DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The objective of the contract is to consolidate the advances made during the previous contract in the conversion of syngas to motor fuels using Molecular Sieve-containing catalysts and to demonstrate the practical utility and economic value of the new catalyst/process systems with appropriate laboratory runs. Work on the program is divided into the following six tasks: (1) preparation of a detailed work plan covering the entire performance of the contract; (2) preliminary techno-economic assessment of the UCC catalyst/process system; (3) optimization of the most promising catalyst developed under prior contract; (4) optimization of the UCC catalyst system in a mannermore » that will give it the longest possible service life; (5) optimization of a UCC process/catalyst system based upon a tubular reactor with a recycle loop containing the most promising catalyst developed under Tasks 3 and 4 studies; and (6) economic evaluation of the optimal performance found under Task 5 for the UCC process/catalyst system. Progress reports are presented for tasks 2 through 5. 232 figs., 19 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The objective of the contract is to consolidate the advances made during the previous contract in the conversion of syngas to motor fuels using Molecular Sieve-containing catalysts and to demonstrate the practical utility and economic value of the new catalyst/process systems with appropriate laboratory runs. Work on the program is divided into the following six tasks: (1) preparation of a detailed work plan covering the entire performance of the contract; (2) techno-economic studies that will supplement those that are presently being carried out by MITRE; (3) optimization of the most promising catalysts developed under prior contract; (4) optimization of themore » UCC catalyst system in a manner that will give it the longest possible service life; (5) optimization of a UCC process/catalyst system based upon a tubular reactor with a recycle loop containing the most promising catalyst developed under Tasks 3 and 4 studies; and (6) economic evaluation of the optimal performance found under Task 5 for the UCC process/catalyst system. Progress reports are presented for Tasks 1, 3, 4, and 5.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The objective of the contract is to consolidate the advances made during the previous contract in the conversion of syngas to motor fuels using Molecular Sieve-containing catalysts and to demonstrate the practical utility and economic value of the new catalyst/process systems with appropriate laboratory runs. Work on the program is divided into the following six tasks: (1) preparation of a detailed work plan covering the entire performance of the contract; (2) preliminary techno-economic assessment of the UCC catalyst/process system; (3) optimization of the most promising catalysts developed under prior contract; (4) optimization of the UCC catalyst system in a mannermore » that will give it the longest possible service life; (5) optimization of a UCC process/catalyst system based upon a tubular reactor with a recycle loop; and (6) economic evaluation of the optimal performance found under Task 5 for the UCC process/catalyst system. Accomplishments are reported for Tasks 2 through 5.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
During this time period, at WVU, the authors have obtained models for the kinetics of the HAS (higher alcohol synthesis) reaction over the Co-K-MoS{sub 2}/C catalyst. The Rotoberty reactor was then replaced in the reactor system by a plug-flow tubular reactor. Accordingly, the authors re-started the investigations on sulfide catalysts. The authors encountered and solved the leak problem from the sampling valve for the non-sulfided reactor system. They also modified the system to eliminate the condensation problem. Accordingly, they are continuing their kinetic studies on the reduced Mo-Ni-K/C catalysts. They have set up an apparatus for temperature-programmed reduction (TPR) studies,more » and have obtained some interesting results on TPR characterizations. At UCC, the complete characterization of selected catalysts has been started. The authors sent nine selected types of ZnO, Zn/CrO and Zn/Cr/MnO catalysts and supports for BET surface area, SEM, XRD and ICP. They also sent fresh and spent samples of the Engelhard Zn/CrO catalyst impregnated with 3 wt% potassium for ISS and XPS testing. In Task 2, work on the design and optimization portion of this task, as well as on the fuel testing, is completed. All funds have been expended and there are no personnel working on this project.« less
Recent Progress on Transition Metal Catalyst Separation and Recycling in ATRP.
Ding, Mingqiang; Jiang, Xiaowu; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin
2015-10-01
Atom transfer radical polymerization (ATRP) is a versatile and robust tool to synthesize a wide spectrum of monomers with various designable structures. However, it usually needs large amounts of transition metal as the catalyst to mediate the equilibrium between the dormant and propagating species. Unfortunately, the catalyst residue may contaminate or color the resultant polymers, which limits its application, especially in biomedical and electronic materials. How to efficiently and economically remove or reduce the catalyst residue from its products is a challenging and encouraging task. Herein, recent advances in catalyst separation and recycling are highlighted with a focus on (1) highly active ppm level transition metal or metal free catalyzed ATRP; (2) post-purification method; (3) various soluble, insoluble, immobilized/soluble, and reversible supported catalyst systems; and (4) liquid-liquid biphasic catalyzed systems, especially thermo-regulated catalysis systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The economic production of alcohol fuels from coal-derived synthesis gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kugler, E.L.; Dadyburjor, D.B.; Yang, R.Y.K.
1995-12-31
The objectives of this project are to discover, (1) study and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas. Specifically, alternative methods of preparing catalysts are to be investigated, and novel catalysts, including sulfur-tolerant ones, are to be pursued. (Task 1); (2) explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. (Task 1); (3) simulate by computer the most energy efficient and economically efficient process for converting coal to energy, with primary focus on converting syngas to fuel alcohols. (Task 2);more » (4) develop on the bench scale the best holistic combination of chemistry, catalyst, reactor and total process configuration integrated with the overall coal conversion process to achieve economic optimization for the conversion of syngas to liquid products within the framework of achieving the maximum cost effective transformation of coal to energy equivalents. (Tasks 1 and 2); and (5) evaluate the combustion, emission and performance characteristics of fuel alcohols and blends of alcohols with petroleum-based fuels. (Task 2)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The objective of Task 1 is to prepare and evaluate catalysts and to develop efficient reactor systems for the selective conversion of hydrogen-lean synthesis gas to alcohol fuel extender and octane enhancers. Task 1 is subdivided into three separate subtasks: laboratory and equipment setup; catalysis research; and reaction engineering and modeling. Research at West Virginia University (WVU) is focused on molybdenum-based catalysts for higher alcohol synthesis. Parallel research carried out at Union Carbide Corporation (UCC) is focused on transition-metal-oxide catalysts. During this time period, at WVU, we tried several methods to eliminate problems related to condensation of heavier products whenmore » reduced Mo-Ni-K/C materials were used as catalysts. We then resumed our kinetic study on the reduced Mo-Ni-K/C materials were used as catalysts. We then resumed our kinetic study on the reduced Mo-Ni-K/C catalysts. We have also obtained same preliminary results in our attempts to analyze quantitatively the temperature-programmed reduction spectra for C- supported Mo-based catalysts. We have completed the kinetic study for the sulfided Co-K-MoS{sub 2}/C catalyst. We have compared the results of methanol synthesis using the membrane reactor with those using a simple plug-flow reactor. At UCC, the complete characterization of selected catalysts has been completed. The results suggest that catalyst pretreatment under different reducing conditions yield different surface compositions and thus different catalytic reactivities.« less
Titanium compounds as catalysts of higher alpha-olefin-based super-high-molecular polymers synthesis
NASA Astrophysics Data System (ADS)
Konovalov, K. B.; Kazaryan, M. A.; Manzhay, V. N.; Vetrova, O. V.
2016-01-01
The synthesis of polymers of 10 million or more molecular weight is a difficult task even in a chemical lab. Higher α-olefin-based polymer agents of such kind have found a narrow but quite important niche, the reduction of drag in the turbulent flow of hydrocarbon fluids such as oil and oil-products. In its turn, searching for a catalytic system capable to produce molecules of such a high length and to synthesize polymers of a low molecular-mass distribution is part of a global task of obtaining a high-quality product. In this paper we had observed a number of industrial catalysts with respect to their suitability for higher poly-α- olefins synthesis. A number samples representing copolymers of 1-hexene with 1-decene obtained on a previous generation catalyst, a microsphere titanium chloride catalytic agent had been compared to samples synthesized using a titanium-magnesium catalyst both in solution and in a polymer medium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The objective of Task I is to prepare and evaluate catalysts and to develop efficient reactor systems for the selective conversion of hydrogen-lean synthesis gas to alcohol fuel extenders and octane enhancers. In Task 1, during this reporting period, we encountered and solved a problem in the analysis of the reaction products containing a small amount of heavy components. Subsequently, we continued with the major thrusts of the program. We analyzed the results from our preliminary studies on the packed-bed membrane reactor using the BASF methanol synthesis catalyst. We developed a quantitative model to describe the performance of the reactor.more » The effect of varying permeances and the effect of catalyst aging are being incorporated into the model. Secondly, we resumed our more- detailed parametric studies on selected non-sulfide Mo-based catalysts. Finally, we continue with the analysis of data from the kinetic study of a sulfided carbon-supported potassium-doped molybdenum-cobalt catalyst in the Rotoberty reactor. We have completed catalyst screening at UCC. The complete characterization of selected catalysts has been started. In Task 2, the fuel blends of alcohol and unleaded test gas 96 (UTG 96) have been made and tests have been completed. The testing includes knock resistance tests and emissions tests. Emissions tests were conducted when the engine was optimized for the particular blend being tested (i.e. where the engine produced the most power when running on the blend in question). The data shows that the presence of alcohol in the fuel increases the fuel`s ability to resist knock. Because of this, when the engine was optimized for use with alcohol blends, the engine produced more power and lower emission rates.« less
Biomass-derived Syngas Utilization for Fuels and Chemicals - Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dayton, David C
2010-03-24
Executive Summary The growing gap between petroleum production and demand, mounting environmental concerns, and increasing fuel prices have stimulated intense interest in research and development (R&D) of alternative fuels, both synthetic and bio-derived. Currently, the most technically defined thermochemical route for producing alternative fuels from lignocellulosic biomass involves gasification/reforming of biomass to produce syngas (carbon monoxide [CO] + hydrogen [H2]), followed by syngas cleaning, Fischer-Tropsch synthesis (FTS) or mixed alcohol synthesis, and some product upgrading via hydroprocessing or separation. A detailed techno-economic analysis of this type of process has recently been published [1] and it highlights the need for technicalmore » breakthroughs and technology demonstration for gas cleanup and fuel synthesis. The latter two technical barrier areas contribute 40% of the total thermochemical ethanol cost and 70% of the production cost, if feedstock costs are factored out. Developing and validating technologies that reduce the capital and operating costs of these unit operations will greatly reduce the risk for commercializing integrated biomass gasification/fuel synthesis processes for biofuel production. The objective of this project is to develop and demonstrate new catalysts and catalytic processes that can efficiently convert biomass-derived syngas into diesel fuel and C2-C4 alcohols. The goal is to improve the economics of the processes by improving the catalytic activity and product selectivity, which could lead to commercialization. The project was divided into 4 tasks: Task 1: Reactor Systems: Construction of three reactor systems was a project milestone. Construction of a fixed-bed microreactor (FBR), a continuous stirred tank reactor (CSTR), and a slurry bubble column reactor (SBCR) were completed to meet this milestone. Task 2: Iron Fischer-Tropsch (FT) Catalyst: An attrition resistant iron FT catalyst will be developed and tested. Task 3: Chemical Synthesis: Promising process routes will be identified for synthesis of selected chemicals from biomass-derived syngas. A project milestone was to select promising mixed alcohol catalysts and screen productivity and performance in a fixed bed micro-reactor using bottled syngas. This milestone was successfully completed in collaboration withour catalyst development partner. Task 4: Modeling, Engineering Evaluation, and Commercial Assessment: Mass and energy balances of conceptual commercial embodiment for FT and chemical synthesis were completed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frame, R.R.; Gala, H.B.
1992-12-31
The objectives of this contract are to develop a technology for the production of active and stable iron Fischer-Tropsch catalysts for use in slurry-phase synthesis reactors and to develop a scaleup procedure for large-scale synthesis of such catalysts for process development and long-term testing in slurry bubble-column reactors. With a feed containing hydrogen and carbon monoxide in the molar ratio of 0.5 to 1.0 to the slurry bubble-column reactor, the catalyst performance target is 88% CO + H{sub 2} conversion at a minimum space velocity of 2.4 NL/hr/gFe. The desired sum of methane and ethane selectivities is no more thanmore » 4%, and the conversion loss per week is not to exceed 1%. Contract Tasks are as follows: 1.0--Catalyst development, 1.1--Technology assessment, 1.2--Precipitated catalyst preparation method development, 1.3--Novel catalyst preparation methods investigation, 1.4--Catalyst pretreatment, 1.5--Catalyst characterization, 2.0--Catalyst testing, 3.0--Catalyst aging studies, and 4.0--Preliminary design and cost estimate of a catalyst synthesis facility. This paper reports progress made on Task 1.« less
EVALUATION OF SCR CATALYSTS FOR COMBINED CONTROL OF NOX AND MERCURY
The report documents two-task, bench- and pilot-scale research on the effect of selective catalytic reduction (SCR) catalysts on mercury speciation in Illinois and Powder River Basin (PRB) coal combustion flue gases. In task I, a bench-scale reactor was used to study the oxidatio...
