Atomic oxygen protective coating with resistance to undercutting at defect sites
NASA Technical Reports Server (NTRS)
Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)
1994-01-01
Structures composed at least partially of an organic substrate may be protected from oxidation by applying a catalyst onto said substrate for promoting the combination of atomic oxygen to molecular oxygen. The structure may also be protected by applying both a catalyst and an atomic oxygen shielding layer onto the substrate. The structures to be protected include spacecraft surfaces.
In-use catalyst surface area and its relation to HC conversion efficiency and FTP emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donahue, K.S.; Sabourin, M.A.; Larson, R.E.
1986-01-01
Surface area data, steady-state hydrocarbon conversion efficiency data, and hydrocarbon emissions results have been determined for catalysts collected by the U.S. Environmental Protection Agency from properly maintained 1981 and 1982 model year vehicles. Catalysts covered in this study were limited to those with three-way-plus-oxidation monolith technologies. Catalyst surface areas were measured using the BET method, conversion efficiencies were measured on an exhaust gas generator, and emissions results were determined using the Urban Driving Schedule of the Federal Test Procedure. Results indicate that correlation of catalyst surface area data with hydrocarbon conversion efficiency data and hydrocarbon emissions results is significant formore » the sample studied.« less
Hydrothermal performance of catalyst supports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elam, Jeffrey W.; Marshall, Christopher L.; Libera, Joseph A.
A high surface area catalyst with a mesoporous support structure and a thin conformal coating over the surface of the support structure. The high surface area catalyst support is adapted for carrying out a reaction in a reaction environment where the thin conformal coating protects the support structure within the reaction environment. In various embodiments, the support structure is a mesoporous silica catalytic support and the thin conformal coating comprises a layer of metal oxide resistant to the reaction environment which may be a hydrothermal environment.
Towards ALD thin film stabilized single-atom Pd 1 catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piernavieja-Hermida, Mar; Lu, Zheng; White, Anderson
Supported precious metal single-atom catalysts have shown interesting activity and selectivity in recent studies. However, agglomeration of these highly mobile mononuclear surface species can eliminate their unique catalytic properties. In this paper, we study a strategy for synthesizing thin film stabilized single-atom Pd 1 catalysts using atomic layer deposition (ALD). The thermal stability of the Pd 1 catalysts is significantly enhanced by creating a nanocavity thin film structure. In situ infrared spectroscopy and Pd K-edge X-ray absorption spectroscopy (XAS) revealed that the Pd 1 was anchored on the surface through chlorine sites. The thin film stabilized Pd 1 catalysts weremore » thermally stable under both oxidation and reduction conditions. The catalytic performance in the methanol decomposition reaction is found to depend on the thickness of protecting layers. While Pd 1 catalysts showed promising activity at low temperature in a methanol decomposition reaction, 14 cycle TiO 2 protected Pd 1 was less active at high temperature. Pd L 3 edge XAS indicated that the low reactivity compared with Pd nanoparticles is due to the strong adsorption of carbon monoxide even at 250 °C. Lastly, these results clearly show that the ALD nanocavities provide a basis for future design of single-atom catalysts that are highly efficient and stable.« less
Towards ALD thin film stabilized single-atom Pd 1 catalysts
Piernavieja-Hermida, Mar; Lu, Zheng; White, Anderson; ...
2016-07-27
Supported precious metal single-atom catalysts have shown interesting activity and selectivity in recent studies. However, agglomeration of these highly mobile mononuclear surface species can eliminate their unique catalytic properties. In this paper, we study a strategy for synthesizing thin film stabilized single-atom Pd 1 catalysts using atomic layer deposition (ALD). The thermal stability of the Pd 1 catalysts is significantly enhanced by creating a nanocavity thin film structure. In situ infrared spectroscopy and Pd K-edge X-ray absorption spectroscopy (XAS) revealed that the Pd 1 was anchored on the surface through chlorine sites. The thin film stabilized Pd 1 catalysts weremore » thermally stable under both oxidation and reduction conditions. The catalytic performance in the methanol decomposition reaction is found to depend on the thickness of protecting layers. While Pd 1 catalysts showed promising activity at low temperature in a methanol decomposition reaction, 14 cycle TiO 2 protected Pd 1 was less active at high temperature. Pd L 3 edge XAS indicated that the low reactivity compared with Pd nanoparticles is due to the strong adsorption of carbon monoxide even at 250 °C. Lastly, these results clearly show that the ALD nanocavities provide a basis for future design of single-atom catalysts that are highly efficient and stable.« less
NASA Astrophysics Data System (ADS)
Zhang, Tao; Shi, Juan; Liu, Jian; Wang, Daxi; Zhao, Zhen; Cheng, Kai; Li, Jianmei
2016-07-01
The surface of Cu-ZSM-5 catalyst was modified by chemical liquid deposition (CLD) of tetraethoxysilane (TEOS) for enhancing its hydrothermal stability in the selective catalytic reduction of NO with NH3. After hydrothermal aging at 750 °C for 13 h, the catalytic performance of Cu-ZSM-5-Aged catalyst was significantly reduced for NO reduction in the entire temperature range, while that of Cu-ZSM-5-CLD-Aged catalyst was affected very little. The characterization results indicated that an inert silica layer was deposited on the surface of Cu-ZSM-5 and formed a protective layer, which prevents the detachment of Cu2+ from ZSM-5 ion-exchange positions and the dealumination of zeolite during the hydrothermal aging process. Based on the data it is hypothesized to be the primary reason for the high hydrothermal stability of Cu-ZSM-5-CLD catalyst.
Synthesis and Stabilization of Supported Metal Catalysts by Atomic Layer Deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Junling; Elam, Jeffrey W.; Stair, Peter C.
2013-03-12
Supported metal nanoparticles are among the most important cata-lysts for many practical reactions, including petroleum refining, automobile exhaust treatment, and Fischer–Tropsch synthesis. The catalytic performance strongly depends on the size, composition, and structure of the metal nanoparticles, as well as the underlying support. Scientists have used conventional synthesis methods including impregnation, ion exchange, and deposition–precipitation to control and tune these factors, to establish structure–performance relationships, and to develop better catalysts. Meanwhile, chemists have improved the stability of metal nanoparticles against sintering by the application of protective layers, such as polymers and oxides that encapsulate the metal particle. This often leadsmore » to decreased catalytic activity due to a lack of precise control over the thickness of the protective layer. A promising method of catalyst synthesis is atomic layer deposition (ALD). ALD is a variation on chemical vapor deposition in which metals, oxides, and other materials are deposited on surfaces by a sequence of self-limiting reactions. The self-limiting character of these reactions makes it possible to achieve uniform deposits on high-surface-area porous solids. Therefore, design and synthesis of advanced catalysts on the nanoscale becomes possible through precise control over the structure and composition of the underlying support, the catalytic active sites, and the protective layer. In this Account, we describe our advances in the synthesis and stabilization of supported metal catalysts by ALD. After a short introduction to the technique of ALD, we show several strategies for metal catalyst synthesis by ALD that take advantage of its self-limiting feature. Monometallic and bimetallic catalysts with precise control over the metal particle size, composition, and structure were achieved by combining ALD sequences, surface treatments, and deposition temperature control. Next, we describe ALD oxide overcoats applied with atomically precise thickness control that stabilize metal catalysts while preserving their catalytic function. We also discuss strategies for generation and control over the porosity of the overcoats that allow the embedded metal particles to remain accessible by reactants, and the details for ALD alumina overcoats on metal catalysts. Moreover, using methanol decomposition and oxidative dehydrogenation of ethane as probe reactions, we demonstrate that selectively blocking low coordination metal sites by oxide overcoats can provide another strategy to enhance both the durability and selectivity of metal catalysts.« less
Oughli, Alaa A.; Ruff, Adrian; Boralugodage, Nilusha Priyadarshani; ...
2018-02-28
A bio-inspired O 2 sensitive nickel catalyst dispersed in a hydrophobic and redox-silent polymer matrix shows enhanced stability for catalytic H 2 oxidation as well as O 2 tolerance. A simple but efficient electrode design separates the catalyst into two different reaction layers to promote different reactivity on the catalyst. (1) close to the electrode surface, the catalyst can directly exchange electrons with the electrode and generate current from H 2 oxidation; and (2) at the outer film boundary, the electrolyte exposed layer is electrically isolated from the electrode, which enables the H 2 reduced Ni-complex to convert O 2more » to H 2O and thus provides protection to the O 2-sensitive inner reaction layer. This strategy solves one of the biggest limitations of these otherwise outstanding catalysts and could be used to protect other similar catalysts whose wider application is currently limited by sensitivity towards oxygen.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oughli, Alaa A.; Ruff, Adrian; Boralugodage, Nilusha Priyadarshani
A bio-inspired O 2 sensitive nickel catalyst dispersed in a hydrophobic and redox-silent polymer matrix shows enhanced stability for catalytic H 2 oxidation as well as O 2 tolerance. A simple but efficient electrode design separates the catalyst into two different reaction layers to promote different reactivity on the catalyst. (1) close to the electrode surface, the catalyst can directly exchange electrons with the electrode and generate current from H 2 oxidation; and (2) at the outer film boundary, the electrolyte exposed layer is electrically isolated from the electrode, which enables the H 2 reduced Ni-complex to convert O 2more » to H 2O and thus provides protection to the O 2-sensitive inner reaction layer. This strategy solves one of the biggest limitations of these otherwise outstanding catalysts and could be used to protect other similar catalysts whose wider application is currently limited by sensitivity towards oxygen.« less
Jung, Won Suk; Popov, Branko N
2017-07-19
In the bottom-up synthesis strategy performed in this study, the Co-catalyzed pyrolysis of chelate-complex and activated carbon black at high temperatures triggers the graphitization reaction which introduces Co particles in the N-doped graphitic carbon matrix and immobilizes N-modified active sites for the oxygen reduction reaction (ORR) on the carbon surface. In this study, the Co particles encapsulated within the N-doped graphitic carbon shell diffuse up to the Pt surface under the polymer protective layer and forms a chemically ordered face-centered tetragonal (fct) Pt-Co catalyst PtCo/CCCS catalyst as evidenced by structural and compositional studies. The fct-structured PtCo/CCCS at low-Pt loading (0.1 mg Pt cm -2 ) shows 6% higher power density than that of the state-of-the-art commercial Pt/C catalyst. After the MEA durability test of 30 000 potential cycles, the performance loss of the catalyst is negligible. The electrochemical surface area loss is less than 40%, while that of commercial Pt/C is nearly 80%. After the accelerated stress test, the uniform catalyst distribution is retained and the mean particle size increases approximate 1 nm. The results obtained in this study indicated that highly stable compositional and structural properties of chemically ordered PtCo/CCCS catalyst contribute to its exceptional catalyst durability.
Coupling molecular catalysts with nanostructured surfaces for efficient solar fuel production
NASA Astrophysics Data System (ADS)
Jin, Tong
Solar fuel generation via carbon dioxide (CO2) reduction is a promising approach to meet the increasing global demand for energy and to minimize the impact of energy consumption on climate change. However, CO2 is thermodynamically stable; its activation often requires the use of appropriate catalysts. In particular, molecular catalysts with well-defined structures and tunability have shown excellent activity in photochemical CO2 reduction. These homogenous catalysts, however, suffer from poor stability under photochemical conditions and difficulty in recycling from the reaction media. Heterogenized molecular catalysts, particularly those prepared by coupling molecular catalysts with solid-state surfaces, have attracted more attention in recent years as potential solutions to address the issues associated with molecular catalysts. In this work, solar CO2 reduction is investigated using systems coupling molecular catalysts with robust nanostructured surfaces. In Chapter 2, heterogenization of macrocyclic cobalt(III) and nickel (II) complexes on mesoporous silica surface was achieved by different methods. Direct ligand derivatization significantly lowered the catalytic activity of Co(III) complex, while grafting the Co(III) complex onto silica surface through Si-O-Co linkage resulted in hybrid catalysts with excellent activity in CO2 reduction in the presence of p-terphenyl as a molecular photosensitizer. An interesting loading effect was observed, in which the optimal activity was achieved at a medium Co(III) surface density. Heterogenization of the Ni(II) complex on silica surface has also been implemented, the poor photocatalytic activity of the hybrid catalyst can be attributed to the intrinsic nature of the homogeneous analogue. This study highlighted the importance of appropriate linking strategies in preparing functional heterogenized molecular catalysts. Coupling molecular complexes with light-harvesting surfaces could avoid the use of expensive molecular photosensitizers. In Chapter 3, effective coupling of the macrocyclic Co(III) complex with titanium dioxide (TiO¬2) nanoparticles was achieved by two deposition methods. The synthesized hybrid photocatalysts were thoroughly characterized with a variety of techniques. Upon UV light irradiation, photoexcited electrons in TiO2 nanoparticles were transferred to the surface Co(III) catalyst for CO2 reduction. Production of carbon monoxide (CO) from CO2 was confirmed by isotope labeling combined with infrared spectroscopy. Deposition of the Co(III) catalyst through Ti-O-Co linkages was essential for the photo-induced electron transfer and CO2-reduction activity using the hybrid photocatalysts. In Chapter 4, molecular Re(I) and Co(II) catalysts were coupled with silicon-based photoelectrodes, including a silicon nanowire (SiNW) photoelectrode, to achieve photoelectrochemical CO2 reduction. Photovoltages between 300-600 mV were obtained using the molecular catalysts on the silicon photoelectrodes. SiNWs exhibited enhanced properties, including significantly higher photovoltages than a planar silicon photoelectrode, the ability to protect one of the molecular catalysts from photo-induced decomposition, and excellent selectivity towards CO production in CO2 reduction. Recent theoretical and experimental work have demonstrated low-energy, binuclear pathways for CO2-to-CO conversion using several molecular catalysts. In such binuclear pathways, two metal centers work cooperatively to achieve two-electron CO2 reduction. Chapter 5 describes our effort to promote the binuclear pathway by grafting the molecular Co(III) catalyst onto silica surfaces. Different linking strategies were attempted to achieve this goal by planting the surface Co(III) sites in close proximity.
Oughli, Alaa A; Ruff, Adrian; Boralugodage, Nilusha Priyadarshani; Rodríguez-Maciá, Patricia; Plumeré, Nicolas; Lubitz, Wolfgang; Shaw, Wendy J; Schuhmann, Wolfgang; Rüdiger, Olaf
2018-02-28
The Ni(P 2 N 2 ) 2 catalysts are among the most efficient non-noble-metal based molecular catalysts for H 2 cycling. However, these catalysts are O 2 sensitive and lack long term stability under operating conditions. Here, we show that in a redox silent polymer matrix the catalyst is dispersed into two functionally different reaction layers. Close to the electrode surface is the "active" layer where the catalyst oxidizes H 2 and exchanges electrons with the electrode generating a current. At the outer film boundary, insulation of the catalyst from the electrode forms a "protection" layer in which H 2 is used by the catalyst to convert O 2 to H 2 O, thereby providing the "active" layer with a barrier against O 2 . This simple but efficient polymer-based electrode design solves one of the biggest limitations of these otherwise very efficient catalysts enhancing its stability for catalytic H 2 oxidation as well as O 2 tolerance.
2013-03-31
found to not thermally accommodate to the surface, rather they leave in excited vibrational levels. The new finite-rate model and thermal accommodation...vehicle’s thermal protection system (TPS). Many TPS materials act as a catalyst for the heterogeneous recombination of dissociated species back into...it is a significant component in both reusable (LI900, LI2200, FRSI) and ablative (SIRCA) thermal protection systems [24]. In addition, studies have
Choi, Sungjun; Sang, Byoung-In; Hong, Jongsup; Yoon, Kyung Joong; Son, Ji-Won; Lee, Jong-Ho; Kim, Byung-Kook; Kim, Hyoungchul
2017-01-01
High-temperature chemical reactions are ubiquitous in (electro) chemical applications designed to meet the growing demands of environmental and energy protection. However, the fundamental understanding and optimization of such reactions are great challenges because they are hampered by the spontaneous, dynamic, and high-temperature conditions. Here, we investigated the roles of metal catalysts (Pd, Ni, Cu, and Ag) in the high-temperature reverse water-gas shift (RWGS) reaction using in-situ surface analyses and density functional theory (DFT) calculations. Catalysts were prepared by the deposition-precipitation method with urea hydrolysis and freeze-drying. Most metals show a maximum catalytic activity during the RWGS reaction (reaching the thermodynamic conversion limit) with formate groups as an intermediate adsorbed species, while Ag metal has limited activity with the carbonate species on its surface. According to DFT calculations, such carbonate groups result from the suppressed dissociation and adsorption of hydrogen on the Ag surface, which is in good agreement with the experimental RWGS results. PMID:28120896
Choi, Sungjun; Sang, Byoung-In; Hong, Jongsup; Yoon, Kyung Joong; Son, Ji-Won; Lee, Jong-Ho; Kim, Byung-Kook; Kim, Hyoungchul
2017-01-25
High-temperature chemical reactions are ubiquitous in (electro) chemical applications designed to meet the growing demands of environmental and energy protection. However, the fundamental understanding and optimization of such reactions are great challenges because they are hampered by the spontaneous, dynamic, and high-temperature conditions. Here, we investigated the roles of metal catalysts (Pd, Ni, Cu, and Ag) in the high-temperature reverse water-gas shift (RWGS) reaction using in-situ surface analyses and density functional theory (DFT) calculations. Catalysts were prepared by the deposition-precipitation method with urea hydrolysis and freeze-drying. Most metals show a maximum catalytic activity during the RWGS reaction (reaching the thermodynamic conversion limit) with formate groups as an intermediate adsorbed species, while Ag metal has limited activity with the carbonate species on its surface. According to DFT calculations, such carbonate groups result from the suppressed dissociation and adsorption of hydrogen on the Ag surface, which is in good agreement with the experimental RWGS results.
Catalytic reaction processes revealed by scanning probe microscopy. [corrected].
Jiang, Peng; Bao, Xinhe; Salmeron, Miquel
2015-05-19
Heterogeneous catalysis is of great importance for modern society. About 80% of the chemicals are produced by catalytic reactions. Green energy production and utilization as well as environmental protection also need efficient catalysts. Understanding the reaction mechanisms is crucial to improve the existing catalysts and develop new ones with better activity, selectivity, and stability. Three components are involved in one catalytic reaction: reactant, product, and catalyst. The catalytic reaction process consists of a series of elementary steps: adsorption, diffusion, reaction, and desorption. During reaction, the catalyst surface can change at the atomic level, with roughening, sintering, and segregation processes occurring dynamically in response to the reaction conditions. Therefore, it is imperative to obtain atomic-scale information for understanding catalytic reactions. Scanning probe microscopy (SPM) is a very appropriate tool for catalytic research at the atomic scale because of its unique atomic-resolution capability. A distinguishing feature of SPM, compared to other surface characterization techniques, such as X-ray photoelectron spectroscopy, is that there is no intrinsic limitation for SPM to work under realistic reaction conditions (usually high temperature and high pressure). Therefore, since it was introduced in 1981, scanning tunneling microscopy (STM) has been widely used to investigate the adsorption, diffusion, reaction, and desorption processes on solid catalyst surfaces at the atomic level. STM can also monitor dynamic changes of catalyst surfaces during reactions. These invaluable microscopic insights have not only deepened the understanding of catalytic processes, but also provided important guidance for the development of new catalysts. This Account will focus on elementary reaction processes revealed by SPM. First, we will demonstrate the power of SPM to investigate the adsorption and diffusion process of reactants on catalyst surfaces at the atomic level. Then the dynamic processes, including surface reconstruction, roughening, sintering, and phase separation, studied by SPM will be discussed. Furthermore, SPM provides valuable insights toward identifying the active sites and understanding the reaction mechanisms. We also illustrate here how both ultrahigh vacuum STM and high pressure STM provide valuable information, expanding the understanding provided by traditional surface science. We conclude with highlighting remarkable recent progress in noncontact atomic force microscopy (NC-AFM) and inelastic electron tunneling spectroscopy (IETS), and their impact on single-chemical-bond level characterization for catalytic reaction processes in the future.
NASA Astrophysics Data System (ADS)
Wang, Qin; Li, Yingjun; Liu, Baocang; Xu, Guangran; Zhang, Geng; Zhao, Qi; Zhang, Jun
2015-11-01
A series of well-dispersed bimetallic Pd@Pt nanodendrites uniformly supported on XC-72 carbon black are fabricated by using different capping agents. These capping agents are essential for the branched morphology control. However, the surfactant adsorbed on the nanodendrites surface blocks the access of reactant molecules to the active surface sites, and the catalytic activities of these bimetallic nanodendrites are significantly restricted. Herein, a facile reflux procedure to effectively remove the capping agent molecules without significantly affecting their sizes is reported for activating supported nanocatalysts. More significantly, the structure and morphology of the nanodendrites can also be retained, enhancing the numbers of active surface sites, catalytic activity and stability toward methanol and ethanol electro-oxidation reactions. The as-obtained hot water reflux-treated Pd@Pt/C catalyst manifests superior catalytic activity and stability both in terms of surface and mass specific activities, as compared to the untreated catalysts and the commercial Pt/C and Pd/C catalysts. We anticipate that this effective and facile removal method has more general applicability to highly active nanocatalysts prepared with various surfactants, and should lead to improvements in environmental protection and energy production.
Subnanometer and nanometer catalysts, method for preparing size-selected catalysts
Vajda, Stefan , Pellin, Michael J.; Elam, Jeffrey W [Elmhurst, IL; Marshall, Christopher L [Naperville, IL; Winans, Randall A [Downers Grove, IL; Meiwes-Broer, Karl-Heinz [Roggentin, GR
2012-04-03
Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes. Invented size-selected cluster deposition provides a unique tool to tune material properties by atom-by-atom fashion, which can be stabilized by protective overcoats.
Subnanometer and nanometer catalysts, method for preparing size-selected catalysts
Vajda, Stefan [Lisle, IL; Pellin, Michael J [Naperville, IL; Elam, Jeffrey W [Elmhurst, IL; Marshall, Christopher L [Naperville, IL; Winans, Randall A [Downers Grove, IL; Meiwes-Broer, Karl-Heinz [Roggentin, GR
2012-03-27
Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes. Invented size-selected cluster deposition provides a unique tool to tune material properties by atom-by-atom fashion, which can be stabilized by protective overcoats.
Current advances in precious metal core-shell catalyst design.
Wang, Xiaohong; He, Beibei; Hu, Zhiyu; Zeng, Zhigang; Han, Sheng
2014-08-01
Precious metal nanoparticles are commonly used as the main active components of various catalysts. Given their high cost, limited quantity, and easy loss of catalytic activity under severe conditions, precious metals should be used in catalysts at low volumes and be protected from damaging environments. Accordingly, reducing the amount of precious metals without compromising their catalytic performance is difficult, particularly under challenging conditions. As multifunctional materials, core-shell nanoparticles are highly important owing to their wide range of applications in chemistry, physics, biology, and environmental areas. Compared with their single-component counterparts and other composites, core-shell nanoparticles offer a new active interface and a potential synergistic effect between the core and shell, making these materials highly attractive in catalytic application. On one hand, when a precious metal is used as the shell material, the catalytic activity can be greatly improved because of the increased surface area and the closed interfacial interaction between the core and the shell. On the other hand, when a precious metal is applied as the core material, the catalytic stability can be remarkably improved because of the protection conferred by the shell material. Therefore, a reasonable design of the core-shell catalyst for target applications must be developed. We summarize the latest advances in the fabrications, properties, and applications of core-shell nanoparticles in this paper. The current research trends of these core-shell catalysts are also highlighted.
Kuttiyiel, Kurian A; Sasaki, Kotaro; Su, Dong; Wu, Lijun; Zhu, Yimei; Adzic, Radoslav R
2014-11-06
Considerable efforts to make palladium and palladium alloys active catalysts and a possible replacement for platinum have had a marginal success. Here we report on a structurally ordered Au10Pd₄₀Co₅₀ catalyst that exhibits comparable activity to conventional platinum catalysts in both acid and alkaline media. Electron microscopic techniques demonstrate that, at elevated temperatures, palladium cobalt nanoparticles undergo an atomic structural transition from core-shell to a rare intermetallic ordered structure with twin boundaries forming stable {111}, {110} and {100} facets via addition of gold atoms. The superior stability of this catalyst compared with platinum after 10,000 potential cycles in alkaline media is attributed to the atomic structural order of PdCo nanoparticles along with protective effect of clusters of gold atoms on the surface. This strategy of making ordered palladium intermetallic alloy nanoparticles can be used in diverse heterogeneous catalysis where particle size and structural stability matter.
Maligal-Ganesh, Raghu V.; Xiao, Chaoxian; Goh, Tian Wei; ...
2016-01-28
In this paper, intermetallic compounds are garnering increasing attention as efficient catalysts for improved selectivity in chemical processes. Here, using a ship-in-a-bottle strategy, we synthesize single-phase platinum-based intermetallic nanoparticles (NPs) protected by a mesoporous silica (mSiO 2) shell by heterogeneous reduction and nucleation of Sn, Pb, or Zn in mSiO 2-encapsulated Pt NPs. For selective hydrogenation of furfural to furfuryl alcohol, a dramatic increase in activity and selectivity is observed when intermetallic NPs catalysts are used in comparison to Pt@mSiO 2. Among the intermetallic NPs, PtSn@mSiO 2 exhibits the best performance, requiring only one-tenth of the quantity of Pt usedmore » in Pt@mSiO 2 for similar activity and near 100% selectivity to furfuryl alcohol. A high-temperature oxidation–reduction treatment easily reverses any carbon deposition-induced catalyst deactivation. X-ray photoelectron spectroscopy shows the importance of surface composition to the activity, whereas density functional theory calculations reveal that the enhanced selectivity on PtSn compared to Pt is due to the different furfural adsorption configurations on the two surfaces.« less
Jung, Won Suk
2018-03-15
In this study, a novel synthesis method for the bimetallic alloy catalyst is reported, which is subsequently used as an oxygen reduction catalyst in polymer electrolyte membrane fuel cells (PEMFCs). The support prepared from the Ni-chelate complex shows a mesoporous structure with a specific surface area of ca. 400 m 2 g -1 indicating the suitable support for PEMFC applications. Ethylenediamine is converted to the nitrogen and carbon layers to protect the Ni particles which will diffuse into the Pt lattice at 800 °C. The PtNi/NCC catalyst with PtNi cores and Pt-rich shells is successfully formed when acid-treated as evidenced by line scan profiles. The catalyst particles thus synthesized are well-dispersed on the N-doped carbon support, while the average particle size is ca. 3 nm. In the PEMFC test, the maximum power density of the PtNi/NCC catalyst shows approximately 25% higher than that of the commercial Pt/C catalyst. The mass activity of the PtNi/NCC catalyst showed approximately 3-fold higher than that of the commercial Pt/C catalyst. The mass activity strongly depends on the ratio of Pt to Ni since the strain effect can be strong for catalysts due to the mismatch of lattice parameters of the Ni and Pt. Copyright © 2017 Elsevier Inc. All rights reserved.
Baturina, Olga; Lu, Qin; Xu, Feng; ...
2016-11-10
The effect of support on electrocatalytic activity of Cu nanoparticles (NPs) towards CO 2 electroreduction to hydrocarbon fuels (CH 4 and C 2H 4) is investigated for three types of nanostructured carbons: single wall carbon nanotubes (SWNT), graphene (GP) and onion-like carbon (OLC). Cu/SWNT, Cu/GP and Cu/OLC composite catalysts are synthesized and characterized by X-Ray diffraction analysis, transmission electron microscopy and electrochemical surface area measurements. Electrocatalytic activities of the synthesized materials, as measured in an electrochemical cell connected to a gas chromatograph, are compared to that of Cu NPs supported on Vulcan carbon. All four catalysts demonstrate higher activity towardsmore » C 2H 4 generation vs CH 4, with production of the latter mostly suppressed on Cu NPs supported on nanostructured substrates. Onset potentials for C 2H 4 vs CH 4 generation are shifted positively by 200 mV for Cu/SWNT, Cu/GP, and Cu/OLC catalysts. The Cu/OLC catalyst is found to be superior to the other two nanostructured catalysts in terms of stability, activity and selectivity towards C 2H 4 generation. Its faradaic efficiency reached 60% at -1.8 V vs Ag/AgCl. The enhanced activity and stability of Cu/OLC catalyst can be attributed to the unique catalyst design, wherein a shell of OLC surrounds the Cu NPs such that the outer layer acts as a filter that protects the Cu surface from adsorption of undesirable species, enhances its electrocatalytic performance, and improves its viability in CO 2 electroreduction reaction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baturina, Olga; Lu, Qin; Xu, Feng
The effect of support on electrocatalytic activity of Cu nanoparticles (NPs) towards CO 2 electroreduction to hydrocarbon fuels (CH 4 and C 2H 4) is investigated for three types of nanostructured carbons: single wall carbon nanotubes (SWNT), graphene (GP) and onion-like carbon (OLC). Cu/SWNT, Cu/GP and Cu/OLC composite catalysts are synthesized and characterized by X-Ray diffraction analysis, transmission electron microscopy and electrochemical surface area measurements. Electrocatalytic activities of the synthesized materials, as measured in an electrochemical cell connected to a gas chromatograph, are compared to that of Cu NPs supported on Vulcan carbon. All four catalysts demonstrate higher activity towardsmore » C 2H 4 generation vs CH 4, with production of the latter mostly suppressed on Cu NPs supported on nanostructured substrates. Onset potentials for C 2H 4 vs CH 4 generation are shifted positively by 200 mV for Cu/SWNT, Cu/GP, and Cu/OLC catalysts. The Cu/OLC catalyst is found to be superior to the other two nanostructured catalysts in terms of stability, activity and selectivity towards C 2H 4 generation. Its faradaic efficiency reached 60% at -1.8 V vs Ag/AgCl. The enhanced activity and stability of Cu/OLC catalyst can be attributed to the unique catalyst design, wherein a shell of OLC surrounds the Cu NPs such that the outer layer acts as a filter that protects the Cu surface from adsorption of undesirable species, enhances its electrocatalytic performance, and improves its viability in CO 2 electroreduction reaction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Franklin
Two main categories of heterogeneous catalysts are metal and metal oxide which catalyze 80% chemical reactions at solid-gas and solid-liquid interfaces. Metal oxide catalysts are much more complicated than metal catalysts. The reason is that the cations of the metal atoms could exhibit a few different oxidation states on surface of the same catalyst particle such as Co 3O 4 or change of their oxidation states under different reactive environments. For a metal catalyst, there is only one oxidation state typically. In addition, surface of a metal oxide can be terminated with multiple surface functionalities including O atoms with differentmore » binding configurations and OH group. For metal, only metal atoms are exposed typically. Obviously, the complication of surface chemistry and structure of a metal oxide makes studies of surface of an oxide catalyst very challenging. Due to the complication of surface of a meal oxide, the electronic and geometric structures of surface of a metal oxide and the exposed species have received enormous attention since oxide catalysts catalyze at least 1/3 chemical reactions in chemical and energy industries. Understanding of catalytic reactions on early transition metal oxide-based catalysts is fundamentally intriguing and of great practical interest in energy- and environment-related catalysis. Exploration of surface chemistry of oxide-based catalysts at molecular level during catalysis has remained challenging though it is critical in deeply understanding catalysis on oxide-based catalysts and developing oxide-based catalysts with high activity and selectivity. Thus, the overall objective of this project is to explore surface chemistry and structure of early transition metal oxide-based catalysts through in-situ characterization of surface of catalysts, measurements of catalytic performances, and then build an intrinsic correlation of surface chemistry and structure with their catalytic performances in a few important catalytic reactions, and essentially fundamentally understand catalytic mechanism. Furthermore, this correlation will guide the design of catalysts with high activity and selectivity.« less
Chiral copper(II) complex-catalyzed reactions of partially protected carbohydrates.
Allen, C Liana; Miller, Scott J
2013-12-20
Catalyst-controlled regioselective functionalization of partially protected saccharide molecules is a highly important yet under-developed area of carbohydrate chemistry. Such reactions allow for the reduction of protecting group manipulation steps required in syntheses involving sugars. Herein, an approach to these processes using enantiopure copper-bis(oxazoline) catalysts to control couplings of electrophiles to various partially protected sugars is reported. In a number of cases, divergent regioselectivity was observed as a function of the enantiomer of catalyst that is used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuttiyiel, Kurian A.; Sasaki, Kotaro; Su, Dong
2014-11-06
Considerable efforts to make palladium and palladium alloys active catalysts and a possible replacement for platinum have had a marginal success. Here, we report on a structurally ordered Au₁₀Pd₄₀Co₅₀ catalyst that exhibits comparable activity to conventional platinum catalysts in both acid and alkaline media. Electron microscopic techniques demonstrate that via addition of gold atoms PdCo nanoparticles undergo at elevated temperatures an atomic structural transition from core-shell to a rare intermetallic ordered structure with twin boundaries forming stable {111}, {110} and {100} facets. The superior stability of this catalyst compared to platinum after 10,000 potential cycles in alkaline media is attributedmore » to the atomic structural order of PdCo nanoparticles along with protective effect of clusters of gold atoms on the surface. This strategy of making ordered palladium intermetallic alloy nanoparticles can be used in diverse heterogeneous catalysis where particle size and structural stability matters.« less
Reilly, Peter T. A.
2010-03-23
A system and method for producing carbon nanotubes by chemical vapor deposition includes a catalyst support having first and second surfaces. The catalyst support is capable of hydrogen transport from the first to the second surface. A catalyst is provided on the first surface of the catalyst support. The catalyst is selected to catalyze the chemical vapor deposition formation of carbon nanotubes. A fuel source is provided for supplying fuel to the catalyst.
NASA Astrophysics Data System (ADS)
Zhang, Riguang; Liu, Hongxia; Li, Qiaohong; Wang, Baojun; Ling, Lixia; Li, Debao
2018-09-01
In order to probe into the roles of the promoters Pt, Ru and B in inhibiting the deactivation of Co catalysts in FTS reactions, the adsorption ability of neighboring surface C and subsurface C atom around the promoters (Pt, Ru and B), and the mechanisms of surface C diffusion, accumulation, hydrogenation and penetration are examined by density functional theory calculations over the promoters Pt, Ru and B-modified Co catalysts, as well as the pure Co catalysts. Our results clearly show that compared to Co catalysts, both PtCo and RuCo bimetallic catalysts promote surface C hydrogenation, and inhibit surface C diffusion, accumulation and penetration, and therefore the ability of resistance toward deactivation and the stability of Co-based catalysts are enhanced; the promoter B cannot effectively improve the ability of resistance toward deactivation. Thus, the sequence for resistance toward deactivation of Co-based catalyst is BCo < Co < PtCo < RuCo. Moreover, the activation free energy of surface C accumulation to C2 species increases with the increasing of surface C adsorption free energy, namely, the adsorption characteristic of surface C species well represent the surface carbon deposition. Our results not only give an explanation for reported experiment that the Pt, Ru and B-modified Co catalysts exhibit ability of resistance toward deactivation in FTS at a molecular level, but also provide a clue for the design of efficient Co-based catalysts in FTS reactions.
NASA Astrophysics Data System (ADS)
Chen, Jinshe; Duan, Zunbin; Song, Zhaoyang; Zhu, Lijun; Zhou, Yulu; Xiang, Yuzhi; Xia, Daohong
2017-12-01
The amorphous NiP nanoparticles were synthesized and a novel amorphous NiP/Hβ catalyst was prepared successfully further. Due to the superior surface property of amorphous NiP/Hβ catalyst, it exhibited good catalytic application for n-hexane isomerization. The catalytic activity of amorphous NiP/Hβ catalyst was close to that of the prepared Pt/Hβ sample, and better than that of commercial catalyst and crystalline Ni2P/Hβ catalyst. What's more, the amorphous NiP/Hβ catalyst shows high resistance to different sulfur compounds and water on account of its unique surface property. The effect of loading amounts on surface property and catalytic performance was investigated, and the structure-function relationship among them was studied ulteriorly. The results demonstrate that loading amounts have effect on textural property and surface acid property, which further affect the catalytic performance. The 10 wt.% NiP/Hβ sample has appropriate pore structure and acid property with uniformly dispersed NiP nanoparticles on surface, which is helpful for providing suitable synergistic effect. The effects of reaction conditions on surface reactions and the mechanism for n-hexane isomerization were investigated further. Based on these results, the amorphous NiP/Hβ catalyst with superior surface property probably pavesa way to overcome the drawbacks of traditional noble metal catalyst, which shows good catalytic application prospects.
The effect of the surface composition of Ru-Pt bimetallic catalysts for methanol oxidation
Garrick, Taylor R.; Diao, Weijian; Tengco, John M.; ...
2016-02-23
Here, a series of Ru-Pt bimetallic catalysts prepared by the electroless deposition of controlled and variable amounts of Ru on the Pt surface of a commercially-available 20 wt% Pt/C catalyst has been characterized and evaluated for the oxidation of methanol. The activity of each Ru-Pt catalyst was determined as a function of surface composition via cyclic voltammetry. For the Ru-Pt bimetallic catalysts, activity passed through a maximum at approximately 50% monodisperse Ru surface coverage. However, due to the monolayer coverage of Ru on Pt, the amount of metal in the catalyst is minimized compared to a bulk 1:1 atomic ratiomore » of Ru:Pt seen in commercial bimetallic catalysts. Chemisorption and temperature programmed reduction experiments confirmed that the surface had characteristics of a true bimetallic catalyst. On a mass of Pt basis, the activity of this composition for methanol oxidation was 7 times higher than pure Pt and 3.5 times higher than a commercial catalyst with a 1:1 Pt:Ru bulk atomic ratio.« less
Durability of template-free Fe-N-C foams for electrochemical oxygen reduction in alkaline solution
NASA Astrophysics Data System (ADS)
Mufundirwa, Albert; Harrington, George F.; Smid, Břetislav; Cunning, Benjamin V.; Sasaki, Kazunari; Lyth, Stephen M.
2018-01-01
Due to the high cost and limited availability of platinum, the development of non-platinum-group metals (non-PGM) catalysts is of paramount importance. A promising alternative to Pt are Fe-N-C-based materials. Here we present the synthesis, characterization and electrochemistry of a template-free nitrogen-doped carbon foam, impregnated with iron. This low-cost and gram-scale method results in materials with micron-scale pore size and large surface area (1600 m2g-1). When applied as an oxygen reduction reaction (ORR) electrocatalyst in alkaline solution, the Fe-N-C foams display extremely high initial activity, slightly out-performing commercially available non-PGM catalysts (NCP-2000, Pajarito Powder). The load-cycle durability in alkaline solution is investigated, and the performance steadily degrades over 60,000 potential cycles, whilst the commercial catalyst is remarkably stable. The post-operation catalyst microstructure is elucidated by transmission electron microscopy (TEM), to provide insight into the degradation processes. The resulting images suggest that potential cycling leads to leaching of atomically dispersed Fe-N2/4 sites in all the catalysts, whereas encapsulated iron nanoparticles are protected.
Beaulieu, Harry J; Beaulieu, Serrita; Brown, Chris
2008-06-01
Phenyl mercuric acetate (PMA) historically has been used as a catalyst in polyurethane systems. In the 1950s-1970s, PMA was used as a catalyst in the 3M Tartan brand polyurethane flexible floors that were installed commonly in school gymnasiums. Mercury vapor is released into air above the surface of these floors. Sampling mercury in bulk flooring material and mercury vapor in air was conducted in nine Idaho schools in the spring of 2006. These evaluations were conducted in response to concerns by school officials that the floors could contain mercury and could release the mercury vapor into the air, presenting a potential health hazard for students, staff, and visitors. Controlled abatement was conducted in one school where remodeling would impact the mercury-bearing flexible gym floors ( approximately 9,000 ft(2) total). The controlled abatement consisted of containment of the work area with negative air technology; worker protection, including mercury-specific training, use of personal protective equipment, and biological and exposure monitoring; and environmental protection, including proper disposal of mercury-bearing hazardous waste material.
Li, Lidong; Zhou, Lu; Ould-Chikh, Samy; ...
2015-02-03
Surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. The evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanningmore » transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core–shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. As a result, these catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.« less
Zawodzinski, Thomas A.; Wilson, Mahlon S.; Rishpon, Judith; Gottesfeld, Shimshon
1993-01-01
An enzyme electrode is prepared with a composite coating on an electrical conductor. The composite coating is formed from a casting solution of a perfluorosulfonic acid polymer, an enzyme, and a carbon supported catalyst. The solution may be cast directly on the conductor surface or may be formed as a membrane and applied to the surface. The perfluorosulfonic acid ionomer formed from the casting solution provides an insoluble biocompatible protective matrix for the enzyme and acts to retain the enzyme for long term availability in the electrode structure. The carbon supported catalyst provides catalytic sites throughout the layer for the oxidation of hydrogen peroxide from the enzyme reactions. The carbon support then provides a conductive path for establishing an electrical signal to the electrical conductor. In one embodiment, the electrical conductor is a carbon cloth that permits oxygen or other gas to be introduced to the perfluorosulfonic polymer to promote the enzyme reaction independent of oxygen in the solution being tested.
Operando chemistry of catalyst surfaces during catalysis.
Dou, Jian; Sun, Zaicheng; Opalade, Adedamola A; Wang, Nan; Fu, Wensheng; Tao, Franklin Feng
2017-04-03
Chemistry of a catalyst surface during catalysis is crucial for a fundamental understanding of mechanism of a catalytic reaction performed on the catalyst in the gas or liquid phase. Due to the pressure- or molecular density-dependent entropy contribution of gas or liquid phase of the reactants and the potential formation of a catalyst surface during catalysis different from that observed in an ex situ condition, the characterization of the surface of a catalyst under reaction conditions and during catalysis can be significant and even necessary for understanding the catalytic mechanism at a molecular level. Electron-based analytical techniques are challenging for studying catalyst nanoparticles in the gas or liquid phase although they are necessary techniques to employ. Instrumentation and further development of these electron-based techniques have now made in situ/operando studies of catalysts possible. New insights into the chemistry and structure of catalyst nanoparticles have been uncovered over the last decades. Herein, the origin of the differences between ex situ and in situ/operando studies of catalysts, and the technical challenges faced as well as the corresponding instrumentation and innovations utilized for characterizing catalysts under reaction conditions and during catalysis, are discussed. The restructuring of catalyst surfaces driven by the pressure of reactant(s) around a catalyst, restructuring in reactant(s) driven by reaction temperature and restructuring during catalysis are also reviewed herein. The remaining challenges and possible solutions are briefly discussed.
Peculiar behavior of MWW materials in aldol condensation of furfural and acetone.
Kikhtyanin, Oleg; Chlubná, Pavla; Jindrová, Tereza; Kubička, David
2014-07-21
MWW family of different structural types (MCM-22, MCM-49, MCM-56 and MCM-36) was used as catalysts for aldol condensation of furfural and acetone studied in a batch reactor at 100 °C, autogenous pressure and a reaction time of 0-4 h. To establish a relation between physico-chemical and catalytic properties of microporous materials, the samples were characterized by XRD, SEM, N2 adsorption, FTIR and TGA. It was found that the acidic solids possessed appreciable activity in the reaction and resulted in the formation of products of aldehyde-ketone interaction. Surprisingly, MCM-22 and MCM-49, i.e. three-dimensional materials containing internal supercages, exhibited higher activity than two MCM-36 catalysts with two-dimensional character having larger accessible external surface area due to expansion of the interlayer space by swelling and pillaring treatments. Moreover, all MWW family catalysts gave higher conversion than the large-pore zeolite BEA. Nevertheless, furfural conversion decreased rapidly for all the studied materials due to coke formation. Unexpectedly, the deactivation was found to be more severe for MCM-36 catalysts than for MCM-22 and MCM-49, which was attributed to the reaction taking place also in supercages that are protected by 10-ring channels from severe coking. In contrast the cups located on the external surface were coked rapidly.
NASA Astrophysics Data System (ADS)
Borowiecki, Tadeusz; Denis, Andrzej; Rawski, Michał; Gołębiowski, Andrzej; Stołecki, Kazimierz; Dmytrzyk, Jaromir; Kotarba, Andrzej
2014-05-01
The effect of potassium addition to the Ni/Al2O3 steam reforming catalyst has been investigated on several model systems, including K/Al2O3 with various amounts of alkali promoters (1-4 wt% of K2O), a model catalyst 90%NiO-10%Al2O3 promoted with potassium and a commercial catalyst. The potassium surface state and stability were investigated by means of the Species Resolved Thermal Alkali Desorption method (SR-TAD). The activity of the catalysts in the steam reforming of methane and their coking-resistance were also evaluated. The results reveal that the beneficial effect of potassium addition is strongly related to its location in the catalysts. The catalyst surface should be promoted with potassium in order to obtain high coking-resistant catalysts. Moreover, the catalyst preparation procedure should ensure a direct interaction of potassium with the Al2O3 support surface. Due to the low stability of potassium on θ-Al2O3 this phase is undesirable during the preparation of a stable steam reforming catalyst.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Gao; Jiang, Deen; Kumar, Santosh
We here investigate the catalytic properties of water-soluble Aun(SG)m nanocluster catalysts (H-SG = glutathione) of different sizes, including Au15(SG)13, Au18(SG)14, Au25(SG)18, Au38(SG)24, and captopril-capped Au25(Capt)18 nanoclusters. These Aun(SR)m nanoclusters (-SR represents thiolate generally) are used as homogeneous catalysts (i.e., without supports) in the chemoselective hydrogenation of 4-nitrobenzaldehyde (4-NO2PhCHO) to 4-nitrobenzyl alcohol (4-NO2PhCH2OH) in water with H2 gas (20 bar) as the hydrogen source. These nanocluster catalysts, except Au18(SG)14, remain intact after the catalytic reaction, evidenced by UV-vis spectra which are characteristic of each sized nanoclusters and thus serve as spectroscopic fingerprints . We observe a drastic size-dependence and steric effectmore » of protecting ligands on the gold nanocluster catalysts in the hydrogenation reaction. Density functional theory (DFT) modeling of the 4-nitrobenzaldehyde adsorption shows that both the CHO and NO2 groups are in close interact with the S-Au-S staples on the gold nanocluster surface; the adsorption of the 4-nitrobenzaldehyde molecule on the four different sized Aun(SR)m nanoclusters are moderately strong and similar in strength. The DFT results suggest that the catalytic activity of the Aun(SR)m nanoclusters is primarily determined by the surface area of the Au nanocluster, consistent with the observed trend of the conversion of 4-nitrobenzaldehyde versus the cluster size. Overall, this work offers the molecular insight into the hydrogenation of 4-nitrobenzaldehyde and the catalytically active site structure on gold nanocluster catalysts.« less
Process for metallization of a substrate by curing a catalyst applied thereto
Chen, Ken S.; Morgan, William P.; Zich, John L.
2002-10-08
An improved additive process for metallization of substrates is described whereby a catalyst solution is applied to a surface of a substrate. Metallic catalytic clusters can be formed in the catalyst solution on the substrate surface by heating the substrate. Electroless plating can then deposit metal onto the portion of the substrate surface coated with catalyst solution. Additional metallization thickness can be obtained by electrolytically plating the substrate surface after the electroless plating step.
NASA Astrophysics Data System (ADS)
Seo, Jeong Gil; Youn, Min Hye; Cho, Kyung Min; Park, Sunyoung; Song, In Kyu
Mesoporous alumina xerogel (A-SG) is prepared by a sol-gel method for use as a support for a nickel catalyst. The Ni/A-SG catalyst is then prepared by an impregnation method, and is applied to hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of the mesoporous alumina xerogel support on the catalytic performance of Ni/A-SG catalyst is investigated. For the purpose of comparison, a nickel catalyst supported on commercial alumina (A-C) is also prepared by an impregnation method (Ni/A-C). Both the hydroxyl-rich surface and the electron-deficient sites of the A-SG support enhance the dispersion of the nickel species on the support during the calcination step. The formation of the surface nickel aluminate phase in the Ni/A-SG catalyst remarkably increases the reducibility and stability of the catalyst. Furthermore, the high-surface area and the well-developed mesoporosity of the Ni/A-SG catalyst enhance the gasification of surface hydrocarbons that are adsorbed in the reaction. In the steam reforming of LNG, the Ni/A-SG catalyst exhibits a better catalytic performance than the Ni/A-C catalyst in terms of LNG conversion and hydrogen production. Moreover, the Ni/A-SG catalyst shows strong resistance toward catalyst deactivation.
Cullen, David A.; Lopez-Haro, Miguel; Bayle-Guillemaud, Pascale; ...
2015-04-10
In this study, the nanoscale morphology of highly active Pt 3Ni 7 nanostructured thin film fuel cell catalysts is linked with catalyst surface area and activity following catalyst pretreatments, conditioning and potential cycling. The significant role of fuel cell conditioning on the structure and composition of these extended surface catalysts is demonstrated by high resolution imaging, elemental mapping and tomography. The dissolution of Ni during fuel cell conditioning leads to highly complex, porous structures which were visualized in 3D by electron tomography. Quantification of the rendered surfaces following catalyst pretreatment, conditioning, and cycling shows the important role pore structure playsmore » in surface area, activity, and durability.« less
Surface studies of heterogeneous catalysts by time-of-flight secondary ion mass spectrometry.
Grams, Jacek
2010-01-01
The aim of this paper was to present potentialities of time-of-flight secondary ion mass spectrometry (ToF- SIMS) in the studies of heterogeneous catalysts. The results of ToF-SIMS investigations of Co/Al2O3, Mo/Al2O3, Co-Mo/Al2O3, Au/Al2O3, Pt/TiO2 and Pd/TiO2 systems were described. It was demonstrated that, in this case, an application of ToF-SIMS makes possible the determination of surface composition of investigated catalysts (including an identification of surface contaminants), characterization of interactions between an active phase and support, estimation of active phase dispersion on the analyzed surface, comparison of the degree of metal oxidation after treatment of the catalyst in different conditions, investigation of catalyst deactivation processes (formation of new chemical compounds, adsorption of various impurities and poisons on the catalyst surface) and determination of organic precursors of catalysts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Lidong; Zhou, Lu; Ould-Chikh, Samy
Surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. The evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanningmore » transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core–shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. As a result, these catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Lidong; Zhou, Lu; Ould-Chikh, Samy
The surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. Moreover, the evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annularmore » dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core–shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. The catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.« less
Calcium and lanthanum solid base catalysts for transesterification
Ng, K. Y. Simon; Yan, Shuli; Salley, Steven O.
2015-07-28
In one aspect, a heterogeneous catalyst comprises calcium hydroxide and lanthanum hydroxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In another aspect, a heterogeneous catalyst comprises a calcium compound and a lanthanum compound, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g, and a total basicity of about 13.6 mmol/g. In further another aspect, a heterogeneous catalyst comprises calcium oxide and lanthanum oxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In still another aspect, a process for preparing a catalyst comprises introducing a base precipitant, a neutral precipitant, and an acid precipitant to a solution comprising a first metal ion and a second metal ion to form a precipitate. The process further comprises calcining the precipitate to provide the catalyst.
Zhu, Wenjun; Jin, Jianhui; Chen, Xiao; Li, Chuang; Wang, Tonghua; Tsang, Chi-Wing; Liang, Changhai
2018-02-01
Effective utilization of coal bed methane is very significant for energy utilization and environment protection. Catalytic combustion of methane is a promising way to eliminate trace amounts of oxygen in the coal bed methane and the key to this technology is the development of high-efficiency catalysts. Herein, we report a series of Ce 1-x La x O 2-δ (x = 0-0.8) monolithic catalysts for the catalytic combustion of methane, which are prepared by citric acid method. The structural characterization shows that the substitution of La enhance the oxygen vacancy concentration and reducibility of the supports and promote the migration of the surface oxygen, as a result improve the catalytic activity of CeO 2 . M-Ce 0.8 La 0.2 O 2-δ (monolithic catalyst, Ce 0.8 La 0.2 O 2-δ coated on cordierite honeycomb) exhibits outstanding activity for methane combustion, and the temperature for 10 and 90% methane conversion are 495 and 580 °C, respectively. Additionally, Ce 0.8 La 0.2 O 2-δ monolithic catalyst presents excellent stability at high temperature. These Ce 1-x La x O 2-δ monolithic materials with a small amount of La incorporation therefore show promises as highly efficient solid solution catalysts for lean-oxygen methane combustion. Graphical abstract ᅟ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Britto, Reuben J.; Benck, Jesse D.; Young, James L.
2016-06-02
Gallium indium phosphide (GaInP2) is a semiconductor with promising optical and electronic properties for solar water splitting, but its surface stability is problematic as it undergoes significant chemical and electrochemical corrosion in aqueous electrolytes. Molybdenum disulfide (MoS2) nanomaterials are promising to both protect GaInP2 and to improve catalysis since MoS2 is resistant to corrosion and also possesses high activity for the hydrogen evolution reaction (HER). In this work, we demonstrate that GaInP2 photocathodes coated with thin MoS2 surface protecting layers exhibit excellent activity and stability for solar hydrogen production, with no loss in performance (photocurrent onset potential, fill factor, andmore » light limited current density) after 60 hours of operation. This represents a five-hundred fold increase in stability compared to bare p-GaInP2 samples tested in identical conditions.« less
Wood, Richard D
2017-09-01
Spray polyurethane foam (SPF) insulation is used as thermal insulation for residential and commercial buildings. It has many advantages over other forms insulation; however, concerns have been raised related to chemical emissions during and after application. The American Chemistry Council's (ACC's) Center for the Polyurethanes Industry (CPI) has gathered previously unpublished industrial hygiene air sampling studies submitted by member companies that were completed during an eight-year period from 2007-2014. These studies address emissions from medium density closed cell and low density open cell formulations. This article summarizes the results of personal and area air samples collected during application and post application of SPF to interior building surfaces in both laboratory and field environments. Chemicals of interest included: Volatile Organic Compounds (VOCs), methylene diphenyl diisocyanate (MDI), flame retardants, amine catalysts, blowing agents, and aldehydes. Overall, the results indicate that SPF applicators and workers in close proximity to the application are potentially exposed to MDI in excess of recommended and governmental occupational exposure limits and should use personal protective equipment (PPE) consisting of air supplied respirators and full-body protective clothing to reduce exposure. Catalyst emissions can be reduced by using reactive catalysts in SPF formulations, and mechanical ventilation is important in controlling emissions during and after application.
Hu, Xue-jiao; Bo, Long-li; Liang, Xin-xin; Meng, Hai-long
2015-08-01
Microwave in-situ regeneration of Cu-Mn-Ce/ZSM catalyst adsorbed toluene, distribution of fixed bed temperature, adsorption breakthrough curves of the catalyst after several regenerations and characterizations of the catalyst by BET and SEM were investigated in this study. The research indicated that regeneration effect of the catalyst adsorbed was excellent under conditions of microwave power 117 W, air flow 0.5 m3 x h(-1) and catalyst dosage of 800 g. Toluene desorbed was oxidized onto the surface of the catalyst, and the adsorption capacity of the catalyst was recovered simultaneously. Under microwave irradiation, bed temperature decreased slowly from inside to outside in horizontal level, and increased gradually from down to up in vertical level so that the highest temperature reached 250-350 degrees C at the upper sites of the bed. Sintering and agglomeration occurred on the surface of the catalyst in the course of regeneration so that the special surface area and micropore volume of the catalyst were reduced and breakthrough time was shortened, which was verified by six adsorption breakthrough curves and related characteristics of the catalyst. However, the structure of the catalyst was steady after two regenerations, and adsorption breakthrough time was kept at 70 min. The result showed that the changes of surface morphology and pore structure were positively correlated with the distribution of bed temperature.
Enhanced protection of PDMS-embedded palladium catalysts by co-embedding of sulphide-scavengers.
Comandella, Daniele; Ahn, Min Hyung; Kim, Hojeong; Mackenzie, Katrin
2017-12-01
For Pd-containing hydrodechlorination catalysts, coating with poly(dimethyl siloxane) (PDMS) was proposed earlier as promising protection scheme against poisoning. The PDMS coating can effectively repel non-permeating poisons (such as SO 3 2- ) retaining the hydrodechlorination Pd activity. In the present study, the previously achieved protection efficiency was enhanced by incorporation of sulphide scavengers into the polymer. The embedded scavengers were able to bind permeating non-ionic poisons (such as H 2 S) during their passage through PDMS prior to Pd contact which ensured an extended catalyst lifetime. Three scavenger types forming non-permeable sulphur species from H 2 S - alkaline, oxidative or iron-based compounds - were either incorporated into single-layer coats around individual Pd/Al 2 O 3 particles or into a second layer above Pd-containing PDMS films (Pd-PDMS). Hydrodechlorination and hydrogenation were chosen as model reactions, carried out in batch and continuous-flow reactors. Batch tests with all scavenger-containing catalysts showed extended Pd protection compared to scavenger-free catalysts. Solid alkaline compounds (Ca(OH) 2 , NaOH, CaO) and MnO 2 showed the highest instantaneous scavenger efficiencies (retained Pd activity=30-60%), while iron-based catalysts, such as nano zero-valent iron (nZVI) or ferrocene (FeCp 2 ), proved less efficient (1-10%). When stepwise poisoning was applied, the protection efficiency of iron-based and oxidizing compounds was higher in the long term than that of alkaline solids. Long-term experiments in mixed-flow reactors were performed with selected scavengers, revealing the following trend of protection efficiency: CaO 2 >Ca(OH) 2 >FeCp 2 . Under field-simulating conditions using a fixed-bed reactor, the combination of sulphide pre-oxidation in the water phase by H 2 O 2 and local scavenger-enhanced Pd protection was successful. The oxidizing agent H 2 O 2 does not disturb the Pd-catalysed reduction, while the PDMS-incorporated scavenger considerably extends the catalyst life in the presence of H 2 S. This work demonstrates that the scavenger-based protection strategy is an effective means to increase the resistance of PDMS-embedded Pd against permeating poisons. Copyright © 2017. Published by Elsevier B.V.
2017-01-01
Colloidal synthesis routes have been recently used to fabricate heterogeneous catalysts with more controllable and homogeneous properties. Herein a method was developed to modify the surface composition of colloidal nanocrystal catalysts and to purposely introduce specific atoms via ligands and change the catalyst reactivity. Organic ligands adsorbed on the surface of iron oxide catalysts were exchanged with inorganic species such as Na2S, not only to provide an active surface but also to introduce controlled amounts of Na and S acting as promoters for the catalytic process. The catalyst composition was optimized for the Fischer–Tropsch direct conversion of synthesis gas into lower olefins. At industrially relevant conditions, these nanocrystal-based catalysts with controlled composition were more active, selective, and stable than catalysts with similar composition but synthesized using conventional methods, possibly due to their homogeneity of properties and synergic interaction of iron and promoters. PMID:28824820
40 CFR 721.9665 - Organotin catalysts.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Organotin catalysts. 721.9665 Section... Substances § 721.9665 Organotin catalysts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as organotin catalysts (PMNs P-93-853, P-93...
40 CFR 721.9665 - Organotin catalysts.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Organotin catalysts. 721.9665 Section... Substances § 721.9665 Organotin catalysts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as organotin catalysts (PMNs P-93-853, P-93...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Sang-Joon; Chung, Ho-Kyoon; Yoo, Ji-Beom
2014-01-15
A new type of PtCo/C catalyst for use as a cathode in polymer electrolyte fuel cells was prepared by selective chemical vapor pulse deposition (CVPD) of Pt on the surface of Co. The activity of the prepared catalyst for oxygen reduction was higher than that of a catalyst prepared by sequential impregnation (IMP) with the two metallic components. This catalytic activity difference occurs because the former catalyst has smaller Pt crystallites that produce stronger Pt-Co interactions and have a larger Pt surface area. Consequently, the CVPD catalyst has a great number of Co particles that are in close contact withmore » the added Pt. The Pt surface was also electronically modified by interactions with Co, which were stronger in the CVPD catalyst than in the IMP catalyst, as indicated by X-ray diffraction, X-ray photoemission spectroscopy, and cyclic voltammetry measurements of the catalysts.« less
Nafion induced surface confinement of oxygen in carbon-supported oxygen reduction catalysts
Chlistunoff, Jerzy; Sansinena, Jose -Maria
2016-11-17
We studied the surface confinement of oxygen inside layers of Nafion self-assembled on carbon-supported oxygen reduction reaction (ORR) catalysts. It is demonstrated that oxygen accumulates in the hydrophobic component of the polymer remaining in contact with the carbon surface. Furthermore, the amount of surface confined oxygen increases with the degree of carbon surface graphitization, which promotes the self-assembly of the polymer. Planar macrocyclic ORR catalysts possessing a delocalized system of π electrons such as Co and Fe porphyrins and phthalocyanines have virtually no effect on the surface confinement of oxygen, in accordance with their structural similarity to graphitic carbon surfacesmore » where they adsorb. Platinum particles in carbon-supported ORR catalysts with high metal contents (20%) disrupt the self-assembly of Nafion and virtually eliminate the oxygen confinement, but the phenomenon is still observed for low Pt loading (4.8%) catalysts.« less
Nafion induced surface confinement of oxygen in carbon-supported oxygen reduction catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chlistunoff, Jerzy; Sansinena, Jose -Maria
We studied the surface confinement of oxygen inside layers of Nafion self-assembled on carbon-supported oxygen reduction reaction (ORR) catalysts. It is demonstrated that oxygen accumulates in the hydrophobic component of the polymer remaining in contact with the carbon surface. Furthermore, the amount of surface confined oxygen increases with the degree of carbon surface graphitization, which promotes the self-assembly of the polymer. Planar macrocyclic ORR catalysts possessing a delocalized system of π electrons such as Co and Fe porphyrins and phthalocyanines have virtually no effect on the surface confinement of oxygen, in accordance with their structural similarity to graphitic carbon surfacesmore » where they adsorb. Platinum particles in carbon-supported ORR catalysts with high metal contents (20%) disrupt the self-assembly of Nafion and virtually eliminate the oxygen confinement, but the phenomenon is still observed for low Pt loading (4.8%) catalysts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Junjun; Zhang, Shiran; Choksi, Tej
2016-12-05
Catalytic performance of a bimetallic catalyst is determined by geometric structure and electronic state of the surface or even the near-surface region of the catalyst. Here we report that single and sequential postsynthesis reactions of an as-synthesized bimetallic nanoparticle catalyst in one or more gas phases can tailor surface chemistry and structure of the catalyst in a gas phase, by which catalytic performance of this bimetallic catalyst can be tuned. Pt–Cu regular nanocube (Pt–Cu RNC) and concave nanocube (Pt–Cu CNC) are chosen as models of bimetallic catalysts. Surface chemistry and catalyst structure under different reaction conditions and during catalysis weremore » explored in gas phase of one or two reactants with ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The newly formed surface structures of Pt–Cu RNC and Pt–Cu CNC catalysts strongly depend on the reactive gas(es) used in the postsynthesis reaction(s). A reaction of Pt–Cu RNC-as synthesized with H2 at 200 °C generates a near-surface alloy consisting of a Pt skin layer, a Cu-rich subsurface, and a Pt-rich deep layer. This near-surface alloy of Pt–Cu RNC-as synthesized-H2 exhibits a much higher catalytic activity in CO oxidation in terms of a low activation barrier of 39 ± 4 kJ/mol in contrast to 128 ± 7 kJ/mol of Pt–Cu RNC-as synthesized. Here the significant decrease of activation barrier demonstrates a method to tune catalytic performances of as-synthesized bimetallic catalysts. A further reaction of Pt–Cu RNC-as synthesized-H2 with CO forms a Pt–Cu alloy surface, which exhibits quite different catalytic performance in CO oxidation. It suggests the capability of generating a different surface by using another gas. The capability of tuning surface chemistry and structure of bimetallic catalysts was also demonstrated in restructuring of Pt–Cu CNC-as synthesized.« less
Mahata, Arup; Rai, Rohit K; Choudhuri, Indrani; Singh, Sanjay K; Pathak, Biswarup
2014-12-21
Density functional theory (DFT) calculations are performed to understand and address the previous experimental results that showed the reduction of nitrobenzene to aniline prefers direct over indirect reaction pathways irrespective of the catalyst surface. Nitrobenzene to aniline conversion occurs via the hydroxyl amine intermediate (direct pathway) or via the azoxybenzene intermediate (indirect pathway). Through our computational study we calculated the spin polarized and dispersion corrected reaction energies and activation barriers corresponding to various reaction pathways for the reduction of nitrobenzene to aniline over a Ni catalyst surface. The adsorption behaviour of the substrate, nitrobenzene, on the catalyst surface was also considered and the energetically most preferable structural orientation was elucidated. Our study indicates that the parallel adsorption behaviour of the molecules over a catalyst surface is preferable over vertical adsorption behaviour. Based on the reaction energies and activation barrier of the various elementary steps involved in direct or indirect reaction pathways, we find that the direct reduction pathway of nitrobenzene over the Ni(111) catalyst surface is more favourable than the indirect reaction pathway.
Supported versus colloidal zinc oxide for advanced oxidation processes
NASA Astrophysics Data System (ADS)
Laxman, Karthik; Al Rashdi, Manal; Al Sabahi, Jamal; Al Abri, Mohammed; Dutta, Joydeep
2017-07-01
Photocatalysis is a green technology which typically utilizes either supported or colloidal catalysts for the mineralization of aqueous organic contaminants. Catalyst surface area and surface energy are the primary factors determining its efficiency, but correlation between the two is still unclear. This work explores their relation and hierarchy in a photocatalytic process involving both supported and colloidal catalysts. In order to do this the active surface areas of supported zinc oxide nanorods (ZnO NR's) and colloidal zinc oxide nanoparticles (having different surface energies) were equalized and their phenol oxidation mechanism and capacity was analyzed. It was observed that while surface energy had subtle effects on the oxidation rate of the catalysts, the degradation efficiency was primarily a function of the surface area; which makes it a better parameter for comparison when studying different catalyst forms of the same material. Thus we build a case for the use of supported catalysts, wherein their catalytic efficiency was tested to be unaltered over several days under both natural and artificial light, suggesting their viability for practical applications.
Dong, Jinshi; Wang, Jun; Wang, Jianqiang; Cheng, Guanghao; Huang, Tianming; Shen, Meiqing
2018-05-07
Sintering is a long-standing issue especially in high temperature catalytic applications. In this paper, we report an effective method to slow down metal particle migration and coalescence (PMC) by using a thermally stable alumina support. Noteworthily, the alumina sample was developed from AlP fumigation residue, which is a very dangerous substance for living creatures and environment protection. By optimizing the heated hydrolysis and ball-milling conditions, we recycled a phosphate-stabilized alumina material that retained a 117 m 2 g -1 surface area after 1050 °C hydrothermal aging. The catalyst using this newly developed alumina support had Pd dispersion 1.7 times higher than that using a commercial alumina support after aging. The kinetics and XPS experiments showed that phosphate neither participated in the catalytic reaction process nor changed the active sites. This catalyst also exhibited extraordinary water tolerance and durability, making it a promising material in automotive exhaust purification and other catalytic applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tait, Steven L.
Stabilization and chemical control of transition metal centers is a critical problem in the advancement of heterogeneous catalysts to next-generation catalysts that exhibit high levels of selectivity, while maintaining strong activity and facile catalyst recycling. Supported metal nanoparticle catalysts typically suffer from having a wide range of metal sites with different coordination numbers and varying chemistry. This project is exploring new possibilities in catalysis by combining features of homogeneous catalysts with those of heterogeneous catalysts to develop new, bi-functional systems. The systems are more complex than traditional heterogeneous catalysts in that they utilize sequential active sites to accomplish the desiredmore » overall reaction. The interaction of metal—organic catalysts with surface supports and their interactions with reactants to enable the catalysis of critical reactions at lower temperatures are at the focus of this study. Our work targets key fundamental chemistry problems. How do the metal—organic complexes interact with the surface? Can those metal center sites be tuned for selectivity and activity as they are in the homogeneous system by ligand design? What steps are necessary to enable a cooperative chemistry to occur and open opportunities for bi-functional catalyst systems? Study of these systems will develop the concept of bringing together the advantages of heterogeneous catalysis with those of homogeneous catalysis, and take this a step further by pursuing the objective of a bi-functional system. The use of metal-organic complexes in surface catalysts is therefore of interest to create well-defined and highly regular single-site centers. While these are not likely to be stable in the high temperature environments (> 300 °C) typical of industrial heterogeneous catalysts, they could be applied in moderate temperature reactions (100-300 °C), made feasible by lowering reaction temperatures by better catalyst control. They also serve as easily tuned model systems for exploring the chemistry of single-site transition metals and tandem catalysts that could then be developed into a zeolite or other stable support structures. In this final technical report, three major advances our described that further these goals. The first is a study demonstrating the ability to tune the oxidation state of V single-site centers on a surface by design of the surrounding ligand field. The synthesis of the single-site centers was developed in a previous reporting period of this project and this new advance shows a distinct new ability of the systems to have a designed oxidation state of the metal center. Second, we demonstrate metal complexation at surfaces using vibrational spectroscopy and also show a metal replacement reaction on Ag surfaces. Third, we demonstrate a surface-catalyzed dehydrocyclization reaction important for metal-organic catalyst design at surfaces.« less
Collins, Sean M; Fernandez-Garcia, Susana; Calvino, José J; Midgley, Paul A
2017-07-14
Surface chemical composition, electronic structure, and bonding characteristics determine catalytic activity but are not resolved for individual catalyst particles by conventional spectroscopy. In particular, the nano-scale three-dimensional distribution of aliovalent lanthanide dopants in ceria catalysts and their effect on the surface electronic structure remains unclear. Here, we reveal the surface segregation of dopant cations and oxygen vacancies and observe bonding changes in lanthanum-doped ceria catalyst particle aggregates with sub-nanometer precision using a new model-based spectroscopic tomography approach. These findings refine our understanding of the spatially varying electronic structure and bonding in ceria-based nanoparticle aggregates with aliovalent cation concentrations and identify new strategies for advancing high efficiency doped ceria nano-catalysts.
Nano-catalysts: Bridging the gap between homogeneous and heterogeneous catalysis
Functionalized nanoparticles have emerged as sustainable alternatives to conventional materials, as robust, high-surface-area heterogeneous catalyst supports. We envisioned a catalyst system, which can bridge the homogenous and heterogeneous system. Postsynthetic surface modifica...
Composition and structure of pyrophoric nickel catalysts according to X-ray diffraction data
NASA Astrophysics Data System (ADS)
Osadchaya, T. Yu.; Afineevskii, A. V.; Prozorov, D. A.; Kochetkov, S. P.; Rumyantsev, R. N.; Lukin, M. V.
2017-01-01
The properties of a nickel catalyst obtained by treatment of nickel-aluminum alloy with sodium hydroxide in the presence of H2O2 and additionally stabilized with increased pressure were studied. Additional stabilization decreased the catalyst activity by 25%, but gave a more distinct picture for an XRD analysis of the active catalyst surface and decreased the time of deactivation of the dehydrated catalyst with air oxygen. The catalyst stabilization was explained by the displacement of water, decrease in the pore size, and surface inhomogeneity.
Formic acid fuel cells and catalysts
Masel, Richard I.; Larsen, Robert; Ha, Su Yun
2010-06-22
An exemplary fuel cell of the invention includes a formic acid fuel solution in communication with an anode (12, 134), an oxidizer in communication with a cathode (16, 135) electrically linked to the anode, and an anode catalyst that includes Pd. An exemplary formic acid fuel cell membrane electrode assembly (130) includes a proton-conducting membrane (131) having opposing first (132) and second surfaces (133), a cathode catalyst on the second membrane surface, and an anode catalyst including Pd on the first surface.
Effect of plasma-induced surface charging on catalytic processes: application to CO2 activation
NASA Astrophysics Data System (ADS)
Bal, Kristof M.; Huygh, Stijn; Bogaerts, Annemie; Neyts, Erik C.
2018-02-01
Understanding the nature and effect of the multitude of plasma-surface interactions in plasma catalysis is a crucial requirement for further process development and improvement. A particularly intriguing and rather unique property of a plasma-catalytic setup is the ability of the plasma to modify the electronic structure, and hence chemical properties, of the catalyst through charging, i.e. the absorption of excess electrons. In this work, we develop a quantum chemical model based on density functional theory to study excess negative surface charges in a heterogeneous catalyst exposed to a plasma. This method is specifically applied to investigate plasma-catalytic CO2 activation on supported M/Al2O3 (M = Ti, Ni, Cu) single atom catalysts. We find that (1) the presence of a negative surface charge dramatically improves the reductive power of the catalyst, strongly promoting the splitting of CO2 to CO and oxygen, and (2) the relative activity of the investigated transition metals is also changed upon charging, suggesting that controlled surface charging is a powerful additional parameter to tune catalyst activity and selectivity. These results strongly point to plasma-induced surface charging of the catalyst as an important factor contributing to the plasma-catalyst synergistic effects frequently reported for plasma catalysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Teng; Lin, Zhaoyang; Chiu, Chin-Yi
Metallic nanoparticles are emerging as an exciting class of heterogeneous catalysts with the potential advantages of exceptional activity, stability, recyclability, and easier separation than homogeneous catalysts. The traditional colloid nanoparticle syntheses usually involve strong surface binding ligands that could passivate the surface active sites and result in poor catalytic activity. The subsequent removal of surface ligands could reactivate the surface but often leads to metal ion leaching and/or severe Ostwald ripening with diminished catalytic activity or poor stability. Molecular ligand engineering represents a powerful strategy for the design of homogeneous molecular catalysts but is insufficiently explored for nanoparticle catalysts tomore » date. We report a systematic investigation on molecular ligand modulation of palladium (Pd) nanoparticle catalysts. Our studies show that β-functional groups of butyric acid ligand on Pd nanoparticles can significantly modulate the catalytic reaction process to modify the catalytic activity and stability for important aerobic reactions. With a β-hydroxybutyric acid ligand, the Pd nanoparticle catalysts exhibit exceptional catalytic activity and stability with an unsaturated turnover number (TON) >3000 for dehydrogenative oxidation of cyclohexenone to phenol, greatly exceeding that of homogeneous Pd(II) catalysts (TON, ~30). This study presents a systematic investigation of molecular ligand modulation of nanoparticle catalysts and could open up a new pathway toward the design and construction of highly efficient and robust heterogeneous catalysts through molecular ligand engineering.« less
Promising SiC support for Pd catalyst in selective hydrogenation of acetylene to ethylene
NASA Astrophysics Data System (ADS)
Guo, Zhanglong; Liu, Yuefeng; Liu, Yan; Chu, Wei
2018-06-01
In this study, SiC supported Pd nanoparticles were found to be an efficient catalyst in acetylene selective hydrogenation reaction. The ethylene selectivity can be about 20% higher than that on Pd/TiO2 catalyst at the same acetylene conversion at 90%. Moreover, Pd/SiC catalyst showed a stable catalytic life at 65 °C with 80% ethylene selectivity. With the detailed characterization using temperature-programmed reduction (H2-TPR), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 adsorption/desorption analysis, CO-chemisorption and thermo-gravimetric analysis (TGA), it was found that SiC owns a lower surface area (22.9 m2/g) and a broad distribution of meso-/macro-porosity (from 5 to 65 nm), which enhanced the mass transfer during the chemical process at high reaction rate and decreased the residence time of ethylene on catalyst surface. Importantly, SiC support has the high thermal conductivity, which favored the rapid temperature homogenization through the catalyst bed and inhabited the over-hydrogenation of acetylene. The surface electronic density of Pd on Pd/SiC catalyst was higher than that on Pd/TiO2, which could promote desorption of ethylene from surface of the catalyst. TGA results confirmed a much less coke deposition on Pd/SiC catalyst.
