Science.gov

Sample records for catalyst support obtained

  1. Nanostructured catalyst supports

    SciTech Connect

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2015-09-29

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  2. Nanostructured catalyst supports

    DOEpatents

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2012-10-02

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  3. Supported molten-metal catalysts

    DOEpatents

    Datta, Ravindra; Singh, Ajeet; Halasz, Istvan; Serban, Manuela

    2001-01-01

    An entirely new class of catalysts called supported molten-metal catalysts, SMMC, which can replace some of the existing precious metal catalysts used in the production of fuels, commodity chemicals, and fine chemicals, as well as in combating pollution. SMMC are based on supporting ultra-thin films or micro-droplets of the relatively low-melting (<600.degree. C.), inexpensive, and abundant metals and semimetals from groups 1, 12, 13, 14, 15 and 16, of the periodic table, or their alloys and intermetallic compounds, on porous refractory supports, much like supported microcrystallites of the traditional solid metal catalysts. It thus provides orders of magnitude higher surface area than is obtainable in conventional reactors containing molten metals in pool form and also avoids corrosion. These have so far been the chief stumbling blocks in the application of molten metal catalysts.

  4. Crystalline titanate catalyst supports

    DOEpatents

    Anthony, Rayford G.; Dosch, Robert G.

    1993-01-01

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  5. Crystalline titanate catalyst supports

    DOEpatents

    Anthony, R.G.; Dosch, R.G.

    1993-01-05

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  6. Process of making supported catalyst

    DOEpatents

    Schwarz, James A.; Subramanian, Somasundaram

    1992-01-01

    Oxide supported metal catalysts have an additional metal present in intimate association with the metal catalyst to enhance catalytic activity. In a preferred mode, iridium or another Group VIII metal catalyst is supported on a titania, alumina, tungsten oxide, silica, or composite oxide support. Aluminum ions are readsorbed onto the support and catalyst, and reduced during calcination. The aluminum can be added as aluminum nitrate to the iridium impregnate solution, e.g. chloroiridic acid.

  7. Supported organoiridium catalysts for alkane dehydrogenation

    SciTech Connect

    Baker, R. Thomas; Sattelberger, Alfred P.; Li, Hongbo

    2013-09-03

    Solid supported organoiridium catalysts, a process for preparing such solid supported organoiridium catalysts, and the use of such solid supported organoiridium catalysts in dehydrogenation reactions of alkanes is provided. The catalysts can be easily recovered and recycled.

  8. Bismuth - modified supported catalysts

    SciTech Connect

    Nadirov, N.K.; Lykova, L.F.; Petrosyan, L.S.

    1985-09-01

    Bismuth was used as an additive to three-component catalysts prepared through modification of an aluminoplatinorhenium catalyst by III and IV nontransition and iron subgroup elements. Since there is conflicting information on bismuth additions, the role of bismuth in polycomponent catalysts and whether it promotes aromatization catalysts was considered. The effect of temperature on the yield of n-hexane conversion products in the presence of Pt-Re-Co-Bi/gamma-A1/sub 2/O/sub 3/ is shown. Conclusive results establish that the addition of 0.5% nickel to a 0.3 Pt-0.3 Re/gamma-A1/sub 2/O/sub 3/ catalyst (in wt.%) increased the yield of benzene from n-hexane by 5.7%. It was also shown that 0.1 to 0.25 wt.% bismuth poisons two- and three-component samples containing 0.25 to 0.3 wt.% platinum.

  9. Supported metal alloy catalysts

    DOEpatents

    Barrera, Joseph; Smith, David C.

    2000-01-01

    A process of preparing a Group IV, V, or VI metal carbonitride including reacting a Group IV, V, or VI metal amide complex with ammonia to obtain an intermediate product; and, heating the intermediate product to temperatures and for times sufficient to form a Group IV, V, or VI metal carbonitride is provided together with the product of the process and a process of reforming an n-alkane by use of the product.

  10. Zircon Supported Copper Catalysts for the Steam Reforming of Methanol

    NASA Astrophysics Data System (ADS)

    Widiastri, M.; Fendy, Marsih, I. N.

    2008-03-01

    Steam reforming of methanol (SRM) is known as one of the most favorable catalytic processes for producing hydrogen. Current research on zirconia, ZrO2 supported copper catalyst revealed that CuO/ZrO2 as an active catalyst for the SRM. Zircon, ZrSiO4 is available from the by-product of tin mining. In the work presented here, the catalytic properties of CuO/ZrSiO4 with various copper oxide compositions ranging from 2.70% (catalyst I), 4.12% (catalyst II), and 7.12%-mass (catalyst III), synthesized by an incipient wetness impregnation technique, were investigated to methanol conversion, selectivity towards CO formation, and effect of ZnO addition (7.83%CuO/8.01%ZnO/ZrSiO4 = catalyst V). The catalytic activity was obtained using a fixed bed reactor and the zircon supported catalyst activity was compared to those of CuO/ZnO/Al2O3 catalyst (catalyst IV) and commercial Kujang LTSC catalyst. An X-ray powder diffraction (XRD) analysis was done to identify the abundant phases of the catalysts. The catalysts topography and particle diameter were measured with scanning electron microscopy (SEM) and composition of the catalysts was measured by SEM-EDX, scanning electron microscope-energy dispersive using X-ray analysis. The results of this research provide information on the possibility of using zircon (ZrSiO4) as solid support for SRM catalysts.

  11. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOEpatents

    Angelici, Robert J.; Gao, Hanrong

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilation, olefin oxidation, isomerization, hydrocyanation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical.

  12. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOEpatents

    Angelici, R.J.; Gao, H.

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilication, olefin oxidation, isomerization, hydrocyanidation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical. 2 figs.

  13. Pore structure characterization of catalyst supports via low field NMR

    SciTech Connect

    Smith, D.M.; Glaves, C.L.; Gallegos, D.P.; Brinker, C.J.

    1988-01-01

    In this paper, the application of low-field NMR to both surface area and pore structure analysis of catalyst supports will be presented. Low-field (20 MHz) spin-lattice relaxation (T/sub 1/) experiments are performed on fluids contained in alumina and silica catalyst supports. Pore size distributions (PSD) calculated from these NMR experiments are compared to those obtained from mercury porosimetry and nitrogen condensation. 18 refs., 4 figs., 2 tabs.

  14. Graphene supported heterogeneous catalysts for Li-O2 batteries

    NASA Astrophysics Data System (ADS)

    Alaf, M.; Tocoglu, U.; Kartal, M.; Akbulut, H.

    2016-09-01

    In this study production and characterization of free-standing and flexible (i) graphene, (ii) α-MnO2/graphene, (iii) Pt/graphene (iv) α-MnO2/Pt/graphene composite cathodes for Li-air batteries were reported. Graphene supported heterogeneous catalysts were produced by a facile method. In order to prevent aggregation of graphene sheets and increase not only interlayer distance but also surface area, a trace amount multi-wall carbon nano tube (MWCNT) was introduced to the composite structure. The obtained composite catalysts were characterized by SEM, X-ray diffraction, N2 adsorption-desorption analyze and Raman spectroscopy. The electrochemical characterization tests including galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) measurement of catalyst were carried out by using an ECC-Air test cell. These highly active graphene supported heterogeneous composite catalysts provide competitive properties relative to other catalyst materials for Li-air batteries.

  15. Characteristics of polyaniline cobalt supported catalysts for epoxidation reactions.

    PubMed

    Kowalski, Grzegorz; Pielichowski, Jan; Grzesik, Mirosław

    2014-01-01

    A study of polyaniline (PANI) doping with various cobalt compounds, that is, cobalt(II) chloride, cobalt(II) acetate, and cobalt(II) salen, is presented. The catalysts were prepared by depositing cobalt compounds onto the polymer surface. PANI powders containing cobalt ions were obtained by one- or two-step method suspending PANI in the following acetonitrile/acetic acid solution or acetonitrile and then acetic acid solution. Moreover different ratios of Co(II) : PANI were studied. Catalysts obtained with both methods and at all ratios were investigated using various techniques including AAS and XPS spectroscopy. The optimum conditions for preparation of PANI/Co catalysts were established. Catalytic activity of polyaniline cobalt(II) supported catalysts was tested in dec-1-ene epoxidation with molecular oxygen at room temperature. The relationship between the amount of cobalt species, measured with both AAS and XPS techniques, and the activity of PANI-Co catalysts has been established.

  16. Hydrodesulfurization and hydrodenitrogenation catalysts obtained from coal mineral matter

    DOEpatents

    Liu, Kindtoken H. D.; Hamrin, Jr., Charles E.

    1982-01-01

    A hydrotreating catalyst is prepared from coal mineral matter obtained by low temperature ashing coals of relatively low bassanite content by the steps of: (a) depositing on the low temperature ash 0.25-3 grams of an iron or nickel salt in water per gram of ash and drying a resulting slurry; (b) crushing and sizing a resulting solid; and (c) heating the thus-sized solid powder in hydrogen.

  17. Thermodynamic Properties of Supported Catalysts

    SciTech Connect

    Gorte, Raymond J.

    2014-03-26

    The goals of this work were to develop Coulometric Titration as a method for characterizing the thermodynamic redox properties of oxides and to apply this technique to the characterization of ceria- and vanadia-based catalysts. The redox properties of ceria and vanadia are a major part of what makes these materials catalytically active but their properties are also dependent on their structure and the presence of other oxides. Quantifying these properties through the measurement of oxidation energetics was the goal of this work.

  18. Catalysis science of supported vanadium oxide catalysts.

    PubMed

    Wachs, Israel E

    2013-09-01

    Supported vanadium oxide catalysts contain a vanadium oxide phase deposited on a high surface area oxide support (e.g., Al2O3, SiO2, TiO2, etc.) and have found extensive applications as oxidation catalysts in the chemical, petroleum and environmental industries. This review of supported vanadium oxide catalysts focuses on the fundamental aspects of this novel class of catalytic materials (molecular structures, electronic structures, surface chemistry and structure-reactivity relationships). The molecular and electronic structures of the supported vanadium oxide phases were determined by the application of modern in situ characterization techniques (Raman, IR, UV-vis, XANES, EXAFS, solid state (51)V NMR and isotopic oxygen exchange). The characterization studies revealed that the supported vanadium oxide phase consists of two-dimensional surface vanadia sites dispersed on the oxide supports. Corresponding surface chemistry and reactivity studies demonstrated that the surface vanadia sites are the catalytic active sites for oxidation reactions by supported vanadia catalysts. Combination of characterization and reactivity studies demonstrate that the oxide support controls the redox properties of the surface vanadia sites that can be varied by as much as a factor of ~10(3).

  19. Catalyst supports for polymer electrolyte fuel cells.

    PubMed

    Subban, Chinmayee; Zhou, Qin; Leonard, Brian; Ranjan, Chinmoy; Edvenson, Heather M; Disalvo, F J; Munie, Semeret; Hunting, Janet

    2010-07-28

    A major challenge in obtaining long-term durability in fuel cells is to discover catalyst supports that do not corrode, or corrode much more slowly than the current carbon blacks used in today's polymer electrolyte membrane fuel cells. Such materials must be sufficiently stable at low pH (acidic conditions) and high potential, in contact with the polymer membrane and under exposure to hydrogen gas and oxygen at temperatures up to perhaps 120 degrees C. Here, we report the initial discovery of a promising class of doped oxide materials for this purpose: Ti(1-x)M(x)O(2), where M=a variety of transition metals. Specifically, we show that Ti(0.7)W(0.3)O(2) is electrochemically inert over the appropriate potential range. Although the process is not yet optimized, when Pt nanoparticles are deposited on this oxide, electrochemical experiments show that hydrogen is oxidized and oxygen reduced at rates comparable to those seen using a commercial Pt on carbon black support. PMID:20566509

  20. Attrition resistant gamma-alumina catalyst support

    DOEpatents

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2006-03-14

    A .gamma.-alumina catalyst support having improved attrition resistance produced by a method comprising the steps of treating a particulate .gamma.-alumina material with an acidic aqueous solution comprising water and nitric acid and then, prior to adding any catalytic material thereto, calcining the treated .gamma.-alumina.

  1. Obtaining Funding and Support for Undergraduate Research

    ERIC Educational Resources Information Center

    Dorff, Michael; Narayan, Darren A.

    2013-01-01

    Over the past decade there has been a dramatic increase in undergraduate research activities at colleges and universities nationwide. However, this comes at a time when budgets are being tightened and some institutions do not have the resources to pursue new initiatives. In this article we present some ideas for obtaining funding and support for…

  2. Fly ash zeolite catalyst support for Fischer-Tropsch synthesis

    NASA Astrophysics Data System (ADS)

    Campen, Adam

    This dissertation research aimed at evaluating a fly ash zeolite (FAZ) catalyst support for use in heterogeneous catalytic processes. Gas phase Fischer-Tropsch Synthesis (FTS) over a fixed-bed of the prepared catalyst/FAZ support was identified as an appropriate process for evaluation, by comparison with commercial catalyst supports (silica, alumina, and 13X). Fly ash, obtained from the Wabash River Generating Station, was first characterized using XRD, SEM/EDS, particle size, and nitrogen sorption techniques. Then, a parametric study of a two-step alkali fusion/hydrothermal treatment process for converting fly ash to zeolite frameworks was performed by varying the alkali fusion agent, agent:flyash ratio, fusion temperature, fused ash/water solution, aging time, and crystallization time. The optimal conditions for each were determined to be NaOH, 1.4 g NaOH: 1 g fly ash, 550 °C, 200 g/L, 12 hours, and 48 hours. This robust process was applied to the fly ash to obtain a faujasitic zeolite structure with increased crystallinity (40 %) and surface area (434 m2/g). Following the modification of fly ash to FAZ, ion exchange of H+ for Na+ and cobalt incipient wetness impregnation were used to prepare a FTS catalyst. FTS was performed on the catalysts at 250--300 °C, 300 psi, and with a syngas ratio H2:CO = 2. The HFAZ catalyst support loaded with 11 wt% cobalt resulted in a 75 % carbon selectivity for C5 -- C18 hydrocarbons, while methane and carbon dioxide were limited to 13 and 1 %, respectively. Catalyst characterization was performed by XRD, N2 sorption, TPR, and oxygen pulse titration to provide insight to the behavior of each catalyst. Overall, the HFAZ compared well with silica and 13X supports, and far exceeded the performance of the alumina support under the tested conditions. The successful completion of this research could add value to an underutilized waste product of coal combustion, in the form of catalyst supports in heterogeneous catalytic processes.

  3. Polymer - supported cobalt (II) catalysts for the oxidation of alkenes.

    PubMed

    Błaz, Edyta; Pielichowski, Jan

    2006-01-31

    Polymer-supported heterogeneous catalysts in a form of complexes of 8-hydroxy- quinoline with cobalt acetate were synthesized. Conjugated polymers - polyaniline (PANI), poly-o-toluidine (POT), poly-o-anisidine (POA) - were used as supports. Oxidation reactions of aliphatic and aromatic hydrocarbons were carried out in the presence of molecular oxygen at atmospheric pressure and epoxides or ketones were obtained as the main products with high selectivity.

  4. Bimetallic PtSn/C catalysts obtained via SOMC/M for glycerol steam reforming.

    PubMed

    Pastor-Pérez, Laura; Merlo, Andrea; Buitrago-Sierra, Robison; Casella, Mónica; Sepúlveda-Escribano, Antonio

    2015-12-01

    A detailed study on the preparation of bimetallic PtSn/C catalysts using surface-controlled synthesis methods, and on their catalytic performance in the glycerol steam reforming reaction has been carried out. In order to obtain these well-defined bimetallic phases, techniques derived from Surface Organometallic Chemistry on Metals (SOMC/M) were used. The preparation process involved the reaction between an organometallic compound ((C4H9)4Sn) and a supported transition metal (Pt) in a H2 atmosphere. Catalysts with Sn/Pt atomic ratios of 0.2, 0.3, 0.5, and 0.7 were obtained, and characterized using several techniques: ICP, H2 chemisorption, TEM and XPS. These systems were tested in the glycerol steam reforming varying the reaction conditions (glycerol concentration and reaction temperature). The best performance was observed for the catalysts with the lowest tin contents (PtSn0.2/C and PtSn0.3/C). It was observed that the presence of tin increased the catalysts' stability when working under more severe reaction conditions.

  5. Bimetallic PtSn/C catalysts obtained via SOMC/M for glycerol steam reforming.

    PubMed

    Pastor-Pérez, Laura; Merlo, Andrea; Buitrago-Sierra, Robison; Casella, Mónica; Sepúlveda-Escribano, Antonio

    2015-12-01

    A detailed study on the preparation of bimetallic PtSn/C catalysts using surface-controlled synthesis methods, and on their catalytic performance in the glycerol steam reforming reaction has been carried out. In order to obtain these well-defined bimetallic phases, techniques derived from Surface Organometallic Chemistry on Metals (SOMC/M) were used. The preparation process involved the reaction between an organometallic compound ((C4H9)4Sn) and a supported transition metal (Pt) in a H2 atmosphere. Catalysts with Sn/Pt atomic ratios of 0.2, 0.3, 0.5, and 0.7 were obtained, and characterized using several techniques: ICP, H2 chemisorption, TEM and XPS. These systems were tested in the glycerol steam reforming varying the reaction conditions (glycerol concentration and reaction temperature). The best performance was observed for the catalysts with the lowest tin contents (PtSn0.2/C and PtSn0.3/C). It was observed that the presence of tin increased the catalysts' stability when working under more severe reaction conditions. PMID:26283100

  6. Surface Chemistry and Properties of Oxides as Catalyst Supports

    SciTech Connect

    DeBusk, Melanie Moses; Narula, Chaitanya Kumar; Contescu, Cristian I

    2015-01-01

    Heterogeneous catalysis relies on metal-oxides as supports for the catalysts. Catalyst supports are an indispensable component of most heterogeneous catalysts, but the role of the support is often minimized in light of the one played by the catalytically active species it supports. The active species of supported catalysts are located on the surface of the support where their contact with liquid or gas phase reactants will be greatest. Considering that support plays a major role in distribution and stability of active species, the absorption and retention of reactive species, and in some cases in catalytic reaction, the properties and chemistry that can occur at the surface of an oxide support are important for understanding their impact on the activity of a supported catalyst. This chapter examines this rich surface chemistry and properties of oxides used as catalyst supports, and explores the influence of their interaction with the active species.

  7. Attrition resistant Fischer-Tropsch catalyst and support

    DOEpatents

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2004-05-25

    A catalyst support having improved attrition resistance and a catalyst produced therefrom. The catalyst support is produced by a method comprising the step of treating calcined .gamma.-alumina having no catalytic material added thereto with an acidic aqueous solution having an acidity level effective for increasing the attrition resistance of the calcined .gamma.-alumina.

  8. Hydrogen recombiner catalyst test supporting data

    SciTech Connect

    Britton, M.D.

    1995-01-19

    This is a data package supporting the Hydrogen Recombiner Catalyst Performance and Carbon Monoxide Sorption Capacity Test Report, WHC-SD-WM-TRP-211, Rev 0. This report contains 10 appendices which consist of the following: Mass spectrometer analysis reports: HRC samples 93-001 through 93-157; Gas spectrometry analysis reports: HRC samples 93-141 through 93-658; Mass spectrometer procedure PNL-MA-299 ALO-284; Alternate analytical method for ammonia and water vapor; Sample log sheets; Job Safety analysis; Certificate of mixture analysis for feed gases; Flow controller calibration check; Westinghouse Standards Laboratory report on Bois flow calibrator; and Sorption capacity test data, tables, and graphs.

  9. Development of Novel Supported Gold Catalysts: A Materials Perspective

    SciTech Connect

    Dai, Sheng; Ma, Zhen

    2011-01-01

    Since Haruta et al. discovered that small gold nanoparticles finely dispersed on certain metal oxide supports can exhibit surprisingly high activity in CO oxidation below room temperature, heterogeneous catalysis by supported gold nanoparticles has attracted tremendous attention. The majority of publications deal with the preparation and characterization of conventional gold catalysts (e.g., Au/TiO{sub 2}), the use of gold catalysts in various catalytic reactions, as well as elucidation of the nature of the active sites and reaction mechanisms. In this overview, we highlight the development of novel supported gold catalysts from a materials perspective. Examples, mostly from those reported by our group, are given concerning the development of simple gold catalysts with single metal-support interfaces and heterostructured gold catalysts with complicated interfacial structures. Catalysts in the first category include active Au/SiO{sub 2} and Au/metal phosphate catalysts, and those in the second category include catalysts prepared by pre-modification of supports before loading gold, by post-modification of supported gold catalysts, or by simultaneous dispersion of gold and an inorganic component onto a support. CO oxidation has generally been employed as a probe reaction to screen the activities of these catalysts. These novel gold catalysts not only provide possibilities for applied catalysis, but also furnish grounds for fundamental research.

  10. Coarse-pored ceramic supports for pyrolysis catalysts

    SciTech Connect

    Potapova, L.L.; Cherches, B.Kh.; Egiazarov, Yu.G.

    1988-03-20

    One promising trend in improvement of pyrolysis of hydrocarbon feedstocks is the use of heterogeneous catalysts in the process. The industrial use of highly effective catalysts would result in substantially increased product yields and in decrease of energy consumption in comparison with the requirements of drastic thermal processes. The aims of the present work were to obtain a mechanically strong coarse-pored ceramic support for pyrolysis catalysts and to study the influence of various factors on formation of its structure. The support material was made from an industrial ceramic mass of the following composition (%): koalin 30, plastic refractory clay 21, quartz 32, pegmatite 17. Various additives were used for formation of a porous structure: noncombustible highly porous (pumice, claydite), partially combustible (shungite), and completely combustible (SKT) activated carbon). The authors results show that 15 mass % of SKT carbon (particle size 0.1-0.2 mm) and 1-2 mass % of sodium trimetaphosphate should be added to the ceramic mass. The crushing strength of the resultant support samples reaches 550-630 kg/cm/sup 2/, with 34-35% porosity. Under the optimal conditions of pyrolysis of a straight-run gasoline fraction the catalyst obtained by deposition of 12 mass % of In/sub 2/O/sub 3/ and 4% K/sub 2/O on the synthesized support gives a yield of 39-41 mass % of ethylene and 61-62 mass % of unsaturated C/sub 2/-C/sub 4/ hydrocarbons, with 88-90 mass % gasification.

  11. Ceramic wash-coat for catalyst support

    SciTech Connect

    Kulkarni, Anand A.; Subramanian, Ramesh; Sabol, Stephen M.

    2012-08-14

    A wash-coat (16) for use as a support for an active catalyst species (18) and a catalytic combustor component (10) incorporating such wash-coat. The wash-coat is a solid solution of alumina or alumina-based material (Al.sub.2O.sub.3-0-3 wt % La.sub.2O.sub.3) and a further oxide exhibiting a coefficient of thermal expansion that is lower than that exhibited by alumina. The further oxide may be silicon dioxide (2-30 wt % SiO.sub.2), zirconia silicate (2-30 wt % ZrSiO.sub.4), neodymium oxide (0-4 wt %), titania (Al.sub.2O.sub.3-3-40% TiO.sub.2) or alumina-based magnesium aluminate spinel (Al.sub.2O.sub.3-25 wt % MgO) in various embodiments. The active catalyst species may be palladium and a second metal in a concentration of 10-50% of the concentration of the palladium.

  12. Method of forming supported doped palladium containing oxidation catalysts

    SciTech Connect

    Mohajeri, Nahid

    2014-04-22

    A method of forming a supported oxidation catalyst includes providing a support comprising a metal oxide or a metal salt, and depositing first palladium compound particles and second precious metal group (PMG) metal particles on the support while in a liquid phase including at least one solvent to form mixed metal comprising particles on the support. The PMG metal is not palladium. The mixed metal particles on the support are separated from the liquid phase to provide the supported oxidation catalyst.

  13. Heterogenization of Homogeneous Catalysts: the Effect of the Support

    SciTech Connect

    Earl, W.L.; Ott, K.C.; Hall, K.A.; de Rege, F.M.; Morita, D.K.; Tumas, W.; Brown, G.H.; Broene, R.D.

    1999-06-29

    We have studied the influence of placing a soluble, homogeneous catalyst onto a solid support. We determined that such a 'heterogenized' homogeneous catalyst can have improved activity and selectivity for the asymmetric hydrogenation of enamides to amino acid derivatives. The route of heterogenization of RhDuPhos(COD){sup +} cations occurs via electrostatic interactions with anions that are capable of strong hydrogen bonding to silica surfaces. This is a novel approach to supported catalysis. Supported RhDuPhos(COD){sup +} is a recyclable, non-leaching catalyst in non-polar media. This is one of the few heterogenized catalysts that exhibits improved catalytic performance as compared to its homogeneous analog.

  14. XPS studies of Pt catalysts supported on porous carbon

    NASA Astrophysics Data System (ADS)

    Tyagi, Deepak; Varma, Salil; Bharadwaj, S. R.

    2016-05-01

    Pt catalysts supported on porous carbon were prepared by hard templating route and used for HI decomposition reaction of Sulfur Iodine thermochemical cycle. These catalysts were characterized by X-ray photoelectron spectroscopy for oxidation state of platinum as well as nature of carbon present in the catalysts. It was found that platinum is present in metallic state and carbon is present in both sp2 and sp3 hybridization states. The catalysts were evaluated for their activity and stability for liquid phase HI decomposition reaction and it was observed that mesoporous carbon based catalysts were more active and stable under the reaction conditions.

  15. Au/TiO2 supported on ferritic stainless steel monoliths as CO oxidation catalysts

    NASA Astrophysics Data System (ADS)

    Milt, V. G.; Ivanova, S.; Sanz, O.; Domínguez, M. I.; Corrales, A.; Odriozola, J. A.; Centeno, M. A.

    2013-04-01

    Metallic supported structured catalysts were obtained by washcoating AluchromYHf monoliths with an Au/TiO2 catalyst. The powder catalyst was synthesized by DAE (direct anionic exchange) method. Using this catalyst, a stable slurry was prepared and used to washcoat the monoliths. TEM and SEM studies revealed that gold nanoparticles in the Au/TiO2 powder catalyst had an average diameter of 3-4 nm, but during the preparation of the structured catalyst, aggregate Au particles of the slurry reached diameters of 9 nm. Before coating, Aluchrom YHf monoliths were thermally treated to generate a homogeneous and well-adhered oxide rough surface layer, mainly composed of α-Al2O3 whiskers, which favored the anchoring of the catalyst. The catalytic layer deposited was well attached and contained not only the Au/TiO2 catalyst but also metallic oxides formed from stainless steel components that diffused through the oxide scale. The structural characterization was performed by XRD, XRF, TEM, SEM, GD-OES and SBET. The catalytic activity of the powder and structured catalysts was tested in the oxidation of the CO reaction. Catalysts demonstrated to be active at room temperature. After a first activation run, and in spite of their larger gold particle size, the catalytic activities of the structured catalysts overcame those of the powder catalyst. This improvement is probably due to the segregation of the transition metal oxides toward the surface oxide scale.

  16. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells.

    PubMed

    Mansor, Noramalina; Jorge, A Belen; Corà, Furio; Gibbs, Christopher; Jervis, Rhodri; McMillan, Paul F; Wang, Xiaochen; Brett, Daniel J L

    2014-04-01

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li(+)Cl(-)), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li(+)Cl(-) catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA.

  17. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells

    PubMed Central

    2014-01-01

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li+Cl–), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li+Cl– catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA. PMID:24748912

  18. A Longitudinal Investigation of Relational Catalyst Support of Goal Strivings

    PubMed Central

    Tomlinson, Jennifer M.; Feeney, Brooke C.; Van Vleet, Meredith

    2015-01-01

    The goal of this work was to test a theoretical model of relational catalyst support provision that promotes thriving in non-adverse times. We tested a pathway proposed by Feeney and Collins (2014) that explains how relational catalyst support in the context of close relationships might lead to thriving. We proposed that once relational catalyst support has been received, it functions through the mechanisms of being perceived to be responsive to one’s needs and promoting perceived capability. Perceived capability should promote indices of thriving including self-esteem, goal accomplishment, growth, and specific and general availability of support. This model was supported in two studies of married couples using observational and longitudinal methods surrounding the support of goal-strivings. Results indicate that (a) partner support of goal-strivings predicted important indicators of thriving over time, and (b) both received and perceived relational catalyst support work together and play important roles in predicting these outcomes. PMID:26997969

  19. Integrated current collector and catalyst support

    DOEpatents

    Bregoli, Lawrence J.

    1985-10-22

    An integrated current collecting electrode for a molten carbonate fuel cell includes a corrugated metal conductive strip positioned in contact with a catalyst layer. The corrugations of the metal strip form a plurality of gas channels immediately adjacent the surface of the catalyst through which a reactant gas flows. Each channel is filled with a particulate material to maintain separation between the metal strip and the catalyst in ensuring gas channel integrity. The catalyst may be in the form of a compacted, particulate material provided the particle size of the material within the gas channels is larger than that of the catalyst particles to prevent catalyst migration to the metal conductor and provide reactant gas access to the catalyst layer. The gas channels formed by the corrugations of the metal strip are arranged in an offset pattern along the direction of gas flow for improved reactant gas distribution to the catalyst layer. The particulate material positioned within the gas flow channels may be a ceramic conductor such as a perovskite or a spinel for enhanced current collection.

  20. Integrated current collector and catalyst support

    DOEpatents

    Bregoli, L.J.

    1984-10-17

    An integrated current collecting electrode for a molten carbonate fuel cell includes a corrugated metal conductive strip positioned in contact with a catalyst layer. The corrugations of the metal strip form a plurality of gas channels immediately adjacent the surface of the catalyst through which a reactant gas flows. Each channel is filled with a particulate material to maintain separation between the metal strip and the catalyst in ensuring gas channel integrity. The catalyst may be in the form of a compacted, particulate material provided the particle size of the material within the gas channels is larger than that of the catalyst particles to prevent catalyst migration to the metal conductor and provide reactant gas access to the catalyst layer. The gas channels formed by the corrugations of the metal strip are arranged in an offset pattern along the direction of gas flow for improved reactant gas distribution to the catalyst layer. The particulate material positioned within the gas flow channels may be a ceramic conductor such as a perovskite or a spinel for enhanced current collection.

  1. Novel supports for coal liquefaction catalysts

    SciTech Connect

    Haynes, H.W. Jr.

    1992-01-01

    This research is divided into three parts: (1) Evaluation of Alkaline-Earth-Promoted CoMo/Alumina Catalysts in a Bench Scale Hydrotreater, (2) Development of a Novel Catalytic Coal Liquefaction Microreactor (CCLM) Unit, and (3) Evaluation of Novel Catalyst Preparations for Direct Coal Liquefaction. (VC)

  2. Fundamental studies of supported bimetallic catalysts by NMR spectroscopy

    SciTech Connect

    Savargaonkar, N.

    1996-10-17

    Various hydrogenation reactions on transition metals are important commercially whereas certain hydrogenolysis reactions are useful from fundamental point of view. Understanding the hydrogen mobility and kinetics of adsorption-desorption of hydrogen is important in understanding the mechanisms of such reactions involving hydrogen. The kinetics of hydrogen chemisorption was studied by means of selective excitation NMR on silica supported Pt, Rh and Pt-Rh catalysts. The activation energy of hydrogen desorption was found to be lower on silica supported Pt catalysts as compared to Rh and Pt-Rh catalysts. It was found that the rates of hydrogen adsorption and desorption on Pt-Rh catalyst were similar to those on Rh catalyst and much higher as compared to Pt catalyst. The Ru-Ag bimetallic system is much simpler to study than the Pt-Rh system and serves as a model system to characterize more complicated systems such as the K/Ru system. Ag was found to decrease the amounts of adsorbed hydrogen and the hydrogen-to-ruthenium stoichiometry. Ag reduced the populations of states with low and intermediate binding energies of hydrogen on silica supported Ru catalyst. The rates of hydrogen adsorption and desorption were also lower on silica supported Ru-Ag catalyst as compared to Ru catalyst. This report contains introductory information, the literature review, general conclusions, and four appendices. An additional four chapters and one appendix have been processed separately for inclusion on the data base.

  3. Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis

    PubMed Central

    Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Bee Abd Hamid, Sharifah

    2014-01-01

    The lack of stability is a challenge for most heterogeneous catalysts. During operations, the agglomeration of particles may block the active sites of the catalyst, which is believed to contribute to its instability. Recently, titanium oxide (TiO2) was introduced as an alternative support material for heterogeneous catalyst due to the effect of its high surface area stabilizing the catalysts in its mesoporous structure. TiO2 supported metal catalysts have attracted interest due to TiO2 nanoparticles high activity for various reduction and oxidation reactions at low pressures and temperatures. Furthermore, TiO2 was found to be a good metal oxide catalyst support due to the strong metal support interaction, chemical stability, and acid-base property. The aforementioned properties make heterogeneous TiO2 supported catalysts show a high potential in photocatalyst-related applications, electrodes for wet solar cells, synthesis of fine chemicals, and others. This review focuses on TiO2 as a support material for heterogeneous catalysts and its potential applications. PMID:25383380

  4. Dynamic structural disorder in supported nanoscale catalysts

    SciTech Connect

    Rehr, J. J.; Vila, F. D.

    2014-04-07

    We investigate the origin and physical effects of “dynamic structural disorder” (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale.

  5. Catalytic ammonia decomposition over industrial-waste-supported Ru catalysts

    SciTech Connect

    Pei Fang Ng; Li Li; Shaobin Wang; Zhonghua Zhu; Gaoqing Lu; Zifeng Yan

    2007-05-15

    Industrial solid wastes (fly ash and red mud, a by-product of the aluminium industry) have been employed as supports for preparation of Ru-based catalysts. Physical and chemical treatments on red mud were conducted and these modified supports were also used for preparation of Ru-based catalysts. Those Ru catalysts were characterized by various techniques such as N2 adsorption, H{sub 2} adsorption, XRD, XPS, and temperature-programmed reduction (TPR), and were then tested for catalytic ammonia decomposition to hydrogen. It was found that red-mud-supported Ru catalyst exhibits higher ammonia conversion and hydrogen production than fly-ash-supported catalyst. Heat and chemical treatments of the red mud greatly improve the catalytic activity. Moreover, a combination of acid and heat treatments produces the highest catalytic conversion of ammonia. 35 refs., 4 figs., 4 tabs.

  6. Durability testing at 5 atmospheres of advanced catalysts and catalyst supports for gas turbine engine combustors

    NASA Technical Reports Server (NTRS)

    Olson, B. A.; Lee, H. C.; Osgerby, I. T.; Heck, R. M.; Hess, H.

    1980-01-01

    The durability of CATCOM catalysts and catalyst supports was experimentally demonstrated in a combustion environment under simulated gas turbine engine combustor operating conditions. A test of 1000 hours duration was completed with one catalyst using no. 2 diesel fuel and operating at catalytically-supported thermal combustion conditions. The performance of the catalyst was determined by monitoring emissions throughout the test, and by examining the physical condition of the catalyst core at the conclusion of the test. Tests were performed periodically to determine changes in catalytic activity of the catalyst core. Detailed parametric studies were also run at the beginning and end of the durability test, using no. 2 fuel oil. Initial and final emissions for the 1000 hours test respectively were: unburned hydrocarbons (C3 vppm):0, 146, carbon monoxide (vppm):30, 2420; nitrogen oxides (vppm):5.7, 5.6.

  7. Supported catalyst systems and method of making biodiesel products using such catalysts

    DOEpatents

    Kim, Manhoe; Yan, Shuli; Salley, Steven O.; Ng, K. Y. Simon

    2015-10-20

    A heterogeneous catalyst system, a method of preparing the catalyst system and a method of forming a biodiesel product via transesterification reactions using the catalyst system is disclosed. The catalyst system according to one aspect of the present disclosure represents a class of supported mixed metal oxides that include at least calcium oxide and another metal oxide deposited on a lanthanum oxide or cerium oxide support. Preferably, the catalysts include CaO--CeO.sub.2ZLa.sub.2O.sub.3 or CaO--La.sub.2O.sub.3/CeO.sub.2. Optionally, the catalyst may further include additional metal oxides, such as CaO--La.sub.2O.sub.3--GdOxZLa.sub.2O.sub.3.

  8. Mesoporous Molecular Sieves as Supports for Metathesis Catalysts

    NASA Astrophysics Data System (ADS)

    Balcar, Hynek; Cejka, Jirí

    Mesoporous molecular sieves represent a new family of inorganic oxides with regular nanostructure, large surface areas, large void volumes, and narrow pore size distribution of mesopores. These materials offer new possibilities for designing highly active and selective catalysts for olefin metathesis and metathesis polymerization. Siliceous sieves MCM-41, MCM-48, SBA-15, and organized mesoporous alumina (OMA) were used as supports for preparation of new molybdenum and rhenium oxide catalysts, as well as for heterogenization of well-defined homogeneous catalysts.

  9. Oxidation of methane over palladium catalysts: effect of the support.

    PubMed

    Escandón, Lara S; Ordóñez, Salvador; Vega, Aurelio; Díez, Fernando V

    2005-01-01

    This work is focused on the deep catalytic oxidation of methane over supported palladium catalysts. The influences of the metal loading, oxidation state of palladium, nature of supports, presence of promoters in the supports (for zirconia-based supports), and thermal stability have been studied experimentally. Catalysts were prepared by incipient wetness of commercially available supports with aqueous solutions of palladium nitrate. For gamma-alumina support, it was observed that the optimal amount of palladium is between 0.5% and 2%, with higher amounts leading to a loss in specific activity. Concerning the oxidation state of the catalyst, it is concluded that for all the supports tested in the present work, a reduction of the catalyst is not needed, yielding the same conversion at steady state catalysts reduced and oxidised. The thermal stability of various supported catalysts were also studied, zirconia supports being the most active. These supports, specially Y-modified zirconia support, do not suffer appreciable deactivation below 500 degrees C.

  10. Supported Oxide Catalysts from Chelating Precursors

    NASA Astrophysics Data System (ADS)

    Prieto-Centurion, Dario

    Supported Fe catalysts and, in particular, Fe and substituted MFI zeolites have attracted industrial and academic attention due to their ability to promote selective catalytic reduction of NOx and selective partial oxidation of hydrocarbons. It is generally accepted that some form of highly dispersed, binuclear or atomically-isolated metal species are involved in the selective processes catalyzed these materials. Several studies have sought to reproduce the structures and reactivity of these substituted zeolites on dierent supports. Given that specialized reagents or preparation conditions that are required in some of these preparation methods, and that multiple surface structures are often formed, this dissertation aimed to develop a route to highly dispersed supported transition metals using commonly available reactants and synthesis routes. Described here is a straightforward and effective procedure to control dispersion and surface speciation of Fe on SiO2 and CeO2 through incipient wetness impregnation (IWI) of the support with aqueous, anionic complexes of Fe3+ and ethylenediaminetetraacetic acid (EDTA) followed by oxidative heat-treatment. On SiO2, this method preferentially creates isolated surface structures up to loading of 0.9 Fe nm-2 if using alkali counter-cations. This isolated species display classic 'single-site' behavior|constant turn over frequency (TOF) with increasing Fe surface density|in the oxidation of adamantane with H 2O2, indicating active sites are equally accessible and equally active within this range of surface density. Additionally, TOF increases linearly with electronegativity of the alkali counter-cation, suggesting electronic promotion. Conversely, IWI of unprotected Fe3+ produces agglomerates less active in this reaction. On CeO2, the sterics and negative charge imparted on Fe 3+ by EDTA4- inhibits incorporation of Fe into surface vacancies. Instead, formation of two-dimensional oligomeric structures which can undergo Fe3+-Fe2

  11. Supported Molten Metal Catalysis. A New Class of Catalysts

    SciTech Connect

    Ravindra Datta; Ajeet Singh; Manuela Serban; Istvan Halasz

    2006-06-02

    We describe a new class of heterogeneous catalysts called supported molten metal catalysis (SMMC), in which molten metal catalysts are dispersed as nanodroplets on the surface of porous supports, allowing much larger active surface area than is possible in conventional contacting techniques for catalytic metals that are molten under reaction conditions, thus greatly enhancing their activity and potential utility. Specific examples of different types of reactions are provided to demonstrate the broad applicability of the technique in designing active, selective, and stable new catalysts. It is shown that dispersing the molten metal on a support in the suggested manner can enhance the rate of a reaction by three to four orders of magnitude as a result of the concomitant increase in the active surface area. New reaction examples include {gamma}-Al{sub 2}O{sub 3} supported molten Te (melting point 450 C) and Ga (MP 30 C) catalysts for bifunctional methylcyclohexane dehydrogenation. These catalysts provide activity similar to conventional Pt-based catalysts for this with better resistance to coking. In addition, results are described for a controlled pore glass supported molten In (MP 157 C) catalyst for the selective catalytic reduction of NO with ethanol in the presence of water, demonstrating activities superior to conventional catalysts for this reaction. A discussion is also provided on the characterization of the active surface area and dispersion of these novel supported catalysts. It is clear based on the results described that the development of new active and selective supported molten metal catalysts for practical applications is entirely plausible.

  12. Graphene-Supported Platinum Catalyst-Based Membrane Electrode Assembly for PEM Fuel Cell

    NASA Astrophysics Data System (ADS)

    Devrim, Yilser; Albostan, Ayhan

    2016-08-01

    The aim of this study is the preparation and characterization of a graphene-supported platinum (Pt) catalyst for proton exchange membrane fuel cell (PEMFC) applications. The graphene-supported Pt catalysts were prepared by chemical reduction of graphene and chloroplatinic acid (H2PtCl6) in ethylene glycol. X-ray powder diffraction, thermogravimetric analysis (TGA) and scanning electron microscopy have been used to analyze structure and surface morphology of the graphene-supported catalyst. The TGA results showed that the Pt loading of the graphene-supported catalyst was 31%. The proof of the Pt particles on the support surfaces was also verified by energy-dispersive x-ray spectroscopy analysis. The commercial carbon-supported catalyst and prepared Pt/graphene catalysts were used as both anode and cathode electrodes for PEMFC at ambient pressure and 70°C. The maximum power density was obtained for the Pt/graphene-based membrane electrode assembly (MEA) with H2/O2 reactant gases as 0.925 W cm2. The maximum current density of the Pt/graphene-based MEA can reach 1.267 and 0.43 A/cm2 at 0.6 V with H2/O2 and H2/air, respectively. The MEA prepared by the Pt/graphene catalyst shows good stability in long-term PEMFC durability tests. The PEMFC cell voltage was maintained at 0.6 V without apparent voltage drop when operated at 0.43 A/cm2 constant current density and 70°C for 400 h. As a result, PEMFC performance was found to be superlative for the graphene-supported Pt catalyst compared with the Pt/C commercial catalyst. The results indicate the graphene-supported Pt catalyst could be utilized as the electrocatalyst for PEMFC applications.

  13. Supported organometallic catalysts for hydrogenation and Olefin Polymerization

    DOEpatents

    Marks, Tobin J.; Ahn, Hongsang

    2001-01-01

    Novel heterogeneous catalysts for the which hydrogenation of olefins and arenes with high conversion rates under ambient conditions and the polymerization of olefins have been developed. The catalysts are synthesized from Ziegler-type precatalysts by supporting them on sulfate-modified zirconia.

  14. Resolving Interparticle Heterogeneities in Composition and Hydrogenation Performance between Individual Supported Silver on Silica Catalysts

    PubMed Central

    2015-01-01

    Supported metal nanoparticle catalysts are commonly obtained through deposition of metal precursors onto the support using incipient wetness impregnation. Typically, empirical relations between metal nanoparticle structure and catalytic performance are inferred from ensemble averaged data in combination with high-resolution electron microscopy. This approach clearly underestimates the importance of heterogeneities present in a supported metal catalyst batch. Here we show for the first time how incipient wetness impregnation leads to 10-fold variations in silver loading between individual submillimeter-sized silica support granules. This heterogeneity has a profound impact on the catalytic performance, with 100-fold variations in hydrogenation performance at the same level. In a straightforward fashion, optical microscopy interlinks single support particle level catalytic measurements to structural and compositional information. These detailed correlations reveal the optimal silver loading. A thorough consideration of catalyst heterogeneity and the impact thereof on the catalytic performance is indispensable in the development of catalysts. PMID:26618052

  15. Alumina supported molybdenum catalyst for lignin valorization: Effect of reduction temperature.

    PubMed

    Ma, Xiaolei; Cui, Kai; Hao, Wenyue; Ma, Rui; Tian, Ye; Li, Yongdan

    2015-09-01

    Alumina supported molybdenum catalysts were prepared with an impregnation method. The activity of the catalyst in the ethanolysis of Kraft lignin to C6-C11 molecules, i.e. alcohols, esters, monophenols, benzyl alcohols and arenes, was tested in a batch reactor at 280 °C with initial 0 MPa nitrogen. The complete conversion of lignin to small molecular chemicals was achieved without the formation of tar or char. The reduction temperature during the catalyst preparation was proved to have a profound effect on the activity of the catalyst. The overall product yield firstly increases and then decreases with the increase of the reduction temperature in a range of 500-800 °C. The maximum yield up to 1390 mg/g lignin was obtained with the catalyst reduced at 750 °C. Furthermore, the catalyst showed an excellent recyclability, where no significant loss of the catalytic activity was exhibited after 5 runs. PMID:26004558

  16. Alumina supported molybdenum catalyst for lignin valorization: Effect of reduction temperature.

    PubMed

    Ma, Xiaolei; Cui, Kai; Hao, Wenyue; Ma, Rui; Tian, Ye; Li, Yongdan

    2015-09-01

    Alumina supported molybdenum catalysts were prepared with an impregnation method. The activity of the catalyst in the ethanolysis of Kraft lignin to C6-C11 molecules, i.e. alcohols, esters, monophenols, benzyl alcohols and arenes, was tested in a batch reactor at 280 °C with initial 0 MPa nitrogen. The complete conversion of lignin to small molecular chemicals was achieved without the formation of tar or char. The reduction temperature during the catalyst preparation was proved to have a profound effect on the activity of the catalyst. The overall product yield firstly increases and then decreases with the increase of the reduction temperature in a range of 500-800 °C. The maximum yield up to 1390 mg/g lignin was obtained with the catalyst reduced at 750 °C. Furthermore, the catalyst showed an excellent recyclability, where no significant loss of the catalytic activity was exhibited after 5 runs.

  17. Effect of Graphitic Content on Carbon Supported Catalyst Performance

    SciTech Connect

    A. Patel; K. Artyushkova; P. Atanassov; David Harvey; M. Dutta; V. Colbow; S. Wessel

    2011-07-01

    The effect of graphitic content on carbon supported platinum catalysts was investigated in order to investigate its influence on catalyst performance. Four catalysts of varying surface areas and graphitic content were analyzed using XPS, HREELS, and tested using RDE experiments. The catalysts were also heat treated at 150 C and 100%RH as means to uniformly age them. The heat treated samples were analyzed using the same methods to determine what changes had occurred due to this aging process. When compared to the BOL catalysts, heat treated catalysts displayed increased graphitic carbon and platinum metallic content, however they also showed depressed catalytic activity. The primary cause is still under investigation, though it is believed to be related to loss of amorphous carbon content.

  18. Effect of Graphitic Content on Carbon Supported Catalyst Performance

    SciTech Connect

    Patel, Anant; Artyushkova, Kateryna; Atanassov, Plamen; Harvey, David; Dutta, Monica; Colbow, Vesna

    2011-07-01

    The effect of graphitic content on carbon supported platinum catalysts was investigated in order to investigate its influence on catalyst performance. Four catalysts of varying surface areas and graphitic content were analyzed using XPS, HREELS, and tested using RDE experiments. The catalysts were also heat treated at 150oC and 100%RH as means to uniformly age them. The heat treated samples were analyzed using the same methods to determine what changes had occurred due to this aging process. When compared to the BOL catalysts, heat treated catalysts displayed increased graphitic carbon and platinum metalic content, however they also showed depressed catalytic activity. The primary cause is still under investigation, though it is believed to be related to loss of amorphous carbon content.

  19. Attrition Resistant Fischer-Tropsch Catalysts Based on FCC Supports

    SciTech Connect

    Adeyiga, Adeyinka

    2010-02-05

    Commercial spent fluid catalytic cracking (FCC) catalysts provided by Engelhard and Albemarle were used as supports for Fe-based catalysts with the goal of improving the attrition resistance of typical F-T catalysts. Catalysts with the Ruhrchemie composition (100 Fe/5 Cu/4.2 K/25 spent FCC on mass basis) were prepared by wet impregnation. XRD and XANES analysis showed the presence of Fe{sub 2}O{sub 3} in calcined catalysts. FeC{sub x} and Fe{sub 3}O{sub 4} were present in the activated catalysts. The metal composition of the catalysts was analyzed by ICP-MS. F-T activity of the catalysts activated in situ in CO at the same conditions as used prior to the attrition tests was measured using a fixed bed reactor at T = 573 K, P = 1.38 MPa and H{sub 2}:CO ratio of 0.67. Cu and K promoted Fe supported over Engelhard provided spent FCC catalyst shows relatively good attrition resistance (8.2 wt% fines lost), high CO conversion (81%) and C{sub 5}+ hydrocarbons selectivity (18.3%).

  20. Durability testing of advanced catalysts and catalyst supports for gas turbine engine combustors

    NASA Technical Reports Server (NTRS)

    Heck, R. M.; Chang, M.; Hess, H. W.; Mroz, T. S.

    1979-01-01

    The paper presents new information on the durability of a CATCOM catalyst operating at low-emission combustion temperatures (about 1527 K) with a liquid fuel, No. 2 diesel. Information on the activity of No. 2 diesel after 1000 hr of aging is given. In addition, a unique in situ activity test developed for monitoring the subtle changes in the catalyst activity of the CATCOM catalyst is also detailed. The study demonstrated the feasibility of using a CATCOM catalyst in catalytically supported thermal combustion for extended operating periods

  1. Supported, Alkali-Promoted Cobalt Oxide Catalysts for NOx Removal from Coal Combustion Flue Gases

    SciTech Connect

    Morris D. Argyle

    2005-12-31

    A series of cobalt oxide catalysts supported on alumina ({gamma}-Al{sub 2}O{sub 3}) were synthesized with varying contents of cobalt and of added alkali metals, including lithium, sodium, potassium, rubidium, and cesium. Unsupported cobalt oxide catalysts and several cobalt oxide catalysts supported ceria (CeO{sub 2}) with varying contents of cobalt with added potassium were also prepared. The catalysts were characterized with UV-visible spectroscopy and were examined for NO{sub x} decomposition activity. The CoO{sub x}/Al{sub 2}O{sub 3} catalysts and particularly the CoO{sub x}/CeO{sub 2} catalysts show N{sub 2}O decomposition activity, but none of the catalysts (unsupported Co{sub 3}O{sub 4} or those supported on ceria or alumina) displayed significant, sustained NO decomposition activity. For the Al{sub 2}O{sub 3}-supported catalysts, N{sub 2}O decomposition activity was observed over a range of reaction temperatures beginning about 723 K, but significant (>50%) conversions of N{sub 2}O were observed only for reaction temperatures >900 K, which are too high for practical commercial use. However, the CeO{sub 2}-supported catalysts display N{sub 2}O decomposition rates similar to the Al{sub 2}O{sub 3}-supported catalysts at much lower reaction temperatures, with activity beginning at {approx}573 K. Conversions of >90% were achieved at 773 K for the best catalysts. Catalytic rates per cobalt atom increased with decreasing cobalt content, which corresponds to increasing edge energies obtained from the UV-visible spectra. The decrease in edge energies suggests that the size and dimensionality of the cobalt oxide surface domains increase with increasing cobalt oxide content. The rate data normalized per mass of catalyst that shows the activity of the CeO{sub 2}-supported catalysts increases with increasing cobalt oxide content. The combination of these data suggest that supported cobalt oxide species similar to bulk Co{sub 3}O{sub 4} are inherently more active than

  2. Durability testing at one atmosphere of advanced catalysts and catalyst supports for automotive gas turbine engine combustors, part 1

    NASA Technical Reports Server (NTRS)

    Heck, R. M.; Chang, M.; Hess, H.; Carrubba, R.

    1977-01-01

    The durability of catalysts and catalyst supports in a combustion environment was experimentally demonstrated. A test of 1000 hours duration was completed with two catalysts, using diesel fuel and operating at catalytically supported thermal combustion conditions. The performance of the catalysts was determined by monitoring emissions throughout the test, and by examining the physical condition of the catalyst core at the conclusion of the test. The test catalysts proved to be capable of low emissions operation after 1000 hours diesel aging, with no apparent physical degradation of the catalyst support.

  3. Polymer-Supported Raney Nickel Catalysts for Sustainable Reduction Reactions.

    PubMed

    Jiang, Haibin; Lu, Shuliang; Zhang, Xiaohong; Dai, Wei; Qiao, Jinliang

    2016-01-01

    Green is the future of chemistry. Catalysts with high selectivity are the key to green chemistry. Polymer-supported Raney catalysts have been found to have outstanding performance in the clean preparation of some chemicals. For example, a polyamide 6-supported Raney nickel catalyst provided a 100.0% conversion of n-butyraldehyde without producing any detectable n-butyl ether, the main byproduct in industry, and eliminated the two main byproducts (isopropyl ether and methyl-iso-butylcarbinol) in the hydrogenation of acetone to isopropanol. Meanwhile, a model for how the polymer support brought about the elimination of byproducts is proposed and confirmed. In this account the preparation and applications of polymer-supported Raney catalysts along with the corresponding models will be reviewed.

  4. Functionalized magnetic nanoparticles: A novel heterogeneous catalyst support

    EPA Science Inventory

    Functionalized magnetic nanoparticles have emerged as viable alternatives to conventional materials, as robust, high-surface-area heterogeneous catalyst supports. Post-synthetic surface modification protocol for magnetic nanoparticles has been developed that imparts desirable che...

  5. Polymer-Supported Raney Nickel Catalysts for Sustainable Reduction Reactions.

    PubMed

    Jiang, Haibin; Lu, Shuliang; Zhang, Xiaohong; Dai, Wei; Qiao, Jinliang

    2016-01-01

    Green is the future of chemistry. Catalysts with high selectivity are the key to green chemistry. Polymer-supported Raney catalysts have been found to have outstanding performance in the clean preparation of some chemicals. For example, a polyamide 6-supported Raney nickel catalyst provided a 100.0% conversion of n-butyraldehyde without producing any detectable n-butyl ether, the main byproduct in industry, and eliminated the two main byproducts (isopropyl ether and methyl-iso-butylcarbinol) in the hydrogenation of acetone to isopropanol. Meanwhile, a model for how the polymer support brought about the elimination of byproducts is proposed and confirmed. In this account the preparation and applications of polymer-supported Raney catalysts along with the corresponding models will be reviewed. PMID:27347922

  6. Pore structure characterization of catalyst supports via low field NMR

    SciTech Connect

    Smith, D.M.; Glaves, C.L.; Gallegos, D.P. )

    1988-09-01

    The pore structures of two types of catalyst support material were studied: {gamma}-alumina and silica aerogel. The alumina samples were commercial catalyst supports made in 1/8 inch diameter pellet form by Harshaw Chemical. Aerogels were prepared by forming a gel in a two-step, base-catalyzed process using TEOS, followed by supercritical drying to form the aerogel. Two different aerogels were made, one undergoing the drying process immediately after gel formation (non-aged), and the other being aged in the gel state for two weeks in a basic solution of 0.1 molar NH{sub 4}OH at 323 K before being supercritically dried (aged). The aging process is believed to alter the aerogel pore structure. The pore size distribution of the alumina material was determined via NMR and compared to results obtained by mercury intrusion and nitrogen adsorption/condensation techniques. The pore size distributions of the two aerogel samples were measured via NMR and nitrogen adsorption/condensation; the material was too compressible for porosimetry.

  7. Methods for making a supported iron-copper catalyst

    DOEpatents

    Dyer, Paul N.; Pierantozzi, Ronald

    1986-01-01

    A catalyst is described for the synthesis of hydrocarbons from CO+H.sub.2 utilizing a porous Al.sub.2 O.sub.3 support impregnated with iron and copper and optionally promoted with an alkali metal. The use of an Al.sub.2 O.sub.3 support results in the suppression of heavy waxes (C.sub.26 + hydrocarbons), particularly in slurry phase operation, when compared to unsupported or co-precipitated catalysts.

  8. The Corrosion of PEM Fuel Cell Catalyst Supports and Its Implications for Developing Durable Catalysts

    SciTech Connect

    Shao, Yuyan; Wang, Jun; Kou, Rong; Engelhard, Mark H.; Liu, Jun; Wang, Yong; Lin, Yuehe

    2009-01-03

    Studying the corrosion behavior of catalyst support materials is of great significance for understanding the degradation of PEM fuel cell performance and developing durable catalysts. The oxidation of Vulcan carbon black (the most widely-used catalyst support for PEM fuel cells) was investigated using various electrochemical stressing methods (fixed-potential holding vs. potential step cycling), among which the potential step cycling was considered to mimic more closely the real drive cycle operation of vehicle PEM fuel cells. The oxidation of carbon was accelerated under potential step conditions as compared with the fixed-potential holding condition. Increasing potential step frequency or decreasing the lower potential limit in the potential step can further accelerate the corrosion of carbon. The accelerated corrosion of carbon black was attributed to the cycle of consumption/regeneration of some easily oxidized species. These findings are being employed to develop a test protocol for fast screening durable catalyst support.

  9. Catalytic removal of carbon monoxide over carbon supported palladium catalyst.

    PubMed

    Srivastava, Avanish Kumar; Saxena, Amit; Shah, Dilip; Mahato, T H; Singh, Beer; Shrivastava, A R; Gutch, P K; Shinde, C P

    2012-11-30

    Carbon supported palladium (Pd/C) catalyst was prepared by impregnation of palladium chloride using incipient wetness technique, which was followed by liquid phase reduction with formaldehyde. Thereafter, Pd/C catalyst was characterized using X-ray diffractometery, scanning electron microscopy, atomic absorption spectroscopy, thermo gravimetry, differential scanning calorimetry and surface characterization techniques. Catalytic removal of carbon monoxide (CO) over Pd/C catalyst was studied under dynamic conditions. Pd/C catalyst was found to be continuously converting CO to CO(2) through the catalyzed reaction, i.e., CO+1/2O(2)→CO(2). Pd/C catalyst provided excellent protection against CO. Effects of palladium wt%, CO concentration, humidity, space velocity and reaction environment were also studied on the breakthrough behavior of CO. PMID:23083941

  10. Improved coal liquefaction using carbon-supported hydrogenation catalysts: Quarterly reports for the period 1 April-30 September 1986. [Mo/C catalyst

    SciTech Connect

    Scaroni, A.W.; Derbyshire, F.J.; Solar, J.M.; Abotsi, G.M.K.

    1986-09-01

    Characterization studies of sulfided Mo/C catalysts have been continued. The stoichiometry of unsupported molybdenum sulfide, prepared by laboratory procedures, was confirmed to have an S/Mo atomic ratio of 2.0 after reduction in hydrogen at 400/sup 0/C. Toluene chemisorption has been used as a technique to obtain some indication of the catalyst dispersion and the active surface areas of Mo/C catalysts. The measured toluene surface areas were found to correlate with the catalyst activities for coal asphaltene conversion. Investigations of the effect of hydrogen pressure (500 to 1500 psig) have been made of the activities of an Mo/Ambersorb XE-348 catalyst and an Mo/NH/sub 3/ pretreated Ambersorb XE-348 catalyst (pretreated for 1.5 h at 873 K) for coal liquids conversion. The catalyst prepared on the pretreated support showed higher activity for asphaltene conversion. For both catalysts, asphaltene conversion increased and coking propensity decreased with increasing H/sub 2/ pressure. Mo/C catalysts have been prepared on five different supports using a molybdenum acetylacetonate precursor. The supports were loaded by adsorption from aqueous solution rather than impregnation by the incipient wetness technique. Preliminary results indicate that some of the catalysts prepared by this procedure possess higher activities for thiophene HDS than those earlier reported using molybdenumtricarbonyltriacetonitrile as a precursor. 30 refs., 9 figs., 7 tabs.

  11. Corrosion-resistant catalyst supports for phosphoric acid fuel cells

    SciTech Connect

    Kosek, J.A.; Cropley, C.C.; LaConti, A.B.

    1990-01-01

    High-surface-area carbon blacks such as Vulcan XC-72 (Cabot Corp.) and graphitized carbon blacks such as 2700{degree}C heat-treated Black Pearls 2000 (HTBP) (Cabot Corp.) have found widespread applications as catalyst supports in phosphoric acid fuel cells (PAFCs). However, due to the operating temperatures and pressures being utilized in PAFCs currently under development, the carbon-based cathode catalyst supports suffer from corrosion, which decreases the performance and life span of a PAFC stack. The feasibility of using alternative, low-cost, corrosion-resistant catalyst support (CRCS) materials as replacements for the cathode carbon support materials was investigated. The objectives of the program were to prepare high-surface-area alternative supports and to evaluate the physical characteristics and the electrochemical stability of these materials. The O{sub 2} reduction activity of the platinized CRCS materials was also evaluated. 2 refs., 3 figs.

  12. CO oxidation studies over supported noble metal catalysts and single crystals: A review

    NASA Technical Reports Server (NTRS)

    Boecker, Dirk; Gonzalez, Richard D.

    1987-01-01

    The catalytic oxidation of CO over noble metal catalysts is reviewed. Results obtained on supported noble metal catalysts and single crystals both at high pressures and under UHV conditions are compared. The underlying causes which result in surface instabilities and multiple steady-state oscillations are considered, in particular, the occurrence of hot spots. CO islands of reactivity, surface oxide formation and phase transformations under oscillatory conditions are discussed.

  13. A combinatorial study on catalytic synergism in supported metal catalysts for fuel cell technology

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tetsuhiko; Ueda, Atsushi; Yamada, Yusuke; Shioyama, Hiroshi

    2004-02-01

    In order to accelerate the catalyst development for the increasing demand on the fuel cell technology, it has been attempted to adopt a combinatorial approach. The catalytic synergism, often observed on the supported metal catalysts for the fuel cell utilization, has been subjected to study. It is proposed herein that not only a comparison of catalysts in one reaction, but also the comparison of interrelated reactions by use of a common catalyst library brings about important information to elucidate the catalytic synergism. Preliminary results of the comparison between the water-gas shift reaction and the steam reforming of MeOH on a given set of catalyst library are presented. An important indicator to predict the serendipitous synergism is expected to be obtained from such information by use of artificial intelligence.

  14. Supported Molecular Catalysts: Synthesis, in-situ Characterization and Performance

    SciTech Connect

    Haw, James F

    2010-12-14

    The technological advantages of solid catalysts (robustness for operation at high temperatures, lack of corrosion, and ease of separation of products) can be combined with the advantages of soluble catalysts (e.g., selectivity) by synthesis of structurally discrete, nearly uniform catalysts on supports. Our goal is to synthesize, characterize, test, and model such catalysts and their reactions, thereby opening a door to unprecedented fundamental understanding of the properties of such materials. We employ molecular chemistry in nano-scale cages of zeolites and on surfaces of tailored porous solids for the precise synthesis of catalysts with discrete, uniform, well-defined sites, primarily mononuclear metal complexes, characterizing them (sometimes in the functioning state) with a broad range of complementary experimental techniques and using computational chemistry to interpret the results, map out reaction paths, provide bases for the design of new catalysts, improve methods of data analysis, and identify key experiments. The effort is directly in support of DOE's energy, environmental, and national security missions as well as the support of DOE's basic science mission to develop the tools and understanding needed for the success of the applied mission areas. The research is demonstrating progress in understanding, modeling, and controlling chemical reactivity at interfaces to develop a fundamental understanding of how to control catalytic reactions for a broad range of applications.

  15. Steam Reforming of Ethylene Glycol over MgAl₂O₄ Supported Rh, Ni, and Co Catalysts

    SciTech Connect

    Mei, Donghai; Lebarbier, Vanessa M.; Xing, Rong; Albrecht, Karl O.; Dagle, Robert A.

    2015-11-25

    Steam reforming of ethylene glycol (EG) over MgAl₂O₄ supported metal (15 wt.% Ni, 5 wt.% Rh, and 15 wt.% Co) catalysts were investigated using combined experimental and theoretical methods. Compared to highly active Rh and Ni catalysts with 100% conversion, the steam reforming activity of EG over the Co catalyst is comparatively lower with only 42% conversion under the same reaction conditions (500°C, 1 atm, 119,000 h⁻¹, S/C=3.3 mol). However, CH₄ selectivity over the Co catalyst is remarkably lower. For example, by varying the gas hour space velocity (GHSV) such that complete conversion is achieved for all the catalysts, CH₄ selectivity for the Co catalyst is only 8%, which is much lower than the equilibrium CH₄ selectivity of ~ 24% obtained for both the Rh and Ni catalysts. Further studies show that varying H₂O concentration over the Co catalyst has a negligible effect on activity, thus indicating zero-order dependence on H₂O. These experimental results suggest that the supported Co catalyst is a promising EG steam reforming catalyst for high hydrogen production. To gain mechanistic insight for rationalizing the lower CH₃ selectivity observed for the Co catalyst, the initial decomposition reaction steps of ethylene glycol via C-O, O-H, C-H, and C-C bond scissions on the Rh(111), Ni(111) and Co(0001) surfaces were investigated using density functional theory (DFT) calculations. Despite the fact that the bond scission sequence in the EG decomposition on the three metal surfaces varies, which leads to different reaction intermediates, the lower CH₄ selectivity over the Co catalyst, as compared to the Rh and Ni catalysts, is primarily due to the higher barrier for CH₄ formation. The higher S/C ratio enhances the Co catalyst stability, which can be elucidated by the facile water dissociation and an alternative reaction path to remove the CH species as a coking precursor via the HCOH formation. This work was financially supported by the United

  16. Molecular metal catalysts on supports: organometallic chemistry meets surface science.

    PubMed

    Serna, Pedro; Gates, Bruce C

    2014-08-19

    Recent advances in the synthesis and characterization of small, essentially molecular metal complexes and metal clusters on support surfaces have brought new insights to catalysis and point the way to systematic catalyst design. We summarize recent work unraveling effects of key design variables of site-isolated catalysts: the metal, metal nuclearity, support, and other ligands on the metals, also considering catalysts with separate, complementary functions on supports. The catalysts were synthesized with the goal of structural simplicity and uniformity to facilitate incisive characterization. Thus, they are essentially molecular species bonded to porous supports chosen for their high degree of uniformity; the supports are crystalline aluminosilicates (zeolites) and MgO. The catalytic species are synthesized in reactions of organometallic precursors with the support surfaces; the precursors include M(L)2(acetylacetonate)1-2, with M = Ru, Rh, Ir, or Au and the ligands L = C2H4, CO, or CH3. Os3(CO)12 and Ir4(CO)12 are used as precursors of supported metal clusters, and some such catalysts are made by ship-in-a-bottle syntheses to trap the clusters in zeolite cages. The simplicity and uniformity of the supported catalysts facilitate precise structure determinations, even in reactive atmospheres and during catalysis. The methods of characterizing catalysts in reactive atmospheres include infrared (IR), extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), and nuclear magnetic resonance (NMR) spectroscopies, and complementary methods include density functional theory and atomic-resolution aberration-corrected scanning transmission electron microscopy for imaging of individual metal atoms. IR, NMR, XANES, and microscopy data demonstrate the high degrees of uniformity of well-prepared supported species. The characterizations determine the compositions of surface metal complexes and clusters, including the ligands and the metal-support

  17. Molecular metal catalysts on supports: organometallic chemistry meets surface science.

    PubMed

    Serna, Pedro; Gates, Bruce C

    2014-08-19

    Recent advances in the synthesis and characterization of small, essentially molecular metal complexes and metal clusters on support surfaces have brought new insights to catalysis and point the way to systematic catalyst design. We summarize recent work unraveling effects of key design variables of site-isolated catalysts: the metal, metal nuclearity, support, and other ligands on the metals, also considering catalysts with separate, complementary functions on supports. The catalysts were synthesized with the goal of structural simplicity and uniformity to facilitate incisive characterization. Thus, they are essentially molecular species bonded to porous supports chosen for their high degree of uniformity; the supports are crystalline aluminosilicates (zeolites) and MgO. The catalytic species are synthesized in reactions of organometallic precursors with the support surfaces; the precursors include M(L)2(acetylacetonate)1-2, with M = Ru, Rh, Ir, or Au and the ligands L = C2H4, CO, or CH3. Os3(CO)12 and Ir4(CO)12 are used as precursors of supported metal clusters, and some such catalysts are made by ship-in-a-bottle syntheses to trap the clusters in zeolite cages. The simplicity and uniformity of the supported catalysts facilitate precise structure determinations, even in reactive atmospheres and during catalysis. The methods of characterizing catalysts in reactive atmospheres include infrared (IR), extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), and nuclear magnetic resonance (NMR) spectroscopies, and complementary methods include density functional theory and atomic-resolution aberration-corrected scanning transmission electron microscopy for imaging of individual metal atoms. IR, NMR, XANES, and microscopy data demonstrate the high degrees of uniformity of well-prepared supported species. The characterizations determine the compositions of surface metal complexes and clusters, including the ligands and the metal-support

  18. Unusual catalysts from molasses: synthesis, properties and application in obtaining biofuels from algae.

    PubMed

    Samorì, Chiara; Torri, Cristian; Fabbri, Daniele; Falini, Giuseppe; Faraloni, Cecilia; Galletti, Paola; Spera, Silvia; Tagliavini, Emilio; Torzillo, Giuseppe

    2012-08-01

    Acid catalysts were prepared by sulfonation of carbon materials obtained from the pyrolysis of sugar beet molasses, a cheap, viscous byproduct in the processing of sugar beets into sugar. Conditions for the pyrolysis of molasses (temperature and time) influenced catalyst performance; the best combination came from pyrolysis at low temperature (420 °C) for a relatively long time (8-15 h), which ensured better stability of the final material. The most effective molasses catalyst was highly active in the esterification of fatty acids with methanol (100 % yield after 3 h) and more active than common solid acidic catalysts in the transesterification of vegetable oils with 25-75 wt % of acid content (55-96 % yield after 8 h). A tandem process using a solid acid molasses catalyst and potassium hydroxide in methanol was developed to de-acidificate and transesterificate algal oils from Chlamydomonas reinhardtii, Nannochloropsis gaditana, and Phaeodactylum tricornutum, which contain high amounts of free fatty acids. The amount of catalyst required for the de-acidification step was influenced by the chemical composition of the algal oil, thus operational conditions were determined not only in relation to free fatty acids content in the oil, but according to the composition of the lipid extract of each algal species.

  19. Supported catalysts using nanoparticles as the support material

    DOEpatents

    Wong, Michael S.; Wachs, Israel E.; Knowles, William V.

    2010-11-02

    A process for making a porous catalyst, comprises a) providing an aqueous solution containing a nanoparticle precursor, b) forming a composition containing nanoparticles, c) adding a first catalytic component or precursor thereof and a pore-forming agent to the composition containing nanoparticles and allowing the first catalytic component, the pore-forming agent, and the nanoparticles form an organic-inorganic structure, d) removing water from the organic-inorganic structure; and e) removing the pore-forming agent from the organic-inorganic structure so as to yield a porous catalyst.

  20. TiO2 nanotubes supported NiW hydrodesulphurization catalysts: Characterization and activity

    NASA Astrophysics Data System (ADS)

    Palcheva, R.; Dimitrov, L.; Tyuliev, G.; Spojakina, A.; Jiratova, K.

    2013-01-01

    High surface area TiO2 nanotubes (Ti-NT) synthesized by alkali hydrothermal method were used as a support for NiW hydrodesulphurization catalyst. Nickel salt of 12-tungstophosphoric acid - Ni3/2PW12O40 was applied as oxide precursor of the active components. The catalyst was characterized by SBET, XRD, UV-vis DRS, Raman spectroscopy, XPS, TPR and HRTEM. The results obtained were compared with those for the NiW catalysts prepared over high surface area titania and alumina supports. A polytungstate phase evidenced by Raman spectroscopy was observed indicating the destruction of the initial heteropolyanion. The catalytic experiments revealed two times higher thiophene conversion on NiW catalyst supported on Ti-NT than those of catalysts supported on alumina and titania. Increased HDS activity of the NiW catalyst supported on Ti-NT could be related to a higher amount of W oxysulfide entities interacting with Ni sulfide particles as consequence of the electronic effects of the Ti-NT observed with XPS analysis.