1975-07-25
H WISE D M GOLDEN B J WOOD 0. PERFORMING ORGANIZATION NAME AND ADDRESS IO. -’i)GRAM -LLUENT PROJECT, TASK AREA A WORK UNIT NUMBERSSTANFORD RESEARCH...are retained by the catalyst after exposure to reactants. In these experiments the catalyst was placed in a microreactor apparatus, and a helium...intermediates involved in the reaction are adsorbed on the surface. Following is such a general scheme: k a N2H4(gas) +--4 X + Y (1)2 4 k s s d k 1 X - Pr.ducts
Engineering New Catalysts for In-Process Elimination of Tars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felix, Larry G.
2012-09-30
The key objective of this project was to develop a new and more efficient methodology for engineering and economically producing optimized robust catalysts for the reduction or elimination of tars in biomass gasification. Whereas current catalyst technology typically disposes thin layers of catalytically-active material onto rigid supports via wet chemistry-based methods, this project investigated novel thermal methods for directly incorporating catalytically active materials onto robust supports as well as novel approaches for incorporating catalytically active materials on and/or within an otherwise inert refractory support material which is then subsequently formed and processed to create a catalytically-active material on all exposedmore » surfaces. Specifically, the focus of this engineered catalyst development was on materials which were derived from, or otherwise related to, olivine-like minerals, due to the inherent attrition resistance and moderate catalytic properties exhibited by natural olivine when used in a fluidized bed biomass gasifier. Task 1 of this project successfully demonstrated the direct thermal impregnation of catalytically-active materials onto an olivine substrate, with the production of a Ni-olivine catalyst. Nickel and nickel oxide were thermally impregnated onto an olivine substrate and when reduced were shown to demonstrate improved catalytic activity over the baseline olivine material and equal the tar-decomposing performance of Ni-olivine catalysts prepared by conventional wet impregnation. Task 2 involved coordination with our subcontracted project partners to further develop and characterize catalyst formulations and to optimize activity and production methods. Within this task, several significant new materials were developed. NexTech Materials developed a sintered ceramic nickel-magnesium-silicate catalyst that demonstrated superb catalytic activity and high resistance to deactivation by H2S. Alfred University developed both supported and integrated (bulk) catalysts via a glass-ceramic processing route which were shown to exhibit excellent catalytic activity and superior resistance to attrition deactivation. With the discovery of these active, robust, glass-based catalysts, and with the permission of the project officer, the investigation of waste-based materials as originally proposed for Task 3 and pilot-scale testing proposed in Task 5 were deferred indefinitely in favor of further investigation of the glass-ceramic based catalyst materials. This choice was justified in part because during FY 2006 and through FY 2007, funding restrictions imposed by congressional budget choices significantly reduced funding for DOE biomass-related projects. Funding for this project was limited to what had been authorized which slowed the pace of project work at GTI so that our project partners could continue in their work. Thereafter, project work was allowed to resume and with restored funding, the project continued and concentrated on the development and testing of glass-ceramic catalysts in bulk or supported formats. Work concluded with a final development devoted to increasing the surface area of glass-ceramic catalysts in the form of microspheres. Following that development, project reporting was completed and the project was concluded.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawal, Rakesh; Delgass, W. N.; Ribeiro, F.
2013-08-31
The primary objective and outcome of this project was the development and validation of a novel, low-cost, high-pressure fast-hydropyrolysis/hydrodeoxygenation (HDO) process (H 2Bioil) using supplementary hydrogen (H 2) to produce liquid hydrocarbons from biomass. The research efforts under the various tasks of the project have culminated in the first experimental demonstration of the H 2Bioil process, producing 100% deoxygenated >C4+ hydrocarbons containing 36-40% of the carbon in the feed of pyrolysis products from biomass. The demonstrated H{sub 2}Bioil process technology (i.e. reactor, catalyst, and downstream product recovery) is scalable to a commercial level and is estimated to be economically competitivemore » for the cases when supplementary H 2 is sourced from coal, natural gas, or nuclear. Additionally, energy systems modeling has revealed several process integration options based on the H 2Bioilprocess for energy and carbon efficient liquid fuel production. All project tasks and milestones were completed or exceeded. Novel, commercially-scalable, high-pressure reactors for both fast-hydropyrolysis and hydrodeoxygenation were constructed, completing Task A. These reactors were capable of operation under a wide-range of conditions; enabling process studies that lead to identification of optimum process conditions. Model compounds representing biomass pyrolysis products were studied, completing Task B. These studies were critical in identifying and developing HDO catalysts to target specific oxygen functional groups. These process and model compound catalyst studies enabled identification of catalysts that achieved 100% deoxygenation of the real biomass feedstock, sorghum, to form hydrocarbons in high yields as part of Task C. The work completed during this grant has identified and validated the novel and commercially scalable H 2Bioil process for production of hydrocarbon fuels from biomass. Studies on model compounds as well as real biomass feedstocks were utilized to identify optimized process conditions and selective HDO catalyst for high yield production of hydrocarbons from biomass. In addition to these experimental efforts, in Tasks D and E, we have developed a mathematical optimization framework to identify carbon and energy efficient biomass-to-liquid fuel process designs that integrate the use of different primary energy sources along with biomass (e.g. solar, coal or natural gas) for liquid fuel production. Using this tool, we have identified augmented biomass-to-liquid fuel configurations based on the fast-hydropyrolysis/HDO pathway, which was experimentally studied in this project. The computational approach used for screening alternative process configurations represents a unique contribution to the field of biomass processing for liquid fuel production.« less
Advanced thermally stable jet fuels: Technical progress report, October 1994--December 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schobert, H.H.; Eser, S.; Song, C.
There are five tasks within this project on thermally stable coal-based jet fuels. Progress on each of the tasks is described. Task 1, Investigation of the quantitative degradation chemistry of fuels, has 5 subtasks which are described: Literature review on thermal stability of jet fuels; Pyrolytic and catalytic reactions of potential endothermic fuels: cis- and trans-decalin; Use of site specific {sup 13}C-labeling to examine the thermal stressing of 1-phenylhexane: A case study for the determination of reaction kinetics in complex fuel mixtures versus model compound studies; Estimation of critical temperatures of jet fuels; and Surface effects on deposit formation inmore » a flow reactor system. Under Task 2, Investigation of incipient deposition, the subtask reported is Uncertainty analysis on growth and deposition of particles during heating of coal-derived aviation gas turbine fuels; under Task 3, Characterization of solid gums, sediments, and carbonaceous deposits, is subtask, Studies of surface chemistry of PX-21 activated carbon during thermal degradation of jet A-1 fuel and n-dodecane; under Task 4, Coal-based fuel stabilization studies, is subtask, Exploratory screening and development potential of jet fuel thermal stabilizers over 400 C; and under Task 5, Exploratory studies on the direct conversion of coal to high quality jet fuels, are 4 subtasks: Novel approaches to low-severity coal liquefaction and coal/resid co-processing using water and dispersed catalysts; Shape-selective naphthalene hydrogenation for production of thermally stable jet fuels; Design of a batch mode and a continuous mode three-phase reactor system for the liquefaction of coal and upgrading of coal liquids; and Exploratory studies on coal liquids upgrading using mesopores molecular sieve catalysts. 136 refs., 69 figs., 24 tabs.« less
Combinatorial evaluation of the laccase-mediator system (LMS) in the oxidation of veratryl alcohol
USDA-ARS?s Scientific Manuscript database
Identifying suitable reaction conditions remains an important task in the development of practical enzyme catalysts. Laccases play an important role in the biological break down of lignin and have great potential in the deconstruction of lignocellulosic feedstocks. We examined 16 laccases, both co...
USDA-ARS?s Scientific Manuscript database
Identifying suitable reaction conditions remains an important task in the development of practical enzyme catalysts. Laccases play an important role in the biological break down of lignin and have great potential in the deconstruction of lignocellulosic feedstocks. We examined 16 laccases, both comm...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobban, Lance
The goal of this project is the development of novel catalysts and knowledge of reaction pathways and mechanisms for conversion of biomass-based compounds to fuels that are compatible with oil-based fuels and with acceptable or superior fuel properties. The research scope included both catalysts to convert lignocellulosic biomass-based molecules (from pyrolysis) and vegetable oil-based molecules (i.e., triglycerides and fatty acid methyl esters). This project comprised five technical tasks. Each task is briefly introduced below, and major technical accomplishments summarized. Technical accomplishments were described in greater detail in the quarterly progress reports, and in even more detail in the >50 publicationsmore » acknowledging this DoE project funding (list of publications and presentations included at the end of this report). The results of this research added greatly to the knowledge base necessary for upgrading of pyrolysis oil to hydrocarbon fuels and chemicals, and for conversion of vegetable oils to fungible diesel fuel. Numerous new catalysts and catalytic reaction systems were developed for upgrading particular compounds or compound families found in the biomass-based pyrolysis oils and vegetable oils. Methods to mitigate catalyst deactivation were investigated, including novel reaction/separation systems. Performance and emission characteristics of biofuels in flames and engines were measured. Importantly, the knowledge developed from this project became the basis for a subsequent collaborative proposal led by our research group, involving researchers from the University of Wisconsin, the University of Pittsburg, and the Idaho National Lab, for the DoE Carbon, Hydrogen and Separations Efficiency (CHASE) program, which was subsequently funded (one of only four projects awarded in the CHASE program). The CHASE project examined novel catalytic processes for lignocellulosic biomass conversion as well as technoeconomic analyses for process options for maximum carbon capture and hydrogen efficiency. Our research approach combined catalyst synthesis, measurements of catalyst activity and selectivity in different reactor systems and conditions, and detailed catalyst characterization to develop fundamental understanding of reaction pathways and the capability to predict product distributions. Nearly all of the candidate catalysts were prepared in-house via standard techniques such as impregnation, co-impregnation, or chemical vapor deposition. Supports were usually purchased, but in some cases coprecipitation was used to simultaneously create the support and active component, which can be advantageous for strong active component-support interactions and for achieving high active component dispersion. In-house synthesis also allowed for studies of the effects on catalyst activity and selectivity of such factors as support porosity, calcination temperature, and reduction/activation conditions. Depending on the physical characteristics of the molecule, catalyst activity measurements were carried out in tubular flow reactors (for vapor phase reactions) or stirred tank reactors (for liquid phase reactions) over a wide range of pressures and temperatures. Reactant and product concentrations were measured using gas chromatography (both on-line and off-line, with TCD, FID, and/or mass spectrometric detection). For promising catalysts, detailed physicochemical characterization was carried out using FTIR, Raman, XPS, and XRD spectroscopies (all available in our laboratories) and TEM spectroscopy (available at OU). Additional methods included temperature programmed techniques (TPD, TPO) and surface area measurements by nitrogen adsorption techniques.« less
Integrated Biomass Gasification with Catalytic Partial Oxidation for Selective Tar Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lingzhi; Wei, Wei; Manke, Jeff
