of the Ce-containing LDHs. The materials were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, thermogravimetry-differential thermal analysis, elemental analysis, and low temperature N{sub 2} adsorption/desorption measurements. The results reveal that the inclusion of Ce has a significant effect on the specific surface area, pore structure, and chemical state of Cu in the resulting Cu-Ce-O mixed metal oxides. The resulting changes in composition and structure, particularly the interactions between Cu and Ce centers, significantly enhance the activity of the Ce-containing materials as catalysts for the oxidation of phenol by hydrogen peroxide. - Graphical Abstract: Cu-Ce-O mixed oxides calcined from [Ce(dipic){sub 3}]{sup 3-}- intercalated Cu/Zn/Al layered double hydroxides were synthesized and displayed good catalytic performances in phenol oxidation due to the Cu-Ce interactions. Highlights: Black-Right-Pointing-Pointer [Ce(dipic){sub 3}]{sup 3-}-intercalated Cu/Zn/Al layered double hydroxides were synthesized. Black-Right-Pointing-Pointer Cu-Ce-O mixed oxides derivated from the LDHs were characterized as catalysts. Black-Right-Pointing-Pointer Presence of Ce influenced physicochemical property and catalytic performance. Black-Right-Pointing-Pointer Cu-Ce interaction was largely responsible for enhanced catalytic ability.

  4. Catalyst activator

    DOEpatents

    McAdon, Mark H.; Nickias, Peter N.; Marks, Tobin J.; Schwartz, David J.

    2001-01-01

    A catalyst activator particularly adapted for use in the activation of metal complexes of metals of Group 3-10 for polymerization of ethylenically unsaturated polymerizable monomers, especially olefins, comprising two Group 13 metal or metalloid atoms and a ligand structure including at least one bridging group connecting ligands on the two Group 13 metal or metalloid atoms.

  5. Polyimide Precursor Solid Residuum

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)

    2001-01-01

    A polyimide precursor solid residuum is an admixture of an aromatic dianhydride or derivative thereof and an aromatic diamine or derivative thereof plus a complexing agent, which is complexed with the admixture by hydrogen bonding. The polyimide precursor solid residuum is effectively employed in the preparation of polyimide foam and the fabrication of polyimide foam structures.

  6. Anion permselective membrane

    NASA Technical Reports Server (NTRS)

    Hodgdon, R. B.; Waite, W. A.

    1980-01-01

    The efforts on the synthesis of polymer anion redox membranes were mainly concentrated in two areas, membrane development and membrane fabrication. Membrane development covered the preparation and evaluation of experimental membranes systems with improved resistance stability and/or lower permeability. Membrane fabrication covered the laboratory scale production of prime candidate membranes in quantities of up to two hundred and sizes up to 18 inches x 18 inches (46 cm x 46 cm). These small (10 in x 11 in) and medium sized membranes were mainly for assembly into multicell units. Improvements in processing procedures and techniques for preparing such membrane sets lifted yields to over 90 percent.

  7. Mixed Anion Heterostructure Materials

    DTIC Science & Technology

    2004-10-01

    data presented Sb(g) Sb(ads) Sb(s) Kads D (1) (2)Very low + GaAs no reaction ( 3 ) kexch 33 for As2 which indicates that the...Kads D (1) (2) ( 3 ) Anion Exchange kexch (4) Isoelectronic AsSb formation Favoured by As4 +As GaAsySb1-y + Sby(s) GaSb1-y + AsSby(s) +As kiso (5...experiment implemented for this investigation provided a basis for modeling the P(g) P(ads) P(s) + GaAs Kads D (1) (2) ( 3 ) kexch (4) +P GaPyAs1-y

  8. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction

    SciTech Connect

    Chunshan, Song; Kirby, S.; Schmidt, E.

    1995-12-31

    The objective of this project is to explore bimetallic dispersed catalysts for more efficient coal liquefaction. Coal liquefaction involves cleavage of methylene, dimethylene and ether bridges connecting various aromatic units and the reactions of various oxygen functional groups. This paper describes recent results on (1) hydrodeoxygenation of O-containing polycyclic model compounds using novel organometallic catalyst precursors; and (2) activity and selectivity of dispersed Fe catalysts from organometallic and inorganic precursors for hydrocracking of 4-(1-naphthylmethyl) bibenzyl. The results showed that some iron containing catalysts have higher activity in the sulfur-free form, contrary to conventional wisdom. Adding sulfur to Fe precursors with Cp-ligands decreased the activity of the resulting catalyst. This is in distinct contrast to the cases with iron pentacarbonyl and superfine Fe{sub 2}O{sub 3}, where S addition increased their catalytic activity substantially. A positive correlation between sulfur addition and increased activity can be seen, but a reversed trend between Fe cluster size and hydrocracking conversion could be observed, for carbonyl-type Fe precursors. It is apparent that the activity and selectivity of Fe catalysts for NMBB conversion depends strongly on both the type of ligand environment, the oxidation state and the number of intermetal bonds in the molecular precursor.

  9. Method for dispersing catalyst onto particulate material

    DOEpatents

    Utz, Bruce R.; Cugini, Anthony V.

    1992-01-01

    A method for dispersing finely divided catalyst precursors onto the surface of coal or other particulate material includes the steps of forming a wet paste mixture of the particulate material and a liquid solution containing a dissolved transition metal salt, for instance a solution of ferric nitrate. The wet paste mixture is in a state of incipient wetness with all of this solution adsorbed onto the surfaces of the particulate material without the presence of free moisture. On adding a precipitating agent such as ammonia, a catalyst precursor such as hydrated iron oxide is deposited on the surfaces of the coal. The catalyst is activated by converting it to the sulfide form for the hydrogenation or direct liquefaction of the coal.

  10. Pseudorotation in fullerene anions

    NASA Astrophysics Data System (ADS)

    Dunn, Janette L.; Hands, Ian D.; Bates, Colin A.

    2007-07-01

    Jahn-Teller (JT) problems are often characterised by an adiabatic potential energy surface (APES) containing either a set of isoenergetic wells or a trough of equivalent-energy points, which may be warped by higher-order coupling terms or anisotropic effects. In all three cases, the JT effect will be dynamic. Either tunnelling between the wells or rotation (of a distortion) around the trough will restore the original symmetry of the system. This motion is referred to as pseudorotation. It should be possible to observe a JT system in a distorted geometry if measurements are made on a sufficiently short timescale. In various cubic systems, this timescale has been calculated to be the order of picoseconds. Such timescales are accessible using modern methods of ultrafast spectroscopy. Measurements of pseudorotation rates can lead to important information on the strength and nature of the JT coupling present. We will present analytical calculations that allow the rate of pseudorotation to be determined in terms of the vibronic coupling parameters. We will show how these results can be applied to E ⊗ e systems and then to the more complicated system applicable to C60- anions. This is of particular interest because of the high icosahedral symmetry of fullerene ions and also because of the many potential uses of materials containing these ions. We conclude by outlining experiments that should be capable of measuring pseudorotation in C 60 anions.

  11. Advancements in Anion Exchange Membrane Cations

    SciTech Connect

    Sturgeon, Matthew R.; Long, Hai; Park, Andrew M.; Pivovar, Bryan S.

    2015-10-15

    Anion-exchange membrane fuel cells (AME-FCs) are of increasingly popular interest as they enable the use of non-Pt fuel cell catalysts, the primary cost limitation of proton exchange membrane fuel cells. Benzyltrimethyl ammonium (BTMA) is the standard cation that has historically been utilized as the hydroxide conductor in AEMs. Herein we approach AEMs from two directions. First and foremost we study the stability of several different cations in a hydroxide solution at elevated temperatures. We specifically targeted BTMA and methoxy and nitro substituted BTMA. We've also studied the effects of adding an akyl spacer units between the ammonium cation and the phenyl group. In the second approach we use computational studies to predict stable ammonium cations, which are then synthesized and tested for stability. Our unique method to study cation stability in caustic conditions at elevated temperatures utilizes Teflon Parr reactors suitable for use under various temperatures and cation concentrations. NMR analysis was used to determine remaining cation concentrations at specific time points with GCMS analysis verifying product distribution. We then compare the experimental results with calculated modeling stabilities. Our studies show that the electron donating methoxy groups slightly increase stability (compared to that of BTMA), while the electron withdrawing nitro groups greatly decrease stability in base. These results give insight into possible linking strategies to be employed when tethering a BTMA like ammonium cation to a polymeric backbone; thus synthesizing an anion exchange membrane.

  12. Dynamic chemistry of anion recognition

    SciTech Connect

    Custelcean, Radu

    2012-01-01

    In the past 40 years, anion recognition by synthetic receptors has grown into a rich and vibrant research topic, developing into a distinct branch of Supramolecular Chemistry. Traditional anion receptors comprise organic scaffolds functionalized with complementary binding groups that are assembled by multistep organic synthesis. Recently, a new approach to anion receptors has emerged, in which the host is dynamically self-assembled in the presence of the anionic guest, via reversible bond formation between functional building units. While coordination bonds were initially employed for the self-assembly of the anion hosts, more recent studies demonstrated that reversible covalent bonds can serve the same purpose. In both cases, due to their labile connections, the molecular constituents have the ability to assemble, dissociate, and recombine continuously, thereby creating a dynamic combinatorial library (DCL) of receptors. The anionic guests, through specific molecular recognition, may then amplify (express) the formation of a particular structure among all possible combinations (real or virtual) by shifting the equilibria involved towards the most optimal receptor. This approach is not limited to solution self-assembly, but is equally applicable to crystallization, where the fittest anion-binding crystal may be selected. Finally, the pros and cons of employing dynamic combinatorial chemistry (DCC) vs molecular design for developing anion receptors, and the implications of both approaches to selective anion separations, will be discussed.

  13. Precursors to Lymphoproliferative Malignancies

    PubMed Central

    Goldin, Lynn R.; McMaster, Mary L.; Caporaso, Neil E.

    2013-01-01

    We review monoclonal B-cell lymphocytosis (MBL) as a precursor to chronic lymphocytic leukemia and monoclonal gammopathy of undetermined significance (MGUS) as a precursor to plasma cell disorders. These conditions are present in the general population and increase with age. These precursors aggregate with lymphoproliferative malignancies in families suggesting shared inheritance. MBL and MGUS may share some of the same risk factors as their related malignancies but data are limited. While these conditions are characterized by enhanced risk for the associated malignancy, the majority of individuals with these conditions do not progress to malignancy. A key focus for current work is to identify markers that predict progression to malignancy. PMID:23549397

  14. Liquefaction Of Coal With Surfactant And Disposable Catalyst

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Sharma, Pramod K.

    1996-01-01

    Fuels derived from coal more competitive with petroleum products. Improved coal-liquefaction process exploits synergistic effects of disposable iron oxide catalyst and cheap anionic surfactant. Efficiency of conversion achieved in significantly higher than efficiencies obtained with addition of either surfactant or catalyst alone. No costly pretreatment necessary, and increase in conversion achieved under processing conditions milder than those used heretofore in liquefaction of coal. Quality of distillates obtained after liquefaction in process expected superior to distillates obtained after liquefaction by older techniques.

  15. Catalyst suppliers consolidate further, offer more catalysts

    SciTech Connect

    Rhodes, A.K.

    1995-10-02

    The list of suppliers of catalysts to the petroleum refining industry has decreased by five since Oil and Gas Journal`s survey of refining catalysts and catalytic additives was last published. Despite the consolidation, the list of catalyst designations has grown to about 950 in this latest survey, compared to 820 listed in 1993. The table divides the catalysts by use and gives data on their primary differentiating characteristics, feedstock, products, form, bulk density,catalyst support, active agents, availability, and manufactures.

  16. Hydrocracking catalyst

    SciTech Connect

    Arias, B.; Galiasso, R.; Kum, H.

    1985-02-12

    The invention relates to a particular method for the preparation of a hydrocracking catalyst, using a high iron content bauxite as a basis. This bauxite is ground and screened to a specific size and mixed with three types of additives: a promoter additive of the P, Mo, Co, Ni, W type. A hardener additive of the phosphoric acid type, ammonium phosphate. And a lubricant and pore-generating additive of the polyvinyl alcohol, polyethylene-glycol, starch type. The particularity consists in that the three additives are added simultaneously during the extrusion of the sample. That way, a particular surface composition is obtained which allows for the activity of the catalyst. Extruded products are obtained in sizes of 1/8, 1/16, and 1/32'' and submitted to drying and calcination programs for their activation. The obtained catalyst offers a good mechanical strength, a high content in macropores and a high activity, specifically for the hydrocracking of heavy Venezuelan crudes or residues.

  17. Earthquakes: hydrogeochemical precursors

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Manga, Michael

    2014-01-01

    Earthquake prediction is a long-sought goal. Changes in groundwater chemistry before earthquakes in Iceland highlight a potential hydrogeochemical precursor, but such signals must be evaluated in the context of long-term, multiparametric data sets.

  18. Anion permselective membrane

    NASA Technical Reports Server (NTRS)

    Alexander, S.; Hodgdon, R. B.

    1977-01-01

    The objective of NAS 3-20108 was the development and evaluation of improved anion selective membranes useful as efficient separators in a redox power storage cell system being constructed. The program was divided into three parts, (a) optimization of the selected candidate membrane systems, (b) investigation of alternative membrane/polymer systems, and (c) characterization of candidate membranes. The major synthesis effort was aimed at improving and optimizing as far as possible each candidate system with respect to three critical membrane properties essential for good redox cell performance. Substantial improvements were made in 5 candidate membrane systems. The critical synthesis variables of cross-link density, monomer ratio, and solvent composition were examined over a wide range. In addition, eight alternative polymer systems were investigated, two of which attained candidate status. Three other alternatives showed potential but required further research and development. Each candidate system was optimized for selectivity.

  19. Organic Anion Transporting Polypeptides

    PubMed Central

    Stieger, Bruno; Hagenbuch, Bruno

    2013-01-01

    Organic anion transporting polypeptides or OATPs are central transporters in the disposition of drugs and other xenobiotics. In addition, they mediate transport of a wide variety of endogenous substrates. The critical role of OATPs in drug disposition has spurred research both in academia and in the pharmaceutical industry. Translational aspects with clinical questions are the focus in academia, while the pharmaceutical industry tries to define and understand the role these transporters play in pharmacotherapy. The present overview summarizes our knowledge on the interaction of food constituents with OATPs, and on the OATP transport mechanisms. Further, it gives an update on the available information on the structure-function relationship of the OATPs, and finally, covers the transcriptional and posttranscriptional regulation of OATPs. PMID:24745984

  20. Anion transport and supramolecular medicinal chemistry.

    PubMed

    Gale, Philip A; Davis, Jeffery T; Quesada, Roberto

    2017-04-05

    New approaches to the transmembrane transport of anions are discussed in this review. Advances in the design of small molecule anion carriers are reviewed in addition to advances in the design of synthetic anion channels. The application of anion transporters to the potential future treatment of disease is discussed in the context of recent findings on the selectivity of anion transporters.

  1. Combinatorial Optimization of Heterogeneous Catalysts Used in the Growth of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Cassell, Alan M.; Verma, Sunita; Delzeit, Lance; Meyyappan, M.; Han, Jie

    2000-01-01

    Libraries of liquid-phase catalyst precursor solutions were printed onto iridium-coated silicon substrates and evaluated for their effectiveness in catalyzing the growth of multi-walled carbon nanotubes (MWNTs) by chemical vapor deposition (CVD). The catalyst precursor solutions were composed of inorganic salts and a removable tri-block copolymer (EO)20(PO)70(EO)20 (EO = ethylene oxide, PO = propylene oxide) structure-directing agent (SDA), dissolved in ethanol/methanol mixtures. Sample libraries were quickly assayed using scanning electron microscopy after CVD growth to identify active catalysts and CVD conditions. Composition libraries and focus libraries were then constructed around the active spots identified in the discovery libraries to understand how catalyst precursor composition affects the yield, density, and quality of the nanotubes. Successful implementation of combinatorial optimization methods in the development of highly active, carbon nanotube catalysts is demonstrated, as well as the identification of catalyst formulations that lead to varying densities and shapes of aligned nanotube towers.

  2. Resonant spectra of quadrupolar anions

    NASA Astrophysics Data System (ADS)

    Fossez, K.; Mao, Xingze; Nazarewicz, W.; Michel, N.; Garrett, W. R.; Płoszajczak, M.

    2016-09-01

    In quadrupole-bound anions, an extra electron is attached at a sufficiently large quadrupole moment of a neutral molecule, which is lacking a permanent dipole moment. The nature of the bound states and low-lying resonances of such anions is of interest for understanding the threshold behavior of open quantum systems in general. In this work, we investigate the properties of quadrupolar anions as halo systems, the formation of rotational bands, and the transition from a subcritical to supercritical electric quadrupole moment. We solve the electron-plus-rotor problem using a nonadiabatic coupled-channel formalism by employing the Berggren ensemble, which explicitly contains bound states, narrow resonances, and the scattering continuum. The rotor is treated as a linear triad of point charges with zero monopole and dipole moments and nonzero quadrupole moment. We demonstrate that binding energies and radii of quadrupolar anions strictly follow the scaling laws for two-body halo systems. Contrary to the case of dipolar anions, ground-state band of quadrupolar anions smoothly extend into the continuum, and many rotational bands could be identified above the detachment threshold. We study the evolution of a bound state of an anion as it dives into the continuum at a critical quadrupole moment and we show that the associated critical exponent is α =2 . Everything considered, quadrupolar anions represent a perfect laboratory for the studies of marginally bound open quantum systems.

  3. Novel Fragmentation Pathways of Anionic Adducts of Steroids Formed by Electrospray Anion Attachment Involving Regioselective Attachment, Regiospecific Decompositions, Charge-Induced Pathways, and Ion-Dipole Complex Intermediates

    NASA Astrophysics Data System (ADS)

    Rannulu, Nalaka S.; Cole, Richard B.

    2012-09-01

    The analysis of several bifunctional neutral steroids, 5-α-pregnane diol (5-α-pregnane-3α-20βdiol), estradiol (3,17α-dihydroxy-1,3,5(10)-estratriene), progesterone (4-pregnene-3,20-dione), lupeol (3β-hydroxy-20(29)-lupene), pregnenolone (5-pregnen-3β-ol-20-one), and pregnenolone acetate (5-pregnen-3β-ol-20-one acetate) was accomplished by negative ion electrospray mass spectrometry (ESI-MS) employing adduct formation with various anions: fluoride, bicarbonate, acetate, and chloride. Fluoride yielded higher abundances of anionic adducts and more substantial abundances of deprotonated molecules compared with other investigated anions. Collision-induced dissociation (CID) of precursor [M + anion]- adducts of these steroids revealed that fluoride adduct [M + F]- precursors first lose HF to produce [M - H]- and then undergo consecutive decompositions to yield higher abundances of structurally-informative product ions than the other tested anions. In addition to charge-remote fragmentations, the majority of CID pathways of estradiol are deduced to occur via charge-induced fragmentation. Most interestingly, certain anions exhibit preferential attachment to a specific site on these bifunctional steroid molecules, which we are calling "regioselective anion attachment." Regioselective anion attachment is evidenced by subsequent regiospecific decomposition. Regioselective attachment of fluoride (and acetate) anions to low (and moderate) acidity functional groups of pregnenolone, respectively, is demonstrated using deuterated compounds. Moreover, the formation of unique intermediate ion-dipole complexes leading to novel fragmentation pathways of fluoride adducts of pregnenolone acetate, and bicarbonate adducts of d4-pregnenolone, are also discussed.

  4. New catalysts for coal liquefaction and new nanocrystalline catalysts synthesis methods

    SciTech Connect

    Linehan, J.C.; Matson, D.W.; Darab, J.G.

    1994-09-01

    The use of coal as a source of transportation fuel is currently economically unfavorable due to an abundant world petroleum supply and the relatively high cost of coal liquefaction. Consequently, a reduction in the cost of coal liquefaction, for example by using less and/or less costly catalysts or lower liquefaction temperatures, must be accomplished if coal is to play an significant role as a source of liquid feedstock for the petrochemical industry. The authors and others have investigated the applicability of using inexpensive iron-based catalysts in place of more costly and environmentally hazardous metal catalysts for direct coal liquefaction. Iron-based catalysts can be effective in liquefying coal and in promoting carbon-carbon bond cleavage in model compounds. The authors have been involved in an ongoing effort to develop and optimize iron-based powders for use in coal liquefaction and related petrochemical applications. Research efforts in this area have been directed at three general areas. The authors have explored ways to optimize the effectiveness of catalyst precursor species through use of nanocrystalline materials and/or finely divided powders. In this effort, the authors have developed two new nanophase material production techniques, Modified Reverse Micelle (MRM) and the Rapid Thermal Decomposition of precursors in Solution (RTDS). A second effort has been aimed at optimizing the effectiveness of catalysts by variations in other factors. To this, the authors have investigated the effect that the crystalline phase has on the capacity of iron-based oxide and oxyhydroxide powders to be effectively converted to an active catalyst phase under liquefaction conditions. And finally, the authors have developed methods to produce active catalyst precursor powders in quantities sufficient for pilot-scale testing. Major results in these three areas are summarized.

  5. Ceramic catalyst materials

    SciTech Connect

    Sault, A.G.; Gardner, T.J.; Hanprasopwattanna, A.; Reardon, J.; Datye, A.K.

    1995-08-01

    Hydrous titanium oxide (HTO) ion-exchange materials show great potential as ceramic catalyst supports due to an inherently high ion-exchange capacity which allows facile loading of catalytically active transition metal ions, and an ability to be cast as thin films on virtually any substrate. By coating titania and HTO materials onto inexpensive, high surface area substrates such as silica and alumina, the economics of using these materials is greatly improved, particularly for the HTO materials, which are substantially more expensive in the bulk form than other oxide supports. In addition, the development of thin film forms of these materials allows the catalytic and mechanical properties of the final catalyst formulation to be separately engineered. In order to fully realize the potential of thin film forms of titania and HTO, improved methods for the deposition and characterization of titania and HTO films on high surface area substrates are being developed. By varying deposition procedures, titania film thickness and substrate coverage can be varied from the submonolayer range to multilayer thicknesses on both silica and alumina. HTO films can also be formed, but the quality and reproducibility of these films is not nearly as good as for pure titania films. The films are characterized using a combination of isopropanol dehydration rate measurements, point of zero charge (PZC) measurements, BET surface area, transmission electron microscopy (TEM), and elemental analysis. In order to assess the effects of changes in film morphology on catalytic activity, the films are being loaded with MoO{sub 3} using either incipient wetness impregnation or ion-exchange of heptamolybdate anions followed by calcining. The MoO{sub 3} is then sulfided to form MOS{sub 2}, and tested for catalytic activity using pyrene hydrogenation and dibenzothiophene (DBT) desulfurization, model reactions that simulate reactions occurring during coal liquefaction.

  6. Bound Anionic States of Aadenine

    SciTech Connect

    Haranczyk, Maciej; Gutowski, Maciej S.; Li, Xiang; Bowen, Kit H.

    2007-03-20

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases are thought to be adiabatically unbound. Contrary to this expectation,wehave demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the newfound anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The new valence states observed here, unlike the dipole-bound state, could exist in condensed phases and might be relevant to radiobiological damage. The discovery of these valence anionic states of adenine was facilitated by the development of (i) an experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a combinatorial/quantum chemical approach for identification of the most stable tautomers of organic molecules.

  7. Bound Anionic States of Adenine

    SciTech Connect

    Haranczyk, Maciej; Gutowski, Maciej S.; Li, Xiang; Bowen, Kit H.

    2007-03-20

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the newfound anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The new valence states observed here, unlike the dipole-bound state, could exist in condensed phases and might be relevant to radiobiological damage. The discovery of these valence anionic states of adenine was facilitated by the development of (i) an experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (it) a combinatorial/quantum chemical approach for identification of the most stable tautomers of organic molecules.

  8. Treatment of disinfection by-product precursors.

    PubMed

    Bond, T; Goslan, E H; Parsons, S A; Jefferson, B

    2011-01-01

    Formation of harmful disinfection by-products (DBPs), of which trihalomethanes (THMs) and haloacetic acids (HAAs) are the major groups, can be controlled by removal of natural organic matter (NOM) before disinfection. In the literature, removal of precursors is variable, even with the same treatment. The treatment of DBP precursors and NOM was examined with the intention of outlining precursor removal strategies for various water types. Freundlich adsorption parameters and hydroxyl rate constants were collated from the literature to link treatability by activated carbon and advanced oxidation processes (AOPs), respectively, to physico-chemical properties. Whereas hydroxyl rate constants did not correlate meaningfully with any property, a moderate correlation was found between Freundlich parameters and log K(ow), indicating activated carbon will preferentially adsorb hydrophobic NOM. Humic components of NOM are effectively removed by coagulation, and, where they are the principal precursor source, coagulation may be sufficient to control DBPs. Where humic species remaining post-coagulation retain significant DBP formation potential (DBPFP), activated carbon is deemed a suitable process selection. Anion exchange is an effective treatment for transphilic species, known for high carboxylic acid functionality, and consequently is recommended for carboxylic acid precursors. Amino acids have been linked to HAA formation and are important constituents of algal organic matter. Amino acids are predicted to be effectively removed by biotreatment and nanofiltration. Carbohydrates have been found to reach 50% of NOM in river waters. If the carbohydrates were to pose a barrier to successful DBP control, additional treatment stages such as nanofiltration are likely to be required to reduce their occurrence.

  9. Attrition resistant fluidizable reforming catalyst

    DOEpatents

    Parent, Yves O.; Magrini, Kim; Landin, Steven M.; Ritland, Marcus A.

    2011-03-29

    A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.

  10. Anion-exchange nanospheres as titration reagents for anionic analytes.

    PubMed

    Zhai, Jingying; Xie, Xiaojiang; Bakker, Eric

    2015-08-18

    We present here anion-exchange nanospheres as novel titration reagents for anions. The nanospheres contain a lipophilic cation for which the counterion is initially Cl(-). Ion exchange takes place between Cl(-) in the nanospheres and a more lipophilic anion in the sample, such as ClO4(-) and NO3(-). Consecutive titration in the same sample solution for ClO4(-) and NO3(-) were demonstrated. As an application, the concentration of NO3(-) in spinach was successfully determined using this method.

  11. Anion selectivity in biological systems.

    PubMed

    Wright, E M; Diamond, J M

    1977-01-01

    As background for appreciating the still-unsolved problems of monovalent anion selectivity, we summarize the facts and intepretations that seem reasonably well established. In section II we saw that specific effects of monovalent anions on biological and physical systems define qualitative patterns, in that only certain sequences of anion effects are observed. For example, the 4 halides can be permitted on paper as 4! = 24 sequences, yet only 5 of these sequences have been observed in nature as potency sequences. In addition, there are quantitative regularities in anion potency that permit the construction of so-called empirical selectivity isotherms (Figs. 4 and 13). That is, a given potency sequence is found to be associated with only a certain modest range of selectivity ratios. The sequences and isotherms apply to effects with a nonequilibrium component (e.g., permeability and conductance sequences) as well as to purely equilibrium effects. Since students of cation selectivity have had difficulty accepting this conclusion, we discuss the reasons why it is not as paradoxical as it at first seems. In sections III and IV we develop four theoretical models to account for the observed anion potency sequences as sequences of equilibrium binding energies. Two of these models involve calculation of electrostatic binding energies between anions and monopolar or dipolar cationic sites, assuming anions as well as sites to be rigid and nonpolarizable. The other two models use thermochemically measured binding energies between anions and thealkali cations or occasionally alkaline-earth cations, which in fact approximate rigid, nonpolarizable spheres. All four models consider the anion selectivity pattern of a given cationic site to be determined by anion differences in the balance between hydration energies and ion-site binding energies. Site differences in anion selectivity pattern are attributed to site differences in radius, charge, coordination number, or dipole length

  12. Composite catalysts supported on modified carbon substrates and methods of making the same

    DOEpatents

    Popov, Branko N.; Subramanian, Nalini; Colon-Mercado, Hector R.

    2009-11-17

    A method of producing a composite carbon catalyst is generally disclosed. The method includes oxidizing a carbon precursor (e.g., carbon black). Optionally, nitrogen functional groups can be added to the oxidized carbon precursor. Then, the oxidized carbon precursor is refluxed with a non-platinum transitional metal precursor in a solution. Finally, the solution is pyrolyzed at a temperature of at least about 500.degree. C.

  13. Can Ni phosphides become viable hydroprocessing catalysts?

    SciTech Connect

    Soled, S.; Miseo, S.; Baumgartner, J.; Guzman, J.; Bolin, T.; Meyer, R.

    2015-05-15

    We prepared higher surface area nickel phosphides than are normally found by reducing nickel phosphate. To do this, we hydrothermally synthesized Ni hydroxy phosphite precursors with low levels of molybdenum substitution. The molybdenum substitution increases the surface area of these precursors. During pretreatment in a sulfiding atmosphere (such as H2S/H2) dispersed islands of MoS2 segregate from the precursor and provide a pathway for H2 dissociation that allows reduction of the phosphite precursor to nickel phosphide at substantially lower temperatures than in the absence of MoS2. The results reported here show that to create nickel phosphides with comparable activity to conventional supported sulfide catalysts, one would have to synthesize the phosphide with surface areas exceeding 400 m2/g (i.e. with nanoparticles less than 30 Å in lateral dimension).

  14. Cracking catalyst

    SciTech Connect

    Otterstedt, J. E. A.; Jaras, S. G.; Pudas, R.; Upson, L. L.

    1985-05-07

    A cracking catalyst having good resistance to metal poisoning has at least two particle fractions of different particle sizes, the cracking catalyzing zeolite material being concentrated to the coarser particle size fractions, and the finer particle size fractions being formed from material having relatively lower or no or insignificant cracking catalyzing activity. The particles of the finer particle size fractions have a matrix of kaolin and amorphous alumina--silica and may contain for example, an SO /SUB x/ eliminating additive such as Al/sub 2/O/sub 3/, CaO and/or MgO. The coarser particle size fractions having cracking catalyzing effect have a mean particle size of from 80 to 125 ..mu..m and the finer particle size fractions a mean particle size of from 30 to 75 ..mu..m. The coarser particle size fractions have a zeolite content of at least 20 weight % and may have a zeolite content of up to 100 weight %, the remainder consisting essentially of material which has relatively lower or no or insignificant cracking-catalyzing activity and which consists of kaolin and amorphous alumina-silica. The catalyst mass as a whole may have a zeolite content of up to 50 weight %.

  15. Fischer–Tropsch Synthesis: Characterization Rb Promoted Iron Catalyst

    SciTech Connect

    Sarkar,A.; Jacobs, G.; Ji, Y.; Hamdeh, H.; Davis, B.

    2008-01-01

    Rubidium promoted iron Fischer-Tropsch synthesis (FTS) catalysts were prepared with two Rb/Fe atomic ratios (1.44/100 and 5/100) using rubidium nitrate and rubidium carbonate as rubidium precursors. Results of catalytic activity and deactivation studies in a CSTR revealed that rubidium promoted catalysts result in a steady conversion with a lower deactivation rate than that of the corresponding unpromoted catalyst although the initial activity of the promoted catalyst was almost half that of the unpromoted catalyst. Rubidium promotion results in lower methane production, and higher CO2, alkene and 1-alkene fraction in FTS products. M{umlt o}ssbauer spectroscopic measurements of CO activated and working catalyst samples indicated that the composition of the iron carbide phase formed after carbidization was -Fe5 C2 for both promoted and unpromoted catalysts. However, in the case of the rubidium promoted catalyst, '-Fe2.2C became the predominant carbidic phase as FTS continued and the overall catalyst composition remained carbidic in nature. In contrast, the carbide content of the unpromoted catalyst was found to decline very quickly as a function of synthesis time. Results of XANES and EXAFS measurements suggested that rubidium was present in the oxidized state and that the compound most prevalent in the active catalyst samples closely resembled that of rubidium carbonate.

  16. Organic solvent soluble oxide supported hydrogenation catalyst precursors

    DOEpatents

    Edlund, David J.; Finke, Richard G.; Saxton, Robert J.

    1992-01-01

    The present invention discloses two polyoxoanion supported metal complexes found to be useful in olefin hydrogenation. The complexes are novel compositions of matter which are soluble in organic solvents. In particular, the compositions of matter comprise A.sub.x [L.sub.n Ir.sup.(I) .multidot.X.sub.2 M.sub.15 M'.sub.3 O.sub.62 ].sup.x- and A.sub.y [L.sub.n Ir.sup.(I) .multidot.X.sub.2 M.sub.9 M'.sub.3 O.sub.40 ].sup.y- where L is a ligand preferably chosen from 1,5-cyclooctadiene (COD), ethylene, cyclooctene, norbornadiene and other olefinic ligands; n=1 or 2 depending upon the number of double bonds present in the ligand L; X is a "hetero" atom chosen from B, Si, Ge, P, As, Se, Te, I, Co, Mn and Cu; M is either W or Mo; M' is preferably Nb or V but Ti, Zr, Ta, Hf are also useful; and A is a countercation preferably selected from tetrabutyl ammonium and alkali metal ions.

  17. Synthesis and Hydrodeoxygenation Properties of Ruthenium Phosphide Catalysts

    SciTech Connect

    Bowker, Richard H.; Smith, Mica C.; Pease, Melissa; Slenkamp, Karla M.; Kovarik, Libor; Bussell, Mark E.

    2011-07-01

    Ru2P/SiO2 and RuP/SiO2 catalysts were prepared by the temperature-programmed reduction (TPR) of uncalcined precursors containing hypophosphite ion (H2PO2-) as the phosphorus source. The Ru2P/SiO2 and RuP/SiO2 catalysts had small average particle sizes (~4 nm) and high CO chemisorption capacities (90-110 umol/g). The Ru phosphide catalysts exhibited similar or higher furan (C4H4O) hydrodeoxygenation (HDO) activities than did a Ru/SiO2 catalyst, and the phosphide catalysts favored C4 hydrocarbon products while the Ru metal catalyst produced primarily C3 hydrocarbons.

  18. Anion transporters and biological systems.

    PubMed

    Gale, Philip A; Pérez-Tomás, Ricardo; Quesada, Roberto

    2013-12-17

    In this Account, we discuss the development of new lipid bilayer anion transporters based on the structure of anionophoric natural products (the prodigiosins) and purely synthetic supramolecular systems. We have studied the interaction of these compounds with human cancer cell lines, and, in general, the most active anion transporter compounds possess the greatest anti-cancer properties. Initially, we describe the anion transport properties of synthetic molecules that are based on the structure of the family of natural products known as the prodiginines. Obatoclax, for example, is a prodiginine derivative with an indole ring that is currently in clinical trials for use as an anti-cancer drug. The anion transport properties of the compounds were correlated with their toxicity toward small cell human lung cancer GLC4 cells. We studied related compounds with enamine moieties, tambjamines, that serve as active transporters. These molecules and others in this series could depolarize acidic compartments within GLC4 cells and trigger apoptosis. In a study of the variation of lipophilicity of a series of these compounds, we observed that, as log P increases, the anion transport efficiency reaches a peak and then decreases. In addition, we discuss the anion transport properties of series of synthetic supramolecular anion receptor species. We synthesized trisureas and thioureas based on the tren backbone, and found that the thiourea compounds effectively transport anions. Fluorination of the pendant phenyl groups in this series of compounds greatly enhances the transport properties. Similar to our earlier results, the most active anion transporters reduced the viability of human cancer cell lines by depolarizing acidic compartments in GLC4 cells and triggering apoptosis. In an attempt to produce simpler transporters that obey Lipinski's Rule of Five, we synthesized simpler systems containing a single urea or thiourea group. Once again the thiourea systems, and in particular

  19. Photocatalytic Anion Oxidation and Applications in Organic Synthesis.

    PubMed

    Hering, Thea; Meyer, Andreas Uwe; König, Burkhard

    2016-08-19

    Ions and radicals of the same kind differ by one electron only. The oxidation of many stable inorganic anions yields their corresponding highly reactive radicals, and visible light excitable photocatalysts can provide the required oxidation potential for this transformation. Air oxygen serves as the terminal oxidant, or cheap sacrificial oxidants are used, providing a very practical approach for generating reactive inorganic radicals for organic synthesis. We discuss in this perspective several recently reported examples: Nitrate radicals are obtained by one-electron photooxidation of nitrate anions and are very reactive toward organic molecules. The photooxidation of sulfinate salts yields the much more stable sulfone radicals, which smoothly add to double bonds. A two-electron oxidation of chloride anions to electrophilic chlorine species reacting with arenes in aromatic substitutions extends the method beyond radical reactions. The chloride anion oxidation proceeds via photocatalytically generated peracidic acid as the oxidation reagent. Although the number of reported examples of photocatalytically generated inorganic radical intermediates for organic synthesis is still small, future extension of the concept to other inorganic ions as radical precursors is a clear perspective.

  20. Indirect synthesis of Al{sub 2}O{sub 3}via radiation- or photochemical formation of its hydrated precursors

    SciTech Connect

    Barta, Jan Pospisil, Milan; Cuba, Vaclav

    2014-01-01

    Graphical abstract: - Highlights: • Al{sub 2}O{sub 3} precursors were produced by UV/e-beam irradiation of aqueous solutions. • Depending on the aluminium salt (Cl{sup −} or NO{sub 3}{sup −}), either γ-AlOOH or Al(OH){sub 3} is formed. • The mechanism involved strongly depends on the presence of formate anion. • Prepared mesoporous solid phase has high specific surface area (<190 m{sup 2} g{sup −1}). • Calcination of the precursor leads to the formation of γ-/η-, θ- and α-Al{sub 2}O{sub 3}. - Abstract: γ-, θ- and α-modifications of aluminium oxide (alumina) were successfully prepared by calcination of precursor solid phase obtained by irradiation of clear aqueous solutions by UV light or electron beam. For the precipitate to form, formate anion must be present in the solution in sufficient concentration. According to X-ray diffraction, the precipitate was found to consist of γ-AlOOH or a mixture of γ- and α-Al(OH){sub 3}, when aluminium chloride or aluminium nitrate was used, respectively. The addition of hydrogen peroxide as a ·OH radical source and sensitizer markedly improved the efficiency of the preparation. Some hints for the apparently very complex mechanism involved were listed and discussed. Calcination of the dried precipitate at 500–800 °C produced highly porous γ-alumina with high specific surface area (ca. 150 m{sup 2} g{sup −1}). Mixture of γ- and θ-transition aluminas was obtained at 1000 °C and pure, stable corundum α-Al{sub 2}O{sub 3} formed at 1200 °C. Samples were further investigated by means of scanning electron microscopy and specific surface area or porosity measurement. According to N{sub 2} adsorption isotherm, the precipitate contains mostly mesopores with average pore size 7 nm with specific surface area of ca. 100 m{sup 2} g{sup −1}. Possible applications of the material as sorbent or catalyst as well as a pure matrix for thermoluminescence dosimetry were briefly contemplated. Strong light

  1. Amorphous molybdenum sulfides as hydrogen evolution catalysts.

    PubMed

    Morales-Guio, Carlos G; Hu, Xile

    2014-08-19

    Providing energy for a population projected to reach 9 billion people within the middle of this century is one of the most pressing societal issues. Burning fossil fuels at a rate and scale that satisfy our near-term demand will irreversibly damage the living environment. Among the various sources of alternative and CO2-emission-free energies, the sun is the only source that is capable of providing enough energy for the whole world. Sunlight energy, however, is intermittent and requires an efficient storage mechanism. Sunlight-driven water splitting to make hydrogen is widely considered as one of the most attractive methods for solar energy storage. Water splitting needs a hydrogen evolution catalyst to accelerate the rate of hydrogen production and to lower the energy loss in this process. Precious metals such as Pt are superior catalysts, but they are too expensive and scarce for large-scale applications. In this Account, we summarize our recent research on the preparation, characterization, and application of amorphous molybdenum sulfide catalysts for the hydrogen evolution reaction. The catalysts can be synthesized by electrochemical deposition under ambient conditions from readily available and inexpensive precursors. The catalytic activity is among the highest for nonprecious catalysts. For example, at a loading of 0.2 mg/cm(2), the optimal catalyst delivers a current density of 10 mA/cm(2) at an overpotential of 160 mV. The growth mechanism of the electrochemically deposited film catalysts was revealed by an electrochemical quartz microcrystal balance study. While different electrochemical deposition methods produce films with different initial compositions, the active catalysts are the same and are identified as a "MoS(2+x)" species. The activity of the film catalysts can be further promoted by divalent Fe, Co, and Ni ions, and the origins of the promotional effects have been probed. Highly active amorphous molybdenum sulfide particles can also be prepared

  2. Electrochemical catalyst recovery method

    DOEpatents

    Silva, Laura J.; Bray, Lane A.

    1995-01-01

    A method of recovering catalyst material from latent catalyst material solids includes: a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications.

  3. Electrochemical catalyst recovery method

    DOEpatents

    Silva, L.J.; Bray, L.A.

    1995-05-30

    A method of recovering catalyst material from latent catalyst material solids includes: (a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; (b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; (c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and (d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications. 3 figs.