  1. The generation of efficient supported (Heterogeneous) olefin metathesis catalysts

    SciTech Connect

    Grubbs, Robert H

    2013-04-05

    Over the past decade, a new family of homogeneous metathesis catalysts has been developed that will tolerate most organic functionalities as well as water and air. These homogeneous catalysts are finding numerous applications in the pharmaceutical industry as well as in the production of functional polymers. In addition the catalysts are being used to convert seed oils into products that can substitute for those that are now made from petroleum products. Seed oils are unsaturated, contain double bonds, and are a ready source of linear hydrocarbon fragments that are specifically functionalized. To increase the number of applications in the area of biomaterial conversion to petrol chemicals, the activity and efficiency of the catalysts need to be as high as possible. The higher the efficiency of the catalysts, the lower the cost of the conversion and a larger number of practical applications become available. Active supported catalysts were prepared and tested in the conversion of seed oils and other important starting materials. The outcome of the work was successful and the technology has been transferred to a commercial operation to develop viable applications of the discovered systems. A biorefinery that converts seed oils is under construction in Indonesia. The catalysts developed in this study will be considered for the next generation of operations.

  2. Hydrogen Production from Ethanol Steam Reforming over Supported Cobalt Catalysts

    SciTech Connect

    Lin, Sean S.-Y.; Kim, Do Heui; Ha, Su Y.

    2008-05-01

    Hydrogen production was carried out via ethanol steam reforming over supported cobalt catalysts. Wet incipient impregnation method was used to support cobalt on ZrO2, CeO2 and CeZrO4 followed by pre-reduction with H2 up to 677 °C to attain supported cobalt catalysts. It was found that the non-noble metal based 10 wt % Co/CeZrO4 is an efficient catalyst to achieve ethanol conversion of 100% and hydrogen yield of 82% (4.9 mol H2/ mol ethanol) at 450 oC , which is superior to 0.5 wt % Rh/Al2O3. The pre-reduction process is required to activate supported cobalt catalysts for high H2 yield of ethanol steam reforming. In addition, support effect is found significant for cobalt during ethanol steam reforming. 10% Co/CeO2 gave high H2 selectivity while suffered low conversion due to the poor thermal stability. In contrast to CeO2, 10 wt % Co/ZrO2 achieved high conversion while suffered lower H2 yield due to the production of methane. The synergistic effect of ZrO2 and CeO2 to promote high ethanol conversion while suppress methanation was observed when CeZrO4 was used as a support for cobalt. This synergistic effect of CeZrO4 support leads to a high hydrogen yield at low temperature for 10 wt % Co/CeZrO4 catalyst. Under the high weight hourly space velocity (WHSV) of ethanol (2.5 h-1), the hydrogen yield over 10 wt % Co/CeZrO4 was found to gradually decrease to 70% of its initial value in 6 hours possibly due to the coke formation on the catalyst.

  3. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    DOE PAGES

    Islam, A. E.; Zakharov, D.; Stach, E. A.; Nikoleav, P.; Amama, P. B.; Sargent, G.; Saber, S.; Huffman, D.; Erford, M.; Semiatin, S. L.; et al

    2015-09-16

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only inmore » the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. As a result, with the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.« less

  4. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    SciTech Connect

    Islam, A. E.; Zakharov, D.; Stach, E. A.; Nikoleav, P.; Amama, P. B.; Sargent, G.; Saber, S.; Huffman, D.; Erford, M.; Semiatin, S. L.; Maruyama, B.

    2015-09-16

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only in the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. As a result, with the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.

  5. Iron oxide/cassava starch-supported Ziegler-Natta catalysts for in situ ethylene polymerization.

    PubMed

    Chancharoenrith, Sittikorn; Kamonsatikul, Choavarit; Namkajorn, Montree; Kiatisevi, Supavadee; Somsook, Ekasith

    2015-03-01

    Iron oxide nanoparticles were used as supporters for in situ polymerization to produce polymer nanocomposites with well-dispersed fillers in polymer matrix. Iron oxide could be sustained as colloidal solutions by cassava starch to produce a good dispersion of iron oxide in the matrix. New supports based on iron oxide/cassava starch or cassava starch for Ziegler-Natta catalysts were utilized as heterogeneous supporters for partially hydrolyzed triethylaluminum. Then, TiCl4 was immobilized on the supports as catalysts for polymerization of ethylene. High-density polyethylene (HDPE) composites were obtained by the synthesized catalysts. A good dispersion of iron oxide/cassava starch particles was observed in the synthesized polymer matrix promoting to good mechanical properties of HDPE. PMID:25498641

  6. Spectroscopic studies of alumina-supported nickel catalysts precursors. Part I. Catalysts prepared from acidic solutions

    NASA Astrophysics Data System (ADS)

    Pasieczna-Patkowska, S.; Ryczkowski, J.

    2007-04-01

    Nickel alumina-supported catalysts were prepared from acidic solutions of nickel nitrate by the CIM and DIM methods (classical and double impregnation, respectively). The catalysts exhibited different nickel species due to the existence of various metal-support interaction strengths. As a consequence, the reducibility and other surface properties changed as a function of the preparation method. The aim of this work was to study the interaction between the metal precursor and the alumina surface by means of FT-IR (Fourier transform infrared) and FT-IR/PAS (FT-IR photoacoustic spectroscopy).

  7. Utilization of iron oxide film obtained by CVD process as catalyst to carbon nanotubes growth

    SciTech Connect

    Schnitzler, Mariane C.; Zarbin, Aldo J.G.

    2009-10-15

    Thin films of Fe{sub 2}O{sub 3} were obtained on silica glass substrates through the thermal decomposition of ferrocene in air. These films were characterized by Raman spectroscopy and X-ray diffractometry (XRD), and subsequently used as catalyst on the growth of carbon nanotubes, using benzene or a benzene solution of [Fe{sub 3}(CO){sub 12}] as precursor. A great amount of a black powder was obtained as product, identified as multi-walled carbon nanotubes by XRD, Raman spectroscopy and transmission electron microscopy. The carbon nanotubes formed through the pyrolysis of the [Fe{sub 3}(CO){sub 12}] solution were identified as structurally better than the one obtained by the pyrolysis of pristine benzene. - Graphical abstract: Thin films of Fe{sub 2}O{sub 3} were obtained on silica glass substrates through the thermal decomposition of ferrocene in air, and subsequently used as catalyst on the growth of carbon nanotubes.

  8. Synthesis And Characterization of Dendrimer-Derived Supported Iridium Catalysts

    SciTech Connect

    Jesus, Y.Lopez-De; Vicente, A.; Lafaye, G.; Marecot, P.; Williams, C.T.

    2009-05-19

    The synthesis of Ir/{gamma}-Al{sub 2}O{sub 3} using the dendrimer metal nanocomposites (DMN) approach is reported. Fourth generation hydroxyl-terminated polyamidoamine dendrimer was complexed with Ir{sup 3+} in aqueous solution and the process monitored using ultraviolet-visible and X-ray absorption spectroscopy. No discernible reduction of Ir{sup 3+} to form zerovalent nanoparticles was observed after bubbling hydrogen or adding NaBH{sub 4} into the complex solution. Standard wet impregnation of the DMN precursors were used to prepare Ir/{gamma}-Al{sub 2}O{sub 3}, which were compared with conventionally prepared samples. In situ transmission Fourier transform infrared spectroscopy during dendrimer thermal decomposition in different atmospheres and CO adsorption allowed for identification of catalyst activation treatments that expose the maximum metal surface area. The particle size distributions of these catalysts were investigated using high resolution transmission electron microscopy, revealing that all of the catalysts have small particle sizes (0.4-3 nm) with narrow distributions. An optimized oxidation/reduction treatment produced a DMN-derived supported catalyst with higher metallic dispersion. DMN-derived catalysts were tested for liquid-phase hydrogenation of benzonitrile, and show an increase in TOF with increasing dispersion. The selectivity toward dibenzylamine is affected by the catalyst preparation method, with the oxidation/reduction treatment resulting in lower selectivity.

  9. Novel zeolite-supported rhodium catalysts for ethanol steam reforming

    NASA Astrophysics Data System (ADS)

    Campos-Skrobot, Fabiana C.; Rizzo-Domingues, Roberta C. P.; Fernandes-Machado, Nádia R. C.; Cantão, Mauricio P.

    Renewable bioethanol is an interesting hydrogen source for fuel cells through steam reforming, but its C-C bond promotes parallel reactions, mainly coke and by-products formation. In this way, good ethanol reforming catalysts are still needed, which explains current research and development efforts around the world. Most catalysts proposed for ethanol reforming are based on oxide-supported noble metals with surface area below 100 m 2 g -1 and reaction temperatures above 500 °C. Novel Rh and Rh-K catalysts supported on NaY zeolite with surface area above 440 m 2 g -1 are presented in this work. Reaction temperature was fixed at 300 °C and H 2O/EtOH molar ratio and reagent flow were varied. Ethanol conversion varied from 50 to 99%, with average increase of 50% due to K promoter, and hydrogen production yield achieved 68%.

  10. Au and Pt nanoparticle supported catalysts tailored for H-2 production: From models to powder catalysts

    DOE PAGES

    T. D. Nguyen-Phan; Baber, A. E.; Rodriguez, J. A.; Senanayake, S. D.

    2015-12-10

    The use of metal nanoparticles (NPs), including Au and Pt, supported over oxides has been pivotal, and is ever increasing in enabling catalytic reactions which target the production of hydrogen. We review here the most recent works pertaining to the fundamental understanding of the structure, morphology, growth, characterization, and intrinsic phenomenological properties of Au– and Pt– based catalysts that influence the reactivity and selectivity to target hydrogen production. We draw on surface science and theoretical methods of model and powder catalysts using high resolution imaging, spectroscopy, scattering experiments, and theoretical studies. Based on these insights we identify key aspects ofmore » studies of supported metal nanoparticle (NP) catalysts for several reactions. The main focus of this review is on the intersection of catalytic chemistry related to the water-gas shift (WGS), oxygenate steam reforming (OSR), and solarassisted reactions (SAR).« less

  11. Au and Pt nanoparticle supported catalysts tailored for H-2 production: From models to powder catalysts

    SciTech Connect

    T. D. Nguyen-Phan; Baber, A. E.; Rodriguez, J. A.; Senanayake, S. D.

    2015-12-10

    The use of metal nanoparticles (NPs), including Au and Pt, supported over oxides has been pivotal, and is ever increasing in enabling catalytic reactions which target the production of hydrogen. We review here the most recent works pertaining to the fundamental understanding of the structure, morphology, growth, characterization, and intrinsic phenomenological properties of Au– and Pt– based catalysts that influence the reactivity and selectivity to target hydrogen production. We draw on surface science and theoretical methods of model and powder catalysts using high resolution imaging, spectroscopy, scattering experiments, and theoretical studies. Based on these insights we identify key aspects of studies of supported metal nanoparticle (NP) catalysts for several reactions. The main focus of this review is on the intersection of catalytic chemistry related to the water-gas shift (WGS), oxygenate steam reforming (OSR), and solarassisted reactions (SAR).

  12. Predicting catalyst-support interactions between metal nanoparticles and amorphous silica supports

    NASA Astrophysics Data System (ADS)

    Ewing, Christopher S.; Veser, Götz; McCarthy, Joseph J.; Lambrecht, Daniel S.; Johnson, J. Karl

    2016-10-01

    Metal-support interactions significantly affect the stability and activity of supported catalytic nanoparticles (NPs), yet there is no simple and reliable method for estimating NP-support interactions, especially for amorphous supports. We present an approach for rapid prediction of catalyst-support interactions between Pt NPs and amorphous silica supports for NPs of various sizes and shapes. We use density functional theory calculations of 13 atom Pt clusters on model amorphous silica supports to determine linear correlations relating catalyst properties to NP-support interactions. We show that these correlations can be combined with fast discrete element method simulations to predict adhesion energy and NP net charge for NPs of larger sizes and different shapes. Furthermore, we demonstrate that this approach can be successfully transferred to Pd, Au, Ni, and Fe NPs. This approach can be used to quickly screen stability and net charge transfer and leads to a better fundamental understanding of catalyst-support interactions.

  13. N2O decomposition by mesoporous silica supported Rh catalysts.

    PubMed

    Hussain, Murid; Fino, Debora; Russo, Nunzio

    2012-04-15

    Nitrous oxide (N(2)O), a greenhouse gas produced by nitric acid and adipic acid plants, damages the ozone layer and causes many environmental problems. The potential of MCM-41, SBA-15-Conventional (SBA-15-C), SBA-15-Spherical (SBA-15-S) and KIT-6 supported Rh catalysts has been explored at specific conditions for N(2)O decomposition in order to investigate the characteristics of new catalyst supports (SBA-15-S, KIT-6) for this application. A Rh metal loading of 1 wt% was impregnated to synthesize mesoporous silica supported Rh catalysts. The catalysts were characterized by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), N(2) adsorption/desorption, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and CO-chemisorption techniques. Of all the catalysts, Rh/SBA-15-S not only showed the highest activity, but also the best strength against ageing impact, O(2) inhibiting effect and long-term stability. The higher metal dispersion due to the smaller Rh particle size and a greater formation of Rh(+1) than Rh(0) or Rh(+3) on SBA-15-S compared to the other supports, favoured a higher N(2)O decomposition. The larger pore size of SBA-15-S in Rh/SBA-15-S might favour a better Rh access, diffusion and dispersion and lead to higher activity. The higher long-term stability of Rh/SBA-15-S, with preserved support characteristics, than the other supports indicates its significance.

  14. STRONTIUM AS AN EFFICIENT PROMOTER FOR SUPPORTED PALLADIUM HYDROGENATION CATALYSTS

    EPA Science Inventory

    The effect of strontium promotion is studied for a series of supported palladium catalysts such as Pd/zeolite-β, Pd/Al2O3, Pd/SiO2, Pd/hydrotalcite and Pd/MgO. Strontium is found to be an effective promoter for enhancing the metal area, perce...

  15. Perlite as a potential support for nickel catalyst in the process of sunflower oil hydrogenation

    NASA Astrophysics Data System (ADS)

    Radonjić, V.; Krstić, J.; Lončarević, D.; Jovanović, D.; Vukelić, N.; Stanković, M.; Nikolova, D.; Gabrovska, M.

    2015-12-01

    Investigation was conducted in order to elucidate the possibility of using perlite as support for preparation of nickel based precursor catalyst, potentially applicable in vegetable oil hydrogenation process. On three differently prepared expanded perlite, nickel catalyst precursors with identical Ni/SiO2 = 1.1 and Ni/Mg = 10/1 ratios were synthesized by precipitation-deposition method. Different techniques, SEM micrography, He-pycnometry, calcimetry, Hg-porosimetry, N2-physisorption, H2-chemisorption and temperature programmed reduction, were used for characterization of obtained samples. Determining the precursor texture, morphology and reducibility shows a successfully deposited nickel phase on perlite support with promising properties for vegetable oil hydrogenation. Chosen precursor was reduced and passivated in paraffin oil and the obtained catalyst showed significant catalytic activity in the test of sunflower oil hydrogenation.

  16. Preparation, characterization, and activity of α-Ti(HPO4)2 supported metallocene catalysts

    NASA Astrophysics Data System (ADS)

    Shi, Yasai; Yuan, Yuan; Xu, Qinghong; Yi, Jianjun

    2016-10-01

    A series of heterogeneous catalysts by loading metallocenes on surface of α-Ti(HPO4)2, a kind of solid acid, has been synthesized. Polymerization of alkenes, including ethylene and propylene, based on participation of the heterogeneous catalysts were studied and the results were compared to metallocenes supported on silica gel, α-Zr(HPO4)2 and clay. Higher catalytic activity, larger polymer molecular weight and narrow distribution of polymer molecular weight were obtained. Acidic strength of the support and its influence to metallocenes were studied to discover intrinsic factors in the polymerizations.

  17. High quality syngas production from microwave pyrolysis of rice husk with char-supported metallic catalysts.

    PubMed

    Zhang, Shuping; Dong, Qing; Zhang, Li; Xiong, Yuanquan

    2015-09-01

    This study aimed to obtain the maximum possible gas yield and the high quality syngas production from microwave pyrolysis of rice husk with rice husk char and rice husk char-supported metallic (Ni, Fe and Cu) catalysts. The rice husk char-supported metallic catalysts had developed pore structure and catalytic activity for gas productions and tar conversion. The temperature-rising characteristic, product yields, properties of gas products and tar conversion mechanisms were investigated. It was found that three rice husk char-supported metallic catalysts improved the microwave absorption capability and increased heating rate and final temperature. Rice husk char-supported Ni catalyst presented most effective effects on gas production, e.g. the gas yield is 53.9%, and the volume concentration of desired syngas is 69.96%. Rice husk char-supported Ni and Fe catalysts played pivotal roles in tar conversion that less heavy compounds can be detected along with the reduction of organic compound number.

  18. Study of Supported Particle Catalysts by Electron Microscopy Methods.

    NASA Astrophysics Data System (ADS)

    Yao, Ming-Hui

    1994-01-01

    The imaging conditions for electron microscopy study of supported ultrafine particle catalysts were investigated both theoretically and experimentally. Particles supported on crystalline supports were simulated and compared in high resolution electron microscopy (HREM) plan view and profile view as a function of defocus, voltage, aperture size, and support thickness. Possibilities and techniques for improving particle visibility and resolution by selecting objective lens defocus, Fourier filtering, and profile imaging were discussed. Various microscopy techniques, including HREM, high resolution scanning electron microscopy (HRSEM) and high-angle annular dark field imaging (HAADF) were used in parallel to study supported metal particle catalysts, and relative merits and shortcomings of each method were evaluated. It was pointed out that HREM profile imaging was the most effective technique for direct observation of microstructure, especially the surface structure of supported particles, whereas HRSEM and HAADF, respectively, were preferred for characterizing the surface topology of catalyst supports and the size distribution of supported particles. The HREM profile imaging method was used to study the strong metal-support interaction on various temperature treated Pt/CeO_2, and Pt/TiO _2 samples. Ti oxide monolayer on Pt/TiO _2 was observed, and related to the suppressed hydrogenolysis activity observed after high temperature reduction. No similar surface layer was observed on Pt/CeO_2 after high temperature treatment even though the hydrogenolysis activity was also strongly suppressed. It is proposed that decoration model is the main mechanism responsible for the SMSI for Pt/TiO _2, while morphological change and epitaxial relation is the major cause for the metal-support interaction for Pt/CeO_2. As well as surface structure, surface area was also studied in detail. A procedure for measuring surface area of supported particles by TEM was developed and applied to

  19. H2-SCR at low temperatures on noble metal supported catalysts

    NASA Astrophysics Data System (ADS)

    Mihet, Maria; Lazar, Mihaela Diana; Almasan, V.; Mirel, V.

    2012-02-01

    The selective catalytic reduction of NO using hydrogen as reducing agent (H2-SCR) is investigated on alumina supported noble metal catalysts at low temperatures (<350°C). Three noble metal supported catalysts (Pt/Al2O3, Pd/Al2O3, and Rh/Al2O3 with 1 wt.% metal loading), prepared by the incipient wetness impregnation method, were characterized by N2 adsorption-desorption at -196°C, NO-TPD, and H2-TPD. Catalytic activity tests of the investigated noble metal catalysts were performed under plug flow conditions, using a feed stream of 0.5% NO, 0.60% H2 and Ar as balance gas, at temperatures below 350°C, and a GHSV of 4500 h-1. Pt/Al2O3 and Pd/Al2O3 proved to be the most active catalysts for H2-SCR in terms of NO conversion, while the Pd catalyst showed the best N2 selectivity and N2 yield. NO conversion > 95% and N2 selectivity above 80% were obtained for each catalyst at 200°C.

  20. Preparation, reduction, and chemisorption behavior or niobia-supported nickel catalysts

    SciTech Connect

    Ko, E.I.; Hupp, J.M.; Rogan, F.H.; Wagner, N.J.

    1983-11-01

    Two niobia(Nb/sub 2/O/sub 5/)-supported nickel catalysts, containing 2 and 10 wt % nickel, were prepared by incipient wetness impregnation. Subsequent to reduction in hydrogen at 573 and 773 K for 1 h, these catalysts adsorbed a smaller amount of hydrogen at room temperature than silica-supported nickel catalysts similarly prepard. The suppression in hydrogen adsorption was more pronounced for the 2 wt % sample, which had a smaller average crystallite size as determined by x-ray line broadening measurement. Thermogravimetric analysis showed a facile reduction of the nickel precursor salt to metallic nickel. The chemisorption behavior was thus ascribed to strong metal-support interactions (SMSI). These results compared with similar data preveiouly obtained for titania(TiO/sub 2/)-supported nickel catalysts showed that niobia was a more interacting support than titania for nickel, when parameters such as average crystallite size and reduction treatment were comparable. The extent of interaction appeared to correlate with the reducibility of the oxide support, although quantitative thermogravimetric measurements suggested that the amount of support being reduced was small. 29 references, 6 figures, 3 tables.

  1. Role of Surface Cobalt Silicate in Single-Walled Carbon Nanotube Synthesis from Silica-Supported Cobalt Catalysts

    SciTech Connect

    Li, N.; Wang, X; Derrouiche, S; Haller, G; Pfefferle, L

    2010-01-01

    A silica-supported cobalt catalyst has been developed via incipient wetness impregnation for high-yield synthesis of single-walled carbon nanotubes (SWNTs). Co/SiO{sub 2}-impregnated catalysts have not been observed to be efficient for SWNT synthesis. Using an appropriately chosen precursor, we show that effective catalysts can be obtained for SWNT synthesis with yields up to 75 wt %. Detailed characterization indicates that the active sites for SWNT synthesis are small cobalt particles resulting from the reduction of a highly dispersed surface cobalt silicate species. The SWNTs produced by this catalyst are of high quality and easy to purify, and the process is simple and scalable.

  2. Role of surface cobalt silicate in single-walled carbon nanotube synthesis from silica-supported cobalt catalysts.

    PubMed

    Li, Nan; Wang, Xiaoming; Derrouiche, Salim; Haller, Gary L; Pfefferle, Lisa D

    2010-03-23

    A silica-supported cobalt catalyst has been developed via incipient wetness impregnation for high-yield synthesis of single-walled carbon nanotubes (SWNTs). Co/SiO2-impregnated catalysts have not been observed to be efficient for SWNT synthesis. Using an appropriately chosen precursor, we show that effective catalysts can be obtained for SWNT synthesis with yields up to 75 wt %. Detailed characterization indicates that the active sites for SWNT synthesis are small cobalt particles resulting from the reduction of a highly dispersed surface cobalt silicate species. The SWNTs produced by this catalyst are of high quality and easy to purify, and the process is simple and scalable. PMID:20201563

  3. Alumoxane precursors to designer catalysts and catalyst supports: Catalytic oxidation of dichloromethane

    SciTech Connect

    Cook, R.L.; Wong, C.; Harlan, C.J.; Kareiva, A.; Barron, A.R.

    1997-12-31

    Carboxylato-alumoxanes are aluminum-oxygen macromolecules consisting of a boehmite-like core surrounded by a sheath of carboxylate groups. The alumoxanes may be processed like organic polymers yet when fired are readily transformed into ceramic oxides. The alumoxanes can be precisely doped at room temperature in aqueous solution with a range of metal cations to prepare novel catalyst and catalyst support materials. The ease of introduction of multiple cations into the alumina lattice via the alumoxane approach provides a method for fine-tuning catalyst support properties and the fabrication of new catalyst materials themselves. Manganese-doped alumina (Mn-Al{sub 2}O{sub 3}), formed via the doping of an alumoxane with Mn at room temperature, is presented as an example where the alumoxane route provides enhanced catalytic performance over traditional approaches for the low temperature catalytic oxidation of chlorinated hydrocarbons (CHCs). The Mn-Al{sub 2}O{sub 3} formed from the Mn-doped alumoxane is compared with MnO{sub 2}/Al{sub 2}O{sub 3} prepared by the incipient wetness method, and commercial Pt/Al{sub 2}O{sub 3} for the oxidation/destruction of dichloromethane (CH{sub 2}Cl{sub 2}).

  4. Resonance Raman Spectroscopy of 0-A12O3- Supported Vanadium Oxide Catalysts for Butane Dehydrogenation

    SciTech Connect

    Wu, Zili; Kim, Hack-Sung; Stair, Peter

    2008-01-01

    This chapter contains sections titled: Introduction; Structure of Al{sub 2}O{sub 3}-Supported Vanadia Catalysts; Quantification of Surface VOx Species on Supported Vanadia Catalysts; Conclusion; Acknowledgements; and References.

  5. Characterisation of carbon supported platinum-ruthenium fuel cell catalysts of different degree of alloying

    NASA Astrophysics Data System (ADS)

    Albers, Peter W.; Weber, Winfried; Kunzmann, Kurt; Lopez, Marco; Parker, Stewart F.

    2008-12-01

    A series of PtRu/C fuel cell catalysts have been characterised by a combination of transmission electron microscopy, scanning transmission electron microscopy, energy dispersive X-ray microanalysis, X-ray diffraction and inelastic incoherent neutron scattering. The diffraction and microscopy studies show that a range of catalysts with different degrees of alloying can be obtained. It was possible to produce a strongly alloyed catalyst with average particle size below 10 nm. STEM/EDX results on the local compositions of the precious metal particles of different size and composition showed that the larger the particles the larger the Pt/Ru ratio. This indicates that ruthenium appears to prevent the agglomeration of the platinum particles to retain the smaller nanometer size. Inelastic neutron scattering spectroscopy shows that on the alloyed catalysts hydrogen occupies the threefold site, with no evidence for occupation of the on-top sites even under 800 mbar of hydrogen gas. Changes in the region of the out-of-plane C-H vibrational bands of the carbon black support indicated a contribution of the support during catalyst formation treatment by carbothermal reaction at lower temperature. Comparison of HREELS data from single crystal work and vibrational energy values from neutron spectroscopy allows to derive information on the site occupation of atomic hydrogen on finely divided precious metal particles supported on highly absorbing high surface area carbon blacks.

  6. Metaloxide--ZrO2 catalysts for the esterification and transesterification of free fatty acids and triglycerides to obtain bio-diesel

    DOEpatents

    Kim, Manhoe; Salley, Steven O.; Ng, K. Y. Simon

    2016-09-06

    Mixed metal oxide catalysts (ZnO, CeO, La2O3, NiO, Al203, SiO2, TiO2, Nd2O3, Yb2O3, or any combination of these) supported on zirconia (ZrO2) or hydrous zirconia are provided. These mixed metal oxide catalysts can be prepared via coprecipitation, impregnation, or sol-gel methods from metal salt precursors with/without a Zirconium salt precursor. Metal oxides/ZrO2 catalyzes both esterification and transesterification of oil containing free fatty acids in one batch or in single stage. In particular, these mixed metal oxides supported or added on zirconium oxide exhibit good activity and selectivity for esterification and transesterification. The low acid strength of this catalyst can avoid undesirable side reaction such as alcohol dehydration or cracking of fatty acids. Metal oxides/ZrO2 catalysts are not sensitive to any water generated from esterification. Thus, esterification does not require a water free condition or the presence of excess methanol to occur when using the mixed metal oxide catalyst. The FAME yield obtained with metal oxides/ZrO2 is higher than that obtained with homogeneous sulfuric acid catalyst. Metal oxides/ZrO2 catalasts can be prepared as strong pellets and in various shapes for use directly in a flow reactor. Furthermore, the pellet has a strong resistance toward dissolution to aqueous or oil phases.

  7. Supported bifunctional thioureas as recoverable and reusable catalysts for enantioselective nitro-Michael reactions

    PubMed Central

    Ceballos, Miriam; Maestro, Alicia; Sanz, Isabel

    2016-01-01

    Summary The catalytic activity of different supported bifunctional thioureas on sulfonylpolystyrene resins has been studied in the nitro-Michael addition of different nucleophiles to trans-β-nitrostyrene derivatives. The activity of the catalysts depends on the length of the tether linking the chiral thiourea to the polymer. The best results were obtained with the thiourea derived from (L)-valine and 1,6-hexanediamine. The catalysts can be used in only 2 mol % loading, and reused for at least four cycles in neat conditions. The ball milling promoted additions also worked very well. PMID:27340453

  8. Fundamental studies of hydrogen interaction with supported meta and bimetallic catalysts

    SciTech Connect

    Bhatia, S.

    1993-12-07

    The thesis is divided into 3 parts: interaction of H with silica supported Ru catalysts (high pressure in situ NMR), in situ NMR study of H interaction with supported Ru-group IB bimetallic catalysts, and in-situ NMR study of H effects on silica-supported Pt, Rh and Ru catalysts.

  9. Understanding properties of engineered catalyst supports using contact angle measurements and X-ray reflectivity.

    PubMed

    Amama, Placidus B; Islam, Ahmad E; Saber, Sammy M; Huffman, Daniel R; Maruyama, Benji

    2016-02-01

    There is significant interest in broadening the type of catalyst substrates that support the growth of high-quality carbon nanotube (CNT) carpets. In this study, ion beam bombardment has been utilized to modify catalyst substrates for CNT carpet growth. Using a combination of contact angle measurements (CAMs) and X-ray reflectivity (XRR) for the first time, new correlations between the physicochemical properties of pristine and engineered catalyst substrates and CNT growth behavior have been established. The engineered surfaces obtained after exposure to different degrees of ion beam damage have distinct physicochemical properties (porosity, layer thickness, and acid-base properties). The CAM data were analyzed using the van Oss-Chaudhury-Good model, enabling the determination of the acid-base properties of the substrate surfaces. For the XRR data, a Fourier analysis of the interference patterns enabled extraction of layer thickness, while the atomic density and interfacial roughness were extracted by analyzing the amplitude of the interference oscillations. The dramatic transformation of the substrate from "inactive" to "active" is attributed to a combined effect of substrate porosity or damage depth and Lewis basicity. The results reveal that the efficiency of catalyst substrates can be further improved by increasing the substrate basicity, if the minimum surface porosity is established. This study advances the use of a non-thermochemical approach for catalyst substrate engineering, as well as demonstrates the combined utility of CAM and XRR as a powerful, nondestructive, and reliable tool for rational catalyst design.

  10. Carbon-supported platinum alloy catalysts for phenol hydrogenation for making industrial chemicals

    SciTech Connect

    Srinivas, S.T.; Song, C.

    1999-07-01

    Phenol is available in large quantities in liquids derived from coal and biomass. Phenol hydrogenation is an industrially important reaction to produce cyclohexanone and cyclohexanol. Cyclohexane, cyclohexene and benzene are obtained as minor products in this reaction. Cyclohexanone is an important intermediate in the production of caprolactam for nylon 6 and cyclohexanol for adipic acid production. In USA, cyclohexanol and cyclohexanone are produced by benzene hydrogenation to cyclohexane over nickel or noble metal catalysts, followed by oxidation of cyclohexane to produce a mixture of cyclohexanol and cyclohexanone. Then cyclohexanol is dehydrogenated in the presence of Cu-Zn catalyst to cyclohexanone. Usually phenol hydrogenation is also carried out by using Ni catalyst in liquid phase. However, a direct single-step vapor phase hydrogenation of phenol to give cyclohexanone selectively is more advantageous in terms of energy savings and process economics, since processing is simplified and the endothermic step of cyclohexanol dehydrogenation can be avoided, as demonstrated by Montedipe and Johnson Matthey using promoted Pd/Al{sub 2}O{sub 3} catalyst. While it is not the purpose of this paper to dwell on the relative merits of these routes, it is necessary to mention that while using monometallic catalysts, generally the problem of catalyst deactivation of sintering as well as coking is frequently encountered. Addition and alloying of noble metal (e.g. Pt) with a second metal can result in a catalyst with better selectivity and activity in the reaction which is more resistant to deactivation. This paper presents the results on the single-step vapor phase hydrogenation of phenol over carbon-supported Pt-M (M=Cr, V, Zr) alloy catalysts to yield mainly cyclohexanone or cyclohexanol.

  11. Iron-based dehydrogenation catalysts supported on zirconia. I. Preparation and characterization

    SciTech Connect

    Boot, L.A.; Dillen, A.J. van; Geus, J.W.

    1996-09-15

    Zirconia-supported iron oxide catalysts were prepared by incipient wetness impregnation, followed by drying and calcination in air. Characterization of the catalysts were performed with electron microscopy combined with element analysis (HR-TEM/EDAX), X-ray diffraction (XRD), temperature-programmed reduction (TPR), and thermomagnetic analysis. A homogeneous distribution of the iron containing phase can be obtained by using the metal complexes ammonium iron (III) citrate or ammonium (III) iron EDTA. A simple salt, such as iron nitrate, proved to be less suitable for this purpose. By HR-TEM/EDAX, it was shown that coverage of the zirconia support had been accomplished. XRL showed that crystalline Fe{sub 2}O{sub 3} particles were formed at loadings {ge} 3 wt% Fe. TPR studies point to a bi-modal particle size distribution for the catalysts with 3 wt% Fe. Above this loading (>3 wt%) bulk properties prevail in TPR, whereas at lower loadings (<3 wt%) no distinct iron oxide species could be indicated. Magnetization measurements confirmed the results obtained by TPR. Catalysts prepared by coimpregnation of iron and potassium were also studied. TEM and XRD results show that a well-dispersed phase is obtained, but from XRD only potassium carbonate and no iron oxide or ferrite is evident. It was also found that the presence of potassium increases the onset of reduction of the iron phase by about 100{degrees}C. 25 refs., 11 figs., 2 tabs.

  12. Palladium supported on chitosan as a recyclable and selective catalyst for the synthesis of 2-phenyl ethanol.

    PubMed

    Dabbawala, Aasif A; Sudheesh, N; Bajaj, Hari C

    2012-03-14

    Two different chitosan supported palladium based catalysts were prepared, wherein dispersed palladium nanoparticles were obtained via chemical reduction supported on chitosan (Pd/CTS) and amine functionalized modified chitosan (Pd/AFCTS). The catalytic activity of the Pd-based catalysts, Pd/CTS and Pd/AFCTS, were assessed in the hydrogenation of styrene oxide to 2-phenyl ethanol. Both Pd-based catalysts enhanced the formation of the desired 2-phenyl ethanol in contrast to a conventional Pd/C catalyst without the assistance of inorganic or organic base. A considerable influence on the conversion and selectivity was observed in the case of Pd/AFCTS, consisting of palladium nanoparticles stabilized and dispersed on amine-functionalized chitosan matrix, affording complete conversion of styrene oxide with 98% selectivity to 2-phenyl ethanol. The catalyst Pd/AFCTS has also been recycled without significant loss of activity and selectivity.

  13. A novel catalyst support for DMFC: Onion-like fullerenes

    NASA Astrophysics Data System (ADS)

    Xu, Bingshe; Yang, Xiaowei; Wang, Xiaomin; Guo, Junjie; Liu, Xuguang

    Onion-like fullerenes (OLFs) were employed as the support for Pt in direct methanol fuel cells (DMFCs). A Pt/OLFs catalyst was synthesized by an impregnation-reduction method. Its structure and morphology were characterized by XRD, HRTEM and XPS. The Pt nanoparticles uniformly dispersed on OLFs had an average diameter of 3.05 nm, compared to 4.10 nm in Pt/Vulcan XC-72 prepared by the same method. XPS analysis revealed that Pt/OLF contained mostly Pt(0), with traces of Pt(II) and Pt(IV). Cyclic voltammetry showed that the real surface area of the Pt/OLFs was larger than Pt/XC-72 and the electrocatalytic activity of the Pt/OLFs catalyst, from the peak current value at around 0.78 V, outperformed the Pt/Vulcan XC-72 by about 20% in the electrooxidation of methanol.

  14. Supported Copper, Nickel and Copper-Nickel Nanoparticle Catalysts for Low Temperature Water-Gas-Shift Reaction

    NASA Astrophysics Data System (ADS)

    Lin, Jiann-Horng

    Hydrogen is being considered worldwide as a future replacement for gasoline, diesel fuel, natural gas in both the transportation and non-transportation sectors. Hydrogen is a versatile energy carrier that can be produced from a variety of widely available primary energy sources, including coal, natural gas, biomass, solar, wind, and nuclear power. Coal, the most abundant fossil fuel on the planet, is being looked at as the possible future major source of H2, due to the development of the integrated gasification combined cycle (IGCC) and integrated gasification fuel cell technologies (IGFC). The gasification of coal produces syngas consisting of predominately carbon monoxide and hydrogen with some remaining hydrocarbons, carbon dioxide and water. Then, the water-gas shift reaction is used to convert CO to CO2 and additional hydrogen. The present work describes the synthesis of model Cu, Ni and Cu-Ni catalysts prepared from metal colloids, and compares their behavior in the WGS reaction to that of traditional impregnation catalysts. Initially, we systematically explored the performance of traditional Cu, Ni and Cu-Ni WGS catalysts made by impregnation methods. Various bimetallic Cu-Ni catalysts were prepared by supported impregnation and compared to monometallic Cu and Ni catalysts. The presence of Cu in bimetallic catalysts suppressed undesirable methanation side reaction, while the Ni component was important for high WGS activity. Colloidal Cu, Ni and Cu-Ni alloy nanoparticles obtained by chemical reduction were deposited onto alumina to prepare supported catalysts. The resulting Cu and Ni nanoparticle catalysts were found to be 2.5 times more active in the WGS reaction per unit mass of active metal as compared to catalysts prepared by the conventional impregnation technique. The powder XRD and HAADF-STEM provided evidence supporting the formation of Cu-Ni particles containing the Cu core and Cu-Ni alloy shell. The XPS data indicated surface segregation of Cu in

  15. Selective hydrogenation of phenylacetylene on pumice-supported palladium catalysts

    SciTech Connect

    Duca, D; Liotta, L.F.; Deganello, G.

    1995-06-01

    The liquid phase, selective hydrogenation of phenylacetylene on pumice-supported palladium catalysts has been studied for a large range of metallic dispersions (14% {le} D{sub x} {le} 62%). The kinetics were analyzed by a five-parameter mathematical model. The mechanism was determined by the contribution of three basic routes involving only surface species in the rate-determining steps. The hydrogenation of phenylacetylene to styrene is {open_quotes}structure insensitive{close_quotes}. The disappearance rate constant of styrene produced from phenylacetylene is slightly lower than that of phenylacetylene and does not change in the case of the direct hydrogenation of styrene on the same Pd/pumice catalyst. However, Q{sub 3} (the ratio of adsorption constants K{sub Eb}/K{sub St}, where Eb is ethylbenzene and St is styrene), which is typical of a zero-order reaction (Q{sub 3}{r_arrow}0) in the case of the direct hydrogenation, is practically constant (Q{sub 3}{approx_equal}2) in the case of dehydrogenation of styrene produced from phenylacetylene. This is explained by the formation, in the latter case, of polymeric species or other species which are difficult to hydrogenate and by the consequent occupation of active sites so that the adsorption of styrene is inhibited. These species are also thought to be responsible for a flattening effect in the catalytic activity. Activity and selectivity data are critically analyzed and compared with those reported for other supported palladium catalysts. Since Pd/pumice catalysts also show high activity and selectivity at high metal dispersions, they could be of interest for industrial applications. 48 refs., 9 figs., 3 tabs.

  16. NOx reduction Activity over Phosphate-supported Platinum Catalysts with Hydrogen under Oxygen-rich Condition

    NASA Astrophysics Data System (ADS)

    Itoh, M.; Takehara, M.; Saito, M.; Machida, K.

    2011-10-01

    The phosphate supported Pt catalysts (Pt/AlPO4, Pt/CePO4, Pt/CeP2O7, Pt/SnP2O7, Pt/TiP2O7, Pt/Zn3(PO4)2) were prepared by a conventional impregnation method to evaluate their selective catalytic reduction activity of NOx under excess oxygen condition. Among them, good NOx reduction activity was obtained on the Pt/AlPO4 catalyst. Specific adsorption species during the NOx reduction were checked by a diffuse reflectance infrared Fourier transform spectrum (DRIFTs) measurement to examine the reaction mechanism. Also NH3 temperature programmed desorption measurements were performed for all catalysts and their catalytic properties were discussed from the viewpoints of solid acidity.

  17. Electrochemical Catalyst-Support Effects and Their Stabilizing Role for IrOx Nanoparticle Catalysts during the Oxygen Evolution Reaction.

    PubMed

    Oh, Hyung-Suk; Nong, Hong Nhan; Reier, Tobias; Bergmann, Arno; Gliech, Manuel; Ferreira de Araújo, Jorge; Willinger, Elena; Schlögl, Robert; Teschner, Detre; Strasser, Peter

    2016-09-28

    Redox-active support materials can help reduce the noble-metal loading of a solid chemical catalyst while offering electronic catalyst-support interactions beneficial for catalyst durability. This is well known in heterogeneous gas-phase catalysis but much less discussed for electrocatalysis at electrified liquid-solid interfaces. Here, we demonstrate experimental evidence for electronic catalyst-support interactions in electrochemical environments and study their role and contribution to the corrosion stability of catalyst/support couples. Electrochemically oxidized Ir oxide nanoparticles, supported on high surface area carbons and oxides, were selected as model catalyst/support systems for the electrocatalytic oxygen evolution reaction (OER). First, the electronic, chemical, and structural state of the catalyst/support couple was compared using XANES, EXAFS, TEM, and depth-resolved XPS. While carbon-supported oxidized Ir particle showed exclusively the redox state (+4), the Ir/IrOx/ATO system exhibited evidence of metal/metal-oxide support interactions (MMOSI) that stabilized the metal particles on antimony-doped tin oxide (ATO) in sustained lower Ir oxidation states (Ir(3.2+)). At the same time, the growth of higher valent Ir oxide layers that compromise catalyst stability was suppressed. Then the electrochemical stability and the charge-transfer kinetics of the electrocatalysts were evaluated under constant current and constant potential conditions, where the analysis of the metal dissolution confirmed that the ATO support mitigates Ir(z+) dissolution thanks to a stronger MMOSI effect. Our findings raise the possibility that MMOSI effects in electrochemistry-largely neglected in the past-may be more important for a detailed understanding of the durability of oxide-supported nanoparticle OER catalysts than previously thought. PMID:27549910

  18. Electrochemical Catalyst-Support Effects and Their Stabilizing Role for IrOx Nanoparticle Catalysts during the Oxygen Evolution Reaction.

    PubMed

    Oh, Hyung-Suk; Nong, Hong Nhan; Reier, Tobias; Bergmann, Arno; Gliech, Manuel; Ferreira de Araújo, Jorge; Willinger, Elena; Schlögl, Robert; Teschner, Detre; Strasser, Peter

    2016-09-28

    Redox-active support materials can help reduce the noble-metal loading of a solid chemical catalyst while offering electronic catalyst-support interactions beneficial for catalyst durability. This is well known in heterogeneous gas-phase catalysis but much less discussed for electrocatalysis at electrified liquid-solid interfaces. Here, we demonstrate experimental evidence for electronic catalyst-support interactions in electrochemical environments and study their role and contribution to the corrosion stability of catalyst/support couples. Electrochemically oxidized Ir oxide nanoparticles, supported on high surface area carbons and oxides, were selected as model catalyst/support systems for the electrocatalytic oxygen evolution reaction (OER). First, the electronic, chemical, and structural state of the catalyst/support couple was compared using XANES, EXAFS, TEM, and depth-resolved XPS. While carbon-supported oxidized Ir particle showed exclusively the redox state (+4), the Ir/IrOx/ATO system exhibited evidence of metal/metal-oxide support interactions (MMOSI) that stabilized the metal particles on antimony-doped tin oxide (ATO) in sustained lower Ir oxidation states (Ir(3.2+)). At the same time, the growth of higher valent Ir oxide layers that compromise catalyst stability was suppressed. Then the electrochemical stability and the charge-transfer kinetics of the electrocatalysts were evaluated under constant current and constant potential conditions, where the analysis of the metal dissolution confirmed that the ATO support mitigates Ir(z+) dissolution thanks to a stronger MMOSI effect. Our findings raise the possibility that MMOSI effects in electrochemistry-largely neglected in the past-may be more important for a detailed understanding of the durability of oxide-supported nanoparticle OER catalysts than previously thought.

  19. Pumice-supported palladium catalysts. II. Selective hydrogenation of 1,3-cyclooctadiene

    SciTech Connect

    Deganello, G.; Duca, D.; Martorana, A.; Fagherazzi, G.; Benedetti, A.

    1994-11-01

    Two series of pumice-supported palladium catalysts (W and U) have been tested in the liquid-phase selective hydrogenation of 1,3-cyclooctadiene (1,3-COD) to cyclooctene (COE). The two series of catalysts, obtained via organometallic precursors, differ in the preparation procedure. In the W series the reduced metal derives only from Pd intermediates anchored to pumice; in the U series the metal originates also from unreacted Pd(allyl){sub 2} species in solution. The U catalysts present agglomerated metal particles. The hydrogenations, free of any diffusion problems, were performed at constant pressure of hydrogen (1 atm). Analysis of the data suggests that the rate-determining step is a surface reaction involving activated 1,3-COD. Selectivity is very high since cyclooctane (COA) is detected only when all 1,3-COD is consumed. The turnover frequencies (TOF{sub 1}) of the first semihydrogenation do not change with palladium dispersion, determined from the Porod diameter D{sub p} up to D{sub x} < 35%, but thereafter they slowly decrease. Experimental evidence, such as the absence of oxidation when exposed to air and the negative shift of binding energy of the Pd 3d level in XPS measurements, indicate a different behavior of the present catalysts in comparison with other supported palladium catalysts. These differences are attributed to the presence of alkali metal ions (Na{sup +}, K{sup +}) on the pumice surface and are explained on the basis of the change in electron density and/or in the ensemble size of the supported palladium. Several interesting features and differences in activity and selectivity between the two series of catalysts can be accounted for by the presence of agglomerated palladium particles in the U series and are discussed in terms of the evolution of parameters with dispersion. 40 refs., 8 figs., 2 tabs.

  20. Strategies for designing supported gold-palladium bimetallic catalysts for the direct synthesis of hydrogen peroxide.

    PubMed

    Edwards, Jennifer K; Freakley, Simon J; Carley, Albert F; Kiely, Christopher J; Hutchings, Graham J

    2014-03-18

    synthesis and hydrogenation of hydrogen peroxide that are different, in contrast to monometallic palladium in which synthesis and hydrogenation operate at the same sites. Through treatment of the support with acids prior to the deposition of the gold-palladium bimetallic particles, we can obtain a catalyst that can make hydrogen peroxide at a very high rate without decomposing or hydrogenating the product. This innovation opens up the way to design improved catalysts for the direct synthesis process, and these possibilities are described in this Account.

  1. Synthesis and Characterization of Cluster-Derived Supported Bimetallic Catalysts

    SciTech Connect

    Adams, Richard D; Amiridis, Michael D

    2008-10-10

    New procedures have been developed for synthesizing di- and tri-metallic cluster complexes. The chemical properties of the new complexes have been investigated, particularly toward the activation of molecular hydrogen. These complexes were then converted into bi- and tri-metallic nanoparticles on silica and alumina supports. These nanoparticles were characterized by electron microscopy and were then tested for their ability to produce catalytic hydrogenation of unsaturated hydrocarbons and for the preferential oxidation of CO in the presence of hydrogen. The bi- and tri-metallic nanoparticles exhibited far superior activity and selectivity as hydrogenation catalysts when compared to the individual metallic components. It was found that the addition of tin greatly improved the selectivity of the catalysts for the hydrogenation of polyolefins. The addition of iron improves the catalysts for the selective oxidation of CO by platinum in the presence of hydrogen. The observations should lead to the development of lower cost routes to molecules that can be used to produce polymers and plastics for use by the general public and for procedures to purify hydrogen for use as an alternative energy in the hydrogen economy of the future.

  2. Optimization of carbon-supported platinum cathode catalysts for DMFC operation.

    SciTech Connect

    Zhu, Y.; Brosha, E. L.; Zelenay, P.

    2002-01-01

    In this paper, we describe performance and optimization of carbon-supported cathode catalysts at low platinum loading. We find that at a loading below 0.6 mg cm-2 carbon-supported platinum outperforms platinum black as a DMFC cathode catalyst. A catalyst with a 1:1 volume ratio of the dry NafionTM to the electronically conducting phase (platinum plus carbon support) provides the best performance in oxygen reduction reaction. Thanks to improved catalyst utilization, carbon-supported catalysts with a platinum content varying from 40 wt% to 80 wt% deliver very good DMFC performance, even at relatively modest precious metal loadings investigated in this work.

  3. Magnetic Carbon Supported Palladium Nanoparticles: An Efficient and Sustainable Catalyst for Hydrogenation Reactions

    EPA Science Inventory

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; the catalyst can be used for the hydrogenation of alkenes and reduction of aryl nitro compounds.

  4. Studies of Immobilized Homogeneous Metal Catalysts on Silica Supports

    SciTech Connect

    Keith James Stanger

    2003-05-31

    The tethered, chiral, chelating diphosphine rhodium complex, which catalyzes the enantioselective hydrogenation of methyl-{alpha}-acetamidocinnamate (MAC), has the illustrated structure as established by {sup 31}P NMR and IR studies. Spectral and catalytic investigations also suggest that the mechanism of action of the tethered complex is the same as that of the untethered complex in solution. The rhodium complexes, [Rh(COD)H]{sub 4}, [Rh(COD){sub 2}]{sup +}BF{sub 4}{sup -}, [Rh(COD)Cl]{sub 2}, and RhCl{sub 3} {center_dot} 3H{sub 2}O, adsorbed on SiO{sub 2} are optimally activated for toluene hydrogenation by pretreatment with H{sub 2} at 200 C. The same complexes on Pd-SiO{sub 2} are equally active without pretreatments. The active species in all cases is rhodium metal. The catalysts were characterized by XPS, TEM, DRIFTS, and mercury poisoning experiments. Rhodium on silica catalyzes the hydrogenation of fluorobenzene to produce predominantly fluorocyclohexane in heptane and 1,2-dichloroethane solvents. In heptane/methanol and heptane/water solvents, hydrodefluorination to benzene and subsequent hydrogenation to cyclohexane occurs exclusively. Benzene inhibits the hydrodefluorination of fluorobenzene. In DCE or heptane solvents, fluorocyclohexane reacts with hydrogen fluoride to form cyclohexene. Reaction conditions can be chosen to selectively yield fluorocyclohexane, cyclohexene, benzene, or cyclohexane. The oxorhenium(V) dithiolate catalyst [-S(CH{sub 2}){sub 3}s-]Re(O)(Me)(PPh{sub 3}) was modified by linking it to a tether that could be attached to a silica support. Spectroscopic investigation and catalytic oxidation reactivity showed the heterogenized catalyst's structure and reactivity to be similar to its homogeneous analog. However, the immobilized catalyst offered additional advantages of recyclability, extended stability, and increased resistance to deactivation.

  5. Single atom catalysts on amorphous supports: A quenched disorder perspective

    SciTech Connect

    Peters, Baron; Scott, Susannah L.

    2015-03-14

    Phenomenological models that invoke catalyst sites with different adsorption constants and rate constants are well-established, but computational and experimental methods are just beginning to provide atomically resolved details about amorphous surfaces and their active sites. This letter develops a statistical transformation from the quenched disorder distribution of site structures to the distribution of activation energies for sites on amorphous supports. We show that the overall kinetics are highly sensitive to the precise nature of the low energy tail in the activation energy distribution. Our analysis motivates further development of systematic methods to identify and understand the most reactive members of the active site distribution.

  6. Sustainable catalyst supports for carbon dioxide gas adsorbent

    NASA Astrophysics Data System (ADS)

    Mazlee, M. N.

    2016-07-01

    The adsorption of carbon dioxide (CO2) become the prime attention nowadays due to the fact that increasing CO2 emissions has been identified as a contributor to global climate change. Major sources of CO2 emissions are thermoelectric power plants and industrial plants which account for approximately 45% of global CO2 emissions. Therefore, it is an urgent need to develop an efficient CO2 reduction technology such as carbon capture and storage (CCS) that can reduce CO2 emissions particularly from the energy sector. A lot of sustainable catalyst supports have been developed particularly for CO2 gas adsorbent applications.

  7. Graphyne-supported single Fe atom catalysts for CO oxidation.

    PubMed

    Wu, Ping; Du, Pan; Zhang, Hui; Cai, Chenxin

    2015-01-14

    Single atom catalysts (SACs) are highly desirable for the effort to maximize the efficiency of metal atom use. However, the synthesis of SACs is a major challenge that largely depends on finding an appropriate supporting substrate to achieve a well-defined and highly dispersed single atom. This work demonstrates that, based on the density functional theory (DFT) calculation, graphyne is a good substrate for single Fe atom catalysts. The Fe atom can be tightly embedded in a graphyne sheet with a high binding energy of ∼4.99 eV and a high diffusion energy barrier of ∼1.0 eV. The graphyne-supported Fe (Fe-graphyne) SAC shows high catalytic activity towards CO oxidation, which is often regarded as a prototype reaction for designing atomic-scale catalysts. We studied the adsorption characteristics of CO and O2 on Fe-graphyne SACs, and simulated the reaction mechanism of CO oxidation involving Fe-graphyne. The simulation results indicate that O2 binding on Fe-graphyne is much stronger than that of CO, and the adsorbed O2 prior to occupy the Fe atoms as the co-existence of O2 and CO. The reaction of CO oxidation by adsorbed O2 on Fe-graphyne SACs favors to proceed via the Eley-Rideal (ER) mechanism with the energy barrier of as low as ∼0.21 eV in the rate-limiting step. Calculation of the electronic density of states (DOS) of each reaction step demonstrates that the strong interaction of the O2 and Fe adatom promotes the CO oxidation on Fe-graphyne SACs. The results presented here suggest that graphyne could provide a unique platform to synthesize SACs, and the Fe-graphyne SACs could find potential use in solving the growing environmental problems caused by CO emission from automobiles and industrial processes, in removing CO contamination from vehicle exhaust and in fuel cells.

  8. Oxidation of citronellal to citronellic acid by molecular oxygen using supported gold catalysts.

    PubMed

    Martin, A; Armbruster, U; Decker, D; Gedig, T; Köckritz, A

    2008-01-01

    The oxidation of citronellal to citronellic acid was studied using molecular oxygen as oxidant and gold-containing supported catalysts under aqueous conditions. The reactions were carried out at 60-90 degrees C, with 200 Nml min(-1) O2 and at pH values from 9 to 12. The alumina- or titania-supported catalysts were synthesized according to the deposition-precipitation procedure using urea or NaOH. Mechanistic studies have revealed that radical-initiated reactions lead to undesired by-products especially at pH <9, that is, the C=C bond is attacked and a diol is primarily formed probably via an epoxide intermediate. This side reaction can be suppressed to a large extent by increasing the pH to 12 and by raising the catalyst/oxygen ratio. Furthermore, detailed studies on the influence of reaction time, pH value, reactant concentration and amount of catalyst show that citronellic acid can be obtained in over 90% yield with total conversion of citronellal at pH 12 and a temperature of 80 degrees C.

  9. Function of titanium oxide coated on carbon nanotubes as support for platinum catalysts

    NASA Astrophysics Data System (ADS)

    Ying, Qiling; Naidoo, Sivapregasen; Vaivars, Guntars

    2015-09-01

    This study describes the outcome of the synthesis of laboratory-made (HM) Pt monometallic, binary and ternary catalysts supported on TiO2/CNT (carbon nanotubes) and based on using the dry-mix method of organometallic chemical vapor deposition (OMCVD). These multicomponent catalysts were investigated and compared with commercial Johnson Matthey (JM) catalysts for electrochemical applications.

  10. Zirconia supported catalysts for bioethanol steam reforming: Effect of active phase and zirconia structure

    NASA Astrophysics Data System (ADS)

    Benito, M.; Padilla, R.; Rodríguez, L.; Sanz, J. L.; Daza, L.

    Three new catalysts have been prepared in order to study the active phase influence in ethanol steam reforming reaction. Nickel, cobalt and copper were the active phases selected and were supported on zirconia with monoclinic and tetragonal structure, respectively. To characterize the behaviour of the catalysts in reaction conditions a study of catalytic activity with temperature was performed. The highest activity values were obtained at 973 K where nickel and cobalt based catalysts achieved an ethanol conversion of 100% and a selectivity to hydrogen close to 70%. Nickel supported on tetragonal zirconia exhibited the highest hydrogen production efficiency, higher than 4.5 mol H 2/mol EtOH fed. The influence of steam/carbon (S/C) ratio on product distribution was another parameter studied between the range 3.2-6.5. Nickel supported on tetragonal zirconia at S/C = 3.2 operated at 973 K without by-product production such as ethylene or acetaldehyde. In order to consider a further application in an ethanol processor, a long-term reaction experiment was performed at 973 K, S/C = 3.2 and atmospheric pressure. After 60 h, nickel supported on tetragonal zirconia exhibited high stability and selectivity to hydrogen production.

  11. Microcalorimetric study of silica- and zeolite-supported platinum catalysts

    SciTech Connect

    Sharma, S.B.; Dumesic, J.A. ); Miller, J.T. )

    1994-07-01

    Microcalorimetric measurements of the differential heats of hydrogen and carbon monoxide adsorption versus adsorbate coverate were made at 403 K for platinum supported on silica, magnesia/alumina, L-zeolite, Y-zeolite, and ZSM-5. The differential heats at zero coverage for hydrogen and carbon monoxide adsorption were 90 and 140 kJ/mol, respectively, for platinum supported on silica and nonacidic zeolites. The differential heats were large by approximately 20 kJ/mol for hydrogen and carbon monoxide adsorption on platinum particles supported on basis supports such as potassium/silica, magnesia/alumina, and zeolites containing basic cations (K[sup +], Ba[sup 2+]) exchanged in excess of the zeolite framework aluminum content. The microcalorimetric results suggest that the high paraffin aromatization activity and selectivity observed for L-zeolite-supported platinum catalysts do not appear to be caused solely by changes in the adsorptive properties of the cluster-size platinum particles located within the zeolite. 35 refs., 10 figs., 2 tabs.

  12. Understanding properties of engineered catalyst supports using contact angle measurements and X-Ray reflectivity

    NASA Astrophysics Data System (ADS)

    Amama, Placidus B.; Islam, Ahmad E.; Saber, Sammy M.; Huffman, Daniel R.; Maruyama, Benji

    2016-01-01

    There is significant interest in broadening the type of catalyst substrates that support the growth of high-quality carbon nanotube (CNT) carpets. In this study, ion beam bombardment has been utilized to modify catalyst substrates for CNT carpet growth. Using a combination of contact angle measurements (CAMs) and X-ray reflectivity (XRR) for the first time, new correlations between the physicochemical properties of pristine and engineered catalyst substrates and CNT growth behavior have been established. The engineered surfaces obtained after exposure to different degrees of ion beam damage have distinct physicochemical properties (porosity, layer thickness, and acid-base properties). The CAM data were analyzed using the van Oss-Chaudhury-Good model, enabling the determination of the acid-base properties of the substrate surfaces. For the XRR data, a Fourier analysis of the interference patterns enabled extraction of layer thickness, while the atomic density and interfacial roughness were extracted by analyzing the amplitude of the interference oscillations. The dramatic transformation of the substrate from ``inactive'' to ``active'' is attributed to a combined effect of substrate porosity or damage depth and Lewis basicity. The results reveal that the efficiency of catalyst substrates can be further improved by increasing the substrate basicity, if the minimum surface porosity is established. This study advances the use of a non-thermochemical approach for catalyst substrate engineering, as well as demonstrates the combined utility of CAM and XRR as a powerful, nondestructive, and reliable tool for rational catalyst design.There is significant interest in broadening the type of catalyst substrates that support the growth of high-quality carbon nanotube (CNT) carpets. In this study, ion beam bombardment has been utilized to modify catalyst substrates for CNT carpet growth. Using a combination of contact angle measurements (CAMs) and X-ray reflectivity (XRR) for the

  13. Supported fischer-tropsch catalyst and method of making the catalyst

    DOEpatents

    Dyer, Paul N.; Pierantozzi, Ronald; Withers, Howard P.

    1987-01-01

    A Fischer-Tropsch catalyst and a method of making the catalyst for a Fischer-Tropsch process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas, is selectively converted to higher hydrocarbons of relatively narrow carbon number range is disclosed. In general, the selective and notably stable catalyst, consist of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of a Fischer-Tropsch metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.

  14. The structure and activity of titania supported cobalt catalysts

    SciTech Connect

    Ho Suiwen; Houalla, M.; Hercules, D.M. ); Cruz, J.M. )

    1992-05-01

    A series of titania supported cobalt catalysts (0.5-6%) were prepared by incipient wetness impregnation, and were characterized by ESCA, XRD, and hydrogen chemisorption. After calcination at 400 C, a surface CoTiO[sub 3]-like phase was the main species present in the 0.5 and 1% cobalt catalysts. For higher cobalt loadings, discrete Co[sub 3]O[sub 4] particles were formed in addition to surface CoTiO[sub 3]. ESCA indicates that after reduction the cobalt metal particle size (6-13 nm) increases with increasing cobalt loadings, but does not vary with reduction temperature (400-500 C). Hydrogen chemisorption was found to be activated and suppressed. The extent of hydrogen chemisorption suppression increases with increasing reduction temperature and decreasing cobalt particle size. The turnover frequency (based on cobalt dispersion derived from ESCA) for benzene and CO hydrogenation decreases with increasing reduction temperature and decreasing cobalt particle size. The decline in activity correlates with the extent of suppression of H[sub 2] chemisorption. The results were interpreted in terms of a decrease in the fraction of exposed surface cobalt due to site blocking by reduced TiO[sub 3] moieties.

  15. Influence of the synthesis method on the properties of Pt catalysts supported on carbon nanocoils for ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Lázaro, M. J.; Celorrio, V.; Calvillo, L.; Pastor, E.; Moliner, R.

    Pt electrocatalysts supported on carbon nanocoils (CNCs) were prepared by the sodium borohydride (BM), formic acid (FAM) and ethylene glycol (EGM) reduction methods in order to determine the influence of the synthesis method on the physicochemical and electrochemical properties of Pt/CNC catalysts. For this purpose, physicochemical properties of these materials were studied by means of energy dispersive X-ray analyses, X-ray diffraction and N 2-physisorption, whereas their electrochemical activity towards ethanol and carbon monoxide oxidation was studied using cyclic voltammetry and chronoamperometry. Furthermore, in order to complete this study, the results obtained for Pt/CNC catalysts were compared with those obtained for Pt catalysts supported on Vulcan XC-72R (commercial support) prepared by the same methods and for the commercial Pt/C catalysts from E-TEK. Results showed that, for all studied methods, CO oxidation occurred at more negative potentials on Pt/CNC catalysts than on Pt/Vulcan and Pt/C E-TEK ones. On the other hand, higher current densities for the ethanol electrooxidation were obtained when CNCs were used as support for BM and EGM. It is concluded that optimizing the synthesis method on CNC, materials with enhanced electrooxidation properties could be developed.

  16. Effect of multiwalled carbon nanotubes with different specific surface areas on the stability of supported Pt catalysts

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Wang, Zhen-Bo; Sui, Xu-Lei; Yin, Ge-Ping

    2014-01-01

    Pt/MCNTs catalysts have been synthesized by the microwave-assisted polyol process (MAPP). Effect of multiwalled carbon nanotubes (MCNTs) with different specific surface areas on the stability of supported Pt catalysts has been investigated. The obtained Pt/MCNTs catalysts are characterized by X-ray diffraction (XRD), Energy dispersive analysis of X-ray (EDAX), transmission electron microscopy (TEM), cyclic voltammograms (CV), electrochemical impedance spectroscopy (EIS), and accelerated potential cycling tests (APCT) to present the stability of the catalysts. The experimental results indicate that the original electrochemically active specific surface areas (ESA) and the activity for methanol electrooxidation of the catalysts decrease with the decreasing of the specific surface areas of MCNTs, and the Pt/MCNTs-250 (MCNTs with pristine specific surface of 250 m2 g-1, below the same) catalysts show the best initial electrochemical activity. However, the activity of the Pt/MCNTs-250 is very close to that of the Pt/MCNTs-120 and the stability of the Pt/MCNTs-60 catalyst is the best after 1000 cycles APCT. Considering the factors of the activity and stability comprehensively, the optimized specific surface area of MCNTs in the Pt/MCNTs catalysts is 120 m2 g-1.

  17. Metallocene supported core@LDH catalysts for slurry phase ethylene polymerisation.

    PubMed

    Buffet, Jean-Charles; Byles, Coral F H; Felton, Ryan; Chen, Chunping; O'Hare, Dermot

    2016-03-14

    We report the synthesis of solid catalysts based on a zirconocene supported on either silica@AMO-LDH or zeolite@AMO-LDH for the slurry phase polymerisation of ethylene. The hybrid catalysts demonstrate synergistic effects in which the polymerisation activity is up to three times higher than the zirconocene supported on analogous single phase silica or zeolite supports.

  18. Supported metal catalysts for alcohol/sugar alcohol steam reforming

    SciTech Connect

    Davidson, Stephen; Zhang, He; Sun, Junming; Wang, Yong

    2014-08-21

    Despite extensive studies on hydrogen production via steam reforming of alcohols and sugar alcohols, catalysts typically suffer a variety of issues from poor hydrogen selectivity to rapid deactivation. Here, we summarize recent advances in fundamental understanding of functionality and structure of catalysts for alcohol/sugar alcohol steam reforming, and provide perspectives on further development required to design highly efficient steam reforming catalysts.

  19. Method for preparing high activity silica supported hydrotreating catalysts

    SciTech Connect

    Thompson, M.S.

    1986-03-04

    A method is described for preparing a silica supported hydrotreating catalyst containing from about 10-25%w molybdenum and from about 1-5%w nickel and/or cobalt as hydrogenation metals. The method consists of: (a) reacting a mixture of MoCl/sub 5/ and a compound selected from the group consisting of Ni(H/sub 2/O)/sub 6/Cl/sub 2/, Co(H/sub 2/O)/sub 6/Cl/sub 2/ and mixutres in amounts to provide a desired catalytic metals concentration of the support in the presence of a solubilizing amount of acetonitrile; (b) heating the mixture to between about 25/sup 0/ and 80/sup 0/C until most of the metal compounds have reacted and/or dissolved; (c) removing any undissolved solids from the solution; (d) impregnating the dried silica support with the hydrogenation metals-containing solution in one or more steps; and (e) drying the impregnated silica support at elevated temperature.

  20. Preparation and evaluation of novel hydrous metal oxide (HMO)-supported noble metal catalysts

    SciTech Connect

    Gardner, T.J.; McLaughlin, L.I.; Evans, L.R.; Datye, A.K.

    1998-04-01

    Hydrous Metal Oxides (HMOs) are chemically synthesized materials that, because of their high cation exchange capacity, possess a unique ability to allow the preparation of highly dispersed supported-metal catalyst precursors with high metal loadings. This study evaluates high weight loading Rh/HMO catalysts with a wide range of HMO support compositions, including hydrous titanium oxide (HTO), silica-doped hydrous titanium oxide (HTO:Si), hydrous zirconium oxide (HZO), and silica-doped hydrous zirconium oxide (HZO:Si), against conventional oxide-supported Rh catalysts with similar weight loadings and support chemistries. Catalyst activity measurements for a structure-sensitive model reaction (n-butane hydrogenolysis) as a function of catalyst activation conditions show superior activity and stability for the ZrO{sub 2}, HZO, and HZO:Si supports, although all of the Rh/HMO catalysts have high ethane selectivity indicative of high Rh dispersion. For the TiO{sub 2}-, HTO-, and HTO:Si supported Rh catalysts, a significant loss of both catalyst activity and Rh dispersion is observed at more aggressive activation conditions, consistent with TiO{sub x} migration associated with SMSI phenomena. Of all the Rh/HMO catalysts, the Rh/HZO:Si catalysts appear to offer the best tradeoff in terms of high Rh dispersion, high activity, and high selectivity.

  1. Support chemistry, surface area, and preparation effects on sulfided NiMo catalyst activity

    SciTech Connect

    Gardner, T.J.; McLaughlin, L.I.; Sandoval, R.S.

    1996-06-01

    Hydrous Metal Oxides (HMOs) are chemically synthesized materials which contain a homogeneous distribution of ion exchangeable alkali cations that provide charge compensation to the metal-oxygen framework. In terms of the major types of inorganic ion exchangers defined by Clearfield, these amorphous HMO materials are similar to both hydrous oxides and layered oxide ion exchangers (e.g., alkali metal titanates). For catalyst applications, the HMO material serves as an ion exchangeable support which facilitates the uniform incorporation of catalyst precursor species. Following catalyst precursor incorporation, an activation step is required to convert the catalyst precursor to the desired active phase. Considerable process development activities at Sandia National Laboratories related to HMO materials have resulted in bulk hydrous titanium oxide (HTO)- and silica-doped hydrous titanium oxide (HTO:Si)-supported NiMo catalysts that are more active in model reactions which simulate direct coal liquefaction (e.g., pyrene hydrogenation) than commercial {gamma}-Al{sub 2}O{sub 3}-supported NiMo catalysts. However, a fundamental explanation does not exist for the enhanced activity of these novel catalyst materials; possible reasons include fundamental differences in support chemistry relative to commercial oxides, high surface area, or catalyst preparation effects (ion exchange vs. incipient wetness impregnation techniques). The goals of this paper are to identify the key factors which control sulfided NiMo catalyst activity, including those characteristics of HTO- and HTO:Si-supported NiMo catalysts which uniquely set them apart from conventional oxide supports.

  2. Using supported Au nanoparticles as starting material for preparing uniform Au/Pd bimetallic catalysts

    SciTech Connect

    Villa, Alberto; Prati, Laura; Su, Dangshen; Wang, Di; Veith, Gabriel M

    2010-01-01

    One of the best methods for producing bulk homogeneous (composition) supported bimetallic AuPd clusters involves the immobilization of a protected Au seed followed by the addition of Pd. This paper investigates the importance of this gold seed in controlling the resulting bimetallic AuPd clusters structures, sizes and catalytic activities by investigating three different gold seeds. Uniform Au-Pd alloy were obtained when a steric/electrostatic protecting group, poly(vinyl alcohol) (PVA), was used to form the gold clusters on activated carbon (AC). In contrast Au/AC precursors prepared using Au nanoparticles with only electrostatic stabilization (tetrakis(hydroxypropyl)phosphonium chloride (THPC)), or no stabilization (magnetron sputtering) produced inhomogeneous alloys and segregation of the gold and palladium. The uniform alloyed catalyst (Pd{at}Au{sub PVA}/AC) is the most active and selective catalyst, while the inhomogenous catalysts are less active and selective. Further study of the PVA protected Au clusters revealed that the amount of PVA used is also critical for the preparation of uniform alloyed catalyst, their stability, and their catalytic activity.

  3. Investigation on C-TiO2 nanotubes composite as Pt catalyst support for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Sui, Xu-Lei; Wang, Zhen-Bo; Yang, Min; Huo, Li; Gu, Da-Ming; Yin, Ge-Ping

    2014-06-01

    In this paper, Pt nanoparticles have been successfully deposited on the mixture of carbon black and one-dimensional self-ordered TiO2 nanotubes (TNTs) array by a microwave-assisted polyol process to synthesize Pt/C-TNTs catalyst. TiO2 nanoparticles (TNPs) are used instead of TNTs to prepare catalyst as a reference. The obtained samples are characterized by physical characterization and electrochemical measurements. The results show that Pt nanoparticles are uniformly deposited on the three-phase interfaces between carbon and TNTs. The Pt/C-TNTs possesses substantially enhanced activity and stability in electrochemical performance. Such remarkable properties are due to the excellent composite carrier of C-TNTs: (1) TNTs has strong corrosion resistance in acidic and oxidative environment and a metal support interaction between Pt and TNTs; (2) Compared to TNPs, TNTs is more suitable for electro-catalytic field on account of its better electronic conductivity; (3) Compared to TNPs, TNTs can improve the anti-poisoning ability of catalyst for methanol oxidation. (4) Amorphous carbon can improve the dispersion of platinum particles; (5) The distribution of carbon improves the poor conductivity of TNTs. These studies indicate that Pt/C-TNTs compound is a promising catalyst for methanol electrooxidation.

  4. Homogeneous and Supported Niobium Catalysts as Lewis Acid and Radical Catalysts

    SciTech Connect

    Wayne Tikkanen

    2006-12-31

    The synthesis of tetrachlorotetraphenylcyclopentadienyl group 5 metal complexes has been accomplished through two routes, one a salt metathesis with lithiumtetraphenylcyclopentadiende and the other, reaction with trimethyltintetraphenylcyclopentadiene. The reactants and products have been characterized by {sup 1}H and {sup 13}C({sup 1}H) NMR spectroscopy. The niobium complex promotes the silylcyanation of butyraldehyde. The grafting of metal complexes to silica gel surfaces has been accomplished using tetrakisdimethylamidozirconium as the metal precursor. The most homogeneous binding as determined by CP-MAS {sup 13}C NMR and infrared spectroscopy was obtained with drying at 500 C at 3 mtorr vacuum. The remaining amido groups can be replaced by reaction with alcohols to generate surface bound metal alkoxides. These bound catalysts promote silylcyanation of aryl aldehydes and can be reused three times with no loss of activity.