Biomass gasification is a flexible and efficient way of utilizing widely available domestic renewable resources. Syngas from biomass has the potential for biofuels production, which will enhance energy security and environmental benefits. Additionally, with the successful development of low Btu fuel engines (e.g. GE Jenbacher engines), syngas from biomass can be efficiently used for power/heat co-generation. However, biomass gasification has not been widely commercialized because of a number of technical/economic issues related to gasifier design and syngas cleanup. Biomass gasification, due to its scale limitation, cannot afford to use pure oxygen as the gasification agent that used in coal gasification.more » Because, it uses air instead of oxygen, the biomass gasification temperature is much lower than well-understood coal gasification. The low temperature leads to a lot of tar formation and the tar can gum up the downstream equipment. Thus, the biomass gasification tar removal is a critical technology challenge for all types of biomass gasifiers. This USDA/DOE funded program (award number: DE-FG36-O8GO18085) aims to develop an advanced catalytic tar conversion system that can economically and efficiently convert tar into useful light gases (such as syngas) for downstream fuel synthesis or power generation. This program has been executed by GE Global Research in Irvine, CA, in collaboration with Professor Lanny Schmidt's group at the University of Minnesota (UoMn). Biomass gasification produces a raw syngas stream containing H2, CO, CO2, H2O, CH4 and other hydrocarbons, tars, char, and ash. Tars are defined as organic compounds that are condensable at room temperature and are assumed to be largely aromatic. Downstream units in biomass gasification such as gas engine, turbine or fuel synthesis reactors require stringent control in syngas quality, especially tar content to avoid plugging (gum) of downstream equipment. Tar- and ash-free syngas streams are a critical requirement for commercial deployment of biomass-based power/heat co-generation and biofuels production. There are several commonly used syngas clean-up technologies: (1) Syngas cooling and water scrubbing has been commercially proven but efficiency is low and it is only effective at small scales. This route is accompanied with troublesome wastewater treatment. (2) The tar filtration method requires frequent filter replacement and solid residue treatment, leading to high operation and capital costs. (3) Thermal destruction typically operates at temperatures higher than 1000oC. It has slow kinetics and potential soot formation issues. The system is expensive and materials are not reliable at high temperatures. (4) In-bed cracking catalysts show rapid deactivation, with durability to be demonstrated. (5) External catalytic cracking or steam reforming has low thermal efficiency and is faced with problematic catalyst coking. Under this program, catalytic partial oxidation (CPO) is being evaluated for syngas tar clean-up in biomass gasification. The CPO reaction is exothermic, implying that no external heat is needed and the system is of high thermal efficiency. CPO is capable of processing large gas volume, indicating a very compact catalyst bed and a low reactor cost. Instead of traditional physical removal of tar, the CPO concept converts tar into useful light gases (eg. CO, H2, CH4). This eliminates waste treatment and disposal requirements. All those advantages make the CPO catalytic tar conversion system a viable solution for biomass gasification downstream gas clean-up. This program was conducted from October 1 2008 to February 28 2011 and divided into five major tasks. - Task A: Perform conceptual design and conduct preliminary system and economic analysis (Q1 2009 ~ Q2 2009) - Task B: Biomass gasification tests, product characterization, and CPO tar conversion catalyst preparation. This task will be conducted after completing process design and system economics analysis. Major milestones include identification of syngas cleaning requirements for proposed system design, identification and selection of tar compounds and 2 mixtures for use in CPO tests, and preparation of CPO catalysts for validation. (Q3 2009 ~ Q4 2009) - Task C: Test CPO with biomass gasification product gas. Optimize CPO performance with selected tar compounds. Optimize CPO performance with multi-component mixtures. Milestones include optimizing CPO catalysts design, collecting CPO experimental data for next stage kinetic modeling and understanding the effect of relative reactivities on ultimate tar conversion and syngas yields. (Q1 2010 ~ Q3 2010) - Task D: Develop tar CPO kinetic model with CPO kinetic model and modeling results as deliverables. (Q3 2010 ~ Q2 2011) - Task E: Project management and reporting. Milestone: Quarterly reports and presentations, final report, work presented at national technical conferences (Q1 2009 ~ Q2 2011) At the beginning of the program, IP landscaping was conducted to understand the operation of various types of biomass gasifiers, their unique syngas/tar compositions and potential tar mitigation options using the catalytic partial oxidation technology. A process simulation model was developed to quantify the system performance and economics impact of CPO tar removal technology. Biomass gasification product compositions used for performance evaluation tests were identified after literature review and system modeling. A reaction system for tar conversion tests was designed, constructed, with each individual component shaken-down in 2009. In parallel, University of Minnesota built a lab-scale unit and evaluated the tar removal performance using catalytic reforming. Benzene was used as the surrogate compound. The biomass gasification raw syngas composition was provided by GE through system studies. In 2010, GE selected different tar compounds and evaluated the tar removal effectiveness of the CPO catalyst. The catalytic performance was evaluated under different operating conditions, including catalyst geometry, S/C ratio, O/C ratio, GHSV, and N2 dilution. An understanding of how to optimize catalytic tar removal efficiency by varying operating conditions has been developed. GE collaborated with UoMn in examining inorganic impurities effects. Catalysts were pre-impregnated with inorganic impurities commonly present in biomass gasification syngas, including Si, Ca, Mg, Na, K, P and S. UoMn performed catalyst characterization and has acquired fundamental understandings of impurities effect on catalytic tar removal. Based on experimental data and the proposed reaction pathway, GE constructed a model to predict kinetic performance for biomass gasification tar cleanup process. Experimental data (eg. tar conversion, reactor inlet and outlet temperatures, product distribution) at different operating conditions were used to validate the model. A good fit between model predictions and experimental data was found. This model will be a valuable tool in designing the tar removal reactor and identifying appropriate operating conditions. We attended the 2011 DOE Biomass Program Thermochemical Platform Review held in Denver, CO from February 16 to 18 and received very positive comments from the review panel. Further, syngas utility and biomass to power/fuel companies expressed strong interest in our tar removal technology.« less
Perosa, Alvise; Guidi, Sandro; Cattelan, Lisa
2016-01-01
Summary The use of ionic liquids (ILs) as organocatalysts is reviewed for transesterification reactions, specifically for the conversion of nontoxic compounds such as dialkyl carbonates to both linear mono-transesterification products or alkylene carbonates. An introductory survey compares pros and cons of classic catalysts based on both acidic and basic systems, to ionic liquids. Then, innovative green syntheses of task-specific ILs and their representative applications are introduced to detail the efficiency and highly selective outcome of ILs-catalyzed transesterification reactions. A mechanistic hypothesis is discussed by the concept of cooperative catalysis based on the dual (electrophilic/nucleophilic) activation of reactants. PMID:27829898
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The five iron catalysts reported were all promoted with potassium. The most promising results were obtained with the catalyst containing UCC-111 (Appendix B, Run 10225-3). In earlier studies UCC-111 alone had been found to be a poor Task 1 catalyst for oligomerizing propylene. Physically combined with potassium-promoted iron, however, it proved surprisingly effective as a syngas catalyst in Task 2. It produced straight-chain olefinic hydrocarbons, as a normal Fischer-Tropsch catalyst does, but unlike the normal Fischer-Tropsch catalyst, it may also have isomerized the carbon-carbon double bond. Transfer of the double bond from the usual Position 1, typical for Fischer-Tropsch products,more » to an interior position, should not only lower the pour point of the liquid product, but it should raise its octane number as well. Four of the six cobalt catalysts reported this quarter were promoted with either thorium or thorium and potassium. All six were synthesized by the precipitate-slurry method, with either LZ-105-6, LZ-Y-82, UCC-101 or UCC-107 as the Molecular Sieve component. The test results for most of these catalysts indicate that cobalt is more effective than iron in producing a high yield of motor fuels. This increase in motor fuel yield was due primarily to a higher yield of diesel oil, with the gasoline yield remaining approximately the same as for the iron catalysts. This increased diesel oil yield, as well as an increased methane yield, was balanced against a decreased C/sub 2/-C/sub 4/ yield. The yields of the heavy fractions for both metal catalysts remained relatively low.« less
Catalytic Production of Ethanol from Biomass-Derived Synthesis Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trewyn, Brian G.; Smith, Ryan G.
2016-06-01
Heterogeneous catalysts have been developed for the conversion of biomass-derived synthetic gas (syngas) to ethanol. The objectives of this project were to develop a clean synthesis gas from biomass and develop robust catalysts with high selectivity and lifetime for C 2 oxygenate production from biomass-derived syngas and surrogate syngas. During the timeframe for this project, we have made research progress on the four tasks: (1) Produce clean bio-oil generated from biomass, such as corn stover or switchgrass, by using fast pyrolysis system, (2) Produce clean, high pressure synthetic gas (syngas: carbon monoxide, CO, and hydrogen, H 2) from bio-oil generatedmore » from biomass by gasification, (3) Develop and characterize mesoporous mixed oxide-supported metal catalysts for the selective production of ethanol and other alcohols, such as butanol, from synthesis gas, and (4) Design and build a laboratory scale synthesis gas to ethanol reactor system evaluation of the process. In this final report, detailed explanations of the research challenges associated with this project are given. Progress of the syngas production from various biomass feedstocks and catalyst synthesis for upgrading the syngas to C 2-oxygenates is included. Reaction properties of the catalyst systems under different reaction conditions and different reactor set-ups are also presented and discussed. Specifically, the development and application of mesoporous silica and mesoporous carbon supports with rhodium nanoparticle catalysts and rhodium nanoparticle with manganese catalysts are described along with the significant material characterizations we completed. In addition to the synthesis and characterization, we described the activity and selectivity of catalysts in our micro-tubular reactor (small scale) and fixed bed reactor (larger scale). After years of hard work, we are proud of the work done on this project, and do believe that this work will provide a solid foundation for the future production of syngas from biomass and the development of heterogeneous catalysts for the syngas to C 2-oxygenate process and for the commercialization of this process. Potential future directions for this research are also discussed within the report.« less
Indra, Arindam; Menezes, Prashanth W; Schuster, Felix; Driess, Matthias
2015-11-01
Development of efficient bio-inspired water oxidation system with transition metal oxide catalyst has been considered as the one of the most challenging task in the recent years. As the oxygen evolving center of photosystem II consists of Mn4CaO5 cluster, most of the water oxidation study was converged to build up manganese oxide based catalysts. Here we report the synthesis of efficient artificial water oxidation catalysts by transferring the inactive manganese monooxide (MnO) under highly oxidizing conditions with ceric ammonium nitrate (CAN) and ozone (O3). MnO was partially oxidized to form mixed-valent manganese oxide (MnOx) with CAN whereas completely oxidized to mineral phase of ε-MnO2 (Akhtenskite) upon treatment of O3 in acidic solution, which we explore first time as a water oxidation catalyst. Chemical water oxidation, as well as the photochemical water oxidation in the presence of sacrificial electron acceptor and photosensitizer with the presented catalysts were carried out that followed the trends: MnOx>MnO2>MnO. Structural and activity correlation reveals that the presence of larger extent of Mn(III) in MnOx is the responsible factor for higher activity compared to MnO2. Mn(III) species in octahedral system with eg(1) configuration furnishes and facilitates the Mn-O and Mn-Mn bond enlargement with required structural flexibility and disorder in the manganese oxide structure which indeed facilitates water oxidation. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Commercial Fischer-Tropsch (F-T) processes are limited by deficiencies intrinsic to the metal catalysts used (Fe and Co). These are (1) the predominance of normal paraffins in the product, (2) a small liquid motor fuel fraction formed in the total product, and (3) the formation of oxygenated compounds which cause separation and corrosion problems. Union Carbide believed that substantial improvements could be made based upon recent discoveries of new molecular sieves. It was believed that the combustion of the new molecular sieves with the classical F-T catalysts could eliminate these deficiencies. The initial effort focused on studies of the molecular sievemore » component alone (Task 1). This resulted in the identification of UCC-108 and UCC-101 (and their variations) as candidates for the production of fuel range hydrocarbons with Fischer-Tropsch catalysts. The next step (Task 2) was the study of these materials in conjunction with Fischer-Tropsch catalysts to generate fuel hydrocarbons from syngas. A few outstanding candidates were discovered that provided significantly better product yields and quality as well as an improved catalyst stability. This report summarizes the results of the program. 80 figs., 33 tabs.« less
Molecular catalytic coal liquid conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stock, L.M.; Yang, Shiyong
1995-12-31
This research, which is relevant to the development of new catalytic systems for the improvement of the quality of coal liquids by the addition of dihydrogen, is divided into two tasks. Task 1 centers on the activation of dihydrogen by molecular basic reagents such as hydroxide ion to convert it into a reactive adduct (OH{center_dot}H{sub 2}){sup {minus}} that can reduce organic molecules. Such species should be robust withstanding severe conditions and chemical poisons. Task 2 is focused on an entirely different approach that exploits molecular catalysts, derived from organometallic compounds that are capable of reducing monocyclic aromatic compounds under verymore » mild conditions. Accomplishments and conclusions are discussed.« less
Catalysts for the decomposition of hydrazine and its derivatives and a method for its production
NASA Technical Reports Server (NTRS)
Sasse, R.
1986-01-01
Catalysts of various types are used to decompose hydrazine and its derivatives. One type of catalyst is made as follows: the aluminum is dissolved out of an alloy of cobalt or nickel/aluminum so that a structure is produced that is chemically active for the monergol and that has a large active surface. The objective was to avoid difficulties and to create a catalyst that not only has a short start time but that can also be manufactured easily and relatively inexpensively. The solution to this task is to coat the base structure of the catalyst with oxides of copper, cobalt and cerium or oxides of copper, cobalt and cerite earth.