  4. Anion exchange polymer electrolytes

    DOEpatents

    Kim, Yu Seung; Kim, Dae Sik; Lee, Kwan-Soo

    2013-07-23

    Solid anion exchange polymer electrolytes and compositions comprising chemical compounds comprising a polymeric core, a spacer A, and a guanidine base, wherein said chemical compound is uniformly dispersed in a suitable solvent and has the structure: ##STR00001## wherein: i) A is a spacer having the structure O, S, SO.sub.2, --NH--, --N(CH.sub.2).sub.n, wherein n=1-10, --(CH.sub.2).sub.n--CH.sub.3--, wherein n=1-10, SO.sub.2-Ph, CO-Ph, ##STR00002## wherein R.sub.5, R.sub.6, R.sub.7 and R.sub.8 each are independently --H, --NH.sub.2, F, Cl, Br, CN, or a C.sub.1-C.sub.6 alkyl group, or any combination of thereof; ii) R.sub.9, R.sub.10, R.sub.11, R.sub.12, or R.sub.13 each independently are --H, --CH.sub.3, --NH.sub.2, --NO, --CH.sub.nCH.sub.3 where n=1-6, HC.dbd.O--, NH.sub.2C.dbd.O--, --CH.sub.nCOOH where n=1-6, --(CH.sub.2).sub.n--C(NH.sub.2)--COOH where n=1-6, --CH--(COOH)--CH.sub.2--COOH, --CH.sub.2--CH(O--CH.sub.2CH.sub.3).sub.2, --(C.dbd.S)--NH.sub.2, --(C.dbd.NH)--N--(CH.sub.2).sub.nCH.sub.3, where n=0-6, --NH--(C.dbd.S)--SH, --CH.sub.2--(C.dbd.O)--O--C(CH.sub.3).sub.3, --O--(CH.sub.2).sub.n--CH--(NH.sub.2)--COOH, where n=1-6, --(CH.sub.2).sub.n--CH.dbd.CH wherein n=1-6, --(CH.sub.2).sub.n--CH--CN wherein n=1-6, an aromatic group such as a phenyl, benzyl, phenoxy, methylbenzyl, nitrogen-substituted benzyl or phenyl groups, a halide, or halide-substituted methyl groups; and iii) wherein the composition is suitable for use in a membrane electrode assembly.

  5. Bound anionic states of adenine

    SciTech Connect

    Haranczyk, Maciej; Gutowski, Maciej S; Li, Xiang; Bowen, Kit H

    2007-03-20

    Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases, are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the new-found anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The discovery of these valence anionic states of adenine was facilitated by the development of: (i) a new experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a new combinatorial/ quantum chemical approach for identification of the most stable tautomers of organic molecules. The computational portion of this work was supported by the: (i) Polish State Committee for Scientific Research (KBN) Grants: DS/8000-4-0140-7 (M.G.) and N204 127 31/2963 (M.H.), (ii) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.), and (iii) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic

  6. Low temperature catalysts for methanol production

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1985-03-12

    A catalyst and process useful at low temperatures (below about 160/sup 0/C) and preferably in the range 80 to 120/sup 0/C used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH-RONa-M(OAc)/sub 2/ where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1 to 6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M = Ni and R = tertiary amyl). Mo(CO)/sub 6/ is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  7. Low temperature catalysts for methanol production

    DOEpatents

    Sapienza, Richard S.; Slegeir, William A.; O'Hare, Thomas E.; Mahajan, Devinder

    1986-01-01

    A catalyst and process useful at low temperatures (below about 160.degree. C.) and preferably in the range 80.degree.-120.degree. C. used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa--M(OAc).sub.2 where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1-6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M=Ni and R=tertiary amyl). Mo(CO).sub.6 is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  8. Low temperature catalysts for methanol production

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1986-10-28

    A catalyst and process useful at low temperatures (below about 160 C) and preferably in the range 80--120 C used in the production of methanol from carbon monoxide and hydrogen are disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa-M(OAc)[sub 2] where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1-6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is NiC (where M = Ni and R = tertiary amyl). Mo(CO)[sub 6] is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  9. Supported catalysts using nanoparticles as the support material

    DOEpatents

    Wong, Michael S.; Wachs, Israel E.; Knowles, William V.

    2010-11-02

    A process for making a porous catalyst, comprises a) providing an aqueous solution containing a nanoparticle precursor, b) forming a composition containing nanoparticles, c) adding a first catalytic component or precursor thereof and a pore-forming agent to the composition containing nanoparticles and allowing the first catalytic component, the pore-forming agent, and the nanoparticles form an organic-inorganic structure, d) removing water from the organic-inorganic structure; and e) removing the pore-forming agent from the organic-inorganic structure so as to yield a porous catalyst.

  10. Support chemistry, surface area, and preparation effects on sulfided NiMo catalyst activity

    SciTech Connect

    Gardner, T.J.; McLaughlin, L.I.; Sandoval, R.S.

    1996-06-01

    Hydrous Metal Oxides (HMOs) are chemically synthesized materials which contain a homogeneous distribution of ion exchangeable alkali cations that provide charge compensation to the metal-oxygen framework. In terms of the major types of inorganic ion exchangers defined by Clearfield, these amorphous HMO materials are similar to both hydrous oxides and layered oxide ion exchangers (e.g., alkali metal titanates). For catalyst applications, the HMO material serves as an ion exchangeable support which facilitates the uniform incorporation of catalyst precursor species. Following catalyst precursor incorporation, an activation step is required to convert the catalyst precursor to the desired active phase. Considerable process development activities at Sandia National Laboratories related to HMO materials have resulted in bulk hydrous titanium oxide (HTO)- and silica-doped hydrous titanium oxide (HTO:Si)-supported NiMo catalysts that are more active in model reactions which simulate direct coal liquefaction (e.g., pyrene hydrogenation) than commercial {gamma}-Al{sub 2}O{sub 3}-supported NiMo catalysts. However, a fundamental explanation does not exist for the enhanced activity of these novel catalyst materials; possible reasons include fundamental differences in support chemistry relative to commercial oxides, high surface area, or catalyst preparation effects (ion exchange vs. incipient wetness impregnation techniques). The goals of this paper are to identify the key factors which control sulfided NiMo catalyst activity, including those characteristics of HTO- and HTO:Si-supported NiMo catalysts which uniquely set them apart from conventional oxide supports.

  11. Hydrogen in anion vacancies of semiconductors

    SciTech Connect

    Du, Mao-Hua; Singh, David J

    2009-01-01

    Density functional calculations show that, depending on the anion size, hydrogen in anion vacancies of various II-VI semiconductors can be either two-fold or four-fold coordinated, and has either amphoteric or shallow donor character. In general, the multi-coordination of hydrogen in an anion vacancy is the indication of an anionic H, H { ion, in the relatively ionic environment. In more covalent semiconductors, H would form a single cation-H bond in the anion vacancy.

  12. Organic anion uptake by hepatocytes.

    PubMed

    Wolkoff, Allan W

    2014-10-01

    Many of the compounds taken up by the liver are organic anions that circulate tightly bound to protein carriers such as albumin. The fenestrated sinusoidal endothelium of the liver permits these compounds to have access to hepatocytes. Studies to characterize hepatic uptake of organic anions through kinetic analyses, suggested that it was carrier-mediated. Attempts to identify specific transporters by biochemical approaches were largely unsuccessful and were replaced by studies that utilized expression cloning. These studies led to identification of the organic anion transport proteins (oatps), a family of 12 transmembrane domain glycoproteins that have broad and often overlapping substrate specificities. The oatps mediate Na(+)-independent organic anion uptake. Other studies identified a seven transmembrane domain glycoprotein, Na(+)/taurocholate transporting protein (ntcp) as mediating Na(+)-dependent uptake of bile acids as well as other organic anions. Although mutations or deficiencies of specific members of the oatp family have been associated with transport abnormalities, there have been no such reports for ntcp, and its physiologic role remains to be determined, although expression of ntcp in vitro recapitulates the characteristics of Na(+)-dependent bile acid transport that is seen in vivo. Both ntcp and oatps traffic between the cell surface and intracellular vesicular pools. These vesicles move through the cell on microtubules, using the microtubule based motors dynein and kinesins. Factors that regulate this motility are under study and may provide a unique mechanism that can alter the plasma membrane content of these transporters and consequently their accessibility to circulating ligands.

  13. Hydrogen-bonded pillars of alternating chiral complex cations and anions: 1. Synthesis, characterization, X-ray structure and thermal stability of catena-{[Co(H(2)oxado)(3)][Cr(C(2)O(4))(3)].5H(2)O} and of its precursor (H(3)oxado)[Co(H(2)oxado)(3)](SO(4))(2).2H(2)O.

    PubMed

    Bélombé, M M; Nenwa, J; Mbiangué, Y A; Majoumo-Mbé, F; Lönnecke, P; Hey-Hawkins, E

    2009-06-21

    Compound (H(3)oxado)[Co(H(2)oxado)(3)](SO(4))(2).2H(2)O () (H(3)oxado(+) = oxamide dioximemonoximium) reacted metathetically with Ba(6)(H(2)O)(17)[Cr(C(2)O(4))(3)](4).7H(2)O in water to give the one-dimensional complex salt {[Co(H(2)oxado)(3)][Cr(C(2)O(4))(3)].5H(2)O}(infinity) () (H(2)oxado = oxamide dioxime). Compounds and were characterized by elemental analysis, FTIR, UV-Vis and by single crystal X-ray structure determination. The structure of consists of infinite pillars of alternating chiral complex cations and anions linked together along [100] by electrostatic and longitudinal O-HO interactions, with an average intrachain CoCr separation of 4.94 A. Equatorial N-HO bridges cross-link neighboring pillars (which are of opposite chirality) and consolidate a three-dimensional lattice framework which delineates elliptic nanochannels parallel to the a axis, encapsulating highly disordered water molecules. The thermal stability of both compounds was assessed by TGA, and the effective magnetic moment of , checked at room temperature, revealed considerable spin-orbit coupling.

  14. The EM Earthquake Precursor

    NASA Astrophysics Data System (ADS)

    Jones, K. B., II; Saxton, P. T.

    2013-12-01

    Many attempts have been made to determine a sound forecasting method regarding earthquakes and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic (EM) wave model, various hypotheses were formed, but the most interesting one required the use of a magnetometer with a differing design and geometry. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, something is still amiss. The problem still resides with what exactly is forecastable and the investigating direction of EM. After the 1989 Loma Prieta Earthquake, American earthquake investigators predetermined magnetometer use and a minimum earthquake magnitude necessary for EM detection. This action was set in motion, due to the extensive damage incurred and public outrage concerning earthquake forecasting; however, the magnetometers employed, grounded or buried, are completely subject to static and electric fields and have yet to correlate to an identifiable precursor. Secondly, there is neither a networked array for finding any epicentral locations, nor have there been any attempts to find even one. This methodology needs dismissal, because it is overly complicated, subject to continuous change, and provides no response time. As for the minimum magnitude threshold, which was set at M5, this is simply higher than what modern technological advances have gained. Detection can now be achieved at approximately M1, which greatly improves forecasting chances. A propagating precursor has now been detected in both the field and laboratory. Field antenna testing conducted outside the NE Texas town of Timpson in February, 2013, detected three strong EM sources along with numerous weaker signals. The antenna had mobility, and observations were noted for recurrence, duration, and frequency response. Next, two

  15. Anions in Nucleic Acid Crystallography.

    PubMed

    D'Ascenzo, Luigi; Auffinger, Pascal

    2016-01-01

    Nucleic acid crystallization buffers contain a large variety of chemicals fitting specific needs. Among them, anions are often solely considered for pH-regulating purposes and as cationic co-salts while their ability to directly bind to nucleic acid structures is rarely taken into account. Here we review current knowledge related to the use of anions in crystallization buffers along with data on their biological prevalence. Chloride ions are frequently identified in crystal structures but display low cytosolic concentrations. Hence, they are thought to be distant from nucleic acid structures in the cell. Sulfate ions are also frequently identified in crystal structures but their localization in the cell remains elusive. Nevertheless, the characterization of the binding properties of these ions is essential for better interpreting the solvent structure in crystals and consequently, avoiding mislabeling of electron densities. Furthermore, understanding the binding properties of these anions should help to get clues related to their potential effects in crowded cellular environments.

  16. Pu Anion Exchange Process Intensification

    SciTech Connect

    Taylor-Pashow, K.

    2015-10-08

    This project seeks to improve the efficiency of the plutonium anion-exchange process for purifying Pu through the development of alternate ion-exchange media. The objective of the project in FY15 was to develop and test a porous foam monolith material that could serve as a replacement for the current anion-exchange resin, Reillex® HPQ, used at the Savannah River Site (SRS) for purifying Pu. The new material provides advantages in efficiency over the current resin by the elimination of diffusive mass transport through large granular resin beads. By replacing the large resin beads with a porous foam there is much more efficient contact between the Pu solution and the anion-exchange sites present on the material. Several samples of a polystyrene based foam grafted with poly(4-vinylpyridine) were prepared and the Pu sorption was tested in batch contact tests.

  17. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Final report

    SciTech Connect

    Chunshan Song; Schobert, H.H.; Parfitt, D.P.

    1997-11-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that dispersed catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on exploring novel bimetallic dispersed catalysts for coal liquefaction and the effectiveness of temperature-programmed liquefaction using dispersed catalysts. The primary objective of this research was to explore novel bimetallic dispersed catalysts from organometallic molecular precursors, that could be used in low concentrations but exhibit relatively high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. We have synthesized and tested various catalyst precursors in liquefaction of subbituminous and bituminous coals and in model compound studies to examine how do the composition and structure of the catalytic precursors affect their effectiveness for coal liquefaction under different reaction conditions, and how do these factors affect their catalytic functions for hydrogenation of polyaromatic hydrocarbons, for cleavage of C-C bonds in polycyclic systems such as 4-(1-naphthylmethyl)bibenzyl, for hydrogenolysis of C-O bond such as that in dinaphthylether, for hydrodeoxygenation of phenolic compounds and other oxygen-containing compounds such as xanthene, and for hydrodesulfurization of polycyclic sulfur compounds such as dibenzothiophene. The novel bimetallic and monometallic precursors synthesized and tested in this project include various Mo- and Fe-based compounds.

  18. A Concise Access to C2-Symmetric Chiral 4-Pyrrolidinopyridine Catalysts with Dual Functional Side Chains.

    PubMed

    Mishiro, Kenji; Takeuchi, Hironori; Furuta, Takumi; Kawabata, Takeo

    2016-07-01

    A practical method was developed for the preparation of a diastereomeric library of C2-symmetric chiral 4-pyrrolidinopyridine catalysts with dual amide side chains. Use of a racemic precursor is the key to the concise production of catalysts with diverse stereochemisty.

  19. Photogeneration of active formate decomposition catalysts to produce hydrogen from formate and water

    DOEpatents

    King, Jr., Allen D.; King, Robert B.; Sailers, III, Earl L.

    1983-02-08

    A process for producing hydrogen from formate and water by photogenerating an active formate decomposition catalyst from transition metal carbonyl precursor catalysts at relatively low temperatures and otherwise mild conditions is disclosed. Additionally, this process may be expanded to include the generation of formate from carbon monoxide and hydroxide such that the result is the water gas shift reaction.

  20. Collaboration between primitive cell membranes and soluble catalysts.

    PubMed

    Adamala, Katarzyna P; Engelhart, Aaron E; Szostak, Jack W

    2016-03-21

    One widely held model of early life suggests primitive cells consisted of simple RNA-based catalysts within lipid compartments. One possible selective advantage conferred by an encapsulated catalyst is stabilization of the compartment, resulting from catalyst-promoted synthesis of key membrane components. Here we show model protocell vesicles containing an encapsulated enzyme that promotes the synthesis of simple fatty acid derivatives become stabilized to Mg(2+), which is required for ribozyme activity and RNA synthesis. Thus, protocells capable of such catalytic transformations would have enjoyed a selective advantage over other protocells in high Mg(2+) environments. The synthetic transformation requires both the catalyst and vesicles that solubilize the water-insoluble precursor lipid. We suggest that similar modified lipids could have played a key role in early life, and that primitive lipid membranes and encapsulated catalysts, such as ribozymes, may have acted in conjunction with each other, enabling otherwise-impossible chemical transformations within primordial cells.

  1. Collaboration between primitive cell membranes and soluble catalysts

    PubMed Central

    Adamala, Katarzyna P.; Engelhart, Aaron E.; Szostak, Jack W.

    2016-01-01

    One widely held model of early life suggests primitive cells consisted of simple RNA-based catalysts within lipid compartments. One possible selective advantage conferred by an encapsulated catalyst is stabilization of the compartment, resulting from catalyst-promoted synthesis of key membrane components. Here we show model protocell vesicles containing an encapsulated enzyme that promotes the synthesis of simple fatty acid derivatives become stabilized to Mg2+, which is required for ribozyme activity and RNA synthesis. Thus, protocells capable of such catalytic transformations would have enjoyed a selective advantage over other protocells in high Mg2+ environments. The synthetic transformation requires both the catalyst and vesicles that solubilize the water-insoluble precursor lipid. We suggest that similar modified lipids could have played a key role in early life, and that primitive lipid membranes and encapsulated catalysts, such as ribozymes, may have acted in conjunction with each other, enabling otherwise-impossible chemical transformations within primordial cells. PMID:26996603

  2. Anion release and uptake kinetics: structural changes of layered 2-dimensional ZnNiHN upon uptake of acetate and chlorinated acetate anions.

    PubMed

    Machingauta, Cleopas; Hossenlopp, Jeanne M

    2013-12-01

    X-ray diffraction and UV-vis spectroscopy were used for the investigation of ion exchange reaction kinetics of nitrates with acetate (Ac), chloro acetate (ClAc), dichloro acetate (dClAc) and trichloro acetate (tClAc) anions, using zinc nickel hydroxy nitrate (ZnNiHN) as the exchange precursor. The exchange reactions conducted at 24, 30, 40 and 50°C revealed that rate constants were inversely related to the calculated anion electronic spatial extent (ESE), while a direct relationship between rate constants and the average oxygen charges was observed. Temporal solid phase structural transformations were shown to be affected by the nature of the guest anions. The amount of nitrates released into solution has been shown to decrease as the guest anions became more chlorinated. Use of isoconversional approach revealed that activation energies changed significantly with α during dClAc intercalation than for the other anions. The topotactic intercalation of the guest anions, except dClAc, followed the Avrami-Erofe'ev kinetic model for the entire reaction progress.

  3. Globins Scavenge Sulfur Trioxide Anion Radical*

    PubMed Central

    Gardner, Paul R.; Gardner, Daniel P.; Gardner, Alexander P.

    2015-01-01

    Ferrous myoglobin was oxidized by sulfur trioxide anion radical (STAR) during the free radical chain oxidation of sulfite. Oxidation was inhibited by the STAR scavenger GSH and by the heme ligand CO. Bimolecular rate constants for the reaction of STAR with several ferrous globins and biomolecules were determined by kinetic competition. Reaction rate constants for myoglobin, hemoglobin, neuroglobin, and flavohemoglobin are large at 38, 120, 2,600, and ≥ 7,500 × 106 m−1 s−1, respectively, and correlate with redox potentials. Measured rate constants for O2, GSH, ascorbate, and NAD(P)H are also large at ∼100, 10, 130, and 30 × 106 m−1 s−1, respectively, but nevertheless allow for favorable competition by globins and a capacity for STAR scavenging in vivo. Saccharomyces cerevisiae lacking sulfite oxidase and deleted of flavohemoglobin showed an O2-dependent growth impairment with nonfermentable substrates that was exacerbated by sulfide, a precursor to mitochondrial sulfite formation. Higher O2 exposures inactivated the superoxide-sensitive mitochondrial aconitase in cells, and hypoxia elicited both aconitase and NADP+-isocitrate dehydrogenase activity losses. Roles for STAR-derived peroxysulfate radical, superoxide radical, and sulfo-NAD(P) in the mechanism of STAR toxicity and flavohemoglobin protection in yeast are suggested. PMID:26381408

  4. Globins Scavenge Sulfur Trioxide Anion Radical.

    PubMed

    Gardner, Paul R; Gardner, Daniel P; Gardner, Alexander P

    2015-11-06

    Ferrous myoglobin was oxidized by sulfur trioxide anion radical (STAR) during the free radical chain oxidation of sulfite. Oxidation was inhibited by the STAR scavenger GSH and by the heme ligand CO. Bimolecular rate constants for the reaction of STAR with several ferrous globins and biomolecules were determined by kinetic competition. Reaction rate constants for myoglobin, hemoglobin, neuroglobin, and flavohemoglobin are large at 38, 120, 2,600, and ≥ 7,500 × 10(6) m(-1) s(-1), respectively, and correlate with redox potentials. Measured rate constants for O2, GSH, ascorbate, and NAD(P)H are also large at ∼100, 10, 130, and 30 × 10(6) m(-1) s(-1), respectively, but nevertheless allow for favorable competition by globins and a capacity for STAR scavenging in vivo. Saccharomyces cerevisiae lacking sulfite oxidase and deleted of flavohemoglobin showed an O2-dependent growth impairment with nonfermentable substrates that was exacerbated by sulfide, a precursor to mitochondrial sulfite formation. Higher O2 exposures inactivated the superoxide-sensitive mitochondrial aconitase in cells, and hypoxia elicited both aconitase and NADP(+)-isocitrate dehydrogenase activity losses. Roles for STAR-derived peroxysulfate radical, superoxide radical, and sulfo-NAD(P) in the mechanism of STAR toxicity and flavohemoglobin protection in yeast are suggested.

  5. Porous polymers bearing functional quaternary ammonium salts as efficient solid catalysts for the fixation of CO2 into cyclic carbonates

    NASA Astrophysics Data System (ADS)

    Cai, Sheng; Zhu, Dongliang; Zou, Yan; Zhao, Jing

    2016-07-01

    A series of porous polymers bearing functional quaternary ammonium salts were solvothermally synthesized through the free radical copolymerization of divinylbenzene (DVB) and functionalized quaternary ammonium salts. The obtained polymers feature highly cross-linked matrices, large surface areas, and abundant halogen anions. These polymers were evaluated as heterogeneous catalysts for the synthesis of cyclic carbonates from epoxides and CO2 in the absence of co-catalysts and solvents. The results revealed that the synergistic effect between the functional hydroxyl groups and the halide anion Br- afforded excellent catalytic activity to cyclic carbonates. In addition, the catalyst can be easily recovered and reused for at least five cycles without significant loss in activity.

  6. Precursor nuclearity effects in supported vanadium oxides prepared by organometallic grafting.

    SciTech Connect

    Wegener, S. L.; Kim, H.; Marks, T. J.; Stair, P. C.

    2011-01-01

    Despite widespread importance in catalysis, the active and selective sites of supported vanadium oxide (VO{sub x}) catalysts are not well understood. Such catalysts are of great current interest because of their industrial significance and potential for selective oxidation processes. However, the fact that the nature of the active and selective sites is ambiguous hinders molecular level understanding of catalytic reactions and the development of new catalysts. Furthermore, complete structural elucidation requires isolation and characterization of specific vanadium oxide surface species, the preparation of which presents a significant synthetic challenge. In this study, we utilize the structural uniformity inherent in organometallic precursors for the preparation of supported vanadium oxide catalysts. The resulting catalysts are characterized by UV-visible diffuse reflectance spectroscopy (UV-vis DRS), X-ray absorption spectroscopy (XAS), UV-Raman spectroscopy, and H{sub 2}-temperature programmed reduction (H{sub 2}-TPR). Significant structural and reactivity differences are observed in catalysts prepared from different organometallic precursors, indicating that the chemical nature of surface vanadia can be influenced by the nuclearity of the precursor used for grafting.

  7. Anion binding in biological systems

    NASA Astrophysics Data System (ADS)

    Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2009-11-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  8. Lewis Base Catalysts 6: Carbene Catalysts

    PubMed Central

    Moore, Jennifer L.

    2013-01-01

    The use of N-heterocyclic carbenes as catalysts for organic transformations has received increased attention in the past 10 years. A discussion of catalyst development and nucleophilic characteristics precedes a description of recent advancements and new reactions using N-heterocyclic carbenes in catalysis. PMID:21494949

  9. Deactivation of Oxidation Catalysts

    DTIC Science & Technology

    1991-05-01

    the fresh catalyst . The loss in chromium may be related to the formation of volatile chromium oxychlorde which vaporizes from the catalyst . It is...CeO2 only marginally improved the thtrmal stability. The addition of 2% water vapor inhibited the oxidation of ethanol for all three copper catalysts ...original activity. Field tests of a copper chromite catalyst on process gas containing H2S, methyl mercaptan, n-aldehydes, and furfural showed

  10. A highly reactive chalcogenide precursor for the synthesis of metal chalcogenide quantum dots

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Zhu, Dong-Liang; Zhu, Chun-Nan; Zhang, Zhi-Ling; Zhang, Guo-Jun; Pang, Dai-Wen

    2015-11-01

    Metal chalcogenide semiconductor nanocrystals (NCs) are ideal inorganic materials for solar cells and biomedical labeling. In consideration of the hazard and instability of alkylphosphines, the phosphine-free synthetic route has become one of the most important trends in synthesizing selenide QDs. Here we report a novel phase transfer strategy to prepare phosphine-free chalcogenide precursors. The anions in aqueous solution were transferred to toluene via electrostatic interactions between the anions and didodecyldimethylammonium bromide (DDAB). The obtained chalcogenide precursors show high reactivity with metal ions in the organic phase and could be applied to the low-temperature synthesis of various metal chalcogenide NCs based on a simple reaction between metal ions (e.g. Ag+, Pb2+, Cd2+) and chalcogenide anions (e.g. S2-) in toluene. In addition to chalcogenide anions, other anions such as BH4- ions and AuCl4- ions can also be transferred to the organic phase for synthesizing noble metal NCs (such as Ag and Au NCs).Metal chalcogenide semiconductor nanocrystals (NCs) are ideal inorganic materials for solar cells and biomedical labeling. In consideration of the hazard and instability of alkylphosphines, the phosphine-free synthetic route has become one of the most important trends in synthesizing selenide QDs. Here we report a novel phase transfer strategy to prepare phosphine-free chalcogenide precursors. The anions in aqueous solution were transferred to toluene via electrostatic interactions between the anions and didodecyldimethylammonium bromide (DDAB). The obtained chalcogenide precursors show high reactivity with metal ions in the organic phase and could be applied to the low-temperature synthesis of various metal chalcogenide NCs based on a simple reaction between metal ions (e.g. Ag+, Pb2+, Cd2+) and chalcogenide anions (e.g. S2-) in toluene. In addition to chalcogenide anions, other anions such as BH4- ions and AuCl4- ions can also be transferred to

  11. New magnetic organic inorganic composites based on hydrotalcite-like anionic clays for drug delivery

    NASA Astrophysics Data System (ADS)

    Carja, Gabriela; Chiriac, Horia; Lupu, Nicoleta

    2007-04-01

    The structural "memory effect" of anionic clays was used to obtain layered double hydroxides (LDHs) with tailored magnetic properties, by loading iron oxides and/or spinel structures on iron partially substituted hydrotalcite-like materials. The obtained magnetic layered structures were further used as precursors for new hybrid nanostructures, such as aspirin-hydrotalcite-like anionic clays. Transmission electron microscopy (TEM) analysis shows that small iron oxide or spinel nanoparticles coexist with the fibrous drug particles on the surface of partially aggregated typical clay-like particles. The specific saturation magnetization of the loaded LDHs can be increased up to 70 emu/g by using specific post-synthesis treatments.

  12. Identified EM Earthquake Precursors

    NASA Astrophysics Data System (ADS)

    Jones, Kenneth, II; Saxton, Patrick

    2014-05-01

    Many attempts have been made to determine a sound forecasting method regarding earthquakes and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic (EM) wave model, various hypotheses were formed, but the most interesting one required the use of a magnetometer with a differing design and geometry. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, something is still amiss. The problem still resides with what exactly is forecastable and the investigating direction of EM. After a number of custom rock experiments, two hypotheses were formed which could answer the EM wave model. The first hypothesis concerned a sufficient and continuous electron movement either by surface or penetrative flow, and the second regarded a novel approach to radio transmission. Electron flow along fracture surfaces was determined to be inadequate in creating strong EM fields, because rock has a very high electrical resistance making it a high quality insulator. Penetrative flow could not be corroborated as well, because it was discovered that rock was absorbing and confining electrons to a very thin skin depth. Radio wave transmission and detection worked with every single test administered. This hypothesis was reviewed for propagating, long-wave generation with sufficient amplitude, and the capability of penetrating solid rock. Additionally, fracture spaces, either air or ion-filled, can facilitate this concept from great depths and allow for surficial detection. A few propagating precursor signals have been detected in the field occurring with associated phases using custom-built loop antennae. Field testing was conducted in Southern California from 2006-2011, and outside the NE Texas town of Timpson in February, 2013. The antennae have mobility and observations were noted for

  13. An interstellar precursor mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Ivie, C.; Lewis, J. C.; Lipes, R. G.; Norton, H. N.; Stearns, J. W.; Stimpson, L.; Weissman, P.

    1977-01-01

    A mission out of the planetary system, with launch about the year 2000, could provide valuable scientific data as well as test some of the technology for a later mission to another star. Primary scientific objectives for the precursor mission concern characteristics of the heliopause, the interstellar medium, stellar distances (by parallax measurements), low energy cosmic rays, interplanetary gas distribution, and mass of the solar system. Secondary objectives include investigation of Pluto. Candidate science instruments are suggested. Individual spacecraft systems for the mission were considered, technology requirements and problem areas noted, and a number of recommendations made for technology study and advanced development. The most critical technology needs include attainment of 50-yr spacecraft lifetime and development of a long-life NEP system.

  14. Gallium based low-interaction anions

    DOEpatents

    King, Wayne A.; Kubas, Gregory J.

    2000-01-01

    The present invention provides: a composition of the formula M.sup.+x (Ga(Y).sub.4.sup.-).sub.x where M is a metal selected from the group consisting of lithium, sodium, potassium, cesium, calcium, strontium, thallium, and silver, x is an integer selected from the group consisting of 1 or 2, each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide; a composition of the formula (R).sub.x Q.sup.+ Ga(Y).sub.4.sup.- where Q is selected from the group consisting of carbon, nitrogen, sulfur, phosphorus and oxygen, each R is a ligand selected from the group consisting of alkyl, aryl, and hydrogen, x is an integer selected from the group consisting of 3 and 4 depending upon Q, and each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide; an ionic polymerization catalyst composition including an active cationic portion and a gallium based weakly coordinating anion; and bridged anion species of the formula M.sup.+x.sub.y [X(Ga(Y.sub.3).sub.z ].sup.-y.sub.x where M is a metal selected from the group consisting of lithium, sodium, potassium, magnesium, cesium, calcium, strontium, thallium, and silver, x is an integer selected from the group consisting of 1 or 2, X is a bridging group between two gallium atoms, y is an integer selected from the group consisting 1 and 2, z is an integer of at least 2, each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide.

  15. Ion exchange polymers for anion separations

    DOEpatents

    Jarvinen, Gordon D.; Marsh, S. Fredric; Bartsch, Richard A.

    1997-01-01

    Anion exchange resins including at least two positively charged sites and a ell-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.

  16. Ion exchange polymers for anion separations

    DOEpatents

    Jarvinen, G.D.; Marsh, S.F.; Bartsch, R.A.

    1997-09-23

    Anion exchange resins including at least two positively charged sites and a well-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.

  17. Binding Hydrated Anions with Hydrophobic Pockets.

    PubMed

    Sokkalingam, Punidha; Shraberg, Joshua; Rick, Steven W; Gibb, Bruce C

    2016-01-13

    Using a combination of isothermal titration calorimetry and quantum and molecular dynamics calculations, we demonstrate that relatively soft anions have an affinity for hydrophobic concavity. The results are consistent with the anions remaining partially hydrated upon binding, and suggest a novel strategy for anion recognition.

  18. Method for dispersing catalyst onto particulate material and product thereof

    DOEpatents

    Utz, Bruce R.; Cugini, Anthony V.

    1992-01-01

    A method for dispersing finely divided catalyst precursors onto the surface of coal or other particulate material includes the steps of forming a wet paste mixture of the particulate material and a liquid solution containing a dissolved transition metal salt, for instance a solution of ferric nitrate. The wet paste mixture is in a state of incipient wetness with all of this solution adsorbed onto the surfaces of the particulate material without the presence of free moisture. On adding a precipitating agent such as ammonia, a catalyst precursor such as hydrated iron oxide is deposited on the surfaces of the coal. The catalyst is activated by converting it to the sulfide form for the hydrogenation or direct liquefaction of the coal.

  19. PGM-free Fe-N-C catalysts for oxygen reduction reaction: Catalyst layer design

    NASA Astrophysics Data System (ADS)

    Stariha, Sarah; Artyushkova, Kateryna; Workman, Michael J.; Serov, Alexey; Mckinney, Sam; Halevi, Barr; Atanassov, Plamen

    2016-09-01

    This work studies the morphology of platinum group metal-free (PGM-free) iron-nitrogen-carbon (Fe-N-C) catalyst layers for the oxygen reduction reaction (ORR) and compares catalytic performance via polarization curves. Three different nitrogen-rich organic precursors are used to prepare the catalysts. Using scanning electron microscopy (SEM) and focused ion beam (FIB) tomography, the porosity, Euler number (pore connectivity), overall roughness, solid phase size and pore size are calculated for catalyst surfaces and volumes. Catalytic activity is determined using membrane electrode assembly (MEA) testing. It is found that the dominant factor in MEA performance is transport limitations. Through the 2D and 3D metrics it is concluded that pore connectivity has the biggest effect on transport performance.

  20. Iridium-catalyst-based autonomous bubble-propelled graphene micromotors with ultralow catalyst loading.

    PubMed

    Wang, Hong; Sofer, Zdeněk; Eng, Alex Yong Sheng; Pumera, Martin

    2014-11-10

    A novel concept of an iridium-based bubble-propelled Janus-particle-type graphene micromotor with very high surface area and with very low catalyst loading is described. The low loading of Ir catalyst (0.54 at %) allows for fast motion of graphene microparticles with high surface area of 316.2 m(2)  g(-1). The micromotor was prepared with a simple and scalable method by thermal exfoliation of iridium-doped graphite oxide precursor composite in hydrogen atmosphere. Oxygen bubbles generated from the decomposition of hydrogen peroxide at the iridium catalytic sites provide robust propulsion thrust for the graphene micromotor. The high surface area and low iridium catalyst loading of the bubble-propelled graphene motors offer great possibilities for dramatically enhanced cargo delivery.

  1. System for reactivating catalysts

    SciTech Connect

    Ginosar, Daniel M.; Thompson, David N.; Anderson, Raymond P.

    2010-03-02

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst is provided. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

  2. Generation of Nonlinear Vortex Precursors

    NASA Astrophysics Data System (ADS)

    Chen, Yue-Yue; Feng, Xun-Li; Liu, Chengpu

    2016-07-01

    We numerically study the propagation of a few-cycle pulse carrying orbital angular momentum (OAM) through a dense atomic system. Nonlinear precursors consisting of high-order vortex harmonics are generated in the transmitted field due to carrier effects associated with ultrafast Bloch oscillation. The nonlinear precursors survive to propagation effects and are well separated with the main pulse, which provides a straightforward way to measure precursors. By virtue of carrying high-order OAM, the obtained vortex precursors as information carriers have potential applications in optical information and communication fields where controllable loss, large information-carrying capacity, and high speed communication are required.

  3. Perlite as a potential support for nickel catalyst in the process of sunflower oil hydrogenation

    NASA Astrophysics Data System (ADS)

    Radonjić, V.; Krstić, J.; Lončarević, D.; Jovanović, D.; Vukelić, N.; Stanković, M.; Nikolova, D.; Gabrovska, M.

    2015-12-01

    Investigation was conducted in order to elucidate the possibility of using perlite as support for preparation of nickel based precursor catalyst, potentially applicable in vegetable oil hydrogenation process. On three differently prepared expanded perlite, nickel catalyst precursors with identical Ni/SiO2 = 1.1 and Ni/Mg = 10/1 ratios were synthesized by precipitation-deposition method. Different techniques, SEM micrography, He-pycnometry, calcimetry, Hg-porosimetry, N2-physisorption, H2-chemisorption and temperature programmed reduction, were used for characterization of obtained samples. Determining the precursor texture, morphology and reducibility shows a successfully deposited nickel phase on perlite support with promising properties for vegetable oil hydrogenation. Chosen precursor was reduced and passivated in paraffin oil and the obtained catalyst showed significant catalytic activity in the test of sunflower oil hydrogenation.

  4. Anion Solvation in Carbonate Electrolytes

    SciTech Connect

    Zhang, Zhengcheng

    2015-11-16

    With the correlation between Li+ solvation and interphasial chemistry on anodes firmly established in Li-ion batteries, the effect of cation–solvent interaction has gone beyond bulk thermodynamic and transport properties and become an essential element that determines the reversibility of electrochemistry and kinetics of Li-ion intercalation chemistries. As of now, most studies are dedicated to the solvation of Li+, and the solvation of anions in carbonate-based electrolytes and its possible effect on the electrochemical stability of such electrolytes remains little understood. As a mirror effort to prior Li+ solvation studies, this work focuses on the interactions between carbonate-based solvents and two anions (hexafluorophosphate, PF6–, and tetrafluoroborate, BF4–) that are most frequently used in Li-ion batteries. The possible correlation between such interaction and the interphasial chemistry on cathode surface is also explored.

  5. Polymerization of anionic wormlike micelles.

    PubMed

    Zhu, Zhiyuan; González, Yamaira I; Xu, Hangxun; Kaler, Eric W; Liu, Shiyong

    2006-01-31

    Polymerizable anionic wormlike micelles are obtained upon mixing the hydrotropic salt p-toluidine hydrochloride (PTHC) with the reactive anionic surfactant sodium 4-(8-methacryloyloxyoctyl)oxybenzene sulfonate (MOBS). Polymerization captures the cross-sectional radius of the micelles (approximately 2 nm), induces micellar growth, and leads to the formation of a stable single-phase dispersion of wormlike micellar polymers. The unpolymerized and polymerized micelles were characterized using static and dynamic laser light scattering, small-angle neutron scattering, 1H NMR, and stopped-flow light scattering. Stopped-flow light scattering was also used to measure the average lifetime of the unpolymerized wormlike micelles. A comparison of the average lifetime of unpolymerized wormlike micelles with the surfactant monomer propagation rate was used to elucidate the mechanism of polymerization. There is a significant correlation between the ratio of the average lifetime to the monomer propagation rate and the average aggregation number of the polymerized wormlike micelles.

  6. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes

    NASA Astrophysics Data System (ADS)

    Westerhaus, Felix A.; Jagadeesh, Rajenahally V.; Wienhöfer, Gerrit; Pohl, Marga-Martina; Radnik, Jörg; Surkus, Annette-Enrica; Rabeah, Jabor; Junge, Kathrin; Junge, Henrik; Nielsen, Martin; Brückner, Angelika; Beller, Matthias

    2013-06-01

    Molecularly well-defined homogeneous catalysts are known for a wide variety of chemical transformations. The effect of small changes in molecular structure can be studied in detail and used to optimize many processes. However, many industrial processes require heterogeneous catalysts because of their stability, ease of separation and recyclability, but these are more difficult to control on a molecular level. Here, we describe the conversion of homogeneous cobalt complexes into heterogeneous cobalt oxide catalysts via immobilization and pyrolysis on activated carbon. The catalysts thus produced are useful for the industrially important reduction of nitroarenes to anilines. The ligand indirectly controls the selectivity and activity of the recyclable catalyst and catalyst optimization can be performed at the level of the solution-phase precursor before conversion into the active heterogeneous catalyst.

  7. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes.

    PubMed

    Westerhaus, Felix A; Jagadeesh, Rajenahally V; Wienhöfer, Gerrit; Pohl, Marga-Martina; Radnik, Jörg; Surkus, Annette-Enrica; Rabeah, Jabor; Junge, Kathrin; Junge, Henrik; Nielsen, Martin; Brückner, Angelika; Beller, Matthias

    2013-06-01

    Molecularly well-defined homogeneous catalysts are known for a wide variety of chemical transformations. The effect of small changes in molecular structure can be studied in detail and used to optimize many processes. However, many industrial processes require heterogeneous catalysts because of their stability, ease of separation and recyclability, but these are more difficult to control on a molecular level. Here, we describe the conversion of homogeneous cobalt complexes into heterogeneous cobalt oxide catalysts via immobilization and pyrolysis on activated carbon. The catalysts thus produced are useful for the industrially important reduction of nitroarenes to anilines. The ligand indirectly controls the selectivity and activity of the recyclable catalyst and catalyst optimization can be performed at the level of the solution-phase precursor before conversion into the active heterogeneous catalyst.

  8. Aza compounds as anion receptors

    DOEpatents

    Lee, Hung Sui; Yang, Xiao-Qing; McBreen, James

    1998-01-06

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of Li.sup.+ ion in alkali metal batteries.

  9. Aza compounds as anion receptors

    DOEpatents

    Lee, H.S.; Yang, X.Q.; McBreen, J.

    1998-01-06

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of Li{sup +} ion in alkali metal batteries. 3 figs.

  10. Hosting anions. The energetic perspective.

    PubMed

    Schmidtchen, Franz P

    2010-10-01

    Hosting anions addresses the widely spread molecular recognition event of negatively charged species by dedicated organic compounds in condensed phases at equilibrium. The experimentally accessible energetic features comprise the entire system including the solvent, any buffers, background electrolytes or other components introduced for e.g. analysis. The deconvolution of all these interaction types and their dependence on subtle structural variation is required to arrive at a structure-energy correlation that may serve as a guide in receptor construction. The focus on direct host-guest interactions (lock-and-key complementarity) that have dominated the binding concepts of artificial receptors in the past must be widened in order to account for entropic contributions which constitute very significant fractions of the total free energy of interaction. Including entropy necessarily addresses the ambiguity and fuzziness of the host-guest structural ensemble and requires the appreciation of the fact that most liquid phases possess distinct structures of their own. Apparently, it is the perturbation of the intrinsic solvent structure occurring upon association that rules ion binding in polar media where ions are soluble and abundant. Rather than specifying peculiar structural elements useful in anion binding this critical review attempts an illumination of the concepts and individual energetic contributions resulting in the final observation of specific anion recognition (95 references).

