Science.gov

Sample records for catalyst support obtained

  1. Characterization and reactivity of Pd Pt bimetallic supported catalysts obtained by laser vaporization of bulk alloy

    NASA Astrophysics Data System (ADS)

    Rousset, J. L.; Cadete Santos Aires, F. J.; Bornette, F.; Cattenot, M.; Pellarin, M.; Stievano, L.; Renouprez, A. J.

    2000-09-01

    Bimetallic Pd-Pt clusters produced by laser vaporization of bulk alloy have been deposited on high surface alumina. Energy dispersive X-ray (EDX) analysis and transmission electron microscopy (TEM) show that they have a perfectly well-defined stoichiometry and a narrow range of size. Therefore, they constitute ideal systems to investigate alloying effects towards reactivity. Pd-Pt alloys are already known for their applications in the hydrogenation of unsaturated hydrocarbons, especially aromatics, because this system is highly resistant to sulfur and nitrogen poisoning. In this context, the catalytic properties of this system have been investigated in the hydrogenation of tetralin in the presence of hydrogen sulfide. Preliminary results show that this model catalyst is more sulfur-resistant than each of the pure supported metals prepared by chemical methods.

  2. Nanostructured catalyst supports

    DOEpatents

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2012-10-02

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  3. Nanostructured catalyst supports

    DOEpatents

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2015-09-29

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  4. Supported molten-metal catalysts

    DOEpatents

    Datta, Ravindra; Singh, Ajeet; Halasz, Istvan; Serban, Manuela

    2001-01-01

    An entirely new class of catalysts called supported molten-metal catalysts, SMMC, which can replace some of the existing precious metal catalysts used in the production of fuels, commodity chemicals, and fine chemicals, as well as in combating pollution. SMMC are based on supporting ultra-thin films or micro-droplets of the relatively low-melting (<600.degree. C.), inexpensive, and abundant metals and semimetals from groups 1, 12, 13, 14, 15 and 16, of the periodic table, or their alloys and intermetallic compounds, on porous refractory supports, much like supported microcrystallites of the traditional solid metal catalysts. It thus provides orders of magnitude higher surface area than is obtainable in conventional reactors containing molten metals in pool form and also avoids corrosion. These have so far been the chief stumbling blocks in the application of molten metal catalysts.

  5. Crystalline titanate catalyst supports

    DOEpatents

    Anthony, Rayford G.; Dosch, Robert G.

    1993-01-01

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  6. Crystalline titanate catalyst supports

    DOEpatents

    Anthony, R.G.; Dosch, R.G.

    1993-01-05

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  7. Process of making supported catalyst

    DOEpatents

    Schwarz, James A.; Subramanian, Somasundaram

    1992-01-01

    Oxide supported metal catalysts have an additional metal present in intimate association with the metal catalyst to enhance catalytic activity. In a preferred mode, iridium or another Group VIII metal catalyst is supported on a titania, alumina, tungsten oxide, silica, or composite oxide support. Aluminum ions are readsorbed onto the support and catalyst, and reduced during calcination. The aluminum can be added as aluminum nitrate to the iridium impregnate solution, e.g. chloroiridic acid.

  8. Supported organoiridium catalysts for alkane dehydrogenation

    SciTech Connect

    Baker, R. Thomas; Sattelberger, Alfred P.; Li, Hongbo

    2013-09-03

    Solid supported organoiridium catalysts, a process for preparing such solid supported organoiridium catalysts, and the use of such solid supported organoiridium catalysts in dehydrogenation reactions of alkanes is provided. The catalysts can be easily recovered and recycled.

  9. Support effects studied on model supported catalysts

    SciTech Connect

    Gorte, R.J.

    1993-02-01

    Composition and structure of oxide support materials can change the catalytic behavior of metal and oxide catalysts. Model catalysts are being studied in which the active phase is deposited on flat oxide substrates, with emphasis on metals catalysis for automotive emissions control and acidity in supported oxides. Research is reported in the following areas: particle-size effects, support effects on ZnO and zirconia, support effects on ceria, supported oxides, and low energy ion scattering (no results in the latter).

  10. Support effects studied on model supported catalysts

    SciTech Connect

    Gorte, R.G.

    1991-11-01

    We are studying model catalysts in which the active phase is deposited onto flat oxide substrates in order to understand how a catalyst is affected by its support. We have examined the following growth and stability of titania overlayers which had been vapor deposited onto a Rh foil; the growth of Pt films on ZnO(0001)Zn and O(0001)O and compared the results to those obtained for Pt on {alpha}-Al{sub 2}O{sub 3}(0001). Samples were prepared by vapor deposition of Pt onto flat substrates in ultra high vacuum, and metal coverages were measured using a quartz-crystal, film thickness monitor; the structure and CO adsorption properties of Pt films vapor deposited onto a ZrO{sub 2}(100) crystal; the deposition of Rh on a ZrO{sub 2}(100) crystal; The absorption of NO on Pt particles supported on CeO{sub 2}, {alpha}-Al{sub 2}O{sub 3}(0001), and the Zn- and O-polar surfaces of ZnO(0001). We have investigated supported oxides in order to understand the acidic properties that have been reported for monolayer oxides. Our first studies were of amorphous, silicalumina catalysts. Finally, we have also begun to prepare model supported oxides in order to be able to used spectroscopic methods to characterize the sites formed on these materials. Our first studies were of niobia deposition on oxidized Al films and on an {alpha}-Al{sub 2}O{sub 3}(0001) crystal.

  11. Separately supported polymetallic reforming catalyst

    SciTech Connect

    Kresge, C. T.; Krishnamurthy, S.; McHale, W. D.

    1985-01-15

    There is provided, in accordance with the present invention, a catalyst composition made up of a mixture of two components, one component comprising a minor proportion of platinum and rhenium on a support and the second component comprising a minor proportion of iridium and rhenium on a separate support. A process for reforming a charge stock, such as naphtha, utilizing such catalyst is also provided.

  12. Clay complexes support HDS catalyst.

    SciTech Connect

    Marshall, C. L.; Carrado, K.; Chemical Engineering

    2000-01-01

    Hydroprocessing represents a crucial component of petroleum refining operations both in terms of environmental and economic considerations. Regulations concerning maximum amount of sulfur content of gasoline and emissions of sulfur-oxide compounds upon combustion are becoming more and more stringent. One 1994-2000 focus of Argonne National Laboratory (ANL) has been the development of catalysts for hydrodesulfurization (HDS). Typical HDS catalysts are comprised of Co-Mo sulfides or Ni-Mo sulfides on an alumina support. Modification of the pore structure of the support has generated great attention among researchers. Most desulfurization test reactions have used dibenzothiophene (DBT) as the model compound to test various configurations of support material with Co-Mo-S and Ni-Mo-S catalysts. In this testing, the desired product would be biphenyl and hydrogen sulfide (H{sub 2}S). A competing reaction creates cyclohexylbenzene by saturating one aromatic ring prior to desulfurization. Ring saturation requires more costly hydrogen and is not desirable. Fortunately, a more effective catalyst for adding hydrogen at the sulfur site with hydrogenating the aromatic rings has been found. However, this has only been tested on DBT. HDS uses various types of catalysts to add hydrogen to reduce unwanted sulfur compounds. Typically this requires expensive, high-pressure, high-temperature equipment to produce the environmentally friendly low-sulfur fuels. ANL scientists identified several new desulfurization catalysts with improved HDS activity and selectivity. From these new catalysts, it may be possible to achieve HDS processing at lower temperature and pressure. The catalysts used for HDS at ANL are various clay complexes. Natural clays have a history of use in the hydroprocessing industry since they are abundant and inexpensive. ANL's approach is to create synthetic organo-clay complexes (SOCC). An advantage of SOCCs is that the pore size and distribution can be controlled by

  13. Enhanced hydrogen evolution properties obtained by ultrasonic-cyclic voltammetry modification of C-supported PtCu thin film catalyst

    NASA Astrophysics Data System (ADS)

    Yi, Sha; Yang, Bin; Zhang, Zhan-Sheng

    2017-05-01

    Carbon-supported Pt-Cu (Pt-Cu/C) bimetallic catalyst was synthesized by Ion Beam Sputtering technology and subsequently annealed in vacuum and electrochemically etched by Ultrasonic-Cyclic Voltammetry (US-CV). Electrochemical measurements indicate that the sample was modified electrochemically by US-CV shows higher catalytic activity towards hydrogen evolution reaction than pure Pt/C. Scanning and transmission electron microscopy and electronic differential system analysis reveal that the surface of post-processed catalyst produced PtCu@Pt core-shell structure which increasing the efficiency of Pt. Transmission electron microscope analysis displays that on the surface of PtCu@Pt core-shell particles detects lattice compressive strain, the lattice compression variable is around 1.12%. X-ray photoelectron spectroscopy analysis confirms that the Pt4f7/2 binding energy of the post-processed PtCu/C is 71.10 eV, decreased by 0.2 eV compared to pure Pt/C (71.3 eV). It can be inferred that the enhancement of catalytic property attribute to the Cu atoms modified the geometric structure and electronic structure of the Pt atoms.

  14. Supported metal alloy catalysts

    DOEpatents

    Barrera, Joseph; Smith, David C.

    2000-01-01

    A process of preparing a Group IV, V, or VI metal carbonitride including reacting a Group IV, V, or VI metal amide complex with ammonia to obtain an intermediate product; and, heating the intermediate product to temperatures and for times sufficient to form a Group IV, V, or VI metal carbonitride is provided together with the product of the process and a process of reforming an n-alkane by use of the product.

  15. Zircon Supported Copper Catalysts for the Steam Reforming of Methanol

    NASA Astrophysics Data System (ADS)

    Widiastri, M.; Fendy, Marsih, I. N.

    2008-03-01

    Steam reforming of methanol (SRM) is known as one of the most favorable catalytic processes for producing hydrogen. Current research on zirconia, ZrO2 supported copper catalyst revealed that CuO/ZrO2 as an active catalyst for the SRM. Zircon, ZrSiO4 is available from the by-product of tin mining. In the work presented here, the catalytic properties of CuO/ZrSiO4 with various copper oxide compositions ranging from 2.70% (catalyst I), 4.12% (catalyst II), and 7.12%-mass (catalyst III), synthesized by an incipient wetness impregnation technique, were investigated to methanol conversion, selectivity towards CO formation, and effect of ZnO addition (7.83%CuO/8.01%ZnO/ZrSiO4 = catalyst V). The catalytic activity was obtained using a fixed bed reactor and the zircon supported catalyst activity was compared to those of CuO/ZnO/Al2O3 catalyst (catalyst IV) and commercial Kujang LTSC catalyst. An X-ray powder diffraction (XRD) analysis was done to identify the abundant phases of the catalysts. The catalysts topography and particle diameter were measured with scanning electron microscopy (SEM) and composition of the catalysts was measured by SEM-EDX, scanning electron microscope-energy dispersive using X-ray analysis. The results of this research provide information on the possibility of using zircon (ZrSiO4) as solid support for SRM catalysts.

  16. Methane activation on supported transition metal catalysts

    NASA Astrophysics Data System (ADS)

    Carstens, Jason Ned

    At present, there is considerable interest in utilizing methane more efficiently as both a fuel source and as a starting material for the production of other, more valuable products. However, methane is a very stable molecule with strong C-H bonds that are difficult to break. This makes methane combustion or the formation of carbon-carbon bonds quite difficult. The present work focuses on the use of supported transition metal catalysts as a means of activating methane (i.e. breaking C-H bonds) at low temperatures to produce valuable products or energy. The conversion of methane into higher hydrocarbons. A low temperature (<750 K), direct process to effectively convert methane into higher hydrocarbons would be quite desirable. Such a process is thermodynamically feasible if the reaction is broken up into two separate steps. The first step is the adsorption of methane onto a transition metal catalyst at temperatures above about 600 K to produce a surface carbon species. The second step is a low temperature (<373 K) hydrogenation to convert the carbon species into higher hydrocarbons. T. Koerts et al. have pursued this approach by dissociatively absorbing methane onto silica supported transition metal catalysts at temperatures ranging between 573 K and 773 K. The result was a surface carbonaceous species and hydrogen. In the second step, the carbonaceous intermediates produced small alkanes upon hydrogenation around 373 K. A maximum yield to higher hydrocarbons of 13% was obtained on a ruthenium catalyst. The present study was conducted to further investigate the nature of the carbonaceous species reported by Koerts. Methane combustion. This investigation was conducted in an effort to better understand the mechanism of methane combustion on Pd catalysts. In the first part of this study, temperature programmed reduction (TPR) was used to investigate the oxidation and reduction dynamics of a 10 wt% Pd/ZrOsb2 catalyst used for methane combustion. TPR experiments indicate

  17. Oxidation catalysts on alkaline earth supports

    DOEpatents

    Mohajeri, Nahid

    2017-03-21

    An oxidation catalyst includes a support including particles of an alkaline earth salt, and first particles including a palladium compound on the support. The oxidation catalyst can also include precious metal group (PMG) metal particles in addition to the first particles intermixed together on the support. A gas permeable polymer that provides a continuous phase can completely encapsulate the particles and the support. The oxidation catalyst may be used as a gas sensor, where the first particles are chemochromic particles.

  18. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOEpatents

    Angelici, Robert J.; Gao, Hanrong

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilation, olefin oxidation, isomerization, hydrocyanation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical.

  19. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOEpatents

    Angelici, R.J.; Gao, H.

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilication, olefin oxidation, isomerization, hydrocyanidation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical. 2 figs.

  20. Catalyst support structure, catalyst including the structure, reactor including a catalyst, and methods of forming same

    DOEpatents

    Van Norman, Staci A.; Aston, Victoria J.; Weimer, Alan W.

    2017-05-09

    Structures, catalysts, and reactors suitable for use for a variety of applications, including gas-to-liquid and coal-to-liquid processes and methods of forming the structures, catalysts, and reactors are disclosed. The catalyst material can be deposited onto an inner wall of a microtubular reactor and/or onto porous tungsten support structures using atomic layer deposition techniques.

  1. Graphene supported heterogeneous catalysts for Li-O2 batteries

    NASA Astrophysics Data System (ADS)

    Alaf, M.; Tocoglu, U.; Kartal, M.; Akbulut, H.

    2016-09-01

    In this study production and characterization of free-standing and flexible (i) graphene, (ii) α-MnO2/graphene, (iii) Pt/graphene (iv) α-MnO2/Pt/graphene composite cathodes for Li-air batteries were reported. Graphene supported heterogeneous catalysts were produced by a facile method. In order to prevent aggregation of graphene sheets and increase not only interlayer distance but also surface area, a trace amount multi-wall carbon nano tube (MWCNT) was introduced to the composite structure. The obtained composite catalysts were characterized by SEM, X-ray diffraction, N2 adsorption-desorption analyze and Raman spectroscopy. The electrochemical characterization tests including galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) measurement of catalyst were carried out by using an ECC-Air test cell. These highly active graphene supported heterogeneous composite catalysts provide competitive properties relative to other catalyst materials for Li-air batteries.

  2. Characteristics of polyaniline cobalt supported catalysts for epoxidation reactions.

    PubMed

    Kowalski, Grzegorz; Pielichowski, Jan; Grzesik, Mirosław

    2014-01-01

    A study of polyaniline (PANI) doping with various cobalt compounds, that is, cobalt(II) chloride, cobalt(II) acetate, and cobalt(II) salen, is presented. The catalysts were prepared by depositing cobalt compounds onto the polymer surface. PANI powders containing cobalt ions were obtained by one- or two-step method suspending PANI in the following acetonitrile/acetic acid solution or acetonitrile and then acetic acid solution. Moreover different ratios of Co(II) : PANI were studied. Catalysts obtained with both methods and at all ratios were investigated using various techniques including AAS and XPS spectroscopy. The optimum conditions for preparation of PANI/Co catalysts were established. Catalytic activity of polyaniline cobalt(II) supported catalysts was tested in dec-1-ene epoxidation with molecular oxygen at room temperature. The relationship between the amount of cobalt species, measured with both AAS and XPS techniques, and the activity of PANI-Co catalysts has been established.

  3. Characteristics of Polyaniline Cobalt Supported Catalysts for Epoxidation Reactions

    PubMed Central

    Kowalski, Grzegorz; Pielichowski, Jan; Grzesik, Mirosław

    2014-01-01

    A study of polyaniline (PANI) doping with various cobalt compounds, that is, cobalt(II) chloride, cobalt(II) acetate, and cobalt(II) salen, is presented. The catalysts were prepared by depositing cobalt compounds onto the polymer surface. PANI powders containing cobalt ions were obtained by one- or two-step method suspending PANI in the following acetonitrile/acetic acid solution or acetonitrile and then acetic acid solution. Moreover different ratios of Co(II) : PANI were studied. Catalysts obtained with both methods and at all ratios were investigated using various techniques including AAS and XPS spectroscopy. The optimum conditions for preparation of PANI/Co catalysts were established. Catalytic activity of polyaniline cobalt(II) supported catalysts was tested in dec-1-ene epoxidation with molecular oxygen at room temperature. The relationship between the amount of cobalt species, measured with both AAS and XPS techniques, and the activity of PANI-Co catalysts has been established. PMID:24701183

  4. Support effects studied on model supported catalysts. Progress report

    SciTech Connect

    Gorte, R.J.

    1993-02-01

    Composition and structure of oxide support materials can change the catalytic behavior of metal and oxide catalysts. Model catalysts are being studied in which the active phase is deposited on flat oxide substrates, with emphasis on metals catalysis for automotive emissions control and acidity in supported oxides. Research is reported in the following areas: particle-size effects, support effects on ZnO and zirconia, support effects on ceria, supported oxides, and low energy ion scattering (no results in the latter).

  5. Hydrodesulfurization and hydrodenitrogenation catalysts obtained from coal mineral matter

    DOEpatents

    Liu, Kindtoken H. D.; Hamrin, Jr., Charles E.

    1982-01-01

    A hydrotreating catalyst is prepared from coal mineral matter obtained by low temperature ashing coals of relatively low bassanite content by the steps of: (a) depositing on the low temperature ash 0.25-3 grams of an iron or nickel salt in water per gram of ash and drying a resulting slurry; (b) crushing and sizing a resulting solid; and (c) heating the thus-sized solid powder in hydrogen.

  6. Metal supports for exhaust gas catalysts

    SciTech Connect

    Nonnenmann, M.

    1985-01-01

    Since 1979, metal supports as pre-catalysts have been mass-produced and installed in export models of German automobiles bound for the United States and Japan. The close-to-engine installation directly behind the exhaust manifold places specially high demands on the thermal and mechanical durability of the metal supports. Sueddeutsche Kuehlerfabrik Behr produces these metal supports under the name of ''Metalit''. The development, properties and special advantages of these metal supports are covered. The successful use of hundreds of thousands of metal supports, a number of automobile manufacturers are working on programs to employ the Metalit concept for primary catalysts.

  7. High-efficiency palladium catalysts supported on ppy-modified C60 for formic acid oxidation.

    PubMed

    Bai, Zhengyu; Yang, Lin; Guo, Yuming; Zheng, Zhi; Hu, Chuangang; Xu, Pengle

    2011-02-14

    A facile preparation of polypyrrole-modified fullerene supported Pd nanoparticles catalyst is introduced; electrochemical measurements demonstrate that the obtained Pd/ppy-C(60) catalyst shows a good electrocatalytic activity and stability for the oxidation of formic acid.

  8. Thermodynamic Properties of Supported Catalysts

    SciTech Connect

    Gorte, Raymond J.

    2014-03-26

    The goals of this work were to develop Coulometric Titration as a method for characterizing the thermodynamic redox properties of oxides and to apply this technique to the characterization of ceria- and vanadia-based catalysts. The redox properties of ceria and vanadia are a major part of what makes these materials catalytically active but their properties are also dependent on their structure and the presence of other oxides. Quantifying these properties through the measurement of oxidation energetics was the goal of this work.

  9. Catalysis science of supported vanadium oxide catalysts.

    PubMed

    Wachs, Israel E

    2013-09-07

    Supported vanadium oxide catalysts contain a vanadium oxide phase deposited on a high surface area oxide support (e.g., Al2O3, SiO2, TiO2, etc.) and have found extensive applications as oxidation catalysts in the chemical, petroleum and environmental industries. This review of supported vanadium oxide catalysts focuses on the fundamental aspects of this novel class of catalytic materials (molecular structures, electronic structures, surface chemistry and structure-reactivity relationships). The molecular and electronic structures of the supported vanadium oxide phases were determined by the application of modern in situ characterization techniques (Raman, IR, UV-vis, XANES, EXAFS, solid state (51)V NMR and isotopic oxygen exchange). The characterization studies revealed that the supported vanadium oxide phase consists of two-dimensional surface vanadia sites dispersed on the oxide supports. Corresponding surface chemistry and reactivity studies demonstrated that the surface vanadia sites are the catalytic active sites for oxidation reactions by supported vanadia catalysts. Combination of characterization and reactivity studies demonstrate that the oxide support controls the redox properties of the surface vanadia sites that can be varied by as much as a factor of ~10(3).

  10. Electronic metal-support interactions in single-atom catalysts.

    PubMed

    Hu, Pingping; Huang, Zhiwei; Amghouz, Zakariae; Makkee, Michiel; Xu, Fei; Kapteijn, Freek; Dikhtiarenko, Alla; Chen, Yaxin; Gu, Xiao; Tang, Xingfu

    2014-03-24

    The synthesis of single-atom catalysts and the control of the electronic properties of catalytic sites to arrive at superior catalysts is a major challenge in heterogeneous catalysis. A stable supported single-atom silver catalyst with a controllable electronic state was obtained by anti-Ostwald ripening. An electronic perturbation of the catalytic sites that is induced by a subtle change in the structure of the support has a strong influence on the intrinsic reactivity. The higher depletion of the 4d electronic state of the silver atoms causes stronger electronic metal-support interactions, which leads to easier reducibility and higher catalytic activity. These results may improve our understanding of the nature of electronic metal-support interactions and lead to structure-activity correlations.

  11. Catalyst supports for polymer electrolyte fuel cells.

    PubMed

    Subban, Chinmayee; Zhou, Qin; Leonard, Brian; Ranjan, Chinmoy; Edvenson, Heather M; Disalvo, F J; Munie, Semeret; Hunting, Janet

    2010-07-28

    A major challenge in obtaining long-term durability in fuel cells is to discover catalyst supports that do not corrode, or corrode much more slowly than the current carbon blacks used in today's polymer electrolyte membrane fuel cells. Such materials must be sufficiently stable at low pH (acidic conditions) and high potential, in contact with the polymer membrane and under exposure to hydrogen gas and oxygen at temperatures up to perhaps 120 degrees C. Here, we report the initial discovery of a promising class of doped oxide materials for this purpose: Ti(1-x)M(x)O(2), where M=a variety of transition metals. Specifically, we show that Ti(0.7)W(0.3)O(2) is electrochemically inert over the appropriate potential range. Although the process is not yet optimized, when Pt nanoparticles are deposited on this oxide, electrochemical experiments show that hydrogen is oxidized and oxygen reduced at rates comparable to those seen using a commercial Pt on carbon black support.

  12. Attrition resistant gamma-alumina catalyst support

    DOEpatents

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2006-03-14

    A .gamma.-alumina catalyst support having improved attrition resistance produced by a method comprising the steps of treating a particulate .gamma.-alumina material with an acidic aqueous solution comprising water and nitric acid and then, prior to adding any catalytic material thereto, calcining the treated .gamma.-alumina.

  13. Fly ash zeolite catalyst support for Fischer-Tropsch synthesis

    NASA Astrophysics Data System (ADS)

    Campen, Adam

    This dissertation research aimed at evaluating a fly ash zeolite (FAZ) catalyst support for use in heterogeneous catalytic processes. Gas phase Fischer-Tropsch Synthesis (FTS) over a fixed-bed of the prepared catalyst/FAZ support was identified as an appropriate process for evaluation, by comparison with commercial catalyst supports (silica, alumina, and 13X). Fly ash, obtained from the Wabash River Generating Station, was first characterized using XRD, SEM/EDS, particle size, and nitrogen sorption techniques. Then, a parametric study of a two-step alkali fusion/hydrothermal treatment process for converting fly ash to zeolite frameworks was performed by varying the alkali fusion agent, agent:flyash ratio, fusion temperature, fused ash/water solution, aging time, and crystallization time. The optimal conditions for each were determined to be NaOH, 1.4 g NaOH: 1 g fly ash, 550 °C, 200 g/L, 12 hours, and 48 hours. This robust process was applied to the fly ash to obtain a faujasitic zeolite structure with increased crystallinity (40 %) and surface area (434 m2/g). Following the modification of fly ash to FAZ, ion exchange of H+ for Na+ and cobalt incipient wetness impregnation were used to prepare a FTS catalyst. FTS was performed on the catalysts at 250--300 °C, 300 psi, and with a syngas ratio H2:CO = 2. The HFAZ catalyst support loaded with 11 wt% cobalt resulted in a 75 % carbon selectivity for C5 -- C18 hydrocarbons, while methane and carbon dioxide were limited to 13 and 1 %, respectively. Catalyst characterization was performed by XRD, N2 sorption, TPR, and oxygen pulse titration to provide insight to the behavior of each catalyst. Overall, the HFAZ compared well with silica and 13X supports, and far exceeded the performance of the alumina support under the tested conditions. The successful completion of this research could add value to an underutilized waste product of coal combustion, in the form of catalyst supports in heterogeneous catalytic processes.

  14. Carbon supports from natural organic materials and carbon-supported palladium catalysts

    SciTech Connect

    Kuznetsov, B.N.

    2007-07-15

    Experimental data are presented concerning the influence of preparation conditions on the pore structure of carbon supports obtained from different types of plant biomass, thermally expanded graphites, and chemically modified anthracites, on the distribution and particle size of supported palladium, and on the activity of the supported catalyst in the liquid-phase hydrogenation of hex-1-ene and cyclohexene.

  15. Catalyst support effects on hydrogen spillover

    NASA Astrophysics Data System (ADS)

    Karim, Waiz; Spreafico, Clelia; Kleibert, Armin; Gobrecht, Jens; Vandevondele, Joost; Ekinci, Yasin; van Bokhoven, Jeroen A.

    2017-01-01

    Hydrogen spillover is the surface migration of activated hydrogen atoms from a metal catalyst particle, on which they are generated, onto the catalyst support. The phenomenon has been much studied and its occurrence on reducible supports such as titanium oxide is established, yet questions remain about whether hydrogen spillover can take place on nonreducible supports such as aluminium oxide. Here we use the enhanced precision of top-down nanofabrication to prepare controlled and precisely tunable model systems that allow us to quantify the efficiency and spatial extent of hydrogen spillover on both reducible and nonreducible supports. We place multiple pairs of iron oxide and platinum nanoparticles on titanium oxide and aluminium oxide supports, varying the distance between the pairs from zero to 45 nanometres with a precision of one nanometre. We then observe the extent of the reduction of the iron oxide particles by hydrogen atoms generated on the platinum using single-particle in situ X-ray absorption spectromicroscopy applied simultaneously to all particle pairs. The data, in conjunction with density functional theory calculations, reveal fast hydrogen spillover on titanium oxide that reduces remote iron oxide nanoparticles via coupled proton-electron transfer. In contrast, spillover on aluminium oxide is mediated by three-coordinated aluminium centres that also interact with water and that give rise to hydrogen mobility competing with hydrogen desorption; this results in hydrogen spillover about ten orders of magnitude slower than on titanium oxide and restricted to very short distances from the platinum particle. We anticipate that these observations will improve our understanding of hydrogen storage and catalytic reactions involving hydrogen, and that our approach to creating and probing model catalyst systems will provide opportunities for studying the origin of synergistic effects in supported catalysts that combine multiple functionalities.

  16. Bimetallic PtSn/C catalysts obtained via SOMC/M for glycerol steam reforming.

    PubMed

    Pastor-Pérez, Laura; Merlo, Andrea; Buitrago-Sierra, Robison; Casella, Mónica; Sepúlveda-Escribano, Antonio

    2015-12-01

    A detailed study on the preparation of bimetallic PtSn/C catalysts using surface-controlled synthesis methods, and on their catalytic performance in the glycerol steam reforming reaction has been carried out. In order to obtain these well-defined bimetallic phases, techniques derived from Surface Organometallic Chemistry on Metals (SOMC/M) were used. The preparation process involved the reaction between an organometallic compound ((C4H9)4Sn) and a supported transition metal (Pt) in a H2 atmosphere. Catalysts with Sn/Pt atomic ratios of 0.2, 0.3, 0.5, and 0.7 were obtained, and characterized using several techniques: ICP, H2 chemisorption, TEM and XPS. These systems were tested in the glycerol steam reforming varying the reaction conditions (glycerol concentration and reaction temperature). The best performance was observed for the catalysts with the lowest tin contents (PtSn0.2/C and PtSn0.3/C). It was observed that the presence of tin increased the catalysts' stability when working under more severe reaction conditions.

  17. Obtaining Funding and Support for Undergraduate Research

    ERIC Educational Resources Information Center

    Dorff, Michael; Narayan, Darren A.

    2013-01-01

    Over the past decade there has been a dramatic increase in undergraduate research activities at colleges and universities nationwide. However, this comes at a time when budgets are being tightened and some institutions do not have the resources to pursue new initiatives. In this article we present some ideas for obtaining funding and support for…

  18. Obtaining Funding and Support for Undergraduate Research

    ERIC Educational Resources Information Center

    Dorff, Michael; Narayan, Darren A.

    2013-01-01

    Over the past decade there has been a dramatic increase in undergraduate research activities at colleges and universities nationwide. However, this comes at a time when budgets are being tightened and some institutions do not have the resources to pursue new initiatives. In this article we present some ideas for obtaining funding and support for…

  19. Attrition resistant Fischer-Tropsch catalyst and support

    DOEpatents

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2004-05-25

    A catalyst support having improved attrition resistance and a catalyst produced therefrom. The catalyst support is produced by a method comprising the step of treating calcined .gamma.-alumina having no catalytic material added thereto with an acidic aqueous solution having an acidity level effective for increasing the attrition resistance of the calcined .gamma.-alumina.

  20. Surface Chemistry and Properties of Oxides as Catalyst Supports

    SciTech Connect

    DeBusk, Melanie Moses; Narula, Chaitanya Kumar; Contescu, Cristian I

    2015-01-01

    Heterogeneous catalysis relies on metal-oxides as supports for the catalysts. Catalyst supports are an indispensable component of most heterogeneous catalysts, but the role of the support is often minimized in light of the one played by the catalytically active species it supports. The active species of supported catalysts are located on the surface of the support where their contact with liquid or gas phase reactants will be greatest. Considering that support plays a major role in distribution and stability of active species, the absorption and retention of reactive species, and in some cases in catalytic reaction, the properties and chemistry that can occur at the surface of an oxide support are important for understanding their impact on the activity of a supported catalyst. This chapter examines this rich surface chemistry and properties of oxides used as catalyst supports, and explores the influence of their interaction with the active species.

  1. Recent Development of Palladium-Supported Catalysts for Chemoselective Hydrogenation.

    PubMed

    Monguchi, Yasunari; Ichikawa, Tomohiro; Sajiki, Hironao

    2017-01-01

    This paper describes practical and selective hydrogenation methodologies using heterogeneous palladium catalysts. Chemoselectivity develops dependent on the catalyst activity based on the characteristic of the supports, derived from structural components, functional groups, and/or morphologies. We especially focus on our recent development of heterogeneous palladium catalysts supported on chelate resin, ceramic, and spherically shaped activated carbon. In addition, the application of flow technology for chemoselective hydrogenation using the palladium catalysts immobilized on molecular sieves 3A and boron nitride is outlined.

  2. Preparation and characterization of Pd/C catalyst obtained in NH 3-mediated polyol process

    NASA Astrophysics Data System (ADS)

    Li, Huanqiao; Sun, Gongquan; Jiang, Qian; Zhu, Mingyuan; Sun, Shiguo; Xin, Qin

    Vulcan XC-72R carbon supported Pd nanoparticles was obtained in a NH 3-mediated polyol process without any protective agent and characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM) techniques. The added NH 3 species is found to have a strong complex ability to Pd, which not only avoids the formation of Pd hydroxide precipitate resulted from Pd hydrolysis, but also restrains the further complete reduction of Pd. Temperature-programmed reduction equipped with a mass spectrometry (TPR-MS) is employed to study the reductive behavior of unreduced Pd complex in Pd/C catalyst and the results show that the post-treatment in a reductive atmosphere at higher temperature is needed to ensure the complete reduction of Pd. XRD patterns show the heat-treated Pd/C sample in a reductive atmosphere has a face centered cubic crystal structure and TEM image indicates that the dispersion of Pd nanoparticles on the carbon support is uniform and in a narrow particle size range. Thermodynamic data analysis is carried out to elucidate the possible reaction pathway for the preparation of Pd/C catalyst in this process. The obtained Pd/C catalyst shows high activity to formic acid oxidation and high selectivity to oxygen reduction reaction (ORR) with the presence of methanol.

  3. Hydrogen recombiner catalyst test supporting data

    SciTech Connect

    Britton, M.D.

    1995-01-19

    This is a data package supporting the Hydrogen Recombiner Catalyst Performance and Carbon Monoxide Sorption Capacity Test Report, WHC-SD-WM-TRP-211, Rev 0. This report contains 10 appendices which consist of the following: Mass spectrometer analysis reports: HRC samples 93-001 through 93-157; Gas spectrometry analysis reports: HRC samples 93-141 through 93-658; Mass spectrometer procedure PNL-MA-299 ALO-284; Alternate analytical method for ammonia and water vapor; Sample log sheets; Job Safety analysis; Certificate of mixture analysis for feed gases; Flow controller calibration check; Westinghouse Standards Laboratory report on Bois flow calibrator; and Sorption capacity test data, tables, and graphs.

  4. Strong Metal-Support Interactions (smsi) in Model Titania-Supported Rhodium Catalysts.

    NASA Astrophysics Data System (ADS)

    Sadeghi, Hassan Roger

    Model catalysts consisting of rhodium particles supported on well characterized, single crystal rutile substrates were used to study the nature of strong metal -support interactions (SMSI) in supported catalyst systems. The use of single crystal supports eliminates many of the complications inherent with powder supported catalysts and greatly simplifies the interpretation of experimental data. A variety of surface sensitive electron spectroscopic techniques, including ultraviolet and x-ray photoemission (UPS and XPS), electron energy loss (ELS) and Auger spectroscopies, low energy electron diffraction (LEED), combined with chemisorption measurements were applied to rhodium on titania model catalysts in order to separate the various phenomena that contribute to SMSI. The properties of the clean titania supports have been determined, including the dynamics of oxidation of reduced surfaces. Model catalysts were then prepared by thermal evaporation of rhodium onto these supports. The high temperature reduction procedures that produce the SMSI state on powder supported catalysts have been used on the model catalysts, and Auger sputter profiles indicate that during high temperature reduction (HTR) a suboxide of titanium migrates onto the rhodium particles, thus blocking carbon monoxide chemisorption. Removal of the suboxide layer by ion bombardment restores the normal chemisorption properties of the catalyst. Model rhodium on titania catalysts fabricated on both fully oxidized and on partially reduced single crystal supports have also been used. In this way it is possible to observe support-to-metal charge transfer in the absence of the encapsulation that accompanies HTR. The experimental results show that reduced titania species and rhodium interact with each other through a partially ionic bond, with electronic charge transferred from the reduced titanium cations to the rhodium. This bonding interaction is part of the driving force that leads to encapsulation of the

  5. Texture of Mo-containing hydrodesulfurization catalysts on different supports

    SciTech Connect

    Krasnopol'skaya, S.M.; Lur'e, M.A.; Kurets, I.Z.; Rak, V.S.; Belyaeva, V.A.; Shmidt, F.K.

    1988-10-01

    The thermal desorption of nitrogen was used to investigate the texture of molybdenum-containing hydrodesulfurization catalysts, synthesized on the basis of ..gamma..-Al/sub 2/O/sub 3/ and a genetic mixture of mountain cork (palygorskite) and montmorillonite. Their activity in the hydrogenolysis of thiophene has been determined. It has been shown that in the preparation of the oxide or sulfide forms the texture of the contact, containing the natural support, changes more strongly than that based on aluminum oxide. Elimination of the oxidizing calcination stage produces sulfide forms of the catalysts with a larger specific surface, porosity, and higher catalytic activity. A stronger effect is obtained on the natural support.

  6. Coarse-pored ceramic supports for pyrolysis catalysts

    SciTech Connect

    Potapova, L.L.; Cherches, B.Kh.; Egiazarov, Yu.G.

    1988-03-20

    One promising trend in improvement of pyrolysis of hydrocarbon feedstocks is the use of heterogeneous catalysts in the process. The industrial use of highly effective catalysts would result in substantially increased product yields and in decrease of energy consumption in comparison with the requirements of drastic thermal processes. The aims of the present work were to obtain a mechanically strong coarse-pored ceramic support for pyrolysis catalysts and to study the influence of various factors on formation of its structure. The support material was made from an industrial ceramic mass of the following composition (%): koalin 30, plastic refractory clay 21, quartz 32, pegmatite 17. Various additives were used for formation of a porous structure: noncombustible highly porous (pumice, claydite), partially combustible (shungite), and completely combustible (SKT) activated carbon). The authors results show that 15 mass % of SKT carbon (particle size 0.1-0.2 mm) and 1-2 mass % of sodium trimetaphosphate should be added to the ceramic mass. The crushing strength of the resultant support samples reaches 550-630 kg/cm/sup 2/, with 34-35% porosity. Under the optimal conditions of pyrolysis of a straight-run gasoline fraction the catalyst obtained by deposition of 12 mass % of In/sub 2/O/sub 3/ and 4% K/sub 2/O on the synthesized support gives a yield of 39-41 mass % of ethylene and 61-62 mass % of unsaturated C/sub 2/-C/sub 4/ hydrocarbons, with 88-90 mass % gasification.

  7. Ceramic wash-coat for catalyst support

    DOEpatents

    Kulkarni, Anand A.; Subramanian, Ramesh; Sabol, Stephen M.

    2012-08-14

    A wash-coat (16) for use as a support for an active catalyst species (18) and a catalytic combustor component (10) incorporating such wash-coat. The wash-coat is a solid solution of alumina or alumina-based material (Al.sub.2O.sub.3-0-3 wt % La.sub.2O.sub.3) and a further oxide exhibiting a coefficient of thermal expansion that is lower than that exhibited by alumina. The further oxide may be silicon dioxide (2-30 wt % SiO.sub.2), zirconia silicate (2-30 wt % ZrSiO.sub.4), neodymium oxide (0-4 wt %), titania (Al.sub.2O.sub.3-3-40% TiO.sub.2) or alumina-based magnesium aluminate spinel (Al.sub.2O.sub.3-25 wt % MgO) in various embodiments. The active catalyst species may be palladium and a second metal in a concentration of 10-50% of the concentration of the palladium.

  8. Dearomatization of jet fuel on irradiated platinum-supported catalyst

    NASA Astrophysics Data System (ADS)

    Múčka, V.; Ostrihoňová, A.; Kopernický, I.; Mikula, O.

    The effect of ionizing radiation ( 60Co γ-rays) on Pt-supported catalyst used for the dearomatization of jet fuel with distillation in the range 395-534 K has been studied. Pre-irradiation of the catalyst with doses in the range 10 2-5 × 10 4 Gy leads to the partial catalyst activation. Irradiation of the catalyst enhances its resistance to catalyst poisons, particularly to sulphur-compounds, and this is probably the reason for its catalytic activity being ˜60-100% greater than that of un-irradiated catalyst. Optimum conditions for dearomatization on the irradiated catalyst were found and, by means of a rotary three-factorial experiment, it was shown that these lie at lower temperatures and lower pressures than those for un-irradiated catalyst.

  9. Method of forming supported doped palladium containing oxidation catalysts

    SciTech Connect

    Mohajeri, Nahid

    2014-04-22

    A method of forming a supported oxidation catalyst includes providing a support comprising a metal oxide or a metal salt, and depositing first palladium compound particles and second precious metal group (PMG) metal particles on the support while in a liquid phase including at least one solvent to form mixed metal comprising particles on the support. The PMG metal is not palladium. The mixed metal particles on the support are separated from the liquid phase to provide the supported oxidation catalyst.

  10. Heterogenization of Homogeneous Catalysts: the Effect of the Support

    SciTech Connect

    Earl, W.L.; Ott, K.C.; Hall, K.A.; de Rege, F.M.; Morita, D.K.; Tumas, W.; Brown, G.H.; Broene, R.D.

    1999-06-29

    We have studied the influence of placing a soluble, homogeneous catalyst onto a solid support. We determined that such a 'heterogenized' homogeneous catalyst can have improved activity and selectivity for the asymmetric hydrogenation of enamides to amino acid derivatives. The route of heterogenization of RhDuPhos(COD){sup +} cations occurs via electrostatic interactions with anions that are capable of strong hydrogen bonding to silica surfaces. This is a novel approach to supported catalysis. Supported RhDuPhos(COD){sup +} is a recyclable, non-leaching catalyst in non-polar media. This is one of the few heterogenized catalysts that exhibits improved catalytic performance as compared to its homogeneous analog.

  11. Ionic-liquid-supported (ILS) catalysts for asymmetric organic synthesis.

    PubMed

    Ni, Bukuo; Headley, Allan D

    2010-04-19

    The asymmetric synthesis of compounds that contain new C-C and C-O bonds remains one of the most important types of synthesis in organic chemistry. Over the years, many different types of catalysts have been designed and used effectively to carry out such transformations. Ionic-liquid-supported (ILS) catalysts represent a new and very effective class of catalysts that are used to facilitate the asymmetric synthesis of such compounds. There are many advantages to using ILS catalysts; they are nontoxic, environmentally benign, and, most important, recyclable. An overview of the design, synthesis, mode of action, and effectiveness of this class of catalysts is reported.

  12. XPS studies of Pt catalysts supported on porous carbon

    SciTech Connect

    Tyagi, Deepak Varma, Salil; Bharadwaj, S. R.

    2016-05-23

    Pt catalysts supported on porous carbon were prepared by hard templating route and used for HI decomposition reaction of Sulfur Iodine thermochemical cycle. These catalysts were characterized by X-ray photoelectron spectroscopy for oxidation state of platinum as well as nature of carbon present in the catalysts. It was found that platinum is present in metallic state and carbon is present in both sp{sup 2} and sp{sup 3} hybridization states. The catalysts were evaluated for their activity and stability for liquid phase HI decomposition reaction and it was observed that mesoporous carbon based catalysts were more active and stable under the reaction conditions.

  13. A Catalyst for Collaboration: Supporting Technology in Teaching through Partnerships.

    ERIC Educational Resources Information Center

    Alway, Mark; Lewis, Tom; Macklin, Scott

    The Web-based Catalyst Initiative was created at the University of Washington (UW) to support innovation in teaching through technology. The approach utilizes participatory design techniques in the development of next generation technologies in order to scale beyond early to second wave adopters. Catalyst is the product of a support strategy that…

  14. The synergistic participation of the support in sulfided Ni-Mo/C hydrodesulfurization catalysts

    SciTech Connect

    Laine, J.; Severino, F.; Labady, M.; Gallardo, J. )

    1992-11-01

    Carbon-supported Ni-Mo hydrodesulfurization (HDS) catalysts were studied and compared with previously reported results obtained from alumina supports. In contrast to the latter, the nonimpregnated carbon itself behaved as an HDS catalyst. It is suggested that the carbon support functions synergistically in a sulfided state in conjunction with Mo and Ni, so that both Mo and carbon act as sulfur sinks promoting the exposure of active Ni centers. 18 refs., 3 figs., 1 tab.

  15. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells

    PubMed Central

    2014-01-01

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li+Cl–), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li+Cl– catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA. PMID:24748912

  16. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells.

    PubMed

    Mansor, Noramalina; Jorge, A Belen; Corà, Furio; Gibbs, Christopher; Jervis, Rhodri; McMillan, Paul F; Wang, Xiaochen; Brett, Daniel J L

    2014-04-03

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li(+)Cl(-)), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li(+)Cl(-) catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA.

  17. Novel supports for coal liquefaction catalysts

    SciTech Connect

    Haynes, H.W. Jr.

    1992-01-01

    This research is divided into three parts: (1) Evaluation of Alkaline-Earth-Promoted CoMo/Alumina Catalysts in a Bench Scale Hydrotreater, (2) Development of a Novel Catalytic Coal Liquefaction Microreactor (CCLM) Unit, and (3) Evaluation of Novel Catalyst Preparations for Direct Coal Liquefaction. (VC)

  18. Integrated current collector and catalyst support

    DOEpatents

    Bregoli, Lawrence J.

    1985-10-22

    An integrated current collecting electrode for a molten carbonate fuel cell includes a corrugated metal conductive strip positioned in contact with a catalyst layer. The corrugations of the metal strip form a plurality of gas channels immediately adjacent the surface of the catalyst through which a reactant gas flows. Each channel is filled with a particulate material to maintain separation between the metal strip and the catalyst in ensuring gas channel integrity. The catalyst may be in the form of a compacted, particulate material provided the particle size of the material within the gas channels is larger than that of the catalyst particles to prevent catalyst migration to the metal conductor and provide reactant gas access to the catalyst layer. The gas channels formed by the corrugations of the metal strip are arranged in an offset pattern along the direction of gas flow for improved reactant gas distribution to the catalyst layer. The particulate material positioned within the gas flow channels may be a ceramic conductor such as a perovskite or a spinel for enhanced current collection.

  19. Integrated current collector and catalyst support

    DOEpatents

    Bregoli, L.J.

    1984-10-17

    An integrated current collecting electrode for a molten carbonate fuel cell includes a corrugated metal conductive strip positioned in contact with a catalyst layer. The corrugations of the metal strip form a plurality of gas channels immediately adjacent the surface of the catalyst through which a reactant gas flows. Each channel is filled with a particulate material to maintain separation between the metal strip and the catalyst in ensuring gas channel integrity. The catalyst may be in the form of a compacted, particulate material provided the particle size of the material within the gas channels is larger than that of the catalyst particles to prevent catalyst migration to the metal conductor and provide reactant gas access to the catalyst layer. The gas channels formed by the corrugations of the metal strip are arranged in an offset pattern along the direction of gas flow for improved reactant gas distribution to the catalyst layer. The particulate material positioned within the gas flow channels may be a ceramic conductor such as a perovskite or a spinel for enhanced current collection.

  20. Durability testing at 5 atmospheres of advanced catalysts and catalyst supports for gas turbine engine combustors

    NASA Technical Reports Server (NTRS)

    Olson, B. A.; Lee, H. C.; Osgerby, I. T.; Heck, R. M.; Hess, H.

    1980-01-01

    The durability of CATCOM catalysts and catalyst supports was experimentally demonstrated in a combustion environment under simulated gas turbine engine combustor operating conditions. A test of 1000 hours duration was completed with one catalyst using no. 2 diesel fuel and operating at catalytically-supported thermal combustion conditions. The performance of the catalyst was determined by monitoring emissions throughout the test, and by examining the physical condition of the catalyst core at the conclusion of the test. Tests were performed periodically to determine changes in catalytic activity of the catalyst core. Detailed parametric studies were also run at the beginning and end of the durability test, using no. 2 fuel oil. Initial and final emissions for the 1000 hours test respectively were: unburned hydrocarbons (C3 vppm):0, 146, carbon monoxide (vppm):30, 2420; nitrogen oxides (vppm):5.7, 5.6.

  1. Supported catalyst systems and method of making biodiesel products using such catalysts

    DOEpatents

    Kim, Manhoe; Yan, Shuli; Salley, Steven O.; Ng, K. Y. Simon

    2015-10-20

    A heterogeneous catalyst system, a method of preparing the catalyst system and a method of forming a biodiesel product via transesterification reactions using the catalyst system is disclosed. The catalyst system according to one aspect of the present disclosure represents a class of supported mixed metal oxides that include at least calcium oxide and another metal oxide deposited on a lanthanum oxide or cerium oxide support. Preferably, the catalysts include CaO--CeO.sub.2ZLa.sub.2O.sub.3 or CaO--La.sub.2O.sub.3/CeO.sub.2. Optionally, the catalyst may further include additional metal oxides, such as CaO--La.sub.2O.sub.3--GdOxZLa.sub.2O.sub.3.

  2. Fundamental studies of supported bimetallic catalysts by NMR spectroscopy

    SciTech Connect

    Savargaonkar, Nilesh

    1996-10-17

    Various hydrogenation reactions on transition metals are important commercially whereas certain hydrogenolysis reactions are useful from fundamental point of view. Understanding the hydrogen mobility and kinetics of adsorption-desorption of hydrogen is important in understanding the mechanisms of such reactions involving hydrogen. The kinetics of hydrogen chemisorption was studied by means of selective excitation NMR on silica supported Pt, Rh and Pt-Rh catalysts. The activation energy of hydrogen desorption was found to be lower on silica supported Pt catalysts as compared to Rh and Pt-Rh catalysts. It was found that the rates of hydrogen adsorption and desorption on Pt-Rh catalyst were similar to those on Rh catalyst and much higher as compared to Pt catalyst. The Ru-Ag bimetallic system is much simpler to study than the Pt-Rh system and serves as a model system to characterize more complicated systems such as the K/Ru system. Ag was found to decrease the amounts of adsorbed hydrogen and the hydrogen-to-ruthenium stoichiometry. Ag reduced the populations of states with low and intermediate binding energies of hydrogen on silica supported Ru catalyst. The rates of hydrogen adsorption and desorption were also lower on silica supported Ru-Ag catalyst as compared to Ru catalyst. This report contains introductory information, the literature review, general conclusions, and four appendices. An additional four chapters and one appendix have been processed separately for inclusion on the data base.

  3. The role of catalyst support in carbon nanotube synthesis

    NASA Astrophysics Data System (ADS)

    Siska, Andrea; Hernadi, Klara; Kiricsi, Imre; Rojik, Imre; Nagy, Janos B.

    1998-08-01

    Acetylene decomposition over supported cobalt (or iron) catalysts proved to be an effective method for the preparation of well-graphitized carbon nanotubes. Compared to other techniques, catalytic synthesis is operated under relatively mild reaction conditions (700 °C, atmospheric pressure) and experimental apparatus is very simple. In order to improve catalyst performance, we try to understand the reaction mechanism. Catalysts were prepared by the impregnation method using different materials as catalyst support. Physico-chemical characterization of the samples were carried out by XRD, IR, etc. Surface acidity was measured by pyridine adsorption technique. Catalyst samples were tested in the decomposition of acetylene in a fixed bed flow reactor at 722 °C. The quantity of carbon deposit was weighted (catalyst activity). The quality of carbon nanotubes produced was characterized by means of transmission electron microscopy.

  4. Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis

    PubMed Central

    Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Bee Abd Hamid, Sharifah

    2014-01-01

    The lack of stability is a challenge for most heterogeneous catalysts. During operations, the agglomeration of particles may block the active sites of the catalyst, which is believed to contribute to its instability. Recently, titanium oxide (TiO2) was introduced as an alternative support material for heterogeneous catalyst due to the effect of its high surface area stabilizing the catalysts in its mesoporous structure. TiO2 supported metal catalysts have attracted interest due to TiO2 nanoparticles high activity for various reduction and oxidation reactions at low pressures and temperatures. Furthermore, TiO2 was found to be a good metal oxide catalyst support due to the strong metal support interaction, chemical stability, and acid-base property. The aforementioned properties make heterogeneous TiO2 supported catalysts show a high potential in photocatalyst-related applications, electrodes for wet solar cells, synthesis of fine chemicals, and others. This review focuses on TiO2 as a support material for heterogeneous catalysts and its potential applications. PMID:25383380

  5. Titanium dioxide as a catalyst support in heterogeneous catalysis.

    PubMed

    Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Bee Abd Hamid, Sharifah

    2014-01-01

    The lack of stability is a challenge for most heterogeneous catalysts. During operations, the agglomeration of particles may block the active sites of the catalyst, which is believed to contribute to its instability. Recently, titanium oxide (TiO2) was introduced as an alternative support material for heterogeneous catalyst due to the effect of its high surface area stabilizing the catalysts in its mesoporous structure. TiO2 supported metal catalysts have attracted interest due to TiO2 nanoparticles high activity for various reduction and oxidation reactions at low pressures and temperatures. Furthermore, TiO2 was found to be a good metal oxide catalyst support due to the strong metal support interaction, chemical stability, and acid-base property. The aforementioned properties make heterogeneous TiO2 supported catalysts show a high potential in photocatalyst-related applications, electrodes for wet solar cells, synthesis of fine chemicals, and others. This review focuses on TiO2 as a support material for heterogeneous catalysts and its potential applications.

  6. Hydroliquefaction of coal with supported catalysts: 1980 status review

    SciTech Connect

    Polinski, Leon M.; Stiegel, Gary J.; Tischer, Richard E.

    1981-06-01

    The objectives of the program have been to determine catalyst deactivation kinetic models and catalyst deactivation modes for supported Co-Mo and Ni-Mo catalysts used primarily in coal liquefaction via the H-COAL process. Emphasis has been on developing methods to increase catalyst usage by determining how to decrease catalyst replacement rates in the process and how to decrease catalyst poisoning. An important conclusion reached via model analysis and verified by experiment is that larger diameter (1/16 in.) catalysts resist poisoning deactivation much more than smaller (1/32 in.) catalysts over extended periods (60 to 110 hours) of time. If this trend can be verified, it gives a powerful tool for reducing catalyst replacement rate in the H-COAL ebullated bed system by factors of 2 or more. A second conclusion is that poisoning of catalysts occurs by several possible mechanisms or modes. Indirect or direct evidence of all these modes can be presented, though the relative importance of each mechanism has not been established. The modes include (a) poisoning by coking - with gradual increase in C/H ratio (more refractory coke) with time, (b) poisoning by metallization (selective/non-selective adsorption of inorganics such as Ti and Fe on the catalyst), (c) sintering - increase in larger pores/decrease in surface area, and (d) parallel poisoning by irreversible nitrogen compound adsorption.

  7. Catalytic ammonia decomposition over industrial-waste-supported Ru catalysts

    SciTech Connect

    Pei Fang Ng; Li Li; Shaobin Wang; Zhonghua Zhu; Gaoqing Lu; Zifeng Yan

    2007-05-15

    Industrial solid wastes (fly ash and red mud, a by-product of the aluminium industry) have been employed as supports for preparation of Ru-based catalysts. Physical and chemical treatments on red mud were conducted and these modified supports were also used for preparation of Ru-based catalysts. Those Ru catalysts were characterized by various techniques such as N2 adsorption, H{sub 2} adsorption, XRD, XPS, and temperature-programmed reduction (TPR), and were then tested for catalytic ammonia decomposition to hydrogen. It was found that red-mud-supported Ru catalyst exhibits higher ammonia conversion and hydrogen production than fly-ash-supported catalyst. Heat and chemical treatments of the red mud greatly improve the catalytic activity. Moreover, a combination of acid and heat treatments produces the highest catalytic conversion of ammonia. 35 refs., 4 figs., 4 tabs.

  8. Dynamic structural disorder in supported nanoscale catalysts

    NASA Astrophysics Data System (ADS)

    Rehr, J. J.; Vila, F. D.

    2014-04-01

    We investigate the origin and physical effects of "dynamic structural disorder" (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale.

  9. Dynamic structural disorder in supported nanoscale catalysts

    SciTech Connect

    Rehr, J. J.; Vila, F. D.

    2014-04-07

    We investigate the origin and physical effects of “dynamic structural disorder” (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale.

  10. Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells

    NASA Astrophysics Data System (ADS)

    Mikolajczuk-Zychora, A.; Borodzinski, A.; Kedzierzawski, P.; Mierzwa, B.; Mazurkiewicz-Pawlicka, M.; Stobinski, L.; Ciecierska, E.; Zimoch, A.; Opałło, M.

    2016-12-01

    One of the drawbacks of low-temperature fuel cells is high price of platinum-based catalysts used for the electroreduction of oxygen at the cathode of the fuel cell. The aim of this work is to develop the palladium catalyst that will replace commonly used platinum cathode catalysts. A series of palladium catalysts for oxygen reduction reaction (ORR) were prepared and tested on the cathode of Direct Formic Acid Fuel Cell (DFAFC). Palladium nanoparticles were deposited on the carbon black (Vulcan) and on multiwall carbon nanotubes (MWCNTs) surface by reduction of palladium(II) acetate dissolved in ethanol. Hydrazine was used as a reducing agent. The effect of functionalization of the carbon supports on the catalysts physicochemical properties and the ORR catalytic activity on the cathode of DFAFC was studied. The supports were functionalized by treatment in nitric acid for 4 h at 80 °C. The structure of the prepared catalysts has been characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry (CV). Hydrophilicity of the catalytic layers was determined by measuring contact angles of water droplets. The performance of the prepared catalysts has been compared with that of the commercial 20 wt.% Pt/C (Premetek) catalyst. The maximum power density obtained for the best palladium catalyst, deposited on the surface of functionalized carbon black, is the same as that for the commercial Pt/C (Premetek). Palladium is cheaper than platinum, therefore the developed cathode catalyst is promising for future applications.

  11. Supported Oxide Catalysts from Chelating Precursors

    NASA Astrophysics Data System (ADS)

    Prieto-Centurion, Dario

    Supported Fe catalysts and, in particular, Fe and substituted MFI zeolites have attracted industrial and academic attention due to their ability to promote selective catalytic reduction of NOx and selective partial oxidation of hydrocarbons. It is generally accepted that some form of highly dispersed, binuclear or atomically-isolated metal species are involved in the selective processes catalyzed these materials. Several studies have sought to reproduce the structures and reactivity of these substituted zeolites on dierent supports. Given that specialized reagents or preparation conditions that are required in some of these preparation methods, and that multiple surface structures are often formed, this dissertation aimed to develop a route to highly dispersed supported transition metals using commonly available reactants and synthesis routes. Described here is a straightforward and effective procedure to control dispersion and surface speciation of Fe on SiO2 and CeO2 through incipient wetness impregnation (IWI) of the support with aqueous, anionic complexes of Fe3+ and ethylenediaminetetraacetic acid (EDTA) followed by oxidative heat-treatment. On SiO2, this method preferentially creates isolated surface structures up to loading of 0.9 Fe nm-2 if using alkali counter-cations. This isolated species display classic 'single-site' behavior|constant turn over frequency (TOF) with increasing Fe surface density|in the oxidation of adamantane with H 2O2, indicating active sites are equally accessible and equally active within this range of surface density. Additionally, TOF increases linearly with electronegativity of the alkali counter-cation, suggesting electronic promotion. Conversely, IWI of unprotected Fe3+ produces agglomerates less active in this reaction. On CeO2, the sterics and negative charge imparted on Fe 3+ by EDTA4- inhibits incorporation of Fe into surface vacancies. Instead, formation of two-dimensional oligomeric structures which can undergo Fe3+-Fe2

  12. Supported Molten Metal Catalysis. A New Class of Catalysts

    SciTech Connect

    Ravindra Datta; Ajeet Singh; Manuela Serban; Istvan Halasz

    2006-06-02

    We describe a new class of heterogeneous catalysts called supported molten metal catalysis (SMMC), in which molten metal catalysts are dispersed as nanodroplets on the surface of porous supports, allowing much larger active surface area than is possible in conventional contacting techniques for catalytic metals that are molten under reaction conditions, thus greatly enhancing their activity and potential utility. Specific examples of different types of reactions are provided to demonstrate the broad applicability of the technique in designing active, selective, and stable new catalysts. It is shown that dispersing the molten metal on a support in the suggested manner can enhance the rate of a reaction by three to four orders of magnitude as a result of the concomitant increase in the active surface area. New reaction examples include {gamma}-Al{sub 2}O{sub 3} supported molten Te (melting point 450 C) and Ga (MP 30 C) catalysts for bifunctional methylcyclohexane dehydrogenation. These catalysts provide activity similar to conventional Pt-based catalysts for this with better resistance to coking. In addition, results are described for a controlled pore glass supported molten In (MP 157 C) catalyst for the selective catalytic reduction of NO with ethanol in the presence of water, demonstrating activities superior to conventional catalysts for this reaction. A discussion is also provided on the characterization of the active surface area and dispersion of these novel supported catalysts. It is clear based on the results described that the development of new active and selective supported molten metal catalysts for practical applications is entirely plausible.

  13. Graphene-Supported Platinum Catalyst-Based Membrane Electrode Assembly for PEM Fuel Cell

    NASA Astrophysics Data System (ADS)

    Devrim, Yilser; Albostan, Ayhan

    2016-08-01

    The aim of this study is the preparation and characterization of a graphene-supported platinum (Pt) catalyst for proton exchange membrane fuel cell (PEMFC) applications. The graphene-supported Pt catalysts were prepared by chemical reduction of graphene and chloroplatinic acid (H2PtCl6) in ethylene glycol. X-ray powder diffraction, thermogravimetric analysis (TGA) and scanning electron microscopy have been used to analyze structure and surface morphology of the graphene-supported catalyst. The TGA results showed that the Pt loading of the graphene-supported catalyst was 31%. The proof of the Pt particles on the support surfaces was also verified by energy-dispersive x-ray spectroscopy analysis. The commercial carbon-supported catalyst and prepared Pt/graphene catalysts were used as both anode and cathode electrodes for PEMFC at ambient pressure and 70°C. The maximum power density was obtained for the Pt/graphene-based membrane electrode assembly (MEA) with H2/O2 reactant gases as 0.925 W cm2. The maximum current density of the Pt/graphene-based MEA can reach 1.267 and 0.43 A/cm2 at 0.6 V with H2/O2 and H2/air, respectively. The MEA prepared by the Pt/graphene catalyst shows good stability in long-term PEMFC durability tests. The PEMFC cell voltage was maintained at 0.6 V without apparent voltage drop when operated at 0.43 A/cm2 constant current density and 70°C for 400 h. As a result, PEMFC performance was found to be superlative for the graphene-supported Pt catalyst compared with the Pt/C commercial catalyst. The results indicate the graphene-supported Pt catalyst could be utilized as the electrocatalyst for PEMFC applications.

  14. Alumina supported molybdenum catalyst for lignin valorization: Effect of reduction temperature.

    PubMed

    Ma, Xiaolei; Cui, Kai; Hao, Wenyue; Ma, Rui; Tian, Ye; Li, Yongdan

    2015-09-01

    Alumina supported molybdenum catalysts were prepared with an impregnation method. The activity of the catalyst in the ethanolysis of Kraft lignin to C6-C11 molecules, i.e. alcohols, esters, monophenols, benzyl alcohols and arenes, was tested in a batch reactor at 280 °C with initial 0 MPa nitrogen. The complete conversion of lignin to small molecular chemicals was achieved without the formation of tar or char. The reduction temperature during the catalyst preparation was proved to have a profound effect on the activity of the catalyst. The overall product yield firstly increases and then decreases with the increase of the reduction temperature in a range of 500-800 °C. The maximum yield up to 1390 mg/g lignin was obtained with the catalyst reduced at 750 °C. Furthermore, the catalyst showed an excellent recyclability, where no significant loss of the catalytic activity was exhibited after 5 runs.

  15. Supported organometallic catalysts for hydrogenation and Olefin Polymerization

    DOEpatents

    Marks, Tobin J.; Ahn, Hongsang

    2001-01-01

    Novel heterogeneous catalysts for the which hydrogenation of olefins and arenes with high conversion rates under ambient conditions and the polymerization of olefins have been developed. The catalysts are synthesized from Ziegler-type precatalysts by supporting them on sulfate-modified zirconia.

  16. Effect of Graphitic Content on Carbon Supported Catalyst Performance

    SciTech Connect

    Patel, Anant; Artyushkova, Kateryna; Atanassov, Plamen; Harvey, David; Dutta, Monica; Colbow, Vesna

    2011-07-01

    The effect of graphitic content on carbon supported platinum catalysts was investigated in order to investigate its influence on catalyst performance. Four catalysts of varying surface areas and graphitic content were analyzed using XPS, HREELS, and tested using RDE experiments. The catalysts were also heat treated at 150oC and 100%RH as means to uniformly age them. The heat treated samples were analyzed using the same methods to determine what changes had occurred due to this aging process. When compared to the BOL catalysts, heat treated catalysts displayed increased graphitic carbon and platinum metalic content, however they also showed depressed catalytic activity. The primary cause is still under investigation, though it is believed to be related to loss of amorphous carbon content.

  17. Effect of Graphitic Content on Carbon Supported Catalyst Performance

    SciTech Connect

    A. Patel; K. Artyushkova; P. Atanassov; David Harvey; M. Dutta; V. Colbow; S. Wessel

    2011-07-01

    The effect of graphitic content on carbon supported platinum catalysts was investigated in order to investigate its influence on catalyst performance. Four catalysts of varying surface areas and graphitic content were analyzed using XPS, HREELS, and tested using RDE experiments. The catalysts were also heat treated at 150 C and 100%RH as means to uniformly age them. The heat treated samples were analyzed using the same methods to determine what changes had occurred due to this aging process. When compared to the BOL catalysts, heat treated catalysts displayed increased graphitic carbon and platinum metallic content, however they also showed depressed catalytic activity. The primary cause is still under investigation, though it is believed to be related to loss of amorphous carbon content.

  18. Attrition Resistant Fischer-Tropsch Catalysts Based on FCC Supports

    SciTech Connect

    Adeyiga, Adeyinka

    2010-02-05

    Commercial spent fluid catalytic cracking (FCC) catalysts provided by Engelhard and Albemarle were used as supports for Fe-based catalysts with the goal of improving the attrition resistance of typical F-T catalysts. Catalysts with the Ruhrchemie composition (100 Fe/5 Cu/4.2 K/25 spent FCC on mass basis) were prepared by wet impregnation. XRD and XANES analysis showed the presence of Fe{sub 2}O{sub 3} in calcined catalysts. FeC{sub x} and Fe{sub 3}O{sub 4} were present in the activated catalysts. The metal composition of the catalysts was analyzed by ICP-MS. F-T activity of the catalysts activated in situ in CO at the same conditions as used prior to the attrition tests was measured using a fixed bed reactor at T = 573 K, P = 1.38 MPa and H{sub 2}:CO ratio of 0.67. Cu and K promoted Fe supported over Engelhard provided spent FCC catalyst shows relatively good attrition resistance (8.2 wt% fines lost), high CO conversion (81%) and C{sub 5}+ hydrocarbons selectivity (18.3%).

  19. Durability testing at one atmosphere of advanced catalysts and catalyst supports for automotive gas turbine engine combustors, part 1

    NASA Technical Reports Server (NTRS)

    Heck, R. M.; Chang, M.; Hess, H.; Carrubba, R.

    1977-01-01

    The durability of catalysts and catalyst supports in a combustion environment was experimentally demonstrated. A test of 1000 hours duration was completed with two catalysts, using diesel fuel and operating at catalytically supported thermal combustion conditions. The performance of the catalysts was determined by monitoring emissions throughout the test, and by examining the physical condition of the catalyst core at the conclusion of the test. The test catalysts proved to be capable of low emissions operation after 1000 hours diesel aging, with no apparent physical degradation of the catalyst support.