New Developments in the Field of Reaction Technology: The Multiparallel Reactor HPMR 50-96
Allwardt, Arne; Wendler, Christian; Thurow, Kerstin
2005-01-01
Catalytic high-pressure reactions play an important role in classic bulk chemistry. The optimization of common reactions, the search for new and more effective catalysts, and the increasing use of catalytic pressure reactions in the field of drug development call for high-parallel reaction systems. A crucial task of current developments, apart from the parameters of pressure, temperature, and number of reaction chambers, is, in this respect, the systems' integration into complex laboratory automation environments. PMID:18924722
Hindered diffusion of coal liquids. Quarterly report No. 12, June 18, 1995--September 17, 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsotsis, T.T.; Sahimi, M.; Webster, I.A.
1995-12-31
The design of industrial catalysts requires that the diffusivity of the reacting species within the catalyst be accurately known. Nowhere is this more important than in the area of coal liquefaction and upgrading of coal liquids. In this area one is faced with the task of processing a number of heavy oils, containing metals and other contaminants, in a variety of process dependent solvents. It is important, therefore, on the basis of predicting catalyst activity, selectivity, and optimizing reactor performance, that the diffusivities of these oil species be accurately known. It is the purpose of the project described here tomore » provide such a correct concept of coal asphaltenes by careful and detailed investigations of asphaltene transport through porous systems under realistic process temperature and pressure conditions. The experimental studies will be coupled with detailed, in-depth statistical and molecular dynamics models intended to provide a fundamental understanding of the overall transport mechanisms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Four new aluminophosphate molecular sieves were prepared in test quantities. Chemical modification to increase their catalytic activity is planned. One of these (unmodified), AlPO/sub 4/-11, was tested and found rather inactive for propylene oligomerization. Appendix A reports synthesis work on both Task 1 and Task 2 catalysts. Data from seven tests of propylene oligomerization with several catalysts are reported in Appendix C. Changing from methanol to propylene feed eliminated earlier problems associated with the solid part of methanol reaction products. Tests with UCC-101, a proprietary UCC, large pore molecular sieve of moderate acidity, resulted in reaction products having both gasolinemore » and diesel fractions. Tests with LZ-105-6, similar in properties to Mobil's ZSM-5, resulted in good yield of gasoline range product with very little diesel range product. Feeding water along with the propylene and hydrogen was found to markedly reduce the rate of deactivation of both LZ-105 and UCC-101. Another new UCC proprietary molecular sieve, UCC-104, was active and very selective for the production of gasoline range hydrocarbons (more than 95% selective to C/sub 5//sup +/). At low temperatures, the UCC-104 produces less propane than the LZ-105-6, i.e., the UCC-104 is more selective to liquid product formation than catalysts like ZSM-5. Results of seven Task 2 tests appear in Appendix C. In four runs the catalysts had reasonable activity but were not as selective to liquid products as desired.« less
Ceyer, Sylvia T.; Lahr, David L.
2010-11-09
The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.
Catalyst system comprising a first catalyst system tethered to a supported catalyst
Angelici, Robert J.; Gao, Hanrong
1998-08-04
The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilation, olefin oxidation, isomerization, hydrocyanation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical.
Catalyst system comprising a first catalyst system tethered to a supported catalyst
Angelici, R.J.; Gao, H.
1998-08-04
The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilication, olefin oxidation, isomerization, hydrocyanidation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical. 2 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singleton, A.H.
1995-06-28
The goal of this project is the development of a commercially-viable, cobalt-based Fischer-Tropsch (F-T) catalyst for use in a slurry bubble column reactor. The major objectives of this work are (1) to develop a cobalt-based F-T catalyst with low (< 5%) methane selectivity, (2) to develop a cobalt-based F-T catalyst with water-gas shift activity, and (3) to combine both these improvements into one catalyst. The project consists of five major tasks: catalyst development; catalyst testing; catalyst reproducibility tests; catalyst aging tests; and preliminary design and cost estimate for a demonstrate scale catalyst production facility. Technical accomplishments during this reporting periodmore » include the following. It appears that the higher activity obtained for the catalysts prepared using an organic solution and reduced directly without prior calcination was the result of higher dispersions obtained under such pretreatment. A Ru-promoted Co catalyst on alumina with 30% Co loading exhibited a 4-fold increase in dispersion and a 2-fold increase in activity in the fixed-bed reactor from that obtained with the non-promoted catalyst. Several reactor runs have again focused on pushing conversion to higher levels. The maximum conversion obtained has been 49.7% with 26g catalyst. Further investigations of the effect of reaction temperature on the performance of Co catalysts during F-T synthesis were started using a low activity catalyst and one of the most active catalysts. The three 1 kg catalyst batches prepared by Calsicat for the reproducibility and aging studies were tested in both the fixed-bed and slurry bubble column reactors under the standard reaction conditions. The effects of adding various promoters to some cobalt catalysts have also been addressed. Results are presented and discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cronauer, D.C.; Swanson, A.J.; Sajkowski, D.J.
1992-12-31
Research in this project centered upon developing and evaluating catalysts and process improvements for coal liquefaction in the two-stage, close-coupled catalytic process. The major results are summarized here and they are described in more detail under each Task. In tasks for coal pretreatment and beneficiation, it was shown for coal handling that drying of both lignite or subbituminous coals using warm air, vacuum oven or exposing to air for long time was detrimental to subsequent liquefaction. Both laboratory and bench-scale beneficiations indicated that in order to achieve increased liquefaction yield for Illinois No. 6 bituminous coal, size separation with inmore » sink-float technique should be used. For subbituminous coal, the best beneficiation was aqueous SO{sub 2} treatment, which reduced mineral matter. In the case of lignite, the fines should be rejected prior to aqueous SO{sub 2} treatment and sink-float gravity separation. In liquefying coals with supported catalysts in both first and second stages, coal conversion was highest (93%) with Illinois No. 6 coal, which also had the highest total liquid yield of 80%, however, the product contained unacceptably high level of resid (30%). Both low rank coals gave lower conversion (85--87%) and liquid yields (57--59%), but lighter products (no resid). The analysis of spent first stage catalysts indicated significant sodium and calcium deposits causing severe deactivation. The second stage catalysts were in better condition showing high surface areas and low coke and metal deposits. The use of dispersed catalyst in the first stage would combat the severe deactivation.« less
New insides in the characterization of HDS industrial catalysts by HAADF-STEM
NASA Astrophysics Data System (ADS)
Del Angel, Paz; Ponce, Arturo; Arellano, Josefina; Yacaman, Miguel J.; Hernandez-Pichardo, Martha; Montoya, J. Ascencion; Escobar, Jose
2015-03-01
Hydrodesulfurization (HDS) catalysts are of great importance in the petroleum industry. Transition metal sulphides catalysts of Ni(Co)Mo(W)/Al2O3 are widely used for hydrotreating reactions, like hydrodenitrogenation and HDS. One of the main issue in these catalysts is to understand the mechanism of the reaction, where MoS2 plays the most important role in the catalytic activity. We studied an industrial NiMo/Alumina sulfide catalyst highly active by using aberration-corrected HAADF-STEM techniques. The used catalysts was a state-of- the art commercial nickel-molybdenum alumina-supported formulation, including organic agent modifier. This type of material belongs to a novel family of catalysts specially designed for ultra-low sulfur production from straight-run gas oil (SRGO), cycle oil, coker gas oil, or their combinations at operating conditions of commercial interest in hydrotreating units at industrial scale. Aberration corrected HAADF-STEM allowed to observe the nanostructure and location of MoS2 and his interaction with the alumina. The results indicate that the MoS2 is highly dispersed on the alumina, however the location of Ni is one of the task of this kind of catalyst.
Development of advanced fuel cell system, phase 2
NASA Technical Reports Server (NTRS)
Handley, L. M.; Meyer, A. P.; Bell, W. F.
1973-01-01
A multiple task research and development program was performed to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. Development and characterization of a very stable gold alloy catalyst was continued from Phase I of the program. A polymer material for fabrication of cell structural components was identified and its long term compatibility with the fuel cell environment was demonstrated in cell tests. Full scale partial cell stacks, with advanced design closed cycle evaporative coolers, were tested. The characteristics demonstrated in these tests verified the feasibility of developing the engineering model system concept into an advanced lightweight long life powerplant.
Process of activation of a palladium catalyst system
Sobolevskiy, Anatoly [Orlando, FL; Rossin, Joseph A [Columbus, OH; Knapke, Michael J [Columbus, OH
2011-08-02
Improved processes for activating a catalyst system used for the reduction of nitrogen oxides are provided. In one embodiment, the catalyst system is activated by passing an activation gas stream having an amount of each of oxygen, water vapor, nitrogen oxides, and hydrogen over the catalyst system and increasing a temperature of the catalyst system to a temperature of at least 180.degree. C. at a heating rate of from 1-20.degree./min. Use of activation processes described herein leads to a catalyst system with superior NOx reduction capabilities.
Supported catalyst systems and method of making biodiesel products using such catalysts
Kim, Manhoe; Yan, Shuli; Salley, Steven O.; Ng, K. Y. Simon
2015-10-20
A heterogeneous catalyst system, a method of preparing the catalyst system and a method of forming a biodiesel product via transesterification reactions using the catalyst system is disclosed. The catalyst system according to one aspect of the present disclosure represents a class of supported mixed metal oxides that include at least calcium oxide and another metal oxide deposited on a lanthanum oxide or cerium oxide support. Preferably, the catalysts include CaO--CeO.sub.2ZLa.sub.2O.sub.3 or CaO--La.sub.2O.sub.3/CeO.sub.2. Optionally, the catalyst may further include additional metal oxides, such as CaO--La.sub.2O.sub.3--GdOxZLa.sub.2O.sub.3.
Methods of producing epoxides from alkenes using a two-component catalyst system
Kung, Mayfair C.; Kung, Harold H.; Jiang, Jian
2013-07-09
Methods for the epoxidation of alkenes are provided. The methods include the steps of exposing the alkene to a two-component catalyst system in an aqueous solution in the presence of carbon monoxide and molecular oxygen under conditions in which the alkene is epoxidized. The two-component catalyst system comprises a first catalyst that generates peroxides or peroxy intermediates during oxidation of CO with molecular oxygen and a second catalyst that catalyzes the epoxidation of the alkene using the peroxides or peroxy intermediates. A catalyst system composed of particles of suspended gold and titanium silicalite is one example of a suitable two-component catalyst system.
40 CFR Appendix Viii to Part 86 - Aging Bench Equipment and Procedures
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Exhaust System Installation a. The entire catalyst(s)-plus-oxygen-sensor(s) system, together with all... catalysts, the entire catalyst system including all catalysts, all oxygen sensors and the associated exhaust... first catalyst at its longitudinal axis). Alternatively, the feed gas temperature just before the...
40 CFR Appendix Viii to Part 86 - Aging Bench Equipment and Procedures
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Exhaust System Installation a. The entire catalyst(s)-plus-oxygen-sensor(s) system, together with all... catalysts, the entire catalyst system including all catalysts, all oxygen sensors and the associated exhaust... first catalyst at its longitudinal axis). Alternatively, the feed gas temperature just before the...
NASA Astrophysics Data System (ADS)
Xu, Bo; Yang, He; Yuan, Lincheng; Sun, Yiqiang; Chen, Zhiming; Li, Cuncheng
2017-10-01
Development of low-cost, highly active bifunctional catalyst for efficient overall water splitting based on earth-abundant metals is still a great challenging task. In this work, we report a NiFe-Se/C composite nanorod as efficient non-precious-metal electrochemical catalyst derived from direct selenylation of a mixed Ni/Fe metal-organic framework. The as-obtained catalyst requires low overpotential to drive 10 mA cm-2 for HER (160 mV) and OER (240 mV) in 1.0 M KOH, respectively, and its catalytic activity is maintained for at least 20 h. Moreover, water electrolysis using this catalyst achieves high water splitting current density of 10 mA cm-2 at cell voltage of 1.68 V.
Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander
2003-05-13
Emission abatement system. The system includes a source of emissions and a catalyst for receiving the emissions. Suitable catalysts are absorber catalysts and selective catalytic reduction catalysts. A plasma fuel converter generates a reducing gas from a fuel source and is connected to deliver the reducing gas into contact with the absorber catalyst for regenerating the catalyst. A preferred reducing gas is a hydrogen rich gas and a preferred plasma fuel converter is a plasmatron. It is also preferred that the absorber catalyst be adapted for absorbing NO.sub.x.