  11. Covalent Polymers Containing Discrete Heterocyclic Anion Receptors

    NASA Astrophysics Data System (ADS)

    Rambo, Brett M.; Silver, Eric S.; Bielawski, Christopher W.; Sessler, Jonathan L.

    This chapter covers recent advances in the development of polymeric materials containing discrete heterocyclic anion receptors, and focuses on advances in anion binding and chemosensor chemistry. The development of polymers specific for anionic species is a relatively new and flourishing area of materials chemistry. The incorporation of heterocyclic receptors capable of complexing anions through noncovalent interactions (e.g., hydrogen bonding and electrostatic interactions) provides a route to not only sensitive but also selective polymeric materials. Furthermore, these systems have been utilized in the development of polymers capable of extracting anionic species from aqueous media. These latter materials may lead to advances in water purification and treatment of diseases resulting from surplus ions.

  12. Catalyst patterning for nanowire devices

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Cassell, Alan M. (Inventor); Han, Jie (Inventor)

    2004-01-01

    Nanowire devices may be provided that are based on carbon nanotubes or single-crystal semiconductor nanowires. The nanowire devices may be formed on a substrate. Catalyst sites may be formed on the substrate. The catalyst sites may be formed using lithography, thin metal layers that form individual catalyst sites when heated, collapsible porous catalyst-filled microscopic spheres, microscopic spheres that serve as masks for catalyst deposition, electrochemical deposition techniques, and catalyst inks. Nanowires may be grown from the catalyst sites.

  13. Quaternized poly (styrene-co-vinylbenzyl chloride) anion exchange membranes for alkaline water electrolysers

    NASA Astrophysics Data System (ADS)

    Vengatesan, S.; Santhi, S.; Jeevanantham, S.; Sozhan, G.

    2015-06-01

    In this study, poly (ST-co-VBC) based anion exchange membranes with different styrene to VBC ratios (1: 0.16, 1: 0.33 and 1: 1) have been prepared via chloromethylation-free synthetic route using aromatic vinyl monomers. The synthesized co-polymers are identified by FTIR and 1H-NMR analysis. Hydroxide (OH-) ion conductivity of the anion exchange membrane with styrene to VBC ratio of 1: 0.33 is as high as 6.8 × 10-3 S cm-1 in de-ionised water at 25 °C. The membrane also acquires the ion-exchange capacity of 2.14 meq. g-1, and the water uptake of 127%. Membrane-electrode-assembly (MEA) using the anion exchange membrane and Ni - foam catalyst demonstrate the current density of 40 mA cm-2 at 2.3 V in a water electrolyser cell.

  14. Asymmetric Anion-π Catalysis: Enamine Addition to Nitroolefins on π-Acidic Surfaces.

    PubMed

    Zhao, Yingjie; Cotelle, Yoann; Avestro, Alyssa-Jennifer; Sakai, Naomi; Matile, Stefan

    2015-09-16

    Here we provide experimental evidence for anion-π catalysis of enamine chemistry and for asymmetric anion-π catalysis. A proline for enamine formation on one side and a glutamic acid for nitronate protonation on the other side are placed to make the enamine addition to nitroolefins occur on the aromatic surface of π-acidic naphthalenediimides. With increasing π acidity of the formally trifunctional catalysts, rate and enantioselectivity of the reaction increase. Mismatched and more flexible controls reveal that the importance of rigidified, precisely sculpted architectures increases with increasing π acidity as well. The absolute configuration of stereogenic sulfoxide acceptors at the edge of the π-acidic surface has a profound influence on asymmetric anion-π catalysis and, if perfectly matched, affords the highest enantio- and diastereoselectivity.

  15. Catalyst dispersion and activity under conditions of temperature-staged liquefaction

    SciTech Connect

    Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

    1993-02-01

    This research program involves the investigation of the use of highly dispersed catalyst precursors for the pretreatment of coals by mild hydrogenation. During the course of this effort solvent preswelling of the coal was evaluated as a means of deeply impregnating catalysts into coal, active phases of catalysts under reaction conditions were studied and the impact of these techniques were evaluated during pretreatment and temperature-staged liquefaction. Two coals, a Texas subbituminous and a Utah high volatile A bituminous, were used to examine the effects of solvent swelling pretreatment and catalyst impregnation on conversion behavior at 275[degrees]C, representative of the first, low-temperature stage in a temperature-staged liquefaction reaction. Ferrous sulfate, iron pentacarbonyl, ammonium tetrathiomolybdate, and molybdenum hexacarbonyl were used as catalyst precursors. Without swelling pretreatment, impregnation of both coals increased conversion, mainly through increased yields of preasphaltenes.

  16. Catalyst dispersion and activity under conditions of temperature-staged liquefaction. Final report

    SciTech Connect

    Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

    1993-02-01

    This research program involves the investigation of the use of highly dispersed catalyst precursors for the pretreatment of coals by mild hydrogenation. During the course of this effort solvent preswelling of the coal was evaluated as a means of deeply impregnating catalysts into coal, active phases of catalysts under reaction conditions were studied and the impact of these techniques were evaluated during pretreatment and temperature-staged liquefaction. Two coals, a Texas subbituminous and a Utah high volatile A bituminous, were used to examine the effects of solvent swelling pretreatment and catalyst impregnation on conversion behavior at 275{degrees}C, representative of the first, low-temperature stage in a temperature-staged liquefaction reaction. Ferrous sulfate, iron pentacarbonyl, ammonium tetrathiomolybdate, and molybdenum hexacarbonyl were used as catalyst precursors. Without swelling pretreatment, impregnation of both coals increased conversion, mainly through increased yields of preasphaltenes.

  17. Textured catalysts and methods of making textured catalysts

    DOEpatents

    Werpy, Todd; Frye, Jr., John G.; Wang, Yong; Zacher, Alan H.

    2007-03-06

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  18. From anion receptors to transporters.

    PubMed

    Gale, Philip A

    2011-03-15

    Cystic fibrosis is the most well-known of a variety of diseases termed channelopathies, in which the regulation of ion transport across cell membranes is so disrupted that the threshold of a pathology is passed. The human toll exacted by these diseases has led a number of research groups, including our own, to create compounds that mediate ion transport across lipid bilayers. In this Account, we discuss three classes of synthetic compounds that were refined to bind and transport anions across lipid bilayer membranes. All of the compounds were originally designed as anion receptors, that is, species that would simply create stable complexes with anions, but were then further developed as transporters. By studying structurally simple systems and varying their properties to change the degree of preorganization, the affinity for anions, or the lipophilicity, we have begun to rationalize why particular anion transport mechanisms (cotransport or antiport processes) occur in particular cases. For example, we have studied the chloride transport properties of receptors based on the closely related structures of isophthalamide and pyridine-2,6-dicarboxamide: the central ring in each case was augmented with pendant methylimidazole groups designed to cotransport H(+) and Cl(-). We observed that the more preorganized pyridine-based receptor was the more efficient transporter, a finding replicated with a series of isophthalamides in which one contained hydroxyl groups designed to preorganize the receptor. This latter class of compound, together with the natural product prodigiosin, can transport bicarbonate (as part of a chloride/bicarbonate antiport process) across lipid bilayer membranes. We have also studied the membrane transport properties of calix[4]pyrroles. Although the parent meso-octamethylcalix[4]pyrrole functions solely as a Cs(+)/Cl(-) cotransporter, other compounds with increased anion affinities can function through an antiport process. One example is octafluoro

  19. Catalyst Alloys Processing

    NASA Astrophysics Data System (ADS)

    Tan, Xincai

    2014-10-01

    Catalysts are one of the key materials used for diamond formation at high pressures. Several such catalyst products have been developed and applied in China and around the world. The catalyst alloy most widely used in China is Ni70Mn25Co5 developed at Changsha Research Institute of Mining and Metallurgy. In this article, detailed techniques for manufacturing such a typical catalyst alloy will be reviewed. The characteristics of the alloy will be described. Detailed processing of the alloy will be presented, including remelting and casting, hot rolling, annealing, surface treatment, cold rolling, blanking, finishing, packaging, and waste treatment. An example use of the catalyst alloy will also be given. Industrial experience shows that for the catalyst alloy products, a vacuum induction remelt furnace can be used for remelting, a metal mold can be used for casting, hot and cold rolling can be used for forming, and acid pickling can be used for metal surface cleaning.

  20. Methods of making textured catalysts

    DOEpatents

    Werpy, Todd; Frye, Jr., John G.; Wang, Yong; Zacher, Alan H.

    2010-08-17

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  1. Controlling the morphology and uniformity of a catalyst-infiltrated cathode for solid oxide fuel cells by tuning wetting property

    NASA Astrophysics Data System (ADS)

    Lou, Xiaoyuan; Liu, Ze; Wang, Shizhong; Xiu, Yonghao; Wong, C. P.; Liu, Meilin

    Infiltration has been widely used in surface modification of porous electrodes in solid oxide fuel cells (SOFCs). The stability and performance of a porous electrode infiltrated with a catalyst depend sensitively on the composition, morphology, and nanostructure of the catalyst. In this contribution, we report our findings on investigation into the effect of wetting property on the formation of catalyst coatings through an infiltration process. It is observed that aqueous solutions containing catalyst precursors wet SOFC electrolyte materials (e.g., yttria-stabilized zirconia or YSZ) better than cathode materials (e.g., La 0.6Sr 0.4Co 0.2Fe 0.8O 3- δ or LSCF). Controlling the wetting of catalyst precursor solutions on porous electrode backbones can dramatically improve the uniformity of the infiltrated catalyst layer on porous cathode backbone, thus enhancing the electrochemical performance of infiltrated cathodes, especially at low operating temperatures.

  2. Liquefaction with microencapsulated catalysts

    DOEpatents

    Weller, Sol W.

    1985-01-01

    A method of dispersing a liquefaction catalyst within coal or other carbonaceous solids involves providing a suspension in oil of microcapsules containing the catalyst. An aqueous solution of a catalytic metal salt is emulsified in the water-immiscible oil and the resulting minute droplets microencapsulated in polymeric shells by interfacial polycondensation. The catalyst is subsequently blended and dispersed throughout the powdered carbonaceous material to be liquefied. At liquefaction temperatures the polymeric microcapsules are destroyed and the catalyst converted to minute crystallites in intimate contact with the carbonaceous material.

  3. Polyolefin catalyst manufacturing

    SciTech Connect

    Inkrott, K.E.; Scinta, J.; Smith, P.D. )

    1989-10-16

    Statistical process control (SPC) procedures are absolutely essential for making new-generation polyolefin catalysts with the consistent high quality required by modern polyolefin processes. Stringent quality assurance is critical to the production of today's high-performance catalysts. Research and development efforts during the last 20 years have led to major technological improvements in the polyolefin industry. New generation catalysts, which once were laboratory curiosities, must now be produced commercially on a regular and consistent basis to meet the increasing requirements of the plastics manufacturing industry. To illustrate the more stringent requirements for producing the new generation polyolefin catalysts, the authors compare the relatively simple, first-generation polypropylene catalyst production requirements with some of the basic requirements of manufacturing a more complex new-generation catalyst, such as Catalyst Resources Inc.'s LYNX 900. The principles which hold true for the new-generation catalysts such as LYNX 900 are shown to apply equally to the scale-up of other advanced technology polyolefin catalysts.

  4. METHOD OF PURIFYING CATALYSTS

    DOEpatents

    Joris, G.G.

    1958-09-01

    It has been fuund that the presence of chlorine as an impurity adversely affects the performance of finely divided platinum catalysts such as are used in the isotopic exchange process for the production of beavy water. This chlorine impurity may be removed from these catalysts by treating the catalyst at an elevated temperature with dry hydrogen and then with wet hydrogen, having a hydrogen-water vapor volume of about 8: 1. This alternate treatment by dry hydrogen and wet hydrogen is continued until the chlorine is largely removed from the catalyst.

  5. Tandem isomerization-decarboxylation of unsaturated fatty acids to olefins via ruthenium metal-as-ligand catalysts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new facile Ru-catalyzed route to bio-olefins3 from unsaturated fatty acids via readily accessible metal-as-ligand type catalyst precursors, [Ru(CO)2RCO2]n and Ru3(CO)12, will be described. The catalyst apparently functions in a tandem mode by dynamically isomerizing the positions of double bonds i...

  6. Chemical Hydrogen Storage Using Polyhedral Borane Anions and Aluminum-Ammonia-Borane Complexes

    SciTech Connect

    Hawthorne, M. Frederick; Jalisatgi, Satish S.; Safronov, Alexander V.; Lee, Han Beak; Wu, Jianguo

    2010-10-01

    Phase 1. Hydrolysis of borohydride compounds offer the potential for significant hydrogen storage capacity, but most work to date has focused on one particular anion, BH4-, which requires high pH for stability. Other borohydride compounds, in particular polyhedral borane anions offer comparable hydrogen storage capacity without requiring high pH media and their long term thermal and hydrolytic stability coupled with non-toxic nature make them a very attractive alternative to NaBH4. The University of Missouri project provided the overall program focal point for the investigation of catalytic hydrolysis of polyhedral borane anions for hydrogen release. Due to their inherent stability, a transition metal catalyst was necessary for the hydrolysis of polyhedral borane anions. Transition metal ions such as cobalt, nickel, palladium and rhodium were investigated for their catalytic activity in the hydrolysis of nido-KB11H14, closo-K2B10H10, and closo-K2B12H12. The rate of hydrolysis follows first-order kinetics with respect to the concentration of the polyhedral borane anion and surface area of the rhodium catalyst. The rate of hydrolysis depends upon a) choice of polyhedral borane anion, c) concentration of polyhedral borane anion, d) surface area of the rhodium catalyst and e) temperature of the reaction. In all cases the yield of hydrogen was 100% which corresponds to ~7 wt% of hydrogen (based on material wt%). Phase 2. The phase 2 of program at the University of Missouri was focused upon developing aluminum ammonia-boranes (Al-AB) as chemical hydrogen storage materials, specifically their synthesis and studies of their dehydrogenation. The ammonia borane molecule (AB) is a demonstrated source of chemically stored hydrogen (19.6 wt%) which meets DOE performance parameters except for its regeneration from spent AB and elemental hydrogen. The presence of an aluminum center bonded to multiple AB residues might combine the efficiency of AB dehydrogenation with an aluminum

  7. Cumene hydroperoxide hydrogenation over Pd/C catalysts.

    PubMed

    Zhu, Qing-cai; Shen, Ben-xian; Ling, Hao; Gu, Rong

    2010-03-15

    Pd/C catalysts were prepared by wet impregnation using K(2)PdCl(4) as precursor and their performance in hydrogenation of cumene hydroperoxide (CHP) was investigated. The catalytic activity was examined on the formaldehyde-reduced and on the hydrogen-reduced Pd/C catalysts. Results from XRD, TEM and CO chemisorption showed that reduction methods have a significant impact on the palladium particles size of resulting catalysts. Formaldehyde-reduced Pd/C catalyst has larger palladium particles than hydrogen-reduced Pd/C catalyst. Consequently, higher activity but lower selectivity to alpha-cumyl alcohol (CA) was obtained on formaldehyde-reduced Pd/C catalyst. Moreover, hydrogenation of CHP over hydrogen-reduced Pd/C catalyst can give similar CA selectivity to Na(2)SO(3) reduction process, an industrial process for CA production. High rate of CHP conversion and CA selectivity can be obtained at an elevated temperature and H(2) pressure. Kinetics studies revealed that CHP hydrogenation is zero-order for CHP concentration and the activation energy was calculated to be 13.6 kJ/mol.

  8. Catalysts for the selective oxidation of hydrogen sulfide to sulfur

    DOEpatents

    Srinivas, Girish; Bai, Chuansheng

    2000-08-08

    This invention provides catalysts for the oxidation of hydrogen sulfide. In particular, the invention provides catalysts for the partial oxidation of hydrogen sulfide to elemental sulfur and water. The catalytically active component of the catalyst comprises a mixture of metal oxides containing titanium oxide and one or more metal oxides which can be selected from the group of metal oxides or mixtures of metal oxides of transition metals or lanthanide metals. Preferred metal oxides for combination with TiO.sub.2 in the catalysts of this invention include oxides of V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, Tc, Ru, Rh, Hf, Ta, W, Au, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Catalysts which comprise a homogeneous mixture of titanium oxide and niobium (Nb) oxide are also provided. A preferred method for preparing the precursor homogenous mixture of metal hydroxides is by coprecipitation of titanium hydroxide with one or more other selected metal hydroxides. Catalysts of this invention have improved activity and/or selectivity for elemental sulfur production. Further improvements of activity and/or selectivity can be obtained by introducing relatively low amounts (up to about 5 mol %)of a promoter metal oxide (preferably of metals other than titanium and that of the selected second metal oxide) into the homogeneous metal/titanium oxide catalysts of this invention.

  9. Pyrazole complexes as anion receptors.

    PubMed

    Nieto, Sonia; Pérez, Julio; Riera, Lucía; Riera, Víctor; Miguel, Daniel

    2006-03-01

    The behavior of the receptors [Re(CO)3(Hdmpz)3]BAr'4 (Hdmpz = 3,5-dimethylpyrazole) (1) and [Re(CO)3(HtBupz)3]BAr'4 (HtBupz = 3(5)-tert-butylpyrazole) (2; Ar' = 3,5-bis(trifluoromethyl)phenyl) toward the anions fluoride, chloride, bromide, iodide, hydrogensulfate, dihydrogenphosphate, nitrate, and perrhenate was studied in CD3CN solution. In most cases, the receptors were stable. Anion exchange was fast, and binding constants were calculated from the NMR titration profiles. The structure of the adduct [Re(CO)3(HtBupz)3] x NO3 (3) was determined by X-ray diffraction. Two pyrazole moieties are hydrogen-bonded to one nitrate oxygen atom, and the third pyrazole moiety is hydrogen-bonded to an oxygen atom of an adjacent nitrate, leading to infinite chains. The structure of the adduct [Re(CO)3(Hdmpz)3]BAr'4acetone (4), also determined by X-ray diffraction, showed a similar interaction of two pyrazole N-H groups with the acetone oxygen atom. F- and H2PO4(-) deprotonate the receptors, and HSO4(-) decomposed 1. The structure of one of the decomposition products (5), determined by X-ray diffraction, is consistent with pyrazole protonation and substitution by sulfate.

  10. Heterogeneous catalyst for the production of ethylidene diacetate from acetic anhydride

    DOEpatents

    Ramprasad, Dorai; Waller, Francis Joseph

    1998-01-01

    This invention relates to a process for producing ethylidene diacetate by the reaction of acetic anhydride, acetic acid, hydrogen and carbon monoxide at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that is stable to hydrogenation and comprises an insoluble polymer having pendant quaternized heteroatoms, some of which heteroatoms are ionically bonded to anionic Group VIII metal complexes, the remainder of the heteroatoms being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled without loss in activity.

  11. Heterogeneous catalyst for the production of ethylidene diacetate from acetic anhydride

    DOEpatents

    Ramprasad, D.; Waller, F.J.

    1998-06-16

    This invention relates to a process for producing ethylidene diacetate by the reaction of acetic anhydride, acetic acid, hydrogen and carbon monoxide at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that is stable to hydrogenation and comprises an insoluble polymer having pendant quaternized heteroatoms, some of which heteroatoms are ionically bonded to anionic Group VIII metal complexes, the remainder of the heteroatoms being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled without loss in activity.

  12. Polymerization of 1,3-Conjugated Dienes with Rare-Earth Metal Precursors

    NASA Astrophysics Data System (ADS)

    Zhang, Zhichao; Cui, Dongmei; Wang, Baoli; Liu, Bo; Yang, Yi

    This chapter surveys the publications except patents related to cis-1,4-, trans-1,4-, 3,4-regio-, and stereoselective polymerizations of 1,3-conjugated dienes with rare-earth metal-based catalytic systems during the past decade from 1999 to 2009. The concerned catalyst systems are classified into the conventional Ziegler-Natta catalysts, the modified Ziegler-Natta catalysts, and the single-site cationic systems composed of lanthanocene and noncyclopentadienyl precursors, respectively. For the conventional Ziegler-Natta catalysts of the most promising industry applicable recipe, the multicomponents based on lanthanide carboxylate or phosphate or alkoxide precursors, research works concern mainly about optimizing the catalyst preparation and polymerization techniques. Special emphases are put on the factors that influence the catalyst homogeneority, catalytic activity and efficiency, as well as cis-1,4-selectivity. Meanwhile, tailor-made lanthanide aryloxide and amide complexes are designed and fully characterized to mimic the conventional Ziegler-Natta catalysts, anticipated to elucidate the key processes, alkylation and cationization, for generating the active species. Regarding to the single-site catalytic systems generally comprising well-defined complexes containing lanthanide-carbon bonds, investigations cover their versatile catalytic activity and efficiency, and the distinguished regio- and stereoselectivity for both polymerization of dienes and copolymerization of dienes with alkenes. The correlation between the sterics and electronics of ligands and the molecular structures of the complexes and their catalytic performances are highlighted. The isolation of the probable active species in these polymerization processes from the stoichiometric reactions of the precursors with activators will be presented.

  13. Hydrogenation of coal liquid utilizing a metal carbonyl catalyst

    DOEpatents

    Feder, Harold M.; Rathke, Jerome W.

    1979-01-01

    Coal liquid having a dissolved transition metal, catalyst as a carbonyl complex such as Co.sub.2 (CO.sub.8) is hydrogenated with hydrogen gas or a hydrogen donor. A dissociating solvent contacts the coal liquid during hydrogenation to form an immiscible liquid mixture at a high carbon monoxide pressure. The dissociating solvent, e.g. ethylene glycol, is of moderate coordinating ability, while sufficiently polar to solvate the transition metal as a complex cation along with a transition metal, carbonyl anion in solution at a decreased carbon monoxide pressure. The carbon monoxide pressure is reduced and the liquids are separated to recover the hydrogenated coal liquid as product. The dissociating solvent with the catalyst in ionized form is recycled to the hydrogenation step at the elevated carbon monoxide pressure for reforming the catalyst complex within fresh coal liquid.

  14. A Novel Methodology to Synthesize Highly Conductive Anion Exchange Membranes

    NASA Astrophysics Data System (ADS)

    He, Yubin; Pan, Jiefeng; Wu, Liang; Zhu, Yuan; Ge, Xiaolin; Ran, Jin; Yang, Zhengjin; Xu, Tongwen

    2015-08-01

    Alkaline polyelectrolyte fuel cell now receives growing attention as a promising candidate to serve as the next generation energy-generating device by enabling the use of non-precious metal catalysts (silver, cobalt, nickel et al.). However, the development and application of alkaline polyelectrolyte fuel cell is still blocked by the poor hydroxide conductivity of anion exchange membranes. In order to solve this problem, we demonstrate a methodology for the preparation of highly OH- conductive anion exchange polyelectrolytes with good alkaline tolerance and excellent dimensional stability. Polymer backbones were grafted with flexible aliphatic chains containing two or three quaternized ammonium groups. The highly flexible and hydrophilic multi-functionalized side chains prefer to aggregate together to facilitate the formation of well-defined hydrophilic-hydrophobic microphase separation, which is crucial for the superior OH- conductivity of 69 mS/cm at room temperature. Besides, the as-prepared AEMs also exhibit excellent alkaline tolerance as well as improved dimensional stability due to their carefully designed polymer architecture, which provide new directions to pursue high performance AEMs and are promising to serve as a candidate for fuel cell technology.

  15. Tunable electronic interactions between anions and perylenediimide.

    PubMed

    Goodson, Flynt S; Panda, Dillip K; Ray, Shuvasree; Mitra, Atanu; Guha, Samit; Saha, Sourav

    2013-08-07

    Over the past decade anion-π interaction has emerged as a new paradigm of supramolecular chemistry of anions. Taking advantage of the electronic nature of anion-π interaction, we have expanded its boundaries to charge-transfer (CT) and formal electron transfer (ET) events by adjusting the electron-donating and accepting abilities of anions and π-acids, respectively. To establish that ET, CT, and anion-π interactions could take place between different anions and π-acids as long as their electronic and structural properties are conducive, herein, we introduce 3,4,9,10-perylenediimide (PDI-1) that selectively undergoes thermal ET from strong Lewis basic hydroxide and fluoride anions, but remains electronically and optically silent to poor Lewis basic anions, as ET and CT events are turned OFF. These interactions have been fully characterized by UV/Vis, NMR, and EPR spectroscopies. These results demonstrate the generality of anion-induced ET events in aprotic solvents and further refute a notion that strong Lewis basic hydroxide and fluoride ions can only trigger nucleophilic attack to form covalent bonds instead of acting as sacrificial electron donors to π-acids under appropriate conditions.

  16. Fischer-Tropsch Catalysts

    NASA Technical Reports Server (NTRS)

    White, James H. (Inventor); Taylor, Jesse W. (Inventor)

    2008-01-01

    Catalyst compositions and methods for F-T synthesis which exhibit high CO conversion with minor levels (preferably less than 35% and more preferably less than 5%) or no measurable carbon dioxide generation. F-T active catalysts are prepared by reduction of certain oxygen deficient mixed metal oxides.

  17. Nanostructured catalyst supports

    DOEpatents

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2012-10-02

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  18. Nanostructured catalyst supports

    DOEpatents

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2015-09-29

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  19. Reducible oxide based catalysts

    DOEpatents

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  20. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, Raghunath

    1998-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  1. A nickel iron diselenide-derived efficient oxygen-evolution catalyst

    NASA Astrophysics Data System (ADS)

    Xu, Xiang; Song, Fang; Hu, Xile

    2016-08-01

    Efficient oxygen-evolution reaction catalysts are required for the cost-effective generation of solar fuels. Metal selenides have been reported as promising oxygen-evolution catalysts; however, their active forms are yet to be elucidated. Here we show that a representative selenide catalyst, nickel selenide, is entirely converted into nickel hydroxide under oxygen-evolution conditions. This result indicates that metal selenides are unstable during oxygen evolution, and the in situ generated metal oxides are responsible for their activity. This knowledge inspired us to synthesize nanostructured nickel iron diselenide, a hitherto unknown metal selenide, and to use it as a templating precursor to a highly active nickel iron oxide catalyst. This selenide-derived oxide catalyses oxygen evolution with an overpotential of only 195 mV for 10 mA cm-2. Our work underscores the importance of identifying the active species of oxygen-evolution catalysts, and demonstrates how such knowledge can be applied to develop better catalysts.

  2. A broadly applicable and practical oligomeric (salen) Co catalyst for enantioselective epoxide ring-opening reactions

    PubMed Central

    White, David E.; Tadross, Pamela M.; Lu, Zhe

    2014-01-01

    The (salen) Co catalyst (4a) can be prepared as a mixture of cyclic oligomers in a short, chromatography-free synthesis from inexpensive, commercially available precursors. This catalyst displays remarkable enhancements in reactivity and enantioselectivity relative to monomeric and other multimeric (salen) Co catalysts in a wide variety of enantioselective epoxide ring-opening reactions. The application of catalyst 4a is illustrated in the kinetic resolution of terminal epoxides by nucleophilic ring-opening with water, phenols, and primary alcohols; the desymmetrization of meso epoxides by addition of water and carbamates; and the desymmetrization of oxetanes by intramolecular ring opening with alcohols and phenols. The favorable solubility properties of complex 4a under the catalytic conditions facilitated mechanistic studies, allowing elucidation of the basis for the beneficial effect of oligomerization. Finally, a catalyst selection guide is provided to delineate the specific advantages of oligomeric catalyst 4a relative to (salen) Co monomer 1 for each reaction class. PMID:25045188

  3. A broadly applicable and practical oligomeric (salen) Co catalyst for enantioselective epoxide ring-opening reactions.

    PubMed

    White, David E; Tadross, Pamela M; Lu, Zhe; Jacobsen, Eric N

    2014-07-08

    The (salen) Co catalyst (4a) can be prepared as a mixture of cyclic oligomers in a short, chromatography-free synthesis from inexpensive, commercially available precursors. This catalyst displays remarkable enhancements in reactivity and enantioselectivity relative to monomeric and other multimeric (salen) Co catalysts in a wide variety of enantioselective epoxide ring-opening reactions. The application of catalyst 4a is illustrated in the kinetic resolution of terminal epoxides by nucleophilic ring-opening with water, phenols, and primary alcohols; the desymmetrization of meso epoxides by addition of water and carbamates; and the desymmetrization of oxetanes by intramolecular ring opening with alcohols and phenols. The favorable solubility properties of complex 4a under the catalytic conditions facilitated mechanistic studies, allowing elucidation of the basis for the beneficial effect of oligomerization. Finally, a catalyst selection guide is provided to delineate the specific advantages of oligomeric catalyst 4a relative to (salen) Co monomer 1 for each reaction class.

  4. Influence of nature of precursors on the formation and structure of Cu Ni Cr mixed oxides from layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Zhang, Lihong; Zhu, Jia; Jiang, Xiaorui; Evans, David G.; Li, Feng

    2006-08-01

    Analogous layered double hydroxides (LDHs) with the Cu2+/Ni2+/Cr3+ molar ratio of 1/2/1 on the brucite-like layers and interlayer anions (viz sulfate, nitrate and carbonate, respectively) were synthesized by a coprecipitation method. For the first time, the effects of interlayer anions on the structural properties of as-synthesized LDHs and resulting calcined products at 773 K were investigated by means of powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), simultaneous thermogravimetric and differential thermal analysis (TG-DTA), X-ray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR). The results indicate that the nature of interlayer anions involved within the hydrotalcite (HT)-like structure has a larger influence on the thermal stability of LDHs precursors. Calcination of well-crystallized LDHs leads to the formation of mixed metal oxides including CuO, NiO and Cu2+-, Ni2+- and Cr3+-containing spinel phases, the composition distributions of which obtained from LDHs precursors depend on the nature of interlayer anions, thus resulting in the difference of the reducibility of reducible metal species in the calcined LDHs. Moreover, the surface basicity of the calcined material, which is related to the different behaviour of LDHs precursors during the thermal decomposition depending on the interlayer anions, increases progressively following the order of calcined LDHs from sulfate to nitrate and carbonate.

  5. Anion adsorption induced surface reconstructions

    NASA Astrophysics Data System (ADS)

    Tang, Lei

    2005-11-01

    Surface stress plays an important role in the behavior of solid surfaces. Potential-controlled anion adsorption in electrolytes alters the surface stress of the electrode and results in morphology changes to the surfaces. With a combination of potential-induced surface stress measurement and in situ electrochemical scanning tunneling microscopy (STM), it is demonstrated that anion adsorption induces changes in structure of thin films and modifies the growth morphology and stress evolution in epitaxially grown films. Surface structural transitions in the heteroepitaxial system consisting of one to two gold monolayers on platinum substrates were observed. By increasing the potential, structural transitions, from (1 x 1), to a striped phase, to a hexagonal structure, occurred in the gold bilayer. This hexagonal structure was related to the formation of an ordered sulfate adlayer with a ( 3x7 ) structure. Such transitions were repeatable by cycling the potential. Furthermore, the transitions between various dislocation structures were affected by anion adsorption. The surface composition of the gold bilayer on Pt was measured by underpotential deposition of copper. By subtracting the contribution of a pure Pt surface from the gold bi-layer on Pt, a stress change of -2.4 N/m was observed, which agrees with the stress change of -2.46 N/m predicted to accompany formation of 1.5 MLs of coherent Au on Pt(111) from epitaxy theory. The Cu monolayer deposited on Au(111) from an acid sulfate electrolyte was found to be pseudomorphic while the Cu monolayer formed on Au(111) in vacuum was incoherent. The stress-thickness change associated with the coherent monolayer of copper on Au(111) in electrolyte was -0.6 N/m, while conventional epitaxy theories predict a value of +7.76 N/m. STM results elucidated the sulfate adsorption on the copper monolayer caused an expansion of the layer as evidenced by a Moire Structure. For the Cu monolayer on Au(111), the sulfate-induced expansion

  6. Metal-catalyst-free carbohydrazide fuel cells with three-dimensional graphene anodes.

    PubMed

    Qi, Ji; Benipal, Neeva; Wang, Hui; Chadderdon, David J; Jiang, Yibo; Wei, Wei; Hu, Yun Hang; Li, Wenzhen

    2015-04-13

    As a potential solution to concerns on sustainable energy, the wide spread commercialization of fuel cell has long been hindered by limited reserves and relatively high costs of metal catalysts. 3D graphene, a carbon-only catalyst prepared by reduction of carbon monoxide with lithium oxide, is found to electrochemically catalyze carbohydrazide oxidation reaction efficiently. A prototype of a completely metal-catalyst-free anion exchange membrane fuel cell (AEMFC) with a 3D graphene anode catalyst and an N-doped CNT (N-CNT) cathode catalyst generate a peak power density of 24.9 mW cm(-2) . The average number of electrons electrochemically extracted from one carbohydrazide molecule is 4.9, indicating the existence of CN bond activation, which is a key factor contributing to high fuel utilization efficiency.

  7. Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction.

    PubMed

    Kibsgaard, Jakob; Jaramillo, Thomas F

    2014-12-22

    Introducing sulfur into the surface of molybdenum phosphide (MoP) produces a molybdenum phosphosulfide (MoP|S) catalyst with superb activity and stability for the hydrogen evolution reaction (HER) in acidic environments. The MoP|S catalyst reported herein exhibits one of the highest HER activities of any non-noble-metal electrocatalyst investigated in strong acid, while remaining perfectly stable in accelerated durability testing. Whereas mixed-metal alloy catalysts are well-known, MoP|S represents a more uncommon mixed-anion catalyst where synergistic effects between sulfur and phosphorus produce a high-surface-area electrode that is more active than those based on either the pure sulfide or the pure phosphide. The extraordinarily high activity and stability of this catalyst open up avenues to replace platinum in technologies relevant to renewable energies, such as proton exchange membrane (PEM) electrolyzers and solar photoelectrochemical (PEC) water-splitting cells.

  8. Precursor effects on the morphology and crystallinity of manganese oxides and their catalytic application for methylene blue degradation

    NASA Astrophysics Data System (ADS)

    Awaluddin, Amir; Agustina, Mutia; Aulia, Rizki Rilda; Muhdarina

    2017-03-01

    The cryptomelane-type manganese oxide catalysts have been prepared by sol-gel method based on the redox reaction between potassium permanganate and glucose or oxalic acid. These catalysts belong to a class of porous manganese oxides known as octahedral molecular sieves (OMS). The SEM results indicated that the marked difference between the morphology of the cyptomelanes produced from glucose and oxalic acid. The glucose precursor produces cotton-shaped morphology, whereas the oxalic acid precursor leads to the formation of the disk-like appearances. The XRD results indicated that the glucose precursor produces more crystalline cryptomelane than that of oxalic acid. The effect of catalyst dosage on methyelene blue degradation was evaluated. Dye-decomposing activity was proportional to the amount of catalyst used, increasing of the catalyst amount leads to higher degradation of methyelene blue at short period of reaction. With different crystalline structures and morphology appearances of the cyptomelanes, however, the total degradation of methylene blue is relatively the same at 120 minute of reaction time with catalyst amount of 100 mg.

  9. Nexal membrane permeability to anions

    PubMed Central

    1978-01-01

    The permeability of the septa of the earthworm in the median axon has been calculated for the anions fluorescein and its halogen derivatives. The values ranged from 5.4 X 10(-5) to 4 X 10(-6) cm/s. Previously, the septa had been shown to contain nexuses. By using freeze-fracture material, the surface area of nexus on the septal membranes was determined to be 4.5%, very similar to the percentage of nexus in the intercalated disk of mammalian myocardium. Plasma membrane permeability to these dyes was also calculated and shown to be much less than that of the septal membranes. In addition, an estimate of cytoplasmic binding for each dye was made, and most dyes showed little or no binding with the exception of aminofluorescein. PMID:702107

  10. Aprotic Heterocyclic Anion Triazolide Ionic Liquids - A New Class of Ionic Liquid Anion Accessed by the Huisgen Cycloaddition Reaction

    SciTech Connect

    Thompson, Robert L; Damodaran, Krishnan; Luebke, David; Nulwala, Hunaid

    2013-06-01

    The triazole core is a highly versatile heterocyclic ring which can be accessed easily with the Cu(I)-catalyzed Huisgen cycloaddition reaction. Herein we present the preparation of ionic liquids that incorporate a 1,2,3-triazolide anion. These ionic liquids were prepared by a facile procedure utilizing a base-labile pivaloylmethyl group at the 1-position, which can act as precursors to 1H- 4-substituted 1,2,3-triazole. These triazoles were then subsequently converted into ionic liquids after deprotonation using an appropriate ionic liquid cation hydroxide. The densities and thermal decompositions of these ionic liquids were measured. These novel ionic liquids have potential applications in gas separations and in metal-free catalysis.

  11. Energy and Entropy Effects in Dissociation of Peptide Radical Anions

    SciTech Connect

    Laskin, Julia; Yang, Zhibo; Lam, Corey; Chu, Ivan K.

    2012-04-15

    Time- and collision energy-resolved surface-induced dissociation (SID) of peptide radical anions was studied for the first time using a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) configured for SID experiments. Peptide radical cations and anions were produced by gas-phase fragmentation of CoIII(salen)-peptide complexes. The effect of the charge, radical, and the presence of a basic residue on the energetics and dynamics of dissociation of peptide ions was examined using RVYIHPF (1) and HVYIHPF (2) as model systems. Comparison of the survival curves for of [M+H]{sup +}, [M-H]{sup -}, M{sup +{sm_bullet}}, and [M-2H]{sup -{sm_bullet}} ions of these precursors demonstrated that even-electron ions are more stable towards fragmentation than their odd-electron counterparts. RRKM modeling of the experimental data demonstrated that the lower stability of the positive radicals is mainly attributed to lower dissociation thresholds while entropy effects are responsible the relative instability of the negative radicals. Substitution of arginine with less basic histidine residue has a strong destabilizing effect on the [M+H]{sup +} ions and a measurable stabilizing effect on the odd-electron ions. Lower threshold energies for dissociation of both positive and negative radicals of 1 are attributed to the presence of lower-energy dissociation pathways that are most likely promoted by the presence of the basic residue.

  12. Chemistry of nitrile anions in the interstellar medium

    SciTech Connect

    Carles, S.; Le Garrec, J.-L.; Biennier, L.; Guillemin, J.-C.

    2015-12-31

    Despite the extreme conditions of temperature (down to 10K) and density (down to 100 molecules/cm{sup 3}), the giant molecular clouds and the circumstellar envelopes present a rich and complex chemistry. To date, more than 180 molecules have been detected in the InterStellar Medium (ISM) with a large abundance of nitriles (RC≡N). In addition, several anions have been recently observed in this medium: C{sub 4}H{sup ¯}, C{sub 6}H{sup ¯}, C{sub 8}H{sup ¯}, CN{sup ¯}, C{sub 3}N{sup ¯} and C{sub 5}N{sup ¯}. These last species should play a key role in the molecular growth towards complexity. To explore this hypothesis, their reactivity must be studied in the laboratory. The FALP-MS and the CRESU experimental apparatuses of the Rennes University are able to measure absolute rate coefficient of various chemical reactions, including the ion – molecule reactions, in gas phase at low temperature (from 300K for the FALP-MS down to 15K for the CRESU). Therefore, these experimental tools are particularly adapted to the kinetic studies of reactions potentially involved in the Interstellar Medium. One of the difficulties encountered in experiments with anions is their generation. We describe here the formation of the CN{sup ¯} and C{sub 3}N{sup ¯} anions by dissociative electron attachment on the molecular precursors BrCN and BrC{sub 3}N.

  13. The nature and evolution of excess electron binding in cluster anions studied via negative ion photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Hendricks, Jay H.

    1997-07-01

    The technique of negative ion photoelectron spectroscopy (NIPES) has been used to study a variety of cluster anion systems with the aim of elucidating the nature and evolution of excess electron binding in clusters. The systems studied include molecular and cluster dipole- bound anions, conventional valence molecular anions, ion- molecule cluster anions, solvated electron cluster anions, metal cluster anions, metal oxide anions, and metal hydride anions. The generation and characterization of nanophase Lunsford catalyst, and the study of gas- phase anionic polymerization reactions were also conducted. The studies of dipole-bound anions, (Uracil)/sp-, (Uracil...Xe)/sp-, (Thymine)/sp-, (1- Methylcytosine)/sp-, (HF)2-, (H2O)2-, (EG)2-, where EG = Ethylene Glycol, (CH3CN[/cdots]H2O)/sp-,/ (HCl[/cdots] H2O)/sp-,/ (HCN[/cdots]H2O)/sp-, and (H2S)4- provide some of the best experimental evidence to date confirming the long standing predictions of theory that an excess electron can be bound to a dipole field if the dipole moment of the neutral molecule or cluster exceeds a critical minimum value. The photodetachment of the conventional valence anions /[(2,4,6-tricyanobenzene)/sp-, (CAN3-3HCl)/sp-, where CAN = 2- choloracrylonitrile, (CH3NO2)/sp-/], metal cluster anions /[Lin=1-7-/], metal oxide anions /[NaO/sp-,/ KO/sp-,/ RbO/sp-, and CsO/sp-/] and metal hydride anions /[LiH/sp-,/ LiD/sp-/] enabled the first time determinations of vertical detachment energies, and adiabatic election affinities. The studies of ion-molecule cluster anions /[O/sp- (Ar)n=1-26,34,/ NO/sp-(Ar)n=1-14,/ O/sp- (Kr)n=1-4,/ O/sp-(Xe)n=1-4,/ O/sp-(N2),/ NO/sp-(Kr),/ NO/sp-(Xe)n=1-3,/ NO/sp- (N2O)n=1-5, and NO/sp-(EG),/ (Uracil[/cdots]H2O)/sp-,/ (Uracil[/cdots]Xe)/sp-/] permitted the energetics and structure of microscopic ion solvation to be examined as a function of cluster size and cluster solvent. The photodetachment of solvated the electron clusters anions /[(H2O)n-,/ [(H2O)x[/cdots](NH3)y

  14. Progress in the development and production of nanoscale iron-coating catalysts

    SciTech Connect

    Matson, D.W.; Linehan, J.C.; Darab, J.G.; Watrob, H.M.; Lui, E.G.; Phelps, M.R.; Hogan, M.O.