  5. Identification of surface states on finely divided supported palladium catalysts by means of inelastic incoherent neutron scattering.

    PubMed

    Albers, Peter W; Krauter, Jürgen G E; Ross, D K; Heidenreich, Roland G; Köhler, Klaus; Parker, Stewart F

    2004-09-14

    The purpose of the present investigation was to utilize the inelastic incoherent neutron scattering (INS) technique to reveal changes at the surface of technical catalysts under the influence of hydrogen in gas/solid interactions and during chemical reactions in a liquid-phase process. The formation and the properties of supported palladium hydride and changes of the hydrogen-related surface chemistry of the corresponding activated carbon supports in 20% Pd/C catalysts after short-term and long-term hydrogen cycling at different hydrogen pressures and temperatures were studied. The spectra indicate that hydrogenation of the activated carbon support by hydrogen spillover occurs to, partly, give a material that strongly resembles a-C:H (amorphous hydrogenated carbon). Indications for different relaxation phenomena and long-range phase coherence inside of supported particles of palladium hydride compared to hydrogenated palladium black were obtained. A 5% Pd/C catalyst after use in C-C coupling reactions, the Heck reaction of bromobenzene and styrene to stilbenes, was also studied after subsequent solvent extraction. Evidence for a preferential adsorption and accumulation of cis-stilbene at the catalyst surface was obtained. INS allows identification of a certain isomer from a complex reaction mixture preferentially adsorbed at the surface of a finely divided industrial heterogeneous catalyst.

  6. Hydrodeoxygenation of vicinal OH groups over heterogeneous rhenium catalyst promoted by palladium and ceria support.

    PubMed

    Ota, Nobuhiko; Tamura, Masazumi; Nakagawa, Yoshinao; Okumura, Kazu; Tomishige, Keiichi

    2015-02-01

    Heterogeneous ReOx-Pd/CeO2 catalyst showed excellent performance for simultaneous hydrodeoxygenation of vicinal OH groups. High yield (>99%), turnover frequency (300 h(-1)), and turnover number (10,000) are achieved in the reaction of 1,4-anhydroerythritol to tetrahydrofuran. This catalyst can be applied to sugar alcohols, and mono-alcohols and diols are obtained in high yields (≥85%) from substrates with even and odd numbers of OH groups, respectively. The high catalytic performance of ReOx-Pd/CeO2 can be assigned to rhenium species with +4 or +5 valence state, and the formation of this species is promoted by H2/Pd and the ceria support.

  7. Role of support in the catalytic hydrogenation of benzene over ruthenium catalysts

    SciTech Connect

    Viniegra, M.; Gomez, R.; Gonzalez, R.D.

    1988-06-01

    It is generally agreed that the hydrogenation of benzene over supported noble metal catalysts is a facile reaction which is independent of particle size. Previous benzene hydrogenation studies over supported Ru catalysts have been carried out using relatively noninteractive supports such as alumina and silica. Because of the possibility that more interactive supports such as magnesia or lanthana may modify the catalytic activity of supported Ru catalysts in the hydrogenation of benzene, the authors have extended previous studies to include magnesia, silica-alumina, and graphitic carbon as support materials. 12 references.

  8. Surface-reconstructed graphite nanofibers as a support for cathode catalysts of fuel cells.

    PubMed

    Gan, Lin; Du, Hongda; Li, Baohua; Kang, Feiyu

    2011-04-01

    Graphite nanofibers (GNFs), on which surface graphite edges were reconstructed into nano-loops, were explored as a cathode catalyst support for fuel cells. The high degree of graphitization, as well as the surface-reconstructed nano-loops that possess topological defects for uniform metal deposition, resulted in an improved performance of the GNF-supported Pt catalyst. PMID:21336405

  9. Effect of halide-modified model carbon supports on catalyst stability.

    PubMed

    Wood, Kevin N; Pylypenko, Svitlana; Olson, Tim S; Dameron, Arrelaine A; O'Neill, Kevin; Christensen, Steven T; Dinh, Huyen N; Gennett, Thomas; O'Hayre, Ryan

    2012-12-01

    Modification of physiochemical and structural properties of carbon-based materials through targeted functionalization is a useful way to improve the properties and performance of such catalyst materials. This work explores the incorporation of dopants, including nitrogen, iodine, and fluorine, into the carbon structure of highly-oriented pyrolytic graphite (HOPG) and its potential benefits on the stability of PtRu catalyst nanoparticles. Evaluation of the changes in the catalyst nanoparticle coverage and size as a function of implantation parameters reveals that carbon supports functionalized with a combination of nitrogen and fluorine provide the most beneficial interactions, resulting in suppressed particle coarsening and dissolution. Benefits of a carefully tuned support system modified with fluorine and nitrogen surpass those obtained with nitrogen (no fluorine) modification. Ion implantation of iodine into HOPG results in a consistent amount of structural damage to the carbon matrix, regardless of dose. For this modification, improvements in stability are similar to nitrogen modification; however, the benefit is only observed at higher dose conditions. This indicates that a mechanism different than the one associated with nitrogen may be responsible for the improved durability. PMID:23194033

  10. Different routes to methanol: Inelastic neutron scattering spectroscopy of adsorbates on supported copper catalysts

    DOE PAGES

    Kandemir, Timur; Friedrich, Matthias; Parker, Stewart F.; Studt, Felix; Lennon, David; Schlögl, Robert; Behrens, Malte

    2016-04-14

    We have investigated methanol synthesis with model supported copper catalysts, Cu/ZnO and Cu/MgO, using CO/H2 and CO2/H2 as feedstocks. Under CO/H2 both catalysts show chemisorbed methoxy as a stable intermediate, the Cu/MgO catalyst also shows hydroxyls on the support. Under CO2/H2 the catalysts behave differently, in that formate is also seen on the catalyst. For the Cu/ZnO catalyst hydroxyls are present on the metal whereas for the Cu/MgO hydroxyls are found on the support. Furthermore, these results are consistent with a recently published model for methanol synthesis and highlight the key role of ZnO in the process.

  11. Different routes to methanol: inelastic neutron scattering spectroscopy of adsorbates on supported copper catalysts.

    PubMed

    Kandemir, Timur; Friedrich, Matthias; Parker, Stewart F; Studt, Felix; Lennon, David; Schlögl, Robert; Behrens, Malte

    2016-06-29

    We have investigated methanol synthesis with model supported copper catalysts, Cu/ZnO and Cu/MgO, using CO/H2 and CO2/H2 as feedstocks. Under CO/H2 both catalysts show chemisorbed methoxy as a stable intermediate, the Cu/MgO catalyst also shows hydroxyls on the support. Under CO2/H2 the catalysts behave differently, in that formate is also seen on the catalyst. For the Cu/ZnO catalyst hydroxyls are present on the metal whereas for the Cu/MgO hydroxyls are found on the support. These results are consistent with a recently published model for methanol synthesis and highlight the key role of ZnO in the process. PMID:27075638

  12. Tip Growth Of Carbon Nanotubes Obtained By Pyrolyzation Of Camphor Oil With Zeolite Embedded With Fe/Ni/Mn Catalyst

    NASA Astrophysics Data System (ADS)

    Azira, A. A.; Zainal, N. F. A.; Nik, S. F.; Rusop, M.

    2009-06-01

    Highly efficient synthesis of carbon nanotubes (CNTs) have been synthesized by thermal decomposition of camphor oil, on a zeolite support impregnated with Fe/Ni/Mn (molar ratio of Fe:Ni:Mn = 1:1:1) catalyst in the temperature range from 550-950° C by the thermal CVD method. Besides the surface fluidization of the catalyst nanoparticles themselves, assistance of the metal oxides embedded in zeolite supports is supposed to be responsible for high activity and selectivity of the Fe/Ni/Mn catalyst over which carbon source (camphor oil) successfully decomposes. The CNT yield was higher at 850° C and can be considered as the optimum deposition temperature. This result demonstrates that zeolite impregnated with the catalyst Fe/Ni/Mn is a suitable support for effective formation of CNTs. The morphological studies support `tip growth mechanism' for the growth of the CNT's in our case. The as-grown CNTs were characterized by FESEM and FTIR spectroscopy.

  13. Supported zirconium sulfate on carbon nanotubes as water-tolerant solid acid catalyst

    SciTech Connect

    Juan, Joon Ching; Jiang Yajie; Meng Xiujuan; Cao Weiliang; Yarmo, Mohd Ambar; Zhang Jingchang . E-mail: zhangjc1@mail.buct.edu.cn

    2007-07-03

    A new solid acid of zirconium sulfate (CZ) was successfully supported on carbon nanotube (CNT) for esterification reaction. Preparation conditions of the supported CZ have been investigated, to obtain highest catalytic activity for esterification reaction. XRD, TEM, BET, X-ray photoelectron spectra (XPS) and in situ FTIR analysis has also been carried out to understand the characteristics of the catalyst. In the esterification of acrylic acid with n-octanol, the supported CZ exhibited high catalytic activity and stability. The catalytic activity was nearly unchanged during four times of reuse. XRD and TEM analysis indicated that CZ was finely dispersed on CNT. XPS analysis shows that the CZ species was preserved and the chemical environment of the CZ has changed after loaded on CNT. This finding show that CNT as CZ support is an efficient water-tolerant solid acid.

  14. Methanol Oxidation Using Ozone on Titania-Supported Vanadium Catalyst

    EPA Science Inventory

    Ozone-enhanced catalytic oxidation of methanol has been conducted at mild temperatures of 100 to 250NC using V2O5/TiO2 catalyst prepared by the sol-gel method. The catalyst was characterized using XRD, surface area measurements, and temperature-programmed desorption of methanol. ...

  15. Improved coal liquefaction using carbon-supported hydrogenation catalysts: Quarterly report for the period 1 January-31 March 1986

    SciTech Connect

    Scaroni, A.W.; Derbyshire, F.J.; Solar, J.M.; Abotsi, G.M.K.; Spears, R.

    1986-03-01

    Catalysts have been prepared by the impregnation of different porous carbons with molybdenum-containing precursor compounds using the incipient wetness technique. Two precursors were investigated; a solution of ammonium heptamolybdate (or, in some cases, ammoniumtetrathiomolybdate) in 90% H/sub 2/O/10% EtOH; a solution of molybdenumtricarbonyltriacetonitrile in acetonitrile. The fresh catalysts were characterized by x-ray photoelectron spectroscopy. The activities of the sulfided catalysts were measured for thiophene hydrodesulfurization in a continuous flow, atmospheric pressure reactor. The principal findings are that: (1) for a given support and at similar loading, the organometallic precursor confers a much higher activity than the ammonium salt precursors. The increase in lined-out activity can be higher by as much as a factor of 1.6 and (2) with catalysts prepared from molybdenumtricarbonyltriacetonitrile, the highest thiophene conversions were obtained with a high surface area active carbon. However, when (based upon a number of assumptions) the catalysts are compared at similar dispersions and corrected for surface area differences, the most active catalyst was found to be that prepared upon a graphitic support. 3 refs., 1 fig., 4 tabs.

  16. Highly efficient, quick and green synthesis of biarlys with chitosan supported catalyst using microwave irradiation in the absence of solvent.

    PubMed

    Baran, Talat; Açıksöz, Eda; Menteş, Ayfer

    2016-05-20

    The aim of this study was to develop a quick reaction that had high activity with a small amount of catalyst, which could be an eco-friendly alternative technique for the synthesis of biarlys in Suzuki coupling reactions. First, a novel chitosan Schiff base supported Pd(II) catalyst was synthesized, and its structure was illuminated with FTIR, (1)H NMR, (13)C NMR, TG/DTG, SEM/EDAX, XRD, ICP-OES, UV-vis, magnetic moment, and molar conductivity techniques. Subsequently, the catalytic activity of the catalyst was tested in Suzuki C-C reactions under microwave irradiation using a solvent-free reaction condition. The catalytic tests showed an excellent activity with a small load of the catalyst (0.02 mol%) in 4 min. The catalyst showed seven runs without loss of activity, and high values of turnover numbers (TON) and turnover frequency (TOF) were obtained. The novel biopolymer supported Pd(II) catalyst provided much faster reaction times, higher yields, and reusability under microwave heating compared to classic heating methods.

  17. Evaluation of some new zeolite-supported metal catalysts for synthesis gas conversion

    SciTech Connect

    Melson, G.A.; Crawford, J.E.; Crites, J.W.; Mbadcam, K.J.; Rao, V.U.S.; Stencel, J.M.

    1982-03-01

    The use of bifunctional zeolite-based catalysts for the conversion of synthesis gas (carbon monoxide and hydrogen) to gasoline range hydrocarbons has recently attracted much attention. For example, the combination of metal oxides with the medium pore (about 6A) zeolite ZSM-5 and the use of a metal nitrate impregnated ZSM-5 catalyst have been shown to produce gasoline range hydrocarbons containing a high percentage of aromatics from synthesis gas. The production of gasoline range hydrocarbons which have a high olefin content has also been reported by using iron or cobalt impregnated ZSM-5 catalysts. The efficiency and selectivity of supported metal heterogeneous catalysts is closely related to the dispersion and particle size of the metal component and to the nature of the interaction between the metal and the support. For a particular metal, catalytic activity may be varied by changing the metal dispersion and the support, thus, the method of synthesis and any pre-treatment of the catalyst is important in the overall process of catalyst evaluation. Supported metal catalysts have traditionally been prepared by impregnation techniques that involve treatment of a support with an aqueous solution of a metal salt followed by calcination. In the Fe/ZSM-5, system, the decomposition of the iron nitrate during calcination usually produces iron oxides of relatively large crystallite size. This work was initiated in an attempt to produce highly dispersed, thermally stable supported metal catalysts which may be effective for synthesis gas conversion.

  18. Oxidative dehydrogenation of ethane on dynamically rearranging supported chloride catalysts.

    PubMed

    Gärtner, Christian A; van Veen, André C; Lercher, Johannes A

    2014-09-10

    Ethane is oxidatively dehydrogenated with a selectivity up to 95% on catalysts comprising a mixed molten alkali chloride supported on a mildly redox-active Dy2O3-doped MgO. The reactive oxyanionic OCl(-) species acting as active sites are catalytically formed by oxidation of Cl(-) at the MgO surface. Under reaction conditions this site is regenerated by O2, dissolving first in the alkali chloride melt, and in the second step dissociating and replenishing the oxygen vacancies on MgO. The oxyanion reactively dehydrogenates ethane at the melt-gas phase interface with nearly ideal selectivity. Thus, the reaction is concluded to proceed via two coupled steps following a Mars-van-Krevelen-mechanism at the solid-liquid and gas-liquid interface. The dissociation of O2 and/or the oxidation of Cl(-) at the melt-solid interface is concluded to have the lowest forward rate constants. The compositions of the oxide core and the molten chloride shell control the catalytic activity via the redox potential of the metal oxide and of the OCl(-). Traces of water may be present in the molten chloride under reaction conditions, but the specific impact of this water is not obvious at present. The spatial separation of oxygen and ethane activation sites and the dynamic rearrangement of the surface anions and cations, preventing the exposure of coordinatively unsaturated cations, are concluded to be the origin of the surprisingly high olefin selectivity. PMID:25118821

  19. Nitrogen-doped carbon-supported cobalt-iron oxygen reduction catalyst

    DOEpatents

    Zelenay, Piotr; Wu, Gang

    2014-04-29

    A Fe--Co hybrid catalyst for oxygen reaction reduction was prepared by a two part process. The first part involves reacting an ethyleneamine with a cobalt-containing precursor to form a cobalt-containing complex, combining the cobalt-containing complex with an electroconductive carbon supporting material, heating the cobalt-containing complex and carbon supporting material under conditions suitable to convert the cobalt-containing complex and carbon supporting material into a cobalt-containing catalyst support. The second part of the process involves polymerizing an aniline in the presence of said cobalt-containing catalyst support and an iron-containing compound under conditions suitable to form a supported, cobalt-containing, iron-bound polyaniline species, and subjecting said supported, cobalt-containing, iron bound polyaniline species to conditions suitable for producing a Fe--Co hybrid catalyst.

  20. Process for manufacturing a supported catalyst for the hydrotreatment of hydrocarbon oils

    SciTech Connect

    Toulhoat, H.; Jacquin, Y.; Mercier, M.; Plumail, J. C.

    1985-04-09

    Supported catalysts for use in hydrocarbons hydrotreatments are made by shaping catalyst carrier, with or without catalyst precursors, into balls, calcining the balls at 300/sup 0/-1000/sup 0/ C., and crushing the calcined balls to particles whose average size is 0.2-0.8 times the average diameter of the balls. When the precursors are not present during the manufacture, they are added thereafter.

  1. Spin conversion of hydrogen using supported iron catalysts at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Das, Taraknath; Kweon, Soon-Cheol; Nah, In Wook; Karng, Sarng Woo; Choi, Jeong-Gil; Oh, In-Hwan

    2015-07-01

    Alumina-supported iron oxides have been prepared by incipient wetness impregnation method and employed for orthohydrogen to parahydrogen spin conversion at cryogenic temperature. These materials were characterized using a series of characterization techniques such as SEM, XRD, Raman and in situ FTIR spectroscopy. The spin conversion was investigated at low temperature by a batch mode of operation. The in situ FTIR spectra were collected in a transmission mode to obtain the spin conversion. While the iron oxide was highly dispersed over alumina support at low loading percent, a rodlike crystallite of iron oxide was formed at high loading percent. The 10 and 20 wt% iron oxides on alumina were proved to be the most active catalysts. The spin conversion process was very slow and time-dependent. It was concluded that the spin conversion was a function of various factors including the iron oxide loading percent, calcination temperature, and different supports.

  2. Hydrocracking of n-decane over zeolite-supported metal sulfide catalysts. 2: Zeolite Y-supported Ni and Ni-Mo sulfides

    SciTech Connect

    Welters, W.J.J.; Waerden, O.H. van der; Beer, V.H.J. de; Santen, R.A. van

    1995-04-01

    For zeolite Y-supported nickel sulfide catalysts the influence of the metal sulfide dispersion on the hydrocracking properties for n-decane is examined. In order to obtain different nickel sulfide distributions (inside or outside the zeolite structure) and dispersions, the preparation method (impregnation of CaY or ion exchange of NaY), sulfidation procedure (direct sulfidation or sulfidation after drying), and metal loading are varied. A higher nickel sulfide surface (as measured by dynamic oxygen chemisorption) results in a strong increase of the n-decane conversion, but this is not accompanied by an improvement of the catalytic properties toward ideal hydrocracking. Additionally, some zeolite Y-supported Ni-Mo sulfide catalysts (varying in preparation method and sulfidation procedure) are tested for the hydroconversion of it-decane. However, no promoter effect could be observed. The activity of the bimetallic sulfide catalysts is always almost equal to that of the most active monometallic sulfide constituent.

  3. Enhanced Fischer-Tropsch synthesis performance of iron-based catalysts supported on nitric acid treated N-doped CNTs

    NASA Astrophysics Data System (ADS)

    Li, Zhenhua; Liu, Renjie; Xu, Yan; Ma, Xinbin

    2015-08-01

    Iron-based catalysts supported on N-doped CNTs (NCNTs) treated by various concentrations of nitric acid for Fischer-Tropsch synthesis (FTS) were investigated. An improved catalytic performance for the iron catalyst supported on acid treated NCNTs was obtained and the suitable nitric acid concentration was 10 M. The physiochemical properties of the NCNTs and the corresponding catalysts were characterized by BET, TEM, XRD, XPS, TGA and H2-TPR. The acid treatment removed the impurity and amorphous carbon, damaged the bamboo-like structure and increased the number of oxygen-containing functional groups and graphitization degree on the NCNTs. The more iron particles located inside the channels of NCNTs, the better catalytic FTS performance due to high dispersion and reducibility.

  4. Mesoporous synthetic clays : synthesis, characterization, and use as HDS catalyst supports.

    SciTech Connect

    Bloomquist, C. A. A.; Carrado, K. A.; Marshall, C. L.; Seifert, S.; Wei, D.; Xu, L.

    1999-08-10

    Mesoporous synthetic clays (MSCs) are obtained when polymer-containing silicate gels are hydrothermally crystallized to form layered magnesium silicate hectorite clays containing polymers that are incorporated in situ. Polyvinylpyrrolidone of several average molecular weights ranging from 10K to 1.3M, in gel loadings varying from 5-30 wt%, were used. The organic polymer template molecules were removed from synthetic polymer-clay complexes via calcination. Pore radii, surface areas, and pore volumes of the resulting porous inorganic networks were then measured. For the most part there is a direct correlation between both PVP molecular weight and polymer loading on the diameter of the average pore. In addition to conventional techniques, the polymer-clay materials were also characterized by small angle x-ray scattering to ascertain the disposition of the polymeric matrix. The MSC materials after calcination were examined as potential supports for hydrodesulfurization (HDS). They were loaded with a bimetallic Co/Mo catalyst system for comparison with a commercial Co/Mo alumina catalyst. Dibenzothiophene (DBT) diluted with hexadecane (0.75 wt% S) was utilized as a liquid feed for the HDS tests. This feed was chosen as a deep HDS test of a heavy model oil. The pore diameters of the MSC catalysts were found to have a strong effect on both the HDS activity and selectivity.

  5. Efficient production of hydrogen from formic acid using a covalent triazine framework supported molecular catalyst.

    PubMed

    Bavykina, A V; Goesten, M G; Kapteijn, F; Makkee, M; Gascon, J

    2015-03-01

    A heterogeneous molecular catalyst based on Ir(III) Cp* (Cp*=pentamethylcyclopentadienyl) attached to a covalent triazine framework (CTF) is reported. It catalyses the production of hydrogen from formic acid with initial turnover frequencies (TOFs) up to 27,000 h(-1) and turnover numbers (TONs) of more than one million in continuous operation. The CTF support, with a Brunauer-Emmett-Teller (BET) surface area of 1800 m(2)  g(-1), was constructed from an optimal 2:1 ratio of biphenyl and pyridine carbonitrile building blocks. Biphenyl building blocks induce mesoporosity and, therefore, facilitate diffusion of reactants and products whereas free pyridinic sites activate formic acid towards β-hydride elimination at the metal, rendering unprecedented rates in hydrogen production. The catalyst is air stable, produces CO-free hydrogen, and is fully recyclable. Hydrogen production rates of more than 60 mol L(-1)  h(-1) were obtained at high catalyst loadings of 16 wt % Ir, making it attractive towards process intensification.

  6. TiN@nitrogen-doped carbon supported Pt nanoparticles as high-performance anode catalyst for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Ma, Li; Gan, Mengyu; Fu, Shenna; Zhao, Yi

    2016-08-01

    In this paper, TiN@nitrogen-doped carbons (NDC) composed of a core-shell structure are successfully prepared through self-assembly and pyrolysis treatment using γ-aminopropyltriethoxysilane as coupling agent, polyaniline as carbon and nitrogen source, respectively. Subsequently, TiN@NDC supporting Pt nanoparticles (Pt/TiN@NDC) are obtained by a microwave-assisted polyol process. The nitrogen-containing functional groups and TiN nanoparticles play a critical role in decreasing the average particle size of Pt and improving the electrocatalytic activity of Pt/TiN@NDC. Transmission electron microscope results reveal that Pt nanoparticles are uniformly dispersed in the TiN@NDC surface with a narrow particle size ranging from 1 to 3 nm in diameter. Moreover, the Pt/TiN@NDC catalyst shows significantly improved catalytic activity and high durability for methanol electrooxidation in comparison with Pt/NDC and commercial Pt/C catalysts, revealed by cyclic voltammetry and chronoamperometry. Strikingly, this novel Pt/TiN@NDC catalyst reveals a better CO tolerance related to Pt/NDC and commercial Pt/C catalysts, which due to the bifunctional mechanism and strong metal-support interaction between Pt and TiN@NDC. In addition, the probable reaction steps for the electrooxidation of CO adspecies on Pt NPs on the basis of the bifunctional mechanism are also proposed. These results indicate that the TiN@NDC is a promising catalyst support for methanol electrooxidation.

  7. TiN@nitrogen-doped carbon supported Pt nanoparticles as high-performance anode catalyst for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Ma, Li; Gan, Mengyu; Fu, Shenna; Zhao, Yi

    2016-08-01

    In this paper, TiN@nitrogen-doped carbons (NDC) composed of a core-shell structure are successfully prepared through self-assembly and pyrolysis treatment using γ-aminopropyltriethoxysilane as coupling agent, polyaniline as carbon and nitrogen source, respectively. Subsequently, TiN@NDC supporting Pt nanoparticles (Pt/TiN@NDC) are obtained by a microwave-assisted polyol process. The nitrogen-containing functional groups and TiN nanoparticles play a critical role in decreasing the average particle size of Pt and improving the electrocatalytic activity of Pt/TiN@NDC. Transmission electron microscope results reveal that Pt nanoparticles are uniformly dispersed in the TiN@NDC surface with a narrow particle size ranging from 1 to 3 nm in diameter. Moreover, the Pt/TiN@NDC catalyst shows significantly improved catalytic activity and high durability for methanol electrooxidation in comparison with Pt/NDC and commercial Pt/C catalysts, revealed by cyclic voltammetry and chronoamperometry. Strikingly, this novel Pt/TiN@NDC catalyst reveals a better CO tolerance related to Pt/NDC and commercial Pt/C catalysts, which due to the bifunctional mechanism and strong metal-support interaction between Pt and TiN@NDC. In addition, the probable reaction steps for the electrooxidation of CO adspecies on Pt NPs on the basis of the bifunctional mechanism are also proposed. These results indicate that the TiN@NDC is a promising catalyst support for methanol electrooxidation.

  8. Sulphur poisoning of palladium catalysts used for methane combustion: effect of the support.

    PubMed

    Escandón, Lara S; Ordóñez, Salvador; Vega, Aurelio; Díez, Fernando V

    2008-05-01

    Four different supported palladium catalysts (using alumina, silica, zirconia and titania as supports), prepared by incipient wetness impregnation, were tested as catalysts for methane oxidation in presence of sulphur dioxide. The catalyst supported on zirconia showed the best performance, whereas the silica-supported one showed the fastest deactivation. Temperature-programmed desorption experiments of the poisoned catalysts suggest that SO(2) adsorption capacity of the support plays a key role in the catalyst poisoning. In order to study the effect of promoters, expected to improve the thermal stability and thioresistance of the catalyst, commercial zirconia modified by yttrium and lantane was tested as supports. It was found that the presence of these promoters does not improve the performance of the zirconia-supported catalyst. A deactivation model -- considering two different active sites (fresh and poisoning), pseudo-first order dependence on methane concentration and poisoning rate depending on sulphur concentration and fraction of non-poisoned palladium -- was used for modelling the deactivation behaviour. PMID:17935880

  9. Sulphur poisoning of palladium catalysts used for methane combustion: effect of the support.

    PubMed

    Escandón, Lara S; Ordóñez, Salvador; Vega, Aurelio; Díez, Fernando V

    2008-05-01

    Four different supported palladium catalysts (using alumina, silica, zirconia and titania as supports), prepared by incipient wetness impregnation, were tested as catalysts for methane oxidation in presence of sulphur dioxide. The catalyst supported on zirconia showed the best performance, whereas the silica-supported one showed the fastest deactivation. Temperature-programmed desorption experiments of the poisoned catalysts suggest that SO(2) adsorption capacity of the support plays a key role in the catalyst poisoning. In order to study the effect of promoters, expected to improve the thermal stability and thioresistance of the catalyst, commercial zirconia modified by yttrium and lantane was tested as supports. It was found that the presence of these promoters does not improve the performance of the zirconia-supported catalyst. A deactivation model -- considering two different active sites (fresh and poisoning), pseudo-first order dependence on methane concentration and poisoning rate depending on sulphur concentration and fraction of non-poisoned palladium -- was used for modelling the deactivation behaviour.

  10. Manganese Triazacyclononane Oxidation Catalysts Grafted under Reaction Conditions on Solid Co-Catalytic Supports

    SciTech Connect

    Schoenfeldt, Nicholas J.; Ni, Zhenjuan; Korinda, Andrew W.; Meyer, Randall J.; Notestein, Justin M.

    2012-01-23

    Manganese complexes of 1,4,7-trimethyl-1,4,7-triazacyclononane (tmtacn) are highly active and selective alkene oxidation catalysts with aqueous H{sub 2}O{sub 2}. Here, carboxylic acid-functionalized SiO{sub 2} simultaneously immobilizes and activates these complexes under oxidation reaction conditions. H{sub 2}O{sub 2} and the functionalized support are both necessary to transform the inactive [(tmtacn)Mn{sup IV}({mu}-O)3Mn{sup IV}(tmtacn)]{sup 2+} into the active, dicarboxylate-bridged [(tmtacn)Mn{sup III}({mu}-O)({mu}-RCOO){sub 2}Mn{sup III}(tmtacn)]{sup 2+}. This transformation is assigned on the basis of comparison of diffuse reflectance UV-visible spectra to known soluble models, assignment of oxidation state by Mn K-edge X-ray absorption near-edge spectroscopy, the dependence of rates on the acid/Mn ratios, and comparison of the surface structures derived from density functional theory with extended X-ray absorption fine structure. Productivity in cis-cyclooctene oxidation to epoxide and cis-diol with 2-10 equiv of solid cocatalytic supports is superior to that obtained with analogous soluble valeric acid cocatalysts, which require 1000-fold excess to reach similar levels at comparable times. Cyclooctene oxidation rates are near first order in H{sub 2}O{sub 2} and near zero order in all other species, including H{sub 2}O. These observations are consistent with a mechanism of substrate oxidation following rate-limiting H{sub 2}O{sub 2} activation on the hydrated, supported complex. This general mechanism and the observed alkene oxidation activation energy of 38 {+-} 6 kJ/mol are comparable to H{sub 2}O{sub 2} activation by related soluble catalysts. Undesired decomposition of H{sub 2}O{sub 2} is not a limiting factor for these solid catalysts, and as such, productivity remains high up to 25 C and initial H{sub 2}O{sub 2} concentration of 0.5 M, increasing reactor throughput. These results show that immobilized carboxylic acids can be utilized and understood

  11. Magnetic silica supported palladium catalyst: synthesis of allyl aryl ethers in water

    EPA Science Inventory

    A simple and benign procedure for the synthesis of aryl allyl ethers has been developed using phenols, allyl acetates and magnetically recyclable silica supported palladium catalyst in water; performance of reaction in air and easy separation of the catalyst using an external mag...

  12. Reactivity of Aryl Halides for Reductive Dehalogenation in (Sea)water Using Polymer-Supported Terpyridine Palladium Catalyst.

    PubMed

    Suzuka, Toshimasa; Sueyoshi, Hiromu; Maehara, Shohei; Ogasawara, Hiroaki

    2015-01-01

    A polymer-supported terpyridine palladium complex was prepared. The complex was found to promote hydrodechlorination of aryl chlorides with potassium formate in seawater. Generally, reductive cleavage of aryl chlorides using transition metal catalysts is more difficult than that of aryl bromides and iodides (reactivity: I > Br > Cl); however, the results obtained did not follow the general trend. Therefore, we investigated the reaction inhibition agents and found a method to remove these inhibitors. The polymeric catalysts showed high catalytic activity and high reusability for transfer reduction in seawater.

  13. Effective immobilisation of a metathesis catalyst bearing an ammonium-tagged NHC ligand on various solid supports

    PubMed Central

    Białecki, Jacek; Czarnocki, Stefan J; Żukowska, Karolina

    2016-01-01

    Summary An ammonium-tagged ruthenium complex, 8, was deposited on several widely available commercial solid materials such as silica gel, alumina, cotton, filter paper, iron powder or palladium on carbon. The resulting catalysts were tested in toluene or ethyl acetate, and found to afford metathesis products in high yield and with extremely low ruthenium contamination. Depending on the support used, immobilised catalyst 8 shows also additional traits, such as the possibility of being magnetically separated or the use for metathesis and subsequent reduction of the obtained double bond in one pot. PMID:26877803

  14. Effective immobilisation of a metathesis catalyst bearing an ammonium-tagged NHC ligand on various solid supports.

    PubMed

    Skowerski, Krzysztof; Białecki, Jacek; Czarnocki, Stefan J; Żukowska, Karolina; Grela, Karol

    2016-01-01

    An ammonium-tagged ruthenium complex, 8, was deposited on several widely available commercial solid materials such as silica gel, alumina, cotton, filter paper, iron powder or palladium on carbon. The resulting catalysts were tested in toluene or ethyl acetate, and found to afford metathesis products in high yield and with extremely low ruthenium contamination. Depending on the support used, immobilised catalyst 8 shows also additional traits, such as the possibility of being magnetically separated or the use for metathesis and subsequent reduction of the obtained double bond in one pot. PMID:26877803

  15. Physicochemical investigations of carbon nanofiber supported Cu / ZrO2 catalyst

    NASA Astrophysics Data System (ADS)

    Din, Israf Ud; Shaharun, Maizatul S.; Subbarao, Duvvuri; Naeem, A.

    2014-10-01

    Zirconia-promoted copper/carbon nanofiber catalysts (Cu - ZrO2/ CNF ) were prepared by the sequential deposition precipitation method. The Herringbone type of carbon nanofiber GNF-100 (Graphite nanofiber) was used as a catalyst support. Carbon nanofiber was oxidized to (CNF-O) with 5% and 65 % concentration of nitric acid (HNO3). The CNF activated with 5% HNO3 produced higher surface area which is 155 m2/g. The catalyst was characterized by X-ray Diffraction (XRD), Fourier Transform Infra-Red (FTIR) and N2 adsorption-desorption. The results showed that increase of HNO3 concentration reduced the surface area and porosity of the catalyst.

  16. Biopolymer-supported ionic-liquid-phase ruthenium catalysts for olefin metathesis.

    PubMed

    Clousier, Nathalie; Filippi, Alexandra; Borré, Etienne; Guibal, Eric; Crévisy, Christophe; Caijo, Fréderic; Mauduit, Marc; Dez, Isabelle; Gaumont, Annie-Claude

    2014-04-01

    Original ruthenium supported ionic liquid phase (SILP) catalysts based on alginates as supports were developed for olefin metathesis reactions. The marine biopolymer, which fulfills most of the requisite properties for a support such as widespread abundance, insolubility in the majority of organic solvents, a high affinity for ionic liquids, high chemical stability, biodegradability, low cost, and easy processing, was impregnated by [bmim][PF6 ] containing an ionically tagged ruthenium catalyst. These biosourced catalysts show promising performances in ring-closing metathesis (RCM) and cross-metathesis (CM) reactions, with a high level of recyclability and reusability combined with a good reactivity. PMID:24616203

  17. Biopolymer-supported ionic-liquid-phase ruthenium catalysts for olefin metathesis.

    PubMed

    Clousier, Nathalie; Filippi, Alexandra; Borré, Etienne; Guibal, Eric; Crévisy, Christophe; Caijo, Fréderic; Mauduit, Marc; Dez, Isabelle; Gaumont, Annie-Claude

    2014-04-01

    Original ruthenium supported ionic liquid phase (SILP) catalysts based on alginates as supports were developed for olefin metathesis reactions. The marine biopolymer, which fulfills most of the requisite properties for a support such as widespread abundance, insolubility in the majority of organic solvents, a high affinity for ionic liquids, high chemical stability, biodegradability, low cost, and easy processing, was impregnated by [bmim][PF6 ] containing an ionically tagged ruthenium catalyst. These biosourced catalysts show promising performances in ring-closing metathesis (RCM) and cross-metathesis (CM) reactions, with a high level of recyclability and reusability combined with a good reactivity.

  18. Fundamental studies of hydrogen chemisorption on supported monometallic and bimetallic catalysts using microcalorimetry

    SciTech Connect

    Narayan, R.L.

    1997-06-24

    Highly dispersed transition metal catalysts are used in numerous commercial processes such as hydrocarbon conversions. For example, the use of Pt supported on acidic alumina or silica-alumina for reforming of naphtha in the production of gasoline is well known. Another use of supported catalysts is in automobile emission control where supported Pt-Rh bimetallic catalysts are used. Supported Ru can be used in Fischer-Tropsch synthesis for the production of higher hydrocarbons from synthesis gas. While many of these catalyst systems have been in commercial operation for several decades there is still a lack of consensus regarding the exact role of the catalyst on a molecular level. In particular, little is known about the mechanisms operating on the catalyst surface at the high pressure and high temperature conditions typically used in commercial operations. This report contains the general introduction and conclusions and an appendix containing the operating instructions for a microcalorimeter. Three chapters have been processed separately. They are: the effect of K on the kinetics and thermodynamics of hydrogen adsorption on Ru/SiO{sub 2}; hydrogen adsorption states on silica supported Ru-Ag and Ru-Cu bimetallic catalysts investigated via microcalorimetry; a comparative study of hydrogen chemisorption on silica supported Ru, Rh, and Pt.

  19. Synthesis and characterization of supported polysugar-stabilized palladium nanoparticle catalysts for enhanced hydrodechlorination of trichloroethylene.

    PubMed

    Bacik, Deborah B; Zhang, Man; Zhao, Dongye; Roberts, Christopher B; Seehra, Mohinar S; Singh, Vivek; Shah, Naresh

    2012-07-27

    Palladium (Pd) nanoparticle catalysts were successfully synthesized within an aqueous phase using sodium carboxymethyl cellulose (CMC) as a capping ligand which offers a green alternative to conventional nanoparticle synthesis techniques. The CMC-stabilized Pd nanoparticles were subsequently dispersed within support materials using the incipient wetness impregnation technique for utilization in heterogeneous catalyst systems. The unsupported and supported (both calcined and uncalcined) Pd nanoparticle catalysts were characterized using transmission electron microscopy, energy dispersive x-ray spectrometry, x-ray diffraction, and Brunauer-Emmett-Teller surface area measurement and their catalytic activity toward the hydrodechlorination of trichloroethylene (TCE) in aqueous media was examined using homogeneous and heterogeneous catalyst systems, respectively. The unsupported Pd nanoparticles showed considerable activity toward the degradation of TCE, as demonstrated by the reaction kinetics. Although the supported Pd nanoparticle catalysts had a lower catalytic activity than the unsupported particles that were homogeneously dispersed in the aqueous solutions, the supported catalysts retained sufficient activity toward the degradation of TCE. In addition, the use of the hydrophilic Al(2)O(3) support material induced a mass transfer resistance to TCE that affected the initial hydrodechlorination rate. This paper demonstrates that supported Pd catalysts can be applied to the heterogeneous catalytic hydrodechlorination of TCE. PMID:22743584

  20. Synthesis and characterization of supported polysugar-stabilized palladium nanoparticle catalysts for enhanced hydrodechlorination of trichloroethylene

    NASA Astrophysics Data System (ADS)

    Bacik, Deborah B.; Zhang, Man; Zhao, Dongye; Roberts, Christopher B.; Seehra, Mohinar S.; Singh, Vivek; Shah, Naresh

    2012-07-01

    Palladium (Pd) nanoparticle catalysts were successfully synthesized within an aqueous phase using sodium carboxymethyl cellulose (CMC) as a capping ligand which offers a green alternative to conventional nanoparticle synthesis techniques. The CMC-stabilized Pd nanoparticles were subsequently dispersed within support materials using the incipient wetness impregnation technique for utilization in heterogeneous catalyst systems. The unsupported and supported (both calcined and uncalcined) Pd nanoparticle catalysts were characterized using transmission electron microscopy, energy dispersive x-ray spectrometry, x-ray diffraction, and Brunauer-Emmett-Teller surface area measurement and their catalytic activity toward the hydrodechlorination of trichloroethylene (TCE) in aqueous media was examined using homogeneous and heterogeneous catalyst systems, respectively. The unsupported Pd nanoparticles showed considerable activity toward the degradation of TCE, as demonstrated by the reaction kinetics. Although the supported Pd nanoparticle catalysts had a lower catalytic activity than the unsupported particles that were homogeneously dispersed in the aqueous solutions, the supported catalysts retained sufficient activity toward the degradation of TCE. In addition, the use of the hydrophilic Al2O3 support material induced a mass transfer resistance to TCE that affected the initial hydrodechlorination rate. This paper demonstrates that supported Pd catalysts can be applied to the heterogeneous catalytic hydrodechlorination of TCE.

  1. Impact of carbon on the surface and activity of silica-carbon supported copper catalysts for reduction of nitrogen oxides

    NASA Astrophysics Data System (ADS)

    Spassova, I.; Stoeva, N.; Nickolov, R.; Atanasova, G.; Khristova, M.

    2016-04-01

    Composite catalysts, prepared by one or more active components supported on a support are of interest because of the possible interaction between the catalytic components and the support materials. The supports of combined hydrophilic-hydrophobic type may influence how these materials maintain an active phase and as a result a possible cooperation between active components and the support material could occur and affects the catalytic behavior. Silica-carbon nanocomposites were prepared by sol-gel, using different in specific surface areas and porous texture carbon materials. Catalysts were obtained after copper deposition on these composites. The nanocomposites and the catalysts were characterized by nitrogen adsorption, TG, XRD, TEM- HRTEM, H2-TPR, and XPS. The nature of the carbon predetermines the composite's texture. The IEPs of carbon materials and silica is a force of composites formation and determines the respective distribution of the silica and carbon components on the surface of the composites. Copper deposition over the investigated silica-carbon composites leads to formation of active phases in which copper is in different oxidation states. The reduction of NO with CO proceeds by different paths on different catalysts due to the textural differences of the composites, maintaining different surface composition and oxidation states of copper.

  2. Structure and reactivity of alumina-supported iron catalysts for ammonia synthesis

    SciTech Connect

    Sueiras, J.E.; Homs, N.; Ramirez de la Piscina, P.; Gracia, M.; Fierro, J.L.G.

    1986-04-01

    Alumina-supported iron catalysts, obtained either by impregnation of iron from a K/sub 4/(Fe(CN)/sub 6/) aqueous solution upon several acid-modified ..gamma..-Al/sub 2/O/sub 3/ samples or by the incipient wetness method, were characterized and their activities for ammonia synthesis at atmospheric pressure and 593 K were studied. Characterization was carried out by temperature-programmed reduction (TPR), kinetics of hydrogen reduction, CO chemisorption, X-ray photoelectron spectroscopy (XPS), IR spectroscopy, and Moessbauer spectroscopy, resulting in the degree of reduction and the dispersion of the metallic phase dependent on the previous acid modification of the ..gamma..-Al/sub 2/O/sub 3/. The XPS surface composition expressed as M 2p/Al 2p (M = Fe, K) gave K 2p/Al 2p > Fe 2p/Al 2p. IR experiments, with NO as probe molecules, exhibited bands for reduced catalysts at 1778 and 1712 cm/sup -1/ whose intensity and position depended on the protonation degree of ..gamma..-Al/sub 2/O/sub 3/ and promoter content, respectively. Moessbauer spectra of the reduced samples showed the presence of surface ..cap alpha..-Fe, superparamagnetic Fe/sup 0/, Fe/sup 2 +/, Fe/sup 3 +/, and ..cap alpha..-Fe/sub 2/O/sub 3/ depending on the catalyst. Finally, the catalytic activity for ammonia synthesis was found to be dependent on the surface structure of the catalyst and hence on the method of preparation.

  3. A study of aluminophosphate supported Ni-Mo catalysts for hydrocracking bitumen

    SciTech Connect

    Smith, K.J.; Lewkowicz, L.; Oballa, M.C.; Krzywicki, A.

    1994-12-31

    H-Oil and LC-Fining processes utilize a combination of thermal and catalytic hydroprocessing reactions to achieve high yields of distillate in upgrading bitumen or heavy oil residua. The processes are based on a well mixed (ebullated bed) reactor from which deactivated catalyst is continuously withdrawn and fresh catalyst is added to maintain yields. Catalyst activity and lifetime are two key factors controlling the economics of these processes. Catalyst deactivation occurs due to the deposition of coke and metals on the catalyst surface. The choice of catalyst is usually a compromise between two extremes: small pore catalyst with low metals capacity but higher activity that deactivates rapidly because of metals deposition and wide pore catalyst that has high metals deposition capacity but lower activity due to low surface area. Recently, aluminophosphate materials with large pores (< 10 nm--1,000 nm) and high surface areas (100--500 m{sup 2}/g) have been reported. The actual pore size distribution and surface area obtained depend on the Al/P ratio, preparation method and the calcination procedure. These materials are also thermally stable. The purpose of the present work was to determine if such materials, as a result of their pore size distribution and surface area, could decrease the rate of catalyst deactivation, increase catalyst activity and provide sufficient pore volume for high capacity of metals deposition during the upgrading of heavy oil residue.

  4. Stability and catalytic performance of vanadia supported on nanostructured titania catalyst in oxidative dehydrogenation of propane

    NASA Astrophysics Data System (ADS)

    Kootenaei, A. H. Shahbazi; Towfighi, J.; Khodadadi, A.; Mortazavi, Y.

    2014-04-01

    Titanate nanotubes with a high specific surface area were synthesized by the simple hydrothermal method and investigated as support for V2O5 catalyst in oxidative dehydrogenation of propane (ODP). The structures of pristine nanotubes as well as the prepared catalysts were investigated by XRD, Raman, FTIR, HRTEM, SEM, EDS, BET, and XPS techniques. The characterization of the as-synthesized nanotubes showed the synthesis of hydrogen titanate nanotube. The incipient wetness impregnation method was utilized to prepare VTNT-x (x = 5, 10, and 15 wt.% vanadia supported on nanotube) together with VTi5 (5 wt.% vanadia supported on Degussa P25). The anatase phase was developed in VTNT-x catalysts upon calcination along with specific surface area loss. Higher vanadia loading resulted in the lowering of support capacity in maintaining vanadia in dispersed state such that eventually crystalline vanadia appeared. The measured catalyst activity demonstrates that in spite of major support surface area loss in VTNT-5 catalyst, the propylene yield is superior in comparison with VTi5 catalyst. The catalyst activity can be correlated with maximum reduction temperature. Deactivation of VTi5 and VTNT-5 as well as VTNT-15 were studied for 3,000 min time-on-stream. It was found that the activity of VTNT-5 catalyst remain unchanged while a decline in catalytic activity observed in VTi5 and VTNT-15 catalysts. The development of rutile was considered as being a major element in the deactivation of the investigated catalysts which is influenced by the presence of vanadium and reaction atmosphere.

  5. Crystal structures of Ziegler-Natta catalyst supports.

    PubMed

    Malizia, Federica; Fait, Anna; Cruciani, Giuseppe

    2011-12-01

    The crystal structures of three MgCl(2)·nEtOH complexes with n=1.5, 2.8, and 3.3 have been fully determined. Such complexes are the fundamental precursors for Ziegler-Natta polymerization catalysts used to produce polyolefins on a multimillion-ton scale worldwide. The ab initio structure solution showed that the structure of MgCl(2)·nEtOH complexes with n=1.5 and 2.8 are based on ribbons of metal-centered octahedra, whereas for n=3.3 this chainlike arrangement breaks into a threadlike structure of isolated octahedra linked by hydrogen bonds. A clear correlation between catalyst performance and the crystal structure of precursors has been found, and reveals the fundamental role of the latter in determining catalyst properties. The direct knowledge of building blocks in the precursor structures will help to develop more accurate models for activated catalysts. These models will not require the arbitrary and oversimplified assumption of locating the catalyst active sites on selected cut surfaces of the α-MgCl(2) crystal lattice. PMID:22052708

  6. Catalytic wet air oxidation of chlorophenols over supported ruthenium catalysts.

    PubMed

    Li, Ning; Descorme, Claude; Besson, Michèle

    2007-07-31

    A series of noble metal (Pt, Pd, Ru) loaded zirconia catalysts were evaluated in the catalytic wet air oxidation (CWAO) of mono-chlorophenols (2-CP, 3-CP, 4-CP) under relatively mild reaction conditions. Among the investigated noble metals, Ru appeared to be the best to promote the CWAO of CPs as far as incipient-wetness impregnation was used to prepare all the catalysts. The position of the chlorine substitution on the aromatic ring was also shown to have a significant effect on the CP reactivity in the CWAO over 3wt.% Ru/ZrO(2). 2-CP was relatively easier to degradate compared to 3-CP and 4-CP. One reason could be the higher adsorption of 2-CP on the catalyst surface. Further investigations suggested that 3wt.% Ru/ZrO(2) is a very efficient catalyst in the CWAO of 2-CP as far as high 2-CP conversion and TOC abatement could still be reached at even lower temperature (393K) and lower total pressure (3MPa). Additionally, the conversion of 2-CP was demonstrated to increase with the initial pH of the 2-CP solution. The dechlorination reaction is promoted at higher pH. In all cases, the adsorption of the reactants and the reaction intermediates was shown to play a major role. All parameters that would control the molecule speciation in solution or the catalyst surface properties would have a key effect. PMID:17513043

  7. Oxidative-reforming of model biogas over NiO/Al2O3 catalysts: The influence of the variation of support synthesis conditions

    NASA Astrophysics Data System (ADS)

    Asencios, Yvan J. O.; Elias, Kariny F. M.; Assaf, Elisabete M.

    2014-10-01

    In this study, nickel catalysts (20 wt%) supported on γ-Al2O3 were prepared by the impregnation method. The γ-Al2O3, was synthesized by precipitation of bayerite gel obtained from aluminum scrap. The synthetic conditions of the bayerite gel varied as follows: precipitation pH ranging from 6 to 7; ageing temperature ranging from 25 to 80 °C, the calcination temperature for all samples was 500 °C. The catalysts and the supports were analyzed by temperature programmed reduction (H2-TPR), X-ray diffraction (XRD), physisorption of N2 (BET), X-ray absorption near-edge structure (XANES) and scanning electron microscopy (SEM). Isopropanol decomposition reactions over the catalysts were carried out to evaluate their acidity. SEM images of the spent catalysts showed that the morphology of the carbon formed during the reaction is of the filamentous type. The TPR analysis of the catalysts showed the presence of NiO species weakly interacted with the support as well as stoichiometric and non-stoichiometric nickel aluminate, the reduction of these species was also observed by XANES analysis. XRD analysis of the fresh catalyst showed peaks assigned to NiO, NiAl2O4 and γ-Al2O3. The best catalysts (samples NiAl7-25 and NiAl7-80) synthesized in this report showed high stability and high conversion values (CH4 (70%) and CO2 (78%)). These catalysts showed better performance than the catalyst supported on commercial γ-Al2O3, which showed a high coke formation which affected the course of the reaction. The γ-Al2O3 synthesized from bayerite obtained at neutral pH conditions was the best support for nickel catalysts in the oxidative-reforming of model biogas.

  8. Zeolite supported iron-cobalt catalysts for the Fischer-Tropsch synthesis

    SciTech Connect

    Lin, T.

    1984-01-01

    A series of Fe, Co, FeCo catalysts on Y and ZSM-5 supports, prepared by impregnation and ion exchange, has been investigated. Characterization methods utilized were x-ray diffraction, H{sub 2}/CO chemisorption, Moessbauer spectroscopy, and atomic absorption. A differential reactor and as chromatographs were also employed to analyze the reaction activity and product selectivity. (i) Y supported catalysts: The oxidation, reduction, and carburization behavior of the iron-containing catalysts were observed via Moessbauer spectra. The reversibility of FeY (ion exchange) in oxidation-reduction cycles was confirmed in this experiment. Furthermore, ion exchange catalysts (FeY, FeCoY) do not show any iron metal, alloy or carbide phase after reduction or carburization. In contrast to silica supported catalysts, FeCo/HY (impregnated) reveals a Moessbauer spectra similar to Fe/HY. A 1/1 (CO/H{sub 2}) feed was used to investigate the Fischer-Tropsch reaction at 1 atm, 250{degree}C. (ii) ZSM-5 supported catalysts: Moessbauer results indicate similar patterns for impregnated and ion-exchanged catalysts, and reaction studies reveal similar catalytic behavior for the two preparation methods. This is in contrast to the rather widely different properties of these metals resulting from impregnation or ion exchange on Y zeolite. In generation, the ZSM-5 supported metals produce higher activity and selectivity for high molecular weight materials, and are particularly identified with significant aromatic content in the production distribution.

  9. Redox properties and VOC oxidation activity of Cu catalysts supported on Ce₁-xSmxOδ mixed oxides.

    PubMed

    Konsolakis, Michalis; Carabineiro, Sónia A C; Tavares, Pedro B; Figueiredo, José L

    2013-10-15

    A series of Cu catalysts supported on Ce1-xSmxOδ mixed oxides with different molar contents (x=0, 0.25, 0.5, 0.75 and 1), was prepared by wet impregnation and evaluated for volatile organic compounds (VOC) abatement, employing ethyl acetate as model molecule. An extensive characterization study was undertaken in order to correlate the morphological, structural and surface properties of catalysts with their oxidation activity. The optimum performance was obtained with Cu/CeO2 catalyst, which offers complete conversion of ethyl acetate into CO2 at temperatures as low as 260°C. The catalytic performance of Cu/Ce1-xSmxOδ was interpreted on the basis of characterization studies, showing that incorporation of samarium in ceria has a detrimental effect on the textural characteristics and reducibility of catalysts. Moreover, high Sm/Ce atomic ratios (from 1 to 3) resulted in a more reduced copper species, compared to CeO2-rich supports, suggesting the inability of these species to take part in the redox mechanism of VOC abatement. Sm/Ce surface atomic ratios are always much higher than the nominal ratios indicating an impoverishment of catalyst surface in cerium oxide, which is detrimental for VOC activity. PMID:23995554

  10. Laser Synthesis of Supported Catalysts for Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    VanderWal, Randall L.; Ticich, Thomas M.; Sherry, Leif J.; Hall, Lee J.; Schubert, Kathy (Technical Monitor)

    2003-01-01

    Four methods of laser assisted catalyst generation for carbon nanotube (CNT) synthesis have been tested. These include pulsed laser transfer (PLT), photolytic deposition (PLD), photothermal deposition (PTD) and laser ablation deposition (LABD). Results from each method are compared based on CNT yield, morphology and structure. Under the conditions tested, the PLT was the easiest method to implement, required the least time and also yielded the best pattemation. The photolytic and photothermal methods required organometallics, extended processing time and partial vacuums. The latter two requirements also held for the ablation deposition approach. In addition to control of the substrate position, controlled deposition duration was necessary to achieve an active catalyst layer. Although all methods were tested on both metal and quartz substrates, only the quartz substrates proved to be inactive towards the deposited catalyst particles.

  11. Effect of surface oxidation of the support on the thiophene hydrodesulfurization activity of Mo, Ni, and NiMo catalysts supported on activated carbon

    SciTech Connect

    Calafat, A. |; Lopez-Agudo, A.; Palacios, J.M.

    1996-08-01

    The present investigation attempts to provide a better understanding of the influence of the nature of the carbon support on the HDS activity of Mo, Ni, and NiMo catalysts. For this purpose a high purity activated carbon was subjected to oxidative treatments with HNO{sub 3} to modify its surface properties. NiMo catalysts supported on the resulting activated carbons were prepared and characterized by TPR, XRD, and SEM-EDX, and their activity for HDS of thiophene at 30 bars and 375{degrees}C was evaluated. The results obtained showed that oxidation of the carbon surface does not affect the HDS activity and other characteristics of the supported Mo phase. In contrast, the HDS activity of the Ni catalysts is enhanced by acid treatments of the carbon support. In this case, introduction of oxygen-containing functional groups (O{sub (s)}) leads to a strong interaction of O{sub (s)}-Ni during impregnation, which becomes essential to achieving and preserving high nickel dispersion. This effect on NiMo/C catalysts. The synergistic effect of the bimetallic catalysts is observed only when oxygen functional groups are present on the carbon surface, which are necessary for a good HDS activity, mainly because they enhance Ni-Mo interactions that produce the highly active Ni-Mo-S phase. A NiMoO{sub 4}-like phase formed during impregnation seems to be the precursor for the active sulfide phase over the present NiMo/C catalysts. 34 refs., 6 figs., 5 tabs.

  12. Mechanism and kinetics of Fischer-Tropsch synthesis over supported ruthenium catalysts

    SciTech Connect

    Kellner, C.S.

    1981-06-01

    A detailed study of the kinetics of the Fischer-Tropsch synthesis of hydrocarbons, methanol, and acetaldehyde, over alumina- and silica-supported ruthenium catalysts has been carried out over a broad range of reaction conditions. Based on these results and information taken from the literature, mechanisms for the formation of normal paraffins, ..cap alpha..-olefins, methanol, and acetaldehyde have been proposed. Rate data were obtained between 448 and 548K, 1 and 10 atm, and H/sub 2//CO ratios between 1 and 3, utilizing a micro flow reactor operated at very low conversions. In addition to the studies performed with H/sub 2//CO mixtures, a series of experiments were carried out utilizing D/sub 2//CO mixtures. These studies were used to help identify rate limited steps and steps that were at equilibrium. A complementary investigation, carried out by in situ infrared spectroscopy, was performed using a Fourier Transform spectrometer. The spectra obtained were used to identify the modes of CO adsorption, the CO coverage, and the relative reactivity of different forms of adsorbed CO. It was established that CO adsorbs on alumina-supported Ru in, at least, two forms: (i) Ru-CO and (ii) OC-Ru-CO. Only the first of these forms participates in CO hydrogenation. The coverage of this species is described by a simple Langmuir isotherm. A reaction mechanism is presented for interpreting the kinetics of hydrocarbon synthesis, the olefin to paraffin ratio for each product, and the probability of chain propagation. Rate expressions based on this mechanism are reasonably consistent with the experimental data. Acetaldehyde, obtained mainly over silica-supported Ru, appears to be formed by a mechanism related to that for hydroformulation of olefins. The effect of the dispersion of Ru/Al/sub 2/O/sub 3/ catalysts on their specific activity and selectivity was also investigated. The specific activity for all products decreased rapidly with increasing dispersions.

  13. Influences of synthesis methods and modifier addition on the properties of Ni-based catalysts supported on reticulated ceramic foams

    NASA Astrophysics Data System (ADS)

    Nikolić, Vesna; Kamberović, Željko; Anđić, Zoran; Korać, Marija; Sokić, Miroslav; Maksimović, Vesna

    2014-08-01

    A method of synthesizing Ni-based catalysts supported on α-Al2O3-based foams was developed. The foams were impregnated with aqueous solutions of metal chlorides under an air atmosphere using an aerosol route. Separate procedures involved calcination to form oxides and drying to obtain chlorides on the foam surface. The synthesized samples were subsequently reduced with hydrogen. With respect to the Ni/Al2O3 catalysts, the chloride reduction route enabled the formation of a Ni coating without agglomerates or cracks. Further research included catalyst modification by the addition of Pd, Cu, and Fe. The influences of the additives on the degree of reduction and on the low-temperature reduction effectiveness (533 and 633 K) were examined and compared for the catalysts obtained from oxides and chlorides. Greater degrees of reduction were achieved with chlorides, whereas Pd was the most effective modifier among those investigated. The reduction process was nearly complete at 533 K in the sample that contained 0.1wt% Pd. A lower reduction temperature was utilized, and the calcination step was avoided, which may enhance the economical and technological aspects of the developed catalyst production method.

  14. Ruthenium carbonyl catalyst supported on ceric oxide for preparation of olefins from synthesis gas

    DOEpatents

    Pierantozzi, R.

    1985-04-02

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  15. Microstructure-stability relations studies of porous chitosan microspheres supported palladium catalysts.

    PubMed

    Zeng, Minfeng; Zhang, Xin; Qi, Chenze; Zhang, Xian-Man

    2012-12-01

    In this study, polyethylene glycol (PEG) with different molecular weight, polyvinyl pyrrolidone (PVP), and polyvinyl alcohol (PVA), are chosen as porogens for preparing chitosan base porous microsphere supported palladium catalyst for coupling reactions. The pore structure of the microspheres was controlled by the compatibility of chitosan and counterpart polymers. The prepared porous chitosan microspheres supported palladium heterogeneous catalysts have been evaluated using the well-established Ullmann reductive homocoupling and the Heck cross-coupling reactions. The activities, stabilities and recyclability of the porous chitosan microspheres supported palladium catalysts are not only highly dependent upon the surface areas of the solid supports, but also upon the chemical properties of the water-soluble polymers. The degradation of the prepared heterogeneous palladium catalysts is mainly caused by a combination of the palladium leaching and the morphological transformation of the palladium species from the amorphous into the crystals.

  16. Self-supported Pd(x)Bi catalysts for the electrooxidation of glycerol in alkaline media.

    PubMed

    Zalineeva, Anna; Serov, Alexey; Padilla, Monica; Martinez, Ulises; Artyushkova, Kateryna; Baranton, Stève; Coutanceau, Christophe; Atanassov, Plamen B

    2014-03-12

    Highly active self-supported PdxBi catalysts are synthesized by the sacrificial support method. Self-supported PdxBi catalysts have a porous nanostructured morphology with high surface areas (in the range from 75 to 100 m(2) g(-1)), making PdxBi a state-of-the-art catalyst. Pd4Bi displays the highest activity toward glycerol oxidation. In situ Fourier transform infrared spectroscopy highlights the unique catalytic behavior of self-supported PdxBi materials due to their particular structure and morphology. The confinement of reactants and intermediates in pores acting as nanoreactors is responsible for the high selectivity as a function of the electrode potential: aldehyde and ketone at low potentials, hydroxypyruvate at moderate potentials, and CO2 at high potentials. Moreover, the selectivity depends on the electrode history: it is different for the positive potential scan direction than for the reverse direction, where the catalyst becomes selective toward the production of carboxylates.

  17. Ruthenium carbonyl catalyst supported on ceric oxide for preparation of olefins from synthesis gas

    DOEpatents

    Pierantozzi, Ronald

    1985-01-01

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  18. Characterization of Al2O3 Supported Nickel Catalysts Derived from RFNon-thermal Plasma Technology

    SciTech Connect

    Jang, Ben W; Helleson, Michael J; Shi, Chunkai; Rondinone, Adam Justin; Schwartz, Viviane; Liang, Chengdu; Overbury, Steven {Steve} H

    2008-01-01

    Catalysts derived from non-thermal plasma techniques have previously shown unusual and highly advantageous catalytic properties including room temperature reduction, unusual metal particle structure and metal-support interactions, and enhanced selectivity and stability. This study focuses on the characterization of Al2O3 supported Ni catalysts derived from the RF non-thermal plasma technique with in-situ XRD, TPR-MS and STEM and on relating the results to the enhanced activity and stability of benzene hydrogenation. The results suggest that catalysts with plasma treatments before impregnation are relatively easier to be reduced and result in better activities under mild reduction conditions. These plasma treatments stabilize the nickel particle sizes of air(B) and H2(B) catalysts at 600 C by slowing down the sintering process. Plasma treatments after the impregnation of precursors, on the other hand, tend to delay the growth of nickel particles below 600 C, forming smaller Ni particles, but with a sudden increase in particle size near 600 C. It suggests that the structure of Ni nitrate and the metal-support interaction have been altered by the plasma treatments. The reduction patterns of plasma 1 treated catalysts are, therefore, changed. The catalyst with a combination plasma treatment demonstrates that the effect of a combination plasma treatment is larger than either the plasma treatment before or after the impregnation alone. Both plasma treatments before and after the impregnation of metal precursor play important roles in modifying supported metal catalysts.

  19. Towards stable catalysts by controlling collective properties of supported metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Prieto, Gonzalo; Zečević, Jovana; Friedrich, Heiner; de Jong, Krijn P.; de Jongh, Petra E.

    2013-01-01

    Supported metal nanoparticles play a pivotal role in areas such as nanoelectronics, energy storage/conversion and as catalysts for the sustainable production of fuels and chemicals. However, the tendency of nanoparticles to grow into larger crystallites is an impediment for stable performance. Exemplarily, loss of active surface area by metal particle growth is a major cause of deactivation for supported catalysts. In specific cases particle growth might be mitigated by tuning the properties of individual nanoparticles, such as size, composition and interaction with the support. Here we present an alternative strategy based on control over collective properties, revealing the pronounced impact of the three-dimensional nanospatial distribution of metal particles on catalyst stability. We employ silica-supported copper nanoparticles as catalysts for methanol synthesis as a showcase. Achieving near-maximum interparticle spacings, as accessed quantitatively by electron tomography, slows down deactivation up to an order of magnitude compared with a catalyst with a non-uniform nanoparticle distribution, or a reference Cu/ZnO/Al2O3 catalyst. Our approach paves the way towards the rational design of practically relevant catalysts and other nanomaterials with enhanced stability and functionality, for applications such as sensors, gas storage, batteries and solar fuel production.

  20. Towards stable catalysts by controlling collective properties of supported metal nanoparticles.

    PubMed

    Prieto, Gonzalo; Zečević, Jovana; Friedrich, Heiner; de Jong, Krijn P; de Jongh, Petra E

    2013-01-01

    Supported metal nanoparticles play a pivotal role in areas such as nanoelectronics, energy storage/conversion and as catalysts for the sustainable production of fuels and chemicals. However, the tendency of nanoparticles to grow into larger crystallites is an impediment for stable performance. Exemplarily, loss of active surface area by metal particle growth is a major cause of deactivation for supported catalysts. In specific cases particle growth might be mitigated by tuning the properties of individual nanoparticles, such as size, composition and interaction with the support. Here we present an alternative strategy based on control over collective properties, revealing the pronounced impact of the three-dimensional nanospatial distribution of metal particles on catalyst stability. We employ silica-supported copper nanoparticles as catalysts for methanol synthesis as a showcase. Achieving near-maximum interparticle spacings, as accessed quantitatively by electron tomography, slows down deactivation up to an order of magnitude compared with a catalyst with a non-uniform nanoparticle distribution, or a reference Cu/ZnO/Al(2)O(3) catalyst. Our approach paves the way towards the rational design of practically relevant catalysts and other nanomaterials with enhanced stability and functionality, for applications such as sensors, gas storage, batteries and solar fuel production. PMID:23142841

  1. Design of graphene sheets-supported Pt catalyst layer in PEM fuel cells

    SciTech Connect

    Park, Seh K.; Shao, Yuyan; Wan, Haiying; Rieke, Peter C.; Viswanathan, Vilayanur V.; Towne, Silas A.; Saraf, Laxmikant V.; Liu, Jun; Lin, Yuehe; Wang, Yong

    2011-03-01

    A series of cathodes using Pt supported onto graphene sheets with different contents of carbon black in the catalyst layer were prepared and characterized. Carbon black was added as a spacer between two-dimensional graphene sheets in the catalyst layer to study its effect on the performances of proton exchange membrane fuel cell. Electrochemical properties and surface morphology of the cathodes with and without carbon black were characterized using cyclic voltammetry, ac-impedance spectroscopy, electrochemical polarization technique, and scanning electron microscopy. The results indicated that carbon black effectively modifies the array of graphene supports, resulting in more Pt nanoparticles available for electrochemical reaction and better mass transport in the catalyst layer.

  2. Supported nickel bromide catalyst for atom transfer radical polymerization (ATRP) of methyl methacrylate.

    PubMed

    Duquesne, E; Degée, Ph; Habimana, J; Dubois, Ph

    2004-03-21

    A new supported catalytic system, i.e. nickel bromide catalyst ligated by triphenylphosphine (TPP) ligands immobilized onto crosslinked polystyrene resins (PS-TPP) is reported. Per se, this catalyst does not allow any control over the polymerization of methyl methacrylate (MMA) initiated by ethyl 2-bromoisobutyrate but, in the presence of a given amount of purposely added free TPP, it promotes controlled ATRP of MMA. Indeed colorless PMMA chains of low polydispersity indices are readily recovered, the molecular weight of which linearly increases with monomer conversion and agrees with the expected values. Recycling of the supported catalyst is evidenced and does not prevent the polymerization from being controlled. PMID:15010758

  3. Dehydration of Glycerin to Acrolein Over Heteropolyacid Nano-Catalysts Supported on Silica-Alumina.

    PubMed

    Kang, Tae Hun; Choi, Jung Ho; Choi, Jun Seon; Song, In Kyu

    2015-10-01

    A series of H3PW12O40 nano-catalysts supported on silica-alumina (XH3PW12O40/SA (X = 10, 15, 20, 25, and 30)) with different H3PW12O40 content (X, wt%) were prepared, and they were applied to the dehydration of glycerin to acrolein. The effect of H3PW12O40 content on the physicochemical properties and catalytic activities of XH3PW12O40/SA nano-catalysts was investigated. Surface area and pore volume of XH3PW12O40/SA catalysts decreased with increasing H3PW12O40 content. Formation of H3PW12O40 aggregates was observed in the catalysts with high H3PW12O40 loading. Brønsted acidity of the catalysts showed a volcano-shaped trend with respect to H3PW12O40 content. It was revealed that yield for acrolein increased with increasing Brønsted acidity of XH3PW12O40/SA catalysts. Brønsted acidity of XH3PW12O40/SA catalysts served as a crucial factor determining the catalytic performance in the dehydration of glycerin. Among the catalysts tested, 25H3PW12O40/SA catalyst with the largest Brønsted acidity showed the best catalytic performance. PMID:26726511

  4. Life Support Catalyst Regeneration Using Ionic Liquids and In Situ Resources

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Karr, Laurel J.; Paley, Mark S.; Donovan, David N.; Kramer, Teersa J.

    2016-01-01

    Oxygen recovery from metabolic carbon dioxide is an enabling capability for long-duration manned space flight. Complete recovery of oxygen (100%) involves the production of solid carbon. Catalytic approaches for this purpose, such as Bosch technology, have been limited in trade analyses due in part to the mass penalty for high catalyst resupply caused by carbon fouling of the iron or nickel catalyst. In an effort to mitigate this challenge, several technology approaches have been proposed. These approaches have included methods to prolong the life of the catalysts by increasing the total carbon mass loading per mass catalyst, methods for simplified catalyst introduction and removal to limit the resupply container mass, methods of using in situ resources, and methods to regenerate catalyst material. Research and development into these methods is ongoing, but only use of in situ resources and/or complete regeneration of catalyst material has the potential to entirely eliminate the need for resupply. The use of ionic liquids provides an opportunity to combine these methods in a technology approach designed to eliminate the need for resupply of oxygen recovery catalyst. Here we describe the results of an initial feasibility study using ionic liquids and in situ resources for life support catalyst regeneration, we discuss the key challenges with the approach, and we propose future efforts to advance the technology.

  5. Dehydration of Glycerin to Acrolein Over Heteropolyacid Nano-Catalysts Supported on Silica-Alumina.

    PubMed

    Kang, Tae Hun; Choi, Jung Ho; Choi, Jun Seon; Song, In Kyu

    2015-10-01

    A series of H3PW12O40 nano-catalysts supported on silica-alumina (XH3PW12O40/SA (X = 10, 15, 20, 25, and 30)) with different H3PW12O40 content (X, wt%) were prepared, and they were applied to the dehydration of glycerin to acrolein. The effect of H3PW12O40 content on the physicochemical properties and catalytic activities of XH3PW12O40/SA nano-catalysts was investigated. Surface area and pore volume of XH3PW12O40/SA catalysts decreased with increasing H3PW12O40 content. Formation of H3PW12O40 aggregates was observed in the catalysts with high H3PW12O40 loading. Brønsted acidity of the catalysts showed a volcano-shaped trend with respect to H3PW12O40 content. It was revealed that yield for acrolein increased with increasing Brønsted acidity of XH3PW12O40/SA catalysts. Brønsted acidity of XH3PW12O40/SA catalysts served as a crucial factor determining the catalytic performance in the dehydration of glycerin. Among the catalysts tested, 25H3PW12O40/SA catalyst with the largest Brønsted acidity showed the best catalytic performance.