Robotic Toys as a Catalyst for Mathematical Problem Solving
ERIC Educational Resources Information Center
Highfield, Kate
2010-01-01
Robotic toys present unique opportunities for teachers of young children to integrate mathematics learning with engaging problem-solving tasks. This article describes a series of tasks using Bee-bots and Pro-bots, developed as part a larger project examining young children's use of robotic toys as tools in developing mathematical and metacognitive…
Lean NOx catalysis for gasoline fueled European cars
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-02-01
There is increasing interest in operating gasoline fueled passenger cars lean of the stoichiometric air/fuel (A/F) ratio to improve fuel economy. These types of engines will operate at lean A/F ratios while cruising at partial load, and return to stoichiometric or even rich conditions when more power is required. The challenge for the engine and catalyst manufacturer is to develop a system which will combine the high activity rates of a state-of-the-art three-way catalyst (TWC) with the ability to reduce nitrogen oxides (NOx) in the presence of excess oxygen. The objective is to achieve the future legislative limits (EURO III/IV)more » in the European Union. Recent developments in automotive pollution control catalysis show that the use of NOx adsorption materials is a suitable way to reduce NOx emissions of gasoline-fueled lean-burn engines. However, the primary task for the implementation of this technology in the European market will be to improve the catalyst`s high-temperature stability and to decrease its susceptibility to sulfur poisoning. Outlined here are results of a recent R and D program to achieve NOx reduction under lean-burn gasoline engine conditions. Model gas test results as well as engine bench data are used for discussion of the parameters which control NOx adsorption efficiency under various conditions.« less
Emission abatement system utilizing particulate traps
Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander
2004-04-13
Emission abatement system. The system includes a source of emissions and a catalyst for receiving the emissions. Suitable catalysts are absorber catalysts and selective catalytic reduction catalysts. A plasma fuel converter generates a reducing gas from a fuel source and is connected to deliver the reducing gas into contact with the absorber catalyst for regenerating the catalyst. A preferred reducing gas is a hydrogen rich gas and a preferred plasma fuel converter is a plasmatron. It is also preferred that the absorber catalyst be adapted for absorbing NO.sub.x.
Narayanaperumal, Senthil; da Silva, Rodrigo César; Feu, Karla Santos; de la Torre, Alexander Fernández; Corrêa, Arlene G; Paixão, Márcio Weber
2013-05-01
A task-specific ionic liquid (TSIL) has been introduced as a recyclable catalyst in Michael addition. A series of nitroalkenes and various C-based nucleophiles were reacted in the presence of 30mol% of recyclable basic-functionalized ionic liquid. Good to excellent yields were obtained in 30min under ultrasound irradiation. Copyright © 2012 Elsevier B.V. All rights reserved.
Use of aluminum phosphate as the dehydration catalyst in single step dimethyl ether process
Peng, Xiang-Dong; Parris, Gene E.; Toseland, Bernard A.; Battavio, Paula J.
1998-01-01
The present invention pertains to a process for the coproduction of methanol and dimethyl ether (DME) directly from a synthesis gas in a single step (hereafter, the "single step DME process"). In this process, the synthesis gas comprising hydrogen and carbon oxides is contacted with a dual catalyst system comprising a physical mixture of a methanol synthesis catalyst and a methanol dehydration catalyst. The present invention is an improvement to this process for providing an active and stable catalyst system. The improvement comprises the use of an aluminum phosphate based catalyst as the methanol dehydration catalyst. Due to its moderate acidity, such a catalyst avoids the coke formation and catalyst interaction problems associated with the conventional dual catalyst systems taught for the single step DME process.
Cheng, Hua; Xiong, Mao-Qian; Cheng, Chuan-Xiang; Wang, Hua-Jing; Lu, Qiang; Liu, Hong-Fu; Yao, Fu-Bin; Chen, Cheng; Verpoort, Francis
2018-02-16
The transition-metal-catalyzed direct synthesis of amides from alcohols and amines is herein demonstrated as a highly environmentally benign and atom-economic process. Among various catalyst systems, in situ generated N-heterocyclic carbene (NHC)-based ruthenium (Ru) halide catalyst systems have been proven to be active for this transformation. However, these existing catalyst systems usually require an additional ligand to achieve satisfactory results. In this work, through extensive screening of a diverse variety of NHC precursors, we discovered an active in situ catalyst system for efficient amide synthesis without any additional ligand. Notably, this catalyst system was found to be insensitive to the electronic effects of the substrates, and various electron-deficient substrates, which were not highly reactive with our previous catalyst systems, could be employed to afford the corresponding amides efficiently. Furthermore, mechanistic investigations were performed to provide a rationale for the high activity of the optimized catalyst system. NMR-scale reactions indicated that the rapid formation of a Ru hydride intermediate (signal at δ=-7.8 ppm in the 1 H NMR spectrum) after the addition of the alcohol substrate should be pivotal in establishing the high catalyst activity. Besides, HRMS analysis provided possible structures of the in situ generated catalyst system. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sol-gel based oxidation catalyst and coating system using same
NASA Technical Reports Server (NTRS)
Leighty, Bradley D. (Inventor); Watkins, Anthony N. (Inventor); Patry, JoAnne L. (Inventor); Schryer, Jacqueline L. (Inventor); Oglesby, Donald M. (Inventor)
2010-01-01
An oxidation catalyst system is formed by particles of an oxidation catalyst dispersed in a porous sol-gel binder. The oxidation catalyst system can be applied by brush or spray painting while the sol-gel binder is in its sol state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yarrington, R M; Feins, I R; Hwang, H S
1979-01-01
The work done under this contract in the last quarter of 1978 was concerned with Phase I, which involved preliminary catalyst and process evaluation. The processes under study are hydrogen assisted steam reforming (HASR), catalytic partial oxidation (CPO), and autothermal steam reforming (ATR). Existing Engelhard test units were modified to carry out preliminary runs using the first two processes. Technical analysis to support work in this area consisted of heat and material balances constrained by equilibrium considerations. In a third task, the steam reforming of methanol to produce hydrogen was studied over two commercial low-temperature shift catalysts. Aging runs indicatedmore » good initial performance on both catalysts, but methanol conversion started to decline after a few hundred hours on stream.« less
NASA Astrophysics Data System (ADS)
Wang, Fulong; Xue, Huaiguo; Tian, Zhiqun; Xing, Wei; Feng, Ligang
2018-01-01
Developing catalyst promoter for Pd/C catalyst is significant for the catalytic ability improvement in energy transfer related electrochemical reactions. Herein, we demonstrate Fe2P as an efficient catalyst promoter in Pd/C catalyst system for formic acid electro-oxidation in fuel cells reactions. Adding Fe2P in the Pd/C catalyst system greatly increases the performances for formic acid oxidation by 3-4 times; the CO stripping technique displays two kinds of active sites formation in the Pd-Fe2P/C catalyst system coming from the interaction of Pd, Fe2P and Pd oxide species and both are more efficient for formic acid and CO-species electrooxidation. The smaller charge transfer resistance and Tafel slope for formic acid oxidation indicate the improvements in kinetics by Fe2P in the Pd-Fe2P/C system. The nanostructured hybrid units of Pd, Fe2P and carbon are evidently visible in the high resolution microscopy images and XPS technique confirmes the electronic effect in the catalyst system. The promotion effect of Fe2P in the catalyst system arising from the structure, composition and electronic effect changes is discussed with the help from multiple physical and electrochemical techniques. It is concluded that Fe2P as a significant catalyst promoter will have potential application in energy transfer related electrochemical reactions.
Sustained Low Temperature NOx Reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zha, Yuhui
Increasing regulatory, environmental, and customer pressure in recent years led to substantial improvements in the fuel efficiency of diesel engines, including the remarkable breakthroughs demonstrated through the Super Truck program supported by the U.S. Department of Energy (DOE). On the other hand, these improvements have translated into a reduction of exhaust gas temperatures, thus further complicating the task of controlling NOx emissions, especially in low power duty cycles. The need for improved NOx conversion over these low temperature duty cycles is also observed as requirements tighten with in-use emissions testing. Sustained NOx reduction at low temperatures, especially in the 150-200oCmore » range, shares some similarities with the more commonly discussed cold-start challenge, however poses a number of additional and distinct technical problems. In this project we set a bold target of achieving and maintaining a 90% NOx conversion at the SCR catalyst inlet temperature of 150oC. The project is intended to push the boundaries of the existing technologies, while staying within the realm of realistic future practical implementation. In order to meet the resulting challenges at the levels of catalyst fundamentals, system components, and system integration, Cummins has partnered with the DOE, Johnson Matthey, and Pacific Northwest National Lab and initiated the Sustained Low-Temperature NOx Reduction program at the beginning of 2015. Through this collaboration, we are exploring catalyst formulations and catalyst architectures with enhanced catalytic activity at 150°C; opportunities to approach the desirable ratio of NO and NO2 in the SCR feed gas; options for robust low-temperature reductant delivery; and the requirements for overall system integration. The program is expected to deliver an on-engine demonstration of the technical solution and an assessment of its commercial potential. In the SAE meeting, we will share the initial performance data on engine to highlight the path to achieve 90% NOx conversion at the SCR inlet temperature of 150oC.« less
Cooperative research in coal liquefaction. Technical progress report, May 1, 1993--April 30, 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huffman, G.P.
Accomplishments for the past year are presented for the following tasks: coliquefaction of coal with waste materials; catalysts for coal liquefaction to clean transportation fuels; fundamental research in coal liquefaction; and in situ analytical techniques for coal liquefaction and coal liquefaction catalysts some of the highlights are: very promising results have been obtained from the liquefaction of plastics, rubber tires, paper and other wastes, and the coliquefaction of wastes with coal; a number of water soluble coal liquefaction catalysts, iron, cobalt, nickel and molybdenum, have been comparatively tested; mossbauer spectroscopy, XAFS spectroscopy, TEM and XPS have been used to characterizemore » a variety of catalysts and other samples from numerous consortium and DOE liquefaction projects and in situ ESR measurements of the free radical density have been conducted at temperatures from 100 to 600{degrees}C and H{sub 2} pressures up to 600 psi.« less
The Environmental Technology Verification report discusses the technology and performance of the Fuel-Borne Catalyst with CleanAir System's Diesel Oxidation Catalyst manufactured by Clean Diesel Technologies, Inc. The technology is a fuel-borne catalyst used in ultra low sulfur d...
Steam reforming of fuel to hydrogen in fuel cells
Fraioli, Anthony V.; Young, John E.
1984-01-01
A fuel cell capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-06-11
During this quarter, the third draft of the Topical Report on Process Economics Studies was issued for review. A recommendation to continue with design verification testing on the coproduction of methanol and dimethyl ether (DME) was made. A liquid phase dimethyl ether (LPDME) catalyst system with reasonable long-term activity and stability is being developed, and a decision to proceed with a proof-of-concept test run at the LaPorte Alternative Fuels Development Unit (AFDU) is pending the release of a memo from Air Products on the catalyst targets and corresponding economics for a commercially successful LPDME catalyst. The off-site product-use test planmore » is to be updated in June of 1997. During this quarter, Air Products and Acurex Environmental Corporation continued developing the listing of product-use test participants who are involved in fuel cell, transportation, and stationary power plant applications. Start-up activities (Task 3.1) began during the reporting period, and coal-derived synthesis gas (syngas) was introduced to the demonstration unit. The recycle compressor was tested successfully on syngas at line pressure of 700 psig, and the reactor loop reached 220 C for carbonyl burnout. Iron carbonyl in the balanced gas feed remained below the 10 ppbv detection limit for all samples but one. Within the reactor loop, iron carbonyl levels peaked out near 200 ppbv after about 40 hours on-stream, before decreasing to between 10--20 ppbv at 160 hours on -stream. Nickel carbonyl measurements reached a peak of about 60 ppbv, and decreased at all sampling locations to below the 10 ppbv detection limit by 70 hours on-stream. Catalyst activation of the nine 2,250 lb batches required for the initial catalyst charge began and concluded. All batches met or slightly exceeded the theoretical maximum uptake of 2.82 SCF of reducing gas/lb catalyst.« less
Steam reforming of fuel to hydrogen in fuel cell
Young, J.E.; Fraioli, A.V.
1983-07-13
A fuel cell is described capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.
Reilly, Peter T. A.