    1995-04-01

    At the Pacific Northwest Laboratory (PNL) we have undertaken a program to investigate nanocrystalline ion-based powders as catalytic precursors in a variety of hydrocracking reactions, including coal liquefaction. One ultrafine powder synthesis method developed at PNL, the Rapid of precursors in Solution (RTDS) process, appears to be particularly large scale production of nanocrystalline powders. Using model compounds we have demonstrated that iron-based RTDS powders can be used to produce highly active carbon-carbon bond scission catalysts under reaction conditions relevant to coal liquefaction processes. In this paper we present recent results of attempts at modifying the activity of RTDS-generated iron-based catalyst powders by doping with other metals and the results of scaleup efforts to produce kilogram quantities of active catalyst precursor by this process.

  15. Effect of cationic/anionic organic surfactants on evaporation induced self assembled tin oxide nanostructured films

    NASA Astrophysics Data System (ADS)

    Khun Khun, Kamalpreet; Mahajan, Aman; Bedi, R. K.

    2011-01-01

    Tin oxide nanostructures with well defined morphologies have been obtained through an evaporation induced self assembly process. The technique has been employed using an ultrasonic nebulizer for production of aersol and its subsequent deposition onto a heated glass substrate. The precursor used for aersol production was modified by introducing cationic and anionic surfactants namely cetyl trimethyl ammonium bromide and sodium dodecyl sulphate respectively. The effect of surfactants on the structural, electrical and optical properties of self assembled tin oxide nanostructures were investigated by using X-ray diffraction, field emission scanning electroscope microscopy, two probe technique and photoluminiscence studies. The results reveal that high concentration of surfactants in the precursor solution leads to reduction in crystallite size with significant changes in the morphology of tin oxide nanostructures. Photoluminiscence studies of the nanostructures show emissions in the visible region which exhibit marked changes in the intensities upon variation of surfactants in the precursor solutions.

  16. Tripodal Receptors for Cation and Anion Sensors

    PubMed Central

    Kuswandi, Bambang; Nuriman; Verboom, Willem; Reinhoudt, David N.

    2006-01-01

    This review discusses different types of artificial tripodal receptors for the selective recognition and sensing of cations and anions. Examples on the relationship between structure and selectivity towards cations and anions are described. Furthermore, their applications as potentiometric ion sensing are emphasised, along with their potential applications in optical sensors or optodes.

  17. "Trojan Horse" Effect in Photocatalysis-How Anionic Silver Impurities Influence Apparent Catalytic Activity.

    PubMed

    Kaufhold, Simon; Petermann, Lydia; Sorsche, Dieter; Rau, Sven

    2017-02-16

    The problematic consequences of using silver carbene precursors for the synthesis of NHC-complexes is elucidated with the example of dinuclear Ru-Rh/Ir photocatalysts. The presence of silver in the products is proven and an alternative silver-free synthetic approach successfully implemented. A significant difference in performance in photocatalytic hydrogen evolution reactions of catalysts generated by the different strategies is observed.

  18. Creating molecular macrocycles for anion recognition

    PubMed Central

    2016-01-01

    Summary The creation and functionality of new classes of macrocycles that are shape persistent and can bind anions is described. The genesis of triazolophane macrocycles emerges out of activity surrounding 1,2,3-triazoles made using click chemistry; and the same triazoles are responsible for anion capture. Mistakes made and lessons learnt in anion recognition provide deeper understanding that, together with theory, now provides for computer-aided receptor design. The lessons are acted upon in the creation of two new macrocycles. First, cyanostars are larger and like to capture large anions. Second is tricarb, which also favors large anions but shows a propensity to self-assemble in an orderly and stable manner, laying a foundation for future designs of hierarchical nanostructures. PMID:27340452

  19. Covalent Polymers Containing Discrete Heterocyclic Anion Receptors

    PubMed Central

    Rambo, Brett M.; Silver, Eric S.; Bielawski, Christopher W.; Sessler, Jonathan L.

    2010-01-01

    This chapter covers recent advances in the development of polymeric materials containing discrete heterocyclic anion receptors, and focuses on advances in anion binding and chemosensor chemistry. The development of polymers specific for anionic species is a relatively new and flourishing area of materials chemistry. The incorporation of heterocyclic receptors capable of complexing anions through non-covalent interactions (e.g., hydrogen bonding and electrostatic interactions) provides a route to not only sensitive but also selective polymer materials. Furthermore, these systems have been utilized in the development of polymers capable of extracting anionic species from aqueous environments. These latter materials may lead to advances in water purification and treatment of diseases resulting from surplus ions. PMID:20871791

  20. Polymers for anion recognition and sensing.

    PubMed

    Rostami, Ali; Taylor, Mark S

    2012-01-16

    In biological systems, the selective and high-affinity recognition of anionic species is accomplished by macromolecular hosts (anion-binding proteins) that have been "optimized" through evolution. Surprisingly, it is only recently that chemists have systematically attempted to develop anion-responsive synthetic macromolecules for potential applications in medicine, national security, or environmental monitoring. Recent results indicating that unique features of polymeric systems such as signal amplification, multivalency, and cooperative behavior may be exploited productively in the context of anion recognition and sensing are documented. The wide variety of interactions-including Lewis acid/base, ion-pairing, and hydrogen bonding-that have been employed for this purpose is reflected in the structural diversity of anion-responsive macromolecules identified to date.

  1. Closing the gap on unmeasured anions

    PubMed Central

    Kellum, John A

    2003-01-01

    Many critically ill and injured patients, especially those with metabolic acidosis, have abnormally high levels of unmeasured anions in their blood. At the same time, such patients are prone to hypoalbuminemia, which makes the traditional anion gap calculation inaccurate. Thus, little is known about the epidemiology and clinical consequences of an excess in unmeasured anions in the blood. Indeed, even the etiology of these "missing ions" is often unclear. Unfortunately, more precise means of quantifying unmeasured anions, such as the strong ion gap (SIG), are cumbersome to use clinically. However, a simple means of correcting the anion gap can be used to estimate SIG and may provide additional insight into this common clinical problem. PMID:12793870

  2. Design, synthesis, and characterization of novel fine-particle, unsupported catalysts for coal liquefaction

    SciTech Connect

    Klein, M.T.

    1991-09-11

    A series of carbonyl-based homogeneous catalyst precursors has been prepared. These species include: Fe(CO){sub 4}PPh{sub 3}, Fe(CO){sub 3}(PPh{sub 3}){sub 2}, Fe(CO){sub 2}(PPh{sub 3}){sub 2}CS{sub 2}, S{sub 2}Fe{sub 2}(CO){sub 6}, S{sub 2}Fe{sub 3}(CO){sub 9}. Fe(CO){sub 4}PPh{sub 3} was prepared by a combined photochemical and thermal route from triphenylphosphine (PPh{sub 3}) in iron pentacarbonyl (Fe(CO){sub 5}). This preparation procedure, which is selective to the monosubstituted product, is outlined herein. Currently these compounds are being tested as catalysts/catalyst precursors with coal or model compounds in the tubing bomb reactors to provide information relating catalytic activity to catalyst structure and properties. (VC)

  3. Catalytic water oxidation by mononuclear Ru complexes with an anionic ancillary ligand.

    PubMed

    Tong, Lianpeng; Inge, A Ken; Duan, Lele; Wang, Lei; Zou, Xiaodong; Sun, Licheng

    2013-03-04

    Mononuclear Ru-based water oxidation catalysts containing anionic ancillary ligands have shown promising catalytic efficiency and intriguing properties. However, their insolubility in water restricts a detailed mechanism investigation. In order to overcome this disadvantage, complexes [Ru(II)(bpc)(bpy)OH2](+) (1(+), bpc = 2,2'-bipyridine-6-carboxylate, bpy = 2,2'-bipyridine) and [Ru(II)(bpc)(pic)3](+) (2(+), pic = 4-picoline) were prepared and fully characterized, which features an anionic tridentate ligand and has enough solubility for spectroscopic study in water. Using Ce(IV) as an electron acceptor, both complexes are able to catalyze O2-evolving reaction with an impressive rate constant. On the basis of the electrochemical and kinetic studies, a water nucleophilic attack pathway was proposed as the dominant catalytic cycle of the catalytic water oxidation by 1(+), within which several intermediates were detected by MS. Meanwhile, an auxiliary pathway that is related to the concentration of Ce(IV) was also revealed. The effect of anionic ligand regarding catalytic water oxidation was discussed explicitly in comparison with previously reported mononuclear Ru catalysts carrying neutral tridentate ligands, for example, 2,2':6',2″-terpyridine (tpy). When 2(+) was oxidized to the trivalent state, one of its picoline ligands dissociated from the Ru center. The rate constant of picoline dissociation was evaluated from time-resolved UV-vis spectra.

  4. An anionic N-donor ligand promotes manganese-catalyzed water oxidation

    PubMed Central

    Young, Karin J.; Takase, Michael K.; Brudvig, Gary W.

    2014-01-01

    Four manganese complexes of pentadentate ligands have been studied for their ability to act as oxygen-evolution catalysts in the presence of Oxone or hydrogen peroxide. The complexes [Mn(PaPy3)(NO3)](ClO4), 1 (PaPy3H = N,N-bis(2-pyridylmethyl)-amine-N-ethyl-2-pyridine-2-carboxamide) and [Mn(PaPy3)(μ-O)(PaPy3)Mn](ClO4)2, 2 feature an anionic carboxamido ligand trans to the labile sixth coordination site, while [Mn(N4Py)OTf](OTf), 3 (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) and [Mn(PY5)(OH2)](ClO4)2, 4 (PY5 = 2,6-bis(bis(2-pyridyl)methoxymethane)-pyridine) have neutral ligands of varying flexibility. 1 and 2 are shown to evolve oxygen in the presence of either Oxone or hydrogen peroxide, but 3 evolves oxygen only in the presence of hydrogen peroxide and 4 is inactive. The activity of 1 and 2 with Oxone suggests that the presence of an anionic N-donor ligand plays a role in stabilizing putative high-valent intermediates. Anionic N-donor ligands may be viewed as an alternative to μ-oxo ligands that are prone to protonation in low-valent Mn species formed during a catalytic cycle, resulting in loss of catalyst structure. PMID:23777320

  5. Anion stripping as a general method to create cationic porous framework with mobile anions.

    PubMed

    Mao, Chengyu; Kudla, Ryan A; Zuo, Fan; Zhao, Xiang; Mueller, Leonard J; Bu, Xianhui; Feng, Pingyun

    2014-05-28

    Metal-organic frameworks (MOFs) with cationic frameworks and mobile anions have many applications from sensing, anion exchange and separation, to fast ion conductivity. Despite recent progress, the vast majority of MOFs have neutral frameworks. A common mechanism for the formation of neutral frameworks is the attachment of anionic species such as F(-) or OH(-) to the framework metal sites, neutralizing an otherwise cationic scaffolding. Here, we report a general method capable of converting such neutral frameworks directly into cationic ones with concurrent generation of mobile anions. Our method is based on the differential affinity between distinct metal ions with framework anionic species. Specifically, Al(3+) is used to strip F(-) anions away from framework Cr(3+) sites, leading to cationic frameworks with mobile Cl(-) anions. The subsequent anion exchange with OH(-) further leads to a porous network with mobile OH(-) anions. New materials prepared by anion stripping can undergo ion exchange with anionic organic dyes and also exhibit much improved ionic conductivity compared to the original unmodified MOFs.

  6. Characterization of a model Phillips catalyst by mass spectrometry.

    PubMed

    Di Croce, Pascal Gabriel; Aubriet, Frédéric; Chéty-Gimondo, Rachel; Muller, Jean-François; Grange, Paul

    2004-01-01

    A model Phillips catalyst for ethylene polymerization, prepared by spin coating a Cr(III)(Cr(acac)3) precursor on a silicon wafer, was submitted to an oxidative activation. Laser ablation Fourier transform mass spectrometry provided direct information on molecular species at the silicon wafer surface during activation. At 350 degrees C the chromium precursor was degraded, while chromium oxide species were formed. The chromium concentration decreased with temperature. The activated model catalyst was active for ethylene polymerization. Using complementary techniques (Fourier transform infrared spectroscopy, laser desorption/ionization mass spectrometry), the polymer was identified as crystalline polyethylene. After 1 h of polymerization at 160 degrees C, dome-like structures were observed by atomic force microscopy. Their morphologies were constituted of regions of parallel aligned lamellae of polymer.

  7. CVD synthesis of boron nitride nanotubes without metal catalysts

    NASA Astrophysics Data System (ADS)

    Ma, R.; Bando, Y.; Sato, T.

    2001-03-01

    An efficient CVD synthetic route for bulk quantities of boron nitride nanotubes (BN-NTs) was developed, where a B-N-O precursor generated from melamine diborate (C 3N 6H 6·2H 3BO 3) was employed as the precursor and no metal catalyst was used. The resultant tubes all show remarkable ordering of the concentric atomic layers and exhibit stoichiometric BN composition. It is commonly found that the nanotubes have bulbous tips showing B-N-O amorphous clusters encapsulated in BN cages. The amorphous clusters might play the catalytic role in the nanotube `tip-growth' process as the metal catalysts do in the metal-catalyzed CVD method.

  8. Catalyst for microelectromechanical systems microreactors

    DOEpatents

    Morse, Jeffrey D [Martinez, CA; Sopchak, David A [Livermore, CA; Upadhye, Ravindra S [Pleasanton, CA; Reynolds, John G [San Ramon, CA; Satcher, Joseph H [Patterson, CA; Gash, Alex E [Brentwood, CA

    2011-11-15

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  9. Catalyst for microelectromechanical systems microreactors

    DOEpatents

    Morse, Jeffrey D.; Sopchak, David A.; Upadhye, Ravindra S.; Reynolds, John G.; Satcher, Joseph H.; Gash, Alex E.

    2010-06-29

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  10. Reclaim spent catalysts properly

    SciTech Connect

    Lassner, J.A.; Lasher, L.B.; Koppel, R.L.; Hamilton, J.N.

    1994-08-01

    Treatment of spent catalysts and metallic by products has become increasingly more complex over the last couple of years, due to tightening environmental concerns. Three options are available: (1) Reclaiming the metals and either reusing them to make new catalyst or recycling them for other uses. This is now the preferred option. A reclaiming firm is generally employed to handle the task. (2) Regeneration and reuse. While this generally is the preferred option, few commercial catalysts can be regenerated effectively and economically. (3) Landfilling. This has been the traditional route. However, stricter environmental regulations have made landfilling unattractive. To maximize the reclamation both economically and environmentally, five factors should be addressed: (1) proper planning and physical handling; (2) transportation of materials; (3) environmental concerns; (4) end uses of the catalyst; and (5) choosing the proper reclamation partner. These factors are discussed.

  11. Catalysts and method

    DOEpatents

    Taylor, Charles E.; Noceti, Richard P.

    1991-01-01

    An improved catlayst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HC1 and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride.

  12. Epoxidation catalyst and process

    DOEpatents

    Linic, Suljo; Christopher, Phillip

    2010-10-26

    Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.

  13. Precursor decay in several aluminas

    NASA Astrophysics Data System (ADS)

    Murray, N. H.; Bourne, N. K.; Rosenberg, Z.

    1996-05-01

    Plate impact experiments were performed on three ceramics with alumina content varying from 88 to 99.9% using a 50 mm single stage gas gun. Tiles of ceramic with thicknesses varying from 2 to 12 mm were impacted above their Hugoniot Elastic Limits (HELs) and the rate dependent strength was investigated by monitoring the variation in amplitude of the elastic precursor with propagation distance. Stress levels in the target were recorded using manganin stress transducers and a 1 GS s-1 storage oscilloscope. All grades of alumina were found to exhibit some elastic precursor decay indicating strain rate sensitivity.

  14. A chameleon catalyst for nonheme iron-promoted olefin oxidation.

    PubMed

    Iyer, Shyam R; Javadi, Maedeh Moshref; Feng, Yan; Hyun, Min Young; Oloo, Williamson N; Kim, Cheal; Que, Lawrence

    2014-11-18

    We report the chameleonic reactivity of two nonheme iron catalysts for olefin oxidation with H2O2 that switch from nearly exclusive cis-dihydroxylation of electron-poor olefins to the exclusive epoxidation of electron-rich olefins upon addition of acetic acid. This switching suggests a common precursor to the nucleophilic oxidant proposed to Fe(III)-η(2)-OOH and electrophilic oxidant proposed to Fe(V)(O)(OAc), and reversible coordination of acetic acid as a switching pathway.

  15. Technology development for iron F-T catalysts. Final report

    SciTech Connect

    Frame, R.R.; Gala, H.B.

    1994-08-01

    The objectives of this work were twofold. The first objective was to design and construct a pilot plant for preparing precipitated iron oxide F-T precursors and demonstrate that the rate of production from this plant is equivalent to 100 lbs/day of dried metal oxide. Secondly, these precipitates were to be used to prepare catalysts capable of achieving 88% CO + H{sub 2} conversion with {le} 5 mole percent selectivity to methane + ethane.

  16. Crystalline titanate catalyst supports

    DOEpatents

    Anthony, Rayford G.; Dosch, Robert G.

    1993-01-01

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  17. Plasmatron-catalyst system

    SciTech Connect

    Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander; Alexeev, Nikolai

    2007-10-09

    A plasmatron-catalyst system. The system generates hydrogen-rich gas and comprises a plasmatron and at least one catalyst for receiving an output from the plasmatron to produce hydrogen-rich gas. In a preferred embodiment, the plasmatron receives as an input air, fuel and water/steam for use in the reforming process. The system increases the hydrogen yield and decreases the amount of carbon monoxide.

  18. Catalytic reforming catalyst

    SciTech Connect

    Buss, W.C.; Kluksdahl, H.E.

    1980-12-09

    An improved catalyst, having a reduced fouling rate when used in a catalytic reforming process, said catalyst comprising platinum disposed on an alumina support wherein the alumina support is obtained by removing water from aluminum hydroxide produced as a by-product from a ziegler higher alcohol synthesis reaction, and wherein the alumina is calcined at a temperature of 1100-1400/sup 0/F so as to have a surface area of 165 to 215 square meters per gram.

  19. Crystalline titanate catalyst supports

    DOEpatents

    Anthony, R.G.; Dosch, R.G.

    1993-01-05

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  20. Microwave-assisted melt reaction method for the intercalation of carboxylic acid anions into layered double hydroxides.

    PubMed

    Rosa, Roberto; Leonelli, Cristina; Villa, Carla; Priarone, Giulia

    2013-01-01

    Carboxylic acid anions intercalated layered double hydroxides are currently gaining increasing interest due to their potential applications in pharmaceutical field for controlled drug release in novel tunable drug delivery systems. In this work different aliphatic carboxylic acid anions were intercalated into the interlayers of commercial as well as synthetically prepared layered double hydroxides, through a novel microwave mediated melt reaction approach. The volumetric nature of microwave dielectric heating was exploited in order to rapidly heat the intimate mixture of the lamellar inorganic precursor and the appropriate organic acid, at the melting temperature of the particular mono- or dicarboxylic acid used, reaching the intercalation in approximately two hours treatment.

  1. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOEpatents

    Angelici, R.J.; Gao, H.

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilication, olefin oxidation, isomerization, hydrocyanidation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical. 2 figs.

  2. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOEpatents

    Angelici, Robert J.; Gao, Hanrong

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilation, olefin oxidation, isomerization, hydrocyanation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical.

  3. Anionic Derivatives of Perfluorinated Trimethylgold.

    PubMed

    Menjón, Babil; Pérez-Bitrián, Alberto; Martínez-Salvador, Sonia; Baya, Miguel; Casas, José María; Martín, Antonio; Orduna, Jesús

    2017-03-20

    The homoleptic compound [PPh₄][CF₃AuCF₃] cleanly undergoes photoinduced oxidative addition of CF₃I to afford the organogold(III) derivative [PPh₄][(CF₃)₃AuI] in good yield and under mild conditions. This compound provides a convenient entry to the chemistry of the perfluorinated (CF₃)₃Au fragment whose properties are analyzed with the aid of DFT methods and compared with those of the homologous non-fluorinated (CH₃)₃Au moiety. It is found that reductive elimination of CX₃-CX₃ in the former (X = F) requires a much higher energy barrier than in the latter (X = H) and is therefore considerably less favored. This can be considered as one of the main features underlying the significantly higher stability associated to the (CF₃)₃Au fragment and its derivatives. This unsaturated, 14-electron species can be stabilized by coordination of any of the halide ligands, including fluoride. In fact, the whole series of anionic [PPh₄][(CF₃)₃AuX] complexes (X = F, Cl, Br, I, CN) has now been isolated and conveniently characterized. Evidence for intermolecular decomposition pathways upon thermolysis in the condensed phase is presented.

  4. Anion conductance selectivity mechanism of the CFTR chloride channel.

    PubMed

    Linsdell, Paul

    2016-04-01

    All ion channels are able to discriminate between substrate ions to some extent, a process that involves specific interactions between permeant anions and the so-called selectivity filter within the channel pore. In the cystic fibrosis transmembrane conductance regulator (CFTR) anion-selective channel, both anion relative permeability and anion relative conductance are dependent on anion free energy of hydration--anions that are relatively easily dehydrated tend to show both high permeability and low conductance. In the present work, patch clamp recording was used to investigate the relative conductance of different anions in CFTR, and the effect of mutations within the channel pore. In constitutively-active E1371Q-CFTR channels, the anion conductance sequence was Cl(-) > NO3(-) > Br(-) > formate > SCN(-) > I(-). A mutation that disrupts anion binding in the inner vestibule of the pore (K95Q) disrupted anion conductance selectivity, such that anions with different permeabilities showed almost indistinguishable conductances. Conversely, a mutation at the putative narrowest pore region that is known to disrupt anion permeability selectivity (F337A) had minimal effects on anion relative conductance. Ion competition experiments confirmed that relatively tight binding of permeant anions resulted in relatively low conductance. These results suggest that the relative affinity of ion binding in the inner vestibule of the pore controls the relative conductance of different permeant anions in CFTR, and that the pore has two physically distinct anion selectivity filters that act in series to control anion conductance selectivity and anion permeability selectivity respectively.

  5. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, October--December 1993

    SciTech Connect

    Schmidt, E.; Kirby, S.; Song, Chunshan; Schobert, H.H.

    1994-04-01

    Development of new catalysts is a promising approach to more, efficient coal liquefaction. It has been recognized that dispersed catalysts can be superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires infinite contact between the catalyst and coal. The primary objective of this research is to explore the potential of bimetallic dispersed catalysts from heterometallic molecular precursors in their use in model compound liquefaction reactions. This quarterly report describes the use of three precursors in model compound reactions. The first catalyst is a heterometallic complex consisting of two transition metals, Mo and Ni, and sulfur in a single molecule. The second is a thiocubane type complex consisting of cobalt, molybdenum and sulfur. The third is a thiocubane type cluster consisting of iron and sulfur and the fourth, the pure inorganic salt ammonium tetrathiomolybdate (ATM). It was found that the structure and the ligands in the model complexes affect the activity of the resulting catalyst significantly. The optimum reaction at a pressure of 6.9 MPa hydrogen gas varied for different catalysts. The bimetallic catalysts generated in situ from the organometallic precursor are more active than monometallic catalysts like ATTM and the thiocubane type cluster Fe{sub 4}. Main products are hydrogenated phenanthrene derivatives, like DBP, THP, sym-OHP, cis- and trans-unsym-OHP with minor isomerization products such as sym-OHA. Our results indicate that other transition metal and ligand combinations in the organometallic precursors and the use of another model compound could result in substantially higher conversion activity.

  6. Photoelectron spectroscopy of nitromethane anion clusters

    NASA Astrophysics Data System (ADS)

    Pruitt, Carrie Jo M.; Albury, Rachael M.; Goebbert, Daniel J.

    2016-08-01

    Nitromethane anion and nitromethane dimer, trimer, and hydrated cluster anions were studied by photoelectron spectroscopy. Vertical detachment energies, estimated electron affinities, and solvation energies were obtained from the photoelectron spectra. Cluster structures were investigated using theoretical calculations. Predicted detachment energies agreed with experiment. Calculations show water binds to nitromethane anion through two hydrogen bonds. The dimer has a non-linear structure with a single ionic Csbnd H⋯O hydrogen bond. The trimer has two different solvent interactions, but both involve the weak Csbnd H⋯O hydrogen bond.

  7. Anion photoelectron imaging spectroscopy of glyoxal

    NASA Astrophysics Data System (ADS)

    Xue, Tian; Dixon, Andrew R.; Sanov, Andrei

    2016-09-01

    We report a photoelectron imaging study of the radical-anion of glyoxal. The 532 nm photoelectron spectrum provides the first direct spectroscopic determination of the adiabatic electron affinity of glyoxal, EA = 1.10 ± 0.02 eV. This assignment is supported by a Franck-Condon simulation of the experimental spectrum that successfully reproduces the observed spectral features. The vertical detachment energy of the radical-anion is determined as VDE = 1.30 ± 0.04 eV. The reported EA and VDE values are attributed to the most stable (C2h symmetry) isomers of the neutral and the anion.

  8. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, R.

    1998-08-04

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products. 7 figs.

  9. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, Raghunath; Blaugher, Richard D.

    1995-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals, such as nitrate salts of thallium, barium, calcium, and copper, which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of thallium in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  10. PAGOSA Sample Problem. Elastic Precursor

    SciTech Connect

    Weseloh, Wayne N.; Clancy, Sean Patrick

    2016-02-03

    A PAGOSA simulation of a flyer plate impact which produces an elastic precursor wave is examined. The simulation is compared to an analytic theory for the Mie-Grüneisen equation of state and an elastic-perfectly-plastic strength model.

  11. Magnetic and dendritic catalysts.

    PubMed

    Wang, Dong; Deraedt, Christophe; Ruiz, Jaime; Astruc, Didier

    2015-07-21

    The recovery and reuse of catalysts is a major challenge in the development of sustainable chemical processes. Two methods at the frontier between homogeneous and heterogeneous catalysis have recently emerged for addressing this problem: loading the catalyst onto a dendrimer or onto a magnetic nanoparticle. In this Account, we describe representative examples of these two methods, primarily from our research group, and compare them. We then describe new chemistry that combines the benefits of these two methods of catalysis. Classic dendritic catalysis has involved either attaching the catalyst covalently at the branch termini or within the dendrimer core. We have used chelating pyridyltriazole ligands to insolubilize catalysts at the termini of dendrimers, providing an efficient, recyclable heterogeneous catalysts. With the addition of dendritic unimolecular micelles olefin metathesis reactions catalyzed by commercial Grubbs-type ruthenium-benzylidene complexes in water required unusually low amounts of catalyst. When such dendritic micelles include intradendritic ligands, both the micellar effect and ligand acceleration promote faster catalysis in water. With these types of catalysts, we could carry out azide alkyne cycloaddition ("click") chemistry with only ppm amounts of CuSO4·5H2O and sodium ascorbate under ambient conditions. Alternatively we can attach catalysts to the surface of superparamagnetic iron oxide nanoparticles (SPIONs), essentially magnetite (Fe3O4) or maghemite (γ-Fe2O3), offering the opportunity to recover the catalysts using magnets. Taking advantage of the merits of both of these strategies, we and others have developed a new generation of recyclable catalysts: dendritic magnetically recoverable catalysts. In particular, some of our catalysts with a γ-Fe2O3@SiO2 core and 1,2,3-triazole tethers and loaded with Pd nanoparticles generate strong positive dendritic effects with respect to ligand loading, catalyst loading, catalytic activity and

  12. Highly Enantioselective Nucleophilic Dearomatization of Pyridines by Anion-Binding Catalysis.

    PubMed

    García Mancheño, Olga; Asmus, Sören; Zurro, Mercedes; Fischer, Theresa

    2015-07-20

    The asymmetric dearomatization of N-heterocycles is an important synthetic method to gain bioactive and synthetically valuable chiral heterocycles. However, the catalytic enantio- and regioselective dearomatization of the simplest six-membered-ring N-heteroarenes, the pyridines, is still very challenging. The first anion-binding-catalyzed, highly enantioselective nucleophilic dearomatization of pyridines with triazole-based H-bond donor catalysts is presented. Contrary to other more common NH-based H-bond donors, this type of organocatalyst shows a prominent higher C2-regioselectivity and is able to promote high enantioinductions via formation of a close chiral anion-pair complex with a preformed N-acyl pyridinium ionic intermediate. This method offers a straightforward and useful synthetic approach to chiral N-heterocycles from abundant and readily available pyridines.

  13. The selective hydrogenation of crotonaldehyde over bimetallic catalysts

    SciTech Connect

    Schoeb, Ann M.

    1997-10-17

    The selective hydrogenation of crotonaldehyde has been investigated over a monometallic Pt/SiO2 catalyst and platinum bimetallic catalysts where the second metal was either silver, copper, or tin. The effects of addition of a second metal to the Pt/SiO2 system on the selectivity to crotyl alcohol were investigated. The Pt-Sn bimetallic catalysts were characterized by hydrogen chemisorption, 1H NMR and microcalorimetry. The Pt-Ag/SiO2 and Pt-Cu/SiO2 catalysts were characterized by hydrogen chemisorption. Pt-Sn/SiO2 catalysts selectively hydrogenated crotonaldehyde to crotyl alcohol and the method of preparation of these catalysts affected the selectivity. The most selective Pt-Sn/SiO2 catalysts for the hydrogenation of crotonaldehyde to crotyl alcohol were those in which the Sn precursor was dissolved in a HCl solution. Sn increased both the rate of formation of butyraldehyde and the rate of formation of crotyl alcohol. The Pt/SiO2, Pt-Ag/SiO2 and Pt-Cu/SiO2 catalysts produced only butyraldehyde. Initial heats of adsorption (~90 kJ/mol) measured using microcalorimetry were not affected by the presence of Sn on Pt. We can conclude that there is no through metal electronic interaction between Pt and Sn at least with respect to hydrogen surface bonds since the Pt and Pt-Sn at least with respect to hydrogen surface bonds since the Pt and Pt-Sn had similar initial heats of adsorption coupled with the invariance of the 1H NMR Knight shift.

  14. CATALYSTS FOR HIGH CETANE ETHERS AS DIESEL FUELS

    SciTech Connect

    Kamil Klier; Richard G. Herman; Heock-Hoi Kwon; James G. C. Shen; Qisheng Ma; Robert A. Hunsicker; Andrew P. Butler; Scott J. Bollinger

    2003-03-01

    A tungstena-zirconia (WZ) catalyst has been investigated for coupling methanol and isobutanol to unsymmetrical ethers, i.e. methyl isobutyl ether (MIBE) and compared with earlier studied sulfated-zirconia (SZ) and Nafion-H catalysts. In all cases, the ether synthesis mechanism is a dual site S{sub N}2 process involving competitive adsorption of reactants on proximal acid sites. At low reaction temperatures, methylisobutylether (MIBE) is the predominant product. However, at temperatures >135 C the WZ catalyst is very good for dehydration of isobutanol to isobutene. The surface acid sites of the WZ catalyst and a Nafion-H catalyst were diagnosed by high resolution X-ray photoelectron spectroscopy (XPS) of N 1s shifts after adsorption of amines. Using pyridine, ethylenediamine, and triethylamine, it is shown that WZ has heterogeneous strong Broensted acid sites. Theoretical study located the transition state of the alcohol coupling reaction on proximal Broensted acid sites and accounted well for XPS core-level shifts upon surface acid-base interactions. While computations have not been carried out with WZ, it is shown that the SZ catalyst is a slightly stronger acid than CF{sub 3}SO{sub 3}H (a model for Nafion-H) by 1.3-1.4 kcal/mol. A novel sulfated zirconia catalyst having proximal strong Broensted acid sites was synthesized and shown to have significantly enhanced activity and high selectivity in producing MIBE or isobutene from methanol/isobutanol mixtures. The catalyst was prepared by anchoring 1,2-ethanediol bis(hydrogen sulfate) salt precursor onto zirconium hydroxide, followed by calcination to remove the -(CH{sub 2}CH{sub 2})- bridging residues.

  15. Characterization and catalytic activity of Cu Co spinel thin films catalysts

    NASA Astrophysics Data System (ADS)

    Stefanov, P.; Avramova, I.; Stoichev, D.; Radic, N.; Grbic, B.; Marinova, Ts.

    2005-05-01

    The Cu-Co mixed oxide catalysts were prepared on a La 2O 3/ZrO 2/SS support by thermal decomposition of nitrate precursors. The catalyst samples were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectrum (XPS) and Brunauer-Emmet-Teller (BET) surface area. The XPS data indicated the formation of some amount of CuO together with the Cu-Co spinel after annealing at 550 °C. The Cu-Co/ZrO 2/SS thin film catalysts were tested for three-way catalytic performance and showed moderate activity.

  16. Highly enantioselective asymmetric Henry reaction catalyzed by novel chiral phase transfer catalysts derived from cinchona alkaloids.

    PubMed

    Vijaya, Ponmuthu Kottala; Murugesan, Sepperumal; Siva, Ayyanar

    2016-10-25

    A new type of di-site chiral phase transfer catalyst has been designed and synthesized from cinchona alkaloids as a chiral precursor. The prepared catalysts are applied in the asymmetric Henry reaction to a wide range of aldehydes using mild concentrations of a base and solvent and under room-temperature conditions. Under the optimized reaction conditions, the highest chemical yields up to 99% along with an excellent enantiomeric excess (ee) up to 99% were obtained using the prepared cinchona alkaloid based chiral phase transfer catalysts.

  17. Kinetics and mechanism of exogenous anion exchange in FeFbpA-NTA: significance of periplasmic anion lability and anion binding activity of ferric binding protein A.

    PubMed

    Heymann, Jared J; Gabricević, Mario; Mietzner, Timothy A; Crumbliss, Alvin L

    2010-02-01

    The bacterial transferrin ferric binding protein A (FbpA) requires an exogenous anion to facilitate iron sequestration, and subsequently to shuttle the metal across the periplasm to the cytoplasmic membrane. In the diverse conditions of the periplasm, numerous anions are known to be present. Prior in vitro experiments have demonstrated the ability of multiple anions to fulfill the synergistic iron-binding requirement, and the identity of the bound anion has been shown to modulate important physicochemical properties of iron-bound FbpA (FeFbpA). Here we address the kinetics and mechanism of anion exchange for the FeFbpA-nitrilotriacetate (NTA) assembly with several biologically relevant anions (citrate, oxalate, phosphate, and pyrophosphate), with nonphysiologic NTA serving as a representative synergistic anion/chelator. The kinetic data are consistent with an anion-exchange process that occurs in multiple steps, dependent on the identity of both the entering anion and the leaving anion. The exchange mechanism may proceed either as a direct substitution or through an intermediate FeFbpA-X* assembly based on anion (X) identity. Our kinetic results further develop an understanding of exogenous anion lability in the periplasm, as well as address the final step of the iron-free FbpA (apo-FbpA)/Fe(3+) sequestration mechanism. Our results highlight the kinetic significance of the FbpA anion binding site, demonstrating a correlation between apo-FbpA/anion affinity and the FeFbpA rate of anion exchange, further supporting the requirement of an exogenous anion to complete tight sequestration of iron by FbpA, and developing a mechanism for anion exchange within FeFbpA that is dependent on the identity of both the entering anion and the leaving anion.

  18. Nitrosamine, dimethylnitramine, and chloropicrin formation during strong base anion-exchange treatment.

    PubMed

    Kemper, Jerome M; Westerhoff, Paul; Dotson, Aaron; Mitch, William A

    2009-01-15

    Strong base anion-exchange resins represent an important option for water utilities and homeowners to address growing concerns with nitrate, arsenate, and perchlorate contamination of source waters. Most commercially available anion-exchange resins employ quaternary amine functional groups. Previous research has provided contradictory evidence regarding whether these resins serve as sources of nitrosamines, considered as highly carcinogenic nitrogenous disinfection byproducts (N-DBPs), even without disinfectants. For three common varieties of commercial anion-exchange resins, we evaluated the importance of releases of nitrosamines, and two other N-DBPs (dimethylnitramine and chloropicrin), when the resins were subjected to typical column flow conditions with and without free chlorine or chloramine application upstream or downstream of the columns. In the absence of disinfectants, fresh trimethylamine- and tributylamine-based type 1 and dimethylethanolamine-based type 2 anion-exchange resins usually released 2-10 ng/L nitrosamines, likely due to shedding of manufacturing impurities, with excursions of up to 20 ng/L following regeneration. However, the lack of significant nitrosamine release in a full-scale anion-exchange treatment system after multiple regeneration cycles indicates that releases may eventually subside. Resins also shed organic precursors that might contribute to nitrosamine formation within distribution systems when chloramines are applied downstream. With free chlorine or chloramine application upstream, nitrosamine concentrations were more significant, at 20-100 ng/L for the type 1 resins and approximately 400 ng/L for the type 2 resin. However, chloropicrin formation was lowest for the type 2 resin. Dimethylnitramine formation was significant with free chlorine application upstream but negligible with chloramines. Although no N-DBPs were detected in cation-exchange-based consumer point-of-use devices exposed to chlorinated or chloraminated waters

  19. Evaluation of fine-particle catalysts: Activity testing results and phase identification using Mossbauer spectroscopy

    SciTech Connect

    Stohl, F.V.; Diegert, K.V.; Goodnow, D.; Rao, K.R.P.M.; Huggins, F.; Huffman, G.P.

    1994-10-01

    To evaluate and compare the activities/selectivities of fine- particle size catalysts being developed in the DOE/PETC Advanced Research (AR) Coal Liquefaction program by using standard coal liquefaction activity test procedures. Previously reported results have described the standard test procedure that was developed at Sandia to evaluate fine-particle size iron catalysts being developed in DOE/PETC`s AR Coal Liquefaction Program. This test uses DECS-17 Blind Canyon Coal, phenanthrene as the reaction solvent, and a factorial experimental design that enables evaluation of a catalyst over ranges of temperature (350 to 400{degrees}C), time (20 to 60 minutes), and catalyst loading (0 to 1 wt% on a dmmf coal basis). Testing has been performed on Pacific Northwest Laboratories` (PNL) 6-line ferrihydrite catalyst. Results showed that this catalyst is more active than the University of Pittsburgh`s sulfated iron oxide catalyst that was evaluated previously. PNL has also produced two additional batches of catalyst in an effort to optimize their preparation procedures for larger batches. Sandia has observed significant differences in activities among these three catalysts; these differences might be due to particle size effects, the type of drying procedure, or the amount of moisture present. Mossbauer characterization of the iron phases in the coal, catalyst precursors, and tetrahydrofuran (THF) insoluble material from liquefaction reactions has been performed on the University of Pittsburgh`s catalyst and the first PNL catalyst that was tested at Sandia. The Mossbauer results were obtained at the University of Kentucky and will be presented. Future work will include testing additional catalysts being developed in the AR Coal Liquefaction Program, developing procedures to characterize reaction products, and determining the kinetics of the reactions.

  20. Anionic Lewis Acids. A Chemical Oxymoron.

    DTIC Science & Technology

    1995-10-17

    NUMBER OF PAGES12 anionic lewis acid ab initio synthesis 1 2 methide FT NMR 16. PRICE CODE imide multi-nule r 17. SECURITY CLASSIFICATION 18...chemically robust, thermally stable, non-toxic, environmentally safe, and cost-effective. One of our current areas of interest involves the synthesis and...developing a predictive knowledge base that can be used to guide the synthesis of new locally electron-deficient anions. Additionally, we proposed to

  1. Fluorescence-lifetime-based sensors for anions

    NASA Astrophysics Data System (ADS)

    Teichmann, Maria; Draxler, Sonja; Kieslinger, Dietmar; Lippitsch, Max E.

    1997-05-01

    Sensing of anions has been investigated using the fluorescence decaytime as the information carrier. The sensing mechanism is based on the coextraction of an anion and a proton, and the presence of a fluorophore with a rather long fluorescence decaytime inside the membrane to act as a pH indicator. The relevant theory is discussed shortly. As an example a sensor for nitrate is shown, and the influence of ionic additives on the working function has been investigated.