NASA Astrophysics Data System (ADS)
Widayat, W.; Rizky Wicaksono, Adit; Hakim Firdaus, Lukman; Okvitarini, Ndaru
2016-02-01
The objective of this research is to produce H-catalyst catalyst that was impregnated with KI/KIO3. The catalyst was analyzed about surface area, X-Ray Diffraction (XRD) and performance test of catalyst for biodiesel production. An H-Zeolite catalyst was synthesized from natural zeolite with chemical treatment processing, impregnation KI/KIO3 and physical treatment. The results shows that the surface area of the catalyst by 27.236 m2/g at a concentration of 5% KI. XRD analysis shows peak 2-θ at 23.627o indicating that KI was impregnated on H-zeolite catalyst. The catalyst was tested in production of biodiesel using palm oil with conventional methods for 3 hour at temperature of 70-80 oC. The result for conversion Fatty Acid Methyl Ester (FAME) reached maximum value on 87.91% under production process using catalyst 5% KIO3-H zeolite.
2012-02-28
Interaction Model based on Accelerated Reactive Molecular Dynamics for Hypersonic conditions including Thermal Conduction FA9550-09-1-0157 Schwartzentruber...Dynamics for Hypersonic Conditions including Thermal Conduction Grant/Contract Number: FA9550-09-1-0157 Program Manager: Dr. John Schmisseur PI...through the boundary layer and may chemically react with the vehicle’s thermal protection system (TPS). Many TPS materials act as a catalyst for the
Chang, Huazhen; Wu, Qingru; Zhang, Tao; Li, Mingguan; Sun, Xiaoxu; Li, Junhua; Duan, Lei; Hao, Jiming
2015-10-20
A series of CeMoOx catalysts with different surface Ce/Mo ratios was synthesized by a coprecipitation method via changing precipitation pH value. The surface basicity on selective catalytic reduction (SCR) catalysts (CeMoOx and VMo/Ti) was characterized and correlated to the durability and activity of catalyst for simultaneous elimination of NOx and Hg(0). The pH value in the preparation process affected the surface concentrations of Ce and Mo, the Brunauer-Emmett-Teller (BET) specific surface area, and the acid-base properties over the CeMoOx catalysts. The O 1s X-ray photoelectron spectroscopy (XPS) spectra and CO2-temperature programmed desorption (TPD) suggested that the surface basicity increased as the pH value increased. The existence of strong basic sites contributed to the deactivation effect of HCl over the VMo/Ti and CeMoOx catalysts prepared at pH = 12. For the CeMoOx catalysts prepared at pH = 9 and 6, the appearance of surface molybdena species replaced the surface -OH, and the existence of appropriate medium-strength basic sites contributed to their resistance to HCl poisoning in the SCR reaction. Moreover, these sites facilitated the adsorption and activation of HCl and enhanced Hg(0) oxidation. On the other hand, the inhibitory effect of NH3 on Hg(0) oxidation was correlated with the competitive adsorption of NH3 and Hg(0) on acidic surface sites. Therefore, acidic surface sites may play an important role in Hg(0) adsorption. The characterization and balance of basicity and acidity of an SCR catalyst is believed to be helpful in preventing deactivation by acid gas in the SCR reaction and simultaneous Hg(0) oxidation.
Surface-reconstructed graphite nanofibers as a support for cathode catalysts of fuel cells.
Gan, Lin; Du, Hongda; Li, Baohua; Kang, Feiyu
2011-04-07
Graphite nanofibers (GNFs), on which surface graphite edges were reconstructed into nano-loops, were explored as a cathode catalyst support for fuel cells. The high degree of graphitization, as well as the surface-reconstructed nano-loops that possess topological defects for uniform metal deposition, resulted in an improved performance of the GNF-supported Pt catalyst.
Waterproof Silicone Coatings of Thermal Insulation and Vaporization Method
NASA Technical Reports Server (NTRS)
Cagliostro, Domenick E. (Inventor)
1999-01-01
Thermal insulation composed of porous ceramic material can be waterproofed by producing a thin silicone film on the surface of the insulation by exposing it to volatile silicone precursors at ambient conditions. When the silicone precursor reactants are multi-functional siloxanes or silanes containing alkenes or alkynes carbon groups higher molecular weight films can be produced. Catalyst are usually required for the silicone precursors to react at room temperature to form the films. The catalyst are particularly useful in the single component system e.g. dimethylethoxysilane (DNMS) to accelerate the reaction and decrease the time to waterproof and protect the insulation. In comparison to other methods, the chemical vapor technique assures better control over the quantity and location of the film being deposited on the ceramic insulation to improve the waterproof coating.
Nguyen, Luan; Tao, Franklin Feng
2016-06-01
Tracking surface chemistry of a catalyst during catalysis is significant for fundamental understanding of catalytic performance of the catalyst since it allows for establishing an intrinsic correlation between surface chemistry of a catalyst at its working status and its corresponding catalytic performance. Ambient pressure X-ray photoelectron spectroscopy can be used for in-situ studies of surfaces of different materials or devices in a gas. To simulate the gaseous environment of a catalyst in a fixed-bed a flowing gaseous environment of reactants around the catalyst is necessary. Here, we report the development of a new flowing reaction cell for simulating in-situ study of a catalyst surface under a reaction condition in gas of one reactant or during catalysis in a mixture of reactants of a catalytic reaction. The homemade reaction cell is installed in a high vacuum (HV) or ultrahigh vacuum (UHV) environment of a chamber. The flowing gas in the reaction cell is separated from the HV or UHV environment through well sealings at three interfaces between the reaction cell and X-ray window, sample door and aperture of front cone of an energy analyzer. Catalyst in the cell is heated through infrared laser beam introduced through a fiber optics interfaced with the reaction cell through a homemade feedthrough. The highly localized heating on the sample holder and Au-passivated internal surface of the reaction cell effectively minimizes any unwanted reactions potentially catalyzed by the reaction cell. The incorporated laser heating allows a fast heating and a high thermal stability of the sample at a high temperature. With this cell, a catalyst at 800 °C in a flowing gas can be tracked readily.
A molecular catalyst for water oxidation that binds to metal oxide surfaces
Sheehan, Stafford W.; Thomsen, Julianne M.; Hintermair, Ulrich; Crabtree, Robert H.; Brudvig, Gary W.; Schmuttenmaer, Charles A.
2015-01-01
Molecular catalysts are known for their high activity and tunability, but their solubility and limited stability often restrict their use in practical applications. Here we describe how a molecular iridium catalyst for water oxidation directly and robustly binds to oxide surfaces without the need for any external stimulus or additional linking groups. On conductive electrode surfaces, this heterogenized molecular catalyst oxidizes water with low overpotential, high turnover frequency and minimal degradation. Spectroscopic and electrochemical studies show that it does not decompose into iridium oxide, thus preserving its molecular identity, and that it is capable of sustaining high activity towards water oxidation with stability comparable to state-of-the-art bulk metal oxide catalysts. PMID:25757425
NASA Astrophysics Data System (ADS)
Mohammad, S. Noor
2017-09-01
Nanotubes are synthesized almost entirely by metal-catalyst-free and metal-catalyst-mediated non-eutectic mechanism(s). An investigation has been carried out to understand the basics of this mechanism. Various possible chemical and physical processes involved in nanotube synthesis have been researched. Various components and attributes of nanotube synthesis have been evaluated. Phase transitions, alloy formation, porosity, carrier transport and the fundamentals underlying them have been examined. Nanoparticle surfaces conducive to nanotube synthesis have been examined. The role of surface treatment, which includes oxidation, oxygenation, acid treatment, plasma treatment, water treatment, sputtering, etc in creating such surfaces, has been investigated. The role of surface treatment and phase transitions as functions of temperature, pressure, ambient, contaminants, surface amorphicity, etc in creating diffusion paths for the diffusion of growth species for supersaturation and nucleation has been explored. Interdiffusion of catalyst and source materials, and hence exchange of materials, on the nanoparticle surface, have been elucidated. This exchange of materials on catalyst surface appears to add a new dimension to the synthesis kinetics. Integrated together, they reveal a general mechanism for probably all metal-catalyst-free and metal-catalyst-mediated non-eutectic nanotube synthesis. Available experiments strongly support the proposed mechanism; they suggest that this mechanism has a broad appeal.
Gao, Wenpei; Hood, Zachary D; Chi, Miaofang
2017-04-18
Developing novel catalysts with high efficiency and selectivity is critical for enabling future clean energy conversion technologies. Interfaces in catalyst systems have long been considered the most critical factor in controlling catalytic reaction mechanisms. Interfaces include not only the catalyst surface but also interfaces within catalyst particles and those formed by constructing heterogeneous catalysts. The atomic and electronic structures of catalytic surfaces govern the kinetics of binding and release of reactant molecules from surface atoms. Interfaces within catalysts are introduced to enhance the intrinsic activity and stability of the catalyst by tuning the surface atomic and chemical structures. Examples include interfaces between the core and shell, twin or domain boundaries, or phase boundaries within single catalyst particles. In supported catalyst nanoparticles (NPs), the interface between the metallic NP and support serves as a critical tuning factor for enhancing catalytic activity. Surface electronic structure can be indirectly tuned and catalytically active sites can be increased through the use of supporting oxides. Tuning interfaces in catalyst systems has been identified as an important strategy in the design of novel catalysts. However, the governing principle of how interfaces contribute to catalyst behavior, especially in terms of interactions with intermediates and their stability during electrochemical operation, are largely unknown. This is mainly due to the evolving nature of such interfaces. Small changes in the structural and chemical configuration of these interfaces may result in altering the catalytic performance. These interfacial arrangements evolve continuously during synthesis, processing, use, and even static operation. A technique that can probe the local atomic and electronic interfacial structures with high precision while monitoring the dynamic interfacial behavior in situ is essential for elucidating the role of interfaces and providing deeper insight for fine-tuning and optimizing catalyst properties. Scanning transmission electron microscopy (STEM) has long been a primary characterization technique used for studying nanomaterials because of its exceptional imaging resolution and simultaneous chemical analysis. Over the past decade, advances in STEM, that is, the commercialization of both aberration correctors and monochromators, have significantly improved the spatial and energy resolution. Imaging atomic structures with subangstrom resolution and identifying chemical species with single-atom sensitivity are now routine for STEM. These advancements have greatly benefitted catalytic research. For example, the roles of lattice strain and surface elemental distribution and their effect on catalytic stability and reactivity have been well documented in bimetallic catalysts. In addition, three-dimensional atomic structures revealed by STEM tomography have been integrated in theoretical modeling for predictive catalyst NP design. Recent developments in stable electronic and mechanical devices have opened opportunities to monitor the evolution of catalysts in operando under synthesis and reaction conditions; high-speed direct electron detectors have achieved sub-millisecond time resolutions and allow for rapid structural and chemical changes to be captured. Investigations of catalysts using these latest microscopy techniques have provided new insights into atomic-level catalytic mechanisms. Further integration of new microscopy methods is expected to provide multidimensional descriptions of interfaces under relevant synthesis and reaction conditions. In this Account, we discuss recent insights on understanding catalyst activity, selectivity, and stability using advanced STEM techniques, with an emphasis on how critical interfaces dictate the performance of precious metal-based heterogeneous catalysts. The role of extended interfacial structures, including those between core and shell, between separate phases and twinned grains, between the catalyst surface and gas, and between metal and support are discussed. We also provide an outlook on how emerging electron microscopy techniques, such as vibrational spectroscopy and electron ptychography, will impact future catalysis research.
Wang, Qiulin; Tang, Minghui; Peng, Yaqi; Du, Cuicui; Lu, Shengyong
2018-05-01
Ozone assisted carbon nanotubes (CNTs) supported vanadium oxide/titanium dioxide (V/Ti-CNTs) or vanadium oxide-manganese oxide/titanium dioxide (V-Mn/Ti-CNTs) catalysts towards gaseous PCDD/Fs (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans) catalytic oxidations at low temperature (150 °C) were investigated. The removal efficiency (RE) and decomposition efficiency (DE) of PCDD/Fs achieved with V-Mn/Ti-CNTs alone were 95% and 45% at 150 °C under a space velocity (SV) of 14000 h -1 ; yet, these values reached 99% and 91% when catalyst and low concentration (50 ppm) ozone were used in combined. The ozone promotion effect on catalytic activity was further enhanced with the addition of manganese oxide (MnO x ) and CNTs. Adding MnO x and CNTs in V/Ti catalysts facilitated the ozone decomposition (creating more active species on catalyst surface), thus, improved ozone utilization (demanding relatively lower ozone addition concentration). On the other hand, this study threw light upon ozone promotion mechanism based on the comparison of catalyst properties (i.e. components, surface area, surface acidity, redox ability and oxidation state) before and after ozone treatment. The experimental results indicate that a synergistic effect exists between catalyst and ozone: ozone is captured and decomposed on catalyst surface; meanwhile, the catalyst properties are changed by ozone in return. Reactive oxygen species from ozone decomposition and the accompanied catalyst properties optimization are crucial reasons for catalyst activation at low temperature. Copyright © 2018 Elsevier Ltd. All rights reserved.
Barroo, Cedric; Janvelyan, Nare; Zugic, Branko; ...
2016-07-25
To improve the understanding of catalytic processes, the surface structure and composition of the active materials need to be determined before and after reaction. Morphological changes may occur under reaction conditions and can dramatically influence the reactivity and/or selectivity of a catalyst. Goldbased catalysts with different architectures are currently being developed for selective oxidation reactions at low temperatures. Specifically, nanoporous Au (npAu) with a composition of Au 97-Ag 3 is obtained by dealloying a Ag 70-Au 30 bulk alloy. Recent studies highlight the efficiency of npAu catalysts for methanol oxidation using ozone to activate the catalysts before methanol oxidation. Inmore » this paper, we studied the morphological and compositional changes occurring at the surface of Au-based catalysts in certain conditions.« less
Garrick, Taylor R.; Moylan, Thomas E.; Carpenter, Michael K.; ...
2016-12-13
The use of hydrogen adsorption/desorption (HAD) is a convenient method to measure the Pt surface area of a catalyst. However, it was shown that electrochemical charges measured by this technique can underestimate the Pt surface area by up to a factor of two for small Pt nanoparticles or Pt alloy nanoparticles. Electrooxidation of CO, so-called CO stripping, has been shown to be more accurate. Yet measurements of CO stripping in MEAs are scarce, especially on high activity alloy catalysts. In this study we investigated CO stripping and the ratio between Pt surface areas measured by CO and by HAD onmore » several Pt and Pt alloy catalysts. The effects on these measurements of temperature and catalyst aging by voltage cycling are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrick, Taylor R.; Moylan, Thomas E.; Carpenter, Michael K.
The use of hydrogen adsorption/desorption (HAD) is a convenient method to measure the Pt surface area of a catalyst. However, it was shown that electrochemical charges measured by this technique can underestimate the Pt surface area by up to a factor of two for small Pt nanoparticles or Pt alloy nanoparticles. Electrooxidation of CO, so-called CO stripping, has been shown to be more accurate. Yet measurements of CO stripping in MEAs are scarce, especially on high activity alloy catalysts. In this study we investigated CO stripping and the ratio between Pt surface areas measured by CO and by HAD onmore » several Pt and Pt alloy catalysts. The effects on these measurements of temperature and catalyst aging by voltage cycling are discussed.« less
NASA Astrophysics Data System (ADS)
Rao, Cheng; Shen, Jiating; Wang, Fumin; Peng, Honggen; Xu, Xianglan; Zhan, Hangping; Fang, Xiuzhong; Liu, Jianjun; Liu, Wenming; Wang, Xiang
2018-03-01
In this study, SnO2-based catalysts promoted by different alkali metal oxides with a Sn/M (M = Li, Na, K, Cs) molar ratio of 9/1 have been prepared for soot combustion. In comparison with the un-modified SnO2 support, the activity of the modified catalysts has been evidently enhanced, following the sequence of CsSn1-9 > KSn1-9 > NaSn1-9 > LiSn1-9 > SnO2. As testified by Raman, H2-TPR, soot-TPR-MS, XPS and O2-TPD results, the incorporation of various alkali metal oxides can induce the formation of more abundant and mobile oxygen species on the surface of the catalysts. Moreover, quantified results have proved that the amount of the surface active oxygen species is nearly proportional to the activity of the catalysts. CsSn1-9, the catalyst promoted by cesium oxide, owns the largest amount of surface mobile oxygen species, thus having the highest activity among all the studied catalysts. It is concluded that the amount of surface active and mobile oxygen species is the major factor determining the activity of the catalysts for soot combustion.
NASA Astrophysics Data System (ADS)
Rajath, S.; Siddaraju, C.; Nandakishora, Y.; Roy, Sukumar
2018-04-01
The objective of this research is to evaluate certain specific mechanical properties of certain stainless steel wire mesh supported Selective catalytic reduction catalysts structures wherein the physical properties of the metal wire mesh and also its surface treatments played vital role thereby influencing the mechanical properties. As the adhesion between the stainless steel wire mesh and the catalyst material determines the bond strength and the erosion resistance of catalyst structures, surface modifications of the metal- wire mesh structure in order to facilitate the interface bonding is therefore very important to realize enhanced level of mechanical properties. One way to enhance such adhesion properties, the stainless steel wire mesh is treated with the various acids, i.e., chromic acid, phosphoric acid including certain mineral acids and combination of all those in various molar ratios that could generate surface active groups on metal surface that promotes good interface structure between the metal- wire mesh and metal oxide-based catalyst material and then the stainless steel wire mesh is dipped in the glass powder slurry containing some amount of organic binder. As a result of which the said catalyst material adheres to the metal-wire mesh surface more effectively that improves the erosion profile of supported catalysts structure including bond strength.
Process for metallization of a substrate by irradiative curing of a catalyst applied thereto
Chen, Ken S.; Morgan, William P.; Zich, John L.
1999-01-01
An improved additive process for metallization of substrates is described whereby a catalyst solution is applied to a surface of a substrate. Metallic catalytic clusters can be formed in the catalyst solution on the substrate surface by irradiating the substrate. Electroless plating can then deposit metal onto the portion of the substrate surface having metallic clusters. Additional metallization thickness can be obtained by electrolytically plating the substrate surface after the electroless plating step.
Self-Protection Mechanism of Hexagonal WO3-Based DeNOx Catalysts against Alkali Poisoning.
Zheng, Li; Zhou, Meijuan; Huang, Zhiwei; Chen, Yaxin; Gao, Jiayi; Ma, Zhen; Chen, Jianmin; Tang, Xingfu
2016-11-01
A good catalyst for efficiently controlling NO x emissions often demands strong resistance against alkali poisoning. Although the traditional ion-exchange model, based on acid-base reactions of alkalis with Brønsted acid sites, has been established over the past two decades, it is difficult to be used as a guideline to develop such an alkali-resistant catalyst. Here we establish a self-protection mechanism of deNO x catalysts against alkali poisoning by systematically studying the intrinsic nature of alkali resistance of V 2 O 5 /HWO (HWO = hexagonal WO 3 ) that shows excellent resistance to alkali poisoning in selective catalytic reduction of NO x with NH 3 (SCR). Synchrotron X-ray diffraction and absorption spectroscopies demonstrate that V 2 O 5 /HWO has spatially separated catalytically active sites (CASs) and alkali-trapping sites (ATSs). During the SCR process, ATSs spontaneously trap alkali ions such as K + , even if alkali ions initially block CASs, thus releasing CASs to realize the self-protection against alkali poisoning. X-ray photoelectron spectra coupled with theoretical calculations indicate that the electronic interaction between the alkali ions and ATSs with an energy saving is the driving force of the self-protection. This work provides a strategy to design alkali-resistant deNO x catalysts.
Xue, Teng; Lin, Zhaoyang; Chiu, Chin-Yi; ...
2017-01-06
Metallic nanoparticles are emerging as an exciting class of heterogeneous catalysts with the potential advantages of exceptional activity, stability, recyclability, and easier separation than homogeneous catalysts. The traditional colloid nanoparticle syntheses usually involve strong surface binding ligands that could passivate the surface active sites and result in poor catalytic activity. The subsequent removal of surface ligands could reactivate the surface but often leads to metal ion leaching and/or severe Ostwald ripening with diminished catalytic activity or poor stability. Molecular ligand engineering represents a powerful strategy for the design of homogeneous molecular catalysts but is insufficiently explored for nanoparticle catalysts tomore » date. We report a systematic investigation on molecular ligand modulation of palladium (Pd) nanoparticle catalysts. Our studies show that β-functional groups of butyric acid ligand on Pd nanoparticles can significantly modulate the catalytic reaction process to modify the catalytic activity and stability for important aerobic reactions. With a β-hydroxybutyric acid ligand, the Pd nanoparticle catalysts exhibit exceptional catalytic activity and stability with an unsaturated turnover number (TON) >3000 for dehydrogenative oxidation of cyclohexenone to phenol, greatly exceeding that of homogeneous Pd(II) catalysts (TON, ~30). This study presents a systematic investigation of molecular ligand modulation of nanoparticle catalysts and could open up a new pathway toward the design and construction of highly efficient and robust heterogeneous catalysts through molecular ligand engineering.« less
Wang, Zhili; Liu, Pan; Han, Jiuhui; Cheng, Chun; Ning, Shoucong; Hirata, Akihiko; Fujita, Takeshi; Chen, Mingwei
2017-10-20
Tuning surface structures by bottom-up synthesis has been demonstrated as an effective strategy to improve the catalytic performances of nanoparticle catalysts. Nevertheless, the surface modification of three-dimensional nanoporous metals, fabricated by a top-down dealloying approach, has not been achieved despite great efforts devoted to improving the catalytic performance of three-dimensional nanoporous catalysts. Here we report a surfactant-modified dealloying method to tailor the surface structure of nanoporous gold for amplified electrocatalysis toward methanol oxidation and oxygen reduction reactions. With the assistance of surfactants, {111} or {100} faceted internal surfaces of nanoporous gold can be realized in a controllable manner by optimizing dealloying conditions. The surface modified nanoporous gold exhibits significantly enhanced electrocatalytic activities in comparison with conventional nanoporous gold. This study paves the way to develop high-performance three-dimensional nanoporous catalysts with a tunable surface structure by top-down dealloying for efficient chemical and electrochemical reactions.
Self regulating formulations for safe hydrogen gettering
Shepodd, Timothy Jon
2002-01-01
A method and composition are disclosed for preventing uncontrolled exothermic reaction in the presence of a catalyst. A catalyst deployed as a finely divided powder which is attached to the surface of a low melting point wax or wax-like material which is utilized as a carrier for the catalyst. During operation should the catalyst overheat due to uncontrolled conditions brought about by a run-away reaction the heat of reaction melts the low melting point wax which would itself wet the surface of the catalyst and prevent further catalysis.
Critical Surface Parameters for the Oxidative Coupling of Methane over the Mn-Na-W/SiO2 Catalyst.
Hayek, Naseem S; Lucas, Nishita S; Warwar Damouny, Christine; Gazit, Oz M
2017-11-22
The work here presents a thorough evaluation of the effect of Mn-Na-W/SiO 2 catalyst surface parameters on its performance in the oxidative coupling of methane (OCM). To do so, we used microporous dealuminated β-zeolite (Zeo), or mesoporous SBA-15 (SBA), or macroporous fumed silica (Fum) as precursors for catalyst preparation, together with Mn nitrate, Mn acetate and Na 2 WO 4 . Characterizing the catalysts by inductively coupled plasma-optical emission spectroscopy, N 2 physisorption, X-ray diffraction, high-resolution scanning electron microscopy-energy-dispersive spectroscopy, X-ray photoelectron spectroscopy, and catalytic testing enabled us to identify critical surface parameters that govern the activity and C 2 selectivity of the Mn-Na-W/SiO 2 catalyst. Although the current paradigm views the phase transition of silica to α-cristobalite as the critical step in obtaining dispersed and stable metal sites, we show that the choice of precursors is equally or even more important with respect to tailoring the right surface properties. Specifically, the SBA-based catalyst, characterized by relatively closed surface porosity, demonstrated low activity and low C 2 selectivity. By contrast, for the same composition, the Zeo-based catalyst showed an open surface pore structure, which translated up to fourfold higher activity and enhanced selectivity. By varying the overall composition of the Zeo catalysts, we show that reducing the overall W concentration reduces the size of the Na 2 WO 4 species and increases the catalytic activity linearly as much as fivefold higher than the SBA catalyst. This linear dependence correlates well to the number of interfaces between the Na 2 WO 4 and Mn 2 O 3 species. Our results combined with prior studies lead us to single out the interface between Na 2 WO 4 and Mn 2 O 3 as the most probable active site for OCM using this catalyst. Synergistic interactions between the various precursors used and the phase transition are discussed in detail, and the conclusions are correlated to surface properties and catalysis.
NASA Astrophysics Data System (ADS)
Li, Jingying; Tang, Xiaolong; Yi, Honghong; Yu, Qingjun; Gao, Fengyu; Zhang, Runcao; Li, Chenlu; Chu, Chao
2017-08-01
Different copper-precursors were used to prepare Cu/graphene catalysts by an impregnation method. XRD, Raman spectra, TEM, BET, XPS, H2-TPR, NH3-TPD, DRIFTS and catalytic activity test were used to characterize and study the effect of precursors on the catalytic activity of Cu/graphene catalysts for NH3-SCO reaction. The large specific surface area of Cu/graphene catalysts and high dispersion of the metal particles on the graphene caused the well catalytic activity of NH3-SCO reaction. Compared to Cu/GE(AC), Cu/GE(N) showed better catalytic performance, and the complete NH3 removal efficiency was obtained at 250 °C with N2 selectivity of 85%. The copper-precursors had influence on the distribution of surface Cu species and further affected the catalytic activity of Cu/GE catalysts. The more amount of surface Cu species and highly dispersed CuO particles on the graphene surface formed by using copper nitrate as precursor could significantly improve the reducibility of catalysts and enhance NH3 adsorption, thereby improving the catalytic activity of Cu/graphene catalyst.
NASA Astrophysics Data System (ADS)
Wei, Guang-Tao; Wei, Chao-Hai; He, Feng-Mei; Wu, Chao-Fei
Bifunctional Fe/ZrO2 was prepared by mechanical mixing method, and its bifunctional effect on reductive dechlorination of chlorobenzene in subcritical water was studied. Dechlorination efficiency increased with increasing iron content in catalyst and catalyst amount. Dechlorination efficiency slowed when the iron content in catalyst reached 30%; bifunctional catalyst of Fe/ZrO2 was more efficient in dechlorination of chlorobenzene than Fe alone. Catalyst of Fe (30%)/ZrO2 was characterized by means of X-ray diffraction (XRD), H2 temperature programmed desorption (H2-TPD), and N2 adsorption. The possible mechanism of dechlorination in subcritical water by this bifunctional catalyst was proposed. H+ produced in the water dissociation formed the highly reactive spillover hydrogen on the surface of catalyst, and then reacted with chlorobenzene adsorbed on the catalyst surface by ZrO2 to form benzene and chloride ions.
Two component-three dimensional catalysis
Schwartz, Michael; White, James H.; Sammells, Anthony F.
2002-01-01
This invention relates to catalytic reactor membranes having a gas-impermeable membrane for transport of oxygen anions. The membrane has an oxidation surface and a reduction surface. The membrane is coated on its oxidation surface with an adherent catalyst layer and is optionally coated on its reduction surface with a catalyst that promotes reduction of an oxygen-containing species (e.g., O.sub.2, NO.sub.2, SO.sub.2, etc.) to generate oxygen anions on the membrane. The reactor has an oxidation zone and a reduction zone separated by the membrane. A component of an oxygen containing gas in the reduction zone is reduced at the membrane and a reduced species in a reactant gas in the oxidation zone of the reactor is oxidized. The reactor optionally contains a three-dimensional catalyst in the oxidation zone. The adherent catalyst layer and the three-dimensional catalyst are selected to promote a desired oxidation reaction, particularly a partial oxidation of a hydrocarbon.
Catalytic liquid-phase nitrite reduction: Kinetics and catalyst deactivation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pintar, A.; Bercic, G.; Levec, J.
1998-10-01
Liquid-phase reduction using a solid catalyst provides a potential technique for the removal of nitrites from waters. Activity and selectivity measurements were performed for a wide range of reactant concentrations and reaction conditions in an isothermal semi-batch slurry reactor, which was operated at temperatures below 298 K and atmospheric pressure. The effects of catalyst loading and initial nitrite concentration on the reaction rate were also investigated. The Pd monometallic catalysts were found to be advantageous over the Pd-Cu bimetallic catalyst with respect to either reaction activity or selectivity. Among the catalysts tested, minimum ammonia formation was observed for the Pd(1more » wt.%)/{gamma}-Al{sub 2}O{sub 3} catalyst. The proposed intrinsic rate expression for nitrite disappearance over the most selective catalyst is based on the steady-state adsorption model of Hinshelwood, which accounts for a dissociative hydrogen adsorption step on the catalyst surface and an irreversible surface reaction step between adsorbed hydrogen species and nitrite ions in the Helmholtz layer. Both processes occur at comparable rates. An exponential decay in the activity of Pd(1 wt. %)/{gamma}-Al{sub 2}O{sub 3} catalyst has been observed during the liquid-phase nitrite reduction. This is attributed to the catalyst surface deprotonation, which occurs due to the partial neutralization of stoichiometrically produced hydroxide ions with carbon dioxide.« less
Theoretical Heterogeneous Catalysis: Scaling Relationships and Computational Catalyst Design.
Greeley, Jeffrey
2016-06-07
Scaling relationships are theoretical constructs that relate the binding energies of a wide variety of catalytic intermediates across a range of catalyst surfaces. Such relationships are ultimately derived from bond order conservation principles that were first introduced several decades ago. Through the growing power of computational surface science and catalysis, these concepts and their applications have recently begun to have a major impact in studies of catalytic reactivity and heterogeneous catalyst design. In this review, the detailed theory behind scaling relationships is discussed, and the existence of these relationships for catalytic materials ranging from pure metal to oxide surfaces, for numerous classes of molecules, and for a variety of catalytic surface structures is described. The use of the relationships to understand and elucidate reactivity trends across wide classes of catalytic surfaces and, in some cases, to predict optimal catalysts for certain chemical reactions, is explored. Finally, the observation that, in spite of the tremendous power of scaling relationships, their very existence places limits on the maximum rates that may be obtained for the catalyst classes in question is discussed, and promising strategies are explored to overcome these limitations to usher in a new era of theory-driven catalyst design.
Enhanced catalyst stability for cyclic co methanation operations
Risch, Alan P.; Rabo, Jule A.
1983-01-01
Carbon monoxide-containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is thereafter reacted with steam or hydrogen to form methane. Enhanced catalyst stability for long term, cyclic operation is obtained by the incorporation of an alkali or alkaline earth dopant in a silica binding agent added to the catalyst-support additive composition.
Synthesis of Higher Alcohols via Syngas on Cu/Zn/Si Catalysts. Effect of Polyethylene Glycol Content
NASA Astrophysics Data System (ADS)
Cui, Rong-Ji; Yan, Xing; Fan, Jin-Chuan; Huang, Wei
2018-05-01
Cu/Zn/Si catalysts with different polyethylene glycol (PEG) content were prepared by a complete liquid-phase method, and characterized by XRD, H2-TPR, N2-adsorption, and XPS. The influence of PEG content on the higher alcohols synthesis from syngas was investigated. The results showed that addition of PEG can influence the texture and surface properties of the catalysts, and therefore affect their activity and product distribution. With an increase in PEG content, BET surface area, Cu crystallite size and surface active ingredient content of the catalysts first increased and then decreased, the CO conversion had similar variation tendency. However, the pore volume and pore diameter of the catalyst increased, and the binding energy of the active component and the content of Cu2O decreased, which resulted in higher catalyst selectivity towards higher alcohols. The highest C2+OH selectivity in total alcohols was 60.6 wt %.
Wang, Ziyun; Wang, Hai-Feng; Hu, P
2015-10-01
The current theory of catalyst activity in heterogeneous catalysis is mainly obtained from the study of catalysts with mono-phases, while most catalysts in real systems consist of multi-phases, the understanding of which is far short of chemists' expectation. Density functional theory (DFT) and micro-kinetics simulations are used to investigate the activities of six mono-phase and nine bi-phase catalysts, using CO hydrogenation that is arguably the most typical reaction in heterogeneous catalysis. Excellent activities that are beyond the activity peak of traditional mono-phase volcano curves are found on some bi-phase surfaces. By analyzing these results, a new framework to understand the unexpected activities of bi-phase surfaces is proposed. Based on the framework, several principles for the design of multi-phase catalysts are suggested. The theoretical framework extends the traditional catalysis theory to understand more complex systems.
Inaba, Masanori; Quinson, Jonathan; Bucher, Jan Rudolf; Arenz, Matthias
2018-03-16
We present a step-by-step tutorial to prepare proton exchange membrane fuel cell (PEMFC) catalysts, consisting of Pt nanoparticles (NPs) supported on a high surface area carbon, and to test their performance in thin film rotating disk electrode (TF-RDE) measurements. The TF-RDE methodology is widely used for catalyst screening; nevertheless, the measured performance sometimes considerably differs among research groups. These uncertainties impede the advancement of new catalyst materials and, consequently, several authors discussed possible best practice methods and the importance of benchmarking. The visual tutorial highlights possible pitfalls in the TF-RDE testing of Pt/C catalysts. A synthesis and testing protocol to assess standard Pt/C catalysts is introduced that can be used together with polycrystalline Pt disks as benchmark catalysts. In particular, this study highlights how the properties of the catalyst film on the glassy carbon (GC) electrode influence the measured performance in TF-RDE testing. To obtain thin, homogeneous catalyst films, not only the catalyst preparation, but also the ink deposition and drying procedures are essential. It is demonstrated that an adjustment of the ink's pH might be necessary, and how simple control measurements can be used to check film quality. Once reproducible TF-RDE measurements are obtained, determining the Pt loading on the catalyst support (expressed as Pt wt%) and the electrochemical surface area is necessary to normalize the determined reaction rates to either surface area or Pt mass. For the surface area determination, so-called CO stripping, or the determination of the hydrogen underpotential deposition (Hupd) charge, are standard. For the determination of the Pt loading, a straightforward and cheap procedure using digestion in aqua regia with subsequent conversion of Pt(IV) to Pt(II) and UV-vis measurements is introduced.
Inaba, Masanori; Quinson, Jonathan; Bucher, Jan Rudolf; Arenz, Matthias
2018-01-01
We present a step-by-step tutorial to prepare proton exchange membrane fuel cell (PEMFC) catalysts, consisting of Pt nanoparticles (NPs) supported on a high surface area carbon, and to test their performance in thin film rotating disk electrode (TF-RDE) measurements. The TF-RDE methodology is widely used for catalyst screening; nevertheless, the measured performance sometimes considerably differs among research groups. These uncertainties impede the advancement of new catalyst materials and, consequently, several authors discussed possible best practice methods and the importance of benchmarking. The visual tutorial highlights possible pitfalls in the TF-RDE testing of Pt/C catalysts. A synthesis and testing protocol to assess standard Pt/C catalysts is introduced that can be used together with polycrystalline Pt disks as benchmark catalysts. In particular, this study highlights how the properties of the catalyst film on the glassy carbon (GC) electrode influence the measured performance in TF-RDE testing. To obtain thin, homogeneous catalyst films, not only the catalyst preparation, but also the ink deposition and drying procedures are essential. It is demonstrated that an adjustment of the ink's pH might be necessary, and how simple control measurements can be used to check film quality. Once reproducible TF-RDE measurements are obtained, determining the Pt loading on the catalyst support (expressed as Pt wt%) and the electrochemical surface area is necessary to normalize the determined reaction rates to either surface area or Pt mass. For the surface area determination, so-called CO stripping, or the determination of the hydrogen underpotential deposition (Hupd) charge, are standard. For the determination of the Pt loading, a straightforward and cheap procedure using digestion in aqua regia with subsequent conversion of Pt(IV) to Pt(II) and UV-vis measurements is introduced. PMID:29608166
Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
Stacchiola, Darío J
2015-07-21
Studying catalytic processes at the molecular level is extremely challenging, due to the structural and chemical complexity of the materials used as catalysts and the presence of reactants and products in the reactor's environment. The most common materials used on catalysts are transition metals and their oxides. The importance of multifunctional active sites at metal/oxide interfaces has been long recognized, but a molecular picture of them based on experimental observations is only recently emerging. The initial approach to interrogate the surface chemistry of catalysts at the molecular level consisted of studying metal single crystals as models for reactive metal centers, moving later to single crystal or well-defined thin film oxides. The natural next iteration consisted in the deposition of metal nanoparticles on well-defined oxide substrates. Metal nanoparticles contain undercoordinated sites, which are more reactive. It is also possible to create architectures where oxide nanoparticles are deposited on top of metal single crystals, denominated inverse catalysts, leading in this case to a high concentration of reactive cationic sites in direct contact with the underlying fully coordinated metal atoms. Using a second oxide as a support (host), a multifunctional configuration can be built in which both metal and oxide nanoparticles are located in close proximity. Our recent studies on copper-based catalysts are presented here as an example of the application of these complementary model systems, starting from the creation of undercoordinated sites on Cu(111) and Cu2O(111) surfaces, continuing with the formation of mixed-metal copper oxides, the synthesis of ceria nanoparticles on Cu(111) and the codeposition of Cu and ceria nanoparticles on TiO2(110). Catalysts have traditionally been characterized before or after reactions and analyzed based on static representations of surface structures. It is shown here how dynamic changes on a catalyst's chemical state and morphology can be followed during a reaction by a combination of in situ microscopy and spectroscopy. In addition to determining the active phase of a catalyst by in situ methods, the presence of weakly adsorbed surface species or intermediates generated only in the presence of reactants can be detected, allowing in turn the comparison of experimental results with first principle modeling of specific reaction mechanisms. Three reactions are used to exemplify the approach: CO oxidation (CO + 1/2O2 → CO2), water gas shift reaction (WGSR) (CO + H2O → CO2 + H2), and methanol synthesis (CO2 + 3H2 → CH3OH + H2O). During CO oxidation, the full conversion of Cu(0) to Cu(2+) deactivates an initially outstanding catalyst. This can be remedied by the formation of a TiCuOx mixed-oxide that protects the presence of active partially oxidized Cu(+) cations. It is also shown that for the WGSR a switch occurs in the reaction mechanism, going from a redox process on Cu(111) to a more efficient associative pathway at the interface of ceria nanoparticles deposited on Cu(111). Similarly, the activation of CO2 at the ceria/Cu(111) interface allows its facile hydrogenation to methanol. Our combined studies emphasize the need of searching for optimal metal/oxide interfaces, where multifunctional sites can lead to new efficient catalytic reaction pathways.
Angeles-Wedler, Dalia; Mackenzie, Katrin; Kopinke, Frank-Dieter
2008-08-01
The practical application of Pd-catalyzed water treatment processes is impeded by catalyst poisoning by reduced sulfur compounds (RSCs). In this study, the potential of permanganate as a selective oxidant for the removal of microbially generated RSCs in water and as a regeneration agent for S-poisoned catalysts was evaluated. Hydrodechlorination using Pd/Al2O3 was carried out as a probe reaction in permanganate-pretreated water. The activity of the Pd catalysts in the successfully pretreated reaction medium was similar to that in deionized water. The catalyst showed no deactivation behavior in the presence of permanganate at a concentration level < or = 0.07 mM. With a residual oxidant concentration of > or = 0.08 mM, a significant but temporary inhibition of the catalytic dechlorination was observed. Unprotected Pd/Al2O3, which had been completely poisoned by sulfide, was reactivated by a combined treatment with permanganate and hydrazine. However, the anthropogenic water pollutants thiophene and carbon disulfide were resistant against permanganate. Together with the preoxidation of catalyst poisons, hydrophobic protection of the catalysts was studied. Pd/zeolite and various hydrophobically coated catalysts showed a higher stability against ionic poisons and permanganate than the uncoated catalyst. By means of a combination of oxidative water pretreatment and hydrophobic catalyst protection, we provide a new tool to harness the potential of Pd-catalyzed hydrodehalogenation for the treatment of real waters.
Studies of Heterogenous Palladium and Related Catalysts for Aerobic Oxidation of Primary Alcohols
NASA Astrophysics Data System (ADS)
Ahmed, Maaz S.
Development of aerobic oxidation methods is of critical importance for the advancement of green chemistry, where the only byproduct produced is water. Recent work by our lab has produced an efficient Pd based heterogenous catalyst capable of preforming the aerobic oxidation of a wide spectrum of alcohols to either carboxylic acid or methyl ester. The well-defined catalyst PdBi 0.35Te0.23/C (PBT/C) catalyst has been shown to can perform the aerobic oxidation of alcohols to carboxylic acids in basic conditions. Additionally, we explored this catalyst for a wide range of alcohols and probed the nature of the selectivity of PBT/C for methyl esterification over other side products. Finally, means by which the catalyst operates with respect to oxidation states of the three components, Pd, Bi, and Te, was probed. Carboxylic acids are an important functional group due to their prevalence in various pharmaceutically active agents, agrochemicals, and commodity scale chemicals. The well-defined catalyst PBT/C catalyst was discovered to be effective for the oxidation of a wide spectrum of alcohols to carboxylic acid. The demonstrated substrate scope and functional group tolerance are the widest reported for an aerobic heterogeneous catalyst. Additionally, the catalyst has been implemented in a packed bed reactor with quantitative yield of benzoic acid maintained throughout a two-day run. Biomass derived 5-(hydroxymethyl)furfural (HMF) is also oxidized to 2,5-furandicarboxylic acid (FDCA) in high yield. Exploration of PBT/C for the oxidative methyl esterification was found to exhibit exquisite selectivity for the initial oxidation of primary alcohol instead of methanol, which is the bulk solvent. We explored this selectivity and conclude that it results from various substrate-surface interactions, which are not attainable by methanol. The primary alcohol can outcompete the methanol for binding on the catalyst surface through various interactions between the side chain of the alcohol solvent and the surface of the catalyst: (listed in order of strength) lone pair-surface (heterocyclic primary alcohols) > pi-surface (aryl primary alcohols) > van der Waals-surface (alkyl primary alcohols). These interactions were previously underappreciated in condensed phase heterogeneously catalyzed aerobic oxidations. Bi and Te serve as synergistic promoters that enhance both the rate and yield of the reactions relative to reactions employing Pd alone or Pd in combination with Bi or with Te as the sole promoter. We report X-ray absorption spectroscopic studies of the heterogenous catalyst. These methods show that the promoters undergo oxidation in preference to Pd, maintaining the Pd surface in the active metallic state and preventing inhibition by surface Pd-oxide formation. The data also suggest formation of a Pd-Te alloy phase that modifies the electronic properties of the Pd catalyst. Collectively, these results provide valuable insights into the synergistic benefits of multiple promoters in heterogeneous catalytic oxidation reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
García-Melchor, Max; Vilella, Laia; López, Núria
2016-04-29
An attractive strategy to improve the performance of water oxidation catalysts would be to anchor a homogeneous molecular catalyst on a heterogeneous solid surface to create a hybrid catalyst. The idea of this combined system is to take advantage of the individual properties of each of the two catalyst components. We use Density Functional Theory to determine the stability and activity of a model hybrid water oxidation catalyst consisting of a dimeric Ir complex attached on the IrO 2(110) surface through two oxygen atoms. We find that homogeneous catalysts can be bound to its matrix oxide without losing significant activity.more » Hence, designing hybrid systems that benefit from both the high tunability of activity of homogeneous catalysts and the stability of heterogeneous systems seems feasible.« less
Surface Immobilization of Molecular Electrocatalysts for Energy Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bullock, R. Morris; Das, Atanu K.; Appel, Aaron M.
2017-03-22
Electrocatalysts are critically important for a secure energy future, as they facilitate the conversion between electrical energy and chemical energy. Molecular catalysts offer precise control of their structure, and the ability to modify the substituents to understand structure-reactivity relationships that are more difficult to achieve with heterogeneous catalysts. Molecular electrocatalysts can be immobilized on surfaces by covalent bonds or through non-covalent interactions. Advantages of surface immobilization include the need for less catalyst, avoidance of bimolecular decomposition pathways, and easier determination of catalyst lifetime. Copper-catalyzed click reactions are often used to form covalent bonds to surfaces, and pi-pi stacking of pyrenemore » substituents appended to the ligand of a molecular complex is a frequently used method to achieve non-covalent surface immobilization. This mini-review highlights surface confinement of molecular electrocatalysts for reduction of O2, oxidation of H2O, production of H2, and reduction of CO2.« less
Synthesis of 5'-O-DMT-2'-O-TBS Mononucleosides Using an Organic Catalyst.
Lee, Sunggi; Blaisdell, Thomas P; Kasaplar, Pinar; Sun, Xixi; Tan, Kian L
2014-06-24
This unit describes a highly effective method to produce 5'-O-DMT-2'-O-TBS mononucleosides selectively using a small organic catalyst. This methodology avoids the tedious protection/deprotection strategy necessary to differentiate the 2'- and 3'-hydroxyl groups in a ribonucleoside. The catalyst was synthesized in two steps, starting from the condensation of valinol and cyclopentyl aldehyde, followed by anionic addition of N-methylimidazole. Ring closure of the amino alcohol with N,N-dimethylformamide dimethyl acetal in methanol furnishes the catalyst. All four 2'-O-TBS protected mono-nucleosides, U, A(Bz), G(Ib), and C(Ac), were produced in a single step using 10 to 20 mol% of the catalyst at room temperature with excellent yields and selectivity. Further transformation to phosphoramidite demonstrates the utility of this protocol in the preparation of monomers useful for automated synthesis of RNA. Copyright © 2014 John Wiley & Sons, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Liquid Phase Methanol (LPMEOH{trademark}) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the US Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). The LPMEOH{trademark} Process Demonstration Unit is being built at a site located at the Eastman Chemical Company (Eastman) complex in Kingsport. The project involves the construction of an 80,000 gallons per day (260 tons per day (TPD)) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries,more » product distillation facilities, and utilities. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology is being integrated with existing coal-gasifiers.« less
Catalytic and electrocatalytic oxidation of ethanol over palladium-based nanoalloy catalysts.
Yin, Jun; Shan, Shiyao; Ng, Mei Shan; Yang, Lefu; Mott, Derrick; Fang, Weiqin; Kang, Ning; Luo, Jin; Zhong, Chuan-Jian
2013-07-23
The control of the nanoscale composition and structure of alloy catalysts plays an important role in heterogeneous catalysis. This paper describes novel findings of an investigation for Pd-based nanoalloy catalysts (PdCo and PdCu) for ethanol oxidation reaction (EOR) in gas phase and alkaline electrolyte. Although the PdCo catalyst exhibits a mass activity similar to Pd, the PdCu catalyst is shown to display a much higher mass activity than Pd for the electrocatalytic EOR in alkaline electrolyte. This finding is consistent with the finding on the surface enrichment of Pd on the alloyed PdCu surface, in contrast to the surface enrichment of Co in the alloyed PdCo surface. The viability of C-C bond cleavage was also probed for the PdCu catalysts in both gas-phase and electrolyte-phase EOR. In the gas-phase reaction, although the catalytic conversion rate for CO2 product is higher over Pd than PdCu, the nanoalloy PdCu catalyst appears to suppress the formation of acetic acid, which is a significant portion of the product in the case of pure Pd catalyst. In the alkaline electrolyte, CO2 was detected from the gas phase above the electrolyte upon acid treatment following the electrolysis, along with traces of aldehyde and acetic acid. An analysis of the electrochemical properties indicates that the oxophilicity of the base metal alloyed with Pd, in addition to the surface enrichment of metals, may have played an important role in the observed difference of the catalytic and electrocatalytic activities. In comparison with Pd alloyed with Co, the results for Pd alloyed with Cu showed a more significant positive shift of the reduction potential of the oxygenated Pd species on the surface. These findings have important implications for further fine-tuning of the Pd nanoalloys in terms of base metal composition toward highly active and selective catalysts for EOR.
He, Yuanyuan; Ford, Michael E.; Zhu, Minghui; ...
2016-04-14
We compared the molecular structures, surface acidity and catalytic activity for NO/NH 3/O 2 SCR of V 2O 5-WO 3/TiO 2 catalysts for two different synthesis methods: co-precipitation of aqueous vanadium and tungsten oxide precursors with TiO(OH) 2 and by incipient wetness impregnation of the aqueous precursors on a reference crystalline TiO 2 support (P25; primarily anatase phase). Bulk analysis by XRD showed that co-precipitation results in small and/or poorly ordered TiO 2(anatase) particles and that VO x and WO x do not form solid solutions with the bulk titania lattice. Surface analysis of the co-precipitated catalyst by High Sensitivity-Lowmore » Energy Ion Scattering (HS-LEIS) confirms that the VO x and WO x are surface segregated for the co-precipitated catalysts. In situ Raman and IR spectroscopy revealed that the vanadium and tungsten oxide components are present as surface mono-oxo O = VO 3 and O = WO 4 sites on the TiO 2 supports. Co-precipitation was shown for the first time to also form new mono-oxo surface VO 4 and WO 4 sites that appear to be anchored at surface defects of the TiO 2 support. IR analysis of chemisorbed ammonia showed the presence of both surface NH 3 * on Lewis acid sites and surface NH 4 +* on Brønsted acid sites. TPSR spectroscopy demonstrated that the specific SCR kinetics was controlled by the redox surface VO 4 species and that the surface kinetics was independent of TiO 2 synthesis method or presence of surface WO 5 sites. SCR reaction studies revealed that the surface WO5 sites possess minimal activity below ~325 °C and their primary function is to increase the adsorption capacity of ammonia. A relationship between the SCR activity and surface acidity was not found. The SCR reaction is controlled by the surface VO 4 sites that initiate the reaction at ~200 °C. The co-precipitated catalysts were always more active than the corresponding impregnated catalysts. Finally, we ascribe the higher activity of the co-precipitated catalysts to the presence of the new surface WO x sites associated surface defects on the TiO 2 support that increase the ammonia adsorption capacity.« less
40 CFR 90.427 - Catalyst thermal stress resistance evaluation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on...
40 CFR 90.427 - Catalyst thermal stress resistance evaluation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on...
40 CFR 90.427 - Catalyst thermal stress resistance evaluation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on...
40 CFR 90.427 - Catalyst thermal stress resistance evaluation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on...
40 CFR 90.427 - Catalyst thermal stress resistance evaluation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on...
Microwave-assisted preparation of dialkylimidazolium tetrachloroaluminates and their application as recyclable catalysts for the efficient and eco-friendly protection of alcohols as tetrahydropyranyl (THP) ethers are described; the same catalyst can also be utilized for the depro...
2017-01-01
The development of high-performance electrocatalytic systems for the controlled reduction of CO2 to value-added chemicals is a key goal in emerging renewable energy technologies. The lack of selective and scalable catalysts in aqueous solution currently hampers the implementation of such a process. Here, the assembly of a [MnBr(2,2′-bipyridine)(CO)3] complex anchored to a carbon nanotube electrode via a pyrene unit is reported. Immobilization of the molecular catalyst allows electrocatalytic reduction of CO2 under fully aqueous conditions with a catalytic onset overpotential of η = 360 mV, and controlled potential electrolysis generated more than 1000 turnovers at η = 550 mV. The product selectivity can be tuned by alteration of the catalyst loading on the nanotube surface. CO was observed as the main product at high catalyst loadings, whereas formate was the dominant CO2 reduction product at low catalyst loadings. Using UV–vis and surface-sensitive IR spectroelectrochemical techniques, two different intermediates were identified as responsible for the change in selectivity of the heterogenized Mn catalyst. The formation of a dimeric Mn0 species at higher surface loading was shown to preferentially lead to CO formation, whereas at lower surface loading the electrochemical generation of a monomeric Mn-hydride is suggested to greatly enhance the production of formate. These results emphasize the advantages of integrating molecular catalysts onto electrode surfaces for enhancing catalytic activity while allowing excellent control and a deeper understanding of the catalytic mechanisms. PMID:28885841
Application of a mixed metal oxide catalyst to a metallic substrate
NASA Technical Reports Server (NTRS)
Sevener, Kathleen M. (Inventor); Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Wisner, Daniel L. (Inventor)
2009-01-01
A method for applying a mixed metal oxide catalyst to a metallic substrate for the creation of a robust, high temperature catalyst system for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in propulsion systems. The method begins by forming a prepared substrate material consisting of a metallic inner substrate and a bound layer of a noble metal intermediate. Alternatively, a bound ceramic coating, or frit, may be introduced between the metallic inner substrate and noble metal intermediate when the metallic substrate is oxidation resistant. A high-activity catalyst slurry is applied to the surface of the prepared substrate and dried to remove the organic solvent. The catalyst layer is then heat treated to bind the catalyst layer to the surface. The bound catalyst layer is then activated using an activation treatment and calcinations to form the high-activity catalyst system.
NASA Astrophysics Data System (ADS)
Blomberg, Sara; Zhou, Jianfeng; Gustafson, Johan; Zetterberg, Johan; Lundgren, Edvin
2016-11-01
In recent years, efforts have been made in catalysis related surface science studies to explore the possibilities to perform experiments at conditions closer to those of a technical catalyst, in particular at increased pressures. Techniques such as high pressure scanning tunneling/atomic force microscopy (HPSTM/AFM), near ambient pressure x-ray photoemission spectroscopy (NAPXPS), surface x-ray diffraction (SXRD) and polarization-modulation infrared reflection absorption spectroscopy (PM-IRAS) at semi-realistic conditions have been used to study the surface structure of model catalysts under reaction conditions, combined with simultaneous mass spectrometry (MS). These studies have provided an increased understanding of the surface dynamics and the structure of the active phase of surfaces and nano particles as a reaction occurs, providing novel information on the structure/activity relationship. However, the surface structure detected during the reaction is sensitive to the composition of the gas phase close to the catalyst surface. Therefore, the catalytic activity of the sample itself will act as a gas-source or gas-sink, and will affect the surface structure, which in turn may complicate the assignment of the active phase. For this reason, we have applied planar laser induced fluorescence (PLIF) to the gas phase in the vicinity of an active model catalysts. Our measurements demonstrate that the gas composition differs significantly close to the catalyst and at the position of the MS, which indeed should have a profound effect on the surface structure. However, PLIF applied to catalytic reactions presents several beneficial properties in addition to investigate the effect of the catalyst on the effective gas composition close to the model catalyst. The high spatial and temporal resolution of PLIF provides a unique tool to visualize the on-set of catalytic reactions and to compare different model catalysts in the same reactive environment. The technique can be applied to a large number of molecules thanks to the technical development of lasers and detectors over the last decades, and is a complementary and visual alternative to traditional MS to be used in environments difficult to asses with MS. In this article we will review general considerations when performing PLIF experiments, our experimental set-up for PLIF and discuss relevant examples of PLIF applied to catalysis.
MicroChannel Reactors for ISRU Applications Using Nanofabricated Catalysts
NASA Astrophysics Data System (ADS)
Carranza, Susana; Makel, Darby B.; Vander Wal, Randall L.; Berger, Gordon M.; Pushkarev, Vladimir V.
2006-01-01
With the new direction of NASA to emphasize the exploration of the Moon, Mars and beyond, quick development and demonstration of efficient systems for In-Situ Resources Utilization (ISRU) is more critical and timely than ever before. Affordable planning and execution of prolonged manned space missions depend upon the utilization of local resources and the waste products which are formed in manned spacecraft and surface bases. This paper presents current development of miniaturized chemical processing systems that combine microchannel reactor design with nanofabricated catalysts. Carbon nanotubes (CNT) are used to produce a nanostructure within microchannel reactors, as support for catalysts. By virtue of their nanoscale dimensions, nanotubes geometrically restrict the catalyst particle size that can be supported upon the tube walls. By confining catalyst particles to sizes smaller than the CNT diameter, a more uniform catalyst particle size distribution may be maintained. The high dispersion permitted by the vast surface area of the nanoscale material serves to retain the integrity of the catalyst by reducing sintering or coalescence. Additionally, catalytic efficiency increases with decreasing catalyst particle size (reflecting higher surface area per unit mass) while chemical reactivity frequently is enhanced at the nanoscale. Particularly significant is the catalyst exposure. Rather than being confined within a porous material or deposited upon a 2-d surface, the catalyst is fully exposed to the reactant gases by virtue of the nanofabricated support structure. The combination of microchannel technology with nanofabricated catalysts provides a synergistic effect, enhancing both technologies with the potential to produce much more efficient systems than either technology alone. The development of highly efficient microchannel reactors will be applicable to multiple ISRU programs. By selection of proper nanofabricated catalysts, the microchannel reactors can be designed for the processes that generate the most benefit for each mission, from early demonstration missions to long term settlements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, E.E.
1996-09-30
The objective of this project is to use transient techniques to study gas surface interactions during the oxidative conversion of methane. Two groups of catalysts were studied: a double oxide of vanadium and phosphate or VPO, and double oxides of Ni, Co and Rh and lanthana. The objective of the studies involving the VPO catalyst was to understand gas-surface interactions leading to the formation of formaldehyde. In the second group of catalysts, involving metallo-oxides, the main objective was to study the gas-surface interactions that determine the selectivity to C{sub 2} hydrocarbons or synthesis gas. Transient techniques were used to studymore » the methane-surface interactions and the role of lattice oxygen. The selection of the double oxides was made on the hypothesis that the metal oxide would provide an increase interaction with methane whereas the phosphate or lanthanide would provide the sites for oxygen adsorption. The hypothesis behind this selection of catalysts was that increasing the methane interaction with the catalysts would lower the reaction temperature and thus increase the selectivity to the desired products over the total oxidation reaction. In both groups of catalysts the role of Li as a modifier of the selectivity was also studied in detail.« less
Karanjkar, Pranav U.; Burt, Samuel P.; Chen, Xiaoli; ...
2016-09-12
Tetrahydropyran-2-methanol undergoes selective C–O–C hydrogenolysis to produce 1,6-hexanediol using a bifunctional RhRe (reducible metal with an oxophilic promoter) catalyst supported on Vulcan XC-72 carbon (VXC) with >90% selectivity. This RhRe/VXC catalyst is stable over 40 h of reaction in a continuous flow fixed bed reactor. The hydrogenolysis activity of RhRe/VXC is two orders-of-magnitude higher than that of RhRe supported on Norit Darco 12X40 activated carbon (NDC). STEM–EDS analysis reveals that, compared to the RhRe/VXC catalyst, the Re and Rh component metals are segregated on the surface of the low activity RhRe/NDC catalyst, suggesting that Rh and Re in close proximitymore » (“bimetallic” particles) are required for an active hydrogenolysis catalyst. Differences in metal distribution on the carbon surfaces are, in turn, linked to the properties of the carbons: NDC has both a higher surface area and surface oxygen content. Thus, the low areal density of Rh and Re precursors on the high area NDC and/or interactions of the precursors with its O functional groups may interfere with the formation of the bimetallic species required for an active catalyst.« less
A highly active and stable IrO x/SrIrO 3 catalyst for the oxygen evolution reaction
Seitz, Linsey C.; Dickens, Colin F.; Nishio, Kazunori; ...
2016-09-02
Oxygen electrochemistry plays a key role in renewable energy technologies such as fuel cells and electrolyzers, but the slow kinetics of the oxygen evolution reaction (OER) limit the performance and commercialization of such devices. Here we report an iridium oxide/strontium iridium oxide (IrO x/SrIrO 3) catalyst formed during electrochemical testing by strontium leaching from surface layers of thin films of SrIrO 3. This catalyst has demonstrated specific activity at 10 milliamps per square centimeter of oxide catalyst (OER current normalized to catalyst surface area), with only 270 to 290 millivolts of overpotential for 30 hours of continuous testing in acidicmore » electrolyte. Here, density functional theory calculations suggest the formation of highly active surface layers during strontium leaching with IrO 3 or anatase IrO 2 motifs. The IrO x/SrIrO 3 catalyst outperforms known IrO x and ruthenium oxide (RuO x) systems, the only other OER catalysts that have reasonable activity in acidic electrolyte.« less
A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction.
Seitz, Linsey C; Dickens, Colin F; Nishio, Kazunori; Hikita, Yasuyuki; Montoya, Joseph; Doyle, Andrew; Kirk, Charlotte; Vojvodic, Aleksandra; Hwang, Harold Y; Norskov, Jens K; Jaramillo, Thomas F
2016-09-02
Oxygen electrochemistry plays a key role in renewable energy technologies such as fuel cells and electrolyzers, but the slow kinetics of the oxygen evolution reaction (OER) limit the performance and commercialization of such devices. Here we report an iridium oxide/strontium iridium oxide (IrO x /SrIrO 3 ) catalyst formed during electrochemical testing by strontium leaching from surface layers of thin films of SrIrO 3 This catalyst has demonstrated specific activity at 10 milliamps per square centimeter of oxide catalyst (OER current normalized to catalyst surface area), with only 270 to 290 millivolts of overpotential for 30 hours of continuous testing in acidic electrolyte. Density functional theory calculations suggest the formation of highly active surface layers during strontium leaching with IrO 3 or anatase IrO 2 motifs. The IrO x /SrIrO 3 catalyst outperforms known IrO x and ruthenium oxide (RuO x ) systems, the only other OER catalysts that have reasonable activity in acidic electrolyte. Copyright © 2016, American Association for the Advancement of Science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artyushkova, Kateryna; Workman, Michael J.; Matanovic, Ivana
The role of the interaction between doped carbon-based materials and ionic conductors is essential in multiple technologies, from fuel cells and energy storage devices to conductive polymer composites. In this paper, we report how the surface chemistry of transition metal–nitrogen–carbon (MNC) electrocatalysts affects catalyst–ionomer interaction and the resulting structure of cathodes. The cathode structure resulting from these interactions is directly related to the performance in membrane electrode assembly (MEA) fuel cells. To advance the development of platinum group metal (PGM)-free electrodes for the oxygen reduction reaction it is necessary to understand the structure of the catalyst layers with focus onmore » chemistry and distribution of active sites and ionomer morphology. To assess catalyst interaction with an ionomer, X-ray photoelectron spectroscopy is applied to study the chemistry of catalyst layers while density functional theory (DFT) is used to calculate adsorption energies of the ionomer side chain on different nitrogen species. We report that a high surface concentration of hydrogenated nitrogen at the surface of MNC catalysts causes inefficient ionomer morphology, while an abundance of surface oxides promotes both an efficient distribution of active sites and an optimal ionomer–catalyst interface. The critical role of protonation of nitrogen within catalytic layers in inhibiting proton transport during fuel cell operation is also suggested. As a result, this is the first report of the effect the surface chemistry of MNC catalysts, in the presence of the ionomer, has on the structure and performance of MEA electrodes.« less
Artyushkova, Kateryna; Workman, Michael J.; Matanovic, Ivana; ...
2017-12-18
The role of the interaction between doped carbon-based materials and ionic conductors is essential in multiple technologies, from fuel cells and energy storage devices to conductive polymer composites. In this paper, we report how the surface chemistry of transition metal–nitrogen–carbon (MNC) electrocatalysts affects catalyst–ionomer interaction and the resulting structure of cathodes. The cathode structure resulting from these interactions is directly related to the performance in membrane electrode assembly (MEA) fuel cells. To advance the development of platinum group metal (PGM)-free electrodes for the oxygen reduction reaction it is necessary to understand the structure of the catalyst layers with focus onmore » chemistry and distribution of active sites and ionomer morphology. To assess catalyst interaction with an ionomer, X-ray photoelectron spectroscopy is applied to study the chemistry of catalyst layers while density functional theory (DFT) is used to calculate adsorption energies of the ionomer side chain on different nitrogen species. We report that a high surface concentration of hydrogenated nitrogen at the surface of MNC catalysts causes inefficient ionomer morphology, while an abundance of surface oxides promotes both an efficient distribution of active sites and an optimal ionomer–catalyst interface. The critical role of protonation of nitrogen within catalytic layers in inhibiting proton transport during fuel cell operation is also suggested. As a result, this is the first report of the effect the surface chemistry of MNC catalysts, in the presence of the ionomer, has on the structure and performance of MEA electrodes.« less
Hydrogenation of p-chloronitrobenzene on Ni-B Nanometal Catalysts
NASA Astrophysics Data System (ADS)
Liu, Yu-Chang; Huang, Chung-Yin; Chen, Yu-Wen
2006-04-01
A series of Ni-B catalysts were prepared by mixing nickel acetate in 50% ethanol/water or methanol/water solution. The solution of sodium borohydride (1 M) in excess amount to nickel was then added dropwise into the mixture to ensure full reduction of nickel cations. The mol ratio of boron to nickel in mother solution was 3 to 1. The effects of preparation conditions such as temperature, stirring speed, and sheltering gas on the particle size, surface compositions, electronic states of surface atoms and catalytic activities of the Ni-B catalysts were studied. Ranel nickel catalyst was included for comparison. These catalysts were characterized by N2 sorption, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. The catalysts were tested for liquid phase hydrogenation of p-chloronitrobenzene. All of the catalysts prepared in this study had nanosized particles. The preparation condition has significant influence on the particle size and surface compositions of the catalyst. The Ni-B catalyst was passivated by boron; therefore it was more stable than Raney nickel and did not catch fire after exposure to air. The catalysts prepared under N2 flow could suppress the oxidation of Ni by the dissolved oxygen in water and had metallic state of nickel. The catalyst prepared with vigorous stirring at 25°C under N2 stream yielded the smallest particles and resulted in the highest activity. It was much more active than the Raney nickel catalyst. The reaction condition also has pronounced effect on the hydrogenation activity. Using methanol as the reaction solvent increased p-chloronitrobenzene conversion to a large extent, compared to that using ethanol as the reaction medium. The selectivity of main product ( p-chloroaniline) was greater than 99% on all of the Ni-B catalysts.
Wang, Hong; Sofer, Zdeněk; Eng, Alex Yong Sheng; Pumera, Martin
2014-11-10
A novel concept of an iridium-based bubble-propelled Janus-particle-type graphene micromotor with very high surface area and with very low catalyst loading is described. The low loading of Ir catalyst (0.54 at %) allows for fast motion of graphene microparticles with high surface area of 316.2 m(2) g(-1). The micromotor was prepared with a simple and scalable method by thermal exfoliation of iridium-doped graphite oxide precursor composite in hydrogen atmosphere. Oxygen bubbles generated from the decomposition of hydrogen peroxide at the iridium catalytic sites provide robust propulsion thrust for the graphene micromotor. The high surface area and low iridium catalyst loading of the bubble-propelled graphene motors offer great possibilities for dramatically enhanced cargo delivery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Du, Mingming; Huang, Jiale; Sun, Daohua; Li, Qingbiao
2016-03-01
The Au/TS-1 catalysts with different Au nanoparticles (NPs) sizes ranging from 3.1 to 8.4 nm but the same Au loading of 0.5 wt% were prepared by Cinnamomum camphora (CC) extract, and were used for propylene epoxidation. The results showed that the interaction between Au and TS-1 support surface is important for propylene epoxidation and much smaller Au NPs (<3 nm) are the dominant active sites. After reaction of 100 h, there is no decreasing in both the activity and the PO selectivity for the Au/TS-1 catalysts, and only 1.8 wt% of the carbonaceous deposits on the surface of the catalyst after reaction, suggesting that the desorption of the product from the modified catalysts surface by residual biomolecules is much easier.
NASA Astrophysics Data System (ADS)
Puskás, R.; Varga, T.; Grósz, A.; Sápi, A.; Oszkó, A.; Kukovecz, Á.; Kónya, Z.
2016-06-01
Extremely high specific surface area mesoporous carbon-supported Pd nanoparticle catalysts were prepared with both impregnation and polyol-based sol methods. The silica template used for the synthesis of mesoporous carbon was removed by both NaOH and HF etching. Pd/mesoporous carbon catalysts synthesized with the impregnation method has as high specific surface area as 2250 m2/g. In case of NaOH-etched impregnated samples, the turnover frequency of cyclohexene hydrogenation to cyclohexane at 313 K was obtained 14 molecules • site- 1 • s- 1. The specific surface area of HF-etched samples was higher compared to NaOH-etched samples. However, catalytic activity was 3-6 times higher on NaOH-etched samples compared to HF-etched samples, which can be attributed to the presence of sodium and surface hydroxylgroups of the catalysts etched with NaOH solution.
NASA Astrophysics Data System (ADS)
Kaplan, D.; Goor, M.; Alon, M.; Tsizin, S.; Burstein, L.; Rosenberg, Y.; Popov, I.; Peled, E.
2016-02-01
Pt-surface-enriched nanosize catalysts (Pt-SENS catalysts) with ruthenium and iridium cores, supported on XC72, were synthesized and characterized. The structure and composition of the catalysts are determined by Energy-Dispersive X-ray Spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS), Scanning Transmission Electron Microscopy (STEM) and X-Ray Diffraction (XRD). Electrochemical characterization tests, including oxygen-reduction-catalysis activity and durability studies of catalysts are performed with the use of cyclic-voltammetry and rotating-disk-electrode (RDE) techniques at room temperature. The ORR activity of the homemade catalysts is also compared to ORR activity of commercial 50%Pt/C catalyst. It is determined that the Ir-based catalyst (Pt/Ir/XC72) shows higher ORR activity in terms of A g-1 of Pt (at 0.85 V vs. RHE) than the Ru-based catalyst (Pt/Ru/XC72) and the commercial 50%Pt/C. The Ru-based catalyst shows similar ORR activity in terms of A g-1 of Pt, to that of the commercial 50%Pt/C, but with much lower durability.
Atomic Scale Structure-Chemistry Relationships at Oxide Catalyst Surfaces and Interfaces
NASA Astrophysics Data System (ADS)
McBriarty, Martin E.
Oxide catalysts are integral to chemical production, fuel refining, and the removal of environmental pollutants. However, the atomic-scale phenomena which lead to the useful reactive properties of catalyst materials are not sufficiently understood. In this work, the tools of surface and interface science and electronic structure theory are applied to investigate the structure and chemical properties of catalytically active particles and ultrathin films supported on oxide single crystals. These studies focus on structure-property relationships in vanadium oxide, tungsten oxide, and mixed V-W oxides on the surfaces of alpha-Al2O3 and alpha-Fe2O 3 (0001)-oriented single crystal substrates, two materials with nearly identical crystal structures but drastically different chemical properties. In situ synchrotron X-ray standing wave (XSW) measurements are sensitive to changes in the atomic-scale geometry of single crystal model catalyst surfaces through chemical reaction cycles, while X-ray photoelectron spectroscopy (XPS) reveals corresponding chemical changes. Experimental results agree with theoretical calculations of surface structures, allowing for detailed electronic structure investigations and predictions of surface chemical phenomena. The surface configurations and oxidation states of V and W are found to depend on the coverage of each, and reversible structural shifts accompany chemical state changes through reduction-oxidation cycles. Substrate-dependent effects suggest how the choice of oxide support material may affect catalytic behavior. Additionally, the structure and chemistry of W deposited on alpha-Fe 2O3 nanopowders is studied using X-ray absorption fine structure (XAFS) measurements in an attempt to bridge single crystal surface studies with real catalysts. These investigations of catalytically active material surfaces can inform the rational design of new catalysts for more efficient and sustainable chemistry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campos-Martin, J.M.; Fierro, J.L.G.; Guerrero-Ruiz, A.
1995-10-01
A series of copper-zinc-chromium catalysts of different compositions and calcination temperatures has been prepared, characterized by several techniques (BET specific surface area, XRD, gravimetric TPR, TPD-CO, and XPS), and tested under high alcohol synthesis (HAS) conditions. CO hydrogenation was carried out at reaction temperatures of 523-598 K and 50 bar total pressure. The influence of catalyst composition, calcination temperature, and surface characteristics on the HAS selectivity was studied. The optimum HAS yields were found in the low Cr content region, but chromium was needed. Although chromium oxide does not seem to be involved in the catalytic site, its presence inmore » the catalyst composition is essential, owing to the larger specific surfaces and catalyst stability obtained at the highest reaction temperatures. For low Cr content composition, the temperature-programmed reduction (TPR) profiles were shifted to higher temperatures and simultaneously larger CO{sub 2} amounts were found in the temperature-programmed desorption profiles of adsorbed CO (TPD-CO). Photoelectron spectra (XPS) revealed that the oxidation state of copper is Cu{sup 2+} in the calcined catalysts and Cu{sup O} in the reduced ones; Cu{sup +} was only stabilized in a CuCr{sub 2}O{sub 4} spinel in the Cr-rich catalysts. These features derived from catalyst characterization are discussed in the framework of the catalytic behaviour for HAS synthesis. 53 refs., 7 figs., 4 tabs.« less
Effective rate constants for nanostructured heterogeneous catalysts
NASA Astrophysics Data System (ADS)
Hendy, Shaun; Gaston, Nicola; Zhang, Philip; Lund, Nat
2012-02-01
There is currently a high level of interest in the use of nanostructured materials for catalysis. For instance, gold, which is largely inert in the bulk, can exhibit strong catalytic activity when in nanoparticle form. With precious metal catalysts such as Pt and Pd in high demand, the use of these materials in nanoparticle form can also substantially reduce costs by exposure of more surface area for the same volume of material. When reactants are plentiful, the effective activity of a nanoparticulate catalyst will increase roughly with its surface area. However, under diffusion-limited conditions, the reactant must diffuse to active sites on the catalyst, so a high surface area and a high density of active sites may bring diminishing returns if reactant is consumed faster than it arrives. Here we apply a mathematical homogenisation approach to derive simple expressions for the effective reactivity of a nanostructured catalyst under diffusion limited conditions that relate the intrinsic rate constants of the surfaces presented by the catalyst to an effective rate constant. When highly active catalytic sites, such as step edges or other defects are present, we show that distinct limiting cases emerge depending on the degree of overlap of the reactant depletion zone about each site. In gases, the size of this depletion zone is approximately the mean free path, so the effective reactivity will depend on the structure of the catalyst on that scale. We discuss implications for the optimal design of nanoparticle catalysts.
NASA Astrophysics Data System (ADS)
Gupta, Ravi; Sharma, Suresh C.
2017-07-01
An analytical model based on the various surface deposition processes and plasma sheath kinetics of the plasma species (electrons, positively charged ions, radicals, and neutrals) has been developed to investigate the effects of different plasmas (different etchants) on the catalyzed plasma aided growth of carbon nanofibers (CNFs). In particular, the model accounts the poisoning of the catalyst nanoparticle, i.e., the formation of the amorphous carbon layer on the catalyst active surface due to the continuous dissociation of incoming hydrocarbon species from the plasma. It is observed that oxidizers (H2O and O2) in the typical hydrocarbon/hydrogen (C2H2 + H2) plasma act as the dominant etchants and remove the amorphous carbon layer from the catalyst surface and, thus, preserve and enhance the catalyst activity. However, the growth rate of CNFs is much higher when O2 is added as an etchant in the reactive plasma as compared to H2O. This is due to the dual role played by the oxygen, i.e., (i) removal of amorphous carbon from the catalyst active surface, (ii) removal of hydrogen radicals that interact with the carbon species generated on the catalyst surface and suppress their diffusion through the catalyst nanoparticles. The CNF grows much longer in the presence of O2, therefore, etching of CNF tip and deformation of catalyst nanoparticle is the maximum, and hence, the CNF tip diameter is least. Moreover, in the present investigation, we also found that the relative concentrations of H2O or O2 species in the reactive plasma have significant effects on the CNF growth. Our theoretical results are in good agreement with the experimental observations.
NASA Astrophysics Data System (ADS)
González, J.; Chen, L. F.; Wang, J. A.; Manríquez, Ma.; Limas, R.; Schachat, P.; Navarrete, J.; Contreras, J. L.