  20. Supported, Alkali-Promoted Cobalt Oxide Catalysts for NOx Removal from Coal Combustion Flue Gases

    SciTech Connect

    Morris D. Argyle

    2005-12-31

    A series of cobalt oxide catalysts supported on alumina ({gamma}-Al{sub 2}O{sub 3}) were synthesized with varying contents of cobalt and of added alkali metals, including lithium, sodium, potassium, rubidium, and cesium. Unsupported cobalt oxide catalysts and several cobalt oxide catalysts supported ceria (CeO{sub 2}) with varying contents of cobalt with added potassium were also prepared. The catalysts were characterized with UV-visible spectroscopy and were examined for NO{sub x} decomposition activity. The CoO{sub x}/Al{sub 2}O{sub 3} catalysts and particularly the CoO{sub x}/CeO{sub 2} catalysts show N{sub 2}O decomposition activity, but none of the catalysts (unsupported Co{sub 3}O{sub 4} or those supported on ceria or alumina) displayed significant, sustained NO decomposition activity. For the Al{sub 2}O{sub 3}-supported catalysts, N{sub 2}O decomposition activity was observed over a range of reaction temperatures beginning about 723 K, but significant (>50%) conversions of N{sub 2}O were observed only for reaction temperatures >900 K, which are too high for practical commercial use. However, the CeO{sub 2}-supported catalysts display N{sub 2}O decomposition rates similar to the Al{sub 2}O{sub 3}-supported catalysts at much lower reaction temperatures, with activity beginning at {approx}573 K. Conversions of >90% were achieved at 773 K for the best catalysts. Catalytic rates per cobalt atom increased with decreasing cobalt content, which corresponds to increasing edge energies obtained from the UV-visible spectra. The decrease in edge energies suggests that the size and dimensionality of the cobalt oxide surface domains increase with increasing cobalt oxide content. The rate data normalized per mass of catalyst that shows the activity of the CeO{sub 2}-supported catalysts increases with increasing cobalt oxide content. The combination of these data suggest that supported cobalt oxide species similar to bulk Co{sub 3}O{sub 4} are inherently more active than

  1. Polymer-Supported Raney Nickel Catalysts for Sustainable Reduction Reactions.

    PubMed

    Jiang, Haibin; Lu, Shuliang; Zhang, Xiaohong; Dai, Wei; Qiao, Jinliang

    2016-06-25

    Green is the future of chemistry. Catalysts with high selectivity are the key to green chemistry. Polymer-supported Raney catalysts have been found to have outstanding performance in the clean preparation of some chemicals. For example, a polyamide 6-supported Raney nickel catalyst provided a 100.0% conversion of n-butyraldehyde without producing any detectable n-butyl ether, the main byproduct in industry, and eliminated the two main byproducts (isopropyl ether and methyl-iso-butylcarbinol) in the hydrogenation of acetone to isopropanol. Meanwhile, a model for how the polymer support brought about the elimination of byproducts is proposed and confirmed. In this account the preparation and applications of polymer-supported Raney catalysts along with the corresponding models will be reviewed.

  2. Functionalized magnetic nanoparticles: A novel heterogeneous catalyst support

    EPA Science Inventory

    Functionalized magnetic nanoparticles have emerged as viable alternatives to conventional materials, as robust, high-surface-area heterogeneous catalyst supports. Post-synthetic surface modification protocol for magnetic nanoparticles has been developed that imparts desirable che...

  3. Design of hybrid titania nanocrystallites as supports for gold catalysts.

    PubMed

    Mendez, Violaine; Caps, Valérie; Daniele, Stéphane

    2009-06-07

    Citrate-functionalized titania nanocrystallites are successfully synthesized from a heteroleptic titanium alkoxide precursor in a low temperature, hydrolytic process and used as gold catalyst supports for CO oxidation and aerobic stilbene epoxidation.

  4. Functionalized magnetic nanoparticles: A novel heterogeneous catalyst support

    EPA Science Inventory

    Functionalized magnetic nanoparticles have emerged as viable alternatives to conventional materials, as robust, high-surface-area heterogeneous catalyst supports. Post-synthetic surface modification protocol for magnetic nanoparticles has been developed that imparts desirable che...

  5. Methods for making a supported iron-copper catalyst

    DOEpatents

    Dyer, Paul N.; Pierantozzi, Ronald

    1986-01-01

    A catalyst is described for the synthesis of hydrocarbons from CO+H.sub.2 utilizing a porous Al.sub.2 O.sub.3 support impregnated with iron and copper and optionally promoted with an alkali metal. The use of an Al.sub.2 O.sub.3 support results in the suppression of heavy waxes (C.sub.26 + hydrocarbons), particularly in slurry phase operation, when compared to unsupported or co-precipitated catalysts.

  6. Supported Dendrimer-Encapsulated Metal Clusters: Toward Heterogenizing Homogeneous Catalysts.

    PubMed

    Ye, Rong; Zhukhovitskiy, Aleksandr V; Deraedt, Christophe V; Toste, F Dean; Somorjai, Gabor A

    2017-08-15

    Recyclable catalysts, especially those that display selective reactivity, are vital for the development of sustainable chemical processes. Among available catalyst platforms, heterogeneous catalysts are particularly well-disposed toward separation from the reaction mixture via filtration methods, which renders them readily recyclable. Furthermore, heterogeneous catalysts offer numerous handles-some without homogeneous analogues-for performance and selectivity optimization. These handles include nanoparticle size, pore profile of porous supports, surface ligands and interface with oxide supports, and flow rate through a solid catalyst bed. Despite these available handles, however, conventional heterogeneous catalysts are themselves often structurally heterogeneous compared to homogeneous catalysts, which complicates efforts to optimize and expand the scope of their reactivity and selectivity. Ongoing efforts in our laboratories are aimed to address the above challenge by heterogenizing homogeneous catalysts, which can be defined as the modification of homogeneous catalysts to render them in a separable (solid) phase from the starting materials and products. Specifically, we grow the small nanoclusters in dendrimers, a class of uniform polymers with the connectivity of fractal trees and generally radial symmetry. Thanks to their dense multivalency, shape persistence, and structural uniformity, dendrimers have proven to be versatile scaffolds for the synthesis and stabilization of small nanoclusters. Then these dendrimer-encapsulated metal clusters (DEMCs) are adsorbed onto mesoporous silica. Through this method, we have achieved selective transformations that had been challenging to accomplish in a heterogeneous setting, e.g., π-bond activation and aldol reactions. Extensive investigation into the catalytic systems under reaction conditions allowed us to correlate the structural features (e.g., oxidation states) of the catalysts and their activity. Moreover, we have

  7. Metal-Support Cooperative Catalysts for Environmentally Benign Molecular Transformations.

    PubMed

    Kaneda, Kiyotomi; Mitsudome, Takato

    2017-01-01

    Metal-support cooperative catalysts have been developed for sustainable and environmentally benign molecular transformations. The active metal centers and supports in these catalysts could cooperatively activate substrates, resulting in high catalytic performance for liquid-phase reactions under mild conditions. These catalysts involved hydrotalcite-supported gold and silver nanoparticles with high catalytic activity for organic reactions such as aerobic oxidation, oxidative carbonylation, and chemoselective reduction of epoxides to alkenes and nitrostyrenes to aminostyrenes using alcohols and CO/H2 O as reducing reagents. This high catalytic performance was due to cooperative catalysis between the metal nanoparticles and basic sites of the hydrotalcite support. To increase the metal-support cooperative effect, core-shell nanostructured catalysts consisting of gold or silver nanoparticles in the core and ceria supports in the shell were designed. These core-shell nanocomposite catalysts were effective for the chemoselective hydrogenation of nitrostyrenes to aminostyrenes, unsaturated aldehydes to allyl alcohols, and alkynes to alkenes using H2 as a clean reductant. In addition, these solid catalysts could be recovered easily from the reaction mixture by simple filtration, and were reusable with high catalytic activity. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Tungsten materials as durable catalyst supports for fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Perchthaler, M.; Ossiander, T.; Juhart, V.; Mitzel, J.; Heinzl, C.; Scheu, C.; Hacker, V.

    2013-12-01

    Durable platinum catalyst support materials, e.g. tungsten carbide (WC), tungsten oxide (WOx) and self-synthesized tungsten oxide (WOxs) were evaluated for the use in High-Temperature Proton Exchange Fuel Cells (HT-PEM) based on phosphoric acid doped polybenzimidazole as electrolyte. The support materials and the catalyst loaded support materials were characterized ex-situ by cyclic voltammetry in HClO4, potential cycling, CO-stripping, electron microscopy and X-ray diffraction measurements. The tungsten oxide and tungsten carbide based supported catalysts were compared to High Surface Area Carbon (HSAC), each coated with platinum via the same in-house manufacturing procedures. The in-house manufacturing procedures resulted in catalyst particle sizes on HSAC of 3-4 nm with a uniform distribution. The in-situ Potential Cycling experiments of WOx or WOxs supported catalysts showed much lower degradation rates compared to High Surface Area Carbons. The formation of WOx species on WC was proven by ex- and in-situ cyclic voltammetric studies and thermogravimetric analyses. X-ray diffraction, ex-situ cyclic voltammetry and in-situ cyclic voltammetry showed that WOx is formed from WC as starting material under oxidizing conditions. Finally a 1000 h durability test with WOx as catalyst support material on the anode was done in a HT-PEM fuel cell with reformed methanol on the anode.

  9. The Corrosion of PEM Fuel Cell Catalyst Supports and Its Implications for Developing Durable Catalysts

    SciTech Connect

    Shao, Yuyan; Wang, Jun; Kou, Rong; Engelhard, Mark H.; Liu, Jun; Wang, Yong; Lin, Yuehe

    2009-01-03

    Studying the corrosion behavior of catalyst support materials is of great significance for understanding the degradation of PEM fuel cell performance and developing durable catalysts. The oxidation of Vulcan carbon black (the most widely-used catalyst support for PEM fuel cells) was investigated using various electrochemical stressing methods (fixed-potential holding vs. potential step cycling), among which the potential step cycling was considered to mimic more closely the real drive cycle operation of vehicle PEM fuel cells. The oxidation of carbon was accelerated under potential step conditions as compared with the fixed-potential holding condition. Increasing potential step frequency or decreasing the lower potential limit in the potential step can further accelerate the corrosion of carbon. The accelerated corrosion of carbon black was attributed to the cycle of consumption/regeneration of some easily oxidized species. These findings are being employed to develop a test protocol for fast screening durable catalyst support.

  10. Preparation of Supported Palladium Catalysts using Deep Eutectic Solvents.

    PubMed

    Iwanow, Melanie; Finkelmeyer, Jasmin; Söldner, Anika; Kaiser, Manuela; Gärtner, Tobias; Sieber, Volker; König, Burkhard

    2017-09-12

    Deep eutectic solvents (DESs) dissolve metal salts or oxides and are used as solvent and carbon source for the preparation of supported palladium catalysts. After dissolving of the palladium salt in the DES, the pyrolysis of the mixture under nitrogen atmosphere yields catalytically active palladium on supporting material composed of carbon, nitrogen and oxygen (CNO) by a simple single step preparation method without further activation. The catalysts were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and CHNS/O elementary analysis. The amount of functional groups on the surface of the supporting material was determined by Boehm titrations. Moreover, the activity of the prepared catalysts was evaluated in the hydrogenation of linear alkenes and compared with a commercial Pd/C catalyst. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Titania-Supported Catalysts for Levulinic Acid Hydrogenation: Influence of Support and its Impact on γ-Valerolactone Yield.

    PubMed

    Ruppert, A M; Grams, J; Jędrzejczyk, M; Matras-Michalska, J; Keller, N; Ostojska, K; Sautet, P

    2015-05-11

    A series of titania-supported ruthenium and platinum catalysts was investigated in the levulinic acid hydrogenation towards γ-valerolactone, a key reaction for the catalytic transformation of biomass. It was shown that various morphologies and phases of titania strongly influence the physicochemical and catalytic properties of supported Ru and Pt catalysts in different ways. In the case of the catalyst supported on mixed TiO2 phases, Ru particles are exclusively located on the minority rutile crystallites, whereas such an effect was not observed for platinum. The platinum catalyst activity could be increased when the metal was dispersed on the large surface-area anatase, which was not the case for ruthenium as a result of its agglomeration on this support. The activity of ruthenium on anatase could be increased in two ways: a) when RuO2 formation during catalyst preparation was avoided; b) when pure anatase support material was modified so that it exhibited no microporosity. The obtained results allow a better understanding of the role of the support for Ru and Pt catalysts.

  12. Nanoengineering Catalyst Supports via Layer-by Layer Surface Functionalization

    SciTech Connect

    Yan, Wenfu; Mahurin, Shannon Mark; Overbury, Steven {Steve} H; Dai, Sheng

    2006-01-01

    Recent progress in the layer-by-layer surface modification of oxides for the preparation of highly active and stable gold nanocatalysts is briefly reviewed. Through a layer-by-layer surface modification approach, the surfaces of various catalyst supports including both porous and nonporous silica materials and TiO{sub 2} nanoparticles were modified with monolayers or multilayers of distinct metal oxide ultra-thin films. The surface-modified materials were used as supports for Au nanoparticles, resulting in highly active nanocatalysts for low-temperature CO oxidation. Good stability against sintering under high-temperature treatment was achieved for a number of the Au catalysts through surface modification of the support material. The surface modification of supports can be a viable route to control both the composition and structure of support and nanoparticle interfaces, thereby tailoring the stability and activity of the supported catalyst systems.

  13. Next Generation Catalyst Engineering via Support Modification

    DTIC Science & Technology

    2016-01-21

    composition are independent of the amount of nitrogen present. After cycling to 1.1 V, low implantation dose (5- 15 s) resulted in poor stability while...Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 fuel cell, electrochemistry, electrocatalysis, carbon, platinum, nitrogen doping...focused on the development and characterization of nitrogen -doped catalysts in membrane electrode assemblies (MEAs) for single-cell acid and alkaline

  14. Copper catalysts for soot oxidation: alumina versus perovskite supports.

    PubMed

    López-Suárez, F E; Bueno-López, A; Illán-Gómez, M J; Adamski, A; Ura, B; Trawczynski, J

    2008-10-15

    Copper catalysts prepared using four supports (Mg- and Sr-modified Al2O3 and MgTiO3 and SrTiO3 perovskites) have been tested for soot oxidation by 02 and NOx/O2. Among the catalysts studied, Cu/SrTiO3 is the most active for soot oxidation by NOx/O2 and the support affects positively copper activity. With this catalyst, and under the experimental conditions used, the soot combustion by NOx/O2 presents a considerable rate from 500 degrees C (100 degrees C below the uncatalysed reaction). The Cu/ SrTiO3 catalyst is also the most effective for NOx chemisorption around 425 degrees C. The best activity of Cu/SrTiO3 can be attributed to the improved redox properties of copper originated by Cu-support interactions. This seems to be related to the presence of weakly bound oxygen on this sample. The copper species present in the catalyst Cu/SrTiO3 can be reduced more easily than those in other supports, and for this reason, this catalyst seems to be the most effective to convert NO into NO2, which explains its highest activity for soot oxidation.

  15. CO oxidation studies over supported noble metal catalysts and single crystals: A review

    NASA Technical Reports Server (NTRS)

    Boecker, Dirk; Gonzalez, Richard D.

    1987-01-01

    The catalytic oxidation of CO over noble metal catalysts is reviewed. Results obtained on supported noble metal catalysts and single crystals both at high pressures and under UHV conditions are compared. The underlying causes which result in surface instabilities and multiple steady-state oscillations are considered, in particular, the occurrence of hot spots. CO islands of reactivity, surface oxide formation and phase transformations under oscillatory conditions are discussed.

  16. Corrosion-resistant catalyst supports for phosphoric acid fuel cells

    SciTech Connect

    Kosek, J.A.; Cropley, C.C.; LaConti, A.B.

    1990-01-01

    High-surface-area carbon blacks such as Vulcan XC-72 (Cabot Corp.) and graphitized carbon blacks such as 2700{degree}C heat-treated Black Pearls 2000 (HTBP) (Cabot Corp.) have found widespread applications as catalyst supports in phosphoric acid fuel cells (PAFCs). However, due to the operating temperatures and pressures being utilized in PAFCs currently under development, the carbon-based cathode catalyst supports suffer from corrosion, which decreases the performance and life span of a PAFC stack. The feasibility of using alternative, low-cost, corrosion-resistant catalyst support (CRCS) materials as replacements for the cathode carbon support materials was investigated. The objectives of the program were to prepare high-surface-area alternative supports and to evaluate the physical characteristics and the electrochemical stability of these materials. The O{sub 2} reduction activity of the platinized CRCS materials was also evaluated. 2 refs., 3 figs.

  17. Unusual catalysts from molasses: synthesis, properties and application in obtaining biofuels from algae.

    PubMed

    Samorì, Chiara; Torri, Cristian; Fabbri, Daniele; Falini, Giuseppe; Faraloni, Cecilia; Galletti, Paola; Spera, Silvia; Tagliavini, Emilio; Torzillo, Giuseppe

    2012-08-01

    Acid catalysts were prepared by sulfonation of carbon materials obtained from the pyrolysis of sugar beet molasses, a cheap, viscous byproduct in the processing of sugar beets into sugar. Conditions for the pyrolysis of molasses (temperature and time) influenced catalyst performance; the best combination came from pyrolysis at low temperature (420 °C) for a relatively long time (8-15 h), which ensured better stability of the final material. The most effective molasses catalyst was highly active in the esterification of fatty acids with methanol (100 % yield after 3 h) and more active than common solid acidic catalysts in the transesterification of vegetable oils with 25-75 wt % of acid content (55-96 % yield after 8 h). A tandem process using a solid acid molasses catalyst and potassium hydroxide in methanol was developed to de-acidificate and transesterificate algal oils from Chlamydomonas reinhardtii, Nannochloropsis gaditana, and Phaeodactylum tricornutum, which contain high amounts of free fatty acids. The amount of catalyst required for the de-acidification step was influenced by the chemical composition of the algal oil, thus operational conditions were determined not only in relation to free fatty acids content in the oil, but according to the composition of the lipid extract of each algal species.

  18. Metal-support interaction on cobalt based FT catalysts - a DFT study of model inverse catalysts.

    PubMed

    van Heerden, Tracey; van Steen, Eric

    2017-04-28

    It is challenging to isolate the effect of metal-support interactions on catalyst reaction performance. In order to overcome this problem, inverse catalysts can be prepared in the laboratory and characterized and tested at relevant conditions. Inverse catalysts are catalysts where the precursor to the catalytically active phase is bonded to a support-like ligand. We can then view the metal-support interaction as a ligand interaction with the support acting as a supra-molecular ligand. Importantly, laboratory studies have shown that these ligands are still present after reduction of the catalyst. By varying the quantity of these ligands present on the surface, insight into the positive effect SMSI have during a reaction is gained. Here, we present a theoretical study of mono-dentate alumina support based ligands, adsorbed on cobalt surfaces. We find that the presence of the ligand may significantly affect the morphology of a cobalt crystallite. With Fischer-Tropsch synthesis in mind, the CO dissociation is used as a probe reaction, with the ligand assisting the dissociation, making it feasible to dissociate CO on the dense fcc Co(111) surface. The nature of the interaction between the ligand and the probe molecule is characterized, showing that the support-like ligands' metal centre is directly interacting with the probe molecule.

  19. Thiophene Hydrodesulfurization over Nickel Phosphide Catalysts: Effect of the Precursor Composition and Support

    SciTech Connect

    Sawhill, Stephanie J.; Layman, Kathryn A.; Van Wyk, Daniel R.; Engelhard, Mark H.; Wang, Chong M.; Bussell, Mark E.

    2005-04-25

    Silica- and alumina-supported nickel phosphide (NixPy) catalysts have been prepared, characterized by bulk and surface sensitive techniques, and evaluated for the hydrodesulfurization (HDS) of thiophene. Series of 30 wt% NixPy/SiO2 and 20 wt% NixPy/Al2O3 catalysts were prepared from oxidic precursors having a range of P/Ni molar ratios by temperature programmed reduction (TPR) in flowing H2. Oxidic precursors with molar ratios of P/Ni = 0.8 and 2.0 yielded catalysts containing phase-pure Ni2P on the silica and alumina supports, respectively. At lower P/Ni ratios, significant Ni12P5 impurities were present in the NixPy/SiO2 and NixPy/Al2O3 catalysts as indicated by X-ray diffraction. The HDS activities of the NixPy/SiO2 and NixPy/Al2O3 catalysts depended strongly on the P/Ni molar ratio of the oxidic precursors with optimal activities obtained for catalysts containing phase pure Ni2P and minimal excess P. After 48 h on-stream, a Ni2P/SiO2 catalyst was 20 and 3.3 times more active than sulfided Ni/SiO2 and Ni-Mo/SiO2 catalysts, respectively. A Ni2P/Al2O3 catalyst was 2.7 times more active than a sulfided Ni/Al2O3 catalyst but only about half as active as a Ni-Mo/Al2O3 catalyst.

  20. Steam Reforming of Ethylene Glycol over MgAl₂O₄ Supported Rh, Ni, and Co Catalysts

    SciTech Connect

    Mei, Donghai; Lebarbier, Vanessa M.; Xing, Rong; Albrecht, Karl O.; Dagle, Robert A.

    2015-11-25

    Steam reforming of ethylene glycol (EG) over MgAl₂O₄ supported metal (15 wt.% Ni, 5 wt.% Rh, and 15 wt.% Co) catalysts were investigated using combined experimental and theoretical methods. Compared to highly active Rh and Ni catalysts with 100% conversion, the steam reforming activity of EG over the Co catalyst is comparatively lower with only 42% conversion under the same reaction conditions (500°C, 1 atm, 119,000 h⁻¹, S/C=3.3 mol). However, CH₄ selectivity over the Co catalyst is remarkably lower. For example, by varying the gas hour space velocity (GHSV) such that complete conversion is achieved for all the catalysts, CH₄ selectivity for the Co catalyst is only 8%, which is much lower than the equilibrium CH₄ selectivity of ~ 24% obtained for both the Rh and Ni catalysts. Further studies show that varying H₂O concentration over the Co catalyst has a negligible effect on activity, thus indicating zero-order dependence on H₂O. These experimental results suggest that the supported Co catalyst is a promising EG steam reforming catalyst for high hydrogen production. To gain mechanistic insight for rationalizing the lower CH₃ selectivity observed for the Co catalyst, the initial decomposition reaction steps of ethylene glycol via C-O, O-H, C-H, and C-C bond scissions on the Rh(111), Ni(111) and Co(0001) surfaces were investigated using density functional theory (DFT) calculations. Despite the fact that the bond scission sequence in the EG decomposition on the three metal surfaces varies, which leads to different reaction intermediates, the lower CH₄ selectivity over the Co catalyst, as compared to the Rh and Ni catalysts, is primarily due to the higher barrier for CH₄ formation. The higher S/C ratio enhances the Co catalyst stability, which can be elucidated by the facile water dissociation and an alternative reaction path to remove the CH species as a coking precursor via the HCOH formation. This work was financially supported by the United

  1. Supported Molecular Catalysts: Synthesis, in-situ Characterization and Performance

    SciTech Connect

    Haw, James F

    2010-12-14

    The technological advantages of solid catalysts (robustness for operation at high temperatures, lack of corrosion, and ease of separation of products) can be combined with the advantages of soluble catalysts (e.g., selectivity) by synthesis of structurally discrete, nearly uniform catalysts on supports. Our goal is to synthesize, characterize, test, and model such catalysts and their reactions, thereby opening a door to unprecedented fundamental understanding of the properties of such materials. We employ molecular chemistry in nano-scale cages of zeolites and on surfaces of tailored porous solids for the precise synthesis of catalysts with discrete, uniform, well-defined sites, primarily mononuclear metal complexes, characterizing them (sometimes in the functioning state) with a broad range of complementary experimental techniques and using computational chemistry to interpret the results, map out reaction paths, provide bases for the design of new catalysts, improve methods of data analysis, and identify key experiments. The effort is directly in support of DOE's energy, environmental, and national security missions as well as the support of DOE's basic science mission to develop the tools and understanding needed for the success of the applied mission areas. The research is demonstrating progress in understanding, modeling, and controlling chemical reactivity at interfaces to develop a fundamental understanding of how to control catalytic reactions for a broad range of applications.

  2. Molecular metal catalysts on supports: organometallic chemistry meets surface science.

    PubMed

    Serna, Pedro; Gates, Bruce C

    2014-08-19

    Recent advances in the synthesis and characterization of small, essentially molecular metal complexes and metal clusters on support surfaces have brought new insights to catalysis and point the way to systematic catalyst design. We summarize recent work unraveling effects of key design variables of site-isolated catalysts: the metal, metal nuclearity, support, and other ligands on the metals, also considering catalysts with separate, complementary functions on supports. The catalysts were synthesized with the goal of structural simplicity and uniformity to facilitate incisive characterization. Thus, they are essentially molecular species bonded to porous supports chosen for their high degree of uniformity; the supports are crystalline aluminosilicates (zeolites) and MgO. The catalytic species are synthesized in reactions of organometallic precursors with the support surfaces; the precursors include M(L)2(acetylacetonate)1-2, with M = Ru, Rh, Ir, or Au and the ligands L = C2H4, CO, or CH3. Os3(CO)12 and Ir4(CO)12 are used as precursors of supported metal clusters, and some such catalysts are made by ship-in-a-bottle syntheses to trap the clusters in zeolite cages. The simplicity and uniformity of the supported catalysts facilitate precise structure determinations, even in reactive atmospheres and during catalysis. The methods of characterizing catalysts in reactive atmospheres include infrared (IR), extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), and nuclear magnetic resonance (NMR) spectroscopies, and complementary methods include density functional theory and atomic-resolution aberration-corrected scanning transmission electron microscopy for imaging of individual metal atoms. IR, NMR, XANES, and microscopy data demonstrate the high degrees of uniformity of well-prepared supported species. The characterizations determine the compositions of surface metal complexes and clusters, including the ligands and the metal-support

  3. Development of supported palladium particles in Pd/C catalysts

    SciTech Connect

    Semikolenov, V.A.; Lavrenko, S.P.; Zaikovskii, V.I.

    1994-07-01

    A series of Pd/C catalysts characterized by different morphology of supported Pd particles is prepared by deposition from aqueous H{sub 2}PdCl{sub 4} solutions. The development of palladium particles on the surface of a carbonaceous support is studied by high-resolution electron microscopy. Soluble Pd compounds are shown to be involved in the development of supported particles in the course of catalyst reduction. A scheme that accounts for the formation of round-shaped particles, grapelike clusters, and Pd microcrystallites is proposed.

  4. Carbon nanotube synthesis with different support materials and catalysts

    NASA Astrophysics Data System (ADS)

    Gümüş, Fatih; Yuca, Neslihan; Karatepe, Nilgün

    2013-09-01

    Having remarkable characteristics, carbon nanotubes (CNTs) have attracted a lot of interest. Their mechanical, electrical, thermal and chemical properties make CNTs suitable for several applications such as electronic devices, hydrogen storage, textile, drug delivery etc. CNTs have been synthesized by various methods, such as arc discharge, laser ablation and catalytic chemical vapor deposition (CCVD). In comparison with the other techniques, CCVD is widely used as it offers a promising route for mass production. High capability of decomposing hydrocarbon formation is desired for the selected catalysts. Therefore, transition metals which are in the nanometer scale are the most effective catalysts. The common transition metals that are being used are Fe, Co, Ni and their binary alloys. The impregnation of the catalysts over the support material has a crucial importance for the CNT production. In this study, the influence of the support materials on the catalytic activity of metals was investigated. CNTs have been synthesized over alumina (Al2O3), silica (SiO2) and magnesium oxide (MgO) supported Fe, Co, Fe-Co catalysts. Catalyst - support material combinations have been investigated and optimum values for each were compared. Single walled carbon nanotubes (SWCNTs) were produced at 800°C. The duration of synthesis was 30 minutes for all support materials. The synthesized materials were characterized by thermal gravimetric analysis (TGA), Raman spectroscopy and transmission electron microscopy.

  5. Kinetics of synthesizing polymer-supported quaternary ammonium catalysts.

    PubMed

    Wu, Ho-Shing; Lo, Chi-Wei

    2006-01-01

    This study attempted to synthesize the optimum quaterary ammonium poly(styrene-co-methylstyrene) catalyst using the combinatorial chemistry method. The catalyst was synthesized by a mix-split method. A phase-transfer catalyst library with 25 kinds of polystyrene-supported quaternary ammonium salt catalyst was the the result of the reaction of five kinds of chloromethylated crosslinked polystyrene with five tert-amines. The allylation of phenol and the oxidation of benzyl alcohol were used as the probing reaction to screen out the most active catalyst for the reaction using the iterative deconvolution method. The screening conditions included teritary amine and organic solvent. The structure of the most active catalyst in the allylation of phenol shows 20 mol % ring substitution and 0.177-0.25-mm pellet size activated with trihexylamine. For oxidation of benzyl alcohol, the reaction conditions of the most active catalyst included a resin of 20% ring substitution and pellet size of 0.177-0.25 mm, activated with triethylamine reacting in an organic solvent of n-hexane.

  6. The generation of efficient supported (Heterogeneous) olefin metathesis catalysts

    SciTech Connect

    Grubbs, Robert H

    2013-04-05

    Over the past decade, a new family of homogeneous metathesis catalysts has been developed that will tolerate most organic functionalities as well as water and air. These homogeneous catalysts are finding numerous applications in the pharmaceutical industry as well as in the production of functional polymers. In addition the catalysts are being used to convert seed oils into products that can substitute for those that are now made from petroleum products. Seed oils are unsaturated, contain double bonds, and are a ready source of linear hydrocarbon fragments that are specifically functionalized. To increase the number of applications in the area of biomaterial conversion to petrol chemicals, the activity and efficiency of the catalysts need to be as high as possible. The higher the efficiency of the catalysts, the lower the cost of the conversion and a larger number of practical applications become available. Active supported catalysts were prepared and tested in the conversion of seed oils and other important starting materials. The outcome of the work was successful and the technology has been transferred to a commercial operation to develop viable applications of the discovered systems. A biorefinery that converts seed oils is under construction in Indonesia. The catalysts developed in this study will be considered for the next generation of operations.

  7. Catalyst-infiltrated supporting cathode for thin-film SOFCs

    SciTech Connect

    Yamahara, Keiji; Jacobson, Craig P.; Visco, Steven J.; De Jonghe,Lutgard C.

    2004-04-12

    The fabrication and electrochemical performance of co-fired,LSM-SYSZ [i.e., La0.65Sr0.30MnO3 (LSM) - (Sc2O3)0.1(Y2O3)0.01(ZrO2)0.89] supported thin-film cells were examined using humidified hydrogen as a fuel. Co-firing of bi-layers and tri-layers was successful at 1250 C by optimizing the amount of carbon pore formers. A power density of a factor of 2.5 higher than that recently reported for the same type of cell at 800 C [3] was obtained for a cell with cobalt infiltration into the supporting cathode: the peak power densities were 455, 389, 285, 202, 141mW/cm2 at 800, 750, 700, 650, 600 C, respectively, and in most cases power densities at 0.7V exceeded more than 90 percent of the peak output. Increasing the cathode porosity from 43 to 53 percent improved peak power densities by as much as 1.3, shifting the diffusion limitation to high current densities. Cobalt infiltration into the support improved those by as much as a factor of 2 due to a significant reduction in non-ohmic resistance. These results demonstrate that cobalt catalyst-infiltrated LSM can be effective and low-cost supporting electrodes for reduced temperature, thin film SOFCs.

  8. TiO2 nanotubes supported NiW hydrodesulphurization catalysts: Characterization and activity

    NASA Astrophysics Data System (ADS)

    Palcheva, R.; Dimitrov, L.; Tyuliev, G.; Spojakina, A.; Jiratova, K.

    2013-01-01

    High surface area TiO2 nanotubes (Ti-NT) synthesized by alkali hydrothermal method were used as a support for NiW hydrodesulphurization catalyst. Nickel salt of 12-tungstophosphoric acid - Ni3/2PW12O40 was applied as oxide precursor of the active components. The catalyst was characterized by SBET, XRD, UV-vis DRS, Raman spectroscopy, XPS, TPR and HRTEM. The results obtained were compared with those for the NiW catalysts prepared over high surface area titania and alumina supports. A polytungstate phase evidenced by Raman spectroscopy was observed indicating the destruction of the initial heteropolyanion. The catalytic experiments revealed two times higher thiophene conversion on NiW catalyst supported on Ti-NT than those of catalysts supported on alumina and titania. Increased HDS activity of the NiW catalyst supported on Ti-NT could be related to a higher amount of W oxysulfide entities interacting with Ni sulfide particles as consequence of the electronic effects of the Ti-NT observed with XPS analysis.

  9. Carbon-supported Pd-Ir catalyst as anodic catalyst in direct formic acid fuel cell

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Tang, Yawen; Gao, Ying; Lu, Tianhong

    It was reported for the first time that the electrocatalytic activity of the Carbon-supported Pd-Ir (Pd-Ir/C) catalyst with the suitable atomic ratio of Pd and Ir for the oxidation of formic acid in the direct formic acid fuel cell (DFAFC) is better than that of the Carbon-supported Pd (Pd/C) catalyst, although Ir has no electrocatalytic activity for the oxidation of formic acid. The potential of the anodic peak of formic acid at the Pd-Ir/C catalyst electrode with the atomic ratio of Pd and Ir = 5:1 is 50 mV more negative than that and the peak current density is 13% higher than that at the Pd/C catalyst electrode. This is attributed to that Ir can promote the oxidation of formic acid at Pd through the direct pathway because Ir can decrease the adsorption strength of CO on Pd. However, when the content of Ir in the Pd-Ir/C catalyst is too high the electrocatalytic activity of the Pd-Ir/C catalyst would be decreased because Ir has no electrocatalytic activity for the oxidation of formic acid.

  10. HREM study of structure of supported Pt catalysts

    NASA Astrophysics Data System (ADS)

    Yao, Ming-Hui; Smith, David J.; Kalakkad, Dinesh; Datye, Abhaya K.

    1993-03-01

    The surface structure and morphology of Pt catalysts supported on various oxides were studied by HREM profile imaging. An unstable Ti oxide overlayer and a stable crystalline monolayer on TiO2 supported Pt particles were observed after HTR at 923K. The overlayers could explain the SMSI in Pt/TiO2.

  11. Complete oxidation of ethylene over supported gold nanoparticle catalysts.

    PubMed

    Ahn, Ho-Geun; Choi, Byoung-Min; Lee, Do-Jin

    2006-11-01

    Complete oxidation of ethylene was performed over supported noble metals or transition metals oxide catalysts and on monoliths under atmospheric pressure. Gold nanoparticles on Al2O3 or MxOy(M = Mo, Fe, Mn) were prepared by impregnation, coprecipitation, deposition, and dispersion methods. Nanoparticles prepared by impregnation method were irregular and very large above 25 nm, but those by coprecipitation and deposition method were uniformly nanosized at 4-5 nm. The gold nanoparticle were outstandingly active in catalyzing oxidation of ethylene. The activity order of these catalysts with preparation methods was deposition > coprecipitation > impregnation, and Au/Co3O4 prepared by deposition method showed the best performance in ethylene oxidation. The addition of gold particles to MxOy/Al2O3 catalyst enhanced the ethylene oxidation activity significantly. The main role of the gold nanoparticles apparently was to promote dissociative adsorption of oxygen and to enhance the reoxidation of the catalyst.

  12. Support effects on hydrotreating activity of NiMo catalysts

    SciTech Connect

    Dominguez-Crespo, M.A. Arce-Estrada, E.M.; Torres-Huerta, A.M.

    2007-10-15

    The effect of the gamma alumina particle size on the catalytic activity of NiMoS{sub x} catalysts prepared by precipitation method of aluminum acetate at pH = 10 was studied. The structural characterization of the supports was measured by using XRD, pyridine FTIR-TPD and nitrogen physisorption. NiMo catalysts were characterized during the preparation steps (annealing and sulfidation) using transmission electron microscopy (TEM). Hydrogen TPR studies of the NiMo catalysts were also carried out in order to correlate their hydrogenating properties and their catalytic functionality. Catalytic tests were carried out in a pilot plant at 613, 633 and 653 K temperatures. The results showed that the rate constants of hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatizing (HDA) at 613-653 K decreased in the following order: A > B > C corresponding to the increase of NiMoS particle size associated to these catalysts.

  13. Stable metal–organic framework-supported niobium catalysts

    DOE PAGES

    Ahn, Sol; Thornburg, Nicholas E.; Li, Zhanyong; ...

    2016-10-31

    In this study by developing structurally well-defined, supported oxide catalysts remains a significant challenge. Here, we report the grafting of Nb(V) oxide sites onto the nodes of the Zr-based metal organic framework (MOF) NU-1000 as a stable, well-defined catalyst support. Nb(V) oxide was deposited with loadings up to 1.6 mmol/g via two post-synthetic methods: atomic layer deposition in a MOF (AIM), and solution-phase grafting in a MOF (SIM). Difference envelope density (DED) measurements indicated that the two synthetic methods resulted in different local structures of the Nb(V) ions within NU-1000. Despite their high Nb(V) loadings, which were equivalent to >60%more » surface coverage, nearly all Nb(V) sites of the MOF-supported catalysts were active sites for alkene epoxidation, as confirmed by phenylphosphonic acid titration. The MOF-supported catalysts were more selective than the control Nb-ZrO2 catalyst for cyclohexene epoxidation with aqueous H2O2, and were far more active on a gravimetric basis.« less

  14. Stable metal–organic framework-supported niobium catalysts

    SciTech Connect

    Ahn, Sol; Thornburg, Nicholas E.; Li, Zhanyong; Wang, Timothy C.; Gallington, Leighanne C.; Chapman, Karena W.; Notestein, Justin M.; Hupp, Joseph T.; Farha, Omar K.

    2016-10-31

    In this study by developing structurally well-defined, supported oxide catalysts remains a significant challenge. Here, we report the grafting of Nb(V) oxide sites onto the nodes of the Zr-based metal organic framework (MOF) NU-1000 as a stable, well-defined catalyst support. Nb(V) oxide was deposited with loadings up to 1.6 mmol/g via two post-synthetic methods: atomic layer deposition in a MOF (AIM), and solution-phase grafting in a MOF (SIM). Difference envelope density (DED) measurements indicated that the two synthetic methods resulted in different local structures of the Nb(V) ions within NU-1000. Despite their high Nb(V) loadings, which were equivalent to >60% surface coverage, nearly all Nb(V) sites of the MOF-supported catalysts were active sites for alkene epoxidation, as confirmed by phenylphosphonic acid titration. The MOF-supported catalysts were more selective than the control Nb-ZrO2 catalyst for cyclohexene epoxidation with aqueous H2O2, and were far more active on a gravimetric basis.

  15. Supported catalysts using nanoparticles as the support material

    DOEpatents

    Wong, Michael S.; Wachs, Israel E.; Knowles, William V.

    2010-11-02

    A process for making a porous catalyst, comprises a) providing an aqueous solution containing a nanoparticle precursor, b) forming a composition containing nanoparticles, c) adding a first catalytic component or precursor thereof and a pore-forming agent to the composition containing nanoparticles and allowing the first catalytic component, the pore-forming agent, and the nanoparticles form an organic-inorganic structure, d) removing water from the organic-inorganic structure; and e) removing the pore-forming agent from the organic-inorganic structure so as to yield a porous catalyst.

  16. Utilization of iron oxide film obtained by CVD process as catalyst to carbon nanotubes growth

    SciTech Connect

    Schnitzler, Mariane C.; Zarbin, Aldo J.G.

    2009-10-15

    Thin films of Fe{sub 2}O{sub 3} were obtained on silica glass substrates through the thermal decomposition of ferrocene in air. These films were characterized by Raman spectroscopy and X-ray diffractometry (XRD), and subsequently used as catalyst on the growth of carbon nanotubes, using benzene or a benzene solution of [Fe{sub 3}(CO){sub 12}] as precursor. A great amount of a black powder was obtained as product, identified as multi-walled carbon nanotubes by XRD, Raman spectroscopy and transmission electron microscopy. The carbon nanotubes formed through the pyrolysis of the [Fe{sub 3}(CO){sub 12}] solution were identified as structurally better than the one obtained by the pyrolysis of pristine benzene. - Graphical abstract: Thin films of Fe{sub 2}O{sub 3} were obtained on silica glass substrates through the thermal decomposition of ferrocene in air, and subsequently used as catalyst on the growth of carbon nanotubes.

  17. Development of polysilane-supported palladium/alumina hybrid catalysts and their application to hydrogenation.

    PubMed

    Oyamada, Hidekazu; Naito, Takeshi; Miyamoto, Shinpei; Akiyama, Ryo; Hagio, Hiroyuki; Kobayashi, Shū

    2008-01-07

    Novel immobilized Pd catalysts, polysilane-supported palladium/alumina hybrid catalysts, have been developed. The catalysts showed high catalytic activity for hydrogenation, and could be used in an organic solvent or under solvent-free conditions.

  18. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    SciTech Connect

    Islam, A. E.; Zakharov, D.; Stach, E. A.; Nikoleav, P.; Amama, P. B.; Sargent, G.; Saber, S.; Huffman, D.; Erford, M.; Semiatin, S. L.; Maruyama, B.

    2015-09-16

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only in the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. As a result, with the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.

  19. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    NASA Astrophysics Data System (ADS)

    Islam, A. E.; Nikolaev, P.; Amama, P. B.; Zakharov, D.; Sargent, G.; Saber, S.; Huffman, D.; Erford, M.; Semiatin, S. L.; Stach, E. A.; Maruyama, B.

    2015-09-01

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only in the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. With the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.

  20. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    DOE PAGES

    Islam, A. E.; Zakharov, D.; Stach, E. A.; ...

    2015-09-16

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only inmore » the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. As a result, with the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.« less

  1. Templating Routes to Supported Oxide Catalysts by Design

    SciTech Connect

    Notestein, Justin M.

    2016-09-08

    The rational design and understanding of supported oxide catalysts requires at least three advancements, in order of increasing complexity: the ability to quantify the number and nature of active sites in a catalytic material, the ability to place external controls on the number and structure of these active sites, and the ability to assemble these active sites so as to carry out more complex functions in tandem. As part of an individual investigator research program that is integrated with the Northwestern University Institute for Catalysis in Energy Processes (ICEP) as of 2015, significant advances were achieved in these three areas. First, phosphonic acids were utilized in the quantitative assessment of the number of active and geometrically-available sites in MOx-SiO2 catalysts, including nanocrystalline composites, co-condensed materials, and grafted structures, for M=Ti, Zr, Hf, Nb, and Ta. That work built off progress in understanding supported Fe, Cu, and Co oxide catalysts from chelating and/or multinuclear precursors to maximize surface reactivity. Secondly, significant progress was made in the new area of using thin oxide overcoats containing ‘nanocavities’ from organic templates as a method to control the dispersion and thermal stability of subsequently deposited metal nanoparticles or other catalytic domains. Similar methods were used to control surface reactivity in SiO2-Al2O3 acid catalysts and to control reactant selectivity in Al2O3-TiO2 photocatalysts. Finally, knowledge gained from the first two areas has been combined to synthesize a tandem catalyst for hydrotreating reactions and an orthogonal tandem catalyst system where two subsequent reactions in a reaction network are independently controlled by light and heat. Overall, work carried out under this project significantly advanced the knowledge of synthesis-structure-function relationships in supported

  2. Au and Pt nanoparticle supported catalysts tailored for H-2 production: From models to powder catalysts

    SciTech Connect

    T. D. Nguyen-Phan; Baber, A. E.; Rodriguez, J. A.; Senanayake, S. D.

    2015-12-10

    The use of metal nanoparticles (NPs), including Au and Pt, supported over oxides has been pivotal, and is ever increasing in enabling catalytic reactions which target the production of hydrogen. We review here the most recent works pertaining to the fundamental understanding of the structure, morphology, growth, characterization, and intrinsic phenomenological properties of Au– and Pt– based catalysts that influence the reactivity and selectivity to target hydrogen production. We draw on surface science and theoretical methods of model and powder catalysts using high resolution imaging, spectroscopy, scattering experiments, and theoretical studies. Based on these insights we identify key aspects of studies of supported metal nanoparticle (NP) catalysts for several reactions. The main focus of this review is on the intersection of catalytic chemistry related to the water-gas shift (WGS), oxygenate steam reforming (OSR), and solarassisted reactions (SAR).

  3. Au and Pt nanoparticle supported catalysts tailored for H-2 production: From models to powder catalysts

    DOE PAGES

    T. D. Nguyen-Phan; Baber, A. E.; Rodriguez, J. A.; ...

    2015-12-10

    The use of metal nanoparticles (NPs), including Au and Pt, supported over oxides has been pivotal, and is ever increasing in enabling catalytic reactions which target the production of hydrogen. We review here the most recent works pertaining to the fundamental understanding of the structure, morphology, growth, characterization, and intrinsic phenomenological properties of Au– and Pt– based catalysts that influence the reactivity and selectivity to target hydrogen production. We draw on surface science and theoretical methods of model and powder catalysts using high resolution imaging, spectroscopy, scattering experiments, and theoretical studies. Based on these insights we identify key aspects ofmore » studies of supported metal nanoparticle (NP) catalysts for several reactions. The main focus of this review is on the intersection of catalytic chemistry related to the water-gas shift (WGS), oxygenate steam reforming (OSR), and solarassisted reactions (SAR).« less

  4. Metal-support effects on acetone hydrogenation over platinum catalysts

    SciTech Connect

    Sen, B.; Vannice, M.A. )

    1988-09-01

    Acetone hydrogenation was studied over Pt/TiO{sub 2}, Pt/{eta}-Al{sub 2}O{sub 3}, Pt/SiO{sub 2}, Pt powder, and Pt/Au catalysts to test the hypothesis that the metal-support effect responsible for higher CO hydrogenation rates over certain metal/TiO{sub 2} catalysts represents a phenomenon capable of activating carbonyl bonds in general. Compared with the other catalysts, the high-temperature reduced (HTR) Pt/TiO{sub 2} samples had turnover frequencies more than 500 times higher than those of unsupported Pt and Pt/SiO{sub 2} catalysts, and the specific activity (per g Pt) of the Pt/TiO{sub 2} catalyst was 10 times that of a Pt/SiO{sub 2} catalyst with comparable dispersion. Complete hydrogenation to C{sub 3}H{sub 8} and H{sub 2}O occurred only on large, unsupported Pt crystallites; however, partial hydrogenation to isopropyl alcohol appeared to be structure insensitive and activation energies were similar over all catalysts, as were pressure dependencies, which associates the higher activity with a larger preexponential factor. Only one Langmuir-Hinshelwood model provided a rate expression consistent with experimental results - that which assumed competitive adsorption of H{sub 2} and acetone on the same sites and addition of the second H atom as the rate-determining step. This model is consistent with previous TPD, IR, and EELs studies and is also substantiated by theoretical calculations based on the bond-order conservation method. The much higher activities over Pt/TiO{sub 2} catalysts are attributed to an increase in the active site concentration in the Pt-titania interface region. These special sites are presumed to be defects on the titania surface near the Pt that can activate the carbonyl bond in the presence of atomic hydrogen provided by the Pt. 131 refs.

  5. Support effects studied on model supported catalysts. Progress report, April 1, 1991--March 31, 1992

    SciTech Connect

    Gorte, R.G.

    1991-11-01

    We are studying model catalysts in which the active phase is deposited onto flat oxide substrates in order to understand how a catalyst is affected by its support. We have examined the following growth and stability of titania overlayers which had been vapor deposited onto a Rh foil; the growth of Pt films on ZnO(0001)Zn and O(0001)O and compared the results to those obtained for Pt on {alpha}-Al{sub 2}O{sub 3}(0001). Samples were prepared by vapor deposition of Pt onto flat substrates in ultra high vacuum, and metal coverages were measured using a quartz-crystal, film thickness monitor; the structure and CO adsorption properties of Pt films vapor deposited onto a ZrO{sub 2}(100) crystal; the deposition of Rh on a ZrO{sub 2}(100) crystal; The absorption of NO on Pt particles supported on CeO{sub 2}, {alpha}-Al{sub 2}O{sub 3}(0001), and the Zn- and O-polar surfaces of ZnO(0001). We have investigated supported oxides in order to understand the acidic properties that have been reported for monolayer oxides. Our first studies were of amorphous, silicalumina catalysts. Finally, we have also begun to prepare model supported oxides in order to be able to used spectroscopic methods to characterize the sites formed on these materials. Our first studies were of niobia deposition on oxidized Al films and on an {alpha}-Al{sub 2}O{sub 3}(0001) crystal.

  6. Mullite-supported Rh catalyst: a promising catalyst for the decomposition of N2O propellant.

    PubMed

    Zhao, Xiangyun; Cong, Yu; Lv, Fei; Li, Lin; Wang, Xiaodong; Zhang, Tao

    2010-05-07

    A mullite-supported Rh catalyst with an unusual crystalline structure in favour of high-temperature reactions was applied for the first time to the catalytic decomposition of N(2)O propellants, and has shown a promising initial activity and thermal stability.

  7. Sink effect in activated carbon-supported hydrodesulfurization catalysts

    SciTech Connect

    Laine, J.; Labady, M.; Severino, F.; Yunes, S.

    1997-03-01

    A synergistic effect has been proposed in previous papers, attempting to explain the higher activity of activated carbon-supported hydrodesulfurization (HDS) catalysts with respect to conventional alumina-supported catalysts, reported earlier. However, activated carbon characteristics can be strongly affected by the raw material and the method of activation. Thus, previous work using Ni-Mo catalysts supported on two different activated carbons (one prepared by {open_quotes}physical{close_quotes} and the other by {open_quotes}chemical{close_quotes} activation) showed different optimal Ni concentrations for higher HDS activity, such difference being attributed to the predominance of Topsoe`s Type I {open_quotes}NiMoS{close_quotes} phase in one carbon and the predominance of Type II in the other. Due to the lack of proper characterization of the activated carbon supported catalysts of the previous work, this paper presents further data suggesting that microporosity provided by the activated carbon may be the responsible for the above referred synergism. 12 refs., 1 fig., 3 tabs.

  8. Supported liquid metal catalysts: Popping up to the surface

    NASA Astrophysics Data System (ADS)

    Rupprechter, Günther

    2017-09-01

    Merging the advantages of homogeneous and heterogeneous catalysts is a useful strategy for creating improved catalytic systems. Now, a concept has been developed that uses single Pd atoms -- supported within liquid alloy droplets -- that emerge from the droplet subsurface and interior to react with molecules approaching from the gas phase.

  9. STRONTIUM AS AN EFFICIENT PROMOTER FOR SUPPORTED PALLADIUM HYDROGENATION CATALYSTS

    EPA Science Inventory

    The effect of strontium promotion is studied for a series of supported palladium catalysts such as Pd/zeolite-β, Pd/Al2O3, Pd/SiO2, Pd/hydrotalcite and Pd/MgO. Strontium is found to be an effective promoter for enhancing the metal area, perce...

  10. STRONTIUM AS AN EFFICIENT PROMOTER FOR SUPPORTED PALLADIUM HYDROGENATION CATALYSTS

    EPA Science Inventory

    The effect of strontium promotion is studied for a series of supported palladium catalysts such as Pd/zeolite-β, Pd/Al2O3, Pd/SiO2, Pd/hydrotalcite and Pd/MgO. Strontium is found to be an effective promoter for enhancing the metal area, perce...

  11. A silica-supported, switchable, and recyclable hydroformylation-hydrogenation catalyst.

    PubMed

    Sandee, A J; Reek, J N; Kamer, P C; van Leeuwen, P W

    2001-09-05

    A homogeneous hydroformylation catalyst, designed to produce selectively linear aldehydes, was covalently tethered to a polysilicate support. The immobilized transition-metal complex [Rh(A)CO]+(1+)), in which A is N-(3-trimethoxysilane-n-propyl)-4,5-bis(diphenylphosphino)phenoxazine, was prepared both via the sol-gel process and by covalent anchoring to silica. 1+ was characterized by means of (31)P and (29)Si MAS NMR, FT-IR, and X-ray photoelectron spectroscopy. Polysilicate immobilized Rh(A) performed as a selective hydroformylation catalyst showing an overall selectivity for the linear aldehyde of 94.6% (linear to branched aldehyde ratio of 65). In addition 1-nonanol, obtained via the hydrogenation of the corresponding aldehyde, was formed as an unexpected secondary product (3.6% at 20% conversion). Under standard hydroformylation conditions, 1+ and HRh(A)(CO)(2)(1) coexist on the support. This dual catalyst system performed as a hydroformylation/hydrogenation sequence catalyst (Z), giving selectively 1-nonanol from 1-octene; ultimately, 98% of 1-octene was converted to mainly 1-nonanal and 97% of the nonanal was hydrogenated to 1-nonanol. The addition of 1-propanol completely changes Z in a hydroformylation catalyst (X), which produces 1-nonanal with an overall selectivity of 93%, and completely suppresses the reduction reaction. If the atmosphere is changed from CO/H(2) to H(2) the catalyst system is switched to the hydrogenation mode (Y), which shows a clean and complete hydrogenation of 1-octene and 1-nonanal within 24 h. The immobilized catalyst can be recycled and the system can be switched reversibly between the three "catalyst modes" X, Y, and Z, completely retaining the catalyst performance in each mode.

  12. Perlite as a potential support for nickel catalyst in the process of sunflower oil hydrogenation

    NASA Astrophysics Data System (ADS)

    Radonjić, V.; Krstić, J.; Lončarević, D.; Jovanović, D.; Vukelić, N.; Stanković, M.; Nikolova, D.; Gabrovska, M.

    2015-12-01

    Investigation was conducted in order to elucidate the possibility of using perlite as support for preparation of nickel based precursor catalyst, potentially applicable in vegetable oil hydrogenation process. On three differently prepared expanded perlite, nickel catalyst precursors with identical Ni/SiO2 = 1.1 and Ni/Mg = 10/1 ratios were synthesized by precipitation-deposition method. Different techniques, SEM micrography, He-pycnometry, calcimetry, Hg-porosimetry, N2-physisorption, H2-chemisorption and temperature programmed reduction, were used for characterization of obtained samples. Determining the precursor texture, morphology and reducibility shows a successfully deposited nickel phase on perlite support with promising properties for vegetable oil hydrogenation. Chosen precursor was reduced and passivated in paraffin oil and the obtained catalyst showed significant catalytic activity in the test of sunflower oil hydrogenation.

  13. Carbon nanotubes/tin oxide nanocomposite-supported Pt catalysts for methanol electro-oxidation.

    PubMed

    Li, Xingwei; Wei, Jiadi; Chai, Yuzheng; Zhang, Shuo

    2015-07-15

    Carbon nanotubes/tin oxide nanocomposite (MWCNTs-SnO2) was obtained via the hydrolysis of SnCl4 in the presence of multi-walled carbon nanotubes (MWCNTs) and subsequent calcinations. And carbon nanotubes/tin oxide nanocomposite-supported Pt catalysts (Pt/MWCNTs-SnO2) were prepared by in-situ liquid phase reduction using H2PtCl6 as a metal precursor. As-prepared catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM), and their catalytic performances were evaluated by chronoamperometry (CA) and cyclic voltammetry (CV). Desirable catalytic performance for methanol electro-oxidation was observed with a reduced size and an improved dispersion of Pt catalysts on the MWCNTs-SnO2 nanocomposite. The calcination temperature of MWCNTs-SnO2 nanocomposite was a key factor for controlling the catalytic performance of Pt/MWCNTs-SnO2 catalysts.

  14. Preparation, characterization, and activity of α-Ti(HPO4)2 supported metallocene catalysts

    NASA Astrophysics Data System (ADS)

    Shi, Yasai; Yuan, Yuan; Xu, Qinghong; Yi, Jianjun

    2016-10-01

    A series of heterogeneous catalysts by loading metallocenes on surface of α-Ti(HPO4)2, a kind of solid acid, has been synthesized. Polymerization of alkenes, including ethylene and propylene, based on participation of the heterogeneous catalysts were studied and the results were compared to metallocenes supported on silica gel, α-Zr(HPO4)2 and clay. Higher catalytic activity, larger polymer molecular weight and narrow distribution of polymer molecular weight were obtained. Acidic strength of the support and its influence to metallocenes were studied to discover intrinsic factors in the polymerizations.

  15. High quality syngas production from microwave pyrolysis of rice husk with char-supported metallic catalysts.

    PubMed

    Zhang, Shuping; Dong, Qing; Zhang, Li; Xiong, Yuanquan

    2015-09-01

    This study aimed to obtain the maximum possible gas yield and the high quality syngas production from microwave pyrolysis of rice husk with rice husk char and rice husk char-supported metallic (Ni, Fe and Cu) catalysts. The rice husk char-supported metallic catalysts had developed pore structure and catalytic activity for gas productions and tar conversion. The temperature-rising characteristic, product yields, properties of gas products and tar conversion mechanisms were investigated. It was found that three rice husk char-supported metallic catalysts improved the microwave absorption capability and increased heating rate and final temperature. Rice husk char-supported Ni catalyst presented most effective effects on gas production, e.g. the gas yield is 53.9%, and the volume concentration of desired syngas is 69.96%. Rice husk char-supported Ni and Fe catalysts played pivotal roles in tar conversion that less heavy compounds can be detected along with the reduction of organic compound number.

  16. Predicting catalyst-support interactions between metal nanoparticles and amorphous silica supports

    NASA Astrophysics Data System (ADS)

    Ewing, Christopher S.; Veser, Götz; McCarthy, Joseph J.; Lambrecht, Daniel S.; Johnson, J. Karl

    2016-10-01

    Metal-support interactions significantly affect the stability and activity of supported catalytic nanoparticles (NPs), yet there is no simple and reliable method for estimating NP-support interactions, especially for amorphous supports. We present an approach for rapid prediction of catalyst-support interactions between Pt NPs and amorphous silica supports for NPs of various sizes and shapes. We use density functional theory calculations of 13 atom Pt clusters on model amorphous silica supports to determine linear correlations relating catalyst properties to NP-support interactions. We show that these correlations can be combined with fast discrete element method simulations to predict adhesion energy and NP net charge for NPs of larger sizes and different shapes. Furthermore, we demonstrate that this approach can be successfully transferred to Pd, Au, Ni, and Fe NPs. This approach can be used to quickly screen stability and net charge transfer and leads to a better fundamental understanding of catalyst-support interactions.

  17. Catalytic Depolymerization of Alkali Lignin Using Supported Pt Nanoparticle Catalysts.

    PubMed

    Sanyoto, Bernardi; Dwiatmoko, Adid Adep; Choi, Jae-Wook; Ha, Jeong-Myeong; Suh, Dong Jin; Kim, Chang Soo; Lim, Jong-Choo

    2016-05-01

    Alkali lignin, a byproduct of the pulping process, was depolymerized using Pt nanoparticle catalysts. A depolymerized lignin with a lower molecular weight was obtained and characterized with GPC and NMR. 31P-NMR using OH-sensitive probing molecules showed the formation of guaiacyl OHs during the reaction, indicating the cleavage of guaiacyl ether bonds.

  18. Metal Phosphate-Supported Pt Catalysts for CO Oxidation

    PubMed Central

    Qian, Xiaoshuang; Qin, Hongmei; Meng, Tao; Lin, Yi; Ma, Zhen

    2014-01-01

    Oxides (such as SiO2, TiO2, ZrO2, Al2O3, Fe2O3, CeO2) have often been used to prepare supported Pt catalysts for CO oxidation and other reactions, whereas metal phosphate-supported Pt catalysts for CO oxidation were rarely reported. Metal phosphates are a family of metal salts with high thermal stability and acid-base properties. Hydroxyapatite (Ca10(PO4)6(OH)2, denoted as Ca-P-O here) also has rich hydroxyls. Here we report a series of metal phosphate-supported Pt (Pt/M-P-O, M = Mg, Al, Ca, Fe, Co, Zn, La) catalysts for CO oxidation. Pt/Ca-P-O shows the highest activity. Relevant characterization was conducted using N2 adsorption-desorption, inductively coupled plasma (ICP) atomic emission spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), CO2 temperature-programmed desorption (CO2-TPD), X-ray photoelectron spectroscopy (XPS), and H2 temperature-programmed reduction (H2-TPR). This work furnishes a new catalyst system for CO oxidation and other possible reactions. PMID:28788293

  19. Metaloxide--ZrO2 catalysts for the esterification and transesterification of free fatty acids and triglycerides to obtain bio-diesel

    DOEpatents

    Kim, Manhoe; Salley, Steven O.; Ng, K. Y. Simon

    2016-09-06

    Mixed metal oxide catalysts (ZnO, CeO, La2O3, NiO, Al203, SiO2, TiO2, Nd2O3, Yb2O3, or any combination of these) supported on zirconia (ZrO2) or hydrous zirconia are provided. These mixed metal oxide catalysts can be prepared via coprecipitation, impregnation, or sol-gel methods from metal salt precursors with/without a Zirconium salt precursor. Metal oxides/ZrO2 catalyzes both esterification and transesterification of oil containing free fatty acids in one batch or in single stage. In particular, these mixed metal oxides supported or added on zirconium oxide exhibit good activity and selectivity for esterification and transesterification. The low acid strength of this catalyst can avoid undesirable side reaction such as alcohol dehydration or cracking of fatty acids. Metal oxides/ZrO2 catalysts are not sensitive to any water generated from esterification. Thus, esterification does not require a water free condition or the presence of excess methanol to occur when using the mixed metal oxide catalyst. The FAME yield obtained with metal oxides/ZrO2 is higher than that obtained with homogeneous sulfuric acid catalyst. Metal oxides/ZrO2 catalasts can be prepared as strong pellets and in various shapes for use directly in a flow reactor. Furthermore, the pellet has a strong resistance toward dissolution to aqueous or oil phases.

  20. Resonance Raman Spectroscopy of 0-A12O3- Supported Vanadium Oxide Catalysts for Butane Dehydrogenation

    SciTech Connect

    Wu, Zili; Kim, Hack-Sung; Stair, Peter

    2008-01-01

    This chapter contains sections titled: Introduction; Structure of Al{sub 2}O{sub 3}-Supported Vanadia Catalysts; Quantification of Surface VOx Species on Supported Vanadia Catalysts; Conclusion; Acknowledgements; and References.

  1. Polyoxometalate-modified carbon nanotubes: new catalyst support for methanol electro-oxidation.

    PubMed

    Pan, Dawei; Chen, Jinhua; Tao, Wenyan; Nie, Lihua; Yao, Shouzhuo

    2006-06-20

    A new catalyst support, polyoxometalate-modified carbon nanotubes, is presented in this paper through the chemisorption between polyoxometalate and carbon. Pt and Pt-Ru nanoparticles were electrochemically deposited on polyoxometalate-modified carbon nanotubes electrodes, and their electrocatalytic properties for methanol electro-oxidation are investigated in detail. Due to the unique electrical properties of carbon nanotubes and the excellent redox properties and the high protonic conductivity of polyoxometalate, for the similar deposition charge of Pt and Pt-Ru catalysts, 1.4 times larger exchange current density, 1.5 times higher specific activity, and better cycle stabilities can be obtained at polyoxometalate-modified carbon nanotube electrodes as compared to the electrodes without polyoxometalate modification. These results show that polyoxometalate-modified carbon nanotubes as a new catalyst support have good potential application in direct methanol fuel cells.

  2. Fundamental studies of hydrogen interaction with supported meta and bimetallic catalysts

    SciTech Connect

    Bhatia, Sandeep

    1993-12-07

    The thesis is divided into 3 parts: interaction of H with silica supported Ru catalysts (high pressure in situ NMR), in situ NMR study of H interaction with supported Ru-group IB bimetallic catalysts, and in-situ NMR study of H effects on silica-supported Pt, Rh and Ru catalysts.

  3. Supported bifunctional thioureas as recoverable and reusable catalysts for enantioselective nitro-Michael reactions

    PubMed Central

    Ceballos, Miriam; Maestro, Alicia; Sanz, Isabel

    2016-01-01

    Summary The catalytic activity of different supported bifunctional thioureas on sulfonylpolystyrene resins has been studied in the nitro-Michael addition of different nucleophiles to trans-β-nitrostyrene derivatives. The activity of the catalysts depends on the length of the tether linking the chiral thiourea to the polymer. The best results were obtained with the thiourea derived from (L)-valine and 1,6-hexanediamine. The catalysts can be used in only 2 mol % loading, and reused for at least four cycles in neat conditions. The ball milling promoted additions also worked very well. PMID:27340453

  4. Supported bifunctional thioureas as recoverable and reusable catalysts for enantioselective nitro-Michael reactions.

    PubMed

    Andrés, José M; Ceballos, Miriam; Maestro, Alicia; Sanz, Isabel; Pedrosa, Rafael

    2016-01-01

    The catalytic activity of different supported bifunctional thioureas on sulfonylpolystyrene resins has been studied in the nitro-Michael addition of different nucleophiles to trans-β-nitrostyrene derivatives. The activity of the catalysts depends on the length of the tether linking the chiral thiourea to the polymer. The best results were obtained with the thiourea derived from (L)-valine and 1,6-hexanediamine. The catalysts can be used in only 2 mol % loading, and reused for at least four cycles in neat conditions. The ball milling promoted additions also worked very well.

  5. Studies of supported metal catalysts. Progress report, September 1, 1979-August 31, 1982

    SciTech Connect

    Hercules, D.M.

    1983-04-01

    The overall objective of this research was to characterize the binding of transition metals to catalytic supports, and to study speciation of these metals on supports. The accomplishments during this period fall into two categories. First, we have advanced the adapation of spectroscopic instrumentation for studying catalytic surfaces. Second, we have obtained interesting and valuable information about a variety of catalytic systems. One of the most interesting accomplishments was to demonstrate the utility of using the combination of x-ray Photoelectron Spectroscopy (ESCA), Low Energy Ion Scattering Spectroscopy (ISS) and Laser Raman Spectroscopy (LRS) to study catalytic surfaces. We have demonstrated the correlation between ESCA, EXAFS and Photoacoustic Spectroscopy (PAS) measurements on the same catalyst systems. We have been able to characterize nickel species on alumina and silica surfaces when the preparation method and nickel content of the catalysts are varied. Second, we have studied the nature of cobalt species on alumina and how these species are affected by the presence of molybdenum or zinc, or by sulfiding. Third, we have been able to study the species of molybdenum on an alumina catalyst and to determine how these species are changed by sulfiding, by the presence of cobalt or by being supported on titania. Fourth, we have studied tungsten on alumina and shown how the catalyst species for tungsten differ from those for molybdenum on the same support. Fifth, we have carried out an extensive study of photoacoustic measurements to determine the site symmetry of cobalt and nickel supported on alumina.

  6. Nanostructural and Chemical Characterization of Supported Metal Oxide Catalysts by Aberration Corrected Analytical Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Wu

    In this thesis, aberration corrected STEM imaging and chemical analysis techniques have been extensively applied in the structural and chemical characterization of supported tungsten oxide catalysts in an attempt to reveal the structure-activity relationships at play in these catalyst systems. The supported WO3/ZrO2 solid acid catalyst system is a major focal point of this thesis, and detailed aberration-corrected STEM-HAADF imaging studies were performed on a systematic set of catalysts showing different level of catalytic performance. The nature of the catalytically most active WOx species was identified by correlating structural information, obtained from STEM-HAADF and in-situ optical spectroscopy studies, with catalytic testing results. Specifically, ˜1nm distorted Zr-WOx mixed oxide clusters were identified to be the most active species for both the methanol dehydration and n-pentane isomerization reactions in the WO3/ZrO2 catalyst system. The use of amorphous zirconia as a precursor support material makes it much easier to extract and incorporate Zr cations into the surface WOx clusters during calcination. The calcination temperature was also identified to also play an important role in the formation of these most active Zr-WOx clusters. When the calcination temperature is comparable to or higher than the 896K Huttig temperature of ZrO2 (at which surface ZrO x species have sufficient mobility to agglomerate and sinter), the chance for successful surface WOx and ZrOx intermixing is significantly increased. Based on this perceived structure-activity relationship, several new catalyst synthesis strategies were developed in an attempt to optimize the catalytic performance of WOx-based catalysts. We have demonstrated in Chapter 3 that co-impregnation of WOx and ZrOx precursors onto an inactive model WO3/ZrO2 catalyst, followed by a calcination treatment above the 896K Huttig temperature of ZrO 2, promotes the surface diffusion of ZrO2 and intermixing of Zr

  7. Carbon-supported platinum alloy catalysts for phenol hydrogenation for making industrial chemicals

    SciTech Connect

    Srinivas, S.T.; Song, C.