  2. Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host

    SciTech Connect

    Conrad Ingram; Mark Mitchell

    2006-09-30

    The addition of hydrothermally-aged zeolite Y precursor to an SBA-15 synthesis mixture under a mildly acidic condition resulted in the formation of mesoporous aluminosilicate catalyst, Al-SBA-15, containing strong Broensted acid sites and aluminum (Al) stabilized in a totally tetrahedral coordination. The physicochemical characteristics of the catalyst varied as a function of the synthesis conditions. The catalyst possessed surface areas ranging between 690 and 850 m{sup 2}/g, pore sizes ranging from 5.6 to 7.5 nm, and pore volumes up 1.03 cm{sup 3}, which were comparable to the parent SBA-15 synthesized under similar conditions. Two wt% Al was present in the catalyst that was obtained from the reaction mixture that contained the highest Al content. The Al remained stable in totally tetrahedral coordination after calcination at 550 C. The Al-SBA-15 mesoporous catalyst showed significant catalytic activity for cumene dealkylation, and the activity increased as the amount of zeolite precursor added to the SBA-15 mixture was increased. In preparation for the final phase of the project, the catalyst was embedded into psuedoboemite alumina (catapal B) matrix and then formed into pellets. In the final phase of the project, the pelletized catalyst will be evaluated for the conversion of heavy petroleum feedstocks to naphtha and middle distillates.

  3. Effect of preparation parameters on the microporous structure of Ni/SiO{sub 2} catalysts

    SciTech Connect

    Castillon, F.F.; Bodganchikova, N.; Fuentes, S.; Avalos, M.

    1996-12-31

    In this work the authors report the synthesis of Ni/SiO{sub 2} catalysts promoted by group 2 (IIA) cations (calcium and barium) which are currently used as hydrogenation catalysts. The effect of the preparation parameters-aging, base agent, and type of cation, on the surface area of catalysts--is evaluated. Catalysts were prepared by precipitation of the precursor silicic acid, along with nickel nitrate and calcium and barium carbonates, with NaOH, NH{sub 4}OH and Na{sub 2}CO{sub 3} as precipitating agents. Catalysts were characterized by diffuse reflectance spectra (DRS) and by BET-surface area measurements. Results are discussed in terms of sol-gel chemistry.

  4. High-throughput approaches for the discovery and optimization of new olefin polymerization catalysts.

    PubMed

    Murphy, Vince; Bei, Xiaohong; Boussie, Thomas R; Brümmer, Oliver; Diamond, Gary M; Goh, Christopher; Hall, Keith A; Lapointe, Anne M; Leclerc, Margarete; Longmire, James M; Shoemaker, James A W; Turner, Howard; Weinberg, W Henry

    2002-01-01

    The discovery of new olefin polymerization catalysts is currently a time-intensive trial-and-error process with no guarantee of success. A fully integrated high-throughput screening workflow for the discovery of new catalysts for polyolefin production has been implemented at Symyx Technologies. The workflow includes the design of the metal-ligand libraries using custom-made computer software, automated delivery of metal precursors and ligands into the reactors using a liquid-handling robot, and a rapid primary screen that serves to assess the potential of each metalligand-activator combination as an olefin polymerization catalyst. "Hits" from the primary screen are subjected to secondary screens using a 48-cell parallel polymerization reactor. Individual polymerization reactions are monitored in real time under conditions that provide meaningful information about the performance capabilities of each catalyst. Rapid polymer characterization techniques support the primary and secondary screens. We have discovered many new and interesting catalyst classes using this technology.

  5. Ru-Containing Magnetically Recoverable Catalysts: A Sustainable Pathway from Cellulose to Ethylene and Propylene Glycols.

    PubMed

    Manaenkov, Oleg V; Mann, Joshua J; Kislitza, Olga V; Losovyj, Yaroslav; Stein, Barry D; Morgan, David Gene; Pink, Maren; Lependina, Olga L; Shifrina, Zinaida B; Matveeva, Valentina G; Sulman, Esther M; Bronstein, Lyudmila M

    2016-08-24

    Biomass processing to value-added chemicals and biofuels received considerable attention due to the renewable nature of the precursors. Here, we report the development of Ru-containing magnetically recoverable catalysts for cellulose hydrogenolysis to low alcohols, ethylene glycol (EG) and propylene glycol (PG). The catalysts are synthesized by incorporation of magnetite nanoparticles (NPs) in mesoporous silica pores followed by formation of 2 nm Ru NPs. The latter are obtained by thermal decomposition of ruthenium acetylacetonate in the pores. The catalysts showed excellent activities and selectivities at 100% cellulose conversion, exceeding those for the commercial Ru/C. High selectivities as well as activities are attributed to the influence of Fe3O4 on the Ru(0)/Ru(4+) NPs. A facile synthetic protocol, easy magnetic separation, and stability of the catalyst performance after magnetic recovery make these catalysts promising for industrial applications.

  6. Method for improving product yields in an anionic metalloporphyrin-based artificial photosynthesis system

    DOEpatents

    Shelnutt, J.A.

    1984-11-29

    A method is disclosed improving product yields in an anionic metalloporphyrin-based artificial photosynthesis system for hydrogen generation. The method comprises forming an aqueous solution comprising an electron donor, methylviologen, and certain metalloporphyrins and metallochlorins, and irradiating said aqueous solution with light in the presence of a catalyst. In the photosynthesis process, solar energy is collected and stored in the form of a hydrogen. Ligands attached above and below the metalloporphyrin and metallochlorin plane are capable of sterically blocking photochemically inactive electrostatically bound ..pi..-..pi.. complexes which can develop.

  7. Method for improving product yields in an anionic metalloporphyrin-based artificial photosynthesis system

    DOEpatents

    Shelnutt, John A.

    1986-01-01

    A method for improving product yields in an anionic metalloporphyrin-based artificial photosynthesis system for hydrogen generation which comprises forming an aqueous solution comprising an electron donor, methylviologen, and certain metalloporphyrins and metallochlorins, and irradiating said aqueous solution with light in the presence of a catalyst. In the photosynthesis process, solar energy is collected and stored in the form of a gas hydrogen. Ligands attached above and below the metalloporphyrin and metallochlorin plane are capable of sterically blocking photochemically inactive electrostatically bound .pi.--.pi. complexes which can develop.

  8. Characterisation of gold catalysts.

    PubMed

    Villa, Alberto; Dimitratos, Nikolaos; Chan-Thaw, Carine E; Hammond, Ceri; Veith, Gabriel M; Wang, Di; Manzoli, Maela; Prati, Laura; Hutchings, Graham J

    2016-09-21

    Au-based catalysts have established a new important field of catalysis, revealing specific properties in terms of both high activity and selectivity for many reactions. However, the correlation between the morphology and the activity of the catalyst is not always clear although much effort has been addressed to this task. To some extent the problem relates to the complexity of the characterisation techniques that can be applied to Au catalyst and the broad range of ways in which they can be prepared. Indeed, in many reports only a few characterization techniques have been used to investigate the potential nature of the active sites. The aim of this review is to provide a critical description of the techniques that are most commonly used as well as the more advanced characterization techniques available for this task. The techniques that we discuss are (i) transmission electron microscopy methods, (ii) X-ray spectroscopy techniques, (iii) vibrational spectroscopy techniques and (iv) chemisorption methods. The description is coupled with developing an understanding of a number of preparation methods. In the final section the example of the supported AuPd alloy catalyst is discussed to show how the techniques can gain an understanding of an active oxidation catalyst.

  9. Heterocyclic anions of astrobiological interest

    SciTech Connect

    Cole, Callie A.; Demarais, Nicholas J.; Bierbaum, Veronica M.; Yang, Zhibo; Snow, Theodore P. E-mail: Nicholas.Demarais@colorado.edu E-mail: Zhibo.Yang@ou.edu

    2013-12-20

    As more complex organic molecules are detected in the interstellar medium, the importance of heterocyclic molecules to astrobiology and the origin of life has become evident. 2-Aminothiazole and 2-aminooxazole have recently been suggested as important nucleotide precursors, highlighting azoles as potential prebiotic molecules. This study explores the gas-phase chemistry of three deprotonated azoles: oxazole, thiazole, and isothiazole. For the first time, their gas-phase acidities are experimentally determined with bracketing and H/D exchange techniques, and their reactivity is characterized with several detected interstellar neutral molecules (N{sub 2}O, O{sub 2}, CO, OCS, CO{sub 2}, and SO{sub 2}) and other reactive species (CS{sub 2}, CH{sub 3}Cl, (CH{sub 3}){sub 3}CCl, and (CH{sub 3}){sub 3}CBr). Rate constants and branching fractions for these reactions are experimentally measured using a modified commercial ion trap mass spectrometer whose kinetic data are in good accord with those of a flowing afterglow apparatus reported here. Last, we have examined the fragmentation patterns of these deprotonated azoles to elucidate their destruction mechanisms in high-energy environments. All experimental data are supported and complemented by electronic structure calculations at the B3LYP/6-311++G(d,p) and MP2(full)/aug-cc-pVDZ levels of theory.

  10. Heterocyclic Anions of Astrobiological Interest

    NASA Astrophysics Data System (ADS)

    Cole, Callie A.; Demarais, Nicholas J.; Yang, Zhibo; Snow, Theodore P.; Bierbaum, Veronica M.

    2013-12-01

    As more complex organic molecules are detected in the interstellar medium, the importance of heterocyclic molecules to astrobiology and the origin of life has become evident. 2-Aminothiazole and 2-aminooxazole have recently been suggested as important nucleotide precursors, highlighting azoles as potential prebiotic molecules. This study explores the gas-phase chemistry of three deprotonated azoles: oxazole, thiazole, and isothiazole. For the first time, their gas-phase acidities are experimentally determined with bracketing and H/D exchange techniques, and their reactivity is characterized with several detected interstellar neutral molecules (N2O, O2, CO, OCS, CO2, and SO2) and other reactive species (CS2, CH3Cl, (CH3)3CCl, and (CH3)3CBr). Rate constants and branching fractions for these reactions are experimentally measured using a modified commercial ion trap mass spectrometer whose kinetic data are in good accord with those of a flowing afterglow apparatus reported here. Last, we have examined the fragmentation patterns of these deprotonated azoles to elucidate their destruction mechanisms in high-energy environments. All experimental data are supported and complemented by electronic structure calculations at the B3LYP/6-311++G(d,p) and MP2(full)/aug-cc-pVDZ levels of theory.

  11. High Performance Anion Chromatography of Gadolinium Chelates.

    PubMed

    Hajós, Peter; Lukács, Diana; Farsang, Evelin; Horváth, Krisztian

    2016-11-01

    High performance anion chromatography (HPIC) method to separate ionic Gd chelates, [Formula: see text], [Formula: see text], [Formula: see text] and free matrix anions was developed. At alkaline pHs, polydentate complexing agents such as ethylene-diamine-tetraacetate, diethylene-triamine pentaacetate and trans-1,2-diamine-cyclohexane-tetraacetate tend to form stable Gd chelate anions and can be separated by anion exchange. Separations were studied in the simple isocratic chromatographic run over the wide range of pH and concentration of carbonate eluent using suppressed conductivity detection. The ion exchange and complex forming equilibria were quantitatively described and demonstrated in order to understand major factors in the control of selectivity of Gd chelates. Parameters of optimized resolution between concurrent ions were presented on a 3D resolution surface. The applicability of the developed method is represented by the simultaneous analysis of Gd chelates and organic/inorganic anions. Inductively coupled plasma atomic emission spectroscopy  (ICP-AES) analysis was used for confirmation of HPIC results for Gd. Collection protocols for the heart-cutting procedure of chromatograms were applied. SPE procedures were also developed not only to extract traces of free gadolinium ions from samples, but also to remove the high level of interfering anions of the complex matrices. The limit of detection, the recoverability and the linearity of the method were also presented.

  12. ELECTRON-DRIVEN REACTIONS IN PROTO-PLANETARY ATMOSPHERES: METASTABLE ANIONS OF GASEOUS o-BENZYNE

    SciTech Connect

    Carelli, F.; Sebastianelli, F.; Baccarelli, I.; Gianturco, F. A.

    2010-03-20

    In this paper, we present an investigation into low-energy electron scattering (E < 15 eV) processes from a specific benzene-like polyatomic target such as ortho-benzyne, o-C{sub 6}H{sub 4}({sup 1}SIGMA), in order to gain a better understanding of the effects that possible low-lying metastable electron-attachment states could have on its nuclear fragmentation dynamics. The current importance of the dynamical evolution of this molecule lies in the fact that o-C{sub 6}H{sub 4} is considered to be relevant for the circumstellar synthesis of large polycyclic aromatic hydrocarbons (PAHs), as a precursor for C{sub 6}H{sub 6} production via ion-based ring closure reaction from C{sub 2}H{sub 2}. Our parameter-free scattering calculations are performed within the molecular reference frame, where we obtain the metastable anionic states for the nuclear equilibrium configuration and further characterize the properties of such transient anions with respect to those found earlier for the benzene molecule. Our quantum studies indicate that o-C{sub 6}H{sub 4} is a more efficient producer of compact, fairly long-lived anionic intermediates than benzene itself; hence, this should more rapidly enter the chemical reaction cycles of PAHs formation, thereby disappearing from possible direct observation as a stable anion.

  13. Synthesis of functionalized asymmetric star polymers containing conductive polyacetylene segments by living anionic polymerization.

    PubMed

    Zhao, Youliang; Higashihara, Tomoya; Sugiyama, Kenji; Hirao, Akira

    2005-10-19

    Novel 3-arm ABC, 4-arm ABCD, and 5-arm ABCDE asymmetric star polymers comprising the conductive polyacetylene precursor, poly(4-methylphenyl vinyl sulfoxide) (PMePVSO), and other segments, such as polystyrene, poly(alpha-methylstyrene), poly(4-methoxystyrene), poly(4-trimethylsilylstyrene), and poly(4-methylstyrene), were synthesized by the methodology based on living anionic polymerization using DPE-functionalized polymers. This methodology involves the addition reaction of a DPE-functionalized polymer to a living anionic polymer followed by the living anionic polymerization of MePVSO initiated from the in situ formed polymer anion with two, three, or four polymer segments. The resultant asymmetric star polymers possessed predetermined molecular weights, narrow molecular weight distributions (Mw/Mn < 1.03), and desired compositions as confirmed by SEC, 1H NMR, SLS, and elemental analysis. After thermal treatment, the PMePVSO segment in the star polymer could be completely converted into a conductive polyacetylene segment, evident from TGA and elemental analysis. These asymmetric star polymers are expected to exhibit interesting solution properties and unique microphase-separated morphological suprastructures with potential applications in nanoscopic conductive materials. Moreover, this methodology can afford the target asymmetric star polymers with arm segments varying in a wide range and enables the synthesis of more complex macromolecular architectures.

  14. Supported organoiridium catalysts for alkane dehydrogenation

    DOEpatents

    Baker, R. Thomas; Sattelberger, Alfred P.; Li, Hongbo

    2013-09-03

    Solid supported organoiridium catalysts, a process for preparing such solid supported organoiridium catalysts, and the use of such solid supported organoiridium catalysts in dehydrogenation reactions of alkanes is provided. The catalysts can be easily recovered and recycled.

  15. Catalyst reforming process

    SciTech Connect

    Swan, G.A. III

    1989-05-23

    This patent describes a process for catalytically reforming a gasoline boiling range naphtha, with hydrogen, in a semi-regenerative or semi-cyclic reforming process unit comprised of serially connected reactors, inclusive of a lead reactor and one or more downstream reactors, the last of which is the tail reactor, each of which contains a halogenated reforming catalyst comprised of a halide, a Group VIII noble metal, and an inorganic oxide support, the improvement which comprises continuously injecting into each downstream reactor a mixture of water and halide at a water to halide ratio from about 20:1 to about 60:1 wherein the specific ratio of water to halide for each individual downstream reactor is chosen so as to maintain the level of halide on catalyst in each downstream reactor from about 0.5 to 1.5 wt. % based on the total weight of the catalyst.

  16. Partial oxidation catalyst

    DOEpatents

    Krumpelt, Michael; Ahmed, Shabbir; Kumar, Romesh; Doshi, Rajiv

    2000-01-01

    A two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion. The dehydrogenation portion is a group VIII metal and the oxide-ion conducting portion is selected from a ceramic oxide crystallizing in the fluorite or perovskite structure. There is also disclosed a method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.

  17. Oxide Nanocrystal Model Catalysts.

    PubMed

    Huang, Weixin

    2016-03-15

    Model catalysts with uniform and well-defined surface structures have been extensively employed to explore structure-property relationships of powder catalysts. Traditional oxide model catalysts are based on oxide single crystals and single crystal thin films, and the surface chemistry and catalysis are studied under ultrahigh-vacuum conditions. However, the acquired fundamental understandings often suffer from the "materials gap" and "pressure gap" when they are extended to the real world of powder catalysts working at atmospheric or higher pressures. Recent advances in colloidal synthesis have realized controlled synthesis of catalytic oxide nanocrystals with uniform and well-defined morphologies. These oxide nanocrystals consist of a novel type of oxide model catalyst whose surface chemistry and catalysis can be studied under the same conditions as working oxide catalysts. In this Account, the emerging concept of oxide nanocrystal model catalysts is demonstrated using our investigations of surface chemistry and catalysis of uniform and well-defined cuprous oxide nanocrystals and ceria nanocrystals. Cu2O cubes enclosed with the {100} crystal planes, Cu2O octahedra enclosed with the {111} crystal planes, and Cu2O rhombic dodecahedra enclosed with the {110} crystal planes exhibit distinct morphology-dependent surface reactivities and catalytic properties that can be well correlated with the surface compositions and structures of exposed crystal planes. Among these types of Cu2O nanocrystals, the octahedra are most reactive and catalytically active due to the presence of coordination-unsaturated (1-fold-coordinated) Cu on the exposed {111} crystal planes. The crystal-plane-controlled surface restructuring and catalytic activity of Cu2O nanocrystals were observed in CO oxidation with excess oxygen. In the propylene oxidation reaction with O2, 1-fold-coordinated Cu on Cu2O(111), 3-fold-coordinated O on Cu2O(110), and 2-fold-coordinated O on Cu2O(100) were identified

  18. Precursor polymer compositions comprising polybenzimidazole

    SciTech Connect

    Klaehn, John R.; Peterson, Eric S.; Orme, Christopher J.

    2015-07-14

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  19. Soluble Precursor Route to Polyanilines

    DTIC Science & Technology

    1993-01-01

    condensation were not successful, but further work produced polymer under the following conditions: Synthesis Diketone I (2.40 g, 10.0 mmol) in 10 mL...goal of producing a processible form of the conducting polymer polyaniline (PANI), the Phase I program concentrated on development of the synthesis of...extension of the original research to a Phase II effort. Diketone - Diamine Polycondensation Towards a Soluble PAni Precursor To achieve the

  20. pH-dependent release of trace elements including platinum group elements (PGEs) from gasoline and diesel catalysts

    NASA Astrophysics Data System (ADS)

    Sucha, Veronika; Mihaljevic, Martin; Ettler, Vojtech; Strnad, Ladislav

    2014-05-01

    The release of trace metals and platinum group elements (PGEs) from automobile exhaust catalysts represents a remarkable source of higly dispersed environmental contamination. Especially, PGEs have shown increasing research interest due to their possible bioaccessibility. In our research, we focused on leaching behaviour of trace metals from gasoline and diesel automobile catalysts. While catalysts for gasoline engines contain a mixture of Pt-Pd-Rh or Pd-Rh, catalysts for diesel engines are composed only of Pt. We used dust from two crushed gasoline and two crushed diesel catalysts (new and aged). The dust of gasoline catalysts contains significant concentrations of Pt (700 mg.kg-1), Pd (11 000 mg.kg-1) and Rh (700 mg.kg-1). And the dust of diesel catalysts are composed of Pt (3 900 mg.kg-1) and they contains negligible amounts of Pd dan Rh (< 0.5 mg.kg-1, < 0.1 mg.kg-1, respectively). To evaluate leaching of trace metals from dust we used pH-stat leaching test according to the European standard CEN/TS 14997. The concentrations of cations: PGEs (Pt, Pd a Rh), K, Na, Ca, Mg, Al, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb, La and Ce were determined by inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS), and anions: F-, Cl-, SO42- and NO3- by high-performance liquid chromatography. Although the dusts from catalysts were relatively stable to acid/base influence, the leaching of trace metals from catalysts showed a dependence on pH. Generally, the highest concentrations were released under acidic conditions. The leaching of PGEs was higher for Pt in diesel catalysts and for Pd and Rh in gasoline catalysts. The highest concentrations of Zn and Pb were observed in old catalysts. The rare earth metals were released more from gasoline catalysts. Catalysts particles represent health risk especially with respect to their PGEs contents.

  1. Synthesis, Characterization, and Properties of Weakly Coordinating Anions Based on tris-Perfluoro-tert-Butoxyborane.

    PubMed

    LeBlanc, Francis A; Decken, Andreas; Cameron, T Stanley; Passmore, Jack; Rautiainen, J Mikko; Whidden, Thomas K

    2017-01-17

    A convenient method for the preparation of strongly Lewis acidic tris-perfluoro-tert-butoxyborane B(OR(F))3 (1), (OR(F) = OC(CF3)3) was developed, and its X-ray structure was determined. 1 was used as a precursor, guided by density functional theory (DFT) calculations and volume-based thermodynamics, for the synthesis of [NEt4][NCB(OR(F))3] (3) and [NMe4][FB(OR(F))3] (5) and the novel large and weakly coordinating anion salts [Li 15-Crown-5][B(OR(F))4] (2) and [NEt4][CN{B(OR(F))3}2] (4). The stability of [B(OR(F))4](-) was compared with that of some related known weakly coordinating anions by appropriate DFT calculations.

  2. Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions

    PubMed Central

    2015-01-01

    We demonstrate that, via controlled anion exchange reactions using a range of different halide precursors, we can finely tune the chemical composition and the optical properties of presynthesized colloidal cesium lead halide perovskite nanocrystals (NCs), from green emitting CsPbBr3 to bright emitters in any other region of the visible spectrum, and back, by displacement of Cl– or I– ions and reinsertion of Br– ions. This approach gives access to perovskite semiconductor NCs with both structural and optical qualities comparable to those of directly synthesized NCs. We also show that anion exchange is a dynamic process that takes place in solution between NCs. Therefore, by mixing solutions containing perovskite NCs emitting in different spectral ranges (due to different halide compositions) their mutual fast exchange dynamics leads to homogenization in their composition, resulting in NCs emitting in a narrow spectral region that is intermediate between those of the parent nanoparticles. PMID:26214734

  3. Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions.

    PubMed

    Akkerman, Quinten A; D'Innocenzo, Valerio; Accornero, Sara; Scarpellini, Alice; Petrozza, Annamaria; Prato, Mirko; Manna, Liberato

    2015-08-19

    We demonstrate that, via controlled anion exchange reactions using a range of different halide precursors, we can finely tune the chemical composition and the optical properties of presynthesized colloidal cesium lead halide perovskite nanocrystals (NCs), from green emitting CsPbBr3 to bright emitters in any other region of the visible spectrum, and back, by displacement of Cl(-) or I(-) ions and reinsertion of Br(-) ions. This approach gives access to perovskite semiconductor NCs with both structural and optical qualities comparable to those of directly synthesized NCs. We also show that anion exchange is a dynamic process that takes place in solution between NCs. Therefore, by mixing solutions containing perovskite NCs emitting in different spectral ranges (due to different halide compositions) their mutual fast exchange dynamics leads to homogenization in their composition, resulting in NCs emitting in a narrow spectral region that is intermediate between those of the parent nanoparticles.

  4. Heterogeneous catalyst for the production of acetic anhydride from methyl acetate

    DOEpatents

    Ramprasad, Dorai; Waller, Francis Joseph

    1999-01-01

    This invention relates to a process for producing acetic anhydride by the reaction of methyl acetate, carbon monoxide, and hydrogen at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that contains an insoluble polymer having pendant quaternized phosphine groups, some of which phosphine groups are ionically bonded to anionic Group VIII metal complexes, the remainder of the phosphine groups being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled for consecutive runs without loss in activity. Bifunctional catalysts for use in carbonylating dimethyl ether are also provided.

  5. Synthesis of 5'-O-DMT-2'-O-TBS Mononucleosides Using an Organic Catalyst.

    PubMed

    Lee, Sunggi; Blaisdell, Thomas P; Kasaplar, Pinar; Sun, Xixi; Tan, Kian L

    2014-06-24

    This unit describes a highly effective method to produce 5'-O-DMT-2'-O-TBS mononucleosides selectively using a small organic catalyst. This methodology avoids the tedious protection/deprotection strategy necessary to differentiate the 2'- and 3'-hydroxyl groups in a ribonucleoside. The catalyst was synthesized in two steps, starting from the condensation of valinol and cyclopentyl aldehyde, followed by anionic addition of N-methylimidazole. Ring closure of the amino alcohol with N,N-dimethylformamide dimethyl acetal in methanol furnishes the catalyst. All four 2'-O-TBS protected mono-nucleosides, U, A(Bz), G(Ib), and C(Ac), were produced in a single step using 10 to 20 mol% of the catalyst at room temperature with excellent yields and selectivity. Further transformation to phosphoramidite demonstrates the utility of this protocol in the preparation of monomers useful for automated synthesis of RNA.

  6. Heterogeneous catalyst for the production of acetic anhydride from methyl acetate

    DOEpatents

    Ramprasad, D.; Waller, F.J.

    1999-04-06

    This invention relates to a process for producing acetic anhydride by the reaction of methyl acetate, carbon monoxide, and hydrogen at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that contains an insoluble polymer having pendant quaternized phosphine groups, some of which phosphine groups are ionically bonded to anionic Group VIII metal complexes, the remainder of the phosphine groups being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled for consecutive runs without loss in activity. Bifunctional catalysts for use in carbonylating dimethyl ether are also provided.

  7. Secret Lives of Catalysts Revealed

    SciTech Connect

    Salmeron, Miquel; Somorjai, Gabor

    2008-01-01

    Miquel Salmeron and Gabor Somorjai of Berkeley Lab's Materials Sciences Division discuss the first-ever glimpse of nanoscale catalysts in action. More information: http://newscenter.lbl.gov/press-releases/2008/10/21/catalysts/

  8. Nucleation precursors in protein crystallization

    PubMed Central

    Vekilov, Peter G.; Vorontsova, Maria A.

    2014-01-01

    Protein crystal nucleation is a central problem in biological crystallography and other areas of science, technology and medicine. Recent studies have demonstrated that protein crystal nuclei form within crucial precursors. Here, methods of detection and characterization of the precursors are reviewed: dynamic light scattering, atomic force microscopy and Brownian microscopy. Data for several proteins provided by these methods have demonstrated that the nucleation precursors are clusters consisting of protein-dense liquid, which are metastable with respect to the host protein solution. The clusters are several hundred nanometres in size, the cluster population occupies from 10−7 to 10−3 of the solution volume, and their properties in solutions supersaturated with respect to crystals are similar to those in homogeneous, i.e. undersaturated, solutions. The clusters exist owing to the conformation flexibility of the protein molecules, leading to exposure of hydrophobic surfaces and enhanced intermolecular binding. These results indicate that protein conformational flexibility might be the mechanism behind the metastable mesoscopic clusters and crystal nucleation. Investigations of the cluster properties are still in their infancy. Results on direct imaging of cluster behaviors and characterization of cluster mechanisms with a variety of proteins will soon lead to major breakthroughs in protein biophysics. PMID:24598910

  9. Aerogel derived catalysts

    SciTech Connect

    Reynolds, J. G., LLNL

    1996-12-11

    Aerogels area class of colloidal materials which have high surface areas and abundant mesoporous structure. SiO{sub 2} aerogels show unique physical, optical and structural properties. When catalytic metals are incorporated in the aerogel framework, the potential exists for new and very effective catalysts for industrial processes. Three applications of these metal-containing SiO{sub 2} aerogels as catalysts are briefly reviewed in this paper--NO{sub x} reduction, volatile organic compound destruction, and partial oxidation of methane.

  10. New Ir Bis-Carbonyl Precursor for Water Oxidation Catalysis.

    PubMed

    Huang, Daria L; Beltrán-Suito, Rodrigo; Thomsen, Julianne M; Hashmi, Sara M; Materna, Kelly L; Sheehan, Stafford W; Mercado, Brandon Q; Brudvig, Gary W; Crabtree, Robert H

    2016-03-07

    This paper introduces Ir(I)(CO)2(pyalc) (pyalc = (2-pyridyl)-2-propanoate) as an atom-efficient precursor for Ir-based homogeneous oxidation catalysis. This compound was chosen to simplify analysis of the water oxidation catalyst species formed by the previously reported Cp*Ir(III)(pyalc)OH water oxidation precatalyst. Here, we present a comparative study on the chemical and catalytic properties of these two precursors. Previous studies show that oxidative activation of Cp*Ir-based precursors with NaIO4 results in formation of a blue Ir(IV) species. This activation is concomitant with the loss of the placeholder Cp* ligand which oxidatively degrades to form acetic acid, iodate, and other obligatory byproducts. The activation process requires substantial amounts of primary oxidant, and the degradation products complicate analysis of the resulting Ir(IV) species. The species formed from oxidation of the Ir(CO)2(pyalc) precursor, on the other hand, lacks these degradation products (the CO ligands are easily lost upon oxidation) which allows for more detailed examination of the resulting Ir(pyalc) active species both catalytically and spectroscopically, although complete structural analysis is still elusive. Once Ir(CO)2(pyalc) is activated, the system requires acetic acid or acetate to prevent the formation of nanoparticles. Investigation of the activated bis-carbonyl complex also suggests several Ir(pyalc) isomers may exist in solution. By (1)H NMR, activated Ir(CO)2(pyalc) has fewer isomers than activated Cp*Ir complexes, allowing for advanced characterization. Future research in this direction is expected to contribute to a better structural understanding of the active species. A diol crystallization agent was needed for the structure determination of 3.

  11. Alumina-supported bimetallics of palladium alloyed with germanium, tin, lead, or antimony from organometallic precursors I. Preparation and characterization

    SciTech Connect

    Aduriz, H.R.; Bodnariuk, P. , Bahia Blanca ); Coq, B.; Figueras, F. )

    1989-09-01

    Bimetallic PdSn, PdSb, PdPb, and PdGe on alumina catalysts with a low metal content have been prepared using either chloride or organometallic precursors. For the catalysts obtained from chloride precursors no interaction was observed between the two metals, and the catalysts behaved like pure Pd/Al{sub 2}O{sub 3}. In contrast, the reactions of (C{sub 4}H{sub 9}){sub 4}Sn, (C{sub 4}H{sub 9}){sub 4}Pb, (C{sub 4}H{sub 9}){sub 4}Ge, or (C{sub 4}H{sub 9}){sub 3}Sb in n-heptane solution with reduced Pd/Al{sub 2}O{sub 3} catalyst yielded a supported alloy. The interaction between metallic palladium and the organic modifier is highly selective and leads to the formation of a well-tailored bimetallic catalyst. When these final solids are reduced at 573 or 773 K, the second metal locates preferentially at the outer layer of the bimetallic aggregates. After reduction at 773 K large metallic aggregates are obtained (particle size 15 nm), and the formation of {beta}-palladium hydride, which can be formed with pure palladium catalysts, is suppressed by the addition of a small amount of the second metal. The specific activity of the palladium surface atoms for isoprene hydrogenation is then lowered, and the selectivity increased.

  12. Synthesis of 1D Silica Nanostructures with Controllable Sizes Based on Short Anionic Peptide Self-Assembly.

    PubMed

    Wang, Shengjie; Cai, Qingwei; Du, Mingxuan; Xue, Junyi; Xu, Hai

    2015-09-10

    Artificial synthesis of silica under benign conditions is usually achieved by using cationic organic matrices as templates while the anionic analogues have not received enough consideration, albeit they are also functioning in biosilica formation. In this work, we report the design and self-assembly of an anionic peptide amphiphile (I3E) and the use of its self-assemblies as templates to synthesize 1D silica nanostructures with tunable sizes. We show that short I3E readily formed long nanofibrils in aqueous solution via a hierarchical self-assembly process. By using APTES and TEOS as silica precursors, we found that the I3E nanofibrils templated the production of silica nanotubes with a wide size distribution, in which the silica size regulation was achieved by tuning the interactions among the peptide template and silicon species. These results clearly illustrate a facile method for generating silica nanomaterials based on anionic matrices.

  13. Process of making supported catalyst

    DOEpatents

    Schwarz, James A.; Subramanian, Somasundaram

    1992-01-01

    Oxide supported metal catalysts have an additional metal present in intimate association with the metal catalyst to enhance catalytic activity. In a preferred mode, iridium or another Group VIII metal catalyst is supported on a titania, alumina, tungsten oxide, silica, or composite oxide support. Aluminum ions are readsorbed onto the support and catalyst, and reduced during calcination. The aluminum can be added as aluminum nitrate to the iridium impregnate solution, e.g. chloroiridic acid.

  14. Molecular metal catalysts on supports: organometallic chemistry meets surface science.

    PubMed

    Serna, Pedro; Gates, Bruce C

    2014-08-19

    Recent advances in the synthesis and characterization of small, essentially molecular metal complexes and metal clusters on support surfaces have brought new insights to catalysis and point the way to systematic catalyst design. We summarize recent work unraveling effects of key design variables of site-isolated catalysts: the metal, metal nuclearity, support, and other ligands on the metals, also considering catalysts with separate, complementary functions on supports. The catalysts were synthesized with the goal of structural simplicity and uniformity to facilitate incisive characterization. Thus, they are essentially molecular species bonded to porous supports chosen for their high degree of uniformity; the supports are crystalline aluminosilicates (zeolites) and MgO. The catalytic species are synthesized in reactions of organometallic precursors with the support surfaces; the precursors include M(L)2(acetylacetonate)1-2, with M = Ru, Rh, Ir, or Au and the ligands L = C2H4, CO, or CH3. Os3(CO)12 and Ir4(CO)12 are used as precursors of supported metal clusters, and some such catalysts are made by ship-in-a-bottle syntheses to trap the clusters in zeolite cages. The simplicity and uniformity of the supported catalysts facilitate precise structure determinations, even in reactive atmospheres and during catalysis. The methods of characterizing catalysts in reactive atmospheres include infrared (IR), extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), and nuclear magnetic resonance (NMR) spectroscopies, and complementary methods include density functional theory and atomic-resolution aberration-corrected scanning transmission electron microscopy for imaging of individual metal atoms. IR, NMR, XANES, and microscopy data demonstrate the high degrees of uniformity of well-prepared supported species. The characterizations determine the compositions of surface metal complexes and clusters, including the ligands and the metal

  15. Studies of anions sorption on natural zeolites.

    PubMed

    Barczyk, K; Mozgawa, W; Król, M

    2014-12-10

    This work presents results of FT-IR spectroscopic studies of anions-chromate, phosphate and arsenate - sorbed from aqueous solutions (different concentrations of anions) on zeolites. The sorption has been conducted on natural zeolites from different structural groups, i.e. chabazite, mordenite, ferrierite and clinoptilolite. The Na-forms of sorbents were exchanged with hexadecyltrimethylammonium cations (HDTMA(+)) and organo-zeolites were obtained. External cation exchange capacities (ECEC) of organo-zeolites were measured. Their values are 17mmol/100g for chabazite, 4mmol/100g for mordenite and ferrierite and 10mmol/100g for clinoptilolite. The used initial inputs of HDTMA correspond to 100% and 200% ECEC of the minerals. Organo-modificated sorbents were subsequently used for immobilization of mentioned anions. It was proven that aforementioned anions' sorption causes changes in IR spectra of the HDTMA-zeolites. These alterations are dependent on the kind of anions that were sorbed. In all cases, variations are due to bands corresponding to the characteristic Si-O(Si,Al) vibrations (occurring in alumino- and silicooxygen tetrahedra building spatial framework of zeolites). Alkylammonium surfactant vibrations have also been observed. Systematic changes in the spectra connected with the anion concentration in the initial solution have been revealed. The amounts of sorbed CrO4(2-), AsO4(3-) and PO4(3-) ions were calculated from the difference between their concentrations in solutions before (initial concentration) and after (equilibrium concentration) sorption experiments. Concentrations of anions were determined by spectrophotometric method.

  16. Polyethylene-bound rhodium(I) hydrogenation catalysts

    SciTech Connect

    Bergbreiter, D.E.; Chandran, R.

    1987-01-07

    Homogeneous, recoverable hydrogenation catalysts were prepared with use of functionalized ethylene oligomers as ligands. Phosphine groups were introduced onto ethylene oligomers following anionic oligomerization of ethylene. The product polyethylenediphenylphosphine ligands were then exchanged with triphenylphosphine or ethylene ligands to prepare ethylene oligomer ligated rhodium(I) complexes. These Rh(I) complexes had the solubility of polyethylene and dissolved at 90-110/sup 0/C in hydrocarbon solvents but quantitatively precipitated at 25/sup 0/C. Less than 0.1% of the charged rhodium was lost in each dissolution precipitation cycle. The rhodium(I) complexes so prepared were shown to have about 80% of the activity of tris(triphenylphosphine)rhodium chloride in hydrogenation of various alkenes including 1-octene, ..delta../sup 2/-cholestene, cyclooctene, cyclododecene, styrene, and ..cap alpha..-methylstyrene. /sup 31/P NMR spectroscopy and reactivity studies were used to characterize these catalysts.

  17. Chemical imaging of Fischer-Tropsch catalysts under operating conditions

    PubMed Central

    Price, Stephen W. T.; Martin, David J.; Parsons, Aaron D.; Sławiński, Wojciech A.; Vamvakeros, Antonios; Keylock, Stephen J.; Beale, Andrew M.; Mosselmans, J. Frederick W.

    2017-01-01

    Although we often understand empirically what constitutes an active catalyst, there is still much to be understood fundamentally about how catalytic performance is influenced by formulation. Catalysts are often designed to have a microstructure and nanostructure that can influence performance but that is rarely considered when correlating structure with function. Fischer-Tropsch synthesis (FTS) is a well-known and potentially sustainable technology for converting synthetic natural gas (“syngas”: CO + H2) into functional hydrocarbons, such as sulfur- and aromatic-free fuel and high-value wax products. FTS catalysts typically contain Co or Fe nanoparticles, which are often optimized in terms of size/composition for a particular catalytic performance. We use a novel, “multimodal” tomographic approach to studying active Co-based catalysts under operando conditions, revealing how a simple parameter, such as the order of addition of metal precursors and promoters, affects the spatial distribution of the elements as well as their physicochemical properties, that is, crystalline phase and crystallite size during catalyst activation and operation. We show in particular how the order of addition affects the crystallinity of the TiO2 anatase phase, which in turn leads to the formation of highly intergrown cubic close-packed/hexagonal close-packed Co nanoparticles that are very reactive, exhibiting high CO conversion. This work highlights the importance of operando microtomography to understand the evolution of chemical species and their spatial distribution before any concrete understanding of impact on catalytic performance can be realized. PMID:28345057

  18. Chemical imaging of Fischer-Tropsch catalysts under operating conditions.

    PubMed

    Price, Stephen W T; Martin, David J; Parsons, Aaron D; Sławiński, Wojciech A; Vamvakeros, Antonios; Keylock, Stephen J; Beale, Andrew M; Mosselmans, J Frederick W

    2017-03-01

    Although we often understand empirically what constitutes an active catalyst, there is still much to be understood fundamentally about how catalytic performance is influenced by formulation. Catalysts are often designed to have a microstructure and nanostructure that can influence performance but that is rarely considered when correlating structure with function. Fischer-Tropsch synthesis (FTS) is a well-known and potentially sustainable technology for converting synthetic natural gas ("syngas": CO + H2) into functional hydrocarbons, such as sulfur- and aromatic-free fuel and high-value wax products. FTS catalysts typically contain Co or Fe nanoparticles, which are often optimized in terms of size/composition for a particular catalytic performance. We use a novel, "multimodal" tomographic approach to studying active Co-based catalysts under operando conditions, revealing how a simple parameter, such as the order of addition of metal precursors and promoters, affects the spatial distribution of the elements as well as their physicochemical properties, that is, crystalline phase and crystallite size during catalyst activation and operation. We show in particular how the order of addition affects the crystallinity of the TiO2 anatase phase, which in turn leads to the formation of highly intergrown cubic close-packed/hexagonal close-packed Co nanoparticles that are very reactive, exhibiting high CO conversion. This work highlights the importance of operando microtomography to understand the evolution of chemical species and their spatial distribution before any concrete understanding of impact on catalytic performance can be realized.

  19. The different poisoning behaviors of various alkali metal containing compounds on SCR catalyst

    NASA Astrophysics Data System (ADS)

    Du, Xuesen; Yang, Guangpeng; Chen, Yanrong; Ran, Jingyu; Zhang, Li

    2017-01-01

    Alkali metals are poisonous to the metal oxide catalyst for NO removal. The chemical configuration of alkali containing substance and interacting temperature can affect the poisoning profile. A computational method based on Frontier Molecular Orbital analysis was proposed to determine the reacting behavior of various alkali-containing substances with SCR catalyst. The results reveal that the poisoning reactivities of various substances can be ranked as: E (MOH) > E (M2SO4) > E(MCl) > E(MNO3) > E(MHSO4). The experimental activity tests of the catalysts calcined at stepped temperatures show that NaOH can react with the catalyst below 200 °C. NaCl and NaNO3 start to react with the catalyst at a temperature between 300 and 400 °C. Unlike MOH, MCl and MNO3, which can produce volatile or decomposable species for the anions after reacting with the catalyst, M2SO4 and MHSO4 will leave both cations and anions on the catalyst surface. The sulfate ions left on the catalyst can generate active acid sites for NH3 adsorption. The experimental results also show that Na2SO4 and NaHSO4 will not lower the NO conversion. The after-reaction influences of various alkali metals were studied using theoretical and experimental methods. The theoretical results show that the acidity decreases with doping of alkali metal. Experiments show a consistent result that the NO conversion decreases as undoped >LiCl > NaCl > KCl.