2016-08-01
A series of vanadium oxide supported on Ti-MCM-41 catalysts was synthesized via the incipient impregnation method by varying the vanadia loading from 5 wt% to 10, 15, 20 and 25 wt%. These catalysts were characterized by a variety of advanced techniques for investigating their crystalline structure, textural properties, and surface chemistry information including surface acidity, reducibility, vanadium oxidation states, and morphological features. The catalytic activities of the catalysts were evaluated in a biphasic reaction system for oxidative desulfurization (ODS) of a model diesel containing 300 ppm of dibenzothiophene (DBT) where acetonitrile was used as extraction solvent and H2O2 as oxidant. ODS activity was found to be proportional to the V5+/(V4+ + V5+) values of the catalysts, indicating that the surface vanadium pentoxide (V2O5) was the active phase. Reaction temperature would influence significantly the ODS efficiency; high temperature, i.e., 80 °C, would lead to low ODS reaction due to the partial decomposition of oxidant. All the catalysts contained both Lewis and Brønsted acid sites but the former was predominant. The catalysts with low vanadia loading (5 or 10 wt%V2O5) had many Lewis acid sites and could strongly adsorb DBT molecule via the electron donation/acceptance action which resulted in an inhibition for the reaction of DBT with the surface peroxometallic species. The catalyst with high vanadia loading (25wt%V2O5/Ti-MCM-41) showed the highest catalytic activity and could remove 99.9% of DBT at 60 °C within 60 min.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Luan; Tao, Franklin, E-mail: franklin.tao.2011@gmail.com; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045
Tracking surface chemistry of a catalyst during catalysis is significant for fundamental understanding of catalytic performance of the catalyst since it allows for establishing an intrinsic correlation between surface chemistry of a catalyst at its working status and its corresponding catalytic performance. Ambient pressure X-ray photoelectron spectroscopy can be used for in-situ studies of surfaces of different materials or devices in a gas. To simulate the gaseous environment of a catalyst in a fixed-bed a flowing gaseous environment of reactants around the catalyst is necessary. Here, we report the development of a new flowing reaction cell for simulating in-situ studymore » of a catalyst surface under a reaction condition in gas of one reactant or during catalysis in a mixture of reactants of a catalytic reaction. The homemade reaction cell is installed in a high vacuum (HV) or ultrahigh vacuum (UHV) environment of a chamber. The flowing gas in the reaction cell is separated from the HV or UHV environment through well sealings at three interfaces between the reaction cell and X-ray window, sample door and aperture of front cone of an energy analyzer. Catalyst in the cell is heated through infrared laser beam introduced through a fiber optics interfaced with the reaction cell through a homemade feedthrough. The highly localized heating on the sample holder and Au-passivated internal surface of the reaction cell effectively minimizes any unwanted reactions potentially catalyzed by the reaction cell. The incorporated laser heating allows a fast heating and a high thermal stability of the sample at a high temperature. With this cell, a catalyst at 800 °C in a flowing gas can be tracked readily.« less
Al-Mamun, Mohammad; Zhu, Zhengju; Yin, Huajie; Su, Xintai; Zhang, Haimin; Liu, Porun; Yang, Huagui; Wang, Dan; Tang, Zhiyong; Wang, Yun; Zhao, Huijun
2016-08-04
A novel surface sulfur (S) doped cobalt (Co) catalyst for the oxygen evolution reaction (OER) is theoretically designed through the optimisation of the electronic structure of highly reactive surface atoms which is also validated by electrocatalytic OER experiments.
Ceyer, Sylvia T.; Lahr, David L.
2010-11-09
The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.
Yang, Yang; Liu, Xuegang; Ye, Gang; Zhu, Shan; Wang, Zhe; Huo, Xiaomei; Matyjaszewski, Krzysztof; Lu, Yuexiang; Chen, Jing
2017-04-19
Developing green and efficient technologies for surface modification of magnetic nanoparticles (MNPs) is of crucial importance for their biomedical and environmental applications. This study reports, for the first time, a novel strategy by integrating metal-free photoinduced electron transfer-atom transfer radical polymerization (PET-ATRP) with the bioinspired polydopamine (PDA) chemistry for controlled architecture of functional polymer brushes from MNPs. Conformal PDA encapsulation layers were initially generated on the surfaces of MNPs, which served as the protective shells while providing an ideal platform for tethering 2-bromo-2-phenylacetic acid (BPA), a highly efficient initiator. Metal-free PET-ATRP technique was then employed for controlled architecture of poly(glycidyl methacrylate) (PGMA) brushes from the core-shell MNPs by using diverse organic dyes as photoredox catalysts. Impacts of light sources (including UV and visible lights), photoredox catalysts, and polymerization time on the composition and morphology of the PGMA brushes were investigated. Moreover, the versatility of the PGMA-functionalized core-shell MNPs was demonstrated by covalent attachment of ethylenediamine (EDA), a model functional molecule, which afforded the MNPs with improved hydrophilicity, dispersibility, and superior binding ability to uranyl ions. The green methodology by integrating metal-free PET-ATRP with facile PDA chemistry would provide better opportunities for surface modification of MNPs and miscellaneous nanomaterials for biomedical and electronic applications.
NASA Astrophysics Data System (ADS)
Seo, Jeong Gil; Youn, Min Hye; Park, Sunyoung; Jung, Ji Chul; Kim, Pil; Chung, Jin Suk; Song, In Kyu
Two types of mesoporous γ-aluminas (denoted as A-A and A-S) are prepared by a hydrothermal method under different basic conditions using cationic surfactant (cetyltrimethylammonium bromide, CTAB) as a templating agent. A-A and A-S are synthesized in a medium of ammonia solution and sodium hydroxide solution, respectively. Ni/γ-Al 2O 3 catalysts (Ni/A-A and Ni/A-S) are then prepared by an impregnation method, and are applied to hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of a mesoporous γ-Al 2O 3 support on the catalytic performance of Ni/γ-Al 2O 3 is investigated. The identity of basic solution strongly affects the physical properties of the A-A and A-S supports. The high surface-area of the mesoporous γ-aluminas and the strong metal-support interaction of supported catalysts greatly enhance the dispersion of nickel species on the catalyst surface. The well-developed mesopores of the Ni/A-A and Ni/A-S catalysts prohibit the polymerization of carbon species on the catalyst surface during the reaction. In the steam reforming of LNG, both Ni/A-A and Ni/A-S catalysts give better catalytic performance than the nickel catalyst supported on commercial γ-Al 2O 3 (Ni/A-C). In addition, the Ni/A-A catalyst is superior to the Ni/A-S catalyst. The relatively strong metal-support interaction of Ni/A-A catalyst effectively suppresses the sintering of metallic nickel and the carbon deposition in the steam reforming of LNG. The large pores of the Ni/A-A catalyst also play an important role in enhancing internal mass transfer during the reaction.
Bulk Preparation of Holey Graphene via Controlled Catalytic Oxidation
NASA Technical Reports Server (NTRS)
Connell, John (Inventor); Watson, Kent (Inventor); Ghose, Sayata (Inventor); Lin, Yi (Inventor)
2015-01-01
A scalable method allows preparation of bulk quantities of holey carbon allotropes with holes ranging from a few to over 100 nm in diameter. Carbon oxidation catalyst nanoparticles are first deposited onto a carbon allotrope surface in a facile, controllable, and solvent-free process. The catalyst-loaded carbons are then subjected to thermal treatment in air. The carbons in contact with the carbon oxidation catalyst nanoparticles are selectively oxidized into gaseous byproducts such as CO or CO.sub.2, leaving the surface with holes. The catalyst is then removed via refluxing in diluted nitric acid to obtain the final holey carbon allotropes. The average size of the holes correlates strongly with the size of the catalyst nanoparticles and is controlled by adjusting the catalyst precursor concentration. The temperature and time of the air oxidation step, and the catalyst removal treatment conditions, strongly affect the morphology of the holes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anthony, R.G.; Akgerman, A.
1993-02-01
The objectives of this project are to develop a new catalyst, the kinetics for this catalyst, reactor models for trickle bed, slurry and fixed bed reactors, and simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for conversion of a hydrogen lean synthesis gas to isobutylene. The goals for the quarter include: (1) Conduct experiments using a trickle bed reactor to determine the effect of reactor type on the product distribution. (2) Use spherical pellets of silica as a support for zirconia for the purpose of increasing surface, area and performancemore » of the catalysts. (3) Conduct exploratory experiments to determine the effect of super critical drying of the catalyst on the catalyst surface area and performance. (4) Prepare a ceria/zirconia catalyst by the precipitation method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hao; Yin, Feng-Xiang; Chen, Biao-Hua
Developing carbon catalyst materials using natural, abundant and renewable resources as precursors plays an increasingly important role in clean energy generation and environmental protection. In this work, N-doped pomelo-peel-derived carbon (NPC) materials were prepared using a widely available food waste-pomelo peels and melamine. The synthetic NPC exhibits well-defined porosities and a highly doped-N content (e.g. 6.38 at% for NPC-2), therefore affords excellent oxygen reduction reaction (ORR) catalytic activities in alkaline electrolytes. NPC was further integrated with ZIF-67 to form ZIF-67@NPC hybrids through solvothermal reactions. The hybrid catalysts show substantially enhanced ORR catalytic activities comparable to that of commercial 20 wamore » Pt/C. Furthermore, the catalysts also exhibit excellent oxygen evolution reaction (OER) catalytic activities. Among all prepared ZIF-67@NPC hybrids, the optimal composition with ZIF-67 to NPC ratio of 2:1 exhibits the best ORR and OER bifunctional catalytic performance and the smallest Delta E (E-OER@10 mA cm(-2)-E-ORR@-1 mA cm(-2)) value of 0.79 V. The catalyst also demonstrated desirable 4-electron transfer pathways and superior catalytic stabilities. The Co-N-4 in ZIF-67, electrochemical active surface area, and the strong interactions between ZIF-67 and NPC are attributed as the main contributors to the bifunctional catalytic activities. These factors act synergistically, resulting in substantially enhanced bifunctional catalytic activities and stabilities; consequently, this hybrid catalyst is among the best of the reported bifunctional electrocatalysts and is promising for use in metal-air batteries and fuel cells. (C) 2016 Elsevier B.V. All rights reserved.« less
Guo, Ying; Lippitz, Andreas; Saftien, Paul; Unger, Wolfgang E S; Kemnitz, Erhard
2015-03-21
Sol-gel prepared ternary FeF3-MgF2 materials have become promising heterogeneous catalysts due to their porosity and surface Lewis/Brønsted acidity (bi-acidity). Despite the good catalytic performance, nanoscopic characterisations of this type of material are still missing and the key factors controlling the surface properties have not yet been identified, impeding both a better understanding and further development of ternary fluoride catalysts. In this study, we characterised the interaction between the bi-acidic component (FeF3) and the matrix (MgF2) on the nano-scale. For the first time, the formation pathway of FeF3-MgF2 was profiled and the template effect of MgF2 during the synthesis process was discovered. Based on these new insights two novel materials, FeF3-CaF2 and FeF3-SrF2, were established, revealing that with decreasing the atomic numbers (from Sr to Mg), the ternary fluorides exhibited increasing surface acidity and surface area but decreasing pore size. These systematic changes gave rise to a panel of catalysts with tuneable surface and bulk properties either by changing the matrix alkaline earth metal fluoride or by adjusting their ratios to Fe or both. The template effect of the alkaline earth metal fluoride matrix was identified as the most probable key factor determining the surface properties and further influencing the catalytic performance in ternary fluoride based catalysts, and paves the way to targeted design of next-generation catalysts with tunable properties.
Thermally stable single-atom platinum-on-ceria catalysts via atom trapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, John; Xiong, Haifeng; DelaRiva, Andrew
2016-07-08
Catalysts based on single atoms of scarce precious metals can lead to more efficient use through enhanced reactivity and selectivity. However, single atoms on catalyst supports can be mobile and aggregate into nanoparticles when heated at elevated temperatures. High temperatures are detrimental to catalyst performance unless these mobile atoms can be trapped. We used ceria powders having similar surface areas but different exposed surface facets. When mixed with a platinum/ aluminum oxide catalyst and aged in air at 800°C, the platinum transferred to the ceria and was trapped. Polyhedral ceria and nanorods were more effective than ceria cubes at anchoringmore » the platinum. Performing synthesis at high temperatures ensures that only the most stable binding sites are occupied, yielding a sinter-resistant, atomically dispersed catalyst.« less
Catalyst inks and method of application for direct methanol fuel cells
Zelenay, Piotr; Davey, John; Ren, Xiaoming; Gottesfeld, Shimshon; Thomas, Sharon C.
2004-02-24
Inks are formulated for forming anode and cathode catalyst layers and applied to anode and cathode sides of a membrane for a direct methanol fuel cell. The inks comprise a Pt catalyst for the cathode and a Pt--Ru catalyst for the anode, purified water in an amount 4 to 20 times that of the catalyst by weight, and a perfluorosulfonic acid ionomer in an amount effective to provide an ionomer content in the anode and cathode surfaces of 20% to 80% by volume. The inks are prepared in a two-step process while cooling and agitating the solutions. The final solution is placed in a cooler and continuously agitated while spraying the solution over the anode or cathode surface of the membrane as determined by the catalyst content.
Controlling bottom-up rapid growth of single crystalline gallium nitride nanowires on silicon.
Wu, Ko-Li; Chou, Yi; Su, Chang-Chou; Yang, Chih-Chaing; Lee, Wei-I; Chou, Yi-Chia
2017-12-20
We report single crystalline gallium nitride nanowire growth from Ni and Ni-Au catalysts on silicon using hydride vapor phase epitaxy. The growth takes place rapidly; efficiency in time is higher than the conventional nanowire growth in metal-organic chemical vapor deposition and thin film growth in molecular beam epitaxy. The effects of V/III ratio and carrier gas flow on growth are discussed regarding surface polarity and sticking coefficient of molecules. The nanowires of gallium nitride exhibit excellent crystallinity with smooth and straight morphology and uniform orientation. The growth mechanism follows self-assembly from both catalysts, where Au acts as a protection from etching during growth enabling the growth of ultra-long nanowires. The photoluminescence of such nanowires are adjustable by tuning the growth parameters to achieve blue emission. The practical range of parameters for mass production of such high crystal quality and uniformity of nanowires is suggested.
Towards Stable CuZnAl Slurry Catalysts for the Synthesis of Ethanol from Syngas
NASA Astrophysics Data System (ADS)
Dong, Weibing; Gao, Zhihua; Zhang, Qian; Huang, Wei
2018-07-01
A stable CuZnAl slurry catalyst for the synthesis of ethanol from syngas has been developed by adjusting the heat treatment conditions of the complete liquid-phase method. The activity evaluation results showed that the CuZnAl catalyst, when heat-treated under a high pressure and temperature, was a stable catalyst for the synthesis of ethanol. The selectivity of ethanol using the CuZnAl slurry catalyst, which was heat-treated at 553 K under 4.0 MPa, increased continuously with time and was stable at approximately 26.00% after 144 h. The characterization results indicated that the CuZnAl slurry catalyst heat-treated under high pressure conditions could facilitate the formation of a more perfect structure with a larger specific surface area. The prepared catalyst contained a balance of strong and weak acid sites, an appropriate form of Cu2O and a high Cu/Zn atomic ratio at the catalyst surface, providing its stability in ethanol synthesis from syngas.
Jung, You-Shick; Yoon, Wang-Lai; Seo, Yong-Seog; Rhee, Young-Woo
2012-01-01
Ni-Al2O3 catalysts are prepared via the co-precipitation method using various precipitants: urea, Na2CO3, NaOH, K2CO3, KOH and NH4OH. The effects of the precipitants on the physicochemical properties and catalytic activities of the Ni-Al2O3 catalysts are investigated. The Ni50-urea catalyst displays the largest specific surface area and the highest pore volume. This catalyst also exhibits the highest Ni dispersion and the largest Ni surface area. Ni50-urea catalyst prepared with urea as precipitant and Ni50-K2CO3 catalyst prepared with K2CO3 as precipitant exhibit high pore volumes and good catalytic activities for methane steam reforming. The Ni50-urea catalyst exhibits the best physicochemical properties and shows good catalytic activity and a strong resistance to electrolyte contamination. PMID:22962548
Barwe, Stefan; Masa, Justus; Andronescu, Corina; Mei, Bastian; Schuhmann, Wolfgang; Ventosa, Edgar
2017-07-10
Engineering stable electrodes using highly active catalyst nanopowders for electrochemical water splitting remains a challenge. We report an innovative and general approach for attaining highly stable catalyst films with self-healing capability based on the in situ self-assembly of catalyst particles during electrolysis. The catalyst particles are added to the electrolyte forming a suspension that is pumped through the electrolyzer. Particles with negatively charged surfaces stick onto the anode, while particles with positively charged surfaces stick to the cathode. The self-assembled catalyst films have self-healing properties as long as sufficient catalyst particles are present in the electrolyte. The proof-of-concept was demonstrated in a non-zero gap alkaline electrolyzer using NiFe-LDH and Ni x B catalyst nanopowders for anode and cathode, respectively. Steady cell voltages were maintained for at least three weeks during continuous electrolysis at 50-100 mA cm -2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Qi, Wei; Yan, Pengqiang; Su, Dang Sheng
2018-03-20
Sustainable and environmentally benign catalytic processes are vital for the future to supply the world population with clean energy and industrial products. The replacement of conventional metal or metal oxide catalysts with earth abundant and renewable nonmetallic materials has attracted considerable research interests in the field of catalysis and material science. The stable and efficient catalytic performance of nanocarbon materials was discovered at the end of last century, and these materials are considered as potential alternatives for conventional metal-based catalysts. With its rapid development in the past 20 years, the research field of carbon catalysis has been experiencing a smooth transition from the discovery of novel nanocarbon materials or related new reaction systems to the atomistic-level mechanistic understanding on the catalytic process and the subsequent rational design of the practical catalytic reaction systems. In this Account, we summarize the recent progress in the kinetic and mechanistic studies on nanocarbon catalyzed alkane oxidative dehydrogenation (ODH) reactions. The paper attempts to extract general concepts and basic regularities for carbon catalytic process directing us on the way for rational design of novel efficient metal-free catalysts. The nature of the active sites for ODH reactions has been revealed through microcalorimetric analysis, ambient pressure X-ray photoelectron spectroscopy (XPS) measurement, and in situ chemical titration strategies. The detailed kinetic analysis and in situ catalyst structure characterization suggests that carbon catalyzed ODH reactions involve the redox cycles of the ketonic carbonyl-hydroxyl pairs, and the key physicochemical parameters (activation energy, reaction order, and rate/equilibrium constants, etc.) of the carbon catalytic systems are proposed and compared with conventional transition metal oxide catalysts. The proposal of the intrinsic catalytic activity (TOF) provides the possibility for the fair comparisons of different nanocarbon catalysts and the consequent structure-function relation regularity. Surface modification and heteroatom doping are proved as the most effective strategies to adjust the catalytic property (activity and product selectivity etc.) of the nanocarbon catalysts. Nanocarbon is actually a proper candidate platform helping us to understand the classical catalytic reaction mechanism better, since there is no lattice oxygen and all the catalytic process happens on nanocarbon surface. This Account also exhibits the importance of the in situ structural characterizations for heterogeneous nanocarbon catalysis. The research strategy and methods proposed for carbon catalysts may also shed light on other complicated catalytic systems or fields concerning the applications of nonmetallic materials, such as energy storage and environment protection etc.
Robinson, Allison; Ferguson, Glen Allen; Gallagher, James R.; ...
2016-05-26
Supported bimetallic catalysts consisting of a noble metal (e.g., Pt) and an oxophilic metal (e.g., Mo) have received considerable attention for the hydrodeoxygenation of oxygenated aromatic compounds produced from biomass fast pyrolysis. Here, we report that PtMo can catalyze m-cresol deoxygenation via a pathway involving an initial tautomerization step. In contrast, the dominant mechanism on monometallic Pt/Al 2O 3 was found to be sequential Pt-catalyzed ring hydrogenation followed by dehydration on the support. Bimetallic Pt 10Mo 1 and Pt 1Mo 1 catalysts were found to produce the completely hydrogenated and deoxygenated product, methylcyclohexane (MCH), with much higher yields than monometallicmore » Pt catalysts with comparable metal loadings and surface areas. Over an inert carbon support, MCH formation was found to be slow over monometallic Pt catalysts, while deoxygenation was significant for PtMo catalysts even in the absence of an acidic support material. Experimental studies of m-cresol deoxygenation together with density functional theory calculations indicated that Mo sites on the PtMo bimetallic surface dramatically lower the barrier for m-cresol tautomerization and subsequent deoxygenation. The accessibility of this pathway arises from the increased interaction between the oxygen of m-cresol and the Mo sites in the Pt surface. This interaction significantly alters the configuration of the precursor and transition states for tautomerization. Lastly, a suite of catalyst characterization techniques including X-ray absorption spectroscopy (XAS) and temperature-programmed reduction (TPR) indicate that Mo was present in a reduced state on the bimetallic surface under conditions relevant for reaction. Overall, these results suggest that the use of bifunctional metal catalysts can result in new reaction pathways that are unfavorable on monometallic noble metal catalysts.« less
NASA Astrophysics Data System (ADS)
Komarneni, Mallikharjuna Rao
Surface science investigations of model catalysts have contributed significantly to heterogeneous catalysis over the past several decades. The unique properties of nanomaterials are being exploited in catalysis for the development of highly active and selective catalysts. Surface science investigations of model catalysts such as inorganic fullerene-like (IF) nanoparticles (NP), inorganic nanotubes (INT), and the oxide-supported nanoclusters are included in this dissertation. Thermal desorption spectroscopy and molecular beam scattering were respectively utilized to study the adsorption kinetics and dynamics of gas phase molecules on catalyst surfaces. In addition, ambient pressure kinetics experiments were performed to characterize the catalytic activity of hydrodesulfurization (HDS) nanocatalysts. The nanocatalysts were characterized with a variety of techniques, including Auger electron spectroscopy, x-ray photoelectron spectroscopy, electron microscopy, and x-ray diffraction. The adsorption kinetics studies of thiophene on novel HDS catalysts provided the first evidence for the presence of different adsorption sites on INT-WS2. Additionally, the adsorption sites on IF-MoS2 NP and silica-supported Mo clusters (Mo/silica) were characterized. Furthermore, the C-S bond activation energy of thiophene on Mo/silica was determined. These studies finally led to the fabrication of Ni/Co coated INT-WS2, which showed good catalytic activity towards HDS of thiophene. The studies of methanol synthesis catalysts include the adsorption kinetics and dynamics studies of CO and CO2 on Cu/silica and silica-supported EBL-fabricated Cu/CuOx nanoclusters. The adsorption dynamics of CO on Cu/silica are modeled within the frame work of the capture zone model (CZM), and the active sites of the silica-supported Au/Cu catalysts are successfully mapped. Studies on EBL model catalysts identify the rims of the CuOx nanoclusters as catalytically active sites. This observation has implications for new methanol catalyst design.
Method of fabrication of anchored nanostructure materials
Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei
2013-11-26
Methods for fabricating anchored nanostructure materials are described. The methods include heating a nano-catalyst under a protective atmosphere to a temperature ranging from about 450.degree. C. to about 1500.degree. C. and contacting the heated nano-catalysts with an organic vapor to affix carbon nanostructures to the nano-catalysts and form the anchored nanostructure material.
Wen, Xin; Ma, Zhenhua; Zhang, Lei; Sha, Xiangling; He, Huibin; Zeng, Tianyou; Wang, Yusu; Chen, Jihao
2017-01-01
Selective catalytic oxidation (SCO) method is commonly used in wet denitration technology; NO after the catalytic oxidation can be removed with SO2 together by wet method. Among the SCO denitration catalysts, pyrolysis coke is favored by the advantages of low cost and high catalytic activity. In this paper, SCO method combined with pyrolysis coke catalyst was used to remove NO from flue gas. The effects of different SCO operating conditions and different pyrolysis coke catalyst made under different process conditions were studied. Besides, the specific surface area of the catalyst and functional groups were analyzed with surface area analyzer and Beohm titration. The results are: (1) The optimum operating conditions of SCO is as follows: the reaction temperature is 150°C and the oxygen content is 6%. (2) The optimum pyrolysis coke catalyst preparation processes are as follows: the pyrolysis final temperature is 750°C, and the heating rate is 44°C / min. (3) The characterization analysis can be obtained: In the denitration reaction, the basic functional groups and the phenolic hydroxyl groups of the catalyst play a major role while the specific surface area not. PMID:28793346
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manos Mavrikakis; James A. Dumesic; Amit A. Gokhale
2005-03-22
Efforts during this first year focused on four areas: (1) searching/summarizing published FTS mechanistic and kinetic studies of FTS reactions on iron catalysts; (2) construction of mass spectrometer-TPD and Berty CSTR reactor systems; (3) preparation and characterization of unsupported iron and alumina-supported iron catalysts at various iron loadings (4) Determination of thermochemical parameters such as binding energies of reactive intermediates, heat of FTS elementary reaction steps, and kinetic parameters such as activation energies, and frequency factors of FTS elementary reaction steps on a number of model surfaces. Literature describing mechanistic and kinetic studies of Fischer-Tropsch synthesis on iron catalysts wasmore » compiled in a draft review. Construction of the mass spectrometer-TPD system is 90% complete and of a Berty CSTR reactor system 98% complete. Three unsupported iron catalysts and three alumina-supported iron catalysts were prepared by nonaqueous-evaporative deposition (NED) or aqueous impregnation (AI) and characterized by chemisorption, BET, extent-of-reduction, XRD, and TEM methods. These catalysts, covering a wide range of dispersions and metal loadings, are well-reduced and relatively thermally stable up to 500-600 C in H{sub 2}, thus ideal for kinetic and mechanistic studies. The alumina-supported iron catalysts will be used for kinetic and mechanistic studies. In the coming year, adsorption/desorption properties, rates of elementary steps, and global reaction rates will be measured for these catalysts, with and without promoters, providing a database for understanding effects of dispersion, metal loading, and support on elementary kinetic parameters and for validation of computational models that incorporate effects of surface structure and promoters. Furthermore, using state-of-the-art self-consistent Density Functional Theory (DFT) methods, we have extensively studied the thermochemistry and kinetics of various elementary steps on three different model surfaces: (1) Fe(110), (2) Fe(110) modified by subsurface C, and (3) Fe surface modified with Pt adatoms. These studies have yielded valuable insights into the reactivity of Fe surfaces for FTS, and provided accurate estimates for the effect of Fe modifiers such as subsurface C and surface Pt.« less
He, Yuanyuan; Ford, Michael E.; Zhu, Minghui; ...
2016-02-02
A series of supported WO 3/TiO 2 catalysts was prepared by a new synthesis procedure involving co-precipitation of an aqueous TiO(OH) 2 and (NH 4) 10W 12O 41*5H 2O slurry under controlled pH conditions. The morphological properties, molecular structures, surface acidity and surface chemistry of the supported WO 3/TiO 2 catalysts were determined with BET, in situ Raman, in situ IR and temperature-programmed surface reaction (TPSR) spectroscopy, respectively. Isotopic 18O- 16O exchange demonstrated that tungsten oxide was exclusively present as surface WO x species on the TiO 2 support with mono-oxo W=O coordination. In contrast to previous studies employing impregnationmore » synthesis that found only surface one mono-oxo O=WO 4 site on TiO 2, the co-precipitation procedure resulted in the formation of two distinct surface WO x species: mono-oxo O=WO 4 (~1010-1017 cm -1) on low defect density patches of TiO 2 and a second mono-oxo O=WO 4 (~983-986 cm -1) on high defect density patches of TiO 2. The concentration of the second WO x surface species increases as a function of solution pH. Both surface WOx sites, however, exhibited the same NO/NH 3 SCR reactivity. The co-precipitated WO 3-TiO 2 catalysts synthesized in alkaline solutions exhibited enhanced performance for the NO/NH 3 SCR reaction that is ascribed to the greater number of surface defects on the resulting TiO2 support. For the co-precipitated catalyst prepared at pH10, surface NH 4 + species on Br nsted acid sites were found to be more reactive than surface NH 3* species on Lewis acid sites for SCR of NO with NH 3.« less
Confined catalysis under two-dimensional materials
Li, Haobo; Xiao, Jianping; Bao, Xinhe
2017-01-01
Confined microenvironments formed in heterogeneous catalysts have recently been recognized as equally important as catalytically active sites. Understanding the fundamentals of confined catalysis has become an important topic in heterogeneous catalysis. Well-defined 2D space between a catalyst surface and a 2D material overlayer provides an ideal microenvironment to explore the confined catalysis experimentally and theoretically. Using density functional theory calculations, we reveal that adsorption of atoms and molecules on a Pt(111) surface always has been weakened under monolayer graphene, which is attributed to the geometric constraint and confinement field in the 2D space between the graphene overlayer and the Pt(111) surface. A similar result has been found on Pt(110) and Pt(100) surfaces covered with graphene. The microenvironment created by coating a catalyst surface with 2D material overlayer can be used to modulate surface reactivity, which has been illustrated by optimizing oxygen reduction reaction activity on Pt(111) covered by various 2D materials. We demonstrate a concept of confined catalysis under 2D cover based on a weak van der Waals interaction between 2D material overlayers and underlying catalyst surfaces. PMID:28533413
NASA Astrophysics Data System (ADS)
Shen, Meng; Han, Ali; Wang, Xijun; Ro, Yun Goo; Kargar, Alireza; Lin, Yue; Guo, Hua; Du, Pingwu; Jiang, Jun; Zhang, Jingyu; Dayeh, Shadi A.; Xiang, Bin
2015-02-01
Catalysts play a significant role in clean renewable hydrogen fuel generation through water splitting reaction as the surface of most semiconductors proper for water splitting has poor performance for hydrogen gas evolution. The catalytic performance strongly depends on the atomic arrangement at the surface, which necessitates the correlation of the surface structure to the catalytic activity in well-controlled catalyst surfaces. Herein, we report a novel catalytic performance of simple-synthesized porous NiO nanowires (NWs) as catalyst/co-catalyst for the hydrogen evolution reaction (HER). The correlation of catalytic activity and atomic/surface structure is investigated by detailed high resolution transmission electron microscopy (HRTEM) exhibiting a strong dependence of NiO NW photo- and electrocatalytic HER performance on the density of exposed high-index-facet (HIF) atoms, which corroborates with theoretical calculations. Significantly, the optimized porous NiO NWs offer long-term electrocatalytic stability of over one day and 45 times higher photocatalytic hydrogen production compared to commercial NiO nanoparticles. Our results open new perspectives in the search for the development of structurally stable and chemically active semiconductor-based catalysts for cost-effective and efficient hydrogen fuel production at large scale.
Jeong, Heondo; Na, Jeong-Geol; Jang, Min Su; Ko, Chang Hyun
2016-05-01
In hydrogen production by methanol steam reforming reaction with microchannel reactor, Al2O3 thin film formed by atomic layer deposition (ALD) was introduced on the surface of microchannel reactor prior to the coating of catalyst particles. Methanol conversion rate and hydrogen production rate, increased in the presence of Al2O3 thin film. Over-view and cross-sectional scanning electron microscopy study showed that the adhesion between catalyst particles and the surface of microchannel reactor enhanced due to the presence of Al2O3 thin film. The improvement of hydrogen production rate inside the channels of microreactor mainly came from the stable fixation of catalyst particles on the surface of microchannels.
Method for dispersing catalyst onto particulate material and product thereof
Utz, Bruce R.; Cugini, Anthony V.
1992-01-01
A method for dispersing finely divided catalyst precursors onto the surface of coal or other particulate material includes the steps of forming a wet paste mixture of the particulate material and a liquid solution containing a dissolved transition metal salt, for instance a solution of ferric nitrate. The wet paste mixture is in a state of incipient wetness with all of this solution adsorbed onto the surfaces of the particulate material without the presence of free moisture. On adding a precipitating agent such as ammonia, a catalyst precursor such as hydrated iron oxide is deposited on the surfaces of the coal. The catalyst is activated by converting it to the sulfide form for the hydrogenation or direct liquefaction of the coal.
Method for dispersing catalyst onto particulate material
Utz, Bruce R.; Cugini, Anthony V.
1992-01-01
A method for dispersing finely divided catalyst precursors onto the surface of coal or other particulate material includes the steps of forming a wet paste mixture of the particulate material and a liquid solution containing a dissolved transition metal salt, for instance a solution of ferric nitrate. The wet paste mixture is in a state of incipient wetness with all of this solution adsorbed onto the surfaces of the particulate material without the presence of free moisture. On adding a precipitating agent such as ammonia, a catalyst precursor such as hydrated iron oxide is deposited on the surfaces of the coal. The catalyst is activated by converting it to the sulfide form for the hydrogenation or direct liquefaction of the coal.
Controlled growth-reversal of catalytic carbon nanotubes under electron-beam irradiation.
Stolojan, Vlad; Tison, Yann; Chen, Guan Yow; Silva, Ravi
2006-09-01
The growth of carbon nanotubes from Ni catalysts is reversed and observed in real time in a transmission electron microscope, at room temperature. The Ni catalyst is found to be Ni3C and remains attached to the nanotube throughout the irradiation sequence, indicating that C most likely diffuses on the surface of the catalyst to form nanotubes. We calculate the energy barrier for saturating the Ni3C (2-13) surface with C to be 0.14 eV, thus providing a low-energy surface for the formation of graphene planes.
NASA Astrophysics Data System (ADS)
Liu, Lu; Zheng, Chenghang; Wu, Shenghao; Gao, Xiang; Ni, Mingjiang; Cen, Kefa
2017-09-01
Non-thermal plasma with different O2 concentration in discharge atmosphere was applied to synthesize manganese and cerium mixed-oxides catalysts, which were compared in NO oxidation activity. Discharge atmosphere displayed a crucial influence on the performance of the catalysts prepared by plasma. Relatively low O2 concentration in discharge atmosphere allows synthesizing manganese-cerium oxides catalysts in a moderate environment and therefore is favorable for better physicochemical properties which lead to superior catalytic behavior. The best catalyst was obtained by treatment with 10% O2/N2 plasma and presented over 80% NO conversion in the temperature range of 275-325 °C, whereas catalyst prepared in pure O2 discharge atmosphere had the same activity with a catalyst prepared by calcinations. A correlation between the surface properties of the plasma prepared catalysts and its catalytic activity in NO oxidation is proposed. The amount of the surface adsorbed oxygen has an obvious linear correlation with the amount of Ce3+, the H2 consumption at low temperatures and the catalytic performance. The superior catalytic performance is mainly attributed to the stronger interaction between manganese oxides and ceria, and the formation of poorly crystallized Mn-O-Ce phase in the catalyst which resulted from the slow decomposition of nitrates and organics during plasma treatment. Catalysts prepared in relatively low O2 concentration have large specific surface area and is abundant in Ce3+ species and active oxygen species. The study suggests that plasma treatment with proper discharge gas components is a promising method to prepare effective manganese- cerium oxides catalyst for NO oxidation.
Method of producing catalytic material for fabricating nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seals, Roland D.; Menchhofer, Paul A.; Howe, Jane Y.
Methods of fabricating nano-catalysts are described. In some embodiments the nano-catalyst is formed from a powder-based substrate material and is some embodiments the nano-catalyst is formed from a solid-based substrate material. In some embodiments the substrate material may include metal, ceramic, or silicon or another metalloid. The nano-catalysts typically have metal nanoparticles disposed adjacent the surface of the substrate material. The methods typically include functionalizing the surface of the substrate material with a chelating agent, such as a chemical having dissociated carboxyl functional groups (--COO), that provides an enhanced affinity for metal ions. The functionalized substrate surface may then bemore » exposed to a chemical solution that contains metal ions. The metal ions are then bound to the substrate material and may then be reduced, such as by a stream of gas that includes hydrogen, to form metal nanoparticles adjacent the surface of the substrate.« less
Method of producing catalytic materials for fabricating nanostructures
Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei
2013-02-19
Methods of fabricating nano-catalysts are described. In some embodiments the nano-catalyst is formed from a powder-based substrate material and is some embodiments the nano-catalyst is formed from a solid-based substrate material. In some embodiments the substrate material may include metal, ceramic, or silicon or another metalloid. The nano-catalysts typically have metal nanoparticles disposed adjacent the surface of the substrate material. The methods typically include functionalizing the surface of the substrate material with a chelating agent, such as a chemical having dissociated carboxyl functional groups (--COO), that provides an enhanced affinity for metal ions. The functionalized substrate surface may then be exposed to a chemical solution that contains metal ions. The metal ions are then bound to the substrate material and may then be reduced, such as by a stream of gas that includes hydrogen, to form metal nanoparticles adjacent the surface of the substrate.
Method of preparing size-selected metal clusters
Elam, Jeffrey W.; Pellin, Michael J.; Stair, Peter C.
2010-05-11
The invention provides a method for depositing catalytic clusters on a surface, the method comprising confining the surface to a controlled atmosphere; contacting the surface with catalyst containing vapor for a first period of time; removing the vapor from the controlled atmosphere; and contacting the surface with a reducing agent for a second period of time so as to produce catalyst-containing nucleation sites.
NASA Astrophysics Data System (ADS)
Li, Yuanchao; Nguyen, Trung Van
2018-04-01
Synthesis and characterization of high electrochemical active surface area (ECSA) core-shell RhxSy catalysts for hydrogen evolution oxidation (HER)/hydrogen oxidation reaction (HOR) in H2-Br2 fuel cell are discussed. Catalysts with RhxSy as shell and different percentages (5%, 10%, and 20%) of platinum on carbon as core materials are synthesized. Cyclic voltammetry is used to evaluate the Pt-equivalent mass specific ECSA and durability of these catalysts. Transmission electron microscopy (TEM), X-ray Photoelectron spectroscopy (XPS) and Energy-dispersive X-ray spectroscopy (EDX) techniques are utilized to characterize the bulk and surface compositions and to confirm the core-shell structure of the catalysts, respectively. Cycling test and polarization curve measurements in the H2-Br2 fuel cell are used to assess the catalyst stability and performance in a fuel cell. The results show that the catalysts with core-shell structure have higher mass specific ECSA (50 m2 gm-Rh-1) compared to a commercial catalyst (RhxSy/C catalyst from BASF, 6.9 m2 gm-Rh-1). It also shows better HOR/HER performance in the fuel cell. Compared to the platinum catalyst, the core-shell catalysts show more stable performance in the fuel cell cycling test.
Wang, Xiao-Hui; Bo, Long-Li; Liu, Hai-Nan; Zhang, Hao; Sun, Jian-Yu; Yang, Li; Cai, Li-Dong
2013-06-01
Molecular sieve loaded catalyst was prepared by impregnation method, microwave-absorbing material silicon carbide and the catalyst were investigated for catalytic oxidation of toluene by microwave irradiation. Research work examined effects of silicon carbide and molecular sieve loading Cu-V catalyst's mixture ratio as well as mixed approach changes on degradation of toluene, and characteristics of catalyst were measured through scanning electron microscope, specific surface area test and X-ray diffraction analysis. The result showed that the fixed bed reactor had advantages of both thermal storage property and low-temperature catalytic oxidation when 20% silicon carbide was filled at the bottom of the reactor, and this could effectively improve the utilization of microwave energy as well as catalytic oxidation efficiency of toluene. Under microwave power of 75 W and 47 W, complete-combustion temperatures of molecular sieve loaded Cu-V catalyst and Cu-V-Ce catalyst to toluene were 325 degrees C and 160 degrees C, respectively. Characteristics of the catalysts showed that mixture of rare-earth element Ce increased the dispersion of active components in the surface of catalyst, micropore structure of catalyst effectively guaranteed high adsorption capacity for toluene, while amorphous phase of Cu and V oxides increased the activity of catalyst greatly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Nicholas C.; Carroll, Gerard M.; Pekarek, Ryan T.
Here, we present an impedance technique based on light intensity-modulated high-frequency resistivity (IMHFR) that provides a new way to elucidate both the thermodynamics and kinetics in complex semiconductor photoelectrodes. We apply IMHFR to probe electrode interfacial energetics on oxide-modified semiconductor surfaces frequently used to improve the stability and efficiency of photoelectrochemical water splitting systems. Combined with current density-voltage measurements, the technique quantifies the overpotential for proton reduction relative to its thermodynamic potential in Si photocathodes coated with three oxides (SiO x, TiO 2, and Al 2O 3) and a Pt catalyst. In pH 7 electrolyte, the flatband potentials of TiOmore » 2- and Al 2O 3-coated Si electrodes are negative relative to samples with native SiO x, indicating that SiO x is a better protective layer against oxidative electrochemical corrosion than ALD-deposited crystalline TiO 2 or Al 2O 3. Adding a Pt catalyst to SiO x/Si minimizes proton reduction overpotential losses but at the expense of a reduction in available energy characterized by a more negative flatband potential relative to catalyst-free SiO x/Si.« less
Anderson, Nicholas C.; Carroll, Gerard M.; Pekarek, Ryan T.; ...
2017-10-05
Here, we present an impedance technique based on light intensity-modulated high-frequency resistivity (IMHFR) that provides a new way to elucidate both the thermodynamics and kinetics in complex semiconductor photoelectrodes. We apply IMHFR to probe electrode interfacial energetics on oxide-modified semiconductor surfaces frequently used to improve the stability and efficiency of photoelectrochemical water splitting systems. Combined with current density-voltage measurements, the technique quantifies the overpotential for proton reduction relative to its thermodynamic potential in Si photocathodes coated with three oxides (SiO x, TiO 2, and Al 2O 3) and a Pt catalyst. In pH 7 electrolyte, the flatband potentials of TiOmore » 2- and Al 2O 3-coated Si electrodes are negative relative to samples with native SiO x, indicating that SiO x is a better protective layer against oxidative electrochemical corrosion than ALD-deposited crystalline TiO 2 or Al 2O 3. Adding a Pt catalyst to SiO x/Si minimizes proton reduction overpotential losses but at the expense of a reduction in available energy characterized by a more negative flatband potential relative to catalyst-free SiO x/Si.« less
Kusche, Matthias; Bustillo, Karen; Agel, Friederike; ...
2015-01-29
Here, we describe an economical and convenient method to improve the performance of Pt/alumina catalysts for the water–gas shift reaction through surface modification of the catalysts with alkali hydroxides according to the solid catalyst with ionic liquid layer approach. The results are in agreement with our findings reported earlier for methanol steam reforming. This report indicates that alkali doping of the catalyst plays an important role in the observed catalyst activation. In addition, the basic and hygroscopic nature of the salt coating contributes to a significant improvement in the performance of the catalyst. During the reaction, a partly liquid filmmore » of alkali hydroxide forms on the alumina surface, which increases the availability of H 2O at the catalytically active sites. Kinetic studies reveal a negligible effect of the KOH coating on the rate dependence of CO and H 2O partial pressures. In conclusion, TEM studies indicate an agglomeration of the active Pt clusters during catalyst preparation; restructuring of Pt nanoparticles occurs under reaction conditions, which leads to a highly active and stable system over 240h time on stream. Excessive pore fillings with KOH introduce a mass transfer barrier as indicated in a volcano-shaped curve of activity versus salt loading. The optimum KOH loading was found to be 7.5wt%.« less
Petkov, Valeri; Maswadeh, Yazan; Lu, Aolin; Shan, Shiyao; Kareem, Haval; Zhao, Yinguang; Luo, Jin; Zhong, Chuan-Jian; Beyer, Kevin; Chapman, Karena
2018-04-04
We present results from combined in situ infrared spectroscopy and total X-ray scattering studies on the evolution of catalytically active sites in exemplary binary and ternary Pt-based nanoalloys during a sequence of CO oxidation-reactivation-CO oxidation reactions. We find that when within a particular compositional range, the fresh nanoalloys may exhibit high catalytic activity for low-temperature CO oxidation. Using surface-specific atomic pair distribution functions (PDFs) extracted from the in situ total X-ray scattering data, we find that, regardless of their chemical composition and initial catalytic activity, the fresh nanoalloys suffer a significant surface structural disorder during CO oxidation. Upon reactivation in oxygen atmosphere, the surface of used nanoalloy catalysts both partially oxidizes and orders. Remarkably, it largely retains its structural state when the nanoalloys are reused as CO oxidation catalysts. The seemingly inverse structural changes of studied nanoalloy catalysts occurring under CO oxidation and reactivation conditions affect the active sites on their surface significantly. In particular, through different mechanisms, both appear to reduce the CO binding strength to the nanoalloy's surface and thus increase the catalytic stability of the nanoalloys. The findings provide clues for further optimization of nanoalloy catalysts for the oxidation of carbonaceous species through optimizing their composition, activation, and reactivation. Besides, the findings demonstrate the usefulness of combined in situ infrared spectroscopy and total X-ray scattering coupled to surface-specific atomic PDF analysis to the ongoing effort to produce advanced catalysts for environmentally and technologically important applications.
Internal Reflection Spectra of Surface Compounds and Adsorbed Molecules
NASA Astrophysics Data System (ADS)
Zolotarev, V. M.; Lygin, V. I.; Tarasevich, B. N.
1981-01-01
The application of attenuated total reflection (ATR) spectroscopy in surface studies of inorganic adsorbents and catalysts, polymers, and optically transparent electrodes is discussed. The basic principles of ATR spectroscopy as applied to surface phenomena are considered, with special reference to thin films, industrial adsorbents and catalysts, and polymer degradation processes. 276 references.
Detailed surface reaction mechanism in a three-way catalyst.
Chatterjee, D; Deutschmann, O; Warnatz, J
2001-01-01
Monolithic three-way catalysts are applied to reduce the emission of combustion engines. The design of such a catalytic converter is a complex process involving the optimization of different physical and chemical parameters (in the simplest case, e.g., length, cell densities or metal coverage of the catalyst). Numerical simulation can be used as an effective tool for the investigation of the catalytic properties of a catalytic converter and for the prediction of the performance of the catalyst. To attain this goal, a two-dimensional flow-field description is coupled with a detailed surface reaction model (gas-phase reactions can be neglected in three-way catalysts). This surface reaction mechanism (with C3H6 taken as representative of unburnt hydrocarbons) was developed using sub-mechanisms recently developed for hydrogen, carbon monoxide and methane oxidation, literature values for C3H6 oxidation, and estimates for the remaining unknown reactions. Results of the simulation of a monolithic single channel are used to validate the surface reaction mechanism. The performance of the catalyst was simulated under lean, nearly stoichiometric and rich conditions. For these characteristic conditions, the oxidation of propene and carbon monoxide and the reduction of NO on a typical Pt/Rh coated three-way catalyst were simulated as a function of temperature. The numerically predicted conversion data are compared with experimentally measured data. The simulation further reveals the coupling between chemical reactions and transport processes within the monolithic channel.
Ferreira-Aparicio, Paloma
2009-09-01
The surface chemistry and the adsorption/desorption/exchange behavior of a proton-exchange membrane fuel cell catalyst are analyzed as a case study for the development of tailor-made support materials of enhanced performance and stability. By using H2, D2, and CO as probe molecules, the relevance of some surface functional groups of the catalyst support on several diffusion processes taking place during the adsorption is shown. Sulfonic groups associated with the vulcanized carbon black surface have been detected by means of spectroscopic techniques (X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy) and by analysis of the desorbed products during temperature-programmed desorption tests by mass spectrometry. Such hydrophilic species have been observed to favor proton surface mobility and exchange with Pt-adsorbed deuterium even in the presence of adsorbed CO. This behavior is relevant both for the proper characterization of these kinds of catalysts using adsorption probes and for the design of new surface-modified carbon supports, enabling alternative proton-transfer pathways throughout the catalytic layers toward the membrane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barroo, Cedric; Janvelyan, Nare; Zugic, Branko
To improve the understanding of catalytic processes, the surface structure and composition of the active materials need to be determined before and after reaction. Morphological changes may occur under reaction conditions and can dramatically influence the reactivity and/or selectivity of a catalyst. Goldbased catalysts with different architectures are currently being developed for selective oxidation reactions at low temperatures. Specifically, nanoporous Au (npAu) with a composition of Au 97-Ag 3 is obtained by dealloying a Ag 70-Au 30 bulk alloy. Recent studies highlight the efficiency of npAu catalysts for methanol oxidation using ozone to activate the catalysts before methanol oxidation. Inmore » this paper, we studied the morphological and compositional changes occurring at the surface of Au-based catalysts in certain conditions.« less
Electrocatalytic reduction of carbon dioxide on electrodeposited tin-based surfaces
NASA Astrophysics Data System (ADS)
Alba, Bianca Christina S.; Camayang, John Carl A.; Mopon, Marlon L.; del Rosario, Julie Anne D.
2017-08-01
The electrocatalytic reduction of carbon dioxide to small organic molecular compounds provides a means of generating alternative fuel source while suppressing climate change. Suitable catalysts, however, are necessary to optimize its reaction kinetics towards more valuable products. Consequently, in this study, electrodeposited Sn electrodes have been developed as catalysts for CO2 electroreduction. Deposition potential was varied to produce different Sn catalysts. SEM showed varying morphologies and increasing amount as the applied potential becomes more negative. Cyclic voltammetry and chronoamperometry showed that the activity and stability of the catalysts towards CO2 reduction depend on the morphology and presence of tin oxides. These results provide a better understanding on the performance of electrodeposited Sn-based surfaces as catalysts for CO2 reduction.
Long-term hydrogen oxidation catalysts in alkaline fuel cells
NASA Astrophysics Data System (ADS)
Kiros, Y.; Schwartz, S.
Pt/Pd bimetallic combination and Raney Ni catalysts were employed in long-term electrochemical assessment of the hydrogen oxidation reaction (HOR) in 6 M KOH. Steady-state current vs. potential measurements of the gas diffusion electrodes have shown high activity for these types of catalysts. Durability tests of the electrodes have shown increased stability for the Pt/Pd-based catalysts than the Raney Ni at a constant load of 100 mA/cm 2 and at temperatures of 55°C and 60°C, respectively. Surface, structural and chemical analyses by BET surface area, transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) were used to characterize the composite electrode/catalyst both before and after the electrochemical testing.
NASA Technical Reports Server (NTRS)
1981-01-01
Monolithic catalysts with higher available active surface areas and better thermal conductivity than conventional pellets beds, making possible the steam reforming of fuels heavier than naphtha, were examined. Performance comparisons were made between conventional pellet beds and honeycomb monolith catalysts using n-hexane as the fuel. Metal-supported monoliths were examined. These offer higher structural stability and higher thermal conductivity than ceramic supports. Data from two metal monoliths of different nickel catalyst loadings were compared to pellets under the same operating conditions. Improved heat transfer and better conversion efficiencies were obtained with the monolith having higher catalyst loading. Surface-gas interaction was observed throughout the length of the monoliths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alia, Shaun M.; Hurst, Katherine E.; Kocha, Shyam S.
Determining the surface areas of electrocatalysts is critical for separating the key properties of area-specific activity and electrochemical surface area from mass activity. Hydrogen underpotential deposition and carbon monoxide oxidation are typically used to evaluate iridium (Ir) surface areas, but are ineffective on oxides and can be sensitive to surface oxides formed on Ir metals. Mercury underpotential deposition is presented in this study as an alternative, able to produce reasonable surface areas on Ir and Ir oxide nanoparticles, and able to produce similar surface areas prior to and following characterization in oxygen evolution. Reliable electrochemical surface areas allow for comparativemore » studies of different catalyst types and the characterization of advanced oxygen evolution catalysts. Lastly, they also enable the study of catalyst degradation in durability testing, both areas of increasing importance within electrolysis and electrocatalysis.« less
Alia, Shaun M.; Hurst, Katherine E.; Kocha, Shyam S.; ...
2016-06-02
Determining the surface areas of electrocatalysts is critical for separating the key properties of area-specific activity and electrochemical surface area from mass activity. Hydrogen underpotential deposition and carbon monoxide oxidation are typically used to evaluate iridium (Ir) surface areas, but are ineffective on oxides and can be sensitive to surface oxides formed on Ir metals. Mercury underpotential deposition is presented in this study as an alternative, able to produce reasonable surface areas on Ir and Ir oxide nanoparticles, and able to produce similar surface areas prior to and following characterization in oxygen evolution. Reliable electrochemical surface areas allow for comparativemore » studies of different catalyst types and the characterization of advanced oxygen evolution catalysts. Lastly, they also enable the study of catalyst degradation in durability testing, both areas of increasing importance within electrolysis and electrocatalysis.« less
Liu, Mengran; Fan, Guoli; Yu, Jiaying; Yang, Lan; Li, Feng
2018-04-17
Tuning the surface properties of supported metal catalysts is of vital importance for governing their catalytic performances in nanocatalysis. Here, we report highly dispersed nanometric gold nanoparticles (NPs) supported on Ni-Ti layered double hydroxides (NiTi-LDHs), which were employed in solvent-free and base-free selective oxidation of benzyl alcohol. A series of characterization techniques demonstrated that defect-rich NiTi-LDHs could efficiently stabilize Au NPs and decrease surface electron density of Au NPs. The as-formed Au/NiTi-LDH catalyst with a Ni/Ti molar ratio of 3 : 1 and an Au loading of 0.71 wt% yielded the highest turnover frequency value of ∼4981 h-1 at 120 °C among tested Au/NiTi-LDH catalysts with different Ni/Ti molar ratios, along with a high benzaldehyde selectivity of 98%. High catalytic efficiency of the catalyst was mainly correlated with surface cooperation between unique defects (i.e. defective Ti3+ species and oxygen vacancies) and abundant hydroxyl groups on the brucite-like layers of the NiTi-LDH support, which could lead to the preferential adsorption and activation of an alcohol hydroxyl moiety in benzyl alcohol and oxygen molecule, as well as the formation of more electron-deficient Ni3+ and Au0 species on the catalyst surface. Furthermore, the present Au/NiTi-LDH catalyst tolerated the oxidation of a wide variety of substrate structures into the corresponding aldehydes, acids or ketones. Our primary results illustrate that defect-rich NiTi-LDHs are promising supports which can efficiently modify surface structure and electronic properties of supported metal catalysts and consequently improve their catalytic performances.
NASA Astrophysics Data System (ADS)
Rodriguez, José A.
The understanding of the interaction of sulfur with bimetallic surfaces is a critical issue for preventing the deactivation of hydrocarbon reforming catalysts and for the design of better hydrodesulfurization catalysts. The alloying or combination of two metals can lead to materials with special chemical properties due to an interplay of “ensemble” and “electronic” effects. In recent years, several new interesting phenomena have been discovered when studying the interaction of sulfur with bimetallic surfaces using the modern techniques of surface science. Very small amounts of sulfur are able to induce dramatic changes in the morphology of bimetallic surfaces that combine noble metals (Cu, Ag, Au) and transition metals. This phenomenon can lead to big modifications in the activity and selectivity of bimetallic catalysts used for hydrocarbon reforming. In many cases, bimetallic bonding produces a significant redistribution of charge around the bonded metals. The electronic perturbations associated with the formation of a heteronuclear metal-metal bond can affect the reactivity of the bonded metals toward sulfur. This can be a very important issue to consider when trying to minimize the negative effects of sulfur poisoning (Sn/Pt versus Ag/Pt and Cu/Pt catalysts) or when trying to improve the performance of desulfurization catalysts (Co/Mo and Ni/Mo systems). Clearly much more work is necessary in this area, but new concepts are emerging that can be useful for designing more efficient bimetallic catalysts.
Williams, Paul T; Brindle, Alexander J
2002-12-01
Pyrolysis with on-line Zeolite catalysis of scrap tyres was undertaken in a fluidised bed reactor with the aim of maximising the production of higher value single ring aromatic hydrocarbons in the derived oil. Experiments were carried out in relation to the ratio of the catalyst to tyre feedstock and the temperature of the catalyst bed. Two Zeolite catalysts were examined, a Y-type Zeolite catalyst and Zeolite ZSM-5 catalyst of differing pore size and surface activity. The composition of the oils derived from the uncatalysed fluidised bed pyrolysis of tyres showed that benzene concentration was 0.2 wt%, toluene concentration was 0.8 wt%, o-xylene was 0.3 wt%, m/p-xylenes were 1.8 wt% and limonene was 4.3 wt%. Benzene, toluene and xylenes present in the oils showed a significant increase in the presence of both of the catalysts. The maximum concentrations of these chemicals for the Y-Zeolite (CBV-400) catalyst was 1 wt% for benzene, 8wt% for toluene, 3 wt% for o-xylene and 8.5 wt% for m/p-xylenes, produced at a catalyst:tyre ratio of 1.5. There was less influence of catalyst temperature on the yield of benzene, toluene and xylenes, however, increasing the temperature of the catalyst resulted in a marked decrease in limonene concentration. The Y-type Zeolite catalyst produced significantly higher concentrations of benzene, toluene and xylenes which was attributed to the larger pore size and higher surface acidity of the Y-Zeolite catalyst compared to the Zeolite ZSM-5 catalyst.
CO oxidation studies over supported noble metal catalysts and single crystals: A review
NASA Technical Reports Server (NTRS)
Boecker, Dirk; Gonzalez, Richard D.
1987-01-01
The catalytic oxidation of CO over noble metal catalysts is reviewed. Results obtained on supported noble metal catalysts and single crystals both at high pressures and under UHV conditions are compared. The underlying causes which result in surface instabilities and multiple steady-state oscillations are considered, in particular, the occurrence of hot spots. CO islands of reactivity, surface oxide formation and phase transformations under oscillatory conditions are discussed.
[Analysis of surface composition of three-way catalysts of in-use vehicles].
Xie, Shu-xia; Hu, Jing-nan; Bao, Xiao-feng; Zhang, Ke-song; Li, Zhen-hua; Wang, Hai-tao
2010-07-01
The kinds and contents of surface elements in three-way catalysts of six light-duty in-use taxi cabs, which were mainly operated in Beijing and whose driving mileages were in the range of 34 x 10(4)-59 x 10(4) km, were determined by X-ray fluorescence spectrometry (XRF), and the effect of driving mileage on element content was investigated. Results showed that nearly 30 kinds of elements were present on the catalyst surface. The main elements of different samples were similar. The common elements of the pollutant on the front and rear catalysts were P, Ca, Zn and Mn etc., most of which are from engine oil and gasoline. S was only observed on the rear catalysts, indicating that S tends to deposit on the rear catalysts. After 34 x 10(4) km run, the P content increased very slowly and 40 x 10(4) km run S content reached a saturated value. While the contents of Ca, Zn and Mn still exhibit an increase tendency after 56 x 10(4) km. That means after 40 x 10(4) km driving mileage, the effects of P and S on the catalyst activity are minor, and the continuous deposit of Ca, Zn and Mn will lead to further decrease of the activity.
NASA Astrophysics Data System (ADS)
Siokou, Angeliki; Ntais, Spyridon
2003-08-01
Despite of the wide use of supported Ti based Ziegler-Natta catalysts in the olefin polymerization industry, questions concerning the role of each one of the catalyst components in the polymerization process, have not found a satisfactory answer yet. This is mainly because of the high sensitivity of these systems to oxygen and atmospheric moisture that makes their study in an atomic level rather complicated. Realistic surface science models of the pre-activated SiO 2 supported MgCl 2/TiCl 4 and TiCl 4 Ziegler-Natta catalysts were prepared by spin coating on flat conductive SiO 2/Si(1 0 0) supports under inert atmosphere. This preparation technique resembles the wet chemical impregnation which is the industrial method of the catalyst preparation. XPS analysis showed that the catalyst precursor anchors on the silica surface through bonding of the Ti atoms with surface silanes or siloxanes, while Mg is attached to the Ti through chlorine bridges. Thermal treatment of the catalysts at 723 K leads to total Cl desorption when MgCl 2 is not present while a significant amount of the Ti atoms is reduced to the Ti 3+ state.
Lee, Hochun; Jung, Yongju; Kim, Seok
2012-02-01
In the present work, we had studied the graphite nanofibers as catalyst supports after a plasma treatment for studying the effect of surface modification. By controlling the plasma intensity, a surface functional group concentration was changed. The nanoparticle size, loading efficiency, and catalytic activity were studied, after Pt-Ru deposition by a chemical reduction. Pt-Ru catalysts deposited on the plasma-treated GNFs showed the smaller size, 3.58 nm than the pristine GNFs. The catalyst loading contents were enhanced with plasma power and duration time increase, meaning an enhanced catalyst deposition efficiency. Accordingly, cyclic voltammetry result showed that the specific current density was increased proportionally till 200 W and then the value was decreased. Enhanced activity of 40 (mA mg(-1)-catalyst) was accomplished at 200 W and 180 sec duration time. Consequently, it was found that the improved electroactivity was originated from the change of size or morphology of catalysts by controlling the plasma intensity.
NASA Astrophysics Data System (ADS)
Ayoub, Muhammad; Sufian, Suriati; Mekuria Hailegiorgis, Sintayehu; Ullah, Sami; Uemura, Yoshimitsu
2017-08-01
The alkaline catalyst derived from the duck-bones was used for conversion of glycerol to polyglycerol via solvent free etherification process. The physicochemical properties of prepared materials were duck-bones were systematically investigated as a catalyst by latest techniques of Thermo gravimetric analysis (TGA), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) surface properties. TGA showed different trends of duck-bones decomposition from room temperature to 1000C. XRD pattern showed a clear and sharp peaks of a crystalline phase of CaO. The activity of the catalysts was in line with the basic amount of the strong base sites, surface area, and crystalline phase in the catalysts. The prepared catalyst derived from duck-bones provided high activity (99 %) for glycerol conversion and around 68 % yield for polyglycerol production. These ample wastes of duck-bones have good potential to be used as polyglycerol production catalysts due to have high quantity of Ca compare to other types of bones like cow, chicken and fish bones.
Novel methods of stabilization of Raney-Nickel catalyst for fuel-cell electrodes
NASA Astrophysics Data System (ADS)
Al-Saleh, M. A.; Sleem-Ur-Rahman; Kareemuddin, S. M. M. J.; Al-Zakri, A. S.
Two new methods of stabilizing Raney-Nickel (Raney-Ni) catalyst for making fuel-cell anodes were studied. In the first method, the catalyst was oxidized with aqueous H 2O 2 solution, while in the second, oxygen/air (O 2/air) was used in a slurry reactor. Effects of different concentrations of H 2O 2 (5-25 wt.%) and different pressures (10-20 psig) of gas were investigated. The stabilized catalyst was characterized using BET surface area, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The catalyst was used in fuel-cell anodes and the electrochemical performance was determined in an alkaline half-cell. The results were compared with electrodes prepared using conventionally stabilized catalysts. The hydrogen peroxide-treated catalyst has higher BET surface area and produces electrodes with lower polarization. In addition to this, H 2O 2 treatment is convenient, fast and needs simple equipment which involves no instrumentation. Use of oxygen in a slurry reactor to stabilize the catalyst is also convenient but electrode performance is relatively poor.
Yang, Nuoya; Medford, Andrew J.; Liu, Xinyan; ...
2016-01-31
Synthesis gas (CO + H 2) conversion is a promising route to converting coal, natural gas, or biomass into synthetic liquid fuels. Rhodium has long been studied as it is the only elemental catalyst that has demonstrated selectivity to ethanol and other C 2+ oxygenates. However, the fundamentals of syngas conversion over rhodium are still debated. In this work a microkinetic model is developed for conversion of CO and H 2 into methane, ethanol, and acetaldehyde on the Rh (211) and (111) surfaces, chosen to describe steps and close-packed facets on catalyst particles. The model is based on DFT calculationsmore » using the BEEF-vdW functional. The mean-field kinetic model includes lateral adsorbate–adsorbate interactions, and the BEEF-vdW error estimation ensemble is used to propagate error from the DFT calculations to the predicted rates. The model shows the Rh(211) surface to be ~6 orders of magnitude more active than the Rh(111) surface, but highly selective toward methane, while the Rh(111) surface is intrinsically selective toward acetaldehyde. A variety of Rh/SiO 2 catalysts are synthesized, tested for catalytic oxygenate production, and characterized using TEM. The experimental results indicate that the Rh(111) surface is intrinsically selective toward acetaldehyde, and a strong inverse correlation between catalytic activity and oxygenate selectivity is observed. Furthermore, iron impurities are shown to play a key role in modulating the selectivity of Rh/SiO 2 catalysts toward ethanol. The experimental observations are consistent with the structure-sensitivity predicted from theory. As a result, this work provides an improved atomic-scale understanding and new insight into the mechanism, active site, and intrinsic selectivity of syngas conversion over rhodium catalysts and may also guide rational design of alloy catalysts made from more abundant elements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Nuoya; Medford, Andrew J.; Liu, Xinyan
Synthesis gas (CO + H 2) conversion is a promising route to converting coal, natural gas, or biomass into synthetic liquid fuels. Rhodium has long been studied as it is the only elemental catalyst that has demonstrated selectivity to ethanol and other C 2+ oxygenates. However, the fundamentals of syngas conversion over rhodium are still debated. In this work a microkinetic model is developed for conversion of CO and H 2 into methane, ethanol, and acetaldehyde on the Rh (211) and (111) surfaces, chosen to describe steps and close-packed facets on catalyst particles. The model is based on DFT calculationsmore » using the BEEF-vdW functional. The mean-field kinetic model includes lateral adsorbate–adsorbate interactions, and the BEEF-vdW error estimation ensemble is used to propagate error from the DFT calculations to the predicted rates. The model shows the Rh(211) surface to be ~6 orders of magnitude more active than the Rh(111) surface, but highly selective toward methane, while the Rh(111) surface is intrinsically selective toward acetaldehyde. A variety of Rh/SiO 2 catalysts are synthesized, tested for catalytic oxygenate production, and characterized using TEM. The experimental results indicate that the Rh(111) surface is intrinsically selective toward acetaldehyde, and a strong inverse correlation between catalytic activity and oxygenate selectivity is observed. Furthermore, iron impurities are shown to play a key role in modulating the selectivity of Rh/SiO 2 catalysts toward ethanol. The experimental observations are consistent with the structure-sensitivity predicted from theory. As a result, this work provides an improved atomic-scale understanding and new insight into the mechanism, active site, and intrinsic selectivity of syngas conversion over rhodium catalysts and may also guide rational design of alloy catalysts made from more abundant elements.« less
NASA Astrophysics Data System (ADS)
Albers, Peter W.; Parker, Stewart F.
The attractiveness of neutron scattering techniques for the detailed characterization of materials of high degrees of dispersity and structural complexity as encountered in the chemical industry is discussed. Neutron scattering picks up where other analytical methods leave off because of the physico-chemical properties of finely divided products and materials whose absorption behavior toward electromagnetic radiation and electrical conductivity causes serious problems. This is demonstrated by presenting typical applications from large-scale production technology and industrial catalysis. These include the determination of the proton-related surface chemistry of advanced materials that are used as reinforcing fillers in the manufacture of tires, where interrelations between surface chemistry, rheological properties, improved safety, and significant reduction of fuel consumption are the focus of recent developments. Neutron scattering allows surface science studies of the dissociative adsorption of hydrogen on nanodispersed, supported precious metal particles of fuel cell catalysts under in situ loading at realistic gas pressures of about 1 bar. Insight into the occupation of catalytically relevant surface sites provides valuable information about the catalyst in the working state and supplies essential scientific input for tailoring better catalysts by technologists. The impact of deactivation phenomena on industrial catalysts by coke deposition, chemical transformation of carbonaceous deposits, and other processes in catalytic hydrogenation processes that result in significant shortening of the time of useful operation in large-scale plants can often be traced back in detail to surface or bulk properties of catalysts or materials of catalytic relevance. A better understanding of avoidable or unavoidable aspects of catalyst deactivation phenomena under certain in-process conditions and the development of effective means for reducing deactivation leads to more energy-efficient and, therefore, environmentally friendly processes and helps to save valuable resources. Even small or gradual improvements in all these fields are of considerable economic impact.
Atomically Precise Metal Nanoclusters for Catalytic Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Rongchao
2016-11-18
The central goal of this project is to explore the catalytic application of atomically precise gold nanoclusters. By solving the total structures of ligand-protected nanoclusters, we aim to correlate the catalytic properties of metal nanoclusters with their atomic/electronic structures. Such correlation unravel some fundamental aspects of nanocatalysis, such as the nature of particle size effect, origin of catalytic selectivity, particle-support interactions, the identification of catalytically active centers, etc. The well-defined nanocluster catalysts mediate the knowledge gap between single crystal model catalysts and real-world conventional nanocatalysts. These nanoclusters also hold great promise in catalyzing certain types of reactions with extraordinarily highmore » selectivity. These aims are in line with the overall goals of the catalytic science and technology of DOE and advance the BES mission “to support fundamental research to understand, predict, and ultimately control matter and energy at the level of electrons, atoms, and molecules”. Our group has successfully prepared different sized, robust gold nanoclusters protected by thiolates, such as Au 25(SR) 18, Au 28(SR) 20, Au 38(SR) 24, Au 99(SR) 42, Au 144(SR) 60, etc. Some of these nanoclusters have been crystallographically characterized through X-ray crystallography. These ultrasmall nanoclusters (< 2 nm diameter) exhibit discrete electronic structures due to quantum size effect, as opposed to quasicontinuous band structure of conventional metal nanoparticles or bulk metals. The available atomic structures (metal core plus surface ligands) of nanoclusters serve as the basis for structure-property correlations. We have investigated the unique catalytic properties of nanoclusters (i.e. not observed in conventional nanogold catalysts) and revealed the structure-selectivity relationships. Highlights of our works include: i) Effects of ligand, cluster charge state, and size on the catalytic reactivity in CO oxidation, semihydrogenation of alkynes; ii) Size-controlled synthesis of Au-n clusters and structural elucidation; iii) Catalytic mechanisms and correlation with structures of cluster catalyst; iv) Catalytic properties of Au nanorods in chemoselective hydrogenation of nitrobenzaldehyde and visible light driven photocatalytic reactions.« less
Surface chemistry of aromatic reactants on Pt- and Mo-modified Pt catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Allison M.; Mark, Lesli; Rasmussen, Mathew J.
Supported catalysts containing an oxophilic metal such as Mo and a noble metal such as Pt have shown promising activity and selectivity for deoxygenation of biomass-derived compounds. Here, we report that PtMo catalysts also promote hydrogenolysis of the model compound benzyl alcohol, while decarbonylation is most prevalent over unmodified Pt. A combination of single crystal surface science studies, density functional theory (DFT) calculations, and vapor phase upgrading experiments using supported catalysts was carried out to better understand the mechanism by which Mo promotes deoxygenation. Molybdenum was deposited in submonolayer quantities on a Pt(111) surface and reduced at high temperature. Temperature-programmedmore » desorption (TPD) experiments using benzyl alcohol as a reactant showed greatly enhanced yields of the deoxygenation product toluene at moderate Mo coverages. To understand how the interaction of the aromatic group with the surface influenced this reactivity, we investigated the adsorption of toluene as a probe molecule. We found that the addition of Mo to Pt(111) resulted in a significant decrease in toluene decomposition. DFT calculations indicated that this decrease was consistent with decreased aromatic adsorption strengths that accompany incorporation of Mo into the Pt subsurface. The weaker aromatic-surface interaction on Pt/Mo surfaces led to a tilted adsorption geometry for benzyl alcohol, which presumably promotes hydrogenolysis to produce toluene instead of decarbonylation to produce benzene and CO. Alumina-supported Pt and PtMo catalysts were also tested for benzyl alcohol deoxygenation. PtMo catalysts had a higher rate of toluene production and lower rates of benzene and benzaldehyde production. Additionally, when benzaldehyde was used as the reactant to measure decarbonylation activity the mass-normalized rate of benzene production was 2.5 times higher on Pt than PtMo. Altogether, the results of TPD, DFT, and supported catalyst experiments suggest that subsurface Mo sites weaken the binding of aromatic rings on PtMo surfaces; the weakened aromatic-surface interaction is correlated with an improvement in selectivity to C-O bond scission.« less
Surface chemistry of aromatic reactants on Pt- and Mo-modified Pt catalysts
Robinson, Allison M.; Mark, Lesli; Rasmussen, Mathew J.; ...
2016-11-01
Supported catalysts containing an oxophilic metal such as Mo and a noble metal such as Pt have shown promising activity and selectivity for deoxygenation of biomass-derived compounds. Here, we report that PtMo catalysts also promote hydrogenolysis of the model compound benzyl alcohol, while decarbonylation is most prevalent over unmodified Pt. A combination of single crystal surface science studies, density functional theory (DFT) calculations, and vapor phase upgrading experiments using supported catalysts was carried out to better understand the mechanism by which Mo promotes deoxygenation. Molybdenum was deposited in submonolayer quantities on a Pt(111) surface and reduced at high temperature. Temperature-programmedmore » desorption (TPD) experiments using benzyl alcohol as a reactant showed greatly enhanced yields of the deoxygenation product toluene at moderate Mo coverages. To understand how the interaction of the aromatic group with the surface influenced this reactivity, we investigated the adsorption of toluene as a probe molecule. We found that the addition of Mo to Pt(111) resulted in a significant decrease in toluene decomposition. DFT calculations indicated that this decrease was consistent with decreased aromatic adsorption strengths that accompany incorporation of Mo into the Pt subsurface. The weaker aromatic-surface interaction on Pt/Mo surfaces led to a tilted adsorption geometry for benzyl alcohol, which presumably promotes hydrogenolysis to produce toluene instead of decarbonylation to produce benzene and CO. Alumina-supported Pt and PtMo catalysts were also tested for benzyl alcohol deoxygenation. PtMo catalysts had a higher rate of toluene production and lower rates of benzene and benzaldehyde production. Additionally, when benzaldehyde was used as the reactant to measure decarbonylation activity the mass-normalized rate of benzene production was 2.5 times higher on Pt than PtMo. Altogether, the results of TPD, DFT, and supported catalyst experiments suggest that subsurface Mo sites weaken the binding of aromatic rings on PtMo surfaces; the weakened aromatic-surface interaction is correlated with an improvement in selectivity to C-O bond scission.« less
Effect of Electric Discharge on Properties of Nano-Particulate Catalyst for Plasma-Catalysis.
Lee, Chung Jun; Kim, Jip; Kim, Taegyu
2016-02-01
Heterogeneous catalytic processes have been used to produce hydrogen from hydrocarbons. However, high reforming temperature caused serious catalyst deteriorations and low energy efficiency. Recently, a plasma-catalyst hybrid process was used to reduce the reforming temperature and to improve the stability and durability of reforming catalysts. Effect of electric discharges on properties of nanoparticulate catalysts for plasma-catalysis was investigated in the present study. Catalyst-bed porosity was varied by packing catalyst beads with the different size in a reactor. Discharge power and onset voltage of the plasma were measured as the catalyst-bed porosity was varied. The effect of discharge voltage, frequency and voltage waveforms such as the sine, pulse and square was investigated. We found that the optimal porosity of the catalyst-bed exists to maximize the electric discharge. At a low porosity, the electric discharge was unstable to be sustained because the space between catalysts got narrow nearly close to the sheath region. On the other hand, at a high porosity, the electric discharge became weak because the plasma was not sufficient to interact with the surface of catalysts. The discharge power increased as the discharge voltage and frequency increased. The square waveform was more efficient than the sine and pulse one. At a high porosity, however, the effect of the voltage waveform was not considerable because the space between catalysts was too large for plasma to interact with the surface of catalysts.
In-situ upgrading of biomass pyrolysis vapors: catalyst screening on a fixed bed reactor.