    1999-07-01

    Phenol is available in large quantities in liquids derived from coal and biomass. Phenol hydrogenation is an industrially important reaction to produce cyclohexanone and cyclohexanol. Cyclohexane, cyclohexene and benzene are obtained as minor products in this reaction. Cyclohexanone is an important intermediate in the production of caprolactam for nylon 6 and cyclohexanol for adipic acid production. In USA, cyclohexanol and cyclohexanone are produced by benzene hydrogenation to cyclohexane over nickel or noble metal catalysts, followed by oxidation of cyclohexane to produce a mixture of cyclohexanol and cyclohexanone. Then cyclohexanol is dehydrogenated in the presence of Cu-Zn catalyst to cyclohexanone. Usually phenol hydrogenation is also carried out by using Ni catalyst in liquid phase. However, a direct single-step vapor phase hydrogenation of phenol to give cyclohexanone selectively is more advantageous in terms of energy savings and process economics, since processing is simplified and the endothermic step of cyclohexanol dehydrogenation can be avoided, as demonstrated by Montedipe and Johnson Matthey using promoted Pd/Al{sub 2}O{sub 3} catalyst. While it is not the purpose of this paper to dwell on the relative merits of these routes, it is necessary to mention that while using monometallic catalysts, generally the problem of catalyst deactivation of sintering as well as coking is frequently encountered. Addition and alloying of noble metal (e.g. Pt) with a second metal can result in a catalyst with better selectivity and activity in the reaction which is more resistant to deactivation. This paper presents the results on the single-step vapor phase hydrogenation of phenol over carbon-supported Pt-M (M=Cr, V, Zr) alloy catalysts to yield mainly cyclohexanone or cyclohexanol.

  8. Reaction and spectroscopic study of supported metal oxide catalysts

    NASA Astrophysics Data System (ADS)

    Ramani, Narayanan C.

    The role of surface structure, cation reducibility, surface acidity and the effect of the support was examined in the reaction of 1-butene over well characterized, supported metal oxide catalysts. Cr, Mo and W oxides supported on SiOsb2 were used to study the effect of structure, surface acidity and cation reducibility in the isomerization and selective oxidation of 1-butene. Supported oxides of Mo on TiOsb2,\\ Alsb2Osb3 and SiOsb2 were used to understand the role of the support in the selective oxidation of 1-butene. The surface acidity of SiOsb2 supported Cr, Mo, W and V oxide catalysts was examined by pyridine adsorption. Existing theoretical models of acidity were compared against experimental data. Over Mo(VI)/SiOsb2 and W(VI)/SiOsb2, isomerization through both a Bronsted catalyzed pathway and an allylic pathway were observed, while only the allylic pathway was observed over Cr(VI)/SiOsb2. The greater reducibility of the Cr cation compared to Mo and W cations was identified as the reason for the allylic pathway being dominant over Cr(VI)/SiOsb2. Cation reducibility was again seen to play an important role in the selective oxidation of 1-butene over SiOsb2 supported metal oxides. The turn over frequencies for 1,3-butadiene formation followed the trend in red-ox ability, with Cr > Mo > W. The activity to 1,3-butadiene formation did not change with increasing weight loading of Mo over TiOsb2 and Alsb2Osb3 supports. An analysis of the turn over frequencies of the supports and the supported cations revealed that a support effect, through the bridging oxygen ligand, dominated the intrinsic cation reducibility of Mo for these catalysts. The existence of Bronsted acidity over SiOsb2 supported Cr, Mo and V oxides was shown by an analysis of the OH region of the infrared spectrum, and by the adsorption of 1-butene and pyridine. Existing theoretical models for Bronsted acidity over supported metal oxides were shown to be inadequate to describe the observed results over

  9. Selective recovery of catalyst layer from supporting matrix of ceramic-honeycomb-type automobile catalyst.

    PubMed

    Kim, Wantae; Kim, Boungyoung; Choi, Doyoung; Oki, Tatsuya; Kim, Sangbae

    2010-11-15

    Natural resources of platinum group metals (PGMs) are limited and their demand is increasing because of their extensive uses in industrial applications. The low rate of production of PGMs due to low concentration in the related natural ores and high cost of production have made the recovery of PGMs from previously discarded catalytic converters a viable proposition. The ceramic-honeycomb-type automobile catalytic converter contains appreciable amount of PGMs. These valuable substances, which are embedded in the catalyst layer and covered on the surface of the supporting matrix, were selectively recovered by attrition scrubbing. The attrition scrubbing was effective for the selective recovery of catalyst layer. The process was convinced as the comminution and separation process by physical impact and shearing action between particles in the scrubbing vessel. The catalyst layer was dislodged from the surface of the supporting matrix into fine particles by attrition scrubbing. The recovery of Al(2)O(3) and total PGMs in the fraction less than 300 μm increased with the residence time whereas their contents in the recovered materials slightly decreased. The interparticle scrubbing became favorable when the initial input size increased. However, the solid/liquid ratio in the mixing vessel was slightly affected by the low density of converter particles.

  10. Combustion of chlorinated VOC on nanostructured chromia aerogel as catalyst and catalyst support.

    PubMed

    Rotter, H; Landau, M V; Herskowitz, M

    2005-09-01

    The chromia-based catalysts have been reported to combine the high activity and resistance to deactivation in oxidative removal of chlorinated VOC. However, their activity is limited by the low amount of chromia that can be deposited on supports maintaining the optimal state of surface species and high surface area. The pure nanostructured chromia was used as a catalytically active support for noble metals and transition-metal oxide oxidation catalysts. High efficiency of Pt-promoted CrOOH aerogel with surface area of 500 m2*g(-1) was demonstrated in full combustion of 1,2-dichloroethane (DCE) and chlorobenzene (CB). At gas hour space velocity (GHSV) of 46 000 h(-1), the total conversion to CO2/H2O/HCl was achieved at 330 degrees C (DCE) and 380 degrees C (CB). The combustion rate constants measured at standard conditions with 0.5% Pt/CrOOH catalyst were 1 or 2 orders of magnitude higher than measured with 15%Cr2O3/Al2O3 or 0.5%Pt/Al2O3, respectively. The effects of Pt, Au, Mn, and Ce additives on the performance of CrOOH aerogel in combustion of chlorinated VOC were analyzed related to the materials structure.

  11. Supported Copper, Nickel and Copper-Nickel Nanoparticle Catalysts for Low Temperature Water-Gas-Shift Reaction

    NASA Astrophysics Data System (ADS)

    Lin, Jiann-Horng

    Hydrogen is being considered worldwide as a future replacement for gasoline, diesel fuel, natural gas in both the transportation and non-transportation sectors. Hydrogen is a versatile energy carrier that can be produced from a variety of widely available primary energy sources, including coal, natural gas, biomass, solar, wind, and nuclear power. Coal, the most abundant fossil fuel on the planet, is being looked at as the possible future major source of H2, due to the development of the integrated gasification combined cycle (IGCC) and integrated gasification fuel cell technologies (IGFC). The gasification of coal produces syngas consisting of predominately carbon monoxide and hydrogen with some remaining hydrocarbons, carbon dioxide and water. Then, the water-gas shift reaction is used to convert CO to CO2 and additional hydrogen. The present work describes the synthesis of model Cu, Ni and Cu-Ni catalysts prepared from metal colloids, and compares their behavior in the WGS reaction to that of traditional impregnation catalysts. Initially, we systematically explored the performance of traditional Cu, Ni and Cu-Ni WGS catalysts made by impregnation methods. Various bimetallic Cu-Ni catalysts were prepared by supported impregnation and compared to monometallic Cu and Ni catalysts. The presence of Cu in bimetallic catalysts suppressed undesirable methanation side reaction, while the Ni component was important for high WGS activity. Colloidal Cu, Ni and Cu-Ni alloy nanoparticles obtained by chemical reduction were deposited onto alumina to prepare supported catalysts. The resulting Cu and Ni nanoparticle catalysts were found to be 2.5 times more active in the WGS reaction per unit mass of active metal as compared to catalysts prepared by the conventional impregnation technique. The powder XRD and HAADF-STEM provided evidence supporting the formation of Cu-Ni particles containing the Cu core and Cu-Ni alloy shell. The XPS data indicated surface segregation of Cu in

  12. Electrochemical Catalyst-Support Effects and Their Stabilizing Role for IrOx Nanoparticle Catalysts during the Oxygen Evolution Reaction.

    PubMed

    Oh, Hyung-Suk; Nong, Hong Nhan; Reier, Tobias; Bergmann, Arno; Gliech, Manuel; Ferreira de Araújo, Jorge; Willinger, Elena; Schlögl, Robert; Teschner, Detre; Strasser, Peter

    2016-09-28

    Redox-active support materials can help reduce the noble-metal loading of a solid chemical catalyst while offering electronic catalyst-support interactions beneficial for catalyst durability. This is well known in heterogeneous gas-phase catalysis but much less discussed for electrocatalysis at electrified liquid-solid interfaces. Here, we demonstrate experimental evidence for electronic catalyst-support interactions in electrochemical environments and study their role and contribution to the corrosion stability of catalyst/support couples. Electrochemically oxidized Ir oxide nanoparticles, supported on high surface area carbons and oxides, were selected as model catalyst/support systems for the electrocatalytic oxygen evolution reaction (OER). First, the electronic, chemical, and structural state of the catalyst/support couple was compared using XANES, EXAFS, TEM, and depth-resolved XPS. While carbon-supported oxidized Ir particle showed exclusively the redox state (+4), the Ir/IrOx/ATO system exhibited evidence of metal/metal-oxide support interactions (MMOSI) that stabilized the metal particles on antimony-doped tin oxide (ATO) in sustained lower Ir oxidation states (Ir(3.2+)). At the same time, the growth of higher valent Ir oxide layers that compromise catalyst stability was suppressed. Then the electrochemical stability and the charge-transfer kinetics of the electrocatalysts were evaluated under constant current and constant potential conditions, where the analysis of the metal dissolution confirmed that the ATO support mitigates Ir(z+) dissolution thanks to a stronger MMOSI effect. Our findings raise the possibility that MMOSI effects in electrochemistry-largely neglected in the past-may be more important for a detailed understanding of the durability of oxide-supported nanoparticle OER catalysts than previously thought.

  13. A novel catalyst support for DMFC: Onion-like fullerenes

    NASA Astrophysics Data System (ADS)

    Xu, Bingshe; Yang, Xiaowei; Wang, Xiaomin; Guo, Junjie; Liu, Xuguang

    Onion-like fullerenes (OLFs) were employed as the support for Pt in direct methanol fuel cells (DMFCs). A Pt/OLFs catalyst was synthesized by an impregnation-reduction method. Its structure and morphology were characterized by XRD, HRTEM and XPS. The Pt nanoparticles uniformly dispersed on OLFs had an average diameter of 3.05 nm, compared to 4.10 nm in Pt/Vulcan XC-72 prepared by the same method. XPS analysis revealed that Pt/OLF contained mostly Pt(0), with traces of Pt(II) and Pt(IV). Cyclic voltammetry showed that the real surface area of the Pt/OLFs was larger than Pt/XC-72 and the electrocatalytic activity of the Pt/OLFs catalyst, from the peak current value at around 0.78 V, outperformed the Pt/Vulcan XC-72 by about 20% in the electrooxidation of methanol.

  14. Selective hydrogenation of phenylacetylene on pumice-supported palladium catalysts

    SciTech Connect

    Duca, D; Liotta, L.F.; Deganello, G.

    1995-06-01

    The liquid phase, selective hydrogenation of phenylacetylene on pumice-supported palladium catalysts has been studied for a large range of metallic dispersions (14% {le} D{sub x} {le} 62%). The kinetics were analyzed by a five-parameter mathematical model. The mechanism was determined by the contribution of three basic routes involving only surface species in the rate-determining steps. The hydrogenation of phenylacetylene to styrene is {open_quotes}structure insensitive{close_quotes}. The disappearance rate constant of styrene produced from phenylacetylene is slightly lower than that of phenylacetylene and does not change in the case of the direct hydrogenation of styrene on the same Pd/pumice catalyst. However, Q{sub 3} (the ratio of adsorption constants K{sub Eb}/K{sub St}, where Eb is ethylbenzene and St is styrene), which is typical of a zero-order reaction (Q{sub 3}{r_arrow}0) in the case of the direct hydrogenation, is practically constant (Q{sub 3}{approx_equal}2) in the case of dehydrogenation of styrene produced from phenylacetylene. This is explained by the formation, in the latter case, of polymeric species or other species which are difficult to hydrogenate and by the consequent occupation of active sites so that the adsorption of styrene is inhibited. These species are also thought to be responsible for a flattening effect in the catalytic activity. Activity and selectivity data are critically analyzed and compared with those reported for other supported palladium catalysts. Since Pd/pumice catalysts also show high activity and selectivity at high metal dispersions, they could be of interest for industrial applications. 48 refs., 9 figs., 3 tabs.

  15. Adsorbate-mediated strong metal-support interactions in oxide-supported Rh catalysts.

    PubMed

    Matsubu, John C; Zhang, Shuyi; DeRita, Leo; Marinkovic, Nebojsa S; Chen, Jingguang G; Graham, George W; Pan, Xiaoqing; Christopher, Phillip

    2017-02-01

    The optimization of supported metal catalysts predominantly focuses on engineering the metal site, for which physical insights based on extensive theoretical and experimental contributions have enabled the rational design of active sites. Although it is well known that supports can influence the catalytic properties of metals, insights into how metal-support interactions can be exploited to optimize metal active-site properties are lacking. Here we utilize in situ spectroscopy and microscopy to identify and characterize a support effect in oxide-supported heterogeneous Rh catalysts. This effect is characterized by strongly bound adsorbates (HCOx) on reducible oxide supports (TiO2 and Nb2O5) that induce oxygen-vacancy formation in the support and cause HCOx-functionalized encapsulation of Rh nanoparticles by the support. The encapsulation layer is permeable to reactants, stable under the reaction conditions and strongly influences the catalytic properties of Rh, which enables rational and dynamic tuning of CO2-reduction selectivity.

  16. Adsorbate-mediated strong metal-support interactions in oxide-supported Rh catalysts

    NASA Astrophysics Data System (ADS)

    Matsubu, John C.; Zhang, Shuyi; Derita, Leo; Marinkovic, Nebojsa S.; Chen, Jingguang G.; Graham, George W.; Pan, Xiaoqing; Christopher, Phillip

    2016-09-01

    The optimization of supported metal catalysts predominantly focuses on engineering the metal site, for which physical insights based on extensive theoretical and experimental contributions have enabled the rational design of active sites. Although it is well known that supports can influence the catalytic properties of metals, insights into how metal-support interactions can be exploited to optimize metal active-site properties are lacking. Here we utilize in situ spectroscopy and microscopy to identify and characterize a support effect in oxide-supported heterogeneous Rh catalysts. This effect is characterized by strongly bound adsorbates (HCOx) on reducible oxide supports (TiO2 and Nb2O5) that induce oxygen-vacancy formation in the support and cause HCOx-functionalized encapsulation of Rh nanoparticles by the support. The encapsulation layer is permeable to reactants, stable under the reaction conditions and strongly influences the catalytic properties of Rh, which enables rational and dynamic tuning of CO2-reduction selectivity.

  17. Adsorbate-mediated strong metal-support interactions in oxide-supported Rh catalysts

    NASA Astrophysics Data System (ADS)

    Matsubu, John C.; Zhang, Shuyi; Derita, Leo; Marinkovic, Nebojsa S.; Chen, Jingguang G.; Graham, George W.; Pan, Xiaoqing; Christopher, Phillip

    2017-02-01

    The optimization of supported metal catalysts predominantly focuses on engineering the metal site, for which physical insights based on extensive theoretical and experimental contributions have enabled the rational design of active sites. Although it is well known that supports can influence the catalytic properties of metals, insights into how metal-support interactions can be exploited to optimize metal active-site properties are lacking. Here we utilize in situ spectroscopy and microscopy to identify and characterize a support effect in oxide-supported heterogeneous Rh catalysts. This effect is characterized by strongly bound adsorbates (HCOx) on reducible oxide supports (TiO2 and Nb2O5) that induce oxygen-vacancy formation in the support and cause HCOx-functionalized encapsulation of Rh nanoparticles by the support. The encapsulation layer is permeable to reactants, stable under the reaction conditions and strongly influences the catalytic properties of Rh, which enables rational and dynamic tuning of CO2-reduction selectivity.

  18. Pumice-supported palladium catalysts. II. Selective hydrogenation of 1,3-cyclooctadiene

    SciTech Connect

    Deganello, G.; Duca, D.; Martorana, A.; Fagherazzi, G.; Benedetti, A.

    1994-11-01

    Two series of pumice-supported palladium catalysts (W and U) have been tested in the liquid-phase selective hydrogenation of 1,3-cyclooctadiene (1,3-COD) to cyclooctene (COE). The two series of catalysts, obtained via organometallic precursors, differ in the preparation procedure. In the W series the reduced metal derives only from Pd intermediates anchored to pumice; in the U series the metal originates also from unreacted Pd(allyl){sub 2} species in solution. The U catalysts present agglomerated metal particles. The hydrogenations, free of any diffusion problems, were performed at constant pressure of hydrogen (1 atm). Analysis of the data suggests that the rate-determining step is a surface reaction involving activated 1,3-COD. Selectivity is very high since cyclooctane (COA) is detected only when all 1,3-COD is consumed. The turnover frequencies (TOF{sub 1}) of the first semihydrogenation do not change with palladium dispersion, determined from the Porod diameter D{sub p} up to D{sub x} < 35%, but thereafter they slowly decrease. Experimental evidence, such as the absence of oxidation when exposed to air and the negative shift of binding energy of the Pd 3d level in XPS measurements, indicate a different behavior of the present catalysts in comparison with other supported palladium catalysts. These differences are attributed to the presence of alkali metal ions (Na{sup +}, K{sup +}) on the pumice surface and are explained on the basis of the change in electron density and/or in the ensemble size of the supported palladium. Several interesting features and differences in activity and selectivity between the two series of catalysts can be accounted for by the presence of agglomerated palladium particles in the U series and are discussed in terms of the evolution of parameters with dispersion. 40 refs., 8 figs., 2 tabs.

  19. Magnetic Carbon Supported Palladium Nanoparticles: An Efficient and Sustainable Catalyst for Hydrogenation Reactions

    EPA Science Inventory

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; the catalyst can be used for the hydrogenation of alkenes and reduction of aryl nitro compounds.

  20. Magnetic Carbon Supported Palladium Nanoparticles: An Efficient and Sustainable Catalyst for Hydrogenation Reactions

    EPA Science Inventory

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; the catalyst can be used for the hydrogenation of alkenes and reduction of aryl nitro compounds.

  1. Strategies for designing supported gold-palladium bimetallic catalysts for the direct synthesis of hydrogen peroxide.

    PubMed

    Edwards, Jennifer K; Freakley, Simon J; Carley, Albert F; Kiely, Christopher J; Hutchings, Graham J

    2014-03-18

    synthesis and hydrogenation of hydrogen peroxide that are different, in contrast to monometallic palladium in which synthesis and hydrogenation operate at the same sites. Through treatment of the support with acids prior to the deposition of the gold-palladium bimetallic particles, we can obtain a catalyst that can make hydrogen peroxide at a very high rate without decomposing or hydrogenating the product. This innovation opens up the way to design improved catalysts for the direct synthesis process, and these possibilities are described in this Account.

  2. Synthesis and Characterization of Cluster-Derived Supported Bimetallic Catalysts

    SciTech Connect

    Adams, Richard D; Amiridis, Michael D

    2008-10-10

    New procedures have been developed for synthesizing di- and tri-metallic cluster complexes. The chemical properties of the new complexes have been investigated, particularly toward the activation of molecular hydrogen. These complexes were then converted into bi- and tri-metallic nanoparticles on silica and alumina supports. These nanoparticles were characterized by electron microscopy and were then tested for their ability to produce catalytic hydrogenation of unsaturated hydrocarbons and for the preferential oxidation of CO in the presence of hydrogen. The bi- and tri-metallic nanoparticles exhibited far superior activity and selectivity as hydrogenation catalysts when compared to the individual metallic components. It was found that the addition of tin greatly improved the selectivity of the catalysts for the hydrogenation of polyolefins. The addition of iron improves the catalysts for the selective oxidation of CO by platinum in the presence of hydrogen. The observations should lead to the development of lower cost routes to molecules that can be used to produce polymers and plastics for use by the general public and for procedures to purify hydrogen for use as an alternative energy in the hydrogen economy of the future.

  3. Studies of Immobilized Homogeneous Metal Catalysts on Silica Supports

    SciTech Connect

    Stanger, Keith James

    2003-01-01

    The tethered, chiral, chelating diphosphine rhodium complex, which catalyzes the enantioselective hydrogenation of methyl-α-acetamidocinnamate (MAC), has the illustrated structure as established by 31P NMR and IR studies. Spectral and catalytic investigations also suggest that the mechanism of action of the tethered complex is the same as that of the untethered complex in solution. The rhodium complexes, [Rh(COD)H]4, [Rh(COD)2]+BF4-, [Rh(COD)Cl]2, and RhCl3• 3H2O, adsorbed on SiO2 are optimally activated for toluene hydrogenation by pretreatment with H2 at 200 C. The same complexes on Pd-SiO2 are equally active without pretreatments. The active species in all cases is rhodium metal. The catalysts were characterized by XPS, TEM, DRIFTS, and mercury poisoning experiments. Rhodium on silica catalyzes the hydrogenation of fluorobenzene to produce predominantly fluorocyclohexane in heptane and 1,2-dichloroethane solvents. In heptane/methanol and heptane/water solvents, hydrodefluorination to benzene and subsequent hydrogenation to cyclohexane occurs exclusively. Benzene inhibits the hydrodefluorination of fluorobenzene. In DCE or heptane solvents, fluorocyclohexane reacts with hydrogen fluoride to form cyclohexene. Reaction conditions can be chosen to selectively yield fluorocyclohexane, cyclohexene, benzene, or cyclohexane. The oxorhenium(V) dithiolate catalyst [-S(CH2)3s-]Re(O)(Me)(PPh3) was modified by linking it to a tether that could be attached to a silica support. Spectroscopic investigation and catalytic oxidation reactivity showed the heterogenized catalyst's structure and reactivity to be similar to its homogeneous analog. However, the immobilized catalyst offered additional advantages of recyclability, extended stability, and increased resistance to deactivation.

  4. Catalytic oxidation of benzene in the gas phase over alumina-supported silver catalysts.

    PubMed

    Einaga, Hisahiro; Ogata, Atsushi

    2010-04-01

    Catalytic properties of Ag/Al(2)O(3) for complete oxidation of benzene with ozone at 295-373 K were studied and compared with those of Mn/Al(2)O(3). At the reaction temperature of 295 K, the Ag/Al(2)O(3) catalysts showed selectivity to CO(x) (ca. 80%) higher than that of the oxide of metals in the first transition series (Fe, Mn, Co, Ni, Cu) supported on Al(2)O(3), which had selectivities of 28-62%. The catalyst showed gradual deactivation from accumulation of byproduct compounds on the catalyst surface. FTIR studies revealed that the byproduct compounds consisted of easily decomposable species and hardly decomposable species. The rate for benzene oxidation linearly increased with Ag loadings (approximately 15 wt %) and was not improved at higher loading levels. The ratios of ozone decomposition to benzene oxidation and ozone decomposition to CO(x) selectivity were evaluated to be 7.5 and 80%, respectively, and they were independent of benzene conversion. The Ag/Al(2)O(3) catalyst showed steady-state activities at a reaction temperature of 313-373 K, and the conversion increased with the increase in the reaction temperature. The presence of water vapor in the reaction gas inhibited the catalyst deactivation, and steady-state activity was obtained at a reaction temperature of 295 K, while it did not affect the activities for benzene oxidation but improved the CO(2) selectivity.

  5. Sustainable catalyst supports for carbon dioxide gas adsorbent

    NASA Astrophysics Data System (ADS)

    Mazlee, M. N.

    2016-07-01

    The adsorption of carbon dioxide (CO2) become the prime attention nowadays due to the fact that increasing CO2 emissions has been identified as a contributor to global climate change. Major sources of CO2 emissions are thermoelectric power plants and industrial plants which account for approximately 45% of global CO2 emissions. Therefore, it is an urgent need to develop an efficient CO2 reduction technology such as carbon capture and storage (CCS) that can reduce CO2 emissions particularly from the energy sector. A lot of sustainable catalyst supports have been developed particularly for CO2 gas adsorbent applications.

  6. Promoted Iron Nanocrystals Obtained via Ligand Exchange as Active and Selective Catalysts for Synthesis Gas Conversion.

    PubMed

    Casavola, Marianna; Xie, Jingxiu; Meeldijk, Johannes D; Krans, Nynke A; Goryachev, Andrey; Hofmann, Jan P; Dugulan, A Iulian; de Jong, Krijn P

    2017-08-04

    Colloidal synthesis routes have been recently used to fabricate heterogeneous catalysts with more controllable and homogeneous properties. Herein a method was developed to modify the surface composition of colloidal nanocrystal catalysts and to purposely introduce specific atoms via ligands and change the catalyst reactivity. Organic ligands adsorbed on the surface of iron oxide catalysts were exchanged with inorganic species such as Na2S, not only to provide an active surface but also to introduce controlled amounts of Na and S acting as promoters for the catalytic process. The catalyst composition was optimized for the Fischer-Tropsch direct conversion of synthesis gas into lower olefins. At industrially relevant conditions, these nanocrystal-based catalysts with controlled composition were more active, selective, and stable than catalysts with similar composition but synthesized using conventional methods, possibly due to their homogeneity of properties and synergic interaction of iron and promoters.

  7. Promoted Iron Nanocrystals Obtained via Ligand Exchange as Active and Selective Catalysts for Synthesis Gas Conversion

    PubMed Central

    2017-01-01

    Colloidal synthesis routes have been recently used to fabricate heterogeneous catalysts with more controllable and homogeneous properties. Herein a method was developed to modify the surface composition of colloidal nanocrystal catalysts and to purposely introduce specific atoms via ligands and change the catalyst reactivity. Organic ligands adsorbed on the surface of iron oxide catalysts were exchanged with inorganic species such as Na2S, not only to provide an active surface but also to introduce controlled amounts of Na and S acting as promoters for the catalytic process. The catalyst composition was optimized for the Fischer–Tropsch direct conversion of synthesis gas into lower olefins. At industrially relevant conditions, these nanocrystal-based catalysts with controlled composition were more active, selective, and stable than catalysts with similar composition but synthesized using conventional methods, possibly due to their homogeneity of properties and synergic interaction of iron and promoters. PMID:28824820

  8. Fundamental Studies of the Reforming of Oxygenated Compounds over Supported Metal Catalysts

    SciTech Connect

    Dumesic, James A.

    2016-01-04

    microcopy (STEM) to measure size and structure, energy dispersive X-ray spectroscopy (EDS) to measure atomic composition, X-ray absorption spectroscopy (XAS) to measure oxidation state and metal coordination, Fourier transform infrared spectroscopy (FTIR) to study adsorbed species, laser Raman spectroscopy to probe metal oxide promoters, and temperature programmed reaction/desorption to study the energetics of adsorption and desorption processes. We have studied our bimetallic catalysts for the selective cleavage of carbon-oxygen bonds, and we have studied the effects of adding metal oxide promoters to supported platinum and gold catalysts for water-gas shift (i.e., the production of hydrogen by reaction of carbon monoxide with water). We anticipate that the knowledge obtained from our studies will allow us to identify promising directions for new catalysts that show high activity, selectivity, and stability for important reactions, such as the conversion of biomass-derived oxygenated hydrocarbons to fuels and chemicals.

  9. Graphyne-supported single Fe atom catalysts for CO oxidation.

    PubMed

    Wu, Ping; Du, Pan; Zhang, Hui; Cai, Chenxin

    2015-01-14

    Single atom catalysts (SACs) are highly desirable for the effort to maximize the efficiency of metal atom use. However, the synthesis of SACs is a major challenge that largely depends on finding an appropriate supporting substrate to achieve a well-defined and highly dispersed single atom. This work demonstrates that, based on the density functional theory (DFT) calculation, graphyne is a good substrate for single Fe atom catalysts. The Fe atom can be tightly embedded in a graphyne sheet with a high binding energy of ∼4.99 eV and a high diffusion energy barrier of ∼1.0 eV. The graphyne-supported Fe (Fe-graphyne) SAC shows high catalytic activity towards CO oxidation, which is often regarded as a prototype reaction for designing atomic-scale catalysts. We studied the adsorption characteristics of CO and O2 on Fe-graphyne SACs, and simulated the reaction mechanism of CO oxidation involving Fe-graphyne. The simulation results indicate that O2 binding on Fe-graphyne is much stronger than that of CO, and the adsorbed O2 prior to occupy the Fe atoms as the co-existence of O2 and CO. The reaction of CO oxidation by adsorbed O2 on Fe-graphyne SACs favors to proceed via the Eley-Rideal (ER) mechanism with the energy barrier of as low as ∼0.21 eV in the rate-limiting step. Calculation of the electronic density of states (DOS) of each reaction step demonstrates that the strong interaction of the O2 and Fe adatom promotes the CO oxidation on Fe-graphyne SACs. The results presented here suggest that graphyne could provide a unique platform to synthesize SACs, and the Fe-graphyne SACs could find potential use in solving the growing environmental problems caused by CO emission from automobiles and industrial processes, in removing CO contamination from vehicle exhaust and in fuel cells.

  10. Recyclable porous polymer-supported copper catalysts for Glaser and Huisgen 1,3-diolar cycloaddition reactions.

    PubMed

    Sun, Qi; Lv, Zhonfei; Du, Yuyang; Wu, Qinming; Wang, Liang; Zhu, Longfeng; Meng, Xiangju; Chen, Wanzhi; Xiao, Feng-Shou

    2013-11-01

    A family of polymer-attached phenanthrolines was prepared from solvothermal copolymerization of divinylbenzene with N-(1,10-phenanthroline-5-yl)acrylamide in different ratios. The polymer-supported copper catalysts were obtained through typical impregnation with copper(II) salts. The polymers and supported copper catalysts have been characterized by N2 adsortion, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TG); they exhibit a high surface area, hierarchical porosity, large pore volume, and high thermal and chemical stabilities. The copper catalyst has proved to be highly active for Glaser homocoupling of alkynes and Huisgen 1,3-diolar cycloaddition of alkynes with benzyl azide under mild conditions at low catalyst loading. The heterogeneous copper catalyst is more active than commonly used homogeneous and nonporous polystyrene-supported copper catalysts. In particular, the catalyst is easily recovered and can be recycled at least ten times without any obvious loss in catalytic activity. Metal leaching was prevented due to the strong binding ability of phenanthroline and products were not contaminated with copper, as determined by ICP analysis.

  11. Supported fischer-tropsch catalyst and method of making the catalyst

    DOEpatents

    Dyer, Paul N.; Pierantozzi, Ronald; Withers, Howard P.

    1987-01-01

    A Fischer-Tropsch catalyst and a method of making the catalyst for a Fischer-Tropsch process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas, is selectively converted to higher hydrocarbons of relatively narrow carbon number range is disclosed. In general, the selective and notably stable catalyst, consist of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of a Fischer-Tropsch metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.

  12. Using Wide Spectral Range Infrared Spectroscopy to Obtain both Surface Species and Changes of Catalyst Itself Under the Reaction Conditions

    NASA Astrophysics Data System (ADS)

    Weng, Xuefei; Ding, Ding; Li, Huan; Zheng, Yanping; Chen, Mingshu

    2017-06-01

    Fundamental understanding of catalysts under the reaction conditions is key for designing new catalysts, and improving catalysts and catalytic conversion processes. Such understanding can be achieved only by characterization of catalysts under the reaction conditions because catalyst structures and the mechanisms of catalytic reactions depend on the reaction environment. Raman spectroscopy is one of the few instrumental methods that in a single measurement can provide information about both solid catalysts and the molecules reacting on them. However, its sensitivities for the surface species and the surface changes under catalytic reaction are limited. Infrared spectroscopy is also a wide spectral range (6000-50 cm-1) technique that enables examination of the nature of molecular species, identification of solid phases. Unfortunately, most of the heterogeneous catalysts consist of oxides as the active components or as the supports, which strong IR adsorption (below 1200 cm-1) limits the in situ IR to measure only the surface species (4000 900 cm-1). In this presentation, we will present our new developments of in-situ infrared spectroscopies with a spectral range of 4000 400 cm-1, for both the reflection adsorption infrared spectroscopy (IRAS) and transparent infrared spectroscopy (FTIR, unpublished data), that are capable of measuring both the surface species and changes specific to the surface.

  13. Operating characteristics of direct methanol fuel cell using a platinum-ruthenium catalyst supported on porous carbon prepared from mesophase pitch

    NASA Astrophysics Data System (ADS)

    Nam, Kidon; Jung, Doohwan; Kim, Sang-Kyung; Peck, Donghyun; Ryu, Seungkon

    The characteristics of a platinum-ruthenium catalyst supported on porous carbon (PC) are analysed by X-ray diffraction, scanning electron microscopy, cyclic voltammetry and chemisorption techniques. Single-cell tests are carried out in order to compare the performance of these catalysts as an anode in a direct methanol fuel cell with respect to that of a commercial-grade catalyst. The methanol oxidation rate on a Pt-Ru catalyst supported on PC with a pore size of 20 nm is about 35% higher than that on a commercial E-TEK catalyst. The catalyst (Pt-Ru/K20) in the single-cell test gives a power density of 90 and 126 mW cm -2 under air and oxygen at 60 °C, respectively. These values are 15-16% higher than those obtained with a commercial E-TEK catalyst.

  14. Morphological effect of lanthanum-based supports on the catalytic performance of Pt catalysts in crotonaldehyde hydrogenation

    NASA Astrophysics Data System (ADS)

    Hou, Fengjun; Zhao, Huahua; Zhao, Jun; Yang, Jian; Yan, Liang; Song, Huangling; Chou, Lingjun

    2016-03-01

    Rod-like and particle-like La2O2CO3 and La2O3 were obtained via morphology-preserved thermal transformation of the La(OH)3 precursors. La2O2CO3- and La2O3-supported Pt catalysts were prepared by impregnation method and tested in the liquid-phase crotonaldehyde hydrogenation reaction. The textural and physicochemical properties of the samples were studied by a series of techniques including XRD, TG-DSC, N2 adsorption-desorption, TEM and HRTEM, IR spectrum, H2-TPD, and H2-TPR. Even after 600 °C reduction, Pt particles of about 0.8-2.8 nm interplayed with support surface to form Pt-doped interface, thereby preventing the catalysts from migration and affording a high dispersion of platinum. The specific exposed crystal-facets and surface oxygen species depending on the shape of the support affected the preferential deposition of Pt species and the metal-support interaction. Thus, Pt catalysts performed different physicochemical properties and catalytic performance relying on the morphology and structure of the supports. During the cycle experiment, severe deactivation was observed for NP-supported catalysts with an increased selectivity due to the aggregation and growth of Pt particles. Meantime, the NR-supported catalysts retained relatively high reactivity as a consequence of the crystal-facet confinement of rod-shaped lanthanum supports.

  15. Supported molybdenum oxides as effective catalysts for the catalytic fast pyrolysis of lignocellulosic biomass

    SciTech Connect

    Murugappan, Karthick; Mukarakate, Calvin; Budhi, Sridhar; Shetty, Manish; Nimlos, Mark R.; Román-Leshkov, Yuriy

    2016-07-12

    The catalytic fast pyrolysis (CFP) of pine was investigated over 10 wt% MoO3/TiO2 and MoO3/ZrO2 at 500 °C and H2 pressures ≤ 0.75 bar. The product distributions were monitored in real time using a molecular beam mass spectrometer (MBMS). Both supported MoO3 catalysts show different levels of deoxygenation based on the cumulative biomass to MoO3 mass ratio exposed to the catalytic bed. For biomass to MoO3 mass ratios <1.5, predominantly olefinic and aromatic hydrocarbons are produced with no detectable oxygen-containing species. For ratios ≥ 1.5, partially deoxygenated species comprised of furans and phenols are observed, with a concomitant decrease of olefinic and aromatic hydrocarbons. For ratios ≥ 5, primary pyrolysis vapours break through the bed, indicating the onset of catalyst deactivation. Product quantification with a tandem micropyrolyzer-GCMS setup shows that fresh supported MoO3 catalysts convert ca. 27 mol% of the original carbon into hydrocarbons comprised predominantly of aromatics (7 C%), olefins (18 C%) and paraffins (2 C%), comparable to the total hydrocarbon yield obtained with HZSM-5 operated under similar reaction conditions. In conclusion, post-reaction XPS analysis on supported MoO3/ZrO2 and MoO3/TiO2 catalysts reveal that ca. 50% of Mo surface species exist in their partially reduced forms (i.e., Mo5+ and Mo3+), and that catalyst deactivation is likely associated to coking.

  16. Supported molybdenum oxides as effective catalysts for the catalytic fast pyrolysis of lignocellulosic biomass

    DOE PAGES

    Murugappan, Karthick; Mukarakate, Calvin; Budhi, Sridhar; ...

    2016-07-12

    The catalytic fast pyrolysis (CFP) of pine was investigated over 10 wt% MoO3/TiO2 and MoO3/ZrO2 at 500 °C and H2 pressures ≤ 0.75 bar. The product distributions were monitored in real time using a molecular beam mass spectrometer (MBMS). Both supported MoO3 catalysts show different levels of deoxygenation based on the cumulative biomass to MoO3 mass ratio exposed to the catalytic bed. For biomass to MoO3 mass ratios <1.5, predominantly olefinic and aromatic hydrocarbons are produced with no detectable oxygen-containing species. For ratios ≥ 1.5, partially deoxygenated species comprised of furans and phenols are observed, with a concomitant decrease ofmore » olefinic and aromatic hydrocarbons. For ratios ≥ 5, primary pyrolysis vapours break through the bed, indicating the onset of catalyst deactivation. Product quantification with a tandem micropyrolyzer-GCMS setup shows that fresh supported MoO3 catalysts convert ca. 27 mol% of the original carbon into hydrocarbons comprised predominantly of aromatics (7 C%), olefins (18 C%) and paraffins (2 C%), comparable to the total hydrocarbon yield obtained with HZSM-5 operated under similar reaction conditions. In conclusion, post-reaction XPS analysis on supported MoO3/ZrO2 and MoO3/TiO2 catalysts reveal that ca. 50% of Mo surface species exist in their partially reduced forms (i.e., Mo5+ and Mo3+), and that catalyst deactivation is likely associated to coking.« less

  17. Supported molybdenum oxides as effective catalysts for the catalytic fast pyrolysis of lignocellulosic biomass

    SciTech Connect

    Murugappan, Karthick; Mukarakate, Calvin; Budhi, Sridhar; Shetty, Manish; Nimlos, Mark R.; Román-Leshkov, Yuriy

    2016-01-01

    The catalytic fast pyrolysis (CFP) of pine was investigated over 10 wt% MoO3/TiO2 and MoO3/ZrO2 at 500 degrees C and H2 pressures =0.75 bar. The product distributions were monitored in real time using a molecular beam mass spectrometer (MBMS). Both supported MoO3 catalysts show different levels of deoxygenation based on the cumulative biomass to MoO3 mass ratio exposed to the catalytic bed. For biomass to MoO3 mass ratios <1.5, predominantly olefinic and aromatic hydrocarbons are produced with no detectable oxygen-containing species. For ratios =1.5, partially deoxygenated species comprised of furans and phenols are observed, with a concomitant decrease of olefinic and aromatic hydrocarbons. For ratios =5, primary pyrolysis vapours break through the bed, indicating the onset of catalyst deactivation. Product quantification with a tandem micropyrolyzer-GCMS setup shows that fresh supported MoO3 catalysts convert ca. 27 mol% of the original carbon into hydrocarbons comprised predominantly of aromatics (7 C%), olefins (18 C%) and paraffins (2 C%), comparable to the total hydrocarbon yield obtained with HZSM-5 operated under similar reaction conditions. Post-reaction XPS analysis on supported MoO3/ZrO2 and MoO3/TiO2 catalysts reveal that ca. 50% of Mo surface species exist in their partially reduced forms (i.e., Mo5+ and Mo3+), and that catalyst deactivation is likely associated to coking.

  18. Understanding properties of engineered catalyst supports using contact angle measurements and X-Ray reflectivity

    NASA Astrophysics Data System (ADS)

    Amama, Placidus B.; Islam, Ahmad E.; Saber, Sammy M.; Huffman, Daniel R.; Maruyama, Benji

    2016-01-01

    There is significant interest in broadening the type of catalyst substrates that support the growth of high-quality carbon nanotube (CNT) carpets. In this study, ion beam bombardment has been utilized to modify catalyst substrates for CNT carpet growth. Using a combination of contact angle measurements (CAMs) and X-ray reflectivity (XRR) for the first time, new correlations between the physicochemical properties of pristine and engineered catalyst substrates and CNT growth behavior have been established. The engineered surfaces obtained after exposure to different degrees of ion beam damage have distinct physicochemical properties (porosity, layer thickness, and acid-base properties). The CAM data were analyzed using the van Oss-Chaudhury-Good model, enabling the determination of the acid-base properties of the substrate surfaces. For the XRR data, a Fourier analysis of the interference patterns enabled extraction of layer thickness, while the atomic density and interfacial roughness were extracted by analyzing the amplitude of the interference oscillations. The dramatic transformation of the substrate from ``inactive'' to ``active'' is attributed to a combined effect of substrate porosity or damage depth and Lewis basicity. The results reveal that the efficiency of catalyst substrates can be further improved by increasing the substrate basicity, if the minimum surface porosity is established. This study advances the use of a non-thermochemical approach for catalyst substrate engineering, as well as demonstrates the combined utility of CAM and XRR as a powerful, nondestructive, and reliable tool for rational catalyst design.There is significant interest in broadening the type of catalyst substrates that support the growth of high-quality carbon nanotube (CNT) carpets. In this study, ion beam bombardment has been utilized to modify catalyst substrates for CNT carpet growth. Using a combination of contact angle measurements (CAMs) and X-ray reflectivity (XRR) for the

  19. Fischer–Tropsch synthesis: Effect of ammonia on supported cobalt catalysts

    DOE PAGES

    Pendyala, Venkat Ramana Rao; Jacobs, Gary; Bertaux, Clement; ...

    2016-02-22

    The effect of ammonia in syngas on the performance of various supported cobalt catalysts (i.e., Al2O3, TiO2 and SiO2) was investigated during Fischer-Tropsch synthesis (FTS) using a continuously stirred tank reactor (CSTR). The addition of ammonia (10 ppmv NH3) caused a significant deactivation for all supported cobalt catalysts, but the rate of deactivation was higher for the silica-supported catalysts relative to the alumina and titania-supported catalysts used in this work. Ammonia addition had a positive effect on product selectivity (i.e., lower light gas products and higher C5+) for alumina and titania-supported catalysts compared to ammonia free conditions, whereas, the additionmore » of ammonia increased lighter hydrocarbon (C1-C4) products and decreased higher hydrocarbon (C5+) selectivity compared to ammonia-free synthesis conditions for the silica-supported catalyst. For alumina and titania-supported catalysts, the activity almost recovered with mild in-situ hydrogen treatment of the ammonia exposed catalysts. For the silica-supported catalyst, the loss of activity is somewhat irreversible (i.e., cannot be regained after the mild hydrogen treatment). Addition of ammonia led to a significant loss in BET surface area and changes in pore diameter (consistent with pore collapse of a fraction of pores into the microporous range as described in the literature), as well as formation of catalytically inactive cobalt support compounds for the silica-supported catalyst. On the other hand, the pore characteristics of alumina and titania-supported catalysts were not significantly changed. In conclusion, XANES results of the ammonia exposed silica-supported catalysts further confirm the formation of cobalt-support compounds (cobalt silicates).« less

  20. Fischer–Tropsch synthesis: Effect of ammonia on supported cobalt catalysts

    SciTech Connect

    Pendyala, Venkat Ramana Rao; Jacobs, Gary; Bertaux, Clement; Khalid, Syed; Davis, Burtron H.

    2016-02-22

    The effect of ammonia in syngas on the performance of various supported cobalt catalysts (i.e., Al2O3, TiO2 and SiO2) was investigated during Fischer-Tropsch synthesis (FTS) using a continuously stirred tank reactor (CSTR). The addition of ammonia (10 ppmv NH3) caused a significant deactivation for all supported cobalt catalysts, but the rate of deactivation was higher for the silica-supported catalysts relative to the alumina and titania-supported catalysts used in this work. Ammonia addition had a positive effect on product selectivity (i.e., lower light gas products and higher C5+) for alumina and titania-supported catalysts compared to ammonia free conditions, whereas, the addition of ammonia increased lighter hydrocarbon (C1-C4) products and decreased higher hydrocarbon (C5+) selectivity compared to ammonia-free synthesis conditions for the silica-supported catalyst. For alumina and titania-supported catalysts, the activity almost recovered with mild in-situ hydrogen treatment of the ammonia exposed catalysts. For the silica-supported catalyst, the loss of activity is somewhat irreversible (i.e., cannot be regained after the mild hydrogen treatment). Addition of ammonia led to a significant loss in BET surface area and changes in pore diameter (consistent with pore collapse of a fraction of pores into the microporous range as described in the literature), as well as formation of catalytically inactive cobalt support compounds for the silica-supported catalyst. On the other hand, the pore characteristics of alumina and titania-supported catalysts were not significantly changed. In conclusion, XANES results of the ammonia exposed silica-supported catalysts further confirm the formation of cobalt-support compounds (cobalt silicates).

  1. Supported Molecular Iridium Catalysts: Resolving Effects of Metal Nuclearity and Supports as Ligands

    SciTech Connect

    Lu, Jing; Serna, Pedro; Aydin, Cerem; Browning, Nigel D.; Gates, Bruce C.

    2012-02-07

    The performance of a supported catalyst is influenced by the size and structure of the metal species, the ligands bonded to the metal, and the support. Resolution of these effects has been lacking because of the lack of investigations of catalysts with uniform and systematically varied catalytic sites. We now demonstrate that the performance for ethene hydrogenation of isostructural iridium species on supports with contrasting properties as ligands (electron-donating MgO and electron-withdrawing HY zeolite) can be elucidated on the basis of molecular concepts. Spectra of the working catalysts show that the catalytic reaction rate is determined by the dissociation of H{sub 2} when the iridium, either as mono- or tetra-nuclear species, is supported on MgO and is not when the support is the zeolite. The neighboring iridium sites in clusters are crucial for activation of both H{sub 2} and C{sub 2}H{sub 4} when the support is MgO but not when it is the zeolite, because the electron-withdrawing properties of the zeolite support enable even single site-isolated Ir atoms to bond to both C{sub 2}H{sub 4} and H{sub 2} and facilitate the catalysis.

  2. Zirconia supported catalysts for bioethanol steam reforming: Effect of active phase and zirconia structure

    NASA Astrophysics Data System (ADS)

    Benito, M.; Padilla, R.; Rodríguez, L.; Sanz, J. L.; Daza, L.

    Three new catalysts have been prepared in order to study the active phase influence in ethanol steam reforming reaction. Nickel, cobalt and copper were the active phases selected and were supported on zirconia with monoclinic and tetragonal structure, respectively. To characterize the behaviour of the catalysts in reaction conditions a study of catalytic activity with temperature was performed. The highest activity values were obtained at 973 K where nickel and cobalt based catalysts achieved an ethanol conversion of 100% and a selectivity to hydrogen close to 70%. Nickel supported on tetragonal zirconia exhibited the highest hydrogen production efficiency, higher than 4.5 mol H 2/mol EtOH fed. The influence of steam/carbon (S/C) ratio on product distribution was another parameter studied between the range 3.2-6.5. Nickel supported on tetragonal zirconia at S/C = 3.2 operated at 973 K without by-product production such as ethylene or acetaldehyde. In order to consider a further application in an ethanol processor, a long-term reaction experiment was performed at 973 K, S/C = 3.2 and atmospheric pressure. After 60 h, nickel supported on tetragonal zirconia exhibited high stability and selectivity to hydrogen production.

  3. Effect of multiwalled carbon nanotubes with different specific surface areas on the stability of supported Pt catalysts

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Wang, Zhen-Bo; Sui, Xu-Lei; Yin, Ge-Ping

    2014-01-01

    Pt/MCNTs catalysts have been synthesized by the microwave-assisted polyol process (MAPP). Effect of multiwalled carbon nanotubes (MCNTs) with different specific surface areas on the stability of supported Pt catalysts has been investigated. The obtained Pt/MCNTs catalysts are characterized by X-ray diffraction (XRD), Energy dispersive analysis of X-ray (EDAX), transmission electron microscopy (TEM), cyclic voltammograms (CV), electrochemical impedance spectroscopy (EIS), and accelerated potential cycling tests (APCT) to present the stability of the catalysts. The experimental results indicate that the original electrochemically active specific surface areas (ESA) and the activity for methanol electrooxidation of the catalysts decrease with the decreasing of the specific surface areas of MCNTs, and the Pt/MCNTs-250 (MCNTs with pristine specific surface of 250 m2 g-1, below the same) catalysts show the best initial electrochemical activity. However, the activity of the Pt/MCNTs-250 is very close to that of the Pt/MCNTs-120 and the stability of the Pt/MCNTs-60 catalyst is the best after 1000 cycles APCT. Considering the factors of the activity and stability comprehensively, the optimized specific surface area of MCNTs in the Pt/MCNTs catalysts is 120 m2 g-1.

  4. Long Range Materials Research. Appendix 1. Synthesis and Characterization of Supported Organometallic Rhodium (I) Catalysts

    DTIC Science & Technology

    1974-06-30

    support organo - metallic homogeneous catalysts on inert supports. This thesis describes the synthesis of a new chelating ligand for binding...homogeneous catalysts to silica surfaces, a now method using poisons for distinguishing con- ventional heterogeneous catal’,sts from the newer supported organo ...Homogeneous HIydrogenation by Rhodium(l) Complexes Homogeneous catalysts have both served and plagued alchemists and chemists since work began with solutions

  5. Supported metal catalysts for alcohol/sugar alcohol steam reforming

    SciTech Connect

    Davidson, Stephen; Zhang, He; Sun, Junming; Wang, Yong

    2014-08-21

    Despite extensive studies on hydrogen production via steam reforming of alcohols and sugar alcohols, catalysts typically suffer a variety of issues from poor hydrogen selectivity to rapid deactivation. Here, we summarize recent advances in fundamental understanding of functionality and structure of catalysts for alcohol/sugar alcohol steam reforming, and provide perspectives on further development required to design highly efficient steam reforming catalysts.

  6. Support chemistry, surface area, and preparation effects on sulfided NiMo catalyst activity

    SciTech Connect

    Gardner, T.J.; McLaughlin, L.I.; Sandoval, R.S.

    1996-06-01

    Hydrous Metal Oxides (HMOs) are chemically synthesized materials which contain a homogeneous distribution of ion exchangeable alkali cations that provide charge compensation to the metal-oxygen framework. In terms of the major types of inorganic ion exchangers defined by Clearfield, these amorphous HMO materials are similar to both hydrous oxides and layered oxide ion exchangers (e.g., alkali metal titanates). For catalyst applications, the HMO material serves as an ion exchangeable support which facilitates the uniform incorporation of catalyst precursor species. Following catalyst precursor incorporation, an activation step is required to convert the catalyst precursor to the desired active phase. Considerable process development activities at Sandia National Laboratories related to HMO materials have resulted in bulk hydrous titanium oxide (HTO)- and silica-doped hydrous titanium oxide (HTO:Si)-supported NiMo catalysts that are more active in model reactions which simulate direct coal liquefaction (e.g., pyrene hydrogenation) than commercial {gamma}-Al{sub 2}O{sub 3}-supported NiMo catalysts. However, a fundamental explanation does not exist for the enhanced activity of these novel catalyst materials; possible reasons include fundamental differences in support chemistry relative to commercial oxides, high surface area, or catalyst preparation effects (ion exchange vs. incipient wetness impregnation techniques). The goals of this paper are to identify the key factors which control sulfided NiMo catalyst activity, including those characteristics of HTO- and HTO:Si-supported NiMo catalysts which uniquely set them apart from conventional oxide supports.

  7. Using supported Au nanoparticles as starting material for preparing uniform Au/Pd bimetallic catalysts.

    PubMed

    Villa, Alberto; Wang, Di; Su, Dangsheng; Veith, Gabriel M; Prati, Laura

    2010-03-07

    One of the best methods for producing bulk homogeneous (composition) supported bimetallic AuPd clusters involves the immobilization of a protected Au seed followed by the addition of Pd. This paper investigates the importance of this gold seed in controlling the resulting bimetallic AuPd clusters structures, sizes and catalytic activities by investigating three different gold seeds. Uniform Au-Pd alloy were obtained when a steric/electrostatic protecting group, poly(vinyl alcohol) (PVA), was used to form the gold clusters on activated carbon (AC). In contrast Au/AC precursors prepared using Au nanoparticles with only electrostatic stabilization (tetrakis(hydroxypropyl)phosphonium chloride (THPC)), or no stabilization (magnetron sputtering) produced inhomogeneous alloys and segregation of the gold and palladium. The uniform alloyed catalyst (Pd@Au(PVA)/AC) is the most active and selective catalyst, while the inhomogenous catalysts are less active and selective. Further study of the PVA protected Au clusters revealed that the amount of PVA used is also critical for the preparation of uniform alloyed catalyst, their stability, and their catalytic activity.

  8. Using supported Au nanoparticles as starting material for preparing uniform Au/Pd bimetallic catalysts

    SciTech Connect

    Villa, Alberto; Prati, Laura; Su, Dangshen; Wang, Di; Veith, Gabriel M

    2010-01-01

    One of the best methods for producing bulk homogeneous (composition) supported bimetallic AuPd clusters involves the immobilization of a protected Au seed followed by the addition of Pd. This paper investigates the importance of this gold seed in controlling the resulting bimetallic AuPd clusters structures, sizes and catalytic activities by investigating three different gold seeds. Uniform Au-Pd alloy were obtained when a steric/electrostatic protecting group, poly(vinyl alcohol) (PVA), was used to form the gold clusters on activated carbon (AC). In contrast Au/AC precursors prepared using Au nanoparticles with only electrostatic stabilization (tetrakis(hydroxypropyl)phosphonium chloride (THPC)), or no stabilization (magnetron sputtering) produced inhomogeneous alloys and segregation of the gold and palladium. The uniform alloyed catalyst (Pd{at}Au{sub PVA}/AC) is the most active and selective catalyst, while the inhomogenous catalysts are less active and selective. Further study of the PVA protected Au clusters revealed that the amount of PVA used is also critical for the preparation of uniform alloyed catalyst, their stability, and their catalytic activity.

  9. Investigation on C-TiO2 nanotubes composite as Pt catalyst support for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Sui, Xu-Lei; Wang, Zhen-Bo; Yang, Min; Huo, Li; Gu, Da-Ming; Yin, Ge-Ping

    2014-06-01

    In this paper, Pt nanoparticles have been successfully deposited on the mixture of carbon black and one-dimensional self-ordered TiO2 nanotubes (TNTs) array by a microwave-assisted polyol process to synthesize Pt/C-TNTs catalyst. TiO2 nanoparticles (TNPs) are used instead of TNTs to prepare catalyst as a reference. The obtained samples are characterized by physical characterization and electrochemical measurements. The results show that Pt nanoparticles are uniformly deposited on the three-phase interfaces between carbon and TNTs. The Pt/C-TNTs possesses substantially enhanced activity and stability in electrochemical performance. Such remarkable properties are due to the excellent composite carrier of C-TNTs: (1) TNTs has strong corrosion resistance in acidic and oxidative environment and a metal support interaction between Pt and TNTs; (2) Compared to TNPs, TNTs is more suitable for electro-catalytic field on account of its better electronic conductivity; (3) Compared to TNPs, TNTs can improve the anti-poisoning ability of catalyst for methanol oxidation. (4) Amorphous carbon can improve the dispersion of platinum particles; (5) The distribution of carbon improves the poor conductivity of TNTs. These studies indicate that Pt/C-TNTs compound is a promising catalyst for methanol electrooxidation.

  10. Graphitic mesoporous carbon as a durable fuel cell catalyst support

    SciTech Connect

    Dai, Sheng; Liang, Chengdu; Shanahan, Paul; Xu, Lianbin; Waje, Mahesh; Yan, Y.S.

    2008-01-01

    Highly stable graphitic mesoporous carbons (GMPCs) are synthesized by heat-treating polymer-templated mesoporous carbon (MPC) at 2600 C. The electrochemical durability of GMPC as Pt catalyst support (Pt/GMPC) is compared with that of carbon black (Pt/XC-72). Comparisons are made using potentiostatic and cyclic voltammetric techniques on the respective specimens under conditions simulating the cathode environment of PEMFC (proton exchange membrane fuel cell). The results indicate that the Pt/GMPC is much more stable than Pt/XC-72, with 96% lower corrosion current. The Pt/GMPC also exhibits a greatly reduced loss of catalytic surface area: 14% for Pt/GMPC vs. 39% for Pt/XC-72.

  11. Homogeneous and Supported Niobium Catalysts as Lewis Acid and Radical Catalysts

    SciTech Connect

    Wayne Tikkanen

    2006-12-31

    The synthesis of tetrachlorotetraphenylcyclopentadienyl group 5 metal complexes has been accomplished through two routes, one a salt metathesis with lithiumtetraphenylcyclopentadiende and the other, reaction with trimethyltintetraphenylcyclopentadiene. The reactants and products have been characterized by {sup 1}H and {sup 13}C({sup 1}H) NMR spectroscopy. The niobium complex promotes the silylcyanation of butyraldehyde. The grafting of metal complexes to silica gel surfaces has been accomplished using tetrakisdimethylamidozirconium as the metal precursor. The most homogeneous binding as determined by CP-MAS {sup 13}C NMR and infrared spectroscopy was obtained with drying at 500 C at 3 mtorr vacuum. The remaining amido groups can be replaced by reaction with alcohols to generate surface bound metal alkoxides. These bound catalysts promote silylcyanation of aryl aldehydes and can be reused three times with no loss of activity.

  12. Al{sub 2}O{sub 3}-supported catalysts prepared using Bi- and trinuclear molybdenum compounds

    SciTech Connect

    Klimov, O.V.; Fedotov, M.A.; Kochubei, D.I.

    1995-05-01

    A new procedure for the preparation of {gamma}-Al{sub 2}O{sub 3}-supported molybdenum-containing catalysts, which involves anchoring the bi- and trinuclear molybdenum complex compounds on a support surface, is proposed. By means of XPS, EXAFS, and NMR techniques, the interaction between the complexes and a support, as well as the structure of the surface species are studied. After anchoring, the molybdenum oxidation degree and the framework fragments of the starting complexes are retained in the catalysts obtained. The prepared catalysts exceed those synthesized by the support impregnation with an ammonium heptamolybdate solution, in the activity, selectivity, and the duration of the stable performance in the metathesis of propene and 1-hexene.

  13. Activated carbon and tungsten oxide supported on activated carbon catalysts for toluene catalytic combustion.

    PubMed

    Alvarez-Merino, M A; Ribeiro, M F; Silva, J M; Carrasco-Marín, F; Maldonado-Hódar, F J

    2004-09-01

    We have used activated carbon (AC) prepared from almond shells as a support for tungsten oxide to develop a series of WOx/AC catalysts for the catalytic combustion of toluene. We conducted the reaction between 300 and 350 degrees C, using a flow of 500 ppm of toluene in air and space velocity (GHSV) in the range 4000-7000 h(-1). Results show that AC used as a support is an appropriate material for removing toluene from dilute streams. By decreasing the GHSV and increasing the reaction temperature AC becomes a specific catalyst for the total toluene oxidation (SCO2 = 100%), but in less favorable conditions CO appears as reaction product and toluene-derivative compounds are retained inside the pores. WOx/AC catalysts are more selective to CO2 than AC due to the strong acidity of this oxide; this behavior improves with increased metal loading and reaction temperature and contact time. The catalytic performance depends on the nonstoichiometric tungsten oxide obtained during the pretreatment. In comparison with other supports the WOx/AC catalysts present, at low reaction temperatures, higher activity and selectivity than WO, supported on SiO2, TiO2, Al2O3, or Y zeolite. This is due to the hydrophobic character of the AC surface which prevents the adsorption of water produced from toluene combustion thus avoiding the deactivation of the active centers. However, the use of WOx/AC system is always restricted by its gasification temperature (around 400 degrees C), which limits the ability to increase the conversion values by increasing reaction temperatures.

  14. CO2 hydrogenation to methanol on supported Au catalysts under moderate reaction conditions: support and particle size effects.

    PubMed

    Hartadi, Yeusy; Widmann, Daniel; Behm, R Jürgen

    2015-02-01

    The potential of metal oxide supported Au catalysts for the formation of methanol from CO2 and H2 under conditions favorable for decentralized and local conversion, which could be concepts for chemical energy storage, was investigated. Significant differences in the catalytic activity and selectivity of Au/Al2 O3 , Au/TiO2 , AuZnO, and Au/ZrO2 catalysts for methanol formation under moderate reaction conditions at a pressure of 5 bar and temperatures between 220 and 240 °C demonstrate pronounced support effects. A high selectivity (>50 %) for methanol formation was obtained only for Au/ZnO. Furthermore, measurements on Au/ZnO samples with different Au particle sizes reveal distinct Au particle size effects: although the activity increases strongly with the decreasing particle size, the selectivity decreases. The consequences of these findings for the reaction mechanism and for the potential of Au/ZnO catalysts for chemical energy storage and a "green" methanol technology are discussed.

  15. Practical, economical, and eco-friendly starch-supported palladium catalyst for Suzuki coupling reactions.

    PubMed

    Baran, Talat

    2017-06-15

    In catalytic systems, the support materials need to be both eco friendly and low cost as well as having high thermal and chemical stability. In this paper, a novel starch supported palladium catalyst, which had these outstanding properties, was designed and its catalytic activity was evaluated in a Suzuki coupling reaction under microwave heating with solvent-free and mild reaction conditions. The starch supported catalyst gave remarkable reaction yields after only 5min as a result of the coupling reaction of the phenyl boronic acid with 23 different substrates, which are bearing aril bromide, iodide, and chloride. The longevity of the catalyst was also investigated, and the catalyst could be reused for 10 runs. The starch supported Pd(II) catalyst yielded remarkable TON (up to 25,000) and TOF (up to 312,500) values by using a simple, fast and eco-friendly method. In addition, the catalytic performance of the catalyst was tested against different commercial palladium catalysts, and the green starch supported catalyst had excellent selectivity. The catalytic tests showed that the novel starch based palladium catalyst proved to be an economical and practical catalyst for the synthesis of biaryl compounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Oxidation of CO and Methanol on Pd-Ni Catalysts Supported on Different Chemically-Treated Carbon Nanofibers

    PubMed Central

    Calderón, Juan Carlos; Rios Ráfales, Miguel; Nieto-Monge, María Jesús; Pardo, Juan Ignacio; Moliner, Rafael; Lázaro, María Jesús

    2016-01-01

    In this work, palladium-nickel nanoparticles supported on carbon nanofibers were synthesized, with metal contents close to 25 wt % and Pd:Ni atomic ratios near to 1:2. These catalysts were previously studied in order to determine their activity toward the oxygen reduction reaction. Before the deposition of metals, the carbon nanofibers were chemically treated in order to generate oxygen and nitrogen groups on their surface. Transmission electron microscopy analysis (TEM) images revealed particle diameters between 3 and 4 nm, overcoming the sizes observed for the nanoparticles supported on carbon black (catalyst Pd-Ni CB 1:2). From the CO oxidation at different temperatures, the activation energy Eact for this reaction was determined. These values indicated a high tolerance of the catalysts toward the CO poisoning, especially in the case of the catalysts supported on the non-chemically treated carbon nanofibers. On the other hand, apparent activation energy Eap for the methanol oxidation was also determined finding—as a rate determining step—the COads diffusion to the OHads for the catalysts supported on carbon nanofibers. The results here presented showed that the surface functional groups only play a role in the obtaining of lower particle sizes, which is an important factor in the obtaining of low CO oxidation activation energies. PMID:28335315

  17. Oxidation of CO and Methanol on Pd-Ni Catalysts Supported on Different Chemically-Treated Carbon Nanofibers.

    PubMed

    Calderón, Juan Carlos; Rios Ráfales, Miguel; Nieto-Monge, María Jesús; Pardo, Juan Ignacio; Moliner, Rafael; Lázaro, María Jesús

    2016-10-18

    In this work, palladium-nickel nanoparticles supported on carbon nanofibers were synthesized, with metal contents close to 25 wt % and Pd:Ni atomic ratios near to 1:2. These catalysts were previously studied in order to determine their activity toward the oxygen reduction reaction. Before the deposition of metals, the carbon nanofibers were chemically treated in order to generate oxygen and nitrogen groups on their surface. Transmission electron microscopy analysis (TEM) images revealed particle diameters between 3 and 4 nm, overcoming the sizes observed for the nanoparticles supported on carbon black (catalyst Pd-Ni CB 1:2). From the CO oxidation at different temperatures, the activation energy Eact for this reaction was determined. These values indicated a high tolerance of the catalysts toward the CO poisoning, especially in the case of the catalysts supported on the non-chemically treated carbon nanofibers. On the other hand, apparent activation energy Eap for the methanol oxidation was also determined finding-as a rate determining step-the COads diffusion to the OHads for the catalysts supported on carbon nanofibers. The results here presented showed that the surface functional groups only play a role in the obtaining of lower particle sizes, which is an important factor in the obtaining of low CO oxidation activation energies.

  18. Development of egg-shell nano catalysts with porous hollow silica supports for hydrogenation.

    PubMed

    Xia, Zeng-Min; Chen, Jian-Feng; Li, Jian-Feng; Song, Ji-Rui; Wen, Li-Xiong

    2009-02-01

    Self-synthesized novel porous hollow silica nanoparticles (PHSNs) were applied as supports to prepare egg-shell nano catalysts for hydrogenation. By an impregnation method, different catalytic actives, such as Pd, Ag or Pt, and some promoters could be evenly loaded on the external surface, the pore channels and the internal surface of PHSNs. The prepared egg-shell catalysts were tested for CO hydrogenation and showed both improved activity and selectivity over those catalysts prepared with conventional support materials.

  19. Hydrodeoxygenation of vicinal OH groups over heterogeneous rhenium catalyst promoted by palladium and ceria support.

    PubMed

    Ota, Nobuhiko; Tamura, Masazumi; Nakagawa, Yoshinao; Okumura, Kazu; Tomishige, Keiichi

    2015-02-02

    Heterogeneous ReOx-Pd/CeO2 catalyst showed excellent performance for simultaneous hydrodeoxygenation of vicinal OH groups. High yield (>99%), turnover frequency (300 h(-1)), and turnover number (10,000) are achieved in the reaction of 1,4-anhydroerythritol to tetrahydrofuran. This catalyst can be applied to sugar alcohols, and mono-alcohols and diols are obtained in high yields (≥85%) from substrates with even and odd numbers of OH groups, respectively. The high catalytic performance of ReOx-Pd/CeO2 can be assigned to rhenium species with +4 or +5 valence state, and the formation of this species is promoted by H2/Pd and the ceria support. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalysts

    DOE PAGES

    Matsubu, John C.; Zhang, Shuyi; DeRita, Leo; ...