  20. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    SciTech Connect

    Bowman-James, K.; Wilson, G.; Moyer, B. A.

    2004-12-11

    This project involves the design and synthesis of receptors for oxoanions of environmental importance, including emphasis on high level and low activity waste. Target anions have included primarily oxoanions and a study of the basic concepts behind selective binding of target anions. A primary target has been sulfate because of its deleterious influence on the vitrification of tank wastes

  1. Isatinphenylsemicarbazones as efficient colorimetric sensors for fluoride and acetate anions - anions induce tautomerism.

    PubMed

    Jakusová, Klaudia; Donovalová, Jana; Cigáň, Marek; Gáplovský, Martin; Garaj, Vladimír; Gáplovský, Anton

    2014-04-05

    The anion induced tautomerism of isatin-3-4-phenyl(semicarbazone) derivatives is studied herein. The interaction of F(-), AcO(-), H2PO4(-), Br(-) or HSO4(-) anions with E and Z isomers of isatin-3-4-phenyl(semicarbazone) and N-methylisatin-3-4-phenyl(semicarbazone) as sensors influences the tautomeric equilibrium of these sensors in the liquid phase. This tautomeric equilibrium is affected by (1) the inter- and intra-molecular interactions' modulation of isatinphenylsemicarbazone molecules due to the anion induced change in the solvation shell of receptor molecules and (2) the sensor-anion interaction with the urea hydrogens. The acid-base properties of anions and the difference in sensor structure influence the equilibrium ratio of the individual tautomeric forms. Here, the tautomeric equilibrium changes were indicated by "naked-eye" experiment, UV-VIS spectral and (1)H NMR titration, resulting in confirmation that appropriate selection of experimental conditions leads to a high degree of sensor selectivity for some investigated anions. Sensors' E and Z isomers differ in sensitivity, selectivity and sensing mechanism. Detection of F(-) or CH3COO(-) anions at high weakly basic anions' excess is possible.

  2. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    SciTech Connect

    Bowman-James, Kristen

    2004-12-01

    This project have focuses on the basic chemical aspects of anion receptor design of functional pH independent systems, with the ultimate goal of targeting the selective binding of sulfate, as well as design of separations strategies for selective and efficient removal of targeted anions. Key findings include: (1) the first synthetic sulfate-selective anion-binding agents; (2) simple, structure-based methods for modifying the intrinsic anion selectivity of a given class of anion receptors; and (3) the first system capable of extracting sulfate anion from acidic, nitrate-containing aqueous media. Areas probed during the last funding period include: the design, synthesis, and physical and structural characterization of receptors and investigation of anion and dual ion pair extraction using lipophilic amide receptors for anion binding. A new collaboration has been added to the project in addition to the one with Dr. Bruce Moyer at Oak Ridge National Laboratory, with Professor Jonathan Sessler at the University of Texas at Austin.

  3. Methanol and methyl fuel catalysts. Final technical report, September 1980-August 1983

    SciTech Connect

    Klier, K.; Herman, R.G.; Simmons, G.W.

    1983-12-01

    Copper-based catalysts for alcohol synthesis were prepared, tested for catalytic activity and selectivity, and characterized. These catalysts include Cu/ZnO, Cu/Co/ZnO, Cu/Co/Cr/sub 2/O/sub 3/, Cu/Co/Cr/sub 2/O/sub 3//K/sub 2/O, and Cu/ZnO/KOH. The chromia-containing catalysts exhibited a low activity and selectivity, while the Cu/ZnO catalyst was verified to be a very active and selective methanol synthesis catalyst. Cobalt imparted a methanation function to the catalysts, while potassium suppressed the activity and the selectivity. Over the quaternary catalyst, higher pressure and lower GHSV enhanced the selectivity to higher alcohols. Low concentrations of carbon dioxide in H/sub 2//CO synthesis gas over Cu/ZnO catalysts promote methanol synthesis, while at high concentrations it behaves as a retardant of the synthesis. The water gas shift reaction readily proceeds over the Cu/ZnO catalyst. Analogous to the CO/sub 2/ effect, the presence of water in the synthesis gas has a profound effect on the synthesis of methanol. The Cu/ZnO catalyst is a good hydrogenation catalyst. Olefins, aldehydes, and acids are hydrogenated at a faster rate than CO is hydrogenated to methanol, but aromatics are hydrogenated at slower rates. Chemical trapping of the intermediates on these surface sites with amines demonstrates that a kinetically significant intermediate in methanol synthesis is a surface formyl or hydroxycarbene species. These species can be formed from synthesis gas or by alcohols in the reactant stream, and they readily alkylate amines in the reactant gas stream. Over an Fe/Cu/ZnO catalyst, amines inhibit the production of alcohols by trapping the precursor intermediates, while changing the hydrocarbon selectivity from paraffins to predominantly olefins. 68 references, 9 figures, 25 tables.

  4. PtRu-LiCoO 2—an efficient catalyst for hydrogen generation from sodium borohydride solutions

    NASA Astrophysics Data System (ADS)

    Krishnan, Palanichamy; Yang, Tae-Hyun; Lee, Won-Yong; Kim, Chang-Soo

    Hydrogen generation by the hydrolysis of aqueous sodium borohydride (NaBH 4) solutions is studied using IRA-400 anion resin dispersed Pt, Ru catalysts and lithium cobalt oxide (LiCoO 2) supported Pt, Ru and PtRu catalysts. The performance of the LiCoO 2 supported catalysts is better than that of ion-exchange resin dispersed catalysts. There is a marked concentration dependence on the performance of the LiCoO 2 supported catalysts and the hydrogen generation rate decreases if the borohydride concentration is increased beyond 10 wt.%. The efficiency of PtRu-LiCoO 2 is almost double that of either Ru-LiCoO 2 or Pt-LiCoO 2 for NaBH 4 concentrations up to 10 wt.%.

  5. An innovative anion regulation strategy for energy bands of semiconductors: a case from Bi2O3 to Bi2O(OH)2SO4.

    PubMed

    Tian, Hao; Teng, Fei; Xu, Juan; Lou, Sunqi; Li, Na; Zhao, Yunxuan; Chen, Mindong

    2015-01-19

    How to develop a new, efficient photo catalyst is still a big challenge to us. A suitable band gap is the key for light absorption of semiconductor. Herein, an innovative anion intercalation strategy is, for the first time, developed to regulate the energy band of semiconductor. Typically, we introduce a layered sulfate compound (Bi2O(OH)2SO4) as a new photo catalyst, which has not been known before. Both partial density of states (PDOS) and total density of states (TDOS) have demonstrated that compared with Bi2O3 (2.85 eV), the band gap of Bi2O(OH)2SO4 has been widened to 4.18 eV by the intercalation of sulfate anion. Moreover, the band gap width of oxyacid salt compound is mainly predominated by the number of the outmost electrons (NOE) of central atom of anion. This study suggests that new photo catalysts can be developed by grouping anions with the existing oxides or sulfides.

  6. An Innovative Anion Regulation Strategy for Energy Bands of Semiconductors: A Case from Bi2O3 to Bi2O(OH)2SO4

    PubMed Central

    Tian, Hao; Teng, Fei; Xu, Juan; Lou, Sunqi; Li, Na; Zhao, Yunxuan; Chen, Mindong

    2015-01-01

    How to develop a new, efficient photo catalyst is still a big challenge to us. A suitable band gap is the key for light absorption of semiconductor. Herein, an innovative anion intercalation strategy is, for the first time, developed to regulate the energy band of semiconductor. Typically, we introduce a layered sulfate compound (Bi2O(OH)2SO4) as a new photo catalyst, which has not been known before. Both partial density of states (PDOS) and total density of states (TDOS) have demonstrated that compared with Bi2O3 (2.85 eV), the band gap of Bi2O(OH)2SO4 has been widened to 4.18 eV by the intercalation of sulfate anion. Moreover, the band gap width of oxyacid salt compound is mainly predominated by the number of the outmost electrons (NOE) of central atom of anion. This study suggests that new photo catalysts can be developed by grouping anions with the existing oxides or sulfides. PMID:25597769

  7. Templating Routes to Supported Oxide Catalysts by Design

    SciTech Connect

    Notestein, Justin M.

    2016-09-08

    The rational design and understanding of supported oxide catalysts requires at least three advancements, in order of increasing complexity: the ability to quantify the number and nature of active sites in a catalytic material, the ability to place external controls on the number and structure of these active sites, and the ability to assemble these active sites so as to carry out more complex functions in tandem. As part of an individual investigator research program that is integrated with the Northwestern University Institute for Catalysis in Energy Processes (ICEP) as of 2015, significant advances were achieved in these three areas. First, phosphonic acids were utilized in the quantitative assessment of the number of active and geometrically-available sites in MOx-SiO2 catalysts, including nanocrystalline composites, co-condensed materials, and grafted structures, for M=Ti, Zr, Hf, Nb, and Ta. That work built off progress in understanding supported Fe, Cu, and Co oxide catalysts from chelating and/or multinuclear precursors to maximize surface reactivity. Secondly, significant progress was made in the new area of using thin oxide overcoats containing ‘nanocavities’ from organic templates as a method to control the dispersion and thermal stability of subsequently deposited metal nanoparticles or other catalytic domains. Similar methods were used to control surface reactivity in SiO2-Al2O3 acid catalysts and to control reactant selectivity in Al2O3-TiO2 photocatalysts. Finally, knowledge gained from the first two areas has been combined to synthesize a tandem catalyst for hydrotreating reactions and an orthogonal tandem catalyst system where two subsequent reactions in a reaction network are independently controlled by light and heat. Overall, work carried out under this project significantly advanced the knowledge of synthesis-structure-function relationships in supported

  8. Reforming with polymetallic catalysts

    SciTech Connect

    Baird, W.C. Jr.

    1988-11-29

    This patent describes a process for catalytically reforming, with hydrogen, a hydrocarbon naphtha feed at reforming conditions, the improvement comprising contacting the naphtha feed, and hydrogen, with a halogenated, supported platinum-rhenium catalyst promoted with iridium agglomerated to exhibit a crystallinity greater than 50 percent, as measured by X-ray.

  9. Zinc sulfide liquefaction catalyst

    DOEpatents

    Garg, Diwakar

    1984-01-01

    A process for the liquefaction of carbonaceous material, such as coal, is set forth wherein coal is liquefied in a catalytic solvent refining reaction wherein an activated zinc sulfide catalyst is utilized which is activated by hydrogenation in a coal derived process solvent in the absence of coal.

  10. Salesperson, Catalyst, Manager, Leader.

    ERIC Educational Resources Information Center

    Worth, Michael J.; Asp, James W., II

    1996-01-01

    This article examines four roles of the college or university development officer: salesperson (when direct solicitation is seen as the officer's primary role); catalyst (or sales manager, adviser, expert, facilitator); manager (stressing the importance of the overall office functioning); and leader (who exerts a leadership role in the…

  11. Hydrogen evolution reaction catalyst

    DOEpatents

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  12. Sabatier Catalyst Poisoning Investigation

    NASA Technical Reports Server (NTRS)

    Nallette, Tim; Perry, Jay; Abney, Morgan; Knox, Jim; Goldblatt, Loel

    2013-01-01

    The Carbon Dioxide Reduction Assembly (CRA) on the International Space Station (ISS) has been operational since 2010. The CRA uses a Sabatier reactor to produce water and methane by reaction of the metabolic CO2 scrubbed from the cabin air and the hydrogen byproduct from the water electrolysis system used for metabolic oxygen generation. Incorporating the CRA into the overall air revitalization system has facilitated life support system loop closure on the ISS reducing resupply logistics and thereby enhancing longer term missions. The CRA utilizes CO2 which has been adsorbed in a 5A molecular sieve within the Carbon Dioxide Removal Assembly, CDRA. There is a potential of compounds with molecular dimensions similar to, or less than CO2 to also be adsorbed. In this fashion trace contaminants may be concentrated within the CDRA and subsequently desorbed with the CO2 to the CRA. Currently, there is no provision to remove contaminants prior to entering the Sabatier catalyst bed. The risk associated with this is potential catalyst degradation due to trace organic contaminants in the CRA carbon dioxide feed acting as catalyst poisons. To better understand this risk, United Technologies Aerospace System (UTAS) has teamed with MSFC to investigate the impact of various trace contaminants on the CRA catalyst performance at relative ISS cabin air concentrations and at about 200/400 times of ISS concentrations, representative of the potential concentrating effect of the CDRA molecular sieve. This paper summarizes our initial assessment results.

  13. Putting anion-π interactions into perspective.

    PubMed

    Frontera, Antonio; Gamez, Patrick; Mascal, Mark; Mooibroek, Tiddo J; Reedijk, Jan

    2011-10-04

    Supramolecular chemistry is a field of scientific exploration that probes the relationship between molecular structure and function. It is the chemistry of the noncovalent bond, which forms the basis of highly specific recognition, transport, and regulation events that actuate biological processes. The classic design principles of supramolecular chemistry include strong, directional interactions like hydrogen bonding, halogen bonding, and cation-π complexation, as well as less directional forces like ion pairing, π-π, solvophobic, and van der Waals potentials. In recent years, the anion-π interaction (an attractive force between an electron-deficient aromatic π system and an anion) has been recognized as a hitherto unexplored noncovalent bond, the nature of which has been interpreted through both experimental and theoretical investigations. The design of selective anion receptors and channels based on this interaction represent important advances in the field of supramolecular chemistry. The objectives of this Review are 1) to discuss current thinking on the nature of this interaction, 2) to survey key experimental work in which anion-π bonding is demonstrated, and 3) to provide insights into the directional nature of anion-π contact in X-ray crystal structures.

  14. Infrared spectroscopy of anionic hydrated fluorobenzenes

    NASA Astrophysics Data System (ADS)

    Schneider, Holger; Vogelhuber, Kristen M.; Weber, J. Mathias

    2007-09-01

    We investigate the structural motifs of anionic hydrated fluorobenzenes by infrared photodissociation spectroscopy and density functional theory. Our calculations show that all fluorobenzene anions under investigation are strongly distorted from the neutral planar molecular geometries. In the anions, different F atoms are no longer equivalent, providing structurally different binding sites for water molecules and giving rise to a multitude of low-lying isomers. The absorption bands for hexa- and pentafluorobenzene show that only one isomer for the respective monohydrate complexes is populated in our experiment. For C6F6-•H2O, we can assign these bands to an isomer where water forms a weak double ionic hydrogen bond with two F atoms in the ion, in accord with the results of Bowen et al. [J. Chem. Phys. 127, 014312 (2007), following paper.] The spectroscopic motif of the binary complexes changes slightly with decreasing fluorination of the aromatic anion. For dihydrated hexafluorobenzene anions, several isomers are populated in our experiments, some of which may be due to hydrogen bonding between water molecules.

  15. In Situ Observation of Active Oxygen Species in Fe-Containing Ni-Based Oxygen Evolution Catalysts: The Effect of pH on Electrochemical Activity.

    PubMed

    Trześniewski, Bartek J; Diaz-Morales, Oscar; Vermaas, David A; Longo, Alessandro; Bras, Wim; Koper, Marc T M; Smith, Wilson A

    2015-12-09

    Ni-based oxygen evolution catalysts (OECs) are cost-effective and very active materials that can be potentially used for efficient solar-to-fuel conversion process toward sustainable energy generation. We present a systematic spectroelectrochemical characterization of two Fe-containing Ni-based OECs, namely nickel borate (Ni(Fe)-B(i)) and nickel oxyhydroxide (Ni(Fe)OOH). Our Raman and X-ray absorption spectroscopy results show that both OECs are chemically similar, and that the borate anions do not play an apparent role in the catalytic process at pH 13. Furthermore, we show spectroscopic evidence for the generation of negatively charged sites in both OECs (NiOO(-)), which can be described as adsorbed "active oxygen". Our data conclusively links the OER activity of the Ni-based OECs with the generation of those sites on the surface of the OECs. The OER activity of both OECs is strongly pH dependent, which can be attributed to a deprotonation process of the Ni-based OECs, leading to the formation of the negatively charged surface sites that act as OER precursors. This work emphasizes the relevance of the electrolyte effect to obtain catalytically active phases in Ni-based OECs, in addition to the key role of the Fe impurities. This effect should be carefully considered in the development of Ni-based compounds meant to catalyze the OER at moderate pHs. Complementarily, UV-vis spectroscopy measurements show strong darkening of those catalysts in the catalytically active state. This coloration effect is directly related to the oxidation of nickel and can be an important factor limiting the efficiency of solar-driven devices utilizing Ni-based OECs.

  16. Characterization of haloacetic acid precursors in source water.

    PubMed

    Kanokkantapong, Vorapot; Marhaba, Taha F; Pavasant, Prasert; Panyapinyophol, Bunyarit

    2006-08-01

    Raw water from the Bangkok (Thailand) main municipal water supply canal was examined for its natural organic composition by fractionation with adsorption resins. DAX-8 resin was the first resin employed to fractionate the hydrophobic fractions. Fractionation at neutral pH resulted in the separation of the hydrophobic neutral components; at a high pH level (approx. 10) separation of the hydrophobic base components occurred; and at a low pH level (approx. 2) the hydrophobic acid components were separated. AG-MP-50 cationic resin was then used to separate the hydrophilic base components, and WA-10, a weak anionic resin, was applied finally to fractionate the hydrophilic acid and neutral components. Subsequently, each fraction was tested for its chlorine disinfection by-product (DBP) formation potential. The HAA formation tests demonstrated that the various organic fractions had different reactivity levels for the formation of haloacetic acids (HAAs). For this source water, the hydrophilic neutral fraction dominated over the other five fractions in being the main organic component and the most significant precursor of HAAs formation. On the other hand, in terms of specific HAA formation potential (FP), the hydrophobic and hydrophilic base fractions were the most reactive precursors to the formation of HAAs. In all cases, the quantity of HAAs formed depended linearly upon the amount of organic constituents in the water sample.

  17. Unveiling carbon dimers and their chains as precursor of graphene growth on Ru(0001)

    NASA Astrophysics Data System (ADS)

    Gao, Min; Zhang, Yan-Fang; Huang, Li; Pan, Yi; Wang, Yeliang; Ding, Feng; Lin, Yuan; Du, Shi-Xuan; Gao, Hong-Jun

    2016-09-01

    Carbon precursor that forms on the catalyst surface by the dissociation of feedstock gas plays an important role in the controllable growth of graphene on metal substrates. However, the configuration about the precursor has so far remained elusive. Here, we report the direct observation of uniformly structured precursor units and their chain formation at the nucleation stage of graphene growing on Ru(0001) substrate by using scanning tunneling microscopy. Combining this experimental information with density function theory calculations, the atomic-resolved structures of carbon precursor are characterized as adsorbed CH2 segments on the substrate. The dissociated carbon feedstock molecules or radicals further react to form nonplanar -[C2H4]- chains adsorbed on hexagonal-close-packed hollow sites of the Ru(0001) substrate before incorporating into the graphene island. These findings reveal that CH2 and nonplanar -[C2H4]- segments act as precursors in graphene growth and are helpful to improve the quality and the domain size of desired graphene by precursor or feedstock control.

  18. Cytotoxic mechanisms of hydrosulfide anion and cyanide anion in primary rat hepatocyte cultures.

    PubMed

    Thompson, Rodney W; Valentine, Holly L; Valentine, William M

    2003-06-30

    Hydrogen sulfide and hydrogen cyanide are known to compromise mitochondrial respiration through inhibition of cytochrome c oxidase and this is generally considered to be their primary mechanism of toxicity. Experimental studies and the efficiency of current treatment protocols suggest that H(2)S may exert adverse physiological effects through additional mechanisms. To evaluate the role of alternative mechanisms in H(2)S toxicity, the relative contributions of electron transport inhibition, uncoupling of mitochondrial respiration, and opening of the mitochondrial permeability transition pore (MPTP) to hydrosulfide and cyanide anion cytotoxicity in primary hepatocyte cultures were examined. Supplementation of hepatocytes with the glycolytic substrate, fructose, rescued hepatocytes from cyanide anion induced toxicity, whereas fructose supplementation increased hydrosulfide anion toxicity suggesting that hydrosulfide anion may compromise glycolysis in hepatocytes. Although inhibitors of the MPTP opening were protective for hydrosulfide anion, they had no effect on cyanide anion toxicity, consistent with an involvement of the permeability transition pore in hydrosulfide anion toxicity but not cyanide anion toxicity. Exposure of isolated rat liver mitochondria to hydrosulfide did not result in large amplitude swelling suggesting that if H(2)S induces the permeability transition it does so indirectly through a mechanism requiring other cellular components. Hydrosulfide anion did not appear to be an uncoupler of mitochondrial respiration in hepatocytes based upon the inability of oligomycin and fructose to protect hepatocytes from hydrosulfide anion toxicity. These findings support mechanisms additional to inhibition of cytochrome c oxidase in hydrogen sulfide toxicity. Further investigations are required to assess the role of the permeability transition in H(2)S toxicity, determine whether similar affects occur in other cell types or in vivo and evaluate whether this may

  19. Hydroprocessing catalyst composition

    SciTech Connect

    Apelian, M.R.; Degnan, T.F. Jr.; Marler, D.O.; Mazzone, D.N.

    1993-07-13

    A bifunctional hydroprocessing catalyst is described which comprises a metal component having hydrogenation/dehydrogenation functionality and a support component comprising an inorganic, non-layered, porous, crystalline phase material having pores with diameters of at least about 13 [angstrom] and exhibiting, after calcination, an X-ray diffraction pattern with at least one peak with a relative intensity of 100 at a d-spacing greater than about 18 [angstrom], the catalyst having a surface area S, where S, expressed in m[sup 2].g[sup [minus]1], is defined by the equation: S[ge]600-13.3X where X is the total metals loading in weight percent and is least 12 weight percent. A second hydroprocessing catalyst is described according to claim 1 in which the crystalline phase has a composition expressed as follows: M[sub n/q](W[sub a]X[sub b]Y[sub c]Z[sub d]O[sub h]) wherein M is one or more ions; n is the charge of the composition excluding M expressed as oxides; q is the weighted molar average valence of M; n/q is the number of moles or mole fraction of M; W is one or more divalent elements; X is one or more trivalent elements; Y is one or more tetravalent elements; Z is one or more pentavalent elements; a, b, c, and d are mole fraction of W, X, Y, and Z, respectively, h is a number of from 1 to 2.5; and (a+b+c+d) = 1. A third hydroprocessing catalyst is described according to claim 1 in which the catalyst is at least one base metal of Group VIA, VIIA or VIIIA of the Periodic Table.

  20. Catalytic growth of boron nitride nanotubes using gas precursors

    NASA Astrophysics Data System (ADS)

    Guo, L.; Singh, R. N.

    2009-01-01

    Hexagonal boron nitride nanotubes (BNNTs) are synthesized at low substrate temperatures on nickel (Ni)- or cobalt (Co)-coated oxidized Si (1 1 1) wafers in a microwave plasma-enhanced chemical vapor deposition (MPCVD) system by decomposition and reaction of gas mixtures consisting of B 2H 6-NH 3-H 2. The growth of one-dimensional (1-D) BN nanostructures is obtained at an optimum combination of catalyst film thickness, substrate temperature, and precursor gas flow rates. The morphology, composition and structural properties of the BNNTs are analyzed by scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDX), selected area diffraction (SAD), and Raman spectroscopy. The patterned growth of BNNTs is also demonstrated.

  1. Molybdenum sulfide/carbide catalysts

    DOEpatents

    Alonso, Gabriel; Chianelli, Russell R.; Fuentes, Sergio; Torres, Brenda

    2007-05-29

    The present invention provides methods of synthesizing molybdenum disulfide (MoS.sub.2) and carbon-containing molybdenum disulfide (MoS.sub.2-xC.sub.x) catalysts that exhibit improved catalytic activity for hydrotreating reactions involving hydrodesulfurization, hydrodenitrogenation, and hydrogenation. The present invention also concerns the resulting catalysts. Furthermore, the invention concerns the promotion of these catalysts with Co, Ni, Fe, and/or Ru sulfides to create catalysts with greater activity, for hydrotreating reactions, than conventional catalysts such as cobalt molybdate on alumina support.

  2. New Worlds Observer Precursor Mission

    NASA Astrophysics Data System (ADS)

    Lillie, C. F.; Lo, A. S.; Dailey, D.; Glassman, T. M.

    2007-06-01

    The New Worlds Observer architecture uses an external occulter to extinguish the on-axis light from a star and a separate telescope to collect the light from objects around that star, such as planets and debris disks. The separation of the starlight suppression capability from the photon collection capability makes the New Worlds Observer architecture very flexible. This paper describes NWO concepts ranging from low-cost precursor missions to Terrestrial Planet Finding (TPF) missions, and provides a path that extends beyond TPF to Planet-Imager and LifeFinder. Low cost precursor missions could be launched on a Minotaur using a small(~10 meter) occulter to work with a small(~0.5 m), telescope. Intermediate precursor missions could be accomplished by launching a larger occulter as a secondary payload to work with existing telescopes such as SOFIA or JWST. The former may allow direct detection of known giant planets, while the latter has the potential to discover Exo-Earths. A full TPF mission would consists of a large occulter working with a dedicated telescope; this can potentially find many terrestrial planets, as well as perform a host of ancillary astronomy investigations such as imaging debris disks and characterizing atmospheres of Jovian planets, as well as making general astrophysics observations. By utilizing the in space servicing capabilities that may be developed for the Exploration program, the lifetime of these occulters may be greatly extended by refueling and repair. In the future, larger occulters (>100 m) could be assembled on orbit. Thus, when coupled with a large telescope, the NWO architecture provides a path towards Lifefinder. NWO is a flexible architecture that allows scalability on all levels to suit the budget available for Exo-Planet Missions.

  3. Precursors of Short Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Troja, E.; Rosswog, S.; Gehrels, N.

    2010-01-01

    We carried out a systematic search of precursors on the sample of short GRBs observed by Swift. We found that approx. 8-10% of short GRBs display such early episode of emission. One burst (GRB 090510) shows two precursor events, the former approx.13 s and the latter approx. 0.5 s before the GRB. We did not find any substantial difference between the precursor and the main GRB emission, and between short GRBs with and without precursors. We discuss possible mechanisms to reproduce the observed precursor emission within the scenario of compact object mergers. The implications of our results on quantum gravity constraints are also discussed.

  4. Vibrational spectroscopy of microhydrated conjugate base anions.

    PubMed

    Asmis, Knut R; Neumark, Daniel M

    2012-01-17

    Conjugate-base anions are ubiquitous in aqueous solution. Understanding the hydration of these anions at the molecular level represents a long-standing goal in chemistry. A molecular-level perspective on ion hydration is also important for understanding the surface speciation and reactivity of aerosols, which are a central component of atmospheric and oceanic chemical cycles. In this Account, as a means of studying conjugate-base anions in water, we describe infrared multiple-photon dissociation spectroscopy on clusters in which the sulfate, nitrate, bicarbonate, and suberate anions are hydrated by a known number of water molecules. This spectral technique, used over the range of 550-1800 cm(-1), serves as a structural probe of these clusters. The experiments follow how the solvent network around the conjugate-base anion evolves, one water molecule at a time. We make structural assignments by comparing the experimental infrared spectra to those obtained from electronic structure calculations. Our results show how changes in anion structure, symmetry, and charge state have a profound effect on the structure of the solvent network. Conversely, they indicate how hydration can markedly affect the structure of the anion core in a microhydrated cluster. Some key results include the following. The first few water molecules bind to the anion terminal oxo groups in a bridging fashion, forming two anion-water hydrogen bonds. Each oxo group can form up to three hydrogen bonds; one structural result, for example, is the highly symmetric, fully coordinated SO(4)(2-)(H(2)O)(6) cluster, which only contains bridging water molecules. Adding more water molecules results in the formation of a solvent network comprising water-water hydrogen bonding in addition to hydrogen bonding to the anion. For the nitrate, bicarbonate, and suberate anions, fewer bridging sites are available, namely, three, two, and one (per carboxylate group), respectively. As a result, an earlier onset of water

  5. Synthesis and catalytic activity of heterogeneous rare-earth metal catalysts coordinated with multitopic Schiff-base ligands.

    PubMed

    Sun, Yilin; Wu, Guangming; Cen, Dinghai; Chen, Yaofeng; Wang, Limin

    2012-08-28

    Four multitopic Schiff-base ligand precursors were synthesized via condensation of 4,4'-diol-3,3'-diformyl-1,1'-diphenyl or 1,3,5-tris(4-hydroxy-5-formylphenyl)benzene with 2,6-diisopropylaniline or 2,6-dimethylaniline. Amine elimination reactions of Ln[N(SiMe(3))(2)](3) (Ln = La, Nd, Sm or Y) with these multitopic ligand precursors gave ten heterogeneous rare-earth metal catalysts. These heterogeneous rare-earth metal catalysts are active for intramolecular hydroalkoxylation of alkynols, and the catalytic activities are influenced by the ligand and metal ion. The recycling experiment on the most active heterogeneous catalyst showed the catalyst has a good reusability.

  6. Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol over Nitrogen-Doped Carbon-Supported Iron Catalysts.

    PubMed

    Li, Jiang; Liu, Jun-Ling; Zhou, Hong-Jun; Fu, Yao

    2016-06-08

    Iron-based heterogeneous catalysts, which were generally prepared by pyrolysis of iron complexes on supports at elevated temperature, were found to be capable of catalyzing the transfer hydrogenation of furfural (FF) to furfuryl alcohol (FFA). The effects of metal precursor, nitrogen precursor, pyrolysis temperature, and support on catalytic performance were examined thoroughly, and a comprehensive study of the reaction parameters was also performed. The highest selectivity of FFA reached 83.0 % with a FF conversion of 91.6 % under the optimal reaction condition. Catalyst characterization suggested that iron cations coordinated by pyridinic nitrogen functionalities were responsible for the enhanced catalytic activity. The iron catalyst could be recycled without significant loss of catalytic activity for five runs, and the destruction of the nitrogen-iron species, the presence of crystallized Fe2 O3 phase, and the pore structure change were the main reasons for catalyst deactivation.

  7. Chiral Cobalt(III) Complexes as Bifunctional Brønsted Acid-Lewis Base Catalysts for the Preparation of Cyclic Organic Carbonates.

    PubMed

    Rulev, Yuri A; Larionov, Vladimir A; Lokutova, Anastasia V; Moskalenko, Margarita A; Lependina, Ol'ga L; Maleev, Victor I; North, Michael; Belokon, Yuri N

    2016-01-01

    Stereochemically inert cationic cobalt(III) complexes were shown to be one-component catalysts for the synthesis of cyclic carbonates from epoxides and carbon dioxide at 50 °C and 5 MPa carbon dioxide pressure. The optimal catalyst possessed an iodide counter anion and could be recycled. A catalytic cycle is proposed in which the ligand of the cobalt complexes acts as a hydrogen-bond donor, activating the epoxide towards ring opening by the halide anion and activating the carbon dioxide for subsequent reaction with the halo-alkoxide. No kinetic resolution was observed when terminal epoxides were used as substrates, but chalcone oxide underwent kinetic resolution.

  8. Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host

    SciTech Connect

    Conrad Ingram; Mark Mitchell

    2007-03-31

    The addition of hydrothermally-aged zeolite Y precursor to an SBA-15 synthesis mixture under a mildly acidic condition resulted in the formation of a mesoporous aluminosilicate catalyst, AlSBA-15. The Al-SBA-15 mesoporous catalyst contains strong Br{umlt o}nsted acid sites and aluminum (Al) stabilized in a totally tetrahedral coordination. The physicochemical characteristics of the catalyst varied as a function of the synthesis conditions. The catalyst possessed surface areas ranging between 690 and 850 m{sup 2}/g, pore sizes ranging from 5.6 to 7.5 nm, and pore volumes up 1.03 cm{sup 3}, which were comparable to the parent SBA-15 synthesized under similar conditions. Two wt % Al was present in the catalyst that was obtained from the reaction mixture that contained the highest Al content. The Al remained stable in totally tetrahedral coordination after calcination at a temperature of 550 C. The Al-SBA-15 mesoporous catalyst showed significant catalytic activity for cumene dealkylation, and the activity increased as the amount of zeolite precursor added to the SBA-15 mixture was increased. In preparation for the final phase of the project, the catalyst was embedded into a psuedoboemite alumina (catapal B) matrix and then formed into pellets. In the final phase of the project, the pelletized catalyst is being evaluated for the conversion of a heavy petroleum feedstock to naphtha and middle distillates. This phase was significantly delayed during the past six months due to a serious malfunction of the fume hoods in the Clark Atlanta University's Research Center for Science and Technology, where the project is being conducted. The fume hood system was repaired and the catalyst evaluation is now underway.

  9. Facile assembly for fast construction of intercalation hybrids of layered double hydroxides with anionic metalloporphyrin.

    PubMed

    Ma, Juanjuan; Liu, Lin; Li, Shanzhong; Chen, Yonghao; Zhuo, Meng; Shao, Feng; Gong, Junyan; Tong, Zhiwei

    2014-07-14

    Anionic manganese tetrasulfonatophenyl porphyrin (MnTSPP) has been intercalated into the interlamellar space of Mg-Al and Ni-Al layered double hydroxides (LDHs) through the exfoliation/restacking approach by using exfoliated LDH nanosheets and guest molecules as building blocks. The obtained hybrids were characterized by a variety of analytical techniques such as CHN analysis, XRD, FTIR, SEM, HRTEM, UV-vis spectroscopy and thermal analysis. Interlayer spacings determined from XRD patterns reveal a perpendicular orientation of the MnTSPP anions between the hyroxylated layers of both LDHs. The results of zeta potential measurements give information about the surface charge change of LDH nanoparticles associated with the spontaneous coassembly process. The catalytic performance of the heterogeneous catalysts MnTSPP/Mg-Al LDH2.0 and MnTSPP/Ni-Al LDH1.0 for the epoxidation of cyclohexene was investigated using molecular oxygen as an oxidant and isobutylaldehyde as a co-reductant. The intercalated hybrids appear to be promising catalysts owing to their good catalytic activity and selectivity.

  10. Gas-Phase Fragmentation Pathways of Mixed-Addenda Keggin Anions: PMo12-nWnO403- (n = 0-12)

    SciTech Connect

    Gunaratne, Kalupathirannehelage Don D.; Prabhakaran, Venkateshkumar; Johnson, Grant E.; Laskin, Julia

    2015-06-01

    We report a collision-induced dissociation (CID) investigation of the mixed addenda polyoxometalate (POM) anions, PMo12-nWnO403- (n = 0-12). The anions were generated in solution using a straightforward single-step synthesis approach and introduced into the gas phase by electrospray ionization (ESI). Distinct differences in fragmentation patterns were observed for the range of mixed POMs examined in this study. CID of molybdenum-rich anions, PMo12- nWnO403- (n = 0-2), generates an abundant doubly charged fragment containing seven metal atoms (M) and twenty-two oxygen atoms (M7O222-) and its complementary singly charged PM5O18- ion, while the Lindqvist anion, (M6O192-) and its complementary PM6O21- ion are the dominant fragments of Keggin POMs containing more than two tungsten atoms, PMo12-nWnO403- (n = 3-12). The observed transition in the dissociation pathways with an increase in the number of W atoms may be attributed to the higher stability of tungsten-rich anions towards isomerization. We find that the observed distribution of Mo and W atoms in the major M6O192- and M7O222- fragment ions is different from that predicted by a random distribution indicating substantial segregation of the addenda metal atoms in the POMs. Electron detachment from the triply charged precursor anion resulting in formation of doubly charged anions is observed. This is a dominant dissociation pathway for mixed POMs having a majority (8-11) of W atoms and a minor channel for other precursors indicating a close competition between fragmentation and electron detachment pathways of POM anions.

  11. Synthesis and characterization of magnesium oxide supported catalysts with a meso-macropore structure.

    PubMed

    Kim, Sang Woo; Kim, Inho; Moon, Dong Ju

    2013-08-01

    Nanostructured magnesium oxide catalyst support materials with controlled morphology and size were synthesized from a supercritical carbon dioxide/ethanol solution via chemical reaction of soluble precursors and subsequent thermal decomposition. Leaf-like magnesium hydroxide precursors with high specific surface area were formed by a low-temperature chemical reaction at below 140 degrees C, while magnesium carbonate cubes with a very low surface area less than 3.3 m2/g were formed by temperature-induced phase transition from a loose to a dense structure during carbonation reaction at above 150 degrees C. The specific surface area has significantly increased higher than 90 m2/g due to the creation of highly porous MgO cubes with mesopore structure formed after thermal decomposition of the magnesium carbonate precursors. Ni-magnesium oxide catalysts with bimodal pore structure were finally formed by the consequence of packing heterogeneity of the porous magnesium oxides with different morphologies and sizes.

  12. Krebs cycle anions in metabolic acidosis.

    PubMed

    Bowling, Francis G; Morgan, Thomas J

    2005-10-05

    For many years it has been apparent from estimates of the anion gap and the strong ion gap that anions of unknown identity can be generated in sepsis and shock states. Evidence is emerging that at least some of these are intermediates of the citric acid cycle. The exact source of this disturbance remains unclear, because a great many metabolic blocks and bottlenecks can disturb the anaplerotic and cataplerotic pathways that enter and leave the cycle. These mechanisms require clarification with the use of tools such as gas chromatography-mass spectrometry.

  13. Templating irreversible covalent macrocyclization by using anions.

    PubMed

    Kataev, Evgeny A; Kolesnikov, Grigory V; Arnold, Rene; Lavrov, Herman V; Khrustalev, Victor N

    2013-03-11

    Inorganic anions were used as templates in the reaction between a diamine and an activated diacid to form macrocyclic amides. The reaction conditions were found to perform the macrocyclization sufficiently slow to observe a template effect. A number of analytical methods were used to clarify the reaction mechanisms and to show that the structure of the intermediate plays a decisive role in determining the product distribution. For the macrocyclization under kinetic control, it was shown that the amount of a template, the conformational rigidity of building blocks, and the anion affinities of reaction components and intermediates are important parameters that one should take into consideration to achieve high yields.

  14. Electron anions and the glass transition temperature

    PubMed Central

    Sushko, Peter V.; Tomota, Yudai; Hosono, Hideo

    2016-01-01

    Properties of glasses are typically controlled by judicious selection of the glass-forming and glass-modifying constituents. Through an experimental and computational study of the crystalline, molten, and amorphous [Ca12Al14O32]2+ ⋅ (e–)2, we demonstrate that electron anions in this system behave as glass modifiers that strongly affect solidification dynamics, the glass transition temperature, and spectroscopic properties of the resultant amorphous material. The concentration of such electron anions is a consequential control parameter: It invokes materials evolution pathways and properties not available in conventional glasses, which opens a unique avenue in rational materials design. PMID:27559083

  15. Highly Reactive, General and Long-Lived Catalysts for Palladium-Catalyzed Amination of Heteroaryl and Aryl Chlorides, Bromides and Iodides: Scope and Structure-Activity Relationships

    PubMed Central

    Shen, Qilong; Ogata, Tokutaro; Hartwig, John F.

    2010-01-01

    We describe a systematic study of the scope and relationship between ligand structure and activity for a highly efficient and selective class of catalysts for the amination of heteroaryl and aryl chlorides, bromides and iodides containing sterically hindered chelating alkylphosphines. In the presence of this catalyst, aryl and heteroaryl chlorides, bromides and iodides react with many primary amines in high yields with part-per-million quantities of palladium precursor and ligand. Many reactions of primary amines with both heteroaryl and aryl chlorides, bromides and iodides occur to completion with 0.0005-0.05 mol % catalysts. A comparison of the reactivity of this catalyst for coupling of primary amines at these loadings is made with catalysts generated from hindered monophosphines and carbenes, and these data illustrate the benefits of chelation. Thus, these complexes constitute a fourth-generation catalyst for the amination of aryl halides, whose activity complements catalysts based on monophosphines and carbenes. PMID:18444639

  16. Alkaline earth metal catalysts for asymmetric reactions.

    PubMed

    Kobayashi, Shū; Yamashita, Yasuhiro

    2011-01-18

    The group 2 alkaline earth metals calcium (Ca), strontium (Sr), and barium (Ba) are among the most common elements on Earth, abundant in both the sea and the Earth's crust. Although they are familiar in our daily lives, their application to organic synthesis has, so far, been limited. Some particularly useful properties of these elements include (i) low electronegativity, (ii) a stable oxidation state of +2, meaning that they can potentially form two covalent bonds with anions, and (iii) the ability to occupy a variety of coordination sites due to their large ionic radius. Furthermore, the alkaline earth metals, found between the group 1 and group 3 elements, show mild but significant Lewis acidity, which can be harnessed to control coordinative molecules via a Lewis acid-base interaction. Taken together, these characteristics make the metals Ca, Sr, and Ba very promising components of highly functionalized acid-base catalysts. In this Account, we describe the development of chiral alkaline earth metal catalysts for asymmetric carbon-carbon bond-forming reactions. Recently prepared chiral alkaline earth metal complexes have shown high diastereo- and enantioselectivities in fundamental and important chemical transformations. We chose chiral bisoxazoline (Box) derivatives bearing a methylene tether as a ligand for chiral modification. These molecules are very useful because they can covalently coordinate to alkaline earth metals in a bidentate fashion through deprotonation of the tether portion. It was found that chiral calcium-Box complexes could successfully promote catalytic asymmetric 1,4-addition and [3 + 2] cycloaddition reactions with high diastereo- and enantioselectivities. Both the calcium-Box complexes and chiral strontium-bis-sulfonamide and chiral barium-BINOLate complexes could catalyze asymmetric 1,4-addition reactions with high enantioselectivities. Furthermore, we designed a calcium-neutral coordinative ligand complex as a new type of chiral alkaline

  17. Annealing of aromatic polyimide precursors

    NASA Technical Reports Server (NTRS)

    Wakelyn, N. T.