Stefanidis, S D; Kalogiannis, K G; Iliopoulou, E F; Lappas, A A; Pilavachi, P A
2011-09-01
In-situ catalytic upgrading of biomass fast pyrolysis vapors was performed in a fixed bed bench-scale reactor at 500°C, for catalyst screening purposes. The catalytic materials tested include a commercial equilibrium FCC catalyst (E-cat), various commercial ZSM-5 formulations, magnesium oxide and alumina materials with varying specific surface areas, nickel monoxide, zirconia/titania, tetragonal zirconia, titania and silica alumina. The bio-oil was characterized measuring its water content, the carbon-hydrogen-oxygen (by difference) content and the chemical composition of its organic fraction. Each catalytic material displayed different catalytic effects. High surface area alumina catalysts displayed the highest selectivity towards hydrocarbons, yielding however low organic liquid products. Zirconia/titania exhibited good selectivity towards desired compounds, yielding higher organic liquid product than the alumina catalysts. The ZSM-5 formulation with the highest surface area displayed the most balanced performance having a moderate selectivity towards hydrocarbons, reducing undesirable compounds and producing organic liquid products at acceptable yields. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tian, Meng; Cui, Xueliang; Dong, Chunxu; Dong, Zhengping
2016-12-01
In this study, a novel catalyst has been prepared through supporting Pd nanoparticles (NPs) on the surface of boehmite (γ-AlOOH) based hollow aluminosilicate microspheres (HAM@γ-AlOOH). The prepared Pd/HAM@γ-AlOOH catalyst has high catalytic activity for the hydrogenation of nitroarenes to their corresponding amino derivatives with high yields at ambient conditions. The high catalytic efficiency is attributed to the large pore size of the flower-like hierarchical flakes structure of HAM@γ-AlOOH, that gives Pd NPs on the support surface easy accessibility. Moreover, the Pd/HAM@γ-AlOOH catalyst can also be easily recycled at least five times without obvious decrease of catalytic activity. This work may provide a useful method for the fabrication of supported noble metal NP-based catalysts on the surface of mesoporous hierarchical structure materials with easy accessibility and superior activity.
NASA Astrophysics Data System (ADS)
Boucher, Matthew B.
Most industrial catalysts are very complex, comprising of non-uniform materials with varying structures, impurities, and interaction between the active metal and supporting substrate. A large portion of the ongoing research in heterogeneous catalysis focuses on understanding structure-function relationships in catalytic materials. In parallel, there is a large area of surface science research focused on studying model catalytic systems for which structural parameters can be tuned and measured with high precision. It is commonly argued, however, that these systems are oversimplified, and that observations made in model systems do not translate to robust catalysts operating in practical environments; this discontinuity is often referred to as a "gap." The focus of this thesis is to explore the mutual benefits of surface science and catalysis, or "bridge the gap," by studying two catalytic systems in both ultra-high vacuum (UHV) and near ambient-environments. The first reaction is the catalytic steam reforming of methanol (SRM) to hydrogen and carbon dioxide. The SRM reaction is a promising route for on-demand hydrogen production. For this catalytic system, the central hypothesis in this thesis is that a balance between redox capability and weak binding of reaction intermediates is necessary for high SRM activity and selectivity to carbon dioxide. As such, a new catalyst for the SRM reaction is developed which incorporates very small amounts of gold (<1 atomic %) supported on zinc oxide nanoparticles with controlled crystal structures. The performance of these catalysts was studied in a fixed-bed micro-reactor system at ambient pressures, and their structure was characterized by high-resolution microscopic and spectroscopic techniques. Pre-existing oxygen defects in zinc oxide {0001} surfaces, and those created by a perturbation of the defect equilibrium by addition of gold, provide an anchoring site for highly dispersed gold species. By utilizing shape control of zinc oxide supports, it is found that highly dispersed gold, capable of low-temperature redox behavior is most prominent on zinc oxide {0001} surfaces and leads to high SRM activity and selectivity to carbon dioxide. Like other Group IB metal catalysts the SRM over gold-zinc oxide proceeds through the formation and weak binding of formaldehyde, and subsequent coupling with methoxy to produce methyl formate. Mechanistic clarification of this point was achieved by studying the interaction methanol-water mixtures with model catalyst surfaces. Model catalysts were studied in a UHV chamber where the base pressure was maintained at 10-10 mbar. High resolutions surface science techniques show that hydrogen-bonded networks of water are capable of deprotonating methanol to methoxy on low index surfaces in the absence of atomic oxygen. These UHV studies show that adsorbates, other than oxygen, are capable of activating methanol on Group IB metal surfaces. The second reaction involves the selective hydrogenation of alkynes to alkenes. Selective hydrogenations of carbon-carbon multiple bonds are important for a wide range of industrial processes. The governing hypothesis for this reaction system is that cooperation between a minority metal with a low barrier for hydrogen dissociation, and a less-reactive host metal capable of hydrogen uptake via spillover will lead to high alkene selectivity. A strategy for the preparation of such a catalyst is developed using model catalyst studied in a UHV chamber. The model catalyst features isolated palladium atoms in a copper(111) surface, termed single atom alloy (SAA). Individual, isolated palladium atoms act as sites for hydrogen uptake, dissociation, and spillover onto an otherwise inert copper(111) host. Weak binding offered by copper provides a surface where selective hydrogenation reactions can take place. Palladium-copper SAA model catalysts are highly selective to the partial hydrogenation of acetylene, whereas surfaces containing larger palladium ensembles facilitate complete hydrogenation and decomposition. Nanoparticle analogs of palladium-copper SAAs were prepared to investigate the feasibility of this strategy for practical application. Very small amounts of palladium (<0.2 atomic %) on the surface of copper nanoparticles are highly active and selective catalysts for the partial hydrogenation of phenylacetylene to styrene. The performance of these catalysts was studied in a liquid-phase, stirred-tank batch reactor under a hydrogen head pressure of approximately 7 bar. Palladium alloyed into the surface of otherwise inactive copper nanoparticles shows a marked improvement in selectivity when compared to monometallic palladium catalysts with the same metal loading. This effect is attributed hydrogen spillover onto the copper surface. In summary, the development of new, highly active and selective catalysts for the methanol steam reforming reaction and for the partial hydrogenation of alkynes to alkenes was accomplished by the use of state-of-the-art techniques in both surface science and heterogeneous catalysis. The implications of this work can be extended to a wide variety of catalytic systems.
Silver Nanoparticles with Surface-Bonded Oxygen for Highly Selective CO 2 Reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Kun; Kharel, Priti; Peng, Yande
Here, the surface electronic structures of catalysts need to be carefully engineered in CO 2 reduction reaction (CO 2RR), where the hydrogen evolution side reaction usually takes over under a significant overpotential, and thus dramatically lows the reaction selectivity. Surface oxides can play a critical role in tuning the surface oxidation state of metal catalysts for a proper binding with CO 2RR reaction intermediates, which may significantly improve the catalyst activity and selectivity. Here, we demonstrate the importance of surface-bonded oxygen on silver nanoparticles in altering the reaction pathways and improving the CO 2RR performances. A comparative investigation on air-annealedmore » Ag (Air-Ag) catalyst with or without the post-treatment of H 2 thermal annealing (H 2-Ag) was performed. In Air-Ag, the subsurface chemically bonded O species (O-Ag δ+) was identified by angle resolved X-ray photoelectron spectroscopy and X-ray absorption spectroscopy techniques, and contributed to the improved CO selectivity rather than H 2 in CO 2RR electrolysis. As a result, while the maximal CO Faradaic efficiency of H 2-Ag is at ~ 30 %, the Air-Ag catalyst presented a high CO selectivity of more than 90 % under a current density of ~ 21 mA/cm 2.« less
Silver Nanoparticles with Surface-Bonded Oxygen for Highly Selective CO 2 Reduction
Jiang, Kun; Kharel, Priti; Peng, Yande; ...
2017-09-12
Here, the surface electronic structures of catalysts need to be carefully engineered in CO 2 reduction reaction (CO 2RR), where the hydrogen evolution side reaction usually takes over under a significant overpotential, and thus dramatically lows the reaction selectivity. Surface oxides can play a critical role in tuning the surface oxidation state of metal catalysts for a proper binding with CO 2RR reaction intermediates, which may significantly improve the catalyst activity and selectivity. Here, we demonstrate the importance of surface-bonded oxygen on silver nanoparticles in altering the reaction pathways and improving the CO 2RR performances. A comparative investigation on air-annealedmore » Ag (Air-Ag) catalyst with or without the post-treatment of H 2 thermal annealing (H 2-Ag) was performed. In Air-Ag, the subsurface chemically bonded O species (O-Ag δ+) was identified by angle resolved X-ray photoelectron spectroscopy and X-ray absorption spectroscopy techniques, and contributed to the improved CO selectivity rather than H 2 in CO 2RR electrolysis. As a result, while the maximal CO Faradaic efficiency of H 2-Ag is at ~ 30 %, the Air-Ag catalyst presented a high CO selectivity of more than 90 % under a current density of ~ 21 mA/cm 2.« less
Controlled growth of vertically aligned carbon nanotubes on metal substrates
NASA Astrophysics Data System (ADS)
Gao, Zhaoli
Carbon nanotube (CNT) is a fascinating material with extraordinary electrical thermal and mechanical properties. Growing vertically aligned CNT (VACNT) arrays on metal substrates is an important step in bringing CNT into practical applications such as thermal interface materials (TIMs) and microelectrodes. However, the growth process is challenging due to the difficulties in preventing catalyst diffusion and controlling catalyst dewetting on metal substrates with physical surface heterogeneity. In this work, the catalyst diffusion mechanism and catalyst dewetting theory were studied for the controlled growth of VACNTs on metal substrates. The diffusion time of the catalyst, the diffusion coefficients for the catalyst in the substrate materials and the number density of catalyst nanoparticles after dewetting are identified as the key parameters, based on which three strategies are developed. Firstly, a fast-heating catalyst pretreatment strategy was used, aiming at preserving the amount of catalyst prior to CNT growth by reducing the catalyst diffusion time. The catalyst lifetime is extended from half an hour to one hour on a patterned Al thin film and a VACNT height of 106 mum, about twenty fold of that reported in the literature, was attained. Secondly, a diffusion barrier layer strategy is employed for a reduction of catalyst diffusion into the substrate materials. Enhancement of VACNT growth on Cu substrates was achieved by adopting a conformal Al2O 3 diffusion barrier layer fabricated by a specially designed atomic layer deposition (ALD) system. Lastly, a novel catalyst glancing angle deposition (GLAD) strategy is performed to manipulate the morphology of a relatively thick catalyst on metal substrates with physical surface heterogeneity, aiming to obtain uniform and dense catalyst nanoparticles after dewetting in the pretreatment process for enhanced VACNT growth. We are able to control the VACNT growth conditions on metal substrates in terms of their distribution, heights and alignments. Catalyst loss is controlled by the catalyst diffusion time and catalyst diffusion coefficients. A shorter catalyst diffusion time and smaller diffusion coefficient enhance VACNT growth on metals due to reduced catalyst loss during the pretreatment process. The dewetting behaviors of the thin film catalysts are influenced by the physical surface heterogeneity of the substrates which leads to non-uniform growth of VACNTs. The GLAD process facilitates the deposition of a relatively thick catalyst layer for the creation of dense and uniform catalyst nanoparticles. Applications of VACNT-metal structures in TIMs and microelectrodes are demonstrated. The VACNT-TIMs fabricated on Al alloy substrates have a typical thermal contact resistivity of 17.1 mm2˙K/W and their effective application in high-brightness LED thermal management was demonstrated. Electrochemical characterization was carried out on VACNT microelectrodes for the development of high resolution retinal prostheses and a satisfactory electrochemical property was again demonstrated.
40 CFR 85.1512 - Admission of catalyst and O2 sensor-equipped vehicles.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Admission of catalyst and O2 sensor... Vehicles and Motor Vehicle Engines § 85.1512 Admission of catalyst and O2 sensor-equipped vehicles. (a)(1... system and/or O2 sensor; (iii) Is labeled in accordance with 40 CFR part 86, subpart A or subpart S, or...
Varnell, Jason A.; Tse, Edmund C. M.; Schulz, Charles E.; Fister, Tim T.; Haasch, Richard T.; Timoshenko, Janis; Frenkel, Anatoly I.; Gewirth, Andrew A.
2016-01-01
The widespread use of fuel cells is currently limited by the lack of efficient and cost-effective catalysts for the oxygen reduction reaction. Iron-based non-precious metal catalysts exhibit promising activity and stability, as an alternative to state-of-the-art platinum catalysts. However, the identity of the active species in non-precious metal catalysts remains elusive, impeding the development of new catalysts. Here we demonstrate the reversible deactivation and reactivation of an iron-based non-precious metal oxygen reduction catalyst achieved using high-temperature gas-phase chlorine and hydrogen treatments. In addition, we observe a decrease in catalyst heterogeneity following treatment with chlorine and hydrogen, using Mössbauer and X-ray absorption spectroscopy. Our study reveals that protected sites adjacent to iron nanoparticles are responsible for the observed activity and stability of the catalyst. These findings may allow for the design and synthesis of enhanced non-precious metal oxygen reduction catalysts with a higher density of active sites. PMID:27538720
Ghosh, Dwaipayan; Febriansyah, Benny; Gupta, Disha; Ng, Leonard Kia-Sheun; Xi, Shibo; Du, Yonghua; Baikie, Tom; Dong, ZhiLi; Soo, Han Sen
2018-05-22
Catalyst deactivation is a persistent problem not only for the scientific community but also in industry. Isolated single-site heterogeneous catalysts have shown great promise to overcome these problems. Here, a versatile anchoring strategy for molecular complex immobilization on a broad range of semiconducting or insulating metal oxide ( e. g., titanium dioxide, mesoporous silica, cerium oxide, and tungsten oxide) nanoparticles to synthesize isolated single-site catalysts has been studied systematically. An oxidatively stable anchoring group, maleimide, is shown to form covalent linkages with surface hydroxyl functionalities of metal oxide nanoparticles by photoclick chemistry. The nanocomposites have been thoroughly characterized by techniques including UV-visible diffuse reflectance spectroscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, infrared spectroscopy, and X-ray absorption spectroscopy (XAS). The IR spectroscopic studies confirm the covalent linkages between the maleimide group and surface hydroxyl functionalities of the oxide nanoparticles. The hybrid nanomaterials function as highly efficient catalysts for essentially quantitative oxidations of terminal and internal alkenes and show molecular catalyst product selectivities even in more eco-friendly solvents. XAS studies verify the robustness of the catalysts after several catalytic cycles. We have applied the photoclick anchoring methodology to precisely control the deposition of a luminescent variant of our catalyst on the metal oxide nanoparticles. Overall, we demonstrate a general approach to use irradiation to anchor molecular complexes on oxide nanoparticles to create recyclable, hybrid, single-site catalysts that function with high selectivity in a broad range of solvents. We have achieved a facile, spatially and temporally controllable photoclick method that can potentially be extended to other ligands, catalysts, functional molecules, and surfaces.
Morphological investigation of nanostructured CoMo catalysts
NASA Astrophysics Data System (ADS)
Pawelec, B.; Castaño, P.; Zepeda, T. A.
2008-04-01
This work reports the morphological investigation of nanostructured sulfided CoMo catalysts by means of high-resolution transmission electron microscopy (HRTEM). The catalysts were supported on Ti-modified hexagonal mesoporous silica (HMS-Ti) and P-modified HMS-Ti (P/HMS-Ti) materials. The oxide precursors were characterized by specific surface area (S BET), temperature-programmed reduction (TPR), diffuse reflectance infrared Fourier transform spectroscopy in the OH region (DRIFTS-OH) and X-ray photoelectron spectroscopy (XPS) in order to elucidate the influence of the impregnation sequence (successive vs. simultaneous) and the effect of P-incorporation into HMS-Ti material on the morphology of calcined CoMo catalysts. Both TPR and XPS measurements indicate that the catalysts prepared by successive impregnation possess well-dispersed MoO 3 and CoO phases, whereas their counterparts prepared by simultaneous impregnation additionally possess the CoMoO 4 phase. For all sulfided catalysts, the presence of MoS 2 phase with particle size in the range 3.3-4.4 nm was confirmed by HRTEM. Catalytic activity was evaluated in the reaction of hydrodesulfurization (HDS) of dibenzothiophene (DBT) carried out in a flow reactor at 593 K and hydrogen pressure of 5.5 MPa. P-incorporation into the HMS-Ti material led to an overall increase in HDS activity and the hydrogenation ability of the sulfided catalysts. All catalysts proved to be stable during 10 h time-on-stream (TOS) operation. The activity of sulfide catalysts in the target reaction depends linearly on the surface exposure of Co species in the oxide precursors, as determined by XPS, and on the morphology of the sulfide form of catalysts (surface density of MoS 2 particles and their sizes) as determined by HRTEM.
A novel nano-Ni/SiO2 catalyst for hydrogen production from steam reforming of ethanol.
Wu, Chunfei; Williams, Paul T
2010-08-01
Catalytic steam reforming of ethanol has been regarded as a promising way to produce hydrogen. However, catalytic deactivation is a key problem in the process. In this paper, a novel nano-Ni/SiO2 catalyst was prepared by a simple sol-gel method and compared to catalysts prepared by an impregnation method in relation to the steam reforming ethanol process. Good Ni dispersion and high BET surface areas (>700 m2 g(-1)) were obtained for sol-gel catalysts, whereas only 1 m2 g(-1) surface area was obtained for the Ni/SiO2 impregnation catalyst. The results of catalytic steam reforming of ethanol showed that about twice of the hydrogen production was produced with the Ni/SiO2 catalyst prepared by sol-gel (around 0.2 g h(-1)) compared with that prepared by impregnation (around 0.1 g h(-1)). The analysis of the used catalysts showed that 10Ni/SiO2-B and 20Ni/SiO2-B presented the highest stability, while other catalysts were fragmented into small pieces after the reforming process, especially the catalysts prepared by impregnation. A novel catalyst has been produced that has been shown to be effective in the production of hydrogen from the steam reforming of ethanol.
Akbari, Azam; Omidkhah, Mohammadreza; Darian, Jafar Towfighi
2014-03-01
A new heterogeneous sonocatalytic system consisting of a MoO3/Al2O3 catalyst and H2O2 combined with ultrasonication was studied to improve and accelerate the oxidation of model sulfur compounds of diesel, resulting in a significant enhancement in the process efficiency. The influence of ultrasound on properties, activity and stability of the catalyst was studied in detail by means of GC-FID, PSD, SEM and BET techniques. Above 98% conversion of DBT in model diesel containing 1000 μg/g sulfur was obtained by new ultrasound-assisted desulfurization at H2O2/sulfur molar ratio of 3, temperature of 318 K and catalyst dosage of 30 g/L after 30 min reaction, contrary to the 55% conversion obtained during the silent process. This improvement was considerably affected by operation parameters and catalyst properties. The effects of main process variables were investigated using response surface methodology in silent process compared to ultrasonication. Ultrasound provided a good dispersion of catalyst and oxidant by breakage of hydrogen bonding and deagglomeration of them in the oil phase. Deposition of impurities on the catalyst surface caused a quick deactivation in silent experiments resulting only 5% of DBT oxidation after 6 cycles of silent reaction by recycled catalyst. Above 95% of DBT was oxidized after 6 ultrasound-assisted cycles showing a great improvement in stability by cleaning the surface during ultrasonication. A considerable particle size reduction was also observed after 3 h sonication that could provide more dispersion of catalyst in model fuel.
Lee, Sang Chul; Benck, Jesse D.; Tsai, Charlie; ...
2015-12-01
Amorphous MoS x is a highly active, earth-abundant catalyst for the electrochemical hydrogen evolution reaction. Previous studies have revealed that this material initially has a composition of MoS 3, but after electrochemical activation, the surface is reduced to form an active phase resembling MoS 2 in composition and chemical state. However, structural changes in the Mo Sx catalyst and the mechanism of the activation process remain poorly understood. In this study, we employ transmission electron microscopy (TEM) to image amorphous MoS x catalysts activated under two hydrogen-rich conditions: ex situ in an electrochemical cell and in situ in an environmentalmore » TEM. For the first time, we directly observe the formation of crystalline domains in the MoS x catalyst after both activation procedures as well as spatially localized changes in the chemical state detected via electron energy loss spectroscopy. Using density functional theory calculations, we investigate the mechanisms for this phase transformation and find that the presence of hydrogen is critical for enabling the restructuring process. Our results suggest that the surface of the amorphous MoS x catalyst is dynamic: while the initial catalyst activation forms the primary active surface of amorphous MoS 2, continued transformation to the crystalline phase during electrochemical operation could contribute to catalyst deactivation. Finally, these results have important implications for the application of this highly active electrocatalyst for sustainable H 2 generation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Cheol-Woo W.; Kwak, Ja Hun; Peden, Charles H.F.
2007-09-21
Modern surface science techniques have been commonly applied to understand issues arising from practical catalytic systems.[1-4] However, the applicability of most of the results obtained from model systems has been limited, due, primarily, to the vastly different conditions studies on model and practical systems are carried out (catalyst composition, reaction conditions etc.).[5, 6] Therefore, the need to conduct experiments on compositionally similar systems (model and practical) is necessary to obtain valuable information on the workings of real catalysts. In this communication we demonstrate the utility of surface science studies on model catalysts in understanding the properties of high surface area,more » BaO-based NO x storage-reduction (NSR) catalysts.[7] We present evidence for the facile formation of surface barium aluminate-like species even at very low coverages of BaO. This Ba-aluminate layer, however, can react with NO 2 resulting in the formation of a bulk-like Ba(NO 3) 2 phase. In order to construct model catalysts that are representative of the practical NO x storage systems, we first needed to estimate the BaO covareges on the high surface area catalysts. Since the publication of the work by Fanson et al.[8], BaO loadings of 8 – 10 wt.% on a γ-alumina support (200 m 2/g) have been regarded as corresponding to one monolayer (ML) coverage, based on the unit cell size of bulk BaO. The coverage equivalent of one ML, however, was significantly underestimated. Assuming complete spreading of the BaO layer and using a Ba–O distance of ~ 2.77 Å (one unit of BaO occupies 1.53 × 10 -19 m 2), 10 wt.% loading of BaO would cover only about 1/3 of the alumina surface. Table 1 shows our calculated estimates of two-dimensional BaO coverages as a function of loading on a -Al 2O 3 surface (200 m 2/g) based on the lattice parameters of bulk BaO[9] (5.54 Å). Based on these values, for our model system studies we prepared BaO/Al 2O 3/NiAl(110) materials in which the BaO coverages were very close to those of 4, 8, and 20 wt.% BaO/γ-Al 2O 3 high surface area catalysts used in prior studies.« less
Zhang, Nan; Zhao, He; Zhang, Guangming; Chong, Shan; Liu, Yucan; Sun, Liyan; Chang, Huazhen; Huang, Ting
2017-02-01
High efficiency and facile separation are desirable for catalysts used in water treatment. In this study, a magnetic catalyst (nitrogen doped iron/activated carbon) was prepared and used for pharmaceutical wastewater treatment. The catalyst was characterized using BET, SEM, XRD, VSM and XPS. Results showed that iron and nitrogen were successfully loaded and doped, magnetic Fe 2 N was formed, large amount of active surface oxygen and Fe(II) were detected, and the catalyst could be easily separated from water. Diclofenac was then degraded using the catalyst in ultrasound system. The catalyst showed high catalytic activity with 95% diclofenac removal. Analysis showed that ·OH attack of diclofenac was a main pathway, and then ·OH generation mechanism was clarified. The effects of catalyst dosage, sonication time, ultrasonic density, initial pH, and inorganic anions on diclofenac degradation were studied. Sulfate anion enhanced the degradation of diclofenac. Mechanism in the catalytic ultrasonic process was analyzed and reactions were clarified. Large quantity of oxidants was generated on the catalyst surface, including ·OH, O 2 - , O - and HO 2 ·, which degraded diclofenac efficiently. In the solution and interior of cavitation bubbles, ·OH and "hot spot" effects contributed to the degradation of diclofenac. Reuse of the catalyst was further investigated to enhance its economy, and the catalyst maintained activity after seven uses. Copyright © 2016 Elsevier Ltd. All rights reserved.
Subnanometer to nanometer transition metal CO oxidation catalysts
Vajda, Stefan; Fortunelli, Alessandro; Yasumatsu, Hisato
2017-12-26
The present invention provides a catalyst defined in part by a conductive substrate; a film overlaying a surface of the substrate; and a plurality of metal clusters supported by the layer, wherein each cluster comprises between 8 and 11 atoms. Further provided is a catalyst defined in part by a conductive substrate; a layer overlaying a surface of the substrate; and a plurality of metal clusters supported by the layer, wherein each cluster comprises at least two metals.
Catalytic Synthesis of Oxygenates: Mechanisms, Catalysts and Controlling Characteristics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klier, Kamil; Herman, Richard G
2005-11-30
This research focused on catalytic synthesis of unsymmetrical ethers as a part of a larger program involving oxygenated products in general, including alcohols, ethers, esters, carboxylic acids and their derivatives that link together environmentally compliant fuels, monomers, and high-value chemicals. The catalysts studied here were solid acids possessing strong Brnsted acid functionalities. The design of these catalysts involved anchoring the acid groups onto inorganic oxides, e.g. surface-grafted acid groups on zirconia, and a new class of mesoporous solid acids, i.e. propylsulfonic acid-derivatized SBA-15. The former catalysts consisted of a high surface concentration of sulfate groups on stable zirconia catalysts. Themore » latter catalyst consists of high surface area, large pore propylsulfonic acid-derivatized silicas, specifically SBA-15. In both cases, the catalyst design and synthesis yielded high concentrations of acid sites in close proximity to one another. These materials have been well-characterization in terms of physical and chemical properties, as well as in regard to surface and bulk characteristics. Both types of catalysts were shown to exhibit high catalytic performance with respect to both activity and selectivity for the bifunctional coupling of alcohols to form ethers, which proceeds via an efficient SN2 reaction mechanism on the proximal acid sites. This commonality of the dual-site SN2 reaction mechanism over acid catalysts provides for maximum reaction rates and control of selectivity by reaction conditions, i.e. pressure, temperature, and reactant concentrations. This research provides the scientific groundwork for synthesis of ethers for energy applications. The synthesized environmentally acceptable ethers, in part derived from natural gas via alcohol intermediates, exhibit high cetane properties, e.g. methylisobutylether with cetane No. of 53 and dimethylether with cetane No. of 55-60, or high octane properties, e.g. diisopropylether with blending octane No. of 105, and can replace aromatics in liquid fuels.« less
Cyclic process for producing methane with catalyst regeneration
Frost, Albert C.; Risch, Alan P.
1980-01-01
Carbon monoxide-containing gas streams are passed over a catalyst capable of catalyzing the disproportionation of carbon monoxide so as to deposit a surface layer of active surface carbon on the catalyst essentially without formation of inactive coke thereon. The surface layer is contacted with steam and is thus converted to methane and CO.sub.2, from which a relatively pure methane product may be obtained. For practical commercial operations utilizing the two-step process of the invention of a cyclic basis, nickel, cobalt, ruthenium, thenium and alloys thereof are especially prepared for use in a metal state, with CO disproportionation being carried out at temperatures up to about 350.degree. C. and with the conversion of active surface carbon to methane being carried out by reaction with steam. The catalyst is employed in such cyclic operations without the necessity for employing a regeneration step as part of each processing cycle. Inactive carbon or coke that tends to form on the catalyst over the course of continuous operations utilizing such cyclic process is effectively and advantageously removed, on a periodic basis, in place of conventional burn off with an inert stream containing a low concentration of oxygen.
Dry Reforming of Ethane and Butane with CO 2 over PtNi/CeO 2 Bimetallic Catalysts
Yan, Binhang; Yang, Xiaofang; Yao, Siyu; ...
2016-09-21
Dry reforming is a potential process to convert CO 2 and light alkanes into syngas (H 2 and CO), which can be subsequently transformed to chemicals and fuels. Here in this work, PtNi bimetallic catalysts have been investigated for dry reforming of ethane and butane using both model surfaces and supported powder catalysts. The PtNi bimetallic catalyst shows an improvement in both activity and stability as compared to the corresponding monometallic catalysts. The formation of PtNi alloy and the partial reduction of Ce 4+ to Ce 3+ under reaction conditions are demonstrated by in-situ Ambient Pressure X-ray Photoemission Spectroscopy (AP-XPS),more » X-ray Diffraction (XRD) and X-ray Absorption Fine Structure (XAFS) measurements. A Pt-rich bimetallic surface is revealed by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) following CO adsorption. Combined in-situ experimental results and Density Functional Theory (DFT) calculations suggest that the Pt-rich PtNi bimetallic surface structure would weaken the binding of surface oxygenates/carbon species and reduce the activation energy for C-C bond scission, leading to an enhanced dry reforming activity.« less
Dry Reforming of Ethane and Butane with CO 2 over PtNi/CeO 2 Bimetallic Catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Binhang; Yang, Xiaofang; Yao, Siyu
Dry reforming is a potential process to convert CO 2 and light alkanes into syngas (H 2 and CO), which can be subsequently transformed to chemicals and fuels. Here in this work, PtNi bimetallic catalysts have been investigated for dry reforming of ethane and butane using both model surfaces and supported powder catalysts. The PtNi bimetallic catalyst shows an improvement in both activity and stability as compared to the corresponding monometallic catalysts. The formation of PtNi alloy and the partial reduction of Ce 4+ to Ce 3+ under reaction conditions are demonstrated by in-situ Ambient Pressure X-ray Photoemission Spectroscopy (AP-XPS),more » X-ray Diffraction (XRD) and X-ray Absorption Fine Structure (XAFS) measurements. A Pt-rich bimetallic surface is revealed by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) following CO adsorption. Combined in-situ experimental results and Density Functional Theory (DFT) calculations suggest that the Pt-rich PtNi bimetallic surface structure would weaken the binding of surface oxygenates/carbon species and reduce the activation energy for C-C bond scission, leading to an enhanced dry reforming activity.« less
Interdependency of Subsurface Carbon Distribution and Graphene–Catalyst Interaction
2014-01-01
The dynamics of the graphene–catalyst interaction during chemical vapor deposition are investigated using in situ, time- and depth-resolved X-ray photoelectron spectroscopy, and complementary grand canonical Monte Carlo simulations coupled to a tight-binding model. We thereby reveal the interdependency of the distribution of carbon close to the catalyst surface and the strength of the graphene–catalyst interaction. The strong interaction of epitaxial graphene with Ni(111) causes a depletion of dissolved carbon close to the catalyst surface, which prevents additional layer formation leading to a self-limiting graphene growth behavior for low exposure pressures (10–6–10–3 mbar). A further hydrocarbon pressure increase (to ∼10–1 mbar) leads to weakening of the graphene–Ni(111) interaction accompanied by additional graphene layer formation, mediated by an increased concentration of near-surface dissolved carbon. We show that growth of more weakly adhered, rotated graphene on Ni(111) is linked to an initially higher level of near-surface carbon compared to the case of epitaxial graphene growth. The key implications of these results for graphene growth control and their relevance to carbon nanotube growth are highlighted in the context of existing literature. PMID:25188018
Modified Ni-Cu catalysts for ethanol steam reforming
NASA Astrophysics Data System (ADS)
Dan, M.; Mihet, M.; Almasan, V.; Borodi, G.; Katona, G.; Muresan, L.; Lazar, M. D.
2013-11-01
Three Ni-Cu catalysts, having different Cu content, supported on γ-alumina were synthesized by wet co-impregnation method, characterized and tested in the ethanol steam reforming (ESR) reaction. The catalysts were characterized for determination of: total surface area and porosity (N2 adsorption - desorption using BET and Dollimer Heal methods), Ni surface area (hydrogen chemisorption), crystallinity and Ni crystallites size (X-Ray Diffraction), type of catalytic active centers (Hydrogen Temperature Programmed Reduction). Total surface area and Ni crystallites size are not significantly influenced by the addition of Cu, while Ni surface area is drastically diminished by increasing of Cu concentration. Steam reforming experiments were performed at atmospheric pressure, temperature range 150-350°C, and ethanol - water molar ration of 1 at 30, using Ar as carrier gas. Ethanol conversion and hydrogen production increase by the addition of Cu. At 350°C there is a direct connection between hydrogen production and Cu concentration. Catalysts deactivation in 24h time on stream was studied by Transmission Electron Microscopy (TEM) and temperature-programmed reduction (TPR) on used catalysts. Coke deposition was observed at all studied temperatures; at 150°C amorphous carbon was evidenced, while at 350°C crystalline, filamentous carbon is formed.
Noncovalent immobilization of electrocatalysts on carbon electrodes for fuel production.
Blakemore, James D; Gupta, Ayush; Warren, Jeffrey J; Brunschwig, Bruce S; Gray, Harry B
2013-12-11
We show that molecular catalysts for fuel-forming reactions can be immobilized on graphitic carbon electrode surfaces via noncovalent interactions. A pyrene-appended bipyridine ligand (P) serves as the linker between each complex and the surface. Immobilization of a rhodium proton-reduction catalyst, [Cp*Rh(P)Cl]Cl (1), and a rhenium CO2-reduction catalyst, Re(P)(CO)3Cl (2), afford electrocatalytically active assemblies. X-ray photoelectron spectroscopy and electrochemistry confirm catalyst immobilization. Reduction of 1 in the presence of p-toluenesulfonic acid results in catalytic H2 production, while reduction of 2 in the presence of CO2 results in catalytic CO production.
NASA Astrophysics Data System (ADS)
Zeng, L.; Zhao, T. S.; An, L.; Zhao, G.; Yan, X. H.; Jung, C. Y.
2015-02-01
In this work, we have synthesized an ionomer-coated graphene-supported platinum catalyst for anion exchange membrane fuel cells. Unlike the common surfactant stabilized colloidal method, we employ a home-made anion exchange ionomer (AEI), namely quaternary ammonia poly (2, 6-dimethyl-1, 4-phenylene oxide) (QAPPO), as the surfactant. The AEI coated on reduced graphene oxide (rGO) surfaces serves as a stabilizer to anchor the platinum precursor on rGO surfaces due to electrostatic interactions. As a result, platinum nanoparticles (Pt NPs) can be easily deposited onto rGO surfaces with a uniform distribution. The remarkable feature of the present synthesis method is that the surfactant, the coated AEI, does not need to be removed from the catalyst, but serves as hydroxide-conductive paths in the catalyst layer, leading to enhanced triple phase boundaries. It is demonstrated that the use of the catalyst obtained with the present method enables a H2/O2 AEMFC to yield a peak power density of 264.8 mW cm-2 at 60 °C, which is 30% higher than that produced from the same fuel cell but with the use of the catalyst synthesized by the conventional synthesis method.
An Exploration of Geometric and Electronic Effects in Metal Nanoparticle Catalysts
NASA Astrophysics Data System (ADS)
Childers, David
The goal of this thesis is to investigate the influence geometric and electronic effects on metal nanoparticle catalysis. There are three main methods which alter a catalyst's properties: changing support material, changing nanoparticle size and alloying a second metal. This work will focus on the latter two methods using Pt-group metals and alloys. Platinum and palladium were chosen as the active metals due to a large amount of industry significance and prior literature to draw upon. Neopentane conversion and propane dehydrogenation were the two probe reactions used to evaluate these catalysts mainly due to their relative simplicity and ease of operation on a laboratory scale. The effect of particle size was studied with Pt and Pd monometallic catalysts using neopentane hydrogenolysis/isomerization as the probe reaction. Particle size studies have been done previously using this reaction so there is literature data to compare this study's results. This data will also be used as comparison for the bimetallic studies conducted later so that particle size effects can be accounted for when attempting to determine the effect of alloying a second metal. Bimetallic catalysts have several different possible structures depending on a number of factors from the identity of the two metals to the synthesis procedure. Homogeneous, core-shell and intermetallic alloys are the three structures evaluated in this work. Determining the surface composition of a homogeneous alloy can be difficult especially if both metals adsorb CO. PtPd homogeneous alloys were used to evaluate the ability of EXAFS to give information about surface composition using CO adsorption. These catalysts were also tested using neopentane conversion to evaluate changes in catalytic performance. Core-shell catalysts can also exhibit unique properties although it is not clear whether the identity of the core metal is relevant or if surface changes are most important to changing catalytic behavior. PdAu catalysts were synthesized with varying Pd loadings to determine if the Au-rich core would continue to influence neopentane conversion performance with increasing Pd layers on the surface of the nanoparticle. Finally, intermetallic alloys have produced some very interesting literature results and can drastically alter catalyst surface structure. PdZn showed the potential to improve neopentane isomerization selectivity past that of Pt based on calculated electronic properties. Two PdZn catalysts with different loadings were synthesized to evaluate the electronic and geometric effects using both neopentane conversion and propane dehydrogenation.
Twenty kW fuel cell units of compact design. Part 4: Accompanying research and development
NASA Astrophysics Data System (ADS)
Mund, K.
1980-10-01
Models describing the electrochemical kinetics at porous H2 and O2 electrodes using Raney nickel and silver catalysts were developed and their parameters determined by means of stationary and impedance measurements. A correct description of the hydrogen electrode with a Raney nickel catalyst is shown to encompass proper consideration of both diffusion in the pore electrolyte and surface diffusion. Impedance measurements yield a surface diffusion coefficient of 10 sub-8 cm2 S sub-1. The addition of titanium to the catalyst results in decreased electrode polarization and higher stability. Highly active doped silver catalysts are shown to allow high current densities and diaphragm resistances as low as 3 ohm cm at the oxygen electrode. Service tests show adequate stability of the catalysts.
Method to reduce CO.sub.2 to CO using plasmon-enhanced photocatalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huber, George W.; Upadhye, Aniruddha A.; Kim, Hyung Ju
Described is a method of reducing CO.sub.2 to CO using visible radiation and plasmonic photocatalysts. The method includes contacting CO.sub.2 with a catalyst, in the presence of H.sub.2, wherein the catalyst has plasmonic photocatalytic reductive activity when exposed to radiation having a wavelength between 380 nm and 780 nm. The catalyst, CO.sub.2, and H.sub.2 are exposed to non-coherent radiation having a wavelength between 380 nm and 780 nm such that the catalyst undergoes surface plasmon resonance. The surface plasmon resonance increases the rate of CO.sub.2 reduction to CO as compared to the rate of CO.sub.2 reduction to CO without surfacemore » plasmon resonance in the catalyst.« less
NASA Astrophysics Data System (ADS)
Kweun, Joshua Minwoo; Li, Chenzhe; Zheng, Yongping; Cho, Maenghyo; Kim, Yoon Young; Cho, Kyeongjae
2016-05-01
Designing metal-oxides consisting of earth-abundant elements has been a crucial issue to replace precious metal catalysts. To achieve efficient screening of metal-oxide catalysts via bulk descriptors rather than surface descriptors, we investigated the relationship between the electronic structure of bulk and that of the surface for lanthanum-based perovskite oxides, LaMO3 (M = Ti, V, Cr, Mn, Fe, Co, Ni, Cu). Through density functional theory calculations, we examined the d-band occupancy of the bulk and surface transition-metal atoms (nBulk and nSurf) and the adsorption energy of an oxygen atom (Eads) on (001), (110), and (111) surfaces. For the (001) surface, we observed strong correlation between the nBulk and nSurf with an R-squared value over 94%, and the result was interpreted in terms of ligand field splitting and antibonding/bonding level splitting. Moreover, the Eads on the surfaces was highly correlated with the nBulk with an R-squared value of more than 94%, and different surface relaxations could be explained by the bulk electronic structure (e.g., LaMnO3 vs. LaTiO3). These results suggest that a bulk-derived descriptor such as nBulk can be used to screen metal-oxide catalysts.
Gavia, Diego J.
2015-01-01
This Minireview summarizes a variety of intriguing catalytic studies accomplished by employing unsupported, either solubilized or freely mobilized, and small organic ligand-capped palladium nanoparticles as catalysts. Small organic ligands are gaining more attention as nanoparticle stabilizers and alternates to larger organic supports, such as polymers and dendrimers, owing to their tremendous potential for a well-defined system with spatial control in surrounding environments of reactive surfaces. The nanoparticle catalysts are grouped depending on the type of surface stabilizers with reactive head groups, which include thiolate, phosphine, amine, and alkyl azide. Applications for the reactions such as hydrogenation, alkene isomerization, oxidation, and carbon-carbon cross coupling reactions are extensively discussed. The systems defined as “ligandless” Pd nanoparticle catalysts and solvent (e.g. ionic liquid)-stabilized Pd nanoparticle catalysts are not discussed in this review. PMID:25937846
NASA Astrophysics Data System (ADS)
Tao, Lu; Zhao, Yueping; Zhao, Yufeng; Huang, Shifei; Yang, Yunxia; Tong, Qi; Gao, Faming
2018-02-01
High efficiency platinum-based catalyst demands the ultrafine size and well dispersion of Pt nanoparticles (NPs), with clean surface and strong interactions between the supports. In this work, we demonstrate a simple strategy for the preparation of ultra-dispersed surface-clean Pt catalyst with high stability, in which the Pt nanoparticles (NPs) with 1.8 ± 0.6 nm in size are anchored tightly on a 3D hierarchical porous graphitized carbon (3D-HPG) through galvanic replacement reaction. The as-obtained catalyst can undergo 2000 voltage cycles with negligible activity decay and no apparent structure and size changes for MOR during the durability test, and its mass activity for ORR only reduce 18.3% after 5000 cycles. The excellent performance is attributed to strong anchoring effect between carbon support and Pt nanoparticles.
NASA Astrophysics Data System (ADS)
Yang, Chunwei; Hu, Xinguo; Wang, Dianlong; Dai, Changsong; Zhang, Liang; Jin, Haibo; Agathopoulos, Simeon
In the quest of fabricating supported catalysts, experimental results of transmission electron microscopy, Raman and infrared spectroscopy indicate that ultrasonic treatment effectively functionalizes multi-walled carbon nanotubes (MWCNTs), endowing them with groups that can act as nucleation sites which can favor well-dispersed depositions of PtRu clusters on their surface. Ultrasonic treatment seems to be superior than functionalization via regular refluxing. This is confirmed by the determination of the electrochemistry active surface area (ECA) and the CO-tolerance performance of the PtRu catalysts, measured by adsorbed CO-stripping voltammetry in 0.5 M sulfuric acid solution, and the real surface area of the PtRu catalysts, evaluated by Brunauer-Emmett-Teller (BET) measurements. Finally, the effectiveness for methanol oxidation is assessed by cyclic voltammetry (CV) in a sulfuric acid and methanol electrolyte.
Kuhn, Kevin M.; Champagne, Timothy M.; Hong, Soon Hyeok; Wei, Wen-Hao; Nickel, Andrew; Lee, Choon Woo; Virgil, Scott C.; Grubbs, Robert H.; Pederson, Richard L.
2010-01-01
(eq 1) A series of ruthenium catalysts have been screened under ring closing metathesis (RCM) conditions to produce five-, six-, and seven-membered carbamate-protected cyclic amines. Many of these catalysts demonstrated excellent RCM activity and yields with as low as 500 ppm catalyst loadings. RCM of the five-membered carbamate-series could be run neat, the six-membered carbamate-series could be run at 1.0 M concentrations and the seven-membered carbamate-series worked best at 0.2 M to 0.05 M concentrations. PMID:20141172
GREENING OF OXIDATION CATALYSIS THROUGH IMPROVED CATALYST AND PROCESS DESIGN
Greening of Oxidation Catalysis Through Improved Catalysts and Process Design
Michael A. Gonzalez*, Thomas Becker, and Raymond Smith
United State Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 W...
Characterization of Deactivated Bio-oil Hydrotreating Catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Huamin; Wang, Yong
Deactivation of bio-oil hydrotreating catalysts remains a significant challenge because of the poor quality of pyrolysis bio-oil input for hydrotreating and understanding their deactivation mode is critical to developing improved catalysts and processes. In this research, we developed an understanding of the deactivation of two-step bio-oil hydrotreating catalysts (sulfided Ru/C and sulfided CoMo/C) through detailed characterization of the catalysts using various complimentary analytical techniques. Severe fouling of both catalysts by carbonaceous species was the major form of deactivation, which is consistent with the significant loss of surface area and pore volume of both deactivated catalysts and the significant increase ofmore » the bulk density. Further analysis of the carbonaceous species by thermogravimetric analysis and x-ray photoelectron spectroscopy indicated that the carbonaceous species was formed by condensation reaction of active species such as sugars and sugar derivatives (aldehydes and ketones) in bio-oil feedstock during bio-oil hydrotreating under the conditions and catalysts used. Microscopy results did not show metal sintering of the Ru/C catalyst. However, X-ray diffraction indicated a probable transformation of the highly-active CoMoS phase in the sulfided CoMo/C catalyst to Co8S9 and MoS2 phase with low activity. Loss of the active site by transport of inorganic elements from the bio-oil and the reactor construction material onto the catalyst surface also might be a cause of deactivation as indicated by elemental analysis of spent catalysts.« less
Effect of nanoscale flows on the surface structure of nanoporous catalysts.
Montemore, Matthew M; Montessori, Andrea; Succi, Sauro; Barroo, Cédric; Falcucci, Giacomo; Bell, David C; Kaxiras, Efthimios
2017-06-07
The surface structure and composition of a multi-component catalyst are critical factors in determining its catalytic performance. The surface composition can depend on the local pressure of the reacting species, leading to the possibility that the flow through a nanoporous catalyst can affect its structure and reactivity. Here, we explore this possibility for oxidation reactions on nanoporous gold, an AgAu bimetallic catalyst. We use microscopy and digital reconstruction to obtain the morphology of a two-dimensional slice of a nanoporous gold sample. Using lattice Boltzmann fluid dynamics simulations along with thermodynamic models based on first-principles total-energy calculations, we show that some sections of this sample have low local O 2 partial pressures when exposed to reaction conditions, which leads to a pure Au surface in these regions, instead of the active bimetallic AgAu phase. We also explore the effect of temperature on the surface structure and find that moderate temperatures (≈300-450 K) should result in the highest intrinsic catalytic performance, in apparent agreement with experimental results.
Improving catalytic selectivity through control of adsorption orientation
NASA Astrophysics Data System (ADS)
Pang, Simon H.
In this thesis, we present an investigation, starting from surface science experiments, leading to design of supported catalysts, of how adsorption orientation can be used to affect reaction selectivity of highly functional molecules. The surface chemistry of furfuryl alcohol and benzyl alcohol and their respective aldehydes was studied on a Pd(111) single-crystal surface under ultra-high vacuum conditions. Temperature-programmed desorption experiments showed that synergistic chemistry existed between the aromatic ring and the oxygen-containing functional group, each allowing the other to participate in reaction pathways that a monofunctional molecule could not. Most important of these was a deoxygenation reaction that occurred more readily when the surface was crowded by the highest exposures. High-resolution electron energy loss spectroscopy revealed that at these high exposures, molecules were oriented upright on the surface, with the aromatic function extending into vacuum. In contrast, at low exposures, molecules were oriented flat on the surface. The upright adsorption geometry was correlated with deoxygenation, whereas the flat-lying geometry was correlated with decarbonylation. The insight gained from surface science experiments was utilized in catalyst design. Self-assembled monolayers of alkanethiolates were used to systematically reduce the average surface ensemble size, and the reaction selectivity was tracked. When a sparsely-packed monolayer was used, such as one formed by 1-adamantanethiol, the reactant furfural was still able to lie flat on the surface and the reaction selectivity was similar to that of the uncoated catalyst. However, when a densely-packed monolayer, formed by 1-octadecanethiol, was used, furfural was not able to adsorb flat on the surface and instead adopted an upright conformation, leading to a drastic increase in aldehyde hydrogenation and hydrodeoxygenation reaction selectivity. Using an even higher sulfur coverage from a monolayer formed by 1,2-benzenedithiol, we determined that hydrodeoxygenation selectively occurred on catalyst particle steps and edges from an upright structure, whereas decarbonylation occurred on particle terraces from a flat-lying structure. Control of furfural adsorption orientation was also achieved through the use of NiCu bimetallic catalysts. The aromatic furan ring was repelled from surface Cu, leading to an upright structure. However, under hydrogenation conditions, Ni tended to be near the surface of thin films and catalysts, leading to less dramatic selectivity enhancement. The presence of a 1-octadecanethiol monolayer kinetically stabilized the surface termination, allowing Cu to remain at the surface.
Investigation of Methods of Inspired Gas Heating.
1981-10-30
inhaled gas. Good for one hour at 1 percent CO, the apparatus is a simple Hopcalite catalyst bed mounted on a mouthpiece. Hopcalite , a mixture of...Respirator pro- The Self-Rescuer uses the oxidation also expeiled through the expiratory vides emergency respiratory protection catalyst Hopcalites to...tection against carbon monoxide in the Hopcalite catalyst, and a drying life; it can be carried by personnel or otherwise respirable air; it should not
Competing reaction processes on a lattice as a paradigm for catalyst deactivation
NASA Astrophysics Data System (ADS)
Abad, E.; Kozak, J. J.
2015-02-01
We mobilize both a generating function approach and the theory of finite Markov processes to compute the probability of irreversible absorption of a randomly diffusing species on a lattice with competing reaction centers. We consider an N-site lattice populated by a single deep trap, and N -1 partially absorbing traps (absorption probability 0
Reaction pathways of biomass-derived oxygenates on noble metal surfaces
NASA Astrophysics Data System (ADS)
McManus, Jesse R.
As the global demand for energy continues to rise, the environmental concerns associated with increased fossil fuel consumption have motivated the use of biomass as an alternative, carbon-renewable energy feedstock. Controlling reactive chemistry of the sugars that comprise biomass through the use of catalysis becomes essential in effectively producing green fuels and value-added chemicals. Recent work on biomass conversion catalysts have demonstrated the efficacy of noble metal catalyst systems for the reforming of biomass to hydrogen fuel, and the hydrodeoxygenation of biomass-derived compounds to value-added chemicals. In particular, Pt and Pd surfaces have shown considerable promise as reforming catalysts in preliminary aqueous phase reforming studies. It becomes important to understand the mechanisms by which these molecules react on the catalyst surfaces in order to determine structure-activity relationships and bond scission energetics as to provide a framework for engineering more active and selective catalysts. Fundamental surface science techniques provide the tools to do this; however, work in this field has been so far limited to simple model molecules like ethanol and ethylene glycol. Herein, temperature programmed desorption and high resolution electron energy loss spectroscopy are utilized in an ultra-high vacuum surface science study of the biomass-derived sugar glucose on Pt and Pd single crystal catalysts. Overall, it was determined that the aldehyde function of a ring-open glucose molecule plays an integral part in the initial bonding and reforming reaction pathway, pointing to the use of aldoses glycolaldehyde and glyceraldehyde as the most appropriate model compounds for future studies. Furthermore, the addition of adatom Zn to a Pt(111) surface was found to significantly decrease the C-H and C-C bond scission activity in aldehyde containing compounds, resulting in a preferred deoxygenation pathway in opposition to the decarbonylation pathway common on clean Pt(111). This has implications in the hydrodeoxygenation of biomass-derived compounds for the production of value-added chemicals like 2-methylfuran from furfural, or the catalytic upgrading of sugars. Ultimately, identification of the reactive mechanisms of biomass-derived molecules on different unique surfaces has lead to a greater understanding for what makes a more selective catalyst for specific chemical pathways.
Functionalized polymer nanofibre membranes for protection from chemical warfare stimulants
NASA Astrophysics Data System (ADS)
Ramaseshan, Ramakrishnan; Sundarrajan, Subramanian; Liu, Yingjun; Barhate, R. S.; Lala, Neeta L.; Ramakrishna, S.
2006-06-01
A catalyst for the detoxification of nerve agents is synthesized from β-cyclodextrin (β-CD) and o-iodosobenzoic acid (IBA). Functionalized polymer nanofibre membranes from PVC polymer are fabricated with β-CD, IBA, a blend of β-CD+IBA, and the synthesized catalyst. These functionalized nanofibres are then tested for the decontamination of paraoxon, a nerve agent stimulant, and it is observed that the stimulant gets hydrolysed. The kinetics of hydrolysis is investigated using UV spectroscopy. The rates of hydrolysis for different organophosphate hydrolyzing agents are compared. The reactivity and amount of adsorption of these catalysts are of higher capacity than the conventionally used activated charcoal. A new design for protective wear is proposed based on the functionalized nanofibre membrane.
USDA-ARS?s Scientific Manuscript database
The hydrogenation of furfural to furfuryl alcohol over a CuOCeO2/'-Al2O3 catalyst in a flow reactor is reported. The catalyst was prepared by the wet impregnation of Cu onto a CeO2/'-Al2O3 precursor. The calcined catalyst was then treated with HNO3 to remove surface CuO resulting in a mixed CuCe oxi...
Molecular metal catalysts on supports: organometallic chemistry meets surface science.
Serna, Pedro; Gates, Bruce C
2014-08-19
Recent advances in the synthesis and characterization of small, essentially molecular metal complexes and metal clusters on support surfaces have brought new insights to catalysis and point the way to systematic catalyst design. We summarize recent work unraveling effects of key design variables of site-isolated catalysts: the metal, metal nuclearity, support, and other ligands on the metals, also considering catalysts with separate, complementary functions on supports. The catalysts were synthesized with the goal of structural simplicity and uniformity to facilitate incisive characterization. Thus, they are essentially molecular species bonded to porous supports chosen for their high degree of uniformity; the supports are crystalline aluminosilicates (zeolites) and MgO. The catalytic species are synthesized in reactions of organometallic precursors with the support surfaces; the precursors include M(L)2(acetylacetonate)1-2, with M = Ru, Rh, Ir, or Au and the ligands L = C2H4, CO, or CH3. Os3(CO)12 and Ir4(CO)12 are used as precursors of supported metal clusters, and some such catalysts are made by ship-in-a-bottle syntheses to trap the clusters in zeolite cages. The simplicity and uniformity of the supported catalysts facilitate precise structure determinations, even in reactive atmospheres and during catalysis. The methods of characterizing catalysts in reactive atmospheres include infrared (IR), extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), and nuclear magnetic resonance (NMR) spectroscopies, and complementary methods include density functional theory and atomic-resolution aberration-corrected scanning transmission electron microscopy for imaging of individual metal atoms. IR, NMR, XANES, and microscopy data demonstrate the high degrees of uniformity of well-prepared supported species. The characterizations determine the compositions of surface metal complexes and clusters, including the ligands and the metal-support bonding and structure, which identify the supports as ligands with electron-donor properties that influence reactivity and catalysis. Each of the catalyst design variables has been varied independently, illustrated by mononuclear and tetranuclear iridium on zeolite HY and on MgO and by isostructural rhodium and iridium (diethylene or dicarbonyl) complexes on these supports. The data provide examples resolving the roles of the catalyst design variables and place the catalysis science on a firm foundation of organometallic chemistry linked with surface science. Supported molecular catalysts offer the advantages of characterization in the absence of solvents and with surface-science methods that do not require ultrahigh vacuum. Families of supported metal complexes have been made by replacement of ligands with others from the gas phase. Spectroscopically identified catalytic reaction intermediates help to elucidate catalyst performance and guide design. The methods are illustrated for supported complexes and clusters of rhodium, iridium, osmium, and gold used to catalyze reactions of small molecules that facilitate identification of the ligands present during catalysis: alkene dimerization and hydrogenation, H-D exchange in the reaction of H2 with D2, and CO oxidation. The approach is illustrated with the discovery of a highly active and selective MgO-supported rhodium carbonyl dimer catalyst for hydrogenation of 1,3-butadiene to give butenes.
Effects of Activated Carbon Surface Property on Structure and Activity of Ru/AC Catalysts
NASA Astrophysics Data System (ADS)
Xu, S. K.; Li, L. M.; Guo, N. N.
2018-05-01
The activated carbon (AC) was modified by supercritical (SC) methanol, HNO3 oxidation, or HNO3 oxidation plus SC methanol, respectively. Then, the original and the modified AC were used as supports for Ru/AC catalysts prepared via the impregnation method. The results showed that the SC methanol modification decreased the content of surface acidic groups of AC. While HNO3 oxidation displayed the opposite behavior. Furthermore, the dispersion of ruthenium and the activity of catalysts were highly dependent on the content of surface acidic groups, and the SC methanol modified sample exhibited the highest activity for hydrogenation of glucose.
HOMOGENEOUS AIR OXIDATION OF HYDROCARBONS UTILIZING MN AND CO CATALYSTS
Homogeneous Air Oxidation of Hydrocarbons Utilizing Mn and Co Catalysts
Thomas M. Becker and Michael A. Gonzalez*, Sustainable Technology Division, Office of Research and Development; United States Environmental Protection Agency, 26 West Martin Luther King Drive, Mail Sto...
Thin film hydrous metal oxide catalysts
Dosch, Robert G.; Stephens, Howard P.
1995-01-01
Thin film (<100 nm) hydrous metal oxide catalysts are prepared by 1) synthesis of a hydrous metal oxide, 2) deposition of the hydrous metal oxide upon an inert support surface, 3) ion exchange with catalytically active metals, and 4) activating the hydrous metal oxide catalysts.
Adsorption properties of regenerative materials for removal of low concentration of toluene.
Xie, Zhen-Zhen; Wang, Lin; Cheng, Ge; Shi, Lei; Zhang, Yi-Bo
2016-12-01
A specific type of material, activated carbon fiber (ACF), was modified by SiO 2 , and the final products ACF-x were obtained as ACF-12.5, ACF-20, ACF-40, and ACF-80 according to different dosages of tetraethoxysilane (TEOS). The modified material on the ACF surface had a significant and smooth cover layer with low content of silica from scanning electron microscope (SEM) image. The modified ACF-x showed the stronger hydrophobicity, thermal stability, and adsorption capacity, which had almost no effect in the presence of water vapor and no destruction in multiple cycles. ACF-20 was proven as the most efficient adsorbent in humid conditions. The dual-function system composed of the regenerative adsorbents and the combustion catalyst would be efficient in consecutive toluene adsorption/oxidation cycles, in which the combustion catalyst was prepared by the displacement reaction of H 2 PtCl 6 with foam Ni. Therefore, the adsorption/catalytic oxidation could be a promising technique in the indoor air purification, especially in the case of very low volatile organic compound (VOC; toluene) concentration levels. Exploring highly effective adsorptive materials with less expensive costs becomes an urgent issue in the indoor air protection. ACF-20 modified by SiO 2 with Pt/Ni catalysts shows stronger hydrophobicity, thermal stability, and adsorption capacity. This dual-function system composed of the regenerative materials and the combustion catalyst would be a promising technique in the indoor air purification, especially in the case of removal of very low concentration of toluene.
Surface coatings and catalyst production by electrodeposition
NASA Technical Reports Server (NTRS)
May, Chester B.; Riley, Clyde; Coble, H. Dwain; Loo, Boon H.
1987-01-01
Electrodeposition and electrocodeposition in low gravity are discussed. The goal is to provide a better understanding of the role of convection and buoyancy in the mechanisms of formation of some electrodeposited surfaces, fluid flow in the vicinity of electrodepositing surfaces, the influence of a moving medium upon codeposition, the effect of gravity upon the dispersion (coagulation) of neutral particles that are desired for codeposition and preparation of improved surface coatings and metal catalysts.
Mass-produced multi-walled carbon nanotubes as catalyst supports for direct methanol fuel cells.
Jang, In Young; Park, Ki Chul; Jung, Yong Chae; Lee, Sun Hyung; Song, Sung Moo; Muramatsu, Hiroyuki; Kim, Yong Jung; Endo, Morinobu
2011-01-01
Commercially mass-produced multi-walled carbon nanotubes, i.e., VGNF (Showa Denko Co.), were applied to support materials for platinum-ruthenium (PtRu) nanoparticles as anode catalysts for direct methanol fuel cells. The original VGNFs are composed of high-crystalline graphitic shells, which hinder the favorable surface deposition of the PtRu nanoparticles that are formed via borohydride reduction. The chemical treatment of VGNFs with potassium hydroxide (KOH), however, enables highly dispersed and dense deposition of PtRu nanoparticles on the VGNF surface. This capability becomes more remarkable depending on the KOH amount. The electrochemical evaluation of the PtRu-deposited VGNF catalysts showed enhanced active surface areas and methanol oxidation, due to the high dispersion and dense deposition of the PtRu nanoparticles. The improvement of the surface deposition states of the PtRu nanoparticles was significantly due to the high surface area and mesorporous surface structure of the KOH-activated VGNFs.
NASA Astrophysics Data System (ADS)
Li, Hongwei; Ji, Dong; Li, Yu; Liang, Yalan; Li, Gui Xian
2015-12-01
A series of Ru-based catalysts modified by alkaline earth metals were prepared by the impregnation-precipitation method and characterized using transmission electron microscopy, X-ray diffraction, ICP optical emission spectroscopy, Infrared Spectroscopy of adsorbed pyridine analysis and surface area analysis. The performance of the catalysts was measured via liquid-phase hydroquinone hydrogenation reaction. Results show that the Ru-Sr/NaY catalyst has the best activity and selectivity among those Ru-based catalysts. The conversion of hydroquinone and the selectivity to 1,4-cyclohexanediol reached up to 99.6% and 89.6% at optimum reaction condition (700 r/min, 423 K and 5 MPa pressure of H2 in 3 h). This may be attributed to the fact that the right amount of Strontium is beneficial to the good dispersion of the ruthenium nanoclusters on the surface of NaY and modify the acidic properties of the catalyst. Moreover, IR of adsorbed pyridine analysis suggested the proper ratio of L/B acid of the catalysts played an important role in the performance of the hydroquinone hydrogenation reaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papadias, D. D.; Ahluwalia, R. K.; Kariuki, N.
The durability of Pt-Co alloy cathode catalysts supported on high surface area carbon is investigated by subjecting them to accelerated stress tests (ASTs). The catalysts had different initial Co contents and nanoparticle morphologies: a “spongy” porous morphology for the high-Co (H) content catalyst, and a fully alloyed crystalline morphology for the medium-Co (M) and low-Co (L) content catalysts. The specific activity of the catalysts depends on their initial Co content, morphology and nanoparticle size, and remained higher than 1000 μA/cm 2-Pt after 27–50% Co loss. The H-catalyst electrode showed the smallest kinetic overpotentials (η c s) due to higher initialmore » Pt loading than the other two electrodes, but it had the fastest increase in ηcs with AST cycling due to lower Co retention; the L-catalyst electrode showed higher η c s due to a lower initial Pt loading, but had a smaller increase in η c s with aging due to higher Co retention; the M-catalyst electrode showed a similar increase in η c s with aging, but this increase was due to the combined effects of Co dissolution and electrochemically active surface area (ECSA) loss. In conclusion, the modeled increase in mass transfer overpotentials with aging correlates with the initial Pt loading, ECSA loss and the initial catalyst morphology« less
Papadias, D. D.; Ahluwalia, R. K.; Kariuki, N.; ...
2018-03-17
The durability of Pt-Co alloy cathode catalysts supported on high surface area carbon is investigated by subjecting them to accelerated stress tests (ASTs). The catalysts had different initial Co contents and nanoparticle morphologies: a “spongy” porous morphology for the high-Co (H) content catalyst, and a fully alloyed crystalline morphology for the medium-Co (M) and low-Co (L) content catalysts. The specific activity of the catalysts depends on their initial Co content, morphology and nanoparticle size, and remained higher than 1000 μA/cm 2-Pt after 27–50% Co loss. The H-catalyst electrode showed the smallest kinetic overpotentials (η c s) due to higher initialmore » Pt loading than the other two electrodes, but it had the fastest increase in ηcs with AST cycling due to lower Co retention; the L-catalyst electrode showed higher η c s due to a lower initial Pt loading, but had a smaller increase in η c s with aging due to higher Co retention; the M-catalyst electrode showed a similar increase in η c s with aging, but this increase was due to the combined effects of Co dissolution and electrochemically active surface area (ECSA) loss. In conclusion, the modeled increase in mass transfer overpotentials with aging correlates with the initial Pt loading, ECSA loss and the initial catalyst morphology« less
Du, Cuicui; Wang, Qiulin; Peng, Yaqi; Lu, Shengyong; Ji, Longjie; Ni, Mingjiang
2017-02-01
A series of V 2 O 5 /TiO 2 -carbon nanotube (CNT) catalysts were prepared and tested to decompose gaseous 1,2-dichlorobenzene (1,2-DCBz). Several physicochemical methods, including nitrogen adsorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and H 2 temperature-programmed reduction (TPR) were employed to characterise their physicochemical properties. To better understand the effect of CNT properties on the reactivity of V 2 O 5 /TiO 2 -CNT catalysts, the 1,2-DCBz residue remaining in the off-gas and on the catalyst surface were both collected and analysed. The results indicate that the outer diameter and the surface functional groups (hydroxide radical and carboxyl) of CNTs significantly influence upon the catalytic activity of CNT-containing V 2 O 5 /TiO 2 catalysts: the CNT outer diameter mainly affects the aggregation of CNTs and the π-π interaction between the benzene ring and CNTs, while the introduction of -OH and -COOH groups by acid treatment can further enlarge specific surface area (SSA) and contribute to a higher average oxidation state of vanadium (V aos ) and supplemental surface chemisorbed oxygen (O ads ). In addition, the enhanced mobility of lattice oxygen (O latt) also improves the oxidation ability of the catalysts.
Deng, Jiguang; He, Shengnan; Xie, Shaohua; Yang, Huanggen; Liu, Yuxi; Guo, Guangsheng; Dai, Hongxing
2015-09-15
Using a mixture of NaNO3 and NaF as molten salt and MnSO4 and AgNO3 as metal precursors, 0.13 wt % Ag/Mn2O3 nanowires (0.13Ag/Mn2O3-ms) were fabricated after calcination at 420 °C for 2 h. Compared to the counterparts derived via the impregnation and poly(vinyl alcohol)-protected reduction routes as well as the bulk Mn2O3-supported silver catalyst, 0.13Ag/Mn2O3-ms exhibited a much higher catalytic activity for toluene oxidation. At a toluene/oxygen molar ratio of 1/400 and a space velocity of 40,000 mL/(g h), toluene could be completely oxidized into CO2 and H2O at 220 °C over the 0.13Ag/Mn2O3-ms catalyst. Furthermore, the toluene consumption rate per gram of noble metal over 0.13Ag/Mn2O3-ms was dozens of times as high as that over the supported Au or AuPd alloy catalysts reported in our previous works. It is concluded that the excellent catalytic activity of 0.13Ag/Mn2O3-ms was associated with its high dispersion of silver nanoparticles on the surface of Mn2O3 nanowires and good low-temperature reducibility. Due to high efficiency, good stability, low cost, and convenient preparation, 0.13Ag/Mn2O3-ms is a promising catalyst for the practical removal of volatile organic compounds.
Zhu, Xinbo; Tu, Xin; Mei, Danhua; Zheng, Chenghang; Zhou, Jinsong; Gao, Xiang; Luo, Zhongyang; Ni, Mingjiang; Cen, Kefa
2016-07-01
In this work, plasma-catalytic removal of low concentrations of acetone over CuO/γ-Al2O3 catalysts was carried out in a cylindrical dielectric barrier discharge (DBD) reactor. The combination of plasma and the CuO/γ-Al2O3 catalysts significantly enhanced the removal efficiency of acetone compared to the plasma process using the pure γ-Al2O3 support, with the 5.0 wt% CuO/γ-Al2O3 catalyst exhibiting the best acetone removal efficiency of 67.9%. Catalyst characterization was carried out to understand the effect the catalyst properties had on the activity of the CuO/γ-Al2O3 catalysts in the plasma-catalytic reaction. The results indicated that the formation of surface oxygen species on the surface of the catalysts was crucial for the oxidation of acetone in the plasma-catalytic reaction. The effects that various operating parameters (discharge power, flow rate and initial concentration of acetone) and the interactions between these parameters had on the performance of the plasma-catalytic removal of acetone over the 5.0 wt% CuO/γ-Al2O3 catalyst were investigated using central composite design (CCD). The significance of the independent variables and their interactions were evaluated by means of the Analysis of Variance (ANOVA). The results showed that the gas flow rate was the most significant factor affecting the removal efficiency of acetone, whilst the initial concentration of acetone played the most important role in determining the energy efficiency of the plasma-catalytic process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hallac, Basseem B.; Brown, Jared C.; Stavitski, Eli; ...
2018-02-04
Here, the extent of reduction of unsupported iron-based high-temperature water-gas shift catalysts with small (<5 wt %) lanthana contents was studied using UV-visible spectroscopy. Temperature- programmed reduction measurements showed that lanthana content higher than 0.5 wt % increased the extent of reduction to metallic Fe, while 0.5 wt % of lanthana facilitated the reduction to Fe 3O 4. In situ measurements on the iron oxide catalysts using mass and UV-visible spectroscopies permitted the quantification of the extent of reduction under temperature-programmed reduction and high-temperature water-gas shift conditions. The oxidation states were successfully calibrated against normalized absorbance spectra of visible lightmore » using the Kubelka-Munk theory. The normalized absorbance relative to the fully oxidized Fe 2O 3 increased as the extent of reduction increased. XANES suggested that the average bulk iron oxidation state during the water-gas shift reaction was Fe +2.57 for the catalyst with no lanthana and Fe +2.54 for the catalysts with 1 wt % lanthana. However, the UV-vis spectra suggest that the surface oxidation state of iron would be Fe +2.31 for the catalyst with 1 wt % lanthana if the oxidation state of iron in the catalyst with 0 wt % lanthana were Fe +2.57. The findings of this paper emphasize the importance of surface sensitive UV-visible spectroscopy for determining the extent of catalyst reduction during operation. Furthermore, the paper highlights the potential to use bench-scale UV-visible spectroscopy to study the surface chemistry of catalysts instead of less-available synchrotron X-ray radiation facilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallac, Basseem B.; Brown, Jared C.; Stavitski, Eli
Here, the extent of reduction of unsupported iron-based high-temperature water-gas shift catalysts with small (<5 wt %) lanthana contents was studied using UV-visible spectroscopy. Temperature- programmed reduction measurements showed that lanthana content higher than 0.5 wt % increased the extent of reduction to metallic Fe, while 0.5 wt % of lanthana facilitated the reduction to Fe 3O 4. In situ measurements on the iron oxide catalysts using mass and UV-visible spectroscopies permitted the quantification of the extent of reduction under temperature-programmed reduction and high-temperature water-gas shift conditions. The oxidation states were successfully calibrated against normalized absorbance spectra of visible lightmore » using the Kubelka-Munk theory. The normalized absorbance relative to the fully oxidized Fe 2O 3 increased as the extent of reduction increased. XANES suggested that the average bulk iron oxidation state during the water-gas shift reaction was Fe +2.57 for the catalyst with no lanthana and Fe +2.54 for the catalysts with 1 wt % lanthana. However, the UV-vis spectra suggest that the surface oxidation state of iron would be Fe +2.31 for the catalyst with 1 wt % lanthana if the oxidation state of iron in the catalyst with 0 wt % lanthana were Fe +2.57. The findings of this paper emphasize the importance of surface sensitive UV-visible spectroscopy for determining the extent of catalyst reduction during operation. Furthermore, the paper highlights the potential to use bench-scale UV-visible spectroscopy to study the surface chemistry of catalysts instead of less-available synchrotron X-ray radiation facilities.« less
Immobilization of molecular catalysts in supported ionic liquid phases.
Van Doorslaer, Charlie; Wahlen, Joos; Mertens, Pascal; Binnemans, Koen; De Vos, Dirk
2010-09-28
In a supported ionic liquid phase (SILP) catalyst system, an ionic liquid (IL) film is immobilized on a high-surface area porous solid and a homogeneous catalyst is dissolved in this supported IL layer, thereby combining the attractive features of homogeneous catalysts with the benefits of heterogeneous catalysts. In this review reliable strategies for the immobilization of molecular catalysts in SILPs are surveyed. In the first part, general aspects concerning the application of SILP catalysts are presented, focusing on the type of catalyst, support, ionic liquid and reaction conditions. Secondly, organic reactions in which SILP technology is applied to improve the performance of homogeneous transition-metal catalysts are presented: hydroformylation, metathesis reactions, carbonylation, hydrogenation, hydroamination, coupling reactions and asymmetric reactions.
Fuel cell anode configuration for CO tolerance
Uribe, Francisco A.; Zawodzinski, Thomas A.
2004-11-16
A polymer electrolyte fuel cell (PEFC) is designed to operate on a reformate fuel stream containing oxygen and diluted hydrogen fuel with CO impurities. A polymer electrolyte membrane has an electrocatalytic surface formed from an electrocatalyst mixed with the polymer and bonded on an anode side of the membrane. An anode backing is formed of a porous electrically conductive material and has a first surface abutting the electrocatalytic surface and a second surface facing away from the membrane. The second surface has an oxidation catalyst layer effective to catalyze the oxidation of CO by oxygen present in the fuel stream where at least the layer of oxidation catalyst is formed of a non-precious metal oxidation catalyst selected from the group consisting of Cu, Fe, Co, Tb, W, Mo, Sn, and oxides thereof, and other metals having at least two low oxidation states.
Surface Protonics Promotes Catalysis
Manabe, R.; Okada, S.; Inagaki, R.; Oshima, K.; Ogo, S.; Sekine, Y.
2016-01-01
Catalytic steam reforming of methane for hydrogen production proceeds even at 473 K over 1 wt% Pd/CeO2 catalyst in an electric field, thanks to the surface protonics. Kinetic analyses demonstrated the synergetic effect between catalytic reaction and electric field, revealing strengthened water pressure dependence of the reaction rate when applying an electric field, with one-third the apparent activation energy at the lower reaction temperature range. Operando–IR measurements revealed that proton conduction via adsorbed water on the catalyst surface occurred during electric field application. Methane was activated by proton collision at the Pd–CeO2 interface, based on the inverse kinetic isotope effect. Proton conduction on the catalyst surface plays an important role in methane activation at low temperature. This report is the first describing promotion of the catalytic reaction by surface protonics. PMID:27905505
Magnetic nanoparticles entrapped in siliceous mesocellular foam: a new catalyst support.
Lee, Su Seong; Riduan, Siti Nurhanna; Erathodiyil, Nandanan; Lim, Jaehong; Cheong, Jian Liang; Cha, Junhoe; Han, Yu; Ying, Jackie Y
2012-06-11
γ-Fe(2)O(3) nanoparticles were formed inside the cage-like pores of mesocellular foam (MCF). These magnetic nanoparticles showed a uniform size distribution that could be easily controlled by the MCF pore size, as well as by the hydrocarbon chain length used for MCF surface modification. Throughout the entrapment process, the pore structure and surface area of the MCF remained intact. The resulting magnetic MCF facilitated the immobilization of biocatalysts, homogeneous catalysts, and nanoclusters. Moreover, the MCF allowed for facile catalyst recovery by using a simple magnet. The supported catalysts exhibited excellent catalytic efficiencies that were comparable to their homogeneous counterparts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells
NASA Astrophysics Data System (ADS)
Mikolajczuk-Zychora, A.; Borodzinski, A.; Kedzierzawski, P.; Mierzwa, B.; Mazurkiewicz-Pawlicka, M.; Stobinski, L.; Ciecierska, E.; Zimoch, A.; Opałło, M.
2016-12-01
One of the drawbacks of low-temperature fuel cells is high price of platinum-based catalysts used for the electroreduction of oxygen at the cathode of the fuel cell. The aim of this work is to develop the palladium catalyst that will replace commonly used platinum cathode catalysts. A series of palladium catalysts for oxygen reduction reaction (ORR) were prepared and tested on the cathode of Direct Formic Acid Fuel Cell (DFAFC). Palladium nanoparticles were deposited on the carbon black (Vulcan) and on multiwall carbon nanotubes (MWCNTs) surface by reduction of palladium(II) acetate dissolved in ethanol. Hydrazine was used as a reducing agent. The effect of functionalization of the carbon supports on the catalysts physicochemical properties and the ORR catalytic activity on the cathode of DFAFC was studied. The supports were functionalized by treatment in nitric acid for 4 h at 80 °C. The structure of the prepared catalysts has been characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry (CV). Hydrophilicity of the catalytic layers was determined by measuring contact angles of water droplets. The performance of the prepared catalysts has been compared with that of the commercial 20 wt.% Pt/C (Premetek) catalyst. The maximum power density obtained for the best palladium catalyst, deposited on the surface of functionalized carbon black, is the same as that for the commercial Pt/C (Premetek). Palladium is cheaper than platinum, therefore the developed cathode catalyst is promising for future applications.
Hod, Idan; Sampson, Matthew D.; Deria, Pravas; ...