    2016-09-19

    The optimization of supported metal catalysts predominantly focuses on engineering the metal site, for which physical insights based on extensive theoretical and experimental contributions have enabled the rational design of active sites. Although it is well known that supports can influence the catalytic properties of metals, insights into how metal–support interactions can be exploited to optimize metal active-site properties are lacking. Here in this paper, we utilize in situ spectroscopy and microscopy to identify and characterize a support effect in oxide-supported heterogeneous Rh catalysts. This effect is characterized by strongly bound adsorbates (HCOx) on reducible oxide supports (TiO2 and Nb2O5)more » that induce oxygen-vacancy formation in the support and cause HCOx-functionalized encapsulation of Rh nanoparticles by the support. The encapsulation layer is permeable to reactants, stable under the reaction conditions and strongly influences the catalytic properties of Rh, which enables rational and dynamic tuning of CO2-reduction selectivity.« less

  1. Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalysts

    SciTech Connect

    Matsubu, John C.; Zhang, Shuyi; DeRita, Leo; Marinkovic, Nebojsa S.; Chen, Jingguang G.; Graham, George W.; Pan, Xiaoqing; Christopher, Phillip

    2016-09-19

    The optimization of supported metal catalysts predominantly focuses on engineering the metal site, for which physical insights based on extensive theoretical and experimental contributions have enabled the rational design of active sites. Although it is well known that supports can influence the catalytic properties of metals, insights into how metal–support interactions can be exploited to optimize metal active-site properties are lacking. Here in this paper, we utilize in situ spectroscopy and microscopy to identify and characterize a support effect in oxide-supported heterogeneous Rh catalysts. This effect is characterized by strongly bound adsorbates (HCOx) on reducible oxide supports (TiO2 and Nb2O5) that induce oxygen-vacancy formation in the support and cause HCOx-functionalized encapsulation of Rh nanoparticles by the support. The encapsulation layer is permeable to reactants, stable under the reaction conditions and strongly influences the catalytic properties of Rh, which enables rational and dynamic tuning of CO2-reduction selectivity.

  2. Constrained Geometry Organotitanium Catalysts Supported on Nanosized Silica for Ethylene (co)Polymerization.

    PubMed

    Li, Kuo-Tseng; Wu, Ling-Huey

    2017-05-05

    Supported olefin polymerization catalysts can prevent reactor-fouling problems and produce uniform polymer particles. Constrained geometry complexes (CGCs) have less sterically hindered active sites than bis-cyclopentadienyl metallocene catalysts. In the literature, micrometer-sized silica particles were used for supporting CGC catalysts, which might have strong mass transfer limitations. This study aims to improve the activity of supported CGC catalysts by using nanometer-sized silica. Ti[(C₅Me₄)SiMe₂(N(t)Bu)]Cl₂, a "constrained-geometry" titanium catalyst, was supported on MAO-treated silicas (nano-sized and micro-sized) by an impregnation method. Ethylene homo-polymerization and co-polymerization with 1-octene were carried out in a temperature range of 80-120 °C using toluene as the solvent. Catalysts prepared and polymers produced were characterized. For both catalysts and for both reactions, the maximum activities occurred at 100 °C, which is significantly higher than that (60 °C) reported before for supported bis-cyclopentadienyl metallocene catalysts containing zirconium, and is lower than that (≥140 °C) used for unsupported Ti[(C₅Me₄)SiMe₂(N(t)Bu)]Me₂ catalyst. Activities of nano-sized catalyst were 2.6 and 1.6 times those of micro-sized catalyst for homopolymerization and copolymerization, respectively. The former produced polymers with higher crystallinity and melting point than the latter. In addition, copolymer produced with nanosized catalyst contained more 1-octene than that produced with microsized catalyst.

  3. Silica-supported sulfonic acids as recyclable catalyst for esterification of levulinic acid with stoichiometric amounts of alcohols

    PubMed Central

    Santacroce, Veronica; Maestri, Giovanni; Bigi, Franca; Rothenberg, Gadi

    2016-01-01

    Summary Converting biomass into value-added chemicals holds the key to sustainable long-term carbon resource management. In this context, levulinic acid, which is easily obtained from cellulose, is valuable since it can be transformed into a variety of industrially relevant fine chemicals. Here we present a simple protocol for the selective esterification of levulinic acid using solid acid catalysts. Silica supported sulfonic acid catalysts operate under mild conditions and give good conversion and selectivity with stoichiometric amounts of alcohols. The sulfonic acid groups are tethered to the support using organic tethers. These tethers may help in preventing the deactivation of the active sites in the presence of water. PMID:27829924

  4. Silica-supported sulfonic acids as recyclable catalyst for esterification of levulinic acid with stoichiometric amounts of alcohols.

    PubMed

    Maggi, Raimondo; Shiju, N Raveendran; Santacroce, Veronica; Maestri, Giovanni; Bigi, Franca; Rothenberg, Gadi

    2016-01-01

    Converting biomass into value-added chemicals holds the key to sustainable long-term carbon resource management. In this context, levulinic acid, which is easily obtained from cellulose, is valuable since it can be transformed into a variety of industrially relevant fine chemicals. Here we present a simple protocol for the selective esterification of levulinic acid using solid acid catalysts. Silica supported sulfonic acid catalysts operate under mild conditions and give good conversion and selectivity with stoichiometric amounts of alcohols. The sulfonic acid groups are tethered to the support using organic tethers. These tethers may help in preventing the deactivation of the active sites in the presence of water.

  5. Studies of supported hydrodesulfurization catalysts. Final technical report

    SciTech Connect

    Hercules, D.M.

    1995-10-26

    This report describes a series of studies on the following: Mo/titania and Mo/alumina catalysts for thiophene hydrodesulfurization; absorption of metal oxyanion on alumina; particle size effects for Co/silica catalyst for CO hydrogenation; correlation of Mo oxidation states with benzene hydrogenation activity; factor analysis for curve fitting Mo ESCA spectra; and quantitative Raman and ESCA characterization of W/titania catalysts. 27 refs.

  6. Degradation of phenylamine by catalytic wet air oxidation using metal catalysts with modified supports.

    PubMed

    Torrellas, Silvia A; Escudero, Gabriel O; Rodriguez, Araceli R; Rodriguez, Juan G

    2015-01-01

    The effect of acid treatments with HCl and HNO3 on the surface area and surface chemistry of three granular activated carbons was studied. These supports were characterized and the hydrochloric acid treatment leads to the best activated carbon support (AC2-C). The catalytic behavior of Pt, Ru and Fe (1 wt.%) supported on granular activated carbon treated with HCl was tested in the phenylamine continuous catalytic wet air oxidation in a three-phase, high-pressure catalytic reactor over a range of reaction temperatures 130-170ºC and total pressure of 1.0-3.0 MPa at LHSV = 0.4-1 h(-1), whereas the phenylamine concentration range and the catalyst loading were 5-16 mol.m(-3) and 0.5-1.5 g, respectively. Activity as well as conversion varied as a function of the metal, the catalyst preparation method and operation conditions. Higher activities were obtained with Pt incorporated on hydrochloric acid -treated activated carbon by the ion exchange method. In steady state, approximately 98% phenylamine conversion, 77% of TOC and 94% of COD removal, was recorded at 150ºC, 11 mol m(-3) of phenylamine concentration and 1.5 g of catalyst, and the selectivity to non-organic compounds was 78%. Several reaction intermediaries were detected. A Langmuir-Hinshelwood model gave an excellent fit of the kinetic data of phenylamine continuous catalytic wet air oxidation over the catalysts of this work.

  7. Different routes to methanol: Inelastic neutron scattering spectroscopy of adsorbates on supported copper catalysts

    SciTech Connect

    Kandemir, Timur; Friedrich, Matthias; Parker, Stewart F.; Studt, Felix; Lennon, David; Schlögl, Robert; Behrens, Malte

    2016-04-14

    We have investigated methanol synthesis with model supported copper catalysts, Cu/ZnO and Cu/MgO, using CO/H2 and CO2/H2 as feedstocks. Under CO/H2 both catalysts show chemisorbed methoxy as a stable intermediate, the Cu/MgO catalyst also shows hydroxyls on the support. Under CO2/H2 the catalysts behave differently, in that formate is also seen on the catalyst. For the Cu/ZnO catalyst hydroxyls are present on the metal whereas for the Cu/MgO hydroxyls are found on the support. Furthermore, these results are consistent with a recently published model for methanol synthesis and highlight the key role of ZnO in the process.

  8. Different routes to methanol: Inelastic neutron scattering spectroscopy of adsorbates on supported copper catalysts

    DOE PAGES

    Kandemir, Timur; Friedrich, Matthias; Parker, Stewart F.; ...

    2016-04-14

    We have investigated methanol synthesis with model supported copper catalysts, Cu/ZnO and Cu/MgO, using CO/H2 and CO2/H2 as feedstocks. Under CO/H2 both catalysts show chemisorbed methoxy as a stable intermediate, the Cu/MgO catalyst also shows hydroxyls on the support. Under CO2/H2 the catalysts behave differently, in that formate is also seen on the catalyst. For the Cu/ZnO catalyst hydroxyls are present on the metal whereas for the Cu/MgO hydroxyls are found on the support. Furthermore, these results are consistent with a recently published model for methanol synthesis and highlight the key role of ZnO in the process.

  9. Selective hydrogenation of citral over supported Pt catalysts: insight into support effects

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofeng; Hu, Weiming; Deng, Baolin; Liang, Xinhua

    2017-04-01

    Highly dispersed platinum (Pt) nanoparticles (NPs) were deposited on various substrates by atomic layer deposition (ALD) in a fluidized bed reactor at 300 °C. The substrates included multi-walled carbon nanotubes (MWCNTs), silica gel (SiO2), commercial γ-Al2O3, and ALD-prepared porous Al2O3 particles (ALD-Al2O3). The results of TEM analysis showed that 1.3 nm Pt NPs were highly dispersed on all different supports. All catalysts were used for the reaction of selective hydrogenation of citral to unsaturated alcohols (UA), geraniol, and nerol. Both the structure and acidity of supports affected the activity and selectivity of Pt catalysts. Pt/SiO2 showed the highest activity due to the strong acidity of SiO2 and the conversion of citral reached 82% after 12 h with a selectivity of 58% of UA. Pt/MWCNTs showed the highest selectivity of UA, which reached 65% with a conversion of 38% due to its unique structure and electronic effect. The cycling experiments indicated that Pt/MWCNTs and Pt/ALD-Al2O3 catalysts were more stable than Pt/SiO2, as a result of the different interactions between the Pt NPs and the supports.

  10. Carbon xerogels as Pt catalyst supports for polymer electrolyte membrane fuel-cell applications

    NASA Astrophysics Data System (ADS)

    Liu, Bing; Creager, Stephen

    Carbon xerogels prepared by the resorcinol-formaldehyde (RF) sol-gel method with ambient-pressure drying were explored as Pt catalyst supports for polymer electrolyte membrane (PEM) fuel cells. Carbon xerogel samples without Pt catalyst (CX) were characterized by the N 2 sorption method (BET, BJH, others), and carbon xerogel samples with supported Pt catalyst (Pt/CX) were characterized by thermogravimetry (TGA), powder X-ray diffraction (XRD), electron microscopy (SEM, TEM) and ex situ cyclic voltammetry for thin-film electrode samples supported on glassy carbon and studied in a sulfuric acid electrolyte. Experiments on Pt/CX were made in comparison with commercially obtained samples of Pt catalyst supported on a Vulcan XC-72R carbon black support (Pt/XC-72R). CX samples had high BET surface area with a relatively narrow pore size distribution with a peak pore size near 14 nm. Pt contents for both Pt/CX and Pt/XC-72R were near 20 wt % as determined by TGA. Pt catalyst particles on Pt/CX had a mean diameter near 3.3 nm, slightly larger than for Pt/XC-72R which was near 2.8 nm. Electrochemically active surface areas (ESA) for Pt as determined by ex situ CV measurements of H adsorption/desorption were similar for Pt/XC-72R and Pt/CX but those from CO stripping were slightly higher for Pt/XC-72R than for Pt/CX. Membrane-electrode assemblies (MEAs) were fabricated from both Pt/CX and Pt/XC-72R on Nafion 117 membranes using the decal transfer method, and MEA characteristics and single-cell performance were evaluated via in situ cyclic voltammetry, polarization curve, and current-interrupt and high-frequency impedance methods. In situ CV yielded ESA values for Pt/XC-72R MEAs that were similar to those obtained by ex situ CV in sulfuric acid, but those for Pt/CX MEAs were smaller (by 13-17%), suggesting that access of Nafion electrolyte to Pt particles in Pt/CX electrodes is diminished relative to that for Pt/XC-72R electrodes. Polarization curve analysis at low current

  11. Hydrodechlorination of Tetrachloromethane over Palladium Catalysts Supported on Mixed MgF₂-MgO Carriers.

    PubMed

    Bonarowska, Magdalena; Wojciechowska, Maria; Zieliński, Maciej; Kiderys, Angelika; Zieliński, Michał; Winiarek, Piotr; Karpiński, Zbigniew

    2016-11-25

    Pd/MgO, Pd/MgF₂ and Pd/MgO-MgF₂ catalysts were investigated in the reaction of CCl₄ hydrodechlorination. All the catalysts deactivated in time on stream, but the degree of deactivation varied from catalyst to catalyst. The MgF₂-supported palladium with relatively large metal particles appeared the best catalyst, characterized by good activity and selectivity to C₂-C₅ hydrocarbons. Investigation of post-reaction catalyst samples allowed to find several details associated with the working state of hydrodechlorination catalysts. The role of support acidity was quite complex. On the one hand, a definite, although not very high Lewis acidity of MgF₂ is beneficial for shaping high activity of palladium catalysts. The MgO-MgF₂ support characterized by stronger Lewis acidity than MgF₂ contributes to very good catalytic activity for a relatively long reaction period (~5 h) but subsequent neutralization of stronger acid centers (by coking) eliminates them from the catalyst. On the other hand, the role of acidity evolution, which takes place when basic supports (like MgO) are chlorided during HdCl reactions, is difficult to assess because different events associated with distribution of chlorided support species, leading to partial or even full blocking of the surface of palladium, which plays the role of active component in HdCl reactions.

  12. The effect of activated carbon support surface modification on characteristics of carbon nanospheres prepared by deposition precipitation of Fe-catalyst

    NASA Astrophysics Data System (ADS)

    Kristianto, H.; Arie, A. A.; Susanti, R. F.; Halim, M.; Lee, J. K.

    2016-11-01

    In this study the effect of activated carbon support modification to synthesis of CNSs was observed. Modification of activated carbon was done by using nitric acid. The effect of modification was analyzed from its FTIR spectra. The Fe catalysts were deposited on to the support by using urea deposition precipitation method at various initial catalysts concentration. CNSs was synthesized by utilizing cooking palm oil as renewable carbon source, and pyrolized at 700°C for 1 hour under nitrogen atmosphere. The products obtained then analyzed using SEM-EDS, TEM, XRD, and Raman spectroscopy. The modification of activated carbon support had increased the oxygen functional group. This increase resulted on increase of metal catalysts deposited on activated carbon surface. Peak of C (100) was observed, while ID/IG of samples were obtained around 0.9, which is commonly obtained for CNSs. High catalysts loading on modified activated carbon support caused decomposition of CNSs and formation carbon onion.

  13. Alumina-supported Pd-Ag catalysts for low-temperature CO and methanol oxidation

    NASA Technical Reports Server (NTRS)

    Mccabe, R. W.

    1987-01-01

    Pd-Ag bimetallic catalysts, supported on gamma-Al2O3, have been evaluated as exhaust catalysts for methanol-fueled vehicles. Laboratory studies have shown that a 0.01% Pd-5% Ag catalyst has greater CO and CH3OH oxidation activity than either 0.01% Pd or 5% Ag catalysts alone. Moreover, Pd and Ag interact synergistically in the bimetallic catalyst to produce greater CO and CH3OH oxidation rates and lower yields of methanol partial oxidation products than expected from a mixture of the single-component catalysts. The Pd-Ag synergism results from Pd promoting the rate of O2 adsorption and reaction with CO and CH3OH on Ag. Rate enhancement by the bimetallic catalyst is greatest at short reactor residence times where the oxygen adsorption rate limits the overall reaction rate.

  14. Supported zirconium sulfate on carbon nanotubes as water-tolerant solid acid catalyst

    SciTech Connect

    Juan, Joon Ching; Jiang Yajie; Meng Xiujuan; Cao Weiliang; Yarmo, Mohd Ambar; Zhang Jingchang . E-mail: zhangjc1@mail.buct.edu.cn

    2007-07-03

    A new solid acid of zirconium sulfate (CZ) was successfully supported on carbon nanotube (CNT) for esterification reaction. Preparation conditions of the supported CZ have been investigated, to obtain highest catalytic activity for esterification reaction. XRD, TEM, BET, X-ray photoelectron spectra (XPS) and in situ FTIR analysis has also been carried out to understand the characteristics of the catalyst. In the esterification of acrylic acid with n-octanol, the supported CZ exhibited high catalytic activity and stability. The catalytic activity was nearly unchanged during four times of reuse. XRD and TEM analysis indicated that CZ was finely dispersed on CNT. XPS analysis shows that the CZ species was preserved and the chemical environment of the CZ has changed after loaded on CNT. This finding show that CNT as CZ support is an efficient water-tolerant solid acid.

  15. SnO2 nanospheres supported Pd catalyst with enhanced performance for formic acid oxidation

    NASA Astrophysics Data System (ADS)

    Lu, Haiting; Fan, Yang; Huang, Ping; Xu, Dongli

    2012-10-01

    SnO2 nanospheres were employed as the support material for Pd catalyst. The as-prepared Pd/SnO2 catalyst exhibited remarkably improved electrocatalytic activity and stability towards formic acid oxidation, in comparison with that of the Vulcan XC-72 carbon black and the commercial SnO2 nanopowder supported Pd catalyst. The enhanced catalytic performance may arise from the unique structure and surface properties of the SnO2 nanospheres, which process extraordinary promotional effect on Pd catalyst.

  16. Highly efficient, quick and green synthesis of biarlys with chitosan supported catalyst using microwave irradiation in the absence of solvent.

    PubMed

    Baran, Talat; Açıksöz, Eda; Menteş, Ayfer

    2016-05-20

    The aim of this study was to develop a quick reaction that had high activity with a small amount of catalyst, which could be an eco-friendly alternative technique for the synthesis of biarlys in Suzuki coupling reactions. First, a novel chitosan Schiff base supported Pd(II) catalyst was synthesized, and its structure was illuminated with FTIR, (1)H NMR, (13)C NMR, TG/DTG, SEM/EDAX, XRD, ICP-OES, UV-vis, magnetic moment, and molar conductivity techniques. Subsequently, the catalytic activity of the catalyst was tested in Suzuki C-C reactions under microwave irradiation using a solvent-free reaction condition. The catalytic tests showed an excellent activity with a small load of the catalyst (0.02 mol%) in 4 min. The catalyst showed seven runs without loss of activity, and high values of turnover numbers (TON) and turnover frequency (TOF) were obtained. The novel biopolymer supported Pd(II) catalyst provided much faster reaction times, higher yields, and reusability under microwave heating compared to classic heating methods.

  17. Methanol Oxidation Using Ozone on Titania-Supported Vanadium Catalyst

    EPA Science Inventory

    Ozone-enhanced catalytic oxidation of methanol has been conducted at mild temperatures of 100 to 250NC using V2O5/TiO2 catalyst prepared by the sol-gel method. The catalyst was characterized using XRD, surface area measurements, and temperature-programmed desorption of methanol. ...

  18. Methanol Oxidation Using Ozone on Titania-Supported Vanadium Catalyst

    EPA Science Inventory

    Ozone-enhanced catalytic oxidation of methanol has been conducted at mild temperatures of 100 to 250NC using V2O5/TiO2 catalyst prepared by the sol-gel method. The catalyst was characterized using XRD, surface area measurements, and temperature-programmed desorption of methanol. ...

  19. Regeneration of silica-supported silicotungstic acid as a catalyst for the dehydration of glycerol.

    PubMed

    Katryniok, Benjamin; Paul, Sébastien; Capron, Mickaël; Bellière-Baca, Virginie; Rey, Patrick; Dumeignil, Franck

    2012-07-01

    The dehydration reaction of glycerol to acrolein is catalyzed by acid catalysts. These catalysts tend to suffer from the formation of carbonaceous species on their surface (coking), which leads to substantial degradation of their performances (deactivation). To regenerate the as-deactivated catalysts, various techniques have been proposed so far, such as the co-feeding of oxygen, continuous regeneration by using a moving catalytic bed, or alternating between reaction and regeneration. Herein, we study the regeneration of supported heteropolyacid catalysts. We show that the support has a strong impact on the thermal stability of the active phase. In particular, zirconia has been found to stabilize silicotungstic acid, thus enabling the nondestructive regeneration of the catalyst. Furthermore, the addition of steam to the regeneration feed has a positive impact by hindering the degradation reaction by equilibrium displacement. The catalysts are further used in a periodic reaction/regeneration process, whereby the possibility of maintaining long-term catalytic performances is evidenced.

  20. Nano-ceramic support materials for low temperature fuel cell catalysts

    NASA Astrophysics Data System (ADS)

    Lv, Haifeng; Mu, Shichun

    2014-04-01

    Low temperature fuel cells (LTFCs) have received broad attention due to their low operating temperature, virtually zero emissions, high power density and efficiency. However, the limited stability of the catalysts is a critical limitation to the large scale commercialization of LTFCs. State of the art carbon supports undergo corrosion under harsh chemical and electrochemical oxidation conditions, which results in performance degradation of catalysts. Therefore, non-carbon materials which are highly oxidation resistant under strongly oxidizing conditions of LTFCs are ideal alternative supports. This minireview highlights the advances and scenarios in using nano-ceramics as supports to enhance the stability of catalysts, the solutions to improve electrical conductivity of nano-ceramic materials, and the synergistic effects between metal catalyst and support to help improve the catalytic activity and CO/SO2 tolerance of catalysts.

  1. Nano-ceramic support materials for low temperature fuel cell catalysts.

    PubMed

    Lv, Haifeng; Mu, Shichun

    2014-05-21

    Low temperature fuel cells (LTFCs) have received broad attention due to their low operating temperature, virtually zero emissions, high power density and efficiency. However, the limited stability of the catalysts is a critical limitation to the large scale commercialization of LTFCs. State of the art carbon supports undergo corrosion under harsh chemical and electrochemical oxidation conditions, which results in performance degradation of catalysts. Therefore, non-carbon materials which are highly oxidation resistant under strongly oxidizing conditions of LTFCs are ideal alternative supports. This minireview highlights the advances and scenarios in using nano-ceramics as supports to enhance the stability of catalysts, the solutions to improve electrical conductivity of nano-ceramic materials, and the synergistic effects between metal catalyst and support to help improve the catalytic activity and CO/SO2 tolerance of catalysts.

  2. Evaluation of CO oxidation over Co3O4-supported NiO catalysts

    NASA Astrophysics Data System (ADS)

    Sie, Min-Chun; Jeng, Pei-Di; Chen, Pin-Hsuan; Wu, Ruei-Ci; Wang, Chen-Bin

    2017-09-01

    The process of doping NiO onto Co3O4 for achieving resistance to sintering and obtaining long-term stability of catalytic activity was examined herein. A sample of cobalt oxide (Co3O4) was prepared from Co(NO3)2.6H2O via precipitation by NaOH, and then calcined at 300 and 500 °C. The Co3O4-supported NiO catalysts were prepared by deposited precipitation of Ni(NO3)2.6H2O with NaOH added in a dropwise manner into the suspended Co3O4 solution with various loading of nickel. Then, oxidation with NaOCl was employed to obtain NiO/Co3O4 catalysts (weight loading of Ni: 0.1 ˜ 5 wt%). All of the samples were characterized by using XRD, SEM/TEM, BET, TPR and TGA techniques. Catalytic activities related to CO oxidation were tested from 0 to 200 °C in a self-designed fluidized micro-reactor. The results showed that the calcination temperature and loading of nickel were important parameters in the preparation process. With the lower calcined temperature and loading of nickel below 1 wt%, all the samples showed high initial catalytic activity for CO oxidation near room temperature. The synergistic effect can induce CO oxidation between NiO and Co3O4, and probably constitute a more suitable redox property for the 0.2%Ni/Co3O4 (C3) catalyst. Furthermore, only a slight decrease of CO conversion (less than 5%) was observed after 50 h of continuous reaction under 125 °C on this catalyst. The CO conversion could still remain above 75% after 50 h, which demonstrates that the 0.2%Ni/Co3O4 (C3) sample can function as a durable CO oxidation catalyst. We confirmed that our designed catalysts, based on tiny NiO nanoparticles, can be used as a component of a toxic gas abatement system.

  3. Nitrogen-doped carbon-supported cobalt-iron oxygen reduction catalyst

    DOEpatents

    Zelenay, Piotr; Wu, Gang

    2014-04-29

    A Fe--Co hybrid catalyst for oxygen reaction reduction was prepared by a two part process. The first part involves reacting an ethyleneamine with a cobalt-containing precursor to form a cobalt-containing complex, combining the cobalt-containing complex with an electroconductive carbon supporting material, heating the cobalt-containing complex and carbon supporting material under conditions suitable to convert the cobalt-containing complex and carbon supporting material into a cobalt-containing catalyst support. The second part of the process involves polymerizing an aniline in the presence of said cobalt-containing catalyst support and an iron-containing compound under conditions suitable to form a supported, cobalt-containing, iron-bound polyaniline species, and subjecting said supported, cobalt-containing, iron bound polyaniline species to conditions suitable for producing a Fe--Co hybrid catalyst.

  4. Various conformations of carbon nanocoils prepared by supported Ni-Fe/molecular sieve catalyst.

    PubMed

    Yang, Shaoming; Chen, Xiuqin; Takeuchi, K; Motojima, Seiji

    2006-01-01

    The carbon nanocoils with various kinds of conformations were prepared by the catalytic pyrolysis of acetylene using the Ni metal catalyst supported on molecular Sieves which was prepared using Fe-containing kaolin as the raw material. There are four kinds of carbon nanocoils conformations produced by this catalyst. The influences of reaction temperature and gas conditions on the conformations of the nanocoils were investigated and the reasons of forming nano-size coils were discussed by comparison with pure Ni metal catalyst.

  5. 57Fe Mössbauer Studies in Mo Fe Supported Catalysts

    NASA Astrophysics Data System (ADS)

    Castelão-Dias, M.; Costa, B. F. O.; Quinta-Ferreira, R. M.

    2001-09-01

    Industrially, the Mo Fe catalysts used in the selective oxidation of methanol to formaldehyde can rapidly deactivate. The use of support materials may reduce the high temperatures in the catalytic bed and/or increase thermal and mechanical resistance. However, during the preparation of these catalysts, or even during reaction conditions, the active species may react with the support material losing their catalytic activity. In this work silica, silicium carbide and titania were studied as supported catalysts by Mössbauer spectroscopy which proved to be a useful technique in the choice of supported materials.

  6. Hydrogen production from the steam reforming of bio-butanol over novel supported Co-based bimetallic catalysts.

    PubMed

    Cai, Weijie; de la Piscina, Pilar Ramirez; Homs, Narcis

    2012-03-01

    This paper reports the hydrogen production through the steam reforming of a bioresource-derived butanol mixture (butanol:acetone:ethanol=6:3:1 mass ratio) over supported cobalt-based catalysts. The support plays an important role for the catalytic behavior and Co/ZnO exhibits the best catalytic performance compared to Co/TiO(2) and Co/CeO(2). Moreover, a higher hydrogen yield is obtained over bimetallic Co-Ir/ZnO, which shows an increase in H(2) selectivity and a decrease in CH(4) selectivity under steam reforming conditions, compared to Co/ZnO. Raman results of the used catalysts indicate that the addition of Ir could prevent the coke formation to prolong the catalyst stability.

  7. Mesoporous synthetic clays : synthesis, characterization, and use as HDS catalyst supports.

    SciTech Connect

    Bloomquist, C. A. A.; Carrado, K. A.; Marshall, C. L.; Seifert, S.; Wei, D.; Xu, L.

    1999-08-10

    Mesoporous synthetic clays (MSCs) are obtained when polymer-containing silicate gels are hydrothermally crystallized to form layered magnesium silicate hectorite clays containing polymers that are incorporated in situ. Polyvinylpyrrolidone of several average molecular weights ranging from 10K to 1.3M, in gel loadings varying from 5-30 wt%, were used. The organic polymer template molecules were removed from synthetic polymer-clay complexes via calcination. Pore radii, surface areas, and pore volumes of the resulting porous inorganic networks were then measured. For the most part there is a direct correlation between both PVP molecular weight and polymer loading on the diameter of the average pore. In addition to conventional techniques, the polymer-clay materials were also characterized by small angle x-ray scattering to ascertain the disposition of the polymeric matrix. The MSC materials after calcination were examined as potential supports for hydrodesulfurization (HDS). They were loaded with a bimetallic Co/Mo catalyst system for comparison with a commercial Co/Mo alumina catalyst. Dibenzothiophene (DBT) diluted with hexadecane (0.75 wt% S) was utilized as a liquid feed for the HDS tests. This feed was chosen as a deep HDS test of a heavy model oil. The pore diameters of the MSC catalysts were found to have a strong effect on both the HDS activity and selectivity.

  8. A packed bed membrane reactor for production of biodiesel using activated carbon supported catalyst.

    PubMed

    Baroutian, Saeid; Aroua, Mohamed K; Raman, Abdul Aziz A; Sulaiman, Nik M N

    2011-01-01

    In this study, a novel continuous reactor has been developed to produce high quality methyl esters (biodiesel) from palm oil. A microporous TiO2/Al2O3 membrane was packed with potassium hydroxide catalyst supported on palm shell activated carbon. The central composite design (CCD) of response surface methodology (RSM) was employed to investigate the effects of reaction temperature, catalyst amount and cross flow circulation velocity on the production of biodiesel in the packed bed membrane reactor. The highest conversion of palm oil to biodiesel in the reactor was obtained at 70 °C employing 157.04 g catalyst per unit volume of the reactor and 0.21 cm/s cross flow circulation velocity. The physical and chemical properties of the produced biodiesel were determined and compared with the standard specifications. High quality palm oil biodiesel was produced by combination of heterogeneous alkali transesterification and separation processes in the packed bed membrane reactor. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Efficient production of hydrogen from formic acid using a covalent triazine framework supported molecular catalyst.

    PubMed

    Bavykina, A V; Goesten, M G; Kapteijn, F; Makkee, M; Gascon, J

    2015-03-01

    A heterogeneous molecular catalyst based on Ir(III) Cp* (Cp*=pentamethylcyclopentadienyl) attached to a covalent triazine framework (CTF) is reported. It catalyses the production of hydrogen from formic acid with initial turnover frequencies (TOFs) up to 27,000 h(-1) and turnover numbers (TONs) of more than one million in continuous operation. The CTF support, with a Brunauer-Emmett-Teller (BET) surface area of 1800 m(2)  g(-1), was constructed from an optimal 2:1 ratio of biphenyl and pyridine carbonitrile building blocks. Biphenyl building blocks induce mesoporosity and, therefore, facilitate diffusion of reactants and products whereas free pyridinic sites activate formic acid towards β-hydride elimination at the metal, rendering unprecedented rates in hydrogen production. The catalyst is air stable, produces CO-free hydrogen, and is fully recyclable. Hydrogen production rates of more than 60 mol L(-1)  h(-1) were obtained at high catalyst loadings of 16 wt % Ir, making it attractive towards process intensification. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Sulphur poisoning of palladium catalysts used for methane combustion: effect of the support.

    PubMed

    Escandón, Lara S; Ordóñez, Salvador; Vega, Aurelio; Díez, Fernando V

    2008-05-01

    Four different supported palladium catalysts (using alumina, silica, zirconia and titania as supports), prepared by incipient wetness impregnation, were tested as catalysts for methane oxidation in presence of sulphur dioxide. The catalyst supported on zirconia showed the best performance, whereas the silica-supported one showed the fastest deactivation. Temperature-programmed desorption experiments of the poisoned catalysts suggest that SO(2) adsorption capacity of the support plays a key role in the catalyst poisoning. In order to study the effect of promoters, expected to improve the thermal stability and thioresistance of the catalyst, commercial zirconia modified by yttrium and lantane was tested as supports. It was found that the presence of these promoters does not improve the performance of the zirconia-supported catalyst. A deactivation model -- considering two different active sites (fresh and poisoning), pseudo-first order dependence on methane concentration and poisoning rate depending on sulphur concentration and fraction of non-poisoned palladium -- was used for modelling the deactivation behaviour.

  11. Synthesis of bioethanol from biomass-derived syngas over carbon nanotube/silica supported catalyst.

    PubMed

    Feng, Wei; Yao, Jianqiang; Wu, Hailiang; Ji, Peijun

    2012-01-01

    Multi-walled carbon nanotubes (MWNTs) were functionalized with pyrogallol and used in a composite with silica as a support for a Cu-Co based catalyst. The catalysts were characterized using X-ray diffraction, transmission electron microscopy, and H(2) temperature programmed reduction. The effects of pyrogallol and the weight ratio of silica to MWNTs on the performance of the catalyst were studied in a fixed bed reactor. The increase of the amount of MWNTs in the catalyst support was found to favor decreased methanol production and increased production of C2+ alcohols. Using pyrogallol in catalyst preparation was also found to increase the production of C2+ alcohols. It was concluded that pyrogallol improves the distribution and uniformity of metal particles on the support, decreases the size of metal particles and increasing the rate of catalytic reduction.

  12. Manganese Triazacyclononane Oxidation Catalysts Grafted under Reaction Conditions on Solid Co-Catalytic Supports

    SciTech Connect

    Schoenfeldt, Nicholas J.; Ni, Zhenjuan; Korinda, Andrew W.; Meyer, Randall J.; Notestein, Justin M.

    2012-01-23

    Manganese complexes of 1,4,7-trimethyl-1,4,7-triazacyclononane (tmtacn) are highly active and selective alkene oxidation catalysts with aqueous H{sub 2}O{sub 2}. Here, carboxylic acid-functionalized SiO{sub 2} simultaneously immobilizes and activates these complexes under oxidation reaction conditions. H{sub 2}O{sub 2} and the functionalized support are both necessary to transform the inactive [(tmtacn)Mn{sup IV}({mu}-O)3Mn{sup IV}(tmtacn)]{sup 2+} into the active, dicarboxylate-bridged [(tmtacn)Mn{sup III}({mu}-O)({mu}-RCOO){sub 2}Mn{sup III}(tmtacn)]{sup 2+}. This transformation is assigned on the basis of comparison of diffuse reflectance UV-visible spectra to known soluble models, assignment of oxidation state by Mn K-edge X-ray absorption near-edge spectroscopy, the dependence of rates on the acid/Mn ratios, and comparison of the surface structures derived from density functional theory with extended X-ray absorption fine structure. Productivity in cis-cyclooctene oxidation to epoxide and cis-diol with 2-10 equiv of solid cocatalytic supports is superior to that obtained with analogous soluble valeric acid cocatalysts, which require 1000-fold excess to reach similar levels at comparable times. Cyclooctene oxidation rates are near first order in H{sub 2}O{sub 2} and near zero order in all other species, including H{sub 2}O. These observations are consistent with a mechanism of substrate oxidation following rate-limiting H{sub 2}O{sub 2} activation on the hydrated, supported complex. This general mechanism and the observed alkene oxidation activation energy of 38 {+-} 6 kJ/mol are comparable to H{sub 2}O{sub 2} activation by related soluble catalysts. Undesired decomposition of H{sub 2}O{sub 2} is not a limiting factor for these solid catalysts, and as such, productivity remains high up to 25 C and initial H{sub 2}O{sub 2} concentration of 0.5 M, increasing reactor throughput. These results show that immobilized carboxylic acids can be utilized and understood

  13. Magnetic silica supported palladium catalyst: synthesis of allyl aryl ethers in water

    EPA Science Inventory

    A simple and benign procedure for the synthesis of aryl allyl ethers has been developed using phenols, allyl acetates and magnetically recyclable silica supported palladium catalyst in water; performance of reaction in air and easy separation of the catalyst using an external mag...

  14. Magnetic silica supported palladium catalyst: synthesis of allyl aryl ethers in water

    EPA Science Inventory

    A simple and benign procedure for the synthesis of aryl allyl ethers has been developed using phenols, allyl acetates and magnetically recyclable silica supported palladium catalyst in water; performance of reaction in air and easy separation of the catalyst using an external mag...

  15. Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter.

    PubMed

    Yu, Jong-Sung; Kang, Soonki; Yoon, Suk Bon; Chai, Geunseok

    2002-08-14

    Ordered uniform porous carbon frameworks showing interesting morphology variations were synthesized against removable colloidal silica crystalline templates through simply altering acid catalyst sites for acid-catalyzed polymerization. These highly ordered uniform porous carbons as a catalyst supporter resulted in much improved catalytic activity for methanol oxidation in a fuel cell.

  16. The state of the components in copper-cerium catalysts supported on different oxides

    NASA Astrophysics Data System (ADS)

    Kosmambetova, G. R.; Kriventsov, V. V.; Moroz, E. M.; Pakharukova, V. P.; Strizhak, P. E.; Zyuzin, D. A.

    2009-05-01

    The phase composition and the state of the active components in the catalysts used for preferential oxidation (PROX) of CO in hydrogen-containing mixtures are considered. Cu-Ce catalysts supported on different oxides (ZrO 2, TiO 2, Al 2O 3, MnO 2) before and after PROX reaction are characterized.

  17. Effect of the dispersants on Pd species and catalytic activity of supported palladium catalyst

    NASA Astrophysics Data System (ADS)

    Hu, Yue; Yang, Xiaojun; Cao, Shuo; Zhou, Jie; Wu, Yuanxin; Han, Jinyu; Yan, Zhiguo; Zheng, Mingming

    2017-04-01

    A series of supported palladium catalysts has been prepared through the precipitation method and the reduction method, using polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) as dispersants. The effects of the dispersants on the properties of catalysts were evaluated and the catalytic performance of the new materials was investigated for the oxidative carbonylation of phenol to diphenyl carbonate (DPC). The catalysts as prepared were also characterized by the X-ray diffraction (XRD), transmission electron microscope (TEM), Brunner-Emmet-Teller (BET) measurements and X-ray photoelectron spectroscopy (XPS) techniques. The results show that the addition of the dispersants had no effect on the crystal phase of the catalysts. However, the dispersion of Pd particles was improved when the dispersants were used. Moreover, the particle sizes of Pd nanoparticles modified by PVA were smaller than those modified by PVP. The catalysts prepared using the dispersants gave better yields of DPC than the catalysts prepared without the dispersants. The highest yield of DPC was 17.9% with the PVA-Red catalyst. The characterization results for the used catalysts showed that the Pd species in the PVA-Red catalyst remained mostly divalent and the lattice oxygen species were consumed during the reaction, which could lead to the higher catalytic activity of the PVA-Red catalyst. The experimental results confirm that PVA effectively inhibited the sintering and reduction of active Pd species in the oxidative carbonylation of phenol.

  18. Homogeneous and supported catalysts for {alpha}-olefin hydrogenation based on complexes of platinum tetrachloride with aliphatic amines

    SciTech Connect

    Kliger, E.G.; Shuikina, L.P.; Frolov, V.M.

    1995-07-01

    A new efficient catalyst for a-olefin hydrogenation, a reaction of importance to synthetic fuels preparation, that exhibits the catalytic activity without additional treatment with a reducing agent is obtained by the interaction of PtCl{sub 4} with tri-n-octylamine. Molecular hydrogen and ethanol are found to promote the catalytically active complex. On the basis of the IR spectroscopic investigation, a likely structure of the synthesized complex is proposed. A highly active heterogenized platinum-containing catalyst for the hydrogenation of terminal double bonds is prepared by supporting a homogeneous system on {gamma}-Al{sub 2}O{sub 3}.

  19. Effective immobilisation of a metathesis catalyst bearing an ammonium-tagged NHC ligand on various solid supports

    PubMed Central

    Białecki, Jacek; Czarnocki, Stefan J; Żukowska, Karolina

    2016-01-01

    Summary An ammonium-tagged ruthenium complex, 8, was deposited on several widely available commercial solid materials such as silica gel, alumina, cotton, filter paper, iron powder or palladium on carbon. The resulting catalysts were tested in toluene or ethyl acetate, and found to afford metathesis products in high yield and with extremely low ruthenium contamination. Depending on the support used, immobilised catalyst 8 shows also additional traits, such as the possibility of being magnetically separated or the use for metathesis and subsequent reduction of the obtained double bond in one pot. PMID:26877803

  20. A study of aluminophosphate supported Ni-Mo catalysts for hydrocracking bitumen

    SciTech Connect

    Smith, K.J.; Lewkowicz, L.; Oballa, M.C.; Krzywicki, A.

    1994-12-31

    H-Oil and LC-Fining processes utilize a combination of thermal and catalytic hydroprocessing reactions to achieve high yields of distillate in upgrading bitumen or heavy oil residua. The processes are based on a well mixed (ebullated bed) reactor from which deactivated catalyst is continuously withdrawn and fresh catalyst is added to maintain yields. Catalyst activity and lifetime are two key factors controlling the economics of these processes. Catalyst deactivation occurs due to the deposition of coke and metals on the catalyst surface. The choice of catalyst is usually a compromise between two extremes: small pore catalyst with low metals capacity but higher activity that deactivates rapidly because of metals deposition and wide pore catalyst that has high metals deposition capacity but lower activity due to low surface area. Recently, aluminophosphate materials with large pores (< 10 nm--1,000 nm) and high surface areas (100--500 m{sup 2}/g) have been reported. The actual pore size distribution and surface area obtained depend on the Al/P ratio, preparation method and the calcination procedure. These materials are also thermally stable. The purpose of the present work was to determine if such materials, as a result of their pore size distribution and surface area, could decrease the rate of catalyst deactivation, increase catalyst activity and provide sufficient pore volume for high capacity of metals deposition during the upgrading of heavy oil residue.

  1. Impact of carbon on the surface and activity of silica-carbon supported copper catalysts for reduction of nitrogen oxides

    NASA Astrophysics Data System (ADS)

    Spassova, I.; Stoeva, N.; Nickolov, R.; Atanasova, G.; Khristova, M.

    2016-04-01

    Composite catalysts, prepared by one or more active components supported on a support are of interest because of the possible interaction between the catalytic components and the support materials. The supports of combined hydrophilic-hydrophobic type may influence how these materials maintain an active phase and as a result a possible cooperation between active components and the support material could occur and affects the catalytic behavior. Silica-carbon nanocomposites were prepared by sol-gel, using different in specific surface areas and porous texture carbon materials. Catalysts were obtained after copper deposition on these composites. The nanocomposites and the catalysts were characterized by nitrogen adsorption, TG, XRD, TEM- HRTEM, H2-TPR, and XPS. The nature of the carbon predetermines the composite's texture. The IEPs of carbon materials and silica is a force of composites formation and determines the respective distribution of the silica and carbon components on the surface of the composites. Copper deposition over the investigated silica-carbon composites leads to formation of active phases in which copper is in different oxidation states. The reduction of NO with CO proceeds by different paths on different catalysts due to the textural differences of the composites, maintaining different surface composition and oxidation states of copper.

  2. Mixed conducting catalyst support materials for the direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Lasch, K.; Hayn, G.; Jörissen, L.; Garche, J.; Besenhardt, O.

    Finely dispersed Pt- and Pt/Ru-particles have been deposited on high surface-area ruthenium dioxide (RuO 2) using the Petrow and Allen method [U.S. Patent No. 4,044,193 (23 August 1977)]. RuO 2 has been synthesized according to different preparation methods. It turned out that the product showing the highest surface area could be produced by a simple fast precipitation method. The electrocatalytic activities of catalysts on different ruthenium oxide supports have been investigated in half-cell experiments by stationary current voltage measurements. Pt/Ru-catalysts deposited on a Vulcan XC-72 carbon black have been used for comparison. X-ray analysis methods (XRD, EDX) have been used to characterize the composition and crystallinity of the materials and their geometric surface areas have been determined by the BET method. It turned out that the electric conductivity of the RuO 2 materials was comparable to that observed for Vulcan XC-72. Furthermore, RuO 2 materials having a BET surface area above 125 m 2/g could be synthesized. (Vulcan XC-71: ˜250 m 2/g). Surprisingly, no significant electrochemical activity was found when Pt/Ru was deposited on freshly precipitated hydrous RuO 2. Deposition of noble metals on calcined RuO 2 resulted in electrochemical activities comparable to the ones obtained for the Vulcan XC-72 support. Thus, no extraordinary enhancement of catalytic activity for the methanol has been observed when RuO 2 oxide was used as a mixed conducting catalyst support.

  3. Carbon Nano Tube Supported Pd Catalyst: Effect of Support Textual Properties with Pre-Treatment Method of Pd Particle.

    PubMed

    Ryu, Young Bok; Kim, Ji Sun; Baek, Jae Ho; Kim, Myung Hwan; Kim, Yangdo; Lee, Man Sig

    2015-11-01

    The aim of this work is to be compared the effect of supports textural properties with pre-treatment method on dispersion of Pd particle. The CNTs were functionalized by different concentration of acid in order to obtain materials with different chemical and physical properties. The characteristics of functionalized CNTs were investigated by FT-IR and Rama spectropy. The Pd/CNTs catalysts prepared on support having the different surface properties were characterized by XRD, FE-TEM and CO-chemisorption. When pretreated 8M concentration, the CNTs has the highest amount of oxygen functional group and ID/IG ratio, in this study. Pd/CNT8M has high dispersion and small particle size. From these results, we confirmed that characteristics of Pd/CNTs catalyst such as particle size and dispersion of Pd are influenced by density of oxygen functional group and disorder of CNTs. And we have observed that acid treatment concentration of 8M is sufficient to functionalize the CNTs by introducing -COOH group of CNTs surfaces.

  4. CO oxidation on phosphate-supported Au catalysts: Effect of support reducibility

    SciTech Connect

    Li, Meijun; Wu, Zili; Overbury, Steven {Steve} H

    2011-01-01

    Support Reducibility Impacts Reaction Pathways Researchers have recently uncovered how the support impacts the activation of oxygen for oxidation reactions. This discovery was based on the oxidation of carbon monoxide catalyzed by gold (Au) nanoparticles dispersed on both a reducible and non-reducible phosphate support. Three competing pathways were discovered which depend upon the pre-treatment history and the type of support. By simultaneously monitoring surface species (by infrared spectroscopy) and gas phase species (by mass spectrometry) during transient gas switches, the types of carbon monoxide adsorption sites, the nature of available reactive oxygen, and the oxidation reaction pathways could be determined. It was found that active oxygen is derived from 1) the direct reaction between carbon monoxide and oxygen adsorbed onto the Au particle or its periphery, 2) structural oxygen composing the reducible phosphate or 3) hydroxyl groups on the surface of the phosphate. The last two pathways aid in accelerating or maintaining the catalytic process when water is around or if there is a temporary oxygen deficiency, while the first pathway is prevalent when the support becomes dehydrated or the support loses oxygen beyond a certain amount. The results demonstrate the kind of versatility that can be built into a catalytic system if the fundamental details of the catalytic process are well understood. Li, M.; Wu, Z.; Overbury, S. H. CO oxidation on phosphate-supported Au catalysts: Effect of support reducibility on surface reactions. J. Catal. 2011, 278, 133-142.

  5. Stability and catalytic performance of vanadia supported on nanostructured titania catalyst in oxidative dehydrogenation of propane

    NASA Astrophysics Data System (ADS)

    Kootenaei, A. H. Shahbazi; Towfighi, J.; Khodadadi, A.; Mortazavi, Y.

    2014-04-01

    Titanate nanotubes with a high specific surface area were synthesized by the simple hydrothermal method and investigated as support for V2O5 catalyst in oxidative dehydrogenation of propane (ODP). The structures of pristine nanotubes as well as the prepared catalysts were investigated by XRD, Raman, FTIR, HRTEM, SEM, EDS, BET, and XPS techniques. The characterization of the as-synthesized nanotubes showed the synthesis of hydrogen titanate nanotube. The incipient wetness impregnation method was utilized to prepare VTNT-x (x = 5, 10, and 15 wt.% vanadia supported on nanotube) together with VTi5 (5 wt.% vanadia supported on Degussa P25). The anatase phase was developed in VTNT-x catalysts upon calcination along with specific surface area loss. Higher vanadia loading resulted in the lowering of support capacity in maintaining vanadia in dispersed state such that eventually crystalline vanadia appeared. The measured catalyst activity demonstrates that in spite of major support surface area loss in VTNT-5 catalyst, the propylene yield is superior in comparison with VTi5 catalyst. The catalyst activity can be correlated with maximum reduction temperature. Deactivation of VTi5 and VTNT-5 as well as VTNT-15 were studied for 3,000 min time-on-stream. It was found that the activity of VTNT-5 catalyst remain unchanged while a decline in catalytic activity observed in VTi5 and VTNT-15 catalysts. The development of rutile was considered as being a major element in the deactivation of the investigated catalysts which is influenced by the presence of vanadium and reaction atmosphere.

  6. Oxidative-reforming of model biogas over NiO/Al2O3 catalysts: The influence of the variation of support synthesis conditions

    NASA Astrophysics Data System (ADS)

    Asencios, Yvan J. O.; Elias, Kariny F. M.; Assaf, Elisabete M.

    2014-10-01

    In this study, nickel catalysts (20 wt%) supported on γ-Al2O3 were prepared by the impregnation method. The γ-Al2O3, was synthesized by precipitation of bayerite gel obtained from aluminum scrap. The synthetic conditions of the bayerite gel varied as follows: precipitation pH ranging from 6 to 7; ageing temperature ranging from 25 to 80 °C, the calcination temperature for all samples was 500 °C. The catalysts and the supports were analyzed by temperature programmed reduction (H2-TPR), X-ray diffraction (XRD), physisorption of N2 (BET), X-ray absorption near-edge structure (XANES) and scanning electron microscopy (SEM). Isopropanol decomposition reactions over the catalysts were carried out to evaluate their acidity. SEM images of the spent catalysts showed that the morphology of the carbon formed during the reaction is of the filamentous type. The TPR analysis of the catalysts showed the presence of NiO species weakly interacted with the support as well as stoichiometric and non-stoichiometric nickel aluminate, the reduction of these species was also observed by XANES analysis. XRD analysis of the fresh catalyst showed peaks assigned to NiO, NiAl2O4 and γ-Al2O3. The best catalysts (samples NiAl7-25 and NiAl7-80) synthesized in this report showed high stability and high conversion values (CH4 (70%) and CO2 (78%)). These catalysts showed better performance than the catalyst supported on commercial γ-Al2O3, which showed a high coke formation which affected the course of the reaction. The γ-Al2O3 synthesized from bayerite obtained at neutral pH conditions was the best support for nickel catalysts in the oxidative-reforming of model biogas.

  7. Membrane fuel cell cathode catalysts based on titanium oxide supported platinum nanoparticles.

    PubMed

    Gebauer, Christian; Jusys, Zenonas; Wassner, Maximilian; Hüsing, Nicola; Behm, R Jürgen

    2014-07-21

    The potential of platinum catalysts supported on pure, nitrogen-, or carbon-doped titania for application in the oxygen reduction reaction (ORR), as a cathode catalyst in polymer electrolyte membrane fuel cells, is investigated. The oxide supports are synthesized by using a sol-gel route. Modification with nitrogen and carbon doping is achieved by thermal decomposition of urea and the structure-directing agent P123. Platinum nanoparticles are prepared by reduction of a Pt(IV) salt in ethylene glycol and subsequently immobilized on different support materials. Structural and electronic properties of the support materials and the resulting catalysts are characterized by various methods, including X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. These results and electrochemical characterization of the support materials and platinum nanoparticle catalysts indicate distinct support effects in the catalysts. The electrocatalytic performance of these catalysts in the ORR, as determined in rotating ring disc electrode measurements, is promising. Also here, distinct support effects can be identified. Correlations with the structural/electronic and the electrochemical properties are discussed, as well as the role of metal-support interactions.

  8. Catalytic wet air oxidation of chlorophenols over supported ruthenium catalysts.

    PubMed

    Li, Ning; Descorme, Claude; Besson, Michèle

    2007-07-31

    A series of noble metal (Pt, Pd, Ru) loaded zirconia catalysts were evaluated in the catalytic wet air oxidation (CWAO) of mono-chlorophenols (2-CP, 3-CP, 4-CP) under relatively mild reaction conditions. Among the investigated noble metals, Ru appeared to be the best to promote the CWAO of CPs as far as incipient-wetness impregnation was used to prepare all the catalysts. The position of the chlorine substitution on the aromatic ring was also shown to have a significant effect on the CP reactivity in the CWAO over 3wt.% Ru/ZrO(2). 2-CP was relatively easier to degradate compared to 3-CP and 4-CP. One reason could be the higher adsorption of 2-CP on the catalyst surface. Further investigations suggested that 3wt.% Ru/ZrO(2) is a very efficient catalyst in the CWAO of 2-CP as far as high 2-CP conversion and TOC abatement could still be reached at even lower temperature (393K) and lower total pressure (3MPa). Additionally, the conversion of 2-CP was demonstrated to increase with the initial pH of the 2-CP solution. The dechlorination reaction is promoted at higher pH. In all cases, the adsorption of the reactants and the reaction intermediates was shown to play a major role. All parameters that would control the molecule speciation in solution or the catalyst surface properties would have a key effect.

  9. Fundamental investigations of supported monometallic and bimetallic catalysts by proton magnetic resonance spectroscopy

    SciTech Connect

    Wu, Xi.

    1990-09-21

    Proton magnetic resonance spectroscopy, or nuclear magnetic resonance (NMR) of hydrogen, has been applied to investigate silica-supported Group VIII monometallic and Group VIII-Group IB bimetallic catalysts and alumina- and silica-supported platinum-rhenium bimetallic catalysts. Two adsorbed states of hydrogen, i.e., irreversible and reversible hydrogen, on the surfaces of monometallic Ru, Pt, and Cu particles and bimetallic Ru-Group Ib, Pt-Group Ib, and Pt-Re particles were observed directly via proton NMR. The same amounts of the irreversible hydrogen adsorbed on pure Ru catalysts were measured by both proton NMR and the volumetric technique. The electronic environments on surfaces of monometallic catalysts are sensitive to changes in metal dispersion, state of adsorbed hydrogen, and residual chlorine. Surface compositions for the Ru--Cu and Pt--Cu bimetallic catalysts were determined by NMR of adsorbed hydrogen. 297 refs., 96 figs., 19 tabs.

  10. Laser Synthesis of Supported Catalysts for Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    VanderWal, Randall L.; Ticich, Thomas M.; Sherry, Leif J.; Hall, Lee J.; Schubert, Kathy (Technical Monitor)

    2003-01-01

    Four methods of laser assisted catalyst generation for carbon nanotube (CNT) synthesis have been tested. These include pulsed laser transfer (PLT), photolytic deposition (PLD), photothermal deposition (PTD) and laser ablation deposition (LABD). Results from each method are compared based on CNT yield, morphology and structure. Under the conditions tested, the PLT was the easiest method to implement, required the least time and also yielded the best pattemation. The photolytic and photothermal methods required organometallics, extended processing time and partial vacuums. The latter two requirements also held for the ablation deposition approach. In addition to control of the substrate position, controlled deposition duration was necessary to achieve an active catalyst layer. Although all methods were tested on both metal and quartz substrates, only the quartz substrates proved to be inactive towards the deposited catalyst particles.

  11. Influences of synthesis methods and modifier addition on the properties of Ni-based catalysts supported on reticulated ceramic foams

    NASA Astrophysics Data System (ADS)

    Nikolić, Vesna; Kamberović, Željko; Anđić, Zoran; Korać, Marija; Sokić, Miroslav; Maksimović, Vesna

    2014-08-01

    A method of synthesizing Ni-based catalysts supported on α-Al2O3-based foams was developed. The foams were impregnated with aqueous solutions of metal chlorides under an air atmosphere using an aerosol route. Separate procedures involved calcination to form oxides and drying to obtain chlorides on the foam surface. The synthesized samples were subsequently reduced with hydrogen. With respect to the Ni/Al2O3 catalysts, the chloride reduction route enabled the formation of a Ni coating without agglomerates or cracks. Further research included catalyst modification by the addition of Pd, Cu, and Fe. The influences of the additives on the degree of reduction and on the low-temperature reduction effectiveness (533 and 633 K) were examined and compared for the catalysts obtained from oxides and chlorides. Greater degrees of reduction were achieved with chlorides, whereas Pd was the most effective modifier among those investigated. The reduction process was nearly complete at 533 K in the sample that contained 0.1wt% Pd. A lower reduction temperature was utilized, and the calcination step was avoided, which may enhance the economical and technological aspects of the developed catalyst production method.

  12. Synthetic clay-supported catalysts for coal liquefaction

    SciTech Connect

    Olson, E.S.; Sharma, R.K.

    1994-12-31

    Synthetic clays with nickel substitution in the lattice structure are highly active catalysts for hydrogenation and hydroisomerization and, consequently, have considerable promise for the catalytic upgrading of coal liquids. Nickel-substituted synthetic mica montmorillonite (NiSMM) was prepared and subsequently impregnated with molybdenum and sulfided. The reaction of model compounds with these catalysts in the presence of hydrogen has been investigated to provide mechanistic models for coal liquefaction. The results indicate that NiSMM has active Bronsted acid sites for hydrocracking and hydroisomerization. The hydrogen-activating ability of the molybdenum and nickel sulfide sites proximate to the acid sites results in effective depolymerization catalysis.

  13. Ruthenium carbonyl catalyst supported on ceric oxide for preparation of olefins from synthesis gas

    DOEpatents

    Pierantozzi, R.

    1985-04-02

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  14. Ruthenium carbonyl catalyst supported on ceric oxide for preparation of olefins from synthesis gas

    DOEpatents

    Pierantozzi, Ronald

    1985-01-01

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  15. Dehydration of Glycerin to Acrolein Over Heteropolyacid Nano-Catalysts Supported on Silica-Alumina.

    PubMed

    Kang, Tae Hun; Choi, Jung Ho; Choi, Jun Seon; Song, In Kyu

    2015-10-01

    A series of H3PW12O40 nano-catalysts supported on silica-alumina (XH3PW12O40/SA (X = 10, 15, 20, 25, and 30)) with different H3PW12O40 content (X, wt%) were prepared, and they were applied to the dehydration of glycerin to acrolein. The effect of H3PW12O40 content on the physicochemical properties and catalytic activities of XH3PW12O40/SA nano-catalysts was investigated. Surface area and pore volume of XH3PW12O40/SA catalysts decreased with increasing H3PW12O40 content. Formation of H3PW12O40 aggregates was observed in the catalysts with high H3PW12O40 loading. Brønsted acidity of the catalysts showed a volcano-shaped trend with respect to H3PW12O40 content. It was revealed that yield for acrolein increased with increasing Brønsted acidity of XH3PW12O40/SA catalysts. Brønsted acidity of XH3PW12O40/SA catalysts served as a crucial factor determining the catalytic performance in the dehydration of glycerin. Among the catalysts tested, 25H3PW12O40/SA catalyst with the largest Brønsted acidity showed the best catalytic performance.

  16. Life Support Catalyst Regeneration Using Ionic Liquids and In Situ Resources

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Karr, Laurel J.; Paley, Mark S.; Donovan, David N.; Kramer, Teersa J.

    2016-01-01

    Oxygen recovery from metabolic carbon dioxide is an enabling capability for long-duration manned space flight. Complete recovery of oxygen (100%) involves the production of solid carbon. Catalytic approaches for this purpose, such as Bosch technology, have been limited in trade analyses due in part to the mass penalty for high catalyst resupply caused by carbon fouling of the iron or nickel catalyst. In an effort to mitigate this challenge, several technology approaches have been proposed. These approaches have included methods to prolong the life of the catalysts by increasing the total carbon mass loading per mass catalyst, methods for simplified catalyst introduction and removal to limit the resupply container mass, methods of using in situ resources, and methods to regenerate catalyst material. Research and development into these methods is ongoing, but only use of in situ resources and/or complete regeneration of catalyst material has the potential to entirely eliminate the need for resupply. The use of ionic liquids provides an opportunity to combine these methods in a technology approach designed to eliminate the need for resupply of oxygen recovery catalyst. Here we describe the results of an initial feasibility study using ionic liquids and in situ resources for life support catalyst regeneration, we discuss the key challenges with the approach, and we propose future efforts to advance the technology.

  17. Mechanism and kinetics of Fischer-Tropsch synthesis over supported ruthenium catalysts

    SciTech Connect

    Kellner, C.S.

    1981-06-01

    A detailed study of the kinetics of the Fischer-Tropsch synthesis of hydrocarbons, methanol, and acetaldehyde, over alumina- and silica-supported ruthenium catalysts has been carried out over a broad range of reaction conditions. Based on these results and information taken from the literature, mechanisms for the formation of normal paraffins, ..cap alpha..-olefins, methanol, and acetaldehyde have been proposed. Rate data were obtained between 448 and 548K, 1 and 10 atm, and H/sub 2//CO ratios between 1 and 3, utilizing a micro flow reactor operated at very low conversions. In addition to the studies performed with H/sub 2//CO mixtures, a series of experiments were carried out utilizing D/sub 2//CO mixtures. These studies were used to help identify rate limited steps and steps that were at equilibrium. A complementary investigation, carried out by in situ infrared spectroscopy, was performed using a Fourier Transform spectrometer. The spectra obtained were used to identify the modes of CO adsorption, the CO coverage, and the relative reactivity of different forms of adsorbed CO. It was established that CO adsorbs on alumina-supported Ru in, at least, two forms: (i) Ru-CO and (ii) OC-Ru-CO. Only the first of these forms participates in CO hydrogenation. The coverage of this species is described by a simple Langmuir isotherm. A reaction mechanism is presented for interpreting the kinetics of hydrocarbon synthesis, the olefin to paraffin ratio for each product, and the probability of chain propagation. Rate expressions based on this mechanism are reasonably consistent with the experimental data. Acetaldehyde, obtained mainly over silica-supported Ru, appears to be formed by a mechanism related to that for hydroformulation of olefins. The effect of the dispersion of Ru/Al/sub 2/O/sub 3/ catalysts on their specific activity and selectivity was also investigated. The specific activity for all products decreased rapidly with increasing dispersions.

  18. Influence of different supports on the physicochemical properties and denitration performance of the supported Mn-based catalysts for NH3-SCR at low temperature

    NASA Astrophysics Data System (ADS)

    Yao, Xiaojiang; Kong, Tingting; Yu, Shuohan; Li, Lulu; Yang, Fumo; Dong, Lin

    2017-04-01

    The commonly used supports of SiO2, γ-Al2O3, TiO2, and CeO2 were synthesized, and used for preparing MnOx/SiO2, MnOx/γ-Al2O3, MnOx/TiO2, and MnOx/CeO2 catalysts with the purpose of investigating the influence of crystal structure and coordination status on the physicochemical properties and denitration performance of these supported Mn-based catalysts for low-temperature NH3-SCR. The obtained samples were characterized by XRD, Raman, BET, H2-TPR, NH3-TPD, in situ DRIFTS, NO + O2-TPD, XPS, and NH3-SCR model reaction. XRD results indicate that MnOx species can be highly dispersed on the surface of γ-Al2O3, TiO2, and CeO2, which is because that there are some octahedral and tetrahedral vacancy sites, octahedral vacancy site, and cubic vacancy site exist on the surface of defective spinel structure γ-Al2O3, anatase TiO2, and cubic fluorite-type structure CeO2, respectively. However, there is no any vacancy site on the surface of SiO2 due to its unique SiO4 tetrahedral structure, which results in the appearance of crystalline β-MnO2 on the surface of MnOx/SiO2 catalyst. Furthermore, H2-TPR results exhibit obvious different reduction behavior among these supported Mn-based catalysts, which is explained by the coordination status of Mn species. Finally, NH3-SCR model reaction results show that MnOx/γ-Al2O3 catalyst presents the best catalytic performance among these supported Mn-based catalysts due to its high dispersion, suitable reduction behavior, largest amount of acid sites, optimal NOx adsorption capacity, and abundant Mn4+ content.

  19. Design of graphene sheets-supported Pt catalyst layer in PEM fuel cells

    SciTech Connect

    Park, Seh K.; Shao, Yuyan; Wan, Haiying; Rieke, Peter C.; Viswanathan, Vilayanur V.; Towne, Silas A.; Saraf, Laxmikant V.; Liu, Jun; Lin, Yuehe; Wang, Yong

    2011-03-01

    A series of cathodes using Pt supported onto graphene sheets with different contents of carbon black in the catalyst layer were prepared and characterized. Carbon black was added as a spacer between two-dimensional graphene sheets in the catalyst layer to study its effect on the performances of proton exchange membrane fuel cell. Electrochemical properties and surface morphology of the cathodes with and without carbon black were characterized using cyclic voltammetry, ac-impedance spectroscopy, electrochemical polarization technique, and scanning electron microscopy. The results indicated that carbon black effectively modifies the array of graphene supports, resulting in more Pt nanoparticles available for electrochemical reaction and better mass transport in the catalyst layer.

  20. Wetting behavior and activity of catalyst supports in carbon nanotube carpet growth

    NASA Astrophysics Data System (ADS)

    Amama, Placidus B.; Putnam, Shawn A.; Barron, Andrew R.; Maruyama, Benji

    2013-03-01

    A simple, reliable, and non-destructive approach based on contact angle measurements is described for predicting the activity of catalyst supports in carbon nanotube (CNT) carpet growth. The basic component of the surface free energy of different alumina supports - determined from the van Oss-Good-Chaudhury model and the Young-Dupré equation - was found to correlate with the activity of Fe catalyst during water-assisted CVD growth of CNT carpets.

  1. New approach on the catalytic oxidation of methanol to formaldehyde over MoO3 supported on nano hydroxyapatite catalysts

    NASA Astrophysics Data System (ADS)

    Said, A. A.; Abd El-Wahab, M. M.; Alian, A. M.

    2014-08-01

    Molybdenum oxide (20 wt. %) supported on nano hydroxyapatite mixed was prepared by impregnation method and calcinated at 400° 500° 600° and 700°C in static air atmosphere. The catalysts were characterized by thermogravimetry (TG), differential thermal analysis (DTA), X-ray diffraction (XRD), Transmission Electron Microscope (TEM) and nitrogen sorption measurements. The gas-phase oxidation of methanol to formaldehyde was carried out in a conventional fixed flow bed reactor. The obtained results clearly revealed that the formation of CaMoO4 spinel nano particles was active and selective catalyst towards the formation of formaldehyde. The maximum yield of formaldehyde was 97% on the catalyst calcined at 400 ° C. Moreover, the yield of formaldehyde was found unaffected by increasing the calcination temperature up to 700° C.

  2. Supported transition-metal oxide catalysts for reduction of sulfur dioxide with hydrogen to elemental sulfur.

    PubMed

    Chen, Chun-Liang; Wang, Ching-Huei; Weng, Hung-Shan

    2004-08-01

    This work is for the purpose to find a high performance catalyst for the catalytic reduction of SO2 with H2 as a reducing agent. NiO/gamma-Al2O3 catalyst was found to be the most active catalyst among the seven gamma-Al2O3-supported metal-oxide catalysts tested. With NiO as the active species, of the supports tested, gamma-Al2O3 was the most suitable one and the optimal Ni content was 16 wt%. Using this NiO/gamma-Al2O3 catalyst, we found that the optimal feed ratio of H2/SO2 is 2:1 and the catalyst presulfided with H2 + H2S exhibits a higher performance than that pretreated with H2 or He. XRD patterns reveal that the nickel oxide experienced a transformation to Ni3S2 and NiS, and then to NiS2, the most active nickel sulfide, during the reaction process. The reason for the highest catalyst activity of 16 wt% Ni was attributed to the largest amount of NiS2. Water vapor in the feed gas reactant caused inhibition of catalyst activity, whereas H2S promoted the reduction of SO2. These phenomena were rationalized with the aid of Claus reaction.