    1975-01-01

    A study has been made of the thermal behavior of polyimide precursors: an isomeric pair of crystals of the complex formed by p-phenylenediamine with the separated isomers of the di-isopropyl ester of pyromellitic acid. Specimens of this material were isothermally annealed in the temperature range 120 C to 170 C for periods of time up to 1 week. Although this temperature range is well below that customarily used for imidizations, the working hypothesis was that it would be more likely that a polymer embodying at least part of the precursor structure could be formed if the molecular motion was minimized to that actually required for the formation of the imide linkage. The progress of the annealing was followed by: infrared spectroscopy, differential thermal analysis, powder X-ray diffraction, and thermal gravimetric analysis. Single crystal X-ray analysis of the meta monomer yields a structure of chains of alternating acid and base and suggests that this monomer is amenable to polymerization with a minimum of geometrical disruption.

  18. Hydrogen Production from a Methanol-Water Solution Catalyzed by an Anionic Iridium Complex Bearing a Functional Bipyridonate Ligand under Weakly Basic Conditions.

    PubMed

    Fujita, Ken-ichi; Kawahara, Ryoko; Aikawa, Takuya; Yamaguchi, Ryohei

    2015-07-27

    An efficient catalytic system for the production of hydrogen from a methanol-water solution has been developed using a new anionic iridium complex bearing a functional bipyridonate ligand as a catalyst. This system can be operated under mild conditions [weakly basic solution (0.046 mol L(-1) NaOH) below 100 °C] without the use of an additional organic solvent. Long-term continuous hydrogen production from a methanol-water solution catalyzed by the anionic iridium complex was also achieved.

  19. Synthesis, characterization and evaluation of CO-oxidation catalysts for high repetition rate CO2 TEA lasers

    NASA Technical Reports Server (NTRS)

    Moser, Thomas P.

    1990-01-01

    An extremely active class of noble metal catalysts supported on titania was developed and fabricated at Hughes for the recombination of oxygen (O2) and carbon monoxide (CO) in closed-cycle CO2 TEA lasers. The incipient wetness technique was used to impregnate titania and alumina pellets with precious metals including platinum and palladium. In particular, the addition of cerium (used as an oxygen storage promoter) produced an extremely active Pt/Ce/TiO2 catalyst. By comparison, the complementary Pt/Ce/ gamma-Al2O3 catalyst was considerably less active. In general, chloride-free catalyst precursors proved critical in obtaining an active catalyst while also providing uniform metal distributions throughout the support structure. Detailed characterization of the Pt/Ce/TiO2 catalyst demonstrated uniform dendritic crystal growth of the metals throughout the support. Electron spectroscopy for Chemical Analysis (ESCA) analysis was used to characterize the oxidation states of Pt, Ce and Ti. The performance of the catalysts was evaluated with an integral flow reactor system incorporating real time analysis of O2 and CO. With this system, the transient and steady-state behavior of the catalysts were evaluated. The kinetic evaluation was complemented by tests in a compact, closed-cycle Hughes CO2 TEA laser operating at a pulse repetition rate of 100 Hz with a catalyst temperature of 75 to 95 C. The Pt/Ce/TiO2 catalyst was compatible with a C(13)O(16)2 gas fill.

  20. Fluorination process using catalyst

    DOEpatents

    Hochel, Robert C.; Saturday, Kathy A.

    1985-01-01

    A process for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3, AgF.sub.2 and NiF.sub.2, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3 and AgF.sub.2, whereby the fluorination is significantly enhanced.

  1. Fluorination process using catalysts

    DOEpatents

    Hochel, R.C.; Saturday, K.A.

    1983-08-25

    A process is given for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/, AgF/sub 2/ and NiF/sub 2/, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/ and AgF/sub 2/, whereby the fluorination is significantly enhanced.

  2. High-Activity Dealloyed Catalysts

    SciTech Connect

    Kongkanand, Anusorn

    2014-09-30

    Reduction of costly Pt usage in proton exchange membrane fuel cell electrodes is one of the major challenges towards development and commercialization of fuel cell vehicles. Although few have met the initial-kinetic activity requirements in a realistic fuel cell device, no catalyst material has ever met the demanding fuel cell durability targets set by DOE. In this project, a team of 4 universities and 2 companies came together to investigate a concept that appeared promising in preliminary non-fuel cell tests then to further develop the catalyst to a mature level ready for vehicle implementation. The team consists of academia with technical leadership in their respective areas, a catalyst supplier, and a fuel cell system integrator.The tightly collaborative project enabled development of a highly active and durable catalyst with performance that significantly exceeds that of previous catalysts and meets the DOE targets for the first time (Figure 1A). The catalyst was then further evaluated in full-active-area stack in a realistic vehicle operating condition (Figure 1B). This is the first public demonstration that one can realize the performance benefit and Pt cost reduction over a conventional pure Pt catalyst in a long-term realistic PEMFC system. Furthermore, systematic analyses of a range of catalysts with different performance after fuel cell testing allowed for correlation between catalyst microstructure and its electrocatalytic activity and durability. This will in turn aid future catalyst development.

  3. External Catalyst Breakup Phenomena

    DTIC Science & Technology

    1976-06-01

    anhydrous amonia cylinder and associated valve is revealed in the background. Nominal instrumentation for the reactor tests consisted of Temperatures...above the catalyst bed. Liquid, anhydrous ammonia was selected as the quench medium after consideration of the influence water might have on...corresponding to this G Iading and temperature at an amonia dissociation fraction of 0.5 and Lhamber pressure of 200 psia is 18.4 ft/sec. A typical five pound

  4. Steam reforming catalyst

    DOEpatents

    Kramarz, Kurt W.; Bloom, Ira D.; Kumar, Romesh; Ahmed, Shabbir; Wilkenhoener, Rolf; Krumpelt, Michael

    2001-01-01

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel. A vapor of the hydrocarbon fuel and steam is brought in contact with a two-part catalyst having a dehydrogenation powder portion and an oxide-ion conducting powder portion at a temperature not less than about 770.degree.C. for a time sufficient to generate the hydrogen rich. The H.sub.2 content of the hydrogen gas is greater than about 70 percent by volume. The dehydrogenation portion of the catalyst includes a group VIII metal, and the oxide-ion conducting portion is selected from a ceramic oxide from the group crystallizing in the fluorite or perovskite structure and mixtures thereof. The oxide-ion conducting portion of the catalyst is a ceramic powder of one or more of ZrO.sub.2, CeO.sub.2, Bi.sub.2 O.sub.3, (BiVO).sub.4, and LaGaO.sub.3.

  5. Anion-conducting polymer, composition, and membrane

    DOEpatents

    Pivovar, Bryan S.; Thorn, David L.

    2010-12-07

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  6. Anion-conducting polymer, composition, and membrane

    DOEpatents

    Pivovar, Bryan S.; Thorn, David L.

    2009-09-01

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  7. Photoelectron spectroscopic studies of 5-halouracil anions

    SciTech Connect

    Radisic, Dunja; Ko, Yeon Jae; Nilles, John M.; Stokes, Sarah T.; Bowen, Kit H.; Sevilla, Michael D.; Rak, Janusz

    2011-01-07

    The parent negative ions of 5-chlorouracil, UCl{sup -} and 5-fluorouracil, UF{sup -} have been studied using anion photoelectron spectroscopy in order to investigate the electrophilic properties of their corresponding neutral halouracils. The vertical detachment energies (VDE) of these anions and the adiabatic electron affinities (EA) of their neutral molecular counterparts are reported. These results are in good agreement with the results of previously published theoretical calculations. The VDE values for both UCl{sup -} and UF{sup -} and the EA values for their neutral molecular counterparts are much greater than the corresponding values for both anionic and neutral forms of canonical uracil and thymine. These results are consistent with the observation that DNA is more sensitive to radiation damage when thymine is replaced by halouracil. While we also attempted to prepare the parent anion of 5-bromouracil, UBr{sup -}, we did not observe it, the mass spectrum exhibiting only Br{sup -} fragments, i.e., 5-bromouracil apparently underwent dissociative electron attachment. This observation is consistent with a previous assessment, suggesting that 5-bromouracil is the best radio-sensitizer among these three halo-nucleobases.

  8. Photoelectron spectroscopic studies of 5-halouracil anions

    NASA Astrophysics Data System (ADS)

    Radisic, Dunja; Ko, Yeon Jae; Nilles, John M.; Stokes, Sarah T.; Sevilla, Michael D.; Rak, Janusz; Bowen, Kit H.

    2011-01-01

    The parent negative ions of 5-chlorouracil, UCl- and 5-fluorouracil, UF- have been studied using anion photoelectron spectroscopy in order to investigate the electrophilic properties of their corresponding neutral halouracils. The vertical detachment energies (VDE) of these anions and the adiabatic electron affinities (EA) of their neutral molecular counterparts are reported. These results are in good agreement with the results of previously published theoretical calculations. The VDE values for both UCl- and UF- and the EA values for their neutral molecular counterparts are much greater than the corresponding values for both anionic and neutral forms of canonical uracil and thymine. These results are consistent with the observation that DNA is more sensitive to radiation damage when thymine is replaced by halouracil. While we also attempted to prepare the parent anion of 5-bromouracil, UBr-, we did not observe it, the mass spectrum exhibiting only Br- fragments, i.e., 5-bromouracil apparently underwent dissociative electron attachment. This observation is consistent with a previous assessment, suggesting that 5-bromouracil is the best radio-sensitizer among these three halo-nucleobases.

  9. Superelectrophilic amidine dications: dealkylation by triflate anion.

    PubMed

    Kovacevic, Luka S; Idziak, Christopher; Markevicius, Augustinas; Scullion, Callum; Corr, Michael J; Kennedy, Alan R; Tuttle, Tell; Murphy, John A

    2012-08-20

    Superelectrophiles: Formamides were designed that when treated with triflic anhydride would be transformed into superelectrophilic amidine dications. These dications were so electrophilic that they underwent in situ dealkylation by the triflate anion (see scheme; Tf = trifluoromethanesulfonyl). DFT calculations were used to determine the mechanistic details of the dealkylation reaction.

  10. Anion-conducting polymer, composition, and membrane

    DOEpatents

    Pivovar, Bryan S [Los Alamos, NM; Thorn, David L [Los Alamos, NM

    2011-11-22

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  11. Anion-Conducting Polymer, Composition, and Membrane

    DOEpatents

    Pivovar, Bryan S.; Thorn, David L.

    2008-10-21

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  12. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report No. 7, April 1993--June 1993

    SciTech Connect

    Curtis, C.W.; Chander, S.; Gutterman, C.

    1994-09-01

    The overall objective of this project is to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and carrying out a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. All three coals used in this study (Black Thunder, Burning Star bituminous, and Martin Lake lignite) are effectively swelled by a number of solvents. The most effective solvents are those having hetero-functionality. In addition, a synergistic effect has been demonstrated, in which solvent blends are more effective for coal swelling than the pure solvents alone. Therefore, it will be necessary to use only low levels of swelling agents and yet promote the impregnation of catalyst precursors. The rate of the impregnation of catalyst precursors into swollen coal increases greatly as the effectiveness of the solvent to swell the coal increases. This effect is also demonstrated by improved catalyst precursor impregnation with increased contact temperature. Laboratory- and bench-scale liquefaction experimentation is underway using swelled and catalyst impregnated coal samples. Higher coal conversions were observed for the SO{sub 2}-treated coal than the raw coal, regardless of catalyst type. Conversions of swelled coal were highest when Molyvan-L, molybdenum naphthenate, and nickel octoate, respectively, were added to the liquefaction solvent.

  13. Steam reforming of biomass gasification tar using benzene as a model compound over various Ni supported metal oxide catalysts.

    PubMed

    Park, Hyun Ju; Park, Sung Hoon; Sohn, Jung Min; Park, Junhong; Jeon, Jong-Ki; Kim, Seung-Soo; Park, Young-Kwon

    2010-01-01

    The steam reforming of benzene as a model compound of biomass gasification tar was carried out over various Ni/metal oxide catalysts. The effects of the support, temperature, Ni-precursor, Ni loading and reaction time were examined, and their catalytic performance was compared with that of a commercial Ni catalyst. Among the Ni/metal oxide catalysts used, 15 wt% Ni/CeO(2)(75%)-ZrO(2)(25%) showed the highest catalytic performance owing to its greater redox characteristics and increased surface area, irrespective of the reaction temperature. The catalytic activity of 15 wt% Ni/CeO(2)(75%)-ZrO(2)(25%) was higher than that of the commercial Ni catalyst. Moreover, the catalyst activity was retained due to its excellent resistance to coke deposition even after 5h. The Ni-precursor played a critical role in the catalytic activity. With the exception of nickel nitrate, all the Ni-precursors (chloride and sulfate) caused deactivation of the catalyst.

  14. Thermolytic Molecular Precursor Route to Site-IsolatedVanadia-Silica Materials and Their Catalytic Performance in MethaneSelective Oxidation

    SciTech Connect

    Ruddy, Daniel A.; Ohler, Nicholas L.; Bell, Alexis T.; Tilley, T.Don

    2005-11-23

    The thermolytic molecular precursor (TMP) method was used to prepare site-isolated, high-surface area vanadia-silica (V/SBA15) materials of various V loadings via the grafting of two precursors, OV[OSi(O{sup t}Bu){sub 3}]{sub 3} (1) and Ov(O{sup t}Bu){sub 3} (2). Spectroscopic analysis indicates that excellent synthetic control was established for the exclusive formation of a pseudotetrahedral monovanadate (VO4) structure on all catalyst surfaces. Another V/SBA15 catalyst was prepared via conventional incipient wetness impregnation (WI) with aqueous NH4VO3. A spectroscopic investigation of this catalyst revealed the presence of monovanadate and polyvanadate species along with small domains of V2O5. The TMP materials behave as single-site catalysts in the selective oxidation of methane to formaldehyde up to a V coverage of 0.47 Vnm-2 and demonstrate superior activity compared with the WI catalyst. A space-time yield of 5.84 kgCH2Okg-1cat h-1 was observed, more than twice the highest value previously reported.

  15. Anionic phospholipids modulate peptide insertion into membranes.

    PubMed

    Liu, L P; Deber, C M

    1997-05-06

    While the insertion of a hydrophobic peptide or membrane protein segment into the bilayer can be spontaneous and driven mainly by the hydrophobic effect, anionic lipids, which comprise ca. 20% of biological membranes, provide a source of electrostatic attractions for binding of proteins/peptides into membranes. To unravel the interplay of hydrophobicity and electrostatics in the binding of peptides into membranes, we designed peptides de novo which possess the typical sequence Lys-Lys-Ala-Ala-Ala-X-Ala-Ala-Ala-Ala-Ala-X-Ala-Ala-Trp-Ala-Ala-X-Ala-Al a-Ala-Lys-Lys-Lys-Lys-amide, where X residues correspond to "guest" residues which encompass a range of hydrophobicity (Leu, Ile, Gly, and Ser). Circular dichroism spectra demonstrated that peptides were partially (40-90%) random in aqueous buffer but were promoted to form 100% alpha-helical structures by anionic lipid micelles. In neutral lipid micelles, only the relatively hydrophobic peptides (X = L and I) spontaneously adopted the alpha-helical conformation, but when 25% of negatively charged lipids were mixed in to mimic the content of anionic lipids in biomembranes, the less hydrophobic (X = S and G) peptides then formed alpha-helical conformations. Consistent with these findings, fluorescence quenching by the aqueous-phase quencher iodide indicated that in anionic (dimyristoylphosphatidylglycerol) vesicles, the peptide Trp residue was buried in the lipid vesicle hydrophobic core, while in neutral (dimyristoylphosphatidylcholine) vesicles, only hydrophobic (X = L and I) peptides were shielded from the aqueous solution. Trp emission spectra of peptides in the presence of phospholipids doxyl-labeled at the 5-, 7-, 10-, 12-, and 16-fatty acid positions implied not only a transbilayer orientation for inserted peptides but also that mixed peptide populations (transbilayer + surface-associated) may arise. Overall results suggest that for hydrophobic peptides with segmental threshold hydrophobicity below that which

  16. Low-temperature growth of nitrogen-doped carbon nanofibers by acetonitrile catalytic CVD using Ni-based catalysts

    NASA Astrophysics Data System (ADS)

    Iwasaki, Tomohiro; Makino, Yuri; Fukukawa, Makoto; Nakamura, Hideya; Watano, Satoru

    2016-11-01

    To synthesize nitrogen-doped carbon nanofibers (N-CNFs) at high growth rates and low temperatures less than 673 K, nickel species (metallic nickel and nickel oxide) supported on alumina particles were used as the catalysts for an acetonitrile catalytic chemical vapor deposition (CVD) process. The nickel:alumina mass ratio in the catalysts was fixed at 0.05:1. The catalyst precursors were prepared from various nickel salts (nitrate, chloride, sulfate, acetate, and lactate) and then calcined at 1073 K for 1 h in oxidative (air), reductive (hydrogen-containing argon), or inert (pure argon) atmospheres to activate the nickel-based catalysts. The effects of precursors and calcination atmosphere on the catalyst activity at low temperatures were studied. We found that the catalysts derived from nickel nitrate had relatively small crystallite sizes of nickel species and provided N-CNFs at high growth rates of 57 ± 4 g-CNF/g-Ni/h at 673 K in the CVD process using 10 vol% hydrogen-containing argon as the carrier gas of acetonitrile vapor, which were approximately 4 times larger than that of a conventional CVD process. The obtained results reveal that nitrate ions in the catalyst precursor and hydrogen in the carrier gas can contribute effectively to the activation of catalysts in low-temperature CVD. The fiber diameter and nitrogen content of N-CNFs synthesized at high growth rates were several tens of nanometers and 3.5 ± 0.3 at.%, respectively. Our catalysts and CVD process may lead to cost reductions in the production of N-CNFs.

  17. Molecular and polymeric ceramic precursors

    SciTech Connect

    Sneddon, L.G.

    1991-08-01

    The development of new methods for the production of complex materials is one of the most important problems in modern solid state chemistry and materials science. This project is attempting to apply the synthetic principles which have evolved inorganic and organometallic chemistry to the production of technologically important non-oxide ceramics, such as boron nitride, boron carbide and metal borides. Our recent work has now resulted in the production of new polymer systems, including poly(B-vinylborazine), polyvinylpentaborane and polyborazylene, that have proven to be high yield precursors to boron-based ceramic materials. Current work is now directed toward the synthesis of new types of molecular and polymeric boron-containing species and on exploration of the solid state properties of the ceramics that have been produced in these studies.

  18. Bipyrrole-Strapped Calix[4]pyrroles: Strong Anion Receptors That Extract the Sulfate Anion

    SciTech Connect

    Kim, Sung Kuk; Lee, Juhoon; Williams, Neil J; Lynch, Vincent M.; Hay, Benjamin; Moyer, Bruce A; Sessler, Jonathan L.

    2014-01-01

    Cage-type calix[4]pyrroles 2 and 3 bearing two additional pyrrole groups on the strap have been synthesized. Compared with the parent calix[4]pyrrole (1), they were found to exhibit remarkably enhanced affinities for anions, including the sulfate anion (TBA+ salts), in organic media (CD2Cl2). This increase is ascribed to participation of the bipyrrole units in anion binding. Receptors 2 and 3 extract the hydrophilic sulfate anion (as the methyltrialkyl(C8-10)ammonium (A336+) salt)) from aqueous media into a chloroform phase with significantly improved efficiency (>10-fold relative to calix[4]pyrrole 1). These two receptors also solubilize into chloroform the otherwise insoluble sulfate salt, (TMA)2SO4 (tetramethylammonium sulfate).

  19. Nitrogen-doped carbon-supported cobalt-iron oxygen reduction catalyst

    SciTech Connect

    Zelenay, Piotr; Wu, Gang

    2014-04-29

    A Fe--Co hybrid catalyst for oxygen reaction reduction was prepared by a two part process. The first part involves reacting an ethyleneamine with a cobalt-containing precursor to form a cobalt-containing complex, combining the cobalt-containing complex with an electroconductive carbon supporting material, heating the cobalt-containing complex and carbon supporting material under conditions suitable to convert the cobalt-containing complex and carbon supporting material into a cobalt-containing catalyst support. The second part of the process involves polymerizing an aniline in the presence of said cobalt-containing catalyst support and an iron-containing compound under conditions suitable to form a supported, cobalt-containing, iron-bound polyaniline species, and subjecting said supported, cobalt-containing, iron bound polyaniline species to conditions suitable for producing a Fe--Co hybrid catalyst.

  20. Carbon nanotubes/tin oxide nanocomposite-supported Pt catalysts for methanol electro-oxidation.

    PubMed

    Li, Xingwei; Wei, Jiadi; Chai, Yuzheng; Zhang, Shuo

    2015-07-15

    Carbon nanotubes/tin oxide nanocomposite (MWCNTs-SnO2) was obtained via the hydrolysis of SnCl4 in the presence of multi-walled carbon nanotubes (MWCNTs) and subsequent calcinations. And carbon nanotubes/tin oxide nanocomposite-supported Pt catalysts (Pt/MWCNTs-SnO2) were prepared by in-situ liquid phase reduction using H2PtCl6 as a metal precursor. As-prepared catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM), and their catalytic performances were evaluated by chronoamperometry (CA) and cyclic voltammetry (CV). Desirable catalytic performance for methanol electro-oxidation was observed with a reduced size and an improved dispersion of Pt catalysts on the MWCNTs-SnO2 nanocomposite. The calcination temperature of MWCNTs-SnO2 nanocomposite was a key factor for controlling the catalytic performance of Pt/MWCNTs-SnO2 catalysts.

  1. Effect of the metal support interactions on the physicochemical and magnetic properties of Ni catalysts

    NASA Astrophysics Data System (ADS)

    Gómez-Polo, C.; Gil, A.; Korili, S. A.; Pérez-Landázabal, J. I.; Recarte, V.; Trujillano, R.; Vicente, M. A.

    2007-09-01

    In this work, the effect of the preparation method on the physicochemical and magnetic properties of nickel-containing catalysts is analysed. The catalysts were prepared by two methods, incipient wetness impregnation and precipitation-deposition using two commercial oxides, γ-Al 2O 3 (Rhône-Poulenc) and SiO 2 (AF125, Kali Chemie) as supports. The precursors were dried at 393 K for 16 h and then calcined at 823 K for 4 h. The physicochemical characterization of the catalysts included nitrogen adsorption, X-ray diffraction (XRD), temperature-programmed reduction (TPR) and chemical analysis. A SQUID magnetometer was employed in the magnetic characterization. The basic compositional and structural characteristics of these Ni-based nanoporous catalysts are analysed in relation to their magnetic response.

  2. Dispersion enhanced metal/zeolite catalysts

    DOEpatents

    Sachtler, W.M.H.; Tzou, M.S.; Jiang, H.J.

    1987-03-31

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  3. Dispersion enhanced metal/zeolite catalysts

    DOEpatents

    Sachtler, Wolfgang M. H.; Tzou, Ming-Shin; Jiang, Hui-Jong

    1987-01-01

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  4. Static and dynamic structural characterization of nanomaterial catalysts

    NASA Astrophysics Data System (ADS)

    Masiel, Daniel Joseph

    Heterogeneous catalysts systems are pervasive in industry, technology and academia. These systems often involve nanostructured transition metal particles that have crucial interfaces with either their supports or solid products. Understanding the nature of these interfaces as well as the structure of the catalysts and support materials themselves is crucial for the advancement of catalysis in general. Recent developments in the field of transmission electron microscopy (TEM) including dynamic transmission electron microscopy (DTEM), electron tomography, and in situ techniques stand poised to provide fresh insight into nanostructured catalyst systems. Several electron microscopy techniques are applied in this study to elucidate the mechanism of silica nanocoil growth and to discern the role of the support material and catalyst size in carbon dioxide and steam reforming of methane. The growth of silica nanocoils by faceted cobalt nanoparticles is a process that was initially believed to take place via a vapor-liquid-solid growth mechanism similar to other nanowire growth techniques. The extensive TEM work described here suggests that the process may instead occur via transport of silicate and silica species over the nanoparticle surface. Electron tomography studies of the interface between the catalyst particles and the wire indicate that they grow from edges between facets. Studies on reduction of the Co 3O4 nanoparticle precursors to the faceted pure cobalt catalysts were carried out using DTEM and in situ heating. Supported catalyst systems for methane reforming were studied using dark field scanning TEM to better understand sintering effects and the increased activity of Ni/Co catalysts supported by carbon nanotubes. Several novel electron microscopy techniques are described including annular dark field DTEM and a metaheuristic algorithm for solving the phase problem of coherent diffractive imaging. By inserting an annular dark field aperture into the back focal

  5. Catalyst systems and uses thereof

    DOEpatents

    Ozkan, Umit S [Worthington, OH; Holmgreen, Erik M [Columbus, OH; Yung, Matthew M [Columbus, OH

    2012-07-24

    A method of carbon monoxide (CO) removal comprises providing an oxidation catalyst comprising cobalt supported on an inorganic oxide. The method further comprises feeding a gaseous stream comprising CO, and oxygen (O.sub.2) to the catalyst system, and removing CO from the gaseous stream by oxidizing the CO to carbon dioxide (CO.sub.2) in the presence of the oxidation catalyst at a temperature between about 20 to about 200.degree. C.

  6. Oxygen-reducing catalyst layer

    DOEpatents

    O'Brien, Dennis P [Maplewood, MN; Schmoeckel, Alison K [Stillwater, MN; Vernstrom, George D [Cottage Grove, MN; Atanasoski, Radoslav [Edina, MN; Wood, Thomas E [Stillwater, MN; Yang, Ruizhi [Halifax, CA; Easton, E Bradley [Halifax, CA; Dahn, Jeffrey R [Hubley, CA; O'Neill, David G [Lake Elmo, MN

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  7. Development of GREET Catalyst Module

    SciTech Connect

    Wang, Zhichao; Benavides, Pahola T.; Dunn, Jennifer B.; Cronauer, Donald C.

    2015-09-01

    In this report, we develop energy and material flows for the production of five different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5], Mo/Co/ γ-Al2O3, and Pt/ γ-Al2O3) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module.

  8. Ion-assisted precursor dissociation and surface diffusion: Enabling rapid, low-temperature growth of carbon nanofibers

    NASA Astrophysics Data System (ADS)

    Denysenko, I.; Ostrikov, K.

    2007-06-01

    Growth kinetics of carbon nanofibers in a hydrocarbon plasma is studied. In addition to gas-phase and surface processes common to chemical vapor deposition, the model includes (unique to plasma-exposed catalyst surfaces) ion-induced dissociation of hydrocarbons, interaction of adsorbed species with incoming hydrogen atoms, and dissociation of hydrocarbon ions. It is shown that at low, nanodevice-friendly process temperatures the nanofibers grow via surface diffusion of carbon adatoms produced on the catalyst particle via ion-induced dissociation of a hydrocarbon precursor. These results explain a lower activation energy of nanofiber growth in a plasma and can be used for the synthesis of other nanoassemblies.

  9. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    SciTech Connect

    Jonathan L. Sessler

    2007-09-21

    The major thrust of this project, led by the University of Kansas (Prof. Kristin Bowman-James), entails an exploration of the basic determinants of anion recognition and their application to the design, synthesis, and testing of novel sulfate extractants. A key scientific inspiration for the work comes from the need, codified in simple-to-appreciate terms by the Oak Ridge National Laboratory component of the team (viz. Dr. Bruce Moyer), for chemical entities that can help in the extractive removal of species that have low solubilities in borosilicate glass. Among such species, sulfate anion, has been identified as particularly insidious. Its presence interferes with the vitrification process, thus rendering the remediation of tank waste from, e.g., the Hanford site far more difficult and expensive. The availability of effective extractants, that would allow for the separation of separating sulfate from the major competing anions in the waste, especially nitrate, could allow for pre-vitrification removal of sulfate via liquid-liquid extraction. The efforts at The University of Texas, the subject of this report, have thus concentrated on the development of new sulfate receptors. These systems are designed to increase our basic understanding of anion recognition events and set the stage for the development of viable sulfate anion extractants. In conjunction with the Oak Ridge National Laboratory (ORNL) members of the research team, several of these new receptors were studied as putative extractants, with two of the systems being shown to act as promising synergists for anion exchange.

  10. Understanding and modeling removal of anionic organic contaminants (AOCs) by anion exchange resins.

    PubMed

    Zhang, Huichun; Shields, Anthony J; Jadbabaei, Nastaran; Nelson, Maurice; Pan, Bingjun; Suri, Rominder P S

    2014-07-01

    Ionic organic contaminants (OCs) are a growing concern for water treatment and the environment and are removed inefficiently by many existing technologies. This study examined removal of anionic OCs by anion exchange resins (AXRs) as a promising alternative. Results indicate that two polystyrene AXRs (IRA910 and IRA96) have higher sorption capacities and selectivity than a polyacrylate resin (A860). For the polystyrene resins, selectivity follows: phenolates ≥ aromatic dicarboxylates > aromatic monocarboxylates > benzenesulfonate > aliphatic carboxylates. This trend can be explained based on hydration energy, the number of exchange groups, and aromaticity and hydrophobicity of the nonpolar moiety (NPM) of the anions. For A860, selectivity only varies within a narrow range (0.13-1.64). Despite the importance of the NPM of the anions, neutral solutes were sorbed much less, indicating synergistic combinations of electrostatic and nonelectrostatic interactions in the overall sorption. By conducting multiple linear regression between Abraham's descriptors and nature log of selectivity, induced dipole-related interactions and electrostatic interactions were found to be the most important interaction forces for sorption of the anions, while solute H-bond basicity has a negative effect. A predictive model was then developed for carboxylates and phenolates based on the poly parameter linear free energy relationships established for a diverse range of 16 anions and 5 neutral solutes, and was validated by accurate prediction of sorption of five test solutes within a wide range of equilibrium concentrations and that of benzoate at different pH.

  11. Anion-π interactions involving [MX(n)](m-) anions: a comprehensive theoretical study.

    PubMed

    Estarellas, Carolina; Quiñonero, David; Deyà, Pere M; Frontera, Antonio

    2013-01-14

    In this manuscript we perform a systematic study on the geometric and energetic features of anion-π complexes, wherein the anion is a metal complex of variable shapes and charges. Such a study is lacking in the literature. For the calculations we used the ab initio RI-MP2/def2-TZVPP level of theory. A search in the Cambridge Structural Database (CSD) provides the experimental starting point that inspired the subsequent theoretical study. The influence of [MX(n)](m-) on the anion-π interaction was analyzed in terms of energetic, geometric, and charge transfer properties and Bader's theory of "atom-in-molecules" (AIM). The binding energy depends on the coordination index, geometric features and different orientations adopted by the metallic anion. The binding mode resembling a stacking interaction for linear, trigonal planar and square-planar anions is the most favorable. For tetrahedral and octahedral anions the most favorable orientation is the one with three halogen atoms pointing to the ring.

  12. In Situ Graphene Growth Dynamics on Polycrystalline Catalyst Foils

    PubMed Central

    2016-01-01

    The dynamics of graphene growth on polycrystalline Pt foils during chemical vapor deposition (CVD) are investigated using in situ scanning electron microscopy and complementary structural characterization of the catalyst with electron backscatter diffraction. A general growth model is outlined that considers precursor dissociation, mass transport, and attachment to the edge of a growing domain. We thereby analyze graphene growth dynamics at different length scales and reveal that the rate-limiting step varies throughout the process and across different regions of the catalyst surface, including different facets of an individual graphene domain. The facets that define the domain shapes lie normal to slow growth directions, which are determined by the interfacial mobility when attachment to domain edges is rate-limiting, as well as anisotropy in surface diffusion as diffusion becomes rate-limiting. Our observations and analysis thus reveal that the structure of CVD graphene films is intimately linked to that of the underlying polycrystalline catalyst, with both interfacial mobility and diffusional anisotropy depending on the presence of step edges and grain boundaries. The growth model developed serves as a general framework for understanding and optimizing the growth of 2D materials on polycrystalline catalysts. PMID:27576749

  13. Three hydroxy aurone compounds as chemosensors for cyanide anions.

    PubMed

    Chen, Huihui; Sun, Yunhui; Zhou, Chuanjian; Cao, Duxia; Liu, Zhiqiang; Ma, Lin

    2013-12-01

    Three new 4-hydroxy aurone compounds 1-3 with dimethylamino (1), bromine (2) and cyano (3) as terminal group have been synthesized. Their photophysical properties as well as recognition properties for cyanide anions in acetonitrile and aqueous solution have also been examined. These compounds exhibit remarkable response to cyanide anions with obvious color and fluorescence change owing to hydrogen bonding reaction between cyanide anions and the O-H moiety of the sensors, which allows naked eye detection of cyanide anions.

  14. Reversible air electrodes integrated with an anion-exchange membrane for secondary air batteries

    NASA Astrophysics Data System (ADS)

    Fujiwara, Naoko; Yao, Masaru; Siroma, Zyun; Senoh, Hiroshi; Ioroi, Tsutomu; Yasuda, Kazuaki

    Reversible air electrodes integrated with a polymer electrolyte membrane have been proposed for use in rechargeable metal-air batteries or unitized regenerative fuel cells to reduce the impact of atmospheric carbon dioxide. Reversible air electrodes were prepared with an anion-exchange membrane (AEM) as a polymer electrolyte membrane and platinum-based catalysts. The AEM at the interface between the alkaline electrolyte and the air electrode layer plays major roles in AEM-type air electrodes as follows: it blocks (a) the permeation of cations in the alkaline electrolyte into the air electrode layer to prevent carbonate precipitation, (b) penetration of the alkaline solution itself, and (c) neutralization of the alkaline electrolyte by carbon dioxide, all of which prevent performance degradation of oxygen reactions. Catalysts for decreasing the overvoltage of oxygen reactions were also investigated with the AEM-type air electrode, and the overall efficiency was improved due to a remarkable decrease in the potential for the oxygen evolution reaction with Pt-Ir catalysts.

  15. Improved Steroids Detection and Evidence for Their Regiospecific Decompositions Using Anion Attachment Mass Spectrometry.

    PubMed

    Dumont, Quentin; Bárcenas, Mariana; Dossmann, Héloïse; Bailloux, Isabelle; Buisson, Corinne; Mechin, Nathalie; Molina, Adeline; Lasne, Françoise; Rannulu, Nalaka S; Cole, Richard B

    2016-04-05

    Nonpolar anabolic steroids are doping agents that typically do not provide strong signals by electrospray ionization-mass spectrometry (ESI-MS) owing especially to the low polarity of the functional groups present. We have investigated the addition of anions, in ammonium salt form, to anabolic steroid samples as ionization enhancers and have confirmed that lower instrumental limits of detection (as low as 10 ng/mL for fluoxymesterone-M) are obtained by fluoride anion attachment mass spectrometry, as compared to ESI(+)/(-) or atmospheric pressure photoionization (APPI)(+). Moreover, collision-induced decomposition (CID) spectra of precursor fluoride adducts of the bifunctional steroid "reduced pregnenolone" (containing two hydroxyl groups) and its d4-analogue provide evidence of regiospecific decompositions after attachment of fluoride anion to a specific hydroxyl group of the steroid. This type of charting of specific CID reaction pathways can offer value to selected reaction monitoring experiments (SRM) as it may result in a gain in selectivity in detection as well as in improvements in quantification.

  16. Mixed Alcohol Synthesis Catalyst Screening

    SciTech Connect

    Gerber, Mark A.; White, James F.; Stevens, Don J.

    2007-09-03

    National Renewable Energy Laboratory (NREL) and Pacific Northwest National Laboratory (PNNL) are conducting research to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). PNNL is tasked with obtaining commercially available or preparing promising mixed-alcohol catalysts and screening them in a laboratory-scale reactor system. Commercially available catalysts and the most promising experimental catalysts are provided to NREL for testing using a slipstream from a pilot-scale biomass gasifier. From the standpoint of producing C2+ alcohols as the major product, it appears that the rhodium catalyst is the best choice in terms of both selectivity and space-time yield (STY). However, unless the rhodium catalyst can be improved to provide minimally acceptable STYs for commercial operation, mixed alcohol synthesis will involve significant production of other liquid coproducts. The modified Fischer-Tropsch catalyst shows the most promise for providing both an acceptable selectivity to C2+ alcohols and total liquid STY. However, further optimization of the Fischer-Tropsch catalysts to improve selectivity to higher alcohols is highly desired. Selection of a preferred catalyst will likely entail a decision on the preferred coproduct slate. No other catalysts tested appear amenable to the significant improvements needed for acceptable STYs.

  17. Enhanced Polymer Grafting from Multiwalled Carbon Nanotubes through Living Anionic Surface-Initiated Polymerization.

    SciTech Connect

    Sakellariou, Georgios; Ji, Haining; Mays, Jimmy; Baskaran, Durairaj

    2008-01-01

    Anionic surface-initiated polymerization of ethylene oxide and styrene has been performed using multiwalled carbon nanotubes (MWNTs) functionalized with anionic initiators. The surface of MWNTs was modified via covalent attachment of precursor anions such as 4-hydroxyethyl benzocyclobutene (BCBEO) and 1-benzocyclobutene-1 -phenylethylene (BCB-PE) through Diels-Alder cycloaddition at 235 C. Surface-functionalized MWNTs-g-(BCB-EO)n and MWNTs-g-(BCB-PE)n with 23 and 54 wt % precursor initiators, respectively, were used for the polymerizations. Alkoxide anion on the surface of MWNTs-g-(BCB-EO)n was generated through reaction with potassium triphenylmethane for the polymerization of ethylene oxide in tetrahydrofuran and phenyl substituted alkyllithium was generated from the surface of MWNTs-g-(BCB-PE)n using sec-butyllithium for the polymerization of styrene in benzene. In both cases, the initiation was found to be very slow because of the heterogeneous reaction medium. However, the MWNTs gradually dispersed in the reaction medium during the polymerization. A pale green color was noticed in the case of ethylene oxide polymerization and the color of initiator as well as the propagating anions was not discernible visually in styrene polymerization. Polymer grafted nanocomposites, MWNTs-g-(BCB-PEO)n and MWNTs-g-(BCB-PS)n containing a very high percentage of hairy polymer with a small fraction of MWNTs (<1 wt %) were obtained. The conversion of ethylene oxide and the weight percent of PEO on the surface of the MWNTs increased with increasing reaction time indicating a controlled polymerization. The polymer-grafted MWNTs were characterized using FTIR, 1H NMR, Raman spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and transmission electron microscopy (TEM). Size exclusion chromatography of the polymer grafted MWNTs revealed broad molecular weight distributions (1.3 < Mw/Mn < 1.8) indicating the presence of different sizes of polymer nanocomposites

  18. Shape-selective catalysts for Fischer-Tropsch chemistry : iron-containing particulate catalysts. Activity report : January 1, 2001 - December 31, 2004.

    SciTech Connect

    Cronauer, D.; Chemical Engineering

    2006-05-12

    organo-silicate onto the CAER catalyst. The second was the acidic precipitation of an organo-silicate with aging to form fractal particles that were then deposited onto the CAER catalyst. Several resulting FT catalysts were as active as the coarse catalyst on which they were prepared. The most active ones were those with the least amount of coating, namely about 2.2 wt% SiO{sub 2}. In the case of the latter acid technique, the use of HCl and HNO{sub 3} was much more effective than that of H{sub 2}SO{sub 4}. Scanning electron microscopy (SEM) was used to observe and analyze as-received and treated FT catalysts. It was observed that (1) spherical particles of CAER FT catalyst were made up of agglomerates of particles that were, in turn, also agglomerates; (2) the spray drying process of CAER apparently concentrated the Si precursor at the surface during drying; (3) while SEM pointed out broad differences in the appearance of the prepared catalyst particles, there was little indication that the catalysts were being uniformly coated with a cage-like protective surface, with perhaps the exception of HNO{sub 3}-precipitated catalyst; and (4) there was only a limited penetration of carbon (i.e., CO) into the FT catalyst during the conditioning and FT reaction steps.

  19. Activation of Methane and Ethane as Mediated by the Triatomic Anion HNbN(-): Electronic Structure Similarity with a Pt Atom.

    PubMed

    Ma, Jia-Bi; Xu, Lin-Lin; Liu, Qing-Yu; He, Sheng-Gui

    2016-04-11

    Investigations of the intrinsic properties of gas-phase transition metal nitride (TMN) ions represent one approach to gain a fundamental understanding of the active sites of TMN catalysts, the activities and electronic structures of which are known to be comparable to those of noble metal catalysts. Herein, we investigate the structures and reactivities of the triatomic anions HNbN(-) by means of mass spectrometry and photoelectron imaging spectroscopy, in conjunction with density functional theory calculations. The HNbN(-) anions are capable of activating CH4 and C2H6 through oxidative addition, exhibiting similar reactivities to free Pt atoms. The similar electronic structures of HNbN(-) and Pt, especially the active orbitals, are responsible for this resemblance. Compared to the inert NbN(-), the coordination of the H atom in HNbN(-) is indispensable. New insights into how to replace noble metals with TMNs may be derived from this combined experimental/computational study.