  6. Supported transition-metal oxide catalysts for reduction of sulfur dioxide with hydrogen to elemental sulfur.

    PubMed

    Chen, Chun-Liang; Wang, Ching-Huei; Weng, Hung-Shan

    2004-08-01

    This work is for the purpose to find a high performance catalyst for the catalytic reduction of SO2 with H2 as a reducing agent. NiO/gamma-Al2O3 catalyst was found to be the most active catalyst among the seven gamma-Al2O3-supported metal-oxide catalysts tested. With NiO as the active species, of the supports tested, gamma-Al2O3 was the most suitable one and the optimal Ni content was 16 wt%. Using this NiO/gamma-Al2O3 catalyst, we found that the optimal feed ratio of H2/SO2 is 2:1 and the catalyst presulfided with H2 + H2S exhibits a higher performance than that pretreated with H2 or He. XRD patterns reveal that the nickel oxide experienced a transformation to Ni3S2 and NiS, and then to NiS2, the most active nickel sulfide, during the reaction process. The reason for the highest catalyst activity of 16 wt% Ni was attributed to the largest amount of NiS2. Water vapor in the feed gas reactant caused inhibition of catalyst activity, whereas H2S promoted the reduction of SO2. These phenomena were rationalized with the aid of Claus reaction. PMID:15212907

  7. Theoretical study of support effect of Au catalyst for glucose oxidation of alkaline fuel cell anode

    NASA Astrophysics Data System (ADS)

    Ishimoto, Takayoshi; Hamatake, Yumi; Kazuno, Hiroki; Kishida, Takayuki; Koyama, Michihisa

    2015-01-01

    We theoretically analyzed the glucose oxidation reaction mechanism and reaction activity of Au catalyst supported by carbon (graphite(0 0 0 1), (1 0 1 bar 0), and (1 1 2 bar 0)) and oxide (ZrO2(1 1 1) and SnO2(1 1 0)) in alkaline solution environment by using density functional theory method. We observed large stabilization of Au catalyst on support materials due to the electron transfer in the case of graphite(1 1 2 bar 0) and SnO2(1 1 0) systems. The catalytic activity for glucose oxidation reaction over Au supported by graphite(1 0 1 bar 0) and (1 1 2 bar 0) is calculated to be low in comparison with those of unsupported system. We found that SnO2(1 1 0) supported Au catalyst shows high activity toward the glucose oxidation. One of the main factors for the observed high catalytic activity is charge transfer from Au catalyst to support materials. When the atomic charge of Au catalyst becomes positive by the support effect, the activity of glucose oxidation reaction on Au catalyst is improved.

  8. LDRD final report on new homogeneous and supported oligomerization catalysts (LDRD 42461).

    SciTech Connect

    Hascall, Anthony G.; Kemp, Richard Alan

    2004-11-01

    The overall purpose of this LDRD is multifold. First, we are interested in preparing new homogeneous catalysts that can be used in the oligomerization of ethylene and in understanding commercially important systems better. Second, we are interested in attempting to support these new homogeneous catalysts in the pores of nano- or mesoporous materials in order to force new and unusual distributions of a-olefins to be formed during the oligomerization. Thus the overall purpose is to try to prepare new catalytic species and to possibly control the active site architecture in order to yield certain desired products during a catalytic reaction, much like nature does with enzymes. In order to rationally synthesize catalysts it is imperative to comprehend the function of the various components of the catalyst. In heterogeneous systems, it is of utmost importance to know how a support interacts with the active site of the catalyst. In fact, in the catalysis world this lack of fundamental understanding of the relationship between active site and support is the single largest reason catalysis is considered an 'empirical' or 'black box' science rather than a well-understood one. In this work we will be preparing novel ethylene oligomerization catalysts, which are normally P-O chelated homogeneous complexes, with new ligands that replace P with a stable carbene. We will also examine a commercially catalyst system and investigate the active site in it via X-ray crystallography. We will also attempt to support these materials inside the pores of nano- and mesoporous materials. Essentially, we will be tailoring the size and scale of the catalyst active site and its surrounding environment to match the size of the molecular product(s) we wish to make. The overall purpose of the study will be to prepare new homogeneous catalysts, and if successful in supporting them to examine the effects that steric constraints and pore structures can have on growing oligomer chains.

  9. Liquid phase catalytic hydrodebromination of tetrabromobisphenol A on supported Pd catalysts

    NASA Astrophysics Data System (ADS)

    Wu, Ke; Zheng, Mengjia; Han, Yuxiang; Xu, Zhaoyi; Zheng, Shourong

    2016-07-01

    Tetrabromobisphenol A (TBBPA) is a widely used brominated flame retardant and reductive debromination is an effective method for the abatement of TBBPA pollution. In this study, Pd catalysts supported on TiO2, CeO2, Al2O3 and SiO2 were prepared by the impregnation (the resulting catalyst denoted as im-Pd/support), deposition-precipitation (the resulting catalyst denoted as dp-Pd/support), and photo-deposition (the resulting catalyst denoted as pd-Pd/support) methods. The catalysts were characterized by N2 adsorption-desorption isotherm, X-ray diffraction, transmission electron microscopy, measurement of zeta potential, CO chemisorption, and X-ray photoelectron spectroscopy. The results showed that at an identical Pd loading amount (2.0 wt.%) Pd particle size in dp-Pd/TiO2 was much smaller than those in im-Pd/TiO2 and pd-Pd/TiO2. Pd particle size of the dp-Pd/TiO2 catalyst increased with Pd loading amount. Additionally, Pd particles in the dp-Pd/TiO2 catalysts were positively charged due to the strong metal-support interaction, whereas the cationization effect was gradually attenuated with the increase of Pd loading amount. For the liquid phase catalytic hydrodebromination (HDB) of TBBPA, tri-bromobisphenol A (tri-BBPA), di-bromobisphenol A (di-BBPA), and mono-bromobisphenol A (mono-BBPA) were identified as the intermediate products, indicative of a stepwise debromination process. The catalytic HDB of TBBPA followed the Langmuir-Hinshelwood model, reflecting an adsorption enhanced catalysis mechanism. At an identical Pd loading amount, the Pd catalyst supported on TiO2 exhibited a much higher catalytic activity than those on other supports. Furthermore, dp-Pd/TiO2 was found to be more active than im-Pd/TiO2 and pd-Pd/TiO2.

  10. Hydrogen evolution across nano-Schottky junctions at carbon supported MoS2 catalysts in biphasic liquid systems.

    PubMed

    Ge, Peiyu; Scanlon, Micheál D; Peljo, Pekka; Bian, Xiaojun; Vubrel, Heron; O'Neill, Arlene; Coleman, Jonathan N; Cantoni, Marco; Hu, Xile; Kontturi, Kyösti; Liu, Baohong; Girault, Hubert H

    2012-07-01

    The activities of a series of MoS(2)-based hydrogen evolution catalysts were studied by biphasic reactions monitored by UV/Vis spectroscopy. Carbon supported MoS(2) catalysts performed best due to an abundance of catalytic edge sites and strong electronic coupling of catalyst to support.

  11. Carbon nanocages: A new support material for Pt catalyst with remarkably high durability

    PubMed Central

    Wang, Xiao Xia; Tan, Zhe Hua; Zeng, Min; Wang, Jian Nong

    2014-01-01

    Low durability is the major challenge hindering the large-scale implementation of proton exchange membrane fuel cell (PEMFC) technology, and corrosion of carbon support materials of current catalysts is the main cause. Here, we describe the finding of remarkably high durability with the use of a novel support material. This material is based on hollow carbon nanocages developed with a high degree of graphitization and concurrent nitrogen doping for oxidation resistance enhancement, uniform deposition of fine Pt particles, and strong Pt-support interaction. Accelerated degradation testing shows that such designed catalyst possesses a superior electrochemical activity and long-term stability for both hydrogen oxidation and oxygen reduction relative to industry benchmarks of current catalysts. Further testing under conditions of practical fuel cell operation reveals almost no degradation over long-term cycling. Such a catalyst of high activity, particularly, high durability, opens the door for the next-generation PEMFC for “real world” application. PMID:24658614

  12. Design and Preparation of Supported Au Catalyst with Enhanced Catalytic Activities by Rationally Positioning Au Nanoparticles on Anatase.

    PubMed

    Wang, Liang; Wang, Hong; Rice, Andrew E; Zhang, Wei; Li, Xiaokun; Chen, Mingshu; Meng, Xiangju; Lewis, James P; Xiao, Feng-Shou

    2015-06-18

    A synergistic effect between individual components is crucial for increasing the activity of metal/metal oxide catalysts. The greatest challenge is how to control the synergistic effect to obtain enhanced catalytic performance. Through density functional theory calculations of model Au/TiO2 catalysts, it is suggested that there is strong interaction between Au nanoparticles and Ti species at the edge/corner sites of anatase, which is favorable for the formation of stable oxygen vacancies. Motivated by this theoretical analysis, we have rationally prepared Au nanoparticles attached to edge/corner sites of anatase support (Au/TiO2-EC), confirmed by their HR-TEM images. As expected, this strong interaction is well characterized by Raman, UV-visible, and XPS techniques. Very interestingly, compared with conventional Au catalysts, Au/TiO2-EC exhibits superior catalytic activity in the oxidations using O2. Our approach to controlling Au nanoparticle positioning on anatase to obtain enhanced catalytic activity offers an efficient strategy for developing more novel supported metal catalysts.

  13. Design and Preparation of Supported Au Catalyst with Enhanced Catalytic Activities by Rationally Positioning Au Nanoparticles on Anatase.

    PubMed

    Wang, Liang; Wang, Hong; Rice, Andrew E; Zhang, Wei; Li, Xiaokun; Chen, Mingshu; Meng, Xiangju; Lewis, James P; Xiao, Feng-Shou

    2015-06-18

    A synergistic effect between individual components is crucial for increasing the activity of metal/metal oxide catalysts. The greatest challenge is how to control the synergistic effect to obtain enhanced catalytic performance. Through density functional theory calculations of model Au/TiO2 catalysts, it is suggested that there is strong interaction between Au nanoparticles and Ti species at the edge/corner sites of anatase, which is favorable for the formation of stable oxygen vacancies. Motivated by this theoretical analysis, we have rationally prepared Au nanoparticles attached to edge/corner sites of anatase support (Au/TiO2-EC), confirmed by their HR-TEM images. As expected, this strong interaction is well characterized by Raman, UV-visible, and XPS techniques. Very interestingly, compared with conventional Au catalysts, Au/TiO2-EC exhibits superior catalytic activity in the oxidations using O2. Our approach to controlling Au nanoparticle positioning on anatase to obtain enhanced catalytic activity offers an efficient strategy for developing more novel supported metal catalysts. PMID:26266615

  14. Effect of Support on the Activity of Ag-based Catalysts for Formaldehyde Oxidation

    PubMed Central

    Zhang, Jianghao; Li, Yaobin; Zhang, Yan; Chen, Min; Wang, Lian; Zhang, Changbin; He, Hong

    2015-01-01

    Ag-based catalysts with different supports (TiO2, Al2O3 and CeO2) were prepared by impregnation method and subsequently tested for the catalytic oxidation of formaldehyde (HCHO) at low temperature. The Ag/TiO2 catalyst showed the distinctive catalytic performance, achieving the complete HCHO conversion at around 95 °C. In contrast, the Ag/Al2O3 and Ag/CeO2 catalysts displayed much lower activity and the 100% conversion was reached at 110 °C and higher than 125 °C, respectively. The Ag-based catalysts were next characterized by several methods. The characterization results revealed that supports have the dramatic influence on the Ag particle sizes and dispersion. Kinetic tests showed that the Ag based catalyst on the TiO2, Al2O3 or CeO2 supports have the similar apparent activation energy of 65 kJ mol−1, indicating that the catalytic mechanism keep immutability over these three catalysts. Therefore, Ag particle size and dispersion was confirmed to be the main factor affecting the catalytic performance for HCHO oxidation. The Ag/TiO2 catalyst has the highest Ag dispersion and the smallest Ag particle size, accordingly presenting the best catalytic performance for HCHO oxidation. PMID:26263506

  15. Nanoparticle-supported and magnetically recoverable palladium (Pd) catalyst: a selective and sustainable oxidation protocol with high turnover number

    EPA Science Inventory

    A magnetic nanoparticle-supported ruthenium hydroxide catalyst was readily prepared from inexpensive starting materials and shown to catalyze hydration of nitriles with excellent yield in benign aqueous medium. Catalyst recovery using an external magnetic field, superior activity...

  16. Conversion of biomass-derived sorbitol to glycols over carbon-materials supported Ru-based catalysts.

    PubMed

    Guo, Xingcui; Guan, Jing; Li, Bin; Wang, Xicheng; Mu, Xindong; Liu, Huizhou

    2015-01-01

    Ruthenium (Ru) supported on activated carbon (AC) and carbon nanotubes (CNTs) was carried out in the hydrogenolysis of sorbitol to ethylene glycol (EG) and 1,2-propanediol (1,2-PD) under the promotion of tungsten (WOx) species and different bases. Their catalytic activities and glycols selectivities strongly depended on the support properties and location of Ru on CNTs, owning to the altered metal-support interactions and electronic state of ruthenium. Ru located outside of the tubes showed excellent catalytic performance than those encapsulated inside the nanotubes. Additionally, the introduction of WOx into Ru/CNTs significantly improved the hydrogenolysis activities, and a complete conversion of sorbitol with up to 60.2% 1,2-PD and EG yields was obtained on RuWOx/CNTs catalyst upon addition of Ca(OH)2. Stability study showed that this catalyst was highly stable against leaching and poisoning and could be recycled several times. PMID:26578426

  17. Conversion of biomass-derived sorbitol to glycols over carbon-materials supported Ru-based catalysts

    NASA Astrophysics Data System (ADS)

    Guo, Xingcui; Guan, Jing; Li, Bin; Wang, Xicheng; Mu, Xindong; Liu, Huizhou

    2015-11-01

    Ruthenium (Ru) supported on activated carbon (AC) and carbon nanotubes (CNTs) was carried out in the hydrogenolysis of sorbitol to ethylene glycol (EG) and 1,2-propanediol (1,2-PD) under the promotion of tungsten (WOx) species and different bases. Their catalytic activities and glycols selectivities strongly depended on the support properties and location of Ru on CNTs, owning to the altered metal-support interactions and electronic state of ruthenium. Ru located outside of the tubes showed excellent catalytic performance than those encapsulated inside the nanotubes. Additionally, the introduction of WOx into Ru/CNTs significantly improved the hydrogenolysis activities, and a complete conversion of sorbitol with up to 60.2% 1,2-PD and EG yields was obtained on RuWOx/CNTs catalyst upon addition of Ca(OH)2. Stability study showed that this catalyst was highly stable against leaching and poisoning and could be recycled several times.

  18. Conversion of biomass-derived sorbitol to glycols over carbon-materials supported Ru-based catalysts

    PubMed Central

    Guo, Xingcui; Guan, Jing; Li, Bin; Wang, Xicheng; Mu, Xindong; Liu, Huizhou

    2015-01-01

    Ruthenium (Ru) supported on activated carbon (AC) and carbon nanotubes (CNTs) was carried out in the hydrogenolysis of sorbitol to ethylene glycol (EG) and 1,2-propanediol (1,2-PD) under the promotion of tungsten (WOx) species and different bases. Their catalytic activities and glycols selectivities strongly depended on the support properties and location of Ru on CNTs, owning to the altered metal-support interactions and electronic state of ruthenium. Ru located outside of the tubes showed excellent catalytic performance than those encapsulated inside the nanotubes. Additionally, the introduction of WOx into Ru/CNTs significantly improved the hydrogenolysis activities, and a complete conversion of sorbitol with up to 60.2% 1,2-PD and EG yields was obtained on RuWOx/CNTs catalyst upon addition of Ca(OH)2. Stability study showed that this catalyst was highly stable against leaching and poisoning and could be recycled several times. PMID:26578426

  19. MCM-41-supported cobalt-molybdenum catalysts for deep hydrodesulfurization of diesel and jet fuel feedstocks

    NASA Astrophysics Data System (ADS)

    Turaga, Uday Tsrpr

    Regulatory issues require new catalysts for the deep hydrodesulfurization (HDS) of refractory polyaromatic sulfur compounds such as 4,6-dimethyldibenzothiophene (4,6-DMDBT) present in diesel and jet fuel. Molybdenum sulfide (MoS2 ) supported on mesoporous molecular sieve MCM-41 and promoted by cobalt was hypothesized to have superior activity for deep HDS because of MCM-41's (1) high surface area and uniform mesopores and (2) superior acidity as compared to conventional supports such as gamma-alumina (gamma-Al 2O3). This study examines the role of MCM-41 as a support for new cobalt (Co)-molybdenum (Mo) HDS catalysts. At CoO-MoO3 loadings typical of commercially available HDS catalysts, MCM-41-supported catalysts were only slightly better. At higher loadings---27.0% (by weight) MoO3 and 5.8% CoO---MCM-41-supported catalysts were twice more active than the commercial catalyst. This difference in activities is related to the degree of MoS2 stacking. Remarkable increase in the conversion of 4,6-DMDBT was observed over MCM-41-supported catalysts with decreasing SiO2/Al2O 3 ratio. More significantly, the SiO2/Al2O 3 ratio of MCM-41 has a profound effect on product distribution and catalyst selectivity. Irrespective of CoO-MoO3 loading, catalysts using MCM-41 with a SiO2/Al2O3 ratio of 50 convert more of 4,6-DMDBT through the highly desirable hydrogenolysis pathway. The acidity of these catalysts was measured and correlated to their selectivities for hydrogenolysis and hydrocracking. Co-Mo/MCM-41 continued to demonstrate activities twice that of the commercial catalyst for the HDS of 4,6-DMDBT in petroleum-derived feedstocks such as light cycle oil. However, for a blend of coal- and petroleum-derived feedstocks, nitrogen from the coal-derived liquid inhibited both catalysts for the HDS of 4,6-DMDBT. Basic nitrogen, e.g., quinoline, significantly retards the HDS of 4,6-DMDBT over both catalysts. Non-basic carbazole, on the other hand, inhibited the MCM-41-supported

  20. Supported Molecular Catalysts: Synthesis, In-Situ Characterization and Performance

    SciTech Connect

    Davis, Mark E.

    2009-03-13

    The objectives of our work are: (i) to create solid catalysts with active sites that can function in a cooperative manner to enhance reactivity and selectivity, and (ii) to prepare solid catalysts that can perform multiple reactions in a network that in some cases would not be possible in solution due to the incompatibilities of the various catalytic entities (for example an acid and a base). We carried out extensive reactions to test the nature of the cooperative effect caused by thiol/sulfonic acid interactions. The acid/thiol combination provided an example where the two organic groups should be positioned as close to one another as possible. We also studied a system where this is not possible (acid-base). We investigated simultaneously incorporating acid and base groups into the same material. For the case of acid and bases, there is an optimal separation distance (too close allows for neutralization while too far eliminates any cooperative behavior).

  1. Support shape effect in metal oxide catalysis: ceria nanoshapes supported vanadia catalysts for oxidative dehydrogenation of iso-butane

    SciTech Connect

    Wu, Zili; Schwartz, Viviane; Li, Meijun; Rondinone, Adam Justin; Overbury, Steven {Steve} H

    2012-01-01

    The activation energy of VOx/CeO2 catalysts in oxidative dehydrogenation of iso-butane was found dependent on the shape of ceria support: rods < octahedra, closely related to the surface oxygen vacancy formation energy and defects amount of the two ceria supports with different crystallographic surface planes.

  2. Platinum-Tin Nano-Catalysts Supported on Alumina for Direct Dehydrogenation of n-Butane.

    PubMed

    Lee, Jong Kwon; Seo, Hyun; Hong, Ung Gi; Park, Gle; Yoo, Yeonshick; Lee, Jinsuk; Chang, Hosik; Song, In Kyu

    2015-10-01

    Al2O3 supports were prepared by a precipitation method using various basic solutions (NaOH, KOH, NH4OH, and Na2CO3) as precipitation agents, and Pt/Sn/Al2O3 nano-catalysts were then prepared by a sequential impregnation method. The prepared catalysts were applied to the direct dehydrogenation of n-butane to n-butenes and 1,3-butadiene. The effect of precipitation agents on the physicochemical properties and catalytic activities of Pt/Sn/Al2O3 nano-catalysts in the direct dehydrogenation of n-butane was investigated. Catalytic performance of Pt/Sn/Al2O3 nano-catalysts decreased in order of Pt/Sn/Al2O3 (NaOH) > Pt/Sn/Al2O3 (KOH) > Pt/Sn/Al2O3 (NH4OH) > Pt/Sn/Al2O3 (Na2CO3). Among the catalysts tested, Pt/Sn/Al2O3 (NaOH) nano-catalyst showed the best catalytic performance in terms of yield for total dehydrogenation products (TDP, n-butenes and 1,3-butadiene). Hydrogen chemisorption experiments revealed that platinum surface area of the catalyst was closely related to the catalytic performance. Yield for TDP increased with increasing platinum surface area of the catalyst.

  3. Platinum-Tin Nano-Catalysts Supported on Alumina for Direct Dehydrogenation of n-Butane.

    PubMed

    Lee, Jong Kwon; Seo, Hyun; Hong, Ung Gi; Park, Gle; Yoo, Yeonshick; Lee, Jinsuk; Chang, Hosik; Song, In Kyu

    2015-10-01

    Al2O3 supports were prepared by a precipitation method using various basic solutions (NaOH, KOH, NH4OH, and Na2CO3) as precipitation agents, and Pt/Sn/Al2O3 nano-catalysts were then prepared by a sequential impregnation method. The prepared catalysts were applied to the direct dehydrogenation of n-butane to n-butenes and 1,3-butadiene. The effect of precipitation agents on the physicochemical properties and catalytic activities of Pt/Sn/Al2O3 nano-catalysts in the direct dehydrogenation of n-butane was investigated. Catalytic performance of Pt/Sn/Al2O3 nano-catalysts decreased in order of Pt/Sn/Al2O3 (NaOH) > Pt/Sn/Al2O3 (KOH) > Pt/Sn/Al2O3 (NH4OH) > Pt/Sn/Al2O3 (Na2CO3). Among the catalysts tested, Pt/Sn/Al2O3 (NaOH) nano-catalyst showed the best catalytic performance in terms of yield for total dehydrogenation products (TDP, n-butenes and 1,3-butadiene). Hydrogen chemisorption experiments revealed that platinum surface area of the catalyst was closely related to the catalytic performance. Yield for TDP increased with increasing platinum surface area of the catalyst. PMID:26726508

  4. Inkjet printing of carbon supported platinum 3-D catalyst layers for use in fuel cells

    NASA Astrophysics Data System (ADS)

    Taylor, André D.; Kim, Edward Y.; Humes, Virgil P.; Kizuka, Jeremy; Thompson, Levi T.

    We present a method of using inkjet printing (IJP) to deposit catalyst materials onto gas diffusion layers (GDLs) that are made into membrane electrode assemblies (MEAs) for polymer electrolyte fuel cell (PEMFC). Existing ink deposition methods such as spray painting or screen printing are not well suited for ultra low (<0.5 mg Pt cm -2) loadings. The IJP method can be used to deposit smaller volumes of water based catalyst ink solutions with picoliter precision provided the solution properties are compatible with the cartridge design. By optimizing the dispersion of the ink solution we have shown that this technique can be successfully used with catalysts supported on different carbon black (i.e. XC-72R, Monarch 700, Black Pearls 2000, etc.). Our ink jet printed MEAs with catalyst loadings of 0.020 mg Pt cm -2 have shown Pt utilizations in excess of 16,000 mW mg -1 Pt which is higher than our traditional screen printed MEAs (800 mW mg -1 Pt). As a further demonstration of IJP versatility, we present results of a graded distribution of Pt/C catalyst structure using standard Johnson Matthey (JM) catalyst. Compared to a continuous catalyst layer of JM Pt/C (20% Pt), the graded catalyst structure showed enhanced performance.

  5. Vapor Phase Dehydration of Glycerol to Acrolein Over SBA-15 Supported Vanadium Substituted Phosphomolybdic Acid Catalyst.

    PubMed

    Viswanadham, Balaga; Srikanth, Amirineni; Kumar, Vanama Pavan; Chary, Komandur V R

    2015-07-01

    Vapor phase dehydration of glycerol to acrolein was investigated over heteropolyacid (HPA) catalysts containing vanadium substituted phosphomolybdic acid (H4PMo11VO40) supported on mesoporous SBA-15. A series of HPA catalysts with HPA loadings varying from 10-50 wt% were prepared by impregnation method on SBA-15 support. The catalysts were characterized by X-ray diffraction, Raman spectroscopy, Fourier Transform infrared spectroscopy, temperature-programmed desorption of NH3, pyridine adsorbed FT-IR spectroscopy, scanning electron microscopy, pore size distribution and specific surface area measurements. The nature of acidic sites was examined by pyridine adsorbed FT-IR spectroscopy. XRD results suggest that the active phase containing HPA was highly dispersed at lower loadings on the support. FT-IR and Raman spectra results confirm that the presence of primary Keggin ion structure of HPA on the support and it was not affected during the preparation of catalysts. Pore size distribution results reveal that all the samples show unimodel pore size distribution with well depicted mesoporous structure. NH3-TPD results suggest that the acidity of catalysts increased with increase of HPA loading. The findings of acidity measurements by FT-IR spectra of pyridine adsorption reveals that the catalysts consist both the Brønsted and Lewis acidic sites and the amount of Brønsted acidic sites are increasing with HPA loading. SBA-15 supported vanadium substituted phosphomolybdic acid catalysts are found to be highly active during the dehydration reaction and exhibited 100% conversion of glycerol (10 wt% of glycerol) and the acrolein selectivity was appreciably changed with HPA active phase loading. The catalytic functionalities during glycerol dehydration are well correlated with surface acidity of the catalysts.

  6. Evaluation of photocatalytic activities of supported catalysts on NaX zeolite or activated charcoal.

    PubMed

    de Brites-Nóbrega, Fernanda F; Polo, Aldino N B; Benedetti, Angélica M; Leão, Mônica M D; Slusarski-Santana, Veronice; Fernandes-Machado, Nádia R C

    2013-12-15

    This study aimed to evaluate the photocatalytic activity of ZnO and Nb2O5 catalysts, both supported on NaX zeolite and activated charcoal (AC). The synergistic effect between oxide and support and the influence of solution pH (3, 7 and 9) on photocatalytic degradation of reactive blue 5G (C.I. 222) were analyzed. The catalysts Nb2O5/NaX, Nb2O5/AC and ZnO/NaX, ZnO/AC with 5 and 10% (wt%) were prepared by wet impregnation. The results showed that the catalysts exhibit quite different structural and textural properties. The synergic effect between ZnO and NaX support was higher than that with the activated charcoal, showing that these catalysts were more efficient. The most photoactive catalyst was 10% ZnO/NaX which showed 100% discoloration of the dye solution at pH 3, 7 and 9 after 0.5, 5 and 2h of irradiation, respectively. The hydrolytic nature of zeolite favored the formation of surface hydroxyl radicals, which increased the activity of the photocatalyst. Thus, catalysts supported on NaX zeolite are promising for use in photocatalysis.

  7. Effect of particle size on CO hydrogenation activity of silica supported cobalt catalysts

    SciTech Connect

    Ho, Suiwen; Houalla, M.; Hercules, D.M. )

    1990-08-09

    Two series of silica supported cobalt catalysts were prepared by incipient wetness impregnation, one by varying the calcination temperature (200-400{degree}C, 3 wt % Co) and the other by changing the cobalt loading (1-10 wt % Co). Examination by ESCA, XRD, and H{sub 2} chemisorption showed that Co{sub 3}O{sub 4} is the dominant phase. The cobalt phase is reduced to cobalt metal at 400{degree}C. The cobalt particle sizes obtained from ESCA correlated well with those derived from H{sub 2} chemisorption and XRD line broadening. The turnover frequency of Co/SiO{sub 2} for CO hydrogenation was invariant with cobalt dispersion in the range of 6-20% dispersion.

  8. Oxide-supported metal carbonyls: novel catalysts for the liquefaction of coal. Final technical report

    SciTech Connect

    Melson, G.A.

    1985-01-01

    Coal liquefaction, hydrodesulfurization (HDS), and hydrodenitrogenation (HDN) catalysts have been investigated increasingly in recent years because of the need to understand how to develop more selective and stable materials for coal utilization. One catalyst that has been used extensively for HDS and subjected to numerous characterization and model reaction studies is Co-Mo/Al/sub 2/O/sub 3/. In these studies, the catalyst preparation technique has usually involved the incipient-wetness impregnation of ..gamma..-Al/sub 2/O/sub 3/ with ammonium molybdates and cobalt nitrates. Such a technique leads to a variety of surface species, bulk-like and monolayer forms, which have been described and can be controlled by alterations in the preparation techniques and materials. However, certain structural and chemical factors of the catalysts, e.g., Co and Mo reducibility and dispersion or surface speciation at low and high metal concentrations, seem to be independent of such alterations. To investigate whether these factors can be affected by preparation techniques and to develop oxide-supported, metal catalysts having controlled metal dispersions and speciation, a catalyst preparation technique using metal carbonyls with an extraction process to metal-load oxide supports has been developed (J.E. Crawford, G.A. Melson, L.E. Makovsky, F.R. Brown, J. Catal., 83: 454 (1983)). This report discusses the surface and bulk characterization, and presents initial HDS and liquefaction results, for these catalysts. 7 refs., 4 figs., 1 tab.

  9. Fischer–Tropsch Synthesis: Effect of Reducing Agent for Aqueous-Phase Synthesis Over Ru Nanoparticle and Supported Ru Catalysts

    SciTech Connect

    Pendyala, Venkat Ramana Rao; Shafer, Wilson D.; Jacobs, Gary; Graham, Uschi M.; Khalid, Syed; Davis, Burtron H.

    2014-12-27

    The effect of the reducing agent on the performance of a ruthenium nanoparticle catalyst was investigated during aqueous-phase Fischer–Tropsch synthesis using a 1 L stirred tank reactor in the batch mode of operation. For the purpose of comparison, the activity and selectivity of NaY zeolite supported Ru catalyst were also studied. NaBH4 and hydrogen were used as reducing agents in our study, and hydrogen reduced catalysts exhibited higher activities than the NaBH4 reduced catalysts, because of higher extent of reduction and a relatively lower tendency toward agglomeration of Ru particles. The Ru nanoparticle catalyst displayed higher activities than the NaY zeolite supported Ru catalyst for both reducing agents. NaBH4 reduced catalysts are less active and the carbon dioxide selectivity is higher than the hydrogen reduced catalysts. The activity of the supported Ru catalyst (Ru/NaY) was 75 % of that of the Ru nanoparticle catalyst, and has the benefit of easy wax/catalyst slurry separation by filtration. Finally, the hydrogen reduced supported Ru catalyst exhibited superior selectivity towards hydrocarbons (higher C5+ selectivity and lower selectivity to methane) than all other catalysts tested.

  10. Molecular Engineering of Trifunctional Supported Catalysts for the Aerobic Oxidation of Alcohols.

    PubMed

    Fernandes, Antony E; Riant, Olivier; Jensen, Klavs F; Jonas, Alain M

    2016-09-01

    We describe a simple and general method for the preparation and molecular engineering of supported trifunctional catalysts and their application in the representative Cu/TEMPO/NMI-catalyzed aerobic oxidation of benzyl alcohol. The methodology allows in one single step to immobilize, with precise control of surface composition, both pyta, Cu(I) , TEMPO, and NMI sites on azide-functionalized silica particles. To optimize the performance of the heterogeneous trifunctional catalysts, synergistic interactions are finely engineered through modulating the degree of freedom of the imidazole site as well as tuning the relative surface composition, leading to catalysts with an activity significantly superior to the corresponding homogeneous catalytic system.

  11. Molecular Engineering of Trifunctional Supported Catalysts for the Aerobic Oxidation of Alcohols.

    PubMed

    Fernandes, Antony E; Riant, Olivier; Jensen, Klavs F; Jonas, Alain M

    2016-09-01

    We describe a simple and general method for the preparation and molecular engineering of supported trifunctional catalysts and their application in the representative Cu/TEMPO/NMI-catalyzed aerobic oxidation of benzyl alcohol. The methodology allows in one single step to immobilize, with precise control of surface composition, both pyta, Cu(I) , TEMPO, and NMI sites on azide-functionalized silica particles. To optimize the performance of the heterogeneous trifunctional catalysts, synergistic interactions are finely engineered through modulating the degree of freedom of the imidazole site as well as tuning the relative surface composition, leading to catalysts with an activity significantly superior to the corresponding homogeneous catalytic system. PMID:27430481

  12. Control of Metal Nanocrystal Size Reveals Metal-Support Interface Role for Ceria Catalysts

    SciTech Connect

    Cargnello, M; Doan-Nguyen, VVT; Gordon, TR; Diaz, RE; Stach, EA; Gorte, RJ; Fornasiero, P; Murray, CB

    2013-08-15

    Interactions between ceria (CeO2) and supported metals greatly enhance rates for a number of important reactions. However, direct relationships between structure and function in these catalysts have been difficult to extract because the samples studied either were heterogeneous or were model systems dissimilar to working catalysts. We report rate measurements on samples in which the length of the ceria-metal interface was tailored by the use of monodisperse nickel, palladium, and platinum nanocrystals. We found that carbon monoxide oxidation in ceria-based catalysts is greatly enhanced at the ceria-metal interface sites for a range of group VIII metal catalysts, clarifying the pivotal role played by the support.

  13. Comparative Investigation of Benzene Steam Reforming over Spinel Supported Rh and Ir Catalysts

    SciTech Connect

    Mei, Donghai; Lebarbier, Vanessa M.; Rousseau, Roger; Glezakou, Vassiliki-Alexandra; Albrecht, Karl O.; Kovarik, Libor; Flake, Matt; Dagle, Robert A.

    2013-06-07

    In a combined experimental and first-principles density functional theory (DFT) study, benzene steam reforming (BSR) over MgAl2O4 supported Rh and Ir catalysts was investigated. Experimentally, it has been found that both highly dispersed Rh and Ir clusters (1-2 nm) on the MgAl2O4 spinel support are stable during the BSR in the temperature range of 700-850°C. Compared to the Ir/MgAl2O4 catalyst, the Rh/MgAl2O4 catalyst is more active with higher benzene turnover frequency and conversion. At typical steam conditions with the steam-to-carbon ratio > 12, the benzene conversion is only a weak function of the H2O concentration in the feed. This suggests that the initial benzene decomposition step rather than the benzene adsorption is most likely the rate-determined step in BSR over supported Rh and Ir catalysts. In order to understand the differences between the two catalysts, we followed with a comparative DFT study of initial benzene decomposition pathways over two representative model systems for each supported metal (Rh and Ir) catalysts. A periodic terrace (111) surface and an amorphous 50-atom metal cluster with a diameter of 1.0 nm were used to represent the two supported model catalysts under low and high dispersion conditions. Our DFT results show that the decreasing catalyst particle size enhances the benzene decomposition on supported Rh catalysts by lowering both C-C and C-H bond scission. The activation barriers of the C-C and the C-H bond scission decrease from 1.60 and 1.61 eV on the Rh(111) surface to 1.34 and 1.26 eV on the Rh50 cluster. For supported Ir catalysts, the decreasing particle size only affects the C-C scission. The activation barrier of the C-C scission of benzene decreases from 1.60 eV on the Ir(111) surface to 1.35 eV on the Ir50 cluster while the barriers of the C-H scission are practically the same. The experimentally measured higher BSR

  14. SUPPORTED LIQUID CATALYSTS FOR REMOVAL OF HIGH TEMPERATURE FUEL CELL CONTAMINANTS

    SciTech Connect

    Alan W. Weimer; Peter Czerpak; Patrick Hilbert

    2000-01-01

    A novel catalytic synthesis gas oxidation process using molten carbonate salts supported on compatible fluidized iron oxide particles (supported-liquid-phase-catalyst (SLPC) fluidized bed process) was investigated. This process combines the advantages of large scale fluidized bed processing with molten salt bath oxidation. Molten salt catalysts can be supported within porous fluidized particles in order to improve mass transfer rates between the liquid catalysts and the reactant gases. Synthesis gas can be oxidized at reduced temperatures resulting in low NO{sub x} formation while trace sulfides and halides are captured in-situ. Hence, catalytic oxidation of synthesis gas can be carried out simultaneously with hot gas cleanup. Such SLPC fluidized bed processes are affected by inter-particle liquid capillary forces that may lead to agglomeration and de-fluidization of the bed. An understanding of the origin and strength of these forces is needed so that they can be overcome in practice. Process design is based on thermodynamic free energy minimization calculations that indicate the suitability of eutectic Na{sub 2}CO{sub 3}/K{sub 2}CO{sub 3} mixtures for capturing trace impurities in-situ (< 1 ppm SO{sub x} released) while minimizing the formation of NO{sub x}(< 10 ppm). Iron oxide has been identified as a preferred support material since it is non-reactive with sodium, is inexpensive, has high density (i.e. inertia), and can be obtained in various particle sizes and porosities. Force balance modeling has been used to design a surrogate ambient temperature system that is hydrodynamically similar to the real system, thus allowing complementary investigation of the governing fluidization hydrodynamics. The primary objective of this research was to understand the origin of and to quantify the liquid capillary interparticle forces affecting the molten carbonate SLPC fluidized bed process. Substantial theoretical and experimental exploratory results indicate process

  15. Transition Metal Phosphide Nanoparticles Supported on SBA-15 as Highly Selective Hydrodeoxygenation Catalysts for the Production of Advanced Biofuels.

    PubMed

    Yang, Yongxing; Ochoa-Hernández, Cristina; de la Peña O'Shea, Víctor A; Pizarro, Patricia; Coronado, Juan M; Serrano, David P

    2015-09-01

    A series of catalysts constituted by nanoparticles of transition metal (M = Fe, Co, Ni and Mo) phosphides (TMP) dispersed on SBA-15 were synthesized by reduction of the corresponding metal phosphate precursors previously impregnated on the mesostructured support. All the samples contained a metal-loading of 20 wt% and with an initial M/P mole ratio of 1, and they were characterized by X-ray diffraction (XRD), N2 sorption, H2-TPR and transmission electron microscopy (TEM). Metal phosphide nanocatalysts were tested in a high pressure continuous flow reactor for the hydrodeoxygenation (HDO) of a methyl ester blend containing methyl oleate (C17H33-COO-CH3) as main component (70%). This mixture constitutes a convenient surrogate of triglycerides present in vegetable oils, and following catalytic hydrotreating yields mainly n-alkanes. The results of the catalytic assays indicate that Ni2P/SBA-15 catalyst presents the highest ester conversion, whereas the transformation rate is about 20% lower for MoP/SBA-15. In contrast, catalysts based on Fe and Co phosphides show a rather limited activity. Hydrocarbon distribution in the liquid product suggests that both hydrodeoxygenation and decarboxylation/decarbonylation reactions occur simultaneously over the different catalysts, although MoP/SBA-15 possess a selectivity towards hydrodeoxygenation exceeding 90%. Accordingly, the catalyst based on MoP affords the highest yield of n-octadecane, which is the preferred product in terms of carbon atom economy. Subsequently, in order to conjugate the advantages of both Ni and Mo phosphides, a series of catalysts containing variable proportions of both metals were prepared. The obtained results reveal that the mixed phosphides catalysts present a catalytic behavior intermediate between those of the monometallic phosphides. Accordingly, only marginal enhancement of the yield of n-octadecane is obtained for the catalysts with a Mo/Ni ratio of 3. Nevertheless, owing to this high selectivity

  16. Transition Metal Phosphide Nanoparticles Supported on SBA-15 as Highly Selective Hydrodeoxygenation Catalysts for the Production of Advanced Biofuels.

    PubMed

    Yang, Yongxing; Ochoa-Hernández, Cristina; de la Peña O'Shea, Víctor A; Pizarro, Patricia; Coronado, Juan M; Serrano, David P

    2015-09-01

    A series of catalysts constituted by nanoparticles of transition metal (M = Fe, Co, Ni and Mo) phosphides (TMP) dispersed on SBA-15 were synthesized by reduction of the corresponding metal phosphate precursors previously impregnated on the mesostructured support. All the samples contained a metal-loading of 20 wt% and with an initial M/P mole ratio of 1, and they were characterized by X-ray diffraction (XRD), N2 sorption, H2-TPR and transmission electron microscopy (TEM). Metal phosphide nanocatalysts were tested in a high pressure continuous flow reactor for the hydrodeoxygenation (HDO) of a methyl ester blend containing methyl oleate (C17H33-COO-CH3) as main component (70%). This mixture constitutes a convenient surrogate of triglycerides present in vegetable oils, and following catalytic hydrotreating yields mainly n-alkanes. The results of the catalytic assays indicate that Ni2P/SBA-15 catalyst presents the highest ester conversion, whereas the transformation rate is about 20% lower for MoP/SBA-15. In contrast, catalysts based on Fe and Co phosphides show a rather limited activity. Hydrocarbon distribution in the liquid product suggests that both hydrodeoxygenation and decarboxylation/decarbonylation reactions occur simultaneously over the different catalysts, although MoP/SBA-15 possess a selectivity towards hydrodeoxygenation exceeding 90%. Accordingly, the catalyst based on MoP affords the highest yield of n-octadecane, which is the preferred product in terms of carbon atom economy. Subsequently, in order to conjugate the advantages of both Ni and Mo phosphides, a series of catalysts containing variable proportions of both metals were prepared. The obtained results reveal that the mixed phosphides catalysts present a catalytic behavior intermediate between those of the monometallic phosphides. Accordingly, only marginal enhancement of the yield of n-octadecane is obtained for the catalysts with a Mo/Ni ratio of 3. Nevertheless, owing to this high selectivity

  17. Supported ruthenium-carbene catalyst on ionic magnetic nanoparticles for olefin metathesis.

    PubMed

    Chen, Shu-Wei; Zhang, Zhi-Cheng; Ma, Miaofeng; Zhong, Chong-Min; Lee, Sang-gi

    2014-10-01

    The Grubbs-Hoveyda ruthenium-carbene complex has been covalently immobilized on ionic magnetic nanoparticles utilizing an imidazolium salt linker. The supported catalyst exhibited excellent catalytic activity for ring-closing metathesis (RCM) and cross-metathesis (CM) in the presence of less than 1 mol % of ruthenium. The catalysts can easily be recovered magnetically and reused up to seven times with minimal leaching of ruthenium species. PMID:25215600

  18. Supported ruthenium-carbene catalyst on ionic magnetic nanoparticles for olefin metathesis.

    PubMed

    Chen, Shu-Wei; Zhang, Zhi-Cheng; Ma, Miaofeng; Zhong, Chong-Min; Lee, Sang-gi

    2014-10-01

    The Grubbs-Hoveyda ruthenium-carbene complex has been covalently immobilized on ionic magnetic nanoparticles utilizing an imidazolium salt linker. The supported catalyst exhibited excellent catalytic activity for ring-closing metathesis (RCM) and cross-metathesis (CM) in the presence of less than 1 mol % of ruthenium. The catalysts can easily be recovered magnetically and reused up to seven times with minimal leaching of ruthenium species.

  19. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies.

    PubMed

    Gawande, Manoj B; Branco, Paula S; Varma, Rajender S

    2013-04-21

    Surface functionalization of nano-magnetic nanoparticles is a well-designed way to bridge the gap between heterogeneous and homogeneous catalysis. The introduction of magnetic nanoparticles (MNPs) in a variety of solid matrices allows the combination of well-known procedures for catalyst heterogenization with techniques for magnetic separation. Magnetite is a well-known material, also known as ferrite (Fe3O4), and can be used as a versatile support for functionalization of metals, organocatalysts, N-heterocyclic carbenes, and chiral catalysts. It is used as a support for important homogeneous catalytically active metals such as Pd, Pt, Cu, Ni, Co, Ir, etc. to obtain stable and magnetically recyclable heterogeneous catalysts. Homogeneous organocatalysts can be successfully decorated with linkers/ligands on the surface of magnetite or alternatively the organocatalysts can be directly immobilized on the surface of magnetite. The functionalized magnetically retrievable catalysts or nanocatalysts that are increasingly being used in catalysis, green chemistry and pharmaceutically significant reactions are summarized in this review.

  20. Preparation of Supported Metal Catalysts by Atomic and Molecular Layer Deposition for Improved Catalytic Performance

    NASA Astrophysics Data System (ADS)

    Gould, Troy D.

    Creating catalysts with enhanced selectivity and activity requires precise control over particle shape, composition, and size. Here we report the use of atomic layer deposition (ALD) to synthesize supported Ni, Pt, and Ni-Pt catalysts in the size regime (< 3 nm) where nanoscale properties can have a dramatic effect on reaction activity and selectivity. This thesis presents the first ALD synthesis of non-noble metal nanoparticles by depositing Ni on Al2O3 with two half-reactions of Ni(Cp)2 and H2. By changing the number of ALD cycles, Ni weight loadings were varied from 4.7 wt% to 16.7 wt% and the average particle sizes ranged from 2.5 to 3.3 nm, which increased the selectivity for C 3H6 hydrogenolysis by an order of magnitude over a much larger Ni/Al2O3 catalyst. Pt particles were deposited by varying the number of ALD cycles and the reaction chemistry (H2 or O 2) to control the particle size from approximately 1 to 2 nm, which allowed lower-coordinated surface atoms to populate the particle surface. These Pt ALD catalysts demonstrated some of the highest oxidative dehydrogenation of propane selectivities (37%) of a Pt catalyst synthesized by a scalable technique. Dry reforming of methane (DRM) is a reaction of interest due to the recent increased recovery of natural gas, but this reaction is hindered from industrial implementation because the Ni catalysts are plagued by deactivation from sintering and coking. This work utilized Ni ALD and NiPt ALD catalysts for the DRM reaction. These catalysts did not form destructive carbon whiskers and had enhanced reaction rates due to increased bimetallic interaction. To further limit sintering, the Ni and NiPt ALD catalysts were coated with a porous alumina matrix by molecular layer deposition (MLD). The catalysts were evaluated for DRM at 973 K, and the MLD-coated Ni catalysts outperformed the uncoated Ni catalysts in either activity (with 5 MLD cycles) or stability (with 10 MLD cycles). In summary, this thesis developed a

  1. Enhanced Oxygen Reduction Activity In Acid By Tin-Oxide Supported Au Nanoparticle Catalysts

    SciTech Connect

    Baker,W.; Pietron, J.; Teliska, M.; Bouwman, P.; Ramaker, D.; Swider-Lyons, K.

    2006-01-01

    Gold nanoparticles supported on hydrous tin-oxide (Au-SnO{sub x}) are active for the four-electron oxygen reduction reaction in an acid electrolyte. The unique electrocatalytic of the Au-SnO is confirmed by the low amount of peroxide detected with rotating ring-disk electrode voltammetry and Koutecky-Levich analysis. In comparison, 10 wt % Au supported on Vulcan carbon and SnO{sub x} catalysts both produce significant peroxide in the acid electrolyte, indicating only a two-electron reduction reaction. Characterization of the Au-SnO{sub x} catalyst reveals a high-surface area, amorphous support with 1.7 nm gold metal particles. The high catalytic activity of the Au-SnO is attributed to metal support interactions. The results demonstrate a possible path to non-Pt catalysts for proton exchange membrane fuel cell cathodes.

  2. Novel Catalyst Support Materials for PEM Fuel Cells: Current Status and Future Prospects

    SciTech Connect

    Shao, Yuyan; Liu, Jun; Wang, Yong; Lin, Yuehe

    2008-12-15

    The catalyst supports exhibit great influence on the cost, performance, and durability of polymer electrolyte membrane (PEM) fuel cells. This review paper is to summarize several important kinds of novel support materials for PEM fuel cells (including direct methanol fuel cell, DMFC): nanostructured carbon materials (carbon nanotubes/carbon nanofibers, mesoporous carbon), conductive doped diamonds and nanodiamonds, conductive oxides (tin oxide/indium tin oxide, titanium oxide, tungsten oxide) and carbides (tungsten carbides). The advantages and disadvantages, the acting mechanism to promote electrocatalysis, and the strategies to improve present catalyst support materials and to search for new ones are discussed. This is expected to throw light on future development of catalyst support for PEM fuel cells.

  3. Non-noble catalysts and catalyst supports for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Mcalister, A. J.

    1981-01-01

    Tungsten carbide, which is active for hydrogen oxidation, is CO tolerant and has a hexagonal structure is discussed. Titanium carbide is inactive and has a cubic structure. Four different samples of the cubic alloys W sub x-1Ti sub XC sub 1-y were found to be active and CO tolerant. When the activities of these cubic alloys are weighted by the reciprocal of the square to those of highly forms of WC. They offer important insight into the nature of the active sites on W-C anode catalysts for use in phosphoric acid fuel cells.

  4. Non-noble catalysts and catalyst supports for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Mcalister, A. J.

    1981-01-01

    Four different samples of the cubic alloys W sub x-1 Ti sub x C sub 1-y were prepared and found to be active and CO tolerant. When the activities of these cubic alloys were weighted by the reciprocal of the square of the W exchange, they displayed magnitudes and dependence on bulk C deficiency comparable to those of highly active forms of WC. It is concluded that they may offer important insight into the nature of the active sites on, and means for improving the performance of, W-C anode catalysts for use in phosphoric acid fuel cells.

  5. Non-noble catalysts and catalyst supports for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Mcalister, A. J.

    1980-01-01

    Tungsten carbide, which is known to be active for hydrogen oxidation and CO tolerant has a hexagonal structure. Titanium carbide is inactive and has a cubic structure. Four different samples of the cubic alloys Wx-1TixC were prepared and found to be active and CO tolerant. These alloys are of interest as possible phosphoric acid fuel cell catalysts. They also are of interest as opportunities to study the activity of W in a different crystalline environment and to correlate the activities of the surface sites with surface composition.

  6. The role of support morphology on the performance of Cu/ZnO-catalyst for hydrogenation of CO{sub 2} to methanol

    SciTech Connect

    Tasfy, Sara Faiz Hanna Zabidi, Noor Asmawati Mohd Shaharun, Maizatul Shima Subbarao, Duvvuri

    2015-07-22

    The effects of SBA-15 support morphology on the activity of Cu/ZnO catalyst in the hydrogenation of CO{sub 2} to methanol was investigated. In the hydrogenation of CO{sub 2} to methanol at 210°C, 2.25 MPa, H{sub 2}/CO{sub 2} ratio of three remarkable difference was obtained using Cu/ZnO catalyst supported on SBA-15 with different morphology. The catalysts were characterized using N{sub 2}-adsorption, field emission scanning microscopy (FESEM/EDX), transmission electron microscopy (HRTEM), and temperature-programmed reduction (TPR). Characterization of the catalyst showed that support morphology, surface area, metals dispersion, and reducibility influenced the catalytic performance. On the fiber-shaped SBA-15, copper dispersion was 29 % whereas on the spherical-shaped SBA-15, the dispersion was 20 %. The experimental results showed that the catalyst supported over fiber-shaped SBA-15 exhibit higher CO{sub 2} conversion (13.96 %) and methanol selectivity (91.32 %) compare to catalyst supported over spherical-shaped SBA-15.

  7. The role of support morphology on the performance of Cu/ZnO-catalyst for hydrogenation of CO2 to methanol

    NASA Astrophysics Data System (ADS)

    Tasfy, Sara Faiz Hanna; Zabidi, Noor Asmawati Mohd; Shaharun, Maizatul Shima; Subbarao, Duvvuri

    2015-07-01

    The effects of SBA-15 support morphology on the activity of Cu/ZnO catalyst in the hydrogenation of CO2 to methanol was investigated. In the hydrogenation of CO2 to methanol at 210°C, 2.25 MPa, H2/CO2 ratio of three remarkable difference was obtained using Cu/ZnO catalyst supported on SBA-15 with different morphology. The catalysts were characterized using N2-adsorption, field emission scanning microscopy (FESEM/EDX), transmission electron microscopy (HRTEM), and temperature-programmed reduction (TPR). Characterization of the catalyst showed that support morphology, surface area, metals dispersion, and reducibility influenced the catalytic performance. On the fiber-shaped SBA-15, copper dispersion was 29 % whereas on the spherical-shaped SBA-15, the dispersion was 20 %. The experimental results showed that the catalyst supported over fiber-shaped SBA-15 exhibit higher CO2 conversion (13.96 %) and methanol selectivity (91.32 %) compare to catalyst supported over spherical-shaped SBA-15.

  8. Structural Characterization of Alumina-Supported Rh Catalysts: Effects of Ceriation and Zirconiation by using Metal–Organic Precursors

    PubMed Central

    Kroner, Anna B; Newton, Mark A; Tromp, Moniek; Russell, Andrea E; Dent, Andrew J; Evans, John

    2013-01-01

    The effects of the addition of ceria and zirconia on the structural properties of supported rhodium catalysts (1.6 and 4 wt % Rh/γ-Al2O3) are studied. Ceria and zirconia are deposited by using two preparation methods. Method I involves the deposition of ceria on γ-Al2O3 from Ce(acac)3, and the rhodium metal is subsequently added, whereas method II is based on a controlled surface reaction technique, that is, the decomposition of metal–organic M(acac)x (in which M=Ce, x=3 and M=Zr, x=4) on Rh/γ-Al2O3. The structures of the prepared catalyst materials are characterized ex situ by using N2 physisorption, transmission electron microscopy, high-angle annular dark-field scanning transmission election microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine structure spectroscopy (XAFS). All supported rhodium systems readily oxidize in air at room temperature. By using ceriated and zirconiated precursors, a larger rhodium-based metallic core fraction is obtained in comparison to the undoped rhodium catalysts, suggesting that ceria and zirconia protect the rhodium particles against extensive oxidation. XPS results indicate that after the calcination and reduction treatments, a small amount of chlorine is retained on the support of all rhodium catalysts. EXAFS analysis shows significant Rh—Cl interactions for Rh/Al2O3 and Rh/CeOx/Al2O3 (method I) catalysts. After reaction with H2/He in situ, for series of samples with 1.6 wt % Rh, the EXAFS first shell analysis affords a mean size of approximately 30 atoms. A broader spread is evident with a 4 wt % rhodium loading (ca. 30–110 atoms), with the incorporation of zirconium providing the largest particle sizes. PMID:23943563

  9. Ethanol oxidation on metal oxide-supported platinum catalysts

    SciTech Connect

    L. M. Petkovic 090468; Sergey N. Rashkeev; D. M. Ginosar

    2009-09-01

    Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on the standard three-way catalysts, the conversion of unburned ethanol is low because both ethanol and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of “stoves” that burn ethanol molecules and their partially oxidized derivatives to the “final” products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles

  10. The zinc ferrite obtained by oxidative precipitation method as a catalyst in n-butanol conversion

    SciTech Connect

    Klimkiewicz, Roman Wolska, Jolanta; Przepiera, Aleksander; Przepiera, Krystyna; Jablonski, Maciej; Lenart, Stanislaw

    2009-01-08

    This paper presents the results of catalytic properties of n-butanol conversion of the zinc ferrite obtained by oxidative precipitation method. The zinc ferrite showed good dehydrogenating activity but also catalyzed consecutive bimolecular condensation of emerged aldehyde particles into symmetrical ketone. The zinc-iron oxide of spinel structure was prepared from ferrous sulfate, which forms as a waste during the titanium dioxide production. The X-ray diffraction methods (XRD, XRF) were used in determining the structure and composition of obtained zinc ferrite, while thermogravimetry (TG-DTG), and differential thermal analysis (DTA) were used in the study of thermal transformations of zinc spinel in air.

  11. Stability of Supported Platinum Sulfuric Acid Decomposition Catalysts for use in Thermochemical Water Splitting Cycles

    SciTech Connect

    Daniel M. Ginosar; Lucia M. Petkovic; Anne W. Glenn; Kyle C. Burch

    2007-03-01

    The activity and stability of several metal oxide supported platinum catalysts were explored for the sulfuric acid decomposition reaction. The acid decomposition reaction is common to several sulfur based thermochemical water splitting cycles. Reactions were carried out using a feed of concentrated liquid sulfuric acid (96 wt%) at atmospheric pressure at temperatures between 800 and 850 °C and a weight hour space velocity of 52 g acid/g catalyst/hr. Reactions were run at these high space velocities such that variations in kinetics were not masked by surplus catalyst. The influence of exposure to reaction conditions was explored for three catalysts; 0.1-0.2 wt% Pt supported on alumina, zirconia and titania. The higher surface area Pt/Al2O3 and Pt/ZrO2 catalysts were found to have the highest activity but deactivated rapidly. A low surface area Pt/TiO2 catalyst was found to have good stability in short term tests, but slowly lost activity for over 200 hours of continuous operation.

  12. Pumice-supported palladium catalysts. I. Chemical preparation and microstructural features

    SciTech Connect

    Fagherazzi, G.; Benedetti, A.; Deganello, G.; Duca, D.; Martorana, A.; Spoto, G.

    1994-11-01

    Two series of pumice-supported palladium catalysts (W = washed, U = unwashed) were prepared by the reaction of [Pd(C{sub 3}H{sub 5}){sub 2}] with the support, followed by reduction using H{sub 2}. W catalysts were washed before reduction to eliminate unreacted [Pd(C{sub 3}H{sub 5}){sub 2}]. U catalysts did not undergo this treatment. Microstructural characterization of the catalysts was performed by small-angle X-ray scattering (SAXS), wide-angle X-ray line broadening, and transmission electron microscopy (TEM). Line-broadening analysis revealed the presence of lattice imperfections, such as growth stacking faults and microstrains in the fcc structure of palladium. The average particle size values determined by SAXS were confirmed by TEM analysis and were employed to calculate the percentage of palladium exposed (catalyst dispersion). W catalysts showed well-dispersed spheroidal particles, whereas the U series displayed agglomerates. 38 refs., 9 figs., 2 tabs.

  13. CeO2 nanorods-supported transition metal catalysts for CO oxidation.

    PubMed

    Mock, Samantha A; Sharp, Shannon E; Stoner, Thomas R; Radetic, Michael J; Zell, Elizabeth T; Wang, Ruigang

    2016-03-15

    A catalytically active oxide support in combination with metal catalysts is required in order to achieve better low temperature activity and selectivity. Here, we report that CeO2 nanorods with a superior surface oxygen release/storage capability were used as an active support of transition metal (TM) catalysts (Mn, Fe, Co, Ni, Cu) for CO oxidation reaction. The as-prepared CeO2 nanorods supported 10 wt% TM catalysts were highly active for CO oxidation at low temperature, except for the Fe sample. It is found that the 10%Cu-CeO2 catalyst performed best, and it provided a lower light-off temperature with T50 (50% conversion) at 75 °C and T100 (100% conversion) of CO to CO2 at 194 °C. The atomic level surface structure of CeO2 nanorods was investigated in order to understand the improved low temperature catalytic activity. The richness of surface roughness and various defects (voids, lattice distortion, bending, steps, twinning) on CeO2 nanorods could facilitate oxygen release and storage. According to XRD and Raman analysis, copper species migrate into the bulk CeO2 nanorods to a greater degree. Since CO adsorbed over the surface of the catalyst/support is detrimental to its catalytic activity, the surface defects on the CeO2 nanorods and CeO2-TM interactions were critical to the enhanced activity.

  14. Studies on KIT-6 Supported Cobalt Catalyst for Fischer–Tropsch Synthesis

    SciTech Connect

    Gnanamani, M.; Jacobs, G; Graham, U; Ma, W; Pendyala, V; Ribeiro, M; Davis, B

    2010-01-01

    KIT-6 molecular sieve was used as a support to prepare cobalt catalyst for Fischer-Tropsch synthesis (FTS) using an incipient wetness impregnation method to produce cobalt loadings of 15 and 25 wt%. The catalysts were characterized by BET surface area, X-ray diffraction, scanning transmission election microscopy (STEM), extended X-ray absorption fine spectroscopy and X-ray absorption near edge spectroscopy. The catalytic properties for FTS were evaluated using a 1L CSTR reactor. XRD, pore size distribution, and STEM analysis indicate that the KIT-6 mesostructure remains stable during and after cobalt impregnation and tends to form smaller cobalt particles, probably located inside the mesopores. The mesoporous KIT-6 exhibited a slightly higher cobalt dispersion compared to amorphous SiO{sub 2} supported catalyst. With the higher Co loading (25 wt%) on KIT-6, partial structural collapse was observed after the FTS reaction. Compared to an amorphous SiO{sub 2} supported cobalt catalyst, KIT-6 supported cobalt catalyst displayed higher methane selectivity at a similar Co loading, likely due to diffusion effects.

  15. CeO2 nanorods-supported transition metal catalysts for CO oxidation.

    PubMed

    Mock, Samantha A; Sharp, Shannon E; Stoner, Thomas R; Radetic, Michael J; Zell, Elizabeth T; Wang, Ruigang

    2016-03-15

    A catalytically active oxide support in combination with metal catalysts is required in order to achieve better low temperature activity and selectivity. Here, we report that CeO2 nanorods with a superior surface oxygen release/storage capability were used as an active support of transition metal (TM) catalysts (Mn, Fe, Co, Ni, Cu) for CO oxidation reaction. The as-prepared CeO2 nanorods supported 10 wt% TM catalysts were highly active for CO oxidation at low temperature, except for the Fe sample. It is found that the 10%Cu-CeO2 catalyst performed best, and it provided a lower light-off temperature with T50 (50% conversion) at 75 °C and T100 (100% conversion) of CO to CO2 at 194 °C. The atomic level surface structure of CeO2 nanorods was investigated in order to understand the improved low temperature catalytic activity. The richness of surface roughness and various defects (voids, lattice distortion, bending, steps, twinning) on CeO2 nanorods could facilitate oxygen release and storage. According to XRD and Raman analysis, copper species migrate into the bulk CeO2 nanorods to a greater degree. Since CO adsorbed over the surface of the catalyst/support is detrimental to its catalytic activity, the surface defects on the CeO2 nanorods and CeO2-TM interactions were critical to the enhanced activity. PMID:26745742

  16. Self-Supporting Metal-Organic Layers as Single-Site Solid Catalysts.

    PubMed

    Cao, Lingyun; Lin, Zekai; Peng, Fei; Wang, Weiwei; Huang, Ruiyun; Wang, Cheng; Yan, Jiawei; Liang, Jie; Zhang, Zhiming; Zhang, Teng; Long, Lasheng; Sun, Junliang; Lin, Wenbin

    2016-04-11

    Metal-organic layers (MOLs) represent an emerging class of tunable and functionalizable two-dimensional materials. In this work, the scalable solvothermal synthesis of self-supporting MOLs composed of [Hf6O4(OH)4(HCO2)6] secondary building units (SBUs) and benzene-1,3,5-tribenzoate (BTB) bridging ligands is reported. The MOL structures were directly imaged by TEM and AFM, and doped with 4'-(4-benzoate)-(2,2',2''-terpyridine)-5,5''-dicarboxylate (TPY) before being coordinated with iron centers to afford highly active and reusable single-site solid catalysts for the hydrosilylation of terminal olefins. MOL-based heterogeneous catalysts are free from the diffusional constraints placed on all known porous solid catalysts, including metal-organic frameworks. This work uncovers an entirely new strategy for designing single-site solid catalysts and opens the door to a new class of two-dimensional coordination materials with molecular functionalities.

  17. Effect of the metal support interactions on the physicochemical and magnetic properties of Ni catalysts

    NASA Astrophysics Data System (ADS)

    Gómez-Polo, C.; Gil, A.; Korili, S. A.; Pérez-Landázabal, J. I.; Recarte, V.; Trujillano, R.; Vicente, M. A.

    2007-09-01

    In this work, the effect of the preparation method on the physicochemical and magnetic properties of nickel-containing catalysts is analysed. The catalysts were prepared by two methods, incipient wetness impregnation and precipitation-deposition using two commercial oxides, γ-Al 2O 3 (Rhône-Poulenc) and SiO 2 (AF125, Kali Chemie) as supports. The precursors were dried at 393 K for 16 h and then calcined at 823 K for 4 h. The physicochemical characterization of the catalysts included nitrogen adsorption, X-ray diffraction (XRD), temperature-programmed reduction (TPR) and chemical analysis. A SQUID magnetometer was employed in the magnetic characterization. The basic compositional and structural characteristics of these Ni-based nanoporous catalysts are analysed in relation to their magnetic response.

  18. Steam reforming of glycerol for hydrogen production over supported nickel catalysts on alumina.

    PubMed

    Choi, Ga Young; Kim, Young Chul; Moon, Dong Ju; Seo, Gon; Park, Nam Cook

    2013-01-01

    The experiment was carried out to produce hydrogen through steam reforming of glycerol over nano-sized Ni catalysts supported on alumina (Al2O3). The catalysts were characterized by BET surface area, metal dispersion, XRD, TPR, NH3-TPD and SEM. 15 wt% Ni/Al2O3 catalysts presented carbon nano fiber after the catalyst was used. However, when the Ni loading was higher than that of 15 wt%, the catalytic activity reduced, and the increase of the Ni particle size and the formation of graphitic carbon occurred. The Ni/SiO2(70)-Al2O3 with the high surface area and the small Ni particle size promoted the catalytic activity and could easily reduce from NiO to Ni, inhibiting the formation of NiAl2O4. PMID:23646792

  19. Physicochemical investigations of carbon nanofiber supported Cu/ZrO{sub 2} catalyst

    SciTech Connect

    Din, Israf Ud E-mail: maizats@petronas.com.my; Shaharun, Maizatul S. E-mail: maizats@petronas.com.my; Subbarao, Duvvuri; Naeem, A.

    2014-10-24

    Zirconia-promoted copper/carbon nanofiber catalysts (Cu‐ZrO{sub 2}/CNF) were prepared by the sequential deposition precipitation method. The Herringbone type of carbon nanofiber GNF-100 (Graphite nanofiber) was used as a catalyst support. Carbon nanofiber was oxidized to (CNF-O) with 5% and 65 % concentration of nitric acid (HNO{sub 3}). The CNF activated with 5% HNO{sub 3} produced higher surface area which is 155 m{sup 2}/g. The catalyst was characterized by X-ray Diffraction (XRD), Fourier Transform Infra-Red (FTIR) and N{sub 2} adsorption-desorption. The results showed that increase of HNO{sub 3} concentration reduced the surface area and porosity of the catalyst.

  20. Hydrogen production by steam reforming of liquefied natural gas over a nickel catalyst supported on mesoporous alumina xerogel

    NASA Astrophysics Data System (ADS)

    Seo, Jeong Gil; Youn, Min Hye; Cho, Kyung Min; Park, Sunyoung; Song, In Kyu

    Mesoporous alumina xerogel (A-SG) is prepared by a sol-gel method for use as a support for a nickel catalyst. The Ni/A-SG catalyst is then prepared by an impregnation method, and is applied to hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of the mesoporous alumina xerogel support on the catalytic performance of Ni/A-SG catalyst is investigated. For the purpose of comparison, a nickel catalyst supported on commercial alumina (A-C) is also prepared by an impregnation method (Ni/A-C). Both the hydroxyl-rich surface and the electron-deficient sites of the A-SG support enhance the dispersion of the nickel species on the support during the calcination step. The formation of the surface nickel aluminate phase in the Ni/A-SG catalyst remarkably increases the reducibility and stability of the catalyst. Furthermore, the high-surface area and the well-developed mesoporosity of the Ni/A-SG catalyst enhance the gasification of surface hydrocarbons that are adsorbed in the reaction. In the steam reforming of LNG, the Ni/A-SG catalyst exhibits a better catalytic performance than the Ni/A-C catalyst in terms of LNG conversion and hydrogen production. Moreover, the Ni/A-SG catalyst shows strong resistance toward catalyst deactivation.

  1. Supported oxorhenate catalysts prepared by thermal spreading of metal Re 0 for methanol conversion to methylal

    NASA Astrophysics Data System (ADS)

    Sécordel, Xavier; Yoboué, Anthony; Cristol, Sylvain; Lancelot, Christine; Capron, Mickaël; Paul, Jean-François; Berrier, Elise

    2011-10-01

    TiO 2-anatase and SiO 2 supported oxorhenate catalysts were prepared by an original and simple technique based on the oxidative dispersion of metallic rhenium under dry conditions. The dispersion process of the supported oxorhenate phase as a function of the rhenium coverage and the support properties are discussed on the base of in situ characterization. The structures of the as prepared catalysts were found to be comparable to those of materials prepared using the incipient wetness impregnation technique. The absence of water in the preparation technique has made it possible to highlight the role of the hydration level on the rhenium oxide volatilization. The as-prepared Re/TiO 2 catalysts were found to be effective for the direct conversion of methanol to methylal.

  2. Preparation of highly dispersed NiMo catalysts supported on carbon black particles of hollow spheres

    SciTech Connect

    Sakanishi, K.; Hasuo, H.; Mochida, I.

    1995-12-01

    One of unique carbon blacks, Ketjen Black (KB) which has extremely high surface area and low specific gravity, was selected as a catalyst support to prepare a highly dispersed NiMo catalyst with the function for recovery and the high activity for hydrogenation. KB-supported NiMo catalysts were prepared by means of impregnation, ion exchange, and incipient wetness methods from various kinds and amounts of Ni and Mo salts, and their activities were examined in the hydrogenation of 1-methyinaphthalene(1-MN) using a magnetic-stirred autoclave of 50 ml capacity at 380{degrees}C for 40 min under 10 MPa H{sub 2} reaction pressure. The catalyst, prepared from (NH{sub 4}){sub 2}MoS{sub 4} and Ni(OAc){sub 2} in their methanol solution by successive impregnations of Mo10% and Ni(2 wt%) in this order supported on nitric acid-treated carbon black(KB JD-O), provided the highest conversion of 86% to methyl-tetralins. Combinations of metal salts soluble in organic solvent, impregnation solvents, and surface properties of carbon black are suggested to be important for the preparation of highly active catalysts with higher dispersions of Ni and Mo on the carbon black, because they are easily agglomerated in impregnation solvent. It is also noted that KB-supported NiMo catalysts showed much higher activity for the hydrogenation than a commercial NiMo/Al{sub 2}O{sub 3} with the smaller weight of catalyst.

  3. Supported transition metal catalysts for para- to ortho-hydrogen conversion

    NASA Technical Reports Server (NTRS)

    Brooks, Christopher J.; Wang, Wei; Eyman, Darrell P.

    1994-01-01

    The main goal of this study was to develop and improve on existing catalysts for the conversion of ortho- to para-hydrogen. Starting with a commercially available Air Products nickel silicate, which had a beta value of 20, we were trying to synthesize catalysts that would be an improvement to AP. This was accomplished by preparing silicates with various metals as well as different preparation methods. We also prepared supported ruthenium catalysts by various techniques using several metal precursors to improve present technology. What was also found was that the activation conditions prior to catalytic testing was highly important for both the silicates and the supported ruthenium catalysts. While not the initial focus of the research, we made some interesting observations into the adsorption of H2 on ruthenium. This helped us to get a better understanding of how ortho- to para-H2 conversion takes place, and what features in a catalyst are important to optimize activity. Reactor design was the final area in which some interesting conclusions were drawn. As discussed earlier, the reactor catalyst bed must be constructed using straight 1/8 feet OD stainless steel tubing. It was determined that the use of 1/4 feet OD tubing caused two problems. First, the radius from the center of the bed to the wall was too great for thermal equilibrium. Since the reaction of ortho- to para-H2 is exothermic, the catalyst bed center was warmer than the edges. Second, the catalyst bed was too shallow using a 1/4 feet tube. This caused reactant blow-by which was thought to decrease the measured activity when the flow rate was increased. The 1/8 feet tube corrected both of these concerns.

  4. [Preparation bimetallic heterogeneous Fenton-like catalyst as sepiolite supported and its surface chemical characterization].

    PubMed

    Su, Cheng-yuan; Li, Wei-guang; Liu, Xing-zhe; Wang, Kai-yao; Wang, Yong

    2013-09-01

    The reactive brilliant blue was chosen as the probe pollutant. Fe(NO3)3 concentration, MnSO4 concentration, urea concentration, water bath temperature, calcined temperature and time were as influencing factors, the process parameters of homogeneous precipitation method was optimized for the preparation of bimetallic heterogeneous Fenton-like catalyst as modified sepiolite supported. At the same time, surface chemical characteristics of catalyst were analyzed by SEM, FTIR and XRD. Results showed that: with increasing iron ion concentrations, the active ingredient of the catalyst increased. Adding small amount of manganese ion could inhibit the growth of Fe2O3 diameter and increase the activity of the catalyst. Urea concentration was increased, so that the higher the urea concentration, the higher rate of formation of crystal gains, was conducive to generate small and uniform particles. The optimal conditions were found for preparing bimetallic heterogeneous Fenton-like catalyst by Box-Behnken experiment, which were as follows: concentration of Fe(NO3)3, MnSO4 and urea were 0.18 mol x L(-1), 0.05 mol x L(-1) and 1.0 mol x L(-1), respectively. The dosage of the modified sepiolite was 40 g x L(-1) and water bath temperature was 100 degrees C. Additionally, the catalyst was calcined at 370 degrees C for 3 h. The SEM showed that the sepiolite was an a-type sepiolite, which could be used as a well catalyst support. The infrared spectrum presented the bend vibrations of the Fe-O stretch vibration. The XRD patterns of the catalysts showed the characteristic diffraction peaks of alpha-Fe2O3, and gamma-Fe2O3.

  5. Oxidative dehydrogenation of n-butane over vanadium magnesium oxide catalysts supported on nano-structured MgO and ZrO2: effect of oxygen capacity of the catalyst.