2015-09-18
Realization of heterogeneous electrochemical CO 2-to-fuel conversion via molecular catalysis under high-flux conditions requires the assembly of large quantities of reactant-accessible catalysts on conductive surfaces. As a proof of principle, we demonstrate that electrophoretic deposition of thin films of an appropriately chosen metal–organic framework (MOF) material is an effective method for immobilizing the needed quantity of catalyst. For electrocatalytic CO 2 reduction, we used a material that contains functionalized Fe-porphyrins as catalytically competent, redox-conductive linkers. The approach yields a high effective surface coverage of electrochemically addressable catalytic sites (~10 15 sites/cm 2). The chemical products of the reduction, obtained withmore » ~100% Faradaic efficiency, are mixtures of CO and H 2. The results validate the strategy of using MOF chemistry to obtain porous, electrode-immobilized, networks of molecular catalysts having competency for energy-relevant electrochemical reactions.« less
Response to Comment on "Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts".
Kattel, Shyam; Ramírez, Pedro J; Chen, Jingguang G; Rodriguez, José A; Liu, Ping
2017-09-01
In their Comment on the our recent Report, Nakamura et al argue that our x-ray photoelectron spectroscopy (XPS) analysis was affected by the presence of formate species on the catalyst surface. This argument is not valid because the reactant gases were evacuated at temperatures from 525 to 575 kelvin, conditions under which formate is not stable on the catalyst surface. An analysis of the XPS results obtained after exposing zinc oxide/copper (111) [ZnO/Cu(111)] surfaces to hydrogen (H 2 ) and mixtures of carbon dioxide (CO 2 )/H 2 show an absence of carbon (C) 1s signal, no asymmetries in the oxygen (O) 1s peak, and a Zn:O intensity close to 1:1. Thus, the most active phase of these catalysts contained a ZnO-Cu interface. Copyright © 2017, American Association for the Advancement of Science.
Herranz, Juan; Jaouen, Frédéric; Lefèvre, Michel; Kramm, Ulrike I.; Proietti, Eric; Dodelet, Jean-Pol; Bogdanoff, Peter; Fiechter, Sebastian; Abs-Wurmbach, Irmgard; Bertrand, Patrick; Arruda, Thomas M.; Mukerjee, Sanjeev
2013-01-01
The high cost of proton-exchange-membrane fuel cells would be considerably reduced if platinumbased catalysts were replaced by iron-based substitutes, which have recently demonstrated comparable activity for oxygen reduction, but whose cause of activity decay in acidic medium has been elusive. Here, we reveal that the activity of Fe/N/C-catalysts prepared through a pyrolysis in NH3 is mostly imparted by acid-resistant FeN4-sites whose turnover frequency for the O2 reduction can be regulated by fine chemical changes of the catalyst surface. We show that surface N-groups protonate at pH 1 and subsequently bind anions. This results in decreased activity for the O2 reduction. The anions can be removed chemically or thermally, which restores the activity of acid-resistant FeN4-sites. These results are interpreted as an increased turnover frequency of FeN4-sites when specific surface N-groups protonate. These unprecedented findings provide new perspective for stabilizing the most active Fe/N/C-catalysts known to date. PMID:24179561
Herranz, Juan; Jaouen, Frédéric; Lefèvre, Michel; Kramm, Ulrike I; Proietti, Eric; Dodelet, Jean-Pol; Bogdanoff, Peter; Fiechter, Sebastian; Abs-Wurmbach, Irmgard; Bertrand, Patrick; Arruda, Thomas M; Mukerjee, Sanjeev
2011-11-18
The high cost of proton-exchange-membrane fuel cells would be considerably reduced if platinumbased catalysts were replaced by iron-based substitutes, which have recently demonstrated comparable activity for oxygen reduction, but whose cause of activity decay in acidic medium has been elusive. Here, we reveal that the activity of Fe/N/C-catalysts prepared through a pyrolysis in NH 3 is mostly imparted by acid-resistant FeN 4 -sites whose turnover frequency for the O 2 reduction can be regulated by fine chemical changes of the catalyst surface. We show that surface N-groups protonate at pH 1 and subsequently bind anions. This results in decreased activity for the O 2 reduction. The anions can be removed chemically or thermally, which restores the activity of acid-resistant FeN 4 -sites. These results are interpreted as an increased turnover frequency of FeN 4 -sites when specific surface N-groups protonate. These unprecedented findings provide new perspective for stabilizing the most active Fe/N/C-catalysts known to date.
Gallium-rich Pd-Ga phases as supported liquid metal catalysts
NASA Astrophysics Data System (ADS)
Taccardi, N.; Grabau, M.; Debuschewitz, J.; Distaso, M.; Brandl, M.; Hock, R.; Maier, F.; Papp, C.; Erhard, J.; Neiss, C.; Peukert, W.; Görling, A.; Steinrück, H.-P.; Wasserscheid, P.
2017-09-01
A strategy to develop improved catalysts is to create systems that merge the advantages of heterogeneous and molecular catalysis. One such system involves supported liquid-phase catalysts, which feature a molecularly defined, catalytically active liquid film/droplet layer adsorbed on a porous solid support. In the past decade, this concept has also been extended to supported ionic liquid-phase catalysts. Here we develop this idea further and describe supported catalytically active liquid metal solutions (SCALMS). We report a liquid mixture of gallium and palladium deposited on porous glass that forms an active catalyst for alkane dehydrogenation that is resistant to coke formation and is thus highly stable. X-ray diffraction and X-ray photoelectron spectroscopy, supported by theoretical calculations, confirm the liquid state of the catalytic phase under the reaction conditions. Unlike traditional heterogeneous catalysts, the supported liquid metal reported here is highly dynamic and catalysis does not proceed at the surface of the metal nanoparticles, but presumably at homogeneously distributed metal atoms at the surface of a liquid metallic phase.
Nanocrystalline Iron-Ore-Based Catalysts for Fischer-Tropsch Synthesis.
Yong, Seok; Park, Ji Chan; Lee, Ho-Tae; Yang, Jung-Il; Hong, SungJun; Jung, Heon; Chun, Dong Hyun
2016-02-01
Nanocrystalline iron ore particles were fabricated by a wet-milling process using an Ultra Apex Mill, after which they were used as raw materials of iron-based catalysts for low-temperature Fischer-Tropsch synthesis (FTS) below 280 degrees C, which usually requires catalysts with a high surface area, a large pore volume, and a small crystallite size. The wet-milling process using the Ultra Apex Mill effectively destroyed the initial crystallite structure of the natural iron ores of several tens to hundreds of nanometers in size, resulting in the generation of nanocrystalline iron ore particles with a high surface area and a large pore volume. The iron-ore-based catalysts prepared from the nanocrystalline iron ore particles effectively catalyzed the low-temperature FTS, displaying a high CO conversion (about 90%) and good C5+ hydrocarbon productivity (about 0.22 g/g(cat)(-h)). This demonstrates the feasibility of using the iron-ore-based catalysts as inexpensive and disposable catalysts for the low-temperature FTS.
Bai, Zhiyong; Wang, Jianlong; Yang, Qi
2018-04-01
Sulfonamide antibiotics are ubiquitous pollutants in aquatic environments due to their large production and extensive application. In this paper, the iron doped fibrous-structured silica (KCC-1) nanospheres (Fe-KCC-1) was prepared, characterized, and applied as a catalyst for catalytic ozonation of sulfamethazine (SMT). The effects of ozone dosage, catalyst dosage, and initial concentration of SMT were examined. The experimental results showed that Fe-KCC-1 had large surface area (464.56 m2 g -1 ) and iron particles were well dispersed on the catalyst. The catalyst had high catalytic performance especially for the mineralization of SMT, with mineralization ratio of about 40% in a wide pH range. With addition of Fe-KCC-1, the ozone utilization increased nearly two times than single ozonation. The enhancement of SMT degradation was mainly due to the surface reaction, and the increased mineralization of SMT was due to radical mechanism. Fe-KCC-1 was an efficient catalyst for SMT degradation in catalytic ozonation system.
NASA Technical Reports Server (NTRS)
Gilmour, I.; Hill, H. G. M.; Pearson, V. K.; Sephton, M. A.; Nuth, J. A., III
2002-01-01
The high molecular weight organic products of Fischer-Tropsch/Haber-Bosch syntheses on the surfaces of Fe-silicate catalysts have been studied by GCMS. Additional information is contained in the original extended abstract.
Synthesis and characterization of Cu-Zn/TiO2 for the photocatalytic conversion of CO2 to methane.
Rana, Adeem Ghaffar; Ahmad, Waqar; Al-Matar, Ali; Shawabkeh, Reyad; Aslam, Zaheer
2017-05-01
Different Cu-Zn/TiO 2 catalysts were synthesized by using the wet impregnation method. The prepared catalysts were used for the conversion of CO 2 into methane by photocatalysis. Various characterization techniques were used to observe the surface morphology, crystalline phase, Brunauer-Emmett-Teller (BET) surface area, presence of impregnated Cu and Zn, and functional group. Scanning electron microscope analysis showed spherical morphology, and slight agglomeration of catalyst particles was observed. BET analysis revealed that the surface area of the catalyst was decreased from 10 to 8.5 m 2 /g after impregnation of Cu and Zn over TiO 2 support. Synergetic effect of Cu and Zn over TiO 2 support (Cu 2.6 /TiO 2 , Zn 0.5 /TiO 2 and Cu 2.6 -Zn 0.5 /TiO 2 ) and the effects of Cu loading (0, 1.8, 2.1, 2.6 and 2.9 wt%) were also investigated at different feed molar ratios of H 2 /CO 2 (2:1 and 4:1). The Cu 2.6 -Zn 0.5 /TiO 2 catalyst showed a maximum conversion of 14.3% at a feed molar ratio of 4. The addition of Zn over the catalyst surface increased the conversion of CO 2 from 10% to 14.3% which might be due to synergy of Cu and Zn over TiO 2 support.
The oxidation of copper catalysts during ethylene epoxidation.
Greiner, M T; Jones, T E; Johnson, B E; Rocha, T C R; Wang, Z J; Armbrüster, M; Willinger, M; Knop-Gericke, A; Schlögl, R
2015-10-14
The oxidation of copper catalysts during ethylene epoxidation was characterized using in situ photoemission spectroscopy and electron microscopy. Gas chromatography, proton-transfer reaction mass spectrometry and electron-ionization mass spectrometry were used to characterize the catalytic properties of the oxidized copper. We find that copper corrodes during epoxidation in a 1 : 1 mixture of oxygen and ethylene. The catalyst corrosion passes through several stages, beginning with the formation of an O-terminated surface, followed by the formation of Cu2O scale and eventually a CuO scale. The oxidized catalyst exhibits measurable activity for ethylene epoxidation, but with a low selectivity of <3%. Tests on pure Cu2O and CuO powders confirm that the oxides intrinsically exhibit partial-oxidation activity. Cu2O was found to form acetaldehyde and ethylene epoxide in roughly equal amounts (1.0% and 1.2% respectively), while CuO was found to form much less ethyl aldehyde than ethylene epoxide (0.1% and 1.0%, respectively). Metallic copper catalysts were examined in extreme dilute-O2 epoxidation conditions to try and keep the catalyst from oxidizing during the reaction. It was found that in feed of 1 part O2 to 2500 parts C2H4 (PO2 = 1.2 × 10(-4) mbar) the copper surface becomes O-terminated. The O-terminated surface was found to exhibit partial-oxidation selectivity similar to that of Cu2O. With increasing O2 concentration (>8/2500) Cu2O forms and eventually covers the surface.
NASA Astrophysics Data System (ADS)
Wilmsmeyer, Amanda R.; Gordon, Wesley O.; Davis, Erin Durke; Mantooth, Brent A.; Lalain, Teri A.; Morris, John R.
2014-01-01
A fundamental understanding of the surface chemistry of chemical warfare agents is needed to fully predict the interaction of these toxic molecules with militarily relevant materials, catalysts, and environmental surfaces. For example, rules for predicting the surface chemistry of agents can be applied to the creation of next generation decontaminants, reactive coatings, and protective materials for the warfighter. Here, we describe a multifunctional ultra-high vacuum instrument for conducting comprehensive studies of the adsorption, desorption, and surface chemistry of chemical warfare agents on model and militarily relevant surfaces. The system applies reflection-absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and mass spectrometry to study adsorption and surface reactions of chemical warfare agents. Several novel components have been developed to address the unique safety and sample exposure challenges that accompany the research of these toxic, often very low vapor pressure, compounds. While results of vacuum-based surface science techniques may not necessarily translate directly to environmental processes, learning about the fundamental chemistry will begin to inform scientists about the critical aspects that impact real-world applications.
Wilmsmeyer, Amanda R; Gordon, Wesley O; Davis, Erin Durke; Mantooth, Brent A; Lalain, Teri A; Morris, John R
2014-01-01
A fundamental understanding of the surface chemistry of chemical warfare agents is needed to fully predict the interaction of these toxic molecules with militarily relevant materials, catalysts, and environmental surfaces. For example, rules for predicting the surface chemistry of agents can be applied to the creation of next generation decontaminants, reactive coatings, and protective materials for the warfighter. Here, we describe a multifunctional ultra-high vacuum instrument for conducting comprehensive studies of the adsorption, desorption, and surface chemistry of chemical warfare agents on model and militarily relevant surfaces. The system applies reflection-absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and mass spectrometry to study adsorption and surface reactions of chemical warfare agents. Several novel components have been developed to address the unique safety and sample exposure challenges that accompany the research of these toxic, often very low vapor pressure, compounds. While results of vacuum-based surface science techniques may not necessarily translate directly to environmental processes, learning about the fundamental chemistry will begin to inform scientists about the critical aspects that impact real-world applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilmsmeyer, Amanda R.; Morris, John R.; Gordon, Wesley O.
2014-01-15
A fundamental understanding of the surface chemistry of chemical warfare agents is needed to fully predict the interaction of these toxic molecules with militarily relevant materials, catalysts, and environmental surfaces. For example, rules for predicting the surface chemistry of agents can be applied to the creation of next generation decontaminants, reactive coatings, and protective materials for the warfighter. Here, we describe a multifunctional ultra-high vacuum instrument for conducting comprehensive studies of the adsorption, desorption, and surface chemistry of chemical warfare agents on model and militarily relevant surfaces. The system applies reflection-absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and mass spectrometry tomore » study adsorption and surface reactions of chemical warfare agents. Several novel components have been developed to address the unique safety and sample exposure challenges that accompany the research of these toxic, often very low vapor pressure, compounds. While results of vacuum-based surface science techniques may not necessarily translate directly to environmental processes, learning about the fundamental chemistry will begin to inform scientists about the critical aspects that impact real-world applications.« less
Design of highly selective ethanol dehydration nanocatalysts for ethylene production.
Austin, Natalie; Kostetskyy, Pavlo; Mpourmpakis, Giannis
2018-02-22
Rational design of catalysts for selective conversion of alcohols to olefins is key since product selectivity remains an issue due to competing etherification reactions. Using first principles calculations and chemical rules, we designed novel metal-oxide-protected metal nanoclusters (M 13 X 4 O 12 , with M = Cu, Ag, and Au and X = Al, Ga, and In) exhibiting strong Lewis acid sites on their surface, active for the selective formation of olefins from alcohols. These symmetrical nanocatalysts, due to their curvature, show unfavorable etherification chemistries, while favoring the olefin production. Furthermore, we determined that water removal and regeneration of the nanocatalysts is more feasible compared to the equivalent strong acid sites on solid acids used for alcohol dehydration. Our results demonstrate an exceptional stability of these new nanostructures with the most energetically favorable being Cu-based. Thus, the high selectivity and stability of these in-silico-predicted novel nanoclusters (e.g. Cu 13 Al 4 O 12 ) make them attractive catalysts for the selective dehydration of alcohols to olefins.
Performance of an ablator for Space Shuttle inorbit repair in an arc-plasma airstream
NASA Technical Reports Server (NTRS)
Stewart, D. A.; Cuellar, M.; Flowers, O.
1983-01-01
An ablator patch material performed well in an arc plasma environment simulating nominal Earth entry conditions for the Space Shuttle. Ablation tests using vacuum molded cones provided data to optimize the formulation of a two part polymer system for application under space conditions. The blunt cones were made using a Teflon mold and a state of the art caulking gun. Char stability of formulations with various amounts of catalyst and diluent were investigated. The char was found to be unstable in formulations with low amounts of catalyst and high amounts of diluent. The best polymer system determined by these tests was evaluated using a half tile patch in a multiple High Temperature Reusable surface Insulation tile model. It was demonstrated that this ablator could be applied in a space environment using a state of the art caulking gun, would maintain the outer mold line of the thermal protection system during entry, and would keep the bond line temperature at the aluminum tile interface below the design limit.
NASA Astrophysics Data System (ADS)
Yang, Jinhui; Cooper, Jason K.; Toma, Francesca M.; Walczak, Karl A.; Favaro, Marco; Beeman, Jeffrey W.; Hess, Lucas H.; Wang, Cheng; Zhu, Chenhui; Gul, Sheraz; Yano, Junko; Kisielowski, Christian; Schwartzberg, Adam; Sharp, Ian D.
2017-03-01
Artificial photosystems are advanced by the development of conformal catalytic materials that promote desired chemical transformations, while also maintaining stability and minimizing parasitic light absorption for integration on surfaces of semiconductor light absorbers. Here, we demonstrate that multifunctional, nanoscale catalysts that enable high-performance photoelectrochemical energy conversion can be engineered by plasma-enhanced atomic layer deposition. The collective properties of tailored Co3O4/Co(OH)2 thin films simultaneously provide high activity for water splitting, permit efficient interfacial charge transport from semiconductor substrates, and enhance durability of chemically sensitive interfaces. These films comprise compact and continuous nanocrystalline Co3O4 spinel that is impervious to phase transformation and impermeable to ions, thereby providing effective protection of the underlying substrate. Moreover, a secondary phase of structurally disordered and chemically labile Co(OH)2 is introduced to ensure a high concentration of catalytically active sites. Application of this coating to photovoltaic p+n-Si junctions yields best reported performance characteristics for crystalline Si photoanodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Hai-Ying; Wei, Zhehao; Kollar, Marton
A comparative study was carried out on a small-pore CHA.Cu and a large-pore BEA.Cu zeolite catalyst to understand the lower N2O formation on small-pore zeolite supported Cu catalysts in the selective catalytic reduction (SCR) of NOx with NH3. On both catalysts, the N2O yield increases with an increase in the NO2/NOx ratios of the feed gas, suggesting N2O formation via the decomposition of NH4NO3. Temperature-programmed desorption experiments reveal that NH4NO3 is more stable on CHA.Cu than on BEA.Cu. In situ FTIR spectra following stepwise (NO2 + O2) and (15NO + NH3 + O2) adsorption and reaction, and product distribution analysismore » using isotope-labelled reactants, unambiguously prove that surface nitrate groups are essential for the formation of NH4NO3. Furthermore, CHA.Cu is shown to be considerably less active than BEA.Cu in catalyzing NO oxidation and the subsequent formation of surface nitrate groups. Both factors, i.e., (1) the higher thermal stability of NH4NO3 on CHA.Cu, and (2) the lower activity for this catalyst to catalyze NO oxidation and the subsequent formation of surface nitrates, likely contribute to the higher SCR selectivity with less N2O formation on this catalyst as compared to BEA.Cu. The latter is determined as the primary reason since surface nitrates are the source that leads to the formation of NH4NO3 on the catalysts.« less
Tailoring Silica-alumina Supported Pt-Pd As Poison Tolerant Catalyst For Aromatics Hydrogenation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yanzhe; Gutierrez, Oliver Y.; Haller, Gary L.
2013-08-01
The tailoring of the physicochemical and catalytic properties of mono- and bimetallic Pt-Pd catalysts supported on amorphous silica-alumina is studied. Electron energy loss spectroscopy and extended X-ray absorption fine structure analyses indicated that bimetallic Pt-Pd and relatively large monometallic Pd particles were formed, whereas the X-ray absorption near edge structure provided direct evidence for the electronic deficiency of the Pt atoms. The heterogeneous distribution of metal particles was also shown by high resolution transmission electron microscopy. The average structure of the bimetallic particles (Pt-rich core and Pd-rich shell) and the presence of Pd particles led to surface Pd enrichment, whichmore » was independently shown by IR spectra of adsorbed CO. The specific metal distribution, average size, and surface composition of the Pt-Pd particles depend to a large extent on the metal precursors. In the presence of NH3 ligands, Pt-Pd particles with a fairly homogeneous bulk and surface metal distribution were formed. Also high Lewis acid site concentration of the carrier leads to more homogeneous bimetallic particles. All catalysts were active for the hydrogenation of tetralin in the absence and presence of quinoline and dibenzothiophene (DBT). Monometallic Pt catalysts had the highest hydrogenation activity in poison-free and quinoline-containing feed. When DBT was present, bimetallic Pt-Pd catalysts with the most homogenous metal distribution showed the highest activity. The higher resistance of bimetallic catalysts towards sulfur poisoning compared to their monometallic Pt counterparts results from the weakened metal-sulfur bond on the electron deficient Pt atoms. Thus, increasing the fraction of electron deficient Pt on the surface of the bimetallic particles increases the efficiency of the catalyst in the presence of sulfur.« less
A durable PtRu/C catalyst with a thin protective layer for direct methanol fuel cells.
Shimazaki, Yuzuru; Hayasaka, Sho; Koyama, Tsubasa; Nagao, Daisuke; Kobayashi, Yoshio; Konno, Mikio
2010-11-15
A methanol oxidation catalyst with improved durability in acidic environments is reported. The catalyst consists of PtRu alloy nanoparticles on a carbon support that were stabilized with a silane-coupling agent. The catalyst was prepared by reducing ions of Pt and Ru in the presence of a carbon support and the silane-coupling agent. The careful choice of preparatory conditions such as the concentration of the silane-coupling agent and solution pH resulted in the preparation of catalyst in which the PtRu nanoparticles were dispersively adsorbed onto the carbon support. The catalytic activity was similar to that of a commercial catalyst and was unchanged after immersion in sulfuric acid solution for 1000 h, suggesting the high durability of the PtRu catalyst for the anode of direct methanol fuel cells. Copyright © 2010 Elsevier Inc. All rights reserved.
Catalyst cartridge for carbon dioxide reduction unit
NASA Technical Reports Server (NTRS)
Holmes, R. F. (Inventor)
1973-01-01
A catalyst cartridge, for use in a carbon dioxide reducing apparatus in a life support system for space vehicles, is described. The catalyst cartridge includes an inner perforated metal wall, an outer perforated wall space outwardly from the inner wall, a base plate closing one end of the cartridge, and a cover plate closing the other end of the cartridge. The cover plate has a central aperture through which a supply line with a heater feeds a gaseous reaction mixture comprising hydrogen and carbon dioxide at a temperature from about 1000 to about 1400 F. The outer surfaces of the internal wall and the inner surfaces of the outer wall are lined with a ceramic fiber batting material of sufficient thickness to prevent carbon formed in the reaction from passing through it. The portion of the surfaces of the base and cover plates defined within the inner and outer walls are also lined with ceramic batting. The heated reaction mixture passes outwardly through the inner perforated wall and ceramic batting and over the catalyst. The solid carbon product formes is retained within the enclosure containing the catalyst. The solid carbon product formed is retained within the enclosure containing the catalyst. The water vapor and unreacted carbon dioxide and any intermediate products pass through the perforations of the outer wall.
NASA Astrophysics Data System (ADS)
Devaraj, Arun; Vijayakumar, Murugesan; Bao, Jie; Guo, Mond F.; Derewinski, Miroslaw A.; Xu, Zhijie; Gray, Michel J.; Prodinger, Sebastian; Ramasamy, Karthikeyan K.
2016-11-01
The formation of carbonaceous deposits (coke) in zeolite pores during catalysis leads to temporary deactivation of catalyst, necessitating regeneration steps, affecting throughput, and resulting in partial permanent loss of catalytic efficiency. Yet, even to date, the coke molecule distribution is quite challenging to study with high spatial resolution from surface to bulk of the catalyst particles at a single particle level. To address this challenge we investigated the coke molecules in HZSM-5 catalyst after ethanol conversion treatment by a combination of C K-edge X-ray absorption spectroscopy (XAS), 13C Cross polarization-magic angle spinning nuclear magnetic resonance (CP-MAS NMR) spectroscopy, and atom probe tomography (APT). XAS and NMR highlighted the aromatic character of coke molecules. APT permitted the imaging of the spatial distribution of hydrocarbon molecules located within the pores of spent HZSM-5 catalyst from surface to bulk at a single particle level. 27Al NMR results and APT results indicated association of coke molecules with Al enriched regions within the spent HZSM-5 catalyst particles. The experimental results were additionally validated by a level-set-based APT field evaporation model. These results provide a new approach to investigate catalytic deactivation due to hydrocarbon coking or poisoning of zeolites at an unprecedented spatial resolution.
Catalytic propane dehydrogenation over In₂O₃–Ga₂O₃ mixed oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Shuai; Gil, Laura Briones; Subramanian, Nachal
2015-08-26
We have investigated the catalytic performance of novel In₂O₃–Ga₂O₃ mixed oxides synthesized by the alcoholic-coprecipitation method for propane dehydrogenation (PDH). Reactivity measurements reveal that the activities of In₂O₃–Ga₂O₃ catalysts are 1–3-fold (on an active metal basis) and 12–28-fold (on a surface area basis) higher than an In₂O₃–Al₂O₃ catalyst in terms of C₃H₈ conversion. The structure, composition, and surface properties of the In₂O₃–Ga₂O₃ catalysts are thoroughly characterized. NH₃-TPD shows that the binary oxide system generates more acid sites than the corresponding single-component catalysts. Raman spectroscopy suggests that catalysts that produce coke of a more graphitic nature suppress cracking reactions, leading tomore » higher C₃H₆ selectivity. Lower reaction temperature also leads to higher C₃H₆ selectivity by slowing down the rate of side reactions. XRD, XPS, and XANES measurements, strongly suggest that metallic indium and In₂O₃ clusters are formed on the catalyst surface during the reaction. The agglomeration of In₂O₃ domains and formation of a metallic indium phase are found to be irreversible under O₂ or H₂ treatment conditions used here, and may be responsible for loss of activity with increasing time on stream.« less
NASA Astrophysics Data System (ADS)
Ertan, Salih; Şen, Fatih; Şen, Selda; Gökağaç, Gülsün
2012-06-01
In this study, platinum nanoparticle catalysts have been prepared using PtCl4 as a starting material and 1-octanethiol, 1-decanethiol, 1-dodecanethiol, and 1-hexadecanethiol as surfactants for methanol, ethanol, and 2-propanol oxidation reactions. The structure, particle sizes, and surface morphologies of the catalysts were characterized by X-ray diffraction (XRD), atomic force microscopy and transmission electron microscopy (TEM). XRD and TEM results indicate that all prepared catalysts have a face-centered cubic structure and are homogeneously dispersed on the carbon support with a narrow size distribution (2.0-1.3 nm). X-ray photoelectron spectra of the catalysts were examined and it is found that platinum has two different oxidation states, Pt (0) and Pt(IV), oxygen and sulfur compounds are H2Oads and OHads, bound and unbound thiols. The electrochemical and electrocatalytic properties of these catalysts were investigated with respect to C1-C3 alcohol oxidations by cyclic voltammetry and chronoamperometry. The highest electrocatalytic activity was obtained from catalyst I which was prepared with 1-octanethiol. This may be attributed to a decrease in the ratio of bound to unbound thiol species increase in Pt (0)/Pt(IV), H2Oads/OHads ratios, electrochemical surface area, CO tolerance and percent platinum utility.
Devaraj, Arun; Vijayakumar, Murugesan; Bao, Jie; Guo, Mond F.; Derewinski, Miroslaw A.; Xu, Zhijie; Gray, Michel J.; Prodinger, Sebastian; Ramasamy, Karthikeyan K.
2016-01-01
The formation of carbonaceous deposits (coke) in zeolite pores during catalysis leads to temporary deactivation of catalyst, necessitating regeneration steps, affecting throughput, and resulting in partial permanent loss of catalytic efficiency. Yet, even to date, the coke molecule distribution is quite challenging to study with high spatial resolution from surface to bulk of the catalyst particles at a single particle level. To address this challenge we investigated the coke molecules in HZSM-5 catalyst after ethanol conversion treatment by a combination of C K-edge X-ray absorption spectroscopy (XAS), 13C Cross polarization-magic angle spinning nuclear magnetic resonance (CP-MAS NMR) spectroscopy, and atom probe tomography (APT). XAS and NMR highlighted the aromatic character of coke molecules. APT permitted the imaging of the spatial distribution of hydrocarbon molecules located within the pores of spent HZSM-5 catalyst from surface to bulk at a single particle level. 27Al NMR results and APT results indicated association of coke molecules with Al enriched regions within the spent HZSM-5 catalyst particles. The experimental results were additionally validated by a level-set–based APT field evaporation model. These results provide a new approach to investigate catalytic deactivation due to hydrocarbon coking or poisoning of zeolites at an unprecedented spatial resolution. PMID:27876869
NASA Astrophysics Data System (ADS)
Xue, Xinzhong; Ge, Junjie; Tian, Tian; Liu, Changpeng; Xing, Wei; Lu, Tianhong
In this paper, five Pt 3Sn 1/C catalysts have been prepared using three different methods. It was found that phosphorus deposited on the surface of carbon with Pt and Sn when sodium hypophosphite was used as reducing agent by optimization of synthetic conditions such as pH in the synthetic solution and temperature. The deposition of phosphorus should be effective on the size reduction and markedly reduces PtSn nanoparticle size, and raise electrochemical active surface (EAS) area of catalyst and improve the catalytic performance. TEM images show PtSnP nanoparticles are highly dispersed on the carbon surface with average diameters of 2 nm. The optimum composition is Pt 3Sn 1P 2/C (note PtSn/C-3) catalyst in my work. With this composition, it shows very high activity for the electrooxidation of ethanol and exhibit enhanced performance compared with other two Pt 3Sn 1/C catalysts that prepared using ethylene glycol reduction method (note PtSn/C-EG) and borohydride reduction method (note PtSn/-B). The maximum power densities of direct ethanol fuel cell (DEFC) were 61 mW cm -2 that is 150 and 170% higher than that of the PtSn/C-EG and PtSn/C-B catalyst.
Namkhang, Pornpan; Kongkachuichay, Paisan
2015-07-01
The selective catalytic reduction of NO over a series of Cu-based catalysts supported on modified silica including SiO2-Al2O3, SiO2-TiO2, and SiO2-ZrO2 prepared via a sol-gel process and a flame spray pyrolysis (FSP) was studied. The prepared catalysts were characterized by means of TEM, XRD, XRF, TPR, and nitrogen physisorption measurement techniques, to determine particle diameter, morphology, crystallinity, phase composition, copper reducibility, surface area, and pore size of catalysts. The particles obtained from sol-gel method were almost spherical while the particles obtained from the FSP were clearly spherical and non-porous nanosized particles. The effects of Si:Al, Si:Ti, and Si:Zr molar ratio of precursor were identified as the domain for different crystalline phase of materials. It was clearly seen that a high SiO2 content inhibited the crystallization of materials. The BET surface area of catalysts obtained from sol-gel method was higher than that from the FSP and it shows that surface area increased with increasing SiO2 molar ratio due to high surface area from SiO2. The catalyst performances were tested for the selective catalytic reduction of NO with H2. It was found that the catalyst prepared over 7 wt% Cu on Si02-Al2O3 support was the most active compared with the others which converted NO as more than 70%. Moreover, the excess copper decreased the performance of NO reduction, due to the formation of CuO agglomeration covered on the porous silica as well as the alumina surface, preventing the direct contact of CO2 and AL2O3.
NASA Astrophysics Data System (ADS)
Qi, Wenjie; Ran, Jingyu; Zhang, Zhien; Niu, Juntian; Zhang, Peng; Fu, Lijuan; Hu, Bo; Li, Qilai
2018-03-01
Density functional theory combined with kinetic models were used to probe different kinetics consequences by which methane activation on different oxygen chemical potential surfaces as oxygen pressure increased. The metallic oxide → metal transformation temperature of Pd-Pt catalysts increased with the increase of the Pd content or/and O2 pressure. The methane conversion rate on Pt catalyst increased and then decreased to a constant value when increasing the O2 pressure, and Pd catalyst showed a poor activity performance in the case of low O2 pressure. Moreover, its activity increased as the oxygen chemical potential for O2 pressure increased in the range of 2.5-10 KPa. For metal clusters, the Csbnd H bond and Odbnd O bond activation steps occurred predominantly on *-* site pairs. The methane conversion rate was determined by O2 pressure because the adsorbed O atoms were rapidly consumed by other adsorbed species in this kinetic regime. As the O2 pressure increased, the metallic active sites for methane activation were decreased and there was no longer lack of adsorbed O atoms, resulting in the decrease of the methane conversion rate. Furthermore, when the metallic surfaces were completely covered by adsorbed oxygen atoms at higher oxygen chemical potentials, Pt catalyst showed a poor activity due to a high Csbnd H bond activation barrier on O*sbnd O*. In the case of high O2 pressure, Pd atoms preferred to segregate to the active surface of Pd-Pt catalysts, leading to the formation of PdO surfaces. The increase of Pd segregation promoted a subsequent increase in active sites and methane conversion rate. The PdO was much more active than metallic and O* saturated surfaces for methane activation, inferred from the theory and experimental study. Pd-rich bimetallic catalyst (75% molar Pd) showed a dual high methane combustion activity on O2-poor and O2-rich conditions.
NASA Astrophysics Data System (ADS)
Sun, Wei; Shi, Ruina; Wang, Xuhui; Liu, Shusen; Han, Xiaoxia; Zhao, Chaofan; Li, Zhong; Ren, Jun
2017-12-01
The mechanism for dimethyl carbonate (DMC) synthesis by oxidation carbonylation of methanol on a single-atom Cu1/graphene catalyst was investigated by density-functional theory calculations. Carbon vacancies in graphene can significantly enhance the interaction between Cu atoms and graphene supports, and provide an increased transfer of electrons from Cu atoms to the graphene sheet. Compared with Cu-doped divacancy graphene (Cu/DG), Cu-doped monovacancy graphene (Cu/MG) provides a stronger interaction between adsorbents and the catalyst surface. Among the reaction processes over Cu1/graphene catalysts, CO insertion into methoxide was more favorable than dimethoxide. The rate-limiting step on the Cu/DG surface is the carbomethoxide reaction with methoxide, which is exothermic by 164.6 kJ mol-1 and has an activation barrier of 190.9 kJ mol-1 energy. Compared with that on the Cu crystal surface, Cu4 and Cu3Rh clusters, and the Cu2O(111) surface, the rate-determining step for DMC formation on Cu/MG, which is CO insertion into methoxide, needs to overcome the lowest barrier of 73.5 kJ mol-1 and is exothermic by 44.6 kJ mol-1. Therefore, Cu/MG was beneficial to the formation of DMC as a single-atom catalyst.
NASA Astrophysics Data System (ADS)
Britton, Stephanie Lynne
Fatty acid methyl esters made from vegetable oil, or biodiesel, have been identified as a substitute for diesel derived from crude oil. Biodiesel is currently made using a homogeneous base catalyst to perform the transesterification of triglycerides with methanol to generate fatty acid methyl esters (FAME). The use of a homogeneous catalyst necessitates additional purification of the product and byproducts before sale, and the catalyst is consumed and discarded. The development of a heterogeneous basic catalyst for the production of FAME is desirable. Tribasic phosphate salts and dibasic carbonate salts are active for the production of FAME but generally operate as homogeneous catalysts. Supporting these phosphate and carbonate salts on mesoporous MCM-41, microporous silica gel, and nonporous a-alumina proved successful to greater or lesser degrees depending on the identity of the support and pretreatment of the support. Although these salts were supported and were active for the production of FAME from canola oil, they proved to be operating as homogeneous catalysts due to leaching of the active species off the surface of the support. Further investigation of the active species present in the tribasic phosphate catalysts identified the active support as orthophosphate, and NMR studies revealed the phosphorus to be present as orthophosphate and diphosphate in varying proportions in each catalyst. Evaluation of the acid-washing support pretreatment process revealed that the exposure of the support to acid plays a large role in the development of activity on the surface of the catalyst, but manipulation of these parameters did not prevent leaching of the active site off the surface of the catalyst. Alternate methods of support pretreatment were no more effective in preventing leaching. Tribasic phosphate supported on silica gel is not effective as a heterogeneous catalyst for FAME production from triglycerides because of the lack of stability of the phosphate on the support. The support is not stable under the reaction conditions, and alternatives should be explored to develop a heterogeneous base catalyst for the production of FAME.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Chao; Chen, Yongsheng; Li, Yan
2010-12-01
In order to develop a better understanding on sulfur poisoning of reforming catalysts in fuel processing for hydrogen production, steam reforming of liquid hydrocarbons was performed over CeO{sub 2}-Al{sub 2}O{sub 3} supported monometallic Ni and Rh and bimetallic Rh-Ni catalysts at 550 and 800 C. XANES was used to identify the sulfur species in the used catalysts and to study their impacts on the metal surface properties probed by XPS. It was found that both monometallic catalysts rapidly deactivated at 550 C, and showed poor sulfur tolerance. Although ineffective for the Ni catalyst, increasing the temperature to 800 C dramaticallymore » improved the sulfur tolerance of the Rh catalyst. XANES revealed that metal sulfide and organic sulfide are the dominant sulfur species on the used Ni catalyst, while sulfonate and sulfate predominate on the used Rh catalyst. The presence of sulfur induced severe carbon deposition on the Ni catalyst at 800 C. The superior sulfur tolerance of the Rh catalyst at 800 C may be associated with its capability in sulfur oxidation. It is likely that the formation of the oxygen-shielded sulfur structure of sulfonate and sulfate can suppress the poisoning impact of sulfur on Rh by inhibiting direct rhodium-sulfur interaction. Moreover, XPS indicated that the metal surface properties of the Rh catalysts after the reaction without and with sulfur at 800 C are similar, suggesting that sulfur poisoning on Rh was mitigated under the high-temperature condition. Although the Rh-Ni catalyst exhibited better sulfur tolerance than the monometallic catalysts at 550 C, its catalytic performance was inferior compared with the Rh catalyst in the sulfur-containing reaction at 800 C probably due to the severe carbon deposition on the bimetallic catalyst.« less
NASA Astrophysics Data System (ADS)
Amende, Max; Kaftan, Andre; Bachmann, Philipp; Brehmer, Richard; Preuster, Patrick; Koch, Marcus; Wasserscheid, Peter; Libuda, Jörg
2016-01-01
The Liquid Organic Hydrogen Carrier (LOHC) concept offers an efficient route to store hydrogen using organic compounds that are reversibly hydrogenated and dehydrogenated. One important challenge towards application of the LOHC technology at a larger scale is to minimize degradation of Pt-based dehydrogenation catalysts during long-term operation. Herein, we investigate the regeneration of Pt/alumina catalysts poisoned by LOHC degradation. We combine ultrahigh vacuum (UHV) studies on Pt(111), investigations on well-defined Pt/Al2O3 model catalysts, and near-ambient pressure (NAP) measurements on real coreshell Pt/Al2O3 catalyst pellets. The catalysts were purposely poisoned by reaction with the LOHC perhydro-dibenzyltoluene (H18-MSH) and with dicyclohexylmethane (DCHM) as a simpler model compound. We focus on oxidative regeneration under conditions that may be applied in real dehydrogenation reactors. The degree of poisoning and regeneration under oxidative reaction conditions was quantified using CO as a probe molecule and measured by infrared reflection-absorption spectroscopy (IRAS) and diffuse reflectance Fourier transform IR spectroscopy (DRIFTS) for planar model systems and real catalysts, respectively. We find that regeneration strongly depends on the composition of the catalyst surface. While the clean surface of a poisoned Pt(111) single crystal is fully restored upon thermal treatment in oxygen up to 700 K, contaminated Pt/Al2O3 model catalyst and coreshell pellet were only partially restored under the applied reaction conditions. Whereas partial regeneration on facet-like sites on supported catalysts is more facile than on Pt(111), carbonaceous deposits adsorbed at low-coordinated defect sites impede full regeneration of the Pt/Al2O3 catalysts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Gregory R.; Bell, Alexis T.
2015-11-17
The effects of Zr promotion on the structure and performance of Co-based Fischer-Tropsch synthesis (FTS) catalysts were investigated. Inclusion of Zr in the catalysts was found to increase the FTS turnover frequency and the selectivity to C 5+ hydrocarbons and to decrease the selectivity to methane under most operating conditions. These improvements to the catalytic performance are a function of Zr loading up to an atomic ratio of Zr/Co = 1.0, above which the product selectivity is insensitive to higher concentrations of the promoter. Characterization of the Co nanoparticles by different methods demonstrated that the optimal Zr loading corresponds tomore » half monolayer coverage of the Co surface by the promoter. Measurements of the rate of FTS at different pressures and temperatures established that the kinetics data for both the Zr-promoted and unpromoted catalysts are described by a two-parameter Langmuir-Hinshelwood expression. The parameters used to fit this rate law to the experimental data indicate that the apparent rate coefficient and the CO adsorption constant for the Zr-promoted catalysts are higher than those for the unpromoted catalyst. Elemental mapping by means of STEM-EDS provided evidence that Zr is highly dispersed over the catalyst surface and has limited preference for association with the Co nanoparticles. In situ X-ray absorption spectroscopy confirmed the absence of mixing between the Zr and Co in the nanoparticles. Here, these results suggest that Zr exists as a partial layer of ZrO 2 on the surface of the Co metal nanoparticles. Accordingly, it is proposed that Zr promotion effects originate from sites of enhanced activity at the interface between Co and ZrO 2. The possibility that ZrO 2 acts as a Lewis acid to assist in CO dissociation as well as to increase the ratio of CO to H adsorbed on the catalyst surface is discussed.« less
From fundamental studies of reactivity on single crystals to the design of catalysts
NASA Astrophysics Data System (ADS)
H. Larsen, Jane; Chorkendorff, Ib
One of the prominent arguments for performing surface science studies have for many years been to improve and design new and better catalysts. Although surface science has provided the fundamental framework and tools for understanding heterogeneous catalysis until now there have been extremely few examples of actually designing new catalysts based solely on surface science studies. In this review, we shall demonstrate how a close collaboration between different fundamental disciplines like structural-, theoretical-and reactivity-studies of surfaces as well as a strong interaction with industry can have strong synergetic effects and how this was used to develop a new catalyst. As so often before the studies reviewed here were not initiated with the objective to solve a specific problem, but realizing that a new class of very stable two-dimensional alloys could be synthesized from otherwise immiscible metals made it possible to present a new solution to a specific problem in the industrial catalysis relating to methane activation in the steam reforming process. Methane is the main constituent of natural gas and it is an extremely important raw material for many large scale chemical processes such as production of hydrogen, ammonia, and methanol. In the steam reforming process methane and water are converted into a mixture of mainly hydrogen and carbon monoxide, the so-called synthesis gas. Industrially the steam reforming process usually takes place over a catalyst containing small nickel crystallites highly dispersed on a porous support material like aluminum/magnesium oxides in order to achieve a high active metal area. There is a general consensus that the rate limiting step of this process is the dissociative sticking of methane on the nickel surface. Driven by the desire to understand this step and hopefully be able to manipulate the reactivity, a large number of investigations of the methane/nickel interaction have been performed using nickel single crystals as model catalysts. The process has been investigated, both under thermal conditions and by using supersonic molecular beams elucidating the dynamical aspects of the interaction. The results obtained will be reviewed both with respect to the clean and modified nickel surfaces. Especially the two-dimensional gold-nickel alloy system will be considered since the fundamental results here have lead to the invention of a new nickel based catalyst, which is much more resistant to carbon formation than the conventional nickel catalysts. This may be one of the first examples of how fundamental research can lead to the invention of new catalysts. Other overlayer/alloy combinations, their stability, and reactivity are briefly discussed with respect to manipulation of the surface reactivity towards methane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arendt, Paul N.; DePaula, Ramond F.; Zhu, Yuntian T.
An array of carbon nanotubes is prepared by exposing a catalyst structure to a carbon nanotube precursor. Embodiment catalyst structures include one or more trenches, channels, or a combination of trenches and channels. A system for preparing the array includes a heated surface for heating the catalyst structure and a cooling portion that cools gas above the catalyst structure. The system heats the catalyst structure so that the interaction between the precursor and the catalyst structure results in the formation of an array of carbon nanotubes on the catalyst structure, and cools the gas near the catalyst structure and alsomore » cools any carbon nanotubes that form on the catalyst structure to prevent or at least minimize the formation of amorphous carbon. Arrays thus formed may be used for spinning fibers of carbon nanotubes.« less
NASA Astrophysics Data System (ADS)
Zhang, Dengsong; Zhang, Lei; Shi, Liyi; Fang, Cheng; Li, Hongrui; Gao, Ruihua; Huang, Lei; Zhang, Jianping
2013-01-01
The MnOx and CeOx were in situ supported on carbon nanotubes (CNTs) by a poly(sodium 4-styrenesulfonate) assisted reflux route for the low-temperature selective catalytic reduction (SCR) of NO with NH3. X-Ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR) and NH3 temperature-programmed desorption (NH3-TPD) have been used to elucidate the structure and surface properties of the obtained catalysts. It was found that the in situ prepared catalyst exhibited the highest activity and the most extensive operating-temperature window, compared to the catalysts prepared by impregnation or mechanically mixed methods. The XRD and TEM results indicated that the manganese oxide and cerium oxide species had a good dispersion on the CNT surface. The XPS results demonstrated that the higher atomic concentration of Mn existed on the surface of CNTs and the more chemisorbed oxygen species exist. The H2-TPR results suggested that there was a strong interaction between the manganese oxide and cerium oxide on the surface of CNTs. The NH3-TPD results demonstrated that the catalysts presented a larger acid amount and stronger acid strength. In addition, the obtained catalysts exhibited much higher SO2-tolerance and improved the water-resistance as compared to that prepared by impregnation or mechanically mixed methods.The MnOx and CeOx were in situ supported on carbon nanotubes (CNTs) by a poly(sodium 4-styrenesulfonate) assisted reflux route for the low-temperature selective catalytic reduction (SCR) of NO with NH3. X-Ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR) and NH3 temperature-programmed desorption (NH3-TPD) have been used to elucidate the structure and surface properties of the obtained catalysts. It was found that the in situ prepared catalyst exhibited the highest activity and the most extensive operating-temperature window, compared to the catalysts prepared by impregnation or mechanically mixed methods. The XRD and TEM results indicated that the manganese oxide and cerium oxide species had a good dispersion on the CNT surface. The XPS results demonstrated that the higher atomic concentration of Mn existed on the surface of CNTs and the more chemisorbed oxygen species exist. The H2-TPR results suggested that there was a strong interaction between the manganese oxide and cerium oxide on the surface of CNTs. The NH3-TPD results demonstrated that the catalysts presented a larger acid amount and stronger acid strength. In addition, the obtained catalysts exhibited much higher SO2-tolerance and improved the water-resistance as compared to that prepared by impregnation or mechanically mixed methods. Electronic supplementary information (ESI) available: SEM images and EDS analysis, TEM images, and XPS spectrum of samples. See DOI: 10.1039/c2nr33006g
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keturakis, Christopher J.; Zhu, Minghui; Gibson, Emma K.
2016-06-13
A series of supported CrO 3/Fe 2O 3 catalysts were investigated for the high-temperature water-gas shift (WGS) and reverse-WGS reactions and extensively characterized using in situ and operando IR, Raman, and XAS spectroscopy during the high-temperature WGS/RWGS reactions. The in situ spectroscopy examinations reveal that the initial oxidized catalysts contain surface dioxo (O=) 2Cr 6+O 2 species and a bulk Fe 2O 3 phase containing some Cr 3+ substituted into the iron oxide bulk lattice. Operando spectroscopy studies during the high-temperature WGS/RWGS reactions show that the catalyst transforms during the reaction. The crystalline Fe 2O 3 bulk phase becomes Femore » 3O 4 ,and surface dioxo (O=) 2Cr 6+O 2 species are reduced and mostly dissolve into the iron oxide bulk lattice. Consequently, the chromium–iron oxide catalyst surface is dominated by FeO x sites, but some minor reduced surface chromia sites are also retained. The Fe 3–-xCr xO 4 solid solution stabilizes the iron oxide phase from reducing to metallic Fe0 and imparts an enhanced surface area to the catalyst. Isotopic exchange studies with C 16O 2/H 2 → C 18O 2/H 2 isotopic switch directly show that the RWGS reaction proceeds via the redox mechanism and only O* sites from the surface region of the chromium–iron oxide catalysts are involved in the RWGS reaction. The number of redox O* sites was quantitatively determined with the isotope exchange measurements under appropriate WGS conditions and demonstrated that previous methods have undercounted the number of sites by nearly 1 order of magnitude. The TOF values suggest that only the redox O* sites affiliated with iron oxide are catalytic active sites for WGS/RWGS, though a carbonate oxygen exchange mechanism was demonstrated to exist, and that chromia is only a textural promoter that increases the number of catalytic active sites without any chemical promotion effect.« less
Ryu, Won-Hee; Gittleson, Forrest S; Li, Jinyang; Tong, Xiao; Taylor, André D
2016-08-10
Understanding the catalyzed formation and evolution of lithium-oxide products in Li-O2 batteries is central to the development of next-generation energy storage technology. Catalytic sites, while effective in lowering reaction barriers, often become deactivated when placed on the surface of an oxygen electrode due to passivation by solid products. Here we investigate a mechanism for alleviating catalyst deactivation by dispersing Pd catalytic sites away from the oxygen electrode surface in a well-structured anodic aluminum oxide (AAO) porous membrane interlayer. We observe the cross-sectional product growth and evolution in Li-O2 cells by characterizing products that grow from the electrode surface. Morphological and structural details of the products in both catalyzed and uncatalyzed cells are investigated independently from the influence of the oxygen electrode. We find that the geometric decoration of catalysts far from the conductive electrode surface significantly improves the reaction reversibility by chemically facilitating the oxidation reaction through local coordination with PdO surfaces. The influence of the catalyst position on product composition is further verified by ex situ X-ray photoelectron spectroscopy and Raman spectroscopy in addition to morphological studies.
Ryu, Won -Hee; Gittleson, Forrest S.; Li, Jinyang; ...
2016-06-21
Understanding the catalyzed formation and evolution of lithium-oxide products in Li-O 2 batteries is central to the development of next-generation energy storage technology. Catalytic sites, while effective in lowering reaction barriers, often become deactivated when placed on the surface of an oxygen electrode due to passivation by solid products. Here we investigate a mechanism for alleviating catalyst deactivation by dispersing Pd catalytic sites away from the oxygen electrode surface in a well-structured anodic aluminum oxide (AAO) porous membrane interlayer. We observe the cross-sectional product growth and evolution in Li-O 2 cells by characterizing products that grow from the electrode surface.more » Morphological and structural details of the products in both catalyzed and uncatalyzed cells are investigated independently from the influence of the oxygen electrode. We find that the geometric decoration of catalysts far from the conductive electrode surface significantly improves the reaction reversibility by chemically facilitating the oxidation reaction through local coordination with PdO surfaces. Lastly, the influence of the catalyst position on product composition is further verified by ex situ Xray photoelectron spectroscopy and Raman spectroscopy in addition to morphological studies.« less
Wi, Rinbok; Imran, Muhammad; Lee, Kyoung G; Yoon, Sun Hong; Cho, Bong Gyoo; Kim, Do Hyun
2011-07-01
Zinc oxide (ZnO) and cerium oxide (CeO2) nanoparticles were deposited on the surface of preformed silica spheres with diameters ranging from 60 to 750 nm. Ultrasonic irradiation was employed to promote the deposition of the metal oxide nanoparticles on the surface of silica. Silica-supported zinc oxide or cerium oxide was used as a catalyst in the glycolysis of polyethylene terephthalate, one of the key processes in the depolymerization of polyethylene terephthalate. The effect of the support size on the catalytic activity was studied in terms of monomer yield, and the monomer concentration was analyzed via high-performance liquid chromatography (HPLC). The morphologies and surface properties of the catalysts were characterized using a scanning electron microscope, a transmission electron microscope, and a BET surface area analyzer, while the monomer was characterized via HPLC and nuclear-magnetic-resonance spectroscopy. Both the zinc oxide and cerium oxide deposited on a smaller support showed better distribution and less aggregation. The high specific surface area of the smaller support catalysts provided a large number of active sites. The highest monomer yield was obtained with a catalyst of 60-nm silica support.
Molecular catalysis science: Perspective on unifying the fields of catalysis.
Ye, Rong; Hurlburt, Tyler J; Sabyrov, Kairat; Alayoglu, Selim; Somorjai, Gabor A
2016-05-10
Colloidal chemistry is used to control the size, shape, morphology, and composition of metal nanoparticles. Model catalysts as such are applied to catalytic transformations in the three types of catalysts: heterogeneous, homogeneous, and enzymatic. Real-time dynamics of oxidation state, coordination, and bonding of nanoparticle catalysts are put under the microscope using surface techniques such as sum-frequency generation vibrational spectroscopy and ambient pressure X-ray photoelectron spectroscopy under catalytically relevant conditions. It was demonstrated that catalytic behavior and trends are strongly tied to oxidation state, the coordination number and crystallographic orientation of metal sites, and bonding and orientation of surface adsorbates. It was also found that catalytic performance can be tuned by carefully designing and fabricating catalysts from the bottom up. Homogeneous and heterogeneous catalysts, and likely enzymes, behave similarly at the molecular level. Unifying the fields of catalysis is the key to achieving the goal of 100% selectivity in catalysis.
Molecular catalysis science: Perspective on unifying the fields of catalysis
Ye, Rong; Hurlburt, Tyler J.; Sabyrov, Kairat; Alayoglu, Selim; Somorjai, Gabor A.
2016-01-01
Colloidal chemistry is used to control the size, shape, morphology, and composition of metal nanoparticles. Model catalysts as such are applied to catalytic transformations in the three types of catalysts: heterogeneous, homogeneous, and enzymatic. Real-time dynamics of oxidation state, coordination, and bonding of nanoparticle catalysts are put under the microscope using surface techniques such as sum-frequency generation vibrational spectroscopy and ambient pressure X-ray photoelectron spectroscopy under catalytically relevant conditions. It was demonstrated that catalytic behavior and trends are strongly tied to oxidation state, the coordination number and crystallographic orientation of metal sites, and bonding and orientation of surface adsorbates. It was also found that catalytic performance can be tuned by carefully designing and fabricating catalysts from the bottom up. Homogeneous and heterogeneous catalysts, and likely enzymes, behave similarly at the molecular level. Unifying the fields of catalysis is the key to achieving the goal of 100% selectivity in catalysis. PMID:27114536
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Rong; Hurlburt, Tyler J.; Sabyrov, Kairat
Colloidal chemistry is used to control the size, shape, morphology, and composition of metal nanoparticles. Model catalysts as such are applied to catalytic transformations in the three types of catalysts: heterogeneous, homogeneous, and enzymatic. Real-time dynamics of oxidation state, coordination, and bonding of nanoparticle catalysts are put under the microscope using surface techniques such as sumfrequency generation vibrational spectroscopy and ambient pressure X-ray photoelectron spectroscopy under catalytically relevant conditions. It was demonstrated that catalytic behavior and trends are strongly tied to oxidation state, the coordination number and crystallographic orientation of metal sites, and bonding and orientation of surface adsorbates. Itmore » was also found that catalytic performance can be tuned by carefully designing and fabricating catalysts from the bottom up. Homogeneous and h eterogeneous catalysts, and likely enzymes, behave similarly at the molecular level. Finally, unifying the fields of catalysis is the key to achieving the goal of 100% selectivity in catalysis.« less
Hartl, Monika; Gillis, Robert Chad; Daemen, Luke; Olds, Daniel P; Page, Katherine; Carlson, Stefan; Cheng, Yongqiang; Hügle, Thomas; Iverson, Erik B; Ramirez-Cuesta, A J; Lee, Yongjoong; Muhrer, Günter
2016-06-29
Molecular hydrogen exists in two spin-rotation coupled states: parahydrogen and orthohydrogen. Due to the variation of energy with rotational level, the occupation of ortho- and parahydrogen states is temperature dependent, with parahydrogen being the dominant species at low temperatures. The equilibrium at 20 K (99.8% parahydrogen) can be reached by natural conversion only after a lengthy process. With the use of a suitable catalyst, this process can be shortened significantly. Two types of commercial catalysts currently being used for ortho- to parahydrogen conversion are: iron(iii) oxide (Fe2O3, IONEX®), and chromium(ii) oxide doped silica catalyst (CrO·SiO2, OXISORB®). We investigate the interaction of ortho- and parahydrogen with the surfaces of these ortho-para conversion catalysts using neutron vibrational spectroscopy. The catalytic surfaces have been characterized using X-ray absorption fine structure (XAFS) and X-ray/neutron pair distribution function measurements.
Modified silica-based heterogeneous catalysts for etherification of glycerol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gholami, Zahra, E-mail: zahra.gholami@petronas.com.my; Abdullah, Ahmad Zuhairi, E-mail: chzuhairi@usm.my; Gholami, Fatemeh, E-mail: fgholami59@gmail.com
2015-07-22
The advent of mesoporous silicas such as MCM-41 has provided new opportunities for research into supported metal catalysis. The loading of metals into framework structures and particularly into the pores of porous molecular sieves, has long been of interest because of their potential catalytic activity. Stable heterogeneous mesoporous basic catalysts were synthesized by wet impregnation of MCM-41 with calcium nitrate and lanthanum nitrate. The surface and structural properties of the prepared catalysts were characterized using BET surface analysis, SEM and TEM. MCM-41 and modified MCM-41 were used in the solventless etherification of glycerol to produce diglycerol as the desired product.more » The reaction was performed at 250 °C for 8 h, and catalyst activity was evaluated. Catalytic etherification over the 20%Ca{sub 1.6}La{sub 0.6}/MCM-41 catalyst resulted in the highest glycerol conversion of 91% and diglycerol yield of 43%.« less
Mechanistic insights into heterogeneous methane activation
Latimer, Allegra A.; Aljama, Hassan; Kakekhani, Arvin; ...
2017-01-11
While natural gas is an abundant chemical fuel, its low volumetric energy density has prompted a search for catalysts able to transform methane into more useful chemicals. This search has often been aided through the use of transition state (TS) scaling relationships, which estimate methane activation TS energies as a linear function of a more easily calculated descriptor, such as final state energy, thus avoiding tedious TS energy calculations. It has been shown that methane can be activated via a radical or surface-stabilized pathway, both of which possess a unique TS scaling relationship. Herein, we present a simple model tomore » aid in the prediction of methane activation barriers on heterogeneous catalysts. Analogous to the universal radical TS scaling relationship introduced in a previous publication, we show that a universal TS scaling relationship that transcends catalysts classes also seems to exist for surface-stabilized methane activation if the relevant final state energy is used. We demonstrate that this scaling relationship holds for several reducible and irreducible oxides, promoted metals, and sulfides. By combining the universal scaling relationships for both radical and surface-stabilized methane activation pathways, we show that catalyst reactivity must be considered in addition to catalyst geometry to obtain an accurate estimation for the TS energy. Here, this model can yield fast and accurate predictions of methane activation barriers on a wide range of catalysts, thus accelerating the discovery of more active catalysts for methane conversion.« less
Mechanistic insights into heterogeneous methane activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latimer, Allegra A.; Aljama, Hassan; Kakekhani, Arvin
While natural gas is an abundant chemical fuel, its low volumetric energy density has prompted a search for catalysts able to transform methane into more useful chemicals. This search has often been aided through the use of transition state (TS) scaling relationships, which estimate methane activation TS energies as a linear function of a more easily calculated descriptor, such as final state energy, thus avoiding tedious TS energy calculations. It has been shown that methane can be activated via a radical or surface-stabilized pathway, both of which possess a unique TS scaling relationship. Herein, we present a simple model tomore » aid in the prediction of methane activation barriers on heterogeneous catalysts. Analogous to the universal radical TS scaling relationship introduced in a previous publication, we show that a universal TS scaling relationship that transcends catalysts classes also seems to exist for surface-stabilized methane activation if the relevant final state energy is used. We demonstrate that this scaling relationship holds for several reducible and irreducible oxides, promoted metals, and sulfides. By combining the universal scaling relationships for both radical and surface-stabilized methane activation pathways, we show that catalyst reactivity must be considered in addition to catalyst geometry to obtain an accurate estimation for the TS energy. Here, this model can yield fast and accurate predictions of methane activation barriers on a wide range of catalysts, thus accelerating the discovery of more active catalysts for methane conversion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jentoft, R.E.; Gates, B.C.; Tsapatsis, M.
KLTL zeolite-supported platinum catalysts were synthesized from aqueous tetraammineplatinum(II) nitrate solutions and nonacidic KLTL zeolite crystallites, including some with dimensions as little as 300 x 500 {angstrom}. The zeolite crystallites had various morphologies, some being predominantly disk-shaped particles and some predominantly mosaics of rod-like domains with a range of c-dimension lengths. The activity and selectivity of each catalyst were evaluated for dehydrocyclization of n-hexane in the presence of H{sub 2} to form predominantly benzene at conversions of typically 45--90%. The data presented here provide a detailed characterization of the deactivation of such catalysts in the absence of sulfur. EXAFS datamore » show that the platinum in each catalyst was present in clusters of about 20 atoms each, on average. Electron micrographs show that the platinum clusters were nearly evenly dispersed on the surfaces of the zeolite crystallites, including the intracrystalline and extracrystalline surfaces. The catalytic performance was virtually independent of the zeolite channel length, but activity, selectivity, and resistance to deactivation were found to be correlated with the ratio of the surface area external to the crystallite domains to that within the intracrystalline pores. The catalyst performance is dependent on this ratio (which is related to the zeolite morphology) as follows: in comparison with the others, the catalysts with the relatively low fractions of platinum outside the intracrystalline pores are more active, more selective for benzene formation, and more resistant to deactivation.« less
Catalysts for electrochemical generation of oxygen
NASA Technical Reports Server (NTRS)
Hagans, P.; Yeager, E.
1978-01-01
Single crystal surfaces of platinum and gold and transition metal oxides of the spinel type were studied to find more effective catalysts for the electrolytic evolution of oxygen and to understand the mechanism and kinetics for the electrocatalysis in relation to the surface electronic and lattice properties of the catalyst. The single crystal studies involve the use of low energy electron diffraction (LEED) and Auger electron spectroscopy as complementary tools to the electrochemical measurements. Modifications to the transfer system and to the thin-layer electrochemical cell used to facilitate the transfer between the ultrahigh vacuum environment of the electron surface physics equipment and the electrochemical environment with a minimal possibility of changes in the surface structure, are described. The electrosorption underpotential deposition of Pb onto the Au(111), (100) and (110) single crystal surfaces with the thin-layer cell-LEED-Auger system is discussed as well as the synthesis of spinels for oxygen evolution studies.
Influence of surface phenomena in oxidative desulfurization with WOx/ZrO2 catalysts
NASA Astrophysics Data System (ADS)
Torres-García, E.; Canizal, G.; Velumani, S.; Ramírez-Verduzco, L. F.; Murrieta-Guevara, F.; Ascencio, J. A.
2004-12-01
Oil refinery related catalysis, particularly hydro desulfurization is viewed as a mature technology, but still we view that more efforts have to be made to boost the efficiency of the existing catalysts. So in this article we report the use of WOx/ZrO2 catalysts for the oxidation of dibenzothiophene (DBT) as a more effective material in nanometer scales. The WOx/ZrO2 samples were prepared by solid impregnation of ZrO2-x(OH)2x with ammonium metatungstate solution maintaining the pH at 10. Detailed structural and surface morphological analyses were carried out using Raman spectroscopy and Atomic force microscopy. In order to understand the catalytic activity which is largely influenced by the surface morphology, an interpretation based on the experimental results is given. The results showed an important correlation between the catalytic efficiency with the morphology of the surface which is identified as arrays of planes with steps of around 10 nm with the structures showing faceting with a preferential angle of 90°. It was established that when the number of W atoms in the surface increase the catalytic efficiency also increases. Thus we conclude that the material efficiency as a catalyst is directly related with the surface structure.
Methanol Oxidation Using Ozone on Titania-Supported Vanadium Catalyst
Ozone-enhanced catalytic oxidation of methanol has been conducted at mild temperatures of 100 to 250NC using V2O5/TiO2 catalyst prepared by the sol-gel method. The catalyst was characterized using XRD, surface area measurements, and temperature-programmed desorption of methanol. ...
NASA Astrophysics Data System (ADS)
Wang, Ying-Fan; Li, Kun; Wang, Gui-Chang
2018-04-01
Inspired by the recent surface experimental results that the monatomic Pt catalysts has more excellent hydrogen production that Cu(111) surface, the mechanism of decomposition of formic acid on Cu(111) and single atom Pt1/Cu(111) surface was studied by periodic density functional theory calculations in the present work. The results show that the formic acid tends to undergo dehydrogenation on both surfaces to obtain the hydrogen product of the target product, and the selectivity and catalytic activity of Pt1/Cu (111) surface for formic acid dehydrogenation are better. The reason is that the single atom Pt1/Cu(111) catalyst reduces the reaction energy barrier (i.e., HCOO → CO2 + H) of the critical step of the dehydrogenation reaction due to the fact that the single atom Pt1/Cu(111) catalyst binds formate weakly compared to that of Cu (111) one. Moreover, it was found that the Pt1/Cu (111) binds CO more strongly than that of Cu (111) one and thus leading to the difficult for the formation of CO. These two factors would make the single Pt atom catalyst had the high selectivity for the H2 production. It is hoped that the present work may help people to design the efficient H2 production from HCOOH decomposition by reduce the surface binding strength of HCOO species, for example, using the low coordination number active site like single atom or other related catalytic system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Qinghua; Skoglund, Michael D.; Zhang, Chen
Overlayer Pt on Ni (Ni@Pt) or Co (Co@Pt) were synthesized and tested for H2 generation from APR of lactose. H2 chemisorption descriptor showed that Ni@Pt and Co@Pt overlayer catalysts had reduced H2 adsorption strength compared to a Pt only catalyst, which agree with computational predictions. The overlayer catalysts also demonstrated lower activity for ethylene hydrogenation than the Pt only catalyst, which likely resulted from decreased H2 binding strength decreasing the surface coverage of H2. XAS results showed that overlayer catalysts exhibited higher white line intensity than the Pt catalyst, which indicates a negative d-band shift for the Pt overlayer, furthermore » providing evidence for overlayer formation. Lactose APR studies showed that lactose can be used as feedstock to produce H2 and CO under desirable reaction conditions. The Pt active sites of Ni@Pt and Co@Pt overlayer catalysts showed significantly enhanced H2 production selectivity and activity when compared with that of a Pt only catalyst. The single deposition overlayer with the largest d-band shift showed the highest H2 activity. The results suggest that overlayer formation using directed deposition technique could modify the behavior of the surface metal and ultimately modify the APR activity.« less
NASA Astrophysics Data System (ADS)
Nugrahaningtyas, K. D.; Suharbiansah, R. S. R.; Rahmawati, F.
2018-03-01
This research aims to prepare, characterize, and study the catalytic activity of Molybdenum (Mo) and Cobalt (Co) metal with supporting material Ultra Stable Y-Zeolite (USY), to produce catalysts with activity in hydrotreatment reaction and in order to eliminate impurities compounds that containing unwanted groups heteroatoms. The bimetallic catalysts MoCo/USY were prepared by wet impregnation method with weight variation of Co metal 0%, 2%, 4%, 6%, 8%, and Mo metal 8% (w/w), respectively. Activation method of the catalyst included calcination, oxidation, reduction and the crystallinity was characterized using X-ray diffraction (XRD), the acidity of the catalyst was analyzed using Fourier Transform Infrared Spectroscopy (FT-IR) and gravimetry method, minerals present in the catalyst was analyzed using X-Ray Fluorescence (XRF), and surface of the catalyst was analyzed using Surface Area Analyzer (SAA). Catalytic activity test (benzene yield product) of MoCo/USY on hydrodeoxigenation reaction of anisole aimed to determine the effect of Mo-Co/USY for catalytic activity in the reaction hydrodeoxigenation (HDO) anisole. Based on characterization and test of catalytic activity, it is known that catalytic of MoCo/USY 2% (catalyst B) shows best activities with acidity of 10.209 mmol/g, specific area of catalyst of 426.295 m2/g, pore average of 14.135 Å, total pore volume 0.318 cc/g, and total yield of HDO products 6.06%.
Coating of porous carbon for use in lithium air batteries
Amine, Khalil; Lu, Jun; Du, Peng; Lei, Yu; Elam, Jeffrey W
2015-04-14
A cathode includes a carbon material having a surface, the surface having a first thin layer of an inert material and a first catalyst overlaying the first thin layer, the first catalyst including metal or metal oxide nanoparticles, wherein the cathode is configured for use as the cathode of a lithium-air battery.
Renewable Decyl-alcohol Templated Synthesis of Si-Cu Core-Shell Nanocomposite
NASA Astrophysics Data System (ADS)
Salim, M. A.; >H Misran, 2013-06-01 Monodispersed silica spheres with particles size of ca. 450 nm were successfully synthesized using a modified Stöber method. The synthesized monodispersed silica spheres were successfully coated with copper using modified sol-gel method employing nonsurfactant surface modifiers and catalyst. A renewable palm oil based decyl-alcohol (C10) as nonsurfactant surface modifiers and catalyst were used to modify the silica surfaces prior to coating with copper. The X-ray diffraction patterns of Si-Cu core-shell exhibited a broad peak corresponding to amorphous silica networks and monoclinic CuO phase. It was found that samples modified in the presence of 1 ml catalyst exhibited homogeneous deposition. The surface area of core materials (SiO2) was at ca. 7.04 m2/g and Si-Cu core-shell was at ca. 8.21 m2/g. The band gap of samples prepared with and without catalyst was calculated to be ca. 2.45 eV and ca. 3.90 eV respectively based on the UV-vis absorption spectrum of the product.
Recent Advances in Catalyst Accelerated Stress Tests for Polymer Electrolyte Membrane Fuel Cells
Stariha, Sarah; Macauley, Natalia; Sneed, Brian T.; ...
2018-03-15
The U.S. Department of Energy (DOE) set the 2020 durability target for polymer electrolyte membrane fuel cell transportation applications at 5000 hours. Since it is impractical to test every fuel cell for this length of time, there is ever increasing interest in developing accelerated stress tests (ASTs) that can accurately simulate the material component degradation in the membrane electrode assembly (MEA) observed under automotive operating conditions, but over a much shorter time frame. In this study, a square-wave catalyst AST was examined that shows a 5X time acceleration factor over the triangle-wave catalyst AST and a 25X time acceleration factormore » over the modified wet drive-cycle catalyst durability protocol, significantly decreasing the testing time. These acceleration factors were correlated to the platinum (Pt) particle size increase and associated decrease in electrochemical surface area (ECSA). This square-wave AST has been adopted by the DOE as a standard protocol to evaluate catalyst durability. We also compare three catalyst-durability protocols using state-of-the-art platinum-cobalt catalysts supported on high surface area carbon (SOA Pt-Co/HSAC) in the cathode catalyst layer. The results for each of the three tests showed both catalyst particle size increase and transition metal leaching. Moreover the acceleration factors for the alloy catalysts were smaller due to Co leaching being the predominant mechanism of voltage decay in ~5 nm PtCo/C catalysts. Finally, an extremely harsh carbon corrosion AST was run using the same SOA Pt-Co/HSAC catalyst. This showed minimal change in particle size and a low percentage Co loss from the cathode catalyst particles, despite a significant loss in catalyst layer thickness and cell performance. The carbon corrosion rates during these various ASTs were directly measured by monitoring the CO 2 emission from the cathode, further confirming the ability of the square-wave AST to evaluate the electro-catalyst independently of the support.« less
Recent Advances in Catalyst Accelerated Stress Tests for Polymer Electrolyte Membrane Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stariha, Sarah; Macauley, Natalia; Sneed, Brian T.
The U.S. Department of Energy (DOE) set the 2020 durability target for polymer electrolyte membrane fuel cell transportation applications at 5000 hours. Since it is impractical to test every fuel cell for this length of time, there is ever increasing interest in developing accelerated stress tests (ASTs) that can accurately simulate the material component degradation in the membrane electrode assembly (MEA) observed under automotive operating conditions, but over a much shorter time frame. In this study, a square-wave catalyst AST was examined that shows a 5X time acceleration factor over the triangle-wave catalyst AST and a 25X time acceleration factormore » over the modified wet drive-cycle catalyst durability protocol, significantly decreasing the testing time. These acceleration factors were correlated to the platinum (Pt) particle size increase and associated decrease in electrochemical surface area (ECSA). This square-wave AST has been adopted by the DOE as a standard protocol to evaluate catalyst durability. We also compare three catalyst-durability protocols using state-of-the-art platinum-cobalt catalysts supported on high surface area carbon (SOA Pt-Co/HSAC) in the cathode catalyst layer. The results for each of the three tests showed both catalyst particle size increase and transition metal leaching. Moreover the acceleration factors for the alloy catalysts were smaller due to Co leaching being the predominant mechanism of voltage decay in ~5 nm PtCo/C catalysts. Finally, an extremely harsh carbon corrosion AST was run using the same SOA Pt-Co/HSAC catalyst. This showed minimal change in particle size and a low percentage Co loss from the cathode catalyst particles, despite a significant loss in catalyst layer thickness and cell performance. The carbon corrosion rates during these various ASTs were directly measured by monitoring the CO 2 emission from the cathode, further confirming the ability of the square-wave AST to evaluate the electro-catalyst independently of the support.« less
DEVELOPMENT OF ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adeyinka A. Adeyiga
2001-09-01
The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. The use of iron-based catalysts is attractive not only due to their low cost and ready availability, but also due to their high water-gas shift activity which makes it possible to use these catalysts with low H{sub 2}/CO ratios. However, a serious problem with use ofmore » Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, makes the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. Recently, fundamental understanding of physical attrition is being addressed by incorporating suitable binders into the catalyst recipe. This has resulted in the preparation of a spray dried Fe-based catalyst having aps of 70 mm with high attrition resistance. This Fe-based attrition resistant, active and selective catalyst gave 95% CO conversion through 125 hours of testing in a fixed-bed at 270 C, 1.48 MPa, H{sub 2}/CO=0.67 and 2.0 NL/g-cat/h with C{sub 5}{sup +} selectivity of >78% and methane selectivity of <5%. However, further development of the catalyst is needed to address the chemical attrition due to phase changes that any Fe-catalyst goes through potentially causing internal stresses within the particle and resulting in weakening, spalling or cracking. The objective of this research is to develop robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry bubble column reactor. Specifically we aim to develop to: (i) improve the performance and preparation procedure of the high activity, high attrition resistant, high alpha iron-based catalysts synthesized at Hampton University, (ii) seek improvements in the catalyst performance through variations in process conditions, pretreatment procedures and/or modifications in catalyst preparation steps and (iii) investigate the performance in a slurry reactor. The effort during the reporting period has been devoted to attrition study of the iron-based catalysts. Precipitated silica appeared to decrease attrition resistance of spray-dried iron FT catalysts. It was found that the catalyst with precipitated silica content at around 12wt% showed the lowest attrition resistance. The results of net change in volume moment and catalyst morphology showed supporting evidences to the attrition results. Catalysts with low attrition resistance generated more fines loss, had higher net change in volume moment and showed more breakage of particles. BET surface area and pore volume of this catalyst series fluctuated; therefore no conclusion can be drawn from the data obtained. However, catalyst with no precipitated silica showed the lowest in BET surface area and pore volume, as expected. Addition of precipitated silica to the catalysts had no effect to the phase changes of iron that could have significant influence to catalyst attrition. The presence of precipitated silica is needed for enhancing catalyst surface area; however, the amount of silica added should be compromising with attrition resistance of catalysts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhary, V.R.; Mulla, S.A.R.; Uphade, B.S.