  3. Particle size, precursor, and support effects in the hydrogenolysis of alkanes over supported rhodium catalysts

    SciTech Connect

    Coq, B.; Dutartre, R.; Figueras, F.; Tazi, T. )

    1990-04-01

    A series of Rh catalysts of widely varying dispersion has been prepared using {gamma}-alumina as support and Rh acetylacetonate (Rh(acac){sub 3}) as precursor. The hydrogenolyses of n-hexane (nH), methylcyclopentane (MCP), and 2,2,3,3-tetramethylbutane (TeMB) were investigated as model reactions. Clear dependence of turnover frequency on Rh particle size is observed for nH and MCP hydrogenolysis, but only slight changes of selectivities occur with these alkanes. By contrast, large modifications of both specific activity and selectivity appear when TeMB is reacted. TeMB hydrogenolysis is thus a reliable tool for studying modifications of the surface structure of rhodium particles. This probe was used to investigate the effects of precursor and support on rhodium catalysts. The effect of chlorine is appreciable and shifts the selectivity of TeMB hydrogenolysis toward that of large particles. This is attributed to a different morphology of the rhodium particles. When the effect of dispersion of the metal is taken into account, no support effect is observed when SiO{sub 2} or ZrO{sub 2} is used as support. The different properties of rhodium on MgO can also be attributed to a different morphology of the particles. For Rh/TiO{sub 2} prepared from RhCl{sub 3} {center dot} 3H{sub 2}O, the catalytic properties are similar to those of Rh/Al{sub 2}O{sub 3} of moderate dispersion whatever temperature is used for reduction. Rh/TiO{sub 2} prepared from Rh(acac){sub 3} and reduced at 573 and 773 K simulates the catalytic properties of particles smaller than indeed observed. This effect can be interpreted by a partial coverage of the Rh surface by TiO{sub x} species (SMSI). This SMSI effect disappears upon reduction at 873 K.

  4. Nanoparticle-supported and magnetically recoverable palladium (Pd) catalyst: a selective and sustainable oxidation protocol with high turnover number

    EPA Science Inventory

    A magnetic nanoparticle-supported ruthenium hydroxide catalyst was readily prepared from inexpensive starting materials and shown to catalyze hydration of nitriles with excellent yield in benign aqueous medium. Catalyst recovery using an external magnetic field, superior activity...

  5. Nanoparticle-supported and magnetically recoverable palladium (Pd) catalyst: a selective and sustainable oxidation protocol with high turnover number

    EPA Science Inventory

    A magnetic nanoparticle-supported ruthenium hydroxide catalyst was readily prepared from inexpensive starting materials and shown to catalyze hydration of nitriles with excellent yield in benign aqueous medium. Catalyst recovery using an external magnetic field, superior activity...

  6. Carbon nanocages: a new support material for Pt catalyst with remarkably high durability.

    PubMed

    Wang, Xiao Xia; Tan, Zhe Hua; Zeng, Min; Wang, Jian Nong

    2014-03-24

    Low durability is the major challenge hindering the large-scale implementation of proton exchange membrane fuel cell (PEMFC) technology, and corrosion of carbon support materials of current catalysts is the main cause. Here, we describe the finding of remarkably high durability with the use of a novel support material. This material is based on hollow carbon nanocages developed with a high degree of graphitization and concurrent nitrogen doping for oxidation resistance enhancement, uniform deposition of fine Pt particles, and strong Pt-support interaction. Accelerated degradation testing shows that such designed catalyst possesses a superior electrochemical activity and long-term stability for both hydrogen oxidation and oxygen reduction relative to industry benchmarks of current catalysts. Further testing under conditions of practical fuel cell operation reveals almost no degradation over long-term cycling. Such a catalyst of high activity, particularly, high durability, opens the door for the next-generation PEMFC for "real world" application.

  7. Carbon nanocages: A new support material for Pt catalyst with remarkably high durability

    PubMed Central

    Wang, Xiao Xia; Tan, Zhe Hua; Zeng, Min; Wang, Jian Nong

    2014-01-01

    Low durability is the major challenge hindering the large-scale implementation of proton exchange membrane fuel cell (PEMFC) technology, and corrosion of carbon support materials of current catalysts is the main cause. Here, we describe the finding of remarkably high durability with the use of a novel support material. This material is based on hollow carbon nanocages developed with a high degree of graphitization and concurrent nitrogen doping for oxidation resistance enhancement, uniform deposition of fine Pt particles, and strong Pt-support interaction. Accelerated degradation testing shows that such designed catalyst possesses a superior electrochemical activity and long-term stability for both hydrogen oxidation and oxygen reduction relative to industry benchmarks of current catalysts. Further testing under conditions of practical fuel cell operation reveals almost no degradation over long-term cycling. Such a catalyst of high activity, particularly, high durability, opens the door for the next-generation PEMFC for “real world” application. PMID:24658614

  8. Carbon nanocages: A new support material for Pt catalyst with remarkably high durability

    NASA Astrophysics Data System (ADS)

    Wang, Xiao Xia; Tan, Zhe Hua; Zeng, Min; Wang, Jian Nong

    2014-03-01

    Low durability is the major challenge hindering the large-scale implementation of proton exchange membrane fuel cell (PEMFC) technology, and corrosion of carbon support materials of current catalysts is the main cause. Here, we describe the finding of remarkably high durability with the use of a novel support material. This material is based on hollow carbon nanocages developed with a high degree of graphitization and concurrent nitrogen doping for oxidation resistance enhancement, uniform deposition of fine Pt particles, and strong Pt-support interaction. Accelerated degradation testing shows that such designed catalyst possesses a superior electrochemical activity and long-term stability for both hydrogen oxidation and oxygen reduction relative to industry benchmarks of current catalysts. Further testing under conditions of practical fuel cell operation reveals almost no degradation over long-term cycling. Such a catalyst of high activity, particularly, high durability, opens the door for the next-generation PEMFC for ``real world'' application.

  9. Effect of Support on the Activity of Ag-based Catalysts for Formaldehyde Oxidation

    PubMed Central

    Zhang, Jianghao; Li, Yaobin; Zhang, Yan; Chen, Min; Wang, Lian; Zhang, Changbin; He, Hong

    2015-01-01

    Ag-based catalysts with different supports (TiO2, Al2O3 and CeO2) were prepared by impregnation method and subsequently tested for the catalytic oxidation of formaldehyde (HCHO) at low temperature. The Ag/TiO2 catalyst showed the distinctive catalytic performance, achieving the complete HCHO conversion at around 95 °C. In contrast, the Ag/Al2O3 and Ag/CeO2 catalysts displayed much lower activity and the 100% conversion was reached at 110 °C and higher than 125 °C, respectively. The Ag-based catalysts were next characterized by several methods. The characterization results revealed that supports have the dramatic influence on the Ag particle sizes and dispersion. Kinetic tests showed that the Ag based catalyst on the TiO2, Al2O3 or CeO2 supports have the similar apparent activation energy of 65 kJ mol−1, indicating that the catalytic mechanism keep immutability over these three catalysts. Therefore, Ag particle size and dispersion was confirmed to be the main factor affecting the catalytic performance for HCHO oxidation. The Ag/TiO2 catalyst has the highest Ag dispersion and the smallest Ag particle size, accordingly presenting the best catalytic performance for HCHO oxidation. PMID:26263506

  10. Alumina-supported noble metal catalysts for destructive oxidation of organic pollutants in effluent from a softwood kraft pulp mill

    SciTech Connect

    Zhang, Q.; Chuang, K.T.

    1998-08-01

    The effectiveness of alumina-supported noble metal catalysts for the destructive oxidation of organic pollutants in effluent from a softwood kraft pulp mill was evaluated in a slurry reactor at 463 K and an oxygen pressure of 1.5 MPa. The effects of catalyst preparation procedures, such as metal loading, calcination, or reduction treatment on the catalytic activities, were also tested. Alumina-supported palladium catalysts were found to be more effective than supported manganese, iron, or platinum catalysts. The rate of oxidation over Pd/alumina catalyst was significantly higher than that of the uncatalyzed reaction. Adding Ce on the alumina support was found to promote the activity of alumina-supported Pt catalyst but inhibit the activity of alumina-supported Pd catalyst. The reaction mechanisms for the catalytic wet oxidation process and the roles of Ce on catalytic activity for destructive oxidation of organic pollutants in wastewater are discussed.

  11. Optimum Ni composition in sulfided Ni-Mo hydrodesulfurization catalysts: Effect of the support

    SciTech Connect

    Laine, J.; Severino, F.; Labady, M. )

    1994-05-01

    A synergistic effect of the support in Ni-Mo hydrodesulfurization (HDS) catalysts has been recently proposed, suggesting that in the case of a carbon support, this functions in conjunction with molybdenum sulfide to promote the exposure of nickel active centers. This effect is a possible explanation for the higher HDS activity of carbon-supported catalysts with respect to conventional catalysts reported earlier; however, there are insufficient clues as to which carbon characteristics are involved in the activity promotion. Taking into account that a variety of different supports have been studied for HDS catalysts in the past, e.g., alumina, silica, titania, zeolites, and carbon, it is interesting to investigate how the intrinsic activity can be affected by the differences in the nature of the support, especially whether the presence of a particular active phase or structure could be promoted by choosing an appropriate support. In this communication, the authors present evidence suggesting that two different active Ni-Mo sulfide structures can exist in HDS catalysts, the presence of either one being possibly determined by the nature of the support employed. In addition, the study focusses on the possible properties of carbon supports that may be responsible for the higher activity referred to above. 10 refs., 3 figs., 1 tab.

  12. Conversion of biomass-derived sorbitol to glycols over carbon-materials supported Ru-based catalysts

    PubMed Central

    Guo, Xingcui; Guan, Jing; Li, Bin; Wang, Xicheng; Mu, Xindong; Liu, Huizhou

    2015-01-01

    Ruthenium (Ru) supported on activated carbon (AC) and carbon nanotubes (CNTs) was carried out in the hydrogenolysis of sorbitol to ethylene glycol (EG) and 1,2-propanediol (1,2-PD) under the promotion of tungsten (WOx) species and different bases. Their catalytic activities and glycols selectivities strongly depended on the support properties and location of Ru on CNTs, owning to the altered metal-support interactions and electronic state of ruthenium. Ru located outside of the tubes showed excellent catalytic performance than those encapsulated inside the nanotubes. Additionally, the introduction of WOx into Ru/CNTs significantly improved the hydrogenolysis activities, and a complete conversion of sorbitol with up to 60.2% 1,2-PD and EG yields was obtained on RuWOx/CNTs catalyst upon addition of Ca(OH)2. Stability study showed that this catalyst was highly stable against leaching and poisoning and could be recycled several times. PMID:26578426

  13. Conversion of biomass-derived sorbitol to glycols over carbon-materials supported Ru-based catalysts

    NASA Astrophysics Data System (ADS)

    Guo, Xingcui; Guan, Jing; Li, Bin; Wang, Xicheng; Mu, Xindong; Liu, Huizhou

    2015-11-01

    Ruthenium (Ru) supported on activated carbon (AC) and carbon nanotubes (CNTs) was carried out in the hydrogenolysis of sorbitol to ethylene glycol (EG) and 1,2-propanediol (1,2-PD) under the promotion of tungsten (WOx) species and different bases. Their catalytic activities and glycols selectivities strongly depended on the support properties and location of Ru on CNTs, owning to the altered metal-support interactions and electronic state of ruthenium. Ru located outside of the tubes showed excellent catalytic performance than those encapsulated inside the nanotubes. Additionally, the introduction of WOx into Ru/CNTs significantly improved the hydrogenolysis activities, and a complete conversion of sorbitol with up to 60.2% 1,2-PD and EG yields was obtained on RuWOx/CNTs catalyst upon addition of Ca(OH)2. Stability study showed that this catalyst was highly stable against leaching and poisoning and could be recycled several times.

  14. Supported Molecular Catalysts: Synthesis, In-Situ Characterization and Performance

    SciTech Connect

    Davis, Mark E.

    2009-03-13

    The objectives of our work are: (i) to create solid catalysts with active sites that can function in a cooperative manner to enhance reactivity and selectivity, and (ii) to prepare solid catalysts that can perform multiple reactions in a network that in some cases would not be possible in solution due to the incompatibilities of the various catalytic entities (for example an acid and a base). We carried out extensive reactions to test the nature of the cooperative effect caused by thiol/sulfonic acid interactions. The acid/thiol combination provided an example where the two organic groups should be positioned as close to one another as possible. We also studied a system where this is not possible (acid-base). We investigated simultaneously incorporating acid and base groups into the same material. For the case of acid and bases, there is an optimal separation distance (too close allows for neutralization while too far eliminates any cooperative behavior).

  15. Methanol-Tolerant Platinum-Palladium Catalyst Supported on Nitrogen-Doped Carbon Nanofiber for High Concentration Direct Methanol Fuel Cells

    PubMed Central

    Kim, Jiyoung; Jang, Jin-Sung; Peck, Dong-Hyun; Lee, Byungrok; Yoon, Seong-Ho; Jung, Doo-Hwan

    2016-01-01

    Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF) was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC). The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR) activities and the electrochemical double layer compared with common carbon black (CB). To attain the competitive oxygen reduction reaction activity with methanol tolerance, the Pt and Pd metals were supported on the CB or the N-CNF. The physical and electrochemical characteristics of the N-CNF–supported Pt-Pd catalyst were examined and compared with catalyst supported on the CB. In addition, DMFC single cells using these catalysts as the cathode electrode were applied to obtain I-V polarization curves and constant current operating performances with high-concentration methanol as the fuel. Pt-Pd catalysts had obvious ORR activity even in the presence of methanol. The higher power density was obtained at all the methanol concentrations when it applied to the membrane electrode assembly (MEA) of the DMFC. When the N-CNF is used as the catalyst support material, a better performance with high-concentration methanol is expected. PMID:28335275

  16. Methanol-Tolerant Platinum-Palladium Catalyst Supported on Nitrogen-Doped Carbon Nanofiber for High Concentration Direct Methanol Fuel Cells.

    PubMed

    Kim, Jiyoung; Jang, Jin-Sung; Peck, Dong-Hyun; Lee, Byungrok; Yoon, Seong-Ho; Jung, Doo-Hwan

    2016-08-15

    Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF) was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC). The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR) activities and the electrochemical double layer compared with common carbon black (CB). To attain the competitive oxygen reduction reaction activity with methanol tolerance, the Pt and Pd metals were supported on the CB or the N-CNF. The physical and electrochemical characteristics of the N-CNF-supported Pt-Pd catalyst were examined and compared with catalyst supported on the CB. In addition, DMFC single cells using these catalysts as the cathode electrode were applied to obtain I-V polarization curves and constant current operating performances with high-concentration methanol as the fuel. Pt-Pd catalysts had obvious ORR activity even in the presence of methanol. The higher power density was obtained at all the methanol concentrations when it applied to the membrane electrode assembly (MEA) of the DMFC. When the N-CNF is used as the catalyst support material, a better performance with high-concentration methanol is expected.

  17. Enhanced Fuel Cell Catalyst Durability with Nitrogen Modified Carbon Supports

    DTIC Science & Technology

    2013-02-12

    materials. enrichment in ruthenium with the N-modified samples as compared to the non-implanted commercial and in-house sputtered samples. Over- all we...found a major difference between commercial and sputtered samples with respect to their ruthenium compositions with the results summarized in Table I. In...commercial catalysts, surface ruthenium is distributed between metallic ruthenium (Ru(0), Ru(II), Ru(IV), ruthe- nium oxide RuO2 and hydrous ruthenium

  18. Vapor Phase Dehydration of Glycerol to Acrolein Over SBA-15 Supported Vanadium Substituted Phosphomolybdic Acid Catalyst.

    PubMed

    Viswanadham, Balaga; Srikanth, Amirineni; Kumar, Vanama Pavan; Chary, Komandur V R

    2015-07-01

    Vapor phase dehydration of glycerol to acrolein was investigated over heteropolyacid (HPA) catalysts containing vanadium substituted phosphomolybdic acid (H4PMo11VO40) supported on mesoporous SBA-15. A series of HPA catalysts with HPA loadings varying from 10-50 wt% were prepared by impregnation method on SBA-15 support. The catalysts were characterized by X-ray diffraction, Raman spectroscopy, Fourier Transform infrared spectroscopy, temperature-programmed desorption of NH3, pyridine adsorbed FT-IR spectroscopy, scanning electron microscopy, pore size distribution and specific surface area measurements. The nature of acidic sites was examined by pyridine adsorbed FT-IR spectroscopy. XRD results suggest that the active phase containing HPA was highly dispersed at lower loadings on the support. FT-IR and Raman spectra results confirm that the presence of primary Keggin ion structure of HPA on the support and it was not affected during the preparation of catalysts. Pore size distribution results reveal that all the samples show unimodel pore size distribution with well depicted mesoporous structure. NH3-TPD results suggest that the acidity of catalysts increased with increase of HPA loading. The findings of acidity measurements by FT-IR spectra of pyridine adsorption reveals that the catalysts consist both the Brønsted and Lewis acidic sites and the amount of Brønsted acidic sites are increasing with HPA loading. SBA-15 supported vanadium substituted phosphomolybdic acid catalysts are found to be highly active during the dehydration reaction and exhibited 100% conversion of glycerol (10 wt% of glycerol) and the acrolein selectivity was appreciably changed with HPA active phase loading. The catalytic functionalities during glycerol dehydration are well correlated with surface acidity of the catalysts.

  19. Fischer–Tropsch Synthesis: Effect of Reducing Agent for Aqueous-Phase Synthesis Over Ru Nanoparticle and Supported Ru Catalysts

    SciTech Connect

    Pendyala, Venkat Ramana Rao; Shafer, Wilson D.; Jacobs, Gary; Graham, Uschi M.; Khalid, Syed; Davis, Burtron H.

    2014-12-27

    The effect of the reducing agent on the performance of a ruthenium nanoparticle catalyst was investigated during aqueous-phase Fischer–Tropsch synthesis using a 1 L stirred tank reactor in the batch mode of operation. For the purpose of comparison, the activity and selectivity of NaY zeolite supported Ru catalyst were also studied. NaBH4 and hydrogen were used as reducing agents in our study, and hydrogen reduced catalysts exhibited higher activities than the NaBH4 reduced catalysts, because of higher extent of reduction and a relatively lower tendency toward agglomeration of Ru particles. The Ru nanoparticle catalyst displayed higher activities than the NaY zeolite supported Ru catalyst for both reducing agents. NaBH4 reduced catalysts are less active and the carbon dioxide selectivity is higher than the hydrogen reduced catalysts. The activity of the supported Ru catalyst (Ru/NaY) was 75 % of that of the Ru nanoparticle catalyst, and has the benefit of easy wax/catalyst slurry separation by filtration. Finally, the hydrogen reduced supported Ru catalyst exhibited superior selectivity towards hydrocarbons (higher C5+ selectivity and lower selectivity to methane) than all other catalysts tested.

  20. Development of catalytically active and highly stable catalyst supports for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kim, Taekeun; Xie, Tianyuan; Jung, Wonsuk; Gadala-Maria, Francis; Ganesan, Prabhu; Popov, Branko N.

    2015-01-01

    Novel procedures are developed for the synthesis of highly stable carbon composite catalyst supports (CCCS-800 °C and CCCS-1100 °C) and an activated carbon composite catalyst support (A-CCCS). These supports are synthesized through: (i) surface modification with acids and inclusion of oxygen groups, (ii) metal-catalyzed pyrolysis, and (iii) chemical leaching to remove excess metal used to dope the support. The procedure results in increasing carbon graphitization and inclusion of non-metallic active sites on the support surface. Catalytic activity of CCCS indicates an onset potential of 0.86 V for the oxygen reduction reaction (ORR) with well-defined kinetic and mass-transfer regions and ∼2.5% H2O2 production in rotating ring disk electrode (RRDE) studies. Support stability studies at 1.2 V constant potential holding for 400 h indicate high stability for the 30% Pt/A-CCCS catalyst with a cell potential loss of 27 mV at 800 mA cm-2 under H2-air, 32% mass activity loss, and 30% ECSA loss. Performance evaluation in polymer electrolyte membrane (PEM) fuel cell shows power densities (rated) of 0.18 and 0.23 gPt kW-1 for the 30% Pt/A-CCCS and 30% Pt/CCCS-800 °C catalysts, respectively. The stabilities of various supports developed in this study are compared with those of a commercial Pt/C catalyst.

  1. Evaluation of photocatalytic activities of supported catalysts on NaX zeolite or activated charcoal.

    PubMed

    de Brites-Nóbrega, Fernanda F; Polo, Aldino N B; Benedetti, Angélica M; Leão, Mônica M D; Slusarski-Santana, Veronice; Fernandes-Machado, Nádia R C

    2013-12-15

    This study aimed to evaluate the photocatalytic activity of ZnO and Nb2O5 catalysts, both supported on NaX zeolite and activated charcoal (AC). The synergistic effect between oxide and support and the influence of solution pH (3, 7 and 9) on photocatalytic degradation of reactive blue 5G (C.I. 222) were analyzed. The catalysts Nb2O5/NaX, Nb2O5/AC and ZnO/NaX, ZnO/AC with 5 and 10% (wt%) were prepared by wet impregnation. The results showed that the catalysts exhibit quite different structural and textural properties. The synergic effect between ZnO and NaX support was higher than that with the activated charcoal, showing that these catalysts were more efficient. The most photoactive catalyst was 10% ZnO/NaX which showed 100% discoloration of the dye solution at pH 3, 7 and 9 after 0.5, 5 and 2h of irradiation, respectively. The hydrolytic nature of zeolite favored the formation of surface hydroxyl radicals, which increased the activity of the photocatalyst. Thus, catalysts supported on NaX zeolite are promising for use in photocatalysis.

  2. Enhanced Activity of Supported Ni Catalysts Promoted by Pt for Rapid Reduction of Aromatic Nitro Compounds

    PubMed Central

    Shang, Huishan; Pan, Kecheng; Zhang, Lu; Zhang, Bing; Xiang, Xu

    2016-01-01

    To improve the activities of non-noble metal catalysts is highly desirable and valuable to the reduced use of noble metal resources. In this work, the supported nickel (Ni) and nickel-platinum (NiPt) nanocatalysts were derived from a layered double hydroxide/carbon composite precursor. The catalysts were characterized and the role of Pt was analysed using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDS) mapping, and X-ray photoelectron spectroscopy (XPS) techniques. The Ni2+ was reduced to metallic Ni0 via a self-reduction way utilizing the carbon as a reducing agent. The average sizes of the Ni particles in the NiPt catalysts were smaller than that in the supported Ni catalyst. The electronic structure of Ni was affected by the incorporation of Pt. The optimal NiPt catalysts exhibited remarkably improved activity toward the reduction of nitrophenol, which has an apparent rate constant (Ka) of 18.82 × 10−3 s−1, 6.2 times larger than that of Ni catalyst and also larger than most of the reported values of noble-metal and bimetallic catalysts. The enhanced activity could be ascribed to the modification to the electronic structure of Ni by Pt and the effect of exposed crystal planes. PMID:28335231

  3. Enhanced Activity of Supported Ni Catalysts Promoted by Pt for Rapid Reduction of Aromatic Nitro Compounds.

    PubMed

    Shang, Huishan; Pan, Kecheng; Zhang, Lu; Zhang, Bing; Xiang, Xu

    2016-06-04

    To improve the activities of non-noble metal catalysts is highly desirable and valuable to the reduced use of noble metal resources. In this work, the supported nickel (Ni) and nickel-platinum (NiPt) nanocatalysts were derived from a layered double hydroxide/carbon composite precursor. The catalysts were characterized and the role of Pt was analysed using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDS) mapping, and X-ray photoelectron spectroscopy (XPS) techniques. The Ni(2+) was reduced to metallic Ni⁰ via a self-reduction way utilizing the carbon as a reducing agent. The average sizes of the Ni particles in the NiPt catalysts were smaller than that in the supported Ni catalyst. The electronic structure of Ni was affected by the incorporation of Pt. The optimal NiPt catalysts exhibited remarkably improved activity toward the reduction of nitrophenol, which has an apparent rate constant (Ka) of 18.82 × 10(-3) s(-1), 6.2 times larger than that of Ni catalyst and also larger than most of the reported values of noble-metal and bimetallic catalysts. The enhanced activity could be ascribed to the modification to the electronic structure of Ni by Pt and the effect of exposed crystal planes.

  4. Catalytic performance of activated carbon supported cobalt catalyst for CO2 reforming of CH4.

    PubMed

    Zhang, Guojie; Su, Aiting; Du, Yannian; Qu, Jiangwen; Xu, Ying

    2014-11-01

    Syngas production by CO2 reforming of CH4 in a fixed bed reactor was investigated over a series of activated carbon (AC) supported Co catalysts as a function of Co loading (between 15 and 30wt.%) and calcination temperature (Tc=300, 400 or 500°C). The catalytic performance was assessed through CH4 and CO2 conversions and long-term stability. XRD and SEM were used to characterize the catalysts. It was found that the stability of Co/AC catalysts was strongly dependent on the Co loading and calcination temperature. For the loadings (25wt.% for Tc=300°C), stable activities have been achieved. The loading of excess Co (>wt.% 25) causes negative effects not only on the performance of the catalysts but also on the support surface properties. In addition, the experiment showed that ultrasound can enhance and promote dispersion of the active metal on the carrier, thus improving the catalytic performance of the catalyst. The catalyst activity can be long-term stably maintained, and no obvious deactivation has been observed in the first 2700min. After analyzing the characteristics, a reaction mechanism for CO2 reforming of CH4 over Co/AC catalyst was proposed. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Chemical Synthesis and Characterization of Carbon Supported Palladium Electro-Catalysts

    NASA Astrophysics Data System (ADS)

    Acosta, J. J.; Favilla, P. C.; Collet-Lacoste, J. R.

    The aim of this work is to present the results obtained for the synthesis of Pd NPs by the modified-polyol method with Vulcan XC-72R as support. Two different ways were used to synthesize catalysts: (a) Maintaining the initial pH of the synthesis equal to 12 and changing the initial concentration of the precursor to obtain an overall 10 wt.% nominal Pd load; (b) Fixing the initial concentration of the precursor at 2mM whilst changing the initial pH of the synthesis at different values to obtain an overall 10wt.% nominal Pd load. Catalysts were characterized using X-ray diffraction (XRD), Transmission electron microscopy (HRTEM, TEM, STEM) and cyclic voltammetry (CV). This work shows that the density of NPs generated during the nucleation process is a consequence of the fluctuation of the concentration. The standard deviation of the diameters varied linearly with the mean volume for values between 0.5mM and 6mM, demonstrating that there was a clear separation between nucleation and growth processes. The final mean diameter strongly depends on the initial pH of the synthesis for the same initial concentration of the precursor; mean diameters are smaller for basic media. The analysis of the voltammograms allowed the determination of the coverage fraction of oxygen on Pd, obtaining a value of 0.51 with a structure type c(2×2). The coverage value found for CO is 0.71 with a structure type p(2×2)-3CO.

  6. Electrochemical dopamine sensor based on P-doped graphene: Highly active metal-free catalyst and metal catalyst support.

    PubMed

    Chu, Ke; Wang, Fan; Zhao, Xiao-Lin; Wang, Xin-Wei; Tian, Ye

    2017-12-01

    Heteroatom doping is an effective strategy to enhance the catalytic activity of graphene and its hybrid materials. Despite a growing interest of P-doped graphene (P-G) in energy storage/generation applications, P-G has rarely been investigated for electrochemical sensing. Herein, we reported the employment of P-G as both metal-free catalyst and metal catalyst support for electrochemical detection of dopamine (DA). As a metal-free catalyst, P-G exhibited prominent DA sensing performances due to the important role of P doping in improving the electrocatalytic activity of graphene toward DA oxidation. Furthermore, P-G could be an efficient supporting material for loading Au nanoparticles, and resulting Au/P-G hybrid showed a dramatically enhanced electrocatalytic activity and extraordinary sensing performances with a wide linear range of 0.1-180μM and a low detection limit of 0.002μM. All these results demonstrated that P-G might be a very promising electrode material for electrochemical sensor applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Support shape effect in metal oxide catalysis: ceria nanoshapes supported vanadia catalysts for oxidative dehydrogenation of iso-butane

    SciTech Connect

    Wu, Zili; Schwartz, Viviane; Li, Meijun; Rondinone, Adam Justin; Overbury, Steven {Steve} H

    2012-01-01

    The activation energy of VOx/CeO2 catalysts in oxidative dehydrogenation of iso-butane was found dependent on the shape of ceria support: rods < octahedra, closely related to the surface oxygen vacancy formation energy and defects amount of the two ceria supports with different crystallographic surface planes.

  8. Nafion induced surface confinement of oxygen in carbon-supported oxygen reduction catalysts

    SciTech Connect

    Chlistunoff, Jerzy; Sansinena, Jose -Maria

    2016-11-17

    We studied the surface confinement of oxygen inside layers of Nafion self-assembled on carbon-supported oxygen reduction reaction (ORR) catalysts. It is demonstrated that oxygen accumulates in the hydrophobic component of the polymer remaining in contact with the carbon surface. Furthermore, the amount of surface confined oxygen increases with the degree of carbon surface graphitization, which promotes the self-assembly of the polymer. Planar macrocyclic ORR catalysts possessing a delocalized system of π electrons such as Co and Fe porphyrins and phthalocyanines have virtually no effect on the surface confinement of oxygen, in accordance with their structural similarity to graphitic carbon surfaces where they adsorb. Platinum particles in carbon-supported ORR catalysts with high metal contents (20%) disrupt the self-assembly of Nafion and virtually eliminate the oxygen confinement, but the phenomenon is still observed for low Pt loading (4.8%) catalysts.

  9. Nafion induced surface confinement of oxygen in carbon-supported oxygen reduction catalysts

    DOE PAGES

    Chlistunoff, Jerzy; Sansinena, Jose -Maria

    2016-11-17

    We studied the surface confinement of oxygen inside layers of Nafion self-assembled on carbon-supported oxygen reduction reaction (ORR) catalysts. It is demonstrated that oxygen accumulates in the hydrophobic component of the polymer remaining in contact with the carbon surface. Furthermore, the amount of surface confined oxygen increases with the degree of carbon surface graphitization, which promotes the self-assembly of the polymer. Planar macrocyclic ORR catalysts possessing a delocalized system of π electrons such as Co and Fe porphyrins and phthalocyanines have virtually no effect on the surface confinement of oxygen, in accordance with their structural similarity to graphitic carbon surfacesmore » where they adsorb. Platinum particles in carbon-supported ORR catalysts with high metal contents (20%) disrupt the self-assembly of Nafion and virtually eliminate the oxygen confinement, but the phenomenon is still observed for low Pt loading (4.8%) catalysts.« less

  10. Supercritical water gasification of microalga Nannochloropsis over supported Ni and Ru catalysts

    NASA Astrophysics Data System (ADS)

    Wijenayake, A. G. B. S. P.; Hassan, M.; Komiyama, M.

    2016-11-01

    Supercritical water gasification (SCWG) of a marine microalga Nannochloropsis was performed in the presence and the absence of supported Ru and Ni catalysts at 385 °C and 26 MPa using a batch reactor. The product gas of the non-catalytic reaction mainly comprised of CO2 while that of catalytic reaction produced CH4, CO2, H2 and some C2-C4 compounds. The addition of catalysts enhanced the decomposition and conversion (water-gas shift and methanation) reactions, consequently increasing the total gasification efficiency up to 92% for 60 min reaction time. Between the supported Ru and Ni catalysts, Ru resulted in higher gasification efficiency than Ni. Catalyst deactivation during SCWG of Nannochloropsis was also examined.

  11. Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts.

    PubMed

    Cargnello, Matteo; Doan-Nguyen, Vicky V T; Gordon, Thomas R; Diaz, Rosa E; Stach, Eric A; Gorte, Raymond J; Fornasiero, Paolo; Murray, Christopher B

    2013-08-16

    Interactions between ceria (CeO2) and supported metals greatly enhance rates for a number of important reactions. However, direct relationships between structure and function in these catalysts have been difficult to extract because the samples studied either were heterogeneous or were model systems dissimilar to working catalysts. We report rate measurements on samples in which the length of the ceria-metal interface was tailored by the use of monodisperse nickel, palladium, and platinum nanocrystals. We found that carbon monoxide oxidation in ceria-based catalysts is greatly enhanced at the ceria-metal interface sites for a range of group VIII metal catalysts, clarifying the pivotal role played by the support.

  12. Control of Metal Nanocrystal Size Reveals Metal-Support Interface Role for Ceria Catalysts

    SciTech Connect

    Cargnello, M; Doan-Nguyen, VVT; Gordon, TR; Diaz, RE; Stach, EA; Gorte, RJ; Fornasiero, P; Murray, CB

    2013-08-15

    Interactions between ceria (CeO2) and supported metals greatly enhance rates for a number of important reactions. However, direct relationships between structure and function in these catalysts have been difficult to extract because the samples studied either were heterogeneous or were model systems dissimilar to working catalysts. We report rate measurements on samples in which the length of the ceria-metal interface was tailored by the use of monodisperse nickel, palladium, and platinum nanocrystals. We found that carbon monoxide oxidation in ceria-based catalysts is greatly enhanced at the ceria-metal interface sites for a range of group VIII metal catalysts, clarifying the pivotal role played by the support.

  13. Transition Metal Phosphide Nanoparticles Supported on SBA-15 as Highly Selective Hydrodeoxygenation Catalysts for the Production of Advanced Biofuels.

    PubMed

    Yang, Yongxing; Ochoa-Hernández, Cristina; de la Peña O'Shea, Víctor A; Pizarro, Patricia; Coronado, Juan M; Serrano, David P

    2015-09-01

    A series of catalysts constituted by nanoparticles of transition metal (M = Fe, Co, Ni and Mo) phosphides (TMP) dispersed on SBA-15 were synthesized by reduction of the corresponding metal phosphate precursors previously impregnated on the mesostructured support. All the samples contained a metal-loading of 20 wt% and with an initial M/P mole ratio of 1, and they were characterized by X-ray diffraction (XRD), N2 sorption, H2-TPR and transmission electron microscopy (TEM). Metal phosphide nanocatalysts were tested in a high pressure continuous flow reactor for the hydrodeoxygenation (HDO) of a methyl ester blend containing methyl oleate (C17H33-COO-CH3) as main component (70%). This mixture constitutes a convenient surrogate of triglycerides present in vegetable oils, and following catalytic hydrotreating yields mainly n-alkanes. The results of the catalytic assays indicate that Ni2P/SBA-15 catalyst presents the highest ester conversion, whereas the transformation rate is about 20% lower for MoP/SBA-15. In contrast, catalysts based on Fe and Co phosphides show a rather limited activity. Hydrocarbon distribution in the liquid product suggests that both hydrodeoxygenation and decarboxylation/decarbonylation reactions occur simultaneously over the different catalysts, although MoP/SBA-15 possess a selectivity towards hydrodeoxygenation exceeding 90%. Accordingly, the catalyst based on MoP affords the highest yield of n-octadecane, which is the preferred product in terms of carbon atom economy. Subsequently, in order to conjugate the advantages of both Ni and Mo phosphides, a series of catalysts containing variable proportions of both metals were prepared. The obtained results reveal that the mixed phosphides catalysts present a catalytic behavior intermediate between those of the monometallic phosphides. Accordingly, only marginal enhancement of the yield of n-octadecane is obtained for the catalysts with a Mo/Ni ratio of 3. Nevertheless, owing to this high selectivity

  14. Comparative Investigation of Benzene Steam Reforming over Spinel Supported Rh and Ir Catalysts

    SciTech Connect

    Mei, Donghai; Lebarbier, Vanessa M.; Rousseau, Roger; Glezakou, Vassiliki-Alexandra; Albrecht, Karl O.; Kovarik, Libor; Flake, Matt; Dagle, Robert A.

    2013-06-07

    In a combined experimental and first-principles density functional theory (DFT) study, benzene steam reforming (BSR) over MgAl2O4 supported Rh and Ir catalysts was investigated. Experimentally, it has been found that both highly dispersed Rh and Ir clusters (1-2 nm) on the MgAl2O4 spinel support are stable during the BSR in the temperature range of 700-850°C. Compared to the Ir/MgAl2O4 catalyst, the Rh/MgAl2O4 catalyst is more active with higher benzene turnover frequency and conversion. At typical steam conditions with the steam-to-carbon ratio > 12, the benzene conversion is only a weak function of the H2O concentration in the feed. This suggests that the initial benzene decomposition step rather than the benzene adsorption is most likely the rate-determined step in BSR over supported Rh and Ir catalysts. In order to understand the differences between the two catalysts, we followed with a comparative DFT study of initial benzene decomposition pathways over two representative model systems for each supported metal (Rh and Ir) catalysts. A periodic terrace (111) surface and an amorphous 50-atom metal cluster with a diameter of 1.0 nm were used to represent the two supported model catalysts under low and high dispersion conditions. Our DFT results show that the decreasing catalyst particle size enhances the benzene decomposition on supported Rh catalysts by lowering both C-C and C-H bond scission. The activation barriers of the C-C and the C-H bond scission decrease from 1.60 and 1.61 eV on the Rh(111) surface to 1.34 and 1.26 eV on the Rh50 cluster. For supported Ir catalysts, the decreasing particle size only affects the C-C scission. The activation barrier of the C-C scission of benzene decreases from 1.60 eV on the Ir(111) surface to 1.35 eV on the Ir50 cluster while the barriers of the C-H scission are practically the same. The experimentally measured higher BSR

  15. Catalytic Hydrotreatment of Humins in Mixtures of Formic Acid/2-Propanol with Supported Ruthenium Catalysts.

    PubMed

    Wang, Yuehu; Agarwal, Shilpa; Kloekhorst, Arjan; Heeres, Hero Jan

    2016-05-10

    The catalytic hydrotreatment of humins, which are the solid byproducts from the conversion of C6 sugars (glucose, fructose) into 5-hydroxymethylfurfural (HMF) and levulinic acid (LA), by using supported ruthenium catalysts has been investigated. Reactions were carried out in a batch setup at elevated temperatures (400 °C) by using a hydrogen donor (formic acid (FA) in isopropanol (IPA) or hydrogen gas), with humins obtained from d-glucose. Humin conversions of up to 69 % were achieved with Ru/C and FA, whereas the performance for Ru on alumina was slightly poorer (59 % humin conversion). Humin oils were characterized by using a range of analytical techniques (GC, GC-MS, GCxGC, gel permeation chromatography) and were shown to consist of monomers, mainly alkyl phenolics (>45 % based on compounds detectable by GC) and higher oligomers. A reaction network for the reaction is proposed based on structural proposals for humins and the main reaction products.

  16. Non-noble catalysts and catalyst supports for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Mcalister, A. J.

    1981-01-01

    Four different samples of the cubic alloys W sub x-1 Ti sub x C sub 1-y were prepared and found to be active and CO tolerant. When the activities of these cubic alloys were weighted by the reciprocal of the square of the W exchange, they displayed magnitudes and dependence on bulk C deficiency comparable to those of highly active forms of WC. It is concluded that they may offer important insight into the nature of the active sites on, and means for improving the performance of, W-C anode catalysts for use in phosphoric acid fuel cells.

  17. Non-noble catalysts and catalyst supports for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Mcalister, A. J.

    1980-01-01

    Tungsten carbide, which is known to be active for hydrogen oxidation and CO tolerant has a hexagonal structure. Titanium carbide is inactive and has a cubic structure. Four different samples of the cubic alloys Wx-1TixC were prepared and found to be active and CO tolerant. These alloys are of interest as possible phosphoric acid fuel cell catalysts. They also are of interest as opportunities to study the activity of W in a different crystalline environment and to correlate the activities of the surface sites with surface composition.

  18. Non-noble catalysts and catalyst supports for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Mcalister, A. J.

    1981-01-01

    Tungsten carbide, which is active for hydrogen oxidation, is CO tolerant and has a hexagonal structure is discussed. Titanium carbide is inactive and has a cubic structure. Four different samples of the cubic alloys W sub x-1Ti sub XC sub 1-y were found to be active and CO tolerant. When the activities of these cubic alloys are weighted by the reciprocal of the square to those of highly forms of WC. They offer important insight into the nature of the active sites on W-C anode catalysts for use in phosphoric acid fuel cells.

  19. Supported Molybdenum Catalysts for the Deoxydehydration of 1,4-Anhydroerythritol into 2,5-Dihydrofuran.

    PubMed

    Sandbrink, Lennart; Beckerle, Klaus; Meiners, Isabell; Liffmann, Rebecca; Rahimi, Khosrow; Okuda, Jun; Palkovits, Regina

    2017-02-06

    Efficient deoxygenation strategies are crucial for the valorization of renewable feedstocks. Deoxydehydration (DODH) enables the direct transformation of two adjacent hydroxyl groups into a double bond. Supported molybdenum-based catalysts were utilized for the first time in DODH. MoOx /TiO2 showed superior catalytic activity compared to common molybdenum salts. The catalyst efficiently converted 1,4-anhydroerythritol into 2,5-dihydrofuran in the presence of 3-octanol as reducing agent, showing high reproducibility and stability.

  20. Gallium-rich Pd-Ga phases as supported liquid metal catalysts

    NASA Astrophysics Data System (ADS)

    Taccardi, N.; Grabau, M.; Debuschewitz, J.; Distaso, M.; Brandl, M.; Hock, R.; Maier, F.; Papp, C.; Erhard, J.; Neiss, C.; Peukert, W.; Görling, A.; Steinrück, H.-P.; Wasserscheid, P.

    2017-09-01

    A strategy to develop improved catalysts is to create systems that merge the advantages of heterogeneous and molecular catalysis. One such system involves supported liquid-phase catalysts, which feature a molecularly defined, catalytically active liquid film/droplet layer adsorbed on a porous solid support. In the past decade, this concept has also been extended to supported ionic liquid-phase catalysts. Here we develop this idea further and describe supported catalytically active liquid metal solutions (SCALMS). We report a liquid mixture of gallium and palladium deposited on porous glass that forms an active catalyst for alkane dehydrogenation that is resistant to coke formation and is thus highly stable. X-ray diffraction and X-ray photoelectron spectroscopy, supported by theoretical calculations, confirm the liquid state of the catalytic phase under the reaction conditions. Unlike traditional heterogeneous catalysts, the supported liquid metal reported here is highly dynamic and catalysis does not proceed at the surface of the metal nanoparticles, but presumably at homogeneously distributed metal atoms at the surface of a liquid metallic phase.

  1. SUPPORTED LIQUID CATALYSTS FOR REMOVAL OF HIGH TEMPERATURE FUEL CELL CONTAMINANTS

    SciTech Connect

    Alan W. Weimer; Peter Czerpak; Patrick Hilbert

    2000-01-01

    A novel catalytic synthesis gas oxidation process using molten carbonate salts supported on compatible fluidized iron oxide particles (supported-liquid-phase-catalyst (SLPC) fluidized bed process) was investigated. This process combines the advantages of large scale fluidized bed processing with molten salt bath oxidation. Molten salt catalysts can be supported within porous fluidized particles in order to improve mass transfer rates between the liquid catalysts and the reactant gases. Synthesis gas can be oxidized at reduced temperatures resulting in low NO{sub x} formation while trace sulfides and halides are captured in-situ. Hence, catalytic oxidation of synthesis gas can be carried out simultaneously with hot gas cleanup. Such SLPC fluidized bed processes are affected by inter-particle liquid capillary forces that may lead to agglomeration and de-fluidization of the bed. An understanding of the origin and strength of these forces is needed so that they can be overcome in practice. Process design is based on thermodynamic free energy minimization calculations that indicate the suitability of eutectic Na{sub 2}CO{sub 3}/K{sub 2}CO{sub 3} mixtures for capturing trace impurities in-situ (< 1 ppm SO{sub x} released) while minimizing the formation of NO{sub x}(< 10 ppm). Iron oxide has been identified as a preferred support material since it is non-reactive with sodium, is inexpensive, has high density (i.e. inertia), and can be obtained in various particle sizes and porosities. Force balance modeling has been used to design a surrogate ambient temperature system that is hydrodynamically similar to the real system, thus allowing complementary investigation of the governing fluidization hydrodynamics. The primary objective of this research was to understand the origin of and to quantify the liquid capillary interparticle forces affecting the molten carbonate SLPC fluidized bed process. Substantial theoretical and experimental exploratory results indicate process

  2. Preparation of Supported Metal Catalysts by Atomic and Molecular Layer Deposition for Improved Catalytic Performance

    NASA Astrophysics Data System (ADS)

    Gould, Troy D.

    Creating catalysts with enhanced selectivity and activity requires precise control over particle shape, composition, and size. Here we report the use of atomic layer deposition (ALD) to synthesize supported Ni, Pt, and Ni-Pt catalysts in the size regime (< 3 nm) where nanoscale properties can have a dramatic effect on reaction activity and selectivity. This thesis presents the first ALD synthesis of non-noble metal nanoparticles by depositing Ni on Al2O3 with two half-reactions of Ni(Cp)2 and H2. By changing the number of ALD cycles, Ni weight loadings were varied from 4.7 wt% to 16.7 wt% and the average particle sizes ranged from 2.5 to 3.3 nm, which increased the selectivity for C 3H6 hydrogenolysis by an order of magnitude over a much larger Ni/Al2O3 catalyst. Pt particles were deposited by varying the number of ALD cycles and the reaction chemistry (H2 or O 2) to control the particle size from approximately 1 to 2 nm, which allowed lower-coordinated surface atoms to populate the particle surface. These Pt ALD catalysts demonstrated some of the highest oxidative dehydrogenation of propane selectivities (37%) of a Pt catalyst synthesized by a scalable technique. Dry reforming of methane (DRM) is a reaction of interest due to the recent increased recovery of natural gas, but this reaction is hindered from industrial implementation because the Ni catalysts are plagued by deactivation from sintering and coking. This work utilized Ni ALD and NiPt ALD catalysts for the DRM reaction. These catalysts did not form destructive carbon whiskers and had enhanced reaction rates due to increased bimetallic interaction. To further limit sintering, the Ni and NiPt ALD catalysts were coated with a porous alumina matrix by molecular layer deposition (MLD). The catalysts were evaluated for DRM at 973 K, and the MLD-coated Ni catalysts outperformed the uncoated Ni catalysts in either activity (with 5 MLD cycles) or stability (with 10 MLD cycles). In summary, this thesis developed a

  3. Oxidative homocoupling of alkynes using supported ionic liquid phase (SILP) catalysts--systematic investigation of the support influence.

    PubMed

    Szesni, Normen; Kaiser, Melanie; Putzien, Sophie; Fischer, Richard W

    2012-02-01

    Supported Ionic Liquid Phase (SILP) catalysts have been prepared by effective immobilization of [Cu(TMEDA)(OH)]Cl in a nano-metric film of an ionic liquid on various oxidic support materials. The catalysts were tested for the oxidative homocoupling of 1-alkynes to the corresponding diynes in in a combined high throughput and conventional batch reaction approach. Among the screened support materials silica based materials performed best. The results indicate that for the specific reaction the thickness of the ionic liquids layer and therefore the mobility of the homogeneous copper complex within the ionic liquid layer as deduced from solid state nmr measurements have major impact on the catalytic performance. The optimized catalysts could be recycled up to four times without any loss of activity.

  4. Selective hydrogenation of halogenated arenes using porous manganese oxide (OMS-2) and platinum supported OMS-2 catalysts.

    PubMed

    McManus, Iain J; Daly, Helen; Manyar, Haresh G; Taylor, S F Rebecca; Thompson, Jillian M; Hardacre, Christopher

    2016-07-04

    Porous manganese oxide (OMS-2) and platinum supported on OMS-2 catalysts have been shown to facilitate the hydrogenation of the nitro group in chloronitrobenzene to give chloroaniline with no dehalogenation. Complete conversion was obtained within 2 h at 25 °C and, although the rate of reaction increased with increasing temperature up to 100 °C, the selectivity to chloroaniline remained at 99.0%. Use of Pd/OMS-2 or Pt/Al2O3 resulted in significant dechlorination even at 25 °C and 2 bar hydrogen pressure giving a selectivity to chloroaniline of 34.5% and 77.8%, respectively, at complete conversion. This demonstrates the potential of using platinum group metal free catalysts for the selective hydrogenation of halogenated aromatics. Two pathways were observed for the analogous nitrobenzene hydrogenation depending on the catalyst used. The hydrogenation of nitrobenzene was found to follow a direct pathway to aniline and nitrosobenzene over Pd/OMS-2 in contrast to the OMS and Pt/OMS-2 catalysts which resulted in formation of nitrosobenzene, azoxybenzene and azobenzene/hydrazobenzene intermediates before complete conversion to aniline. These results indicate that for Pt/OMS-2 the hydrogenation proceeds predominantly over the support with the metal acting to dissociate hydrogen. In the case of Pd/OMS-2 both the hydrogenation and hydrogen adsorption occur on the metal sites.

  5. Non-Noble Metal Nanoparticles Supported by Postmodified Porous Organic Semiconductors: Highly Efficient Catalysts for Visible-Light-Driven On-Demand H2 Evolution from Ammonia Borane.

    PubMed

    Zhang, Hao; Gu, Xiaojun; Song, Jin; Fan, Na; Su, Haiquan

    2017-09-27

    From the viewpoint of controlling the visible-light-driven activities of catalysts containing metal nanoparticles (NPs) by tuning the microstructures of semiconducting supports, we employed a postsynthetic thermal modification approach to prepare carbon nitride (C3N4) species featuring different microstructures and then we synthesized Co and Ni NPs supported by these C3N4 species, which were used to catalyze the room-temperature H2 evolution from ammonia borane (NH3BH3). The systematic investigation showed that the catalysts had different activities under light irradiation. Compared with the pristine C3N4-based catalyst, all the modified C3N4-based catalysts had enhanced activities. The highest active Co catalyst with a total turnover frequency of 93.8 min(-1) was successfully obtained, which exceeded the values of all the reported heterogeneous noble metal-free catalysts. The structure characterizations indicated that the postmodified porous C3N4 species had the different band structures, photoluminescence lifetime, and photocurrent density under visible light irradiation, leading to the different separation efficiency of photogenerated charge carriers. These characteristics helped us regulate the electronic characteristics of Co and Ni NPs in the supported catalysts and then led to the significantly different and enhanced activity in the visible-light-driven H2 evolution.

  6. Alternative catalyst supports for HCN synthesis and NH[sub 3] oxidation

    SciTech Connect

    Hickman, D.A.; Huff, M.; Schmidt, L.D. )

    1993-05-01

    The authors have examined several alternative catalyst supports consisting of various materials, geometric configurations, and catalyst loadings (Pt and Pt/Rh) for the Andrussow process for HCN synthesis and for the Ostwald process for NH[sub 3] oxidation. With increasing residence time, the HCN hydrolysis reaction decreases the amount of HCN formed. Experiments also show that the addition of Rh to a Pt-coated support slightly reduces the selectivity of HCN synthesis and that catalytically active supports can adversely affect the reaction selectivity. For the Ostwald process, increasing residence times cause the decomposition reactions of NO and NH[sub 3] to contribute and thus decrease the net NO[sub x] formation. In both HCN synthesis and NH[sub 3] oxidation, turbulent, well-mixed flow improves the product selectivity. Based on these tests, guidelines are presented for the design of an alternative Pt-coated catalyst support which gives competitive selectivities and conversions.

  7. Enhanced Oxygen Reduction Activity In Acid By Tin-Oxide Supported Au Nanoparticle Catalysts

    SciTech Connect

    Baker,W.; Pietron, J.; Teliska, M.; Bouwman, P.; Ramaker, D.; Swider-Lyons, K.

    2006-01-01

    Gold nanoparticles supported on hydrous tin-oxide (Au-SnO{sub x}) are active for the four-electron oxygen reduction reaction in an acid electrolyte. The unique electrocatalytic of the Au-SnO is confirmed by the low amount of peroxide detected with rotating ring-disk electrode voltammetry and Koutecky-Levich analysis. In comparison, 10 wt % Au supported on Vulcan carbon and SnO{sub x} catalysts both produce significant peroxide in the acid electrolyte, indicating only a two-electron reduction reaction. Characterization of the Au-SnO{sub x} catalyst reveals a high-surface area, amorphous support with 1.7 nm gold metal particles. The high catalytic activity of the Au-SnO is attributed to metal support interactions. The results demonstrate a possible path to non-Pt catalysts for proton exchange membrane fuel cell cathodes.

  8. Polymer-supported Bis(oxazoline)-copper complexes as catalysts in cyclopropanation reactions

    PubMed

    Burguete; Fraile; Garcia; Garcia-Verdugo; Luis; Mayoral

    2000-11-30

    Bis(oxazolines) are easily immobilized by functionalization of the central methylene bridge with polymerizable groups and subsequent polymerization. Polymers are transformed into copper catalysts active in the cyclopropanation of styrene with ethyl diazoacetate. The results are similar or even better than those obtained with the similar homogeneous systems, and the catalysts can be easily recovered and reused. The substitution in the methylene bridge leads to a slight reduction in the enantioselectivity and an unexpected cis-preference.

  9. In situ control of phenol adsorption on conductive Pd-fluorine-doped tin dioxide-supported and Pd-alumina-supported catalysts in electrocatalytic hydrogenation.

    PubMed

    Tountian, Dihourahouni; Brisach-Wittmeyer, Anne; Nkeng, Paul; Poillerat, Gérard; Ménard, Hugues

    2009-09-15

    In the context of the electrocatalytic hydrogenation (ECH) process of unsaturated organic molecules, we have shown using infrared spectroscopy and water contact angle measurements that catalysts powders made of palladium on conductive tin dioxide (10% Pd/SnO2:F) and on alumina (10% Pd/Al2O3) are functionalized with organic chains when they were dipped in supporting electrolyte aqueous solutions containing different carboxylic acids. The carboxylic acids are bound to the supports (SnO2:F and Al2O3) through either the carboxyl or carboxylate groups. The measurement of contact angles confirmed that the support surface is functionalized by the carboxylic acids but also indicated the hydrophobic or hydrophilic character of the resultant surface. With these functionalized catalysts, the effectiveness of electrocatalytic hydrogenation of phenol could be modulated by controlling the adsorption of phenol. The adsorption depends mainly on the functionalization agent (carboxylic acid) and to a lesser extent on the identity of the support material (SnO2:F or Al2O3). Because adsorption is the step that induces the selectivity of the ECH process, controlling this phenomenon by functionalizing the catalyst support in situ is promising for obtaining molecules of choice.

  10. Nanosheet Supported Single-Metal Atom Bifunctional Catalyst for Overall Water Splitting.

    PubMed

    Ling, Chongyi; Shi, Li; Ouyang, Yixin; Zeng, Xiao Cheng; Wang, Jinlan

    2017-08-09

    Nanosheet supported single-atom catalysts (SACs) can make full use of metal atoms and yet entail high selectivity and activity, and bifunctional catalysts can enable higher performance while lowering the cost than two separate unifunctional catalysts. Supported single-atom bifunctional catalysts are therefore of great economic interest and scientific importance. Here, on the basis of first-principles computations, we report a design of the first single-atom bifunctional eletrocatalyst, namely, isolated nickel atom supported on β12 boron monolayer (Ni1/β12-BM), to achieve overall water splitting. This nanosheet supported SAC exhibits remarkable electrocatalytic performance with the computed overpotential for oxygen/hydrogen evolution reaction being just 0.40/0.06 V. The ab initio molecular dynamics simulation shows that the SAC can survive up to 800 K elevated temperature, while enacting a high energy barrier of 1.68 eV to prevent isolated Ni atoms from clustering. A viable experimental route for the synthesis of Ni1/β12-BM SAC is demonstrated from computer simulation. The desired nanosheet supported single-atom bifunctional catalysts not only show great potential for achieving overall water splitting but also offer cost-effective opportunities for advancing clean energy technology.

  11. Recent Advances in Solid Catalysts Obtained by Metalloporphyrins Immobilization on Layered Anionic Exchangers: A Short Review and Some New Catalytic Results.

    PubMed

    Nakagaki, Shirley; Mantovani, Karen Mary; Machado, Guilherme Sippel; Castro, Kelly Aparecida Dias de Freitas; Wypych, Fernando

    2016-02-29

    Layered materials are a very interesting class of compounds obtained by stacking of two-dimensional layers along the basal axis. A remarkable property of these materials is their capacity to interact with a variety of chemical species, irrespective of their charge (neutral, cationic or anionic). These species can be grafted onto the surface of the layered materials or intercalated between the layers, to expand or contract the interlayer distance. Metalloporphyrins, which are typically soluble oxidation catalysts, are examples of molecules that can interact with layered materials. This work presents a short review of the studies involving metalloporphyrin immobilization on two different anionic exchangers, Layered Double Hydroxides (LDHs) and Layered Hydroxide Salts (LHSs), published over the past year. After immobilization of anionic porphyrins, the resulting solids behave as reusable catalysts for heterogeneous oxidation processes. Although a large number of publications involving metalloporphyrin immobilization on LDHs exist, only a few papers have dealt with LHSs as supports, so metalloporphyrins immobilized on LHSs represent a new and promising research field. This work also describes new results on an anionic manganese porphyrin (MnP) immobilized on Mg/Al-LDH solids with different nominal Mg/Al molar ratios (2:1, 3:1 and 4:1) and intercalated with different anions (CO₃(2-) or NO₃(-)). The influence of the support composition on the MnP immobilization rates and the catalytic performance of the resulting solid in cyclooctene oxidation reactions will be reported.

  12. Preventing maritime transport of pathogens: the remarkable antimicrobial properties of silver-supported catalysts for ship ballast water disinfection.

    PubMed

    Theologides, C P; Theofilou, S P; Anayiotos, A; Costa, C N

    2017-07-01

    Ship ballast water (SBW) antimicrobial treatment is considered as a priority issue for the shipping industry. The present work investigates the possibility of utilizing antimicrobial catalysis as an effective method for the treatment of SBW. Taking into account the well-known antimicrobial properties of ionic silver (Ag(+)), five silver-supported catalysts (Ag/γ-Al2O3) with various loadings (0.05, 0.1, 0.2, 0.5, and 1 wt%) were prepared and examined for the antimicrobial treatment of SBW. The bactericidal activity of the aforementioned catalysts was investigated towards the inhibition of Escherichia coli (Gram-negative) and Escherichia faecalis (Gram-positive) bacteria. Catalytic experiments were conducted in a three-phase continuous flow stirred tank reactor, used in a semi-batch mode. It was found that using the catalyst with the lowest metal loading, the inhibition of E. coli reached 95.8% after 30 minutes of treatment of an E. coli bacterial solution, while the inhibition obtained for E. faecalis was 76.2% after 60 minutes of treatment of an E. faecalis bacterial solution. Even better results (100% inhibition after 5 min of reaction) were obtained using the catalysts with higher Ag loadings. The results of the present work indicate that the prepared monometallic catalysts exert their antimicrobial activity within a short period of time, revealing, for the first time ever, that the field of antimicrobial heterogeneous catalysis using deposited ionic silver on a solid support may prove decisive for the disinfection of SBW.

  13. Selective Oxidation of Glycerol over Carbon-Supported AuPd Catalysts

    SciTech Connect

    Ketchie,W.; Murayama, M.; Davis, R.

    2007-01-01

    Carbon-supported AuPd bimetallic nanoparticles were synthesized, characterized, and evaluated as catalysts in the aqueous-phase selective oxidation of glycerol. The bimetallic catalysts were synthesized by two different methods. The first method involved the deposition of Au onto the surface of 3-nm supported Pd particles by catalytic reduction of HAuCl{sub 4} in aqueous solution by H{sub 2}. The second method used the formation of a AuPd sol that was subsequently deposited onto a carbon support. Characterization of the catalysts using analytical transmission electron microscopy, H{sub 2} titration, and X-ray absorption spectroscopy at the Au L{sub III} and Pd K-edges confirmed that the first synthesis method successfully deposited Au onto the Pd particles. Results from the AuPd sol catalyst also revealed that Au was preferentially located on the surface. Measurement of glycerol oxidation rates (0.3 M glycerol, 0.6 M NaOH, 10 atm O{sub 2}, 333 K) in a semibatch reactor gave a turnover frequency (TOF) of 17 s{sup -1} for monometallic Au and 1 s{sup -1} for monometallic Pd, with Pd exhibiting a higher selectivity to glyceric acid. Although the activity of the bimetallic AuPd catalysts depended on the amount of Au present, none of them had a TOF greater than that of the monometallic Au catalyst. However, the AuPd catalysts had higher selectivity to glyceric acid compared with the monometallic Au. Because a physical mixture of monometallic Au and Pd catalysts also gave higher selectivity to glyceric acid, the Pd is proposed to catalyze the decomposition of the side product H{sub 2}O{sub 2} that is also formed over the Au but is detrimental to the selectivity toward glyceric acid.

  14. The role of support morphology on the performance of Cu/ZnO-catalyst for hydrogenation of CO{sub 2} to methanol

    SciTech Connect

    Tasfy, Sara Faiz Hanna Zabidi, Noor Asmawati Mohd Shaharun, Maizatul Shima Subbarao, Duvvuri

    2015-07-22

    The effects of SBA-15 support morphology on the activity of Cu/ZnO catalyst in the hydrogenation of CO{sub 2} to methanol was investigated. In the hydrogenation of CO{sub 2} to methanol at 210°C, 2.25 MPa, H{sub 2}/CO{sub 2} ratio of three remarkable difference was obtained using Cu/ZnO catalyst supported on SBA-15 with different morphology. The catalysts were characterized using N{sub 2}-adsorption, field emission scanning microscopy (FESEM/EDX), transmission electron microscopy (HRTEM), and temperature-programmed reduction (TPR). Characterization of the catalyst showed that support morphology, surface area, metals dispersion, and reducibility influenced the catalytic performance. On the fiber-shaped SBA-15, copper dispersion was 29 % whereas on the spherical-shaped SBA-15, the dispersion was 20 %. The experimental results showed that the catalyst supported over fiber-shaped SBA-15 exhibit higher CO{sub 2} conversion (13.96 %) and methanol selectivity (91.32 %) compare to catalyst supported over spherical-shaped SBA-15.

  15. The zinc ferrite obtained by oxidative precipitation method as a catalyst in n-butanol conversion

    SciTech Connect

    Klimkiewicz, Roman Wolska, Jolanta; Przepiera, Aleksander; Przepiera, Krystyna; Jablonski, Maciej; Lenart, Stanislaw

    2009-01-08

    This paper presents the results of catalytic properties of n-butanol conversion of the zinc ferrite obtained by oxidative precipitation method. The zinc ferrite showed good dehydrogenating activity but also catalyzed consecutive bimolecular condensation of emerged aldehyde particles into symmetrical ketone. The zinc-iron oxide of spinel structure was prepared from ferrous sulfate, which forms as a waste during the titanium dioxide production. The X-ray diffraction methods (XRD, XRF) were used in determining the structure and composition of obtained zinc ferrite, while thermogravimetry (TG-DTG), and differential thermal analysis (DTA) were used in the study of thermal transformations of zinc spinel in air.

  16. Investigation of catalysts and reactions in catalytic oxidation. III. Formation of texture of pseudoboehmites in liquid granulation of bead supports for catalytic heat generator catalysts

    SciTech Connect

    Shepeleva, M.N.; Shkrabina, R.A.; Okkel', L.G.; Zaikovskii, V.I.; Fenelonov, V.B.; Izmagilov, Z.R.

    1988-08-01

    A study has been made of the changes in texture of pseudoboehmite aluminum hydroxides during the stages of peptization and coagulation in liquid forming of Al/sub 2/O/sub 3/ granules. Precipitates obtained at 291-310 K, with the morphology of freshly precipitated pseudoboehmite and with primarily coagulation-type bonds, are readily deaggregated by acid; therefore, it is possible after coagulation, to obtain granules with a uniform pore structure and high strength. With precipitation temperatures of 368-375 K and the formation of crystallization contacts in the hydroxides, treatment with acid does not result in deaggregation. By varying the ratio of the first and second types of precipitate, Al/sub 2/O/sub 3/ granules with predetermined structural and mechanical characteristics can be obtained, suitable for supports of exhaustive oxidation catalysts that are used in catalytic heat generators.

  17. Carbonyl clusters of transition metals on oxide supports as heterogeneous catalysts for hydrocarbon synthesis

    SciTech Connect

    Kuznetsov, B.N.; Koval`chuk, V.I.

    1995-05-01

    The methods of preparation of heterogeneous catalysts by immobilization of carbonyl clusters of transition metals on oxide supports, as well as the study of the state of supported compounds and their catalytic properties in CO hydrogenation and olefin hydroformulation are briefly reviewed.

  18. On the origin of reactivity of steam reforming of ethylene glycol on supported Ni catalysts.

    PubMed

    Li, Shuirong; Zhang, Chengxi; Zhang, Peng; Wu, Gaowei; Ma, Xinbin; Gong, Jinlong

    2012-03-28

    This paper describes a strategy for producing hydrogen via steam reforming of ethylene glycol over supported nickel catalysts. Nickel plays a crucial role in conversion of ethylene glycol and production of hydrogen, while oxide supports affect product distribution of carbonaceous species. A plausible reaction pathway is proposed based on our results and the literature.

  19. Oxidative dehydrogenation of n-butane over vanadium magnesium oxide catalysts supported on nano-structured MgO and ZrO2: effect of oxygen capacity of the catalyst.

    PubMed

    Lee, Howon; Lee, Jong Kwon; Hong, Ung Gi; Song, In Kyu; Yoo, Yeonshick; Cho, Young-Jin; Lee, Jinsuk; Chang, Hosik; Jung, Ji Chul

    2012-07-01

    Vanadium-magnesium oxide catalysts supported on nano-structured MgO and ZrO2 (Mg3(VO4)2/MgO/ZrO2) were prepared by a wet impregnation method with a variation of Mg:Zr ratio (8:1, 4:1, 2:1, and 1:1). For comparison, Mg3(VO4)2/MgO and Mg3(VO4)2/ZrO2 catalysts were also prepared by a wet impregnation method. The prepared catalysts were applied to the oxidative dehydrogenation of n-butane in a continuous flow fixed-bed reactor. Mg3(VO4)2/MgO/ZrO2 (Mg:Zr = 4:1, 2:1, and 1:1) and Mg3(VO4)2/ZrO2 catalysts showed a stable catalytic activity during the whole reaction time, while Mg3(VO4)2/MgO/ZrO2 (8:1) and Mg3(VO4)2/MgO catalysts experienced a severe catalyst deactivation. Deactivation of Mg3(VO4)2/MgO/ZrO2 (8:1) and Mg3(VO4)2/MgO catalysts was due to their low oxygen mobility. Effect of oxygen capacity (the amount of oxygen in the catalyst involved in the reaction) of the supported Mg3(V04)2 catalysts on the catalytic performance in the oxidative dehydrogenation of n-butane was investigated. Experimental results revealed that oxygen capacity of the catalyst was closely related to the catalytic activity in the oxidative dehydrogenation of n-butane. A large oxygen capacity of the catalyst was favorable for obtaining a high catalytic activity in this reaction. Among the catalysts tested, Mg3(VO4)2/MgO/ZrO2 (4:1) catalyst with the largest oxygen capacity showed the best catalytic performance.

  20. The black rock series supported SCR catalyst for NO x removal.

    PubMed

    Xie, Bin; Luo, Hang; Tang, Qing; Du, Jun; Liu, Zuohua; Tao, Changyuan

    2017-08-01

    Black rock series (BRS) is of great potential for their plenty of valued oxides which include vanadium, iron, alumina and silica oxides, etc. BRS was used for directly preparing of selective catalytic reduction (SCR) catalyst by modifying its surface texture with SiO2-TiO2 sols and regulating its catalytic active constituents with V2O5 and MoO3. Consequently, 90% NO removal ratio was obtained within 300-400 °C over the BRS-based catalyst. The structure and properties of the BRS-based catalyst were characterized by the techniques of N2 adsorption-desorption, X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), H2-temperature programmed reduction (H2-TPR), and NH3-temperature programmed desorption (NH3-TPD). The results revealed that the BRS-based catalyst possesses favorable properties for NO x removal, including highly dispersed active components, abundant surface-adsorbed oxygen Oα, well redox property, and numerous Brønsted acid sites. Particularly, the BRS-based catalyst exhibited considerable anti-poisoning performance compared with commercial TiO2-based catalyst. The former catalyst shows a NO conversion surpassing 80% from 300 to 400 °C for potassium poisoning, and a durability of SO2 and H2O exceeding 85% at temperatures from 300 to 450 °C.