    PubMed

    Lee, Howon; Lee, Jong Kwon; Hong, Ung Gi; Song, In Kyu; Yoo, Yeonshick; Cho, Young-Jin; Lee, Jinsuk; Chang, Hosik; Jung, Ji Chul

    2012-07-01

    Vanadium-magnesium oxide catalysts supported on nano-structured MgO and ZrO2 (Mg3(VO4)2/MgO/ZrO2) were prepared by a wet impregnation method with a variation of Mg:Zr ratio (8:1, 4:1, 2:1, and 1:1). For comparison, Mg3(VO4)2/MgO and Mg3(VO4)2/ZrO2 catalysts were also prepared by a wet impregnation method. The prepared catalysts were applied to the oxidative dehydrogenation of n-butane in a continuous flow fixed-bed reactor. Mg3(VO4)2/MgO/ZrO2 (Mg:Zr = 4:1, 2:1, and 1:1) and Mg3(VO4)2/ZrO2 catalysts showed a stable catalytic activity during the whole reaction time, while Mg3(VO4)2/MgO/ZrO2 (8:1) and Mg3(VO4)2/MgO catalysts experienced a severe catalyst deactivation. Deactivation of Mg3(VO4)2/MgO/ZrO2 (8:1) and Mg3(VO4)2/MgO catalysts was due to their low oxygen mobility. Effect of oxygen capacity (the amount of oxygen in the catalyst involved in the reaction) of the supported Mg3(V04)2 catalysts on the catalytic performance in the oxidative dehydrogenation of n-butane was investigated. Experimental results revealed that oxygen capacity of the catalyst was closely related to the catalytic activity in the oxidative dehydrogenation of n-butane. A large oxygen capacity of the catalyst was favorable for obtaining a high catalytic activity in this reaction. Among the catalysts tested, Mg3(VO4)2/MgO/ZrO2 (4:1) catalyst with the largest oxygen capacity showed the best catalytic performance. PMID:22966706

  6. Low temperature oxidation using support molten salt catalysts

    DOEpatents

    Weimer, Alan W.; Czerpak, Peter J.; Hilbert, Patrick M.

    2003-05-20

    Molten salt reactions are performed by supporting the molten salt on a particulate support and forming a fluidized bed of the supported salt particles. The method is particularly suitable for combusting hydrocarbon fuels at reduced temperatures, so that the formation NO.sub.x species is reduced. When certain preferred salts are used, such as alkali metal carbonates, sulfur and halide species can be captured by the molten salt, thereby reducing SO.sub.x and HCl emissions.

  7. Density Functional Theory for Green Chemical Catalyst Supported on S-Terminated GaN(0001)

    NASA Astrophysics Data System (ADS)

    Yokoyama, Mami; Tsukamoto, Shiro; Ishii, Akira

    2011-12-01

    A novel function of nitried-based semiconductor is successfully developed for organic synthesis, in which palladium supported on the surface of S-terminated GaN(0001) serves as a unique green chemical catalyst. In this study we determined the structure of Pd-catalyst supported on S-terminated GaN(0001) surface by means of the density functional theory (DFT) within a Local Density Approximation (LDA). The important role of S on the case of GaN substrate is to make the number of the valence electron to be close to 0, it happened same way for GaAs substrate.

  8. Influence of the nature of a Co-catalyst support on the synthesis of hydrocarbons from CO and H{sub 2}

    SciTech Connect

    Lapidus, A.L.; Budtsov, V.S.; Krylova, A.Yu.

    1994-12-31

    The chemical preparation of hydrocarbons from carbon monoxide and hydrogen is described. Cobalt was utilized as the catalyst, and aluminosilicates were utilized as catalyst supports. Catalyst activity and specificity are described.

  9. One-Pot Template-Free Synthesis of Cu-MOR Zeolite toward Efficient Catalyst Support for Aerobic Oxidation of 5-Hydroxymethylfurfural under Ambient Pressure.

    PubMed

    Zhang, Wei; Xie, Jingyan; Hou, Wei; Liu, Yangqing; Zhou, Yu; Wang, Jun

    2016-09-01

    Supported catalysts are widely studied, and exploring new promising supports is significant to access more applications. In this work, novel copper-containing MOR-type zeolites Cu-MOR were synthesized in a one-pot template-free route and served as efficient supports for vanadium oxide. In the heterogeneous oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF) with molecular oxygen (O2) under ambient pressure, the obtained catalyst demonstrated high yield (91.5%) and good reusability. Even under the ambient air pressure, it gave a DFF yield of 72.1%. Structure-activity relationship analysis indicated that the strong interaction between the framework Cu species and the guest V sites accounted for the remarkable performance. This work reveals that the Cu-MOR zeolite uniquely acts as the robust support toward well-performed non-noble metal heterogeneous catalyst for biomass conversion. PMID:27523255

  10. Synthesis and characterization of supported sugar catalyst by dip coating method

    NASA Astrophysics Data System (ADS)

    Janaun, J.; Siambun, N. J.; Safie, N. N.

    2016-06-01

    Sugar catalyst is a novel solid acid catalyst with reactivity comparable to that of sulphuric acid in biodiesel production. However, the fine powder form of sugar catalyst with the non-porous structure might cause large pressure drop in a packed bed reactor due to low bed porosity, affecting the reaction conversion especially in gas phase reaction. Furthermore, higher pressure drop requires higher electrical energy to drive the fluid through. Increasing the particle size is anticipated to be able to overcome the pressure drop matter. Hence, a deposition of sugar catalyst on larger particle materials was studied. Three types of materials were used for this investigation namely aluminum, silica and clay. The deposition was done via dip-coating method. The materials were characterized for their total acidity, thermal stability, functional groups, surface area, and element composition. The total acidity for SCDCAl, SCDCSi, and SCDCCl were 0.9 mmol/g, 0.2 mmol/g, and 0.4 mmol/g, respectively. The ratio of char deposited on SCDCAl, SCDCSi and SCDCCl were 0.9 g of support/g of carbon, 0.040 g of support/g of carbon, and 0.014 g of support/g of carbon respectively. FTIR and EDX analyses were carried out to determine the presence of active sites of the catalysis by identifying the functional groups such as -COOH, -OH, -SO3H. The results showed that -SO3H was detected on the surface of synthesized catalysts, except for SCDCC1.The pore size of SCDCAl, SCDCSi and SCDCCl were classified as macropores because the average diameter were greater than 50nm.. The catalysts were stable up to 400°C. The results showed that the dipcoating method could deposit sugar catalyst on aluminum, silica, and clay at low total acidity concentration.

  11. Supporting PtRu catalysts on various types of carbon nanomaterials for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Suda, Yoshiyuki; Ozaki, Masahiro; Tanoue, Hideto; Takikawa, Hirofumi; Ue, Hitoshi; Shimizu, Kazuki; Muramoto, Hirokazu

    2013-04-01

    PtRu catalysts were supported on five types of carbon nanomaterials of various shapes, sizes, and graphitic properties and the catalyst supports evaluated. The carbon nanomaterial used included three types of nanoparticles: Arc Black (AcB), Vulcan XC-72 (Vulcan) and graphene oxide (GO), and two types of nanofibers: carbon nanocoil (CNC) and carbon nanotube (CNT). Pt and Ru were supported by the reduction method using sodium borohydride. The metal catalyst loading was confirmed by thermo-gravimetric analysis (TGA), electron microscopy, and X-ray diffraction (XRD). Transmission electron microscopy (TEM) and XRD revealed that the diameter of PtRu catalyst nanoparticles loaded on reduced GO (rGO) and AcB were ~2 nm and was the smallest among all the samples. Shifts in Pt (111) XRD peaks of CNC and CNT were larger than those of AcB, Vulcan, and rGO. These results suggest that the diameters of catalyst nanoparticles became smaller by loading on the carbon nanoparticles with a large surface area including rGO, AcB, and Vulcan. Loading onto the carbon nanofibers enhanced the degree of PtRu alloying.

  12. IR and XPS study of NO and CO interaction with palladium catalysts supported on aluminosilicates

    SciTech Connect

    Venezia, A.M.; Liotta, L.F.; Deganello, G. |; Terreros, P.; Pena, M.A.; Fierro, J.L.G.

    1999-02-16

    Adsorption of CO and NO individually and as a mixture of both on palladium catalysts has been investigated by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The effect of sodium ions has been considered by comparing Pd/SiO{sub 2} catalyst, sodium-doped Pd/SiO{sub 2}, and Pd on natural and synthetic silicoaluminates containing sodium in their bulk structure but differing in the surface area of the support. The presence of sodium induces a different adsorption behavior depending on its location, either at the surface of the catalysts or inside the support structure. As a consequence, different species are formed from the reaction between NO and CO at room temperature and at high temperature. Modification of the metal surface of the various catalysts is observed upon the gas treatments. Palladium is oxidized to a certain extent depending on the type of the catalyst support. Moreover, different chemical states of the adsorbed nitrogen species are found.

  13. An evaluation of Pt sulfite acid (PSA) as precursor for supported Pt catalysts

    SciTech Connect

    Regalbuto, J.R.; Ansel, O.; Miller, J.T.

    2010-11-12

    As a catalyst precursor, platinum sulfite acid (PSA) is easy to use and not relatively expensive, and is a potentially attractive precursor for many types of supported catalysts. The ultimate usefulness for many catalyst applications will depend on the extent that Pt can be dispersed and sulfur eliminated. To our knowledge, there exists no detailed characterization in the catalysis literature of PSA and the nanoparticulate Pt phases derived from it during catalyst pretreatment. To this end a series of supports including alumina, silica, magnesia, niobia, titania, magnesia and carbon were contacted with PSA solutions and subsequently analyzed with extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge structure (XANES) analysis, and x-ray photoelectron spectroscopy (XPS) to characterize the Pt species formed upon impregnation, calcination, and reduction. While all catalysts show retention of some S, reasonably small particle sizes with relatively little Pt-S can in some instances be produced using PSA. The amount of retained sulfur appears to decrease with decreasing surface acidity, although even the most acidic supports (niobia and silica) display some storage of S even while only Pt-O bands are observed after calcination or reoxidation. More sulfur was eliminated by high temperature calcinations followed by reduction in hydrogen, at the expense of increasing Pt particle size.

  14. Selective aerobic oxidation of 5-HMF into 2,5-furandicarboxylic acid with Pt catalysts supported on TiO2 - and ZrO2 -based supports.

    PubMed

    Ait Rass, Hicham; Essayem, Nadine; Besson, Michèle

    2015-04-13

    Pt catalysts prepared over different metallic oxide supports were investigated in the oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) in alkaline aqueous solutions with air, to examine the combined effect of the support and base addition. The base (nature and amount) played a significant role in the degradation or oxidation of HMF. Increasing amounts of the weak NaHCO3 base improved significantly the overall catalytic activity of Pt/TiO2 and Pt/ZrO2 by accelerating the oxidation steps, especially for the aldehyde group. This was highlighted by a proposed kinetic model that gave very good concentration-time fittings. Moreover, the promotion of the catalyst with bismuth yielded a PtBi/TiO2 catalytic system with improved activity and stability. Y2 O3  and La2 O3 ZrO2 -supported catalysts exhibited lower activity than Pt/ZrO2 , which suggests no cooperative effect of the weakly basic properties introduced and the homogeneous base. Quantitative oxidation of HMF (0.1 M) and high yields of FDCA (>99 %) were obtained in less than 5 h by using an HMF/Pt molar ratio of 100 and Na2 CO3 as a weak base over PtBi/TiO2 (Bi/Pt=0.22). PMID:25736596

  15. Photocatalytic degradation of 2,4-dichlorophenol with MgAlTi mixed oxides catalysts obtained from layered double hydroxides.

    PubMed

    Mendoza-Damián, G; Tzompantzi, F; Mantilla, A; Barrera, A; Lartundo-Rojas, L

    2013-12-15

    MgAl and MgAlTi mixed oxides were obtained from the thermal treatment of LDH materials synthesized by the sol-gel method; these materials were characterized by N2 physisorption, XRD, UV-vis, XPS, EDS-SEM and TEM techniques. According to the results, Ti was incorporated in the LDH layer when content in the material was low. The MgAl and MgAlTi mixed oxides were evaluated in the photo-degradation of 2,4-dichlorophenol (2,4-DCP) in the presence of UV light. A superior efficiency in the photo-degradation of 2,4-DCP, in comparison with the Degussa P-25 TiO2 reference catalyst was observed, reaching a total decomposition of the 2,4-DCP molecule in less than 60 min. According to the results, Ti was incorporated in the LDH layer when the content in the material was low. The MgAl and MgAlTi mixed oxides were evaluated in the photo-degradation of 2,4-dichlorophenol (2,4-DCP) in the presence of UV light. A superior efficiency in the photo-degradation of 2,4-DCP with the MgAl and MgAlTi mixed oxides, in comparison with the Degussa P-25 TiO2 reference catalyst was observed, reaching a total decomposition of the 2,4-DCP molecule in less than 60 min.

  16. Tuning the acid/metal balance of carbon nanofiber-supported nickel catalysts for hydrolytic hydrogenation of cellulose.

    PubMed

    Van de Vyver, Stijn; Geboers, Jan; Schutyser, Wouter; Dusselier, Michiel; Eloy, Pierre; Dornez, Emmie; Seo, Jin Won; Courtin, Christophe M; Gaigneaux, Eric M; Jacobs, Pierre A; Sels, Bert F

    2012-08-01

    Carbon nanofibers (CNFs) are a class of graphitic support materials with considerable potential for catalytic conversion of biomass. Earlier, we demonstrated the hydrolytic hydrogenation of cellulose over reshaped nickel particles attached at the tip of CNFs. The aim of this follow-up study was to find a relationship between the acid/metal balance of the Ni/CNFs and their performance in the catalytic conversion of cellulose. After oxidation and incipient wetness impregnation with Ni, the Ni/CNFs were characterized by various analytical methods. To prepare a selective Ni/CNF catalyst, the influences of the nature of oxidation agent, Ni activation, and Ni loading were investigated. Under the applied reaction conditions, the best result, that is, 76 % yield in hexitols with 69 % sorbitol selectivity at 93 % conversion of cellulose, was obtained on a 7.5 wt % Ni/CNF catalyst prepared by chemical vapor deposition of CH(4) on a Ni/γ-Al(2)O(3) catalyst, followed by oxidation in HNO(3) (twice for 1 h at 383 K), incipient wetness impregnation, and reduction at 773 K under H(2). This preparation method leads to a properly balanced Ni/CNF catalyst in terms of Ni dispersion and hydrogenation capacity on the one hand, and the number of acidic surface-oxygen groups responsible for the acid-catalyzed hydrolysis on the other.

  17. Selective oxidation of glycerol by using a hydrotalcite-supported platinum catalyst under atmospheric oxygen pressure in water.

    PubMed

    Tsuji, Akihiro; Rao, Kasanneni Tirumala Venkateswara; Nishimura, Shun; Takagaki, Atsushi; Ebitani, Kohki

    2011-04-18

    A hydrotalcite-supported platinum (Pt/HT) catalyst was found to be a highly active and selective heterogeneous catalyst for glycerol oxidation in pure water under atmospheric oxygen pressure in a high glycerol/metal molar ratio up to 3125. High selectivity toward glyceric acid (78 %) was obtained even at room temperature under air atmosphere. The Pt/HT catalyst selectively oxidized the primary hydroxyl group of 1,2-propandiol to give the corresponding carboxylic acid (lactic acid) as well as glycerol. The activity of the catalyst was greatly influenced by the Mg/Al ratio of hydrotalcite. Glycerol conversion increased with increasing the Mg/Al ratio of hydrotalcite (from trace to 56 %). X-ray absorption fine structure (XAFS) measurements indicated that the catalytic oxidation activity was proportional to the metallic platinum concentration, and more than 35 % of metallic platinum was necessary for this reaction. TEM measurements and titration analysis by using benzoic acid suggested that the solid basicity of hydrotalcite plays important roles in the precise control of platinum size and metal concentration as well as the initial promotion of alcohol oxidation.

  18. Selective oxidation of glycerol by using a hydrotalcite-supported platinum catalyst under atmospheric oxygen pressure in water.

    PubMed

    Tsuji, Akihiro; Rao, Kasanneni Tirumala Venkateswara; Nishimura, Shun; Takagaki, Atsushi; Ebitani, Kohki

    2011-04-18

    A hydrotalcite-supported platinum (Pt/HT) catalyst was found to be a highly active and selective heterogeneous catalyst for glycerol oxidation in pure water under atmospheric oxygen pressure in a high glycerol/metal molar ratio up to 3125. High selectivity toward glyceric acid (78 %) was obtained even at room temperature under air atmosphere. The Pt/HT catalyst selectively oxidized the primary hydroxyl group of 1,2-propandiol to give the corresponding carboxylic acid (lactic acid) as well as glycerol. The activity of the catalyst was greatly influenced by the Mg/Al ratio of hydrotalcite. Glycerol conversion increased with increasing the Mg/Al ratio of hydrotalcite (from trace to 56 %). X-ray absorption fine structure (XAFS) measurements indicated that the catalytic oxidation activity was proportional to the metallic platinum concentration, and more than 35 % of metallic platinum was necessary for this reaction. TEM measurements and titration analysis by using benzoic acid suggested that the solid basicity of hydrotalcite plays important roles in the precise control of platinum size and metal concentration as well as the initial promotion of alcohol oxidation. PMID:21271683

  19. Tuning the acid/metal balance of carbon nanofiber-supported nickel catalysts for hydrolytic hydrogenation of cellulose.

    PubMed

    Van de Vyver, Stijn; Geboers, Jan; Schutyser, Wouter; Dusselier, Michiel; Eloy, Pierre; Dornez, Emmie; Seo, Jin Won; Courtin, Christophe M; Gaigneaux, Eric M; Jacobs, Pierre A; Sels, Bert F

    2012-08-01

    Carbon nanofibers (CNFs) are a class of graphitic support materials with considerable potential for catalytic conversion of biomass. Earlier, we demonstrated the hydrolytic hydrogenation of cellulose over reshaped nickel particles attached at the tip of CNFs. The aim of this follow-up study was to find a relationship between the acid/metal balance of the Ni/CNFs and their performance in the catalytic conversion of cellulose. After oxidation and incipient wetness impregnation with Ni, the Ni/CNFs were characterized by various analytical methods. To prepare a selective Ni/CNF catalyst, the influences of the nature of oxidation agent, Ni activation, and Ni loading were investigated. Under the applied reaction conditions, the best result, that is, 76 % yield in hexitols with 69 % sorbitol selectivity at 93 % conversion of cellulose, was obtained on a 7.5 wt % Ni/CNF catalyst prepared by chemical vapor deposition of CH(4) on a Ni/γ-Al(2)O(3) catalyst, followed by oxidation in HNO(3) (twice for 1 h at 383 K), incipient wetness impregnation, and reduction at 773 K under H(2). This preparation method leads to a properly balanced Ni/CNF catalyst in terms of Ni dispersion and hydrogenation capacity on the one hand, and the number of acidic surface-oxygen groups responsible for the acid-catalyzed hydrolysis on the other. PMID:22730195

  20. Planar oxide supported rhodium nanoparticles as model catalysts

    PubMed Central

    McClure, Sean M.; Lundwall, M. J.; Goodman, D. W.

    2011-01-01

    C2H4/CO/H2 reaction is investigated on Rh/SiO2 model catalyst surfaces. Kinetic reactivity and infrared spectroscopic measurements are investigated as a function of Rh particle size under near atmospheric reaction conditions. Results show that propionaldehyde turnover frequency (TOF) (CO insertion pathway) exhibits a maximum activity near 〈dp〉 = 2.5 nm. Polarization modulation infrared reflection absorption spectroscopy under CO and reaction (C2H4/CO/H2) conditions indicate the presence of Rh carbonyl species (Rh(CO)2, Rh(CO)H) on small Rh particles, whereas larger particles appear resistant to dispersion and carbonyl formation. Combined these observations suggest the observed particle size dependence for propionaldehyde production via CO insertion is driven by two factors: (i) an increase in propionaldehyde formation on undercoordinated Rh sites and (ii) creation of carbonyl hydride species (Rh(CO)H)) on smaller Rh particles, whose presence correlates with the lower activity for propionaldehyde formation for 〈dp〉 < 2.5 nm. PMID:20947802

  1. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    SciTech Connect

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In

  2. A transient kinetic study of the carbon dioxide reforming of methane over supported Ru catalysts

    SciTech Connect

    Ferreira-Aparicio, P.; Rodriguez-Ramos, I.; Marquez-Alvarez, C.; Schuurman, Y.; Mirodatos, C.; Guerrero-Ruiz, A.

    1999-05-15

    Carbon dioxide reforming of methane has been studied over ruthenium catalysts supported on silica, {gamma}-alumina, and a high surface area graphite. Transient kinetic analysis and temporal analysis of products were used to unravel the reaction mechanism and point out the specificity of each support. Over silica support, the most inert material, the whole reforming process occurs on the ruthenium phase and the fast ageing of the catalyst is related to a large residence time of surface carbon intermediates favoring polymerization and graphitization. Over graphite the support acts as a collector of CH{sub x} species which reduces the residence time of carbon species on the Ru phase and therefore leads to a very stable catalyst. Over alumina support the dry reforming of methane involves a complex reaction network in which the alumina hydroxyl groups feed continuously the active Ru phase in H and O adspecies, which also limits the catalyst ageing. Accumulation of CO{sub x} adspecies on alumina also occurs during the reaction.

  3. Selective Ring Opening of 1-Methylnaphthalene Over NiW-Supported Catalyst Using Dealuminated Beta Zeolite.

    PubMed

    Kim, Eun-Sang; Lee, You-Jin; Kim, Jeong-Rang; Kim, Joo-Wan; Kim, Tae-Wan; Chae, Ho-Jeong; Kim, Chul-Ung; Lee, Chang-Ha; Jeong, Soon-Yong

    2016-02-01

    Nanoporous Beta zeolite was dealuminated by weak acid treatment for reducing the acidity. Bi-functional catalysts were prepared using commercial Beta zeolites and the dealuminated zeolites for acidic function, NiW for metallic function. 1-Methylnaphthalene was selected as a model compound for multi-ring aromatics in heavy oil, and its selective ring opening reaction has been investigated using the prepared bi-functional catalysts with different acidity in fixed bed reaction system. The dealuminated Beta zeolites, which crystal structure and nanoporosity were maintained, showed the higher SiO2/Al2O3 ratio and smaller acidity than their original zeolite. NiW-supported catalyst using the dealuminated Beta zeolite with SiO2/Al203 mole ratio of 55 showed the highest performance for the selective ring opening. The acidity of catalyst seemed to play an important role as active sites for the selective ring opening of 1-methylnaphthalene but there should be some optimum catalyst acidity for the reaction. The acidity of Beta zeolite could be controlled by the acid treatment and the catalyst with the optimum acidity for the selective ring opening could be prepared.

  4. Effects of K and Pt promoters on the performance of cobalt catalyst supported on CNTs

    NASA Astrophysics Data System (ADS)

    Zabidi, Noor Asmawati Mohd; Ali, Sardar; Subbarao, Duvvuri

    2014-10-01

    This paper presents a comparative study on the effects of incorporation of potassium (K) and platinum (Pt) as promoters on the physicochemical properties of cobalt catalyst. The catalyst was prepared by a wet impregnation method on a CNTs support. Samples were characterized using transmission electron microscopy (TEM), H2-temperature-programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS) techniques. Fischer-Tropsch Synthesis (FTS) was carried out in a fixed-bed microreactor at 543 K and 1 atm, with H2/ CO = 2v / v and space velocity, SV of 12 L/g.h for 5 hours. The K-promoted and Pt-promoted Co catalysts have different physicochemical properties and catalytic performances compared to that of the un-promoted Co catalyst. XPS analysis revealed that K and Pt promoters induced electronic modifications as exhibited by the shifts in the Co binding energies. Incorporation of 0.06 wt% K and 0.06 wt% Pt in Co/CNTs catalyst resulted in an increase in the CO conversion and C5+ selectivity and a decrease in methane selectivity. Potassium was found to be a better promoter for Co/CNTs catalyst compared to platinum.

  5. Effects of K and Pt promoters on the performance of cobalt catalyst supported on CNTs

    SciTech Connect

    Zabidi, Noor Asmawati Mohd; Ali, Sardar; Subbarao, Duvvuri

    2014-10-24

    This paper presents a comparative study on the effects of incorporation of potassium (K) and platinum (Pt) as promoters on the physicochemical properties of cobalt catalyst. The catalyst was prepared by a wet impregnation method on a CNTs support. Samples were characterized using transmission electron microscopy (TEM), H{sub 2}-temperature-programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS) techniques. Fischer-Tropsch Synthesis (FTS) was carried out in a fixed-bed microreactor at 543 K and 1 atm, with H{sub 2}/CO = 2v/v and space velocity, SV of 12 L/g.h for 5 hours. The K-promoted and Pt-promoted Co catalysts have different physicochemical properties and catalytic performances compared to that of the un-promoted Co catalyst. XPS analysis revealed that K and Pt promoters induced electronic modifications as exhibited by the shifts in the Co binding energies. Incorporation of 0.06 wt% K and 0.06 wt% Pt in Co/CNTs catalyst resulted in an increase in the CO conversion and C{sub 5+} selectivity and a decrease in methane selectivity. Potassium was found to be a better promoter for Co/CNTs catalyst compared to platinum.

  6. Effect of plasma treatments to graphite nanofibers supports on electrochemical behaviors of metal catalyst electrodes.

    PubMed

    Lee, Hochun; Jung, Yongju; Kim, Seok

    2012-02-01

    In the present work, we had studied the graphite nanofibers as catalyst supports after a plasma treatment for studying the effect of surface modification. By controlling the plasma intensity, a surface functional group concentration was changed. The nanoparticle size, loading efficiency, and catalytic activity were studied, after Pt-Ru deposition by a chemical reduction. Pt-Ru catalysts deposited on the plasma-treated GNFs showed the smaller size, 3.58 nm than the pristine GNFs. The catalyst loading contents were enhanced with plasma power and duration time increase, meaning an enhanced catalyst deposition efficiency. Accordingly, cyclic voltammetry result showed that the specific current density was increased proportionally till 200 W and then the value was decreased. Enhanced activity of 40 (mA mg(-1)-catalyst) was accomplished at 200 W and 180 sec duration time. Consequently, it was found that the improved electroactivity was originated from the change of size or morphology of catalysts by controlling the plasma intensity. PMID:22629990

  7. Selective Ring Opening of 1-Methylnaphthalene Over NiW-Supported Catalyst Using Dealuminated Beta Zeolite.

    PubMed

    Kim, Eun-Sang; Lee, You-Jin; Kim, Jeong-Rang; Kim, Joo-Wan; Kim, Tae-Wan; Chae, Ho-Jeong; Kim, Chul-Ung; Lee, Chang-Ha; Jeong, Soon-Yong

    2016-02-01

    Nanoporous Beta zeolite was dealuminated by weak acid treatment for reducing the acidity. Bi-functional catalysts were prepared using commercial Beta zeolites and the dealuminated zeolites for acidic function, NiW for metallic function. 1-Methylnaphthalene was selected as a model compound for multi-ring aromatics in heavy oil, and its selective ring opening reaction has been investigated using the prepared bi-functional catalysts with different acidity in fixed bed reaction system. The dealuminated Beta zeolites, which crystal structure and nanoporosity were maintained, showed the higher SiO2/Al2O3 ratio and smaller acidity than their original zeolite. NiW-supported catalyst using the dealuminated Beta zeolite with SiO2/Al203 mole ratio of 55 showed the highest performance for the selective ring opening. The acidity of catalyst seemed to play an important role as active sites for the selective ring opening of 1-methylnaphthalene but there should be some optimum catalyst acidity for the reaction. The acidity of Beta zeolite could be controlled by the acid treatment and the catalyst with the optimum acidity for the selective ring opening could be prepared. PMID:27433655

  8. Catalytic oxidation of low-concentration CO at ambient temperature over supported Pd-Cu catalysts.

    PubMed

    Wang, Fagen; Zhang, Haojie; He, Dannong

    2014-01-01

    The CO catalytic oxidation at ambient temperature and high space velocity was studied over the Pd-Cu/MOx (MOx = TiO2 and AI203) catalysts. The higher Brunauer-Emmett-Teller area surface of the A1203 support facilitates the dispersion of Pd2+ species, and the presence of Cu2Cl(OH)3 accelerates the re-oxidation of Pd0 to Pd2+ over the Pd-Cu/Al203 catalyst, which contributed to better performance of CO catalytic oxidation. The poorer activity of the Pd-Cu/TiO2 catalyst was attributed to the lower dispersion of Pd2+ species because of the less surface area and the non-formation of Cu2CI(OH)3 species. The presence of saturated moisture showed a negative effect on CO conversion over the two catalysts. This might be because of the competitive adsorption, the formation of carbonate species and the transformation of Cu2CI(OH)3 to inactive CuCI over the Pd-Cu/AI2O3 catalyst, which facilitates the aggregation of PdO species over the Pd-Cu/TiO2 catalyst under the moisture condition. PMID:24600874

  9. Structure sensitive adsorption of hydrogen on ruthenium and ruthenium-silver catalysts supported on silica

    SciTech Connect

    Kumar, N.

    1999-02-12

    Supported metal catalysts typically consist of particles with sizes less than 10 nm, and because of the small crystallite size, low coordination number sites (edges and corners) represent a significant fraction of all surface sites. Furthermore, it has been demonstrated that adsorption rates can be much greater at these low coordination sites than on basal plane sites. What has not been generally appreciated, however, is that preferential adsorption at edge and corner sites may explain the mechanism by which a promoter, or the addition of a second metal to form a bimetallic, can alter the selectivity and rate of reaction. For example, the measurements of hydrogen adsorption onto supported Ru-Ag catalysts show marked decreases in the amount of hydrogen adsorbed relative to the amount adsorbed on Ru catalysts. Although it is known that Ag does not dissociatively adsorb hydrogen, this decrease cannot be explained by a simple one-to-one site blocking mechanism unless Ag preferentially populates edges and corners, thereby reducing the number of Ru edge sites. Indeed, Monte Carlo simulations of Ru-Group IB metal catalysts predict that Group IB metal atoms preferentially populate corner and edge sites of ruthenium crystals. This evidence, taken together, suggests that adsorption occurs preferentially at Ru corner and edge sites, which act as portals onto basal planes. A model based on this portal theory for hydrogen adsorption onto supported ruthenium bimetallic catalysts has been developed using a rate equation approach. Specifically, the model accounts for the following features: (1) preferential adsorption through portals, (2) basal plane site-energy multiplicity, and (3) hydrogen spillover onto the support. A comparison of model predictions with experiment is presented for different concentration of Ag in Ru-Ag catalysts. The portal model of hydrogen adsorption can explain the observed decreased in the amount of hydrogen adsorbed on Ru-Ag catalysts. The model can be

  10. Multi-wavelength Raman spectroscopy study of supported vanadia catalysts: Structure identification and quantification

    SciTech Connect

    Wu, Zili

    2014-10-20

    Revealing the structure of supported metal oxide catalysts is a prerequisite for establishing the structure - catalysis relationship. Among a variety of characterization techniques, multi-wavelength Raman spectroscopy, combining resonance Raman and non-resonance Raman with different excitation wavelengths, has recently emerged as a particularly powerful tool in not only identifying but also quantifying the structure of supported metal oxide clusters. In our review, we make use of two supported vanadia systems, VOx/SiO2 and VOx/CeO2, as examples to showcase how one can employ this technique to investigate the heterogeneous structure of active oxide clusters and to understand the complex interaction between the oxide clusters and the support. Moreover, the qualitative and quantitative structural information gained from the multi-wavelength Raman spectroscopy can be utilized to provide fundamental insights for designing more efficient supported metal oxide catalysts.

  11. Multi-wavelength Raman spectroscopy study of supported vanadia catalysts: Structure identification and quantification

    DOE PAGES

    Wu, Zili

    2014-10-20

    Revealing the structure of supported metal oxide catalysts is a prerequisite for establishing the structure - catalysis relationship. Among a variety of characterization techniques, multi-wavelength Raman spectroscopy, combining resonance Raman and non-resonance Raman with different excitation wavelengths, has recently emerged as a particularly powerful tool in not only identifying but also quantifying the structure of supported metal oxide clusters. In our review, we make use of two supported vanadia systems, VOx/SiO2 and VOx/CeO2, as examples to showcase how one can employ this technique to investigate the heterogeneous structure of active oxide clusters and to understand the complex interaction between themore » oxide clusters and the support. Moreover, the qualitative and quantitative structural information gained from the multi-wavelength Raman spectroscopy can be utilized to provide fundamental insights for designing more efficient supported metal oxide catalysts.« less

  12. Tungsten carbide/porous carbon composite as superior support for platinum catalyst toward methanol electro-oxidation

    SciTech Connect

    Jiang, Liming; Fu, Honggang; Wang, Lei; Mu, Guang; Jiang, Baojiang; Zhou, Wei; Wang, Ruihong

    2014-01-01

    Graphical abstract: The WC nanoparticles are well dispersed in the carbon matrix. The size of WC nanoparticles is about 30 nm. It can be concluded that tungsten carbide and carbon composite was successfully prepared by the present synthesis conditions. - Highlights: • The WC/PC composite with high specific surface area was prepared by a simple way. • The Pt/WC/PC catalyst has superior performance toward methanol electro-oxidation. • The current density for methanol electro-oxidation is as high as 595.93 A g{sup −1} Pt. • The Pt/WC/PC catalyst shows better durability and stronger CO electro-oxidation. • The performance of Pt/WC/PC is superior to the commercial Pt/C (JM) catalyst. - Abstract: Tungsten carbide/porous carbon (WC/PC) composites have been successfully synthesized through a surfactant assisted evaporation-induced-assembly method, followed by a thermal treatment process. In particular, WC/PC-35-1000 composite with tungsten content of 35% synthesized at the carbonized temperature of 1000 °C, exhibited a specific surface area (S{sub BET}) of 457.92 m{sup 2} g{sup −1}. After loading Pt nanoparticles (NPs), the obtained Pt/WC/PC-35-1000 catalyst exhibits the highest unit mass electroactivity (595.93 A g{sup −1} Pt) toward methanol electro-oxidation, which is about 2.6 times as that of the commercial Pt/C (JM) catalyst. Furthermore, the Pt/WC/PC-35-1000 catalyst displays much stronger resistance to CO poisoning and better durability toward methanol electrooxidation compared with the commercial Pt/C (JM) catalyst. The high electrocatalytic activity, strong poison-resistivity and good stability of Pt/WC/PC-35-1000 catalyst are attributed to the porous structures and high specific surface area of WC/PC support could facilitate the rapid mass transportation. Moreover, synergistic effect between WC and Pt NPs is favorable to the higher catalytic performance.

  13. Effect of ceria on hydrogen production by auto-thermal reforming of propane over supported nickel catalysts.

    PubMed

    Kim, Woo Ri; Ahn, Ho Geun; Shin, Jae Soon; Kim, Young Chul; Moon, Dong Ju; Park, Nam Cook

    2013-01-01

    Autothermal reforming of propane was studied with respect to the addition of ceria to the supported Ni catalysts. Ni/Al2O3 catalysts showed a higher activity than Ni/MgAl catalysts. It was related to the ease of the catalyst reduction. Ni/Ce/MgAl and Ni/Ce/Al2O3 catalysts showed higher propane conversions and higher hydrogen yields. These were related to the particle size and the reducibilities of the catalysts. XRD analysis showed that the added CeO2 decreased the particle sizes of the supported Ni, but increased the amount of NiO on the catalyst surface, thus it improved the resistance to coking. PMID:23646791

  14. Role of bonding mechanisms during transfer hydrogenation reaction on heterogeneous catalysts of platinum nanoparticles supported on zinc oxide nanorods

    NASA Astrophysics Data System (ADS)

    Al-Alawi, Reem A.; Laxman, Karthik; Dastgir, Sarim; Dutta, Joydeep

    2016-07-01

    For supported heterogeneous catalysis, the interface between a metal nanoparticle and the support plays an important role. In this work the dependency of the catalytic efficiency on the bonding chemistry of platinum nanoparticles supported on zinc oxide (ZnO) nanorods is studied. Platinum nanoparticles were deposited on ZnO nanorods (ZnO NR) using thermal and photochemical processes and the effects on the size, distribution, density and chemical state of the metal nanoparticles upon the catalytic activities are presented. The obtained results indicate that the bonding at Pt-ZnO interface depends on the deposition scheme which can be utilized to modulate the surface chemistry and thus the activity of the supported catalysts. Additionally, uniform distribution of metal on the catalyst support was observed to be more important than the loading density. It is also found that oxidized platinum Pt(IV) (platinum hydroxide) provided a more suitable surface for enhancing the transfer hydrogenation reaction of cyclohexanone with isopropanol compared to zero valent platinum. Photochemically synthesized ZnO supported nanocatalysts were efficient and potentially viable for upscaling to industrial applications.

  15. Characterization of platinum catalyst supported on carbon nanoballs prepared by solution plasma processing

    SciTech Connect

    Ichin, Yoshimichi; Mitamura, Koji; Saito, Nagahiro; Takai, Osamu

    2009-07-15

    In order to improve the energy-conversion efficiency in fuel cells, the authors loaded Pt nanoparticles on carbon nanoballs (CNBs) by using solution plasma processing (SPP) involving CNB and Pt ion with a protection group. In this study, we employed poly(vinylpyrrolidone) (PVP) or sodium dodecyl sulfate (SDS) to prepare Pt nanoparticles supported on CNB (Pt/CNB) by the SPP, and the electrochemical properties as a catalyst was evaluated by cyclic voltammetry. The carbon nanoballs were prepared by thermal decomposition process of ethylene and hydrogen gases. Color of the solution changed from yellow to dark brown as synthesis time. This change indicates the improvement of dispersibility of CNB. Moreover, transmission electron microscopy images and elemental mapping images showed the Pt nanoparticles supported on CNB. A catalytic activity of the Pt/CNB in use of SDS was shown to be higher than the Pt/CNB prepared with PVP system. The SDS-containing Pt/CNB also showed the higher activity than that obtained by the conventional method.

  16. Hydrogen production from biomass gasification using biochar as a catalyst/support.

    PubMed

    Yao, Dingding; Hu, Qiang; Wang, Daqian; Yang, Haiping; Wu, Chunfei; Wang, Xianhua; Chen, Hanping

    2016-09-01

    Biochar is a promising catalyst/support for biomass gasification. Hydrogen production from biomass steam gasification with biochar or Ni-based biochar has been investigated using a two stage fixed bed reactor. Commercial activated carbon was also studied as a comparison. Catalyst was prepared with an impregnation method and characterized by X-ray diffraction, specific surface and porosity analysis, X-ray fluorescence and scanning electron micrograph. The effects of gasification temperature, steam to biomass ratio, Ni loading and bio-char properties on catalyst activity in terms of hydrogen production were explored. The Ni/AC catalyst showed the best performance at gasification temperature of 800°C, S/B=4, Ni loading of 15wt.%. Texture and composition characterization of the catalysts suggested the interaction between volatiles and biochar promoted the reforming of pyrolysis volatiles. Cotton-char supported Ni exhibited the highest activity of H2 production (64.02vol.%, 92.08mgg(-1) biomass) from biomass gasification, while rice-char showed the lowest H2 production. PMID:27240230

  17. Hydrogen production from biomass gasification using biochar as a catalyst/support.

    PubMed

    Yao, Dingding; Hu, Qiang; Wang, Daqian; Yang, Haiping; Wu, Chunfei; Wang, Xianhua; Chen, Hanping

    2016-09-01

    Biochar is a promising catalyst/support for biomass gasification. Hydrogen production from biomass steam gasification with biochar or Ni-based biochar has been investigated using a two stage fixed bed reactor. Commercial activated carbon was also studied as a comparison. Catalyst was prepared with an impregnation method and characterized by X-ray diffraction, specific surface and porosity analysis, X-ray fluorescence and scanning electron micrograph. The effects of gasification temperature, steam to biomass ratio, Ni loading and bio-char properties on catalyst activity in terms of hydrogen production were explored. The Ni/AC catalyst showed the best performance at gasification temperature of 800°C, S/B=4, Ni loading of 15wt.%. Texture and composition characterization of the catalysts suggested the interaction between volatiles and biochar promoted the reforming of pyrolysis volatiles. Cotton-char supported Ni exhibited the highest activity of H2 production (64.02vol.%, 92.08mgg(-1) biomass) from biomass gasification, while rice-char showed the lowest H2 production.

  18. Theoretical study of the catalytic CO oxidation by Pt catalyst supported on Ge-doped grapheme.

    PubMed

    Tang, Yanan; Yang, Zongxian; Dai, Xianqi; Lu, Zhansheng; Zhang, Yanxing; Fu, Zhaoming

    2014-09-01

    The geometry, electronic structure and catalytic properties of the anchored Pt atom on the Ge-doped graphene (Pt/Ge-graphene) substrates are investigated using the first-principles computations. It is found that Ge atoms can form strong covalent bonds with the carbon atoms at the vacancy site on the defective graphene. The Ge-graphene as substrate can effectively anchored Pt atoms and form supported Pt catalyst, which exhibits good catalytic activity for CO oxidation with a two-step route, starting with the Langmuir-Hinshelwood (LH) reaction followed by the Eley-Rideal (ER) reaction. The Ge dopant in graphene plays a vital role in enhancing the substrate-adsorbate interaction through facilitating the charge redistribution at their interfaces. The Ge-graphene can be used as the reactive support to control the stability and activity of the Pt catalysts. This work provides valuable guidance on fabricating carbon-based catalysts for CO oxidation, and validates the reactivity of single-atom catalyst for designing atomic-scale catalysts.

  19. Graphene nanoribbons hybridized carbon nanofibers: remarkably enhanced graphitization and conductivity, and excellent performance as support material for fuel cell catalysts

    NASA Astrophysics Data System (ADS)

    Wang, Chaonan; Gao, Hongrong; Li, Hong; Zhang, Yiren; Huang, Bowen; Zhao, Junhong; Zhu, Yan; Yuan, Wang Zhang; Zhang, Yongming

    2014-01-01

    High electronic conductivity of the support material and uniform distribution of the catalyst nanoparticles (NPs) are extremely desirable for electrocatalysts. In this paper, we present our recent progress on electrocatalysts for fuel cells with simultaneously improved conductivity of the supporting carbon nanofibers (CNFs) and distribution of platinum (Pt) NPs through facile incorporation of graphene nanoribbons (GNRs). Briefly, GNRs were obtained by the cutting and unzipping of multiwalled carbon nanotubes (MWCNTs) and subsequent thermal reduction and were first used as novel nanofillers in CNFs towards high performance support material for electrocatalysis. Through electrospinning and carbonization processes, GNR embedded carbon nanofibers (G-CNFs) with greatly enhanced graphitization and electronic conductivity were synthesized. Chemical deposition of Pt NPs onto G-CNFs generated a new Pt-G-CNF hybrid catalyst, with homogeneously distributed Pt NPs of ~3 nm. Compared to Pt-CNF (Pt on pristine CNFs) and Pt-M-CNF (Pt on MWCNT embedded CNFs), Pt-G-CNF hybrids exhibit significantly improved electrochemically active surface area (ECSA), better CO tolerance for electro-oxidation of methanol and higher electrochemical stability, testifying G-CNFs are promising support materials for high performance electrocatalysts for fuel cells.High electronic conductivity of the support material and uniform distribution of the catalyst nanoparticles (NPs) are extremely desirable for electrocatalysts. In this paper, we present our recent progress on electrocatalysts for fuel cells with simultaneously improved conductivity of the supporting carbon nanofibers (CNFs) and distribution of platinum (Pt) NPs through facile incorporation of graphene nanoribbons (GNRs). Briefly, GNRs were obtained by the cutting and unzipping of multiwalled carbon nanotubes (MWCNTs) and subsequent thermal reduction and were first used as novel nanofillers in CNFs towards high performance support material for

  20. Effect of support materials on supported platinum catalyst prepared using a supercritical fluid deposition technique and their catalytic performance for hydrogen-rich gas production from lignocellulosic biomass.

    PubMed

    Kaya, Burçak; Irmak, Sibel; Hesenov, Arif; Erbatur, Oktay; Erkey, Can

    2012-11-01

    A number of supported Pt catalysts have been prepared by supercritical carbon dioxide deposition technique using various supports. The reduction of Pt precursor to metal performed by heat treatment under nitrogen flow. The prepared catalysts were evaluated for gasification of wheat straw biomass hydrolysates and glucose solution for hydrogen-rich gas production. The activities of the catalysts were highly affected by distribution, amount and particle sizes of platinum on the support. In general carbon-based supported Pt catalysts exhibited better catalytic activity compared to other supports to be used. Compared to biomass hydrolysate feed, gasification of glucose always resulted in higher volume of gas mixture, however, hydrogen selectivity was decreased in all catalyst except multi-walled carbon nanotube. The deposition of Pt particles inner side of that support makes the large organic substrates inaccessible to reach and react with those metal particles.

  1. Magnetically Recoverable Supported Ruthenium Catalyst for Hydrogenation of Alkynes and Transfer Hydrogenation of Carbonyl Compounds

    EPA Science Inventory

    A ruthenium (Ru) catalyst supported on magnetic nanoparticles (NiFe2O4) has been successfully synthesized and used for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The cata...

  2. Carboxylic Group Embedded Carbon Balls as a New Supported Catalyst for Hydrogen Economic Reactions.

    PubMed

    Bordoloi, Ankur

    2016-03-01

    Carboxylic group functionalized carbon balls have been successfully synthesized by using a facile synthesis method and well characterized with different characterization techniques such as XPS, MAS NMR, SEM, ICP and N2 physi-sorption analysis. The synthesized material has been effectively utilized as novel support to immobilized ruthenium catalyst for hydrogen economic reactions.

  3. PREPARATION, CHARACTERIZATION AND ACTIVITY OF AL2O3-SUPPORTED V2O5 CATALYSTS

    EPA Science Inventory

    A series of activated alumina supported vanadium oxide catalysts with various V2O5 loadings ranging from 5 to 25 wt% has been prepared by wet impregnation technique. A combination of various physico-chemical techniques such as BET surface areas, oxygen chemisorption, X-ray diffra...

  4. Alkene Isomerization Using a Solid Acid as Activator and Support for a Homogeneous Catalyst

    ERIC Educational Resources Information Center

    Seen, Andrew J.

    2004-01-01

    An upper-level undergraduate experiment that, in addition to introducing students to catalysis using an air sensitive transition-metal complex, introduces the use of a solid acid as an activator and support for the catalyst is developed. The increased stability acquired in the course of the process affords the opportunity to characterize the…

  5. Partially unzipped carbon nanotubes as a superior catalyst support for PEM fuel cells.

    PubMed

    Long, Donghui; Li, Wei; Qiao, Wenming; Miyawaki, Jin; Yoon, Seong-Ho; Mochida, Isao; Ling, Licheng

    2011-09-01

    Partially unzipped carbon nanotubes prepared by strong oxidation and thermal expansion of carbon nanotubes were explored as an advanced catalyst support for PEM fuel cells. The unique hybrid structure of 1D nanotube and 2D double-side graphene resulted in an outstanding electrocatalytic performance.

  6. Graphene-supported hemin as a highly active biomimetic oxidation catalyst.

    PubMed

    Xue, Teng; Jiang, Shan; Qu, Yongquan; Su, Qiao; Cheng, Rui; Dubin, Sergey; Chiu, Chin-Yi; Kaner, Richard; Huang, Yu; Duan, Xiangfeng

    2012-04-16

    Well supported: stable hemin-graphene conjugates formed by immobilization of monomeric hemin on graphene, showed excellent catalytic activity, more than 10 times better than that of the recently developed hemin-hydrogel system and 100 times better than that of unsupported hemin. The catalysts also showed excellent binding affinities and catalytic efficiencies approaching that of natural enzymes. PMID:22368046

  7. Selective oxidation catalysts obtained by immobilization of iron(III) porphyrins on thiosalicylic acid-modified Mg-Al layered double hydroxides.

    PubMed

    de Freitas Castro, Kelly Aparecida Dias; Wypych, Fernando; Antonangelo, Ariana; Mantovani, Karen Mary; Bail, Alesandro; Ucoski, Geani Maria; Ciuffi, Kátia Jorge; Cintra, Thais Elita; Nakagaki, Shirley

    2016-09-15

    Nitrate-intercalated Mg-Al layered double hydroxides (LDHs) were synthesized and exfoliated in formamide. Reaction of the single layer suspension with thiosalicylic acid under different conditions afforded two types of solids: LDHA1, in which the outer surface was modified with the anion thiosalicylate, and LDHA2, which contained the anion thiosalicylate intercalated between the LDH layers. LDHA1 and LDHA2 were used as supports to immobilize neutral (FeP1 and FeP2) and anionic (FeP3) iron(III) porphyrins. For comparison purposes, the iron(III) porphyrins (FePs) were also immobilized on LDH intercalated with nitrate anions obtained by the co-precipitation method. Chemical modification of LDH facilitated immobilization of the FePs through interaction of the functionalizing groups in LDH with the peripheral substituents on the porphyrin ring. The resulting FePx-LDHAy solids were characterized by X-ray diffraction (powder) and UV-Vis and EPR spectroscopies and were investigated as catalysts in the oxidation of cyclooctene and cyclohexane. The immobilized neutral FePs and their homogeneous counterparts gave similar product yields in the oxidation of cyclooctene, suggesting that immobilization of the FePs on the thiosalicylate-modified LDHs only supported the catalyst species without interfering in the catalytic outcome. On the other hand, in the oxidation of cyclohexane, the thiosalicylate anions on the outer surface of LDHA1 or intercalated between the LDHA2 layers influenced the catalytic activity of FePx-LDHAy, leading to different efficiency and selectivity results. FeP1-LDHA2 performed the best (29.6% alcohol yield) due to changes in the polarity of the surface of the support and the presence of FeP1. Interestingly, FeP1 also performed better in solution as compared to the other FePs. Finally, it was possible to recycle FeP1-LDHA2 at least three times.

  8. Preparation of catalysts via ion-exchangeable coatings on supports

    DOEpatents

    Dosch, R.G.; Stephens, H.P.

    1986-04-09

    Disclosed are: new catalytic compositions which comprise an inert support coated with a hydrous alkali metal, alkaline earth metal, or quaternary ammonium titanate, niobate, zirconate, or tantalate, in which the alkali or alkaline earth metal or quaternary ammonium cations have been exchanged for a catalytically effective quantity of a catalytically effective metal.

  9. Microstructural characterization of bimetallic Ni-Pt catalysts supported on SiO 2

    NASA Astrophysics Data System (ADS)

    Arenas-Alatorre, J.; Avalos-Borja, M.; Díaz, G.

    2002-04-01

    A set of Pt, Ni and a bimetallic Ni50Pt50 catalysts supported on SiO2 of low and high surface area (S=50 and 200 m2/g) with a total metal loading of 2 wt.% was characterized by high-resolution electron microscopy (HREM), conventional transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and computational techniques such as digital processing and image simulation. Special attention was placed to the identification of intermetallic phases in the Ni50Pt50/SiO2 sample. Catalysts were prepared by impregnation and submitted to calcination-reduction activation treatments. For all the set, the increase in support's surface area led to an improvement of the metal dispersion. TEM and HREM images showed significant differences in the shape and crystalline lattice of the Pt and Ni particles in the monometallic samples taken as reference. While in Pt/SiO2 catalyst we identified only reduced Pt particles, in Ni/SiO2 some NiO particles were detected. HREM characterization of the Ni50Pt50 catalysts showed that many particles have defects such as twinning and dislocations. Cubo-octahedral shapes were predominant in the bimetallic catalyst. Crystal lattice and angles measurements were consistent with the identification of NiPt and/or Ni3Pt intermetallic phases. Superlattice structures were also identified and confirmed by image simulation. EDS analysis on a particle by particle basis confirmed that in bimetallic catalysts supported in SiO2 of low and high surface area, particles were present consisting of Ni-rich, nominal and Pt-rich metal compositions. Pt-only particles were found but no Ni-only particles were detected. Among the possibilities, NiPt and Ni3Pt compositions were identified.

  10. Ni/Fe-supported over hydrotalcites precursors as catalysts for clean and selective oxidation of Basic Yellow 11: reaction intermediates determination.

    PubMed

    Ovejero, G; Rodríguez, A; Vallet, A; García, J

    2013-01-01

    In this work, Basic Yellow 11 (BY 11) was employed as model compound to study catalytic wet air oxidation as a pre-treatment step to the conventional biological oxidation. Ni and Fe catalysts supported over hydrotalcite (HT) were prepared by incipient wetness and excess impregnation to obtain catalysts with different metal loadings (from 1 to 10 wt.%). HTs were synthesized by co-precipitation and characterized with XRD, X-ray fluorescence (XRF), BET, thermogravimetric analysis and SEM. Results showed that dye conversion increased with Ni and Fe content up to 7 wt.% and that the most effective catalyst were prepared by incipient wetness impregnation. The influence of metal loading in the catalyst, and the preparation method as well as the reaction conditions was investigated. A mechanism and reaction pathways for BY 11 during catalytic liquid phase oxidation have also been proposed.

  11. Ni/Fe-supported over hydrotalcites precursors as catalysts for clean and selective oxidation of Basic Yellow 11: reaction intermediates determination.

    PubMed

    Ovejero, G; Rodríguez, A; Vallet, A; García, J

    2013-01-01

    In this work, Basic Yellow 11 (BY 11) was employed as model compound to study catalytic wet air oxidation as a pre-treatment step to the conventional biological oxidation. Ni and Fe catalysts supported over hydrotalcite (HT) were prepared by incipient wetness and excess impregnation to obtain catalysts with different metal loadings (from 1 to 10 wt.%). HTs were synthesized by co-precipitation and characterized with XRD, X-ray fluorescence (XRF), BET, thermogravimetric analysis and SEM. Results showed that dye conversion increased with Ni and Fe content up to 7 wt.% and that the most effective catalyst were prepared by incipient wetness impregnation. The influence of metal loading in the catalyst, and the preparation method as well as the reaction conditions was investigated. A mechanism and reaction pathways for BY 11 during catalytic liquid phase oxidation have also been proposed. PMID:22960061

  12. Ni-Supported Pd Nanoparticles with Ca Promoter: A New Catalyst for Low-Temperature Ammonia Cracking

    PubMed Central

    Polanski, Jaroslaw; Bartczak, Piotr; Ambrozkiewicz, Weronika; Sitko, Rafal; Siudyga, Tomasz; Mianowski, Andrzej; Szade, Jacek; Balin, Katarzyna; Lelątko, Józef

    2015-01-01

    In this paper we report a new nanometallic, self-activating catalyst, namely, Ni-supported Pd nanoparticles (PdNPs/Ni) for low temperature ammonia cracking, which was prepared using a novel approach involving the transfer of nanoparticles from the intermediate carrier, i.e. nano-spherical SiO2, to the target carrier technical grade Ni (t-Ni) or high purity Ni (p-Ni) grains. The method that was developed allows a uniform nanoparticle size distribution (4,4±0.8 nm) to be obtained. Unexpectedly, the t-Ni-supported Pd NPs, which seemed to have a surface Ca impurity, appeared to be more active than the Ca-free (p-Ni) system. A comparison of the novel PdNPs/Ni catalyst with these reported in the literature clearly indicates the much better hydrogen productivity of the new system, which seems to be a highly efficient, flexible and durable catalyst for gas-phase heterogeneous ammonia cracking in which the TOF reaches a value of 2615 mmolH2/gPd min (10,570 molNH3/molPd(NP) h) at 600°C under a flow of 12 dm3/h (t-Ni). PMID:26308929

  13. Healthy cities as catalysts for caring and supportive environments.

    PubMed

    Green, Geoff; Jackisch, Josephine; Zamaro, Gianna

    2015-06-01

    'Caring and Supportive Environments' are fundamental to a social model of health and were a core theme of Phase V (2009-13) of the WHO European Healthy Cities Network. Deploying the methodology of realist evaluation, this article synthesizes qualitative evidence from 112 highly structured case studies from 68 Network cities and 71 responses to a General Evaluation Questionnaire, which asked cities to analyze city attributes and trends. A schematic model was developed to describe the interaction between action targeted toward children, migrants, older people and action on social and health services, health literacy and active citizenship-the six subtopics clustered within the theme Caring and Supportive Environments. Four hypotheses were tested: (i) there are prerequisites and processes of local governance that increase city capacity for creating supportive environments; (ii) investing in health and social services, active citizenship and health literacy enhance the social inclusion of vulnerable population groups; (iii) there are synergies between social investment and healthy urban planning; and (iv) these investments promote greater equity in health. The evaluation revealed many innovative practices. Providers of health and social services have developed partnerships with agencies influencing wider determinants of health. Health literacy campaigns address the wider context of people's lives. In a period of economic austerity, cities have utilized the social assets of their citizens. Realist evaluation can help illuminate the pathways from case study interventions to health outcomes, and the prerequisites and processes required to initiate and sustain such investments.

  14. Continuous flow room temperature reductive aqueous homo-coupling of aryl halides using supported Pd catalysts

    PubMed Central

    Feiz, Afsaneh; Bazgir, Ayoob; Balu, Alina M.; Luque, Rafael

    2016-01-01

    A convenient and environmentally friendly protocol for the preparation of biaryls at room temperature under continuous flow conditions is reported. A simple reductive homo-coupling Ullmann-type reaction was performed in an H-Cube mini using commercially available supported Pd catalysts under mild reaction conditions, with quantitative conversion to target products. Commercial Pd catalysts were found to be highly stable under the investigated reaction conditions, with a minimum Pd leaching into solution after several reaction runs (ca. 20 h on stream). PMID:27600989

  15. Continuous flow room temperature reductive aqueous homo-coupling of aryl halides using supported Pd catalysts.

    PubMed

    Feiz, Afsaneh; Bazgir, Ayoob; Balu, Alina M; Luque, Rafael

    2016-01-01

    A convenient and environmentally friendly protocol for the preparation of biaryls at room temperature under continuous flow conditions is reported. A simple reductive homo-coupling Ullmann-type reaction was performed in an H-Cube mini using commercially available supported Pd catalysts under mild reaction conditions, with quantitative conversion to target products. Commercial Pd catalysts were found to be highly stable under the investigated reaction conditions, with a minimum Pd leaching into solution after several reaction runs (ca. 20 h on stream). PMID:27600989

  16. An Efficient and Recyclable Nanoparticle-Supported Cobalt Catalyst for Quinoxaline Synthesis.

    PubMed

    Rajabi, Fatemeh; Alves, Diego; Luque, Rafael

    2015-11-19

    The syntheses of quinoxalines derived from 1,2-diamine and 1,2-dicarbonyl compounds under mild reaction conditions was carried out using a nanoparticle-supported cobalt catalyst. The supported nanocatalyst exhibited excellent activity and stability and it could be reused for at least ten times without any loss of activity. No cobalt contamination could be detected in the products by AAS measurements, pointing to the excellent activity and stability of the Co nanomaterial.

  17. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte.

    PubMed

    Zhuang, Zhongbin; Giles, Stephen A; Zheng, Jie; Jenness, Glen R; Caratzoulas, Stavros; Vlachos, Dionisios G; Yan, Yushan

    2016-01-14

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizes the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells.

  18. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte.

    PubMed

    Zhuang, Zhongbin; Giles, Stephen A; Zheng, Jie; Jenness, Glen R; Caratzoulas, Stavros; Vlachos, Dionisios G; Yan, Yushan

    2016-01-01

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizes the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells. PMID:26762466

  19. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    PubMed Central

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; Jenness, Glen R.; Caratzoulas, Stavros; Vlachos, Dionisios G.; Yan, Yushan

    2016-01-01

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizes the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells. PMID:26762466

  20. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    DOE PAGES

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; Jenness, Glen R.; Caratzoulas, Stavros; Vlachos, Dionisios G.; Yan, Yushan

    2016-01-14

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizesmore » the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Here, owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells.« less

  1. Gold-supported cerium-doped NiOx catalysts for water oxidation

    NASA Astrophysics Data System (ADS)

    Ng, Jia Wei Desmond; García-Melchor, Max; Bajdich, Michal; Chakthranont, Pongkarn; Kirk, Charlotte; Vojvodic, Aleksandra; Jaramillo, Thomas F.

    2016-05-01

    The development of high-performance catalysts for the oxygen-evolution reaction (OER) is paramount for cost-effective conversion of renewable electricity to fuels and chemicals. Here we report the significant enhancement of the OER activity of electrodeposited NiOx films resulting from the combined effects of using cerium as a dopant and gold as a metal support. This NiCeOx-Au catalyst delivers high OER activity in alkaline media, and is among the most active OER electrocatalysts yet reported. On the basis of experimental observations and theoretical modelling, we ascribe the activity to a combination of electronic, geometric and support effects, where highly active under-coordinated sites at the oxide support interface are modified by the local chemical binding environment and by doping the host Ni oxide with Ce. The NiCeOx-Au catalyst is further demonstrated in a device context by pairing it with a nickel-molybdenum hydrogen evolution catalyst in a water electrolyser, which delivers 50 mA consistently at 1.5 V over 24 h of continuous operation.

  2. Gold-supported cerium-doped NiOx catalysts for water oxidation

    NASA Astrophysics Data System (ADS)

    Ng, Jia Wei Desmond; García-Melchor, Max; Bajdich, Michal; Chakthranont, Pongkarn; Kirk, Charlotte; Vojvodic, Aleksandra; Jaramillo, Thomas F.

    2016-05-01

    The development of high-performance catalysts for the oxygen-evolution reaction (OER) is paramount for cost-effective conversion of renewable electricity to fuels and chemicals. Here we report the significant enhancement of the OER activity of electrodeposited NiOx films resulting from the combined effects of using cerium as a dopant and gold as a metal support. This NiCeOx–Au catalyst delivers high OER activity in alkaline media, and is among the most active OER electrocatalysts yet reported. On the basis of experimental observations and theoretical modelling, we ascribe the activity to a combination of electronic, geometric and support effects, where highly active under-coordinated sites at the oxide support interface are modified by the local chemical binding environment and by doping the host Ni oxide with Ce. The NiCeOx–Au catalyst is further demonstrated in a device context by pairing it with a nickel–molybdenum hydrogen evolution catalyst in a water electrolyser, which delivers 50 mA consistently at 1.5 V over 24 h of continuous operation.

  3. Mesoporous Carbon Supported Rh Nanoparticle Catalysts for the Production of C2+ Alcohol from Syngas.

    PubMed

    Kim, Min-Ji; Kim, Tae-Wan; Chae, Ho-Jeong; Kim, Chul-Ung; Jeong, Soon-Yong; Kim, Jeong-Rang; Ha, Kyoung-Su

    2016-02-01

    Uniform rhodium nanoparticles (NP) with three different particle sizes (1.9, 2.4, and 3.6 nm) were prepared via a polyol method with rhodium (III) acetylacetonate, poly(vinylpyrrolidone) with different concentrations of sodium citrate. The prepared Rh nanoparticles were impregnated into the ordered mesoporous carbon supports with two different pore structures (2D hexagonal and 3D cubic). The prepared Rh nanoparticle-supported ordered mesoporous carbons (OMCs) were introduced as catalysts for the CO hydrogenation of syngas to produce C2 higher alcohols. The characteristics of the Rh nanoparticle-supported ordered mesoporous carbons catalysts were analyzed through transmission electron microscopy, powder X-ray diffraction, and N2 physisorption analysis. The catalytic tests of the catalyst were performed using a fixed-bed reactor. The results revealed that the catalysts exhibited the different catalytic activity and selectivity of higher alcohols, which could be attributed to the different OMC structures, the nanoparticle size of Rh, and aggregation of Rh nanoparticles during the reaction. PMID:27433718

  4. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; Jenness, Glen R.; Caratzoulas, Stavros; Vlachos, Dionisios G.; Yan, Yushan

    2016-01-01

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizes the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells.

  5. Magnetic properties of nickel and cobalt catalysts supported on nanoporous oxides.

    PubMed

    Gómez-Polo, C; Gil, A; Korili, S A; Pérez-Landazabal, J I; Recarte, V; Trujillano, R; Vicente, M A

    2008-06-01

    The aim of this work is to use magnetic measurements as a research tool in the study of possible metal-support interactions in nickel and cobalt nanoporous catalysts. Several physicochemical techniques, namely nitrogen adsorption, X-ray diffraction, temperature-programmed reduction and chemical analysis, were used to analyze the role of the preparation method and the nature of the support on the existence of such metal-support interactions and to relate them with the magnetic response of these nanoporous systems. The catalysts were prepared by incipient wetness impregnation and precipitation-deposition with two commercial oxides, gamma-Al2O3 and SiO2, as supports. The magnetic behavior of the catalysts is drastically affected by the existence of interactions between the metal and the support during the preparation procedure. The samples with weak metal-support interactions have characteristic magnetic behavior of antiferromagnetic metal oxide nanoparticles, while the ones having strong interactions display spin-glass like behavior.

  6. Magnetic properties of nickel and cobalt catalysts supported on nanoporous oxides.

    PubMed

    Gómez-Polo, C; Gil, A; Korili, S A; Pérez-Landazabal, J I; Recarte, V; Trujillano, R; Vicente, M A

    2008-06-01

    The aim of this work is to use magnetic measurements as a research tool in the study of possible metal-support interactions in nickel and cobalt nanoporous catalysts. Several physicochemical techniques, namely nitrogen adsorption, X-ray diffraction, temperature-programmed reduction and chemical analysis, were used to analyze the role of the preparation method and the nature of the support on the existence of such metal-support interactions and to relate them with the magnetic response of these nanoporous systems. The catalysts were prepared by incipient wetness impregnation and precipitation-deposition with two commercial oxides, gamma-Al2O3 and SiO2, as supports. The magnetic behavior of the catalysts is drastically affected by the existence of interactions between the metal and the support during the preparation procedure. The samples with weak metal-support interactions have characteristic magnetic behavior of antiferromagnetic metal oxide nanoparticles, while the ones having strong interactions display spin-glass like behavior. PMID:18681026

  7. Macrocyclic cyclooctene-supported AlCl-salen catalysts for conjugated addition reactions: effect of linker and support structure on catalysis.

    PubMed

    Madhavan, Nandita; Takatani, Tait; Sherrill, C David; Weck, Marcus

    2009-01-01

    AlCl-salen (salen=N,N'-bis(salicylidene)ethylenediamine dianion) catalysts supported onto macrocyclic oligomeric cyclooctene through linkers of varying length and flexibility have been developed to demonstrate the importance of support architecture on catalyst activity. The role played by the support and the linkers in dictating catalyst activity was found to vary for reactions with contrasting mechanisms, such as the bimetallic cyanide and the monometallic indole addition reactions. While the flexible support significantly enhanced the cyanide addition reaction, most likely by improving salen-salen interactions in the transition state, it lowered the reaction rate for the monometallic indole reaction. For both reactions, significant increase in catalytic activity was observed for catalysts with the longest linkers. The effect of the flexible macrocyclic support on catalysis was further exemplified by the enhanced activity of the supported catalyst in comparison with its unsupported analogue for the conjugate addition of tetrazoles, which is known to be catalyzed by dimeric mu-oxo-salen catalysts. Our studies with the cyclooctene supported AlCl-salen catalysts provides significant insights for rationally designing highly efficient AlCl-salen catalysts for a diverse set of reactions.

  8. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    PubMed Central

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-01-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide. PMID:24790972

  9. Single-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions.

    PubMed

    Yang, Sungeun; Kim, Jiwhan; Tak, Young Joo; Soon, Aloysius; Lee, Hyunjoo

    2016-02-01

    As a catalyst, single-atom platinum may provide an ideal structure for platinum minimization. Herein, a single-atom catalyst of platinum supported on titanium nitride nanoparticles were successfully prepared with the aid of chlorine ligands. Unlike platinum nanoparticles, the single-atom active sites predominantly produced hydrogen peroxide in the electrochemical oxygen reduction with the highest mass activity reported so far. The electrocatalytic oxidation of small organic molecules, such as formic acid and methanol, also exhibited unique selectivity on the single-atom platinum catalyst. A lack of platinum ensemble sites changed the reaction pathway for the oxygen-reduction reaction toward a two-electron pathway and formic acid oxidation toward direct dehydrogenation, and also induced no activity for the methanol oxidation. This work demonstrates that single-atom platinum can be an efficient electrocatalyst with high mass activity and unique selectivity. PMID:26710326

  10. Single-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions.

    PubMed

    Yang, Sungeun; Kim, Jiwhan; Tak, Young Joo; Soon, Aloysius; Lee, Hyunjoo

    2016-02-01

    As a catalyst, single-atom platinum may provide an ideal structure for platinum minimization. Herein, a single-atom catalyst of platinum supported on titanium nitride nanoparticles were successfully prepared with the aid of chlorine ligands. Unlike platinum nanoparticles, the single-atom active sites predominantly produced hydrogen peroxide in the electrochemical oxygen reduction with the highest mass activity reported so far. The electrocatalytic oxidation of small organic molecules, such as formic acid and methanol, also exhibited unique selectivity on the single-atom platinum catalyst. A lack of platinum ensemble sites changed the reaction pathway for the oxygen-reduction reaction toward a two-electron pathway and formic acid oxidation toward direct dehydrogenation, and also induced no activity for the methanol oxidation. This work demonstrates that single-atom platinum can be an efficient electrocatalyst with high mass activity and unique selectivity.

  11. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    NASA Astrophysics Data System (ADS)

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-02-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  12. Kinetics studies of d-glucose hydrogenation over activated charcoal supported platinum catalyst

    NASA Astrophysics Data System (ADS)

    Ahmed, Muthanna J.

    2012-02-01

    The kinetics of the catalytic hydrogenation of d-glucose to produce d-sorbitol was studied in a three-phase laboratory scale reactor. The hydrogenation reactions were performed on activated charcoal supported platinum catalyst in the temperature range 25-65°C and in a constant pressure of 1 atm. The kinetic data were modeled by zero, first and second-order reaction equations. In the operating regimes studied, the results show that the hydrogenation reaction was of a first order with respect to d-glucose concentration. Also the activation energy of the reaction was determined, and found to be 12.33 kJ mole-1. A set of experiment was carried out to test the deactivation of the catalyst, and the results show that the deactivation is slow with the ability of using the catalyst for several times with a small decrease in product yield.

  13. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal.

    PubMed

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-01-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  14. The influence of alkali metal ions in the chemisorption of CO and CO{sub 2} on supported palladium catalysts: A Fourier transform infrared spectroscopic study

    SciTech Connect

    Liotta, L.F.; Deganello, G.; Martin, G.A.

    1996-12-01

    Two series of palladium-based catalysts were compared on the basis of the adsorption of CO and CO{sub 2}, monitored by Fourier transform infrared spectroscopy. The first series is represented by a silica-supported palladium catalyst and by some catalysts derived from it by addition of different amounts of sodium ion 0 {le} R {le} 25.6, where R is the atomic ratio Na/Pd. The second series consists of palladium catalysts supported on {open_quotes}model{close_quotes} and natural pumices. The model pumices, obtained by sol-gel techniques, are silico-aluminates containing variable amounts of sodium so that the corresponding Pd catalysts have an R value in the range 0{le}R{le}6.1. In the Pd/natural pumice catalysts, changes of the atomic ratio R{prime} = (Na + K)/Pd are achieved with different palladium loadings. Despite the analogous behaviour of the catalysts of both series when R=0, the presence of increasing alkali metal ions induces different behaviour towards the adsorption of CO. On increasing R in the Na-Pd/SiO{sub 2} series there is a progressive weakening of the C-O bond to produce eventually carbonates, whereas only a decrease of the amount of adsorbed CO occurs in the Pd/model pumice series (R{le}6.1). Furthermore, only physisorbed CO bands are observed in Pd/natural pumice catalysts (R{prime}{le}17). Different behaviour is also noticed towards the adsorption of CO{sub 2}: the equilibrium CO{sub 2}(gas){r_equilibrium}CO{sub ads}+O{sub ads} occurs in the Pd/SiO{sub 2} series, in contrast to the Pd/pumice series where only carbonate species on the surface of the support are detected. 83 refs., 12 figs., 4 tabs.

  15. Low Temperature Activation of Supported Metathesis Catalysts by Organosilicon Reducing Agents.

    PubMed

    Mougel, Victor; Chan, Ka-Wing; Siddiqi, Georges; Kawakita, Kento; Nagae, Haruki; Tsurugi, Hayato; Mashima, Kazushi; Safonova, Olga; Copéret, Christophe

    2016-08-24

    Alkene metathesis is a widely and increasingly used reaction in academia and industry because of its efficiency in terms of atom economy and its wide applicability. This reaction is notably responsible for the production of several million tons of propene annually. Such industrial processes rely on inexpensive silica-supported tungsten oxide catalysts, which operate at high temperatures (>350 °C), in contrast with the mild room temperature reaction conditions typically used with the corresponding molecular alkene metathesis homogeneous catalysts. This large difference in the temperature requirements is generally thought to arise from the difficulty in generating active sites (carbenes or metallacyclobutanes) in the classical metal oxide catalysts and prevents broader applicability, notably with functionalized substrates. We report here a low temperature activation process of well-defined metal oxo surface species using organosilicon reductants, which generate a large amount of active species at only 70 °C (0.6 active sites/W). This high activity at low temperature broadens the scope of these catalysts to functionalized substrates. This activation process can also be applied to classical industrial catalysts. We provide evidence for the formation of a metallacyclopentane intermediate and propose how the active species are formed.