1997-06-01
Methane-to-C{sub 2}-hydrocarbon conversion activity and selectivity (or yield) of MgO and La-promoted MgO catalysts in the oxidative coupling of methane and strong basicity of the catalysts are decreased appreciably when these catalysts are deposited on commonly used commercial low surface area porous catalyst carriers containing Al{sub 2}O{sub 3}, SiO{sub 2}, SiC, or ZrO{sub 2} + HfO{sub 2} as the main components. The decrease in the strong basicity and catalytic activity/selectivity or yield is mostly due to strong chemical interactions between the active catalyst component (viz., MgO and La{sub 2}O{sub 3}) and the reactive components of the catalyst support (viz., Al{submore » 2}O{sub 3} and SiO{sub 2}), resulting in the formation of catalytically inactive binary metal oxides on the support surface. However, the influence of support on the activity/selectivity of La{sub 2}O{sub 3} is relatively very small, and also the chemical interactions of La{sub 2}O{sub 3} with the supports (except that containing a high concentration of SiO{sub 2}) are almost absent. The catalyst-support interactions are thus found to be strongly dependent upon the nature (chemical composition) of both catalyst and support. For developing better supported catalysts for the oxidative coupling of methane, supported La{sub 2}O{sub 3} with some promoters shows high promise.« less
NASA Astrophysics Data System (ADS)
Huang, Guanping; Mao, Jie; Fan, Ronglei; Yin, Zhihao; Wu, Xi; Jie, Jiansheng; Kang, Zhenhui; Shen, Mingrong
2018-01-01
Many earth-abundant transition metal dichalcogenides (TMDs) have been employed as catalysts for H2 evolution reaction (HER); however, their impactful integration onto photocathodes for photoelectrochemical (PEC) HER is less developed. In this study, we directly sputtered a MoSe2 catalyst onto an n+p-Si photocathode for efficient and stable PEC-HER. An onset potential of 0.4 V vs. RHE, a saturated photocurrent of 29.3 mA/cm2, a fill factor of 0.32, and an energy conversion efficiency of 3.8% were obtained under 100 mA/cm2 Xe lamp illumination. Such superior PEC properties were ascribed to the nearly vertically standing two dimensional MoSe2 rough surface layer and the sharp interface between Si and MoSe2 with small charge transfer resistance. The balance between the reflectivity of the electrode surface and the absorptivity of MoSe2 was also discussed. In addition, the MoSe2 layer can protect the n+p-Si photocathode with a 120 h stability due to its initial growth on Si with high flatness and compactness. This study provides a path to the effective and scalable growth of TMDs onto the Si photocathode aiming for high efficiency and stability.
Effect of water and alkali modifications on ETS-10 for the cycloaddition of CO2 to propylene oxide.
Doskocil, Eric J
2005-02-17
Sodium oxide (NaOx) impregnated Engelhard Titanosilicate-10 (ETS-10) molecular sieve catalysts were prepared to enhance the basicity associated with ETS-10 and subsequently investigated for the cycloaddition of carbon dioxide to propylene oxide to produce propylene carbonate. For dry NaOx-modified ETS-10 catalysts that contained no adsorbed water, a maximum yield of propylene carbonate was achieved at a loading of 2.0 excess NaOx species per unit cell. However, the greatest enhancements in the rate of reaction were observed when small amounts of water were adsorbed onto the unmodified ETS-10 catalyst immediately prior to reaction. Surface-bound water appears to enhance the surface Bronsted acidity of the unmodified ETS-10 catalyst via the formation of surface -OH groups at lower water loadings, producing a surface of better-tuned acid-base bifunctional characteristics for the cycloaddition reaction. At levels of hydration greater than 12.5% by mass, the yield of propylene carbonate was further enhanced, but at a smaller rate than that observed at lower rehydration levels, which is more indicative of an enhanced transport effect. Adsorption microcalorimetry of carbon dioxide indicated that, at loadings less than 2.0 NaOx per unit cell, the total uptake of the CO2 adsorption sites required for the reaction were less than in the parent ETS-10 material. However, at higher levels of NaOx occlusion, where the total uptake and strength of the adsorption sites exceeded those observed for the as-received ETS-10 material, the cycloaddition activity of this catalyst suffered due to the reduced pore volume and surface area. It appears that precise tuning of both the surface acidity and basicity is crucial in creating an effective acid-base bifunctional ETS-10 catalyst for the cycloaddition reaction investigated.
NASA Astrophysics Data System (ADS)
Fang, Minfeng
Despite the aggressive development and deployment of new renewable and nuclear technologies, petroleum-derived transportation fuels---gasoline, diesel and jet fuels---will continue to dominate the markets for decades. Environmental legislation imposes severe limits on the tolerable proportion of aromatics, sulfur and nitrogen contents in transportation fuels, which is difficult to achieve with current refining technologies. Catalytic hydrogenation plays an important role in the production of cleaner fuels, both as a direct means to reduce the aromatics and as a key step in the hydrodenitrogenation (HDN) and hydrodesulfurization (HDS) processes. However, conventional catalysts require drastic conditions and/or are easily poisoned by S or N aromatics. Therefore, there is still a need for new efficient catalysts for hydrogenation reactions relevant to the production of cleaner fossil fuels. Our catalyst design involves metallic nanoparticles intimately associated with a basic support, with the aim of creating a nanostructure capable of promoting the heterolytic activation of hydrogen and ionic hydrogenation mechanisms, as a strategy to avoid catalyst poisoning and enhance catalytic activity. We have designed and prepared a new nanostructured catalytic material composed of RuNPs immobilized on the basic polymer P4VPy. We have demonstrated that the Ru/P4VPy catalyst can promote heterolytic hydrogen activation and a unique surface ionic hydrogenation mechanism for the efficient hydrogenation of N-aromatics. This is the first time these ionic hydrogenation pathways have been demonstrated on solid surfaces. For the RuNPs surfaces without basic sites in close proximity, the conventional homolytic H2 splitting is otherwise involved. Using the mechanistic concepts from Ru/P4VPy, we have designed and prepared the Ru/MgO catalyst, with the aim to improve the catalytic efficiency for the hydrogenation of heteroatom aromatics operating by the ionic hydrogenation mechanism. The Ru/MgO catalyst significantly improves the catalytic efficiency for hydrogenation of a variety of N-/S-heteroaromatics and mono-/polycyclic aromatic hydrocarbons representative of components of petroleum-derived fuels. The catalyst is superior to the few other known supported noble metal catalysts for these reactions. Mechanistic studies also point to the ionic hydrogenation mechanism on the Ru/MgO surfaces. In addition, the Ru/MgO catalyst is highly recyclable and long-lived.
Catalytic oxidation of low-concentration CO at ambient temperature over supported Pd-Cu catalysts.
Wang, Fagen; Zhang, Haojie; He, Dannong
2014-01-01
The CO catalytic oxidation at ambient temperature and high space velocity was studied over the Pd-Cu/MOx (MOx = TiO2 and AI203) catalysts. The higher Brunauer-Emmett-Teller area surface of the A1203 support facilitates the dispersion of Pd2+ species, and the presence of Cu2Cl(OH)3 accelerates the re-oxidation of Pd0 to Pd2+ over the Pd-Cu/Al203 catalyst, which contributed to better performance of CO catalytic oxidation. The poorer activity of the Pd-Cu/TiO2 catalyst was attributed to the lower dispersion of Pd2+ species because of the less surface area and the non-formation of Cu2CI(OH)3 species. The presence of saturated moisture showed a negative effect on CO conversion over the two catalysts. This might be because of the competitive adsorption, the formation of carbonate species and the transformation of Cu2CI(OH)3 to inactive CuCI over the Pd-Cu/AI2O3 catalyst, which facilitates the aggregation of PdO species over the Pd-Cu/TiO2 catalyst under the moisture condition.
NASA Astrophysics Data System (ADS)
Thomas, John Meurig
2008-05-01
Predominantly this article deals with the question of how to design new solid catalysts for a variety of industrial and laboratory-orientated purposes. A generally applicable strategy, illustrated by numerous examples, is made possible based on the use of nanoporous materials on to the (high-area) inner surfaces of which well-defined (experimentally and computationally) active centers are placed in a spatially separated fashion. Such single-site catalysts, which have much in common with metal-centered homogenous catalysts and enzymes, enable a wide range of new catalysts to be designed for a variety of selective oxidations, hydrogenations, hydrations and hydrodewaxing, and other reactions that the "greening" of industrial processes demand. Examples are given of new shape-selective, regio-selective, and enantioselective catalysts, many of which operate under mild, environmentally benign conditions. Also considered are some of the reasons why detailed studies of adsorption and stoichiometric reactions at single-crystal surfaces have, disappointingly, not hitherto paved the way to the design and production of many new heterogenous catalysts. Recent work of a theoretical and high-throughout nature, allied to some experimental studies of well-chosen model systems, holds promise for the identification of new catalysts for simple, but industrially important reactions.
Effect of Na poisoning catalyst (V2O5-WO3/TiO2) on denitration process and SO3 formation
NASA Astrophysics Data System (ADS)
Xiao, Haiping; Chen, Yu; Qi, Cong; Ru, Yu
2018-03-01
This paper aims to study the effect of alkali metal sodium (Na) poisoning on the performance of the Selective Catalytic Reduction (SCR) catalyst. The result showed that Na2SO4 poisoning leads to a reduced denitration rate of the SCR catalyst and an increase in the SO3 generation rate. Na2O poisoning leads to a significant reduction in the denitration rate of the SCR catalyst and marginally improves the formation of SO3. The maximum of the SO3 generation rate for a Na2SO4-poisoned catalyst reached 1.35%, whereas it was only 0.85% for the SCR catalyst. When the SO2 was contained in flue gas, the denitration rate for the Na2O-poisoned catalyst clearly increased by more than 28%. However, the effect of SO2 on the Na2SO4-poisoned catalyst was very slight. The denitration rate of the SCR catalyst decreased with an increase in the Na content. The BET and XRD results showed that Na poisoning of the catalyst decreased the number of acid sites, the reducibility of the catalyst, the surface area, and pore volume. The H2-TPR and NH3-TPD results show that Na decreases the number of acid sites and the reducibility of the catalyst. The FT-IR and XPS results showed that Na2O poisoning led to the decrease of V5+dbnd O bonds and the consumptions of oxygen atoms. Na2SO4 poisoning can improve surface adsorbed oxygen, which was beneficial for the SO2-SO3 conversion reaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, Rong; Dagle, Vanessa Lebarbier; Flake, Matthew
In this study we examine feasibility for steam reforming the mixed oxygenate aqueous fraction derived from mildly hydrotreated fast pyrolysis bio-oils. Catalysts selective towards hydrogen formation and resistant to carbon formation utilizing feeds with relatively low steam-to-carbon (S/C) ratios are desired. Rh (5 wt%), Pt (5 wt%), Ru (5 wt%), Ir (5 wt%), Ni (15 wt%), and Co (15 wt%) metals supported on MgAl 2O 4 were evaluated for catalytic performance at 500°C and 1 atm using a complex feed mixture comprising of acids, polyols, cycloalkanes, and phenolic compounds. The Rh catalyst was found to be the most active andmore » resistant to carbon formation. The Ni and Co catalysts were found to be more active than the other noble metal catalysts investigated (Pt, Ru, and Ir). However, Ni was found to form significantly more carbon (coke) on the catalyst surface. Furthermore, Co was found to be the most selective towards H 2 formation. Evaluating the effect of temperature on stability for the Rh catalyst we found that catalyst stability was best when operated at 500°C as compared to the higher temperatures investigated (700, 800°C). When operating at 700°C significantly more graphitic formation was observed on the spent catalyst surface. Operating at 800°C resulted in reactor plugging as a result of thermal decomposition of the reactants. Thus, a concept analogous to the petroleum industries’ use of a pre-reformer, operated at approximately 500°C for steam reforming of the heavier naphtha components, followed by a high temperature methane reforming operated in the 600-850°C temperature range, could be applied in the case of steam reforming biomass derived oxygenates. Moreover, stability evaluations were performed over the Rh, Ni, and Co catalysts at 500°C and 1 atm, under similar initial conversions, reveal the Co catalyst to be the most stable and selective towards H 2 production. Conversion and selectivity to CH 4 over Co remained relatively stable at approximately 80% and 1.2%, respectively. By contrast, the Rh and Ni catalysts CH 4 selectivity’s were approximately 7-8%. Thus suggesting that a Co type catalyst may be more suitable for the steam reforming of biomass derived oxygenates as compared to the more conventional Ni and Rh type steam reforming catalysts. However, deposition of carbon on the surface was observed. High resolution TEM on the spent catalysts revealed the formation of graphitic carbon on the Rh catalyst, and filamentous carbon formation was observed on both the Ni and Co catalysts, albeit less pronounced on Co. Thus there is certainly opportunity for improvement in Co catalyst design and/or with process optimization.« less
NASA Astrophysics Data System (ADS)
Wang, Fangfang; Xia, Wei; Mu, Xichuan; Chen, Kun; Si, Huimin; Li, Zhihao
2018-05-01
ZrO2-based catalysts doped with Y were prepared by co-precipitation method. The effect of yttrium modification on the selective conversion of bio-ethanol to propylene over ZrO2 catalysts was investigated. The physical and chemical properties of the catalysts were characterized by N2 adsorption-desorption method, temperature programmed desorption and X-ray diffraction. The maximum yield of propylene reached 44.0% over 0.03Y/ZrO2 catalyst. A coordination of acid-base properties accounts for the remarkable improvement of reaction activities over Y-doped ZrO2 catalysts in this investigation. On the basis of calculation results, it can be concluded that significant charge transfer occurs as a result of introduction of Y or O-vacancy. The adsorption of ethanol and propylene on perfect t-ZrO2 (1 0 1), defect t-ZrO2 (1 0 1) and Y/ZrO2 (1 0 1) surfaces were investigated with density functional theory (DFT). The adsorption for ethanol on Y/ZrO2 (1 0 1) and defect t-ZrO2 (1 0 1) surfaces are more stable than that on perfect t-ZrO2 (1 0 1). On the defect t-ZrO2 (1 0 1) surface, ethanol dominantly absorbs at the O-vacancy site, indicating that O-vacancy becomes the favorable adsorption site. On the Y/ZrO2 (1 0 1) and defect t-ZrO2 (1 0 1) surfaces, the adsorption energy of propylene decreases, which makes propylene desorb quickly after formation.
NASA Astrophysics Data System (ADS)
Li, Yingmin; Wang, Jiaxi; Clark, Melissa L.; Kubiak, Clifford P.; Xiong, Wei
2016-04-01
We report the first fourth-order 3D SFG spectroscopy of a monolayer of the catalyst Re(diCN-bpy)(CO)3Cl on a gold surface. Besides measuring the vibrational coherences of single vibrational modes, the fourth-order 3D SFG spectrum also measures the dynamics of interstate coherences and vibrational coherences states between two vibrational modes. By comparing the 3D SFG to the corresponding 2D and third-order 3D IR spectroscopy of the same molecules in solution, we found that the interstate coherences exist in both liquid and surface systems, suggesting that the interstate coherence is not disrupted by surface interactions. However, by analyzing the 3D spectral lineshape, we found that the interstate coherences also experience non-negligible homogenous dephasing dynamics that originate from surface interactions. This unique ability of determining interstate vibrational coherence dynamics of the molecular monolayer can help in understanding of how energy flows within surface catalysts and other molecular monolayers.
Surface science approach to Pt/carbon model catalysts: XPS, STM and microreactor studies
NASA Astrophysics Data System (ADS)
Motin, Abdul Md.; Haunold, Thomas; Bukhtiyarov, Andrey V.; Bera, Abhijit; Rameshan, Christoph; Rupprechter, Günther
2018-05-01
Pt nanoparticles supported on carbon are an important technological catalyst. A corresponding model catalyst was prepared by physical vapor deposition (PVD) of Pt on sputtered HOPG (highly oriented pyrolytic graphite). The carbon substrate before and after sputtering as well as the Pt/HOPG system before and after Pt deposition and annealing were examined by XPS and STM. This yielded information on the surface density of defects, which serve as nucleation centres for Pt, and on the size distribution (mean size/height) of the Pt nanoparticles. Two different model catalysts were prepared with mean sizes of 2.0 and 3.6 nm, both turned out to be stable upon UHV-annealing to 300 °C. After transfer into a UHV-compatible flow microreactor and subsequent cleaning in UHV and under mbar pressure, the catalytic activity of the Pt/HOPG model system for ethylene hydrogenation was examined under atmospheric pressure flow conditions. This enabled to determine temperature-dependent conversion rates, turnover frequencies (TOFs) and activation energies. The catalytic results obtained are in line with the characteristics of technological Pt/C, demonstrating the validity of the current surface science based model catalyst approach.
Two Catalysts for Selective Oxidation of Contaminant Gases
NASA Technical Reports Server (NTRS)
Wright, John D.
2011-01-01
Two catalysts for the selective oxidation of trace amounts of contaminant gases in air have been developed for use aboard the International Space Station. These catalysts might also be useful for reducing concentrations of fumes in terrestrial industrial facilities especially facilities that use halocarbons as solvents, refrigerant liquids, and foaming agents, as well as facilities that generate or utilize ammonia. The first catalyst is of the supported-precious-metal type. This catalyst is highly active for the oxidation of halocarbons, hydrocarbons, and oxygenates at low concentrations in air. This catalyst is more active for the oxidation of hydrocarbons and halocarbons than are competing catalysts developed in recent years. This catalyst completely converts these airborne contaminant gases to carbon dioxide, water, and mineral acids that can be easily removed from the air, and does not make any chlorine gas in the process. The catalyst is thermally stable and is not poisoned by chlorine or fluorine atoms produced on its surface during the destruction of a halocarbon. In addition, the catalyst can selectively oxidize ammonia to nitrogen at a temperature between 200 and 260 C, without making nitrogen oxides, which are toxic. The temperature of 260 C is higher than the operational temperature of any other precious-metal catalyst that can selectively oxidize ammonia. The purpose of the platinum in this catalyst is to oxidize hydrocarbons and to ensure that the oxidation of halocarbons goes to completion. However, the platinum exhibits little or no activity for initiating the destruction of halocarbons. Instead, the attack on the halocarbons is initiated by the support. The support also provides a high surface area for exposure of the platinum. Moreover, the support resists deactivation or destruction by halogens released during the destruction of halocarbons. The second catalyst is of the supported- metal-oxide type. This catalyst can selectively oxidize ammonia to nitrogen at temperatures up to 400 C, without producing nitrogen oxides. This catalyst converts ammonia completely to nitrogen, even when the concentration of ammonia is very low. No other catalyst is known to oxidize ammonia selectively at such a high temperature and low concentration. Both the metal oxide and the support contribute to the activity and selectivity of this catalyst.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stariha, Sarah; Macauley, Natalia; Sneed, Brian T.
The U.S. Department of Energy (DOE) set the 2020 durability target for polymer electrolyte membrane fuel cell transportation applications at 5000 hours. Since it is impractical to test every fuel cell for this length of time, there is ever increasing interest in developing accelerated stress tests (ASTs) that can accurately simulate the material component degradation in the membrane electrode assembly (MEA) observed under automotive operating conditions, but over a much shorter time frame. In this study, a square-wave catalyst AST was examined that shows a 5X time acceleration factor over the triangle-wave catalyst AST and a 25X time acceleration factormore » over the modified wet drive-cycle catalyst durability protocol, significantly decreasing the testing time. These acceleration factors were correlated to the platinum (Pt) particle size increase and associated decrease in electrochemical surface area (ECSA). This square-wave AST has been adopted by the DOE as a standard protocol to evaluate catalyst durability. We also compare three catalyst-durability protocols using state-of-the-art platinum-cobalt catalysts supported on high surface area carbon (SOA Pt-Co/HSAC) in the cathode catalyst layer. The results for each of the three tests showed both catalyst particle size increase and transition metal leaching. Moreover the acceleration factors for the alloy catalysts were smaller due to Co leaching being the predominant mechanism of voltage decay in ~5 nm PtCo/C catalysts. Finally, an extremely harsh carbon corrosion AST was run using the same SOA Pt-Co/HSAC catalyst. This showed minimal change in particle size and a low percentage Co loss from the cathode catalyst particles, despite a significant loss in catalyst layer thickness and cell performance. The carbon corrosion rates during these various ASTs were directly measured by monitoring the CO 2 emission from the cathode, further confirming the ability of the square-wave AST to evaluate the electro-catalyst independently of the support.« less
Formation of Platinum Catalyst on Carbon Black Using an In-Liquid Plasma Method for Fuel Cells.
Show, Yoshiyuki; Ueno, Yutaro
2017-01-31
Platinum (Pt) catalyst was formed on the surface of carbon black using an in-liquid plasma method. The formed Pt catalyst showed the average particle size of 4.1 nm. This Pt catalyst was applied to a polymer electrolyte membrane fuel cell (PEMFC). The PEMFC showed an open voltage of 0.85 V and a maximum output power density of 216 mW/cm2.
Formation of Platinum Catalyst on Carbon Black Using an In-Liquid Plasma Method for Fuel Cells
Show, Yoshiyuki; Ueno, Yutaro
2017-01-01
Platinum (Pt) catalyst was formed on the surface of carbon black using an in-liquid plasma method. The formed Pt catalyst showed the average particle size of 4.1 nm. This Pt catalyst was applied to a polymer electrolyte membrane fuel cell (PEMFC). The PEMFC showed an open voltage of 0.85 V and a maximum output power density of 216 mW/cm2. PMID:28336864
OXIDATION OF METHANOL USING OZONE ON TITANIA-SUPPORTED VANADIUM CATALYST
Catalytic ozone decomposition of methanol has been conducted at mild temperatures of 100 to 250°C using V2O5/TiO2 catalyst prepared by either sol-gel or wet impregnation methods. The catalysts were characterized using XRD, surface area measurements, and desorption of CH3OH. Gas p...
Chemisorption studies of Pt/SnO2 catalysts
NASA Technical Reports Server (NTRS)
Brown, Kenneth G.; Ohorodnik, Susan K.; Vannorman, John D.; Schryer, Jacqueline; Upchurch, Billy T.; Schryer, David R.
1990-01-01
The low temperature CO oxidation catalysts that are being developed and tested at NASA-Langley are fairly unique in their ability to efficiently oxidize CO at low temperatures (approx. 303 K). The bulk of the reaction data that has been collected in the laboratory has been determined using plug flow reactors with a low mass of Pt/SnO2/SiO2 catalyst (approx. 0.1 g) and a modest flow rate (5 to 10 sc sm). The researchers have previously characterized the surface solely in terms of N2 BET surface areas. These surface areas have not been that indicative of reaction rate. Indeed, some of the formulations with high BET surface area have yielded lower reaction rates than those with lower BET surface areas. As a result researchers began a program of determining the chemisorption of the various species involved in the reaction; CO, O2 and CO2. Such a determination of will lead to a better understanding of the mechanism and overall kinetics of the reaction. The pulsed-reactor technique, initially described by Freel, is used to determine the amount of a particular molecule that is adsorbed on the catalyst. Since there is some reaction of CO with the surface to produce CO2, the pulsed reactor had to be coupled with a gas chromatograph in order to distinguish between the loss of CO that is due to adsorption by the surface and the loss that is due to reaction with the surface.
Yu, Jong-Sung; Kim, Min-Sik; Kim, Jung Ho
2010-12-14
Combinatorial synthesis and screening were used to identify methanol-tolerant non-platinum cathode electrocatalysts for use in direct methanol fuel cells (DMFCs). Oxygen reduction consumes protons at the surface of DMFC cathode catalysts. In combinatorial screening, this pH change allows one to differentiate active catalysts using fluorescent acid-base indicators. Combinatorial libraries of carbon-supported catalyst compositions containing Ru, Mo, W, Sn, and Se were screened. Ternary and quaternary compositions containing Ru, Sn, Mo, Se were more active than the "standard" Alonso-Vante catalyst, Ru(3)Mo(0.08)Se(2), when tested in liquid-feed DMFCs. Physical characterization of the most active catalysts by powder X-ray diffraction, gas adsorption, and X-ray photoelectron spectroscopy revealed that the predominant crystalline phase was hexagonal close-packed (hcp) ruthenium, and showed a surface mostly covered with oxide. The best new catalyst, Ru(7.0)Sn(1.0)Se(1.0), was significantly more active than Ru(3)Se(2)Mo(0.08), even though the latter contained smaller particles.
Parejas, Almudena; Montes, Vicente; Hidalgo-Carrillo, Jesús; Sánchez-López, Elena; Marinas, Alberto; Urbano, Francisco J
2017-12-18
Two series of catalysts were prepared by sol-gel and microemulsion synthetic procedure (SG and ME, respectively). Each series includes both pure Mg and Zr solids as well as Mg-Zr mixed solids with 25%, 50% and 75% nominal Zr content. The whole set of catalysts was characterized from thermal, structural and surface chemical points of view and subsequently applied to the liquid-phase xylose dehydration to furfural. Reactions were carried out in either a high-pressure autoclave or in an atmospheric pressure multi-reactor under a biphasic (organic/water) reaction mixture. Butan-2-ol and toluene were essayed as organic solvents. Catalysts prepared by microemulsion retained part of the surfactant used in the synthetic procedure, mainly associated with the Zr part of the solid. The MgZr-SG solid presented the highest surface acidity while the Mg3Zr-SG one exhibited the highest surface basicity among mixed systems. Xylose dehydration in the high-pressure system and with toluene/water solvent mixture led to the highest furfural yield. Moreover, the yield of furfural increases with the Zr content of the catalyst. Therefore, the catalysts constituted of pure ZrO₂ (especially Zr-SG) are the most suitable to carry out the process under study although MgZr mixed solids could be also suitable for overall processes with additional reaction steps.
Isotope exchange in oxide-containing catalyst
NASA Technical Reports Server (NTRS)
Brown, Kenneth G. (Inventor); Upchurch, Billy T. (Inventor); Hess, Robert V. (Inventor); Miller, Irvin M. (Inventor); Schryer, David R. (Inventor); Sidney, Barry D. (Inventor); Wood, George M. (Inventor); Hoyt, Ronald F. (Inventor)
1989-01-01
A method of exchanging rare-isotope oxygen for common-isotope oxygen in the top several layers of an oxide-containing catalyst is disclosed. A sample of an oxide-containing catalyst is exposed to a flowing stream of reducing gas in an inert carrier gas at a temperature suitable for the removal of the reactive common-isotope oxygen atoms from the surface layer or layers of the catalyst without damaging the catalyst structure. The reduction temperature must be higher than any at which the catalyst will subsequently operate. Sufficient reducing gas is used to allow removal of all the reactive common-isotope oxygen atoms in the top several layers of the catalyst. The catalyst is then reoxidized with the desired rare-isotope oxygen in sufficient quantity to replace all of the common-isotope oxygen that was removed.
Park, Soo-Jin; Park, Jeong-Min; Seo, Min-Kang
2009-09-01
Graphite nanofibers (GNFs) treated at various temperatures were used as carbon supports to improve the efficiency of PtRu catalysts. The electrochemical properties of the PtRu/GNFs catalysts were then investigated to evaluate their potential for application in DMFCs. The results indicated that the particle size and dispersibility of PtRu in the catalysts were changed by heat treatment, and the electrochemical activity of the catalysts was improved. Consequently, it was found that heat treatments could have an influence on the surface and structural properties of GNFs, resulting in enhancing an electrocatalytic activity of the catalysts for DMFCs.
Regeneration and sulfur poisoning behavior of In/H-BEA catalyst for NOx reduction by CH4
NASA Astrophysics Data System (ADS)
Pan, Hua; Jian, Yanfei; Yu, Yanke; He, Chi; Shen, Zhenxing; Liu, Hongxia
2017-04-01
Sulfur poisoning and regeneration behavior of In/H-BEA catalyst were carried out in NOx reduction by CH4. In/H-BEA catalyst exhibited a poor resistance to sulfur dioxide after addition of 200 ppm SO2 and 10 vol.% H2O into NO reduction with CH4 at 450 °C for 45 h. Sulfur poisoning of In/H-BEA was attributed to the inhibition of NOx adsorption on Brønsted acid sites, suppression of reaction intermediates generation on the active sites, and the formation of surface sulfate species. The formation of surface sulfate reduced the availability of surface active sites, blocked the pore structure and decreased the surface area of catalyst. These changes in chemical and textural properties resulted in a severe loss in the activity of sulfated In/H-BEA catalyst for NO reduction with CH4. H2 reduction is a promising technology for regeneration of In/H-BEA deactivated by SO2 for removing NOx from lean-burn and diesel exhausts. Indium sulfate could be reduced by H2 to InO+ with In2O3 and In(OH)2+ as the intermediates. The optimal parameters of H2 reduction was regeneration temperature of 400 °C and regeneration time of 60 min which completely recovered the catalytic activity of In/H-BEA.
Patterned growth of carbon nanotubes on Si substrates without predeposition of metal catalysts
NASA Astrophysics Data System (ADS)
Chen, Y.; Yu, J.
2005-07-01
Aligned carbon nanotubes (CNTs) can be readily synthesized on quartz or silicon-oxide-coated Si substrates using a chemical vapor deposition method, but it is difficult to grow them on pure Si substrates without predeposition of metal catalysts. We report that aligned CNTs were grown by pyrolysis of iron phthalocyanine at 1000°C on the templates created on Si substrates with simple mechanical scratching. Scanning electron microscopy and x-ray energy spectroscopy analysis revealed that the trenches and patterns created on the surface of Si substrates were preferred nucleation sites for nanotube growth due to a high surface energy, metastable surface structure, and possible capillarity effect. A two-step pyrolysis process maintained Fe as an active catalyst.
Photo reduction of CO2 to CH4 on g-C3N4: The effect of concentrating light and pretreatment
NASA Astrophysics Data System (ADS)
Li, Dong; Fang, Xiaoxiang; Liu, Huayan; Lu, Hanfeng; Zhang, Zekai
2018-06-01
The behavior of CO2 photoreduction to CH4 on the g-C3N4 catalyst was studied in a concentrating light reactor. The g-C3N4 catalysts before and after pretreatment were characterized by FE-SEM, XRD and photoilluminance. It is found that concentrating light increases the CH4 yield on the g-C3N4 by heightening the incident light intensity, and light pretreatment has an excessive effect on the performance. Pretreated by suitable light intensity, air atmosphere and time, the CH4 yield on the g-C3N4 under concentrating light irradiation reached about 3.39 μmol.g-1.h-1, which is about 16 times of that g-C3N4 reacted at nature incident light without pretreatment. The mechanism of pretreatment is considered to be from the surface oxidation state change of the catalyst either from the oxidation of the catalyst surface or the activation of surface oxygen.
Surface Characterization of Mesoporous CoOx/SBA-15 Catalyst upon 1,2-Dichloropropane Oxidation.
Finocchio, Elisabetta; Gonzalez-Prior, Jonatan; Gutierrez-Ortiz, Jose Ignacio; Lopez-Fonseca, Ruben; Busca, Guido; de Rivas, Beatriz
2018-05-29
The active combustion catalyst that is based on 30 wt % cobalt oxide on mesoporous SBA-15 has been tested in 1,2-dichloropropane oxidation and is characterized by means of FT-IR (Fourier transform infrared spectroscopy) and ammonia-TPD (temperature-programmed desorption). In this work, we report the spectroscopic evidence for the role of surface acidity in chloroalkane conversion. Both Lewis acidity and weakly acidic silanol groups from SBA support are involved in the adsorption and initial conversion steps. Moreover, total oxidation reaction results in the formation of new Bronsted acidic sites, which are likely associated with the generation of HCl at high temperature and its adsorption at the catalyst surface. Highly dispersed Co oxide on the mesoporous support and Co-chloride or oxychloride particles, together with the presence of several families of acidic sites originated from the conditioning effect of reaction products may explain the good activity of this catalyst in the oxidation of Chlorinated Volatile Organic Compounds.
The potential for increasing the use of catalytic carbons in commercial applications
Kruse, C.W.
1996-01-01
A carbon catalyst, prepared either by oxidizing activated carbon with air at 500-700??C or by oxidizing activated carbon with boiling nitric acid followed by heating it to 500-700??C, is the subject of this paper. This catalyst, designated OAC500-700, catalyzes the removal of hydrogen chloride from alkyl halides. Because OAC500-700 retains adsorptive properties of an activated carbon it can be used both to adsorb pollutants from liquid or gaseous streams and to convert them to recyclable products. A highly-developed micropore structure is not required for all uses of activated carbon or a catalyst produced from it. A comparatively inexpensive ($325/ton projected) low surface area (<300 m2/g) carbon has been developed at the Illinois State Geological Survey (ISGS) for cleaning incinerator flue gas. This grade of activated carbon is widely used in Europe for flue gas cleaning and for other applications. Activated carbon adsorbers of some type are required by recently passed U.S. Environmental Protection Agency (EPA) regulations for municipal waste combustors to control emission of cadmium, mercury, lead, dioxins, furans and acid gases (U.S. EPA, 1995). Similar regulations are expected for hospital and hazardous waste incinerators. The marketing of less costly activated carbons of the type used widely in Europe is expected in the United States. Low cost OAC500-700 made from less expensive grades of activated carbon may become available for large scale adsorbent/catalyst systems designed to both remove and decompose toxic pollutants found in liquid and gaseous streams, chlorinated organic compounds in particular.
NASA Astrophysics Data System (ADS)
Liu, Qiusheng; Yabe, Akira; Kajiyama, Shiro; Fukuda, Katsuya
The study on thermal energy transport system by synthesis and decomposition reactions of methanol was reviewed. To promote energy conservation and global environment protection, a two-step liquid-phase methanol synthesis process, which starts with carbonylation of methanol to methyl formate, then followed by the hydrogenolysis of the formate, was studied to recover wasted or unused discharged heat from industrial sources for the thermal energy demands of residential and commercial areas by chemical reactions. The research and development of the system were focused on the following three points. (1) Development of low-temperature decomposition and synthetic catalysts, (2) Development of liquid phase reactor (heat exchanger accompanying chemical reaction), (3) Simulation of the energy transport efficiency of entire system which contains heat recovery and supply sections. As the result of the development of catalyst, promising catalysts which agree with the development purposes for the methyl formate decomposition reaction and the synthetic reaction are being developed though some studies remain for the methanol decomposition and synthetic reactions. In the fundamental development of liquid phase reactor, the solubilities of CO and H2 gases in methanol and methyl formate were measured by the method of total pressure decrease due to absorption under pressures up to 1500kPa and temperatures up to 140°C. The diffusivity of CO gas in methanol was determined by measuring the diameter and solution time of single CO bubbles in methanol. The chemical reaction rate of methanol synthesis by hydrogenolysis of methyl formate was measured using a plate-type of Raney copper catalyst in a reactor with rectangular channel and in an autoclave reactor. The reaction characteristics were investigated by carrying out the experiments at various temperatures, flow rates and at various catalyst development conditions. We focused on the effect of Raney copper catalyst thickness on the liquid-phase chemical reaction by varying the development time of the catalyst. Investigation results of the catalyst such as surface area, pore radius, lattice size, and photographs of scanning electron microscope (SEM) were also given. In the simulation of energy transport efficiency of this system, by simulating the energy transfer system using two-step liquid phase methanol decomposition and synthetic reactions, and comparing with the technology so far, it can be expected that an innovative energy transfer system is possible to realize.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Liming; Fu, Honggang, E-mail: fuhg@vip.sina.com; Key Laboratory of Functional Inorganic Material Chemistry, Heilongjiang University, Harbin 150080
2014-01-01
Graphical abstract: The WC nanoparticles are well dispersed in the carbon matrix. The size of WC nanoparticles is about 30 nm. It can be concluded that tungsten carbide and carbon composite was successfully prepared by the present synthesis conditions. - Highlights: • The WC/PC composite with high specific surface area was prepared by a simple way. • The Pt/WC/PC catalyst has superior performance toward methanol electro-oxidation. • The current density for methanol electro-oxidation is as high as 595.93 A g{sup −1} Pt. • The Pt/WC/PC catalyst shows better durability and stronger CO electro-oxidation. • The performance of Pt/WC/PC is superiormore » to the commercial Pt/C (JM) catalyst. - Abstract: Tungsten carbide/porous carbon (WC/PC) composites have been successfully synthesized through a surfactant assisted evaporation-induced-assembly method, followed by a thermal treatment process. In particular, WC/PC-35-1000 composite with tungsten content of 35% synthesized at the carbonized temperature of 1000 °C, exhibited a specific surface area (S{sub BET}) of 457.92 m{sup 2} g{sup −1}. After loading Pt nanoparticles (NPs), the obtained Pt/WC/PC-35-1000 catalyst exhibits the highest unit mass electroactivity (595.93 A g{sup −1} Pt) toward methanol electro-oxidation, which is about 2.6 times as that of the commercial Pt/C (JM) catalyst. Furthermore, the Pt/WC/PC-35-1000 catalyst displays much stronger resistance to CO poisoning and better durability toward methanol electrooxidation compared with the commercial Pt/C (JM) catalyst. The high electrocatalytic activity, strong poison-resistivity and good stability of Pt/WC/PC-35-1000 catalyst are attributed to the porous structures and high specific surface area of WC/PC support could facilitate the rapid mass transportation. Moreover, synergistic effect between WC and Pt NPs is favorable to the higher catalytic performance.« less
Anchored nanostructure materials and method of fabrication
Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei
2012-11-27
Anchored nanostructure materials and methods for their fabrication are described. The anchored nanostructure materials may utilize nano-catalysts that include powder-based or solid-based support materials. The support material may comprise metal, such as NiAl, ceramic, a cermet, or silicon or other metalloid. Typically, nanoparticles are disposed adjacent a surface of the support material. Nanostructures may be formed as anchored to nanoparticles that are adjacent the surface of the support material by heating the nano-catalysts and then exposing the nano-catalysts to an organic vapor. The nanostructures are typically single wall or multi-wall carbon nanotubes.
Catalysts synthesized by selective deposition of Fe onto Pt for the water-gas shift reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aragao, Isaias Barbosa; Ro, Insoo; Liu, Yifei
FePt bimetallic catalysts with intimate contact between the two metals were synthesized by controlled surface reactions (CSR) of (cyclohexadiene)iron tricarbonyl with hydrogen-treated supported Pt nanoparticles. Adsorption of the iron precursor on a Pt/SiO2 catalyst was studied, showing that the Fe loading could be increased by performing multiple CSR cycles, and the efficiency of this process was linked to the renewal of adsorption sites by a reducing pretreatment. The catalytic activity of these bimetallic catalysts for the water gas shift reaction was improved due to promotion by iron, likely linked to H2O activation on FeOx species at or near the Ptmore » surface, mostly in the (II) oxidation state.« less
Catalysts synthesized by selective deposition of Fe onto Pt for the water-gas shift reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aragao, Isaias Barbosa; Ro, Insoo; Liu, Yifei
FePt bimetallic catalysts with intimate contact between the two metals were synthesized by controlled surface reactions (CSR) of (cyclohexadiene)iron tricarbonyl with hydrogen-treated supported Pt nanoparticles. Adsorption of the iron precursor on a Pt/SiO 2 catalyst was studied, showing that the Fe loading could be increased by performing multiple CSR cycles, and the efficiency of this process was linked to the renewal of adsorption sites by a reducing pretreatment. Here, the catalytic activity of these bimetallic catalysts for the water gas shift reaction was improved due to promotion by iron, likely linked to H 2O activation on FeO x species atmore » or near the Pt surface, mostly in the (II) oxidation state.« less
Carbon nanotubes grown on bulk materials and methods for fabrication
Menchhofer, Paul A [Clinton, TN; Montgomery, Frederick C [Oak Ridge, TN; Baker, Frederick S [Oak Ridge, TN
2011-11-08
Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.
A Study of Ziegler–Natta Propylene Polymerization Catalysts by Spectroscopic Methods
Tkachenko, Olga P.; Kucherov, Alexey V.; Kustov, Leonid M.; Virkkunen, Ville; Leinonen, Timo; Denifl, Peter
2017-01-01
Ziegler–Natta polymerization catalysts were characterized by a complex of surface- and bulk-sensitive methods (DRIFTS, XPS, ESR, and XAS = XANES + EXAFS). A diffuse-reflectance Fourier-transform IR spectroscopy (DRIFTS) study showed the presence of strong Lewis acid sites in different concentrations and absence of strong basic sites in the polymerization catalysts. X-ray photoelectron spectroscopy (XPS), electron-spin resonance (ESR), and (X-ray absorption near-edge structure (XANES) analysis revealed the presence of Ti4+, Ti3+, Ti2+, and Ti1+ species in the surface layers and in the bulk of catalysts. The samples under study differ drastically in terms of the number of ESR-visible paramagnetic sites. The EXAFS study shows the presence of a Cl atom as a nearest neighbor of the absorbing Ti atom. PMID:28772850
Catalysts synthesized by selective deposition of Fe onto Pt for the water-gas shift reaction
Aragao, Isaias Barbosa; Ro, Insoo; Liu, Yifei; ...
2017-10-04
FePt bimetallic catalysts with intimate contact between the two metals were synthesized by controlled surface reactions (CSR) of (cyclohexadiene)iron tricarbonyl with hydrogen-treated supported Pt nanoparticles. Adsorption of the iron precursor on a Pt/SiO 2 catalyst was studied, showing that the Fe loading could be increased by performing multiple CSR cycles, and the efficiency of this process was linked to the renewal of adsorption sites by a reducing pretreatment. Here, the catalytic activity of these bimetallic catalysts for the water gas shift reaction was improved due to promotion by iron, likely linked to H 2O activation on FeO x species atmore » or near the Pt surface, mostly in the (II) oxidation state.« less
Bosch Reactor Development for High Percentage Oxygen Recovery from Carbon Dioxide
NASA Technical Reports Server (NTRS)
Howard, David; Abney, Morgan
2015-01-01
This next Generation Life Support Project entails the development and demonstration of Bosch reaction technologies to improve oxygen recovery from metabolically generated oxygen and/or space environments. A primary focus was placed on alternate carbon formation reactor concepts to improve useful catalyst life for space vehicle applications, and make use of in situ catalyst resources for non-terrestrial surface missions. Current state-of-the-art oxygen recovery systems onboard the International Space Station are able to effectively recover approximately 45 percent of the oxygen consumed by humans and exhausted in the form of carbon dioxide (CO2). Excess CO2 is vented overboard and the oxygen contained in the molecules is lost. For long-duration missions beyond the reaches of Earth for resupply, it will be necessary to recover greater amounts of constituents such as oxygen that are necessary for sustaining life. Bosch technologies theoretically recover 100 percent of the oxygen from CO2, producing pure carbon as the sole waste product. Challenges with this technology revolve around the carbon product fouling catalyst materials, drastically limiting catalyst life. This project successfully demonstrated techniques to extend catalyst surface area exposure times to improve catalyst life for vehicle applications, and demonstrated the use of Martian and lunar regolith as viable catalyst Bosch Reactor Development for High Percentage Oxygen Recovery From Carbon Dioxide materials for surface missions. The Bosch process generates carbon nanotube formation within the regolith, which has been shown to improve mechanical properties of building materials. Production of bricks from post reaction regolith for building and radiation shielding applications were also explored.
An experimental study on thermo-catalytic pyrolysis of plastic waste using a continuous pyrolyser.
Auxilio, Anthony R; Choo, Wei-Lit; Kohli, Isha; Chakravartula Srivatsa, Srikanth; Bhattacharya, Sankar
2017-09-01
A bench scale, two-stage, thermo-catalytic reactor equipped with a continuous feeding system was used to pyrolyse pure and waste plastics. Experiments using five zeolitic and clay-based catalysts of different forms (pellet and powders) and different plastic feedstocks - virgin HDPE, HDPE w1aste and mixed plastic waste (MPW) were compared to the control experiments - pyrolysis without catalyst. Results indicated that the two pelletized catalysts were the most promising for the conditions employed. Of these two, one with higher acidity and surface area was highly selective for the gasoline fraction (C 5 -C 11 ) giving 80% from the total medium distillate conversion using virgin HDPE as feedstock. It also produced the least amount of olefins (17% for virgin HDPE, 4% for HDPE waste and 2% for MPW) and coke (<1% for virgin HDPE, 3% for HDPE waste and 5% for MPW), and the highest aromatics content (22% for virgin HDPE from un-distilled medium distillate, 5% for HDPE and 13% for MPW both from distilled medium distillate). The second pelletized catalyst exhibited high selectivity for the diesel fraction (C 12 -C 25 ) giving 63% from the total medium distillate conversion using virgin HDPE as feedstock. The amount of coke deposited on the catalyst surface depended mainly on the mesopore volume, with less coke deposited as the mesopore volume increased. The variation in catalyst selectivity with acidity strength due to Lewis sites on the catalyst surface controls selectivity towards carbon chain length. Copyright © 2017 Elsevier Ltd. All rights reserved.
Surface characteristics and activities of plate-type Raney nickel catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshino, Tomio; Abe, Tuneyo; Abe, Satoshi
Analytic and morphological studies using SEM, EPMA, and XPS were made on plate-type Raney nickel catalyst with varying contents of aluminum. The surface characteristics and hydrogenation and adsorption behavior of Raney nickel catalysts are discussed. Although the amount of residual aluminum in the catalyst (mainly Al{sub 2}O{sub 3n}H{sub 2}O) remains almost constant on its outermost surface, regardless of the leaching time, it decreases in the interior phases up to a depth of 600 {angstrom} with leaching times over 9 min. The activities of catalysts with average content of aluminum relative to nickel, i.e., 11.6 and 6.8% wt%, in their surfacemore » layers (ca. 0.4 {mu}m thick) were 2.7 and 2.1 mmol/h BET m{sup 2} for the hydrogenation rates of allyl alcohol and 3.6 {times} 10{sup {minus}3} and 2.4 {times} 10{sup {minus}3} mmol/, BET m{sup 2} for the adsorption amount of I{sup {minus}} ion, respectively. These results suggest that the activities for hydrogenation and adsorption were enhanced when the content of residual aluminum in the catalyst was increased, and that the role of the residual aluminum in catalytic reactions can be classified into two types: to provide an increase in active sites due to formation on interstitial lattice defects, and to make a negligible contribution to the formation of active sites because of deposition of Al{sub 2}O{sub 3n}H{sub 2}O on the Raney nickel catalyst.« less
Heterogeneous catalysis in complex, condensed reaction media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantu, David C.; Wang, Yang-Gang; Yoon, Yeohoon
Many reactions required for the upgrading of biomass into fuels and chemicals—hydrogenation, hydrodeoxygenation, hydrocracking—are ostensibly similar to those practiced in the upgrading of petroleum into fuels. But, repurposing hydroprocessing catalysts from refinery operations to treat bio-oil has proved to be unsatisfactory. New catalysts are needed because the composition of the biogenic reactants differs from that of petroleum-derived feedstocks (e.g. the low concentration of sulfur in cellulose-derived biomass precludes use of metal sulfide catalysts unless sulfur is added to the reaction stream). New processes are needed because bio-oils oligomerize rapidly, forming intractable coke and “gunk”, at temperatures so low that themore » desired upgrading reactions are impractically slow, and so low that the bio-oil upgrading must be handled as a condensed fluid. Ideally, the new catalysts and processes would exploit the properties of the multiple phases present in condensed bio-oil, notably the polarizability and structure of the fluid near a catalyst’s surface in the cybotactic region. The results of preliminary modeling of the cybotactic region of different catalyst surfaces in the hydrogenation of phenol suggest that Pd catalysts supported on hydrophilic surfaces are more active than catalysts based on lipophilic supports because the former serve to enhance the concentration of the phenol in the vicinity of the Pd. The effect stems from thermodynamics, not the rate of mass transport. This work was supported by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.« less
NASA Astrophysics Data System (ADS)
Zhang, Yongli; Zhou, Yanbo; Peng, Chao; Shi, Junjun; Wang, Qingyu; He, Lingfeng; Shi, Liang
2018-04-01
By successive impregnation method, the Ce-modified Cu-O/γ-Al2O3 catalyst was prepared and characterized using nitrogen adsorption-desorption, scanning electron microscopy energy dispersive X-ray analysis (SEM-EDS), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman, and H2-Temperature programming reduction (H2-TPR). In catalytic wet-air oxidation (CWAO) process for the printing and dyeing wastewater (PDW), the effects of Ce addition on performance, mechanism and kinetics of the catalyst were investigated. The Ce addition increases the Brunauer-Emmett-Teller (BET) surface area and pore volume of the catalyst and makes the active components uniformly distributed on the catalyst surface. Formation of a stable CuAl2O4 solid solution by anchoring Cu onto the γ-Al2O3 crystal lattice leads to a significant decrease in metal leaching of the Ce-modified catalyst. The proportion of lattice oxygen in the catalyst substantially increases and the apparent activation energy of Cu-O/γ-Al2O3 catalyst decreases owing to Ce addition. Therefore, the catalytic activity and stability of the Ce-modified catalyst are considerably improved. The scavengers experiments identify the active species existed in the CWAO reaction system, with the order of reactivity: h+ > O2•- > H2O2 > HO•. This novel Cu-Ce-O/γ-Al2O3 catalyst has great potential in applications for treatment of concentrated organic wastewater due to its superior catalytic activity and improved stability.
NASA Astrophysics Data System (ADS)
Esumike, Sunday Azubike
The alumina and hybrid alumina-silica FT catalyst were prepared by one-step solgel/oil-drop methods using metal-nitrate-solutions (method-I), and nanoparticle-metaloxides (method-2). The nanoparticle-metal-oxides did not participate in solubility equilibria in contrast to metal nitrate in method-1 causing no metal ion seepage; therefore, method-2 yields higher XRF metal loading efficiency than method-1. The thermal analysis confirmed that the metal loading by method-1 and method-2 involved two different pathways. Method-1 involves solubility equilibria in the conversion of metal-nitrate to metal- hydroxide and finally to metal-oxide, while in method-2 nanoparticle-metal-oxide remained intact during sol-gel-oil-drop and calcination steps. The alumina supported catalysts were dominated by gamma-alumina PXRD peaks in alumina catalysts while amorphous alumino-silicate phase was the bulk of hybrid alumina-silica catalysts. The presence of cobalt oxides (CoO, Co3O4) and iron oxides (FeO, Fe2O3) phases are confirmed in the catalysts prepared by method-1 and method-2. The PXRD analysis indicated weak peak intensities in catalysts with 5 wt. % total metal loading. PXRD pattern confirmed alloy formation in the bimetallic catalysts (CoFe2O4) on alumina support phase gamma-A12 O3. The surface area and pore diameter of hybrid alumina-silica granules (301 - 372 m2/g and 7.3 nm) showed better values than the alumina granules (251 - 256 m2/g and 6.5 nm). The support pore diameter of both types of granules is within the mesoporous range (1 - 50 nm). The morphology of all the catalysts is preserved upon metal loading and heat treatments. The surface characteristics of the sol-gel-oil-drop method prepared catalysts indicate there was no significant pore blockage of the support below 10 wt % total metal loading. The CO conversion of the FT catalysts was measured to screen catalytic active metals and determine the optimum temperatures of the FT reaction for the alumina catalysts. The alumina FT catalysts showed an optimum reaction temperature of 250 °C. Hydrocarbon production and CO conversion of alumina and hybrid alumina-silica FT catalysts were investigated. Among monometallic alumina catalysts, Co(5%) showed a higher CO conversion. The incorporation of Fe to Co increased CO conversion and hydrocarbon production. Increased Fe content in the bimetallic catalysts prepared by combined method-1&2, decreased CO conversion and hydrocarbon production, and increased CO 2 production. The bimetallic nano-Co(2.5%)nano-Fe(2.5%) prepared by method-2 alone showed higher CO conversion comparable to the Co(4%)nano-Fe(l %). Hybrid alumina-silica FT catalysts showed a higher CO conversion than the alumina FT catalysts due to better surface characteristics. The monometallic catalysts showed higher selectivity to C1-C4 hydrocarbon than bimetallic. The bimetallic alumina FT catalysts prepared by method-2 showed slightly higher C5+ selectivity compared to the higher Co catalysts prepared by combined method- I &2. The Ru promotion showed a significant effect on the CO conversion and 11 product distribution of the monometallic catalysts. There was no significant effect on the CO conversion on the (Co-Fe) bimetallic catalysts, but hydrocarbon production slightly increased when promoted by 0.5 wt.% Ru.
Fundamental studies of catalytic processing of synthetic liquids. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, P.R.
1994-06-15
Liquids derived from coal contain relatively high amounts of oxygenated organic compounds, mainly in the form of phenols and furans that are deleterious to the stability and quality of these liquids as fuels. Hydrodeoxygenation (HDO) using Mo/W sulfide catalysts is a promising method to accomplish this removal, but our understanding of the reactions occurring on the catalyst surface during HDO is very limited. Rather than attempting to examine the complexities of real liquids and catalysts we have adopted an approach here using model systems amenable to surface-sensitive techniques that enable us to probe in detail the fundamental processes occurring duringmore » HDO at the surfaces of well-defined model catalysts. The results of this work may lead to the development of more efficient, selective and stable catalysts. Above a S/Mo ratio of about 0.5 ML, furan does not adsorb on sulfided Mo surfaces; as the sulfur coverage is lowered increasing amounts of furan can be adsorbed. Temperature-programmed reaction spectroscopy (TPRS) reveals that C-H, C-C and C-O bond scission occurs on these surfaces. Auger spectra show characteristic changes in the nature and amount of surface carbon. Comparisons with experiments carried out with CO, H{sub 2} and alkenes show that reaction pathways include -- direct abstraction of CO at low temperatures; cracking and release of hydrogen below its normal desorption temperature; dehydrogenatin of adsorbed hydrocarbon fragments; recombination of C and O atoms and dissolution of carbon into the bulk at high temperatures. Performing the adsorption or thermal reaction in 10{sup {minus}5} torr of hydrogen does not change the mode of reaction significantly.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumuluri, Uma; Rother, Gernot; Wu, Zili
Acid gases including CO 2, SO 2, and NO x are ubiquitous in large-scale energy applications including heterogeneous catalysis. The adverse environmental and health effects of these acid gases have resulted in high interest in the research and development of technologies to remove or convert these acid gases. The main challenge for the development of these technologies is to develop catalysts that are highly efficient, stable, and cost-effective, and many catalysts have been reported in this regard. CeO 2 and CeO 2-based catalysts have gained prominence in the removal and conversion of CO 2, SO 2, and NO x becausemore » of their structural robustness and redox and acid–base properties. In this article, we provide a brief overview of the application of CeO 2 and CeO 2-based catalysts for the removal of CO 2, SO 2, and NO x gases with an emphasis on the fundamental understanding of the interactions of these acid gases with CeO 2. The studies summarized in this review range from surface science using single crystals and thin films with precise crystallographic planes to practical catalysis applications of nanocrystalline and polycrystalline CeO 2 materials with defects and dopants. After an introduction to the properties of CeO 2 surfaces, their catalytic properties for conversions of different acid gases are reviewed and discussed. Lastly, we find that the surface atomic structure, oxygen vacancies, and surface acid–base properties of CeO 2 play vital roles in the surface chemistry and structure evolution during the interactions of acid gases with CeO 2 and CeO 2-based catalysts.« less
Tumuluri, Uma; Rother, Gernot; Wu, Zili
2016-03-21
Acid gases including CO 2, SO 2, and NO x are ubiquitous in large-scale energy applications including heterogeneous catalysis. The adverse environmental and health effects of these acid gases have resulted in high interest in the research and development of technologies to remove or convert these acid gases. The main challenge for the development of these technologies is to develop catalysts that are highly efficient, stable, and cost-effective, and many catalysts have been reported in this regard. CeO 2 and CeO 2-based catalysts have gained prominence in the removal and conversion of CO 2, SO 2, and NO x becausemore » of their structural robustness and redox and acid–base properties. In this article, we provide a brief overview of the application of CeO 2 and CeO 2-based catalysts for the removal of CO 2, SO 2, and NO x gases with an emphasis on the fundamental understanding of the interactions of these acid gases with CeO 2. The studies summarized in this review range from surface science using single crystals and thin films with precise crystallographic planes to practical catalysis applications of nanocrystalline and polycrystalline CeO 2 materials with defects and dopants. After an introduction to the properties of CeO 2 surfaces, their catalytic properties for conversions of different acid gases are reviewed and discussed. Lastly, we find that the surface atomic structure, oxygen vacancies, and surface acid–base properties of CeO 2 play vital roles in the surface chemistry and structure evolution during the interactions of acid gases with CeO 2 and CeO 2-based catalysts.« less
Graphene-Supported Platinum Catalyst-Based Membrane Electrode Assembly for PEM Fuel Cell
NASA Astrophysics Data System (ADS)
Devrim, Yilser; Albostan, Ayhan
2016-08-01
The aim of this study is the preparation and characterization of a graphene-supported platinum (Pt) catalyst for proton exchange membrane fuel cell (PEMFC) applications. The graphene-supported Pt catalysts were prepared by chemical reduction of graphene and chloroplatinic acid (H2PtCl6) in ethylene glycol. X-ray powder diffraction, thermogravimetric analysis (TGA) and scanning electron microscopy have been used to analyze structure and surface morphology of the graphene-supported catalyst. The TGA results showed that the Pt loading of the graphene-supported catalyst was 31%. The proof of the Pt particles on the support surfaces was also verified by energy-dispersive x-ray spectroscopy analysis. The commercial carbon-supported catalyst and prepared Pt/graphene catalysts were used as both anode and cathode electrodes for PEMFC at ambient pressure and 70°C. The maximum power density was obtained for the Pt/graphene-based membrane electrode assembly (MEA) with H2/O2 reactant gases as 0.925 W cm2. The maximum current density of the Pt/graphene-based MEA can reach 1.267 and 0.43 A/cm2 at 0.6 V with H2/O2 and H2/air, respectively. The MEA prepared by the Pt/graphene catalyst shows good stability in long-term PEMFC durability tests. The PEMFC cell voltage was maintained at 0.6 V without apparent voltage drop when operated at 0.43 A/cm2 constant current density and 70°C for 400 h. As a result, PEMFC performance was found to be superlative for the graphene-supported Pt catalyst compared with the Pt/C commercial catalyst. The results indicate the graphene-supported Pt catalyst could be utilized as the electrocatalyst for PEMFC applications.
Direct evidence of atomic-scale structural fluctuations in catalyst nanoparticles.
Lin, Pin Ann; Gomez-Ballesteros, Jose L; Burgos, Juan C; Balbuena, Perla B; Natarajan, Bharath; Sharma, Renu
2017-05-01
Rational catalyst design requires an atomic scale mechanistic understanding of the chemical pathways involved in the catalytic process. A heterogeneous catalyst typically works by adsorbing reactants onto its surface, where the energies for specific bonds to dissociate and/or combine with other species (to form desired intermediate or final products) are lower. Here, using the catalytic growth of single-walled carbon nanotubes (SWCNTs) as a prototype reaction, we show that the chemical pathway may in-fact involve the entire catalyst particle, and can proceed via the fluctuations in the formation and decomposition of metastable phases in the particle interior. We record in situ and at atomic resolution, the dynamic phase transformations occurring in a Cobalt catalyst nanoparticle during SWCNT growth, using a state-of-the-art environmental transmission electron microscope (ETEM). The fluctuations in catalyst carbon content are quantified by the automated, atomic-scale structural analysis of the time-resolved ETEM images and correlated with the SWCNT growth rate. We find the fluctuations in the carbon concentration in the catalyst nanoparticle and the fluctuations in nanotube growth rates to be of complementary character. These findings are successfully explained by reactive molecular dynamics (RMD) simulations that track the spatial and temporal evolution of the distribution of carbon atoms within and on the surface of the catalyst particle. We anticipate that our approach combining real-time, atomic-resolution image analysis and molecular dynamics simulations will facilitate catalyst design, improving reaction efficiencies and selectivity towards the growth of desired structure.
Catalytic destruction of PCDD/Fs over vanadium oxide-based catalysts.
Yu, Ming-Feng; Lin, Xiao-Qing; Li, Xiao-Dong; Yan, Mi; Prabowo, Bayu; Li, Wen-Wei; Chen, Tong; Yan, Jian-Hua
2016-08-01
Vanadium oxide-based catalysts were developed for the destruction of vapour phase PCDD/Fs (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans). A vapour phase PCDD/Fs generating system was designed to supply stable PCDD/Fs steam with initial concentration of 3.2 ng I-TEQ Nm(-3). Two kinds of titania (nano-TiO2 and conventional TiO2) and alumina were used as catalyst supports. For vanadium-based catalysts supported on nano-TiO2, catalyst activity is enhanced with operating temperature increasing from 160 to 300 °C and then reduces with temperature rising further to 350 °C. It is mainly due to the fact that high volatility of organic compounds at 350 °C suppresses adsorption of PCDD/Fs on catalysts surface and then further inhibits the reaction between catalyst and PCDD/Fs. The optimum loading of vanadium on nano-TiO2 support is 5 wt.% where vanadium oxide presents highly dispersed amorphous state according to the Raman spectra and XRD patterns. Excessive vanadium will block the pore space and form microcrystalline V2O5 on the support surface. At the vanadium loading of 5 wt.%, nano-TiO2-supported catalyst performs best on PCDD/Fs destruction compared to Al2O3 and conventional TiO2. Chemical states of vanadium in the fresh, used and reoxidized VOx(5 %)/TiO2 catalysts at different operating temperature are also analysed by XPS.
Surface structure and chemistry of Pt/Cu/Pt(1 1 1) near surface alloy model catalyst in CO
NASA Astrophysics Data System (ADS)
Zeng, Shibi; Nguyen, Luan; Cheng, Fang; Liu, Lacheng; Yu, Ying; Tao, Franklin (Feng)
2014-11-01
Near surface alloy (NSA) model catalyst Pt/Cu/Pt(1 1 1) was prepared on Pt(1 1 1) through a controlled vapor deposition of Cu atoms. Different coordination environments of Pt atoms of the topmost Pt layer with the underneath Cu atoms in the subsurface result in different local electronic structures of surface Pt atoms. Surface structure and chemistry of the NAS model catalyst in Torr pressure of CO were studied with high pressure scanning tunneling microscopy (HP-STM) and ambient pressure X-ray photoelectron spectroscopy (AP-XPS). In Torr pressure of CO, the topmost Pt layer of Pt/Cu/Pt(1 1 1) is restructured to thin nanoclusters with size of about 1 nm. Photoemission feature of O 1s of CO on Pt/Cu/Pt(1 1 1) suggests CO adsorbed on both edge and surface of these formed nanoclusters. This surface is active for CO oxidation. Atomic layers of carbon are formed on Pt/Cu/Pt(1 1 1) at 573 K in 2 Torr of CO.
High Throughput Spectroscopic Catalyst Screening via Surface Plasmon Spectroscopy
2014-05-10
this spectroscopic method can distinguish different catalysts . We also find we can directly investigate the role of different support materials. (ii...dispersed onto glass or within various oxide matrices (e.g. ZnO, silica , titania) as long as they do not scatter light. II. Preparation of Catalyst ...effectively, while gold on silica does not function as a catalyst . • Hydrogen does not dissociate on gold nanoaprticles on TiO2 in N2:H2 mixtures
The black rock series supported SCR catalyst for NO x removal.
Xie, Bin; Luo, Hang; Tang, Qing; Du, Jun; Liu, Zuohua; Tao, Changyuan
2017-09-01
Black rock series (BRS) is of great potential for their plenty of valued oxides which include vanadium, iron, alumina and silica oxides, etc. BRS was used for directly preparing of selective catalytic reduction (SCR) catalyst by modifying its surface texture with SiO 2 -TiO 2 sols and regulating its catalytic active constituents with V 2 O 5 and MoO 3 . Consequently, 90% NO removal ratio was obtained within 300-400 °C over the BRS-based catalyst. The structure and properties of the BRS-based catalyst were characterized by the techniques of N 2 adsorption-desorption, X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), H 2 -temperature programmed reduction (H 2 -TPR), and NH 3 -temperature programmed desorption (NH 3 -TPD). The results revealed that the BRS-based catalyst possesses favorable properties for NO x removal, including highly dispersed active components, abundant surface-adsorbed oxygen O α , well redox property, and numerous Brønsted acid sites. Particularly, the BRS-based catalyst exhibited considerable anti-poisoning performance compared with commercial TiO 2 -based catalyst. The former catalyst shows a NO conversion surpassing 80% from 300 to 400 °C for potassium poisoning, and a durability of SO 2 and H 2 O exceeding 85% at temperatures from 300 to 450 °C.
NASA Astrophysics Data System (ADS)
Cortés, Joaquín.; Valencia, Eliana
1999-04-01
Two novel phenomena are discussed in this paper. The first one refers to the effect of the catalyst's surface heterogeneity on the smoothing of the first-order transition observed in the ( A+ B2) reaction (ZGB model). The second effect corresponds to obtaining information on the surface heterogeneity from the shape of the transition curve. Two types of heterogeneity were considered: the structure obtained by the random blocking of reactive sites, and the existence of a distribution in independent strips or terraces on the catalyst's surface.
Electrochemically Protected Copper(I)-Catalyzed Azide-Alkyne Cycloaddition
Hong, Vu; Udit, Andrew K.; Evans, Richard A.; Finn, M.G.
2012-01-01
The copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction has found broad application in myriad fields. For the most demanding applications requiring high yields at low substrate concentrations, highly active but air-sensitive copper complexes must be used. We describe here the use of an electrochemical potential to maintain catalysts in the active Cu(I) oxidation state in the presence of air. The simple procedure efficiently achieves excellent yields of CuAAC products involving both small molecule and protein substrates without the use of potentially damaging chemical reducing agents. A new water-soluble carboxylated version of the popular tris(benzyltriazolylmethyl)amine (TBTA) ligand is described. Cyclic voltammetry revealed reversible or quasi-reversible electrochemical redox behavior of copper complexes of the TBTA derivative (2; E1/2 = 60 mV vs. Ag/AgCl), sulfonated bathophenanthroline (3; E1/2 = -60 mV), and sulfonated tris(benzimidazoylmethyl)amine (4; E1/2 ~ -70 mV), and showed catalytic turnover to be rapid relative to the voltammetry time scale. Under the influence of a -200 mV potential established using a reticulated vitreous carbon working electrode, CuSO4 and 3 formed a superior catalyst. Electrochemically-protected bioconjugations in air were performed using bacteriophage Qβ derivatized with azide moieties at surface lysine residues. The complete addressing of more than 600 reactive sites per particle was demonstrated within 12 hours of electrolysis with sub-stoichiometric quantities of Cu•3. PMID:18504727
NASA Astrophysics Data System (ADS)
Mayr, Lukas; Rameshan, Raffael; Klötzer, Bernhard; Penner, Simon; Rameshan, Christoph
2014-05-01
An ultra-high vacuum (UHV) setup for "real" and "inverse" model catalyst preparation, depth-resolved near-surface spectroscopic characterization, and quantification of catalytic activity and selectivity under technologically relevant conditions is described. Due to the all-quartz reactor attached directly to the UHV-chamber, transfer of the catalyst for in situ testing without intermediate contact to the ambient is possible. The design of the UHV-compatible re-circulating batch reactor setup allows the study of reaction kinetics under close to technically relevant catalytic conditions up to 1273 K without contact to metallic surfaces except those of the catalyst itself. With the attached differentially pumped exchangeable evaporators and the quartz-microbalance thickness monitoring equipment, a reproducible, versatile, and standardised sample preparation is possible. For three-dimensional near-surface sample characterization, the system is equipped with a hemispherical analyser for X-ray photoelectron spectroscopy (XPS), electron-beam or X-ray-excited Auger-electron spectroscopy, and low-energy ion scattering measurements. Due the dedicated geometry of the X-ray gun (54.7°, "magic angle") and the rotatable sample holder, depth analysis by angle-resolved XPS measurements can be performed. Thus, by the combination of characterisation methods with different information depths, a detailed three-dimensional picture of the electronic and geometric structure of the model catalyst can be obtained. To demonstrate the capability of the described system, comparative results for depth-resolved sample characterization and catalytic testing in methanol steam reforming on PdGa and PdZn near-surface intermetallic phases are shown.
Ziylan-Yavaş, Asu; Ince, Nilsun H
2018-01-01
The study is the assessment of commercial γ-Al 2 O 3 and its sonolytically modified nanocomposite in catalytic ozonation of paracetamol (PCT), which is an emerging water contaminant and a highly reactive compound with ozone. The results showed that commercial alumina was ineffective regardless of the solution pH, due to the low affinity of the catalyst surface for PCT and the high reactivity of the solute with molecular ozone. The modified catalyst, which was synthesized by decoration of the original surface with nanoparticles of platinum provided considerable improvement in the performance of the catalyst, particularly in mineralization of the target compound. The presence of OH scavenging agents in solution markedly retarded the rate of PCT oxidation and organic carbon decay, to signal the importance of radical-mediated reaction mechanisms on the degradation of the compound. Finally, the attempt to accelerate the reactions by running them in the presence of ultrasound was found inadequate for the early oxidation, but highly adequate for the longer mineralization process. The failure was attributed to the diffusion of a large fraction of ozone into the gaseous cavity bubbles (reduced probability of direct reactions) and the extreme conditions of cavitation collapse that partially damaged the catalyst surface. The success (in mineralization) was explained by the shift of the reaction site from the bulk solution (poor adsorption on catalyst surfaces) to the solid surface and the gaseous cavity bubbles (via enhanced hydrophobicity), both being considerably more active reaction media. Copyright © 2017 Elsevier B.V. All rights reserved.
Direct 17O dynamic nuclear polarization of single-site heterogeneous catalysts
Perras, Frédéric A.; Boteju, Kasuni C.; Slowing, Igor I.; ...
2018-03-13
In this work, we utilize direct 17O DNP for the characterization of non-protonated oxygens in heterogeneous catalysts. The optimal sample preparation and population transfer approach for 17O direct DNP experiments performed on silica surfaces is determined and applied to the characterization of Zr- and Y-based mesoporous silica-supported single-site catalysts.
Electrode assembly for use in a solid polymer electrolyte fuel cell
Raistrick, Ian D.
1989-01-01
A gas reaction fuel cell may be provided with a solid polymer electrolyte membrane. Porous gas diffusion electrodes are formed of carbon particles supporting a catalyst which is effective to enhance the gas reactions. The carbon particles define interstitial spaces exposing the catalyst on a large surface area of the carbon particles. A proton conducting material, such as a perfluorocarbon copolymer or ruthenium dioxide contacts the surface areas of the carbon particles adjacent the interstitial spaces. The proton conducting material enables protons produced by the gas reactions adjacent the supported catalyst to have a conductive path with the electrolyte membrane. The carbon particles provide a conductive path for electrons. A suitable electrode may be formed by dispersing a solution containing a proton conducting material over the surface of the electrode in a manner effective to coat carbon surfaces adjacent the interstitial spaces without impeding gas flow into the interstitial spaces.
Key structure-activity relationships in the vanadium phosphorus oxide catalyst system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, M.R.; Ebner, J.R.
1990-04-01
The crystal structure of vanadyl pyrophosphate has been redetermined using single crystals obtained from a near solidified melt of a microcrystalline catalyst sample. Crystals that index as vanadyl pyrophosphate obtained from this melt are variable in color. Crystallographic refinement of the single crystal x-ray diffraction data indicates that structural differences among these materials can be described in terms of crystal defects associated with linear disorder of the vanadium atoms. The importance of the disorder is outlined in the context of its effect on the proposed surface topology parallel to (1,0,0). Models of the surface topology simply and intuitively account formore » the non-stoichometric surface atomic P/V ratio exhibited by selective catalysts of this phase. These models also point to the possible role of the excess phosphorus in providing site isolation of reactive centers at the surface. 33 refs., 7 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korovin, N.V.; Kozlova, N.I.; Kumenko, M.V.
This work is concerned with the effect of oxidation on the activity of Raney nickel catalyst in cathodic hydrogen evolution. The superficial Raney nickel catalyst (nickel SRC) was prepared by a previously described procedure. The surface of the nickel SRC was oxidized by applying an anodic sweep over the potential range from 0.25 to 1.00 V with a potential sweep rate of 1 mV/sec. The rate of cathodic hydrogen evolution increases after pretreatment of the surface of nickel SRC by application of an anodic pulse. A significant increase in the reaction rate most probably is due to oxygen adsorption onmore » the nickel SRC surface. The largest increase in the amount of weakly bound hydrogen corresponds to the most active electrode. Oxidation of the nickel surface by an anodic pulse causes both an acceleration and a retardation of the cathodic hydrogen evolution reaction.« less
Li, Shuirong; Gong, Jinlong
2014-11-07
Owing to the considerable publicity that has been given to petroleum related economic, environmental, and political problems, renewed attention has been focused on the development of highly efficient and stable catalytic materials for the production of chemical/fuel from renewable resources. Supported nickel nanoclusters are widely used for catalytic reforming reactions, which are key processes for generating synthetic gas and/or hydrogen. New challenges were brought out by the extension of feedstock from hydrocarbons to oxygenates derivable from biomass, which could minimize the environmental impact of carbonaceous fuels and allow a smooth transition from fossil fuels to a sustainable energy economy. This tutorial review describes the recent efforts made toward the development of nickel-based catalysts for the production of hydrogen from oxygenated hydrocarbons via steam reforming reactions. In general, three challenges facing the design of Ni catalysts should be addressed. Nickel nanoclusters are apt to sinter under catalytic reforming conditions of high temperatures and in the presence of steam. Severe carbon deposition could also be observed on the catalyst if the surface carbon species adsorbed on metal surface are not removed in time. Additionally, the production of hydrogen rich gas with a low concentration of CO is a challenge using nickel catalysts, which are not so active in the water gas shift reaction. Accordingly, three strategies were presented to address these challenges. First, the methodologies for the preparation of highly dispersed nickel catalysts with strong metal-support interaction were discussed. A second approach-the promotion in the mobility of the surface oxygen-is favored for the yield of desired products while promoting the removal of surface carbon deposition. Finally, the process intensification via the in situ absorption of CO2 could produce a hydrogen rich gas with low CO concentration. These approaches could also guide the design of other types of heterogeneous base-metal catalysts for high temperature processes including methanation, dry reforming, and hydrocarbon combustion.
Golkhatmi, Faezeh Mahdinejad; Bahramian, Bahram; Mamarabadi, Mojtaba
2017-09-01
Newly, magnetic nanoparticles have extensively been used as alternative catalyst supports, in the view of their high surface area which results in high catalyst loading capacity, high dispersion, low toxicity, environmental preservation, distinguished stability, and suitable catalyst reusing. In the present study, the magnetite nanoparticles, NiFe 2 O 4 @Ag and NiFe 2 O 4 @Mo, were synthesized and characterized. The antimicrobial activities and catalytic properties of synthesized nanoparticles were tested afterwards. For synthetizing the nanoparticle NiFe 2 O 4 @Ag, silver ions were loaded onto the surface of the modified NiFe 2 O 4 and reduced to silver crystal by adding NaBH 4 . The antibacterial effects of NiFe 2 O 4 @Ag were examined against two species of soil and plant related bacteria named Bacillus subtilis (gram positive) and Pseudomonas syringae (gram negative), respectively. The antifungal activity of this nanoparticle was evaluated against two species of plant pathogenic fungi called Alternaria solani and Fusarium oxysporum. Biological results indicated that the synthesized material has shown an excellent antibacterial and antifungal activity against all examined bacteria and fungi so that, their growth were completely inhibited 24h after treatment with NiFe 2 O 4 @Ag. For the synthesis of a heterogeneous catalyst NiFe 2 O 4 @Mo, complex Mo(CO) 6 was loaded onto the surface of the modified NiFe 2 O 4 nanoparticle. This catalyst was found as an efficient catalyst for epoxidation of cis-cyclooctene and a wide variety of alkenes, including aromatic and aliphatic terminal ones using tert-butyl hydroperoxide as oxidant. This new heterogenized catalyst could easily be recovered by using a magnetic separator and reused four consecutive and loss only 13% of its catalytic activity. Copyright © 2017 Elsevier B.V. All rights reserved.