  1. Support Shape Effect in Metal Oxide Catalysis: Ceria-Nanoshape-Supported Vanadia Catalysts for Oxidative Dehydrogenation of Isobutane.

    PubMed

    Wu, Zili; Schwartz, Viviane; Li, Meijun; Rondinone, Adam J; Overbury, Steven H

    2012-06-07

    The support effect has long been an intriguing topic in catalysis research. With the advancement of nanomaterial synthesis, the availability of faceted oxide nanocrystals provides the opportunity to gain unprecedented insights into the support effect by employing these well-structured nanocrystals. In this Letter, we show by utilizing ceria nanoshapes as supports for vanadium oxide that the shape of the support poses a profound effect on the catalytic performance of metal oxide catalysts. Specifically, the activation energy of VOx/CeO2 catalysts in oxidative dehydrogenation of isobutane was found to be dependent on the shape of ceria support, rods < octahedra, closely related to the surface oxygen vacancy formation energy and the numbe of defects of the two ceria supports with different crystallographic surface planes.

  2. Ethanol oxidation on metal oxide-supported platinum catalysts

    SciTech Connect

    L. M. Petkovic 090468; Sergey N. Rashkeev; D. M. Ginosar

    2009-09-01

    Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on the standard three-way catalysts, the conversion of unburned ethanol is low because both ethanol and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of “stoves” that burn ethanol molecules and their partially oxidized derivatives to the “final” products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles

  3. Zeolite-supported Ni and Mo catalysts for hydrotreatments. 1: Catalytic activity and spectroscopy

    SciTech Connect

    Li, D. |; Nishijima, A.; Morris, D.E.

    1999-03-10

    The catalytic hydrodesulfurization (HDS) of dibenzothiophene (DBT) and hydrocracking (HC) of decalin, tetralin, and diphenylmethan (DMP) over Ni-Mo sulfide catalysts supported on ultrastable Y-type (USY) zeolite have been studied. The catalysts are characterized using NH{sub 3} temperature-programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), UV-vis-NIR diffuse reflectance spectroscopy (DRS), and Na and Al K-edge X-ray absorption near-edge structure (XANES). Ni-Mo sulfide catalyst supported on USY zeolite has an unusually high catalytic activity for the hydrotreating reactions of the model compounds compared with other zeolites and their supported catalysts. NH{sub 3} TPD shows the presence of a strong acid site at about 430 C in USY zeolite and its supported Ni-Mo catalyst, which is dominantly characterized by Broensted acidity. The surface concentrations of Ni and Mo in both calcined and sulfided Ni-Mo/USY zeolite catalysts are very low, indicating that the Ni and Mo phases are present in the crystal structure of USY zeolite. The diffuse reflectance spectra of calcined Ni-Mo/USY catalyst show that Mo is dominantly four-coordinate with oxygen and Ni is six-coordinate, consistent with the Ni and MO species being present in the crystal structure of USY zeolite. Al K-edge XANES spectra of calcined Ni-Mo/USY catalyst also indicate the presence of extra-framework Al, and the content of the extra-framework Al is much higher in Ni-Mo/USY than in Ni-Mo/NaY catalyst. However, there is no evidence that the extra-framework Al contributes to the acidity and the increased catalytic activity. Thus, the high catalytic HDS and HC activities of Ni-Mo/USY compared with other zeolites and their supported Ni-Mo catalysts are attributed to the synergistic effect between the strong Broensted acid sites and the Ni and Mo sulfide phases in the sodalite cage and/or supercage of USY zeolite.

  4. Pumice-supported palladium catalysts. I. Chemical preparation and microstructural features

    SciTech Connect

    Fagherazzi, G.; Benedetti, A.; Deganello, G.; Duca, D.; Martorana, A.; Spoto, G.

    1994-11-01

    Two series of pumice-supported palladium catalysts (W = washed, U = unwashed) were prepared by the reaction of [Pd(C{sub 3}H{sub 5}){sub 2}] with the support, followed by reduction using H{sub 2}. W catalysts were washed before reduction to eliminate unreacted [Pd(C{sub 3}H{sub 5}){sub 2}]. U catalysts did not undergo this treatment. Microstructural characterization of the catalysts was performed by small-angle X-ray scattering (SAXS), wide-angle X-ray line broadening, and transmission electron microscopy (TEM). Line-broadening analysis revealed the presence of lattice imperfections, such as growth stacking faults and microstrains in the fcc structure of palladium. The average particle size values determined by SAXS were confirmed by TEM analysis and were employed to calculate the percentage of palladium exposed (catalyst dispersion). W catalysts showed well-dispersed spheroidal particles, whereas the U series displayed agglomerates. 38 refs., 9 figs., 2 tabs.

  5. Enhanced activity and selectivity of carbon nanofiber supported Pd catalysts for nitrite reduction.

    PubMed

    Shuai, Danmeng; Choe, Jong Kwon; Shapley, John R; Werth, Charles J

    2012-03-06

    Pd-based catalyst treatment represents an emerging technology that shows promise to remove nitrate and nitrite from drinking water. In this work we use vapor-grown carbon nanofiber (CNF) supports in order to explore the effects of Pd nanoparticle size and interior versus exterior loading on nitrite reduction activity and selectivity (i.e., dinitrogen over ammonia production). Results show that nitrite reduction activity increases by 3.1-fold and selectivity decreases by 8.0-fold, with decreasing Pd nanoparticle size from 1.4 to 9.6 nm. Both activity and selectivity are not significantly influenced by Pd interior versus exterior CNF loading. Consequently, turnover frequencies (TOFs) among all CNF catalysts are similar, suggesting nitrite reduction is not sensitive to Pd location on CNFs nor Pd structure. CNF-based catalysts compare favorably to conventional Pd catalysts (i.e., Pd on activated carbon or alumina) with respect to nitrite reduction activity and selectivity, and they maintain activity over multiple reduction cycles. Hence, our results suggest new insights that an optimum Pd nanoparticle size on CNFs balances faster kinetics with lower ammonia production, that catalysts can be tailored at the nanoscale to improve catalytic performance for nitrite, and that CNFs hold promise as highly effective catalyst supports in drinking water treatment.

  6. Oxidation-resistant catalyst supports for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Chhina, Harmeet

    In automotive applications, when proton exchange membrane fuel cells (PEMFCs) are subjected to frequent startup-shutdown cycles, a significant drop in performance is observed. One reason for this drop in performance is oxidation of the carbon in the catalyst layer when cathode potential excursions as high as 1.5V are observed. In this work, non-carbon based catalyst support materials were studied. The materials investigated include: tungsten carbide (WC), tungsten oxide (WOx), and niobium (Nb) or tungsten (W) doped titania. Platinum was dispersed on commercial samples of WC and WO x. Stability tests were performed by stepping the materials between 0.6 to 1.8V. Higher stability of both WC and WOx was observed compared to carbon based commercial catalyst (HiSpec 4000). The performance of Pt supported on WC or WOx was found to be lower than that of Pt/C due to poor dispersion of Pt on these low surface area commercial powders. High surface area Nb and W doped titania materials synthesized using sol-gel techniques were subjected to several heat treatments and atmospheres, and their resulting physical properties characterized. The materials' phase changes and their impact on electrical conductivity were evaluated. W doped titania was found to be resistive, and for Nb doped titania, the rutile phase was found to be more conductive than the anatase phase. Conventionally, 10-50 wt% Pt is supported on carbon, but as the non-carbon catalyst support materials have different densities, similar mass ratios of catalyst to support will not result in directly comparable performances. It is recommended that the ratio of Pt surface area to the support surface area should be similar when comparing Pt supported on carbon to Pt supported on a non-carbon support. A normalization approach was investigated in this work, and the ORR performance of 40wt.%Pt/C was found to be similar to that of 10wt.%Pt/Nb-TiO2. Fuel cell performance tests showed significantly higher stability of Pt on Nb

  7. Physicochemical investigations of carbon nanofiber supported Cu/ZrO{sub 2} catalyst

    SciTech Connect

    Din, Israf Ud E-mail: maizats@petronas.com.my; Shaharun, Maizatul S. E-mail: maizats@petronas.com.my; Subbarao, Duvvuri; Naeem, A.

    2014-10-24

    Zirconia-promoted copper/carbon nanofiber catalysts (Cu‐ZrO{sub 2}/CNF) were prepared by the sequential deposition precipitation method. The Herringbone type of carbon nanofiber GNF-100 (Graphite nanofiber) was used as a catalyst support. Carbon nanofiber was oxidized to (CNF-O) with 5% and 65 % concentration of nitric acid (HNO{sub 3}). The CNF activated with 5% HNO{sub 3} produced higher surface area which is 155 m{sup 2}/g. The catalyst was characterized by X-ray Diffraction (XRD), Fourier Transform Infra-Red (FTIR) and N{sub 2} adsorption-desorption. The results showed that increase of HNO{sub 3} concentration reduced the surface area and porosity of the catalyst.

  8. Self-Supporting Metal-Organic Layers as Single-Site Solid Catalysts.

    PubMed

    Cao, Lingyun; Lin, Zekai; Peng, Fei; Wang, Weiwei; Huang, Ruiyun; Wang, Cheng; Yan, Jiawei; Liang, Jie; Zhang, Zhiming; Zhang, Teng; Long, Lasheng; Sun, Junliang; Lin, Wenbin

    2016-04-11

    Metal-organic layers (MOLs) represent an emerging class of tunable and functionalizable two-dimensional materials. In this work, the scalable solvothermal synthesis of self-supporting MOLs composed of [Hf6O4(OH)4(HCO2)6] secondary building units (SBUs) and benzene-1,3,5-tribenzoate (BTB) bridging ligands is reported. The MOL structures were directly imaged by TEM and AFM, and doped with 4'-(4-benzoate)-(2,2',2''-terpyridine)-5,5''-dicarboxylate (TPY) before being coordinated with iron centers to afford highly active and reusable single-site solid catalysts for the hydrosilylation of terminal olefins. MOL-based heterogeneous catalysts are free from the diffusional constraints placed on all known porous solid catalysts, including metal-organic frameworks. This work uncovers an entirely new strategy for designing single-site solid catalysts and opens the door to a new class of two-dimensional coordination materials with molecular functionalities.

  9. Effect of the metal support interactions on the physicochemical and magnetic properties of Ni catalysts

    NASA Astrophysics Data System (ADS)

    Gómez-Polo, C.; Gil, A.; Korili, S. A.; Pérez-Landázabal, J. I.; Recarte, V.; Trujillano, R.; Vicente, M. A.

    2007-09-01

    In this work, the effect of the preparation method on the physicochemical and magnetic properties of nickel-containing catalysts is analysed. The catalysts were prepared by two methods, incipient wetness impregnation and precipitation-deposition using two commercial oxides, γ-Al 2O 3 (Rhône-Poulenc) and SiO 2 (AF125, Kali Chemie) as supports. The precursors were dried at 393 K for 16 h and then calcined at 823 K for 4 h. The physicochemical characterization of the catalysts included nitrogen adsorption, X-ray diffraction (XRD), temperature-programmed reduction (TPR) and chemical analysis. A SQUID magnetometer was employed in the magnetic characterization. The basic compositional and structural characteristics of these Ni-based nanoporous catalysts are analysed in relation to their magnetic response.

  10. Graphene supported non-precious metal-macrocycle catalysts for oxygen reduction reaction in fuel cells

    NASA Astrophysics Data System (ADS)

    Choi, Hyun-Jung; Ashok Kumar, Nanjundan; Baek, Jong-Beom

    2015-04-01

    Fuel cells are promising alternative energy devices owing to their high efficiency and eco-friendliness. While platinum is generally used as a catalyst for the oxygen reduction reaction (ORR) in a typical fuel cell, limited reserves and prohibitively high costs limit its future use. The development of non-precious and durable metal catalysts is being constantly conceived. Graphene has been widely used as a substrate for metal catalysts due to its unique properties, thus improving stability and ORR activities. In this feature, we present an overview on the electrochemical characteristics of graphene supported non-precious metal containing macrocycle catalysts that include metal porphyrin and phthalocyanine derivatives. Suggested research and future development directions are discussed.

  11. Density functional calculations in the automotive industry: Catalyst supports and hydrogen storage materials

    NASA Astrophysics Data System (ADS)

    Wolverton, Christopher

    2006-03-01

    In my talk, I will describe some uses of density functional theory (DFT) calculations in the research laboratory at Ford, and particularly highlight work that was inspired by, or performed in collaboration with Ken Hass. I begin with a discussion of past work on γ-Al2O3 catalyst support materials, but also discuss the current main focus of our group's activities: hydrogen storage materials. Catalyst Supports: In current three-way automotive catalysts, precious metals are often supported by the phase of aluminum oxide known as γ-Al2O3. Despite the ubiquitous nature of this oxide in current automobile catalysts, and a considerable amount of effort expended to understand this material, many questions about the phase stability and even crystal structure of γ-Al2O3 remain. DFT calculations have made significant progress in unraveling these unanswered questions, allowing one to construct realistic models of the supported catalysts materials. Hydrogen Storage Materials: One of the major bottlenecks to the widespread use of hydrogen-fueled vehicles is the ability to store sufficient energy on-board to enable vehicle attributes acceptable to customers. I will give a general introduction to the topic of hydrogen storage, and a broad survey of the various classes of hydrogen storage technologies, and point out some pros and cons associated with each class. Currently known technologies have insufficient usable energy densities, and I will describe how DFT calculations are aiding the search for improved high density storage materials.

  12. CeO2 nanorods-supported transition metal catalysts for CO oxidation.

    PubMed

    Mock, Samantha A; Sharp, Shannon E; Stoner, Thomas R; Radetic, Michael J; Zell, Elizabeth T; Wang, Ruigang

    2016-03-15

    A catalytically active oxide support in combination with metal catalysts is required in order to achieve better low temperature activity and selectivity. Here, we report that CeO2 nanorods with a superior surface oxygen release/storage capability were used as an active support of transition metal (TM) catalysts (Mn, Fe, Co, Ni, Cu) for CO oxidation reaction. The as-prepared CeO2 nanorods supported 10 wt% TM catalysts were highly active for CO oxidation at low temperature, except for the Fe sample. It is found that the 10%Cu-CeO2 catalyst performed best, and it provided a lower light-off temperature with T50 (50% conversion) at 75 °C and T100 (100% conversion) of CO to CO2 at 194 °C. The atomic level surface structure of CeO2 nanorods was investigated in order to understand the improved low temperature catalytic activity. The richness of surface roughness and various defects (voids, lattice distortion, bending, steps, twinning) on CeO2 nanorods could facilitate oxygen release and storage. According to XRD and Raman analysis, copper species migrate into the bulk CeO2 nanorods to a greater degree. Since CO adsorbed over the surface of the catalyst/support is detrimental to its catalytic activity, the surface defects on the CeO2 nanorods and CeO2-TM interactions were critical to the enhanced activity.

  13. Studies on KIT-6 Supported Cobalt Catalyst for Fischer–Tropsch Synthesis

    SciTech Connect

    Gnanamani, M.; Jacobs, G; Graham, U; Ma, W; Pendyala, V; Ribeiro, M; Davis, B

    2010-01-01

    KIT-6 molecular sieve was used as a support to prepare cobalt catalyst for Fischer-Tropsch synthesis (FTS) using an incipient wetness impregnation method to produce cobalt loadings of 15 and 25 wt%. The catalysts were characterized by BET surface area, X-ray diffraction, scanning transmission election microscopy (STEM), extended X-ray absorption fine spectroscopy and X-ray absorption near edge spectroscopy. The catalytic properties for FTS were evaluated using a 1L CSTR reactor. XRD, pore size distribution, and STEM analysis indicate that the KIT-6 mesostructure remains stable during and after cobalt impregnation and tends to form smaller cobalt particles, probably located inside the mesopores. The mesoporous KIT-6 exhibited a slightly higher cobalt dispersion compared to amorphous SiO{sub 2} supported catalyst. With the higher Co loading (25 wt%) on KIT-6, partial structural collapse was observed after the FTS reaction. Compared to an amorphous SiO{sub 2} supported cobalt catalyst, KIT-6 supported cobalt catalyst displayed higher methane selectivity at a similar Co loading, likely due to diffusion effects.

  14. Selective catalytic reduction of NO over supported silver catalysts--practical and mechanistic aspects.

    PubMed

    Shimizu, Ken-ichi; Satsuma, Atsushi

    2006-06-21

    Selective catalytic reduction of NO by hydrocarbons (HC-SCR) is one of the promising technologies for removal of NO in exhausts containing excess oxygen, such as diesel and lean burn gasoline engines. Supported Ag catalysts, especially Ag/Al2O3, are thought to be the promising candidates for use in diesel exhausts, as confirmed by several reports on engine bench tests. The HC-SCR performance of supported Ag catalysts is very sensitive to the reaction conditions, especially the type of hydrocarbons and the addition of H2. The control of reaction conditions would be key for practical use. The current research of supported Ag catalysts is reviewed from the viewpoints of practical use and the reaction mechanism, i.e., the reaction scheme, the role of surface adsorbed species, and the structure of active Ag species.

  15. Characterization and catalytic performance of Co/SBA-15 supported gold catalysts for CO oxidation

    SciTech Connect

    Xu Xiuyan; Li Jinjun; Hao Zhengping . E-mail: zpinghao@mail.rcees.ac.cn; Zhao Wei; Hu Chun

    2006-02-02

    Cobalt-containing SBA-15 supported gold catalysts for low-temperature CO oxidation were prepared and characterized by N{sub 2} adsorption/desorption, X-ray diffraction, transmission electron microscopy, inductively coupled plasma-atom emission spectroscopy and X-ray photoelectron spectroscopy techniques. The effects of cobalt and gold content on the catalyst activity were investigated in detail. Among them, 2% Au/40% Co/SBA-15 shows the highest activity, its complete conversion temperature for CO is at 273 K. It was believed that both the dispersion of Co{sub 3}O{sub 4} and the high surface areas caused by SBA-15 contribute to the good activities of cobalt-containing SBA-15 supported gold catalysts. Furthermore, the strong metal-support interaction between gold and cobalt oxides is greatly related to the catalytic performance.

  16. Biopolymer-supported ionic-liquid-phase ruthenium catalysts for olefin metathesis.

    PubMed

    Clousier, Nathalie; Filippi, Alexandra; Borré, Etienne; Guibal, Eric; Crévisy, Christophe; Caijo, Fréderic; Mauduit, Marc; Dez, Isabelle; Gaumont, Annie-Claude

    2014-04-01

    Original ruthenium supported ionic liquid phase (SILP) catalysts based on alginates as supports were developed for olefin metathesis reactions. The marine biopolymer, which fulfills most of the requisite properties for a support such as widespread abundance, insolubility in the majority of organic solvents, a high affinity for ionic liquids, high chemical stability, biodegradability, low cost, and easy processing, was impregnated by [bmim][PF6 ] containing an ionically tagged ruthenium catalyst. These biosourced catalysts show promising performances in ring-closing metathesis (RCM) and cross-metathesis (CM) reactions, with a high level of recyclability and reusability combined with a good reactivity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Supported oxorhenate catalysts prepared by thermal spreading of metal Re 0 for methanol conversion to methylal

    NASA Astrophysics Data System (ADS)

    Sécordel, Xavier; Yoboué, Anthony; Cristol, Sylvain; Lancelot, Christine; Capron, Mickaël; Paul, Jean-François; Berrier, Elise

    2011-10-01

    TiO 2-anatase and SiO 2 supported oxorhenate catalysts were prepared by an original and simple technique based on the oxidative dispersion of metallic rhenium under dry conditions. The dispersion process of the supported oxorhenate phase as a function of the rhenium coverage and the support properties are discussed on the base of in situ characterization. The structures of the as prepared catalysts were found to be comparable to those of materials prepared using the incipient wetness impregnation technique. The absence of water in the preparation technique has made it possible to highlight the role of the hydration level on the rhenium oxide volatilization. The as-prepared Re/TiO 2 catalysts were found to be effective for the direct conversion of methanol to methylal.

  18. Preparation and characterization of Rh catalyst supported on nanoporous alumina for the ethylene hydroformylation.

    PubMed

    Kim, You Jung; Joo, Ji Bong; Kim, Hui Chan; Yi, Jongheop

    2010-01-01

    Nanoporous gamma-aluminas were prepared by a sol-gel method with and without surfactant, and characterized by nitrogen adsorption-desorption, transmission electron microscopy (TEM), X-ray diffraction (XRD) and temperature programmed reduction (TPR). The resulting materials were applied to Rh catalyst supports for the ethylene hydroformylation. The ordered nanoporous alumina (A-1) which was prepared using surfactant, showed well-developed pore structures with high surface area. Rh catalyst supported on A-1 alumina (Rh/A-1) exhibited higher catalytic activity in the ethylene hydroformylation than other Rh catalysts. It is believed that the high catalytic performance of Rh/A-1 resulted from the well-developed pore structure with high surface area of ordered nanoporous A-1 and consequently finely dispersed Rh particle on the surface of gamma-alumina support.

  19. Supported transition metal catalysts for para- to ortho-hydrogen conversion

    NASA Technical Reports Server (NTRS)

    Brooks, Christopher J.; Wang, Wei; Eyman, Darrell P.

    1994-01-01

    The main goal of this study was to develop and improve on existing catalysts for the conversion of ortho- to para-hydrogen. Starting with a commercially available Air Products nickel silicate, which had a beta value of 20, we were trying to synthesize catalysts that would be an improvement to AP. This was accomplished by preparing silicates with various metals as well as different preparation methods. We also prepared supported ruthenium catalysts by various techniques using several metal precursors to improve present technology. What was also found was that the activation conditions prior to catalytic testing was highly important for both the silicates and the supported ruthenium catalysts. While not the initial focus of the research, we made some interesting observations into the adsorption of H2 on ruthenium. This helped us to get a better understanding of how ortho- to para-H2 conversion takes place, and what features in a catalyst are important to optimize activity. Reactor design was the final area in which some interesting conclusions were drawn. As discussed earlier, the reactor catalyst bed must be constructed using straight 1/8 feet OD stainless steel tubing. It was determined that the use of 1/4 feet OD tubing caused two problems. First, the radius from the center of the bed to the wall was too great for thermal equilibrium. Since the reaction of ortho- to para-H2 is exothermic, the catalyst bed center was warmer than the edges. Second, the catalyst bed was too shallow using a 1/4 feet tube. This caused reactant blow-by which was thought to decrease the measured activity when the flow rate was increased. The 1/8 feet tube corrected both of these concerns.

  20. Influence of the nature of a Co-catalyst support on the synthesis of hydrocarbons from CO and H{sub 2}

    SciTech Connect

    Lapidus, A.L.; Budtsov, V.S.; Krylova, A.Yu.

    1994-12-31

    The chemical preparation of hydrocarbons from carbon monoxide and hydrogen is described. Cobalt was utilized as the catalyst, and aluminosilicates were utilized as catalyst supports. Catalyst activity and specificity are described.

  1. Synthesis and stabilization of supported metal catalysts by atomic layer deposition.

    PubMed

    Lu, Junling; Elam, Jeffrey W; Stair, Peter C

    2013-08-20

    Supported metal nanoparticles are among the most important catalysts for many practical reactions, including petroleum refining, automobile exhaust treatment, and Fischer-Tropsch synthesis. The catalytic performance strongly depends on the size, composition, and structure of the metal nanoparticles, as well as the underlying support. Scientists have used conventional synthesis methods including impregnation, ion exchange, and deposition-precipitation to control and tune these factors, to establish structure-performance relationships, and to develop better catalysts. Meanwhile, chemists have improved the stability of metal nanoparticles against sintering by the application of protective layers, such as polymers and oxides that encapsulate the metal particle. This often leads to decreased catalytic activity due to a lack of precise control over the thickness of the protective layer. A promising method of catalyst synthesis is atomic layer deposition (ALD). ALD is a variation on chemical vapor deposition in which metals, oxides, and other materials are deposited on surfaces by a sequence of self-limiting reactions. The self-limiting character of these reactions makes it possible to achieve uniform deposits on high-surface-area porous solids. Therefore, design and synthesis of advanced catalysts on the nanoscale becomes possible through precise control over the structure and composition of the underlying support, the catalytic active sites, and the protective layer. In this Account, we describe our advances in the synthesis and stabilization of supported metal catalysts by ALD. After a short introduction to the technique of ALD, we show several strategies for metal catalyst synthesis by ALD that take advantage of its self-limiting feature. Monometallic and bimetallic catalysts with precise control over the metal particle size, composition, and structure were achieved by combining ALD sequences, surface treatments, and deposition temperature control. Next, we describe

  2. Advanced catalyst supports for PEM fuel cell cathodes

    SciTech Connect

    Du, Lei; Shao, Yuyan; Sun, Junming; Yin, Geping; Liu, Jun; Wang, Yong

    2016-11-01

    Electrocatalyst support materials are key components for polymer exchange membrane (PEM) fuel cells, which play a critical role in determining electrocatalyst durability and activity, mass transfer and water management. The commonly-used supports, e.g. porous carbon black, cannot meet all the requirements under the harsh operation condition of PEM fuel cells. Great efforts have been made in the last few years in developing alternative support materials. In this paper, we selectively review recent progress on three types of important support materials: carbon, non-carbon and hybrid carbon-oxides nanocomposites. A perspective on future R&D of electrocatalyst support materials is also provided.

  3. New carbon nanofiber/graphite felt composite for use as a catalyst support for hydrazine catalytic decomposition.

    PubMed

    Vieira, R; Pham-Huu, C; Keller, N; Ledoux, M J

    2002-05-07

    Graphite felt supporting 40 nm diameter carbon nanofibers was synthesized and successfully used as a support for a high loaded iridium catalyst (30 wt%) in the decomposition of hydrazine; a strong mechanical resistance and a high thermal conductivity led to a very efficient and stable catalyst as compared to that used industrially, iridium supported on a high surface area alumina.

  4. Palladium Catalyst Supported on Zeolite for Cross-coupling Reactions: An Overview of Recent Advances.

    PubMed

    Kumbhar, Arjun

    2017-02-01

    Over the last 30-40 years, Pd-catalyzed C-C bond-forming reactions have gained immense importance for their use in synthesis of biologically and pharmaceutically important organic fragments. Heterogeneous Pd catalysts supported on porous materials, especially zeolites, have many advantages as they have high surface area with tunable acidity and basicity, hydrophobic and hydrophilic character, shape and size selectivity, as well as chemical and thermal stability. They also offer very easy recovery and reusability. This review covers the literature published on the synthesis and characterization of Pd catalysts supported on zeolites and their applications in various organic transformations.

  5. Synthesis and characterization of supported sugar catalyst by dip coating method

    NASA Astrophysics Data System (ADS)

    Janaun, J.; Siambun, N. J.; Safie, N. N.

    2016-06-01

    Sugar catalyst is a novel solid acid catalyst with reactivity comparable to that of sulphuric acid in biodiesel production. However, the fine powder form of sugar catalyst with the non-porous structure might cause large pressure drop in a packed bed reactor due to low bed porosity, affecting the reaction conversion especially in gas phase reaction. Furthermore, higher pressure drop requires higher electrical energy to drive the fluid through. Increasing the particle size is anticipated to be able to overcome the pressure drop matter. Hence, a deposition of sugar catalyst on larger particle materials was studied. Three types of materials were used for this investigation namely aluminum, silica and clay. The deposition was done via dip-coating method. The materials were characterized for their total acidity, thermal stability, functional groups, surface area, and element composition. The total acidity for SCDCAl, SCDCSi, and SCDCCl were 0.9 mmol/g, 0.2 mmol/g, and 0.4 mmol/g, respectively. The ratio of char deposited on SCDCAl, SCDCSi and SCDCCl were 0.9 g of support/g of carbon, 0.040 g of support/g of carbon, and 0.014 g of support/g of carbon respectively. FTIR and EDX analyses were carried out to determine the presence of active sites of the catalysis by identifying the functional groups such as -COOH, -OH, -SO3H. The results showed that -SO3H was detected on the surface of synthesized catalysts, except for SCDCC1.The pore size of SCDCAl, SCDCSi and SCDCCl were classified as macropores because the average diameter were greater than 50nm.. The catalysts were stable up to 400°C. The results showed that the dipcoating method could deposit sugar catalyst on aluminum, silica, and clay at low total acidity concentration.

  6. Tuning the acid/metal balance of carbon nanofiber-supported nickel catalysts for hydrolytic hydrogenation of cellulose.

    PubMed

    Van de Vyver, Stijn; Geboers, Jan; Schutyser, Wouter; Dusselier, Michiel; Eloy, Pierre; Dornez, Emmie; Seo, Jin Won; Courtin, Christophe M; Gaigneaux, Eric M; Jacobs, Pierre A; Sels, Bert F

    2012-08-01

    Carbon nanofibers (CNFs) are a class of graphitic support materials with considerable potential for catalytic conversion of biomass. Earlier, we demonstrated the hydrolytic hydrogenation of cellulose over reshaped nickel particles attached at the tip of CNFs. The aim of this follow-up study was to find a relationship between the acid/metal balance of the Ni/CNFs and their performance in the catalytic conversion of cellulose. After oxidation and incipient wetness impregnation with Ni, the Ni/CNFs were characterized by various analytical methods. To prepare a selective Ni/CNF catalyst, the influences of the nature of oxidation agent, Ni activation, and Ni loading were investigated. Under the applied reaction conditions, the best result, that is, 76 % yield in hexitols with 69 % sorbitol selectivity at 93 % conversion of cellulose, was obtained on a 7.5 wt % Ni/CNF catalyst prepared by chemical vapor deposition of CH(4) on a Ni/γ-Al(2)O(3) catalyst, followed by oxidation in HNO(3) (twice for 1 h at 383 K), incipient wetness impregnation, and reduction at 773 K under H(2). This preparation method leads to a properly balanced Ni/CNF catalyst in terms of Ni dispersion and hydrogenation capacity on the one hand, and the number of acidic surface-oxygen groups responsible for the acid-catalyzed hydrolysis on the other.

  7. Polyolefin-supported recoverable/reusable Cr(III)-salen catalysts.

    PubMed

    Bergbreiter, David E; Hobbs, Christopher; Hongfa, Chayanant

    2011-01-21

    The design of functional soluble polyolefins for use as supports for salen ligands and metal complexes is described. Examples and applications that use both polyisobutylene (PIB)- and polyethylene (PE(Olig))-bound recoverable/recyclable salen ligands/metal complexes are detailed. In the case of using PIB as a support, the polymer-bound complexes can be recovered through the use of latent biphasic or a thermomorphic mixed solvent systems. In the case of PE(Olig)-supported complexes, the thermomorphic PE(Olig)-bound salen species can be dissolved in "hot" solvents and quantitatively recovered as solids upon cooling to room temperature. Both the PIB- and PE(Olig)-bound salen catalysts were shown to catalyze the ring-opening of epoxides with various nucleophiles. Both sorts of polyolefin-bound catalysts can be recycled and reused with no observed loss in activity. However, limitations of catalyst concentration make chiral versions of these complexes uncompetitive in comparison to conventional chiral salen catalysts that can be used in neat substrate at higher concentration to produce high enantioselectivity in the ring-opening products. The preparation of a PIB-bound "half-salen" catalyst was also briefly examined.

  8. Kinetic evaluation of highly active supported gold catalysts prepared from monolayer-protected clusters: an experimental Michaelis-Menten approach for determining the oxygen binding constant during CO oxidation catalysis.

    PubMed

    Long, Cormac G; Gilbertson, John D; Vijayaraghavan, Ganesh; Stevenson, Keith J; Pursell, Christopher J; Chandler, Bert D

    2008-08-06

    Thiol monolayer-protected Au clusters (MPCs) were prepared using dendrimer templates, deposited onto a high-surface-area titania, and then the thiol stabilizers were removed under H2/N2. The resulting Au catalysts were characterized with transmission electron microscopy, X-ray photoelectron spectroscopy, and infrared spectroscopy of adsorbed CO. The Au catalysts prepared via this route displayed minimal particle agglomeration during the deposition and activation steps. Structural data obtained from the physical characterization of the Au catalysts were comparable to features exhibited from a traditionally prepared standard Au catalyst obtained from the World Gold Council (WGC). A differential kinetic study of CO oxidation catalysis by the MPC-prepared Au and the standard WGC catalyst showed that these two catalyst systems have essentially the same reaction order and Arrhenius apparent activation energies (28 kJ/mol). However, the MPC-prepared Au catalyst shows 50% greater activity for CO oxidation. Using a Michaelis-Menten approach, the oxygen binding constants for the two catalyst systems were determined and found to be essentially the same within experimental error. To our knowledge, this kinetic evaluation is the first experimental determination of oxygen binding by supported Au nanoparticle catalysts under working conditions. The values for the oxygen binding equilibrium constant obtained from the Michaelis-Menten treatment (ca. 29-39) are consistent with ultra-high-vacuum measurements on model catalyst systems and support density functional theory calculations for oxygen binding at corner or edge atoms on Au nanoparticles and clusters.

  9. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    SciTech Connect

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In

  10. Low temperature oxidation using support molten salt catalysts

    DOEpatents

    Weimer, Alan W.; Czerpak, Peter J.; Hilbert, Patrick M.

    2003-05-20

    Molten salt reactions are performed by supporting the molten salt on a particulate support and forming a fluidized bed of the supported salt particles. The method is particularly suitable for combusting hydrocarbon fuels at reduced temperatures, so that the formation NO.sub.x species is reduced. When certain preferred salts are used, such as alkali metal carbonates, sulfur and halide species can be captured by the molten salt, thereby reducing SO.sub.x and HCl emissions.

  11. Polyaniline-functionalized carbon nanotube supported platinum catalysts.

    PubMed

    He, Daping; Zeng, Chao; Xu, Cheng; Cheng, Niancai; Li, Huaiguang; Mu, Shichun; Pan, Mu

    2011-05-03

    Electrocatalytically active platinum (Pt) nanoparticles on a carbon nanotube (CNT) with enhanced nucleation and stability have been demonstrated through introduction of electron-conducting polyaniline (PANI) to bridge the Pt nanoparticles and CNT walls with the presence of platinum-nitride (Pt-N) bonding and π-π bonding. The Pt colloids were prepared through ethanol reduction under the protection of aniline, the CNT was dispersed well with the existence of aniline in the solution, and aniline was polymerized in the presence of a protonic acid (HCl) and an oxidant (NH(4)S(2)O(8)). The synthesized PANI is found to wrap around the CNT as a result of π-π bonding, and highly dispersed Pt nanoparticles are loaded onto the CNT with narrowly distributed particle sizes ranging from 2.0 to 4.0 nm due to the polymer stabilization and existence of Pt-N bonding. The Pt-PANI/CNT catalysts are electroactive and exhibit excellent electrochemical stability and therefore promise potential applications in proton exchange membrane fuel cells.

  12. Planar oxide supported rhodium nanoparticles as model catalysts

    PubMed Central

    McClure, Sean M.; Lundwall, M. J.; Goodman, D. W.

    2011-01-01

    C2H4/CO/H2 reaction is investigated on Rh/SiO2 model catalyst surfaces. Kinetic reactivity and infrared spectroscopic measurements are investigated as a function of Rh particle size under near atmospheric reaction conditions. Results show that propionaldehyde turnover frequency (TOF) (CO insertion pathway) exhibits a maximum activity near 〈dp〉 = 2.5 nm. Polarization modulation infrared reflection absorption spectroscopy under CO and reaction (C2H4/CO/H2) conditions indicate the presence of Rh carbonyl species (Rh(CO)2, Rh(CO)H) on small Rh particles, whereas larger particles appear resistant to dispersion and carbonyl formation. Combined these observations suggest the observed particle size dependence for propionaldehyde production via CO insertion is driven by two factors: (i) an increase in propionaldehyde formation on undercoordinated Rh sites and (ii) creation of carbonyl hydride species (Rh(CO)H)) on smaller Rh particles, whose presence correlates with the lower activity for propionaldehyde formation for 〈dp〉 < 2.5 nm. PMID:20947802

  13. Effects of K and Pt promoters on the performance of cobalt catalyst supported on CNTs

    SciTech Connect

    Zabidi, Noor Asmawati Mohd; Ali, Sardar; Subbarao, Duvvuri

    2014-10-24

    This paper presents a comparative study on the effects of incorporation of potassium (K) and platinum (Pt) as promoters on the physicochemical properties of cobalt catalyst. The catalyst was prepared by a wet impregnation method on a CNTs support. Samples were characterized using transmission electron microscopy (TEM), H{sub 2}-temperature-programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS) techniques. Fischer-Tropsch Synthesis (FTS) was carried out in a fixed-bed microreactor at 543 K and 1 atm, with H{sub 2}/CO = 2v/v and space velocity, SV of 12 L/g.h for 5 hours. The K-promoted and Pt-promoted Co catalysts have different physicochemical properties and catalytic performances compared to that of the un-promoted Co catalyst. XPS analysis revealed that K and Pt promoters induced electronic modifications as exhibited by the shifts in the Co binding energies. Incorporation of 0.06 wt% K and 0.06 wt% Pt in Co/CNTs catalyst resulted in an increase in the CO conversion and C{sub 5+} selectivity and a decrease in methane selectivity. Potassium was found to be a better promoter for Co/CNTs catalyst compared to platinum.

  14. Effects of K and Pt promoters on the performance of cobalt catalyst supported on CNTs

    NASA Astrophysics Data System (ADS)

    Zabidi, Noor Asmawati Mohd; Ali, Sardar; Subbarao, Duvvuri

    2014-10-01

    This paper presents a comparative study on the effects of incorporation of potassium (K) and platinum (Pt) as promoters on the physicochemical properties of cobalt catalyst. The catalyst was prepared by a wet impregnation method on a CNTs support. Samples were characterized using transmission electron microscopy (TEM), H2-temperature-programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS) techniques. Fischer-Tropsch Synthesis (FTS) was carried out in a fixed-bed microreactor at 543 K and 1 atm, with H2/ CO = 2v / v and space velocity, SV of 12 L/g.h for 5 hours. The K-promoted and Pt-promoted Co catalysts have different physicochemical properties and catalytic performances compared to that of the un-promoted Co catalyst. XPS analysis revealed that K and Pt promoters induced electronic modifications as exhibited by the shifts in the Co binding energies. Incorporation of 0.06 wt% K and 0.06 wt% Pt in Co/CNTs catalyst resulted in an increase in the CO conversion and C5+ selectivity and a decrease in methane selectivity. Potassium was found to be a better promoter for Co/CNTs catalyst compared to platinum.

  15. Catalytic oxidation of low-concentration CO at ambient temperature over supported Pd-Cu catalysts.

    PubMed

    Wang, Fagen; Zhang, Haojie; He, Dannong

    2014-01-01

    The CO catalytic oxidation at ambient temperature and high space velocity was studied over the Pd-Cu/MOx (MOx = TiO2 and AI203) catalysts. The higher Brunauer-Emmett-Teller area surface of the A1203 support facilitates the dispersion of Pd2+ species, and the presence of Cu2Cl(OH)3 accelerates the re-oxidation of Pd0 to Pd2+ over the Pd-Cu/Al203 catalyst, which contributed to better performance of CO catalytic oxidation. The poorer activity of the Pd-Cu/TiO2 catalyst was attributed to the lower dispersion of Pd2+ species because of the less surface area and the non-formation of Cu2CI(OH)3 species. The presence of saturated moisture showed a negative effect on CO conversion over the two catalysts. This might be because of the competitive adsorption, the formation of carbonate species and the transformation of Cu2CI(OH)3 to inactive CuCI over the Pd-Cu/AI2O3 catalyst, which facilitates the aggregation of PdO species over the Pd-Cu/TiO2 catalyst under the moisture condition.

  16. Selective Ring Opening of 1-Methylnaphthalene Over NiW-Supported Catalyst Using Dealuminated Beta Zeolite.

    PubMed

    Kim, Eun-Sang; Lee, You-Jin; Kim, Jeong-Rang; Kim, Joo-Wan; Kim, Tae-Wan; Chae, Ho-Jeong; Kim, Chul-Ung; Lee, Chang-Ha; Jeong, Soon-Yong

    2016-02-01

    Nanoporous Beta zeolite was dealuminated by weak acid treatment for reducing the acidity. Bi-functional catalysts were prepared using commercial Beta zeolites and the dealuminated zeolites for acidic function, NiW for metallic function. 1-Methylnaphthalene was selected as a model compound for multi-ring aromatics in heavy oil, and its selective ring opening reaction has been investigated using the prepared bi-functional catalysts with different acidity in fixed bed reaction system. The dealuminated Beta zeolites, which crystal structure and nanoporosity were maintained, showed the higher SiO2/Al2O3 ratio and smaller acidity than their original zeolite. NiW-supported catalyst using the dealuminated Beta zeolite with SiO2/Al203 mole ratio of 55 showed the highest performance for the selective ring opening. The acidity of catalyst seemed to play an important role as active sites for the selective ring opening of 1-methylnaphthalene but there should be some optimum catalyst acidity for the reaction. The acidity of Beta zeolite could be controlled by the acid treatment and the catalyst with the optimum acidity for the selective ring opening could be prepared.

  17. Supported noble metal catalysts in the catalytic wet air oxidation of industrial wastewaters and sewage sludges.

    PubMed

    Besson, M; Descorme, C; Bernardi, M; Gallezot, P; di Gregorio, F; Grosjean, N; Minh, D Pham; Pintar, A

    2010-12-01

    This paper reviews some catalytic wet air oxidation (CWAO) investigations of industrial wastewaters over platinum and ruthenium catalysts supported on TiO2 and ZrO2 formulated to be active and resistant to leaching, with particular focus on the stability of the catalyst. Catalyst recycling experiments were performed in batch reactors and long-term stability tests were conducted in trickle-bed reactors. The catalyst did not leach upon treatment of Kraft bleaching plant and olive oil mill effluents, and could be either recycled or used for long periods of time in continuous reactors. Conversely, these catalysts were rapidly leached when used to treat effluents from the production of polymeric membranes containing N,N-dimethylformamide. The intermediate formation of amines, such as dimethylamine and methylamine with a high complexing capacity for the metal, was shown to be responsible for the metal leaching. These heterogeneous catalysts also deactivated upon CWAO of sewage sludges due to the adsorption of the solid organic matter. Pre-sonication of the sludge to disintegrate the flocs and improve solubility was inefficient.

  18. Wet catalyst-support films for production of vertically aligned carbon nanotubes.

    PubMed

    Alvarez, Noe T; Hamilton, Christopher E; Pint, Cary L; Orbaek, Alvin; Yao, Jun; Frosinini, Aldo L; Barron, Andrew R; Tour, James M; Hauge, Robert H

    2010-07-01

    A procedure for vertically aligned carbon nanotube (VA-CNT) production has been developed through liquid-phase deposition of alumoxanes (aluminum oxide hydroxides, boehmite) as a catalyst support. Through a simple spin-coating of alumoxane nanoparticles, uniform centimer-square thin film surfaces were coated and used as supports for subsequent deposition of metal catalyst. Uniform VA-CNTs are observed to grow from this film following deposition of both conventional evaporated Fe catalyst, as well as premade Fe nanoparticles drop-dried from the liquid phase. The quality and uniformity of the VA-CNTs are comparable to growth from conventional evaporated layers of Al(2)O(3). The combined use of alumoxane and Fe nanoparticles to coat surfaces represents an inexpensive and scalable approach to large-scale VA-CNT production that makes chemical vapor deposition significantly more competitive when compared to other CNT production techniques.

  19. Tungsten carbide/porous carbon composite as superior support for platinum catalyst toward methanol electro-oxidation

    SciTech Connect

    Jiang, Liming; Fu, Honggang; Wang, Lei; Mu, Guang; Jiang, Baojiang; Zhou, Wei; Wang, Ruihong

    2014-01-01

    Graphical abstract: The WC nanoparticles are well dispersed in the carbon matrix. The size of WC nanoparticles is about 30 nm. It can be concluded that tungsten carbide and carbon composite was successfully prepared by the present synthesis conditions. - Highlights: • The WC/PC composite with high specific surface area was prepared by a simple way. • The Pt/WC/PC catalyst has superior performance toward methanol electro-oxidation. • The current density for methanol electro-oxidation is as high as 595.93 A g{sup −1} Pt. • The Pt/WC/PC catalyst shows better durability and stronger CO electro-oxidation. • The performance of Pt/WC/PC is superior to the commercial Pt/C (JM) catalyst. - Abstract: Tungsten carbide/porous carbon (WC/PC) composites have been successfully synthesized through a surfactant assisted evaporation-induced-assembly method, followed by a thermal treatment process. In particular, WC/PC-35-1000 composite with tungsten content of 35% synthesized at the carbonized temperature of 1000 °C, exhibited a specific surface area (S{sub BET}) of 457.92 m{sup 2} g{sup −1}. After loading Pt nanoparticles (NPs), the obtained Pt/WC/PC-35-1000 catalyst exhibits the highest unit mass electroactivity (595.93 A g{sup −1} Pt) toward methanol electro-oxidation, which is about 2.6 times as that of the commercial Pt/C (JM) catalyst. Furthermore, the Pt/WC/PC-35-1000 catalyst displays much stronger resistance to CO poisoning and better durability toward methanol electrooxidation compared with the commercial Pt/C (JM) catalyst. The high electrocatalytic activity, strong poison-resistivity and good stability of Pt/WC/PC-35-1000 catalyst are attributed to the porous structures and high specific surface area of WC/PC support could facilitate the rapid mass transportation. Moreover, synergistic effect between WC and Pt NPs is favorable to the higher catalytic performance.

  20. Catalytic hydrodechlorination of triclosan using a new class of anion-exchange-resin supported palladium catalysts.

    PubMed

    Han, Bing; Liu, Wen; Li, Jingwen; Wang, Jin; Zhao, Dongye; Xu, Rui; Lin, Zhang

    2017-09-01

    We prepared a new class of anion-exchange-resin supported Pd catalysts for efficient hydrodechlorination of triclosan in water. The catalysts were prepared through an initial ion-exchange uptake of PdCl4(2-) and subsequent reduction of Pd(II) to Pd(0) nanoparticles at ambient temperature. Two standard strong-base anion exchange resins (IRA-900 and IRA-958) with different matrices (polystyrene and polyacrylic) were chosen as the supports. SEM and TEM images showed that Pd(0) nanoparticles were evenly attached on the resin surface with a mean size of 3-5 nm. The resin supported Pd catalysts (Pd@IRA-900 and Pd@IRA-958) were able to facilitate rapid and complete hydrodechlorination of triclosan. At a Pd loading of 2.0 wt.%, the observed pseudo first-order rate constant (kobs) was 1.25 ± 0.06 and 1.6 ± 0.1 L/g/min for Pd@IRA-900 and Pd@IRA-958, respectively. The catalysts were more resistant to Cl(-) poisoning and natural organic matter fouling than other supported-Pd catalysts. The presence of 10 mM NaCl suppressed the kobs value by 31% and 23% for Pd@IRA-900 and Pd@IRA-958, whereas the presence of humic acid at 30 mg/L as TOC lowered the rates by 28% and 27%, respectively. The better performance of Pd@IRA-958 was attributed to the polymeric matrix properties (i.e., hydrophobicity, pore size, and surface area) as well as Pd particle size. GC/MS analyses indicated that very low concentrations of chlorinated intermediates were detected in the early stage of the hydrodechlorination process, with 2-phenoxyphenol being the main byproduct. The catalysts can be repeatedly used in multiple operations without significant bleeding. The catalysts eliminate the need for calcination in preparing conventional supported catalysts, and the resin supports conveniently facilitate control of Pd loading and material properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Steam dealkylation of aromatic hydrocarbons. II. Role of the support and kinetic pathway of oxygenated species in toluene steam dealkylation over group VIII metal catalysts. [Catalyst support comparison

    SciTech Connect

    Duprez, D.; Pereira, P.; Miloudi, A.; Maurel, R.

    1982-05-01

    The role of support in steam dealkylation (SDA) is studied on a series of Group VIII metal catalysts supported on alumina, silica, and titania. When possible turnover frequencies are given on the basis of the free metal fraction during the reaction, the values are generally constant with time-on-steam and represent the actual turnover frequency of the catalysts. Metals can be classified into two groups, namely, support-sensitive metals (Pt,Rh,Pd) and support-insensitive metals (Ni,Co,Ru and to a certain extent Ir). Support sensitivity is related to the oxidizability of the metallic surface. For metals of the first group, the reaction is probably governed by a noncompetitive mechanism in which the metal coverage by the oxygenated species is negligible. Kinetic derivation leads to a rate law where there is at once intervention of the support site concentration and of the specific perimeter of the metal/support interface. One can thus explain the support effect for this metal group and the slight sensitivity to the crystallite size observed in the Rh/Al/sub 2/O/sub 3/ series. For metals of the second group, a competitive mechanism probably takes place on the metal. Kinetic derivation leads to a rate law independent of the support site concentration and accounting for the slight negative order with respect to toluene as previously reported. The conspicuous parallelism between the selectivities of the various metals in SDA, in hydrodealkylation , and in hydrogenolysis is also discussed. In addition to the metal, the support and the crystallite size are determining factors of the selectivity to benzene in SDA.

  2. Direct decomposition of methane over SBA-15 supported Ni, Co and Fe based bimetallic catalysts

    NASA Astrophysics Data System (ADS)

    Pudukudy, Manoj; Yaakob, Zahira; Akmal, Zubair Shamsul

    2015-03-01

    Thermocatalytic decomposition of methane is an alternative route for the production of COx-free hydrogen and carbon nanomaterials. In this work, a set of novel Ni, Co and Fe based bimetallic catalysts supported over mesoporous SBA-15 was synthesized by a facile wet impregnation route, characterized for their structural, textural and reduction properties and were successfully used for the methane decomposition. The fine dispersion of metal oxide particles on the surface of SBA-15, without affecting its mesoporous texture was clearly shown in the low angle X-ray diffraction patterns and the transmission electron microscopy (TEM) images. The nitrogen sorption analysis showed the reduced specific surface area and pore volume of SBA-15, after metal loading due to the partial filling of hexagonal mesopores by metal species. The results of methane decomposition experiments indicated that all of the bimetallic catalysts were highly active and stable for the reaction at 700 °C even after 300 min of time on stream (TOS). However, a maximum hydrogen yield of ∼56% was observed for the NiCo/SBA-15 catalyst within 30 min of TOS. A high catalytic stability was shown by the CoFe/SBA-15 catalyst with 51% of hydrogen yield during the course of reaction. The catalytic stability of the bimetallic catalysts was attributed to the formation of bimetallic alloys. Moreover, the deposited carbons were found to be in the form of a new set of hollow multi-walled nanotubes with open tips, indicating a base growth mechanism, which confirm the selectivity of SBA-15 supported bimetallic catalysts for the formation of open tip carbon nanotubes. The Raman spectroscopic and thermogravimetric analysis of the deposited carbon nanotubes over the bimetallic catalysts indicated their higher graphitization degree and oxidation stability.

  3. Electron microscopy studies of real and model oxide supported gold catalysts

    NASA Astrophysics Data System (ADS)

    Wang, Yingmin

    Oxide supported Au catalysts have been the center of intensive research since being discovered as the most active catalysts for low temperature CO oxidation. However, the origin of the high activity of these catalysts remains unknown. The complexity of this catalytic system prevents a clear identification and characterization of the factors truly affecting its properties. In this thesis research, the attention was focused on certain areas that are truly crucial for the understanding of the Au catalysts, including the preparation and activation of Au catalysts, the properties of the TiO2 surface and the interaction between TiO2 and gold nanoparticles. Electron microscopy was used throughout this research along with other techniques and has been proved to be a powerful and irreplaceable tool and provide an insight into this catalytic system with a unique angle. Among all of the findings of this research, the examination of Au catalysts identified the role of chlorine in accelerating the agglomeration of gold particles and poisoning the active sites. Studies on the activation of Au/Al 2O3 and Au/TiO2 catalysts demonstrated the oxidation state and the size of the gold particles were two competing factors during activation and both were very important. The difference in the mobility of gold species on oxide surfaces affects them. The study of the TiO2 surface described the reoxidation process of the TiO2 surface and a new surface reconstruction, c(2x2), on this surface was reported. Its atomic structure was solved by applying Direct Methods and Density Functional Theory calculations. The study of Au/TiO2 model catalysts revealed no preferred orientation between gold nanoparticles and TiO2 supports with various crystallographic orientations and surface conditions, and this fact was explained by the influence of surface adsorbates. Model catalyst studies also characterized surface induced sintering, and estimated the temperature of local heating during surface induced

  4. Selective oxidation catalysts obtained by immobilization of iron(III) porphyrins on thiosalicylic acid-modified Mg-Al layered double hydroxides.

    PubMed

    de Freitas Castro, Kelly Aparecida Dias; Wypych, Fernando; Antonangelo, Ariana; Mantovani, Karen Mary; Bail, Alesandro; Ucoski, Geani Maria; Ciuffi, Kátia Jorge; Cintra, Thais Elita; Nakagaki, Shirley

    2016-09-15

    Nitrate-intercalated Mg-Al layered double hydroxides (LDHs) were synthesized and exfoliated in formamide. Reaction of the single layer suspension with thiosalicylic acid under different conditions afforded two types of solids: LDHA1, in which the outer surface was modified with the anion thiosalicylate, and LDHA2, which contained the anion thiosalicylate intercalated between the LDH layers. LDHA1 and LDHA2 were used as supports to immobilize neutral (FeP1 and FeP2) and anionic (FeP3) iron(III) porphyrins. For comparison purposes, the iron(III) porphyrins (FePs) were also immobilized on LDH intercalated with nitrate anions obtained by the co-precipitation method. Chemical modification of LDH facilitated immobilization of the FePs through interaction of the functionalizing groups in LDH with the peripheral substituents on the porphyrin ring. The resulting FePx-LDHAy solids were characterized by X-ray diffraction (powder) and UV-Vis and EPR spectroscopies and were investigated as catalysts in the oxidation of cyclooctene and cyclohexane. The immobilized neutral FePs and their homogeneous counterparts gave similar product yields in the oxidation of cyclooctene, suggesting that immobilization of the FePs on the thiosalicylate-modified LDHs only supported the catalyst species without interfering in the catalytic outcome. On the other hand, in the oxidation of cyclohexane, the thiosalicylate anions on the outer surface of LDHA1 or intercalated between the LDHA2 layers influenced the catalytic activity of FePx-LDHAy, leading to different efficiency and selectivity results. FeP1-LDHA2 performed the best (29.6% alcohol yield) due to changes in the polarity of the surface of the support and the presence of FeP1. Interestingly, FeP1 also performed better in solution as compared to the other FePs. Finally, it was possible to recycle FeP1-LDHA2 at least three times.

  5. Oxidative dehydrogenation of propane over vanadia-based catalysts supported on high-surface-area mesoporous MgAl2O4

    SciTech Connect

    Evans, Owen R.; Bell, Alexis T.; Tilley, T. Don

    2004-06-01

    The oxidative dehydrogenation of propane to propene was investigated over a series of novel vanadia-based catalysts supported on high-surface-area magnesium spinel. A mesoporous MgAl2O4 support was synthesized via a low-temperature sol gel process involving the heterobimetallic alkoxide precursor, Mg[Al(O iPr)4]2. A high-purity catalyst support was obtained after calcination at 1173 K under O2 atmosphere and active vanadia catalysts were prepared from the thermolysis of OV(O tBu)3 after grafting onto the spinel support. MgAl2O4-supported catalysts prepared in this manner have BET surface areas of 234 245 m2/g. All of the catalysts were characterized by X-ray powder diffraction, and Raman, solid-state NMR, and diffuse-reflectance UV vis spectroscopy. At all vanadium loadings the vanadia supported on MgAl2O4 exist as a combination of isolated monovanadate and tetrahedral polyvanadate species. As the vanadium surface density increases for these catalysts the ratio of polyvanadate species to isolated monovanadate species increases. In addition, as the vanadium surface density increases for these catalysts, the initial rate of propane ODH per V atom increases and reaches a maximum value at 6 VOx/nm2. Increasing the vanadium surface density past this point results in a decrease in the rate of propane ODH owing to the formation of multilayer species in which subsurface vanadium atoms are essentially rendered catalytically inactive. The initial propene selectivity increases with increasing vanadium surface density and reaches a plateau of {approx}95 percent for the V/MgAl catalysts. Rate coefficients for propane ODH (k1), propane combustion (k2), and propene combustion (k3) were calculated for these catalysts. The value of k1 increases with increasing VOx surface density, reaching a maximum at about 5.5 VOx/nm2. On the other hand, the ratio (k2/k1) for V/MgAl decreases with increasing VOx surface density. The ratio (k3/k1) for both sets of catalysts shows no dependence on

  6. Multi-wavelength Raman spectroscopy study of supported vanadia catalysts: Structure identification and quantification

    DOE PAGES

    Wu, Zili

    2014-10-20

    Revealing the structure of supported metal oxide catalysts is a prerequisite for establishing the structure - catalysis relationship. Among a variety of characterization techniques, multi-wavelength Raman spectroscopy, combining resonance Raman and non-resonance Raman with different excitation wavelengths, has recently emerged as a particularly powerful tool in not only identifying but also quantifying the structure of supported metal oxide clusters. In our review, we make use of two supported vanadia systems, VOx/SiO2 and VOx/CeO2, as examples to showcase how one can employ this technique to investigate the heterogeneous structure of active oxide clusters and to understand the complex interaction between themore » oxide clusters and the support. Moreover, the qualitative and quantitative structural information gained from the multi-wavelength Raman spectroscopy can be utilized to provide fundamental insights for designing more efficient supported metal oxide catalysts.« less

  7. Multi-wavelength Raman spectroscopy study of supported vanadia catalysts: Structure identification and quantification

    SciTech Connect

    Wu, Zili

    2014-10-20

    Revealing the structure of supported metal oxide catalysts is a prerequisite for establishing the structure - catalysis relationship. Among a variety of characterization techniques, multi-wavelength Raman spectroscopy, combining resonance Raman and non-resonance Raman with different excitation wavelengths, has recently emerged as a particularly powerful tool in not only identifying but also quantifying the structure of supported metal oxide clusters. In our review, we make use of two supported vanadia systems, VOx/SiO2 and VOx/CeO2, as examples to showcase how one can employ this technique to investigate the heterogeneous structure of active oxide clusters and to understand the complex interaction between the oxide clusters and the support. Moreover, the qualitative and quantitative structural information gained from the multi-wavelength Raman spectroscopy can be utilized to provide fundamental insights for designing more efficient supported metal oxide catalysts.

  8. Hydrogen production from biomass gasification using biochar as a catalyst/support.

    PubMed

    Yao, Dingding; Hu, Qiang; Wang, Daqian; Yang, Haiping; Wu, Chunfei; Wang, Xianhua; Chen, Hanping

    2016-09-01

    Biochar is a promising catalyst/support for biomass gasification. Hydrogen production from biomass steam gasification with biochar or Ni-based biochar has been investigated using a two stage fixed bed reactor. Commercial activated carbon was also studied as a comparison. Catalyst was prepared with an impregnation method and characterized by X-ray diffraction, specific surface and porosity analysis, X-ray fluorescence and scanning electron micrograph. The effects of gasification temperature, steam to biomass ratio, Ni loading and bio-char properties on catalyst activity in terms of hydrogen production were explored. The Ni/AC catalyst showed the best performance at gasification temperature of 800°C, S/B=4, Ni loading of 15wt.%. Texture and composition characterization of the catalysts suggested the interaction between volatiles and biochar promoted the reforming of pyrolysis volatiles. Cotton-char supported Ni exhibited the highest activity of H2 production (64.02vol.%, 92.08mgg(-1) biomass) from biomass gasification, while rice-char showed the lowest H2 production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal-Organic Framework.

    PubMed

    Li, Zhanyong; Schweitzer, Neil M; League, Aaron B; Bernales, Varinia; Peters, Aaron W; Getsoian, Andrew Bean; Wang, Timothy C; Miller, Jeffrey T; Vjunov, Aleksei; Fulton, John L; Lercher, Johannes A; Cramer, Christopher J; Gagliardi, Laura; Hupp, Joseph T; Farha, Omar K

    2016-02-17

    Developing supported single-site catalysts is an important goal in heterogeneous catalysis since the well-defined active sites afford opportunities for detailed mechanistic studies, thereby facilitating the design of improved catalysts. We present herein a method for installing Ni ions uniformly and precisely on the node of a Zr-based metal-organic framework (MOF), NU-1000, in high density and large quantity (denoted as Ni-AIM) using atomic layer deposition (ALD) in a MOF (AIM). Ni-AIM is demonstrated to be an efficient gas-phase hydrogenation catalyst upon activation. The structure of the active sites in Ni-AIM is proposed, revealing its single-site nature. More importantly, due to the organic linker used to construct the MOF support, the Ni ions stay isolated throughout the hydrogenation catalysis, in accord with its long-term stability. A quantum chemical characterization of the catalyst and the catalytic process complements the experimental results. With validation of computational modeling protocols, we further targeted ethylene oligomerization catalysis by Ni-AIM guided by theoretical prediction. Given the generality of the AIM methodology, this emerging class of materials should prove ripe for the discovery of new catalysts for the transformation of volatile substrates.

  10. Sintering-resistant Single-Site Nickel Catalyst Supported by Metal-Organic Framework

    SciTech Connect

    Li, Zhanyong; Schweitzer, Neil; League, Aaron; Bernales Candia, Sandra Varinia; Peters, Aaron; Getsoian, Andrew G.; Wang, Timothy; Miller, Jeffrey T.; Vjunov, Aleksei; Fulton, John L.; Lercher, Johannes A.; Cramer, Christopher J.; Gagliardi, Laura; Hupp, Joseph; Farha, Omar

    2016-02-17

    Developing supported single-site catalysts is an important goal in heterogeneous catalysis, since the well-defined active sites afford opportunities for detailed mechanistic studies, thereby facilitating the design of improved catalysts. We present herein a method for installing Ni ions uniformly and precisely on the node of a Zr-based MOF, NU-1000, in high density and large quantity (denoted as Ni-AIM) using atomic layer deposition (ALD) in a metal–organic framework (MOF) (AIM). Ni-AIM is demonstrated to be an efficient gas-phase hydrogenation catalyst upon activation. The structure of the active sites in Ni-AIM is proposed, revealing its single-site nature. More importantly, due to the organic linker used to construct the MOF support, the Ni ions stay isolated throughout the hydrogenation catalysis, in accord with its long-term stability. A quantum chemical characterization of the catalyst and the catalytic process complements the experimental results. With validation of computational modeling protocols, we further targeted ethylene oligomerization catalysis by Ni-AIM guided by theoretical prediction. Given the generality of the AIM methodology, this emerging class of materials should prove ripe for the discovery of new catalysts for the transformation of volatile substrates.

  11. Role of bonding mechanisms during transfer hydrogenation reaction on heterogeneous catalysts of platinum nanoparticles supported on zinc oxide nanorods

    NASA Astrophysics Data System (ADS)

    Al-Alawi, Reem A.; Laxman, Karthik; Dastgir, Sarim; Dutta, Joydeep

    2016-07-01

    For supported heterogeneous catalysis, the interface between a metal nanoparticle and the support plays an important role. In this work the dependency of the catalytic efficiency on the bonding chemistry of platinum nanoparticles supported on zinc oxide (ZnO) nanorods is studied. Platinum nanoparticles were deposited on ZnO nanorods (ZnO NR) using thermal and photochemical processes and the effects on the size, distribution, density and chemical state of the metal nanoparticles upon the catalytic activities are presented. The obtained results indicate that the bonding at Pt-ZnO interface depends on the deposition scheme which can be utilized to modulate the surface chemistry and thus the activity of the supported catalysts. Additionally, uniform distribution of metal on the catalyst support was observed to be more important than the loading density. It is also found that oxidized platinum Pt(IV) (platinum hydroxide) provided a more suitable surface for enhancing the transfer hydrogenation reaction of cyclohexanone with isopropanol compared to zero valent platinum. Photochemically synthesized ZnO supported nanocatalysts were efficient and potentially viable for upscaling to industrial applications.

  12. Combination of supported bimetallic rhodium–molybdenum catalyst and cerium oxide for hydrogenation of amide

    PubMed Central

    Nakagawa, Yoshinao; Tamura, Riku; Tamura, Masazumi; Tomishige, Keiichi

    2015-01-01

    Hydrogenation of cyclohexanecarboxamide to aminomethylcyclohexane was conducted with silica-supported bimetallic catalysts composed of noble metal and group 6–7 elements. The combination of rhodium and molybdenum with molar ratio of 1:1 showed the highest activity. The effect of addition of various metal oxides was investigated on the catalysis of Rh–MoOx/SiO2, and the addition of CeO2 much increased the activity and selectivity. Higher hydrogen pressure and higher reaction temperature in the tested range of 2–8 MPa and 393–433 K, respectively, were favorable in view of both activity and selectivity. The highest yield of aminomethylcyclohexane obtained over Rh–MoOx/SiO2 + CeO2 was 63%. The effect of CeO2 addition was highest when CeO2 was not calcined, and CeO2 calcined at >773 K showed a smaller effect. The use of CeO2 as a support rather decreased the activity in comparison with Rh–MoOx/SiO2. The weakly-basic nature of CeO2 additive can affect the surface structure of Rh–MoOx/SiO2, i.e. reducing the ratio of Mo–OH/Mo–O− sites. PMID:27877749

  13. Combination of supported bimetallic rhodium-molybdenum catalyst and cerium oxide for hydrogenation of amide

    NASA Astrophysics Data System (ADS)

    Nakagawa, Yoshinao; Tamura, Riku; Tamura, Masazumi; Tomishige, Keiichi

    2015-02-01

    Hydrogenation of cyclohexanecarboxamide to aminomethylcyclohexane was conducted with silica-supported bimetallic catalysts composed of noble metal and group 6-7 elements. The combination of rhodium and molybdenum with molar ratio of 1:1 showed the highest activity. The effect of addition of various metal oxides was investigated on the catalysis of Rh-MoOx/SiO2, and the addition of CeO2 much increased the activity and selectivity. Higher hydrogen pressure and higher reaction temperature in the tested range of 2-8 MPa and 393-433 K, respectively, were favorable in view of both activity and selectivity. The highest yield of aminomethylcyclohexane obtained over Rh-MoOx/SiO2 + CeO2 was 63%. The effect of CeO2 addition was highest when CeO2 was not calcined, and CeO2 calcined at >773 K showed a smaller effect. The use of CeO2 as a support rather decreased the activity in comparison with Rh-MoOx/SiO2. The weakly-basic nature of CeO2 additive can affect the surface structure of Rh-MoOx/SiO2, i.e. reducing the ratio of Mo-OH/Mo-O- sites.

  14. Kinetic study of Candida antarctica lipase B immobilization using poly(methyl methacrylate) nanoparticles obtained by miniemulsion polymerization as support.