  16. Low Temperature Activation of Supported Metathesis Catalysts by Organosilicon Reducing Agents

    PubMed Central

    2016-01-01

    Alkene metathesis is a widely and increasingly used reaction in academia and industry because of its efficiency in terms of atom economy and its wide applicability. This reaction is notably responsible for the production of several million tons of propene annually. Such industrial processes rely on inexpensive silica-supported tungsten oxide catalysts, which operate at high temperatures (>350 °C), in contrast with the mild room temperature reaction conditions typically used with the corresponding molecular alkene metathesis homogeneous catalysts. This large difference in the temperature requirements is generally thought to arise from the difficulty in generating active sites (carbenes or metallacyclobutanes) in the classical metal oxide catalysts and prevents broader applicability, notably with functionalized substrates. We report here a low temperature activation process of well-defined metal oxo surface species using organosilicon reductants, which generate a large amount of active species at only 70 °C (0.6 active sites/W). This high activity at low temperature broadens the scope of these catalysts to functionalized substrates. This activation process can also be applied to classical industrial catalysts. We provide evidence for the formation of a metallacyclopentane intermediate and propose how the active species are formed. PMID:27610418

  17. Autothermal reforming of propane over Ni catalysts supported on a variety of perovskites.

    PubMed

    Lim, SeungSoo; Moon, DongJu; Kim, JongHo; Kim, YoungChul; Park, NamCook; Shin, JaeSoon

    2007-11-01

    Autothermal reforming of propane for hydrogen over Ni catalysts supported on a variety of perovskites was performed in an atmospheric flow reactor. Perovskite is known for its higher thermal stability and oxygen storage capacity, but catalytic activity of itself is low. A sites of the ABO3 structured perovskites were occupied by La while B sites by one of Fe, Co, Ni, and Al by citrate method. The composition of the reactant mixture was H2O/C/O2 = 8.96/1.0/1.1. The changes in the states of the catalysts after reaction were analyzed by XRD, TPD, and TGA. Ni/LaAlO3 catalyst maintained the perovskite structure after reaction. It showed higher hydrogen yield and thermal stability compared to those of the catalysts with Fe, Co, or Ni in B sites. Catalysts prepared by deposition-precipitation (DP) method showed higher activity than those prepared by impregnation method, presumably due to the smaller sizes of the NiO crystal particles.

  18. Efficient method for the conversion of agricultural waste into sugar alcohols over supported bimetallic catalysts.

    PubMed

    Tathod, Anup P; Dhepe, Paresh L

    2015-02-01

    Promoter effect of Sn in the PtSn/γ-Al2O3 (AL) and PtSn/C bimetallic catalysts is studied for the conversion of variety of substrates such as, C5 sugars (xylose, arabinose), C6 sugars (glucose, fructose, galactose), hemicelluloses (xylan, arabinogalactan), inulin and agricultural wastes (bagasse, rice husk, wheat straw) into sugar alcohols (sorbitol, mannitol, xylitol, arabitol, galactitol). In all the reactions, PtSn/AL showed enhanced yields of sugar alcohols by 1.5-3 times than Pt/AL. Compared to C, AL supported bimetallic catalysts showed prominent enhancement in the yields of sugar alcohols. Bimetallic catalysts characterized by X-ray diffraction study revealed the stability of catalyst and absence of alloy formation thereby indicating that Pt and Sn are present as individual particles in PtSn/AL. The TEM analysis also confirmed stability of the catalysts and XPS study disclosed formation of electron deficient Sn species which helps in polarizing carbonyl bond to achieve enhanced hydrogenation activity. PMID:25453932

  19. Carbon-Supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol

    SciTech Connect

    Sun, Junming; Karim, Ayman M.; Zhang, He; Kovarik, Libor; Li, Xiaohong S.; Hensley, Alyssa; McEwen, Jean-Sabin; Wang, Yong

    2013-10-01

    Abstract Carbon supported metal catalysts (Cu/C, Fe/C, Pd/C, Pt/C, PdFe/C and Ru/C) have been prepared, characterized and tested for vapor-phase hydrodeoxygenation (HDO) of guaiacol (GUA) at atmospheric pressure. Phenol was the major intermediate on all catalysts. Over the noble metal catalysts saturation of the aromatic ring was the major pathway observed at low temperature (250 °C), forming predominantly cyclohexanone and cyclohexanol. Substantial ring opening reaction was observed on Pt/C and Ru/C at higher reaction temperatures (e.g., 350 °C). Base metal catalysts, especially Fe/C, were found to exhibit high HDO activity without ring-saturation or ring-opening with the main products being benzene, phenol along with small amounts of cresol, toluene and trimethylbenzene (TMB). A substantial enhancement in HDO activity was observed on the PdFe/C catalysts. Compared with Fe/C, the yield to oxygen-free aromatic products (i.e., benzene/toluene/TMB) on PdFe/C increased by a factor of four at 350 °C, and by approximately a factor of two (83.2% versus 43.3%) at 450 °C. The enhanced activity of PdFe/C is attributed to the formation of PdFe alloy as evidenced by STEM, EDS and TPR.

  20. Low Temperature Activation of Supported Metathesis Catalysts by Organosilicon Reducing Agents.

    PubMed

    Mougel, Victor; Chan, Ka-Wing; Siddiqi, Georges; Kawakita, Kento; Nagae, Haruki; Tsurugi, Hayato; Mashima, Kazushi; Safonova, Olga; Copéret, Christophe

    2016-08-24

    Alkene metathesis is a widely and increasingly used reaction in academia and industry because of its efficiency in terms of atom economy and its wide applicability. This reaction is notably responsible for the production of several million tons of propene annually. Such industrial processes rely on inexpensive silica-supported tungsten oxide catalysts, which operate at high temperatures (>350 °C), in contrast with the mild room temperature reaction conditions typically used with the corresponding molecular alkene metathesis homogeneous catalysts. This large difference in the temperature requirements is generally thought to arise from the difficulty in generating active sites (carbenes or metallacyclobutanes) in the classical metal oxide catalysts and prevents broader applicability, notably with functionalized substrates. We report here a low temperature activation process of well-defined metal oxo surface species using organosilicon reductants, which generate a large amount of active species at only 70 °C (0.6 active sites/W). This high activity at low temperature broadens the scope of these catalysts to functionalized substrates. This activation process can also be applied to classical industrial catalysts. We provide evidence for the formation of a metallacyclopentane intermediate and propose how the active species are formed. PMID:27610418

  1. Low Temperature Activation of Supported Metathesis Catalysts by Organosilicon Reducing Agents

    PubMed Central

    2016-01-01

    Alkene metathesis is a widely and increasingly used reaction in academia and industry because of its efficiency in terms of atom economy and its wide applicability. This reaction is notably responsible for the production of several million tons of propene annually. Such industrial processes rely on inexpensive silica-supported tungsten oxide catalysts, which operate at high temperatures (>350 °C), in contrast with the mild room temperature reaction conditions typically used with the corresponding molecular alkene metathesis homogeneous catalysts. This large difference in the temperature requirements is generally thought to arise from the difficulty in generating active sites (carbenes or metallacyclobutanes) in the classical metal oxide catalysts and prevents broader applicability, notably with functionalized substrates. We report here a low temperature activation process of well-defined metal oxo surface species using organosilicon reductants, which generate a large amount of active species at only 70 °C (0.6 active sites/W). This high activity at low temperature broadens the scope of these catalysts to functionalized substrates. This activation process can also be applied to classical industrial catalysts. We provide evidence for the formation of a metallacyclopentane intermediate and propose how the active species are formed.

  2. Ethyl Acetate Abatement on Copper Catalysts Supported on Ceria Doped with Rare Earth Oxides.

    PubMed

    Carabineiro, Sónia Alexandra Correia; Konsolakis, Michalis; Marnellos, George Emmanouil-Nontas; Asad, Muhammad Faizan; Soares, Olívia Salomé Gonçalves Pinto; Tavares, Pedro Bandeira; Pereira, Manuel Fernando Ribeiro; Órfão, José Joaquim de Melo; Figueiredo, José Luís

    2016-01-01

    Different lanthanide (Ln)-doped cerium oxides (Ce0.5Ln0.5O1.75, where Ln: Gd, La, Pr, Nd, Sm) were loaded with Cu (20 wt. %) and used as catalysts for the oxidation of ethyl acetate (EtOAc), a common volatile organic compound (VOC). For comparison, both Cu-free (Ce-Ln) and supported Cu (Cu/Ce-Ln) samples were characterized by N₂ adsorption at -196 °C, scanning/transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and temperature programmed reduction in H₂. The following activity sequence, in terms of EtOAc conversion, was found for bare supports: CeO₂ ≈ Ce0.5Pr0.5O1.75 > Ce0.5Sm0.5O1.75 > Ce0.5Gd0.5O1.75 > Ce0.5Nd0.5O1.75 > Ce0.5La0.5O1.75. Cu addition improved the catalytic performance, without affecting the activity order. The best catalytic performance was obtained for Cu/CeO₂ and Cu/Ce0.5Pr0.5O1.75 samples, both achieving complete EtOAc conversion below ca. 290 °C. A strong correlation was revealed between the catalytic performance and the redox properties of the samples, in terms of reducibility and lattice oxygen availability. Νo particular correlation between the VOC oxidation performance and textural characteristics was found. The obtained results can be explained in terms of a Mars-van Krevelen type redox mechanism involving the participation of weakly bound (easily reduced) lattice oxygen and its consequent replenishment by gas phase oxygen.

  3. Ethyl Acetate Abatement on Copper Catalysts Supported on Ceria Doped with Rare Earth Oxides.

    PubMed

    Carabineiro, Sónia Alexandra Correia; Konsolakis, Michalis; Marnellos, George Emmanouil-Nontas; Asad, Muhammad Faizan; Soares, Olívia Salomé Gonçalves Pinto; Tavares, Pedro Bandeira; Pereira, Manuel Fernando Ribeiro; Órfão, José Joaquim de Melo; Figueiredo, José Luís

    2016-01-01

    Different lanthanide (Ln)-doped cerium oxides (Ce0.5Ln0.5O1.75, where Ln: Gd, La, Pr, Nd, Sm) were loaded with Cu (20 wt. %) and used as catalysts for the oxidation of ethyl acetate (EtOAc), a common volatile organic compound (VOC). For comparison, both Cu-free (Ce-Ln) and supported Cu (Cu/Ce-Ln) samples were characterized by N₂ adsorption at -196 °C, scanning/transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and temperature programmed reduction in H₂. The following activity sequence, in terms of EtOAc conversion, was found for bare supports: CeO₂ ≈ Ce0.5Pr0.5O1.75 > Ce0.5Sm0.5O1.75 > Ce0.5Gd0.5O1.75 > Ce0.5Nd0.5O1.75 > Ce0.5La0.5O1.75. Cu addition improved the catalytic performance, without affecting the activity order. The best catalytic performance was obtained for Cu/CeO₂ and Cu/Ce0.5Pr0.5O1.75 samples, both achieving complete EtOAc conversion below ca. 290 °C. A strong correlation was revealed between the catalytic performance and the redox properties of the samples, in terms of reducibility and lattice oxygen availability. Νo particular correlation between the VOC oxidation performance and textural characteristics was found. The obtained results can be explained in terms of a Mars-van Krevelen type redox mechanism involving the participation of weakly bound (easily reduced) lattice oxygen and its consequent replenishment by gas phase oxygen. PMID:27196886

  4. NiO-PTA supported on ZIF-8 as a highly effective catalyst for hydrocracking of Jatropha oil.

    PubMed

    Liu, Jing; He, Jing; Wang, Luying; Li, Rong; Chen, Pan; Rao, Xin; Deng, Lihong; Rong, Long; Lei, Jiandu

    2016-01-01

    Nickel oxide (NiO) and phosphotungstic acid (PTA) supported on a ZIF-8 (NiO-PTA/ZIF-8) catalyst was first synthesized and it showed high activity and good selectivity for the hydrocracking of Jatropha oil. The catalyst was characterized by SEM, SEM-EDS, TEM, N2 adsorption, FT-IR, XRD and XPS. Compared with the NiO-PTA/Al2O3 catalyst, the selectivity of C15-C18 hydrocarbon increased over 36%, and catalytic efficiency increased 10 times over the NiO-PTA/ZIF-8 catalyst. The prepared NiO-PTA/ZIF-8 catalyst was stable for a reaction time of 104 h and the kinetic behavior was also analyzed. This catalyst was found to bypass the presulfurization process, showing promise as an alternative to sulfided catalysts for green diesel production. PMID:27020579

  5. NiO-PTA supported on ZIF-8 as a highly effective catalyst for hydrocracking of Jatropha oil

    PubMed Central

    Liu, Jing; He, Jing; Wang, Luying; Li, Rong; Chen, Pan; Rao, Xin; Deng, Lihong; Rong, Long; Lei, Jiandu

    2016-01-01

    Nickel oxide (NiO) and phosphotungstic acid (PTA) supported on a ZIF-8 (NiO-PTA/ZIF-8) catalyst was first synthesized and it showed high activity and good selectivity for the hydrocracking of Jatropha oil. The catalyst was characterized by SEM, SEM-EDS, TEM, N2 adsorption, FT-IR, XRD and XPS. Compared with the NiO-PTA/Al2O3 catalyst, the selectivity of C15-C18 hydrocarbon increased over 36%, and catalytic efficiency increased 10 times over the NiO-PTA/ZIF-8 catalyst. The prepared NiO-PTA/ZIF-8 catalyst was stable for a reaction time of 104 h and the kinetic behavior was also analyzed. This catalyst was found to bypass the presulfurization process, showing promise as an alternative to sulfided catalysts for green diesel production. PMID:27020579

  6. NiO-PTA supported on ZIF-8 as a highly effective catalyst for hydrocracking of Jatropha oil

    NASA Astrophysics Data System (ADS)

    Liu, Jing; He, Jing; Wang, Luying; Li, Rong; Chen, Pan; Rao, Xin; Deng, Lihong; Rong, Long; Lei, Jiandu

    2016-03-01

    Nickel oxide (NiO) and phosphotungstic acid (PTA) supported on a ZIF-8 (NiO-PTA/ZIF-8) catalyst was first synthesized and it showed high activity and good selectivity for the hydrocracking of Jatropha oil. The catalyst was characterized by SEM, SEM-EDS, TEM, N2 adsorption, FT-IR, XRD and XPS. Compared with the NiO-PTA/Al2O3 catalyst, the selectivity of C15-C18 hydrocarbon increased over 36%, and catalytic efficiency increased 10 times over the NiO-PTA/ZIF-8 catalyst. The prepared NiO-PTA/ZIF-8 catalyst was stable for a reaction time of 104 h and the kinetic behavior was also analyzed. This catalyst was found to bypass the presulfurization process, showing promise as an alternative to sulfided catalysts for green diesel production.

  7. NiO-PTA supported on ZIF-8 as a highly effective catalyst for hydrocracking of Jatropha oil.

    PubMed

    Liu, Jing; He, Jing; Wang, Luying; Li, Rong; Chen, Pan; Rao, Xin; Deng, Lihong; Rong, Long; Lei, Jiandu

    2016-03-29

    Nickel oxide (NiO) and phosphotungstic acid (PTA) supported on a ZIF-8 (NiO-PTA/ZIF-8) catalyst was first synthesized and it showed high activity and good selectivity for the hydrocracking of Jatropha oil. The catalyst was characterized by SEM, SEM-EDS, TEM, N2 adsorption, FT-IR, XRD and XPS. Compared with the NiO-PTA/Al2O3 catalyst, the selectivity of C15-C18 hydrocarbon increased over 36%, and catalytic efficiency increased 10 times over the NiO-PTA/ZIF-8 catalyst. The prepared NiO-PTA/ZIF-8 catalyst was stable for a reaction time of 104 h and the kinetic behavior was also analyzed. This catalyst was found to bypass the presulfurization process, showing promise as an alternative to sulfided catalysts for green diesel production.

  8. Silica coated noble metal nanoparticle hydrosols as supported catalyst precursors.

    PubMed

    Kong, Tung Shing Adam; Yu, Kai Man Kerry; Tsang, Shik Chi

    2006-04-01

    Synthesis of well-defined nanoparticles has been intensively pursued not only for their fundamental scientific interest, but also for many technological applications. One important development of the nanomaterial is in the area of chemical catalysis. We have now developed a new aqueous-based method for the synthesis of silica encapsulated noble metal nanoparticles in controlled dimensions. Thus, colloid stable silica encapsulated approximately 5 nm platinum nanoparticle is synthesized by a multi-step method. The thickness of the silica coating could be controlled using a different amount of silica precursor. These particles supported on a high surface area alumina are also demonstrated to display a superior hydrogenation activity and stability against metal sintering after thermal activation.

  9. Catalyst Structure-Performance Relationship Identified by High-Throughput Operando Method: New Insight for Silica-Supported Vanadium Oxide for Methanol Oxidation

    SciTech Connect

    Li, Guosheng; Hu, Dehong; Xia, Guanguang; Zhang, Z Conrad

    2010-02-01

    A prototype high throughput operando reactor, that integrates FT-IR imaging for rapid reaction product analysis and parallel Raman imaging for catalyst characterization, has been designed to accelerate catalyst discovery and, concurrently, fundamental research toward reliable correlations between catalyst active sites and catalyst performance for at-line real catalytic conditions. This reactor, consisting of six parallel reaction channels, is demonstrated for methanol oxidation using silica supported vanadium oxide catalysts at various reaction conditions. The results of semi-quantitative analysis of a large array of operando Raman scattering bands, specifically for C-H bonds in Si-OCH3 and V-OCH3 surface intermediates, obtained simultaneously on multiple catalyst surfaces with a time resolution of 60s for each set at different temperatures, reveal for the first time methanol activation at surface vanadium oxide cluster edge on silica support at lower reaction temperatures, <175°C. This activation phenomenon is not observed at a higher reaction temperature, 225°C.

  10. Nanoscaled palladium catalysts on activated carbon support "Sibunit" for fine organic synthesis

    NASA Astrophysics Data System (ADS)

    Simakova, I.; Koskin, A.; Deliy, I.; Simakov, A.

    2005-08-01

    The application of nanosized palladium catalysts has gained growing importance over the last few years. Palladiumbased catalytic methods for fine organic synthesis permits the replacement of traditional labor-consuming techniques in multi-step organic syntheses and provides an improvement from the standpoint of cost and environmental impact. The use of activated carbon "Sibunit" as a substrate for catalysts has been fostered by the substrate's high surface area, chemical inertness both in acidic and basic media, and at the same time by the absence of very strong acidic centers on its surface which could promote undesirable side reactions during the catalytic run. A conversion of alpha-pinene derivatives to commercial biologically active compounds and fragrances as well as sun screens with ultra violet filtering properties, involves a catalytic hydrogenation as a key intermediate step. The aim of the present work is to clarify the factors favoring the dispersion of Pd metal on carbon. The effect of reduction temperature and pretreatment of the carbon surface on metal size during preparation of Pd on "Sibunit" catalysts for selective verbenol conversion was studied. The electron microscopy method (TEM) was used to show the influence on Pd metal dispersion of carbon surface oxidation by the oxidant H2O2, HNO3. The catalytic activity of Pd/C catalyst samples in verbenol hydrogenation reaction was determined. Kinetic peculiarities of verbenol hydrogenation over the most active catalyst sample were obtained.

  11. Selective hydrogenation of o-chloronitrobenzene over anatase-ferric oxides supported Ir nanocomposite catalyst.

    PubMed

    Lin, Weiwei; Zhao, Jia; Cheng, Haiyang; Li, Xiaoru; Li, Xiaonian; Zhao, Fengyu

    2014-10-15

    The catalytic performance of Ir/TiO2-FeOx, an Ir/TiO2 catalyst modified with FeOx, was investigated for the hydrogenation of o-chloronitrobenzene, FeOx was found to promote both the activity and selectivity significantly. The initial reaction rate of Ir/TiO2-FeOx(10) nanocomposite catalyst was four times as high as that of Ir/TiO2 catalyst. Especially, the accumulation of intermediates was prohibited and finally 100% selectivity to o-chloroaniline was obtained at 100% conversion. Herein, we mainly discussed the promoting effect of FeOx with using the results of powder X-ray diffraction, transmission electron microscopy, element analysis mapping, hydrogen-temperature programmed reduction, hydrogen-temperature programmed desorption, diffuse reflectance infrared fourier transform spectra and X-ray photoelectron spectroscopy analysis. The FeOx was highly dispersed and a portion of FeO species existed in the Ir/TiO2-FeOx nanocomposite catalyst. Moreover, the FeOx was certified to have a strong interaction with Ir species, which should contribute to the excellent performance of the Ir/TiO2-FeOx nanocomposite catalyst.

  12. Hydrogenation of aniline on a low-percentage, supported rhodium catalyst

    SciTech Connect

    Ualikhanova, A.; Temirbulatova, A.E.

    1992-01-10

    The products of hydrogenation of aniline and their derivatives exhibit biological activity and are used in the pharmaceutical industry for preparation of analgesic, antipyretic, and sulfanilamide drugs. Up to 30% of the total consumption of aniline is for synthesis of drugs. Hydrogenation of aniline on platinum metals supported on carbon was studied by Rylander et al. The authors investigated the catalytic properties of rhodium supported on oxides in saturation of aniline with hydrogen in water. In most cases, the amount of noble metal in the supported catalyst was 5%. Decreasing the concentration of active phase in the catalyst is economically advantageous. The features of hydrogenation of aniline in the presence of 1% Rh/MgO in solutions with wide variation of the technological parameters of the process were investigated in the present study. 19 refs., 3 figs., 2 tabs.

  13. Characterization of supported TiO{sub 2}-based catalysts green-prepared and employed for photodegradation of malodorous DMDS

    SciTech Connect

    Chuang, Li-Chin; Luo, Chin-Hsiang

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► We prepare rutile-TiO{sub 2} based catalysts using a simple and eco-efficient method. ► TiO{sub 2} based catalysts coated on supporting materials have large BET surface areas. ► Supported TiO{sub 2} based catalysts efficiently degrade malodorous DMDS. -- Abstract: Titanium dioxide (TiO{sub 2})-based catalysts coated onto two supporting materials (Pyrex glass beads and porous polypropylene fibers) in laboratory have been prepared and characterized. A modified preparation process at low temperature involving the addition of distilled water, aqueous ammonia, and ferrous sulfate, respectively, was used to enhance the spontaneous precipitation of three TiO{sub 2}-based catalysts. The Brunauer–Emmett–Teller surface area of three catalysts was ranged from 160.1 to 202.7 m{sup 2}/g. The surface morphology of three catalysts was identified by a scanning electron microscopy equipped with an X-ray energy dispersive spectrometer. The photocatalytic degradation of dimethyldisulfide was investigated using the supported TiO{sub 2}-based catalysts. The original dimethyldisulfide almost was degraded within 2 h. A similar photocatalytic activity on degrading dimethyldisulfide was demonstrated in comparison with commercial catalysts. Simplicity, low cost, low energy consumption, and solvent-free are the advantages of this proposed method which can be used to photodecompose environmental organic pollutants effectively without heat treatment.

  14. Organic solvent soluble oxide supported hydrogenation catalyst precursors

    DOEpatents

    Edlund, David J.; Finke, Richard G.; Saxton, Robert J.

    1992-01-01

    The present invention discloses two polyoxoanion supported metal complexes found to be useful in olefin hydrogenation. The complexes are novel compositions of matter which are soluble in organic solvents. In particular, the compositions of matter comprise A.sub.x [L.sub.n Ir.sup.(I) .multidot.X.sub.2 M.sub.15 M'.sub.3 O.sub.62 ].sup.x- and A.sub.y [L.sub.n Ir.sup.(I) .multidot.X.sub.2 M.sub.9 M'.sub.3 O.sub.40 ].sup.y- where L is a ligand preferably chosen from 1,5-cyclooctadiene (COD), ethylene, cyclooctene, norbornadiene and other olefinic ligands; n=1 or 2 depending upon the number of double bonds present in the ligand L; X is a "hetero" atom chosen from B, Si, Ge, P, As, Se, Te, I, Co, Mn and Cu; M is either W or Mo; M' is preferably Nb or V but Ti, Zr, Ta, Hf are also useful; and A is a countercation preferably selected from tetrabutyl ammonium and alkali metal ions.

  15. Catalytic Hydrotreatment of Humins in Mixtures of Formic Acid/2-Propanol with Supported Ruthenium Catalysts.

    PubMed

    Wang, Yuehu; Agarwal, Shilpa; Kloekhorst, Arjan; Heeres, Hero Jan

    2016-05-10

    The catalytic hydrotreatment of humins, which are the solid byproducts from the conversion of C6 sugars (glucose, fructose) into 5-hydroxymethylfurfural (HMF) and levulinic acid (LA), by using supported ruthenium catalysts has been investigated. Reactions were carried out in a batch setup at elevated temperatures (400 °C) by using a hydrogen donor (formic acid (FA) in isopropanol (IPA) or hydrogen gas), with humins obtained from d-glucose. Humin conversions of up to 69 % were achieved with Ru/C and FA, whereas the performance for Ru on alumina was slightly poorer (59 % humin conversion). Humin oils were characterized by using a range of analytical techniques (GC, GC-MS, GCxGC, gel permeation chromatography) and were shown to consist of monomers, mainly alkyl phenolics (>45 % based on compounds detectable by GC) and higher oligomers. A reaction network for the reaction is proposed based on structural proposals for humins and the main reaction products. PMID:26836970

  16. Molybdenum(VI) catalysts obtained from η3-allyl dicarbonyl precursors: synthesis, characterization and catalytic performance in cyclooctene epoxidation.

    PubMed

    Gamelas, Carla A; Gomes, Ana C; Bruno, Sofia M; Almeida Paz, Filipe A; Valente, Anabela A; Pillinger, Martyn; Romão, Carlos C; Gonçalves, Isabel S

    2012-03-28

    The oxidative decarbonylation of the η(3)-allyl dicarbonyl complexes [Mo(η(3)-C(3)H(5))Cl(CO)(2)(L)] (L = 2,2'-bipyridine (bipy) (1), 4,4'-di-tert-butyl-2,2'-bipyridine (di-tBu-bipy) (2)) by reaction with aqueous tert-butylhydroperoxide (TBHP) or H(2)O(2) gave the following compounds in good to excellent yields: the oxo-bridged dimers [MoO(2)Cl(L)](2)O (L = bipy (3), di-tBu-bipy (6)) using TBHP(10 equiv.)/CH(3)CN/r.t.; the molybdenum oxide/bipyridine hybrid material {[MoO(3)(bipy)][MoO(3)(H(2)O)]}(n) (4) and the octanuclear complex [Mo(8)O(24)(di-tBu-bipy)(4)] (7) using TBHP(50 equiv.)/H(2)O/70 °C; the oxodiperoxo complexes MoO(O(2))(2)(L) (L = bipy (5), di-tBu-bipy (8)) using H(2)O(2)(10 equiv.)/CH(3)CN/r.t. The structure of 7·x(solvent) (where solvent = CH(2)Cl(2) and/or diethyl ether) was determined by single crystal X-ray diffraction. Despite possessing the same windmill-type complex as that described previously for 7·10CH(2)Cl(2), the crystal structure of 7·x(solvent) is unique due to differences in the crystal packing. Compounds 1-8 were examined as catalysts or catalyst precursors for the epoxidation of cyclooctene using aqueous TBHP or H(2)O(2) as oxidant at 55 or 70 °C. Reactions were performed without co-solvent or with the addition of water, ethanol or acetonitrile. Cyclooctene oxide was always the only reaction product. Solids recovered after 24 h reaction at 70 °C were identified by FT-IR spectroscopy as the hybrid 4 from (1,3-5)/TBHP, complex 5 from (1,3-5)/H(2)O(2), and complex 8 from (2,6-8)/H(2)O(2). With TBHP as oxidant, the highest epoxide yields (for 24 h reaction at 70 °C) were obtained using excess H(2)O as solvent (28-38% for 1,3-5; 87-98% for 2,6-8), while with H(2)O(2) as oxidant, the highest epoxide yields were obtained using CH(3)CN as solvent (54-81% for 3-8).

  17. HDS activity and characterization of zeolite-supported nickel sulfide catalysts

    SciTech Connect

    Welters, W.J.J.; Vorbeck, G.; Haan, J.W. de; Beer, V.H.J. de; Santen, R.A. van; Zandbergen, H.W.

    1994-11-01

    Catalysts of nickel sulfide supported on zeolite Y have been prepared (by impregnation or ion exchange) and characterized by means of thiophene hydrodesulfurization (HDS), sulfur analysis, temperature-programmed sulfiding, {sup 129}Xe-NMR, HREM and dynamic oxygen chemisorption. The catalysts show large differences in catalytic behavior dependent on the preparation method (impregnation vs ion exchange) and the pretreatment conditions (method of sulfidation). Especially the ion-exchanged catalysts show a high initial activity, but due to the presence of acid sites deactivation is very strong. The initial activity of these catalysts can be improved significantly by drying prior to sulfidation. In all cases sulfidation results in quantitative formation of nickel sulfide, with Ni{sub 3}S{sub 2} being the main product. Occasionally, also some NiS appears to be present. The major part of the nickel sulfide phase is invariably located on the outside of the zeolite particles. The fraction of nickel sulfide in the zeolite pores depends on the preparation method and the pretreatment conditions. The differences in catalytic activity are ascribed not only to variations in overall nickel sulfide dispersion but also to the acidity of the support, and the presence of very active small nickel sulfide clusters in the pores of the zeolite can have a strong influence on the thiophene HDS activity. 40 refs., 13 figs., 3 tabs.

  18. Enhanced activity of urea electrooxidation on nickel catalysts supported on tungsten carbides/carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Du, Tingting; Cheng, Jin; Xie, Xing; Yang, Bolun; Li, Mingtao

    2015-04-01

    Nickel nanoparticles with tungsten carbides supported on the multi-walled carbon nanotubes, noted as Ni-WC/MWCNT catalyst, is prepared through an impregnation method and used for the electrooxidation of urea in alkaline conditions. The micro-morphology and composition of the Ni-WC/MWCNT particles are determined by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. The electrooxidation activity and conductivity of the catalyst are investigated by cyclic voltammetry and electrochemical impedance spectroscopy, respectively. Characterization results indicate that the Ni nanoparticles are uniformly distributed on the WC/MWCNT framework, and the Ni-WC/MWCNT catalyst shows an improved activity for the urea electrooxidation. The current densities of Ni-WC/MWCNT are over 3 times and 15 times higher than those of the Ni-WC/C and Ni/C catalysts, respectively, and the electrochemical impedance also decreases markedly. The higher activity on Ni-WC/MWCNT is attributed to the support effect of MWCNT as well as the synergistic effect between Ni and WC.

  19. Conversion under hydrogen of dichlorodifluoromethane over supported palladium catalysts

    SciTech Connect

    Coq, B.; Figueras, F.; Tournigant, D. ); Cognion, J.M. )

    1993-05-01

    The conversion of difluorodichloromethane has been studied in the gas phase between 433 and 523 K at atmospheric pressure over Pd black and Pd supported on alumina, graphite, or AlF[sub 3]. In CF[sub 2]Cl[sub 2] hydrogenation, CH[sub 2]F[sub 2] and CH[sub 4] represented more than 95% of the products. The catalytic properties of Pd/AlF[sub 3] samples are unchanged with time, but Pd/graphite, Pd/Al[sub 2]O[sub 3], and Pd black suffered changes of activity and/or selectivity during the first few hours on stream. This was ascribed to the diffusion of halide species into the bulk of palladium, and transformation of Al[sub 2]O[sub 3] to AlF[sub 3]. At the steady state, the kinetics of CF[sub 2]Cl[sub 2] hydrogenation can be described either by a halogenation/dehalogenation of the Pd surface by CF[sub 2]Cl[sub 2] and H[sub 2], respectively, or by a classical Langmuir-Hinshelwood mechanism. It was concluded that at 453 K the interaction between the Pd surface and CF[sub 2]Cl[sub 2] or H[sub 2] is of the same order of magnitude. The CH[sub 2]F[sub 2]/CH[sub 4] selectivity ratio was the lowest on Pd/graphite and the highest on Pd/AlF[sub 3]. It is proposed that adsorbed, or absorbed, halide species are responsible for the loss of CH[sub 2]F[sub 2] selectivity. The high selectivity ratio on Pd/AlF [sub 3] is ascribed to a cooperative effect between Pd and AlF[sub 3]. 27 refs., 5 figs., 6 tabs.

  20. Tailoring Silica-alumina Supported Pt-Pd As Poison Tolerant Catalyst For Aromatics Hydrogenation

    SciTech Connect

    Yu, Yanzhe; Gutierrez, Oliver Y.; Haller, Gary L.; Colby, Robert J.; Kabius, Bernd C.; Rob van Veen, J. A.; Jentys, Andreas; Lercher, Johannes A.

    2013-08-01

    The tailoring of the physicochemical and catalytic properties of mono- and bimetallic Pt-Pd catalysts supported on amorphous silica-alumina is studied. Electron energy loss spectroscopy and extended X-ray absorption fine structure analyses indicated that bimetallic Pt-Pd and relatively large monometallic Pd particles were formed, whereas the X-ray absorption near edge structure provided direct evidence for the electronic deficiency of the Pt atoms. The heterogeneous distribution of metal particles was also shown by high resolution transmission electron microscopy. The average structure of the bimetallic particles (Pt-rich core and Pd-rich shell) and the presence of Pd particles led to surface Pd enrichment, which was independently shown by IR spectra of adsorbed CO. The specific metal distribution, average size, and surface composition of the Pt-Pd particles depend to a large extent on the metal precursors. In the presence of NH3 ligands, Pt-Pd particles with a fairly homogeneous bulk and surface metal distribution were formed. Also high Lewis acid site concentration of the carrier leads to more homogeneous bimetallic particles. All catalysts were active for the hydrogenation of tetralin in the absence and presence of quinoline and dibenzothiophene (DBT). Monometallic Pt catalysts had the highest hydrogenation activity in poison-free and quinoline-containing feed. When DBT was present, bimetallic Pt-Pd catalysts with the most homogenous metal distribution showed the highest activity. The higher resistance of bimetallic catalysts towards sulfur poisoning compared to their monometallic Pt counterparts results from the weakened metal-sulfur bond on the electron deficient Pt atoms. Thus, increasing the fraction of electron deficient Pt on the surface of the bimetallic particles increases the efficiency of the catalyst in the presence of sulfur.

  1. Preparation and application of zirconium sulfate supported on SAPO-34 molecular sieve as solid acid catalyst for esterification

    SciTech Connect

    Xu, Dongyan Ma, Hong; Cheng, Fei

    2014-05-01

    Graphical abstract: - Highlights: • SAPO-34 supported zirconium sulfate solid acid catalyst was prepared. • Esterification of acetic acid with ethanol can be catalyzed by ZS/SAPO-34. • The hydration of ZS is vital to the acidic property and catalytic performance. • The ZS/SAPO-34 catalyst treated at 200 °C shows good reusability. - Abstract: Zirconium sulfate (ZS) was supported on SAPO-34 molecular sieve by using an incipient wetness impregnation method with zirconium sulfate as the precursor. The as-prepared catalysts were used as solid acid catalyst for esterification reaction of acetic acid with ethanol. The influence of calcination temperature on the acidic property, catalytic activity, and reusability of ZS/SAPO-34 catalysts were mainly investigated. FT-IR, SEM, EDS and TG analysis have been carried out to demonstrate the characteristics of ZS/SAPO-34 catalysts. It was found that the 30 wt%ZS/SAPO-34 catalysts display the property of superacid irrespective of calcination temperature. The ZS/SAPO-34 catalyst treated at 200 °C can enhance the interaction between the supported ZS and SAPO-34 and keep the catalyst remaining substantially active after several reaction cycles. However, further increasing calcination temperature will cause the transfer of ZS from hydrate to anhydrous phase, and thus the decrease of activity.

  2. Reduced graphene oxide supported Au nanoparticles as an efficient catalyst for aerobic oxidation of benzyl alcohol

    NASA Astrophysics Data System (ADS)

    Yu, Xianqin; Huo, Yujia; Yang, Jing; Chang, Sujie; Ma, Yunsheng; Huang, Weixin

    2013-09-01

    Various Au/C catalysts were prepared by Au nanoparticels supported on different carbonaceous supports including reduced graphene oxide (RGO), activated carbon (AC) and graphite (GC) using sol-immobilization method. Au/RGO shows a much higher activity than Au/AC and Au/GC in the liquid phase aerobic oxidation of benzyl alcohol. The superior catalytic performance of Au/RGO may be related to the presence of surface O-containing functional groups and moderate graphite character of RGO supports.

  3. Pd-nanoparticle-supported, PDDA-functionalized graphene as a promising catalyst for alcohol oxidation.

    PubMed

    Bin, Duan; Ren, Fangfang; Wang, Ying; Zhai, Chunyang; Wang, Caiqin; Guo, Jun; Yang, Ping; Du, Yukou

    2015-03-01

    Poly(diallyldimethylammonium chloride) (PDDA) has been employed as a modifying material for the development of new functional materials; then, the functionalized graphene was employed as a support for Pd nanoparticles through a facile method. The structures and morphologies of the as-synthesized Pd/PDDA-graphene composites were extensively characterized by Raman spectroscopy, XRD, XPS, and TEM. Morphological observation showed that Pd NPs with average diameters of 4.4 nm were evenly deposited over the functionalized graphene sheets. Moreover, the electrochemical experiments indicated that the Pd/PDDA-graphene catalyst showed improved electrocatalytic activity toward alcohol-oxidation reactions compared to the Pd/graphene and commercial Pd/C systems, as well as previously reported Pd-based catalysts. This study demonstrates the great potential of PDDA-functionalized graphene as a support for the development of metal-graphene nanocomposites for important applications in fuel cells. PMID:25601138

  4. Ceria catalyst for inert-substrate-supported tubular solid oxide fuel cells running on methane fuel

    NASA Astrophysics Data System (ADS)

    Zhao, Kai; Kim, Bok-Hee; Du, Yanhai; Xu, Qing; Ahn, Byung-Guk

    2016-05-01

    A ceria catalyst is applied to an inert-substrate supported tubular single cell for direct operation on methane fuel. The tubular single cell comprises a porous yttria-stabilized zirconia (YSZ) supporter, a Ni-Ce0.8Sm0.2O1.9 anode, a YSZ/Ce0.8Sm0.2O1.9 bi-layer electrolyte, and a La0.6Sr0.4Co0.2Fe0.8O3-δ cathode. The ceria catalyst is incorporated into the porous YSZ supporter layer by a cerium nitrate impregnation. The effects of ceria on the microstructure and electrochemical performance of the tubular single cell are investigated with respect to the number of impregnations. The optimum number of impregnations is determined to be four based on the maximum power density and polarization property of the tubular single cell in hydrogen and methane fuels. At 700 °C, the tubular single cell shows similar maximum power densities of ∼260 mW cm-2 in hydrogen and methane fuels, respectively. Moreover, the ceria catalyst significantly improves the performance stability of the cell running on methane fuel. At a current density of 350 mA cm-2, the single cell shows a low degradation rate of 2.5 mV h-1 during the 13 h test in methane fuel. These results suggest the feasibility of applying the ceria catalyst to the inert-substrate supported tubular single cell for direct operation on methane fuel.

  5. Ceria catalyst for inert-substrate-supported tubular solid oxide fuel cells running on methane fuel

    NASA Astrophysics Data System (ADS)

    Zhao, Kai; Kim, Bok-Hee; Du, Yanhai; Xu, Qing; Ahn, Byung-Guk

    2016-05-01

    A ceria catalyst is applied to an inert-substrate supported tubular single cell for direct operation on methane fuel. The tubular single cell comprises a porous yttria-stabilized zirconia (YSZ) supporter, a Ni-Ce0.8Sm0.2O1.9 anode, a YSZ/Ce0.8Sm0.2O1.9 bi-layer electrolyte, and a La0.6Sr0.4Co0.2Fe0.8O3-δ cathode. The ceria catalyst is incorporated into the porous YSZ supporter layer by a cerium nitrate impregnation. The effects of ceria on the microstructure and electrochemical performance of the tubular single cell are investigated with respect to the number of impregnations. The optimum number of impregnations is determined to be four based on the maximum power density and polarization property of the tubular single cell in hydrogen and methane fuels. At 700 °C, the tubular single cell shows similar maximum power densities of ˜260 mW cm-2 in hydrogen and methane fuels, respectively. Moreover, the ceria catalyst significantly improves the performance stability of the cell running on methane fuel. At a current density of 350 mA cm-2, the single cell shows a low degradation rate of 2.5 mV h-1 during the 13 h test in methane fuel. These results suggest the feasibility of applying the ceria catalyst to the inert-substrate supported tubular single cell for direct operation on methane fuel.

  6. Low-Temperature Synthesis of Tunable Mesoporous Crystalline Transition Metal Oxides and Applications as Au Catalyst Supports

    SciTech Connect

    Wang, Donghai; Ma, Zhen; Dai, Sheng; Liu, Jun; Nie, Zimin; Engelhard, Mark H.; Huo, Qisheng; Wang, Chong M.; Kou, Rong

    2008-09-04

    Mesoporous transition metal oxides are of great potential as catalyst supports, shape-selective catalysts, photocatalysts, and sensor materials. Previously stable crystalline mesoporous oxides were mostly obtained by thermally induced crystallization or by segregating the nanocrystals with an amorphous phase. Here we report a novel direct approach to crystalline mesoporous frameworks via the spontaneous growth and assembly of transition metal oxide nanocrystals (i.e., rutile TiO2, fluorite CeO2, cassiterite SnO2, and anatase SnxTi1-xO2) by oxidative hydrolysis and condensation in the presence of anionic surfactants. The influences of synthesis time, surfactants with different chain lengths, concentrations of the oxidant (i.e., hydrogen peroxide), and synthesis temperatures on the composition and morphologies of the resulting materials were investigated by X-ray diffraction (XRD), N2-sorption, transmission electron microscopy (TEM), selected area electron diffraction (SAED), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). A mechanism for the templated synthesis of crystalline mesoporous metal oxides was tentatively proposed. To demonstrate the catalytic applications of these materials, gold nanoparticles were loaded on mesoporous rutile TiO2 and fluorite CeO2 supports, and their catalytic performance in CO oxidation and water-gas shift was surveyed. Au nanoparticles supported on the mesoporous crystalline metal oxides exhibit higher reactivity and excellent on-stream stability towards CO oxidation and water-gas shift reaction compared with commercial TiO2 and CeO2.

  7. Size-dependent effects in supported highly dispersed Fe2O3 catalysts, doped with Pt and Pd

    NASA Astrophysics Data System (ADS)

    Cherkezova-Zheleva, Zara; Shopska, Maya; Mitov, Ivan; Kadinov, Georgi

    2010-06-01

    Series of Fe and Fe-Me (Me = Pt or Pd) catalyst supported on γ-Al2O3, TiO2 (anatase) or diatomite were prepared by the incipient wetness impregnation method. The metal loading was 8 wt.% Fe and 0.7 wt.% noble metal. The preparation and pretreatment conditions of all studied samples were kept to be the same. X-ray diffraction, Moessbauer spectroscopy, X-ray photoelectron spectroscopy and temperature-programmed reduction are used for characterization of the supports and the samples at different steps during their treatment and catalytic tests. The catalytic activity of the samples was tested in the reaction of total benzene oxidation. The physicochemical and catalytic properties of the obtained materials are compared with respect of the different chemical composition, dispersion of used carriers and of the supported phases. Samples with the same composition prepared by mechanical mixing are studied as catalysts for comparison and for clearing up the presence of size-dependent effect, also.

  8. CO2 Hydrogenation over Oxide-Supported PtCo Catalysts: The Role of the Oxide Support in Determining the Product Selectivity.

    PubMed

    Kattel, Shyam; Yu, Weiting; Yang, Xiaofang; Yan, Binhang; Huang, Yanqiang; Wan, Weiming; Liu, Ping; Chen, Jingguang G

    2016-07-01

    By simply changing the oxide support, the selectivity of a metal-oxide catalysts can be tuned. For the CO2 hydrogenation over PtCo bimetallic catalysts supported on different reducible oxides (CeO2 , ZrO2 , and TiO2 ), replacing a TiO2 support by CeO2 or ZrO2 selectively strengthens the binding of C,O-bound and O-bound species at the PtCo-oxide interface, leading to a different product selectivity. These results reveal mechanistic insights into how the catalytic performance of metal-oxide catalysts can be fine-tuned.

  9. Combined homogeneous and heterogeneous catalysts. Rhodium and platinum isocyanide complexes tethered on silica-supported metal heterogeneous catalysts: Arene and cyclohexanone hydrogenation

    SciTech Connect

    Gao, H.; Angelici, R.J. |

    1999-03-15

    Rhodium and platinum isocyanide complexes RhCl(CO)[CN(CH{sub 2}){sub 3}Si(OC{sub 2}H{sub 5}){sub 3}]{sub 2} (Rh-CNR{sub 2}), RhCl[CN(CH{sub 2}){sub 3}Si(OC{sub 2}H{sub 5}){sub 3}]{sub 3} (Rh-CNR{sub 3}), and PtCl{sub 2}[CN(CH{sub 2}){sub 3}Si(OC{sub 2}H{sub 5}){sub 3}]{sub 2} (Pt-CNR{sub 2}) were tethered to the silica-supported metal heterogeneous catalysts M-SiO{sub 2} (M = Pd, Pt, Ru) to give the TCSM (tethered complex on supported metal) catalysts Rh-CNR{sub 2}/Pd-SiO{sub 2}, Rh-CNR{sub 3}/M-SiO{sub 2} (M = Pd, Pt, Ru), and Pt-CNR{sub 2}/Pd-SiO{sub 2}. These TCSM catalysts were used to catalyze the hydrogenation of arenes (Rh-CNR{sub 2}/Pd-SiO{sub 2} and Rh-CNR{sub 3}/M-SiO{sub 2}) and cyclohexanone (Pt-CNR{sub 2}/Pd-SiO{sub 2}) under the mild conditions of 40 C and 1 atm. They exhibit activities that are higher than those of the separate homogeneous rhodium (or platinum) isocyanide complex, the separate silica-supported metal heterogeneous catalyst, or the rhodium (or platinum) complex catalyst tethered on just SiO{sub 2}. The activities of the TCSM catalysts are strongly affected by the nature and loading of the supported metal in the catalyst. Among the three silica-supported metal M-SiO{sub 2} (M = Pd, Pt, Ru) catalysts, the rhodium complex Rh-CNR{sub 3} tethered on Pd-SiO{sub 2} exhibits the highest activity for the hydrogenation of toluene (TOF = 5.5 mol H{sub 2}/(mol Rh min) and TO = 2,420 mol H{sub 2}/mol Rh during 8.5 h). The Rh-CNR{sub 3}/Pd-SiO{sub 2} catalyst with 10 wt % Pd is more active than its counterparts with higher or lower palladium loadings. IR (DRIFT) spectral studies of the TCSM catalysts before and after being used for toluene hydrogenation show that the isocyanide ligands remain coordinated to the rhodium (or platinum) center even after extended use. Atomic emission spectroscopic analysis of hydrogenation solutions shows that there is no rhodium (or platinum) leaching into the solutions.

  10. Carbon-supported Pt nanowire as novel cathode catalysts for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Bing; Yan, Zeyu; Higgins, Drew C.; Yang, Daijun; Chen, Zhongwei; Ma, Jianxin

    2014-09-01

    Carbon-supported platinum nanowires (PtNW/C) are successfully synthesized by a simple and inexpensive template-free methodology and demonstrated as novel, suitable cathode electrode materials for proton exchange membrane fuel cell (PEMFC) applications. The synthesis conditions, such as the amount of reducing agent and reaction time, were investigated to investigate the effect on the nanostructures and activities of the PtNW/C catalysts. High-resolution transmission electron microscopy (TEM) results show that the formic acid facilitated reduction is capable of producing uniformly distributed 1-dimensional PtNW with an average cross-sectional diameter of 4.0 ± 0.2 nm and length of 20-40 nm. Investigation of the electrocatalytic activity by half-cell electrochemical testing reveals that PtNW/C catalyst demonstrates significant oxygen reduction reaction (ORR) activity, superior to that of commercially available Pt/C. Using a loading of 0.4 mgPt cm-2 PtNW/C as the cathode catalyst, a maximum power density of 748.8 mW cm-2 in a 50 cm2 single cell of commercial Pt/C. In addition, accelerated degradation testing (ADT) showed that the PtNW/C catalyst exhibits better durability than commercial Pt/C, rendering PtNW/C as a promising replacement to conventional Pt/C as cathode electrocatalysts for PEMFCs applications.

  11. Selective catalytic reduction of nitric oxide with ammonia over silica-supported vanadium oxide catalyst

    SciTech Connect

    Qajar, J.; Mowla, D.

    2009-07-01

    The selective catalytic reduction (SCR) of nitric oxide with excess ammonia in the presence of oxygen on silica-supported vanadium oxide catalyst was studied in a packed-bed reactor, and a mathematical model was proposed for the processes occurring in the reactor. Experimental data were presented for evaluation of the accuracy of the proposed model. Good agreement was observed between the measured and calculated values of the conversion in the outlet of the reactor. Once the validity of the proposed model was verified, it was used to examine the effects of different parameters such as feed temperature, inlet feed composition, and gas hourly space velocity (GHSV) on the conversion of NO over V{sub 2}O{sub 5}/SiO{sub 2} catalyst for practical application. The results for the employed catalyst showed that high NO conversion occurred at temperatures of 280-300C, GHSV less than 2000h{sup -1} (STP), and O{sub 2} concentration greater than 10% v/v. These results clearly demonstrate the high potential for this catalyst to be applied commercially for the control of NOx emissions from flue gases of different sources.

  12. Enhancement of Pt-Based Catalysts Via N-Doped Carbon Supports

    SciTech Connect

    O'Hayre, R.; Zhou, Y.; Pasquarelli, R.; Berry, J.; Ginley, D.

    2008-01-01

    This study experimentally examines the enhancement of carbon supported Pt-based catalysts systems via nitrogen doping. It has been reported that nitrogen-containing carbons promote significant enhancement in Pt/C catalyst activity and durability with respect to the methanol oxidation and oxygen reduction reactions. In order to systematically investigate the effect of N-doping, in this work we have developed geometrically well-defined model catalytic systems consisting of tunable assemblies of Pt catalyst nanoparticles deposited onto both N-doped and undoped highly-oriented pyrolytic graphite (HOPG) substrates. N-doping was achieved via ion beam implantation, and Pt was electrodeposited from solutions of H{sub 2}PtCl{sub 6} in aqueous HClO{sub 4}. Morphology from scanning electron microscopy (SEM) and catalytic activity measurement from aqueous electrochemical analysis were utilized to examine the N-doping effects. The results strongly support the theory that doping nitrogen into a graphite support significantly affects both the morphology and behavior of the overlying Pt nanoparticles. In particular, nitrogen-doping was observed to cause a significant decrease in the average Pt nanoparticle size, an increase in the Pt nanoparticle dispersion, and a significant increase in catalytic activity for both methanol oxidation and oxygen reduction.

  13. Comparison study of catalyst nanoparticle formation and carbon nanotube growth: Support effect

    SciTech Connect

    Wang Yunyu; Luo Zhiquan; Li Bin; Ho, Paul S.; Yao Zhen; Shi Li; Bryan, Eugene N.; Nemanich, Robert J.

    2007-06-15

    A comparison study has been conducted on the formation of catalyst nanoparticles on a high surface tension metal and low surface tension oxide for carbon nanotube (CNT) growth via catalytic chemical vapor deposition (CCVD). Silicon dioxide (SiO{sub 2}) and tantalum have been deposited as supporting layers before deposition of a thin layer of iron catalyst. Iron nanoparticles were formed after thermal annealing. It was found that densities, size distributions, and morphologies of iron nanoparticles were distinctly different on the two supporting layers. In particular, iron nanoparticles revealed a Volmer-Weber growth mode on SiO{sub 2} and a Stranski-Krastanov mode on tantalum. CCVD growth of CNTs was conducted on iron/tantalum and iron/SiO{sub 2}. CNT growth on SiO{sub 2} exhibited a tip growth mode with a slow growth rate of less than 100 nm/min. In contrast, the growth on tantalum followed a base growth mode with a fast growth rate exceeding 1 {mu}m/min. For comparison, plasma enhanced CVD was also employed for CNT growth on SiO{sub 2} and showed a base growth mode with a growth rate greater than 2 {mu}m/min. The enhanced CNT growth rate on tantalum was attributed to the morphologies of iron nanoparticles in combination with the presence of an iron wetting layer. The CNT growth mode was affected by the adhesion between the catalyst and support as well as CVD process.

  14. Cluster-support interactions and morphology of MoS2 nanoclusters in a graphite-supported hydrotreating model catalyst.

    PubMed

    Kibsgaard, Jakob; Lauritsen, Jeppe V; Laegsgaard, Erik; Clausen, Bjerne S; Topsøe, Henrik; Besenbacher, Flemming

    2006-10-25

    Supported MoS(2) nanoparticles constitute the active component of the important hydrotreating catalysts used for industrial upgrading and purification of the oil feedstock for the production of fossil fuels with a low environmental load. We have synthesized and studied a model system of the hydrotreating catalyst consisting of MoS(2) nanoclusters supported on a graphite surface in order to resolve a number of very fundamental questions related to the atomic-scale structure and morphology of the active clusters and in particular the effect of a substrate used in some types of hydrotreating catalysts. Scanning tunneling microscopy (STM) is used to image the atomic-scale structure of graphite-supported MoS(2) nanoclusters in real space. It is found that the pristine graphite (0001) surface does not support a high dispersion of MoS(2), but by introducing a small density of defects in the surface, highly dispersed MoS(2) nanoclusters could be synthesized on the graphite. From high-resolution STM images it is found that MoS(2) nanoclusters synthesized at low temperature in a sulfiding atmosphere preferentially grow as single-layer clusters, whereas clusters synthesized at 1200 K grow as multilayer slabs oriented with the MoS(2)(0001) basal plane parallel to the graphite surface. The morphology of both single-layer and multilayer MoS(2) nanoclusters is found to be preferentially hexagonal, and atom-resolved images of the top facet of the clusters provide new atomic-scale information on the MoS(2)-HOPG bonding. The structure of the two types of catalytically interesting edges terminating the hexagonal MoS(2) nanoclusters is also resolved in atomic detail in STM images, and from these images it is possible to reveal the atomic structure of both edges and the location and coverage of sulfur and hydrogen adsorbates.

  15. Simultaneous formation of nitrogen and sulfur-doped transition metal catalysts for oxygen reduction reaction through pyrolyzing carbon-supported copper phthalocyanine tetrasulfonic acid tetrasodium salt

    NASA Astrophysics Data System (ADS)

    Qing, Xin; Shi, Jingjing; Ma, Chengyu; Fan, Mengyang; Bai, Zhengyu; Chen, Zhongwei; Qiao, Jinli; Zhang, Jiujun

    2014-11-01

    In this work, we report a spontaneous formation of copper (Cu-N-S/C) catalysts containing both nitrogen (N) and sulfur (S) elements using a one-step pyrolysis of carbon supported copper phthalocyanine tetrasulfonic acid tetrasodium salt (CuTSPc/C). The obtained catalysts exhibit high catalytic activities for oxygen reduction reaction (ORR) in alkaline media. Through electrochemical measurements and physical characterizations, several observations are reached as follows: (1) different pyrolysis temperatures can result in different catalyst structures and performances, and the optimum pyrolysis temperature is found to be 700 °C; (2) the electron transfer number of the ORR process catalyzed by the unpyrolyzed catalyst is about 2.5, after the pyrolysis, this number is increased to 3.5, indicating that the pyrolysis process can change the ORR pathway from a 2-electron transfer dominated process to a 4-electron transfer dominated one; (3) increasing catalyst loading from 40 μg cm-2 to 505 μg cm-2 can effectively improve the catalytic ORR activity, under which the percentage of H2O2 produced decreases sharply from 39.5% to 7.8%; and (4) the Cu ion can bond on pyridinic-N, graphite-N and C-Sn-C to form Cu-N-S/C catalyst active sites, which play the key role in the ORR activity.

  16. Quantitatively analyzing metathesis catalyst activity and structural features in silica-supported tungsten imido-alkylidene complexes.

    PubMed

    Mougel, Victor; Santiago, Celine B; Zhizhko, Pavel A; Bess, Elizabeth N; Varga, Jeno; Frater, Georg; Sigman, Matthew S; Copéret, Christophe

    2015-05-27

    A broad series of fully characterized, well-defined silica-supported W metathesis catalysts with the general formula [(≡SiO)W(═NAr)(═CHCMe2R)(X)] (Ar = 2,6-iPr2C6H3 (AriPr), 2,6-Cl2C6H3 (ArCl), 2-CF3C6H4 (ArCF3), and C6F5 (ArF5); X = OC(CF3)3 (OtBuF9), OCMe(CF3)2 (OtBuF6), OtBu, OSi(OtBu)3, 2,5-dimethylpyrrolyl (Me2Pyr) and R = Me or Ph) was prepared by grafting bis-X substituted complexes [W(NAr)(═CHCMe2R)(X)2] on silica partially dehydroxylated at 700 °C (SiO2-(700)), and their activity was evaluated with the goal to obtain detailed structure-activity relationships. Quantitative influence of the ligand set on the activity (turnover frequency, TOF) in self-metathesis of cis-4-nonene was investigated using multivariate linear regression analysis tools. The TOF of these catalysts (activity) can be well predicted from simple steric and electronic parameters of the parent protonated ligands; it is described by the mutual contribution of the NBO charge of the nitrogen or the IR intensity of the symmetric N-H stretch of the ArNH2, corresponding to the imido ligand, together with the Sterimol B5 and pKa of HX, representing the X ligand. This quantitative and predictive structure-activity relationship analysis of well-defined heterogeneous catalysts shows that high activity is associated with the combination of X and NAr ligands of opposite electronic character and paves the way toward rational development of metathesis catalysts.

  17. Effect of the support properties on the preparation and performance of platinum catalysts supported on carbon nanofibers

    NASA Astrophysics Data System (ADS)

    Calvillo, L.; Gangeri, M.; Perathoner, S.; Centi, G.; Moliner, R.; Lázaro, M. J.

    Platinum nanoparticles were supported on carbon nanofibers (CNFs) for their use as electrocatalyst for PEM fuel cells. Before platinum deposition, CNFs were oxidized using concentrated HNO 3 or a HNO 3-H 2SO 4 mixture as oxidizing agents. During these treatments, new surface oxygen groups were created. Moreover, the most severe treatments resulted in the shortening of CNFs. Both effects allow to study the influence of both the morphology and the surface chemistry of CNFs on the preparation and performance of Pt electrocatalysts. Catalysts were prepared by the incipient wetness impregnation method. CNFs and electrocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and N 2-physisorption. Furthermore, the performance of Pt/CNF based electrodes was compared with that of a commercial Pt/carbon black electrode (E-TEK) in a 1-cm 2 PEM fuel cell. The results showed that both the surface chemistry and the morphology of the support have an important effect on the dispersion, particle size and activity of Pt catalysts. An increase in the agglomeration degree of Pt particles as the severity of oxidation treatments increased was observed. However, the performance of Pt/CNF electrodes was better than that of the commercial one. This was attributed to the CNF porous structure and to the better Pt-support interaction through the surface oxygen groups of the support.

  18. Evaluation studies on carbon supported catalysts for oxygen reduction in alkaline medium

    NASA Technical Reports Server (NTRS)

    Srinivasan, Vakula S.; Singer, Joseph

    1986-01-01

    This paper describes tests designed to predict the performance of fuel cell electrodes, as applied to an alkaline oxygen-fuel cell having specially fabricated porous-carbon electrodes with various amounts of dispersed platinum or gold as active catalysts. The tests are based on information obtained from the techniques of cyclic voltammetry and polarization. The parameters obtained from cyclic voltammetry were of limited use in predicting fuel cell performance of the cathode. On the other hand, half-cell polarization measurements offered close simulation of the oxygen electrode, although a predictor of the electrode life is still lacking. The very low polarization of the Au-10 percent Pt catalytic electrode suggests that single-phase catalysts should be considered.

  19. Microwave assisted synthesis of biarlys by Csbnd C coupling reactions with a new chitosan supported Pd(II) catalyst

    NASA Astrophysics Data System (ADS)

    Baran, Talat; Menteş, Ayfer

    2016-10-01

    In this study a new type chitosan-based support has been produced for Pd(II) catalyst and its catalytic performance in Suzuki Csbnd C reactions has been studied under microwave irradiation without using any solvent. The chemical identification of the catalyst was performed using TG/DTG, FTIR, UV-Vis ICP-OES, SEM/EDAX, 13C NMR, molar conductivity, XRD and magnetic moment techniques. The performance of this new Pd(II) catalyst was studied in Suzuki Csbnd C reactions. The Pd(II) catalyst exhibited a good catalytic performance in very short time (4 min) by giving high TONs and TOFs with low amount of the catalyst (0.015 mol%). The catalyst also had reusability and did not lose its activity until six runs.

  20. Temperature-programmed sulfiding of vanadium oxides and alumina-supported vanadium oxide catalysts

    SciTech Connect

    Bonne, R.L.C.; Langeveld, A.D. van; Moulijn, J.A.

    1995-06-01

    Sulfiding of bulk and alumina-supported vanadium oxides has been studied using temperature-programmed sulfiding and reduction techniques. Bulk compounds (V{sub 2}O{sub 5}, V{sub 2}O{sub 3}) and V/Al{sub 2}O{sub 3} catalysts are sulfided via a similar mechanism. For bulk V{sub 2}O{sub 5}, two major sulfiding steps have been identified. At temperatures up to 673K, V{sub 2}O{sub 5} is reduced to V{sub 2}O{sub 3} by O-S exchange and subsequent rupture of V-S bonds where H{sub 2}S acts as reducing agent. Sulfiding to V{sub 2}S{sub 3} takes place above 673K. The catalysts are sulfided more easily than the bulk oxides due to the higher dispersion of the vanadium species. In catalysts sulfided at 673K which are still partially oxidic, four types of sulfur have been observed, viz. adsorbed H{sub 2}S, stoichiometric sulfur, S-H groups, and nonstoichiometric (excess) sulfur (S{sub x}). There are indications that (isothermal) room temperature H{sub 2}S adsorption can be used to determine the dispersion of the supported microcrystallites at higher vanadium loadings. From the present results it is inferred that alumina-supported vanadium-based catalysts, when sulfided at temperatures commonly applied in hydrotreating operations, essentially consist of an oxide, the outer surface of which is sulfided. 22 refs., 6 figs., 4 tabs.

  1. Synthesis, characterization, and catalytic activity in Suzuki coupling and catalase-like reactions of new chitosan supported Pd catalyst.

    PubMed

    Baran, Talat; Inanan, Tülden; Menteş, Ayfer

    2016-07-10

    The aim of this study is to analyze the synthesis of a new chitosan supported Pd catalyst and examination of its catalytic activity in: Pd catalyst was synthesized using chitosan as a biomaterial and characterized with FTIR, TG/DTG, XRD, (1)H NMR, (13)C NMR, SEM-EDAX, ICP-OES, Uv-vis spectroscopies, and magnetic moment, along with molar conductivity analysis. Biomaterial supported Pd catalyst indicated high activity and long life time as well as excellent turnover number (TON) and turnover frequency (TOF) values in Suzuki reaction. Biomaterial supported Pd catalyst catalyzed H2O2 decomposition reaction with considerable high activity using comparatively small loading catalyst (10mg). Redox potential of biomaterial supported Pd catalyst was still high without negligible loss (13% decrease) after 10 cycles in reusability tests. As a consequence, eco-friendly biomaterial supported Pd catalyst has superior properties such as high thermal stability, long life time, easy removal from reaction mixture and durability to air, moisture and high temperature. PMID:27106147

  2. Synthesis, characterization, and catalytic activity in Suzuki coupling and catalase-like reactions of new chitosan supported Pd catalyst.

    PubMed

    Baran, Talat; Inanan, Tülden; Menteş, Ayfer

    2016-07-10

    The aim of this study is to analyze the synthesis of a new chitosan supported Pd catalyst and examination of its catalytic activity in: Pd catalyst was synthesized using chitosan as a biomaterial and characterized with FTIR, TG/DTG, XRD, (1)H NMR, (13)C NMR, SEM-EDAX, ICP-OES, Uv-vis spectroscopies, and magnetic moment, along with molar conductivity analysis. Biomaterial supported Pd catalyst indicated high activity and long life time as well as excellent turnover number (TON) and turnover frequency (TOF) values in Suzuki reaction. Biomaterial supported Pd catalyst catalyzed H2O2 decomposition reaction with considerable high activity using comparatively small loading catalyst (10mg). Redox potential of biomaterial supported Pd catalyst was still high without negligible loss (13% decrease) after 10 cycles in reusability tests. As a consequence, eco-friendly biomaterial supported Pd catalyst has superior properties such as high thermal stability, long life time, easy removal from reaction mixture and durability to air, moisture and high temperature.

  3. Polymer- and silica-supported iron BPMEN-inspired catalysts for C-H bond functionalization reactions.

    PubMed

    Feng, Yan; Moschetta, Eric G; Jones, Christopher W

    2014-11-01

    Direct catalytic C-H bond functionalization is a key challenge in synthetic chemistry, with many popular C-H activation methodologies involving precious-metal catalysts. In recent years, iron catalysts have emerged as a possible alternative to the more common precious-metal catalysts, owing to its high abundance, low cost, and low toxicity. However, iron catalysts are plagued by two key factors: the ligand cost and the low turnover numbers (TONs) typically achieved. In this work, two approaches are presented to functionalize the popular N(1),N(2)-dimethyl-N(1),N(2)-bis(pyridin-2-ylmethyl)ethane-1,2-diamine (BPMEN) ligand, so that it can be supported on porous silica or polymer resin supports. Four new catalysts are prepared and evaluated in an array of catalytic C-H functionalization reactions by using cyclohexane, cyclohexene, cyclooctane, adamantane, benzyl alcohol, and cumene with aqueous hydrogen peroxide. Catalyst recovery and recycling is demonstrated by using supported catalysts, which allows for a modest increase in the TON achieved with these catalysts.

  4. Highly Active Carbon Supported Pd-Ag Nanofacets Catalysts for Hydrogen Production from HCOOH.

    PubMed

    Wang, Wenhui; He, Ting; Liu, Xuehua; He, Weina; Cong, Hengjiang; Shen, Yangbin; Yan, Liuming; Zhang, Xuetong; Zhang, Jinping; Zhou, Xiaochun

    2016-08-17

    Hydrogen is regarded as a future sustainable and clean energy carrier. Formic acid is a safe and sustainable hydrogen storage medium with many advantages, including high hydrogen content, nontoxicity, and low cost. In this work, a series of highly active catalysts for hydrogen production from formic acid are successfully synthesized by controllably depositing Pd onto Ag nanoplates with different Ag nanofacets, such as Ag{111}, Ag{100}, and the nanofacet on hexagonal close packing Ag crystal (Ag{hcp}). Then, the Pd-Ag nanoplate catalysts are supported on Vulcan XC-72 carbon black to prevent the aggregation of the catalysts. The research reveals that the high activity is attributed to the formation of Pd-Ag alloy nanofacets, such as Pd-Ag{111}, Pd-Ag{100}, and Pd-Ag{hcp}. The activity order of these Pd-decorated Ag nanofacets is Pd-Ag{hcp} > Pd-Ag{111} > Pd-Ag{100}. Particularly, the activity of Pd-Ag{hcp} is up to an extremely high value, i.e., TOF{hcp} = 19 000 ± 1630 h(-1) at 90 °C (lower limit value), which is more than 800 times higher than our previous quasi-spherical Pd-Ag alloy nanocatalyst. The initial activity of Pd-Ag{hcp} even reaches (3.13 ± 0.19) × 10(6) h(-1) at 90 °C. This research not only presents highly active catalysts for hydrogen generation but also shows that the facet on the hcp Ag crystal can act as a potentially highly active catalyst. PMID:27454194

  5. Highly Active Carbon Supported Pd-Ag Nanofacets Catalysts for Hydrogen Production from HCOOH.

    PubMed

    Wang, Wenhui; He, Ting; Liu, Xuehua; He, Weina; Cong, Hengjiang; Shen, Yangbin; Yan, Liuming; Zhang, Xuetong; Zhang, Jinping; Zhou, Xiaochun

    2016-08-17

    Hydrogen is regarded as a future sustainable and clean energy carrier. Formic acid is a safe and sustainable hydrogen storage medium with many advantages, including high hydrogen content, nontoxicity, and low cost. In this work, a series of highly active catalysts for hydrogen production from formic acid are successfully synthesized by controllably depositing Pd onto Ag nanoplates with different Ag nanofacets, such as Ag{111}, Ag{100}, and the nanofacet on hexagonal close packing Ag crystal (Ag{hcp}). Then, the Pd-Ag nanoplate catalysts are supported on Vulcan XC-72 carbon black to prevent the aggregation of the catalysts. The research reveals that the high activity is attributed to the formation of Pd-Ag alloy nanofacets, such as Pd-Ag{111}, Pd-Ag{100}, and Pd-Ag{hcp}. The activity order of these Pd-decorated Ag nanofacets is Pd-Ag{hcp} > Pd-Ag{111} > Pd-Ag{100}. Particularly, the activity of Pd-Ag{hcp} is up to an extremely high value, i.e., TOF{hcp} = 19 000 ± 1630 h(-1) at 90 °C (lower limit value), which is more than 800 times higher than our previous quasi-spherical Pd-Ag alloy nanocatalyst. The initial activity of Pd-Ag{hcp} even reaches (3.13 ± 0.19) × 10(6) h(-1) at 90 °C. This research not only presents highly active catalysts for hydrogen generation but also shows that the facet on the hcp Ag crystal can act as a potentially highly active catalyst.

  6. Titania-supported bimetallic catalysts combined with HZSM-5 for Fischer-Tropsch synthesis

    SciTech Connect

    Jothimurugesan, K.; Gangwal, S.K.

    1998-04-01

    The Fischer-Tropsch synthesis (FTS) can convert coal or natural gas derived synthesis gas (CO + H{sub 2}) to liquid fuels and high-value chemicals. Fischer-Tropsch synthesis was studied in a fixed-bed reactor over single-metal and bimetallic alloy catalysts, selected from Co, Ni, and Fe, supported on TiO{sub 2} at a total metal loading of 10 wt%. The catalysts, prepared by incipient wetness impregnation using nitrate precursors, were tested as is and in combination with a HZSM-5 zeolite. The test conditions were 1 MPa, 250 C, H{sub 2}/CO = 1, and weight hourly space velocity (WHSV) = 0.77 h{sup {minus}1}. Alloying of metals resulted in a significant enhancement in CO conversion without an increase in methane selectivity. A 50:50 weight ratio Co-Ni catalyst physically mixed with HZSM-5 (5% Co-5% Ni/TiO{sub 2} + HZSM-5) gave the highest CO conversion (45.2%) at the conditions tested. This compares to conversion of 8.9% and 10.5% with Co-only and Ni-only catalysts, respectively. Mixing the Co-Ni catalyst with HZSM-5 resulted in a significant reduction in methane selectivity and a significant increase in C{sub 4}{sup +} selectivity. The aromatic fraction increased from 1.5 to 8.1 wt%, the C{sub 2}{sup +} olefins were nearly eliminated, and i-C{sub 4}H{sub 10} increased from 2.3 to 58.5 wt % in the C{sub 4} fraction.