2010-03-23
A system and method for producing carbon nanotubes by chemical vapor deposition includes a catalyst support having first and second surfaces. The catalyst support is capable of hydrogen transport from the first to the second surface. A catalyst is provided on the first surface of the catalyst support. The catalyst is selected to catalyze the chemical vapor deposition formation of carbon nanotubes. A fuel source is provided for supplying fuel to the catalyst.
Multi-stage catalyst systems and uses thereof
Ozkan, Umit S [Worthington, OH; Holmgreen, Erik M [Columbus, OH; Yung, Matthew M [Columbus, OH
2009-02-10
Catalyst systems and methods provide benefits in reducing the content of nitrogen oxides in a gaseous stream containing nitric oxide (NO), hydrocarbons, carbon monoxide (CO), and oxygen (O.sub.2). The catalyst system comprises an oxidation catalyst comprising a first metal supported on a first inorganic oxide for catalyzing the oxidation of NO to nitrogen dioxide (NO.sub.2), and a reduction catalyst comprising a second metal supported on a second inorganic oxide for catalyzing the reduction of NO.sub.2 to nitrogen (N.sub.2).
DOE Office of Scientific and Technical Information (OSTI.GOV)
García-Melchor, Max; Vilella, Laia; López, Núria
2016-04-29
An attractive strategy to improve the performance of water oxidation catalysts would be to anchor a homogeneous molecular catalyst on a heterogeneous solid surface to create a hybrid catalyst. The idea of this combined system is to take advantage of the individual properties of each of the two catalyst components. We use Density Functional Theory to determine the stability and activity of a model hybrid water oxidation catalyst consisting of a dimeric Ir complex attached on the IrO 2(110) surface through two oxygen atoms. We find that homogeneous catalysts can be bound to its matrix oxide without losing significant activity.more » Hence, designing hybrid systems that benefit from both the high tunability of activity of homogeneous catalysts and the stability of heterogeneous systems seems feasible.« less
Pitts, J Roland [Lakewood, CO; Liu, Ping [Irvine, CA; Smith, R Davis [Golden, CO
2009-07-14
Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.
NIRPS: A Year of Progress and Challenge
NASA Technical Reports Server (NTRS)
Thomas, Dale
2012-01-01
In the past 14 months NIRPS has gone from an idea on a sheet of paper to a working organization, performing tasks of national scale. NIRPS is beginning to establish itself among the Propulsion Community. Need is recognized for a coordination and integration function across the US Government s propulsion activities. NIRPS acts as a collaboration agent - serves as a catalyst and multi-agency facilitator NIRPS is leading a high-priority Government-wide task. 2012 Defense Authorization Act, Sec 1095; Develop National Rocket Propulsion Strategy. Beginning to perform in accordance with Grand Challenges. Performing to an Executable plan, adjusting to to Center and Agency priorities. Challenges remain to building a sustainable Institute. Effective integration and Coordination with other Government Agencies. Continued Active engagement with Industry and Academia. Building an Efficient and Responsive Governance System for a growing Institute.
Catalysts, systems and methods to reduce NOX in an exhaust gas stream
Castellano, Christopher R.; Moini, Ahmad; Koermer, Gerald S.; Furbeck, Howard
2010-07-20
Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having an SCR catalyst comprising silver tungstate on an alumina support. The emissions treatment system may be used for the treatment of exhaust streams from diesel engines and lean burn gasoline engines. An emissions treatment system may further comprise an injection device operative to dispense a hydrocarbon reducing agent upstream of the catalyst.
Selective catalytic reduction system and process using a pre-sulfated zirconia binder
Sobolevskiy, Anatoly; Rossin, Joseph A.
2010-06-29
A selective catalytic reduction (SCR) process with a palladium catalyst for reducing NOx in a gas, using hydrogen as a reducing agent is provided. The process comprises contacting the gas stream with a catalyst system, the catalyst system comprising (ZrO.sub.2)SO.sub.4, palladium, and a pre-sulfated zirconia binder. The inclusion of a pre-sulfated zirconia binder substantially increases the durability of a Pd-based SCR catalyst system. A system for implementing the disclosed process is further provided.
Application of a mixed metal oxide catalyst to a metallic substrate
NASA Technical Reports Server (NTRS)
Sevener, Kathleen M. (Inventor); Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Wisner, Daniel L. (Inventor)
2009-01-01
A method for applying a mixed metal oxide catalyst to a metallic substrate for the creation of a robust, high temperature catalyst system for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in propulsion systems. The method begins by forming a prepared substrate material consisting of a metallic inner substrate and a bound layer of a noble metal intermediate. Alternatively, a bound ceramic coating, or frit, may be introduced between the metallic inner substrate and noble metal intermediate when the metallic substrate is oxidation resistant. A high-activity catalyst slurry is applied to the surface of the prepared substrate and dried to remove the organic solvent. The catalyst layer is then heat treated to bind the catalyst layer to the surface. The bound catalyst layer is then activated using an activation treatment and calcinations to form the high-activity catalyst system.
Martín, Carmen
2014-01-01
Summary Zn(salen) complexes have been employed as active catalysts for the formation of cyclic carbonates from epoxides and CO2. A series of kinetic experiments was carried out to obtain information about the mechanism for this process catalyzed by these complexes and in particular about the order-dependence in catalyst. A comparative analysis was done between the binary catalyst system Zn(salphen)/NBu4I and a bifunctional system Zn(salpyr)·MeI with a built-in nucleophile. The latter system demonstrates an apparent second-order dependence on the bifunctional catalyst concentration and thus follows a different, bimetallic mechanism as opposed to the binary catalyst that is connected with a first-order dependence on the catalyst concentration and a monometallic mechanism. PMID:25161742
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arendt, Paul N.; DePaula, Ramond F.; Zhu, Yuntian T.
An array of carbon nanotubes is prepared by exposing a catalyst structure to a carbon nanotube precursor. Embodiment catalyst structures include one or more trenches, channels, or a combination of trenches and channels. A system for preparing the array includes a heated surface for heating the catalyst structure and a cooling portion that cools gas above the catalyst structure. The system heats the catalyst structure so that the interaction between the precursor and the catalyst structure results in the formation of an array of carbon nanotubes on the catalyst structure, and cools the gas near the catalyst structure and alsomore » cools any carbon nanotubes that form on the catalyst structure to prevent or at least minimize the formation of amorphous carbon. Arrays thus formed may be used for spinning fibers of carbon nanotubes.« less
Schieweck, Benjamin G; Klankermayer, Jürgen
2017-08-28
Herein a non-precious transition-metal catalyst system for the selective synthesis of dialkoxymethane ethers from carbon dioxide and molecular hydrogen is presented. The development of a tailored catalyst system based on cobalt salts in combination with selected Triphos ligands and acidic co-catalysts enabled a synthetic pathway, avoiding the oxidation of methanol to attain the formaldehyde level of the central CH 2 unit. This unprecedented productivity based on the molecular cobalt catalyst is the first example of a non-precious transition-metal system for this transformation utilizing renewable carbon dioxide sources. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Coppage, Ryan
Bio-inspired nanoparticle catalysis offers the opportunity to improve on current catalytic standards with respect to turnover efficiency, organic solvent use, and thermal activation. Unfortunately, projected energy demands will soon outweigh our fuel supplies. The task of creating multifunctional catalysts that both lower thermal activation and possess a number of functions in aqueous conditions is daunting. Similar to these needs, nature has evolved to create a wide range of highly specialized catalytic processes, which incorporate inorganic materials, take place in ambient temperatures, and in an aqueous environment. These specialized biological systems provide inspiration, but are not applicable to current needs. Exploitation of these biotic-abiotic systems could allow for green, multifunctional catalysts. In the resulting works, a peptide sequence has been isolated via phage display with affinity for Pd surfaces, that forms stable, peptide-capped nanoparticles. Substitution of residues results in the tuning of both nanocatalyst activity and nanoparticle size, such that a peptide surface-controlling effect can be noted. These characteristics can be exploited to ultimately understand the binding interactions among bio-inorganic interfaces, such that a rational design of biomolecules can be realized for the synthesis of highly active, green, multifunctional nanomaterials.
Employee satisfaction and employee retention: catalysts to patient satisfaction.
Collins, Kevin S; Collins, Sandra K; McKinnies, Richard; Jensen, Steven
2008-01-01
Over the last few years, most health care facilities have become intensely aware of the need to increase patient satisfaction. However, with today's more consumer-driven market, this can be a daunting task for even the most experienced health care manager. Recent studies indicate that focusing on employee satisfaction and subsequent employee retention may be strong catalysts to patient satisfaction. This study offers a review of how employee satisfaction and retention correlate with patient satisfaction and also examines the current ways health care organizations are focusing on employee satisfaction and retention.
System for reactivating catalysts
Ginosar, Daniel M.; Thompson, David N.; Anderson, Raymond P.
2010-03-02
A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst is provided. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.
Catalyst system for the polymerization of alkenes to polyolefins
Miller, Stephen A.; Bercaw, John E.
2002-01-01
The invention provides metallocene catalyst systems for the controlled polymerization of alkenes to a wide variety of polyolefins and olefin coplymers. Catalyst systems are provided that specifically produce isotactic, syndiotactic and steroblock polyolefins. The type of polymer produced can be controlled by varying the catalyst system, specifically by varying the ligand substituents. Such catalyst systems are particularly useful for the polymerization of polypropylene to give elastomeric polypropylenes. The invention also provides novel elastomeric polypropylene polymers characterized by dyad (m) tacticities of about 55% to about 65%, pentad (mmmm) tacticities of about 25% to about 35%, molecular weights (M.sub.w)in the range of about 50,000 to about 2,000,000, and have mmrm+rrmr peak is less than about 5%.
Catalyst system for the polymerization of alkenes to polyolefins
Miller, Stephen A.; Bercaw, John E.
2004-02-17
The invention provides metallocene catalyst systems for the controlled polymerization of alkenes to a wide variety of polyolefins and olefin coplymers. Catalyst systems are provided that specifically produce isotactic, syndiotactic and steroblock polyolefins. The type of polymer produced can be controlled by varying the catalyst system, specifically by varying the ligand substituents. Such catalyst systems are particularly useful for the polymerization of polypropylene to give elastomeric polypropylenes. The invention also provides novel elastomeric polypropylene polymers characterized by dyad (m) tacticities of about 55% to about 65%, pentad (mmmm) tacticities of about 25% to about 35%, molecular weights (M.sub.W) in the range of about 50,000 to about 2,000,000, and have mmrm+rrmr peak is less than about 5%.
Investigation of internal elements impaction on particles circulation in a fluidized bed reactor
NASA Astrophysics Data System (ADS)
Solovev, S. A.; Soloveva, O. V.; Antipin, A. V.; Shamsutdinov, E. V.
2018-01-01
A numerical study of the fluidized bed apparatus in the presence of various internal elements is carried out. A chemical reaction for temperature-dependent processes with heat absorption is considered. The task of incoming heated catalyst granules to the reactor is investigated. The main emphasis is focused on the circulation flows of the catalyst particles, heating of the reactor, and the efficiency of the chemical reaction. The analysis of the impact of various design elements on the efficiency of the reactor is carried out. The influence of feeding heated catalyst device design on the effectiveness of whole reactor heating is educed. The influence of the presence of fine particles on the efficiency of the reaction for different reactor design features is also educed.
Exhaust emission control and diagnostics
Mazur, Christopher John; Upadhyay, Devesh
2006-11-14
A diesel engine emission control system uses an upstream oxidation catalyst and a downstream SCR catalyst to reduce NOx in a lean exhaust gas environment. The engine and upstream oxidation catalyst are configured to provide approximately a 1:1 ratio of NO to NO2 entering the downstream catalyst. In this way, the downstream catalyst is insensitive to sulfur contamination, and also has improved overall catalyst NOx conversion efficiency. Degradation of the system is determined when the ratio provided is no longer near the desired 1:1 ratio. This condition is detected using measurements of engine operating conditions such as from a NOx sensor located downstream of the catalysts. Finally, control action to adjust an injected amount of reductant in the exhaust gas based on the actual NO to NO2 ratio upstream of the SCR catalyst and downstream of the oxidation catalyst.