    PubMed

    Valério, Alexsandra; Nicoletti, Gabrieli; Cipolatti, Eliane P; Ninow, Jorge L; Araújo, Pedro H H; Sayer, Cláudia; de Oliveira, Débora

    2015-03-01

    With the objective to obtain immobilized Candida antarctica lipase B (CalB) with good activity and improved utilization rate, this study evaluated the influence of enzyme and crodamol concentrations and initiator type on the CalB enzyme immobilization in nanoparticles consisting of poly(methyl methacrylate) (PMMA) obtained by miniemulsion polymerization. The kinetic study of immobilized CalB enzyme in PMMA nanoparticles was evaluated in terms of monomer conversion, particle size, zeta potential, and relative activity. The optimum immobilization condition for CalB was compared with free enzyme in the p-NPL hydrolysis activity measurement. Results showed a higher CalB enzyme stability after 20 hydrolysis cycles compared with free CalB enzyme; in particular, the relative immobilized enzyme activity was maintained up to 40%. In conclusion, PMMA nanoparticles proved to be a good support for the CalB enzyme immobilization and may be used as a feasible alternative catalyst in industrial processes.

  15. Polybenzimidazole (PBI) functionalized nanographene as highly stable catalyst support for polymer Electrolyte membrane fuel cells (PEMFCs)

    DOE PAGES

    Xin, Le; Yang, Fan; Qiu, Yang; ...

    2016-08-25

    Nanoscale graphenes were used as cathode catalyst supports in proton exchange membrane fuel cells (PEMFCs). Surface-initiated polymerization that covalently bonds polybenzimidazole (PBI) polymer on the surface of graphene supports enables the uniform distribution of the Pt nanoparticles, as well as allows the sealing of the unterminated carbon bonds usually present on the edge of graphene from the chemical reduction of graphene oxide. The nanographene effectively shortens the length of channels and pores for O2 diffusion/water dissipation and significantly increases the primary pore volume. Further addition of p-phenyl sulfonic functional graphitic carbon particles as spacers, increases the specific volume of themore » secondary pores and greatly improves O2 mass transport within the catalyst layers. The developed composite cathode catalyst of Pt/PBI-nanographene (50 wt%) + SO3H-graphitic carbon black demonstrates a higher beginning of life (BOL) PEMFC performance as compared to both Pt/PBI-nanographene (50 wt%) and Pt/PBI-graphene (50 wt%) + SO3H-graphitic carbon black (GCB). Accelerated stress tests show excellent support durability compared to that of traditional Pt/Vulcan XC72 catalysts, when subjected to 10,000 cycles from 1.0 V to 1.5 V. As a result, this study suggests the promise of using PBI-nanographene + SO3H-GCB hybrid supports in fuel cells to achieve the 2020 DOE targets for transportation applications.« less

  16. Polybenzimidazole (PBI) functionalized nanographene as highly stable catalyst support for polymer Electrolyte membrane fuel cells (PEMFCs)

    SciTech Connect

    Xin, Le; Yang, Fan; Qiu, Yang; Uzunoglu, Aytekin; Rockward, Tommy; Borup, Rodney L.; Stanciu, Lia A.; Li, Wenzhen; Xie, Jian

    2016-08-25

    Nanoscale graphenes were used as cathode catalyst supports in proton exchange membrane fuel cells (PEMFCs). Surface-initiated polymerization that covalently bonds polybenzimidazole (PBI) polymer on the surface of graphene supports enables the uniform distribution of the Pt nanoparticles, as well as allows the sealing of the unterminated carbon bonds usually present on the edge of graphene from the chemical reduction of graphene oxide. The nanographene effectively shortens the length of channels and pores for O2 diffusion/water dissipation and significantly increases the primary pore volume. Further addition of p-phenyl sulfonic functional graphitic carbon particles as spacers, increases the specific volume of the secondary pores and greatly improves O2 mass transport within the catalyst layers. The developed composite cathode catalyst of Pt/PBI-nanographene (50 wt%) + SO3H-graphitic carbon black demonstrates a higher beginning of life (BOL) PEMFC performance as compared to both Pt/PBI-nanographene (50 wt%) and Pt/PBI-graphene (50 wt%) + SO3H-graphitic carbon black (GCB). Accelerated stress tests show excellent support durability compared to that of traditional Pt/Vulcan XC72 catalysts, when subjected to 10,000 cycles from 1.0 V to 1.5 V. As a result, this study suggests the promise of using PBI-nanographene + SO3H-GCB hybrid supports in fuel cells to achieve the 2020 DOE targets for transportation applications.

  17. Magnetically Recoverable Supported Ruthenium Catalyst for Hydrogenation of Alkynes and Transfer Hydrogenation of Carbonyl Compounds

    EPA Science Inventory

    A ruthenium (Ru) catalyst supported on magnetic nanoparticles (NiFe2O4) has been successfully synthesized and used for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The cata...

  18. Magnetically Recoverable Supported Ruthenium Catalyst for Hydrogenation of Alkynes and Transfer Hydrogenation of Carbonyl Compounds

    EPA Science Inventory

    A ruthenium (Ru) catalyst supported on magnetic nanoparticles (NiFe2O4) has been successfully synthesized and used for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The cata...

  19. Catalytic role of vacancy diffusion in ceria supported atomic gold catalyst.

    PubMed

    Han, Zhong-Kang; Wang, Yang-Gang; Gao, Yi

    2017-08-10

    Dynamics of intrinsic defects are considered fundamental in the chemistry of reducible oxides, and their effect on catalytic reactions have been rarely reported. Herein, we propose a new Ov diffusion assisted Langmuir-Hinshelwood mechanism for CO oxidation, which may largely account for the origin of high reactivity of supported atomic gold catalysts.

  20. Mesoporous vanadium nitride as a high performance catalyst support for formic acid electrooxidation.

    PubMed

    Yang, Minghui; Cui, Zhiming; DiSalvo, Francis J

    2012-11-04

    Mesoporous vanadium nitride (VN) with high surface area and good electrical conductivity was prepared by a solid-solid phase separation method from a Zn containing vanadium oxide, Zn(3)V(2)O(8). The VN supported Pd catalyst exhibited significant catalytic activity for formic acid oxidation.

  1. Identifying low-coverage surface species on supported noble metal nanoparticle catalysts by DNP-NMR.

    PubMed

    Johnson, Robert L; Perras, Frédéric A; Kobayashi, Takeshi; Schwartz, Thomas J; Dumesic, James A; Shanks, Brent H; Pruski, Marek

    2016-01-31

    DNP-NMR spectroscopy has been applied to enhance the signal for organic molecules adsorbed on γ-Al2O3-supported Pd nanoparticle catalysts. By offering >2500-fold time savings, the technique enabled the observation of (13)C-(13)C cross-peaks for low coverage species, which were assigned to products from oxidative degradation of methionine adsorbed on the nanoparticle surface.

  2. Carboxylic Group Embedded Carbon Balls as a New Supported Catalyst for Hydrogen Economic Reactions.

    PubMed

    Bordoloi, Ankur

    2016-03-01

    Carboxylic group functionalized carbon balls have been successfully synthesized by using a facile synthesis method and well characterized with different characterization techniques such as XPS, MAS NMR, SEM, ICP and N2 physi-sorption analysis. The synthesized material has been effectively utilized as novel support to immobilized ruthenium catalyst for hydrogen economic reactions.

  3. Supported Rh-phosphine complex catalysts for continuous gas-phase decarbonylation of aldehydes.

    PubMed

    Malcho, Phillip; Garcia-Suarez, Eduardo J; Mentzel, Uffe Vie; Engelbrekt, Christian; Riisager, Anders

    2014-12-14

    Heterogeneous silica supported rhodium-phosphine complex catalysts are employed for the first time in the catalytic decarbonylation of aldehydes in continuous gas-phase. The reaction protocol is exemplified for the decarbonylation of p-tolualdehyde to toluene and further extended to other aromatic and aliphatic aldehydes achieving excellent results in terms of both conversion and selectivity.

  4. Alkene Isomerization Using a Solid Acid as Activator and Support for a Homogeneous Catalyst

    ERIC Educational Resources Information Center

    Seen, Andrew J.

    2004-01-01

    An upper-level undergraduate experiment that, in addition to introducing students to catalysis using an air sensitive transition-metal complex, introduces the use of a solid acid as an activator and support for the catalyst is developed. The increased stability acquired in the course of the process affords the opportunity to characterize the…

  5. PREPARATION, CHARACTERIZATION AND ACTIVITY OF AL2O3-SUPPORTED V2O5 CATALYSTS

    EPA Science Inventory

    A series of activated alumina supported vanadium oxide catalysts with various V2O5 loadings ranging from 5 to 25 wt% has been prepared by wet impregnation technique. A combination of various physico-chemical techniques such as BET surface areas, oxygen chemisorption, X-ray diffra...

  6. Alkene Isomerization Using a Solid Acid as Activator and Support for a Homogeneous Catalyst

    ERIC Educational Resources Information Center

    Seen, Andrew J.

    2004-01-01

    An upper-level undergraduate experiment that, in addition to introducing students to catalysis using an air sensitive transition-metal complex, introduces the use of a solid acid as an activator and support for the catalyst is developed. The increased stability acquired in the course of the process affords the opportunity to characterize the…

  7. PREPARATION, CHARACTERIZATION AND ACTIVITY OF AL2O3-SUPPORTED V2O5 CATALYSTS

    EPA Science Inventory

    A series of activated alumina supported vanadium oxide catalysts with various V2O5 loadings ranging from 5 to 25 wt% has been prepared by wet impregnation technique. A combination of various physico-chemical techniques such as BET surface areas, oxygen chemisorption, X-ray diffra...

  8. Ni/Fe-supported over hydrotalcites precursors as catalysts for clean and selective oxidation of Basic Yellow 11: reaction intermediates determination.

    PubMed

    Ovejero, G; Rodríguez, A; Vallet, A; García, J

    2013-01-01

    In this work, Basic Yellow 11 (BY 11) was employed as model compound to study catalytic wet air oxidation as a pre-treatment step to the conventional biological oxidation. Ni and Fe catalysts supported over hydrotalcite (HT) were prepared by incipient wetness and excess impregnation to obtain catalysts with different metal loadings (from 1 to 10 wt.%). HTs were synthesized by co-precipitation and characterized with XRD, X-ray fluorescence (XRF), BET, thermogravimetric analysis and SEM. Results showed that dye conversion increased with Ni and Fe content up to 7 wt.% and that the most effective catalyst were prepared by incipient wetness impregnation. The influence of metal loading in the catalyst, and the preparation method as well as the reaction conditions was investigated. A mechanism and reaction pathways for BY 11 during catalytic liquid phase oxidation have also been proposed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Highly efficient bimetal synergetic catalysis by a multi-wall carbon nanotube supported palladium and nickel catalyst for the hydrogen storage of magnesium hydride.

    PubMed

    Yuan, Jianguang; Zhu, Yunfeng; Li, Liquan

    2014-06-25

    A multi-wall carbon nanotube supported Pd and Ni catalyst efficiently catalyzes the hydrogen storage of magnesium hydride prepared by HCS + MM. Excellent hydrogen storage properties were obtained: hydrogen absorption - 6.44 wt% within 100 s at 373 K, hydrogen desorption - 6.41 wt% within 1800 s at 523 K and 6.70 wt% within 400 s at 573 K.

  10. Highly dispersed metal catalyst

    DOEpatents

    Xiao, Xin; West, William L.; Rhodes, William D.

    2016-11-08

    A supported catalyst having an atomic level single atom structure is provided such that substantially all the catalyst is available for catalytic function. A process of forming a single atom catalyst unto a porous catalyst support is also provided.

  11. Pd-Pt Catalysts on Fluorinated Alumina Support Studied by X-Ray Absorption Fine Structure

    NASA Astrophysics Data System (ADS)

    Yan, Wensheng; Li, Zhongrui; Wei, Zheng; Wei, Shiqiang

    2007-02-01

    A series of bi-metallic Pd-Pt catalysts supported on both pristine and fluorinated alumina supports were investigated with x-ray absorption spectroscopy. It was found that Pd and Pt form small alloy particles on the pristine alumina support; the composition and the cluster size of the PdPt bimetallic alloys, and the electronic properties of the metals were significantly altered on the fluorinated support. The remarkable increase in sulfur tolerance of the PdPt metallic clusters supported on the fluorine pretreated alumina can be attributed to an electronic depletion of the metals, large particle size and direct participation of the acid sites in the reaction.

  12. The effects of promoters of K and Zr on the mesoporous carbon supported cobalt catalysts for Fischer-Tropsch synthesis.

    PubMed

    Chen, Liang; Song, Guoxia; Fu, Yuchuan; Shen, Jianyi

    2012-02-15

    The mesoporous carbon supported cobalt catalyst (15%Co/MC) was found to be more active and selective to C(5)(+) than the traditionally activated carbon supported one (15%Co/AC) for the Fischer-Tropsch synthesis (FTS). The addition of small amount of K(2)O and ZrO(2) significantly affected the FTS behavior of 15%Co/MC. The addition of 1% K inhibited the FTS activity dramatically, while the addition of 3% Zr increased the FTS activity significantly. The addition of K(2)O decreased the surface acidity while increased the surface basicity of 15%Co/MC, resulting in the increased heat of adsorption of CO and substantially decreased heat of adsorption of H(2) on Co. In contrast, the addition of ZrO(2) increased the surface acidity and heat of adsorption of H(2) on Co. The FTS activity was found to be related to the ratio of heats for the adsorption of CO and H(2) on the catalysts 15%Co/MC, 15%Co-1%K/MC and 15%Co-3%Zr/MC. The highest FTS activity was obtained on the catalyst with the heat ratio of 1.2. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Ni-Supported Pd Nanoparticles with Ca Promoter: A New Catalyst for Low-Temperature Ammonia Cracking

    PubMed Central

    Polanski, Jaroslaw; Bartczak, Piotr; Ambrozkiewicz, Weronika; Sitko, Rafal; Siudyga, Tomasz; Mianowski, Andrzej; Szade, Jacek; Balin, Katarzyna; Lelątko, Józef

    2015-01-01

    In this paper we report a new nanometallic, self-activating catalyst, namely, Ni-supported Pd nanoparticles (PdNPs/Ni) for low temperature ammonia cracking, which was prepared using a novel approach involving the transfer of nanoparticles from the intermediate carrier, i.e. nano-spherical SiO2, to the target carrier technical grade Ni (t-Ni) or high purity Ni (p-Ni) grains. The method that was developed allows a uniform nanoparticle size distribution (4,4±0.8 nm) to be obtained. Unexpectedly, the t-Ni-supported Pd NPs, which seemed to have a surface Ca impurity, appeared to be more active than the Ca-free (p-Ni) system. A comparison of the novel PdNPs/Ni catalyst with these reported in the literature clearly indicates the much better hydrogen productivity of the new system, which seems to be a highly efficient, flexible and durable catalyst for gas-phase heterogeneous ammonia cracking in which the TOF reaches a value of 2615 mmolH2/gPd min (10,570 molNH3/molPd(NP) h) at 600°C under a flow of 12 dm3/h (t-Ni). PMID:26308929

  14. Ni-Supported Pd Nanoparticles with Ca Promoter: A New Catalyst for Low-Temperature Ammonia Cracking.

    PubMed

    Polanski, Jaroslaw; Bartczak, Piotr; Ambrozkiewicz, Weronika; Sitko, Rafal; Siudyga, Tomasz; Mianowski, Andrzej; Szade, Jacek; Balin, Katarzyna; Lelątko, Józef

    2015-01-01

    In this paper we report a new nanometallic, self-activating catalyst, namely, Ni-supported Pd nanoparticles (PdNPs/Ni) for low temperature ammonia cracking, which was prepared using a novel approach involving the transfer of nanoparticles from the intermediate carrier, i.e. nano-spherical SiO2, to the target carrier technical grade Ni (t-Ni) or high purity Ni (p-Ni) grains. The method that was developed allows a uniform nanoparticle size distribution (4,4±0.8 nm) to be obtained. Unexpectedly, the t-Ni-supported Pd NPs, which seemed to have a surface Ca impurity, appeared to be more active than the Ca-free (p-Ni) system. A comparison of the novel PdNPs/Ni catalyst with these reported in the literature clearly indicates the much better hydrogen productivity of the new system, which seems to be a highly efficient, flexible and durable catalyst for gas-phase heterogeneous ammonia cracking in which the TOF reaches a value of 2615 mmolH2/gPd min (10,570 molNH3/molPd(NP) h) at 600°C under a flow of 12 dm3/h (t-Ni).

  15. Recent applications of polymer supported organometallic catalysts in organic synthesis.

    PubMed

    Kann, Nina

    2010-09-07

    Recent developments concerning the application of polymer supported organometallic reagents in solid phase synthesis are reviewed, with a special focus on methodology for carbon-carbon formation. Examples of reactions that are covered include the classical Suzuki, Sonogashira and Heck coupings, but also aryl amination, epoxide opening, rearrangements, metathesis and cyclopropanation. Applications in the field of asymmetric synthesis are also discussed.

  16. Preparation of catalysts via ion-exchangeable coatings on supports

    DOEpatents

    Dosch, R.G.; Stephens, H.P.

    1986-04-09

    Disclosed are: new catalytic compositions which comprise an inert support coated with a hydrous alkali metal, alkaline earth metal, or quaternary ammonium titanate, niobate, zirconate, or tantalate, in which the alkali or alkaline earth metal or quaternary ammonium cations have been exchanged for a catalytically effective quantity of a catalytically effective metal.

  17. Continuous flow room temperature reductive aqueous homo-coupling of aryl halides using supported Pd catalysts

    PubMed Central

    Feiz, Afsaneh; Bazgir, Ayoob; Balu, Alina M.; Luque, Rafael

    2016-01-01

    A convenient and environmentally friendly protocol for the preparation of biaryls at room temperature under continuous flow conditions is reported. A simple reductive homo-coupling Ullmann-type reaction was performed in an H-Cube mini using commercially available supported Pd catalysts under mild reaction conditions, with quantitative conversion to target products. Commercial Pd catalysts were found to be highly stable under the investigated reaction conditions, with a minimum Pd leaching into solution after several reaction runs (ca. 20 h on stream). PMID:27600989

  18. Low-cost and durable catalyst support for fuel cells: graphite submicronparticles

    SciTech Connect

    Zhang, Sheng; Shao, Yuyan; Li, Xiaohong; Nie, Zimin; Wang, Yong; Liu, Jun; Yin, Geping; Lin, Yuehe

    2010-01-01

    Low-cost graphite submicronparticles (GSP) are employed as a possible catalyst support for polymer electrolyte membrane (PEM) fuel cells. Platinum nanoparticles are deposited on Vulcan XC-72 carbon black (XC-72), carbon nanotubes (CNT), and GSP via ethylene glycol (EG) reduction method. The morphologies and the crystallinity of Pt/XC-72, Pt/CNT, and Pt/GSP are characterized with X-ray diffraction and transmission electron microscope, which shows that Pt nanoparticles (~ 3.5 nm) are uniformly dispersed on GSP support. Pt/GSP exhibits the highest activity towards oxygen reduction reactions. The durability study indicates that Pt/GSP is 2 ~ 3 times durable than Pt/CNT and Pt/XC-72. The enhanced durability of Pt/GSP catalyst is attributed to the higher corrosion resistance of graphite submicronparticles, which results from higher graphitization degree of GSP support. Considering its low production cost, graphite submicronparticles are promising electrocatalyst support for fuel cells.

  19. Low-cost and durable catalyst support for fuel cells: Graphite submicronparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng; Shao, Yuyan; Li, Xiaohong; Nie, Zimin; Wang, Yong; Liu, Jun; Yin, Geping; Lin, Yuehe

    Low-cost graphite submicronparticles (GSP) are employed as a possible catalyst support for polymer electrolyte membrane (PEM) fuel cells. Platinum nanoparticles are deposited on Vulcan XC-72 carbon black (XC-72), carbon nanotubes (CNT), and GSP via ethylene glycol (EG) reduction method. The morphologies and the crystallinity of Pt/XC-72, Pt/CNT, and Pt/GSP are characterized with X-ray diffraction and transmission electron microscope, which shows that Pt nanoparticles (∼3.5 nm) are uniformly dispersed on supports. Pt/GSP exhibits the highest activity towards oxygen-reduction reactions. The durability study indicates that Pt/GSP is 2-3 times durable than Pt/CNT and Pt/XC-72. The enhanced durability of Pt/GSP catalyst is attributed to the higher corrosion resistance of graphite submicronparticles, which results from higher graphitization degree of GSP support. Considering its low production cost, graphite submicronparticles are promising electrocatalyst support for fuel cells.

  20. Ruthenium catalysts supported on high-surface-area zirconia for the catalytic wet oxidation of N,N-dimethyl formamide.

    PubMed

    Sun, Guanglu; Xu, Aihua; He, Yu; Yang, Min; Du, Hongzhang; Sun, Chenglin

    2008-08-15

    Three weight percent ruthenium catalysts were prepared by incipient-wet impregnation of two different zirconium oxides, and characterized by BET, XRD and TPR. Their activity was evaluated in the catalytic wet oxidation (CWO) of N,N-dimethyl formamide (DMF) in an autoclave reactor. Due to a better dispersion, Ru catalyst supported on a high-surface-area zirconia (Ru/ZrO(2)-A) possessed higher catalytic properties. Due to over-oxidation of Ru particles, the catalytic activity of the both catalysts decreased during successive tests. The effect of oxygen partial pressure and reaction temperature on the DMF reactivity in the CWO on Ru/ZrO(2)-A was also investigated. 98.6% of DMF conversion was obtained through hydrothermal decomposition within 300 min at conditions of 200 degrees C and 2.0 MPa of nitrogen pressure. At 240 degrees C and 2.0 MPa of oxygen pressure 98.3% of DMF conversion was obtained within 150 min.

  1. Effect of halide and acid additives on the direct synthesis of hydrogen peroxide using supported gold-palladium catalysts.

    PubMed

    Ntainjua N, Edwin; Piccinini, Marco; Pritchard, James C; Edwards, Jennifer K; Carley, Albert F; Moulijn, Jacob A; Hutchings, Graham J

    2009-01-01

    The effect of halide and acid addition on the direct synthesis of hydrogen peroxide is studied for magnesium oxide- and carbon-supported bimetallic gold-palladium catalysts. The addition of acids decreases the hydrogenation/decomposition of hydrogen peroxide, and the effect is particularly pronounced for the magnesium oxide-supported catalysts whilst for carbon-supported catalysts the pH requires close control to optimize hydrogen peroxide synthesis. The addition of bromide leads to a marked decrease in the hydrogenation/decomposition of hydrogen peroxide with either catalyst. These effects are discussed in terms of the structure of the gold-palladium alloy nanoparticles and the isoelectric point of the support. We conclude that with the highly active carbon-supported gold-palladium catalysts these additives are not required and that therefore this system presents the potential for the direct synthesis of hydrogen peroxide to be operated using green process technology.

  2. The influence of alkali metal ions in the chemisorption of CO and CO{sub 2} on supported palladium catalysts: A Fourier transform infrared spectroscopic study

    SciTech Connect

    Liotta, L.F.; Deganello, G.; Martin, G.A.

    1996-12-01

    Two series of palladium-based catalysts were compared on the basis of the adsorption of CO and CO{sub 2}, monitored by Fourier transform infrared spectroscopy. The first series is represented by a silica-supported palladium catalyst and by some catalysts derived from it by addition of different amounts of sodium ion 0 {le} R {le} 25.6, where R is the atomic ratio Na/Pd. The second series consists of palladium catalysts supported on {open_quotes}model{close_quotes} and natural pumices. The model pumices, obtained by sol-gel techniques, are silico-aluminates containing variable amounts of sodium so that the corresponding Pd catalysts have an R value in the range 0{le}R{le}6.1. In the Pd/natural pumice catalysts, changes of the atomic ratio R{prime} = (Na + K)/Pd are achieved with different palladium loadings. Despite the analogous behaviour of the catalysts of both series when R=0, the presence of increasing alkali metal ions induces different behaviour towards the adsorption of CO. On increasing R in the Na-Pd/SiO{sub 2} series there is a progressive weakening of the C-O bond to produce eventually carbonates, whereas only a decrease of the amount of adsorbed CO occurs in the Pd/model pumice series (R{le}6.1). Furthermore, only physisorbed CO bands are observed in Pd/natural pumice catalysts (R{prime}{le}17). Different behaviour is also noticed towards the adsorption of CO{sub 2}: the equilibrium CO{sub 2}(gas){r_equilibrium}CO{sub ads}+O{sub ads} occurs in the Pd/SiO{sub 2} series, in contrast to the Pd/pumice series where only carbonate species on the surface of the support are detected. 83 refs., 12 figs., 4 tabs.

  3. Kinetics studies of d-glucose hydrogenation over activated charcoal supported platinum catalyst

    NASA Astrophysics Data System (ADS)

    Ahmed, Muthanna J.

    2012-02-01

    The kinetics of the catalytic hydrogenation of d-glucose to produce d-sorbitol was studied in a three-phase laboratory scale reactor. The hydrogenation reactions were performed on activated charcoal supported platinum catalyst in the temperature range 25-65°C and in a constant pressure of 1 atm. The kinetic data were modeled by zero, first and second-order reaction equations. In the operating regimes studied, the results show that the hydrogenation reaction was of a first order with respect to d-glucose concentration. Also the activation energy of the reaction was determined, and found to be 12.33 kJ mole-1. A set of experiment was carried out to test the deactivation of the catalyst, and the results show that the deactivation is slow with the ability of using the catalyst for several times with a small decrease in product yield.

  4. Single-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions.

    PubMed

    Yang, Sungeun; Kim, Jiwhan; Tak, Young Joo; Soon, Aloysius; Lee, Hyunjoo

    2016-02-05

    As a catalyst, single-atom platinum may provide an ideal structure for platinum minimization. Herein, a single-atom catalyst of platinum supported on titanium nitride nanoparticles were successfully prepared with the aid of chlorine ligands. Unlike platinum nanoparticles, the single-atom active sites predominantly produced hydrogen peroxide in the electrochemical oxygen reduction with the highest mass activity reported so far. The electrocatalytic oxidation of small organic molecules, such as formic acid and methanol, also exhibited unique selectivity on the single-atom platinum catalyst. A lack of platinum ensemble sites changed the reaction pathway for the oxygen-reduction reaction toward a two-electron pathway and formic acid oxidation toward direct dehydrogenation, and also induced no activity for the methanol oxidation. This work demonstrates that single-atom platinum can be an efficient electrocatalyst with high mass activity and unique selectivity.

  5. Cellulose hydrogenolysis with the use of the catalysts supported on hypercrosslinked polystyrene

    NASA Astrophysics Data System (ADS)

    Sulman, E. M.; Matveeva, V. G.; Manaenkov, O. V.; Filatova, A. E.; Kislitza, O. V.; Doluda, V. Yu.; Rebrov, E. V.; Sidorov, A. I.; Shimanskaya, E. I.

    2016-11-01

    The study presents the results of cellulose hydrolytic hydrogenation process in subcritical water in the presence of Ru-containing catalysts based on hypercrosslinked polystyrene (HPS) MN-270 and its functionalized analogues: NH2-HPS (MN-100) and SO3H-HPS (MN-500). It was shown that the replacement of the traditional support (carbon) by HPS increases the yield of the main cellulose conversion products - polyols - important intermediates for the chemical industry. The catalysts were characterized using transmission electron microscopy (TEM), high resolution TEM, and porosity measurements. Catalytic studies demonstrated that the catalyst containing 1.0% Ru and based on MN-270 is the most active. The total yield of sorbitol and mannitol was 50% on the average at 85% cellulose conversion.

  6. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    NASA Astrophysics Data System (ADS)

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-02-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  7. Development of a sealed-off cw CO2 laser using a supported gold catalyst

    NASA Astrophysics Data System (ADS)

    Tripathi, A. K.; Gupta, N. M.; Chatterjee, U. K.; Bhawalkar, D. D.

    1994-12-01

    A compact low-power long-life sealed-off cw CO2 laser has been developed by incorporating a catalyst-coated outer jacket that helps to regenerate CO2 from the dissociation products formed during discharge. Maintaining the catalyst at an optimized temperature prevented CO2 adsorption in its bulk and resulted in the required level of CO oxidation activity. The laser system has been operated during the day for the past five months at a constant output level of about 4 W. The gas analysis performed at different catalyst temperatures suggests that although the presence of CO in large amounts is detrimental, an optimum concentration of carbon monoxide supports the CO2 laser operation.

  8. Biodiesel production in a membrane reactor using MCM-41 supported solid acid catalyst.

    PubMed

    Xu, Wei; Gao, Lijing; Wang, Songcheng; Xiao, Guomin

    2014-05-01

    Production of biodiesel from the transesterification between soybean oil and methanol was conducted in this study by a membrane reactor, in which ceramic membrane was packed with MCM-41 supported p-toluenesulfonic acid (PTSA). Box-Behnken design and response surface methodology (RSM) were used to investigate the effects of reaction temperature, catalyst amount and circulation velocity on the yield of biodiesel. A reduced cubic model was developed to navigate the design space. Reaction temperature was found to have most significant effect on the biodiesel yield while the interaction of catalyst amount and circulation velocity have minor effect on it. 80°C of reaction temperature, 0.27 g/cm(3) of catalyst amount and 4.15 mL/min of circulation velocity were proved to be the optimum conditions to achieve the highest biodiesel yield. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    PubMed Central

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-01-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide. PMID:24790972

  10. Oxygen electro-reduction catalysts for self-assembly on supports

    NASA Astrophysics Data System (ADS)

    Dougan, Jennifer; Panton, Raquel; Cheng, Qiling; Gervasio, Don F.

    2005-01-01

    A new strategy for making low cost, catalytic electrodes is being developed for fuel-cells and electrochemical sensors. The strategy is to synthesize a macrocyclic catalyst derivatized with a functional group (like phosphate or carboxylate), which has affinity for a metal-oxide/metal surface. The purpose of the functional group is to anchor the modified catalyst to the metal surface, thereby promoting the formation of a self-assembled monolayer (SAM) of catalyst on a metal support. Syntheses are given for new ferrocene compounds and metallo porphyrins with anchor groups. The ferrocenes, which are relatively easy to synthesize, were made to learn how to form a stable SAM on a metal-oxide/metal surface. The metallo porphyrins were made for catalyzing oxygen electro-reduction with no platinum. Strategies for attaining an ideal catalytic electrode are discussed.

  11. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    DOE PAGES

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; ...

    2016-01-14

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizesmore » the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Here, owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells.« less

  12. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    SciTech Connect

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; Jenness, Glen R.; Caratzoulas, Stavros; Vlachos, Dionisios G.; Yan, Yushan

    2016-01-14

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizes the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Here, owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells.

  13. Gold-supported cerium-doped NiOx catalysts for water oxidation

    NASA Astrophysics Data System (ADS)

    Ng, Jia Wei Desmond; García-Melchor, Max; Bajdich, Michal; Chakthranont, Pongkarn; Kirk, Charlotte; Vojvodic, Aleksandra; Jaramillo, Thomas F.

    2016-05-01

    The development of high-performance catalysts for the oxygen-evolution reaction (OER) is paramount for cost-effective conversion of renewable electricity to fuels and chemicals. Here we report the significant enhancement of the OER activity of electrodeposited NiOx films resulting from the combined effects of using cerium as a dopant and gold as a metal support. This NiCeOx-Au catalyst delivers high OER activity in alkaline media, and is among the most active OER electrocatalysts yet reported. On the basis of experimental observations and theoretical modelling, we ascribe the activity to a combination of electronic, geometric and support effects, where highly active under-coordinated sites at the oxide support interface are modified by the local chemical binding environment and by doping the host Ni oxide with Ce. The NiCeOx-Au catalyst is further demonstrated in a device context by pairing it with a nickel-molybdenum hydrogen evolution catalyst in a water electrolyser, which delivers 50 mA consistently at 1.5 V over 24 h of continuous operation.

  14. Gold-supported cerium-doped NiOx catalysts for water oxidation

    DOE PAGES

    Ng, Jia Wei Desmond; García-Melchor, Max; Bajdich, Michal; ...

    2016-04-29

    Here, the development of high-performance catalysts for the oxygen-evolution reaction (OER) is paramount for cost-effective conversion of renewable electricity to fuels and chemicals. Here we report the significant enhancement of the OER activity of electrodeposited NiOx films resulting from the combined effects of using cerium as a dopant and gold as a metal support. This NiCeOx–Au catalyst delivers high OER activity in alkaline media, and is among the most active OER electrocatalysts yet reported. On the basis of experimental observations and theoretical modelling, we ascribe the activity to a combination of electronic, geometric and support effects, where highly active under-coordinatedmore » sites at the oxide support interface are modified by the local chemical binding environment and by doping the host Ni oxide with Ce. The NiCeOx–Au catalyst is further demonstrated in a device context by pairing it with a nickel–molybdenum hydrogen evolution catalyst in a water electrolyser, which delivers 50 mA consistently at 1.5 V over 24 h of continuous operation.« less

  15. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte.

    PubMed

    Zhuang, Zhongbin; Giles, Stephen A; Zheng, Jie; Jenness, Glen R; Caratzoulas, Stavros; Vlachos, Dionisios G; Yan, Yushan

    2016-01-14

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizes the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells.

  16. Gold-supported cerium-doped NiOx catalysts for water oxidation

    SciTech Connect

    Ng, Jia Wei Desmond; García-Melchor, Max; Bajdich, Michal; Chakthranont, Pongkarn; Kirk, Charlotte; Vojvodic, Aleksandra; Jaramillo, Thomas F.

    2016-04-29

    Here, the development of high-performance catalysts for the oxygen-evolution reaction (OER) is paramount for cost-effective conversion of renewable electricity to fuels and chemicals. Here we report the significant enhancement of the OER activity of electrodeposited NiOx films resulting from the combined effects of using cerium as a dopant and gold as a metal support. This NiCeOx–Au catalyst delivers high OER activity in alkaline media, and is among the most active OER electrocatalysts yet reported. On the basis of experimental observations and theoretical modelling, we ascribe the activity to a combination of electronic, geometric and support effects, where highly active under-coordinated sites at the oxide support interface are modified by the local chemical binding environment and by doping the host Ni oxide with Ce. The NiCeOx–Au catalyst is further demonstrated in a device context by pairing it with a nickel–molybdenum hydrogen evolution catalyst in a water electrolyser, which delivers 50 mA consistently at 1.5 V over 24 h of continuous operation.

  17. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    PubMed Central

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; Jenness, Glen R.; Caratzoulas, Stavros; Vlachos, Dionisios G.; Yan, Yushan

    2016-01-01

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizes the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells. PMID:26762466

  18. Development of a supported tri-metallic catalyst and evaluation of the catalytic activity in biomass steam gasification.

    PubMed

    Li, Jianfen; Xiao, Bo; Yan, Rong; Xu, Xiaorong

    2009-11-01

    A supported tri-metallic catalyst (nano-Ni-La-Fe/gamma-Al(2)O(3)) was developed for tar reduction and enhanced hydrogen production in biomass steam gasification, with focuses on preventing coke deposition and sintering effects to lengthen the lifetime of developed catalysts. The catalyst was prepared by deposition-precipitation method and characterized by various analytical approaches. Following that, the activity of catalysts in biomass steam gasification was investigated in a bench-scale combined fixed bed reactor. With presence of the catalyst, the content of hydrogen in gas products was increased to over 10 vol.%, the tar removal efficiency reached 99% at 1073 K, and more importantly the coke deposition on the catalyst surfaces and sintering effects were avoided, leading to a long lifetime of catalysts.

  19. NiO-PTA supported on ZIF-8 as a highly effective catalyst for hydrocracking of Jatropha oil

    PubMed Central

    Liu, Jing; He, Jing; Wang, Luying; Li, Rong; Chen, Pan; Rao, Xin; Deng, Lihong; Rong, Long; Lei, Jiandu

    2016-01-01

    Nickel oxide (NiO) and phosphotungstic acid (PTA) supported on a ZIF-8 (NiO-PTA/ZIF-8) catalyst was first synthesized and it showed high activity and good selectivity for the hydrocracking of Jatropha oil. The catalyst was characterized by SEM, SEM-EDS, TEM, N2 adsorption, FT-IR, XRD and XPS. Compared with the NiO-PTA/Al2O3 catalyst, the selectivity of C15-C18 hydrocarbon increased over 36%, and catalytic efficiency increased 10 times over the NiO-PTA/ZIF-8 catalyst. The prepared NiO-PTA/ZIF-8 catalyst was stable for a reaction time of 104 h and the kinetic behavior was also analyzed. This catalyst was found to bypass the presulfurization process, showing promise as an alternative to sulfided catalysts for green diesel production. PMID:27020579

  20. Carbon-supported bimetallic Pd–Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol

    SciTech Connect

    Sun, Junming; Karim, Ayman M.; Zhang, He; Kovarik, Libor; Li, Xiaohong Shari; Hensley, Alyssa J.; McEwen, Jean-Sabin; Wang, Yong

    2013-10-01

    Abstract Carbon supported metal catalysts (Cu/C, Fe/C, Pd/C, Pt/C, PdFe/C and Ru/C) have been prepared, characterized and tested for vapor-phase hydrodeoxygenation (HDO) of guaiacol (GUA) at atmospheric pressure. Phenol was the major intermediate on all catalysts. Over the noble metal catalysts saturation of the aromatic ring was the major pathway observed at low temperature (250 °C), forming predominantly cyclohexanone and cyclohexanol. Substantial ring opening reaction was observed on Pt/C and Ru/C at higher reaction temperatures (e.g., 350 °C). Base metal catalysts, especially Fe/C, were found to exhibit high HDO activity without ring-saturation or ring-opening with the main products being benzene, phenol along with small amounts of cresol, toluene and trimethylbenzene (TMB). A substantial enhancement in HDO activity was observed on the PdFe/C catalysts. Compared with Fe/C, the yield to oxygen-free aromatic products (i.e., benzene/toluene/TMB) on PdFe/C increased by a factor of four at 350 °C, and by approximately a factor of two (83.2% versus 43.3%) at 450 °C. The enhanced activity of PdFe/C is attributed to the formation of PdFe alloy as evidenced by STEM, EDS and TPR.

  1. Efficient method for the conversion of agricultural waste into sugar alcohols over supported bimetallic catalysts.

    PubMed

    Tathod, Anup P; Dhepe, Paresh L

    2015-02-01

    Promoter effect of Sn in the PtSn/γ-Al2O3 (AL) and PtSn/C bimetallic catalysts is studied for the conversion of variety of substrates such as, C5 sugars (xylose, arabinose), C6 sugars (glucose, fructose, galactose), hemicelluloses (xylan, arabinogalactan), inulin and agricultural wastes (bagasse, rice husk, wheat straw) into sugar alcohols (sorbitol, mannitol, xylitol, arabitol, galactitol). In all the reactions, PtSn/AL showed enhanced yields of sugar alcohols by 1.5-3 times than Pt/AL. Compared to C, AL supported bimetallic catalysts showed prominent enhancement in the yields of sugar alcohols. Bimetallic catalysts characterized by X-ray diffraction study revealed the stability of catalyst and absence of alloy formation thereby indicating that Pt and Sn are present as individual particles in PtSn/AL. The TEM analysis also confirmed stability of the catalysts and XPS study disclosed formation of electron deficient Sn species which helps in polarizing carbonyl bond to achieve enhanced hydrogenation activity.

  2. Low Temperature Activation of Supported Metathesis Catalysts by Organosilicon Reducing Agents

    PubMed Central

    2016-01-01

    Alkene metathesis is a widely and increasingly used reaction in academia and industry because of its efficiency in terms of atom economy and its wide applicability. This reaction is notably responsible for the production of several million tons of propene annually. Such industrial processes rely on inexpensive silica-supported tungsten oxide catalysts, which operate at high temperatures (>350 °C), in contrast with the mild room temperature reaction conditions typically used with the corresponding molecular alkene metathesis homogeneous catalysts. This large difference in the temperature requirements is generally thought to arise from the difficulty in generating active sites (carbenes or metallacyclobutanes) in the classical metal oxide catalysts and prevents broader applicability, notably with functionalized substrates. We report here a low temperature activation process of well-defined metal oxo surface species using organosilicon reductants, which generate a large amount of active species at only 70 °C (0.6 active sites/W). This high activity at low temperature broadens the scope of these catalysts to functionalized substrates. This activation process can also be applied to classical industrial catalysts. We provide evidence for the formation of a metallacyclopentane intermediate and propose how the active species are formed. PMID:27610418

  3. Dynamic Structural Changes in a Molecular Zeolite-Supported Iridium Catalyst for Ethene Hydrogenation

    SciTech Connect

    Uzun, Alper; Gates, Bruce C.

    2009-11-16

    The structure of a catalyst often changes as a result of changes in the reactive environment during operation. Examples include changes in bulk phases, extended surface structures, and nanoparticle morphologies; now we report real-time characterization of changes in the structure of a working supported catalyst at the molecular level. Time-resolved extended X-ray absorption fine structure (EXAFS) data demonstrate the reversible interconversion of mononuclear iridium complexes and tetrairidium clusters inside zeolite Y cages, with the structure controlled by the C{sub 2}H{sub 4}/H{sub 2} ratio during ethene hydrogenation at 353 K. The data demonstrate break-up of tetrairidium clusters into mononuclear complexes indicated by a decrease in the Ir-Ir coordination number in ethene-rich feed. When the feed composition was switched to first equimolar and then to a H{sub 2}-rich (C{sub 2}H{sub 4}/H{sub 2} = 0.3) feed, the EXAFS spectra show the reformation of tetrairidium clusters as the Ir-Ir coordination number increased again. When the feed composition was cycled from ethene-rich to H{sub 2}-rich, the predominant species in the catalyst cycled accordingly. Evidence confirming the structural change is provided by IR spectra of iridium carbonyls formed by probing of the catalyst with CO. The data are the first showing how to tune the structure of a solid catalyst at the molecular scale by choice of the reactant composition.

  4. Healthy cities as catalysts for caring and supportive environments.

    PubMed

    Green, Geoff; Jackisch, Josephine; Zamaro, Gianna

    2015-06-01

    'Caring and Supportive Environments' are fundamental to a social model of health and were a core theme of Phase V (2009-13) of the WHO European Healthy Cities Network. Deploying the methodology of realist evaluation, this article synthesizes qualitative evidence from 112 highly structured case studies from 68 Network cities and 71 responses to a General Evaluation Questionnaire, which asked cities to analyze city attributes and trends. A schematic model was developed to describe the interaction between action targeted toward children, migrants, older people and action on social and health services, health literacy and active citizenship-the six subtopics clustered within the theme Caring and Supportive Environments. Four hypotheses were tested: (i) there are prerequisites and processes of local governance that increase city capacity for creating supportive environments; (ii) investing in health and social services, active citizenship and health literacy enhance the social inclusion of vulnerable population groups; (iii) there are synergies between social investment and healthy urban planning; and (iv) these investments promote greater equity in health. The evaluation revealed many innovative practices. Providers of health and social services have developed partnerships with agencies influencing wider determinants of health. Health literacy campaigns address the wider context of people's lives. In a period of economic austerity, cities have utilized the social assets of their citizens. Realist evaluation can help illuminate the pathways from case study interventions to health outcomes, and the prerequisites and processes required to initiate and sustain such investments. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Characterization of supported TiO{sub 2}-based catalysts green-prepared and employed for photodegradation of malodorous DMDS

    SciTech Connect

    Chuang, Li-Chin; Luo, Chin-Hsiang

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► We prepare rutile-TiO{sub 2} based catalysts using a simple and eco-efficient method. ► TiO{sub 2} based catalysts coated on supporting materials have large BET surface areas. ► Supported TiO{sub 2} based catalysts efficiently degrade malodorous DMDS. -- Abstract: Titanium dioxide (TiO{sub 2})-based catalysts coated onto two supporting materials (Pyrex glass beads and porous polypropylene fibers) in laboratory have been prepared and characterized. A modified preparation process at low temperature involving the addition of distilled water, aqueous ammonia, and ferrous sulfate, respectively, was used to enhance the spontaneous precipitation of three TiO{sub 2}-based catalysts. The Brunauer–Emmett–Teller surface area of three catalysts was ranged from 160.1 to 202.7 m{sup 2}/g. The surface morphology of three catalysts was identified by a scanning electron microscopy equipped with an X-ray energy dispersive spectrometer. The photocatalytic degradation of dimethyldisulfide was investigated using the supported TiO{sub 2}-based catalysts. The original dimethyldisulfide almost was degraded within 2 h. A similar photocatalytic activity on degrading dimethyldisulfide was demonstrated in comparison with commercial catalysts. Simplicity, low cost, low energy consumption, and solvent-free are the advantages of this proposed method which can be used to photodecompose environmental organic pollutants effectively without heat treatment.

  6. Effect of a carrier's nature on the activation of supported iron catalysts

    NASA Astrophysics Data System (ADS)

    Kazak, V. O.; Chernavskii, P. A.; Pankina, G. V.; Khodakov, A. Y.; Ordomsky, V. V.

    2015-11-01

    The effect a carrier's nature has on the activation of supported iron catalysts in a stream of pure carbon monoxide CO is investigated. It is shown that iron is mainly present in the form of magnetite Fe3O4 in case of carbon supports and in the form of hematite Fe2O3 for silica gel supports. It is shown that all activated samples are chiefly made up of the Hägg carbide χ-Fe5C2, but its concentration is higher for the carbon supports.

  7. Electrooxidation of ethanol on novel multi-walled carbon nanotube supported platinum-antimony tin oxide nanoparticle catalysts

    NASA Astrophysics Data System (ADS)

    Guo, Dao-Jun

    We synthesize the new Pt based catalyst for direct ethanol fuel cells using novel multi-walled carbon nanotubes supported platinum-antimony tin oxide (Pt-ATO/MWCNT) nanoparticle as new catalyst support for the first time. The structure of Pt-ATO/MWCNT catalyst is characterized by transmission electron micrograph (TEM) and X-ray diffraction (XRD). The electrocatalytic properties of Pt-ATO/MWCNT catalyst for ethanol electrooxidation reactions are investigated by cyclic voltammetry (CV) and chronoamperometric experiments in acidic medium. The electrocatalytic activity for ethanol electrooxidation reaction shows that high carbon monoxide tolerance and good stability of Pt-ATO/MWCNT catalyst compared with Pt-SnO 2/MWCNT and commercial Pt/C are observed. These results imply that Pt-ATO/MWCNT catalyst has promising potential applications in direct alcohol fuel cells.

  8. Evaluation of the activity of a gold catalyst supported on alumina (Au/γ-Al2O3)

    NASA Astrophysics Data System (ADS)

    Barrera, M.; Gómez, R.; Caballero, C.; Oviedo, J.; Sánchez, L. C.

    2017-06-01

    The activity and selectivity of a catalyst (Au/γ-Al2O3) and the support (γ-Al2O3 cubic) in the oxidation reaction of cyclohexene in the liquid phase to obtain (epoxycyclohexane, 2-cyclohexen-1-ona, 2-cyclohexen-1-ol) were evaluated. The catalyst was prepared by the precipitation-deposition method from aqueous solutions of HAuCl4, citric acid (2% m/v) and polyvinyl alcohol. For the adequacy of the support, starting from boehmite calcined at 773 K, γ-Al2O3 phase was obtained. The reaction products and the evaluation of the same were analyzed by gas chromatograph (GC), showing relevant results of the Au/γ-Al2O3 system with high conversion levels, mostly to products of 2-cyclohexen-1-one, 2-cyclohexen-1-ol with 31.17% and 25.89% selectivity respectively, and to a lesser proportion to epoxycyclohexane with 13.33% selectivity. Regarding to the system formed by the support, the results reported were 13.31% for 2-cyclohexen-1-ona, 4.28% for 2-cyclohexen-1-ol and 3-23% epoxycyclohexane.

  9. Hydrogenation of aniline on a low-percentage, supported rhodium catalyst

    SciTech Connect

    Ualikhanova, A.; Temirbulatova, A.E.

    1992-01-10

    The products of hydrogenation of aniline and their derivatives exhibit biological activity and are used in the pharmaceutical industry for preparation of analgesic, antipyretic, and sulfanilamide drugs. Up to 30% of the total consumption of aniline is for synthesis of drugs. Hydrogenation of aniline on platinum metals supported on carbon was studied by Rylander et al. The authors investigated the catalytic properties of rhodium supported on oxides in saturation of aniline with hydrogen in water. In most cases, the amount of noble metal in the supported catalyst was 5%. Decreasing the concentration of active phase in the catalyst is economically advantageous. The features of hydrogenation of aniline in the presence of 1% Rh/MgO in solutions with wide variation of the technological parameters of the process were investigated in the present study. 19 refs., 3 figs., 2 tabs.

  10. Synthesis of carbon-supported copper catalyst and its catalytic performance in methanol dehydrogenation

    NASA Astrophysics Data System (ADS)

    Shelepova, Ekaterina V.; Vedyagin, Aleksey A.; Ilina, Ludmila Yu.; Nizovskii, Alexander I.; Tsyrulnikov, Pavel G.

    2017-07-01

    Carbon-supported copper catalyst was prepared by incipient wetness impregnation of Sibunit with an aqueous solution of copper nitrate. Copper loading was 5 wt.%. Temperature of reductive pretreatment was varied within a range of 200-400 °C. The samples were characterized by transmission electron microscopy, X-ray diffraction analysis, X-ray photoelectron and X-ray absorption spectroscopies. Catalytic activity of the samples was studied in a reaction of methanol dehydrogenation. Silica-based catalyst with similar copper loading was used as a reference. It was found that copper is distributed over the surface of support in the form of metallic and partially oxidized particles of about 12-17 nm in size. Diminished interaction of copper with support was supposed to be responsible for high catalytic activity.

  11. Design and application of sporopollenin microcapsule supported palladium catalyst: Remarkably high turnover frequency and reusability in catalysis of biaryls.

    PubMed

    Baran, Talat; Sargin, Idris; Kaya, Murat; Menteş, Ayfer; Ceter, Talip

    2017-01-15

    Bio-based catalyst support materials with high thermal and structural stability are desired for catalysts systems requiring harsh conditions. In this study, a thermally stable palladium catalyst (up to 440°C) was designed from sporopollenin, which occurs naturally in the outer exine layer of pollens and is widely acknowledged as chemically very stable and inert biological material. Catalyst design procedure included (1) extraction of sporopollenin microcapsules from Betula pendula pollens (∼25μm), (2) amino-functionalisation of the microcapsules, (3) Schiff base modification and (4) preparation of Pd(II) catalyst. The catalytic activity of the sporopollenin microcapsule supported palladium catalyst was tested in catalysis of biaryls by following a fast, simple and green microwave-assisted method. We recorded outstanding turnover number (TON: 40,000) and frequency (TOF: 400,000) for the catalyst in Suzuki coupling reactions. The catalyst proved to be reusable at least in eight cycles. The catalyst can be suggested for different catalyst systems due to its thermal and structural durability, reusability, inertness to air and its eco-friendly nature. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Investigation of nickel supported catalysts for the upgrading of brown peat derived gasification products.

    PubMed

    Sutton, D; Kelleher, B; Doyle, A; Ross, J R

    2001-11-01

    A gasification test rig was designed in which peat was gasified under nitrogen over a temperature range 25-550 degrees C at 5 degrees C min(-1). The gasification unit resulted in 35.5 wt% of the carbon present in the peat being converted to a volatile fraction. The volatile fraction was transferred to a secondary catalytic reforming reactor at 800 degrees C. The thermal effect of the second reactor resulted in an increase in the CO, CO2 and CH4 content of the volatile fraction, a syngas ratio of 0.75 and a higher heating value (HHV) of 26.5 MJ kg(-1). Several nickel-supported catalysts were investigated with the intention that they should give an increase in the conversion of the condensable hydrocarbons in the volatile fraction to CO, CO2 and CH4, and a resultant gas stream suitable for use in an integrated gasification combined cycle plant (IGCC) (i.e. syngas ratio 2:1, low methane content and better HHV). Alumina-supported nickel catalysts investigated gave the highest activities and co-precipitated Ni/Al catalysts were most active. A Ni/Al 3:17 catalyst increased the conversion of the hydrocarbons to 91.5%, gave a syngas ratio of 1.81:1, increased the HHV by a factor of 5.3 and completely eliminated methane from the gas stream.

  13. Titanium cobalt nitride supported platinum catalyst with high activity and stability for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Xiao, Yonghao; Zhan, Guohe; Fu, Zhenggao; Pan, Zhanchang; Xiao, Chumin; Wu, Shoukun; Chen, Chun; Hu, Guanghui; Wei, Zhigang

    2015-06-01

    We describe a facile route to the development of novel robust non-carbon titanium cobalt nitride (Ti0.9Co0.1N) used as a support for Pt, and the catalyst exhibits high activity and stability for the oxygen reduction reaction (ORR). XRD and TEM results show that the synthesized Ti0.9Co0.1N is formed as a single-phase solid solution with high purity. The XPS measurements verified the strong metal/support interaction between Pt nanoparticles (NPs) and the Ti0.9Co0.1N support. Most importantly, Ti0.9Co0.1N supported Pt catalyst (Pt/Ti0.9Co0.1N) exhibits a much higher mass activity and durability than that of the commercial JM Pt/C electrocatalyst for ORR. The accelerated durability test (ADT) reveals that the novel Ti0.9Co0.1N support can dramatically enhance the durability of the catalyst and maintain the electrochemical surface area (ECSA) of Pt. Pt/Ti0.9Co0.1N shows great improvement in ECSA preservation, with only 35% of the initial ECSA drop even after 10 000 ADT cycles. The experimental data indicate that the electronic structure of Pt can be modified by Co doping, and there exists a strong interaction between Pt and the Ti0.9Co0.1N support, both of them are playing an important role in improving the activity and durability of the Pt/Ti0.9Co0.1N catalyst.

  14. Low-temperature carbon monoxide oxidation over zirconia-supported CuO-CeO2 catalysts: Effect of zirconia support properties

    NASA Astrophysics Data System (ADS)

    Moretti, Elisa; Molina, Antonia Infantes; Sponchia, Gabriele; Talon, Aldo; Frattini, Romana; Rodriguez-Castellon, Enrique; Storaro, Loretta

    2017-05-01

    A study was conducted to investigate the effect of the preparation route of ZrO2 in CuO-CeO2/ZrO2 catalysts for the oxidation of carbon monoxide at low temperature (COX). Four ZrO2 supports were synthetized via either type sol-gel methodology or precipitation. The final Cu-Ce-Zr oxide catalysts were prepared by incipient wetness co-impregnation with copper and cerium solutions (with a loading of 6 wt% of CuO and 20 wt% of CeO2). The catalyst crystalline phases, texture and active species reducibility were determined by XRD, N2 physisorption at -196 °C and H2-TPR, respectively; meanwhile the surface composition and copper-cerium electronic states were studied by XPS. The catalytic activity was evaluated in the oxidation of CO to CO2, in the 40-215 °C temperature range. Catalytic results evidenced that the samples prepared by a sol-gel methodology showed, after the impregnation, a severe decrease of specific surface area and pore volume attributable to a wide degree of pore blockage caused by the presence of metal oxide particles and a collapse of the structure partially burying the active sites. A simple co-impregnation of a zirconia support, obtained through facile and fast precipitation, provided instead a catalyst with very good redox properties and high dispersion of the active phases, which completely oxidizes CO in the range 115-215 °C with T50 of 65 °C. This higher observed activity was ascribed to the formation of a larger fraction of highly dispersed and easily reducible Cu species and ceria nanocrystallites, mainly present as Ce(IV), with an average size of 5 nm.

  15. Organic solvent soluble oxide supported hydrogenation catalyst precursors

    DOEpatents

    Edlund, David J.; Finke, Richard G.; Saxton, Robert J.

    1992-01-01

    The present invention discloses two polyoxoanion supported metal complexes found to be useful in olefin hydrogenation. The complexes are novel compositions of matter which are soluble in organic solvents. In particular, the compositions of matter comprise A.sub.x [L.sub.n Ir.sup.(I) .multidot.X.sub.2 M.sub.15 M'.sub.3 O.sub.62 ].sup.x- and A.sub.y [L.sub.n Ir.sup.(I) .multidot.X.sub.2 M.sub.9 M'.sub.3 O.sub.40 ].sup.y- where L is a ligand preferably chosen from 1,5-cyclooctadiene (COD), ethylene, cyclooctene, norbornadiene and other olefinic ligands; n=1 or 2 depending upon the number of double bonds present in the ligand L; X is a "hetero" atom chosen from B, Si, Ge, P, As, Se, Te, I, Co, Mn and Cu; M is either W or Mo; M' is preferably Nb or V but Ti, Zr, Ta, Hf are also useful; and A is a countercation preferably selected from tetrabutyl ammonium and alkali metal ions.

  16. Study of Alginate-Supported Ionic Liquid and Pd Catalysts

    PubMed Central

    Jouannin, Claire; Vincent, Chloë; Dez, Isabelle; Gaumont, Annie-Claude; Vincent, Thierry; Guibal, Eric

    2012-01-01

    New catalytic materials, based on palladium immobilized in ionic liquid supported on alginate, were elaborated. Alginate was associated with gelatin for the immobilization of ionic liquids (ILs) and the binding of palladium. These catalytic materials were designed in the form of highly porous monoliths (HPMs), in order to be used in a column reactor. The catalytic materials were tested for the hydrogenation of 4-nitroaniline (4-NA) in the presence of formic acid as hydrogen donor. The different parameters for the elaboration of the catalytic materials were studied and their impact analyzed in terms of microstructures, palladium sorption properties and catalytic performances. The characteristics of the biopolymer (proportion of β-D-mannuronic acid (M) and α-L-guluronic acid (G) in the biopolymer defined by the M/G ratio), the concentration of the porogen agent, and the type of coagulating agent significantly influenced catalytic performances. The freezing temperature had a significant impact on structural properties, but hardly affected the catalytic rate. Cellulose fibers were incorporated as mechanical strengthener into the catalytic materials, and allowed to enhance mechanical properties and catalytic efficiency but required increasing the amount of hydrogen donor for catalysis.

  17. Comparative study of CoFeNx/C catalyst obtained by pyrolysis of hemin and cobalt porphyrin for catalytic oxygen reduction in alkaline and acidic electrolytes

    NASA Astrophysics Data System (ADS)

    Jiang, Rongzhong; Chu, Deryn

    2014-01-01

    Comparative studies of the oxygen reduction kinetics and mechanisms of CoFeNx/C catalysts have been conducted with rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) in aqueous acid and alkaline solutions, as well as acidic and alkaline polymer electrolytes. The CoFeNx/C catalysts in this study were obtained by the pyrolysis of hemin and a cobalt porphyrin. In an alkaline electrolyte, a larger electron transfer coefficient (0.63) was obtained in comparison to that in an acidic electrolyte (0.44), signifying a lower free energy barrier for oxygen reduction. The kinetic rate constant (2.69 × 10-2 cm s-1) for catalytic oxygen reduction in alkaline solution at 0.6 V (versus RHE) is almost 4 times larger than that in acidic solution (7.3 × 10-3 cm s-1). A synergetic catalytic mechanism is proposed. The overall reduction is a 4-electron reduction of oxygen. The obtained CoFeNx/C catalyst was further evaluated as a cathode catalyst in single fuel cells with acidic, neutral and alkaline electrolyte membranes. The order of the single cell performances either for power density or for stability is acidic > neutral > alkaline. The different behaviors of the CoFeNx/C catalyst in half cell and single cell are discussed.

  18. Conversion under hydrogen of dichlorodifluoromethane over supported palladium catalysts

    SciTech Connect

    Coq, B.; Figueras, F.; Tournigant, D. ); Cognion, J.M. )

    1993-05-01

    The conversion of difluorodichloromethane has been studied in the gas phase between 433 and 523 K at atmospheric pressure over Pd black and Pd supported on alumina, graphite, or AlF[sub 3]. In CF[sub 2]Cl[sub 2] hydrogenation, CH[sub 2]F[sub 2] and CH[sub 4] represented more than 95% of the products. The catalytic properties of Pd/AlF[sub 3] samples are unchanged with time, but Pd/graphite, Pd/Al[sub 2]O[sub 3], and Pd black suffered changes of activity and/or selectivity during the first few hours on stream. This was ascribed to the diffusion of halide species into the bulk of palladium, and transformation of Al[sub 2]O[sub 3] to AlF[sub 3]. At the steady state, the kinetics of CF[sub 2]Cl[sub 2] hydrogenation can be described either by a halogenation/dehalogenation of the Pd surface by CF[sub 2]Cl[sub 2] and H[sub 2], respectively, or by a classical Langmuir-Hinshelwood mechanism. It was concluded that at 453 K the interaction between the Pd surface and CF[sub 2]Cl[sub 2] or H[sub 2] is of the same order of magnitude. The CH[sub 2]F[sub 2]/CH[sub 4] selectivity ratio was the lowest on Pd/graphite and the highest on Pd/AlF[sub 3]. It is proposed that adsorbed, or absorbed, halide species are responsible for the loss of CH[sub 2]F[sub 2] selectivity. The high selectivity ratio on Pd/AlF [sub 3] is ascribed to a cooperative effect between Pd and AlF[sub 3]. 27 refs., 5 figs., 6 tabs.

  19. Preparation and application of zirconium sulfate supported on SAPO-34 molecular sieve as solid acid catalyst for esterification

    SciTech Connect

    Xu, Dongyan Ma, Hong; Cheng, Fei

    2014-05-01

    Graphical abstract: - Highlights: • SAPO-34 supported zirconium sulfate solid acid catalyst was prepared. • Esterification of acetic acid with ethanol can be catalyzed by ZS/SAPO-34. • The hydration of ZS is vital to the acidic property and catalytic performance. • The ZS/SAPO-34 catalyst treated at 200 °C shows good reusability. - Abstract: Zirconium sulfate (ZS) was supported on SAPO-34 molecular sieve by using an incipient wetness impregnation method with zirconium sulfate as the precursor. The as-prepared catalysts were used as solid acid catalyst for esterification reaction of acetic acid with ethanol. The influence of calcination temperature on the acidic property, catalytic activity, and reusability of ZS/SAPO-34 catalysts were mainly investigated. FT-IR, SEM, EDS and TG analysis have been carried out to demonstrate the characteristics of ZS/SAPO-34 catalysts. It was found that the 30 wt%ZS/SAPO-34 catalysts display the property of superacid irrespective of calcination temperature. The ZS/SAPO-34 catalyst treated at 200 °C can enhance the interaction between the supported ZS and SAPO-34 and keep the catalyst remaining substantially active after several reaction cycles. However, further increasing calcination temperature will cause the transfer of ZS from hydrate to anhydrous phase, and thus the decrease of activity.

  20. Tailoring Silica-alumina Supported Pt-Pd As Poison Tolerant Catalyst For Aromatics Hydrogenation

    SciTech Connect

    Yu, Yanzhe; Gutierrez, Oliver Y.; Haller, Gary L.; Colby, Robert J.; Kabius, Bernd C.; Rob van Veen, J. A.; Jentys, Andreas; Lercher, Johannes A.

    2013-08-01

    The tailoring of the physicochemical and catalytic properties of mono- and bimetallic Pt-Pd catalysts supported on amorphous silica-alumina is studied. Electron energy loss spectroscopy and extended X-ray absorption fine structure analyses indicated that bimetallic Pt-Pd and relatively large monometallic Pd particles were formed, whereas the X-ray absorption near edge structure provided direct evidence for the electronic deficiency of the Pt atoms. The heterogeneous distribution of metal particles was also shown by high resolution transmission electron microscopy. The average structure of the bimetallic particles (Pt-rich core and Pd-rich shell) and the presence of Pd particles led to surface Pd enrichment, which was independently shown by IR spectra of adsorbed CO. The specific metal distribution, average size, and surface composition of the Pt-Pd particles depend to a large extent on the metal precursors. In the presence of NH3 ligands, Pt-Pd particles with a fairly homogeneous bulk and surface metal distribution were formed. Also high Lewis acid site concentration of the carrier leads to more homogeneous bimetallic particles. All catalysts were active for the hydrogenation of tetralin in the absence and presence of quinoline and dibenzothiophene (DBT). Monometallic Pt catalysts had the highest hydrogenation activity in poison-free and quinoline-containing feed. When DBT was present, bimetallic Pt-Pd catalysts with the most homogenous metal distribution showed the highest activity. The higher resistance of bimetallic catalysts towards sulfur poisoning compared to their monometallic Pt counterparts results from the weakened metal-sulfur bond on the electron deficient Pt atoms. Thus, increasing the fraction of electron deficient Pt on the surface of the bimetallic particles increases the efficiency of the catalyst in the presence of sulfur.

  1. Structure and Reactivity Investigations on Supported Bimetallic Au-Ni Catalysts Used for Hydrocarbon Steam Reforming

    SciTech Connect

    Chin, Ya-Huei; King, David L.; Roh, Hyun-Seog; Wang, Yong; Heald, S.

    2006-12-10

    The addition of small quantities of gold to the surface of supported nickel catalysts has been described as a means to retard carbon formation during hydrocarbon steam reforming. Calculations by others have indicated that gold locates at the most catalytically active (step and edge) sites that also serve as nucleation sites for carbon formation. In this paper we describe experiments to characterize the Ni-Au interactions on bimetallic Au-Ni/MgAl2O4 catalysts at various Ni and Au loadings. The catalyst structure was investigated using EXAFS/XANES spectroscopy and adsorption-desorption measurements with H2 and N2O. Evidence for surface alloy formation is provided in the Ni K and Au LIII edge EXAFS measurements of Au-promoted 8.8%Ni/MgAl2O4, especially at Au loadings ?0.2 wt.%. At higher Au concentrations, there is evidence for a combination of alloy and segregated Au species. H2 chemisorption and N2O temperature programmed desorption (TPD) measurements showed a significant decrease in total surface sites, or surface site reactivity, on Au modified Ni/MgAl2O4 catalyst. The XANES structure is consistent with perturbation of the electronic structure of both the Ni and Au atoms as a result of alloy formation. TGA studies with steam/n-butane feed confirmed the ability of Au to retard coke deposition under low S/C reforming conditions, although carbon formation was not fully suppressed. When testing for methane steam reforming, a lower initial activity and deactivation rate resulted from Au promotion of the Ni catalyst. However, both catalysts showed a declining activity with time. The lack of a direct correlation between the surface characterization results and catalytic activity is most likely a result of decreasing effectiveness of the surface alloy with increasing temperature.

  2. Hydrogen Production by Steam Reforming of Ethanol over Nickel Catalysts Supported on Sol Gel Made Alumina: Influence of Calcination Temperature on Supports.

    PubMed

    Yaakob, Zahira; Bshish, Ahmed; Ebshish, Ali; Tasirin, Siti Masrinda; Alhasan, Fatah H

    2013-05-30

    Selecting a proper support in the catalyst system plays an important role in hydrogen production via ethanol steam reforming. In this study, sol gel made alumina supports prepared for nickel (Ni) catalysts were calcined at different temperatures. A series of (Ni/AlS.G.) catalysts were synthesized by an impregnation procedure. The influence of varying the calcination temperature of the sol gel made supports on catalyst activity was tested in ethanol reforming reaction. The characteristics of the sol gel alumina supports and Ni catalysts were affected by the calcination temperature of the supports. The structure of the sol gel made alumina supports was transformed in the order of γ → (γ + θ) → θ-alumina as the calcination temperature of the supports increased from 600 °C to 1000 °C. Both hydrogen yield and ethanol conversion presented a volcano-shaped behavior with maximum values of 4.3 mol/mol ethanol fed and 99.5%, respectively. The optimum values were exhibited over Ni/AlS.G800 (Ni catalyst supported on sol gel made alumina calcined at 800 °C). The high performance of the Ni/AlS.G800 catalyst may be attributed to the strong interaction of Ni species and sol gel made alumina which lead to high nickel dispersion and small particle size.

  3. Hydrogen Production by Steam Reforming of Ethanol over Nickel Catalysts Supported on Sol Gel Made Alumina: Influence of Calcination Temperature on Supports

    PubMed Central

    Yaakob, Zahira; Bshish, Ahmed; Ebshish, Ali; Tasirin, Siti Masrinda; Alhasan, Fatah H.