  7. Pristine and supported ZnO-based catalysts for phenazopyridine degradation with direct solar light

    NASA Astrophysics Data System (ADS)

    Hilal, Hikmat S.; Al-Nour, Ghazi Y. M.; Zyoud, Ahed; Helal, Muath H.; Saadeddin, Iyad

    2010-04-01

    In search for safe techniques to manage waste pharmaceutical compounds drained in water, solar-driven degradation of phenazopyridine (a model drug) was investigated in aqueous media using different ZnO-based catalyst systems. Naked ZnO, CdS-sensitized ZnO (ZnO/CdS) and activated carbon-supported ZnO (AC/ZnO) have been studied. Both naked ZnO and AC/ZnO were highly efficient in mineralizing phenazopyridine, reaching complete removal in ˜50 min, with AC/ZnO having the higher edge. The ZnO/CdS system showed lower efficiency, due to screening of light by CdS. Moreover, the tendency of CdS to leach out Cd 2+ ions discouraged the use of CdS as sensitizer in this work. In both ZnO and AC/ZnO systems, the photo-degradation reaction was induced by the UV tail of the solar light. The visible region, with wavelength longer than 400 nm, failed to induce photo-degradation. The reaction was faster with higher catalyst loading, until a maximum efficiency was reached at a certain concentration. The rate of reaction increased with higher drug concentrations up to a certain limit. The effect of pH value was studied, and the catalysts showed highest efficiencies at pH close to 7. Stability of ZnO to degradation was studied. Both catalyst systems showed lowered efficiencies on recovery and reuse. The results suggest that complete mineralization of waste drugs, commonly dumped in sewage water, with direct solar light is a potentially feasible strategy using the AC/ZnO catalyst.

  8. Oxidative decomposition of methanol on subnanometer palladium clusters : the effect of catalyst size and support composition.

    SciTech Connect

    Lee, S.; Lee, B.; Mehmood, F.; Seifert, S.; Libera, J. A.; Elam, J. W.; Greeley, J.; Zapol, P.; Curtiss, L. A.; Pellin, M. J.; Stair, P. C.; Winans, R. E; Vajda, S.; Northwestern Univ.

    2010-06-17

    Size and support effects in the oxidative decomposition of methanol on amorphous alumina supported subnanometer palladium clusters were studied under realistic reaction conditions of pressure and temperature. The smaller Pd{sub 8-12} clusters were found to promote the decomposition channel to CO and hydrogen, however with mediocre activity due to poisoning. The larger Pd{sub 15-18} clusters preferentially produce dimethyl ether and formaldehyde, without signs of posioning. A thin titania overcoat applied on the Pd{sub 15-18} improves the sintering-resistance of the catalyst. Accompanying density functional calculations confirm the posioning of small Pd clusters by CO.

  9. Oxidative Decomposition of Methanol on Subnanometer Palladium Clusters: The Effect of Catalyst Size and Support Composition

    SciTech Connect

    Lee, Sungsik; Lee, Byeongdu; Mehmood, Faisal; Seifert, Soenke; Libera, Joseph A.; Elam, J. W.; Greeley, Jeffrey P.; Zapol, Peter; Curtiss, Larry A.; Pellin, M. J.; Stair, Peter C.; Winans, R. E.; Vajda, S.

    2010-05-31

    Size and support effects in the oxidative decomposition of methanol on amorphous alumina supported subnanometer palladium clusters were studied under realistic reaction conditions of pressure and temperature. The smaller Pd8-12 clusters were found to promote the decomposition channel to CO and hydrogen, however with mediocre activity due to poisoning. The larger Pd15-18 clusters preferentially produce dimethyl ether and formaldehyde, without signs of posioning. A thin titania overcoat applied on the Pd15-18 improves the sintering-resistance of the catalyst. Accompanying density functional calculations confirm the posioning of small Pd clusters by CO.

  10. Synthesis and Characterization of Bimetallic Ni50Pt50 Catalyst Supported on SiO2 for N2O Decomposition.

    PubMed

    Angeles-Pascual, A; Esparza, R; Tellez-Vazquez, O; Velumani, S; Pérez, R

    2015-12-01

    Nanometallic and bimetallic catalyst of Ni, Pt and Ni50Pt50 were studied by the decompositions of N2O. The catalyst were prepared by incipient wetness impregnation of the silica with low superficial area of 50 m2/g supported with aqueous solution of the metal precursors, for Pt H2Pt Cl6 x 6H2O was used and for Ni, Ni(NO3)2 was used to a total metal loading of 1% wt. Catalyst were oxidized for 2 hours at 400 degrees C with O2, then the samples were reduced for 30 minutes with N2 and 2 hours with H2, all at the same temperature. The catalyst was characterized by Transmission Electron Microscopy (TEM), High Angular Annular Dark Field (HAADF), High Resolution Transmission Electron Microscopy (HR-TEM) and Termoprogramed Reduction (TPR). The mean particle sizes obtained by TEM and HAADF were about 12.5 nm for Ni/SiO2, 2.8 nm for Pt/SiO2 and 3.5 nm Ni50Pt50/SiO2 catalysts respectability. HR-TEM and HAADF analysis showed differences between Ni and Pt catalysts displaying mainly cuboctahedral shapes. Stepped surface defects were found in the Ni50Pt50/SiO2 catalyst. Finally Ni50Pt50/SiO2 was more active than Pt/SiO2 and Ni/SiO2 catalysts for the decomposition of N2O. PMID:26682368

  11. Dehydration of xylose to furfural over MCM-41-supported niobium-oxide catalysts.

    PubMed

    García-Sancho, Cristina; Sádaba, Irantzu; Moreno-Tost, Ramón; Mérida-Robles, Josefa; Santamaría-González, José; López-Granados, Manuel; Maireles-Torres, Pedro

    2013-04-01

    A series of silica-based MCM-41-supported niobium-oxide catalysts are prepared, characterized by using XRD, N2 adsorption-desorption, X-ray photoelectron spectroscopy, Raman spectroscopy, and pyridine adsorption coupled to FTIR spectroscopy, and tested for the dehydration of D-xylose to furfural. Under the operating conditions used all materials are active in the dehydration of xylose to furfural (excluding the MCM-41 silica support). The xylose conversion increases with increasing Nb2 O5 content. At a loading of 16 wt % Nb2 O5 , 74.5 % conversion and a furfural yield of 36.5 % is achieved at 170 °C, after 180 min reaction time. Moreover, xylose conversion and furfural yield increase with the reaction time and temperature, attaining 82.8 and 46.2 %, respectively, at 190 °C and after 100 min reaction time. Notably, the presence of NaCl in the reaction medium further increases the furfural yield (59.9 % at 170 °C after 180 min reaction time). Moreover, catalyst reutilization is demonstrated by performing at least three runs with no loss of catalytic activity and without the requirement for an intermediate regeneration step. No significant niobium leaching is observed, and a relationship between the structure of the catalyst and the activity is proposed.

  12. Preparation of multiwalled carbon nanotube-supported nickel catalysts using incipient wetness method.

    PubMed

    Azadi, Pooya; Farnood, Ramin; Meier, Emanuel

    2010-03-25

    In this paper, a systematic study on preparation of multiwalled carbon nanotube (MWCNT)-supported nickel catalyst is pursued. Functional groups are introduced on the surface of MWCNTs using nitric acid, sulfuric acid, and partial oxidation in air. Nickel oxide nanoparticles are formed on the surface of functionalized multiwalled carbon nanotubes by incipient wetness impregnation of nickel nitrate, followed by calcination in air. The effects of acid type and concentration, acid treatment time, partial oxidation, nickel loading, precursor solvent, and calcination temperature on the size of the nickel nanoparticles and homogeneity of the composite material are evaluated. Characteristics of the Ni/MWCNT catalysts were examined using BET, scanning transmission electron microscopy, X-ray diffraction, thermogravimetric analysis in air and nitrogen, temperature-programmed reduction, X-ray photoelectron spectroscopy, acid-base titration, and zeta-potential analyzer. Results of this work are useful for formulating CNT-supported nickel catalysts for a wide range of different applications, such as reforming of hydrocarbons, catalytic hydrothermal gasification of biomass, and energy storage.

  13. Plasmon-enhanced reverse water gas shift reaction over oxide supported Au catalysts

    SciTech Connect

    Upadhye, AA; Ro, I; Zeng, X; Kim, HJ; Tejedor, I; Anderson, MA; Dumesic, JA; Huber, GW

    2015-01-01

    We show that localized surface plasmon resonance (LSPR) can enhance the catalytic activities of different oxide-supported Au catalysts for the reverse water gas shift (RWGS) reaction. Oxide-supported Au catalysts showed 30 to 1300% higher activity for RWGS under visible light compared to dark conditions. Au/TiO2 catalyst prepared by the deposition-precipitation (DP) method with 3.5 nm average Au particle size showed the highest activity for the RWGS reaction. Visible light is converted into chemical energy for this reaction with up to a 5% overall efficiency. A shift in the apparent activation energy (from 47 kJ mol(-1) in dark to 35 kJ mol(-1) in light) and apparent reaction order with respect to CO2 (from 0.5 in dark to 1.0 in light) occurs due to the LSPR. Our kinetic results indicate that the LSPR increases the rate of either the hydroxyl hydrogenation or carboxyl decomposition more than any other steps in the reaction network.

  14. N-doped mesoporous carbons supported palladium catalysts prepared from chitosan/silica/palladium gel beads.

    PubMed

    Zeng, Minfeng; Wang, Yudong; Liu, Qi; Yuan, Xia; Feng, Ruokun; Yang, Zhen; Qi, Chenze

    2016-08-01

    In this study, a heterogeneous catalyst including palladium nanoparticles supported on nitrogen-doped mesoporous carbon (Pd@N-C) is synthesized from palladium salts as palladium precursor, colloidal silica as template, and chitosan as carbon source. N2 sorption isotherm results show that the prepared Pd@N-C had a high BET surface area (640m(2)g(-1)) with large porosity. The prepared Pd@N-C is high nitrogen-rich as characterized with element analysis. X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), and Raman spectroscopy characterization of the catalyst shows that the palladium species with different chemical states are well dispersed on the nitrogen-containing mesoporous carbon. The Pd@N-C is high active and shows excellent stability as applied in Heck coupling reactions. This work supplies a successful method to prepare Pd heterogeneous catalysts with high performance from bulk biopolymer/Pd to high porous nitrogen-doped carbon supported palladium catalytic materials. PMID:27155234

  15. Preparation of multiwalled carbon nanotube-supported nickel catalysts using incipient wetness method.

    PubMed

    Azadi, Pooya; Farnood, Ramin; Meier, Emanuel

    2010-03-25

    In this paper, a systematic study on preparation of multiwalled carbon nanotube (MWCNT)-supported nickel catalyst is pursued. Functional groups are introduced on the surface of MWCNTs using nitric acid, sulfuric acid, and partial oxidation in air. Nickel oxide nanoparticles are formed on the surface of functionalized multiwalled carbon nanotubes by incipient wetness impregnation of nickel nitrate, followed by calcination in air. The effects of acid type and concentration, acid treatment time, partial oxidation, nickel loading, precursor solvent, and calcination temperature on the size of the nickel nanoparticles and homogeneity of the composite material are evaluated. Characteristics of the Ni/MWCNT catalysts were examined using BET, scanning transmission electron microscopy, X-ray diffraction, thermogravimetric analysis in air and nitrogen, temperature-programmed reduction, X-ray photoelectron spectroscopy, acid-base titration, and zeta-potential analyzer. Results of this work are useful for formulating CNT-supported nickel catalysts for a wide range of different applications, such as reforming of hydrocarbons, catalytic hydrothermal gasification of biomass, and energy storage. PMID:19821594

  16. The influence of carbon support porosity on the activity of PtRu/Sibunit anode catalysts for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Rao, V.; Simonov, P. A.; Savinova, E. R.; Plaksin, G. V.; Cherepanova, S. V.; Kryukova, G. N.; Stimming, U.

    In this paper we analyse the promises of homemade carbon materials of Sibunit family prepared through pyrolysis of natural gases on carbon black surfaces as supports for the anode catalysts of direct methanol fuel cells. Specific surface area ( SBET) of the support is varied in the wide range from 6 to 415 m 2 g -1 and the implications on the electrocatalytic activity are scrutinized. Sibunit supported PtRu (1:1) catalysts are prepared via chemical route and the preparation conditions are adjusted in such a way that the particle size is constant within ±1 nm in order to separate the influence of support on the (i) catalyst preparation and (ii) fuel cell performance. Comparison of the metal surface area measured by gas phase CO chemisorption and electrochemical CO stripping indicates close to 100% utilisation of nanoparticle surfaces for catalysts supported on low (22-72 m 2 g -1) surface area Sibunit carbons. Mass activity and specific activity of PtRu anode catalysts change dramatically with SBET of the support, increasing with the decrease of the latter. 10%PtRu catalyst supported on Sibunit with specific surface area of 72 m 2 g -1 shows mass specific activity exceeding that of commercial 20%PtRu/Vulcan XC-72 by nearly a factor of 3.

  17. Microwave-assisted synthesis of carbon-supported carbides catalysts for hydrous hydrazine decomposition

    NASA Astrophysics Data System (ADS)

    Mnatsakanyan, Raman; Zhurnachyan, Alina R.; Matyshak, Valery A.; Manukyan, Khachatur V.; Mukasyan, Alexander S.

    2016-09-01

    Microwave-assisted synthesis of carbon-supported Mo2C and WC nanomaterials was studied. Two different routes were utilized to prepare MoO3 (WO3) - C precursors that were then subjected to microwave irradiation in an inert atmosphere. The effect of synthesis conditions, such as irradiation time and gas environment, was investigated. The structure and formation mechanism of the carbide phases were explored. As-synthesized nanomaterials exhibited catalytic activity for hydrous hydrazine (N2H4·H2O) decomposition at 30-70 °C. It was shown that the catalyst activity significantly increases if microwave irradiation is applied during the decomposition process. Such conditions permit complete conversion of hydrazine to ammonia and nitrogen within minutes. This effect can be attributed to the unique nanostructure of the catalysts that includes microwave absorbing carbon and active carbide constituents.

  18. High-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles for phenol hydrogenation

    NASA Astrophysics Data System (ADS)

    Huang, Chao; Yang, Xu; Yang, Hui; Huang, Peiyan; Song, Huiyu; Liao, Shijun

    2014-10-01

    A high-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles (MSN), PdRu/MSN, was prepared by a facile impregnation-hydrogen reduction method. It was found that PdRu/MSN showed 5 times higher activity than that of Pd/MSN towards the liquid-phase hydrogenation of phenol. The catalysts were characterized comprehensively by multiple techniques, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and hydrogen temperature program reduction (TPR). It was revealed that adding Ru could effectively improve the Pd dispersion and promote the electronic interaction between the Pd and Ru, both of which contribute to enhancing the catalytic activity.

  19. Size control of rhodium particles of silica-supported catalysts using water-in-oil microemulsion

    NASA Astrophysics Data System (ADS)

    Kishida, Masahiro; Hanaoka, Toshiaki; Kim, Won Young; Nagata, Hideo; Wakabayashi, Katsuhiko

    1997-11-01

    Effects of components of water-in-oil microemulsions on rhodium particle sizes of silica-supported rhodium catalysts were investigated in the catalyst preparation method using microemulsion. In the case of the microemulsion of polyoxyethylene(23)dodecyl ether/ n-alcohols/RhCl 3 aq., the rhodium particle size increased from 3.4 to 5.0 nm as the specific permittivity of the organic solvent increased. The chain length of hydrophilic group of polyoxyethylene- p-nonylphenyl ether ( n = 5 to 15) employed as surfactants had an effect on the rhodium particle size where the rhodium size ranged between 2.0 and 3.6 nm. The rhodium particle size was 1.5 nm in the case of sodium bis(2-ethylhexyl) sulfocuccinate and this value was found to be the smallest. These results could be interpreted in terms of the adsorption of the surfactant on rhodium-hydrazine particle surface.

  20. Degradation of trichloroethylene by hydrodechlorination using formic acid as hydrogen source over supported Pd catalysts.

    PubMed

    Yu, Xin; Wu, Ting; Yang, Xue-Jing; Xu, Jing; Auzam, Jordan; Semiat, Raphael; Han, Yi-Fan

    2016-03-15

    An advanced method for the degradation of trichloroethylene (TCE) over Pd/MCM-41 catalysts through a hydrogen-transfer was investigated. Formic acid (FA) was used instead of gaseous H2 as the hydrogen resource. As a model H-carrier compound, FA has proven to yield less by-products and second-hand pollution during the reaction. Several factors have been studied, including: the property of catalyst supports, Pd loading and size, temperature, initial concentrations of FA and TCE (potential impact on the reaction rates of TCE degradation), and FA decomposition. The intrinsic kinetics for TCE degradation were measured, while the apparent activation energies and the reaction orders with respect to TCE and FA were calculated through power law models. On the basis of kinetics, we assumed a plausible reaction pathway for TCE degradation in which the catalytic degradation of TCE is most likely the rate-determining step for this reaction. PMID:26685065

  1. XAFS Study of HY Zeolite Supported Pt Nanoparticle Catalysts Prepared With Different Methods

    NASA Astrophysics Data System (ADS)

    Li, Zhongrui; Yan, Wensheng; Wei, Shiqiang

    2007-02-01

    The electronic and geometric effects induced by preparation methods on small platinum particles supported on high surface-area zeolite HY were studied by X-ray absorption fine structure (XAFS) spectroscopy. Pt/HY catalysts were prepared by a variety of techniques, including incipient wetness impregnation (IWI) and vapor-phase impregnation (VPI). Results of EXAFS for series of equal loadings of Pt prepared by IWI and VPI showed that the Pt clusters resulting from the VPI preparation had lower Pt—Pt coordination and higher coordination to the zeolite lattice oxygen. The electronic properties and structures of Pt/HY catalysts prepared with IWI approach can be altered by using different Pt precursor solutions.

  2. XAFS Study of HY Zeolite Supported Pt Nanoparticle Catalysts Prepared With Different Methods

    SciTech Connect

    Li Zhongrui; Yan Wensheng; Wei Shiqiang

    2007-02-02

    The electronic and geometric effects induced by preparation methods on small platinum particles supported on high surface-area zeolite HY were studied by X-ray absorption fine structure (XAFS) spectroscopy. Pt/HY catalysts were prepared by a variety of techniques, including incipient wetness impregnation (IWI) and vapor-phase impregnation (VPI). Results of EXAFS for series of equal loadings of Pt prepared by IWI and VPI showed that the Pt clusters resulting from the VPI preparation had lower Pt--Pt coordination and higher coordination to the zeolite lattice oxygen. The electronic properties and structures of Pt/HY catalysts prepared with IWI approach can be altered by using different Pt precursor solutions.

  3. Nanostructured polypyrrole/carbon composite as Pt catalyst support for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Zhao, Hongbin; Li, Lei; Yang, Jun; Zhang, Yongming

    A novel catalyst support was synthesized by in situ chemical oxidative polymerization of pyrrole on Vulcan XC-72 carbon in naphthalene sulfonic acid (NSA) solution containing ammonium persulfate as oxidant at room temperature. Pt nanoparticles with 3-4 nm size were deposited on the prepared polypyrrole-carbon composites by chemical reduction method. Scanning electron microscopy and transmission electron microscopy measurements showed that Pt particles were homogeneously dispersed in polypyrrole-carbon composites. The Pt nanoparticles-dispersed catalyst composites were used as anodes of fuel cells for hydrogen and methanol oxidation. Cyclic voltammetry measurements of hydrogen and methanol oxidation showed that Pt nanoparticles deposited on polypyrrole-carbon with NSA as dopant exhibit better catalytic activity than those on plain carbon. This result might be due to the higher electrochemically available surface areas, electronic conductivity and easier charge-transfer at polymer/carbon particle interfaces allowing a high dispersion and utilization of deposited Pt nanoparticles.

  4. Catalytically Active and Spectator Ce(3+) in Ceria-Supported Metal Catalysts.

    PubMed

    Kopelent, René; van Bokhoven, Jeroen A; Szlachetko, Jakub; Edebeli, Jacinta; Paun, Cristina; Nachtegaal, Maarten; Safonova, Olga V

    2015-07-20

    Identification of active species and the rate-determining reaction steps are crucial for optimizing the performance of oxygen-storage materials, which play an important role in catalysts lowering automotive emissions, as electrode materials for fuel cells, and as antioxidants in biomedicine. We demonstrated that active Ce(3+) species in a ceria-supported platinum catalyst during CO oxidation are short-lived and therefore cannot be observed under steady-state conditions. Using time-resolved resonant X-ray emission spectroscopy, we quantitatively correlated the initial rate of Ce(3+) formation under transient conditions to the overall rate of CO oxidation under steady-state conditions and showed that ceria reduction is a kinetically relevant step in CO oxidation, whereas a fraction of Ce(3+) was present as spectators. This approach can be applied to various catalytic processes involving oxygen-storage materials and reducible oxides to distinguish between redox and nonredox catalytic mechanisms.

  5. Resin-supported catalysts for CuAAC click reactions in aqueous or organic solvents.

    PubMed

    Presolski, Stanislav I; Mamidyala, Sreeman K; Manzenrieder, Florian; Finn, M G

    2012-10-01

    The copper-catalyzed azide-alkyne cycloaddition click reaction is a valuable process for the synthesis of libraries of drug candidates, derivatized polymers and materials, and a wide variety of other functional molecules. In some circumstances, the removal of the copper catalyst is both necessary and inconvenient. We describe here two immobilized forms of a Cu-binding ligand that has been shown to accelerate triazole formation under many different conditions, using different resin supports that are appropriate for aqueous or organic solvents. Copper leaching from these resins was modest, allowing them to be reused in many reaction/filtration cycles without recharging with metal ion. The utility of this catalyst form was demonstrated in the convenient synthesis of 20 N-acetylgalactosamine derivatives for biological testing. PMID:22946559

  6. Amination of aryl halides with aqueous ammonia catalyzed by green recyclable poly(4-vinylpyridine)-supported copper iodide nanoparticles catalyst.

    PubMed

    Albadi, Jalal; Shiran, Jafar Abbasi; Mansournezhad, Azam

    2014-01-01

    In this research efficient procedure for the amination of aryl halides with aqueous ammonia in the presence of poly(4-vinylpyridine)-supported copper iodide nanoparticles catalyst is reported. A wide range of aryl halides including aryl iodides and aryl bromides are converted into the corresponding aniline derivatives. The experimental procedure with poly(4-vinylpyridine)-supported copper iodide nanoparticles catalyst is quite straightforward and it is recycled up to 3 consecutive runs by simple filtration. PMID:25551733

  7. Development of Pd and Pd-Co catalysts supported on multi-walled carbon nanotubes for formic acid oxidation

    NASA Astrophysics Data System (ADS)

    Morales-Acosta, D.; Ledesma-Garcia, J.; Godinez, Luis A.; Rodríguez, H. G.; Álvarez-Contreras, L.; Arriaga, L. G.

    Pd-Co and Pd catalysts were prepared by the impregnation synthesis method at low temperature on multi-walled carbon nanotubes (MWCNTs). The nanotubes were synthesized by spray pyrolysis technique. Both catalysts were obtained with high homogeneous distribution and particle size around 4 nm. The morphology, composition and electrocatalytic properties were investigated by transmission electron microscopy, scanning electron microscopy-energy dispersive X-ray analysis, X-ray diffraction and electrochemical measurements, respectively. The electrocatalytic activity of Pd and PdCo/MWCNTs catalysts was investigated in terms of formic acid electrooxidation at low concentration in H 2SO 4 aqueous solution. The results obtained from voltamperometric studies showed that the current density achieved with the PdCo/MWCNTs catalyst is 3 times higher than that reached with the Pd/MWCNTs catalyst. The onset potential for formic acid electrooxidation on PdCo/MWCNTs electrocatalyst showed a negative shift ca. 50 mV compared with Pd/MWCNTs.

  8. Hydrogenation of succinic acid to 1,4-butanediol over rhenium catalyst supported on copper-containing mesoporous carbon.

    PubMed

    Hong, Ung Gi; Park, Hai Woong; Lee, Joongwon; Hwang, Sunhwan; Kwak, Jimin; Yi, Jongheop; Song, In Kyu

    2013-11-01

    Copper-containing mesoporous carbon (Cu-MC) was prepared by a single-step surfactant-templating method. For comparison, copper-impregnated mesoporous carbon (Cu/MC) was also prepared by a surfactant-templating method and a subsequent impregnation method. Rhenium catalysts supported on copper-containing mesoporous carbon and copper-impregnated mesoporous carbon (Re/Cu-MC and Re/Cu/MC, respectively) were then prepared by an incipient wetness method, and they were applied to the liquid-phase hydrogenation of succinic acid to 1,4-butanediol (BDO). It was observed that copper in the Re/Cu-MC catalyst was well incorporated into carbon framework, resulting in higher surface area and larger pore volume than those of Re/Cu/MC catalyst. Therefore, Re/Cu-MC catalyst showed higher copper dispersion than Re/Cu/MC catalyst, although both catalysts retained the same amounts of copper and rhenium. In the liquid-phase hydrogenation of succinic acid to BDO, Re/Cu-MC catalyst showed a better catalytic activity than Re/Cu/MC catalyst. Fine dispersion of copper in the Re/Cu-MC catalyst was responsible for its enhanced catalytic activity. PMID:24245272

  9. Hydrogenation of succinic acid to 1,4-butanediol over rhenium catalyst supported on copper-containing mesoporous carbon.

    PubMed

    Hong, Ung Gi; Park, Hai Woong; Lee, Joongwon; Hwang, Sunhwan; Kwak, Jimin; Yi, Jongheop; Song, In Kyu

    2013-11-01

    Copper-containing mesoporous carbon (Cu-MC) was prepared by a single-step surfactant-templating method. For comparison, copper-impregnated mesoporous carbon (Cu/MC) was also prepared by a surfactant-templating method and a subsequent impregnation method. Rhenium catalysts supported on copper-containing mesoporous carbon and copper-impregnated mesoporous carbon (Re/Cu-MC and Re/Cu/MC, respectively) were then prepared by an incipient wetness method, and they were applied to the liquid-phase hydrogenation of succinic acid to 1,4-butanediol (BDO). It was observed that copper in the Re/Cu-MC catalyst was well incorporated into carbon framework, resulting in higher surface area and larger pore volume than those of Re/Cu/MC catalyst. Therefore, Re/Cu-MC catalyst showed higher copper dispersion than Re/Cu/MC catalyst, although both catalysts retained the same amounts of copper and rhenium. In the liquid-phase hydrogenation of succinic acid to BDO, Re/Cu-MC catalyst showed a better catalytic activity than Re/Cu/MC catalyst. Fine dispersion of copper in the Re/Cu-MC catalyst was responsible for its enhanced catalytic activity.

  10. Mesoporous carbon-supported Pd nanoparticles with high specific surface area for cyclohexene hydrogenation: Outstanding catalytic activity of NaOH-treated catalysts

    NASA Astrophysics Data System (ADS)

    Puskás, R.; Varga, T.; Grósz, A.; Sápi, A.; Oszkó, A.; Kukovecz, Á.; Kónya, Z.

    2016-06-01

    Extremely high specific surface area mesoporous carbon-supported Pd nanoparticle catalysts were prepared with both impregnation and polyol-based sol methods. The silica template used for the synthesis of mesoporous carbon was removed by both NaOH and HF etching. Pd/mesoporous carbon catalysts synthesized with the impregnation method has as high specific surface area as 2250 m2/g. In case of NaOH-etched impregnated samples, the turnover frequency of cyclohexene hydrogenation to cyclohexane at 313 K was obtained ~ 14 molecules • site- 1 • s- 1. The specific surface area of HF-etched samples was higher compared to NaOH-etched samples. However, catalytic activity was ~ 3-6 times higher on NaOH-etched samples compared to HF-etched samples, which can be attributed to the presence of sodium and surface hydroxylgroups of the catalysts etched with NaOH solution.

  11. Particle shape optimization by changing from an isotropic to an anisotropic nanostructure: preparation of highly active and stable supported Pt catalysts in microemulsions.

    PubMed

    Parapat, Riny Y; Wijaya, Muliany; Schwarze, Michael; Selve, Sören; Willinger, Marc; Schomäcker, Reinhard

    2013-01-21

    We recently introduced a new method to synthesize an active and stable Pt catalyst, namely thermo-destabilization of microemulsions (see R. Y. Parapat, V. Parwoto, M. Schwarze, B. Zhang, D. S. Su and R. Schomäcker, J. Mater. Chem., 2012, 22 (23), 11605-11614). We are able to produce Pt nanocrystals with a small size (2.5 nm) of an isotropic structure i.e. truncated octahedral and deposit them well on support materials. Although we have obtained good results, the performance of the catalyst still needed to be improved and optimized. We followed the strategy to retain the small size but change the shape to an anisotropic structure of Pt nanocrystals which produces more active sites by means of a weaker reducing agent. We found that our catalysts are more active than those we reported before and even show the potential to be applied in a challenging reaction such as hydrogenation of levulinic acid. PMID:23235742

  12. Effects of surface and structural properties of carbons on the behavior of carbon-supported molybdenum catalysts

    SciTech Connect

    Solar, J.M.; Debryshire, F.J.; De Beer, V.H.J.; Radovic, L.R. Eindhoven Univ. of Technology )

    1991-06-01

    Previous work on carbon-supported hydrodesulfurization (HDS) catalysts has led to the general realization that the nature of the support has a very significant influence on catalytic activity. A commercial carbon black was subjected to oxidative and/or thermal treatment to modify its surface and structural properties. These were thoroughly examined using temperature-programmed desorption, X-ray diffraction, titrations, and electrophoresis. The various carbon-supported molybdenum catalysts were prepared by equilibrium adsorption and incipient wetness impregnation using four different catalyst precursors. The catalytic activity in thiophene HDS and Fischer-Tropsch synthesis was determined in fixed-bed flow reactors connected on-line to gas chromatographs. The catalysts were characterized by X-ray photoelectron spectroscopy. It is concluded that two conflicting requirements complicate the preparation of highly active (i.e., highly dispersed) molybdenum species on carbon surfaces. On one hand, the introduction of oxygen functional groups provides anchoring sites for catalyst precursor adsorption and thus the potential for its high initial dispersion. On the other hand, this also renders the support surface negatively charged over a wide range of pH conditions. At very low pH conditions, below the isoelectric point of the support, when the attractive forces prevail between the Mo anions and the positively charged carbon surface. Mo polymerization is thought to contribute to catalyst agglomeration. No significant correlation between structural parameters of the support and catalytic activity was found.

  13. Experimental (XAS STEM TPR and XPS) and Theoretical (DFT) Characterization of Supported Rhenium Catalysts

    SciTech Connect

    S Bare; S Kelly; F Vila; D Boldingh; E Karapetrova; J Kas; G Mickelson; F Modica; N Yang; J Rehr

    2011-12-31

    A high surface area supported Re-based catalyst, fundamental to heterogeneous catalysis, is studied in the oxidic and reduced states using a combination of experimental (XAFS, STEM, TPR, and XPS) and theoretical (DFT and X-ray spectroscopy simulations) approaches. In the calcined dried catalyst, the Re species is present as an isolated trioxo(oxoaluminate) Re(VII) species. The temperature at which the Re undergoes reduction is a function of the hydrogen partial pressure and temperature ramp rate, but the maximum rate of reduction occurs in the range 300-400 C. Following reduction at 500 or 700 C in dry hydrogen, the Re is present as a mixture of species: unreduced trioxo(oxoaluminate) Re(VII) species, Re nanoclusters, and isolated Re atoms. By using a multifaceted approach, it is apparent that the majority species is an isolated Re adatom bound to the alumina support. DFT calculations identify several likely adsorption sites for these Re adatoms on the [110] surface of {gamma}-Al{sub 2}O{sub 3}. The final extended X-ray absorption fine structure (EXAFS) model taking into account these three species is used to identify the dominant adsorption site for Re on the alumina surface. FEFF8 X-ray absorption near-edge spectroscopy (XANES) calculations of unsupported and alumina-supported Re nanoclusters provide interpretation of the shape and edge position of the Re L{sub 3}-edge XANES after reduction. The presence of moisture during reduction stronly affects the mobility of the Re on the alumina leading to agglomeration. Subsequent air exposure of a reduced catalyst readily reoxidizes the reduced Re. The power of using a combination of analysis tools provides insight into the behavior of dispersed Re on supported alumina under oxidizing and reducing conditions relevant to heterogeneous catalysis.

  14. Self-supported chiral titanium cluster (SCTC) as a robust catalyst for the asymmetric cyanation of imines under batch and continuous flow at room temperature.

    PubMed

    Seayad, Abdul M; Ramalingam, Balamurugan; Chai, Christina L L; Li, Chuanzhao; Garland, Marc V; Yoshinaga, Kazuhiko

    2012-04-27

    A robust heterogeneous self-supported chiral titanium cluster (SCTC) catalyst and its application in the enantioselective imine-cyanation/Strecker reaction is described under batch and continuous processes. One of the major hurdles in the asymmetric Strecker reaction is the lack of availability of efficient and reusable heterogeneous catalysts that work at room temperature. We exploited the readily hydrolyzable nature of titanium alkoxide to synthesize a self-supported chiral titanium cluster (SCTC) catalyst by the controlled hydrolysis of a preformed chiral titanium-alkoxide complex. The isolated SCTC catalysts were remarkably stable and showed up to 98 % enantioselectivity (ee) with complete conversion of the imine within 2 h for a wide variety of imines at room temperature. The heterogeneous catalysts were recyclable more than 10 times without any loss in activity or selectivity. The robustness, high performance, and recyclability of the catalyst enabled it to be used in a packed-bed reactor to carry out the cyanation under continuous flow. Up to 97 % ee and quantitative conversion with a throughput of 45 mg h(-1) were achieved under optimized flow conditions at room temperature in the case of benzhydryl imine. Furthermore, a three-component Strecker reaction was performed under continuous flow by using the corresponding aldehydes and amines instead of the preformed imines. A good product distribution was obtained for the formation of amino nitriles with ee values of up to 98 %. Synthetically useful ee values were also obtained for challenging α-branched aliphatic aldehyde by using the three-component continuous Strecker reaction.

  15. Influence of the support on the activity and selectivity of high dispersion Fe catalysts in the Fischer-Tropsch reaction

    SciTech Connect

    Cagnoli, M.V.; Marchetti, S.G.; Gallegos, N.G.; Alvarez, A.M.; Mercader, R.C.; Yeramian, A.A. Facultad de Ciencias Exactas, La Plata )

    1990-05-01

    In order to study the influence of the support on high dispersion catalysts used for the CO hydrogenation reaction, two catalysts, Fe/SiO{sub 2} and Fe/Al{sub 2}O{sub 3}, were prepared by the dry impregnation method. Selective chemisorption of CO, volumetric oxidation, and Moessbauer spectroscopy were used to determine the Fe species present as well as the metallic crystal size, the degree of dispersion, and the reduction percentage. The presence of small Fe{sup 0} crystallites with high dispersion was determined in both catalysts. Reaction rates were measured in a differential reactor and significant differences, about one order of magnitude less for the Al{sub 2}O{sub 3} than for the SiO{sub 2} supported catalysts, were found in the methane turnover frequencies. They are attributed to the interaction between the metal and the supports. The selectivity differences is also discussed in connection with distinct surface properties.

  16. Partial Oxidation of Hydrocarbons in a Segmented Bed Using Oxide-based Catalysts and Oxygen-conducting Supports

    NASA Astrophysics Data System (ADS)

    Smith, Mark W.

    Two objectives for the catalytic reforming of hydrocarbons to produce synthesis gas are investigated herein: (1) the effect of oxygen-conducting supports with partially substituted mixed-metal oxide catalysts, and (2) a segmented bed approach using different catalyst configurations. Excess carbon deposition was the primary cause of catalyst deactivation, and was the focus of the experiments for both objectives. The formation and characterization of deposited carbon was examined after reaction for one of the selected catalysts to determine the quantity and location of the carbon on the catalyst surface leading to deactivation. A nickel-substituted barium hexaaluminate (BNHA), with the formula BaAl 11.6Ni0.4O18.8, and a Rh-substituted lanthanum zirconate pyrochlore (LCZR) with the formula La1.89Ca0.11 Zr1.89Rh0.11, were combined with two different doped ceria supports. These supports were gadolinium-doped ceria (GDC) and zirconium-doped ceria (ZDC). The active catalyst phases were combined with the supports in different ratios using different synthesis techniques. The catalysts were characterized using several different techniques and were tested under partial oxidation (POX) of n-tetradecane (TD), a diesel fuel surrogate. It was found that the presence of GDC and ZDC reduced the formation of carbon for both catalysts; the optimal ratio of catalyst to support was different for the hexaaluminate and the pyrochlore; a loading of 20 wt% of the pyrochlore with ZDC produced the most stable performance in the presence of common fuel contaminants (>50 h); and, the incipient wetness impregnation synthesis method of applying the active catalyst to the support produced more stable product yields than the catalyst prepared by a solid-state mixing technique. Different hexaaluminate and pyrochlore catalysts were used in different configurations in a segmented bed approach. The first strategy was to promote the indirect reforming mechanism by placing a combustion catalyst in the

  17. Environmentally Friendly Carbon-Preserving Recovery of Noble Metals From Supported Fuel Cell Catalysts.

    PubMed

    Latsuzbaia, R; Negro, E; Koper, G J M

    2015-06-01

    The dissolution of noble-metal catalysts under mild and carbon-preserving conditions offers the possibility of in situ regeneration of the catalyst nanoparticles in fuel cells or other applications. Here, we report on the complete dissolution of the fuel cell catalyst, platinum nanoparticles, under very mild conditions at room temperature in 0.1 M HClO4 and 0.1 M HCl by electrochemical potential cycling between 0.5-1.1 V at a scan rate of 50 mV s(-1) . Dissolution rates as high as 22.5 μg cm(-2) per cycle were achieved, which ensured a relatively short dissolution timescale of 3-5 h for a Pt loading of 0.35 mg cm(-2) on carbon. The influence of chloride ions and oxygen in the electrolyte on the dissolution was investigated, and a dissolution mechanism is proposed on the basis of the experimental observations and available literature results. During the dissolution process, the corrosion of the carbon support was minimal, as observed by X-ray photoelectron spectroscopy (XPS).

  18. Environmentally Friendly Carbon-Preserving Recovery of Noble Metals From Supported Fuel Cell Catalysts.

    PubMed

    Latsuzbaia, R; Negro, E; Koper, G J M

    2015-06-01

    The dissolution of noble-metal catalysts under mild and carbon-preserving conditions offers the possibility of in situ regeneration of the catalyst nanoparticles in fuel cells or other applications. Here, we report on the complete dissolution of the fuel cell catalyst, platinum nanoparticles, under very mild conditions at room temperature in 0.1 M HClO4 and 0.1 M HCl by electrochemical potential cycling between 0.5-1.1 V at a scan rate of 50 mV s(-1) . Dissolution rates as high as 22.5 μg cm(-2) per cycle were achieved, which ensured a relatively short dissolution timescale of 3-5 h for a Pt loading of 0.35 mg cm(-2) on carbon. The influence of chloride ions and oxygen in the electrolyte on the dissolution was investigated, and a dissolution mechanism is proposed on the basis of the experimental observations and available literature results. During the dissolution process, the corrosion of the carbon support was minimal, as observed by X-ray photoelectron spectroscopy (XPS). PMID:25959077

  19. Materials derived from synthetic organo-clay complexes as novel hydrodesulfurization catalyst supports.

    SciTech Connect

    Carrado, K. A.; Marshall, C. L.; Brenner, J. R.; Song, K.; Chemistry

    1998-01-01

    A series of mesoporous synthetic organo-clay complexes has been prepared by hydrothermal crystallization of gels containing silica, magnesium hydroxide, lithium fluoride, and an organic of choice, followed by calcination to remove the organics. The organic serves to impart structural order to the inorganic network that does not disappear upon its removal. The choice of organic modifier can be used to control the pore structure of the resulting mesoporous materials. Pore size distributions appear in some cases to be related to the type of polymer packing upon clay formation in situ. These materials are being explored as Co Mo hydrodesulfurization (HDS) catalyst supports. Preliminary HDS results show performance commensurate with commercial catalysis for the mesoporous materials when a model heavy oil feed is used (1 wt% S as dibenzothiophene in hexadecane). Temperature programmed reduction experiments of used catalysts suggest a relationship between HDS activity and ease of reduction of the CoMo/clay catalysts. Reactivity of the CoMo clay also correlates with the percentage of mesopore volume remaining after reaction. Losses in mesopore volume are largely recouped by recalcination, suggesting that reversible coke is formed inside the pore structure of clays faster than inside conventional alumina.

  20. Alumina-supported sulfided catalysts: V. Effect of P and F on the catalytic activity of hydrodesulfurization sulfided catalysts

    SciTech Connect

    Startsev, A.N.; Klimov, O.V.; Kalinkin, A.V.; Mastikhin, V.M.

    1994-07-01

    Phosphorus and flourine additives incorporated into the Ni-Mo/Al{sub 2}O{sub 3} sulfided catalysts on various stages of their preparation considerably lower the activation energy of the thiophene hydrogenolysis reaction. The interaction of promoting additives with the active component of the hydrodesulfurization catalyst is proved by XPS and {sup 31}P NMR. The effect of additives is discussed in terms of a synchronous mechanism involving interaction of reacting molecules in the coordination sphere of a bimetallic sulfide compound.

  1. Cobalt salophen complex supported on imidazole functionalized magnetic nanoparticles as a recoverable catalyst for oxidation of alkenes

    NASA Astrophysics Data System (ADS)

    Afshari, Mozhgan; Gorjizadeh, Maryam; Nazari, Simin; Naseh, Mohammad

    2014-08-01

    A new magnetically separable catalyst consisting of Co(II) salophen complex covalently supported on imidazole functionalized silica coated cobalt ferrite was prepared. The synthesized catalyst was characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and Fourier transform infrared (FT-IR). The immobilized catalyst was shown to be an efficient heterogeneous catalyst for the oxidation of some alkenes using hydrogen peroxide (H2O2) as oxidant. The catalyst could be easily and efficiently isolated from the final product solution by magnetic decantation and be reused for 5 consecutive reactions without showing any significant activity degradation.

  2. Novel growth method of carbon nanotubes using catalyst-support layer developed by alumina grit blasting.

    PubMed

    Watanabe, Hiromichi; Ishii, Juntaro; Ota, Keishin

    2016-08-19

    We propose an efficient method of growing carbon nanotube (CNT) arrays on a variety of metals, alloys, and carbon materials using chemical vapor deposition (CVD) assisted by a simple surface treatment of the materials. The main feature of this method is the application of grit blasting with fine alumina particles to the development of a catalyst-support layer required for the growth of CNTs on various conductive materials, including ultra-hard metals such as tungsten. Auger electron spectroscopy shows that grit blasting can form a non-continuous layer where alumina nanoparticles are embedded as residues in the blasting media left on the treated surfaces. This work reveals that such a non-continuous alumina layer can behave as the catalyst-support layer, which is generally prepared by sputter or a vacuum evaporation coating process that considerably restricts the practical applications of CNTs. We have attempted to grow CNTs on grit-blasted substrates of eighteen conventionally used conductive materials using CVD together with a floating iron catalyst. The proposed method was successful in growing multi-walled CNT arrays on the grit-blasted surfaces of all the examined materials, demonstrating its versatility. Furthermore, we found that the group IV metal oxide films thermally grown on the as-received substrates can support the catalytic activity of iron nanoparticles in the CVD process just as well as the alumina film developed by grit blasting. Spectral emissivity of the CNT arrays in the visible and infrared wavelength ranges has been determined to assess the applicability of the CNT arrays as a black coating media. PMID:27389659

  3. Novel growth method of carbon nanotubes using catalyst-support layer developed by alumina grit blasting

    NASA Astrophysics Data System (ADS)

    Watanabe, Hiromichi; Ishii, Juntaro; Ota, Keishin

    2016-08-01

    We propose an efficient method of growing carbon nanotube (CNT) arrays on a variety of metals, alloys, and carbon materials using chemical vapor deposition (CVD) assisted by a simple surface treatment of the materials. The main feature of this method is the application of grit blasting with fine alumina particles to the development of a catalyst-support layer required for the growth of CNTs on various conductive materials, including ultra-hard metals such as tungsten. Auger electron spectroscopy shows that grit blasting can form a non-continuous layer where alumina nanoparticles are embedded as residues in the blasting media left on the treated surfaces. This work reveals that such a non-continuous alumina layer can behave as the catalyst-support layer, which is generally prepared by sputter or a vacuum evaporation coating process that considerably restricts the practical applications of CNTs. We have attempted to grow CNTs on grit-blasted substrates of eighteen conventionally used conductive materials using CVD together with a floating iron catalyst. The proposed method was successful in growing multi-walled CNT arrays on the grit-blasted surfaces of all the examined materials, demonstrating its versatility. Furthermore, we found that the group IV metal oxide films thermally grown on the as-received substrates can support the catalytic activity of iron nanoparticles in the CVD process just as well as the alumina film developed by grit blasting. Spectral emissivity of the CNT arrays in the visible and infrared wavelength ranges has been determined to assess the applicability of the CNT arrays as a black coating media.

  4. Beneficial effects of rhodium and tin oxide on carbon supported platinum catalysts for ethanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Soares, Layciane A.; Morais, Claudia; Napporn, Teko W.; Kokoh, K. Boniface; Olivi, Paulo

    2016-05-01

    This work investigates ethanol electrooxidation on Pt/C, PtxRhy/C, Pt-SnO2/C, and PtxRhy-SnO2/C catalysts synthesized by the Pechini and microwave-assisted polyol methods. The catalysts are characterized by energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), and X-ray diffraction (XRD) techniques. The electrochemical properties of these electrode materials are examined by cyclic voltammetry and chronoamperometry experiments in acid medium. The products obtained during ethanol electrolysis are identified by high performance liquid chromatography (HPLC). The adsorbed intermediates are evaluated by an in situ reflectance Infrared Spectroscopy technique combined with cyclic voltammetry. Catalysts performance in a direct ethanol fuel cell (DEFC) is also assessed. The electrical performance of the electrocatalysts in a single DEFC at 80 °C decreases in the following order Pt70Rh30SnO2 > Pt80Rh20SnO2 > Pt60Rh40SnO2 ∼ PtSnO2 > PtxRhy ∼ Pt, showing that the presence of SnO2 enhances the ability of Pt to catalyze ethanol electrooxidation.

  5. Growth of semiconducting single-walled carbon nanotubes by using ceria as catalyst supports.

    PubMed

    Qin, Xiaojun; Peng, Fei; Yang, Feng; He, Xiaohui; Huang, Huixin; Luo, Da; Yang, Juan; Wang, Sheng; Liu, Haichao; Peng, Lianmao; Li, Yan

    2014-02-12

    The growth of semiconducting single-walled carbon nanotubes (s-SWNTs) on flat substrates is essential for the application of SWNTs in electronic and optoelectronic devices. We developed a flexible strategy to selectively grow s-SWNTs on silicon substrates using a ceria-supported iron or cobalt catalysts. Ceria, which stores active oxygen, plays a crucial role in the selective growth process by inhibiting the formation of metallic SWNTs via oxidation. The so-produced ultralong s-SWNT arrays are immediately ready for building field effect transistors. PMID:24392872

  6. Metal (Fe, Co, Ni) supported on different aluminas as Fischer-Tropsch catalyst

    NASA Astrophysics Data System (ADS)

    Dahlan, Marsih, I. Nyoman; Makertihartha, I. G. B. N.; Praserthdam, Piyasan; Panpranot, Joongjai; Ismunandar

    2015-09-01

    This research aimed to compare the physico-chemical properties of the same metal M (M = iron, cobalt, nickel) supported on aluminas with different morphology and pore size as Fischer-Tropsch catalyst. The aluminas applied as support were alumina synthesized through hydrothermal process, alumina formed by pretreatment of catapal and commercial alumina which named as Ahy, Aca, and Aco respectively. Ahy has uniform morphology of nanotubes while Aca and Aco showed non-uniform morphology of particle lumps. The particle lumps of Aca were larger than those of Aco. Ahy, Aca, and Aco respectively has average pore diameter of 2.75, 2.86 and 2.9 nm. Metals were deposited on the supports by incipient-wetness impregnation method. The catalysts were characterized by XRD, H2-TPR, and H2 chemisorption. Catalyst acitivity test for Fischer-Tropsch reaction was carried out in a micro reactor at 200 °C and 1 atm, and molar ratio of H2/CO = 2:1. The metal oxide particle size increased in the order M/Aco < M/Aca < M/Ahy. The catalysts reducibility also increased according to the order M/Aco < M/Aca < M/Ahy suggesting that the larger metal oxide particles are more reducible. The number of active site was not proportional to the reducibility because during the reduction, larger metal oxide particles were converted into larger metal particles. On the other hand, the number of active sites was inversely proportional to the particle sizes. The number of active site increased in the order M/Ahy < M/Aco < M/Aca. The catalytic activity also increased in the following order M/Ahy < M/Aco < M/Aca. The activity per active site increased according to the order M/Aca < M/Aco < M/Ahy meaning that for M/Ahy, a little increase in active site will lead to a significance increase in catalytic activity. It showed that Ahy has potential for the better support.

  7. Metal (Fe, Co, Ni) supported on different aluminas as Fischer-Tropsch catalyst

    SciTech Connect

    Dahlan; Marsih, I. Nyoman Ismunandar; Makertihartha, I. G. B. N.; Praserthdam, Piyasan; Panpranot, Joongjai

    2015-09-30

    This research aimed to compare the physico-chemical properties of the same metal M (M = iron, cobalt, nickel) supported on aluminas with different morphology and pore size as Fischer-Tropsch catalyst. The aluminas applied as support were alumina synthesized through hydrothermal process, alumina formed by pretreatment of catapal and commercial alumina which named as Ahy, Aca, and Aco respectively. Ahy has uniform morphology of nanotubes while Aca and Aco showed non-uniform morphology of particle lumps. The particle lumps of Aca were larger than those of Aco. Ahy, Aca, and Aco respectively has average pore diameter of 2.75, 2.86 and 2.9 nm. Metals were deposited on the supports by incipient-wetness impregnation method. The catalysts were characterized by XRD, H{sub 2}-TPR, and H{sub 2} chemisorption. Catalyst acitivity test for Fischer-Tropsch reaction was carried out in a micro reactor at 200 °C and 1 atm, and molar ratio of H{sub 2}/CO = 2:1. The metal oxide particle size increased in the order M/Aco < M/Aca < M/Ahy. The catalysts reducibility also increased according to the order M/Aco < M/Aca < M/Ahy suggesting that the larger metal oxide particles are more reducible. The number of active site was not proportional to the reducibility because during the reduction, larger metal oxide particles were converted into larger metal particles. On the other hand, the number of active sites was inversely proportional to the particle sizes. The number of active site increased in the order M/Ahy < M/Aco < M/Aca. The catalytic activity also increased in the following order M/Ahy < M/Aco < M/Aca. The activity per active site increased according to the order M/Aca < M/Aco < M/Ahy meaning that for M/Ahy, a little increase in active site will lead to a significance increase in catalytic activity. It showed that Ahy has potential for the better support.

  8. High Selectivity of Supported Ru Catalysts in the Selective CO Methanation—Water Makes the Difference.

    PubMed

    Abdel-Mageed, Ali M; Eckle, Stephan; Behm, R Jürgen

    2015-07-15

    The selectivity for CO methanation is a decisive aspect for the practical application of the methanation reaction for the removal of CO from CO2-rich H2 fuel gases produced via hydrocarbon reforming. We show that increasing the water content in the feed gas, up to technically relevant levels of 30%, significantly increases the selectivity of supported Ru catalysts compared with operation in (almost) dry gas, while in operando EXAFS measurements reveal a gradual decrease in the Ru particle size with increasing amounts of water in the gas feed. Consequences of these findings and related IR spectroscopic data for the mechanistic understanding and practical applications are outlined. PMID:26115352

  9. Green Chemical Catalyst Supported on S-Terminated GaN(0001)

    NASA Astrophysics Data System (ADS)

    Nishiwaki, Nagatoshi; Shimoda, Masahiko; Konishi, Tomoya; Tsukamoto, Shiro

    2009-05-01

    A novel function of nitride-based semiconductor is successfully developed for organic synthesis, in which palladium supported on the surface of sulfur-terminated GaN(0001) serves as a unique green chemical catalyst. It efficiently catalyzes Heck reaction with simple manipulations and its catalytic activity is retained for several repeat reactions. Moreover, it is easily reused without any special treatment. A plausible mechanism for Pd adsorption is provided for the first time; the -SH groups on the surface of the substrate attract Pd2+, and reduce to Pd0. The presence of Pd0 on the surface was confirmed by X-ray photoelectron spectroscopy measurements.

  10. Catalytic Oxidation of Hydroquinone in Aqueous Solution over Bimetallic PdCo Catalyst Supported on Carbon: Effect of Interferents and Electrochemical Measurement.

    PubMed

    Ye, Weichun; Shi, Xuezhao; Zhang, Yane; Hong, Chenghui; Wang, Chunming; Budzianowski, Wojciech M; Xue, Desheng

    2016-02-10

    Palladium-cobalt alloy nanoparticles were synthesized and dispersed on carbon black support, aiming to have a less expensive catalyst. Catalytic behaviors of PdCo/C catalyst for the oxidation of hydroquinone (HQ) with H2O2 in aqueous solution were evaluated using high-performance liquid chromatography (HPLC). The results revealed that PdCo/C catalyst had better catalytic activity than an equal amount of commercial Pd/C and Co/C catalysts because of the d-band hybridization between Pd and Co. The effects of pH value, solvent, and various interferents including inorganic and organic compounds on the efficiency of HQ oxidation were further investigated. Furthermore, on the basis of mixed potential theory, comprehensive electrochemical measurements such as the open-circuit potential-time (OCP-t) technique and Tafel plot were efficient to assess the catalytic activity of the catalyst, and the results obtained were consistent with those of HPLC measurements. The efficient HQ oxidation was closely associated with the catalytic activity of PdCo nanoparticles because they accelerated the electron-transfer process and facilitated the generation of OH radicals. PMID:26788813

  11. Comparison of walking parameters obtained from the young, elderly and adults with support.

    PubMed

    Acharya, U Rajendra; Sree, S Vinitha; Lim, Choo Min; Ang, Peng Chuan Alvin; Sekine, Masaki; Tamura, Toshiyo

    2013-01-01

    Data mining techniques are highly useful in the study of various medical signals and images in order to obtain useful information to better predict the diagnosis or prognosis or treatment options for the patient. Study of the human walking pattern helps us understand the variability of motion during activities such as high performance walking and normal walking. A comparison of the parameters quantifying this variability in motion in normal young and elderly subjects and the subjects who need support will aid in better understanding of the relationship among walking patterns, age and disabilities. In this study, we measured the tri-axial acceleration along three directions: anteroposterior, lateral and vertical. We also measured gyrational pitch, roll and yaw. These parameters were obtained using sensors attached to the back, left thigh and right thigh of the three classes of subjects (normal, elderly and adults with support) during the three types of exercises: 10-m normal walk, 10-m high performance walk and stepping. These recorded signals were then subjected to wavelet packet decomposition, and three entropies, namely approximate entropy and two bispectral entropies, were obtained from the resultant wavelet coefficients. On analysing these entropies, we could observe the following: (1) the entropy steadily decreases with the increase in age and with the presence of impairments, and (2) the entropy decreases among all the three types of exercises, namely normal walking and high performance walking. We feel that the results of this work can help in the design of supporting devices for elderly subjects. PMID:22394081

  12. Surface properties of palladium catalysts supported on ternary ZrO2-Al2O3-WOx oxides prepared by the sol-gel method: Study of the chemical state of the support

    NASA Astrophysics Data System (ADS)

    Barrera, A.; Montoya, J. A.; del Angel, P.; Navarrete, J.; Cano, M. E.; Tzompantzi, F.; López-Gaona, A.

    2012-08-01

    The surface properties of Pd and Pd-Pt catalysts supported on binary ZrO2-WOx and ternary ZrO2-Al2O3-WOx oxides prepared by the sol-gel method were studied. Special attention was paid to the study of the texture of the catalysts as well as the chemical state of tungstated zirconia and tungstated zirconia promoted with alumina in the palladium catalysts. The catalysts were tested in the isomerization of n-hexane and were characterized by N2 physisorption, XRD, TPR, Raman spectroscopy, XPS and FT-IR of adsorbed pyridine. The catalysts had bimodal pore size distributions with mesopores in the range 55-70 Å and macropores of 1000 Å in diameter. The catalysts had a surface WOx coverage (4.4-6.0 W nm-2) lower than that of the theoretical monolayer (7.0 W nm-2). A lower acidity of the ternary ZrO2-Al2O3-WOx oxide as compared to the binary ZrO2-WOx oxide was found. Higher activity in the isomerisation of n-hexane was obtained in the Pd-Pt catalysts supported on ternary ZrAlW oxides prepared by sol-gel that is correlated with the coexistence on the surface of W4+ (WO2) or W0 and W6+ (Al2(WO4)3) species, ZrO2 in the tetragonal phase and a high amount of ZrOx suboxides species in a low oxidation state (Zr3+ and Zr2+).

  13. Nanocrystalline Anatase Titania Supported Vanadia Catalysts: Facet-dependent Structure of Vanadia

    SciTech Connect

    Li, Wei-Zhen; Gao, Feng; Li, Yan; Walter, Eric D.; Liu, Jun; Peden, Charles HF; Wang, Yong

    2015-07-09

    Titania supported vanadia, a classic heterogeneous catalyst for redox reactions, typically has nonhomogeneous vanadia species on various titania facets, making it challenging not only to determine and quantify each species but also to decouple their catalytic contributions. We prepared truncated tetragonal bipyramidal (TiO2-TTB) and rod-like (TiO2-Rod) anatase titania with only {101} and {001} facets at ratios of about 80:20 and 93:7, respectively, and used them as supports of sub-monolayer vanadia. The structure and redox properties of supported vanadia were determined by XRD, TEM, XPS, EPR, Raman, FTIR and TPR, etc. It was found that vanadia preferentially occupy TiO2 {001} facets and form isolated O=V4+(O-Ti)2 species, and with further increase in vanadia surface coverage, isolated O=V5+(O-Ti)3 and oligomerized O=V5+(O-M)3 (M = Ti or V) species form on TiO2 {101} facets. The discovery on support facet-dependent structure of vanadia on anatase titania is expected to enable the elucidation of structure-function correlations on high surface area TiO2 supported vanadia catalysts. This work was supported by U. S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences. The research was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE Office of Biological and Environmental Research, and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for DOE by Battelle.

  14. Characterization of Na+- beta-Zeolite Supported Pd and Pd Ag Bimetallic Catalysts using EXAFS, TEM and Flow Reactor

    SciTech Connect

    Huang,W.; Lobo, R.; Chen, J.

    2008-01-01

    Flow reactor studies of the selective hydrogenation of acetylene in the presence of ethylene have been performed on Na+ exchanged {beta}-zeolite supported Pd, Ag and PdAg catalysts, as an extension of our previous batch reactor studies [W. Huang, J.R. McCormick, R.F. Lobo, J.G. Chen, J. Catal. 246 (2007) 40-51]. Results from flow reactor studies show that the PdAg/Na+-{beta}-zeolite bimetallic catalyst has lower activity than Pd/Na+-{beta}-zeolite monometallic catalyst, while Ag/Na+-{beta}-zeolite does not show any activity for acetylene hydrogenation. However, the selectivity for the PdAg bimetallic catalyst is much higher than that for either the Pd catalyst or Ag catalyst. The selectivity to byproduct (ethane) is greatly inhibited on the PdAg bimetallic catalyst as well. The results from the current flow reactor studies confirmed the pervious results from batch reactor studies [W. Huang, J.R. McCormick, R.F. Lobo, J.G. Chen, J. Catal. 246 (2007) 40-51]. In addition, we used transmission electron microscope (TEM), extended X-ray absorption fine structure (EXAFS), and FTIR of CO adsorption to confirm the formation of Pd-Ag bimetallic alloy in the PdAg/Na+-{beta}-zeolite catalyst.

  15. What is below the support layer affects carbon nanotube growth: an iron catalyst reservoir yields taller nanotube carpets.

    PubMed

    Shawat, E; Mor, V; Oakes, L; Fleger, Y; Pint, C L; Nessim, G D

    2014-01-01

    Here we demonstrate an approach to enhance the growth of vertically aligned carbon nanotubes (CNTs) by including a catalyst reservoir underneath the thin-film alumina catalyst underlayer. This reservoir led to enhanced CNT growth due to the migration of catalytic material from below the underlayer up to the surface through alumina pinholes during processing. This led to the formation of large Fe particles, which in turn influenced the morphology evolution of the catalytic iron surface layer through Ostwald ripening. With inclusion of this catalyst reservoir, we observed CNT growth up to 100% taller than that observed without the catalyst reservoir consistently across a wide range of annealing and growth durations. Imaging studies of catalyst layers both for different annealing times and for different alumina support layer thicknesses demonstrate that the surface exposure of metal from the reservoir leads to an active population of smaller catalyst particles upon annealing as opposed to a bimodal catalyst size distribution that appears without inclusion of a reservoir. Overall, the mechanism for growth enhancement we present here demonstrates a new route to engineering efficient catalyst structures to overcome the limitations of CNT growth processes. PMID:24323364

  16. Direct synthesis of hydrogen peroxide from H2 and O2 using supported Au-Pd catalysts.

    PubMed

    Edwards, Jennifer K; Carley, Albert F; Herzing, Andrew A; Kiely, Christopher J; Hutchings, Graham J

    2008-01-01

    The direct synthesis of H2O2 at low temperature (2 degrees C) from H2 and O2 using carbon-supported Au, Pd and Au-Pd catalysts is described and contrasted with data for TiO2, Al2O3 and Fe2O3 as supports. The Au-Pd catalysts all perform significantly better than the pure Pd/TiO2 and Au/ TiO2 materials. The Au Pd/carbon catalysts gave the highest rate of H2O2 production, and the order of reactivity observed is: carbon > TiO2 > Al2O3. Catalysts were prepared by co-impregnation of the supports using incipient wetness with aqueous solutions of PdCl2 and HAuCl4, and following calcination at 400 degrees C the catalysts were stable and could be reused several time without loss of metal. The method of preparation is critical, however, to achieve stable catalysts. No promoters are required (e.g. halides) to achieve the high rates of hydrogen peroxide synthesis. The surface and bulk composition of the gold palladium nanoparticles was investigated by STEM-XEDS spectrum imaging. For TiO2 and Al2O3 as supports the Au Pd particles were found to exhibit a core-shell structure, Pd being concentrated on the surface. In contrast, the Au-Pd/carbon catalyst exhibited Au Pd nanoparticles which were homogeneous alloys and X-ray photoelectron studies were consistent with these observations. The origin of the enhanced activity for the carbon supported catalysts is a result of higher H2 selectivity for the formation of hydrogen peroxide which is due to the surface composition and size distribution of the nanoparticles. The key problem remaining is the sequential hydrogenation of hydrogen peroxide which limits the utilisation of the direct synthesis methodology and this is discussed in detail. PMID:18447018

  17. Production of carbon nanotubes: Chemical vapor deposition synthesis from liquefied petroleum gas over Fe-Co-Mo tri-metallic catalyst supported on MgO

    NASA Astrophysics Data System (ADS)

    Setyopratomo, P.; Wulan, Praswasti P. D. K.; Sudibandriyo, M.

    2016-06-01

    Carbon nanotubes were produced by chemical vapor deposition method to meet the specifications for hydrogen storage. So far, the various catalyst had been studied outlining their activities, performances, and efficiencies. In this work, tri-metallic catalyst consist of Fe-Co-Mo supported on MgO was used. The catalyst was prepared by wet-impregnation method. Liquefied Petroleum Gas (LPG) was used as carbon source. The synthesis was conducted in atmospheric fixed bed reactor at reaction temperature range 750 - 850 °C for 30 minutes. The impregnation method applied in this study successfully deposed metal component on the MgO support surface. It found that the deposited metal components might partially replace Mg(OH)2 or MgO molecules in their crystal lattice. Compare to the original MgO powder; it was significant increases in pore volume and surface area has occurred during catalyst preparation stages. The size of obtained carbon nanotubes is ranging from about 10.83 nm OD/4.09 nm ID up to 21.84 nm OD/6.51 nm ID, which means that multiwall carbon nanotubes were formed during the synthesis. Yield as much as 2.35 g.CNT/g.catalyst was obtained during 30 minutes synthesis and correspond to carbon nanotubes growth rate of 0.2 μm/min. The BET surface area of the obtained carbon nanotubes is 181.13 m2/g and around 50 % of which is contributed by mesopores. Micropore with half pore width less than 1 nm contribute about 10% volume of total micro and mesopores volume of the carbon nanotubes. The existence of these micropores is very important to increase the hydrogen storage capacity of the carbon nanotubes.

  18. Resonance raman spectroscopic study of alumina-supported vanadium oxide catalysts with 220 and 287 nm excitation.

    SciTech Connect

    Kim, H. S.; Stair, P. C.; Chemical Sciences and Engineering Division; Northwestern Univ.

    2009-01-01

    We present detailed resonance Raman spectroscopic results excited at 220 and 287 nm for alumina-supported VO{sub x} catalysts. The anharmonic constant, harmonic wavenumber, anharmonic force constant, bond dissociation energy, and bond length change in the excited state for double bonded V{double_bond}O and single bonded V-O were obtained from fundamental and overtone frequencies. Totally symmetric and nontotally symmetric modes could be discerned and assigned on the basis of the overtone and combination progressions found in the resonance Raman spectra. Selective resonance enhancement of two different vibrational modes with two different excitation wavelengths was observed. This allowed us to establish a linear relationship between charge transfer energy and VO bond length and, consequently, to assign the higher-energy charge transfer band centered around 210?250 nm in the UV?vis spectra to the V{double_bond}O transition.

  19. On the nature of the deactivation of supported palladium nanoparticle catalysts in the decarboxylation of fatty acids.

    SciTech Connect

    Ping, E. W.; Pierson, J.; Wallace, R.; Miller, J. T.; Fuller, T. F.; Jones, C. W.

    2011-04-15

    Supported palladium catalysts are effective catalysts for the hydrogen-free decarboxylation of fatty acids. However, the catalysts deactivate severely after one use. Here, the recyclability of a well-defined, mesoporous silica-supported palladium nanoparticle catalyst is evaluated in the batch decarboxylation of stearic acid at 300 C under inert atmosphere, producing n-heptadecane. The nature of the catalyst deactivation is examined in detail via an array of characterization techniques. X-ray photoelectron spectroscopy (XPS) demonstrates that little palladium surface oxidation occurs over the course of the reaction, and a combination of X-ray absorption spectroscopy and transmission electron microscopy (TEM) suggests negligible particle sintering or agglomeration. Physisorption and chemisorption measurements demonstrate substantial loss in total surface area and porosity as well as accessible palladium surface area with these losses attributed to significant organic deposition on the catalyst, as verified via thermogravimetric analysis. High temperature calcination is applied to combust and remove these residues, but resultant nanoparticle agglomeration is significant. Solid state nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FT-IR) and solid dissolution followed by organic extraction methodologies demonstrate that the carbonaceous deposits are not coke but rather strongly adsorbed reactants and products. Detrimental coke formation, as suggested by prior literature, is verified to be absent, as extraction of the surface-deposited organic species yields nearly complete recovery of the total surface area, pore volume, and active palladium surface area. Furthermore, the regenerated catalyst exhibits a corresponding significant recovery of decarboxylation activity.

  20. Evaluating the potential of CNT-supported Co catalyst used for gas pollution removal in the incineration flue gas.

    PubMed

    Lu, Chi-Yuan; Tseng, Hui-Hsin; Wey, Ming-Yen; Chuang, Kui-Hao; Kuo, Jia-Hong

    2009-04-01

    This study investigated the use of Cu/Al(2)O(3), Co/Al(2)O(3), Fe/Al(2)O(3), and Ni/Al(2)O(3) catalysts for the growth of carbon nanotubes (CNTs). These CNTs were used as support for Co catalyst preparation and Co/CNT catalysts were applied to a catalytic reaction to remove BTEX, PAHs, SO(2), NO, and CO simultaneously in a pilot-scale incineration system. The analyzed results of EDS and XRD showed low metal content and good dispersion characteristics of the Al(2)O(3)-supported catalysts by excess-solution impregnation. FESEM analyzed results showed that the CNTs that were synthesized from Co, Fe, and Ni catalysts had a diameter of 20nm, whereas those synthesized from Cu/Al(2)O(3) had a diameter of 50nm. Pilot-scale test results demonstrated that the Co/CNT catalyst effectively removed air pollutants in the catalytic reaction and that there was no obvious deactivation by Pb, water vapor, and coke deposited in the process. The thermal stabilization at 250 degrees C and hydrophobicity properties of CNTs enhanced the application of CNT catalysts in flue gas.

  1. A new model describing the metal-support interaction in noble metal catalysts

    SciTech Connect

    Mojet, B.L.; Koningsberger, D.C.; Miller, J.T.; Ramaker, D.E.

    1999-09-10

    The catalytic activity and spectroscopic properties of supported noble metal catalysts are strongly influenced by the acidity/alkalinity of the support but are relatively independent of the metal (Pd or Pt) or the type of support (zeolite LTL or SiO{sub 2}). As the alkalinity of the support increases, the TOF of the metal particles for neopentane hydrogenolysis decreases. At the same time, there is a decrease in the XPS binding energy and a shift from linear to bridge bonded CO in the IR spectra. Analysis of the shape resonance in XANES spectra indicates that in the presence of chemisorbed hydrogen the difference in energy between the Pt-H antibonding orbital and the Fermi level decreases as the alkalinity of the support increases. Based on the results from the IR, XPS, and shape resonance data a new model is proposed in which the interaction between the metal and support leads to a shift in the energy of the metal valence orbitals. The EXAFS structural analysis indicates that the small metal particles are in contact only with the oxide ions of the support. Finally, a new spectroscopic characterization, Atomic XAFS, is presented which provides new insights into the origin of the electronic changes in the metal. As the alkalinity of the support increases, there is decrease in the metal ionization potential. The primary interaction is a Coulomb attraction between metal particle and support oxygen ions, which affects the metal interatomic potential. This model for the metal-support interaction explicitly excludes the need for electron transfer, and it can account for all observed changes in the catalytic, electronic, and structural properties of the supported metal particles induced by support acidity ranging from acidic to neutral to alkaline.

  2. Core-shell Fe3O4 polydopamine nanoparticles serve multipurpose as drug carrier, catalyst support and carbon adsorbent.

    PubMed

    Liu, Rui; Guo, Yunlong; Odusote, Gloria; Qu, Fengli; Priestley, Rodney D

    2013-09-25

    We present the synthesis and multifunctional utilization of core-shell Fe3O4 polydopamine nanoparticles (Fe3O4@PDA NPs) to serve as the enabling platform for a range of applications including responsive drug delivery, recyclable catalyst support, and adsorbent. Magnetite Fe3O4 NPs formed in a one-pot process by the hydrothermal approach were coated with a polydopamine shell layer of ~20 nm in thickness. The as prepared Fe3O4@PDA NPs were used for the controlled drug release in a pH-sensitive manner via reversible bonding between catechol and boronic acid groups of PDA and the anticancer drug bortezomib (BTZ), respectively. The facile deposition of Au NPs atop Fe3O4@PDA NPs was achieved by utilizing PDA as both the reducing agent and the coupling agent. The nanocatalysts exhibited high catalytic performance for the reduction of o-nitrophenol. Furthermore, the recovery and reuse of the catalyst was demonstrated 10 times without any detectible loss in activity. Finally, the PDA layers were converted into carbon to obtain Fe3O4@C and used as an adsorbent for the removal of Rhodamine B from an aqueous solution. The synergistic combination of unique features of PDA and magnetic nanoparticles establishes these core-shell NPs as a versatile platform for multiple applications.

  3. Pumice-supported Pd-Pt bimetallic catalysts: Synthesis, structural characterization, and liquid-phase hydrogenation of 1,3-cyclooctadiene

    SciTech Connect

    Deganello, G.; Duca, D.; Liotta, L.F.; Martorana, A.; Venezia, M.; Benedetti, A.; Fagherazz, G.

    1995-01-01

    A series of pumice-supported palladium-platinum bimetallic catalysts were prepared and investigated by X-ray scattering (WAXS and SAXS) and XPS techniques. An alloy Pd-Pt was formed. The less abundant metal was found to segregate to the surface. The catalysts were tested in the liquid-phase hydrogenation of 1,3-cyclooctadiene to cyclooctene, and compared with similarly prepared pumice-supported palladium and platinum catalysts and other supported Pd-Pt catalysts reported in the literature. The addition of platinum reduces the activity and the selectivity of the palladium catalysts. Differences between the activity of these pumice-supported catalysts and the activity of previously described Pd and Pd-Pt catalysts on other supports, are attributed to the presence, in the latter, of diffusional processes. 50 refs., 4 figs. 2 tabs.

  4. Preparation and characterization of nanosized gold catalysts supported on Co3O4 and their activities for CO oxidation.