Li, Ping; Yang, Zhi; Shen, Juanxia; Nie, Huagui; Cai, Qiran; Li, Luhua; Ge, Mengzhan; Gu, Cancan; Chen, Xi'an; Yang, Keqin; Zhang, Lijie; Chen, Ying; Huang, Shaoming
2016-02-10
Electrochemically splitting water for hydrogen evolution reaction (HER) has been viewed as a promising approach to produce renewable and clean hydrogen energy. However, searching for cheap and efficient HER electrocatalysts to replace the currently used Pt-based catalysts remains an urgent task. Herein, we develop a one-step carbon nanotube (CNT) assisted synthesis strategy with CNTs' strong adsorbability to mediate the growth of subnanometer-sized MoS(x) on CNTs. The subnanometer MoS(x)-CNT hybrids achieve a low overpotential of 106 mV at 10 mA cm(-2), a small Tafel slope of 37 mV per decade, and an unprecedentedly high turnover frequency value of 18.84 s(-1) at η = 200 mV among all reported non-Pt catalysts in acidic conditions. The superior performance of the hybrid catalysts benefits from the presence of a higher number of active sites and the abundant exposure of unsaturated S atoms rooted in the subnanometer structure, demonstrating a new class of subnanometer-scale catalysts.
Enhanced Oxidation Catalysts for Water Reclamation
NASA Technical Reports Server (NTRS)
Jolly, Clifford D.
1999-01-01
This effort seeks to develop and test high-performance, long operating life, physically stable catalysts for use in spacecraft water reclamation systems. The primary goals are to a) reduce the quantity of expendable water filters used to purify water aboard spacecraft, b) to extend the life of the oxidation catalysts used for eliminating organic contaminants in the water reclamation systems, and c) reduce the weight/volume of the catalytic oxidation systems (e.g. VRA) used. This effort is targeted toward later space station utilization and will consist of developing flight-qualifiable catalysts and long-term ground tests of the catalyst prior to their utilization in flight. Fixed -bed catalytic reactors containing 5% platinum on granular activated carbon have been subjected to long-term dynamic column tests to measure catalyst stability vs throughput. The data generated so far indicate that an order of magnitude improvement can be obtained with the treated catalysts vs the control catalyst, at only a minor loss (approx 10%) in the initial catalytic activity.
Reducing fischer-tropsch catalyst attrition losses in high agitation reaction systems
Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.
2001-01-01
A method for reducing catalyst attrition losses in hydrocarbon synthesis processes conducted in high agitation reaction systems; a method of producing an attrition-resistant catalyst; a catalyst produced by such method; a method of producing an attrition-resistant catalyst support; and a catalyst support produced by such method. The inventive method of reducing catalyst attrition losses comprises the step of reacting a synthesis gas in a high agitation reaction system in the presence of a catalyst. In one aspect, the catalyst preferably comprises a .gamma.-alumina support including an amount of titanium effective for increasing the attrition resistance of the catalyst. In another aspect, the catalyst preferably comprises a .gamma.-alumina support which has been treated, after calcination, with an acidic, aqueous solution. The acidic aqueous solution preferably has a pH of not more than about 5. In another aspect, the catalyst preferably comprises cobalt on a .gamma.-alumina support wherein the cobalt has been applied to the .gamma.-alumina support by totally aqueous, incipient wetness-type impregnation. In another aspect, the catalyst preferably comprises cobalt on a .gamma.-alumina support with an amount of a lanthana promoter effective for increasing the attrition resistance of the catalyst. In another aspect, the catalyst preferably comprises a .gamma.-alumina support produced from boehmite having a crystallite size, in the 021 plane, in the range of from about 30 to about 55 .ANG.ngstrons. In another aspect, the inventive method of producing an attrition-resistant catalyst comprises the step of treating a .gamma.-alumina support, after calcination of and before adding catalytic material to the support, with an acidic solution effective for increasing the attrition resistance of the catalyst. In another aspect, the inventive method of producing an attrition-resistant catalyst support comprises the step of treating calcined .gamma.-alumina with an acidic, aqueous solution effective for increasing the attrition resistance of the .gamma.-alumina.
Kallinen, Kauko; Maunula, Teuvo; Suvanto, Mika
2018-01-01
Abstract Catalytic combustion of methane, the main component of natural gas, is a challenge under lean‐burn conditions and at low temperatures owing to sulfur poisoning of the Pd‐rich catalyst. This paper introduces a more sulfur‐resistant catalyst system that can be regenerated during operation. The developed catalyst system lowers the barrier that has restrained the use of liquefied natural gas as a fuel in energy production. PMID:29780434
Design of catalytic monoliths for closed-cycle carbon dioxide lasers
NASA Technical Reports Server (NTRS)
Herz, R. K.; Guinn, K.; Goldblum, S.; Noskowski, E.
1989-01-01
Pulsed carbon dioxide (CO2) lasers have many applications in aeronautics, space research, weather monitoring and other areas. Full exploitation of the potential of these lasers in hampered by the dissociation of CO2 that occurs during laser operation. The development of closed-cycle CO2 lasers requires active CO-O2 recombination (CO oxidation) catalyst and design methods for implementation of catalysts in CO2 laser systems. A monolith catalyst section model and associated design computer program, LASCAT, are presented to assist in the design of a monolith catalyst section of a closed cycle CO2 laser system. Using LASCAT,the designer is able to specify a number of system parameters and determine the monolith section performance. Trade-offs between the catalyst activity, catalyst dimensions, monolith dimensions, pressure drop, O2 conversion, and other variables can be explored and adjusted to meet system design specifications. An introduction describes a typical closed-cycle CO2 system, and indicates some advantages of a closed cycle laser system over an open cycle system and some advantages of monolith support over other types of supports. The development and use of a monolith catalyst model is presented. The results of a design study and a discussion of general design rules are given.
Nano-catalysts: Bridging the gap between homogeneous and heterogeneous catalysis
Functionalized nanoparticles have emerged as sustainable alternatives to conventional materials, as robust, high-surface-area heterogeneous catalyst supports. We envisioned a catalyst system, which can bridge the homogenous and heterogeneous system. Postsynthetic surface modifica...
Low-cost solar array progress and plans
NASA Astrophysics Data System (ADS)
Callaghan, W. T.
It is pointed out that significant redirection has occurred in the U.S. Department of Energy (DOE) Photovoltaics Program, and thus in the Flat-Plate Solar Array Project (FSA), since the 3rd European Communities Conference. The Silicon Materials Task has now the objective to sponsor theoretical and experimental research on silicon material refinement technology suitable for photovoltaic flat-plate solar arrays. With respect to the hydrochlorination reaction, a process proof of concept was completed through definition of reaction kinetics, catalyst, and reaction characteristics. In connection with the dichlorosilane chemical vapor desposition process, a preliminary design was completed of an experimental process system development unit with a capacity of 100 to 200 MT/yr of Si.Attention is also given to the silicon-sheet formation research area, environmental isolation research, the cell and module formation task, the engineering sciences area, and the module performance and failure analysis area.
Co-Production of Electricity and Hydrogen Using a Novel Iron-based Catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilaly, Ahmad; Georgas, Adam; Leboreiro, Jose
2011-09-30
The primary objective of this project was to develop a hydrogen production technology for gasification applications based on a circulating fluid-bed reactor and an attrition resistant iron catalyst. The work towards achieving this objective consisted of three key activities: Development of an iron-based catalyst suitable for a circulating fluid-bed reactor; Design, construction, and operation of a bench-scale circulating fluid-bed reactor system for hydrogen production; Techno-economic analysis of the steam-iron and the pressure swing adsorption hydrogen production processes. This report describes the work completed in each of these activities during this project. The catalyst development and testing program prepared and iron-basedmore » catalysts using different support and promoters to identify catalysts that had sufficient activity for cyclic reduction with syngas and steam oxidation and attrition resistance to enable use in a circulating fluid-bed reactor system. The best performing catalyst from this catalyst development program was produced by a commercial catalyst toll manufacturer to support the bench-scale testing activities. The reactor testing systems used during material development evaluated catalysts in a single fluid-bed reactor by cycling between reduction with syngas and oxidation with steam. The prototype SIP reactor system (PSRS) consisted of two circulating fluid-bed reactors with the iron catalyst being transferred between the two reactors. This design enabled demonstration of the technical feasibility of the combination of the circulating fluid-bed reactor system and the iron-based catalyst for commercial hydrogen production. The specific activities associated with this bench-scale circulating fluid-bed reactor systems that were completed in this project included design, construction, commissioning, and operation. The experimental portion of this project focused on technical demonstration of the performance of an iron-based catalyst and a circulating fluid-bed reactor system for hydrogen production. Although a technology can be technically feasible, successful commercial deployment also requires that a technology offer an economic advantage over existing commercial technologies. To effective estimate the economics of this steam-iron process, a techno-economic analysis of this steam iron process and a commercial pressure swing adsorption process were completed. The results from this analysis described in this report show the economic potential of the steam iron process for integration with a gasification plant for coproduction of hydrogen and electricity.« less
Baran, Talat; Sargin, Idris; Kaya, Murat; Menteş, Ayfer
2016-11-05
In green catalyst systems, both the catalyst and the technique should be environmentally safe. In this study we designed a green palladium(II) catalyst for microwave-assisted Suzuki CC coupling reactions. The catalyst support was produced from biopolymers; chitosan and cellulose. The catalytic activity of the catalyst was tested on 16 substrates in solvent-free media and compared with those of commercial palladium salts. Reusability tests were done. The catalyst was also used in conventional reflux-heating system to demonstrate the efficiency of microwave heating method. We recorded high activity, selectivity and excellent TONs (6600) and TOFs (82500) just using a small catalyst loading (1.5×10(-3)mol%) in short reaction time (5min). The catalyst exhibited a long lifetime (9 runs). The findings indicated that both green chitosan/cellulose-Pd(II) catalyst and the microwave heating are suitable for synthesis of biaryl compounds by using Suzuki CC coupling reactions. Copyright © 2016 Elsevier Ltd. All rights reserved.
High-temperature catalyst for catalytic combustion and decomposition
NASA Technical Reports Server (NTRS)
Mays, Jeffrey A. (Inventor); Lohner, Kevin A. (Inventor); Sevener, Kathleen M. (Inventor); Jensen, Jeff J. (Inventor)
2005-01-01
A robust, high temperature mixed metal oxide catalyst for propellant composition, including high concentration hydrogen peroxide, and catalytic combustion, including methane air mixtures. The uses include target, space, and on-orbit propulsion systems and low-emission terrestrial power and gas generation. The catalyst system requires no special preheat apparatus or special sequencing to meet start-up requirements, enabling a fast overall response time. Start-up transients of less than 1 second have been demonstrated with catalyst bed and propellant temperatures as low as 50 degrees Fahrenheit. The catalyst system has consistently demonstrated high decomposition effeciency, extremely low decomposition roughness, and long operating life on multiple test particles.
Pati, Palas Baran; Zhang, Lei; Philippe, Bertrand; Fernández‐Terán, Ricardo; Ahmadi, Sareh; Tian, Lei; Rensmo, Håkan; Hammarström, Leif
2017-01-01
Abstract A covalently linked organic dye–cobaloxime catalyst system based on mesoporous NiO is synthesized by a facile click reaction for mechanistic studies and application in a dye‐sensitized solar fuel device. The system is systematically investigated by photoelectrochemical measurements, density functional theory, time‐resolved fluorescence, transient absorption spectroscopy, and photoelectron spectroscopy. The results show that irradiation of the dye–catalyst on NiO leads to ultrafast hole injection into NiO from the excited dye, followed by a fast electron transfer process to reduce the catalyst. Moreover, the dye adopts different structures with different excited state energies, and excitation energy transfer occurs between neighboring molecules on the semiconductor surface. The photoelectrochemical experiments also show hydrogen production by this system. The axial chloride ligands of the catalyst are released during photocatalysis to create the active sites for proton reduction. A working mechanism of the dye–catalyst system on the photocathode is proposed on the basis of this study. PMID:28338295
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cronauer, D.C.; Swanson, A.J.; Sajkowski, D.J.