    2013-01-01

    Selecting a proper support in the catalyst system plays an important role in hydrogen production via ethanol steam reforming. In this study, sol gel made alumina supports prepared for nickel (Ni) catalysts were calcined at different temperatures. A series of (Ni/AlS.G.) catalysts were synthesized by an impregnation procedure. The influence of varying the calcination temperature of the sol gel made supports on catalyst activity was tested in ethanol reforming reaction. The characteristics of the sol gel alumina supports and Ni catalysts were affected by the calcination temperature of the supports. The structure of the sol gel made alumina supports was transformed in the order of γ → (γ + θ) → θ-alumina as the calcination temperature of the supports increased from 600 °C to 1000 °C. Both hydrogen yield and ethanol conversion presented a volcano-shaped behavior with maximum values of 4.3 mol/mol ethanol fed and 99.5%, respectively. The optimum values were exhibited over Ni/AlS.G800 (Ni catalyst supported on sol gel made alumina calcined at 800 °C). The high performance of the Ni/AlS.G800 catalyst may be attributed to the strong interaction of Ni species and sol gel made alumina which lead to high nickel dispersion and small particle size. PMID:28809270

  4. First principles study of doped carbon supports for enhanced platinum catalysts.

    PubMed

    Holme, Timothy; Zhou, Yingke; Pasquarelli, Robert; O'Hayre, Ryan

    2010-08-28

    Highly oriented pyrolytic graphite (HOPG) implanted with N, Ar and B is studied as a support for platinum nanoparticle catalysts for fuel cells. Experimentally, we find that Pt supported by N-HOPG is more disperse, more catalytically active and suffers less particle ripening than native HOPG, while Pt supported on Ar-irradiated HOPG is slightly more active but ripens more than Pt on native HOPG. Defective HOPG supports are modeled by density functional theory (DFT) calculations that confirm and explain the above experimental results. First, defect energetics are studied to demonstrate that nitrogen doping at high doses likely causes agglomerated nitrogenous defect clusters, and irradiation with Ar ions creates vacancies that agglomerate in vacancy clusters. Second, Pt catalyst particle nucleation and agglomeration is studied. For Pt clusters supported on HOPG with nitrogen defects, calculations show a greater driving force for nucleation and greater particle tethering. For Pt clusters supported on HOPG with vacancy aggregations, this study shows a strong driving force for nucleation and a much enhanced tendency for particle ripening. Third, the electronic structure of Pt clusters on different supports is calculated. Finally, reaction energetics are calculated for two likely reaction pathways over Pt clusters supported on different HOPG substrates. Pt-N-HOPG shows modified electronic structure of the Pt catalyst and increased activity towards oxygen. Pt-Ar-HOPG shows slightly enhanced catalytic activity towards oxygen. In all respects, the findings agree with experiment. The calculations attribute the catalytic activity changes primarily to changes in the workfunction and secondarily to the d-band structure of supported Pt particles.

  5. Child Support; Need to Improve Efforts to Identify Fathers and Obtain Support Orders.

    DTIC Science & Technology

    1987-04-01

    state child support agencies in California, Florida, Michigan, and New York; • eight local AFDC and child support offices in Contra Costa and Sacra...1,740 106a 216 147 Suffolk 12,712 100 199 125 Contra Costa 18,350 100 152 118 Sacramento 21,924 100 239 145 Miami 23,162 100 185 128 Pensacola 5,616 100...prioritization procedures approved by OCSE. At the time of our review, five of our eight sample offices (Schenectady, Sacramento, Contra Costa , Genesee, and

  6. Laser synthesis of Pt, Pd, CoO and Pd-CoO nanoparticle catalysts supported on graphene

    NASA Astrophysics Data System (ADS)

    Moussa, Sherif; Abdelsayed, Victor; Samy El-Shall, M.

    2011-07-01

    We have developed a facile laser reduction method for the synthesis of transition metal nanoparticle catalysts supported on reduced graphene oxide (RGO) sheets. Using 532 or 355 nm laser irradiation of a mixture of graphene oxide and metal ion precursors in water, we report the photocatalytic reduction of the metal ions simultaneously with the partial reduction of GO, and the synthesis of metal nanoparticle catalysts well-dispersed and supported on the reduced GO. The Pd-CoO composite nanoparticles were found to have significantly enhanced activity for CO oxidation over both the Pd and the CoO catalysts. The simple synthesis method without chemical reducing agents, the formation of alloy nanoparticles with variable catalyst loading and composition, and the low cost of GO could enhance the commercial viability of these supported catalysts.

  7. Pilot-scale evaluation of a novel TiO2-supported V2O5 catalyst for DeNOx at low temperatures at a waste incinerator.

    PubMed

    Jung, Hyounduk; Park, Eunseuk; Kim, Minsu; Jurng, Jongsoo

    2017-03-01

    The removal of NOx by catalytic technology at low temperatures is significant for treatment of flue gas in waste incineration plants, especially at temperatures below 200°C. A novel highly active TiO2-supported vanadium oxide catalyst at low temperatures (200-250°C) has been developed for the selective catalytic reduction (SCR) de-NOx process with ammonia. The catalyst was evaluated in a pilot-scale equipment, and the results were compared with those obtained in our previous work using laboratory scale (small volume test) equipment as well as bench-scale laboratory equipment. In the present work, we have performed our experiments in pilot scale equipment using a part of effluent flue gas that was obtained from flue gas cleaning equipment in a full-scale waste incineration plant in South Korea. Based on our previous work, we have prepared a TiO2-supported V2O5 catalyst coated (with a loading of 7wt% of impregnated V2O5) on a honeycomb cordierite monolith to remove NOx from a waste incinerator flue gas at low temperatures. The NOx (nitrogen oxides) removal efficiency of the SCR catalyst bed was measured in a catalyst fixed-bed reactor (flow rate: 100m(3)h(-1)) using real exhaust gas from the waste incinerator. The experimental results showed that the V2O5/TiO2 SCR catalyst exhibited good DeNOx performance (over 98% conversion at an operating temperature of 300°C, 95% at 250°C, and 70% at 200°C), and was much better than the performance of commercial SCR catalysts (as low as 55% conversion at 250°C) under the same operating conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Hierarchical nanostructured hollow spherical carbon with mesoporous shell as a unique cathode catalyst support in proton exchange membrane fuel cell.

    PubMed

    Fang, Baizeng; Kim, Jung Ho; Kim, Minsik; Kim, Minwoo; Yu, Jong-Sung

    2009-03-07

    Hierarchical nanostructured spherical carbon with hollow macroporous core in combination with mesoporous shell has been explored to support Pt cathode catalyst with high metal loading in proton exchange membrane fuel cell (PEMFC). The hollow core-mesoporous shell carbon (HCMSC) has unique structural characteristics such as large specific surface area and mesoporous volume, ensuring uniform dispersion of the supported high loading (60 wt%) Pt nanoparticles with small particle size, and well-developed three-dimensionally interconnected hierarchical porosity network, facilitating fast mass transport. The HCMSC-supported Pt(60 wt%) cathode catalyst has demonstrated markedly enhanced catalytic activity toward oxygen reduction and greatly improved PEMFC polarization performance compared with carbon black Vulcan XC-72 (VC)-supported ones. Furthermore, the HCMSC-supported Pt(40 wt%) or Pt(60 wt%) outperforms the HCMSC-supported Pt(20 wt%) even at a low catalyst loading of 0.2 mg Pt cm(-2) in the cathode, which is completely different from the VC-supported Pt catalysts. The capability of supporting high loading Pt is supposed to accelerate the commercialization of PEMFC due to the anticipated significant reduction in the amount of catalyst support required, diffusion layer thickness and fabricating cost of the supported Pt catalyst electrode.

  9. Final Report - Advanced Cathode Catalysts and Supports for PEM Fuel Cells

    SciTech Connect

    Debe, Mark

    2012-09-28

    The principal objectives of the program were development of a durable, low cost, high performance cathode electrode (catalyst and support), that is fully integrated into a fuel cell membrane electrode assembly with gas diffusion media, fabricated by high volume capable processes, and is able to meet or exceed the 2015 DOE targets. Work completed in this contract was an extension of the developments under three preceding cooperative agreements/grants Nos. DE-FC-02-97EE50473, DE-FC-99EE50582 and DE-FC36- 02AL67621 which investigated catalyzed membrane electrode assemblies for PEM fuel cells based on a fundamentally new, nanostructured thin film catalyst and support system, and demonstrated the feasibility for high volume manufacturability.

  10. Spectroscopic evidence for origins of size and support effects on selectivity of Cu nanoparticle dehydrogenation catalysts

    SciTech Connect

    Witzke, M. E.; Dietrich, P. J.; Ibrahim, M. Y. S.; Al-Bardan, K.; Triezenberg, M. D.; Flaherty, D. W.

    2016-12-12

    Selective dehydrogenation catalysts that produce acetaldehyde from bio-derived ethanol can increase the efficiency of subsequent processes such as C–C coupling over metal oxides to produce 1-butanol or 1,3-butadiene or oxidation to acetic acid. Here, we use in situ X-ray absorption spectroscopy and steady state kinetics experiments to identify Cuδ+ at the perimeter of supported Cu clusters as the active site for esterification and Cu0 surface sites as sites for dehydrogenation. Correlation of dehydrogenation and esterification selectivities to in situ measures of Cu oxidation states show that this relationship holds for Cu clusters over a wide-range of diameters (2–35 nm) and catalyst supports and reveals that dehydrogenation selectivities may be controlled by manipulating either.

  11. Networks of connected Pt nanoparticles supported on carbon nanotubes as superior catalysts for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Huang, Meihua; Zhang, Jianshuo; Wu, Chuxin; Guan, Lunhui

    2017-02-01

    The high cost and short lifetime of the Pt-based anode catalyst for methanol oxidation reaction (MOR) hamper the widespread commercialization of direct methanol fuel cell (DMFC). Therefore, improving the activity of Pt-based catalysts is necessary for their practical application. For the first time, we prepared networks of connected Pt nanoparticles supported on multi-walled carbon nanotubes with loading ratio as high as 91 wt% (Pt/MWCNTs). Thanks for the unique connected structure, the Pt mass activity of Pt/MWCNTs for methanol oxidation reaction is 4.4 times as active as that of the commercial Pt/C (20 wt%). When carbon support is considered, the total mass activity of Pt/MWCNTs is 20 times as active as that of the commercial Pt/C. The durability and anti-poisoning ability are also improved greatly.

  12. Chelating agent-assisted heat treatment of a carbon-supported iron oxide nanoparticle catalyst for PEMFC.

    PubMed

    Liu, Shyh-Jiun; Huang, Chia-Hung; Huang, Chun-Kai; Hwang, Weng-Sing

    2009-08-28

    Iron complexes were supported on commercial carbon black and heat treated to create FeO(x)/C catalysts that showed a larger normalized current density and normalized power density than commercial Pt/C catalysts; the coordination number of the iron complexes used affected the formation of the active site for oxygen reduction in PEMFC.

  13. Activation of carbon-supported catalysts by ozonized acidic solutions for the direct implementation in (electro-)chemical reactors.

    PubMed

    Baldizzone, C; Mezzavilla, S; Hodnik, N; Zeradjanin, A R; Kostka, A; Schüth, F; Mayrhofer, K J J

    2015-01-25

    This work introduces a practical and scalable post-synthesis treatment for carbon-supported catalysts designed to achieve complete activation and, if necessary, simultaneously surface dealloying. The core concept behind the method is to control the potential without utilizing any electrochemical equipment, but rather by applying an appropriate gas mixture to a catalyst suspension.

  14. Development of a Sulfur-Modified Glass-Supported Pd Nanoparticle Catalyst for Suzuki-Miyaura Coupling.

    PubMed

    Xiao, Mincen; Hoshiya, Naoyuki; Fujiki, Katsumasa; Honma, Tetsuo; Tamenori, Yusuke; Shuto, Satoshi; Fujioka, Hiromichi; Arisawa, Mitsuhiro

    2016-01-01

    A safe, facile and low-leaching (up to 0.17 ppm) sulfur-modified glass-supported palladium nanoparticle catalyst has been developed for the Suzuki-Miyaura coupling of aryl halides with aryl boronic acids. Most notably, this catalyst was highly recyclable and could be used up to 10 times without any discernible decrease in its activity.

  15. Ceria catalyst for inert-substrate-supported tubular solid oxide fuel cells running on methane fuel

    NASA Astrophysics Data System (ADS)

    Zhao, Kai; Kim, Bok-Hee; Du, Yanhai; Xu, Qing; Ahn, Byung-Guk

    2016-05-01

    A ceria catalyst is applied to an inert-substrate supported tubular single cell for direct operation on methane fuel. The tubular single cell comprises a porous yttria-stabilized zirconia (YSZ) supporter, a Ni-Ce0.8Sm0.2O1.9 anode, a YSZ/Ce0.8Sm0.2O1.9 bi-layer electrolyte, and a La0.6Sr0.4Co0.2Fe0.8O3-δ cathode. The ceria catalyst is incorporated into the porous YSZ supporter layer by a cerium nitrate impregnation. The effects of ceria on the microstructure and electrochemical performance of the tubular single cell are investigated with respect to the number of impregnations. The optimum number of impregnations is determined to be four based on the maximum power density and polarization property of the tubular single cell in hydrogen and methane fuels. At 700 °C, the tubular single cell shows similar maximum power densities of ˜260 mW cm-2 in hydrogen and methane fuels, respectively. Moreover, the ceria catalyst significantly improves the performance stability of the cell running on methane fuel. At a current density of 350 mA cm-2, the single cell shows a low degradation rate of 2.5 mV h-1 during the 13 h test in methane fuel. These results suggest the feasibility of applying the ceria catalyst to the inert-substrate supported tubular single cell for direct operation on methane fuel.

  16. Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol with carbon nanotubes supported Pt-Co catalysts

    NASA Astrophysics Data System (ADS)

    Li, Yan; Zhu, Peng-Fei; Zhou, Ren-Xian

    2008-02-01

    The Pt-Co catalysts supported on carbon nanotubes (CNTs) have been prepared by wet impregnation and the selective hydrogenation of cinnamaldehyde (CMA) to the corresponding cinnamyl alcohol (CMO) over the catalysts has been studied in ethanol at different reaction conditions. The results show that Pt-0.17 wt%Co/CNTs catalyst exhibits the highest activity and selectivity at a reaction temperature of 60 °C under a pressure of around 2.5 MPa, and 92.4% for the conversion of CMA and 93.6% for the selectivity of CMA to CMO, respectively. The selective hydrogenation for the C dbnd O double bond in CMA would be improved as increasing the H 2 pressure, and the selective hydrogenation for the C dbnd C double bond in CMA is enhanced as increasing the reaction temperature. In addition, these catalysts have also been characterized using transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), H 2-temperature programmed reduction (H 2-TPR) and H 2-temperature programmed desorption (H 2-TPD) techniques. The results show that Pt particles are dispersed more homogeneously on the outer surface of the nanotubes, while the strong interaction between Pt and Co would improve the increasing of activated hydrogen number because of the hydrogen spillover from reduced Pt 0 onto CNTs and increase the catalytic activity and selectivity of CMA to CMO.

  17. Carbon-supported Pt nanowire as novel cathode catalysts for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Bing; Yan, Zeyu; Higgins, Drew C.; Yang, Daijun; Chen, Zhongwei; Ma, Jianxin

    2014-09-01

    Carbon-supported platinum nanowires (PtNW/C) are successfully synthesized by a simple and inexpensive template-free methodology and demonstrated as novel, suitable cathode electrode materials for proton exchange membrane fuel cell (PEMFC) applications. The synthesis conditions, such as the amount of reducing agent and reaction time, were investigated to investigate the effect on the nanostructures and activities of the PtNW/C catalysts. High-resolution transmission electron microscopy (TEM) results show that the formic acid facilitated reduction is capable of producing uniformly distributed 1-dimensional PtNW with an average cross-sectional diameter of 4.0 ± 0.2 nm and length of 20-40 nm. Investigation of the electrocatalytic activity by half-cell electrochemical testing reveals that PtNW/C catalyst demonstrates significant oxygen reduction reaction (ORR) activity, superior to that of commercially available Pt/C. Using a loading of 0.4 mgPt cm-2 PtNW/C as the cathode catalyst, a maximum power density of 748.8 mW cm-2 in a 50 cm2 single cell of commercial Pt/C. In addition, accelerated degradation testing (ADT) showed that the PtNW/C catalyst exhibits better durability than commercial Pt/C, rendering PtNW/C as a promising replacement to conventional Pt/C as cathode electrocatalysts for PEMFCs applications.

  18. Self-Supporting Metal-Organic Layers as Single-Site Solid Catalysts

    SciTech Connect

    Cao, Lingyun; Lin, Zekai; Peng, Fei; Wang, Weiwei; Huang, Ruiyun; Wang, Cheng; Yan, Jiawei; Liang, Jie; Zhang, Zhiming; Zhang, Teng; Long, Lasheng; Sun, Junliang; Lin, Wenbin

    2016-03-08

    Metal–organic layers (MOLs) represent an emerging class of tunable and functionalizable two-dimensional materials. In this work, the scalable solvothermal synthesis of self-supporting MOLs composed of [Hf6O4(OH)4(HCO2)6] secondary building units (SBUs) and benzene-1,3,5-tribenzoate (BTB) bridging ligands is reported. The MOL structures were directly imaged by TEM and AFM, and doped with 4'-(4-benzoate)-(2,2',2''-terpyridine)-5,5''-dicarboxylate (TPY) before being coordinated with iron centers to afford highly active and reusable single-site solid catalysts for the hydrosilylation of terminal olefins. MOL-based heterogeneous catalysts are free from the diffusional constraints placed on all known porous solid catalysts, including metal–organic frameworks. This work uncovers an entirely new strategy for designing single-site solid catalysts and opens the door to a new class of two-dimensional coordination materials with molecular functionalities.

  19. Monitoring silica supported molybdenum oxide catalysts at work: a Raman spectroscopic study.

    PubMed

    Thielemann, Jörg P; Hess, Christian

    2013-02-04

    The structure of silica SBA-15-supported molybdenum oxide catalysts is investigated during selective oxidation of propylene at 500 °C using operando Raman spectroscopy. The active catalysts contain mixtures of dispersed molybdenum oxide species exhibiting monooxo and dioxo structure. An increase in molybdenum oxide loading results in a decrease of the ratio of dioxo and monooxo species from 3.8 to 1.9, as determined by quantitative analysis of Raman spectra. Additional in situ Raman studies at 500 °C reveal that the dioxo/monooxo ratio increases in the presence of steam at higher molybdenum oxide loadings. The observed structural changes are assigned to shifts in the equilibrium between dioxo and monooxo species resulting from hydration/dehydration of the catalyst. This study demonstrates that the detailed structure of nanostructured molybdenum oxide catalysts depends on temperature, gas-phase composition, and molybdenum oxide loading. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Alumina-Supported Trirhenium Clusters: Stable High-Temperature Catalysts for Methylcyclohexane Conversion

    SciTech Connect

    Lobo-Lapidus, R.J.; McCall, M.J.; Lanuza, M.; Tonnesen, S.; Bare, S.R.; Gates, B.C.

    2009-05-19

    Samples prepared from H{sub 3}Re{sub 3}(CO){sub 12} adsorbed on porous {gamma}-Al{sub 2}O{sub 3} were decarbonylated at 773 K in flowing H{sub 2} and characterized by X-ray absorption spectroscopy (XAS). X-ray absorption near-edge spectra show that rhenium in the treated sample was cationic, and extended X-ray absorption fine structure spectra show a Re-Re first-shell coordination number of approximately 2, consistent with trirhenium clusters bonded to the support. The samples were tested as catalysts for the conversion of methylcyclohexane in the presence of H{sub 2} at atmospheric pressure and at 723 and at 773 K in a flow reactor. A range of hydrocarbon products was observed, indicating the occurrence of dehydrogenation, isomerization, ring opening, and hydrocracking reactions. The catalyst used at 723 K underwent deactivation over a period of several hours, during which the selectivity for the major dehydrogenation product (toluene) increased significantly. At 773 K, the catalyst underwent activation, during which the product distribution changed. This increase in activity was retained when the temperature was reduced to 723 K, resulting in higher activity and different selectivity relative to what had been observed before at this temperature. The fresh and used catalyst samples were characterized by X-ray absorption spectroscopy, which showed that the trirhenium framework remained intact after catalysis, although changes in the rhenium coordination were observed. The catalytically active species are inferred to be trirhenium.

  1. Catalytic oxidation of pulping effluent by activated carbon-supported heterogeneous catalysts.

    PubMed

    Yadav, Bholu Ram; Garg, Anurag

    2016-01-01

    The present study deals with the non-catalytic and catalytic wet oxidation (CWO) for the removal of persistent organic compounds from the pulping effluent. Two activated carbon-supported heterogeneous catalysts (Cu/Ce/AC and Cu/Mn/AC) were used for CWO after characterization by the following techniques: temperature-programmed reduction, Fourier transform infrared spectroscopy and thermo-gravimetric analysis. The oxidation reaction was performed in a batch high-pressure reactor (capacity = 0.7  L) at moderate oxidation conditions (temperature = 190°C and oxygen pressure = 0.9 MPa). With Cu/Ce/AC catalyst, the maximum chemical oxygen demand (COD), total organic carbon (TOC) and lignin removals of 79%, 77% and 88% were achieved compared to only 50% removal during the non-catalytic process. The 5-day biochemical oxygen demand (BOD5) to COD ratio (a measure for biodegradability) of the pulping effluent was improved to 0.52 from an initial value of 0.16. The mass balance calculations for solid recovered after CWO reaction showed 8% and 10% deduction in catalyst mass primarily attributed to the loss of carbon and metal leaching. After the CWO process, carbon deposition was also observed on the recovered catalyst which was responsible for around 3-4% TOC reduction.

  2. Microwave assisted synthesis of biarlys by Csbnd C coupling reactions with a new chitosan supported Pd(II) catalyst

    NASA Astrophysics Data System (ADS)

    Baran, Talat; Menteş, Ayfer

    2016-10-01

    In this study a new type chitosan-based support has been produced for Pd(II) catalyst and its catalytic performance in Suzuki Csbnd C reactions has been studied under microwave irradiation without using any solvent. The chemical identification of the catalyst was performed using TG/DTG, FTIR, UV-Vis ICP-OES, SEM/EDAX, 13C NMR, molar conductivity, XRD and magnetic moment techniques. The performance of this new Pd(II) catalyst was studied in Suzuki Csbnd C reactions. The Pd(II) catalyst exhibited a good catalytic performance in very short time (4 min) by giving high TONs and TOFs with low amount of the catalyst (0.015 mol%). The catalyst also had reusability and did not lose its activity until six runs.

  3. Alumina/silica supported K2CO3 as a catalyst for biodiesel synthesis from sunflower oil.

    PubMed

    Lukić, I; Krstić, J; Jovanović, D; Skala, D

    2009-10-01

    The new type of catalyst for fatty acid methyl esters (FAME or biodiesel) synthesis with K(2)CO(3) as active component on alumina/silica support was synthesized using sol-gel method. Corresponding catalyst (xerogel) was prepared by 12h drying the wet gel in air at 300 degrees C, 600 degrees C or 1000 degrees C at atmospheric pressure. The catalysts activity in the methanolysis of sunflower oil was compared to the activity of the pure K(2)CO(3). The effects of various reaction variables on the yield of FAME were investigated. It was found that the temperature of 120 degrees C and methanol to oil molar ratio of 15:1, are optimal conditions for FAME synthesis with synthesized catalyst. Repeated use of same amount of catalyst indicated that effect of potassium leaching obviously existed leading to decrease of catalyst activity.

  4. Trimetallic supported catalyst for renewable source of energy and environmental control through CO2 conversion.

    PubMed

    Hussain, S Tajammul; Mazhar, M; Hasib-ur-Rahman, M; Bari, Mazhar

    2009-05-01

    A supported catalyst and a catalytic process have been developed for the conversion of carbgas (CO2 + (100 ppm) H2O + 1% H2) as a renewable source of energy and as a measure for the control of carbon dioxide -- a greenhouse gas. The carbgas was passed over a trimetallic supported catalyst consisting of ruthenium (Ru), manganese (Mn) and cobalt (Co) dispersed on a high surface area titanium dioxide support at 673 K and at atmospheric pressure with a gas space velocity of 6000-7200/h. The catalytic reaction produces methanol and propyne in a fixed bed reactor system. The catalyst simultaneously splits water into hydrogen and oxygen, and carbon dioxide into carbon and oxygen under very mild reaction conditions and at atmospheric pressure. The oxygen generated during the reaction and the addition of hydrogen during the catalytic reaction not only generates a considerable amount of energy for the reaction to proceed but also sustains the oxidation states of Ru, Mn and Co. This process maintains the specific active oxidation states of the metals during the catalytic run -- a key step in the process.

  5. Comparison study of catalyst nanoparticle formation and carbon nanotube growth: Support effect

    NASA Astrophysics Data System (ADS)

    Wang, Yunyu; Luo, Zhiquan; Li, Bin; Ho, Paul S.; Yao, Zhen; Shi, Li; Bryan, Eugene N.; Nemanich, Robert J.

    2007-06-01

    A comparison study has been conducted on the formation of catalyst nanoparticles on a high surface tension metal and low surface tension oxide for carbon nanotube (CNT) growth via catalytic chemical vapor deposition (CCVD). Silicon dioxide (SiO2) and tantalum have been deposited as supporting layers before deposition of a thin layer of iron catalyst. Iron nanoparticles were formed after thermal annealing. It was found that densities, size distributions, and morphologies of iron nanoparticles were distinctly different on the two supporting layers. In particular, iron nanoparticles revealed a Volmer-Weber growth mode on SiO2 and a Stranski-Krastanov mode on tantalum. CCVD growth of CNTs was conducted on iron/tantalum and iron/SiO2. CNT growth on SiO2 exhibited a tip growth mode with a slow growth rate of less than 100nm /min. In contrast, the growth on tantalum followed a base growth mode with a fast growth rate exceeding 1μm/min. For comparison, plasma enhanced CVD was also employed for CNT growth on SiO2 and showed a base growth mode with a growth rate greater than 2μm /min. The enhanced CNT growth rate on tantalum was attributed to the morphologies of iron nanoparticles in combination with the presence of an iron wetting layer. The CNT growth mode was affected by the adhesion between the catalyst and support as well as CVD process.

  6. Evaluation studies on carbon supported catalysts for oxygen reduction in alkaline medium

    NASA Technical Reports Server (NTRS)

    Srinivasan, Vakula S.; Singer, Joseph

    1986-01-01

    This paper describes tests designed to predict the performance of fuel cell electrodes, as applied to an alkaline oxygen-fuel cell having specially fabricated porous-carbon electrodes with various amounts of dispersed platinum or gold as active catalysts. The tests are based on information obtained from the techniques of cyclic voltammetry and polarization. The parameters obtained from cyclic voltammetry were of limited use in predicting fuel cell performance of the cathode. On the other hand, half-cell polarization measurements offered close simulation of the oxygen electrode, although a predictor of the electrode life is still lacking. The very low polarization of the Au-10 percent Pt catalytic electrode suggests that single-phase catalysts should be considered.

  7. Evaluation studies on carbon supported catalysts for oxygen reduction in alkaline medium

    NASA Technical Reports Server (NTRS)

    Srinivasan, Vakula S.; Singer, Joseph

    1986-01-01

    This paper describes tests designed to predict the performance of fuel cell electrodes, as applied to an alkaline oxygen-fuel cell having specially fabricated porous-carbon electrodes with various amounts of dispersed platinum or gold as active catalysts. The tests are based on information obtained from the techniques of cyclic voltammetry and polarization. The parameters obtained from cyclic voltammetry were of limited use in predicting fuel cell performance of the cathode. On the other hand, half-cell polarization measurements offered close simulation of the oxygen electrode, although a predictor of the electrode life is still lacking. The very low polarization of the Au-10 percent Pt catalytic electrode suggests that single-phase catalysts should be considered.

  8. Synthesis of honeycomb-like mesoporous nitrogen-doped carbon nanospheres as Pt catalyst supports for methanol oxidation in alkaline media

    NASA Astrophysics Data System (ADS)

    Zhang, Yunmao; Liu, Yong; Liu, Weihua; Li, Xiying; Mao, Liqun

    2017-06-01

    This paper reports the convenient synthesis of honeycomb-like mesoporous nitrogen-doped carbon spheres (MNCS) using a self-assembly strategy that employs dopamine (DA) as a carbon and nitrogen precursor and a polystyrene-b-poly(ethylene oxide) (PS173-b-PEO170) diblock copolymer as a soft template. The MNCS have large BET surface areas of up to 554 m2 g-1 and high nitrogen contents of up to 6.9 wt%. The obtained MNCS are used as a support for Pt catalysts, which promote methanol oxidation in alkaline media. The MNCS-supported Pt (Pt/MNCS) catalyst has a larger electrochemically active surface area (ESA) (89.2 m2 g-1) than does a commercially available Vulcan XC-72R supported Pt/C catalyst. Compared to the Pt/C catalyst, Pt/MNCS displays a higher peak current density (1007 mA mg-1) and is more stable during methanol oxidation. These improvements are attributed to the honeycomb-like porous structure of the MNCS and the introduction of nitrogen to the carbon support. The MNCS effectively stabilize Pt nanoparticles and assuage the agglomeration of the nanoparticles, suggesting that MNCS are potential and promising application as electrocatalyst supports in alkaline direct methanol fuel cells.

  9. CO2 hydrogenation over oxide-supported PtCo catalysts: The role of the oxide support in determining the product selectivity

    DOE PAGES

    Kattel, Shyam; Yu, Weiting; Yang, Xiaofang; ...

    2016-05-09

    By simply changing the oxide support, the selectivity of a metal–oxide catalysts can be tuned. For the CO2 hydrogenation over PtCo bimetallic catalysts supported on different reducible oxides (CeO2, ZrO2, and TiO2), replacing a TiO2 support by CeO2 or ZrO2 selectively strengthens the binding of C,O-bound and O-bound species at the PtCo–oxide interface, leading to a different product selectivity. Lastly, these results reveal mechanistic insights into how the catalytic performance of metal–oxide catalysts can be fine-tuned.

  10. CO2 Hydrogenation over Oxide-Supported PtCo Catalysts: The Role of the Oxide Support in Determining the Product Selectivity.

    PubMed

    Kattel, Shyam; Yu, Weiting; Yang, Xiaofang; Yan, Binhang; Huang, Yanqiang; Wan, Weiming; Liu, Ping; Chen, Jingguang G

    2016-07-04

    By simply changing the oxide support, the selectivity of a metal-oxide catalysts can be tuned. For the CO2 hydrogenation over PtCo bimetallic catalysts supported on different reducible oxides (CeO2 , ZrO2 , and TiO2 ), replacing a TiO2 support by CeO2 or ZrO2 selectively strengthens the binding of C,O-bound and O-bound species at the PtCo-oxide interface, leading to a different product selectivity. These results reveal mechanistic insights into how the catalytic performance of metal-oxide catalysts can be fine-tuned.

  11. Polymer- and silica-supported iron BPMEN-inspired catalysts for C-H bond functionalization reactions.

    PubMed

    Feng, Yan; Moschetta, Eric G; Jones, Christopher W

    2014-11-01

    Direct catalytic C-H bond functionalization is a key challenge in synthetic chemistry, with many popular C-H activation methodologies involving precious-metal catalysts. In recent years, iron catalysts have emerged as a possible alternative to the more common precious-metal catalysts, owing to its high abundance, low cost, and low toxicity. However, iron catalysts are plagued by two key factors: the ligand cost and the low turnover numbers (TONs) typically achieved. In this work, two approaches are presented to functionalize the popular N(1),N(2)-dimethyl-N(1),N(2)-bis(pyridin-2-ylmethyl)ethane-1,2-diamine (BPMEN) ligand, so that it can be supported on porous silica or polymer resin supports. Four new catalysts are prepared and evaluated in an array of catalytic C-H functionalization reactions by using cyclohexane, cyclohexene, cyclooctane, adamantane, benzyl alcohol, and cumene with aqueous hydrogen peroxide. Catalyst recovery and recycling is demonstrated by using supported catalysts, which allows for a modest increase in the TON achieved with these catalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A versatile sonication-assisted deposition-reduction method for preparing supported metal catalysts for catalytic applications.

    PubMed

    Padilla, Romen Herrera; Priecel, Peter; Lin, Ming; Lopez-Sanchez, Jose Antonio; Zhong, Ziyi

    2017-03-01

    This work aims to develop a rapid and efficient strategy for preparing supported metal catalysts for catalytic applications. The sonication-assisted reduction-precipitation method was employed to prepare the heterogeneous mono- and bi-metallic catalysts for photocatalytic degradation of methyl orange (MO) and preferential oxidation (PROX) of CO in H2-rich gas. In general, there are three advantages for the sonication-assisted method as compared with the conventional methods, including high dispersion of metal nanoparticles on the catalyst support, the much higher deposition efficiency (DE) than those of the deposition-precipitation (DP) and co-precipitation (CP) methods, and the very fast preparation, which only lasts 10-20s for the deposition. In the AuPd/TiO2 catalysts series, the AuPd(3:1)/TiO2 catalyst is the most active for MO photocatalytic degradation; while for PROX reaction, Ru/TiO2, Au-Cu/SBA-15 and Pt/γ-Al2O3 catalysts are very active, and the last one showed high stability in the lifetime test. The structural characterization revealed that in the AuPd(3:1)/TiO2 catalyst, Au-Pd alloy particles were formed and a high percentage of Au atoms was located at the surface. Therefore, this sonication-assisted method is efficient and rapid in the preparation of supported metal catalysts with obvious structural characteristics for various catalytic applications.

  13. Synthesis, characterization, and catalytic activity in Suzuki coupling and catalase-like reactions of new chitosan supported Pd catalyst.

    PubMed

    Baran, Talat; Inanan, Tülden; Menteş, Ayfer

    2016-07-10

    The aim of this study is to analyze the synthesis of a new chitosan supported Pd catalyst and examination of its catalytic activity in: Pd catalyst was synthesized using chitosan as a biomaterial and characterized with FTIR, TG/DTG, XRD, (1)H NMR, (13)C NMR, SEM-EDAX, ICP-OES, Uv-vis spectroscopies, and magnetic moment, along with molar conductivity analysis. Biomaterial supported Pd catalyst indicated high activity and long life time as well as excellent turnover number (TON) and turnover frequency (TOF) values in Suzuki reaction. Biomaterial supported Pd catalyst catalyzed H2O2 decomposition reaction with considerable high activity using comparatively small loading catalyst (10mg). Redox potential of biomaterial supported Pd catalyst was still high without negligible loss (13% decrease) after 10 cycles in reusability tests. As a consequence, eco-friendly biomaterial supported Pd catalyst has superior properties such as high thermal stability, long life time, easy removal from reaction mixture and durability to air, moisture and high temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Highly Active Carbon Supported Pd-Ag Nanofacets Catalysts for Hydrogen Production from HCOOH.

    PubMed

    Wang, Wenhui; He, Ting; Liu, Xuehua; He, Weina; Cong, Hengjiang; Shen, Yangbin; Yan, Liuming; Zhang, Xuetong; Zhang, Jinping; Zhou, Xiaochun

    2016-08-17

    Hydrogen is regarded as a future sustainable and clean energy carrier. Formic acid is a safe and sustainable hydrogen storage medium with many advantages, including high hydrogen content, nontoxicity, and low cost. In this work, a series of highly active catalysts for hydrogen production from formic acid are successfully synthesized by controllably depositing Pd onto Ag nanoplates with different Ag nanofacets, such as Ag{111}, Ag{100}, and the nanofacet on hexagonal close packing Ag crystal (Ag{hcp}). Then, the Pd-Ag nanoplate catalysts are supported on Vulcan XC-72 carbon black to prevent the aggregation of the catalysts. The research reveals that the high activity is attributed to the formation of Pd-Ag alloy nanofacets, such as Pd-Ag{111}, Pd-Ag{100}, and Pd-Ag{hcp}. The activity order of these Pd-decorated Ag nanofacets is Pd-Ag{hcp} > Pd-Ag{111} > Pd-Ag{100}. Particularly, the activity of Pd-Ag{hcp} is up to an extremely high value, i.e., TOF{hcp} = 19 000 ± 1630 h(-1) at 90 °C (lower limit value), which is more than 800 times higher than our previous quasi-spherical Pd-Ag alloy nanocatalyst. The initial activity of Pd-Ag{hcp} even reaches (3.13 ± 0.19) × 10(6) h(-1) at 90 °C. This research not only presents highly active catalysts for hydrogen generation but also shows that the facet on the hcp Ag crystal can act as a potentially highly active catalyst.

  15. Catalytic reforming catalyst

    SciTech Connect

    Buss, W.C.; Kluksdahl, H.E.

    1980-12-09

    An improved catalyst, having a reduced fouling rate when used in a catalytic reforming process, said catalyst comprising platinum disposed on an alumina support wherein the alumina support is obtained by removing water from aluminum hydroxide produced as a by-product from a ziegler higher alcohol synthesis reaction, and wherein the alumina is calcined at a temperature of 1100-1400/sup 0/F so as to have a surface area of 165 to 215 square meters per gram.

  16. Tuning the Selectivity of Single-Site Supported Metal Catalysts with Ionic Liquids

    DOE PAGES

    Babucci, Melike; Fang, Chia -Yu; Hoffman, Adam S.; ...

    2017-09-11

    1,3-Dialkylimidazolium ionic liquid coatings act as electron donors, increasing the selectivity for partial hydrogenation of 1,3-butadiene catalyzed by iridium complexes supported on high-surface-area γ-Al2O3. High-energy-resolution fluorescence detection X-ray absorption near-edge structure (HERFD XANES) measurements quantify the electron donation and are correlated with the catalytic activity and selectivity. Furthermore, the results demonstrate broad opportunities to tune electronic environments and catalytic properties of atomically dispersed supported metal catalysts.

  17. CO2 Reduction on Supported Ru/Al2O3 Catalysts: Cluster Size Dependence of Product Selectivity

    SciTech Connect

    Kwak, Ja Hun; Kovarik, Libor; Szanyi, Janos

    2013-11-01

    The catalytic performance of a series of Ru/Al2O3 catalysts with Ru content in the 0.1-5% range was examined in the reduction of CO2 with H2. At low Ru loadings (≤0.5 %) where the active metal phase is highly dispersed (mostly atomically) on the alumina support CO is formed with high selectivity. With increasing metal loading the selectivity toward CH4 formation increases, while that for CO production decreases. In the 0.1% Ru/Al2O3 catalyst Ru is mostly present in atomic dispersion as STEM images obtained from the fresh sample prior to catalytic testing reveal. STEM images recorded form this same sample following temperature programmed reaction test clearly show the agglomeration of small metal particles (and atoms) into 3D clusters. The clustering of the highly dispersed metal phase is responsible for the observed dramatic selectivity change during elevated temperature tests: dramatic decrease in CO, and large increase in CH4 selectivity. Apparent activation energies, estimated from the slopes of Arrhenius plots, of 82 kJ/mol and 62 kJ/mol for CO and CH4 formation were determined, respectively, regardless of Ru loading. These results suggest that the formation of CO and CH4 follow different reaction pathways, or proceed on active centers of different nature. Reactions with CO2/H2 and CO/H2 mixtures (under otherwise identical reaction conditions) reveal that the onset temperature of CO2 reduction is about 150 ºC lower than of CO reduction. We thank Dr. Feng Gao for carrying out the H2 chemisorption measurements on all the Ru/Al2O3 catalysts discussed in this work. The catalyst preparation and catalytic measurements were supported by a Laboratory Directed Research and Development (LDRD) project, while the TEM work was supported by the Chemical Imaging Initiative at the Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US Department of Energy by Battelle under contract number DE-AC05-76RL01830. JHK also acknowledges the support of this work

  18. Supported Ru catalysts prepared by two sonication-assisted methods for preferential oxidation of CO in H2.

    PubMed

    Perkas, Nina; Teo, Jaclyn; Shen, Shoucang; Wang, Zhan; Highfield, James; Zhong, Ziyi; Gedanken, Aharon

    2011-09-14

    The preferential oxidation (PROX) of CO in the presence of H(2) is an important step in the production of pure H(2) for industrial applications. In this report, two sonochemical methods (S1 and S2) were used to prepare highly dispersed Ru catalysts supported on mesoporous TiO(2) (TiO(2)(MSP)) for the PROX reaction, in which a reaction gas mixture containing 1% CO + 1% O(2) + 18% CO(2) + 78% H(2) was used. The supported Ru catalysts performed better than the supported Au and Pt catalysts, and the S1 and S2 methods are superior to the impregnation method. The Ru/TiO(2)(MSP) catalysts were active for the PROX reaction below 200 °C and good for the methanation reactions of CO and CO(2) above 200 °C. The presence of residual chlorine in the catalysts severely suppressed their PROX reaction activity, and a higher dispersion of Ru particles led to better catalytic performances. The addition of Au in the Ru/TiO(2)(MSP) catalyst also caused a poorer catalytic activity for both the PROX and the methanation reactions. TPR results showed that in the active catalysts prepared by the S1 and S2 methods, the well dispersed Ru particles, after calcination in air, had a stronger interaction with the support than those in the catalyst prepared by the impregnation method and in the Au-Ru/TiO(2)(MSP) catalyst. In situ CO absorption experiments performed with the diffusion reflectance Fourier transform infra red (DRIFT) method showed that the bridged adsorbed CO species on isolated Ru(0) sites correlated with the catalytic performances, indicating that these isolated Ru(0) sites are the most active sites of the Ru/TiO(2)(MSP) catalysts in the PROX reaction.

  19. Performance of vertically oriented graphene supported platinum-ruthenium bimetallic catalyst for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Bo, Zheng; Hu, Dan; Kong, Jing; Yan, Jianhua; Cen, Kefa

    2015-01-01

    This work reports the electrocatalytic performance of vertically oriented graphene (VG) supported Pt-Ru bimetallic catalysts toward methanol oxidation reaction (MOR). Dense networks of VG are directly synthesized on carbon paper (CP) via a microwave plamsa-enhanced chemical vapor deposition (PECVD) method. A repeated pulse potentials approach is applied in a conventional three-electrode electrochemical system for the co-electrodeposition of Pt-Ru bimetallic nanoparticles. It is found that, the decoration of VG can simultaneously lead to a ∼3.5 times higher catalyst mass loading and a ∼50% smaller nanoparticle size than the pristine CP counterparts. An optimum Pt molar ratio of 83.4% in the deposits, achieved with a [H2PtCl6]:[RuCl3] of 1:1 in the electrolyte, is clarified with synthetically considering the mass specific activity, CO tolerance, and catalytic stability. According to Tafel analysis and cyclic voltammetry (CV) tests, the Pt-Ru/VG catalyst with the optimized Pt molar ratio can realize a faster methanol dehydrogenation than Pt/VG, and present a significantly enhanced catalytic activity (maximum current density of 339.2 mA mg-1) than those using pristine CP and Vulcan XC-72 as the supports.

  20. Dehydration of xylose to furfural over MCM-41-supported niobium-oxide catalysts.

    PubMed

    García-Sancho, Cristina; Sádaba, Irantzu; Moreno-Tost, Ramón; Mérida-Robles, Josefa; Santamaría-González, José; López-Granados, Manuel; Maireles-Torres, Pedro

    2013-04-01

    A series of silica-based MCM-41-supported niobium-oxide catalysts are prepared, characterized by using XRD, N2 adsorption-desorption, X-ray photoelectron spectroscopy, Raman spectroscopy, and pyridine adsorption coupled to FTIR spectroscopy, and tested for the dehydration of D-xylose to furfural. Under the operating conditions used all materials are active in the dehydration of xylose to furfural (excluding the MCM-41 silica support). The xylose conversion increases with increasing Nb2 O5 content. At a loading of 16 wt % Nb2 O5 , 74.5 % conversion and a furfural yield of 36.5 % is achieved at 170 °C, after 180 min reaction time. Moreover, xylose conversion and furfural yield increase with the reaction time and temperature, attaining 82.8 and 46.2 %, respectively, at 190 °C and after 100 min reaction time. Notably, the presence of NaCl in the reaction medium further increases the furfural yield (59.9 % at 170 °C after 180 min reaction time). Moreover, catalyst reutilization is demonstrated by performing at least three runs with no loss of catalytic activity and without the requirement for an intermediate regeneration step. No significant niobium leaching is observed, and a relationship between the structure of the catalyst and the activity is proposed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Supported carbon-containing molybdenum and tungsten sulfide catalysts, their preparation and use

    SciTech Connect

    Seiver, R.L.; Chianelli, R.R.

    1984-02-14

    A supported carbon-containing molybdenum sulfide and tungsten sulfide catalyst useful for conducting methanation and hydrotreating reactions, principally the latter, can be formed by compositing a preselected quantity of a porous, refractory inorganic oxide with a complex salt characterized by the formula B /SUB x/ (MO /SUB y/ S/sub 4/- /SUB y/ ) where B is an organo or hydrocarbyl substituted diammonium ion, an organo or hydrocarbyl substituted ammonium ion or quaternary ammonium ion, or an ionic form of a cyclic amine containing one or more basic N atoms, x is 1 where B is an organo or hydrocarbyl substituted diammonium ion, or 2 where B is an organo or hydrocarbyl substituted ammonium or quaternary ammonium ion or an ionic form of a cyclic amine containing one or more basic N atoms, M is molybdenum or tungsten, and y is O, or a fraction or whole number ranging up to 3, and heat decomposing the salt of said catalyst precursor composite in the presence of hydrogen, hydrocarbon and sulfur to form said supported carbon-containing molybdenum sulfide or tungsten sulfide catalyst.

  2. Supported carbon-containing molybdenum and tung sten sulfide catalysts, their preparation and use

    SciTech Connect

    Seiver, R.L.; Chianelli, R.R.

    1984-02-07

    A supported carbon-containing molybdenum sulfide and tungsten sulfide catalyst useful for conducting methanation and hydrotreating reactions, principally the latter, can be formed by compositing a preselected quantity of a porous, refractory inorganic oxide with a complex salt characterized by the formula B /SUB x/ (MO /SUB y/ S/sub 4/- /SUB y/ ) where B is an organo or hydrocarbyl substituted diammonium ion, an organo or hydrocarbyl substituted ammonium ion or quaternary ammonium ion, or an ionic form of a cyclic amine containing one or more basic N atoms, x is 1 where B is an organo or hydrocarbyl substituted diammonium ion, or 2 where B is an organo or hydrocarbyl substituted ammonium or quaternary ammonium ion or an ionic form of a cyclic amine containing one or more basic N atoms, M is molybdenum or tungsten, and y is 0, or a fraction or whole number ranging up to 3, and heat decomposing the salt of said catalyst precursor composite in the presence of hydrogen sulfide and hydrogen to form said supported carbon-containing molybdenum sulfide or tungsten sulfide catalyst.

  3. N-doped mesoporous carbons supported palladium catalysts prepared from chitosan/silica/palladium gel beads.

    PubMed

    Zeng, Minfeng; Wang, Yudong; Liu, Qi; Yuan, Xia; Feng, Ruokun; Yang, Zhen; Qi, Chenze

    2016-08-01

    In this study, a heterogeneous catalyst including palladium nanoparticles supported on nitrogen-doped mesoporous carbon (Pd@N-C) is synthesized from palladium salts as palladium precursor, colloidal silica as template, and chitosan as carbon source. N2 sorption isotherm results show that the prepared Pd@N-C had a high BET surface area (640m(2)g(-1)) with large porosity. The prepared Pd@N-C is high nitrogen-rich as characterized with element analysis. X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), and Raman spectroscopy characterization of the catalyst shows that the palladium species with different chemical states are well dispersed on the nitrogen-containing mesoporous carbon. The Pd@N-C is high active and shows excellent stability as applied in Heck coupling reactions. This work supplies a successful method to prepare Pd heterogeneous catalysts with high performance from bulk biopolymer/Pd to high porous nitrogen-doped carbon supported palladium catalytic materials.

  4. Carbon-Supported Pd and PdFe Alloy Catalysts for Direct Methanol Fuel Cell Cathodes

    PubMed Central

    Rivera Gavidia, Luis M.; Sebastián, David; Pastor, Elena; Aricò, Antonino S.; Baglio, Vincenzo

    2017-01-01

    Direct methanol fuel cells (DMFCs) are electrochemical devices that efficiently produce electricity and are characterized by a large flexibility for portable applications and high energy density. Methanol crossover is one of the main obstacles for DMFC commercialization, forcing the search for highly electro-active and methanol tolerant cathodes. In the present work, carbon-supported Pd and PdFe catalysts were synthesized using a sodium borohydride reduction method and physico-chemically characterized using transmission electron microscopy (TEM) and X-ray techniques such as photoelectron spectroscopy (XPS), diffraction (XRD) and energy dispersive spectroscopy (EDX). The catalysts were investigated as DMFC cathodes operating at different methanol concentrations (up to 10 M) and temperatures (60 °C and 90 °C). The cell based on PdFe/C cathode presented the best performance, achieving a maximum power density of 37.5 mW·cm−2 at 90 °C with 10 M methanol, higher than supported Pd and Pt commercial catalysts, demonstrating that Fe addition yields structural changes to Pd crystal lattice that reduce the crossover effects in DMFC operation. PMID:28772937

  5. Carbon-Supported Pd and PdFe Alloy Catalysts for Direct Methanol Fuel Cell Cathodes.

    PubMed

    Rivera Gavidia, Luis M; Sebastián, David; Pastor, Elena; Aricò, Antonino S; Baglio, Vincenzo

    2017-05-25

    Direct methanol fuel cells (DMFCs) are electrochemical devices that efficiently produce electricity and are characterized by a large flexibility for portable applications and high energy density. Methanol crossover is one of the main obstacles for DMFC commercialization, forcing the search for highly electro-active and methanol tolerant cathodes. In the present work, carbon-supported Pd and PdFe catalysts were synthesized using a sodium borohydride reduction method and physico-chemically characterized using transmission electron microscopy (TEM) and X-ray techniques such as photoelectron spectroscopy (XPS), diffraction (XRD) and energy dispersive spectroscopy (EDX). The catalysts were investigated as DMFC cathodes operating at different methanol concentrations (up to 10 M) and temperatures (60 °C and 90 °C). The cell based on PdFe/C cathode presented the best performance, achieving a maximum power density of 37.5 mW·cm(-2) at 90 °C with 10 M methanol, higher than supported Pd and Pt commercial catalysts, demonstrating that Fe addition yields structural changes to Pd crystal lattice that reduce the crossover effects in DMFC operation.

  6. Plasmon-enhanced reverse water gas shift reaction over oxide supported Au catalysts

    SciTech Connect

    Upadhye, AA; Ro, I; Zeng, X; Kim, HJ; Tejedor, I; Anderson, MA; Dumesic, JA; Huber, GW

    2015-01-01

    We show that localized surface plasmon resonance (LSPR) can enhance the catalytic activities of different oxide-supported Au catalysts for the reverse water gas shift (RWGS) reaction. Oxide-supported Au catalysts showed 30 to 1300% higher activity for RWGS under visible light compared to dark conditions. Au/TiO2 catalyst prepared by the deposition-precipitation (DP) method with 3.5 nm average Au particle size showed the highest activity for the RWGS reaction. Visible light is converted into chemical energy for this reaction with up to a 5% overall efficiency. A shift in the apparent activation energy (from 47 kJ mol(-1) in dark to 35 kJ mol(-1) in light) and apparent reaction order with respect to CO2 (from 0.5 in dark to 1.0 in light) occurs due to the LSPR. Our kinetic results indicate that the LSPR increases the rate of either the hydroxyl hydrogenation or carboxyl decomposition more than any other steps in the reaction network.

  7. Bond cleavage of lignin model compounds into aromatic monomers using supported metal catalysts in supercritical water

    PubMed Central

    Yamaguchi, Aritomo; Mimura, Naoki; Shirai, Masayuki; Sato, Osamu

    2017-01-01

    More efficient use of lignin carbon is necessary for carbon-efficient utilization of lignocellulosic biomass. Conversion of lignin into valuable aromatic compounds requires the cleavage of C–O ether bonds and C–C bonds between lignin monomer units. The catalytic cleavage of C–O bonds is still challenging, and cleavage of C–C bonds is even more difficult. Here, we report cleavage of the aromatic C–O bonds in lignin model compounds using supported metal catalysts in supercritical water without adding hydrogen gas and without causing hydrogenation of the aromatic rings. The cleavage of the C–C bond in bibenzyl was also achieved with Rh/C as a catalyst. Use of this technique may greatly facilitate the conversion of lignin into valuable aromatic compounds. PMID:28387304

  8. High-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles for phenol hydrogenation

    NASA Astrophysics Data System (ADS)

    Huang, Chao; Yang, Xu; Yang, Hui; Huang, Peiyan; Song, Huiyu; Liao, Shijun

    2014-10-01

    A high-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles (MSN), PdRu/MSN, was prepared by a facile impregnation-hydrogen reduction method. It was found that PdRu/MSN showed 5 times higher activity than that of Pd/MSN towards the liquid-phase hydrogenation of phenol. The catalysts were characterized comprehensively by multiple techniques, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and hydrogen temperature program reduction (TPR). It was revealed that adding Ru could effectively improve the Pd dispersion and promote the electronic interaction between the Pd and Ru, both of which contribute to enhancing the catalytic activity.

  9. Microwave-assisted synthesis of carbon-supported carbides catalysts for hydrous hydrazine decomposition

    NASA Astrophysics Data System (ADS)

    Mnatsakanyan, Raman; Zhurnachyan, Alina R.; Matyshak, Valery A.; Manukyan, Khachatur V.; Mukasyan, Alexander S.

    2016-09-01

    Microwave-assisted synthesis of carbon-supported Mo2C and WC nanomaterials was studied. Two different routes were utilized to prepare MoO3 (WO3) - C precursors that were then subjected to microwave irradiation in an inert atmosphere. The effect of synthesis conditions, such as irradiation time and gas environment, was investigated. The structure and formation mechanism of the carbide phases were explored. As-synthesized nanomaterials exhibited catalytic activity for hydrous hydrazine (N2H4·H2O) decomposition at 30-70 °C. It was shown that the catalyst activity significantly increases if microwave irradiation is applied during the decomposition process. Such conditions permit complete conversion of hydrazine to ammonia and nitrogen within minutes. This effect can be attributed to the unique nanostructure of the catalysts that includes microwave absorbing carbon and active carbide constituents.

  10. Resin-Supported Catalysts for CuAAC Click Reactions in Aqueous or Organic Solvents

    PubMed Central

    Presolski, Stanislav I.; Mamidyala, Sreeman K.; Manzenrieder, Florian

    2012-01-01

    The copper-catalyzed azide-alkyne cycloaddition click reaction is a valuable process for the synthesis of libraries of drug candidates, derivatized polymers and materials, and a wide variety of other functional molecules. In some circumstances, the removal of the copper catalyst is both necessary and inconvenient. We describe here two immobilized forms of a Cu-binding ligand that has been shown to accelerate triazole formation under many different conditions, using different resin supports that are appropriate for aqueous or organic solvents. Copper leaching from these resins was modest, allowing them to be reused in many reaction/filtration cycles without recharging with metal ion. The utility of this catalyst form was demonstrated in the convenient synthesis of 20 N-acetylgalactosamine derivatives for biological testing. PMID:22946559

  11. Nanostructured polypyrrole/carbon composite as Pt catalyst support for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Zhao, Hongbin; Li, Lei; Yang, Jun; Zhang, Yongming

    A novel catalyst support was synthesized by in situ chemical oxidative polymerization of pyrrole on Vulcan XC-72 carbon in naphthalene sulfonic acid (NSA) solution containing ammonium persulfate as oxidant at room temperature. Pt nanoparticles with 3-4 nm size were deposited on the prepared polypyrrole-carbon composites by chemical reduction method. Scanning electron microscopy and transmission electron microscopy measurements showed that Pt particles were homogeneously dispersed in polypyrrole-carbon composites. The Pt nanoparticles-dispersed catalyst composites were used as anodes of fuel cells for hydrogen and methanol oxidation. Cyclic voltammetry measurements of hydrogen and methanol oxidation showed that Pt nanoparticles deposited on polypyrrole-carbon with NSA as dopant exhibit better catalytic activity than those on plain carbon. This result might be due to the higher electrochemically available surface areas, electronic conductivity and easier charge-transfer at polymer/carbon particle interfaces allowing a high dispersion and utilization of deposited Pt nanoparticles.

  12. Resin-supported catalysts for CuAAC click reactions in aqueous or organic solvents.

    PubMed

    Presolski, Stanislav I; Mamidyala, Sreeman K; Manzenrieder, Florian; Finn, M G

    2012-10-08

    The copper-catalyzed azide-alkyne cycloaddition click reaction is a valuable process for the synthesis of libraries of drug candidates, derivatized polymers and materials, and a wide variety of other functional molecules. In some circumstances, the removal of the copper catalyst is both necessary and inconvenient. We describe here two immobilized forms of a Cu-binding ligand that has been shown to accelerate triazole formation under many different conditions, using different resin supports that are appropriate for aqueous or organic solvents. Copper leaching from these resins was modest, allowing them to be reused in many reaction/filtration cycles without recharging with metal ion. The utility of this catalyst form was demonstrated in the convenient synthesis of 20 N-acetylgalactosamine derivatives for biological testing.

  13. Synthesis and characterization of magnesium oxide supported catalysts with a meso-macropore structure.

    PubMed

    Kim, Sang Woo; Kim, Inho; Moon, Dong Ju

    2013-08-01

    Nanostructured magnesium oxide catalyst support materials with controlled morphology and size were synthesized from a supercritical carbon dioxide/ethanol solution via chemical reaction of soluble precursors and subsequent thermal decomposition. Leaf-like magnesium hydroxide precursors with high specific surface area were formed by a low-temperature chemical reaction at below 140 degrees C, while magnesium carbonate cubes with a very low surface area less than 3.3 m2/g were formed by temperature-induced phase transition from a loose to a dense structure during carbonation reaction at above 150 degrees C. The specific surface area has significantly increased higher than 90 m2/g due to the creation of highly porous MgO cubes with mesopore structure formed after thermal decomposition of the magnesium carbonate precursors. Ni-magnesium oxide catalysts with bimodal pore structure were finally formed by the consequence of packing heterogeneity of the porous magnesium oxides with different morphologies and sizes.

  14. Catalytically Active and Spectator Ce(3+) in Ceria-Supported Metal Catalysts.

    PubMed

    Kopelent, René; van Bokhoven, Jeroen A; Szlachetko, Jakub; Edebeli, Jacinta; Paun, Cristina; Nachtegaal, Maarten; Safonova, Olga V

    2015-07-20

    Identification of active species and the rate-determining reaction steps are crucial for optimizing the performance of oxygen-storage materials, which play an important role in catalysts lowering automotive emissions, as electrode materials for fuel cells, and as antioxidants in biomedicine. We demonstrated that active Ce(3+) species in a ceria-supported platinum catalyst during CO oxidation are short-lived and therefore cannot be observed under steady-state conditions. Using time-resolved resonant X-ray emission spectroscopy, we quantitatively correlated the initial rate of Ce(3+) formation under transient conditions to the overall rate of CO oxidation under steady-state conditions and showed that ceria reduction is a kinetically relevant step in CO oxidation, whereas a fraction of Ce(3+) was present as spectators. This approach can be applied to various catalytic processes involving oxygen-storage materials and reducible oxides to distinguish between redox and nonredox catalytic mechanisms.

  15. Nitrogen-Doped Carbon Nanotube-Supported Pd Catalyst for Improved Electrocatalytic Performance toward Ethanol Electrooxidation

    NASA Astrophysics Data System (ADS)

    Wei, Ying; Zhang, Xinyuan; Luo, Zhiyong; Tang, Dian; Chen, Changxin; Zhang, Teng; Xie, Zailai

    2017-07-01

    In this study, hydrothermal carbonization (HTC) was applied for surface functionalization of carbon nanotubes (CNTs) in the presence of glucose and urea. The HTC process allowed the deposition of thin nitrogen-doped carbon layers on the surface of the CNTs. By controlling the ratio of glucose to urea, nitrogen contents of up to 1.7 wt% were achieved. The nitrogen-doped carbon nanotube-supported Pd catalysts exhibited superior electrochemical activity for ethanol oxidation relative to the pristine CNTs. Importantly, a 1.5-fold increase in the specific activity was observed for the Pd/HTC-N1.67%CNTs relative to the catalyst without nitrogen doping (Pd/HTC-CNTs). Further experiments indicated that the introduction of nitrogen species on the surface of the CNTs improved the Pd(0) loading and increased the binding energy.

  16. Development of Pd and Pd-Co catalysts supported on multi-walled carbon nanotubes for formic acid oxidation

    NASA Astrophysics Data System (ADS)

    Morales-Acosta, D.; Ledesma-Garcia, J.; Godinez, Luis A.; Rodríguez, H. G.; Álvarez-Contreras, L.; Arriaga, L. G.

    Pd-Co and Pd catalysts were prepared by the impregnation synthesis method at low temperature on multi-walled carbon nanotubes (MWCNTs). The nanotubes were synthesized by spray pyrolysis technique. Both catalysts were obtained with high homogeneous distribution and particle size around 4 nm. The morphology, composition and electrocatalytic properties were investigated by transmission electron microscopy, scanning electron microscopy-energy dispersive X-ray analysis, X-ray diffraction and electrochemical measurements, respectively. The electrocatalytic activity of Pd and PdCo/MWCNTs catalysts was investigated in terms of formic acid electrooxidation at low concentration in H 2SO 4 aqueous solution. The results obtained from voltamperometric studies showed that the current density achieved with the PdCo/MWCNTs catalyst is 3 times higher than that reached with the Pd/MWCNTs catalyst. The onset potential for formic acid electrooxidation on PdCo/MWCNTs electrocatalyst showed a negative shift ca. 50 mV compared with Pd/MWCNTs.

  17. Electrochemical performance and durability of carbon supported Pt catalyst in contact with aqueous and polymeric proton conductors.

    PubMed

    Andersen, Shuang Ma; Skou, Eivind

    2014-10-08

    Significant differences in catalyst performance and durability are often observed between the use of a liquid electrolyte (e.g., sulfuric acid), and a solid polymer electrolyte (e.g., Nafion). To understand this phenomenon, we studied the electrochemical behavior of a commercially available carbon supported platinum catalyst in four different electrode structures: catalyst powder (CP), catalyst ionomer electrode (CIE), half membrane electrode assembly (HMEA), and full membrane electrode assembly (FMEA) in both ex situ and in situ experiments under a simulated start/stop cycle. We found that the catalyst performance and stability are very much influenced by the presence of the Nafion ionomers. The proton conducting phase provided by the ionomer and the self-assembled electrode structure render the catalysts a higher utilization and better stability. This is probably due to an enhanced dispersion, an improved proton-catalyst interface, the restriction of catalyst particle aggregation, and the improved stability of the ionomer phase especially after the lamination. Therefore, an innovative electrode HMEA design for ex-situ catalyst characterization is proposed. The electrode structure is identical to the one used in a real fuel cell, where the protons transport takes place solely through solid state proton conducting phase.

  18. Hydrogenation of succinic acid to 1,4-butanediol over rhenium catalyst supported on copper-containing mesoporous carbon.

    PubMed

    Hong, Ung Gi; Park, Hai Woong; Lee, Joongwon; Hwang, Sunhwan; Kwak, Jimin; Yi, Jongheop; Song, In Kyu

    2013-11-01

    Copper-containing mesoporous carbon (Cu-MC) was prepared by a single-step surfactant-templating method. For comparison, copper-impregnated mesoporous carbon (Cu/MC) was also prepared by a surfactant-templating method and a subsequent impregnation method. Rhenium catalysts supported on copper-containing mesoporous carbon and copper-impregnated mesoporous carbon (Re/Cu-MC and Re/Cu/MC, respectively) were then prepared by an incipient wetness method, and they were applied to the liquid-phase hydrogenation of succinic acid to 1,4-butanediol (BDO). It was observed that copper in the Re/Cu-MC catalyst was well incorporated into carbon framework, resulting in higher surface area and larger pore volume than those of Re/Cu/MC catalyst. Therefore, Re/Cu-MC catalyst showed higher copper dispersion than Re/Cu/MC catalyst, although both catalysts retained the same amounts of copper and rhenium. In the liquid-phase hydrogenation of succinic acid to BDO, Re/Cu-MC catalyst showed a better catalytic activity than Re/Cu/MC catalyst. Fine dispersion of copper in the Re/Cu-MC catalyst was responsible for its enhanced catalytic activity.

  19. Characterization and evaluation of Pt-Ru catalyst supported on multi-walled carbon nanotubes by electrochemical impedance

    NASA Astrophysics Data System (ADS)

    Ocampo, A. L.; Miranda-Hernández, M.; Morgado, J.; Montoya, J. A.; Sebastian, P. J.

    In this work the authors present the results of a systematic characterization and evaluation of the carbon nanotube supported Pt-Ru (Pt-Ru/CNT) for its use as methanol oxidation catalyst. Its activity was compared with that of Pt and Pt-Ru catalysts supported on Vulcan and synthesized from carbonyl precursors, and another commercial Pt-Ru catalyst. The cyclic voltammetry, CO stripping and electrochemical impedance techniques were employed to determine the electrocatalytic activity of the catalysts. The electrochemical studies were performed in 0.5 M H 2SO 4 containing different concentrations of methanol (0.05-1 M). The results showed a noticeable influence of the catalyst support (CNT) on the performance of the catalyst for CO oxidation. The electrochemical impedance studies allowed us to separate the different steps in the methanol oxidation reaction and to control these steps or reactions by varying the applied potential and the methanol concentration. At low methanol concentration and potentials the de-hydrogenation of methanol predominated. But, at high potential and methanol concentrations, the CO oxidation predominated. These results allowed us to clearly describe at what potential and concentration ranges the bi-functional effect of Ru becomes evident. Our results indicated that the CO oxidation occurs both on Pt and Ru. Compared to other catalysts, Pt-Ru supported on carbon nanotubes showed superior catalytic activity for CO and methanol oxidation.

  20. Novel carbon nanostructures as catalyst support for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Natarajan, Sadesh Kumar

    Polymer electrolyte membrane fuel cell (PEMFC) technology has advanced rapidly in recent years, with one of active area focused on improving the long-term performance of carbon supported catalysts, which has been recognized as one of the most important issues to be addressed for the commercialization of PEMFCs. The central part of a PEMFC is the membrane electrode assembly (MEA) which consists of two electrodes (anode and cathode) and a cation exchange membrane. These electrodes are commonly made of carbon black (most often, Vulcan XC-72) supported on carbon paper or carbon cloth backings. It is the primary objective of this thesis to prepare and investigate carbon nanostructures (CNS, licensed to Hydrogen Research Institute -- IRH, Quebec, Canada), the carbon material with more graphite component like carbon nanotubes (CNTs) for use as catalyst support in PEMFCs. High energy ball-milling of activated carbon along with transition metal catalysts under hydrogen atmosphere, followed by heat-treatment leads to nanocrystalline structures of carbon called CNS. However, CNS formed in the quartz tube after heat-treatment is inevitably accompanied by many impurities such as metal particles, amorphous carbon and other carbon nanoparticules. Such impurities are a serious impediment to detailed characterization of the properties of nanostructures. In addition, since the surface of CNS is itself rather inert, it is difficult to control the homogeneity and size distribution of Pt nanoparticules. In this thesis work, we demonstrated a novel mean to purify and functionalize CNS via acid-oxidation under reflux conditions. To investigate and quantify these nanostructures X-ray diffraction, electrical conductivity measurements, specific surface area measurements, thermogravimetric analysis, X-ray photoelectron spectroscopy and transmission electron microscopy studies were used. Cyclic voltammetry studies were performed on different samples to derive estimates for the relationship