    PubMed

    Kim, Ki-Joong; Song, Jae-Koon; Shin, Seong-Soo; Kang, Sang-Jun; Chung, Min-Chul; Jung, Sang-Chul; Jeong, Woon-Jo; Ahn, Ho-Geun

    2011-02-01

    Gold catalysts supported on Co3O4 were prepared by co-precipitation (CP), deposition-precipitation (DP), and impregnation (IMP) methods. The Au/Co3O4 catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and temperature programmed reduction (TPR) to understand the different activities for CO oxidation with different preparation methods. Gold particles below 5 nm supported on Co3O4 by DP method were found to be more exposed to the surface than those by CP and IMP methods, and this catalyst was highly active and stable in CO oxidation. Finally, catalytic activity of Au/Co3O4 catalyst for CO oxidation was strongly dependent on the gold particle size. PMID:21456247

  5. Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol over Nitrogen-Doped Carbon-Supported Iron Catalysts.

    PubMed

    Li, Jiang; Liu, Jun-Ling; Zhou, Hong-Jun; Fu, Yao

    2016-06-01

    Iron-based heterogeneous catalysts, which were generally prepared by pyrolysis of iron complexes on supports at elevated temperature, were found to be capable of catalyzing the transfer hydrogenation of furfural (FF) to furfuryl alcohol (FFA). The effects of metal precursor, nitrogen precursor, pyrolysis temperature, and support on catalytic performance were examined thoroughly, and a comprehensive study of the reaction parameters was also performed. The highest selectivity of FFA reached 83.0 % with a FF conversion of 91.6 % under the optimal reaction condition. Catalyst characterization suggested that iron cations coordinated by pyridinic nitrogen functionalities were responsible for the enhanced catalytic activity. The iron catalyst could be recycled without significant loss of catalytic activity for five runs, and the destruction of the nitrogen-iron species, the presence of crystallized Fe2 O3 phase, and the pore structure change were the main reasons for catalyst deactivation. PMID:27144965

  6. Continuous preparation of carbon-nanotube-supported platinum catalysts in a flow reactor directly heated by electric current

    PubMed Central

    dos Santos, Antonio Rodolfo; Kunz, Ulrich; Turek, Thomas

    2011-01-01

    Summary In this contribution we present for the first time a continuous process for the production of highly active Pt catalysts supported by carbon nanotubes by use of an electrically heated tubular reactor. The synthesized catalysts show a high degree of dispersion and narrow distributions of cluster sizes. In comparison to catalysts synthesized by the conventional oil-bath method a significantly higher electrocatalytic activity was reached, which can be attributed to the higher metal loading and smaller and more uniformly distributed Pt particles on the carbon support. Our approach introduces a simple, time-saving and cost-efficient method for fuel cell catalyst preparation in a flow reactor which could be used at a large scale. PMID:22043252

  7. Physical and electrochemical evaluation of ATO supported IrO2 catalyst for proton exchange membrane water electrolyser

    NASA Astrophysics Data System (ADS)

    Puthiyapura, Vinod Kumar; Mamlouk, Mohammed; Pasupathi, Sivakumar; Pollet, Bruno G.; Scott, Keith

    2014-12-01

    Antimony doped tin oxide (ATO) was studied as a support material for IrO2 in proton exchange membrane water electrolyser (PEMWE). Adams fusion method was used to prepare the IrO2-ATO catalysts. The physical and electrochemical characterisation of the catalysts were carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder conductivity, cyclic voltammetry (CV) and membrane electrode assembly (MEA) polarisation. The BET surface area and electronic conductivity of the supported catalysts were found to be predominantly arisen from the IrO2. Supported catalyst showed higher active surface area than the pristine IrO2 in CV analysis with 85% H3PO4 as electrolyte. The MEA performance using Nafion®-115 membrane at 80 °C and atmospheric pressure showed a better performance for IrO2 loading ≥60 wt.% than the pristine IrO2 with a normalised current density of 1625 mA cm-2 @1.8 V for the 60% IrO2-ATO compared to 1341 mA cm-2 for the pristine IrO2 under the same condition. The higher performance of the supported catalysts was mainly attributed to better dispersion of active IrO2 on electrochemically inactive ATO support material, forming smaller IrO2 crystallites. A 40 wt.% reduction in the IrO2 was achieved by utilising the support material.

  8. Size and Promoter Effects on Stability of Carbon-Nanofiber-Supported Iron-Based Fischer–Tropsch Catalysts

    PubMed Central

    2016-01-01

    The Fischer–Tropsch Synthesis converts synthesis gas from alternative carbon resources, including natural gas, coal, and biomass, to hydrocarbons used as fuels or chemicals. In particular, iron-based catalysts at elevated temperatures favor the selective production of C2–C4 olefins, which are important building blocks for the chemical industry. Bulk iron catalysts (with promoters) were conventionally used, but these deactivate due to either phase transformation or carbon deposition resulting in disintegration of the catalyst particles. For supported iron catalysts, iron particle growth may result in loss of catalytic activity over time. In this work, the effects of promoters and particle size on the stability of supported iron nanoparticles (initial sizes of 3–9 nm) were investigated at industrially relevant conditions (340 °C, 20 bar, H2/CO = 1). Upon addition of sodium and sulfur promoters to iron nanoparticles supported on carbon nanofibers, initial catalytic activities were high, but substantial deactivation was observed over a period of 100 h. In situ Mössbauer spectroscopy revealed that after 20 h time-on-stream, promoted catalysts attained 100% carbidization, whereas for unpromoted catalysts, this was around 25%. In situ carbon deposition studies were carried out using a tapered element oscillating microbalance (TEOM). No carbon laydown was detected for the unpromoted catalysts, whereas for promoted catalysts, carbon deposition occurred mainly over the first 4 h and thus did not play a pivotal role in deactivation over 100 h. Instead, the loss of catalytic activity coincided with the increase in Fe particle size to 20–50 nm, thereby supporting the proposal that the loss of active Fe surface area was the main cause of deactivation. PMID:27330847

  9. Acid strength of silica-supported oxide catalysts studied by microcalorimetric measurements of pyridine adsorption

    SciTech Connect

    Cardona-Martinez, N.; Dumesic, J.A. )

    1991-02-01

    Microcalorimetric measurements of the differential heat of pyridine adsorption were used to probe the distribution of acid strength on a series of silica-supported oxide catalysts. Depositing oxides of the following cations onto silica increased the acid strength of the catalyst: Ga{sup 3{plus}}, Zn{sup 2{plus}}, Al{sup 3{plus}}, Fe{sup 3{plus}}, Fe{sup 2{plus}}, Mg{sup 2{plus}}, and Sc{sup 3{plus}}. The acid strength distribution curves for the supported oxide samples showed either two or three regions of constant heat of adsorption while silica had an energetically homogeneous surface. The Ga, Al, and Sc samples were found to have both Bronsted and Lewis acidity while the remaining samples showed only Lewis acidity. Incremental adsorption of pyridine indicated that the initial region of highest heat corresponds to strong Lewis acidity while intermediate heats seemed to be due to weaker Lewis acid sites or a combination of Lewis and Bronsted acid sites. The final region of lowest heat was due to H-bonded pyridine on silica. Estimates of the entropies of adsorption were determined, providing information about the mobility of the adsorbed pyridine molecules. The initial differential heat of adsorption increases proportionally to the Sanderson electronegativity of the added oxide.

  10. Hydrodenitrogenation of decahydroquinoline, cyclohexylamine and O-propylaniline over carbon-supported transition metal sulfide catalysts

    SciTech Connect

    Eijsbouts, S.; Sudhakar, C.; de Beer, V.H.J.; Prins, R. )

    1991-02-01

    Carbon-supported transition metal sulfide (TMS) catalysts were prepared by impregnation of an activated carbon support with aqueous solutions of first-, second-, and third-row (group V-VIII) transition metal salts followed by drying and in situ sulfidation. Their activity for the hydrodenitrogenation of decahydroquinoline (5.2-5.5 MPa, 623-653 K), cyclohexylamine (4.8-5.5 MPa, 543-653 K), and o-propylaniline (5.1-5.5 MPa, 593-653 K) was tested in microautoclaves. When plotted versus the position of the transition metal in the Periodic System, the conversions of all three N-containing reactants to hydrocarbons over the first-row transition metal sulfides formed U-shaped curves with a minimum at Mn, while V had the highest conversion. The decahydroquinoline and cyclohexylamine conversions to hydrocarbons over the second- and third-row TMS formed volcano curves with maxima at Rh and Ir, respectively. Disproportionation reactions were found to be important side reactions in the cyclohexylamine hydrodenitrogenation. The activities of the second-row transition metal sulfides for the conversion of 0-propylaniline formed a volcano curve with a maximum at Ru or Rh sulfide, whereas the activities of the third-row transition metal sulfides formed a strongly distorted volcano curve. All catalysts and especially Re sulfide had a very high selectivity for propylbenzene.

  11. Catalyst support of mixed cerium zirconium titanium oxide, including use and method of making

    DOEpatents

    Willigan, Rhonda R.; Vanderspurt, Thomas Henry; Tulyani, Sonia; Radhakrishnan, Rakesh; Opalka, Susanne Marie; Emerson, Sean C.

    2011-01-18

    A durable catalyst support/catalyst is capable of extended water gas shift operation under conditions of high temperature, pressure, and sulfur levels. The support is a homogeneous, nanocrystalline, mixed metal oxide of at least three metals, the first being cerium, the second being Zr, and/or Hf, and the third importantly being Ti, the three metals comprising at least 80% of the metal constituents of the mixed metal oxide and the Ti being present in a range of 5% to 45% by metals-only atomic percent of the mixed metal oxide. The mixed metal oxide has an average crystallite size less than 6 nm and forms a skeletal structure with pores whose diameters are in the range of 4-9 nm and normally greater than the average crystallite size. The surface area of the skeletal structure per volume of the material of the structure is greater than about 240 m.sup.2/cm.sup.3. The method of making and use are also described.

  12. Enhanced stability of multilayer graphene-supported catalysts for polymer electrolyte membrane fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Marinkas, A.; Hempelmann, R.; Heinzel, A.; Peinecke, V.; Radev, I.; Natter, H.

    2015-11-01

    One of the biggest challenges in the field of polymer electrolyte membrane fuel cells (PEMFC) is to enhance the lifetime and the long-term stability of PEMFC electrodes, especially of cathodes, furthermore, to reduce their platinum loading, which could lead to a cost reduction for efficient PEMFCs. These demands could be achieved with a new catalyst support architecture consisting of a composite of carbon structures with significant different morphologies. A highly porous cathode catalyst support layer is prepared by addition of various carbon types (carbon black particles, multi-walled carbon nanotubes (MWCNT)) to multilayer graphene (MLG). The reported optimized cathodes shows extremely high durability and similar performance to commercial standard cathodes but with 89% lower Pt loading. The accelerated aging protocol (AAP) on the membrane electrode assemblies (MEA) shows that the presence of MLG increases drastically the durability and the Pt-extended electrochemical surface area (ECSA). In fact, after the AAP slightly enhanced performance can be observed for the MLG-containing cathodes instead of a performance loss, which is typical for the commercial carbon-based cathodes. Furthermore, the presence of MLG drastically decreases the ECSA loss rate. The MLG-containing cathodes show up to 6.8 times higher mass-normalized Pt-extended ECSA compared to the commercial standard systems.

  13. Decomposition of hexachlorobenzene over Al2O3 supported metal oxide catalysts.

    PubMed

    Zhang, Lifei; Zheng, Minghui; Zhang, Bing; Liu, Wenbin; Gao, Lirong; Ba, Te; Ren, Zhiyuan; Su, Guijin

    2008-01-01

    Decomposition of hexachlorobenzene (HCB) was investigated over several metal oxides (i.e., MgO, CaO, BaO, La2O3, CeO2, MnO2, Fe2O3, and Co3O4) supported on Al2O3, which was achieved in closed system at a temperature of 300 degrees C. Catalysts were prepared by incipient wetness impregnation with different metal oxides loading and impregnating solvents. The decomposition efficiency of different catalysts for this reaction depends on the nature of the metal oxide used, and Al2O3 supported La2O3 was found to be the most active one. Pentachlorobenzene (PeCB), and all tetrachlorobenzene (TeCB), trichlorobenzene (TrCB), and dichlorobenzene (DCB) isomers were detected after the decomposition reaction, indicating that the decomposition was mainly a dechlorination process. The detection of all lower chlorinated benzenes suggested the complexity of decomposition and the presence of more than one dechlorination pathway. PMID:19209643

  14. Near-ambient XPS characterization of interfacial copper species in ceria-supported copper catalysts.

    PubMed

    Monte, Manuel; Munuera, Guillermo; Costa, Dominique; Conesa, José C; Martínez-Arias, Arturo

    2015-11-28

    Catalysts based on combinations of copper and cerium oxides are interesting alternatives to noble metal ones for processes involved in the production/purification of hydrogen produced from hydrocarbons or biomass like the water-gas shift or the preferential oxidation of CO reactions. Active sites for such processes have been proposed to correspond to reduced species formed at the interface between both oxides. The present work provides direct evidence of reduced copper species located at the interface and observed during the course of near-ambient XPS experiments performed over samples of copper oxide supported on ceria nanospheres and nanocubes subjected to interaction with CO at different temperatures. The analysis of XPS results is based on DFT+U calculations employed as a complementary method for the analysis of redox properties of the catalysts and core-level shifts produced upon such redox changes. Differences observed in interfacial redox properties as a function of the ceria support morphology appear to be most useful to explain catalytic properties of this type of system for mentioned processes.

  15. Vapor-phase catalytic oxidesulfurization (ODS) of organosulfur compounds over supported metal oxide catalysts

    NASA Astrophysics Data System (ADS)

    Choi, Sukwon

    Sulfur in transportation fuels remains a leading source of SOx emissions from vehicle engines and is a major source of air pollution. The very low levels of sulfur globally mandated for transportation fuels in the near future cannot be achieved by current practices of hydrodesulfurization (HDS) for sulfur removal, which operate under severe conditions (high T, P) and use valuable H2. Novel vapor-phase catalytic oxidesulfurization (ODS) processes of selectively oxidizing various organosulfur compounds (carbonyl sulfide, carbon disulfide, methanethiol, dimethyl sulfide (DMS), dimethyl disulfide (DMDS), thiophene, 2,5-dimenthylthiophene) typically found in various industrial streams (e.g., petroleum refining, pulp and paper) into valuable chemical intermediates (H 2CO, CO, H2, maleic anhydride and concentrated SO2) has been extensively studied. This research has primarily focused on establishing the fundamental kinetics and mechanisms of these selective oxidation reactions over well-defined supported metal oxide catalysts. The selective oxidation reactions of COS + O2 → CO + SO2; 2CS2 + 5O2 → 2CO + 4SO2; CH3SH + 2O 2 → H2CO + SO2 + H2O; C4 H4S + 3O2 → C4H2O 3 + H2O + SO2; were studied. Raman spectroscopy revealed that the supported metal oxide phases were 100% dispersed on the oxide substrate. All the catalysts were highly active and selective for the oxidesulfurization of carbonyl sulfide, carbon disulfide, methanethiol, and thiophene between 290--330°C, 230--270°C, 350--400°C, and 250--400°C, respectively and did not deactivate. The TOFs (turnover frequency, normalized activity per active catalytic site) for all ODS reactions over supported vanadia catalysts, only containing molecularly dispersed surface vanadia species, varied within one order of magnitude and revealed the V-O-Support bridging bond was involved in the critical rate-determining kinetic steps. The surface reaction mechanism for each reaction was revealed by in situ IR (infrared) and

  16. Selective hydrogenation of butadiene over TiO2 supported copper, gold and gold-copper catalysts prepared by deposition-precipitation.

    PubMed

    Delannoy, Laurent; Thrimurthulu, Gode; Reddy, Padigapati S; Méthivier, Christophe; Nelayah, Jaysen; Reddy, Benjaram M; Ricolleau, Christian; Louis, Catherine

    2014-12-28

    Oxide supported copper and gold catalysts are active for the selective hydrogenation of polyunsaturated hydrocarbons but their low activity compared to palladium catalysts and the deactivation of copper catalysts limit their use. There are only a very limited number of studies concerned with the use of bimetallic Au-Cu catalysts for selective hydrogenation reactions and the aim of this work was to prepare TiO2-supported monometallic Au and Cu and bimetallic AuCu (Cu/Au atomic ratio of 1 and 3) catalysts and to evaluate their catalytic performance in the selective hydrogenation of butadiene. Small gold, copper and gold-copper nanoparticles (average particle size < 2 nm) were obtained on TiO2 using the preparation method of deposition-precipitation with urea followed by reduction under H2 at 300 °C. Very small clusters were observed for Cu/TiO2 (∼1 nm) which might result from O2 induced copper redispersion, as also supported by the XPS analyses. The alloying of copper with gold was found to inhibit its redispersion and also limits its reoxidation, as attested by XPS. The bimetallic character of the AuCu nanoparticles was confirmed by XPS and EDX-HAADF. Cu/TiO2 was initially more active than Au/TiO2 in the selective hydrogenation of butadiene at 75 °C but it deactivated rapidly during the first hours of reaction whereas the gold catalyst was very stable up to 20 hours of reaction. The bimetallic AuCu/TiO2 catalysts displayed an activation period during the first hours of the reaction, which was very pronounced for the sample containing a higher Cu/Au atomic ratio. This initial gain in activity was tentatively assigned to copper segregation at the surface of the bimetallic nanoparticles, induced by the reactants. When the AuCu/TiO2 catalysts were pre-exposed to air at 75 °C before butadiene hydrogenation, surface copper segregation occurred, leading to higher initial activity and the suppression of the activation period. Under the same conditions, Cu/TiO2 totally

  17. Bridging the Gap between Theory and Experiments - Nano-structural Changes in Supported Catalysts under Operating Conditions

    SciTech Connect

    Narula, Chaitanya Kumar; Allard Jr, Lawrence Frederick; Blom, Douglas Allen; Debusk, Melanie Moses

    2008-01-01

    Computational approaches have been limited to examining catalytic processes using models that have been greatly simplified in comparison to real catalysts. Experimental studies, especially on emission treatment catalysts, have primarily focused on fully formulated systems. Thus, there remains a knowledge gap between theory and experiments. We combine the power of theory and experiment for atomistic design of catalytically active sites that can translate the fundamental insights gained directly to a catalyst system suitable for technical deployment. In this article, we describe our results on a model platinum-alumina catalyst that is a common constituent of emission treatment catalysts such as three-way, NO/dx trap, oxidation, and HC-SCR catalysts. We present theoretical and experimental studies of the oxidation and reactivity of Pt catalyst clusters towards O, CO, and NO/dx. Our theoretical studies indicate that the reaction energetics are strongly dependent on the size of the clusters as well as the extent of oxidation of the clusters, and the energetics of CO and NO oxidation may be more favorable on the oxidized clusters than metallic clusters because of the weakened adsorption of O, CO and NO. Experimentally, we have observed that the aberration-corrected HA-ADF STEM images of Pt/gg-alumina support show that there are single atoms, 2-3 atom clusters, and several 10-20 atom clusters of Pt. We also found that the Pt particles size has an impact on CO oxidation initiation and completion temperatures. Substrate effects were studied for equivalent Pt particle size distributions on both gu-alumina and gg-alumina supports. Particle size effects were investigated on Pt/gg-alumina catalysts with Pt particle size distribution centered at 1 nm and 12 nm, respectively. We will describe our results on substrate and Pt particle size effects. In addition, we will also present our study of nano-structural changes in model catalysts on exposure to various reaction conditions.

  18. NiAg catalysts prepared by reduction of Ni2+ ions in aqueous hydrazine II. Support effect.

    PubMed

    Bettahar, M M; Wojcieszak, R; Monteverdi, S

    2009-04-15

    A series of bimetallic NiAg (Ni + Ag = 1% wt) catalysts supported on amorphous silica was synthesized via chemical reduction using hydrazine as the reducing agent at 353 K. Catalysts were prepared via impregnation or precipitation technique. It was found that the reduction of the Ni(2+) ions occurred only in the presence of silver, otherwise a stable blue [Ni(N(2)H(4))(3)](2+) complex was formed. Comparisons with similar NiAg catalysts supported on crystallized silica as prepared in our previous work indicated that the Ni(2+) ions weakly interacted with acidic crystallized silica on which they were readily reduced. For both supports, the combination of silver and nickel gave rise to a synergistic effect due to the existence of NiAg groupings. The surface and catalytic properties of the metal particles formed depended on the Ni:Ag ratio, method of preparation, and acidity of the support.

  19. The promotional effect of surface defects on the catalytic performance of supported nickel-based catalysts.

    PubMed

    Li, Yizhen; Yu, Jiaying; Li, Wei; Fan, Guoli; Yang, Lan; Li, Feng

    2016-03-01

    Controlling the metal-support interactions, as well as the nature of support materials, is of vital importance for enhancing the catalytic performance of supported metal catalysts. In the present work, supported nickel nanocatalysts with abundant surface defects (e.g. oxygen vacancies, Ti(3+) species) were directly synthesized via a facile single-source Ni-Ti layered double hydroxide precursor route, and their catalytic performance in the liquid phase selective hydrogenation of chloronitrobenzenes to chloroanilines was investigated. A series of characterization techniques including XRD, TEM, STEM, PL, XPS, H2-TPR and H2 chemisorption clearly demonstrated that the resultant Ni nanoparticles were uniformly dispersed on the surface of the Ni-Ti mixed metal oxide support formed in situ, thereby leading to strong metal-support interactions and the formation of a large amount of surface oxygen vacancies and Ti(3+) species. Compared with that prepared using a conventional impregnation method, the as-formed Ni-based nanocatalysts exhibited significantly enhanced catalytic performance with a high chloroaniline yield of 99.0% under mild reaction conditions (i.e. a low hydrogen pressure of 0.2 MPa). Such an unprecedented catalytic efficiency was mainly attributed to the promotional effect of surface defects. Furthermore, the present Ni-based nanocatalysts could be reused five times without serious aggregation of active species and remarkable activity loss, indicative of high stability.

  20. Structure and Activity of Pt-Ni Catalysts Supported on Modified Al2O3 for Ethanol Steam Reforming.

    PubMed

    Navarro, R M; Sanchez-Sanchez, M C; Fierro, J L G

    2015-09-01

    Modification of alumina with La-, Ce-, Zr- and Mg-oxides was studied with the aim to use them as supports of bimetallic Pt-Ni catalysts for the steam reforming of ethanol. Activity results showed that modifications of Al2O3 support with the incorporation of La, Ce, Zr or Mg oxides play an essential role in the catalytic behaviour of PtNi catalysts. Bimetallic PtNi catalyst supported on bare Al2O3 showed evolution of the reaction products with time on stream consisting in the increase of C2H4 production with concomitant decrease of CH4 and CO2 production. The addition of Mg or Zr to γ-A1203 did not inhibit the appearance of ethylene but delayed its production. In the case of Ce- or La-supported catalysts, the product selectivities were stable with time-on-stream, with no changes being observed in the product distribution for 24 h. Characterization results showed that La- and Ce-containing supports improves the Pt and Ni metal exposure values. The better stability achieved for Ce and La containing catalysts was inferred to be related with a participation/assistance of lanthanum and cerium entities in the gasification of coke deposits together with a modification of Pt and Ni dispersion which lower the probability of the nucleation of coke precursors on their surfaces. PMID:26716216

  1. A comparative study of CeO2-Al2O3 support prepared with different methods and its application on MoO3/CeO2-Al2O3 catalyst for sulfur-resistant methanation

    NASA Astrophysics Data System (ADS)

    Jiang, Minhong; Wang, Baowei; Yao, Yuqin; Li, Zhenhua; Ma, Xinbin; Qin, Shaodong; Sun, Qi

    2013-11-01

    The CeO2-Al2O3 supports prepared with impregnation (IM), deposition precipitation (DP), and solution combustion (SC) methods for MoO3/CeO2-Al2O3 catalyst were investigated in the sulfur-resistant methanation. The supports and catalysts were characterized by N2-physisorption, transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy (RS), and temperature-programmed reduction (TPR). The N2-physisorption results indicated that the DP method was favorable for obtaining better textural properties. The TEM and RS results suggested that there is a CeO2 layer on the surface of the support prepared with DP method. This CeO2 layer not only prevented the interaction between MoO3 and γ-Al2O3 to form Al2(MoO4)3 species, but also improved the dispersion of MoO3 in the catalyst. Accordingly, the catalysts whose supports were prepared with DP method exhibited the best catalytic activity. The catalysts whose supports were prepared with SC method had the worst catalytic activity. This was caused by the formation of Al2(MoO4)3 and crystalline MoO3. Additionally, the CeO2 layer resulted in the instability of catalysts in reaction process. The increasing of calcination temperature of supports reduced the catalytic activity of all catalysts. The decrease extent of the catalysts whose supports were prepared with DP method was the lowest as the CeO2 layer prevented the interaction between MoO3 and γ-Al2O3.

  2. Ex-situ and In-situ Stability Studies of PEM Fuel Cell Catalysts: the effect of carbon type and humidification on the thermal degradation of carbon supported catalysts

    SciTech Connect

    Haugen, G. M.; Stevens, D. A.; Hicks, M. T.; Dahn, J. R.

    2005-11-01

    One of the most significant challenges for proton exchange membrane fuel cells in stationary power generation systems is lifetime, where 40,000 hours of operation with less than 10% decay in performance is desired. There are several different membrane electrode assembly (MEA) associated degradation mechanisms inhibiting MEAs from obtaining their desired lifetime targets. The focus of this research is on the loss of cathode surface area over time, which results in MEA performance losses, since MEA performance is proportional to cathode catalyst surface area. Two proposed mechanisms, support oxidation and platinum dissolution, are studied using different accelerated tests. These results are compared to cathode catalyst surface area loss data from real-time fuel cell tests in order to decouple the two degradation mechanisms.

  3. Highly cis-selective and lead-free hydrogenation of 2-hexyne by a supported Pd catalyst with an ionic-liquid layer.

    PubMed

    Schwab, Frederick; Weidler, Natascha; Lucas, Martin; Claus, Peter

    2014-09-18

    A simple Pd/SiO2 catalyst which was modified with the ionic liquid [BMPL][DCA] gave an excellent yield of 88% towards cis-2-hexene in the stereoselective hydrogenation of 2-hexyne. The catalyst outperforms, even at full conversion, the commonly used lead-poisoned, toxic Lindlar catalyst and supported colloidal-based Pd as well. PMID:25069061

  4. Gas-phase hydrogenation/hydrogenolysis of phenol over supported nickel catalysts

    SciTech Connect

    Shin, E.J.; Keane, M.A.

    2000-04-01

    The gas-phase hydrogenation/hydrogenolysis of alcoholic solutions of phenol between 423 and 573 K has been studied using a Y zeolite-supported nickel catalyst (2.2% w/w Ni) and Ni/SiO{sub 2} catalysts (1.5--20.3% w/w Ni). This is a viable means of treating concentrated phenol streams to generate recyclable raw material. Phenol hydrogenation proceeded in a stepwise fashion with cyclohexanone as a reactive intermediate while a combination of hydrogenolysis and hydrogenation yielded cyclohexane. Hydrogenolysis to benzene is favored by high nickel loadings and elevated temperatures. A catalytic hydrogen treatment of cyclohexanone and cyclohexanol helped to establish the overall reaction network/mechanism. The possible role of thermodynamic limitations is considered and structure sensitivity is addressed; reaction data are subjected to a pseudo-first-order kinetic treatment. Hydrogen temperature-programmed desorption (H{sub 2}-TPD) has revealed the existence of different forms of surface hydrogen. Selectivity is interpreted on the basis of the H{sub 2}-TPD profiles and the possible phenol/catalyst interactions. The zeolite sample only catalyzed (via the surface Bronsted acidity) anisole formation in the presence of methanol, but this was suppressed when hexanol was used; the zeolite then promoted hydrogenolysis. The zeolite, however, deactivated and this was not reversed by heating in hydrogen. The results of the hydrogen treatment of aqueous rather than alcoholic phenol solutions are presented, where a switch from methanol to water was accompanied by a move from highly selective hydrogenolysis to highly selective hydrogenation.

  5. Hydrogenation of Liquid Styrene by Alumina Supported Nickel Catalysts: Comparison between Classical and Non-Classical Methods

    NASA Astrophysics Data System (ADS)

    Tan, Y. C.; Abu Bakar, N. H. H.; Tan, W. L.; Abu Bakar, M.

    2016-06-01

    Almina supported Ni catalysts (Ni/Al2O3) with different Ni weight percentages (wt%) were prepared via classical and non-classical methods. All samples were prepared via impregnation technique. The samples prepared via non-classical methods were reduced using KBH4 as the reducing agent. The catalysts were tested for the hydrogenation of styrene in liquid phase. Optimum activation conditions for the hydrogenation reaction were found to be 633 K for 2 hours. Comparison of the catalytic reactivity for all catalysts at these activation conditions showed that catalysts prepared via classical methods exhibited better activity. Furthermore the 7.6wt% Ni-Al2O3/C showed enhanced activity when compared to the 5.9wt% and 13.8wt% Ni-Al2O3/C catalyst. This phenomenon is mainly attributed to the type of Ni active sites available on the catalyst. The surface properties of the catalysts investigated via H2- temperature programmed reduction (H2-TPR), H2-chemisorption and H2-temperature programmed desorption (H2-TPD) confirm this.

  6. Chromium removal by zeolite-rich materials obtained from an exhausted FCC catalyst: Influence of chromium incorporation on the sorbent structure.

    PubMed

    Gonzalez, Maximiliano R; Pereyra, Andrea M; Torres Sánchez, Rosa M; Basaldella, Elena I

    2013-10-15

    A spent FCC catalyst was converted into a zeolitic mixture, and the product obtained was afterward used as trapping material for Cr(III) species frequently found in aqueous solutions. Eventual changes in the sorbent structure produced by Cr incorporation were studied by different characterization techniques such as point of zero charge determinations (PZC), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and infrared absorption (FTIR). The XRD and FTIR analyses indicated that chromium incorporation produces an amorphization of the material, and PZC measurements show no surface adsorption of charged chromium species. SEM and EDX analyses clearly show that after chromium sorption, the initial microspheroidal catalyst morphology was maintained, and the presence of chromium species was mainly detected in the outer microsphere surface, where the zeolite crystals were hydrothermally grown.

  7. Novel aluminosilicate hollow sphere as a catalyst support for methane decomposition to COx-free hydrogen production

    NASA Astrophysics Data System (ADS)

    Awadallah, A. E.; Ahmed, W.; El-Din, M. R. Noor; Aboul-Enein, A. A.

    2013-12-01

    Novel Ni and Co supported on aluminosilicate hollow sphere catalysts were investigated to decompose methane into CO and CO2 free hydrogen and carbon nanotube. The hollow sphere structure was prepared by reverse microemulsion method and then Ni and Co were loaded by the impregnation method. The fresh catalysts and deposited carbon were characterized by several microscopic and spectroscopic techniques. The catalytic results showed that the Co based catalyst exhibited higher activity and durability at longer reaction time, due to the higher number and distribution of metal sites. The hollow sphere structure of the support could protect the metal particles against aggregation during the catalytic reactions. Accordingly, higher metal dispersion, stabilization and catalytic performance were achieved. The formation of nickel silicate is the main reason for the lower decomposition activity of Ni based catalyst at longer reaction time. TEM and Raman spectroscopic data revealed that the Co-based catalyst produced a relatively uniform diameter of MWCNTs with higher crystallinity and graphitization degree compared to the Ni-based catalyst.

  8. Infrared investigations on metal-support interactions in Ni-SiO{sub 2} catalyst precursors: Role of silica

    SciTech Connect

    Ghuge, K.D.; Babu, G.P.

    1995-02-01

    In a Ni-silica catalyst system prepared by the precipitation/deposition method the silica is reported to play a role in forming the {open_quotes}support{close_quotes} to nickel carbonate (or hydroxide) species. The support formed is identified as various types of nickel silicate species and also as the species comprising -Ni-O-Si- linkages. Further, the support is shown to (i) provide the definite porous structure to the catalyst and (ii) influence the reducibility of nickel species. Also, in nickel catalyst system prepared by impregnation method, formation of silicate species on surface and its influence on reduction of nickel and restriction in metal sintering is well established. However, the mechanism of silica conversion to support species and influence on metal dispersion, the formation of a definite porous network and catalytic activity in Ni-silica catalyst system prepared by precipitation is not well established. In this paper Ni-silica catalyst precursors were prepared by adding separate solutions of nickel sulfate and sodium carbonate simultaneously to the precipitation vessel containing a silica slurry as described by Nitta et al. and maintaining a SiO{sub 2}/Ni ratio of 0.5, precipitation temperature = 92{degrees}C, and pH = 8.5. 15 refs., 1 fig., 1 tab.

  9. Role of metal-support interactions on the activity of Pt and Rh catalysts for reforming methane and butane.

    SciTech Connect

    Rossignol, C.; Krause, T.; Krumpelt, M.

    2002-01-11

    For residential fuel cell systems, reforming of natural gas is one option being considered for providing the H{sub 2} necessary for the fuel cell to operate. Industrially, natural gas is reformed using Ni-based catalysts supported on an alumina substrate, which has been modified to inhibit coke formation. At Argonne National Laboratory, we have developed a new family of catalysts derived from solid oxide fuel cell technology for reforming hydrocarbon fuels to generate H{sub 2}. These catalysts consist of a transition metal supported on an oxide-ion-conducting substrate, such as ceria, that has been doped with a small amount of a non-reducible element, such as gadolinium, samarium, or zirconium. Unlike alumina, the oxide-ion-conducting substrate has been shown to induce strong metal-support interactions. Metal-support interactions are known to play an important role in influencing the catalytic activity of many metals supported on oxide supports. Based on results from temperature-programmed reduction/oxidation and kinetic reaction studies, this paper discusses the role of the metal and the substrate in the metal-support interactions, and how these interactions influence the activity and the selectivity of the catalyst in reforming methane and butane to hydrogen for use in fuel cell power systems.

  10. Preparation of ceria-zirconia by modified coprecipitation method and its supported Pd-only three-way catalyst.

    PubMed

    Lan, Li; Chen, Shanhu; Cao, Yi; Zhao, Ming; Gong, Maochu; Chen, Yaoqiang

    2015-07-15

    A CeO2-ZrO2 compound with mixed phase composition (CZ4) was prepared by modified co-precipitation method, and for comparison, single-phase Ce(0.2)Zr(0.8)O2, Ce(0.5)Zr(0.5)O2 and Ce(0.8)Zr(0.2)O2 were synthesized via simultaneous co-precipitation method. The textural, structural and redox properties, together with the catalytic performance of the supported Pd-only three-way catalysts were investigated systematically. The results revealed that the generation of numerous interface sites in Pd/CZ4 due to its mixed phase composition (as confirmed by TEM observation) had a positive influence on modifying its structural, redox properties and thermal stability. The XRD and Raman results revealed that the highest structural stability was obtained by Pd/CZ4 with negligible lattice variation and slightest grain growth after aging treatment. The XPS analysis demonstrated that the compositional heterogeneity of Pd/CZ4 could facilitate the formation of Ce(3+), and was beneficial to preserve high dispersion of Pd as well as maintain Pd at a more oxidized state. The H2-TPR and oxygen storage capacity measurements indicated that Pd/CZ4 possessed highest reduction ability as well as largest oxygen storage capacity regardless of thermal aging treatment. And consequently Pd/CZ4 exhibited improved three-way catalytic activity compared with the catalysts supported on single-phase Ce(x)Zr(1-x)O2 both before and after thermal aging treatment.

  11. Synthesis of 3D structured graphene as a high performance catalyst support for methanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Li, Yecheng; Zhang, Lei; Hu, Zhuofeng; Yu, Jimmy C.

    2015-06-01

    A simple process for preparing 3D structured graphene (3D-G) by a solution combustion method is reported. The product was deposited with platinum and used for methanol electro-oxidation. The catalyst shows a considerable enhancement in both the activity and stability towards methanol electro-oxidation reaction. Characterization reveals that the Pt/3D-G catalyst has a more negative onset potential as well as a higher electrochemically active specific surface area than a commercial Pt/C catalyst. Moreover, the catalyst exhibits higher tolerance to corrosion than carbon black. This work provides an efficient way for preparing 3D-G as a promising support for the oxidation of small organic molecules in fuel cells.

  12. Higher alcohols from synthesis gas using carbon-supported doped molybdenum-based catalysts

    SciTech Connect

    Li, X.; Feng, L.; Liu, Z.; Zhong, B.; Dadyburjor, D.B.; Kugler, E.L.

    1998-10-01

    A series of carbon-supported molybdenum-based catalysts was prepared by incipient wetness impregnation. The materials, when promoted with potassium and additionally with cobalt, were screened for the selective production of mixed higher-molecular weight alcohols from syngas. The effects of the catalyst preparation parameters (Mo precursor, Mo loading, doping levels of K and Co, and calcination) and of the reaction conditions (temperature and space velocity) were studied. The screening procedure consisted of ramping the temperature steadily from 200 to 400 C and back again. Adding K results in a maximum in the space-time yield (STY) of total alcohols and the ratio of higher alcohols to methanol. Increasing the reaction temperature results in a monotonic increase in the STY of hydrocarbons, a monotonic decrease in the selectivity toward alcohols, and a maximum in the STY of alcohols. Increasing the space velocity increases the STY and selectivity to alcohols while decreasing the STY of hydrocarbons. Increasing the space velocity also decreases the higher-alcohol fraction in the alcohol products.

  13. Fabrication of chitin microspheres and their multipurpose application as catalyst support and adsorbent.

    PubMed

    Wang, Yuntao; Li, Yan; Liu, Shilin; Li, Bin

    2015-04-20

    In this study, novel chitin microspheres (CM) with diameters of 1010 μm, 750 μm, 490 μm, 280 μm were fabricated by employing the sol-gel transition method. Then the chitin microspheres served as the enabling platform for a range of applications including recyclable catalyst support and adsorbent. First, the freeze dried porous chitin microspheres were coated with dopamine to enhance the loading efficiency of a model biomacromolecule, α-amylase. The immobilized enzyme (49.6 mg/g) retained more than 95% of relative activity after 10 repeated cycles and exhibited easy recovery ability. Then porous magnetic chitin microspheres could be prepared, and the swollen porous polymer successfully controlled the growth of gold nanoparticles. The chitin/Au nanocomposite microspheres were a good recyclable catalyst due to the porous structure and a reduced dimension of the metal particles (r ≤ 5 nm). Finally, the magnetic chitin microspheres were modified into an adsorbent for enhanced removal of a typical cationic compound, methylene blue from aqueous solution.

  14. A palladium-doped ceria@carbon core-sheath nanowire network: a promising catalyst support for alcohol electrooxidation reactions

    NASA Astrophysics Data System (ADS)

    Tan, Qiang; Du, Chunyu; Sun, Yongrong; Du, Lei; Yin, Geping; Gao, Yunzhi

    2015-08-01

    A novel palladium-doped ceria and carbon core-sheath nanowire network (Pd-CeO2@C CSNWN) is synthesized by a template-free and surfactant-free solvothermal process, followed by high temperature carbonization. This hierarchical network serves as a new class of catalyst support to enhance the activity and durability of noble metal catalysts for alcohol oxidation reactions. Its supported Pd nanoparticles, Pd/(Pd-CeO2@C CSNWN), exhibit >9 fold increase in activity toward the ethanol oxidation over the state-of-the-art Pd/C catalyst, which is the highest among the reported Pd systems. Moreover, stability tests show a virtually unchanged activity after 1000 cycles. The high activity is mainly attributed to the superior oxygen-species releasing capability of Pd-doped CeO2 nanowires by accelerating the removal of the poisoning intermediate. The unique interconnected one-dimensional core-sheath structure is revealed to facilitate immobilization of the metal catalysts, leading to the improved durability. This core-sheath nanowire network opens up a new strategy for catalyst performance optimization for next-generation fuel cells.A novel palladium-doped ceria and carbon core-sheath nanowire network (Pd-CeO2@C CSNWN) is synthesized by a template-free and surfactant-free solvothermal process, followed by high temperature carbonization. This hierarchical network serves as a new class of catalyst support to enhance the activity and durability of noble metal catalysts for alcohol oxidation reactions. Its supported Pd nanoparticles, Pd/(Pd-CeO2@C CSNWN), exhibit >9 fold increase in activity toward the ethanol oxidation over the state-of-the-art Pd/C catalyst, which is the highest among the reported Pd systems. Moreover, stability tests show a virtually unchanged activity after 1000 cycles. The high activity is mainly attributed to the superior oxygen-species releasing capability of Pd-doped CeO2 nanowires by accelerating the removal of the poisoning intermediate. The unique

  15. Isolated catalyst sites on amorphous supports: A systematic algorithm for understanding heterogeneities in structure and reactivity

    NASA Astrophysics Data System (ADS)

    Goldsmith, Bryan R.; Sanderson, Evan D.; Bean, Daniel; Peters, Baron

    2013-05-01

    Methods for modeling catalytic sites on amorphous supports lag far behind methods for modeling catalytic sites on metal surfaces, zeolites, and other crystalline materials. One typical strategy for amorphous supports uses cluster models with arbitrarily chosen constraints to model the rigid amorphous support, but these constraints arbitrarily influence catalyst site activity. An alternative strategy is to use no constraints, but this results in catalytic sites with unrealistic flexibility. We present a systematic ab initio method to model isolated active sites on insulating amorphous supports using small cluster models. A sequential quadratic programming framework helps us relate chemical properties, such as the activation energy, to active site structure. The algorithm is first illustrated on an empirical valence bond model energy landscape. We then use the algorithm to model an off-pathway kinetic trap in olefin metathesis by isolated Mo sites on amorphous SiO2. The cluster models were terminated with basis set deficient fluorine atoms to mimic the properties of an extended silica framework. We also discuss limitations of the current algorithm formulation and future directions for improvement.

  16. Dinucleating Ligand Platforms Supporting Indium and Zinc Catalysts for Cyclic Ester Polymerization.

    PubMed

    Kremer, Alexandre B; Osten, Kimberly M; Yu, Insun; Ebrahimi, Tannaz; Aluthge, Dinesh C; Mehrkhodavandi, Parisa

    2016-06-01

    The synthesis of the first alkoxide-bridged indium complex supported by a chiral dinucleating ligand platform (1), along with its zinc analogue (2), is reported. Both complexes are synthesized in a one-pot reaction starting from a chiral dinucleating bis(diamino)phenolate ligand platform, sodium ethoxide, and respective metal salts. The dinucleating indium analogue (7) based on an achiral ligand backbone is also reported. Indium complexes bearing either the chiral or achiral ligand catalyze the ring-opening polymerization of racemic lactide (rac-LA) to afford highly heterotactic poly(lactic acid) (PLA; Pr > 0.85). The indium complex bearing an achiral ligand affords essentially atactic PLA from meso-LA. The role of the dinucleating ligand structure in catalyst synthesis and polymerization activity is discussed. PMID:27187767

  17. Carrier effects of active carbon for methanol carbonylation with supported transition metal catalysts

    SciTech Connect

    Fujimoto, K.; Omata, K.; Yagita, H.

    1996-10-01

    Transition metals such as nickel or noble metals showed excellent catalytic activities for the vapor phase carbonylation of methanol to acetic acid. Reaction proceeded via the carbonylation of methanol to methyl acetate and its successive carbonylation to acetic acid anhydride followed by the hydrolysis. Under slightly pressurized conditions and at around 250{degrees}C methanol was completely carbonylated to acetic acid with the selectivity of 97% or higher. Also, other group 8 metals including noble metals showed excellent catalytic activity only when they were supported on active carbon, whose activity, ordered by strength of metal-halogen bonding showed a volcano-shape relationship with the peak at Rh. The role of active carbon as the active carrier was clarified by kinetics and catalyst characterization which showed that active carbon promoted the reductive elimination of intermediate for acetic acid formation by donating electron from carbon to nickel species.

  18. Periodic trends in the hydrodenitrogenation activity of carbon-supported transition metal sulfide catalysts

    SciTech Connect

    Eijsbouts, S.; De Beer, V.H.J.; Prins, R.

    1988-01-01

    Periodic trends of transition metals for the catalysis of reactions such as hydrogenation, hydrogenolysis, isomerization and hydrogen oxidation have been well studied. When activity versus position of the transition metal in the periodic table is plotted, quite often these trends are manifested in the form of so-called volcano-type curves. In the present study, the authors have chosen the HDN of quinoline at moderately high pressure as a model reaction, and they have used the same carbon-supported transition metal sulfide catalysts studied by Vissers et al. Results are shown for the following transition metals: V, Cr, Mn, Fe, Co, Ni, Mo, Ru, Rh, Pd, W, Re, Os, Ir, and Pt. 9 references.

  19. Supported iron nanoparticles as catalysts for sustainable production of lower olefins.

    PubMed

    Torres Galvis, Hirsa M; Bitter, Johannes H; Khare, Chaitanya B; Ruitenbeek, Matthijs; Dugulan, A Iulian; de Jong, Krijn P

    2012-02-17

    Lower olefins are key building blocks for the manufacture of plastics, cosmetics, and drugs. Traditionally, olefins with two to four carbons are produced by steam cracking of crude oil-derived naphtha, but there is a pressing need for alternative feedstocks and processes in view of supply limitations and of environmental issues. Although the Fischer-Tropsch synthesis has long offered a means to convert coal, biomass, and natural gas into hydrocarbon derivatives through the intermediacy of synthesis gas (a mixture of molecular hydrogen and carbon monoxide), selectivity toward lower olefins tends to be low. We report on the conversion of synthesis gas to C(2) through C(4) olefins with selectivity up to 60 weight percent, using catalysts that constitute iron nanoparticles (promoted by sulfur plus sodium) homogeneously dispersed on weakly interactive α-alumina or carbon nanofiber supports. PMID:22344440

  20. Electro-synthesis of novel nanostructured PEDOT films and their application as catalyst support

    PubMed Central

    2011-01-01

    Poly(3,4-ethylenedioxythiophene) (PEDOT) films doped with nitric and chlorine ions have been electrochemically deposited simply by a one-step electrochemical method in an aqueous media in the absence of any surfactant. The fabricated PEDOT films were characterized by scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The results indicate that the hierarchical structured PEDOT film doped with nitric ions displays a 'lunar craters' porous morphology consisting of PEDOT nano-sheets with a thickness of less than 2 nm. The effect of counter ions on the electro-polymerization, the electrochemistry, and the morphology of the polymer film was studied. Compared with PEDOT film doped with nitric acid, PEDOT film deposited in the presence of chlorine ions shows irregular morphology and less electrochemical activity. The specific nanostructure of the polymer was further studied as catalyst support for platinum nanoparticles to methanol electro-oxidation. PMID:21711871

  1. Comparison of the Activity and the Stability in CO Oxidation of Au-Cu Catalysts Supported on TiO2 in Anatase or Rutile Phase.

    PubMed

    Zanella, Rodolfo; Bokhimi, Xim; Maturano, Viridiana; Morales, Antonio

    2015-09-01

    Au-Cu catalysts supported on anatase or rutile phases were prepared by deposition-precipitation method. The titania polymorph used as the support determined the catalytic behavior. For the Au-Cu/rutile catalysts, the metallic phase had smaller dimensions than for the Au-Cu/anatase catalysts. The catalysts supported on anatase, however, were more active and stable than those supported on rutile. A systematic study of the catalytic activity for CO oxidation as a function of the temperature of activation and the aging time was performed. The catalytic properties were correlated with the properties of the catalysts analyzed with X-ray powder diffraction, refinement of the crystalline structures with the Rietveld method, and transmission electron microscopy. When the support was anatase, a pretreatment at 400 degrees C in air led to the most active catalysts, whereas when the support was rutile, a pretreatment between 200 and 300 degrees C in air led to the most active catalysts; activation under hydrogen generated less active catalysts. The Au-Cu catalysts activated in air were more active for the oxidation of CO than the respective monometallic gold catalysts, indicating a promoting effect between gold and copper to catalyze this reaction.

  2. Thermal conductivity of partially graphitized biocarbon obtained by carbonization of medium-density fiberboard in the presence of a Ni-based catalyst

    NASA Astrophysics Data System (ADS)

    Orlova, T. S.; Parfen'eva, L. S.; Smirnov, B. I.; Gutierrez-Pardo, A.; Ramirez-Rico, J.

    2016-01-01

    The thermal conductivity k and resistivity ρ of biocarbon matrices, prepared by carbonizing medium-density fiberboard at T carb = 850 and 1500°C in the presence of a Ni-based catalyst (samples MDF-C( Ni)) and without a catalyst (samples MDF-C), have been measured for the first time in the temperature range of 5-300 K. X-ray diffraction analysis has revealed that the bulk graphite phase arises only at T carb = 1500°C. It has been shown that the temperature dependences of the thermal conductivity of samples MDFC- 850 and MDF-C-850(Ni) in the range of 80-300 K are to each other and follow the law of k( T) ˜ T 1.65, but the use of the Ni-catalyst leads to an increase in the thermal conductivity by a factor of approximately 1.5, due to the formation of a greater fraction of the nanocrystalline phase in the presence of the Ni-catalyst at T carb = 850°C. In biocarbon MDF-C-1500 prepared without a catalyst, the dependence is k( T) ˜ T 1.65, and it is controlled by the nanocrystalline phase. In MDF-C-1500(Ni), the bulk graphite phase formed increases the thermal conductivity by a factor of 1.5-2 compared to the thermal conductivity of MDF-C-1500 in the entire temperature range of 5-300 K; k( T = 300 K) reaches the values of ˜10 W m-1 K-1, characteristic of biocarbon obtained without a catalyst only at high temperatures of T carb = 2400°C. It has been shown that MDF-C-1500(Ni) in the temperature range of 40‒300 K is characterized by the dependence, k( T) ˜ T 1.3, which can be described in terms of the model of partially graphitized biocarbon as a composite of an amorphous matrix with spherical inclusions of the graphite phase.

  3. High-temperature hydrodechlorination of ozone-depleting chlorodifluoromethane (HCFC-22) on supported Pd and Ni catalysts.

    PubMed

    Ha, Jeong-Myeong; Kim, Daewoo; Kim, Jaehoon; Ahn, Byoung Sung; Kim, Yunje; Kang, Jeong Won

    2011-01-01

    The hydrodechlorination of chlorodifluoromethane (HCFC-22) was performed by a catalytic reaction and noncatalytic thermal decomposition at high temperatures of 400-800 °C. After 47 h of time-on-stream on a supported palladium (Pd) catalyst, the gas phase composition of difluoromethane (HFC-32) is 41.0%, with 4.9% of the HCFC-22 remaining, indicating the conversion of up to 95.1% of HCFC-22. The supported nickel catalyst's deactivation is significant as it exhibits the low conversion of HCFC-22 under the same reaction conditions. The deactivation of the catalyst is caused by the polymerization of adsorbed methyl radicals, which competes with the formation of HFC-32. With concentrated reactants at high reaction temperatures, there was an increase in the catalytic activity; however, unwanted tar, methane, and trifluoromethane (HFC-23) by-products are also produced. The use of catalyst suppresses the formation of these by-products. Considering the compositions of the products of the catalytic and noncatalytic reactions, we demonstrate that the use of the supported-metal catalysts and hydrogen flow suppresses tar formation and lowers the required reaction temperature.

  4. Reverse Micelle Synthesis and Characterization of Supported Pt/Ni Bimetallic Catalysts on gamma-Al2O3

    SciTech Connect

    B Cheney; J Lauterbach; J Chen

    2011-12-31

    Reverse micelle synthesis was used to improve the nanoparticle size uniformity of bimetallic Pt/Ni nanoparticles supported on {gamma}-Al{sub 2}O{sub 3}. Two impregnation methods were investigated to optimize the use of the micelle method: (1) step-impregnation, where Ni nanoparticles were chemically reduced in microemulsion and then supported, followed by Pt deposition using incipient wetness impregnation, and (2) co-impregnation, where Ni and Pt were chemically reduced simultaneously in microemulsion and then supported. Transmission electron microscopy (TEM) was used to characterize the particle size distribution. Atomic absorption spectroscopy (AAS) was used to perform elemental analysis of bimetallic catalysts. Extended X-ray absorption fine structure (EXAFS) measurements were utilized to confirm the formation of the Pt-Ni bimetallic bond in the step-impregnated catalyst. CO pulse chemisorption and Fourier transform infrared spectroscopy (FTIR) studies of 1,3-butadiene hydrogenation in a batch reactor were performed to determine the catalytic activity. Step-impregnated Pt/Ni catalyst demonstrated enhanced hydrogenation activity over the parent monometallic Pt and Ni catalysts due to bimetallic bond formation. The catalyst synthesized using co-impregnation showed no enhanced activity, behaving similarly to monometallic Ni. Overall, our results indicate that reverse micelle synthesis combined with incipient wetness impregnation produced small, uniform nanoparticles with bimetallic bonds that enhanced hydrogenation activity.

  5. High-temperature hydrodechlorination of ozone-depleting chlorodifluoromethane (HCFC-22) on supported Pd and Ni catalysts.

    PubMed

    Ha, Jeong-Myeong; Kim, Daewoo; Kim, Jaehoon; Ahn, Byoung Sung; Kim, Yunje; Kang, Jeong Won

    2011-01-01

    The hydrodechlorination of chlorodifluoromethane (HCFC-22) was performed by a catalytic reaction and noncatalytic thermal decomposition at high temperatures of 400-800 °C. After 47 h of time-on-stream on a supported palladium (Pd) catalyst, the gas phase composition of difluoromethane (HFC-32) is 41.0%, with 4.9% of the HCFC-22 remaining, indicating the conversion of up to 95.1% of HCFC-22. The supported nickel catalyst's deactivation is significant as it exhibits the low conversion of HCFC-22 under the same reaction conditions. The deactivation of the catalyst is caused by the polymerization of adsorbed methyl radicals, which competes with the formation of HFC-32. With concentrated reactants at high reaction temperatures, there was an increase in the catalytic activity; however, unwanted tar, methane, and trifluoromethane (HFC-23) by-products are also produced. The use of catalyst suppresses the formation of these by-products. Considering the compositions of the products of the catalytic and noncatalytic reactions, we demonstrate that the use of the supported-metal catalysts and hydrogen flow suppresses tar formation and lowers the required reaction temperature. PMID:21847789

  6. Selective hydrodesulfurization of FCC naphtha with supported MoS{sub 2} catalysts : the role of cobalt.

    SciTech Connect

    Marshall, C. L.; Kropf, A. J.; Miler, J. T.; Reagan, W. J.; Kaduk, J. A.; Chemical Engineering; BP Amoco Research Center

    2000-07-01

    The catalytic activity and selectivity for hydrodesulfurization (HDS) and olefin hydrogenation of FCC naphtha have been determined for MoS2 (no Co) catalysts on different supports and for a commercial CoMo/alumina HDS catalyst both with and without the addition of alkali. For MoS2 catalysts, the specific HDS activity is higher on silica than alumina, while addition of Cs resulted in no change in the activity. The differences in activity, however, are relatively small, a factor of less than two. EXAFS and XRD structural analysis indicate that small MoS2 particles are present on all catalysts. The differences in rate are not due to differences in particle size, dispersion, or support physical properties, but are likely due to the modification of catalytic properties by an interaction with the support. While there is a small influence on the rate, the composition of the support, or modification by Cs, has no effect on the HDSlolefin hydrogenation selectivity. The olefin hydrogenation conversion increases linearly with HDS conversion, and at high HDS conversion, few olefins remain in the FCC naphtha. Similar to the effect for Cs promotion of MoS2 on alumina, the addition of K to sulfided CoMo/alumina had little affect on the activity or selectivity for HDS and olefin hydrogenation. Unlike MoS2 catalysts, however, with sulfided CoMo at less than about 85% HDS conversion, the rate of olefin hydrogenation is low, but it increases rapidly as the sulfur in the naphtha drops below about 300 ppm. Selective HDS of FCC naphtha appears to correlate primarily to the formation of the CoMoS phase, rather than to the basic nature of the support. It is proposed that the enhanced olefin hydrogenation selectivity of CoMo catalysts is due to the competitive adsorption of sulfur compounds, which inhibit adsorption and saturation of olefins in the naphtha.

  7. Water-soluble polymer exfoliated graphene: as catalyst support and sensor.

    PubMed

    Wang, Haibo; Xia, Baoyu; Yan, Ya; Li, Nan; Wang, Jing-Yuan; Wang, Xin

    2013-05-01

    In this paper, we obtained various water-soluble polymer functionalized graphene in dimethyl sulfoxide under ultrasonication. The atomic force microscope analysis and control experiment shows the water-soluble polymer is the crucial part to help solvent molecules separate interlayer. Such polymer/graphene exhibits high conductivity and tunable surface property, as confirmed by the selected area electron diffraction and Raman and electrochemical impedance spectroscopy. As a result, a catalyst based on polyvinyl pyrrolidone (PVP)/graphene shows better methanol oxidation performance than that based on PVP/reduced graphene oxide. By changing to another polymer, poly(4-vinylpyridine)/graphene shows a stable and reversible response to pH, and demonstrates its potential for sensor application. PMID:23574310

  8. Platinum catalysts promoted by In doped SnO2 support for methanol electrooxidation in alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Feng, Yuan-Yuan; Kong, Wei-Qing; Yin, Qian-Ying; Du, Li-Xia; Zheng, Ying-Ting; Kong, De-Sheng

    2014-04-01

    Composite metal oxides InxSnO2 are prepared with a simple hydrothermal process and used as functionalized support of Pt catalyst toward methanol electrooxidation reaction (MOR). The catalytic activity of Pt is strongly dependent on the composition of the support. Introduction of a small amount of In into SnO2 support exhibits much higher promoting effect to the Pt catalytic properties as compared with Pt/SnO2 and commercial Pt/C catalysts. The mass-specific activity (MSA) and intrinsic activity (IA) of Pt in Pt/In0.1SnO2 is 3.0 and 4.3 times that of Pt/C, respectively. Changes in Pt electronic structure arising from the interaction between Pt and the support are responsible for this improvement. Our findings clearly suggest that the composite metal oxides InxSnO2 can not only act as the catalyst support but also act as an effective promoter to Pt toward MOR, which would be promising in designing new catalysts that can replace the traditional catalytic nanostructure.

  9. Supported oxorhenate catalysts prepared by thermal spreading of metal Re{sup 0} for methanol conversion to methylal

    SciTech Connect

    Secordel, Xavier; Yoboue, Anthony; Cristol, Sylvain; Lancelot, Christine; Capron, Mickael; Paul, Jean-Francois; Berrier, Elise

    2011-10-15

    TiO{sub 2}-anatase and SiO{sub 2} supported oxorhenate catalysts were prepared by an original and simple technique based on the oxidative dispersion of metallic rhenium under dry conditions. The dispersion process of the supported oxorhenate phase as a function of the rhenium coverage and the support properties are discussed on the base of in situ characterization. The structures of the as prepared catalysts were found to be comparable to those of materials prepared using the incipient wetness impregnation technique. The absence of water in the preparation technique has made it possible to highlight the role of the hydration level on the rhenium oxide volatilization. The as-prepared Re/TiO{sub 2} catalysts were found to be effective for the direct conversion of methanol to methylal. - Graphical Abstract: Evolution of the 900-1000 cm{sup -1} region of the Raman spectrum of a mixture of metal rhenium with anatase TiO{sub 2} K03 upon heating in pure O{sub 2}. Highlights: > Supported rhenium catalysts can be easily prepared from metal Re. > This dry process is mainly a CVD immediately followed by rhenium deposition. > Hydration of the oxorhenate phase is dependent on the support.

  10. A novel catalyst containing palladium nanoparticles supported on PVP composite nanofiber films: Synthesis, characterization and efficient catalysis

    NASA Astrophysics Data System (ADS)

    Guo, Liping; Bai, Jie; Li, Chunping; Meng, Qingrun; Liang, Haiou; Sun, Weiyan; Li, Hongqiang; Liu, Huan

    2013-10-01

    This paper studied the preparation of Pd nanoparticles/PVP composite nanofiber membranes catalyst. In the experiment, reductant was ethanol and PVP (polyvinyl pyrrolidone) served as the protecting agent as well as supporter of palladium nanoparticles. Pd nanoparticles/PVP sol was examined by UV-vis absorbance spectra (UV-vis); Pd NPs/PVP nanofibers were characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). The Pd NPs/PVP nanofibers films catalyst was applied to catalytic hydrogenation of aryl nitro compounds reduction and Heck reactions to test the catalytic activity, products were characterized by gas chromatograph (GC) and gas chromatograph mass spectrometer (GC-MS). Results showed that the diameters of Pd NPs were 3-10 nm and the Pd NPs/PVP nanofibers films catalyst possessed high-activity, improved the selectivity and yield, the conversion rate of paratoluidine was 74.36%, N-butyl cinnamate esters conversion rate still exceed 99% after catalyst be used three times. It overcomes the problems that palladium has leached badly and recovery difficultly in conventional homogeneous palladium catalyst field, and have a broad foreground of catalyst applications.

  11. Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: robust catalysts for oxidation and reduction reactions.

    PubMed

    Shang, Lu; Bian, Tong; Zhang, Baihui; Zhang, Donghui; Wu, Li-Zhu; Tung, Chen-Ho; Yin, Yadong; Zhang, Tierui

    2014-01-01

    Graphene nanosheet-supported ultrafine metal nanoparticles encapsulated by thin mesoporous SiO2 layers were prepared and used as robust catalysts with high catalytic activity and excellent high-temperature stability. The catalysts can be recycled and reused in many gas- and solution-phase reactions, and their high catalytic activity can be fully recovered by high-temperature regeneration, should they be deactivated by feedstock poisoning. In addition to the large surface area provided by the graphene support, the enhanced catalytic performance is also attributed to the mesoporous SiO2 layers, which not only stabilize the ultrafine metal nanoparticles, but also prevent the aggregation of the graphene nanosheets. The synthetic strategy can be extended to other metals, such as Pd and Ru, for preparing robust catalysts for various reactions.

  12. Polarization Losses under Accelerated Stress Test Using Multiwalled Carbon Nanotube Supported Pt Catalyst in PEM Fuel Cells

    SciTech Connect

    Park, Seh K.; Shao, Yuyan; Kou, Rong; Viswanathan, Vilayanur V.; Towne, Silas A.; Rieke, Peter C.; Liu, Jun; Lin, Yuehe; Wang, Yong

    2011-03-01

    The electrochemical behavior for Pt catalysts supported on multiwalled carbon nanotubes and Vulcan XC-72 in proton exchange membrane fuel cells under accelerated stress test was examined by cyclic voltammetry, electrochemical impedance spectroscopy, and polarization technique. Pt catalyst supported on multiwalled carbon nanotubes exhibited highly stable electrochemical surface area, oxygen reduction kinetics, and fuel cell performance at a highly oxidizing condition, indicating multiwalled carbon nanotubes show high corrosion resistance and strong interaction with Pt nanoparticles. The Tafel slope, ohmic resistances, and limiting current density determined were used to differentiate kinetic, ohmic, mass-transfer polarization losses from the actual polarization curve. Kinetic contribution to the total overpotential was larger throughout the stress test. However, the fraction of kinetic overpotential decreased and mass-transfer overpotential portion remained quite constant during accelerated stress test, whereas the fraction of ohmic overpotential primarily originating from severe proton transport limitation in the catalyst layer increased under the anodic potential hold.

  13. Ceria supported on sulfated zirconia as a superacid catalyst for selective catalytic reduction of NO with NH3.

    PubMed

    Gao, Shan; Chen, Xiongbo; Wang, Haiqiang; Mo, Jiansong; Wu, Zhongbiao; Liu, Yue; Weng, Xiaole

    2013-03-15

    In this paper, ceria supported on sulfated zirconia (CeSZ) as a superacid catalyst was synthesized and the resulted performances for selective catalytic reduction (SCR) of NO with NH(3) were investigated. Experimental results revealed that the sulfation of zirconia supports could greatly improve the SCR activity of the catalysts. Among the tested samples, the CeSZ catalyst with Ce/Zr mole ratio at 0.095 possessed the highest NO conversion (i.e., 98.6% at ca. 420 °C and 180,000 h(-1)). The sulfation had led to a formation of pure tetragonal phase of ZrO(2), a well dispersion of CeO(2), abundant stable superacid sites, increasing surface area and enrichment of Ce(3+) on the surface, all of which were responsible for its excellent performance in SCR of NO with NH(3).

  14. Cationic Silica-Supported N-Heterocyclic Carbene Tungsten Oxo Alkylidene Sites: Highly Active and Stable Catalysts for Olefin Metathesis.

    PubMed

    Pucino, Margherita; Mougel, Victor; Schowner, Roman; Fedorov, Alexey; Buchmeiser, Michael R; Copéret, Christophe

    2016-03-18

    Designing supported alkene metathesis catalysts with high activity and stability is still a challenge, despite significant advances in the last years. Described herein is the combination of strong σ-donating N-heterocyclic carbene ligands with weak σ-donating surface silanolates and cationic tungsten sites leading to highly active and stable alkene metathesis catalysts. These well-defined silica-supported catalysts, [(≡SiO)W(=O)(=CHCMe2 Ph)(IMes)(OTf)] and [(≡SiO)W(=O)(=CHCMe2 Ph)(IMes)(+) ][B(Ar(F) )4 (-) ] [IMes=1,3-bis(2,4,6-trimethylphenyl)-imidazol-2-ylidene, B(Ar(F) )4 =B(3,5-(CF3 )2 C6 H3 )4 ] catalyze alkene metathesis, and the cationic species display unprecedented activity for a broad range of substrates, especially for terminal olefins with turnover numbers above 1.2 million for propene.

  15. Cationic Silica-Supported N-Heterocyclic Carbene Tungsten Oxo Alkylidene Sites: Highly Active and Stable Catalysts for Olefin Metathesis.

    PubMed

    Pucino, Margherita; Mougel, Victor; Schowner, Roman; Fedorov, Alexey; Buchmeiser, Michael R; Copéret, Christophe

    2016-03-18

    Designing supported alkene metathesis catalysts with high activity and stability is still a challenge, despite significant advances in the last years. Described herein is the combination of strong σ-donating N-heterocyclic carbene ligands with weak σ-donating surface silanolates and cationic tungsten sites leading to highly active and stable alkene metathesis catalysts. These well-defined silica-supported catalysts, [(≡SiO)W(=O)(=CHCMe2 Ph)(IMes)(OTf)] and [(≡SiO)W(=O)(=CHCMe2 Ph)(IMes)(+) ][B(Ar(F) )4 (-) ] [IMes=1,3-bis(2,4,6-trimethylphenyl)-imidazol-2-ylidene, B(Ar(F) )4 =B(3,5-(CF3 )2 C6 H3 )4 ] catalyze alkene metathesis, and the cationic species display unprecedented activity for a broad range of substrates, especially for terminal olefins with turnover numbers above 1.2 million for propene. PMID:26928967

  16. Dynamical Observation and Detailed Description of Catalysts under Strong Metal-Support Interaction.

    PubMed

    Zhang, Shuyi; Plessow, Philipp N; Willis, Joshua J; Dai, Sheng; Xu, Mingjie; Graham, George W; Cargnello, Matteo; Abild-Pedersen, Frank; Pan, Xiaoqing

    2016-07-13

    Understanding the structures of catalysts under realistic conditions with atomic precision is crucial to design better materials for challenging transformations. Under reducing conditions, certain reducible supports migrate onto supported metallic particles and create strong metal-support states that drastically change the reactivity of the systems. The details of this process are still unclear and preclude its thorough exploitation. Here, we report an atomic description of a palladium/titania (Pd/TiO2) system by combining state-of-the-art in situ transmission electron microscopy and density functional theory (DFT) calculations with structurally defined materials, in which we visualize the formation of the overlayers at the atomic scale under atmospheric pressure and high temperature. We show that an amorphous reduced titania layer is formed at low temperatures, and that crystallization of the layer into either mono- or bilayer structures is dictated by the reaction environment and predicted by theory. Furthermore, it occurs in combination with a dramatic reshaping of the metallic surface facets.

  17. Activity and selectivity control by niobium for the preferential oxidation of co on pt supported catalysts

    SciTech Connect

    Guerrero, S.; Miller, J.T.; Wolf, E.E.

    2010-10-22

    The promotional effect of Nb on Pt supported on alumina or on niobia, was studied for the preferential oxidation of CO (PROX) in hydrogen. The results show a unique effect of Nb as a promoter to Pt. At low Nb loadings on Pt/alumina, the CO oxidation activity and selectivity are significantly increased. The CO selectivity is 100% at conversions up to about 60%. For Pt supported on Nb{sub 2}O{sub 5}, however, the CO oxidation activity is strongly suppressed with low CO conversion but high H{sub 2} oxidation activity. Pt on niobia, therefore, is poorly selective for the PROX reaction, but is an active hydrogen oxidation catalyst, resistant to CO poisoning. For Pt supported on highly loaded Nb-alumina or Nb{sub 2}O{sub 5}, XPS indicate an increase in the Pt and Nb oxidation states. These surface changes also correlate with changes in the DRIFTS spectra suggesting that CO is more weakly adsorbed on Pt/Nb{sub 2}O{sub 5} compared to Pt/Al{sub 2}O{sub 3}, or Pt/Nb-Al{sub 2}O{sub 3}.

  18. Dynamical Observation and Detailed Description of Catalysts under Strong Metal-Support Interaction.

    PubMed

    Zhang, Shuyi; Plessow, Philipp N; Willis, Joshua J; Dai, Sheng; Xu, Mingjie; Graham, George W; Cargnello, Matteo; Abild-Pedersen, Frank; Pan, Xiaoqing

    2016-07-13

    Understanding the structures of catalysts under realistic conditions with atomic precision is crucial to design better materials for challenging transformations. Under reducing conditions, certain reducible supports migrate onto supported metallic particles and create strong metal-support states that drastically change the reactivity of the systems. The details of this process are still unclear and preclude its thorough exploitation. Here, we report an atomic description of a palladium/titania (Pd/TiO2) system by combining state-of-the-art in situ transmission electron microscopy and density functional theory (DFT) calculations with structurally defined materials, in which we visualize the formation of the overlayers at the atomic scale under atmospheric pressure and high temperature. We show that an amorphous reduced titania layer is formed at low temperatures, and that crystallization of the layer into either mono- or bilayer structures is dictated by the reaction environment and predicted by theory. Furthermore, it occurs in combination with a dramatic reshaping of the metallic surface facets. PMID:27280326

  19. Stable hydrogen generation from Ni- and Co-based co-catalysts in supported CdS PEC cell.

    PubMed

    Pareek, Alka; Paik, Pradip; Borse, Pramod H

    2016-07-01

    To improve the limited efficiency and stability of CdS photoanodes in a photoelectrochemical (PEC) cell, the nanostructured CdS photoanode was modified with Ni(OH)2, NiO, Co(OH)2, and Co3O4 water-oxidation-nano co-catalysts (WOC). Co(OH)2 nanorice and Ni(OH)2 nanosheet co-catalysts were obtained by a simple chemical precipitation method. Modification by the co-catalysts gives longer stability (>8 h) to CdS electrodes, and facilitates impulsive H2 evolution in PEC cells. Nano-NiO modification yields a two-fold increase in photocurrent density and the highest H2 evolution of 2.5 mmol h(-1). A dual role for Ni related co-catalysts over CdS surface, that is forming a p-n junction and acting as an effective co-catalyst, improves the photocurrent and hydrogen evolution rate, respectively. Improvement in stability was measured using X-ray photoelectron spectroscopy and prolong chronoamperometry measurements. The present report focuses on exploration of chemically synthesized earth-abundant and cost-effective co-catalysts for PEC H2 generation. PMID:27327992

  20. Stable hydrogen generation from Ni- and Co-based co-catalysts in supported CdS PEC cell.

    PubMed

    Pareek, Alka; Paik, Pradip; Borse, Pramod H

    2016-07-01

    To improve the limited efficiency and stability of CdS photoanodes in a photoelectrochemical (PEC) cell, the nanostructured CdS photoanode was modified with Ni(OH)2, NiO, Co(OH)2, and Co3O4 water-oxidation-nano co-catalysts (WOC). Co(OH)2 nanorice and Ni(OH)2 nanosheet co-catalysts were obtained by a simple chemical precipitation method. Modification by the co-catalysts gives longer stability (>8 h) to CdS electrodes, and facilitates impulsive H2 evolution in PEC cells. Nano-NiO modification yields a two-fold increase in photocurrent density and the highest H2 evolution of 2.5 mmol h(-1). A dual role for Ni related co-catalysts over CdS surface, that is forming a p-n junction and acting as an effective co-catalyst, improves the photocurrent and hydrogen evolution rate, respectively. Improvement in stability was measured using X-ray photoelectron spectroscopy and prolong chronoamperometry measurements. The present report focuses on exploration of chemically synthesized earth-abundant and cost-effective co-catalysts for PEC H2 generation.