  20. Synthesis and characterization of catalysts for the selective transformation of biomass-derived materials

    NASA Astrophysics Data System (ADS)

    Ghampson, Isaac Tyrone

    The experimental work in this thesis focuses on generating catalysts for two intermediate processes related to the thermal conversion of lignocellulosic biomass: the synthesis and characterization of mesoporous silica supported cobalt catalysts for the Fischer-Tropsch reaction, and an exploration of the reactivity of bulk and supported molybdenum-based nitride catalysts for the hydrodeoxygenation (HDO) of guaiacol, a lignin model compound. The first section of the work details the synthesis of a series of silica-supported cobalt Fischer-Tropsch catalysts with pore diameters ranging from 2-23 nm. Detailed X-ray diffraction measurements were used to determine the composition and particle diameters of the metal fraction, analyzed as a three-phase system containing Cofcc, Cohcp and CoO particles. Catalyst properties were determined at three stages in catalyst history: (1) after the initial calcination step to thermally decompose the catalyst precursor into Co3O4, (2) after the hydrogen reduction step to activate the catalyst to Co and (3) after the FT reaction. From the study, it was observed that larger pore diameters supported higher turnover frequency; smaller pore diameters yielded larger mole fraction of CoO; XRD on post-reduction and post-FTS catalyst samples indicated significant changes in dispersivity after reduction. In the next section, the catalytic behaviors of unsupported, activated carbon-, alumina-, and SBA-15 mesoporous silica-supported molybdenum nitride catalysts were evaluated for the hydrodeoxygenation of guaiacol (2-methoxy phenol) at 300°C and 5 MPa. The nitride catalysts were prepared by thermal decomposition of bulk and supported ammonium heptamolybdate to form MoO 3 followed by nitridation in either flowing ammonia or a nitrogen/hydrogen mixture. The catalytic properties were strongly affected by the nitriding and purging treatment as well as the physical and chemical properties of support. The overall reaction was influenced by the

  1. Steam Reforming of Ethylene Glycol over MgAl₂O₄ Supported Rh, Ni, and Co Catalysts

    SciTech Connect

    Mei, Donghai; Lebarbier, Vanessa M.; Xing, Rong; Albrecht, Karl O.; Dagle, Robert A.

    2015-11-25

    Steam reforming of ethylene glycol (EG) over MgAl₂O₄ supported metal (15 wt.% Ni, 5 wt.% Rh, and 15 wt.% Co) catalysts were investigated using combined experimental and theoretical methods. Compared to highly active Rh and Ni catalysts with 100% conversion, the steam reforming activity of EG over the Co catalyst is comparatively lower with only 42% conversion under the same reaction conditions (500°C, 1 atm, 119,000 h⁻¹, S/C=3.3 mol). However, CH₄ selectivity over the Co catalyst is remarkably lower. For example, by varying the gas hour space velocity (GHSV) such that complete conversion is achieved for all the catalysts, CH₄ selectivity for the Co catalyst is only 8%, which is much lower than the equilibrium CH₄ selectivity of ~ 24% obtained for both the Rh and Ni catalysts. Further studies show that varying H₂O concentration over the Co catalyst has a negligible effect on activity, thus indicating zero-order dependence on H₂O. These experimental results suggest that the supported Co catalyst is a promising EG steam reforming catalyst for high hydrogen production. To gain mechanistic insight for rationalizing the lower CH₃ selectivity observed for the Co catalyst, the initial decomposition reaction steps of ethylene glycol via C-O, O-H, C-H, and C-C bond scissions on the Rh(111), Ni(111) and Co(0001) surfaces were investigated using density functional theory (DFT) calculations. Despite the fact that the bond scission sequence in the EG decomposition on the three metal surfaces varies, which leads to different reaction intermediates, the lower CH₄ selectivity over the Co catalyst, as compared to the Rh and Ni catalysts, is primarily due to the higher barrier for CH₄ formation. The higher S/C ratio enhances the Co catalyst stability, which can be elucidated by the facile water dissociation and an alternative reaction path to remove the CH species as a coking precursor via the HCOH formation. This work was financially supported by the United

  2. IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED STABLE NANOPOROUS HOST

    SciTech Connect

    Conrad Ingram; Mark Mitchell

    2006-06-20

    Al-SBA-15 mesoporous catalysts with strong Broensted acid sites and Al stabilized in a totally tetrahedral coordination was synthesized from the addition of hydrothermally aged zeolite Y precursor to SBA-15 synthesis mixture under mildly acidic condition of pH 5.5. The materials possessed surface areas between 690 and 850 m{sup 2}/g, pore sizes ranging from 5.6 to 7.5 nm and pore volumes up 1.03 cm{sup 3}, which were comparable to parent SBA-15 synthesized under similar conditions. Up to 2 wt. % Al was present in the most aluminated sample that was investigated, and the Al remained stable in totally tetrahedral coordination, even after calcination at 550 C. The Al-SBA-15 mesoporous catalyst showed significant catalytic activity for cumene dealkylation, and activity increased as the amount of zeolite precursor added to the SBA-15 mixture was increased. The catalyst's activity was not affected by the aging time of the precursor for up to the 24 hr aging time investigated. This method of introducing Al and maintaining it in a total tetrahedral coordination is very effective, in comparison to other direct and post synthesis alumination methods reported. The catalytic performance of the zeolite Y/SBA-15 composite materials will be compared with that of pure SBA-15. The catalysts will then be evaluated for the conversion of heavy petroleum feedstocks.

  3. Slurry phase iron catalysts for indirect coal liquefaction. Second semi-annual progress report, January 5, 1996--July 4, 1996

    SciTech Connect

    Datye, A.K.

    1996-08-02

    During this period, work was continued on understanding the attrition of precipitated iron catalysts and work initiated on synthesizing catalysts containing silica binders. Use of a sedigraph particle size analyzer with an ultrasonic probe provides a simple method to test the strength of catalyst agglomerates, allowing the strength comparison of silica and hematite catalysts (the former is considerably stronger). Study of Fe/silica interactions was continued. Addition of a colloidal silica precursor to calcined Fe{sub 2}O{sub 3} catalyst had no detrimental effect on reducibility of the hematite to {alpha}-Fe. XRD and electron microscopy will be used to analyze the crystal structure and types of C present in samples from long Fischer-Tropsch runs.

  4. Method for producing a catalyst and a carrier therefor

    SciTech Connect

    Abe, K.; Nakatsuji, T.

    1981-07-28

    A method is provided for producing a catalyst and a carrier therefor in the form of sheet or honeycomb. The method comprises: beating a heat-resistant fiber such as asbesto fiber in water to form a slurry; mixing the slurry with a catalytically active agent, a carrier material therefor and/or their precursors to fix such materials in the fiber, thus forming a stock; and forming the stock into a sheet and drying the same. The sheet thus obtained may be formed into a honeycomb structure with an improved adhesive.

  5. Crystalline mesoporous zirconia catalysts having stable tetragonal pore wall structure

    DOEpatents

    Sachtler, Wolfgang M. H.; Huang, Yin-Yan

    1998-01-01

    Methods for the preparation of new sulfated mesoporous zirconia materials/catalysts with crystalline pore walls of predominantly tetragonal crystal structure, characterized by nitrogen physisorption measurement, X-ray diffraction, transmission electron microscopy and catalytic tests using n-butane isomerization to iso-butane and alkylation of 1-naphthol with 4-tert-butylstyrene as probe reactions. Sulfate deposition is preferred for the transformation of a mesoporous precursor with amorphous pore walls into a material with crystalline pore walls maintaining the mesoporous characteristics.

  6. Crystalline mesoporous zirconia catalysts having stable tetragonal pore wall structure

    DOEpatents

    Sachtler, W.M.H.; Huang, Y.Y.

    1998-07-28

    Methods are disclosed for the preparation of new sulfated mesoporous zirconia materials/catalysts with crystalline pore walls of predominantly tetragonal crystal structure, characterized by nitrogen physical sorption measurement, X-ray diffraction, transmission electron microscopy and catalytic tests using n-butane isomerization to iso-butane and alkylation of 1-naphthol with 4-tert-butylstyrene as probe reactions. Sulfate deposition is preferred for the transformation of a mesoporous precursor with amorphous pore walls into a material with crystalline pore walls maintaining the mesoporous characteristics. 17 figs.

  7. DEHYDROGENATION CATALYST FOR PRODUCTION OF MTBE

    EPA Science Inventory

    The objectives of this project were to better understand the effect of different catalyst preparation parameters, the effect of different catalyst treatment parameters, and the mechanism of deactivation. Accordingly, catalysts were made using various preparation methods and with...

  8. Radio HF precursors of Earthquakes

    NASA Astrophysics Data System (ADS)

    Ruzhin, Yu.; Nomicos, C.; Vallianatos, F.; Shpakovsky, V.

    The high frequency (HF) earthquake electromagnetic precursors (40-55MHz band) were recorded by the four electromagnetic stations a few days (hours) prior the event associated with earthquakes with magnitude more than 5.0 at Crete Island. These experiments were performed continuously during 1998-2002 and specific peculiarities are found. This is underhorizon epicenter position for main part of events under question. Another unusual result is that such HF preseismic radio noise-like signals are responsible for seaquakes too. We made conclusion about developing of some thunderstorm-like charged clouds activity in atmosphere before the seismic event. As result of our analysis and interpretation of the available data of continuous observations on a network of Crete island we should state here, that in an atmosphere above the sea on the eve of earthquake at heights of 0.1-10 km the spatially distributed spots of sporadic charged clouds are occurred and the conditions for the electrical discharges in an atmosphere are created which can serve a source of HF radio-emission registered by Crete network. The atmosphere theory relations are used to model a corresponding to an anomalous event emissions generation observed on the Crete. The supposed mechanism of preseismic electricity generation is the model of convection carrier started in an atmosphere. It is governed by the horizontal gradient of air temperature. The occurrence of electrical charges in a surface of the sea and transportation them further on heights up to 10 km in our model occurs due to sporadic energy injections that allocated within bottom of the sea as gases and heat. The dimensions of width and height govern the size of atmosphere convection cells in the earthquake preparation area. These dimensions of the sporadic spots are close to 3 km each as it is derived from shadow geometry and spectral fluctuations of HF signal. Based on experience of Crete HF precursors observation the method for satellite mapping

  9. Leading time domain seismic precursors

    NASA Astrophysics Data System (ADS)

    Boucouvalas, A. C.; Gkasios, M.; Keskebes, A.; Tselikas, N. T.

    2014-08-01

    The problem of predicting the occurrence of earthquakes is threefold. On one hand it is necessary to predict the date and magnitude of an earthquake, and on the other hand the location of the epicenter. In this work after a brief review of the state of earthquake prediction research, we report on a new leading time precursor for determining time onset of earthquake occurrence. We report the linking between earthquakes of the past with those which happen in the future via Fibonacci, Dual and Lucas numbers (FDL) numbers. We demonstrate it here with two example seed earthquakes at least 100 years old. Using this leading indicator method we can predict significant earthquake events >6.5R, with good accuracy approximately +- 1 day somewhere in the world. From a single seed we produce at least 100 trials simultaneously of which 50% are correct to +- 1day. The indicator is based on Fibonacci, Dual and Lucas numbers (FDL). This result hints that the log periodic FDL numbers are at the root of the understanding of the earthquake mechanism. The theory is based on the assumption that each occurred earthquake discontinuity can be thought of as a generating source of FDL time series. (The mechanism could well be linked to planetary orbits). When future dates are derived from clustering and convergence from previous strong earthquake dates at an FDL time distance, then we have a high probability for an earthquake to occur on that date. We set up a real time system which generates FDL time series from each previous significant earthquake (>7R) and we produce a year to year calendar of high probability earthquake dates. We have tested this over a number of years with considerable success. We have applied this technique for strong (>7R) earthquakes across the globe as well as on a restricted region such as the Greek geographic region where the magnitude is small (>4R-6.5R). In both cases the success of the method is impressive. It is our belief that supplementing this method with

  10. Mass transfer of single- and double-charged anions through an MA-41L anion-exchange membrane

    SciTech Connect

    Kulikova, O.M.; Sharkova, O.V.; Kulikov, S.M.

    1995-02-20

    Selective anion transfer through an MA-41L anion-exchange membrane in the Cl{sup -}-F{sup -}, Cl{sup -}-SO{sub 4}{sup 2-}, F{sup -}-SO{sub 4}{sup 2-}, and F{sup -}-CO{sub 3}{sup 2-} systems has been studied. The feasibility of partial anion separation in the chloride-sulfate system has been demonstrated. The separation of fluoride ions from accompanying anions was found to be practically impossible.

  11. Molecular water oxidation catalyst

    DOEpatents

    Gratzel, Michael; Munavalli, Shekhar; Pern, Fu-Jann; Frank, Arthur J.

    1993-01-01

    A dimeric composition of the formula: ##STR1## wherein L', L", L'", and L"" are each a bidentate ligand having at least one functional substituent, the ligand selected from bipyridine, phenanthroline, 2-phenylpyridine, bipyrimidine, and bipyrazyl and the functional substituent selected from carboxylic acid, ester, amide, halogenide, anhydride, acyl ketone, alkyl ketone, acid chloride, sulfonic acid, phosphonic acid, and nitro and nitroso groups. An electrochemical oxidation process for the production of the above functionally substituted bidentate ligand diaqua oxo-bridged ruthenium dimers and their use as water oxidation catalysts is described.

  12. Novel Reforming Catalysts

    SciTech Connect

    Pfefferle, Lisa D; Haller, Gary L

    2012-10-16

    Aqueous phase reforming is useful for processing oxygenated hydrocarbons to hydrogen and other more useful products. Current processing is hampered by the fact that oxide based catalysts are not stable under high temperature hydrothermal conditions. Silica in the form of structured MCM-41 is thermally a more stable support for Co and Ni than conventional high surface area amorphous silica but hydrothermal stability is not demonstrated. Carbon nanotube supports, in contrast, are highly stable under hydrothermal reaction conditions. In this project we show that carbon nanotubes are stable high activity/selectivity supports for the conversion of ethylene glycol to hydrogen.

  13. Intercalation of rhodium complex hydrogenation catalysts and organo-silanes in layered silicates

    SciTech Connect

    Raythatha, R.H.

    1981-01-01

    (Rh(NBO)(Diphos))/sup +/ where NBD = norbornadiene and Diphos = 1,2-bis(diphenylphosphino)ethane intercalated in hectorite, a swelling layered silicate, catalyze the overall 1,2 and 1,4 addition of hydrogen to 1,3-butadiene, 2-methyl-1,3-butadiene and 2,3-dimehtyl-1,3-butadiene at rates which range from < 10/sup -5/ to 0.83 relative to the homogeneous catalyst. The yields of the 1,2 addition products are 1.5 to 2.3 times higher than those obtained under homogeneous conditions. The catalysis of the reduction of 1-hexene in methanol with the intercalated catalysts occurs without isomerization up to 69% conversion of substrate, whereas extensive isomerization of internal olefin was observed with analogous catalyst system in homogeneous solution. The difference in specificity between the intercalated and homogeneous catalyst is accounted for by the effect of catalyst intercalation on the equilibrium between RhH/sub 2//sup 2 +/ and RhH/sup 2 +/ complexes and a hydrogen ion. The behavior of the catalyst was explained on the basis of surface Broensted acidity of the RhH/sub 2//sup 2 +/ complex. The initial rate of reduction of relatively small alkynes (1-hexyne, 2-hexyne), with a catalyst precursor of the type Rh(PPh/sub 3/)/sub x//sup +/ where PPh = triphenylphosphine and x = 1,2, in the interlayers swelled with methanol are comparable to those observed with heterogeneous catalyst. With large alkynes, the spatial requirements, of the substrates in the swelled interlayers are important in determining their reactivity with the intercalated catalyst. A binding model is proposed for the intercalated substrate-catalyst complex.

  14. Synthesis of active carbon-based catalysts by chemical vapor infiltration for nitrogen oxide conversion.

    PubMed

    Busch, Martin; Bergmann, Ulf; Sager, Uta; Schmidt, Wolfgang; Schmidt, Frank; Notthoff, Christian; Atakan, Burak; Winterer, Markus

    2011-09-01

    Direct reduction of nitrogen oxides is still a challenge. Strong efforts have been made in developing noble and transition metal catalysts on microporous support materials such as active carbons or zeolites. However, the required activation energy and low conversion rates still limit its breakthrough. Furthermore, infiltration of such microporous matrix materials is commonly performed by wet chemistry routes. Deep infiltration and homogeneous precursor distribution are often challenging due to precursor viscosity or electrostatic shielding and may be inhibited by pore clogging. Gas phase infiltration, as an alternative, can resolve viscosity issues and may contribute to homogeneous infiltration of precursors. In the present work new catalysts based on active carbon substrates were synthesized via chemical vapor infiltration. Iron oxide nano clusters were deposited in the microporous matrix material. Detailed investigation of produced catalysts included nitrogen oxide adsorption, X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Catalytic activity was studied in a recycle flow reactor by time-resolved mass spectrometry at a temperature of 423 K. The infiltrated active carbons showed very homogeneous deposition of iron oxide nano clusters in the range of below 12 to 19 nm, depending on the amount of infiltrated precursor. The specific surface area was not excessively reduced, nor was the pore size distribution changed compared to the original substrate. Catalytic nitrogen oxides conversion was detected at temperatures as low as 423 K.

  15. Homogeneous and Supported Niobium Catalysts as Lewis Acid and Radical Catalysts

    SciTech Connect

    Wayne Tikkanen

    2006-12-31

    The synthesis of tetrachlorotetraphenylcyclopentadienyl group 5 metal complexes has been accomplished through two routes, one a salt metathesis with lithiumtetraphenylcyclopentadiende and the other, reaction with trimethyltintetraphenylcyclopentadiene. The reactants and products have been characterized by {sup 1}H and {sup 13}C({sup 1}H) NMR spectroscopy. The niobium complex promotes the silylcyanation of butyraldehyde. The grafting of metal complexes to silica gel surfaces has been accomplished using tetrakisdimethylamidozirconium as the metal precursor. The most homogeneous binding as determined by CP-MAS {sup 13}C NMR and infrared spectroscopy was obtained with drying at 500 C at 3 mtorr vacuum. The remaining amido groups can be replaced by reaction with alcohols to generate surface bound metal alkoxides. These bound catalysts promote silylcyanation of aryl aldehydes and can be reused three times with no loss of activity.

  16. Preparation and application of zirconium sulfate supported on SAPO-34 molecular sieve as solid acid catalyst for esterification

    SciTech Connect

    Xu, Dongyan Ma, Hong; Cheng, Fei

    2014-05-01

    Graphical abstract: - Highlights: • SAPO-34 supported zirconium sulfate solid acid catalyst was prepared. • Esterification of acetic acid with ethanol can be catalyzed by ZS/SAPO-34. • The hydration of ZS is vital to the acidic property and catalytic performance. • The ZS/SAPO-34 catalyst treated at 200 °C shows good reusability. - Abstract: Zirconium sulfate (ZS) was supported on SAPO-34 molecular sieve by using an incipient wetness impregnation method with zirconium sulfate as the precursor. The as-prepared catalysts were used as solid acid catalyst for esterification reaction of acetic acid with ethanol. The influence of calcination temperature on the acidic property, catalytic activity, and reusability of ZS/SAPO-34 catalysts were mainly investigated. FT-IR, SEM, EDS and TG analysis have been carried out to demonstrate the characteristics of ZS/SAPO-34 catalysts. It was found that the 30 wt%ZS/SAPO-34 catalysts display the property of superacid irrespective of calcination temperature. The ZS/SAPO-34 catalyst treated at 200 °C can enhance the interaction between the supported ZS and SAPO-34 and keep the catalyst remaining substantially active after several reaction cycles. However, further increasing calcination temperature will cause the transfer of ZS from hydrate to anhydrous phase, and thus the decrease of activity.

  17. Enhanced Activity of Supported Ni Catalysts Promoted by Pt for Rapid Reduction of Aromatic Nitro Compounds

    PubMed Central

    Shang, Huishan; Pan, Kecheng; Zhang, Lu; Zhang, Bing; Xiang, Xu

    2016-01-01

    To improve the activities of non-noble metal catalysts is highly desirable and valuable to the reduced use of noble metal resources. In this work, the supported nickel (Ni) and nickel-platinum (NiPt) nanocatalysts were derived from a layered double hydroxide/carbon composite precursor. The catalysts were characterized and the role of Pt was analysed using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDS) mapping, and X-ray photoelectron spectroscopy (XPS) techniques. The Ni2+ was reduced to metallic Ni0 via a self-reduction way utilizing the carbon as a reducing agent. The average sizes of the Ni particles in the NiPt catalysts were smaller than that in the supported Ni catalyst. The electronic structure of Ni was affected by the incorporation of Pt. The optimal NiPt catalysts exhibited remarkably improved activity toward the reduction of nitrophenol, which has an apparent rate constant (Ka) of 18.82 × 10−3 s−1, 6.2 times larger than that of Ni catalyst and also larger than most of the reported values of noble-metal and bimetallic catalysts. The enhanced activity could be ascribed to the modification to the electronic structure of Ni by Pt and the effect of exposed crystal planes. PMID:28335231

  18. Enhanced Activity of Supported Ni Catalysts Promoted by Pt for Rapid Reduction of Aromatic Nitro Compounds.

    PubMed

    Shang, Huishan; Pan, Kecheng; Zhang, Lu; Zhang, Bing; Xiang, Xu

    2016-06-04

    To improve the activities of non-noble metal catalysts is highly desirable and valuable to the reduced use of noble metal resources. In this work, the supported nickel (Ni) and nickel-platinum (NiPt) nanocatalysts were derived from a layered double hydroxide/carbon composite precursor. The catalysts were characterized and the role of Pt was analysed using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDS) mapping, and X-ray photoelectron spectroscopy (XPS) techniques. The Ni(2+) was reduced to metallic Ni⁰ via a self-reduction way utilizing the carbon as a reducing agent. The average sizes of the Ni particles in the NiPt catalysts were smaller than that in the supported Ni catalyst. The electronic structure of Ni was affected by the incorporation of Pt. The optimal NiPt catalysts exhibited remarkably improved activity toward the reduction of nitrophenol, which has an apparent rate constant (Ka) of 18.82 × 10(-3) s(-1), 6.2 times larger than that of Ni catalyst and also larger than most of the reported values of noble-metal and bimetallic catalysts. The enhanced activity could be ascribed to the modification to the electronic structure of Ni by Pt and the effect of exposed crystal planes.

  19. MAGNETO-CHEMICAL CHARACTER STUDIES OF NOVEL Fe CATALYSTS FOR COAL LIQUEFACTION

    SciTech Connect

    Murty A. Akundi; Jian H. Zhang; A.N. Murty; S.V. Naidu

    2002-04-01

    The objectives of the present study are: (1) To synthesize iron catalysts: Fe/MoO{sub 3}, and Fe/Co/MoO{sub 3} employing two distinct techniques: Pyrolysis with organic precursors and Co-precipitation of metal nitrates; (2) To investigate the magnetic character of the catalysts before and after exposure to CO and CO+H{sub 2} by (a) Mossbauer study of Iron (b) Zerofield Nuclear Magnetic Resonance study of Cobalt, and (c) Magnetic character of the catalyst composite; (3) To study the IR active surface species of the catalyst while stimulating (CO--Metal, (CO+H{sub 2})--Metal) interactions, by FTIR Spectroscopy; and (4) To analyze the catalytic character (conversion efficiency and product distribution) in both direct and indirect liquefaction Process and (5) To examine the correlations between the magnetic and chemical characteristics. This report presents the results of our investigation on (a) the effect of metal loading (b) the effect of intermetallic ratio and (c) the effect of catalyst preparation procedure on (i) the magnetic character of the catalyst composite (ii) the IR active surface species of the catalyst and (iii) the catalytic yields for three different metal loadings: 5%, 15%, and 25% (nominal) for three distinct intermetallic ratios (Fe/Co = 0.3, 1.5, 3.0).

  20. Anion Solvation in Carbonate-Based Electrolytes

    SciTech Connect

    von Wald Cresce, Arthur; Gobet, Mallory; Borodin, Oleg; Peng, Jing; Russell, Selena M.; Wikner, Emily; Fu, Adele; Hu, Libo; Lee, Hung-Sui; Zhang, Zhengcheng; Yang, Xiao-Qing; Greenbaum, Steven; Amine, Khalil; Xu, Kang

    2015-11-16

    The correlation between Li+ solvation and interphasial chemistry on anodes firmly established in Li-ion batteries, the effect of cation–solvent interaction has gone beyond bulk thermodynamic and transport properties and become an essential element that determines the reversibility of electrochemistry and kinetics of Li-ion intercalation chemistries. Now, most studies are dedicated to the solvation of Li+, and the solvation of anions in carbonate-based electrolytes and its possible effect on the electrochemical stability of such electrolytes remains little understood. Moreover, as a mirror effort to prior Li+ solvation studies, this work focuses on the interactions between carbonate-based solvents and two anions (hexafluorophosphate, PF6–, and tetrafluoroborate, BF4–) that are most frequently used in Li-ion batteries. The possible correlation between such interaction and the interphasial chemistry on cathode surface is also explored.

  1. Electron anions and the glass transition temperature

    SciTech Connect

    Johnson, Lewis E.; Sushko, Peter V.; Tomota, Yudai; Hosono, Hideo

    2016-08-24

    Properties of glasses are typically controlled by judicious selection of the glass-forming and glass-modifying constituents. Through an experimental and computational study of the crystalline, molten, and amorphous [Ca12Al14O32]2+ ∙ (e)2, we demonstrate that electron anions in this system behave as glass-modifiers that strongly affect solidification dynamics, the glass transition temperature, and spectroscopic properties of the resultant amorphous material. Concentration of such electron anions is a consequential control parameter: it invokes materials evolution pathways and properties not available in conventional glasses, which opens a new avenue in rational materials design.

  2. Specific anion effects in Artemia salina.

    PubMed

    Lo Nostro, Pierandrea; Ninham, Barry W; Carretti, Emiliano; Dei, Luigi; Baglioni, Piero

    2015-09-01

    The specific anion effect on the vitality of Artemia salina was investigated by measuring the Lethal Time LT50 of the crustaceans in the presence of different sodium salts solutions at room temperature and at the same ionic strength as natural seawater. Fluoride, thiocyanate and perchlorate are the most toxic agents, while chloride, bromide and sulfate are well tolerated. The rates of oxygen consumption of brine shrimps were recorded in mixed NaCl+NaF or NaCl+NaSCN solutions as a function of time. The results are discussed in terms of the Hofmeister series, and suggest that, besides the biochemical processes that involve F(-), SCN(-) and ClO4(-), the different physico-chemical properties of the strong kosmotropic and chaotropic anions may contribute in determining their strong toxicity for A. salina.

  3. Nanoheterostructure cation exchange: anionic framework conservation.

    PubMed

    Jain, Prashant K; Amirav, Lilac; Aloni, Shaul; Alivisatos, A Paul

    2010-07-28

    In ionic nanocrystals the cationic sublattice can be replaced with a different metal ion via a fast, simple, and reversible place exchange, allowing postsynthetic modification of the composition of the nanocrystal, while preserving its size and shape. Here, we demonstrate that, during such an exchange, the anionic framework of the crystal is preserved. When applied to nanoheterostructures, this phenomenon ensures that compositional interfaces within the heterostructure are conserved throughout the transformation. For instance, a morphology composed of a CdSe nanocrystal embedded in a CdS rod (CdSe/CdS) was exchanged to a PbSe/PbS nanorod via a Cu(2)Se/Cu(2)S structure. During every exchange cycle, the seed size and position within the nanorod were preserved, as evident by excitonic features, Z-contrast imaging, and elemental line scans. Anionic framework conservation extends the domain of cation exchange to the design of more complex and unique nanostructures.

  4. An intracellular anion channel critical for pigmentation.

    PubMed

    Bellono, Nicholas W; Escobar, Iliana E; Lefkovith, Ariel J; Marks, Michael S; Oancea, Elena

    2014-12-16

    Intracellular ion channels are essential regulators of organellar and cellular function, yet the molecular identity and physiological role of many of these channels remains elusive. In particular, no ion channel has been characterized in melanosomes, organelles that produce and store the major mammalian pigment melanin. Defects in melanosome function cause albinism, characterized by vision and pigmentation deficits, impaired retinal development, and increased susceptibility to skin and eye cancers. The most common form of albinism is caused by mutations in oculocutaneous albinism II (OCA2), a melanosome-specific transmembrane protein with unknown function. Here we used direct patch-clamp of skin and eye melanosomes to identify a novel chloride-selective anion conductance mediated by OCA2 and required for melanin production. Expression of OCA2 increases organelle pH, suggesting that the chloride channel might regulate melanin synthesis by modulating melanosome pH. Thus, a melanosomal anion channel that requires OCA2 is essential for skin and eye pigmentation.

  5. Anion Solvation in Carbonate-Based Electrolytes

    DOE PAGES

    von Wald Cresce, Arthur; Gobet, Mallory; Borodin, Oleg; ...

    2015-11-16

    The correlation between Li+ solvation and interphasial chemistry on anodes firmly established in Li-ion batteries, the effect of cation–solvent interaction has gone beyond bulk thermodynamic and transport properties and become an essential element that determines the reversibility of electrochemistry and kinetics of Li-ion intercalation chemistries. Now, most studies are dedicated to the solvation of Li+, and the solvation of anions in carbonate-based electrolytes and its possible effect on the electrochemical stability of such electrolytes remains little understood. Moreover, as a mirror effort to prior Li+ solvation studies, this work focuses on the interactions between carbonate-based solvents and two anions (hexafluorophosphate,more » PF6–, and tetrafluoroborate, BF4–) that are most frequently used in Li-ion batteries. The possible correlation between such interaction and the interphasial chemistry on cathode surface is also explored.« less

  6. Alkene metathesis: the search for better catalysts.

    PubMed

    Deshmukh, Prashant H; Blechert, Siegfried

    2007-06-28

    Alkene metathesis catalyst development has made significant progress over recent years. Research in metathesis catalyst design has endeavoured to tackle three key issues: those of (i) catalyst efficiency and activity, (ii) substrate scope and selectivity--particularly stereoselective metathesis reactions--and (iii) the minimization of metal impurities and catalyst recycling. This article describes a brief history of metathesis catalyst development, followed by a survey of more recent research, with a particular emphasis on ruthenium catalysts.

  7. Process for the production of ethylidene diacetate from dimethyl ether using a heterogeneous catalyst

    DOEpatents

    Ramprasad, Dorai; Waller, Francis Joseph

    1998-01-01

    This invention relates to a process for producing ethylidene diacetate by the reaction of dimethyl ether, acetic acid, hydrogen and carbon monoxide at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that is stable to hydrogenation and comprises an insoluble polymer having pendant quaternized heteroatoms, some of which heteroatoms are ionically bonded to anionic Group VIII metal complexes, the remainder of the heteroatoms being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled for 3 consecutive runs without loss in activity.

  8. Process for the production of ethylidene diacetate from dimethyl ether using a heterogeneous catalyst

    DOEpatents

    Ramprasad, D.; Waller, F.J.

    1998-04-28

    This invention relates to a process for producing ethylidene diacetate by the reaction of dimethyl ether, acetic acid, hydrogen and carbon monoxide at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that is stable to hydrogenation and comprises an insoluble polymer having pendant quaternized heteroatoms, some of which heteroatoms are ionically bonded to anionic Group VIII metal complexes, the remainder of the heteroatoms being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled for 3 consecutive runs without loss in activity.

  9. Lowest autodetachment state of the water anion

    NASA Astrophysics Data System (ADS)

    Houfek, Karel; Čížek, Martin

    2016-05-01

    The potential energy surface of the ground state of the water anion H2O- is carefully mapped using multireference CI calculations for a large range of molecular geometries. Particular attention is paid to a consistent description of both the O-+H2 and OH-+H asymptotes and to a relative position of the anion energy to the ground state energy of the neutral molecule. The autodetachment region, where the anion state crosses to the electronic continuum is identified. The local minimum in the direction of the O- + H2 channel previously reported by Werner et al. [J. Chem. Phys. 87, 2913 (1987)] is found to be slighly off the linear geometry and is separated by a saddle from the autodetachment region. The autodetachment region is directly accessible from the OH-+H asymptote. For the molecular geometries in the autodetachment region and in its vicinity we also performed fixed-nuclei electron-molecule scattering calculations using the R-matrix method. Tuning of consistency of a description of the correlation energy in both the multireference CI and R-matrix calculations is discussed. Two models of the correlation energy within the R-matrix method that are consistent with the quantum chemistry calculations are found. Both models yield scattering quantities in a close agreement. The results of this work will allow a consistent formulation of the nonlocal resonance model of the water anion in a future publication. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  10. Aza crown ether compounds as anion receptors

    DOEpatents

    Lee, H.S.; Yang, X.O.; McBreen, J.

    1998-08-04

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the new family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of LI{sup +} ion in alkali metal batteries. 3 figs.

  11. Aza crown ether compounds as anion receptors

    DOEpatents

    Lee, Hung Sui; Yang, Xiao-Oing; McBreen, James

    1998-08-04

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the new family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of LI.sup.+ ion in alkali metal batteries.

  12. Effect of anions and humic acid on the performance of nanoscale zero-valent iron particles coated with polyacrylic acid.

    PubMed

    Kim, Hong-Seok; Ahn, Jun-Young; Kim, Cheolyong; Lee, Seockheon; Hwang, Inseong

    2014-10-01

    Effects of anions (NO3(-), HCO3(-), Cl(-), SO4(2-)) and humic acid on the reactivity and core/shell chemistries of polyacrylic acid-coated nanoscale zero-valent iron (PAA-NZVI) and inorganically modified NZVI (INORG-NZVI) particles were investigated. The reactivity tests under various ion concentrations (0.2-30mN) revealed the existence of a favorable molar ratio of anion/NZVI that increased the reactivity of NZVI particles. The presence of a relatively small amount of humic acid (0.5mgL(-1)) substantially decreased the INORG-NZVI reactivity by 76%, whereas the reactivity of PAA-NZVI decreased only by 12%. The XRD and TEM results supported the role of the PAA coating of PAA-NZVI in impeding the oxidation of the Fe(0) core by groundwater solutes. This protective role provided by the organic coating also resulted in a 2.3-fold increase in the trichloroethylene (TCE) reduction capacity of PAA-NZVI compared to that of INORG-NZVI in the presence of anions/humic acid. Ethylene and ethane were simultaneously produced as the major reduction products of TCE in both NZVI systems, suggesting that a hydrodechlorination occurred without the aid of metallic catalysts. The PAA coating, originally designed to improve the mobility of NZVI, enhanced TCE degradation performances of NZVI in the presence of anions and humic acid.

  13. The Interrelationships of Mathematical Precursors in Kindergarten

    ERIC Educational Resources Information Center

    Cirino, Paul T.

    2011-01-01

    This study evaluated the interrelations among cognitive precursors across quantitative, linguistic, and spatial attention domains that have been implicated for math achievement in young children. The dimensionality of the quantity precursors was evaluated in 286 kindergarteners via latent variable techniques, and the contribution of precursors…

  14. Donnan membrane technique (DMT) for anion measurement.

    PubMed

    Vega, Flora Alonso; Weng, Liping; Temminghoff, Erwin J M; Van Riemsdijk, Willem H

    2010-04-01

    Donnan membrane technique (DMT) is developed and tested for determination of free anion concentrations. Time needed to reach the Donnan membrane equilibrium depends on type of ions and the background. The Donnan membrane equilibrium is reached in 1 day for Cl(-), 1-2 days for NO(3)(-), 1-4 days for SO(4)(2-) and SeO(4)(2-), and 1-14 days for H(2)PO(4)(-) in a background of 2-200 mM KCl or K(2)SO(4). The strongest effect of ionic strength on equilibrium time is found for H(2)PO(4)(-), followed by SO(4)(2-) and SeO(4)(2-), and then by Cl(-) and NO(3)(-). The negatively charged organic particles of fulvic and humic acids do not pass the membrane. Two approaches for the measurement of different anion species of the same element, such as SeO(4)(2-) and HSeO(3)(-), using DMT are proposed and tested. These two approaches are based on transport kinetics or response to ionic strength difference. A transport model that was developed previously for cation DMT is applied in this work to analyze the rate-limiting step in the anion DMT. In the absence of mobile/labile complexes, transport tends to be controlled by diffusion in solution at a low ionic strength, whereas at a higher ionic strength, diffusion in the membrane starts to control the transport.

  15. Ferrocenylbenzobisimidazoles for recognition of anions and cations.

    PubMed

    Alfonso, María; Tárraga, Alberto; Molina, Pedro

    2013-07-01

    The preparation of 2,7-disubstituted benzobisimidazoles decorated with substituents displaying different electrooptical properties is described. The presence of redox, chromogenic, and fluorescent groups at the heteroaromatic core, which acts as ditopic binding site, made these receptors potential candidates as multichannel probes for ions. The triad 4 behaves as a selective redox and fluorescent chemosensor for HSO4(-) and Hg(2+) ions, whereas receptor 5 acts as a redox and chromogenic chemosensor molecule for AcO(-) and SO4(2-) anions. The change in the absorption spectra is accompanied by a color change from yellow to orange, while sensing of Zn(2+), Hg(2+), and Pb(2+) cations is carried out only by electrochemical techniques. Receptor 6 exhibits a remarkable cathodic shift of the oxidation wave only in the presence of AcO(-), H2PO4(-), and HP2O7(3-) anions, whereas addition of Pb(2+) induces an anodic shift. A new low energy band in the absorption spectra, which is responsible for the color change from colorless to pale yellow, and an important increase of the monomer emission band is observed only in the presence of H2PO4(-), and HP2O7(3-) anions. The most salient feature of the receptor 6 is its ability to act as a multichannel (redox, chromogenic, and fluorescent) chemodosimeter for Cu(2+), and Hg(2+) metal cations.

  16. Several hemicyanine dyes as fluorescence chemosensors for cyanide anions

    NASA Astrophysics Data System (ADS)

    Liang, Muhan; Wang, Kangnan; Guan, Ruifang; Liu, Zhiqiang; Cao, Duxia; Wu, Qianqian; Shan, Yanyan; Xu, Yongxiao

    2016-05-01

    Four hemicyanine dyes as chemosensors for cyanide anions were synthesized easily. Their photophysical properties and recognition properties for cyanide anions were investigated. The results indicate that all the dyes can recognize cyanide anions with obvious color, absorption and fluorescence change. The recognition mechanism analysis basing on in situ 1H NMR and Job plot data indicates that to the compounds with hydroxyl group, the recognition mechanism is intramolecular hydrogen bonding interaction. However, to the compounds without hydroxyl group, cyanide anion is bonded to carbon-carbon double bond in conjugated bridge and induces N+ CH3 to neutral NCH3. Fluorescence of the compounds is almost quenched upon the addition of cyanide anions.

  17. Catalyst separation method reduces Platformer turnaround costs

    SciTech Connect

    Blashka, S.R.; Welch, J.G.; Nite, K.; Furfaro, A.P.

    1995-09-18

    A catalyst separation technology that segregates catalyst particles by density has proved successful in recovering CCR (continuous catalyst regeneration) Platforming catalyst that had been contaminated with heel catalyst, non-flowing catalyst. UOP`s CCR Platforming process converts naphtha to high-octane gasoline components and aromatics for petrochemical use. The reforming reactions take place in a series of Platforming reactors loaded with platinum-containing reforming catalyst. CCR Platforming technology incorporates a moving catalyst bed in a system that permits addition and withdrawal of catalyst from the reactor while the unit is operating. As the catalyst circulates through the reactors, it builds up typical carbon levels of 5%. Over time, the heel catalyst will build up carbon levels as high as 50%. When the catalyst is unloaded, heel catalyst is released, contaminating the last fraction of catalyst removed from the reactor. The heel-contaminated catalyst should not be reused because only a small fraction of the carbon on the heel catalyst is removed in the regeneration section. If returned to inventory, the carbon would react rapidly, causing temperature excursions. If heel-contaminated catalyst is reused, there is a high potential for damage to the unit. Density grading was used, after ex situ regeneration to recover the uncontaminated catalyst for reuse.

  18. Startup procedure for reforming catalysts

    SciTech Connect

    McHale, W.D.; Schoennagel, H.J.

    1984-08-14

    Process for reforming a hydrocarbon charge under reforming conditions in a reforming zone containing a sulfur-sensitive metal containing reforming catalyst wherein over-cracking of the charge stock and excessive temperature rise in the reforming zone is suppressed by pre-conditioning the catalyst, prior to contact with the charge, with a reformate of specified octane number and aromatics content.

  19. Catalysts for low temperature oxidation

    DOEpatents

    Toops, Todd J.; Parks, III, James E.; Bauer, John C.

    2016-03-01

    The invention provides a composite catalyst containing a first component and a second component. The first component contains nanosized gold particles. The second component contains nanosized platinum group metals. The composite catalyst is useful for catalyzing the oxidation of carbon monoxide, hydrocarbons, oxides of nitrogen, and other pollutants at low temperatures.

  20. Transition metal sulfide loaded catalyst

    DOEpatents

    Maroni, V.A.; Iton, L.E.; Pasterczyk, J.W.; Winterer, M.; Krause, T.R.

    1994-04-26

    A zeolite-based catalyst is described for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C[sub 2]+ hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.