Massachusetts Lowell low speed wind tunnel (LSWT) test section
NASA Astrophysics Data System (ADS)
Anderson, Erik William
The alumina and hybrid alumina-silica FT catalyst were prepared by one-step solgel/oil-drop methods using metal-nitrate-solutions (method-I), and nanoparticle-metaloxides (method-2). The nanoparticle-metal-oxides did not participate in solubility equilibria in contrast to metal nitrate in method-1 causing no metal ion seepage; therefore, method-2 yields higher XRF metal loading efficiency than method-1. The thermal analysis confirmed that the metal loading by method-1 and method-2 involved two different pathways. Method-1 involves solubility equilibria in the conversion of metal-nitrate to metal- hydroxide and finally to metal-oxide, while in method-2 nanoparticle-metal-oxide remained intact during sol-gel-oil-drop and calcination steps. The alumina supported catalysts were dominated by gamma-alumina PXRD peaks in alumina catalysts while amorphous alumino-silicate phase was the bulk of hybrid alumina-silica catalysts. The presence of cobalt oxides (CoO, Co3O4) and iron oxides (FeO, Fe2O3) phases are confirmed in the catalysts prepared by method-1 and method-2. The PXRD analysis indicated weak peak intensities in catalysts with 5 wt. % total metal loading. PXRD pattern confirmed alloy formation in the bimetallic catalysts (CoFe2O4) on alumina support phase gamma-A12 O3. The surface area and pore diameter of hybrid alumina-silica granules (301 - 372 m2/g and 7.3 nm) showed better values than the alumina granules (251 - 256 m2/g and 6.5 nm). The support pore diameter of both types of granules is within the mesoporous range (1 - 50 nm). The morphology of all the catalysts is preserved upon metal loading and heat treatments. The surface characteristics of the sol-gel-oil-drop method prepared catalysts indicate there was no significant pore blockage of the support below 10 wt % total metal loading. The CO conversion of the FT catalysts was measured to screen catalytic active metals and determine the optimum temperatures of the FT reaction for the alumina catalysts. The alumina FT catalysts showed an optimum reaction temperature of 250 °C. Hydrocarbon production and CO conversion of alumina and hybrid alumina-silica FT catalysts were investigated. Among monometallic alumina catalysts, Co(5%) showed a higher CO conversion. The incorporation of Fe to Co increased CO conversion and hydrocarbon production. Increased Fe content in the bimetallic catalysts prepared by combined method-1&2, decreased CO conversion and hydrocarbon production, and increased CO 2 production. The bimetallic nano-Co(2.5%)nano-Fe(2.5%) prepared by method-2 alone showed higher CO conversion comparable to the Co(4%)nano-Fe(l %). Hybrid alumina-silica FT catalysts showed a higher CO conversion than the alumina FT catalysts due to better surface characteristics. The monometallic catalysts showed higher selectivity to C1-C4 hydrocarbon than bimetallic. The bimetallic alumina FT catalysts prepared by method-2 showed slightly higher C5+ selectivity compared to the higher Co catalysts prepared by combined method- I &2. The Ru promotion showed a significant effect on the CO conversion and 11 product distribution of the monometallic catalysts. There was no significant effect on the CO conversion on the (Co-Fe) bimetallic catalysts, but hydrocarbon production slightly increased when promoted by 0.5 wt.% Ru.
Molecular catalysis science: Perspective on unifying the fields of catalysis
Ye, Rong; Hurlburt, Tyler J.; Sabyrov, Kairat; ...
2016-04-25
Colloidal chemistry is used to control the size, shape, morphology, and composition of metal nanoparticles. Model catalysts as such are applied to catalytic transformations in the three types of catalysts: heterogeneous, homogeneous, and enzymatic. Real-time dynamics of oxidation state, coordination, and bonding of nanoparticle catalysts are put under the microscope using surface techniques such as sumfrequency generation vibrational spectroscopy and ambient pressure X-ray photoelectron spectroscopy under catalytically relevant conditions. It was demonstrated that catalytic behavior and trends are strongly tied to oxidation state, the coordination number and crystallographic orientation of metal sites, and bonding and orientation of surface adsorbates. Itmore » was also found that catalytic performance can be tuned by carefully designing and fabricating catalysts from the bottom up. Homogeneous and h eterogeneous catalysts, and likely enzymes, behave similarly at the molecular level. Finally, unifying the fields of catalysis is the key to achieving the goal of 100% selectivity in catalysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Jun-Kun; Wachs, Israel E.
We report the selective catalytic reduction (SCR) of NO x with NH 3 to harmless N 2 and H 2O plays a crucial role in reducing highly undesirable NO x acid gas emissions from large utility boilers, industrial boilers, municipal waste plants, and incinerators. The supported V 2O 5 –WO 3/TiO 2 catalysts have become the most widely used industrial catalysts for these SCR applications since introduction of this technology in the early 1970s. Lastly, this Perspective examines the current fundamental understanding and recent advances of the supported V 2O 5 –WO 3/TiO 2 catalyst system: (i) catalyst synthesis, (ii)more » molecular structures of titaniasupported vanadium and tungsten oxide species, (iii) surface acidity, (iv) catalytic active sites, (v) surface reaction intermediates, (vi) reaction mechanism, (vii) ratedetermining- step, and (viii) reaction kinetics.« less
Cheon, Jae Yeong; Kim, Taeyoung; Choi, YongMan; Jeong, Hu Young; Kim, Min Gyu; Sa, Young Jin; Kim, Jaesik; Lee, Zonghoon; Yang, Tae-Hyun; Kwon, Kyungjung; Terasaki, Osamu; Park, Gu-Gon; Adzic, Radoslav R.; Joo, Sang Hoon
2013-01-01
The high cost of the platinum-based cathode catalysts for the oxygen reduction reaction (ORR) has impeded the widespread application of polymer electrolyte fuel cells. We report on a new family of non-precious metal catalysts based on ordered mesoporous porphyrinic carbons (M-OMPC; M = Fe, Co, or FeCo) with high surface areas and tunable pore structures, which were prepared by nanocasting mesoporous silica templates with metalloporphyrin precursors. The FeCo-OMPC catalyst exhibited an excellent ORR activity in an acidic medium, higher than other non-precious metal catalysts. It showed higher kinetic current at 0.9 V than Pt/C catalysts, as well as superior long-term durability and MeOH-tolerance. Density functional theory calculations in combination with extended X-ray absorption fine structure analysis revealed a weakening of the interaction between oxygen atom and FeCo-OMPC compared to Pt/C. This effect and high surface area of FeCo-OMPC appear responsible for its significantly high ORR activity. PMID:24056308
NASA Astrophysics Data System (ADS)
Chan, Chun Wong Aaron; Mahadi, Abdul Hanif; Li, Molly Meng-Jung; Corbos, Elena Cristina; Tang, Chiu; Jones, Glenn; Kuo, Winson Chun Hsin; Cookson, James; Brown, Christopher Michael; Bishop, Peter Trenton; Tsang, Shik Chi Edman
2014-12-01
Lindlar catalysts comprising of palladium/calcium carbonate modified with lead acetate and quinoline are widely employed industrially for the partial hydrogenation of alkynes. However, their use is restricted, particularly for food, cosmetic and drug manufacture, due to the extremely toxic nature of lead, and the risk of its leaching from catalyst surface. In addition, the catalysts also exhibit poor selectivities in a number of cases. Here we report that a non-surface modification of palladium gives rise to the formation of an ultra-selective nanocatalyst. Boron atoms are found to take residence in palladium interstitial lattice sites with good chemical and thermal stability. This is favoured due to a strong host-guest electronic interaction when supported palladium nanoparticles are treated with a borane tetrahydrofuran solution. The adsorptive properties of palladium are modified by the subsurface boron atoms and display ultra-selectivity in a number of challenging alkyne hydrogenation reactions, which outclass the performance of Lindlar catalysts.
Funken, K H; Sattler, C; Milow, B; De Oliveira, L; Blanco, J; Fernández, P; Malato, S; Brunott, M; Dischinge, N; Tratzky, S; Musci, M; de Oliveira, J C
2001-01-01
Solar photocatalytic detoxification of non-biodegradable chlorinated hydrocarbon solvents (NBCS) is carried out in different concentrating and non concentrating devices using TiO2 as a photocatalyst fixed on the inner surface of the reaction tubes or as a slurry catalyst which has to be removed from the treated water. The reaction is most effective using 200 mg/l of TiO2 as a slurry in a non concentrating CPC reactor. The concentrating parabolic trough reactor has a poor activity because of its minor irradiated reactor surface. Catalyst coated glass tubes are less efficient then the used slurry catalyst. Their advantage is that no catalyst has not to be removed from the treated water and there is no loss of activity during treatment. Yet their physical stability is not sufficient to be competitive to the slurry catalyst. Nevertheless the degradation results are very promising and will possibly lead to commercial applications of this technology.
NASA Astrophysics Data System (ADS)
Kristianto, H.; Arie, A. A.; Susanti, R. F.; Halim, M.; Lee, J. K.
2016-11-01
In this study the effect of activated carbon support modification to synthesis of CNSs was observed. Modification of activated carbon was done by using nitric acid. The effect of modification was analyzed from its FTIR spectra. The Fe catalysts were deposited on to the support by using urea deposition precipitation method at various initial catalysts concentration. CNSs was synthesized by utilizing cooking palm oil as renewable carbon source, and pyrolized at 700°C for 1 hour under nitrogen atmosphere. The products obtained then analyzed using SEM-EDS, TEM, XRD, and Raman spectroscopy. The modification of activated carbon support had increased the oxygen functional group. This increase resulted on increase of metal catalysts deposited on activated carbon surface. Peak of C (100) was observed, while ID/IG of samples were obtained around 0.9, which is commonly obtained for CNSs. High catalysts loading on modified activated carbon support caused decomposition of CNSs and formation carbon onion.
Active and stable Ir@Pt core–shell catalysts for electrochemical oxygen reduction
Strickler, Alaina L.; Jackson, Ariel; Jaramillo, Thomas F.
2016-12-28
Electrochemical oxygen reduction is an important reaction for many sustainable energy technologies, such as fuel cells and metal–air batteries. Kinetic limitations of this reaction, expensive electrocatalysts, and catalyst instability, however, limit the commercial viability of such devices. Herein, we report an active Ir@Pt core–shell catalyst that combines platinum overlayers with nanostructure effects to tune the oxygen binding to the Pt surface, thereby achieving enhanced activity and stability for the oxygen reduction reaction. Ir@Pt nanoparticles with several shell thicknesses were synthesized in a scalable, inexpensive, one-pot polyol method. Electrochemical analysis demonstrates the activity and stability of the Ir@Pt catalyst, with specificmore » and mass activities increasing to 2.6 and 1.8 times that of commercial Pt/C (TKK), respectively, after 10 000 stability cycles. Furthermore, activity enhancement of the Ir@Pt catalyst is attributed to weakening of the oxygen binding to the Pt surface induced by the Ir core.« less
Lai, Jun-Kun; Wachs, Israel E.
2018-06-04
We report the selective catalytic reduction (SCR) of NO x with NH 3 to harmless N 2 and H 2O plays a crucial role in reducing highly undesirable NO x acid gas emissions from large utility boilers, industrial boilers, municipal waste plants, and incinerators. The supported V 2O 5 –WO 3/TiO 2 catalysts have become the most widely used industrial catalysts for these SCR applications since introduction of this technology in the early 1970s. Lastly, this Perspective examines the current fundamental understanding and recent advances of the supported V 2O 5 –WO 3/TiO 2 catalyst system: (i) catalyst synthesis, (ii)more » molecular structures of titaniasupported vanadium and tungsten oxide species, (iii) surface acidity, (iv) catalytic active sites, (v) surface reaction intermediates, (vi) reaction mechanism, (vii) ratedetermining- step, and (viii) reaction kinetics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Ning; Rahman, Muhammad Mahfuzur; Chen, Jixiang
Steam reforming of simulated bio-oil (ethanol, acetone, phenol, and acetic acid) and phenol has been studied on K-Ni-Cu-Mg-Ce-O/Al 2O 3 composite catalysts. Complementary characterization techniques, such as nitrogen sorption, XRD, H 2-TPR, H 2-TPD, CO-TPD, CO-DRIFTS, and in situ XPS, were used to correlate surface structure and functionality to catalytic performance of potassium (K) doped catalysts. K doping of the Ni-Cu-Mg-Ce-O/Al 2O 3 catalyst created a Ni°/Ni 2+ mixed active phase, which not only enhanced steam reforming activity, but also suppressed the methanation reaction. In addition, K doping changed the surface acid-basic properties of the catalyst, which instead favor themore » gasifcation and water-gas shift reactions. In conclusion, with the combination of these effects, K doping of Ni-Cu-Mg-Ce-O/Al 2O 3 catalysts led to higher C1 yield and much lower methane formation, favoring hydrogen production in steam reforming of both phenol and simulated bio-oil.« less
Hu, Yang; Jensen, Jens Oluf; Zhang, Wei; Cleemann, Lars N; Xing, Wei; Bjerrum, Niels J; Li, Qingfeng
2014-04-01
Nonprecious metal catalysts for the oxygen reduction reaction are the ultimate materials and the foremost subject for low-temperature fuel cells. A novel type of catalysts prepared by high-pressure pyrolysis is reported. The catalyst is featured by hollow spherical morphologies consisting of uniform iron carbide (Fe3 C) nanoparticles encased by graphitic layers, with little surface nitrogen or metallic functionalities. In acidic media the outer graphitic layers stabilize the carbide nanoparticles without depriving them of their catalytic activity towards the oxygen reduction reaction (ORR). As a result the catalyst is highly active and stable in both acid and alkaline electrolytes. The synthetic approach, the carbide-based catalyst, the structure of the catalysts, and the proposed mechanism open new avenues for the development of ORR catalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrocatalytic Oxidation of Ammonia on Transition-Metal Surfaces: A First-Principles Study
Herron, Jeffrey A.; Ferrin, Peter; Mavrikakis, Manos
2015-02-20
Here, we investigate the catalytic electro-oxidation of ammonia on model close-packed surfaces of Au, Ag, Cu, Pd, Pt, Ni, Ir, Co, Rh, Ru, Os, and Re to derive insights for the reaction mechanism and evaluate the catalysts based on their energy efficiency and activity in the context of their application in fuel cells. Two mechanisms, which are differentiated by their N–N bond formation step, are compared: (1) a mechanism proposed by Gerischer and Mauerer, whereby the N–N bond formation occurs between hydrogenated NH x adsorbed species, and (2) a mechanism in which N–N bond formation occurs between N adatoms. Themore » results of our study show that the mechanism proposed by Gerischer and Mauerer is kinetically preferred and that the formation of N adatoms poisons the surface of the catalyst. On the basis of a simple Sabatier analysis, we predict that Pt is the most active monometallic catalyst followed by Ir and Cu, whereas all other metal surfaces studied here have significantly lower activity. We conclude by outlining some design principles for bimetallic alloy catalysts for NH 3 electro-oxidation.« less
Wang, Tanyuan; Nam, Gyutae; Jin, Yue; Wang, Xingyu; Ren, Pengju; Kim, Min Gyu; Liang, Jiashun; Wen, Xiaodong; Jang, Haeseong; Han, Jiantao; Huang, Yunhui; Li, Qing; Cho, Jaephil
2018-05-21
A facile H 2 O 2 oxidation treatment to tune the properties of metal disulfides for oxygen evolution reaction (OER) activity enhancement is introduced. With this method, the degree of oxidation can be readily controlled and the effect of surface S residues in the resulted metal (oxy)hydroxides for the OER is revealed for the first time. The developed NiFe (oxy)hydroxide catalyst with residual S demonstrates an extraordinarily low OER overpotential of 190 mV at the current density of 10 mA cm -2 after coupling with carbon nanotubes, and outstanding performance in Zn-air battery tests. Theoretical calculation suggests that the surface S residues can significantly reduce the adsorption free energy difference between O* and OH* intermediates on the Fe sites, which should account for the high OER activity of NiFe (oxy)hydroxide catalysts. This work provides significant insight regarding the effect of surface heteroatom residues in OER electrocatalysis and offers a new strategy to design high-performance and cost-efficient OER catalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Xin; Zhao, Haitao; Wang, Jianhui
2010-08-01
Au nanoparticles stabilized by polystyrene-co-polymethacrylic acid microspheres (PS-co-PMAA) were prepared and characterized via X-ray diffraction (XRD), and transmission electron microscope (TEM). The Au nanoparticles supported on the microspheres showed highly selective catalytic activity for homo-coupling reactions of arylboronic acids in a system of aryl-halides and arylboronic acids. X-ray photoelectron spectroscopy (XPS) spectra of the catalyst shows large amounts of Au(I) complexes band to the surface of the Au nanoparticles, which contributes to the selective homocoupling of the arylboronic acids. More importantly, this supported Au complex is a highly recyclable catalyst. The supported Au catalyst can be recycled and reused at least 6 times for a phenylboronic acid reactant, whereas the parent complex shows very low catalytic activity for this compound. The high catalytic activity of this material is attributed to: (1) the high surface to volume ratio which leads to more active sites being exposed to reactants; (2) the strong surface binding of the Au nanoparticle to the Au(I) complexes, which enhances both the stability and the catalytic activity of these complexes.
Surface chemistry and catalytic performance of amorphous NiB/Hβ catalyst for n-hexane isomerization
NASA Astrophysics Data System (ADS)
Chen, Jinshe; Cai, Tingting; Jing, Xiaohui; Zhu, Lijun; Zhou, Yulu; Xiang, Yuzhi; Xia, Daohong
2016-12-01
The amorphous NiB nanoparticles were synthesized and a novel type of NiB/Hβ catalyst was prepared for the isomerization of n-hexane. The optimum preparation conditions were investigated and the effect of preparation conditions on the surface chemistry information of catalysts was characterized by XRD, N2 sorption studies, XPS, TPD and other related means. It was demonstrated that the loading amounts of NiB have effect on textural properties and the acid properties of surface. The loading amounts of NiB were also related to the amount of strong Lewis acid sites and the ratios of weak acid to strong acid of samples. Meanwhile, calcination temperatures of samples were closely associated with the structure of active components that function as metal centers. When the loading amount of NiB was 5 wt.% and calcination temperature was 200 °C, the catalyst had proper surface acidity sites and metal active sites to provide suitable synergistic effects. The mechanism for n-hexane isomerization was also investigated and the existence of unique structure of Bsbnd Nisbnd H was proved, which could provide good hydrogenation-dehydrogenation functions.
NASA Astrophysics Data System (ADS)
Meenan, B. J.; Brown, N. M. D.; Wilson, J. W.
1994-03-01
A PdCl 2/SnCl 2 metallisation catalyst system, of the type used to activate non-conducting surfaces for electroless metal deposition, has been characterised by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The substrate is a barium titanate (BaTiO 3)-based electroactive ceramic of the type used in the fabrication of multilayer ceramic capacitors (MLCC). The treatment of the substrate surface with the PdCl 2/SnCl 2 "sensitiser" solution leads to the adsorption of catalytically inactive compounds of palladium and tin. Subsequent treatment of this surface with an "accelerator" solution removes excess oxides, hydroxides and salts of tin thereby leaving the active catalyst species, Pd xSn y, on the surface. Such sites, on exposure to the appropriete electroless plating bath, are then responsible for the metal deposition. In this study, the chemical state and relative quantities of the various surface species present after each of the processing stages have been determined by XPS. The surface roughness of the substrate results in less of the tin compounds present thereon being removed on washing the catalysed surface in the accelerator solution than normally reported for such systems, thereby affecting the measured Pd: Sn ratio. SEM studies show that the accelerator solution treatment generates crystalline areas, which may be a result of coagulation of the Pd xSn y particles present, in the otherwise amorphous catalyst coating.
Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?
Hansen, Thomas W; Delariva, Andrew T; Challa, Sivakumar R; Datye, Abhaya K
2013-08-20
Metal nanoparticles contain the active sites in heterogeneous catalysts, which are important for many industrial applications including the production of clean fuels, chemicals and pharmaceuticals, and the cleanup of exhaust from automobiles and stationary power plants. Sintering, or thermal deactivation, is an important mechanism for the loss of catalyst activity. This is especially true for high temperature catalytic processes, such as steam reforming, automotive exhaust treatment, or catalytic combustion. With dwindling supplies of precious metals and increasing demand, fundamental understanding of catalyst sintering is very important for achieving clean energy and a clean environment, and for efficient chemical conversion processes with atom selectivity. Scientists have proposed two mechanisms for sintering of nanoparticles: particle migration and coalescence (PMC) and Ostwald ripening (OR). PMC involves the mobility of particles in a Brownian-like motion on the support surface, with subsequent coalescence leading to nanoparticle growth. In contrast, OR involves the migration of adatoms or mobile molecular species, driven by differences in free energy and local adatom concentrations on the support surface. In this Account, we divide the process of sintering into three phases. Phase I involves rapid loss in catalyst activity (or surface area), phase II is where sintering slows down, and phase III is where the catalyst may reach a stable performance. Much of the previous work is based on inferences from catalysts that were observed before and after long term treatments. While the general phenomena can be captured correctly, the mechanisms cannot be determined. Advancements in the techniques of in situ TEM allow us to observe catalysts at elevated temperatures under working conditions. We review recent evidence obtained via in situ methods to determine the relative importance of PMC and OR in each of these phases of catalyst sintering. The evidence suggests that, in phase I, OR is responsible for the rapid loss of activity that occurs when particles are very small. Surprisingly, very little PMC is observed in this phase. Instead, the rapid loss of activity is caused by the disappearance of the smallest particles. These findings are in good agreement with representative atomistic simulations of sintering. In phase II, sintering slows down since the smallest particles have disappeared. We now see a combination of PMC and OR, but do not fully understand the relative contribution of each of these processes to the overall rates of sintering. In phase III, the particles have grown large and other parasitic phenomena, such as support restructuring, can become important, especially at high temperatures. Examining the evolution of particle size and surface area with time, we do not see a stable or equilibrium state, especially for catalysts operating at elevated temperatures. In conclusion, the recent literature, especially on in situ studies, shows that OR is the dominant process causing the growth of nanoparticle size. Consequently, this leads to the loss of surface area and activity. While particle migration could be controlled through suitable structuring of catalyst supports, it is more difficult to control the mobility of atomically dispersed species. These insights into the mechanisms of sintering could help to develop sinter-resistant catalysts, with the ultimate goal of designing catalysts that are self-healing.
Method of making chalcogen catalysts for polymer electrolyte fuel cells
Choi, Jong-Ho; Zelenay, Piotr; Wieckowski, Andrzej; Cao, Dianxue
2010-12-14
A method of making an electrode catalyst material using aqueous solutions. The electrode catalyst material includes a support comprising at least one transition metal and at least one chalcogen disposed on a surface of the transition metal. The method includes reducing a metal powder, mixing the metal powder with an aqueous solution containing at least one inorganic compound of the chalcogen to form a mixture, and providing a reducing agent to the mixture to form nanoparticles of the electrode catalyst. The electrode catalyst may be used in a membrane electrode assembly for a fuel cell.
Perras, Frederic A.; Padmos, J. Daniel; Johnson, Robert L.; ...
2017-01-23
The characterization of nanometer-scale interactions between carbon-containing substrates and alumina surfaces is of paramount importance to industrial and academic catalysis applications, but it is also very challenging. Here, we demonstrate that dynamic nuclear polarization surface-enhanced NMR spectroscopy (DNP SENS) allows the unambiguous description of the coordination geometries and conformations of the substrates at the alumina surface through high-resolution measurements of 13C– 27Al distances. We apply this new technique to elucidate the molecular-level geometry of 13C-enriched methionine and natural abundance poly(vinyl alcohol) adsorbed on γ-Al 2O 3-supported Pd catalysts, and we support these results with element-specific X-ray absorption near-edge measurements. Furthermore,more » this work clearly demonstrates a surprising bimodal coordination of methionine at the Pd–Al 2O 3 interface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perras, Frederic A.; Padmos, J. Daniel; Johnson, Robert L.
The characterization of nanometer-scale interactions between carbon-containing substrates and alumina surfaces is of paramount importance to industrial and academic catalysis applications, but it is also very challenging. Here, we demonstrate that dynamic nuclear polarization surface-enhanced NMR spectroscopy (DNP SENS) allows the unambiguous description of the coordination geometries and conformations of the substrates at the alumina surface through high-resolution measurements of 13C– 27Al distances. We apply this new technique to elucidate the molecular-level geometry of 13C-enriched methionine and natural abundance poly(vinyl alcohol) adsorbed on γ-Al 2O 3-supported Pd catalysts, and we support these results with element-specific X-ray absorption near-edge measurements. Furthermore,more » this work clearly demonstrates a surprising bimodal coordination of methionine at the Pd–Al 2O 3 interface.« less
Catalytic dehydration of ethanol using transition metal oxide catalysts.
Zaki, T
2005-04-15
The aim of this work is to study catalytic ethanol dehydration using different prepared catalysts, which include Fe(2)O(3), Mn(2)O(3), and calcined physical mixtures of both ferric and manganese oxides with alumina and/or silica gel. The physicochemical properties of these catalysts were investigated via X-ray powder diffraction (XRD), acidity measurement, and nitrogen adsorption-desorption at -196 degrees C. The catalytic activities of such catalysts were tested through conversion of ethanol at 200-500 degrees C using a catalytic flow system operated under atmospheric pressure. The results obtained indicated that the dehydration reaction on the catalyst relies on surface acidity, whereas the ethylene production selectivity depends on the catalyst chemical constituents.
Using TiO2 as a conductive protective layer for photocathodic H2 evolution.
Seger, Brian; Pedersen, Thomas; Laursen, Anders B; Vesborg, Peter C K; Hansen, Ole; Chorkendorff, Ib
2013-01-23
Surface passivation is a general issue for Si-based photoelectrodes because it progressively hinders electron conduction at the semiconductor/electrolyte interface. In this work, we show that a sputtered 100 nm TiO(2) layer on top of a thin Ti metal layer may be used to protect an n(+)p Si photocathode during photocatalytic H(2) evolution. Although TiO(2) is a semiconductor, we show that it behaves like a metallic conductor would under photocathodic H(2) evolution conditions. This behavior is due to the fortunate alignment of the TiO(2) conduction band with respect to the hydrogen evolution potential, which allows it to conduct electrons from the Si while simultaneously protecting the Si from surface passivation. By using a Pt catalyst the electrode achieves an H(2) evolution onset of 520 mV vs NHE and a Tafel slope of 30 mV when illuminated by the red part (λ > 635 nm) of the AM 1.5 spectrum. The saturation photocurrent (H(2) evolution) was also significantly enhanced by the antireflective properties of the TiO(2) layer. It was shown that with proper annealing conditions these electrodes could run 72 h without significant degradation. An Fe(2+)/Fe(3+) redox couple was used to help elucidate details of the band diagram.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Y.Y.; Rice, C.; Godbout, N.
1999-04-07
Due to its fundamental importance in heterogeneous catalysis, as well as in electrocatalysis, the chemisorption and reaction of CO on transition metal surfaces has been an important focus of modern surface science. Here, the NMR spectroscopy of {sup 13}CO adsorbed onto transition metal surfaces has been shown to be a very powerful probe of molecular structure and dynamics of CO itself, as well as a probe of the electronic properties of the transition metal surfaces onto which it is adsorbed. The authors have investigated the {sup 195}Pt and {sup 13}C nuclear magnetic resonance (NMR) spectroscopy of clean-surface platinum catalysts andmore » of CO chemisorbed onto Pt catalysts surfaces. They use Knight shift, relaxation, and J-coupling data to deduce information about the Fermi level local density of states (E{sub f}-LDOS) at catalyst surfaces. There is a linear correlation between the Knight shifts of chemisorbed CO and the clean surface E{sub f}-LDOS of platinum onto which the CO is bound, as determined by {sup 13}C and {sup 195}Pt NMR. The correlation amounts to {approximately} 12 ppm/Ry{sup {minus}1} {center_dot} atom{sup {minus}1}, the same as that which can be deduced for CO on palladium, as well as from the electrode potential dependence of {sup 13}C Knight shifts and infrared vibrational frequencies, {nu}{sub CO}, and the relationship between {nu}{sub CO} and the E{sub f}-LDOS at clean platinum surfaces. The ability to now directly relate meal and adsorbate electronic properties opens up new avenues for investigating metal-ligand interactions in heterogeneous catalysis and electrocatalysis.« less
Laser Ablation Increases PEM/Catalyst Interfacial Area
NASA Technical Reports Server (NTRS)
Whitacre, Jay; Yalisove, Steve
2009-01-01
An investigational method of improving the performance of a fuel cell that contains a polymer-electrolyte membrane (PEM) is based on the concept of roughening the surface of the PEM, prior to deposition of a thin layer of catalyst, in order to increase the PEM/catalyst interfacial area and thereby increase the degree of utilization of the catalyst. The roughening is done by means of laser ablation under carefully controlled conditions. Next, the roughened membrane surface is coated with the thin layer of catalyst (which is typically platinum), then sandwiched between two electrode/catalyst structures to form a membrane/ele c t - rode assembly. The feasibility of the roughening technique was demonstrated in experiments in which proton-conducting membranes made of a perfluorosulfonic acid-based hydrophilic, protonconducting polymer were ablated by use of femtosecond laser pulses. It was found that when proper combinations of the pulse intensity, pulse-repetition rate, and number of repetitions was chosen, the initially flat, smooth membrane surfaces became roughened to such an extent as to be converted to networks of nodules interconnected by filaments (see Figure 1). In further experiments, electrochemical impedance spectroscopy (EIS) was performed on a pristine (smooth) membrane and on two laser-roughened membranes after the membranes were coated with platinum on both sides. Some preliminary EIS data were interpreted as showing that notwithstanding the potential for laser-induced damage, the bulk conductivities of the membranes were not diminished in the roughening process. Other preliminary EIS data (see Figure 2) were interpreted as signifying that the surface areas of the laser-roughened membranes were significantly greater than those of the smooth membrane. Moreover, elemental analyses showed that the sulfur-containing molecular groups necessary for proton conduction remained intact, even near the laser-roughened surfaces. These preliminary results can be taken as indications that laser-roughened PEMs should function well in fuel cells and, in particular, should exhibit current and power densities greater than those attainable by use of smooth membranes.
Sohn, H.; Camacho-Bunquin, J.; Langeslay, R. R.; ...
2017-05-03
Well-defined, isolated, single-site organovanadium(III) catalyst on SiO 2 [(SiO 2)V(Mes)(THF)] were synthesized via surface organometallic chemistry, and fully characterized using a combination of analytical and spectroscopic techniques (EA, ICP, 1H NMR, TGA-MS, EPR, XPS, DR-UV/Vis, UV-Raman, DRIFTS, XAS). The catalysts exhibit unprecedented reactivity in liquid- and gas-phase alkene/alkyne hydrogenation. Catalyst poisoning experiments revealed that 100% of the V sites are active for hydrogenation.
Hydrogenation of artemisinin to dihydroartemisinin over heterogeneous metal catalysts
NASA Astrophysics Data System (ADS)
Kristiani, Anis; Pertiwi, Ralentri; Adilina, Indri Badria
2017-01-01
A series of heterogeneous metal catalysts of Ni, Pd, and Pt, both of synthesized and commercial catalysts were used for hydrogenation of artemisinin to dihydroartemisinin. Their catalytic properties were determsined by Surface Area Analyzer and Thermogravimetry Analyzer. The catalytic properties in various reaction conditions in terms of temperature, pressure, reaction time and reactant/catalyst ratio were also studied. The results catalytic activity tests showed that synthesized catalysts of Ni/zeolite, Ni-Sn/zeolite, Ni/bentonite and Ni-Sn/bentonite were not able to produced dihydroartemisinin and deoxyartemisinin was mainly formed. Meanwhile, commercial catalysts of Ni skeletal, Pd/activated charcoal and Pt/activated charcoal yielded the desired dihydroartemisinin product. Ni skeletal commercial catalyst gave the best performance of hydrogenation artemisinin to dihydroartemisinin in room temperature and low H2 pressure.
Effect of Graphitic Content on Carbon Supported Catalyst Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Anant; Artyushkova, Kateryna; Atanassov, Plamen
2011-07-01
The effect of graphitic content on carbon supported platinum catalysts was investigated in order to investigate its influence on catalyst performance. Four catalysts of varying surface areas and graphitic content were analyzed using XPS, HREELS, and tested using RDE experiments. The catalysts were also heat treated at 150oC and 100%RH as means to uniformly age them. The heat treated samples were analyzed using the same methods to determine what changes had occurred due to this aging process. When compared to the BOL catalysts, heat treated catalysts displayed increased graphitic carbon and platinum metalic content, however they also showed depressed catalyticmore » activity. The primary cause is still under investigation, though it is believed to be related to loss of amorphous carbon content.« less
NASA Astrophysics Data System (ADS)
Susanto, B. H.; Prakasa, M. B.; Shahab, M. H.
2016-11-01
The synthesis of metal nanocrystal was conducted by modification preparation from simple heating method which heating and cooling process run rapidly. The result of NiMo/Z 575 °C characterizations are 33.73 m2/gram surface area and 31.80 nm crystal size. By used NiMo/C 700 °C catalyst for 30 minutes which had surface area of 263.21 m2/gram, had 31.77 nm crystal size, and good morphology, obtained catalyst with high activity, selectivity, and stability. After catalyst activated, synthesis of renewable diesel performed in hydrogenation reactor at 375 °C, 12 bar, and 800 rpm. The result of conversion was 81.99%, yield was 68.08%, and selectivity was 84.54%.
Process and apparatus for coal hydrogenation
Ruether, John A.
1988-01-01
In a coal liquefaction process an aqueous slurry of coal is prepared containing a dissolved liquefaction catalyst. A small quantity of oil is added to the slurry and then coal-oil agglomerates are prepared by agitation of the slurry at atmospheric pressure. The resulting mixture of agglomerates, excess water, dissolved catalyst, and unagglomerated solids is pumped to reaction pressure and then passed through a drainage device where all but a small amount of surface water is removed from the agglomerates. Sufficient catalyst for the reaction is contained in surface water remaining on the agglomerates. The agglomerates fall into the liquefaction reactor countercurrently to a stream of hot gas which is utilized to dry and preheat the agglomerates as well as deposit catalyst on the agglomerates before they enter the reactor where they are converted to primarily liquid products under hydrogen pressure.
NASA Astrophysics Data System (ADS)
Yang, Liting; Chen, Lin; Yang, Dawen; Yu, Xu; Xue, Huaiguo; Feng, Ligang
2018-07-01
High valence transition metal oxide is significant for anode catalyst of proton membrane water electrolysis technique. Herein, we demonstrate NiMn layered double hydroxide nanosheets/NiCo2O4 nanowires hierarchical nanocomposite catalyst with surface rich high valence metal oxide as an efficient catalyst for oxygen evolution reaction. A low overpotential of 310 mV is needed to drive a 10 mA cm-2 with a Tafel slope of 99 mV dec-1, and a remarkable stability during 8 h is demonstrated in a chronoamperometry test. Theoretical calculation displays the change in the rate-determining step on the nanocomposite electrode in comparison to NiCo2O4 nanowires alone. It is found high valence Ni and Mn oxide in the catalyst system can efficiently facilitate the charge transport across the electrode/electrolyte interface. The enhanced electrical conductivity, more accessible active sites and synergistic effects between NiMn layered double hydroxide nanosheets and NiCo2O4 nanowires can account for the excellent oxygen evolution reaction. The catalytic performance is comparable to most of the best non-noble catalysts and IrO2 noble catalyst, indicating the promising applications in water-splitting technology. It is an important step in the development of hierarchical nanocomposites by surface valence state tuning as an alternative to noble metals for oxygen evolution reaction.
Zhang, Ren-Qin; Lee, Tae-Hun; Yu, Byung-Deok; Stampfl, Catherine; Soon, Aloysius
2012-12-28
As a first step towards a microscopic understanding of single-Pt atom-dispersed catalysts on non-conventional TiN supports, we present density-functional theory (DFT) calculations to investigate the adsorption properties of Pt atoms on the pristine TiN(100) surface, as well as the dominant influence of surface defects on the thermodynamic stability of platinized TiN. Optimized atomic geometries, energetics, and analysis of the electronic structure of the Pt/TiN system are reported for various surface coverages of Pt. We find that atomic Pt does not bind preferably to the clean TiN surface, but under typical PEM fuel cell operating conditions, i.e. strongly oxidizing conditions, TiN surface vacancies play a crucial role in anchoring the Pt atom for its catalytic function. Whilst considering the energetic stability of the Pt/TiN structures under varying N conditions, embedding Pt at the surface N-vacancy site is found to be the most favorable under N-lean conditions. Thus, the system of embedding Pt at the surface N-vacancy sites on TiN(100) surfaces could be promising catalysts for PEM fuel cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simonovis, Juan Pablo; Hunt, Adrian; Palomino, Robert M.
The interaction between a catalyst and reactants often induce changes in the surface structure and composition of the catalyst, which, in turn, affect its reactivity. Therefore, it is important to study such changes using in situ techniques under well-controlled conditions. We have used ambient pressure X-ray photoelectron spectroscopy (AP-XPS) to study the surface stability of a Pt/Cu(111) single atom alloy (SAA) in an ambient pressure of CO. By directly probing the Pt atoms, we found that CO causes a slight surface segregation of Pt atoms at room temperature. In addition, while the Pt/Cu(111) surface demonstrates poor thermal stability in UHV,more » where surface Pt starts to diffuse to the subsurface layer above 400 K, the presence of adsorbed CO enhances the thermal stability of surface Pt atoms. Furthermore, we also found that temperatures above 450 K cause a restructuring of the subsurface layer, which consequently strengthens the CO binding to the surface Pt sites, likely due to the presence of neighboring subsurface Pt atoms.« less
Simonovis, Juan Pablo; Hunt, Adrian; Palomino, Robert M.; ...
2018-02-05
The interaction between a catalyst and reactants often induce changes in the surface structure and composition of the catalyst, which, in turn, affect its reactivity. Therefore, it is important to study such changes using in situ techniques under well-controlled conditions. We have used ambient pressure X-ray photoelectron spectroscopy (AP-XPS) to study the surface stability of a Pt/Cu(111) single atom alloy (SAA) in an ambient pressure of CO. By directly probing the Pt atoms, we found that CO causes a slight surface segregation of Pt atoms at room temperature. In addition, while the Pt/Cu(111) surface demonstrates poor thermal stability in UHV,more » where surface Pt starts to diffuse to the subsurface layer above 400 K, the presence of adsorbed CO enhances the thermal stability of surface Pt atoms. Furthermore, we also found that temperatures above 450 K cause a restructuring of the subsurface layer, which consequently strengthens the CO binding to the surface Pt sites, likely due to the presence of neighboring subsurface Pt atoms.« less
Combustion of chlorinated VOC on nanostructured chromia aerogel as catalyst and catalyst support.
Rotter, H; Landau, M V; Herskowitz, M
2005-09-01
The chromia-based catalysts have been reported to combine the high activity and resistance to deactivation in oxidative removal of chlorinated VOC. However, their activity is limited by the low amount of chromia that can be deposited on supports maintaining the optimal state of surface species and high surface area. The pure nanostructured chromia was used as a catalytically active support for noble metals and transition-metal oxide oxidation catalysts. High efficiency of Pt-promoted CrOOH aerogel with surface area of 500 m2*g(-1) was demonstrated in full combustion of 1,2-dichloroethane (DCE) and chlorobenzene (CB). At gas hour space velocity (GHSV) of 46 000 h(-1), the total conversion to CO2/H2O/HCl was achieved at 330 degrees C (DCE) and 380 degrees C (CB). The combustion rate constants measured at standard conditions with 0.5% Pt/CrOOH catalyst were 1 or 2 orders of magnitude higher than measured with 15%Cr2O3/Al2O3 or 0.5%Pt/Al2O3, respectively. The effects of Pt, Au, Mn, and Ce additives on the performance of CrOOH aerogel in combustion of chlorinated VOC were analyzed related to the materials structure.
Schumann, Julia; Kröhnert, Jutta; Frei, Elias; ...
2017-08-28
Carbon monoxide was applied as probe molecule to compare the surface of a ZnO-containing (Cu/ZnO:Al) and a ZnO-free (Cu/MgO) methanol synthesis catalyst (copper content 70 atomic %) after reduction in hydrogen at 523 K by DRIFT spectroscopy. Nano-structured, mainly metallic copper was detected on the surface of the Cu/MgO catalyst. In contrast, the high energy of the main peak in the spectrum of CO adsorbed on reduced Cu/ZnO:Al (2125 cm -1) proves that metallic copper is largely absent on the surface of this catalyst. The band is assigned to Zn δ+–CO. The presence of not completely reduced Cu δ+–CO speciesmore » cannot be excluded. The results are interpreted in terms of a partial coverage of the copper nano-particles in the Cu/ZnO:Al catalyst by a thin layer of metastable, defective zinc oxide. Minor contributions in the spectrum at 2090 and 2112 cm -1 due to nano-structured Cu 0–CO and CO adsorbed on highly defective Cu 0, respectively, indicate that the coverage of metallic copper is not complete.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schumann, Julia; Kröhnert, Jutta; Frei, Elias
Carbon monoxide was applied as probe molecule to compare the surface of a ZnO-containing (Cu/ZnO:Al) and a ZnO-free (Cu/MgO) methanol synthesis catalyst (copper content 70 atomic %) after reduction in hydrogen at 523 K by DRIFT spectroscopy. Nano-structured, mainly metallic copper was detected on the surface of the Cu/MgO catalyst. In contrast, the high energy of the main peak in the spectrum of CO adsorbed on reduced Cu/ZnO:Al (2125 cm -1) proves that metallic copper is largely absent on the surface of this catalyst. The band is assigned to Zn δ+–CO. The presence of not completely reduced Cu δ+–CO speciesmore » cannot be excluded. The results are interpreted in terms of a partial coverage of the copper nano-particles in the Cu/ZnO:Al catalyst by a thin layer of metastable, defective zinc oxide. Minor contributions in the spectrum at 2090 and 2112 cm -1 due to nano-structured Cu 0–CO and CO adsorbed on highly defective Cu 0, respectively, indicate that the coverage of metallic copper is not complete.« less
40 CFR 63.6620 - What performance tests and other procedures must I use?
Code of Federal Regulations, 2010 CFR
2010-07-01
... an oxidation catalyst, if you comply with the emission limitation to reduce formaldehyde and you are... formaldehyde in the stationary RICE exhaust and you are not using an oxidation catalyst or NSCR, you must... 40 Protection of Environment 13 2010-07-01 2010-07-01 false What performance tests and other...
Batchwise growth of silica cone patterns via self-assembly of aligned nanowires.
Luo, Shudong; Zhou, Weiya; Chu, Weiguo; Shen, Jun; Zhang, Zengxing; Liu, Lifeng; Liu, Dongfang; Xiang, Yanjuan; Ma, Wenjun; Xie, Sishen
2007-03-01
Silica-cone patterns self-assembled from well-aligned nanowires are synthesized using gallium droplets as the catalyst and silicon wafers as the silicon source. The cones form a triangular pattern array radially on almost the whole surface of the molten Ga ball. Detailed field-emission scanning electron microscopy (SEM) analysis shows that the cone-pattern pieces frequently slide off and are detached from the molten Ga ball surface, which leads to the exposure of the catalyst surface and the growth of a new batch of silicon oxide nanowires as well as the cone patterns. The processes of growth and detachment alternate, giving rise to the formation of a volcano-like or a flower-like structure with bulk-quantity pieces of cone patterns piled up around the Ga ball. Consequently, the cone-patterned layer grows batch by batch until the reaction is terminated. Different to the conventional metal-catalyzed growth model, the batch-by-batch growth of the triangular cone patterns proceeds on the molten Ga balls via alternate growth on and detachment from the catalyst surface of the patterns; the Ga droplet can be used continuously and circularly as an effective catalyst for the growth of amorphous SiO(x) nanowires during the whole growth period. The intriguing batchwise growth phenomena may enrich our understanding of the vapour-liquid-solid (VLS) growth mechanism for the catalyst growth of nanowires or other nanostructures and may offer a different way of self-assembling novel silica nanostructures.
Yang, Tao; Fukuda, Ryoichi; Hosokawa, Saburo; Tanaka, Tsunehiro; Sakaki, Shigeyoshi; Ehara, Masahiro
2017-04-07
Single-atom catalysts have attracted much interest recently because of their excellent stability, high catalytic activity, and remarkable atom efficiency. Inspired by the recent experimental discovery of a highly efficient single-atom catalyst Pd 1 /γ-Al 2 O 3 , we conducted a comprehensive DFT study on geometries, stabilities and CO oxidation catalytic activities of M 1 /γ-Al 2 O 3 (M=Pd, Fe, Co, and Ni) by using slab-model. One of the most important results here is that Ni 1 /Al 2 O 3 catalyst exhibits higher activity in CO oxidation than Pd 1 /Al 2 O 3 . The CO oxidation occurs through the Mars van Krevelen mechanism, the rate-determining step of which is the generation of CO 2 from CO through abstraction of surface oxygen. The projected density of states (PDOS) of 2 p orbitals of the surface O, the structure of CO-adsorbed surface, charge polarization of CO and charge transfer from CO to surface are important factors for these catalysts. Although the binding energies of Fe and Co with Al 2 O 3 are very large, those of Pd and Ni are small, indicating that the neighboring O atom is not strongly bound to Pd and Ni, which leads to an enhancement of the reactivity of the O atom toward CO. The metal oxidation state is suggested to be one of the crucial factors for the observed catalytic activity.
Energetics of Elementary Steps in Catalysis and Their Use to Search for New Catalysts
NASA Astrophysics Data System (ADS)
Wolcott, Christopher A.
We live in a society based upon the mass production of chemicals. Whether it is the fuel in a car, the fertilizers used to make food, or the plastics present in just about everything, these chemicals are so ubiquitous that it is difficult to imagine living in a world without them. Nearly all consumer chemicals are produced through a catalytic process, the vast majority of which are heterogeneous. On top of their current, massive presence, heterogeneous catalysts are also expected to play an important role in new emerging technologies such as fuel cells, hydrogen production, green chemistry, and more. Considering their ubiquity in the present and their potential uses in the future, it is no surprise that improving catalyst performance is a very active area of research. Yet despite their ubiquity, and despite their long history of active study, there remains much which is unknown about the fundamentals of catalysts on surfaces. One of the major gaps is in quantitative understanding of the energetics of elementary steps in catalytic reactions on surfaces. The stability or instability of molecules and molecular fragments adsorbed on surfaces in these elementary steps is KEY to understanding what makes one material an effective catalyst and another less effective. In general, one must use single-crystal model catalysts to produce well-defined adsorbates. Classic studies of the energetics of adsorbates on such surfaces have typically involved techniques (such as temperature programmed desorption or equilibrium adsorption experiments) which limit the types of systems which can be studied to those where adsorption is reversible. For most catalytic intermediates present in these elementary steps, this is not the case. Upon adsorption and heating many molecules fall apart and produce strongly bound adsorbates which further dissociate at higher temperatures, or will not leave the surface until they have reacted with something else. Single crystal adsorption calorimetry (SCAC) is a fairly new technique which allows one to probe the heats of formation of such adsorbates for the first time. In this thesis SCAC is used to study the dissociative adsorption of diiodomethane on Pt(111) to produce adsorbed -CH2 and -CH, and water on Fe 3O4(111) and NiO(111) to produce adsorbed -OH. This work expands the library of adsorbates on transition metal surfaces which has been studied by SCAC, and is among the first ever measurements of molecules on well-defined oxide surfaces using SCAC. These results are compared to density functional theory (DFT) calculations of adsorbate energetics, and their use as computational benchmarks is discussed. A new, universally-applicable method of data analysis for SCAC is also developed which allows for the extraction of heat data even in the presence of complex surface reaction/diffusion dynamics without any need for kinetic modeling as required in previous analysis methods, thus greatly expanding the versatility of SCAC. Finally a new method of computational catalyst screening is presented which uses the concept of degree of rate control to simplify calculations compared to the standard method developed by Jens Norskov's group. It greatly reduces the number of adsorbate energies needed to predict the reaction rate for a new catalyst, and provides greater accuracy when studying materials with similar properties to the reference catalyst used. The Norskov method is more robust when extended to materials that are dissimilar. The new method presented here is thus expected to be an important complimentary tool to Norskov's method for high-throughput computational screening. Taken together, the results presented in this dissertation show the importance of experimental measurements for guiding the development of fast quantum mechanical methods like DFT to more closely approach thru "chemical accuracy" in energetic prediction, and how one could use "chemically accurate" DFT energies to rapidly screen potential catalysts for computational catalyst discovery to advance energy and environmental technologies.
NASA Astrophysics Data System (ADS)
Botchwey, Christian
This thesis summarizes the methods and major findings of Ni-W(P)/gamma-Al 2O3 nitride catalyst synthesis, characterization, hydrotreating activity, kinetic analysis and correlation of the catalysts' activities to their synthesis parameters and properties. The range of parameters for catalyst synthesis were W (15-40 wt%), Ni (0-8 wt%), P (0-5 wt%) and nitriding temperature (TN) (500-900 °C). Characterization techniques used included: N2 sorption studies, chemisorption, elemental analysis, temperature programmed studies, x-ray diffraction, scanning electron microscopy, energy dispersive x-ray, infrared spectroscopy, transmission electron microscopy and x-ray absorption near edge structure. Hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatization (HDA) were performed at: temperature (340-380 °C), pressure (6.2-9.0 MPa), liquid hourly space velocity (1-3 h-1) and hydrogen to oil ratio (600 ml/ml, STP). The predominant species on the catalyst surface were Ni3N, W2N and bimetallic Ni2W3N. The bimetallic Ni-W nitride species was more active than the individual activities of the Ni3N and W2N. P increased weak acid sites while nitriding temperature decreased amount of strong acid sites. Low nitriding temperature enhanced dispersion of metal particles. P interacted with Al 2O3 which increased the dispersion of metal nitrides on the catalyst surface. HDN activity increased with Ni and P loading but decreased with increase in nitriding temperature (optimum conversion; 60 wt%). HDS and HDA activities went through a maximum with increase in the synthesis parameters (optimum conversions; 88. wt% for HDS and 47 wt% for HDA). Increase in W loading led to increase in catalyst activity. The catalysts were stable to deactivation and had the nitride structure conserved during hydrotreating in the presence of hydrogen sulfide. The results showed good correlation between hydrotreating activities (HDS and HDN) and the catalyst nitrogen content, number of exposed active sites, catalyst particle size and BET surface area. HDS and HDN kinetic analyses, using Langmuir-Hinshelwood models, gave activation energies of 66 and 32 kJ/mol, respectively. There were no diffusion limitations in the reaction process. Two active sites were involved in HDS reaction while one site was used for HDN. HDS and HDN activities of the Ni-W(P)/gamma-Al 2O3 nitride catalysts were comparable to the corresponding sulfides.
Lee, Sang Moon; Park, Kwang Hee; Kim, Sung Su; Kwon, Dong Wook; Hong, Sung Chang
2012-09-01
TiO2-supported manganese oxide catalysts formed using different calcination temperatures were prepared by using the wet-impregnation method and were investigated for their activity in the low-temperature selective catalytic reduction (SCR) of NO by NH3 with respect to the Mn valence and lattice oxygen behavior. The surface and bulk properties of these catalysts were examined using Brunauer-Emmett-Teller (BET) surface area, X-ray diffraction (XRD), temperature-programmed reduction (TPR), and temperature-programmed desorption (TPD). Catalysts prepared using lower calcination temperatures, which contained Mn4+ displayed high SCR activity at low temperatures and possessed several acid sites and active oxygen. The TPD analysis determined that the Brönsted and Lewis acid sites in the Mn/TiO2 catalysts were important for the low-temperature SCR at 80-160 and 200-350 degrees C, respectively. In addition, the available lattice oxygen was important for attaining high NO to NO2 oxidation at low temperatures. Recently, various Mn catalysts have been evaluated as SCR catalysts. However, there have been no studies on the relationship of adsorption and desorption properties and behavior of lattice oxygen according to the valence state for manganese oxides (MnO(x)). Therefore, in this study, the catalysts were prepared by the wet-impregnation method at different calcination temperatures in order to show the difference of manganese oxidation state. These catalysts were then characterized using various physicochemical techniques, including BET, XRD, TPR, and TPD, to understand the structure, oxidation state, redox properties, and adsorption and desorption properties of the Mn/TiO2 catalysts.
High aspect ratio catalytic reactor and catalyst inserts therefor
Lin, Jiefeng; Kelly, Sean M.
2018-04-10
The present invention relates to high efficient tubular catalytic steam reforming reactor configured from about 0.2 inch to about 2 inch inside diameter high temperature metal alloy tube or pipe and loaded with a plurality of rolled catalyst inserts comprising metallic monoliths. The catalyst insert substrate is formed from a single metal foil without a central supporting structure in the form of a spiral monolith. The single metal foil is treated to have 3-dimensional surface features that provide mechanical support and establish open gas channels between each of the rolled layers. This unique geometry accelerates gas mixing and heat transfer and provides a high catalytic active surface area. The small diameter, high aspect ratio tubular catalytic steam reforming reactors loaded with rolled catalyst inserts can be arranged in a multi-pass non-vertical parallel configuration thermally coupled with a heat source to carry out steam reforming of hydrocarbon-containing feeds. The rolled catalyst inserts are self-supported on the reactor wall and enable efficient heat transfer from the reactor wall to the reactor interior, and lower pressure drop than known particulate catalysts. The heat source can be oxygen transport membrane reactors.
Synergistic Catalysis between Pd and Fe in Gas Phase Hydrodeoxygenation of m-Cresol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Yongchun; Zhang, He; Sun, Junming
2014-10-31
In this work, a series of Pd/Fe2O3 catalysts were synthesized, characterized, and evaluated for the hydrodeoxygenation (HDO) of m-cresol. It was found that the addition of Pd remarkably promotes the catalytic activity of Fe while the product distributions resemble that of monometallic Fe catalyst, showing high selectivity towards the production of toluene (C-O cleavage without saturation of aromatic ring and C-C cleavage). Reduced catalysts featured with Pd patches on the top of reduced Fe nanoparticle surface, and the interaction between Pd and Fe was further confirmed using X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM) and X-ray absorption nearmore » edge fine structure (XANES). A possible mechanism, including Pd assisted H2 dissociation and Pd facilitated stabilization of metallic Fe surface as well as Pd enhanced product desorption, is proposed to be responsible for the high activity and HDO selectivity in Pd-Fe catalysts. The synergic catalysis derived from Pd-Fe interaction found in this work was proved to be applicable to other precious metal promoted Fe catalysts, providing a promising strategy for future design of highly active and selective HDO catalysts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhary, V.R.; Mulla, S.A.R.; Uphade, B.S.
1998-06-01
The influence of catalyst carrier or support (with different chemical compositions and surface properties), catalyst deposition method (viz., impregnation and coating), precursor for strontium oxide (SrO; Sr-nitrate, acetate, hydroxide, and carbonate), and loading of SrO and lanthanum oxide (La{sub 2}O{sub 3}; 0--25 wt%) on the surface properties and performance of catalyst in oxidative coupling of methane (OCM; at 850 C, gas hourly space velocity = 1.02 {times} 10{sup 5} cm{sup 3}/g{center_dot}h and CH{sub 4}/O{sub 2} = 4 or 16) was thoroughly investigated. The basicity, acidity, and O{sub 2} chemisorption of the catalysts were studied by the temperature programmed desorption (TPD)more » of CO{sub 2}, NH{sub 3}, and O{sub 2}, respectively, from 50 to 950 C. The total and strong basic sites, acidity, and OCM activity of the supported catalyst were strongly influenced by the support used and also by the La{sub 2}O{sub 3} loading on the support. The catalyst with a sintered low surface area porous silica-Alumina support and high (20 wt%) La{sub 2}O{sub 3} and SrO loadings showed the best performance in the OCM process. The OCM activity was influenced by SrO loading, but to a smaller extent, and also by the method of SrO deposition. The OCM activity of the supported catalysts could be related to their strong basic sites (measured in terms of the CO{sub 2} desorbed between 500 and 950 C).« less
Propagation of a plasma streamer in catalyst pores
NASA Astrophysics Data System (ADS)
Zhang, Quan-Zhi; Bogaerts, Annemie
2018-03-01
Although plasma catalysis is gaining increasing interest for various environmental applications, the underlying mechanisms are still far from understood. For instance, it is not yet clear whether and how plasma streamers can propagate in catalyst pores, and what is the minimum pore size to make this happen. As this is crucial information to ensure good plasma-catalyst interaction, we study here the mechanism of plasma streamer propagation in a catalyst pore, by means of a two-dimensional particle-in-cell/Monte Carlo collision model, for various pore diameters in the nm-range to μm-range. The so-called Debye length is an important criterion for plasma penetration into catalyst pores, i.e. a plasma streamer can penetrate into pores when their diameter is larger than the Debye length. The Debye length is typically in the order of a few 100 nm up to 1 μm at the conditions under study, depending on electron density and temperature in the plasma streamer. For pores in the range of ∼50 nm, plasma can thus only penetrate to some extent and at very short times, i.e. at the beginning of a micro-discharge, before the actual plasma streamer reaches the catalyst surface and a sheath is formed in front of the surface. We can make plasma streamers penetrate into smaller pores (down to ca. 500 nm at the conditions under study) by increasing the applied voltage, which yields a higher plasma density, and thus reduces the Debye length. Our simulations also reveal that the plasma streamers induce surface charging of the catalyst pore sidewalls, causing discharge enhancement inside the pore, depending on pore diameter and depth.
A molecule-like PtAu24(SC6H13)18 nanocluster as an electrocatalyst for hydrogen production
Kwak, Kyuju; Choi, Woojun; Tang, Qing; Kim, Minseok; Lee, Yongjin; Jiang, De-en; Lee, Dongil
2017-01-01
The theoretically predicted volcano plot for hydrogen production shows the best catalyst as the one that ensures that the hydrogen binding step is thermodynamically neutral. However, the experimental realization of this concept has suffered from the inherent surface heterogeneity of solid catalysts. It is even more challenging for molecular catalysts because of their complex chemical environment. Here, we report that the thermoneutral catalyst can be prepared by simple doping of a platinum atom into a molecule-like gold nanocluster. The catalytic activity of the resulting bimetallic nanocluster, PtAu24(SC6H13)18, for the hydrogen production is found to be significantly higher than reported catalysts. It is even better than the benchmarking platinum catalyst. The molecule-like bimetallic nanocluster represents a class of catalysts that bridge homogeneous and heterogeneous catalysis and may provide a platform for the discovery of finely optimized catalysts. PMID:28281526
Yang, Jinhui; Cooper, Jason K.; Toma, Francesca M.; ...
2016-11-07
Artificial photosystems are advanced by the development of conformal catalytic materials that promote desired chemical transformations, while also maintaining stability and minimizing parasitic light absorption for integration on surfaces of semiconductor light absorbers. We demonstrate that multifunctional, nanoscale catalysts that enable high-performance photoelectrochemical energy conversion can be engineered by plasma-enhanced atomic layer deposition. The collective properties of tailored Co 3 O 4 /Co(OH) 2 thin films simultaneously provide high activity for water splitting, permit efficient interfacial charge transport from semiconductor substrates, and enhance durability of chemically sensitive interfaces. Furthermore, these films comprise compact and continuous nanocrystalline Co 3 O 4more » spinel that is impervious to phase transformation and impermeable to ions, thereby providing effective protection of the underlying substrate. Moreover, a secondary phase of structurally disordered and chemically labile Co(OH) 2 is introduced to ensure a high concentration of catalytically active sites. Application of this coating to photovoltaic p + n-Si junctions yields best reported performance characteristics for crystalline Si photoanodes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, Donghai; Lebarbier, Vanessa M.; Rousseau, Roger
In a combined experimental and first-principles density functional theory (DFT) study, benzene steam reforming (BSR) over MgAl 2O 4 supported Rh and Ir catalysts was investigated. Experimentally, it has been found that both highly dispersed Rh and Ir clusters (1-2 nm) on the MgAl 2O 4 spinel support are stable during the BSR in the temperature range of 700-850°C. Compared to the Ir/MgAl 2O 4 catalyst, the Rh/MgAl 2O 4 catalyst is more active with higher benzene turnover frequency and conversion. At typical steam conditions with the steam-to-carbon ratio > 12, the benzene conversion is only a weak function ofmore » the H 2O concentration in the feed. This suggests that the initial benzene decomposition step rather than the benzene adsorption is most likely the rate-determined step in BSR over supported Rh and Ir catalysts. In order to understand the differences between the two catalysts, we followed with a comparative DFT study of initial benzene decomposition pathways over two representative model systems for each supported metal (Rh and Ir) catalysts. A periodic terrace (111) surface and an amorphous 50-atom metal cluster with a diameter of 1.0 nm were used to represent the two supported model catalysts under low and high dispersion conditions. Our DFT results show that the decreasing catalyst particle size enhances the benzene decomposition on supported Rh catalysts by lowering both C-C and C-H bond scission. The activation barriers of the C-C and the C-H bond scission decrease from 1.60 and 1.61 eV on the Rh(111) surface to 1.34 and 1.26 eV on the Rh50 cluster. For supported Ir catalysts, the decreasing particle size only affects the C-C scission. The activation barrier of the C-C scission of benzene decreases from 1.60 eV on the Ir(111) surface to 1.35 eV on the Ir50 cluster while the barriers of the C-H scission are practically the same. The experimentally measured higher BSR activity on the supported highly dispersed Rh catalyst can be rationalized by the thermodynamic limitation for the very first C-C bond scission of benzene on the small Ir50 catalyst. The C-C bond scission of benzene on the small Ir50 catalyst is highly endothermic although the barrier is competitive with the barriers of both the C-C and the C-H bond-breakings on the small Rh50 catalyst. The calculations also imply that, for the supported Rh catalysts the C-C and C-H bond scissions are competitive, independently of the Rh cluster sizes. After the initial dissociation step via either the C-C or the C-H bond scission, the C-H bond breaking seems to be more favorable rather than the C-C bond breaking on the larger Rh terrace surface. This work was financially supported by the United States Department of Energy’s Office of Biomass Program’s. Computing time was granted by a user project at the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.« less
MnO2/CNT supported Pt and PtRu nanocatalysts for direct methanol fuel cells.
Zhou, Chunmei; Wang, Hongjuan; Peng, Feng; Liang, Jiahua; Yu, Hao; Yang, Jian
2009-07-07
Pt/MnO2/carbon nanotube (CNT) and PtRu/MnO2/CNT nanocomposites were synthesized by successively loading hydrous MnO2 and Pt (or PtRu alloy) nanoparticles on CNTs and were used as anodic catalysts for direct methanol fuel cells (DMFCs). The existence of MnO2 on the surface of CNTs effectively increases the proton conductivity of the catalyst, which then could remarkably improve the performance of the catalyst in methanol electro-oxidation. As a result, Pt/MnO2/CNTs show higher electrochemical active surface area and better methanol electro-oxidation activity, compared with Pt/CNTs. As PtRu alloy nanoparticles were deposited on the surface of MnO2/CNTs instead of Pt, the PtRu/MnO2/CNT catalyst shows not only excellent electro-oxidation activity to methanol with forward anodic peak current density of 901 A/gPt but also good CO oxidation ability with lower preadsorbed CO oxidation onset potential (0.33 V vs Ag/AgCl) and peak potential (0.49 V vs Ag/AgCl) at room temperature.
Anion-π Catalysts with Axial Chirality.
Wang, Chao; Matile, Stefan
2017-09-04
The idea of anion-π catalysis is to stabilize anionic transition states by anion-π interactions on aromatic surfaces. For asymmetric anion-π catalysis, π-acidic surfaces have been surrounded with stereogenic centers. This manuscript introduces the first anion-π catalysts that operate with axial chirality. Bifunctional catalysts with tertiary amine bases next to π-acidic naphthalenediimide planes are equipped with a bulky aromatic substituent in the imide position to produce separable atropisomers. The addition of malonic acid half thioesters to enolate acceptors is used for evaluation. In the presence of a chiral axis, the selective acceleration of the disfavored but relevant enolate addition was much better than with point chirality, and enantioselectivity could be observed for the first time for this reaction with small-molecule anion-π catalysts. Enantioselectivity increased with the π acidity of the π surface, whereas the addition of stereogenic centers around the aromatic plane did not cause further improvements. These results identify axial chirality of the active aromatic plane generated by atropisomerism as an attractive strategy for asymmetric anion-π catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Moisture condensation behavior of hierarchically carbon nanotube-grafted carbon nanofibers.
Park, Kyu-Min; Lee, Byoung-Sun; Youk, Ji Ho; Lee, Jinyong; Yu, Woong-Reol
2013-11-13
Hierarchical micro/nanosurfaces with nanoscale roughness on microscale uneven substrates have been the subject of much recent research interest because of phenomena such as superhydrophobicity. However, an understanding of the effect of the difference in the scale of the hierarchical entities, i.e., nanoscale roughness on microscale uneven substrates as opposed to nanoscale roughness on (a larger) nanoscale uneven surface, is still lacking. In this study, we investigated the effect of the difference in scale between the nano- and microscale features. We fabricated carbon nanotube-grafted carbon nanofibers (CNFs) by dispersing a catalyst precursor in poly (acrylonitrile) (PAN) solution, electrospinning the PAN/catalyst precursor solution, carbonization of electrospun PAN nanofibers, and direct growth of carbon nanotubes (CNTs) on the CNFs. We investigated the relationships between the catalyst concentrations, the size of catalyst nanoparticles on CNFs, and the sizes of CNFs and CNTs. Interestingly, the hydrophobic behavior of micro/nano and nano/nano hierarchical surfaces with water droplets was similar; however a significant difference in the water condensation behavior was observed. Water condensed into smaller droplets on the nano/nano hierarchical surface, causing it to dry much faster.
NASA Astrophysics Data System (ADS)
Jenie, S. N. Aisyiyah; Kristiani, Anis; Kustomo, Simanungkalit, Sabar; Mansur, Dieni
2017-11-01
Nanomaterials based on carbon exhibits unique properties, both physical and chemical, that can be utilized in various application, including catalyst. These nanomaterials were prepared through pyrolysis-carbonization process of biomass, oil palm empty fruit bunches. The effect of carbonization temperature in range of 500°C-600°C were also studied. The magnetic nanobiochar samples, MBC, were sulfonated by using sulfuric acid to increase their properties as solid acid catalyst. Their chemical and physical properties were characterized by Surface Area Analyzer and Porositymeter, X-Ray Diffraction, Scanning Electron Microscopy, Fourier Transform Infra-Red. The magnetic biochar samples obtained from carbonization at 873 K, MBC02-SO3H, was proven to have higher surface area, crystallinity properties and surface chemical composition after sulfonation process, which were confirmed by the BET, XRD and FT-IR analysis. Moreover, sample MBC02-SO3H exhibit promising catalytic acitivity in a catalysed esterification reaction, producing an ester yield of 64%. The result from this work opens new opportunities for the development of magnetic heterogenous acid catalyst from biomass waste.
Alkali- and Sulfur-Resistant Tungsten-Based Catalysts for NOx Emissions Control.
Huang, Zhiwei; Li, Hao; Gao, Jiayi; Gu, Xiao; Zheng, Li; Hu, Pingping; Xin, Ying; Chen, Junxiao; Chen, Yaxin; Zhang, Zhaoliang; Chen, Jianmin; Tang, Xingfu
2015-12-15
The development of catalysts with simultaneous resistance to alkalis and sulfur poisoning is of great importance for efficiently controlling NOx emissions using the selective catalytic reduction of NOx with NH3 (SCR), because the conventional V2O5/WO3-TiO2 catalysts often suffer severe deactivation by alkalis. Here, we support V2O5 on a hexagonal WO3 (HWO) to develop a V2O5/HWO catalyst, which has exceptional resistance to alkali and sulfur poisoning in the SCR reactions. A 350 μmol g(-1) K(+) loading and the presence of 1,300 mg m(-3) SO2 do not almost influence the SCR activity of the V2O5/HWO catalyst, and under the same conditions, the conventional V2O5/WO3-TiO2 catalysts completely lost the SCR activity within 4 h. The strong resistance to alkali and sulfur poisoning of the V2O5/HWO catalysts mainly originates from the hexagonal structure of the HWO. The HWO allows the V2O5 to be highly dispersed on the external surfaces for catalyzing the SCR reactions and has the relatively smooth surfaces and the size-suitable tunnels specifically for alkalis' diffusion and trapping. This work provides a useful strategy to develop SCR catalysts with exceptional resistance to alkali and sulfur poisoning for controlling NOx emissions from the stationary source and the mobile source.
NASA Astrophysics Data System (ADS)
Saha, Subrata; Hamid, Sharifah Bee Abd; Ali, Tammar Hussein
2017-02-01
A mesoporous, highly crystalline Cu-Ti composite oxide catalyst was prepared via facile, simple and modified solution method varying Cu and Ti ratio for selective liquid phase oxidation of vanillyl alcohol. Various spectroscopic procedures were employed to systematically characterize the catalyst structural and physicochemical properties. The defect chemistry of the catalyst was confirmed from the presence of surface defects revealed through HRTEM imagery between the TiO2 (101) and Cu3TiO4 (012) planes, complemented by the XRD profiling. Further, presence of oxygen vacancy evidenced by O 1s XPS spectra were observed on the catalyst surface. Moreover, the stoichiometry of Cu and Ti in the catalyst synthesis protocol was notably found to be the vital determinant to alter the redox properties of Cu-Ti composite oxide catalyst supported by H2-TPR. O2-TPD analysis. Moreover, a rational investigation was done using different oxidants such as air and H2O2 with variables reaction conditions. The catalyst was active for liquid phase oxidation of vanillyl alcohol to vanillin with performance of 66% conversion and 71% selectivity using H2O2 in base free condition. And also, catalytic activity was significantly improved by 94% conversion with 86% selectivity to vanillin in liquid phase aerobic oxidation at the optimum reaction conditions. To expand the superiority of the catalyst, three times reusability study was also examined with appreciable catalytic activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orsenigo, C.; Lietti, L.; Tronconi, E.
1998-06-01
Transient experiments performed over synthesized and commercial V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} catalysts during catalyst conditioning and during step changes of the operating variables (SO{sub 2} inlet concentration and temperature) show that conditioning of the catalyst is required to attain significant and reproducible steady-state data in both the reduction of NO{sub x} and the oxidation of SO{sub 2}. The response time of conditioning for NO{sub x} reduction is of a few hours and that for SO{sub 2} oxidation is of several hours. Fourier transform infrared spectroscopy temperature programmed decomposition, and thermogravimetric measurements showed that catalyst conditioning is associated with amore » slow process of buildup of sulfates: the different characteristic conditioning times observed in the reduction of NO{sub x} and in the oxidation of SO{sub 2} suggest that the buildup of sulfates occurs first at the vanadyl sites and later on at the exposed titania surface. Formation of sulfates at or near the vanadyl sites increases the reactivity in the de-NO{sub x} reaction, possibly due to the increase in the Broensted and Lewis acidity of the catalyst, whereas the titania surface acts as SO{sub 3} acceptor and affects the outlet SO{sub 3} concentration during catalyst conditioning for the SO{sub 2} oxidation reaction. The response time to step changes in SO{sub 2} concentration and temperature is of a few hours in the case of SO{sub 2} oxidation and much shorter in the case of NO{sub x} reduction. The different time responses associated with conditioning and with step changes in the settings of the operating variables have been rationalized in terms of the different extent of perturbation of the sulfate coverage experienced by the catalyst.« less
Liu, Zongyuan; Senanayake, Sanjaya D.; Rodriguez, Jose A.
2016-11-15
Bulk metallic nickel is a poor catalyst for the reforming of oxygenates being deactivated by the deposition of coke. In contrast, Ni-ceria is an active system for the catalytic extraction of H 2 from the ethanol steam reforming reaction (ESR, C 2H 5OH + 3H 2O ↔ 2CO 2 + 6H 2). Numerous studies, with model (well-defined crystal surfaces) and technical (high surface area powders) catalysts, have been devoted to understand the fundamental role of each catalyst component, the performance of adjacent sites in the metal-oxide interface, and the complex mechanistic steps that convert two oxygenated reactants (ethanol and Hmore » 2O) into H 2. The size and low loading of Ni on ceria facilitate metal-oxide support interactions that probably enhance the reactivity of the system. To establish the precise role of both Ni and Ce is challenging. However it is clear that both Ni and Ce are associated with the dissociation of H 2O (OH + H), while ceria readily adsorbs and partially dissociates ethanol (i.e. ethoxy formation). The most difficult step of Csingle bondC bond dissociation likely occurs only on Ni or at the Ni-Ce interface. H 2O and OH remain as important agents for the prevention of excess C build up during the Csingle bondH/Csingle bondC dissociation process. Often, deactivation upon C build up, is a direct result of Ni sintering and decoupling of the Ni-Ce interactions. One strategy to maintain good activity and stability is to protect the Ni-Ce interaction, and this can be achieved through the use of solid solutions (Ce 1–xNi xO 2–y) or by employing stabilizing agents such as W (Ni xW yCe zO 2). In this paper, we present and discuss the most recent work for the ESR reaction and show the important role of ceria which participates directly in the reaction and also enhances catalytic activity through metal-support interactions.« less
Stellate macroporous silica nanospheres in bio-macromolecules encapsulation and delivery
NASA Astrophysics Data System (ADS)
Chi, Hao-Hsin
This project focused on using mesoporous silica as a solid support to encapsulate enzymes for operating a highly economic, and recyclable biomass processing system. The main objective is to turn non-food biomass sources into food products. Enzymes are macromolecules with the structural backbone of proteins or ribonucleic acid sequences (RNAs) which work as catalysts in living organisms. Enzymes have the advantage of being the least contaminating catalyst due to normal catalyst might generate toxic by-product, and preferable to organic and inorganic catalysts, especially when used for product related to human used, which require biocompatibility of final product. However, there are several disadvantages in enzyme utilization. Their fabrication is time-consuming and requires elaborated molecular biology processes. Most of the enzymes need well-defined reaction conditions to be functional and operate at high yield. Unfortunately, although they are reusable as normal catalysts, it proves difficult to extract or reuse the enzymes from a reaction. Also, enzyme molecules are easily degradable and demand proper storage. To overcome some of the disadvantages, especially regarding stability to degradation, recovery, and reusability, immobilization of enzyme on solid support has become a thriving methodology. In recent years, mesoporous silica nanomaterials(MSN) have been at the forefront of enzyme immobilization given their extensive surface area, which provides capability to increase enzyme loading and for their demonstrate ability to protect enzyme from degradation, thus enabling high recyclability. Mesoporous silica is biocompatible and has already been used for several applications included. Catalysis, drug delivery, and Bio-imaging. Previously published research utilized mesoporous silica to deliver drugs, DNAs, RNAs or encapsulate single enzyme. The objective of this research is completed to develop a new porous silica platform that is unique in its porosity structure and develop it into a dual-enzyme platform with the scope of demonstrating a multi-reaction bio nanocatalyst. In regard to the further applications, the stellate MSN can be used as drug delivery or become a package of the biomacromolecule delivery system kit.
NASA Astrophysics Data System (ADS)
Wang, Jing; Yuan, Changkun; Yao, Nan; Li, Xiaonian
2018-05-01
The Ni/SiO2 catalysts with trace Ru promoter were prepared by either polyethylene glycol (PEG)-assisted or PEG-free impregnation method and were used in CO methanation reaction. The presence of PEG molecules was beneficial to form bimetallic Ni-Ru particles with smaller size, better anti-sintering property and low-temperature reducibility on SiO2 support than the conventional PEG-free derived NiRu/SiO2 catalyst. Moreover, it was found that the low-temperature reduction at 573 K was favorable to form bimetallic Ni-Ru particles with more surface Ru atoms. This nanostructure not only allowed the electron transfer happening from Ru0 to Ni0 which led to its higher electron cloud density, but also could reduce the deposition of less reactive carbon on the catalyst. Therefore, the low-temperature reduction enhanced the reaction stability of NiRu/SiO2 catalyst. The increase of reduction temperature from 573 K to 693 K did not change the size of metallic particles, but decreased the amount of surface Ru atoms. It deactivated the catalyst due to the deposition of more less reactive carbon. Although the higher reduction temperature (e.g. 693 and 793 K) was unfavorable to the reaction stability, it created more surface defects. The amount of defects showed a volcano-shaped correlation with the reduction temperature which was consistent with the variation tendency of turnover frequency of CO conversion. Consequently, it evidenced that the amount of surface Ru atoms and defects on the bimetallic Ni-Ru particle played the critical roles on the stability and the intrinsic activity of methanation, respectively.
NASA Astrophysics Data System (ADS)
Inaba, Masanori; Quinson, Jonathan; Arenz, Matthias
2017-06-01
We investigated the influence of the ink properties of proton exchange membrane fuel cell (PEMFC) catalysts on the oxygen reduction reaction (ORR) activity determined in thin film rotating disk electrode (TF-RDE) measurements. It was found that the adaption of a previously reported ink recipe to home-made catalysts does not lead to satisfying results, although reported work could be reproduced using commercial catalyst samples. It is demonstrated that the pH of the catalyst ink, which has not been addressed in previous TF-RDE studies, is an important parameter that needs to be carefully controlled to determine the intrinsic ORR activity of high surface area catalysts.
NASA Astrophysics Data System (ADS)
Han, Weiliang; Huang, Xiaosheng; Lu, Gongxuan; Tang, Zhicheng
2018-04-01
In this paper, the support surface properties (surface oxygen-containing functional groups and structure defects) of porous carbon spheres (PCSs) were carefully designed by as UV assisted O3 technology. CO catalytic oxidation reactions performed over the supported Pd-Ce catalysts on modified porous carbon spheres. Results illustrated that the Pd-Ce/PCSs catalysts exhibited high CO catalytic activity, which were increased at first, and then decreased with UV assistant-O3 treatment time. The Pd-Ce/PCSs-30 catalyst exhibited superior activity and T100 was only 15 °C. Moreover, the Pd-Ce/PCSs-30 catalyst obtained an excellent stability, and 100% CO conversion could be maintained as the time on stream evolutes up to 16h in the presence of H2O in the feed. Based on characterization results, there were two main factors: (a) the surface area and pore volume were decreased with UV-O3 treatment, leading to the enhancement of Pd-Ce particle size, and the decrease of Pd-Ce nanoparticle dispersion and mass transfer efficiency, as well as the decrease of catalytic activity of Pd-Ce/PCSs, (b) the surface oxygen content and defect sites of PCSs were raised by UV-O3 treatment, which could improve surface loading of Pd, Ce and enhance Pdsbnd Osbnd Ce bonding interactions, thereby increasing the activity of Pd-Ce/PCSs.
NASA Astrophysics Data System (ADS)
Li, Hailong; Gao, Yan; Xiong, Zhuo; Liao, Chen; Shih, Kaimin
2018-05-01
A series of Au-g-C3N4 (Au-CN) catalysts were prepared through a NaBH4-reduction method using g-C3N4 (CN) from pyrolysis of urea as precursor. The catalysts' surface area, crystal structure, surface morphology, chemical state, functional group composition and optical properties were characterized by X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, ultraviolet visible (UV-vis) diffuse reflectance spectra, fourier transform infrared, photoluminescence and transient photocurrent analysis. The carbon dioxide (CO2) photoreduction activities under ultraviolet visible (UV-vis) light irradiation were significantly enhanced when gold (Au) was loaded on the surface of CN. 2Au-CN catalyst with Au to CN mole ratio of 2% showed the best catalytic activity. After 2 h UV-vis light irradiation, the methane (CH4) yield over the 2Au-CN catalyst was 9.1 times higher than that over the pure CN. The CH4 selectivity also greatly improved for the 2Au-CN compared to the CN. The deposited Au nanoparticles facilitated the separation of electron-hole pairs on the CN surface. Moreover, the surface plasmon resonance effect of Au further promoted the generation of hot electrons and visible light absorption. Therefore, Au loading significantly improved CO2 photoreduction performance of CN under UV-vis light irradiation.
Activation of molecular catalysts using semiconductor quantum dots
Meyer, Thomas J [Chapel Hill, NC; Sykora, Milan [Los Alamos, NM; Klimov, Victor I [Los Alamos, NM
2011-10-04
Photocatalytic materials based on coupling of semiconductor nanocrystalline quantum dots (NQD) and molecular catalysts. These materials have capability to drive or catalyze non-spontaneous chemical reactions in the presence of visible radiation, ultraviolet radiation, or both. The NQD functions in these materials as a light absorber and charge generator. Following light absorption, the NQD activates a molecular catalyst adsorbed on the surface of the NQD via transfer of one or more charges (either electrons or electron-holes) from the NQD to the molecular catalyst. The activated molecular catalyst can then drive a chemical reaction. A photoelectrolytic device that includes such photocatalytic materials is also described.
Combined catalysts for the combustion of fuel in gas turbines
Anoshkina, Elvira V.; Laster, Walter R.
2012-11-13
A catalytic oxidation module for a catalytic combustor of a gas turbine engine is provided. The catalytic oxidation module comprises a plurality of spaced apart catalytic elements for receiving a fuel-air mixture over a surface of the catalytic elements. The plurality of catalytic elements includes at least one primary catalytic element comprising a monometallic catalyst and secondary catalytic elements adjacent the primary catalytic element comprising a multi-component catalyst. Ignition of the monometallic catalyst of the primary catalytic element is effective to rapidly increase a temperature within the catalytic oxidation module to a degree sufficient to ignite the multi-component catalyst.
NASA Astrophysics Data System (ADS)
Almerindo, Gizelle I.; Probst, Luiz F. D.; Campos, Carlos E. M.; de Almeida, Rusiene M.; Meneghetti, Simoni M. P.; Meneghetti, Mario R.; Clacens, Jean-Marc; Fajardo, Humberto V.
2011-10-01
A simple method to prepare magnesium oxide catalysts for biodiesel production by transesterification reaction of soybean oil with ethanol is proposed. The method was developed using a metal-chitosan complex. Compared to the commercial oxide, the proposed catalysts displayed higher surface area and basicity values, leading to higher yield in terms of fatty acid ethyl esters (biodiesel). The deactivation of the catalyst due to contact with CO2 and H2O present in the ambient air was verified. It was confirmed that the active catalytic site is a hydrogenocarbonate adsorption site.
Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis
Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Bee Abd Hamid, Sharifah
2014-01-01
The lack of stability is a challenge for most heterogeneous catalysts. During operations, the agglomeration of particles may block the active sites of the catalyst, which is believed to contribute to its instability. Recently, titanium oxide (TiO2) was introduced as an alternative support material for heterogeneous catalyst due to the effect of its high surface area stabilizing the catalysts in its mesoporous structure. TiO2 supported metal catalysts have attracted interest due to TiO2 nanoparticles high activity for various reduction and oxidation reactions at low pressures and temperatures. Furthermore, TiO2 was found to be a good metal oxide catalyst support due to the strong metal support interaction, chemical stability, and acid-base property. The aforementioned properties make heterogeneous TiO2 supported catalysts show a high potential in photocatalyst-related applications, electrodes for wet solar cells, synthesis of fine chemicals, and others. This review focuses on TiO2 as a support material for heterogeneous catalysts and its potential applications. PMID:25383380
Integrated current collector and catalyst support
Bregoli, Lawrence J.
1985-10-22
An integrated current collecting electrode for a molten carbonate fuel cell includes a corrugated metal conductive strip positioned in contact with a catalyst layer. The corrugations of the metal strip form a plurality of gas channels immediately adjacent the surface of the catalyst through which a reactant gas flows. Each channel is filled with a particulate material to maintain separation between the metal strip and the catalyst in ensuring gas channel integrity. The catalyst may be in the form of a compacted, particulate material provided the particle size of the material within the gas channels is larger than that of the catalyst particles to prevent catalyst migration to the metal conductor and provide reactant gas access to the catalyst layer. The gas channels formed by the corrugations of the metal strip are arranged in an offset pattern along the direction of gas flow for improved reactant gas distribution to the catalyst layer. The particulate material positioned within the gas flow channels may be a ceramic conductor such as a perovskite or a spinel for enhanced current collection.
Integrated current collector and catalyst support
Bregoli, L.J.
1984-10-17
An integrated current collecting electrode for a molten carbonate fuel cell includes a corrugated metal conductive strip positioned in contact with a catalyst layer. The corrugations of the metal strip form a plurality of gas channels immediately adjacent the surface of the catalyst through which a reactant gas flows. Each channel is filled with a particulate material to maintain separation between the metal strip and the catalyst in ensuring gas channel integrity. The catalyst may be in the form of a compacted, particulate material provided the particle size of the material within the gas channels is larger than that of the catalyst particles to prevent catalyst migration to the metal conductor and provide reactant gas access to the catalyst layer. The gas channels formed by the corrugations of the metal strip are arranged in an offset pattern along the direction of gas flow for improved reactant gas distribution to the catalyst layer. The particulate material positioned within the gas flow channels may be a ceramic conductor such as a perovskite or a spinel for enhanced current collection.
Chen, Zhao-Yang; Duan, Long-Fa; Sheng, Tian; Lin, Xiao; Chen, Ya-Feng; Chu, You-Qun; Sun, Shi-Gang; Lin, Wen-Feng
2017-06-21
Core-shell composites with strong phase-phase contact could provide an incentive for catalytic activity. A simple, yet efficient, H 2 O-mediated method has been developed to synthesize a mesoscopic core-shell W@WC architecture with a dodecahedral microstructure, via a one-pot reaction. The H 2 O plays an important role in the resistance of carbon diffusion, resulting in the formation of the W core and W-terminated WC shell. Density functional theory (DFT) calculations reveal that adding W as core reduced the oxygen adsorption energy and provided the W-terminated WC surface. The W@WC exhibits significant electrocatalytic activities toward hydrogen evolution and nitrobenzene electroreduction reactions, which are comparable to those found for commercial Pt/C, and substantially higher than those found for meso- and nano-WC materials. The experimental results were explained by DFT calculations based on the energy profiles in the hydrogen evolution reactions over WC, W@WC, and Pt model surfaces. The W@WC also shows a high thermal stability and thus may serve as a promising more economical alternative to Pt catalysts in these important energy conversion and environmental protection applications. The current approach can also be extended or adapted to various metals and carbides, allowing for the design and fabrication of a wide range of catalytic and other multifunctional composites.
Zhou, Min; Weng, Qunhong; Popov, Zakhar I; Yang, Yijun; Antipina, Liubov Yu; Sorokin, Pavel B; Wang, Xi; Bando, Yoshio; Golberg, Dmitri
2018-05-22
Electrocatalytic hydrogen evolution reaction (HER) in alkaline solution is hindered by its sluggish kinetics toward water dissociation. Nickel-based catalysts, as low-cost and effective candidates, show great potentials to replace platinum (Pt)-based materials in the alkaline media. The main challenge regarding this type of catalysts is their relatively poor durability. In this work, we conceive and construct a charge-polarized carbon layer derived from carbon quantum dots (CQDs) on Ni 3 N nanostructure (Ni 3 N@CQDs) surfaces, which simultaneously exhibit durable and enhanced catalytic activity. The Ni 3 N@CQDs shows an overpotential of 69 mV at a current density of 10 mA cm -2 in a 1 M KOH aqueous solution, lower than that of Pt electrode (116 mV) at the same conditions. Density functional theory (DFT) simulations reveal that Ni 3 N and interfacial oxygen polarize charge distributions between originally equal C-C bonds in CQDs. The partially negatively charged C sites become effective catalytic centers for the key water dissociation step via the formation of new C-H bond (Volmer step) and thus boost the HER activity. Furthermore, the coated carbon is also found to protect interior Ni 3 N from oxidization/hydroxylation and therefore guarantees its durability. This work provides a practical design of robust and durable HER electrocatalysts based on nonprecious metals.
NASA Astrophysics Data System (ADS)
Wei, Ying; Zhang, Xinyuan; Luo, Zhiyong; Tang, Dian; Chen, Changxin; Zhang, Teng; Xie, Zailai
2017-07-01
In this study, hydrothermal carbonization (HTC) was applied for surface functionalization of carbon nanotubes (CNTs) in the presence of glucose and urea. The HTC process allowed the deposition of thin nitrogen-doped carbon layers on the surface of the CNTs. By controlling the ratio of glucose to urea, nitrogen contents of up to 1.7 wt% were achieved. The nitrogen-doped carbon nanotube-supported Pd catalysts exhibited superior electrochemical activity for ethanol oxidation relative to the pristine CNTs. Importantly, a 1.5-fold increase in the specific activity was observed for the Pd/HTC-N1.67%CNTs relative to the catalyst without nitrogen doping (Pd/HTC-CNTs). Further experiments indicated that the introduction of nitrogen species on the surface of the CNTs improved the Pd(0) loading and increased the binding energy.
Study on Endurance and Performance of Impregnated Ruthenium Catalyst for Thruster System.
Kim, Jincheol; Kim, Taegyu
2018-02-01
Performance and endurance of the Ru catalyst were studied for nitrous oxide monopropellant thruster system. The thermal decomposition of N2O requires a considerably high temperature, which make it difficult to be utilized as a thruster propellant, while the propellant decomposition temperature can be reduced by using the catalyst through the decomposition reaction with the propellant. However, the catalyst used for the thruster was frequently exposed to high temperature and high-pressure environment. Therefore, the state change of the catalyst according to the thruster operation was analyzed. Characterization of catalyst used in the operation condition of the thruster was performed using FE-SEM and EDS. As a result, performance degradation was occurred due to the volatilization of Ru catalyst and reduction of the specific surface area according to the phase change of Al2O3.
Nickel-based anodic electrocatalysts for fuel cells and water splitting
NASA Astrophysics Data System (ADS)
Chen, Dayi
Our world is facing an energy crisis, so people are trying to harvest and utilize energy more efficiently. One of the promising ways to harvest energy is via solar water splitting to convert solar energy to chemical energy stored in hydrogen. Another of the options to utilize energy more efficiently is to use fuel cells as power sources instead of combustion engines. Catalysts are needed to reduce the energy barriers of the reactions happening at the electrode surfaces of the water-splitting cells and fuel cells. Nickel-based catalysts happen to be important nonprecious electrocatalysts for both of the anodic reactions in alkaline media. In alcohol fuel cells, nickel-based catalysts catalyze alcohol oxidation. In water splitting cells, they catalyze water oxidation, i.e., oxygen evolution. The two reactions occur in a similar potential range when catalyzed by nickel-based catalysts. Higher output current density, lower oxidation potential, and complete substrate oxidation are preferred for the anode in the applications. In this dissertation, the catalytic properties of nickel-based electrocatalysts in alkaline medium for fuel oxidation and oxygen evolution are explored. By changing the nickel precursor solubility, nickel complex nanoparticles with tunable sizes on electrode surfaces were synthesized. Higher methanol oxidation current density is achieved with smaller nickel complex nanoparticles. DNA aggregates were used as a polymer scaffold to load nickel ion centers and thus can oxidize methanol completely at a potential about 0.1 V lower than simple nickel electrodes, and the methanol oxidation pathway is changed. Nickel-based catalysts also have electrocatalytic activity towards a wide range of substrates. Experiments show that methanol, ethanol, glycerol and glucose can be deeply oxidized and carbon-carbon bonds can be broken during the oxidation. However, when comparing methanol oxidation reaction to oxygen evolution reaction catalyzed by current nickel-based catalysts, methanol oxidation suffers from high overpotential and catalyst poisoning by high concentration of substrates, so current nickel-based catalysts are more suitable to be used as oxygen evolution catalysts. A photoanode design that applies nickel oxides to a semiconductor that is incorporated with surface-plasmonic metal electrodes to do solar water oxidation with visible light is proposed.
NASA Astrophysics Data System (ADS)
Gupta, Ravi; Gupta, Neha; Sharma, Suresh C.
2018-04-01
An analytical model to study the role of a metal catalyst nanofilm in the nucleation, growth, and resulting structure of carbon nanofibers (CNFs) in low-temperature hydrogen diluted acetylene plasma has been developed. The model incorporates the nanostructuring of thin catalyst films, growth of CNF, restructuring of catalyst nanoparticles during growth, and its repercussion on the resulting structure (alignment of rolled graphene sheets around catalyst nanoparticles) by taking into account the plasma sheath formalization, kinetics of neutrals and positively charged species in the reactive plasma, flux of plasma species onto the catalyst front surface, and numerous surface reactions for carbon generation. In order to examine the influence of the catalyst film on the growth of CNFs, the numerical solutions of the model equations have been obtained for experimentally determined initial conditions and glow discharge plasma parameters. From the solutions obtained, we found that nanostructuring of thin films leads to the formation of small nanoparticles with high surface number density. The CNF nucleates over these small-sized nanoparticles grow faster and attain early saturation because of the quick poisoning of small-sized catalyst particles, and contain only a few graphitic shells. However, thick nanofilms result in shorter CNFs with large diameters composed of many graphitic shells. Moreover, we found that the inclination of graphitic shells also depends on the extent up to which the catalyst can reconstruct itself during the growth. The small nanoparticles show much greater elongation along the growth axis and also show a very small difference between their tip and base diameter during the growth due to which graphitic shells align at very small angles as compared to the larger nanoparticles. The present study is useful to synthesize the thin and more extended CNFs/CNTs having a smaller opening angle (inclination angle of graphene layers) as the opening angle has a significant influence on their field emission properties. The comparisons of these theoretical findings to the experimental observations confirm the adequacy of the proposed model.
Pt skin on AuCu intermetallic substrate: a strategy to maximize Pt utilization for fuel cells.
Wang, Gongwei; Huang, Bing; Xiao, Li; Ren, Zhandong; Chen, Hao; Wang, Deli; Abruña, Héctor D; Lu, Juntao; Zhuang, Lin
2014-07-09
The dependence on Pt catalysts has been a major issue of proton-exchange membrane (PEM) fuel cells. Strategies to maximize the Pt utilization in catalysts include two main approaches: to put Pt atoms only at the catalyst surface and to further enhance the surface-specific catalytic activity (SA) of Pt. Thus far there has been no practical design that combines these two features into one single catalyst. Here we report a combined computational and experimental study on the design and implementation of Pt-skin catalysts with significantly improved SA toward the oxygen reduction reaction (ORR). Through screening, using density functional theory (DFT) calculations, a Pt-skin structure on AuCu(111) substrate, consisting of 1.5 monolayers of Pt, is found to have an appropriately weakened oxygen affinity, in comparison to that on Pt(111), which would be ideal for ORR catalysis. Such a structure is then realized by substituting the Cu atoms in three surface layers of AuCu intermetallic nanoparticles (AuCu iNPs) with Pt. The resulting Pt-skinned catalyst (denoted as Pt(S)AuCu iNPs) has been characterized in depth using synchrotron XRD, XPS, HRTEM, and HAADF-STEM/EDX, such that the Pt-skin structure is unambiguously identified. The thickness of the Pt skin was determined to be less than two atomic layers. Finally the catalytic activity of Pt(S)AuCu iNPs toward the ORR was measured via rotating disk electrode (RDE) voltammetry through which it was established that the SA was more than 2 times that of a commercial Pt/C catalyst. Taking into account the ultralow Pt loading in Pt(S)AuCu iNPs, the mass-specific catalytic activity (MA) was determined to be 0.56 A/mg(Pt)@0.9 V, a value that is well beyond the DOE 2017 target for ORR catalysts (0.44 A/mg(Pt)@0.9 V). These findings provide a strategic design and a realizable approach to high-performance and Pt-efficient catalysts for fuel cells.
NASA Astrophysics Data System (ADS)
Abdulloh, Abdulloh; Aminah, Nanik Siti; Triyono, Mudasir, Trisunaryanti, Wega
2016-03-01
Catalyst preparation and characterization of Al3+-bentonite for esterification of palmitic acid, oleic acid and linoleic acid has been done. Al3+-bentonite catalyst was prepared from natural bentonite of Turen Malang through cation exchange reaction using AlCl3 solution. The catalysts obtained were characterized by XRD, XRF, pyridine-FTIR and surface area analyser using the BET method. Catalyst activity test of Al3+-bentonite for esterification reaction was done at 65°C using molar ratio of metanol-fatty acid of 30:1 and 0.25 g of Al3+-bentonite catalyst for the period of ½, 1, 2, 3, 4 and 5 hours. Based on the characterization results, the Al3+-bentonite Turen Malang catalyst has a d-spacing of 15.63 Ǻ, acid sites of Brönsted and Lewis respectively of 230.79 µmol/g and 99.39 µmol/g, surface area of 507.3 m2/g and the average of radius pore of 20.09 Å. GC-MS analysis results of the oil phase after esterification reaction showed the formation of biodiesel (FAME: Fatty acid methyl ester), namely methyl palmitate, methyl oleate and methyl linoleate. The number of conversions resulted in esterification reaction using Al3+-bentonite Turen Malang catalyst was 74.61%, 37.75%, and 20, 93% for the esterification of palmitic acid, oleic acid and linoleic acid respectively.
Lagrangian Approach to Study Catalytic Fluidized Bed Reactors
NASA Astrophysics Data System (ADS)
Madi, Hossein; Hossein Madi Team; Marcelo Kaufman Rechulski Collaboration; Christian Ludwig Collaboration; Tilman Schildhauer Collaboration
2013-03-01
Lagrangian approach of fluidized bed reactors is a method, which simulates the movement of catalyst particles (caused by the fluidization) by changing the gas composition around them. Application of such an investigation is in the analysis of the state of catalysts and surface reactions under quasi-operando conditions. The hydrodynamics of catalyst particles within a fluidized bed reactor was studied to improve a Lagrangian approach. A fluidized bed methanation employed in the production of Synthetic Natural Gas from wood was chosen as the case study. The Lagrangian perspective was modified and improved to include different particle circulation patterns, which were investigated through this study. Experiments were designed to evaluate the concepts of the model. The results indicate that the setup is able to perform the designed experiments and a good agreement between the simulation and the experimental results were observed. It has been shown that fluidized bed reactors, as opposed to fixed beds, can be used to avoid the deactivation of the methanation catalyst due to carbon deposits. Carbon deposition on the catalysts tested with the Lagrangian approach was investigated by temperature programmed oxidation (TPO) analysis of ex-situ catalyst samples. This investigation was done to identify the effects of particles velocity and their circulation patterns on the amount and type of deposited carbon on the catalyst surface. Ecole Polytechnique Federale de Lausanne(EPFL), Paul Scherrer Institute (PSI)
Synthesis of TiO2-CNT hybrid nanocatalyst and its application in direct oxidation of H2S to S
NASA Astrophysics Data System (ADS)
Daraee, Maryam; Baniadam, Majid; Rashidi, Alimorad; Maghrebi, Morteza
2018-07-01
In this study, a TiO2-CNT hybrid catalyst has been synthesized and its catalytic activity in the oxidation of H2S to S has been investigated and compared with those of TiO2 nanoparticles and pyrolyzed TiO2-CNT hybrid (P-TiO2-CNT). The optimum catalyst amount was determined using central composite design (CCD) method. Catalysts were characterized by various analytical techniques. The H2S conversion, sulfur selectivity and yield at the optimal temperature of 200 °C and O2/H2S ratio of 0.5 were 98.3, 99.5 and 97%, respectively. TiO2-CNT16% catalyst has a higher surface area than TiO2 nanoparticles and P-TiO2-CNT. In addition, the former catalyst gives a high conversion of H2S and sulfur selectivity at 200 °C and O2/H2S ratio of 0.5 compared with the latter two catalysts. The superior conversion (over 10%) of TiO2-CNT16% hybrid compared to TiO2 nanoparticles can be attributed to the synergistic effects of TiO2 and CNT, the reduced band gap of TiO2-CNT16% hybrid and high specific surface area of the catalyst.
NASA Astrophysics Data System (ADS)
Li, Ming-yuan; Guo, Rui-tang; Hu, Chang-xing; Sun, Peng; Pan, Wei-guo; Liu, Shu-ming; Sun, Xiao; Liu, Shuai-wei; Liu, Jian
2018-04-01
The deactivation of SCR catalyst caused by K species contained in the fly ash would suppress its DeNOx performance. In this study, it was manifested that the modification of Ce/TiO2 catalyst with P could enhance its K tolerance. To understand the promotion mechanism, the fresh and poisoned catalyst samples were subjected to the characterization techniques including BET, XRD, XPS, H2-TPR, NH3-TPD and in situ DRIFT. The results elucidated that the introduction of P species could increase the reducibility of Ce species and generate more surface chemisorbed oxygen, along with the strengthened surface acidity for NH3 adsorption. It seemed that the NH3-SCR reaction mechanism over Ce/TiO2 catalyst was a combination of L-H mechanism (<200 °C) and E-R mechanism (≥200 °C). After the addition of P species, the NO oxidation over Ce/TiO2 catalyst was also accelerated, accompanied by the broadened temperature window for the NH3-SCR reaction under the control of L-H mechanism. The promoted NH3 species adsorption and the generated more NO2 over P-Ce/TiO2 catalyst were conducive to the NH3-SCR reaction through L-H pathway, which might be the primary reason for its good K resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cullen, David A; More, Karren Leslie; Atanasoska, Liliana
Electron microscopy and X-ray photoelectron spectroscopy (XPS) methods have been utilized to study the role of oxygen evolution reaction (OER) catalysts in mitigating degradation arising from start-up/shutdown events. Pt nanostructured thin films (NSTF) were coated with a Ru0.1Ir0.9 OER catalyst at loadings ranging from 1 to 10 g/cm2 and submitted to 5,000 potential cycles within a membrane electrode assembly. Analysis of the as-deposited catalyst showed that Ir and Ru coating is primarily metallic, and further evidence is provided to support the previously reported interaction between Ru and the perylene-red support. Aberration-corrected scanning transmission electron microscopy and energy dispersive X-ray spectroscopymore » were used to observe the impact of the OER catalysts on Pt dissolution and migration through the membrane. Elemental mapping showed a high percentage of the Ir catalyst was maintained on the NSTF whisker surfaces following testing. The presence of the OER catalysts greatly reduced the smoothing of the Pt NSTF whiskers, which has been correlated with Pt dissolution and losses in electrochemically active surface area. The dissolution of both Ir and Pt led to the formation of IrPt nanoparticle clusters in the membrane close to the cathode, as well as the formation of a Pt band deeper in the membrane.« less
C-C Coupling on Single-Atom-Based Heterogeneous Catalyst.
Zhang, Xiaoyan; Sun, Zaicheng; Wang, Bin; Tang, Yu; Nguyen, Luan; Li, Yuting; Tao, Franklin Feng
2018-01-24
Compared to homogeneous catalysis, heterogeneous catalysis allows for ready separation of products from the catalyst and thus reuse of the catalyst. C-C coupling is typically performed on a molecular catalyst which is mixed with reactants in liquid phase during catalysis. This homogeneous mixing at a molecular level in the same phase makes separation of the molecular catalyst extremely challenging and costly. Here we demonstrated that a TiO 2 -based nanoparticle catalyst anchoring singly dispersed Pd atoms (Pd 1 /TiO 2 ) is selective and highly active for more than 10 Sonogashira C-C coupling reactions (R≡CH + R'X → R≡R'; X = Br, I; R' = aryl or vinyl). The coupling between iodobenzene and phenylacetylene on Pd 1 /TiO 2 exhibits a turnover rate of 51.0 diphenylacetylene molecules per anchored Pd atom per minute at 60 °C, with a low apparent activation barrier of 28.9 kJ/mol and no cost of catalyst separation. DFT calculations suggest that the single Pd atom bonded to surface lattice oxygen atoms of TiO 2 acts as a site to dissociatively chemisorb iodobenzene to generate an intermediate phenyl, which then couples with phenylacetylenyl bound to a surface oxygen atom. This coupling of phenyl adsorbed on Pd 1 and phenylacetylenyl bound to O ad of TiO 2 forms the product molecule, diphenylacetylene.
Oxygen Reduction at Very Low Overpotential on Nanoporous Ag Catalysts
Zhou, Yang; Lu, Qi; Zhuang, Zhongbin; ...
2015-05-07
Here we report a monolithic nanoporous Ag (np-Ag) material, synthesized using the dealloying method, as high-performance catalysts for ORR in alkaline media. As shown in Scheme 1, when there is insufficient potential input, the O 2 molecules are more likely to rebound off from a planar electrode surface (i.e. bulk polycrystalline metal, films made from nanoparticles or nanowires) before they could be reduced. In contrast, they are more likely to be trapped inside the monolithic nanoporous structure, contacting with catalytic surface for multiple time, which greatly enhances the chance for them to be fully reduced. As a result, the np-Agmore » catalyst is able to achieve an equivalent or better ORR performance than the state-of the-art Pt/C catalyst at low overpotentials, which is most desired in electrochemical energy applications for maximizing efficiency.« less
NASA Astrophysics Data System (ADS)
Khoobi, Mehdi; Delshad, Tayebeh Modiri; Vosooghi, Mohsen; Alipour, Masoumeh; Hamadi, Hosein; Alipour, Eskandar; Hamedani, Majid Pirali; Sadat ebrahimi, Seyed Esmaeil; Safaei, Zahra; Foroumadi, Alireza; Shafiee, Abbas
2015-02-01
A novel magnetically separable catalyst was prepared based on surface modification of Fe3O4 magnetic nanoparticle (MNPs) with polyethyleneimine (PEI) via covalent bonding. [3-(2,3-Epoxypropoxy)propyl]trimethoxysilane (EPO) was used as cross linker to bond PEI on the surface of MNPs with permanent stability in contrast to PEI coating via electrostatic interactions. The synthesized catalyst was characterized by Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). The catalyst show high efficiency for one-pot synthesis of 2-amino-3-cyano-4H-pyran derivatives via multi-component reaction (MCR). This procedure offers the advantages of green reaction media, high yield, short reaction time, easy purification of the products and simple recovery and reuse of the catalyst by simple magnetic decantation without significant loss of catalytic activity.
A Kinetic and DRIFTS Study of Supported Pt Catalysts for NO Oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toops, Todd J; Ji, Yaying; Graham, Uschi
NO oxidation was studied over Pt/CeO2 and Pt/SiO2 catalysts. Apparent activation energies (Ea) of 31.4 and 40.6 kJ/mole were determined for Pt/CeO2 and Pt/SiO2, respectively, while reaction orders for NO and O2 were fractional and positive for both catalysts. Pre-treatment of the catalysts with SO2 caused a decrease in the Ea values, while the reaction orders were only slightly changed. In situ DRIFTS measurements indicated that high concentrations of nitrate species were formed on the surface of Pt/CeO2 during NO oxidation, while almost no surface species could be detected on Pt/SiO2. The addition of SO2 resulted in the formation ofmore » a highly stable sulfate at the expense of nitrate species and caused an irreversible loss of catalytic activity for Pt/CeO2.« less
Wet catalyst-support films for production of vertically aligned carbon nanotubes.
Alvarez, Noe T; Hamilton, Christopher E; Pint, Cary L; Orbaek, Alvin; Yao, Jun; Frosinini, Aldo L; Barron, Andrew R; Tour, James M; Hauge, Robert H
2010-07-01
A procedure for vertically aligned carbon nanotube (VA-CNT) production has been developed through liquid-phase deposition of alumoxanes (aluminum oxide hydroxides, boehmite) as a catalyst support. Through a simple spin-coating of alumoxane nanoparticles, uniform centimer-square thin film surfaces were coated and used as supports for subsequent deposition of metal catalyst. Uniform VA-CNTs are observed to grow from this film following deposition of both conventional evaporated Fe catalyst, as well as premade Fe nanoparticles drop-dried from the liquid phase. The quality and uniformity of the VA-CNTs are comparable to growth from conventional evaporated layers of Al(2)O(3). The combined use of alumoxane and Fe nanoparticles to coat surfaces represents an inexpensive and scalable approach to large-scale VA-CNT production that makes chemical vapor deposition significantly more competitive when compared to other CNT production techniques.
Saptal, Vitthal B; Sasaki, Takehiko; Harada, Kei; Nishio-Hamane, Daisuke; Bhanage, Bhalchandra M
2016-03-21
An environmentally-benign carbocatalyst based on amine-functionalized graphene oxide (AP-GO) was synthesized and characterized. This catalyst shows superior activity for the chemical fixation of CO2 into cyclic carbonates at the atmospheric pressure. The developed carbocatalyst exhibits superior activity owing to its large surface area with abundant hydrogen bonding donor (HBD) capability and the presence of well-defined amine functional groups. The presence of various HBD and amine functional groups on the graphene oxide (GO) surface yields a synergistic effect for the activation of starting materials. Additionally, this catalyst shows high catalytic activity to synthesize carbonates at 70 °C and at 1 MPa CO2 pressure. The developed AP-GO could be easily recovered and used repetitively in up to seven recycle runs with unchanged catalyst activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sahraie, Nastaran Ranjbar; Kramm, Ulrike I.; Steinberg, Julian; Zhang, Yuanjian; Thomas, Arne; Reier, Tobias; Paraknowitsch, Jens-Peter; Strasser, Peter
2015-01-01
Carbon materials doped with transition metal and nitrogen are highly active, non-precious metal catalysts for the electrochemical conversion of molecular oxygen in fuel cells, metal air batteries, and electrolytic processes. However, accurate measurement of their intrinsic turn-over frequency and active-site density based on metal centres in bulk and surface has remained difficult to date, which has hampered a more rational catalyst design. Here we report a successful quantification of bulk and surface-based active-site density and associated turn-over frequency values of mono- and bimetallic Fe/N-doped carbons using a combination of chemisorption, desorption and 57Fe Mössbauer spectroscopy techniques. Our general approach yields an experimental descriptor for the intrinsic activity and the active-site utilization, aiding in the catalyst development process and enabling a previously unachieved level of understanding of reactivity trends owing to a deconvolution of site density and intrinsic activity. PMID:26486465
Durability test with fuel starvation using a Pt/CNF catalyst in PEMFC.
Jung, Juhae; Park, Byungil; Kim, Junbom
2012-01-05
In this study, a catalyst was synthesized on carbon nanofibers [CNFs] with a herringbone-type morphology. The Pt/CNF catalyst exhibited low hydrophilicity, low surface area, high dispersion, and high graphitic behavior on physical analysis. Electrodes (5 cm2) were prepared by a spray method, and the durability of the Pt/CNF was evaluated by fuel starvation. The performance was compared with a commercial catalyst before and after accelerated tests. The fuel starvation caused carbon corrosion with a reverse voltage drop. The polarization curve, EIS, and cyclic voltammetry were analyzed in order to characterize the electrochemical properties of the Pt/CNF. The performance of a membrane electrode assembly fabricated from the Pt/CNF was maintained, and the electrochemical surface area and cell resistance showed the same trend. Therefore, CNFs are expected to be a good support in polymer electrolyte membrane fuel cells.
Durability test with fuel starvation using a Pt/CNF catalyst in PEMFC
2012-01-01
In this study, a catalyst was synthesized on carbon nanofibers [CNFs] with a herringbone-type morphology. The Pt/CNF catalyst exhibited low hydrophilicity, low surface area, high dispersion, and high graphitic behavior on physical analysis. Electrodes (5 cm2) were prepared by a spray method, and the durability of the Pt/CNF was evaluated by fuel starvation. The performance was compared with a commercial catalyst before and after accelerated tests. The fuel starvation caused carbon corrosion with a reverse voltage drop. The polarization curve, EIS, and cyclic voltammetry were analyzed in order to characterize the electrochemical properties of the Pt/CNF. The performance of a membrane electrode assembly fabricated from the Pt/CNF was maintained, and the electrochemical surface area and cell resistance showed the same trend. Therefore, CNFs are expected to be a good support in polymer electrolyte membrane fuel cells. PMID:22221426
Zhang, Miao; Frei, Heinz
2017-05-05
Water oxidation is an essential reaction of an artificial photosystem for solar fuel generation because it provides electrons needed to reduce carbon dioxide or protons to a fuel. Earth-abundant metal oxides are among the most attractive catalytic materials for this reaction because of their robustness and scalability, but their efficiency poses a challenge. Knowledge of catalytic surface intermediates gained by vibrational spectroscopy under reaction conditions plays a key role in uncovering kinetic bottlenecks and provides a basis for catalyst design improvements. Recent dynamic infrared and Raman studies reveal the molecular identity of transient surface intermediates of water oxidation on metal oxides. Combined with ultrafast infrared observations of how charges are delivered to active sites of the metal oxide catalyst and drive the multielectron reaction, spectroscopic advances are poised to play a key role in accelerating progress toward improved catalysts for artificial photosynthesis.
Site-selective XAFS spectroscopy tuned to surface active sites of Cu/ZnO and Cr/SiO2 catalysts.
Izumi, Y; Nagamori, H; Kiyotaki, F; Minato, T
2001-03-01
XAFS (X-ray absorption fine structure) spectra were measured by using the fluorescence spectrometer for the emitted X-ray from sample. The chemical shifts between Cu0 and Cu1 and between CrIII and CrVI were evaluated. Tuning the fluorescence spectrometer to each energy, the Cu0 and CuI site-selective XANES for Cu/ZnO catalyst were measured. The first one was similar to the XANES of Cu metal and the second one was the 5 : 5 average of XANES for CuI sites + Cu metal. The population ratio of copper site of the Cu/ZnO catalyst was found to be Cu metal: Cu2O : CuI atomically dispersed on surface = 70(+/-23) : 22(+/-14) : 8(+/-5). Site-selective XANES for CrIII site of Cr/SiO2 catalyst was also studied.
Corrosion-resistant catalyst supports for phosphoric acid fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosek, J.A.; Cropley, C.C.; LaConti, A.B.
High-surface-area carbon blacks such as Vulcan XC-72 (Cabot Corp.) and graphitized carbon blacks such as 2700{degree}C heat-treated Black Pearls 2000 (HTBP) (Cabot Corp.) have found widespread applications as catalyst supports in phosphoric acid fuel cells (PAFCs). However, due to the operating temperatures and pressures being utilized in PAFCs currently under development, the carbon-based cathode catalyst supports suffer from corrosion, which decreases the performance and life span of a PAFC stack. The feasibility of using alternative, low-cost, corrosion-resistant catalyst support (CRCS) materials as replacements for the cathode carbon support materials was investigated. The objectives of the program were to prepare high-surface-areamore » alternative supports and to evaluate the physical characteristics and the electrochemical stability of these materials. The O{sub 2} reduction activity of the platinized CRCS materials was also evaluated. 2 refs., 3 figs.« less
Commercialization of the Chevron FCC vanadium trap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, J.V.; Kuehler, C.W.; Krishna, A.S.
1995-09-01
Vanadium, present to varying degrees in FCC feed, deposits on the catalyst virtually quantitatively in the cracking process. In resid operations, vanadium levels on catalyst can reach 10,000 ppm at typical catalyst make-up rates. Once on the catalyst, vanadium destroys the zeolite and restricts access to active sites. This reduces catalyst activity. A vanadium trap is a material that when introduced into the catalyst inventory selectively reacts with migrating vanadium, thus protecting the zeolite and other active components of the catalyst. The trap may be incorporated into the catalyst, or introduced as a separate particle. Only a limited amount ofmore » trap can be incorporated into the catalyst without limiting the amount of zeolite that can be included. Gulf began development of a vanadium trap during the early 1980`s. The work produced a variety of promising materials whose use as vanadium traps was subsequently patented. The work ultimately led to a formulation with a phase very active for trapping vanadium while still quite sulfur tolerant. Based on these results, an extensive pilot plant evaluation was undertaken by Chevron after the Chevron-Gulf merger to better simulate commercial operation. The paper describes pilot plant tests as well as 3 commercial tests of this vanadium trap.« less
Molecular Transporters for Desalination Applications
2014-08-02
Collaborative and commercially available state-of-the-art test Zeolite template based synthesis II. Summary of key results and challenges For the...size setting CNT diameter. The tightest distribution of SWCNTs reported (Lu group, Duke Univ.) was achieved by loading catalyst into zeolite with the...pore size nominally acting to set the size of catalyst on the surface. However nano particles and CNTs grow on the surface of the zeolite , thus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensley, Alyssa J. R.; Wang, Yong; Mei, Donghai
A mechanistic understanding of the roles of water is essential for developing highly active and selective catalysts for hydrodeoxygenation (HDO) reactions since water is ubiquitous in such reaction systems. Here, we present a study for phenol HDO on Fe catalysts using density functional theory which examines the effect of water on three elementary pathways for phenol HDO using an explicit solvation model. The presence of water is found to significantly decrease activation barriers required by hydrogenation reactions via two pathways. First, the proton transfer in the hydrogen bonding network of the liquid water phase is nearly barrierless, which significantly promotesmore » the direct through space tautomerization of phenol. Second, due to the high degree of oxophilicity on Fe, liquid water molecules are found to be easily dissociated into surface hydroxyl groups that can act as Brønsted acid sites. These sites dramatically promote hydrogenation reactions on the Fe surface. As a result, the hydrogen assisted dehydroxylation becomes the dominant phenol HDO pathway. This work provides new fundamental insights into aqueous phase HDO of biomass-derived oxygenates over Fe-based catalysts; e.g., the activity of Fe-based catalysts can be optimized by tuning the surface coverage of Brønsted acid sites via surface doping.« less
Share, Keith; Carter, Rachel E.; Nikolaev, Pavel; ...
2016-06-08
Nanoscale carbons are typically synthesized by thermal decomposition of a hydrocarbon at the surface of a metal catalyst. Whereas the use of silicon as an alternative to metal catalysts could unlock new techniques to seamlessly couple carbon nanostructures and semiconductor materials, stable carbide formation renders bulk silicon incapable of the precipitation and growth of graphitic structures. In this article, we provide evidence supported by comprehensive in situ Raman experiments that indicates nanoscale grains of silicon in porous silicon (PSi) scaffolds act as catalysts for hydrocarbon decomposition and growth of few-layered graphene at temperatures as low as 700 K. Self-limiting growthmore » kinetics of graphene with activation energies measured between 0.32–0.37 eV elucidates the formation of highly reactive surface-bound Si radicals that aid in the decomposition of hydrocarbons. Nucleation and growth of graphitic layers on PSi exhibits striking similarity to catalytic growth on nickel surfaces, involving temperature dependent surface and subsurface diffusion of carbon. Lastly, this work elucidates how the nanoscale properties of silicon can be exploited to yield catalytic properties distinguished from bulk silicon, opening an important avenue to engineer catalytic interfaces combining the two most technologically important materials for modern applications—silicon and nanoscale carbons.« less
Recent Developments of Electrochemical Promotion of Catalysis in the Techniques of DeNOx
Tang, Xiaolong; Yi, Honghong; Chen, Chen; Wang, Chuan
2013-01-01
Electrochemical promotion of catalysis reactions (EPOC) is one of the most significant discoveries in the field of catalytic and environmental protection. The work presented in this paper focuses on the aspects of reaction mechanism, influencing factors, and recent positive results. It has been shown with more than 80 different catalytic systems that the catalytic activity and selectivity of conductive catalysts deposited on solid electrolytes can be altered in the last 30 years. The active ingredient of catalyst can be activated by applying constant voltage or constant current to the catalysts/electrolyte interface. The effect of EPOC can improve greatly the conversion rate of NOx. And it can also improve the lifetime of catalyst by inhibiting its poisoning. PMID:23970835
Metallic Nanowire Interconnections for Integrated Circuit Fabrication
NASA Technical Reports Server (NTRS)
Ng, Hou Tee (Inventor); Li, Jun (Inventor); Meyyappan, Meyya (Inventor)
2007-01-01
A method for fabricating an electrical interconnect between two or more electrical components. A conductive layer is provided on a substarte and a thin, patterned catalyst array is deposited on an exposed surface of the conductive layer. A gas or vapor of a metallic precursor of a metal nanowire (MeNW) is provided around the catalyst array, and MeNWs grow between the conductive layer and the catalyst array. The catalyst array and a portion of each of the MeNWs are removed to provide exposed ends of the MeNWs.
Surface treated carbon catalysts produced from waste tires for fatty acids to biofuel conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hood, Zachary D.; Adhikari, Shiba P.; Wright, Marcus W.
A method of making solid acid catalysts includes the step of sulfonating waste tire pieces in a first sulfonation step. The sulfonated waste tire pieces are pyrolyzed to produce carbon composite pieces having a pore size less than 10 nm. The carbon composite pieces are then ground to produce carbon composite powders having a size less than 50 .mu.m. The carbon composite particles are sulfonated in a second sulfonation step to produce sulfonated solid acid catalysts. A method of making biofuels and solid acid catalysts are also disclosed.
NASA Astrophysics Data System (ADS)
Zhang, Guoqiang; Li, Zhong; Zheng, Huayan; Hao, Zhiqiang; Wang, Xia; Wang, Jiajun
2016-12-01
Activated carbon (AC) supported Cu catalysts are employed to study the influence of surface oxygenated groups on the formation of active Cu species and the catalytic activity of Cu/AC catalyst for oxidative carbonylation of methanol to dimethyl carbonate (DMC). The AC supports are thermal treated under different temperatures in order to adjust the levels of surface oxygenated groups. The AC supports are characterized by BET, TPD-MS and XRD, and the Cu/AC catalysts are characterized by BET, XRD, TEM, XPS, AAS, CH3OH-TPD and N2O chemisorption. The results show that as the treatment temperature is below 800 °C, the BET surface area of the corresponding AC supports are nearly unchanged and close to that of the original AC (1529.6 m2/g). But as the thermal treatment temperature is elevated from 1000 to 1600 °C, the BET surface area of AC supports gradually decreases from 1407.6 to 972.2 m2/g. After loading of Cu, the BET surface area of copper catalysts is in the range of 834.4 to 1545.3 m2/g, which is slightly less than that of the respective supports. When AC is thermal treated at 400 and 600 °C, the unstable carboxylic acid and anhydrides groups are selectively removed, which has weakened the mobility and agglomeration of Cu species during the calcination process, and thus improve the Cu species dispersion over AC support. But as the treatment temperature is elevated from 600 °C to 1200 °C, the Cu species dispersion begins to decline suggesting further removal of stable surface oxygenated groups is unfavorable for Cu species dispersion. Moreover, higher thermal treatment temperature (above 1200 °C) promotes the graphitization degree of AC and leds to the decrease of Cu loading on AC support. Meanwhile, the removal of surface oxygenated groups by thermal treatment is conducive to the formation of more π-sites, and thus promote the reduction of Cu2+ to Cu+ and Cu0 as active centers. The specific surface area of (Cu+ + Cu0) is improved by thermal treatment of AC, however, the space time yield of DMC on unit specific surface area of (Cu+ + Cu0) is in the range of 23.1-49.1 mg h-1 m-2, which is much less than that (77.6 mg h-1 m-2) of the original catalyst. The possible reason is that the removal of surface oxygenated groups results in AC support transforms from hydrophilicity to hydrophobicity, which is detrimental for the adsorption of CH3OH resulting in the decreased local concentration of CH3OH on active Cu species.
Methane Conversion to Ethylene and Aromatics on PtSn Catalysts
Gerceker, Duygu; Motagamwala, Ali Hussain; Rivera-Dones, Keishla R.; ...
2017-02-03
Pt and PtSn catalysts supported on SiO 2 and H-ZSM-5 were studied for methane conversion under nonoxidative conditions. Addition of Sn to Pt/SiO 2 increased the turnover frequency for production of ethylene by a factor of 3, and pretreatment of the catalyst at 1123 K reduced the extent of coke formation. Pt and PtSn catalysts supported on H-ZSM-5 zeolite were prepared to improve the activity and selectivity to non-coke products. Ethylene formation rates were 20 times faster over a PtSn(1:3)/H-ZSM-5 catalyst with SiO 2:Al 2O 3 = 280 in comparison to those over PtSn(3:1)/SiO 2. H-ZSM-5-supported catalysts were also activemore » for the formation of aromatics, and the rates of benzene and naphthalene formation were increased by using more acidic H-ZSM-5 supports. These catalysts operate through a bifunctional mechanism, in which ethylene is first produced on highly dispersed PtSn nanoparticles and then is subsequently converted to benzene and naphthalene on Brønsted acid sites within the zeolite support. The most active and stable PtSn catalyst forms carbon products at a rate, 2.5 mmol of C/((mol of Pt) s), which is comparable to that of state-of-the-art Mo/H-ZSM-5 catalysts with same metal loading operated under similar conditions (1.8 mmol of C/((mol of Mo) s)). Scanning transmission electron microscopy measurements suggest the presence of smaller Pt nanoparticles on H-ZSM-5-supported catalysts, in comparison to SiO 2-supported catalysts, as a possible source of their high activity. As a result, a microkinetic model of methane conversion on Pt and PtSn surfaces, built using results from density functional theory calculations, predicts higher coupling rates on bimetallic and stepped surfaces, supporting the experimental observations that relate the high catalytic activity to small PtSn particles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, Stephen D.; Spies, Kurt A.; Mei, Donghai
We report on the markedly improved stability of a novel 2-bed catalytic system, as compared to a conventional 1-bed steam reforming catalyst, for the production of H2 from acetic acid. The 2-bed catalytic system comprises of i) a basic oxide ketonization catalyst for the conversion of acetic acid to acetone, and a ii) Co-based steam reforming catalyst, both catalytic beds placed in sequence within the same unit operation. Steam reforming catalysts are particularly prone to catalytic deactivation when steam reforming acetic acid, used here as a model compound for the aqueous fraction of bio-oil. Catalysts comprising MgAl2O4, ZnO, CeO2, andmore » activated carbon (AC) both with and without Co-addition were evaluated for conversion of acetic acid and acetone, its ketonization product, in the presence of steam. It was found that over the bare oxide support only ketonization activity was observed and coke deposition was minimal. With addition of Co to the oxide support steam reforming activity was facilitated and coke deposition was significantly increased. Acetone steam reforming over the same Co-supported catalysts demonstrated more stable performance and with less coke deposition than with acetic acid feedstock. DFT analysis suggests that over Co surface CHxCOO species are more favorably formed from acetic acid versus acetone. These CHxCOO species are strongly bound to the Co catalyst surface and could explain the higher propensity for coke formation from acetic acid. Based on these findings, in order to enhance stability of the steam reforming catalyst a dual-bed (2-bed) catalyst system was implemented. Comparing the 2-bed and 1-bed (Co-supported catalyst only) systems under otherwise identical reaction conditions the 2-bed demonstrated significantly improved stability and coke deposition was decreased by a factor of 4.« less
Hong, Ung Gi; Park, Hai Woong; Lee, Joongwon; Hwang, Sunhwan; Kwak, Jimin; Yi, Jongheop; Song, In Kyu
2013-11-01
Copper-containing mesoporous carbon (Cu-MC) was prepared by a single-step surfactant-templating method. For comparison, copper-impregnated mesoporous carbon (Cu/MC) was also prepared by a surfactant-templating method and a subsequent impregnation method. Rhenium catalysts supported on copper-containing mesoporous carbon and copper-impregnated mesoporous carbon (Re/Cu-MC and Re/Cu/MC, respectively) were then prepared by an incipient wetness method, and they were applied to the liquid-phase hydrogenation of succinic acid to 1,4-butanediol (BDO). It was observed that copper in the Re/Cu-MC catalyst was well incorporated into carbon framework, resulting in higher surface area and larger pore volume than those of Re/Cu/MC catalyst. Therefore, Re/Cu-MC catalyst showed higher copper dispersion than Re/Cu/MC catalyst, although both catalysts retained the same amounts of copper and rhenium. In the liquid-phase hydrogenation of succinic acid to BDO, Re/Cu-MC catalyst showed a better catalytic activity than Re/Cu/MC catalyst. Fine dispersion of copper in the Re/Cu-MC catalyst was responsible for its enhanced catalytic activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yung, Matthew M.; Stanton, Alexander R.; Iisa, Kristiina
Metal-impregnated (Ni or Ga) ZSM-5 catalysts were studied for biomass pyrolysis vapor upgrading to produce hydrocarbons using three reactors constituting a 100 000x change in the amount of catalyst used in experiments. Catalysts were screened for pyrolysis vapor phase upgrading activity in two small-scale reactors: (i) a Pyroprobe with a 10 mg catalyst in a fixed bed and (ii) a fixed-bed reactor with 500 mg of catalyst. The best performing catalysts were then validated with a larger scale fluidized-bed reactor (using ~1 kg of catalyst) that produced measurable quantities of bio-oil for analysis and evaluation of mass balances. Despite somemore » inherent differences across the reactor systems (such as residence time, reactor type, analytical techniques, mode of catalyst and biomass feed) there was good agreement of reaction results for production of aromatic hydrocarbons, light gases, and coke deposition. Relative to ZSM-5, Ni or Ga addition to ZSM-5 increased production of fully deoxygenated aromatic hydrocarbons and light gases. In the fluidized bed reactor, Ga/ZSM-5 slightly enhanced carbon efficiency to condensed oil, which includes oxygenates in addition to aromatic hydrocarbons, and reduced oil oxygen content compared to ZSM-5. Ni/ZSM-5, while giving the highest yield of fully deoxygenated aromatic hydrocarbons, gave lower overall carbon efficiency to oil but with the lowest oxygen content. Reaction product analysis coupled with fresh and spent catalyst characterization indicated that the improved performance of Ni/ZSM-5 is related to decreasing deactivation by coking, which keeps the active acid sites accessible for the deoxygenation and aromatization reactions that produce fully deoxygenated aromatic hydrocarbons. The addition of Ga enhances the dehydrogenation activity of the catalyst, which leads to enhanced olefin formation and higher fully deoxygenated aromatic hydrocarbon yields compared to unmodified ZSM-5. Catalyst characterization by ammonia temperature programmed desorption, surface area measurements, and postreaction temperature-programmed oxidation (TPO) also showed that the metal-modified zeolites retained a greater percentage of their initial acidity and surface area, which was consistent between the reactor scales. These results demonstrate that the trends observed with smaller (milligram to gram) catalyst reactors are applicable to larger, more industrially relevant (kg) scales to help guide catalyst research toward application.« less
NASA Astrophysics Data System (ADS)
Dade, William N.
Hydrogen (H2) has many applications in industry with current focus shifted to production of hydrocarbon fuels and valuable oxygenates using the Fischer-Tropsch technology and direct use in proton exchange membrane fuel cell (PEMFC). Hydrogen is generally produced via steam reforming of natural gas or alcohols like methanol and ethanol. Glycerol, a by-product of biodiesel production process, is currently considered to be one of the most attractive sources of sustainable H2 due to its high H/C ratio and bio-based origin. Ni and Co based catalysts have been reported to be active in glycerol steam reforming (GSR); however, deactivation of the catalysts by carbon deposition and sintering under GSR operating conditions is a major challenge. In this study, a series of catalysts containing Ni and Co nanoparticles incorporated in CeO2 and TiO2 modified high surface area MCM-41 have been synthesized using one-pot method. The catalysts are tested for GSR (at H2O/Glycerol mole ratio of 12 and GHSV of 2200 h-1) to study the effect of support modification and reaction temperature (450 - 700 °C) on the product selectivity and long term stability. GSR results revealed that all the catalysts performed significantly well exhibiting over 85% glycerol conversion at 650 °C except Ni catalysts that showed better low temperature activities. Deactivation studies of the catalysts conducted at 650 °C indicated that the Ni-TiO2-MCM-41 and Ni-CeO 2-MCM-41 were resistant to deactivation with ˜100% glycerol conversion for 40 h. In contrast, Co-TiO2-MCM-41 perform poorly as the catalyst rapidly deactivated after 12 h to yield ˜20% glycerol conversion after 40 h. The WAXRD and TGA-DSC analyses of spent catalysts showed a significant amount of coke deposition that might explain catalysts deactivation. The flattening shape of the original BET type IV isotherm with drastic reduction of catalyst surface area can also be responsible for observed drop in catalysts activities.
Modifying ceria (111) with a TiO2 nanocluster for enhanced reactivity.
Nolan, Michael
2013-11-14
Modification of ceria catalysts is of great interest for oxidation reactions such as oxidative dehydrogenation of alcohols. Improving the reactivity of ceria based catalysts for these reactions means that they can be run at lower temperatures and density functional theory (DFT) simulations of new structures and compositions are proving valuable in the development of these catalysts. In this paper, we have used DFT+U (DFT corrected for on-site Coulomb interactions) to examine the reactivity of a novel modification of ceria, namely, modifying with TiO2, using the example of a Ti2O4 species adsorbed on the ceria (111) surface. The oxygen vacancy formation energy in the Ti2O4-CeO2 system is significantly reduced over the bare ceria surfaces, which together with previous work on ceria-titania indicates that the presence of the interface favours oxygen vacancy formation. The energy gain upon hydrogenation of the catalyst, which is the rate determining step in oxidative dehydrogenation, further points to the improved oxidation power of this catalyst structure.
Enhanced performance of CO oxidation over Pt/CuCrOx catalyst in the presence of CO2 and H2O
NASA Astrophysics Data System (ADS)
Deng, Yun; Wang, Ting; Zhu, Li; Jia, Ai-Pin; Lu, Ji-Qing; Luo, Meng-Fei
2018-06-01
A Pt catalyst supported on CuO-CrOx composite oxide (Pt/CuCrOx) was prepared and tested for CO oxidation in the presence of CO2 and H2O. It was found that the catalyst was stable in the realistic reaction conditions and the catalytic activity was improved in the presence of CO2 and H2O compared to that in dry condition. Kinetic investigation and temperature - programmed desorption of CO results revealed that the addition of CO2 in the feed resulted in the competitive adsorption of CO/CO2 and the formation of surface carbonate species, which consequently deactivated the catalyst. In contrast, although the presence of H2O also inhibited the adsorption of CO, the possible formation of surface hydroxyl groups may trigger a new and more facile reaction route for CO oxidation, which could explain the promoting effect of H2O. Therefore, the current findings makes the catalyst promising in CO oxidation under realistic reaction conditions.
A Tandem Catalyst with Multiple Metal Oxide Interfaces Produced by Atomic Layer Deposition.
Ge, Huibin; Zhang, Bin; Gu, Xiaomin; Liang, Haojie; Yang, Huimin; Gao, Zhe; Wang, Jianguo; Qin, Yong
2016-06-13
Ideal heterogeneous tandem catalysts necessitate the rational design and integration of collaborative active sites. Herein, we report on the synthesis of a new tandem catalyst with multiple metal-oxide interfaces based on a tube-in-tube nanostructure using template-assisted atomic layer deposition, in which Ni nanoparticles are supported on the outer surface of the inner Al2 O3 nanotube (Ni/Al2 O3 interface) and Pt nanoparticles are attached to the inner surface of the outer TiO2 nanotube (Pt/TiO2 interface). The tandem catalyst shows remarkably high catalytic efficiency in nitrobenzene hydrogenation over Pt/TiO2 interface with hydrogen formed in situ by the decomposition of hydrazine hydrate over Ni/Al2 O3 interface. This can be ascribed to the synergy effect of the two interfaces and the confined nanospace favoring the instant transfer of intermediates. The tube-in-tube tandem catalyst with multiple metal-oxide interfaces represents a new concept for the design of highly efficient and multifunctional nanocatalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Steam reforming of simulated bio-oil on K-Ni-Cu-Mg-Ce-O/Al 2O 3: The effect of K
Yu, Ning; Rahman, Muhammad Mahfuzur; Chen, Jixiang; ...
2018-04-10
Steam reforming of simulated bio-oil (ethanol, acetone, phenol, and acetic acid) and phenol has been studied on K-Ni-Cu-Mg-Ce-O/Al 2O 3 composite catalysts. Complementary characterization techniques, such as nitrogen sorption, XRD, H 2-TPR, H 2-TPD, CO-TPD, CO-DRIFTS, and in situ XPS, were used to correlate surface structure and functionality to catalytic performance of potassium (K) doped catalysts. K doping of the Ni-Cu-Mg-Ce-O/Al 2O 3 catalyst created a Ni°/Ni 2+ mixed active phase, which not only enhanced steam reforming activity, but also suppressed the methanation reaction. In addition, K doping changed the surface acid-basic properties of the catalyst, which instead favor themore » gasifcation and water-gas shift reactions. In conclusion, with the combination of these effects, K doping of Ni-Cu-Mg-Ce-O/Al 2O 3 catalysts led to higher C1 yield and much lower methane formation, favoring hydrogen production in steam reforming of both phenol and simulated bio-oil.« less
Steam reforming of simulated bio-oil on K-Ni-Cu-Mg-Ce-O/Al 2O 3: The effect of K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Ning; Rahman, Muhammad Mahfuzur; Chen, Jixiang
Steam reforming of simulated bio-oil (ethanol, acetone, phenol, and acetic acid) and phenol has been studied on K-Ni-Cu-Mg-Ce-O/Al 2O 3 composite catalysts. Complementary characterization techniques, such as nitrogen sorption, XRD, H 2-TPR, H 2-TPD, CO-TPD, CO-DRIFTS, and in situ XPS, were used to correlate surface structure and functionality to catalytic performance of potassium (K) doped catalysts. K doping of the Ni-Cu-Mg-Ce-O/Al 2O 3 catalyst created a Ni°/Ni 2+ mixed active phase, which not only enhanced steam reforming activity, but also suppressed the methanation reaction. In addition, K doping changed the surface acid-basic properties of the catalyst, which instead favor themore » gasifcation and water-gas shift reactions. In conclusion, with the combination of these effects, K doping of Ni-Cu-Mg-Ce-O/Al 2O 3 catalysts led to higher C1 yield and much lower methane formation, favoring hydrogen production in steam reforming of both phenol and simulated bio-oil.« less
NASA Astrophysics Data System (ADS)
Zhao, Wei; Dou, Shengping; Zhong, Qin; Wu, Licheng; Wang, Qian; Wang, Aijian
2017-12-01
V2O5/S-doped TiO2 was prepared by the sol-gel and impregnation methods. The adsorption of NO, NH3, and O2 over the catalyst was studied by in situ DRIFTS spectroscopy to elucidate the reaction mechanism of the low-temperature selective catalytic reduction of NO with NH3. Exposing the catalyst to O2 and NO, three types of nitrates species appeared on the surface. The introduction of S to TiO2 could generate large amounts of acid sites for ammonia adsorption on the catalyst, which was believed to be an important role in the SCR reaction and hereby improved the catalytic activity. The results indicated two possible SCR reaction pathways for catalyst. One was that NO was absorbed to form nitrite species, which could react with NH3 on Lewis acid sites, producing N2 and H2O. Another way was that NH3 was adsorbed, then reacted with gas phase NO (E-R) and nitrite intermediates on the surface (L-H).
Modelling Catalyst Surfaces Using DFT Cluster Calculations
Czekaj, Izabela; Wambach, Jörg; Kröcher, Oliver
2009-01-01
We review our recent theoretical DFT cluster studies of a variety of industrially relevant catalysts such as TiO2, γ-Al2O3, V2O5-WO3-TiO2 and Ni/Al2O3. Aspects of the metal oxide surface structure and the stability and structure of metal clusters on the support are discussed as well as the reactivity of surfaces, including their behaviour upon poisoning. It is exemplarily demonstrated how such theoretical considerations can be combined with DRIFT and XPS results from experimental studies. PMID:20057947
A hybridization approach to efficient TiO2 photodegradation of aqueous benzalkonium chloride.
Suchithra, Padmajan Sasikala; Carleer, Robert; Ananthakumar, Solaippan; Yperman, Jan
2015-08-15
TiO2 get positively charged upon UV-irradiation and repel the cationic pollutants away from the surface. Hybridization of AC onto TiO2 (ACT) tends catalyst surface negatively charged besides providing highly favorable adsorptions sites for cationic pollutants. The photodegradation of benzalkonium chloride (BKC), a quaternary ammonium surfactant and a pharmaceutical, is investigated with ACT. The surface charge of the catalyst in surfactant and non-surfactant aqueous dispersion under UV-irradiation is investigated and explained. The anomalous increase in COD values at the beginning of BKC-photodegradation is explained. The intermediate products formed are identified in both solution and solid phase. Trace amount of dodecane remained adsorbed on the catalyst surface after 1h UV-irradiation, but complete mineralization of BKC is achieved with 2h UV-irradiation. We propose that BKC photodegradation starts by central fission of benzyl CN bond followed by dealkylation, and demethylation steps. Copyright © 2015 Elsevier B.V. All rights reserved.
Favaro, Marco; Xiao, Hai; Cheng, Tao; Goddard, William A; Yano, Junko; Crumlin, Ethan J
2017-06-27
A national priority is to convert CO 2 into high-value chemical products such as liquid fuels. Because current electrocatalysts are not adequate, we aim to discover new catalysts by obtaining a detailed understanding of the initial steps of CO 2 electroreduction on copper surfaces, the best current catalysts. Using ambient pressure X-ray photoelectron spectroscopy interpreted with quantum mechanical prediction of the structures and free energies, we show that the presence of a thin suboxide structure below the copper surface is essential to bind the CO 2 in the physisorbed configuration at 298 K, and we show that this suboxide is essential for converting to the chemisorbed CO 2 in the presence of water as the first step toward CO 2 reduction products such as formate and CO. This optimum suboxide leads to both neutral and charged Cu surface sites, providing fresh insights into how to design improved carbon dioxide reduction catalysts.
Favaro, Marco; Yano, Junko; Crumlin, Ethan J.
2017-01-01
A national priority is to convert CO2 into high-value chemical products such as liquid fuels. Because current electrocatalysts are not adequate, we aim to discover new catalysts by obtaining a detailed understanding of the initial steps of CO2 electroreduction on copper surfaces, the best current catalysts. Using ambient pressure X-ray photoelectron spectroscopy interpreted with quantum mechanical prediction of the structures and free energies, we show that the presence of a thin suboxide structure below the copper surface is essential to bind the CO2 in the physisorbed configuration at 298 K, and we show that this suboxide is essential for converting to the chemisorbed CO2 in the presence of water as the first step toward CO2 reduction products such as formate and CO. This optimum suboxide leads to both neutral and charged Cu surface sites, providing fresh insights into how to design improved carbon dioxide reduction catalysts. PMID:28607092
He, Daping; Zhang, Libo; He, Dongsheng; Zhou, Gang; Lin, Yue; Deng, Zhaoxiang; Hong, Xun; Wu, Yuen; Chen, Chen; Li, Yadong
2016-08-09
The low activity of the oxygen reduction reaction in polymer electrolyte membrane fuel cells is a major barrier for electrocatalysis, and hence needs to be optimized. Tuning the surface electronic structure of platinum-based bimetallic alloys, a promising oxygen reduction reaction catalyst, plays a key role in controlling its interaction with reactants, and thus affects the efficiency. Here we report that a dealloying process can be utilized to experimentally fabricate the interface between dealloyed platinum-nickel alloy and amorphous nickel boride membrane. The coating membrane works as an electron acceptor to tune the surface electronic structure of the platinum-nickel catalyst, and this composite catalyst composed of crystalline platinum-nickel covered by amorphous nickel boride achieves a 27-times enhancement in mass activity relative to commercial platinum/carbon at 0.9 V for the oxygen reduction reaction performance. Moreover, this interactional effect between a crystalline surface and amorphous membrane can be readily generalized to facilitate the 3-times higher catalytic activity of commercial platinum/carbon.
Mesoporous metallic rhodium nanoparticles
NASA Astrophysics Data System (ADS)
Jiang, Bo; Li, Cuiling; Dag, Ömer; Abe, Hideki; Takei, Toshiaki; Imai, Tsubasa; Hossain, Md. Shahriar A.; Islam, Md. Tofazzal; Wood, Kathleen; Henzie, Joel; Yamauchi, Yusuke
2017-05-01
Mesoporous noble metals are an emerging class of cutting-edge nanostructured catalysts due to their abundant exposed active sites and highly accessible surfaces. Although various noble metal (e.g. Pt, Pd and Au) structures have been synthesized by hard- and soft-templating methods, mesoporous rhodium (Rh) nanoparticles have never been generated via chemical reduction, in part due to the relatively high surface energy of rhodium (Rh) metal. Here we describe a simple, scalable route to generate mesoporous Rh by chemical reduction on polymeric micelle templates [poly(ethylene oxide)-b-poly(methyl methacrylate) (PEO-b-PMMA)]. The mesoporous Rh nanoparticles exhibited a ~2.6 times enhancement for the electrocatalytic oxidation of methanol compared to commercially available Rh catalyst. Surprisingly, the high surface area mesoporous structure of the Rh catalyst was thermally stable up to 400 °C. The combination of high surface area and thermal stability also enables superior catalytic activity for the remediation of nitric oxide (NO) in lean-burn exhaust containing high concentrations of O2.
Zhang, Hua; Wang, Chen; Sun, Han-Lei; Fu, Gang; Chen, Shu; Zhang, Yue-Jiao; Chen, Bing-Hui; Anema, Jason R.; Yang, Zhi-Lin; Li, Jian-Feng; Tian, Zhong-Qun
2017-01-01
Surface molecular information acquired in situ from a catalytic process can greatly promote the rational design of highly efficient catalysts by revealing structure-activity relationships and reaction mechanisms. Raman spectroscopy can provide this rich structural information, but normal Raman is not sensitive enough to detect trace active species adsorbed on the surface of catalysts. Here we develop a general method for in situ monitoring of heterogeneous catalytic processes through shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) satellite nanocomposites (Au-core silica-shell nanocatalyst-satellite structures), which are stable and have extremely high surface Raman sensitivity. By combining operando SHINERS with density functional theory calculations, we identify the working mechanisms for CO oxidation over PtFe and Pd nanocatalysts, which are typical low- and high-temperature catalysts, respectively. Active species, such as surface oxides, superoxide/peroxide species and Pd–C/Pt–C bonds are directly observed during the reactions. We demonstrate that in situ SHINERS can provide a deep understanding of the fundamental concepts of catalysis. PMID:28537269
Catalytic activity of carbon nanotubes in the conversion of aliphatic alcohols
NASA Astrophysics Data System (ADS)
Zhitnev, Yu. N.; Tveritinova, E. A.; Chernyak, S. A.; Savilov, S. V.; Lunin, V. V.
2016-06-01
Carbon nanotubes (CNTs) obtained via the catalytic pyrolysis of hexane at 750°C were studied as the catalysts in conversion of C2-C4 alcohols. The efficiency of CNTs as catalysts in dehydration and dehydrogenation of ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, and tert-butanol was studied by means of pulse microcatalysis. The surface and structural characteristics of CNTs are investigated via SEM, TEM, DTA, BET, and XPS. CNTs are shown to be effective catalysts in the conversion of alcohols and do not require additional oxidative treatment. The regularities of the conversion of aliphatic alcohols, related to the properties of the CNTs surface and the structure of the alcohols are identified.
pH control of the structure, composition, and catalytic activity of sulfated zirconia
NASA Astrophysics Data System (ADS)
Ivanov, Vladimir K.; Baranchikov, Alexander Ye.; Kopitsa, Gennady P.; Lermontov, Sergey A.; Yurkova, Lyudmila L.; Gubanova, Nadezhda N.; Ivanova, Olga S.; Lermontov, Anatoly S.; Rumyantseva, Marina N.; Vasilyeva, Larisa P.; Sharp, Melissa; Pranzas, P. Klaus; Tretyakov, Yuri D.
2013-02-01
We report a detailed study of structural and chemical transformations of amorphous hydrous zirconia into sulfated zirconia-based superacid catalysts. Precipitation pH is shown to be the key factor governing structure, composition and properties of amorphous sulfated zirconia gels and nanocrystalline sulfated zirconia. Increase in precipitation pH leads to substantial increase of surface fractal dimension (up to ˜2.7) of amorphous sulfated zirconia gels, and consequently to increase in specific surface area (up to ˜80 m2/g) and simultaneously to decrease in sulfate content and total acidity of zirconia catalysts. Complete conversion of hexene-1 over as synthesized sulfated zirconia catalysts was observed even under ambient conditions.
Hamada, Ikutaro; Uozumi, Akifumi; Morikawa, Yoshitada; Yanase, Akira; Katayama-Yoshida, Hiroshi
2011-11-23
Periodic density functional theory was used to investigate the stability and electronic structures of precious-metal atoms in the vicinity of LaFe(1-x)M(x)O(3) (M = Pd, Rh, Pt) perovskite catalyst surfaces. It was found that the surface segregation of Pd and Pt is significantly stabilized by the introduction of O vacancies, whereas the solid-solution phase is favorable for Rh, suggesting an important role of O vacancies in the self-regeneration of Pd and Pt. On the basis of the results, we propose a possible scenario for the self-regeneration of the precious metal in the perovskite catalyst.
Graphite-Conjugated Rhenium Catalysts for Carbon Dioxide Reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Seokjoon; Gallagher, James R.; Miller, Jeffrey T.
2016-02-17
Condensation of fac-Re(5,6-diamino-1,10-phenanthroline)(CO)(3)Cl to o-quinone edge defects on graphitic carbon surfaces generates graphite-conjugated rhenium (GCC-Re) catalysts that are highly active for CO2 reduction to CO in acetonitrile electrolyte. X-ray photo-electron and X-ray absorption spectroscopies establish the formation of surface-bound Re centers with well-defined coordination environments. GCC-Re species on glassy carbon surfaces display catalytic currents greater than 50 mA cm(-2) with 96 +/- 3% Faradaic efficiency for CO production. Normalized for the number of Re active sites, GCC-Re catalysts exhibit higher turnover frequencies than that of a soluble molecular analogue, fac-Re(1,10-phenanthroline)(CO)(3)Cl, and turnover numbers greater than 12,000. In contrast to themore » molecular analogue, GCC-Re surfaces display a Tafel slope of 150 mV/decade, indicative of a catalytic mechanism involving rate-limiting one-electron transfer. This work establishes graphite conjugation as a powerful strategy for generating well-defined, tunable, heterogeneous electrocatalysts on ubiquitous graphitic carbon surfaces.« less
Monomolecular Siloxane Film as a Model of Single Site Catalysts
Martynowycz, Michael W.; Hu, Bo; Kuzmenko, Ivan; ...
2016-09-06
Achieving structurally well-defined catalytic species requires a fundamental understanding of surface chemistry. Detailed structural characterization of the catalyst binding sites in situ, such as single site catalysts on silica supports, is technically challenging or even unattainable. Octadecyltrioxysilane (OTOS) monolayers formed from octadecyltrimethoxysilane (OTMS) at the air-liquid interface after hydrolysis and condensation at low pH were chosen as a model system of surface binding sites in silica-supported Zn 2+ catalysts. We characterize the system by grazing incidence X-ray diffraction, X-ray reflectivity (XR), and X-ray fluorescence spectroscopy (XFS). Previous X-ray and infrared surface studies of OTMS/OTOS films at the airliquid interface proposedmore » the formation of polymer OTOS structures. According to our analysis, polymer formation is inconsistent with the X-ray observations and structural properties of siloxanes; it is energetically unfavorable and thus highly unlikely. We suggest an alternative mechanism of hydrolysis/condensation in OTMS leading to the formation of structurally allowed cyclic trimers with the six-membered siloxane rings, which explain well both the X-ray and infrared results. XR and XFS consistently demonstrate that tetrahedral [Zn(NH 3) 4] 2+ ions bind to hydroxyl groups of the film at a stoichiometric ratio of OTOS:Zn ~ 2:1. The high binding affinity of zinc ions to OTOS trimers suggests that the six-membered siloxane rings are binding locations for single site Zn/SiO 2 catalysts. Finally, our results show that OTOS monolayers may serve as a platform for studying silica surface chemistry or hydroxyl-mediated reactions.« less