Research under way in this project centers upon developing and evaluating catalysts and process improvements for coal liquefaction in the two-stage, close-coupled catalytic process. As discussed in the previous quarterly report, the feedstock liquefaction studies for the three feedstocks (Black Thunder subbituminous coal, Martin Lake lignite, and Illinois No. 6 coal) were completed. Both Black Thunder coal and Martin Lake lignite gave lighter products than Illinois No. 6 coal at similar process conditions. Severe catalyst deactivation in the first stage was also observed with the Martin Lake lignite run. The first stage catalyst testing program was started (Task 3.2.1). Aftermore » a successful reference run with Illinois No. 6 coal, a high-temperature run with AMOCAT{trademark} 1C was completed, where the results showed that the first stage temperature should be no higher than 820{degrees}F. In addition, several runs were made both with Illinois No. 6 and Black Thunder coals using oil-soluble catalysts, Molyvan L, and molybdenum octoate in one or both stages. Overall, the results look very promising and show that dispersed molybdenum catalysts are good alternatives for Stage 1 or both 1 and 2, especially for Illinois No. 6 coal. In the case of Black Thunder coal, the conversion and yields were good, although the product quality was poorer, however, the use of slurry catalysts is still recommended.« less
Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander; Alexeev, Nikolai
2004-09-21
A plasmatron-catalyst system. The system generates hydrogen-rich gas and comprises a plasmatron and at least one catalyst for receiving an output from the plasmatron to produce hydrogen-rich gas. In a preferred embodiment, the plasmatron receives as an input air, fuel and water/steam for use in the reforming process. The system increases the hydrogen yield and decreases the amount of carbon monoxide.
Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander; Alexeev, Nikolai
2007-10-09
A plasmatron-catalyst system. The system generates hydrogen-rich gas and comprises a plasmatron and at least one catalyst for receiving an output from the plasmatron to produce hydrogen-rich gas. In a preferred embodiment, the plasmatron receives as an input air, fuel and water/steam for use in the reforming process. The system increases the hydrogen yield and decreases the amount of carbon monoxide.
Tang, Qian-Lin; Zou, Wen-Tian; Huang, Run-Kun; Wang, Qi; Duan, Xiao-Xuan
2015-03-21
The elucidation of chemical reactions occurring on composite systems (e.g., copper (Cu)/zincite (ZnO)) from first principles is a challenging task because of their very large sizes and complicated equilibrium geometries. By combining the density functional theory plus U (DFT + U) method with microkinetic modeling, the present study has investigated the role of the phase boundary in CO2 hydrogenation to methanol over Cu/ZnO. The absence of hydrogenation locations created by the interface between the two catalyst components was revealed based on the calculated turnover frequency under realistic conditions, in which the importance of interfacial copper to provide spillover hydrogen for remote Cu(111) sites was stressed. Coupled with the fact that methanol production on the binary catalyst was recently believed to predominantly involve the bulk metallic surface, the spillover of interface hydrogen atoms onto Cu(111) facets facilitates the production process. The cooperative influence of the two different kinds of copper sites can be rationalized applying the Brönsted-Evans-Polanyi (BEP) relationship and allows us to find that the catalytic activity of ZnO-supported Cu catalysts is of volcano type with decrease in the particle size. Our results here may have useful implications in the future design of new Cu/ZnO-based materials for CO2 transformation to methanol.
Catalyst for microelectromechanical systems microreactors
Morse, Jeffrey D [Martinez, CA; Sopchak, David A [Livermore, CA; Upadhye, Ravindra S [Pleasanton, CA; Reynolds, John G [San Ramon, CA; Satcher, Joseph H [Patterson, CA; Gash, Alex E [Brentwood, CA
2010-06-29
A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.
Catalyst for microelectromechanical systems microreactors
Morse, Jeffrey D [Martinez, CA; Sopchak, David A [Livermore, CA; Upadhye, Ravindra S [Pleasanton, CA; Reynolds, John G [San Ramon, CA; Satcher, Joseph H [Patterson, CA; Gash, Alex E [Brentwood, CA
2011-11-15
A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.
Ionic Liquids Enabling Revolutionary Closed-Loop Life Support
NASA Technical Reports Server (NTRS)
Brown, Brittany R.; Abney, Morgan B.; Karr, Laurel; Stanley, Christine M.; Paley, Steve
2017-01-01
Minimizing resupply from Earth is essential for future long duration manned missions. The current oxygen recovery system aboard the International Space Station is capable of recovering approximately 50% of the oxygen from metabolic carbon dioxide. For long duration manned missions, a minimum of 75% oxygen recovery is targeted with a goal of greater than 90%. Theoretically, the Bosch process can recover 100% of oxygen, making it a promising technology for oxygen recovery for long duration missions. However, the Bosch process produces elemental carbon which ultimately fouls the catalyst. Once the catalyst performance is compromised, it must be replaced resulting in undesired resupply mass. Based on the performance of a Bosch system designed by NASA in the 1990's, a three year Martian mission would require approximately 1315 kg (2850 lbs) of catalyst resupply. It may be possible to eliminate catalyst resupply with a fully regenerable system using an Ionic Liquid (IL)-based Bosch system. In 2016, we reported the feasibility of using ILs to produce an iron catalyst on a copper substrate and to regenerate the iron catalyst by extracting the iron from the copper substrate and product carbon. Additionally, we described a basic system concept for an IL-based Bosch. Here we report the results of efforts to scale catalyst preparation, to scale catalyst regeneration, and to scale the carbon formation processing rate of a single reactor.
Ionic Liquids Enabling Revolutionary Closed-Loop Life Support
NASA Technical Reports Server (NTRS)
Brown, Brittany R.; Abney, Morgan B.; Karr, Laurel J.; Stanley, Christine M.; Donovan, Dave N.; Palsey, Mark S.
2017-01-01
Minimizing resupply from Earth is essential for future long duration manned missions. The current oxygen recovery system aboard the International Space Station is capable of recovering approximately 50% of the oxygen from metabolic carbon dioxide. For long duration manned missions, a minimum of 75% oxygen recovery is targeted with a goal of greater than 90%. Theoretically, the Bosch process can recover 100% of oxygen, making it a promising technology for oxygen recovery for long duration missions. However, the Bosch process produces elemental carbon which ultimately fouls the catalyst. Once the catalyst performance is compromised, it must be replaced resulting in undesired resupply mass. Based on the performance of a Bosch system designed by NASA in the 1990's, a three year Martian mission would require approximately 1315 kg (2850 lbs) of catalyst resupply. It may be possible to eliminate catalyst resupply with a fully regenerable system using an Ionic Liquid (IL)-based Bosch system. In 2016, we reported the feasibility of using ILs to produce an iron catalyst on a copper substrate and to regenerate the iron catalyst by extracting the iron from the copper substrate and product carbon. Additionally, we described a basic system concept for an IL-based Bosch. Here we report the results of efforts to scale catalyst preparation, catalyst regeneration, and to scale the carbon formation processing rate of a single reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orazov, Marat; Davis, Mark E.
The present disclosure is directed to methods and composition used in the preparation of alpha-hydroxy carboxylic acids and esters from higher sugars using a tandem catalyst system comprising retro-aldol catalysts and Lewis acid catalysts. In some embodiments, these alpha-hydroxy carboxylic acids may be prepared from pentoses and hexoses. The retro-aldol and Lewis catalysts may be characterized by their respective ability to catalyze a 1,2-carbon shift reaction and a 1,2-hydride shift reaction on an aldose or ketose substrate.
Recent Developments in Hydrogen Evolving Molecular Cobalt(II)-Polypyridyl Catalysts
Queyriaux, N.; Jane, R. T.; Massin, J.; Artero, V.; Chavarot-Kerlidou, M.
2015-01-01
The search for efficient noble metal-free hydrogen-evolving catalysts is the subject of intense research activity. A new family of molecular cobalt(II)-polypyridyl catalysts has recently emerged. These catalysts prove more robust under reductive conditions than other cobalt-based systems and display high activities under fully aqueous conditions. This review discusses the design, characterization, and evaluation of these catalysts for electrocatalytic and light-driven hydrogen production. Mechanistic considerations are addressed and structure-catalytic activity relationships identified in order to guide the future design of more efficient catalytic systems. PMID:26688590
Catalysts and process for liquid hydrocarbon fuel production
White, Mark G; Liu, Shetian
2014-12-09
The present invention provides a novel process and system in which a mixture of carbon monoxide and hydrogen synthesis gas, or syngas, is converted into hydrocarbon mixtures composed of high quality gasoline components, aromatic compounds, and lower molecular weight gaseous olefins in one reactor or step. The invention utilizes a novel molybdenum-zeolite catalyst in high pressure hydrogen for conversion, as well as a novel rhenium-zeolite catalyst in place of the molybdenum-zeolite catalyst, and provides for use of the novel catalysts in the process and system of the invention.
Multistep continuous-flow synthesis of (R)- and (S)-rolipram using heterogeneous catalysts
NASA Astrophysics Data System (ADS)
Tsubogo, Tetsu; Oyamada, Hidekazu; Kobayashi, Shū
2015-04-01
Chemical manufacturing is conducted using either batch systems or continuous-flow systems. Flow systems have several advantages over batch systems, particularly in terms of productivity, heat and mixing efficiency, safety, and reproducibility. However, for over half a century, pharmaceutical manufacturing has used batch systems because the synthesis of complex molecules such as drugs has been difficult to achieve with continuous-flow systems. Here we describe the continuous-flow synthesis of drugs using only columns packed with heterogeneous catalysts. Commercially available starting materials were successively passed through four columns containing achiral and chiral heterogeneous catalysts to produce (R)-rolipram, an anti-inflammatory drug and one of the family of γ-aminobutyric acid (GABA) derivatives. In addition, simply by replacing a column packed with a chiral heterogeneous catalyst with another column packed with the opposing enantiomer, we obtained antipole (S)-rolipram. Similarly, we also synthesized (R)-phenibut, another drug belonging to the GABA family. These flow systems are simple and stable with no leaching of metal catalysts. Our results demonstrate that multistep (eight steps in this case) chemical transformations for drug synthesis can proceed smoothly under flow conditions using only heterogeneous catalysts, without the isolation of any intermediates and without the separation of any catalysts, co-products, by-products, and excess reagents. We anticipate that such syntheses will be useful in pharmaceutical manufacturing.
Laccase-mediator catalyzed conversion of model lignin compounds
USDA-ARS?s Scientific Manuscript database
Identifying suitable reaction conditions remains an important task in the development of practical enzyme catalysts. Laccases play an important role in the biological break down of lignin and have great potential in the deconstruction of lignocellulosic feedstocks. We examined 16 laccases, both comm...
Schultz, Mitchell J.; Hamilton, Steven S.; Jensen, David R.; Sigman, Matthew S.
2009-01-01
Three catalysts for aerobic oxidation of alcohols are discussed and the effectiveness of each is evaluated for allylic, benzylic, aliphatic, and functionalized alcohols. Additionally, chiral nonracemic substrates as well as chemoselective and diastereoselective oxidations are investigated. In this study, the most convenient system for the Pd-catalyzed aerobic oxidation of alcohols is Pd(OAc)2 in combination with triethylamine. This system functions effectively for the majority of alcohols tested and uses mild conditions (3 to 5 mol % of catalyst, room temperature). Pd(IiPr)(OAc)2(H2O) (1) also successfully oxidizes the majority of alcohols evaluated. This system has the advantage of significantly lowering catalyst loadings but requires higher temperatures (0.1 to 1 mol % of catalyst, 60 °C). A new catalyst is also disclosed, Pd(IiPr)(OPiv)2 (2). This catalyst operates under very mild conditions (1 mol %, room temperature, and air as the O2 source) but with a more limited substrate scope. PMID:15844968
Ruthenium on rutile catalyst, catalytic system, and method for aqueous phase hydrogenations
Elliot, Douglas C.; Werpy, Todd A.; Wang, Yong; Frye, Jr., John G.
2001-01-01
An essentially nickel- and rhenium-free catalyst is described comprising ruthenium on a titania support where the titania is greater than 75% rutile. A catalytic system containing a nickel-free catalyst comprising ruthenium on a titania support where the titania is greater than 75% rutile, and a method using this catalyst in the hydrogenation of an organic compound in the aqueous phase is also described.
Catalyst systems and uses thereof
Ozkan, Umit S [Worthington, OH; Holmgreen, Erik M [Columbus, OH; Yung, Matthew M [Columbus, OH
2012-07-24
A method of carbon monoxide (CO) removal comprises providing an oxidation catalyst comprising cobalt supported on an inorganic oxide. The method further comprises feeding a gaseous stream comprising CO, and oxygen (O.sub.2) to the catalyst system, and removing CO from the gaseous stream by oxidizing the CO to carbon dioxide (CO.sub.2) in the presence of the oxidation catalyst at a temperature between about 20 to about 200.degree. C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tait, Steven L.
Stabilization and chemical control of transition metal centers is a critical problem in the advancement of heterogeneous catalysts to next-generation catalysts that exhibit high levels of selectivity, while maintaining strong activity and facile catalyst recycling. Supported metal nanoparticle catalysts typically suffer from having a wide range of metal sites with different coordination numbers and varying chemistry. This project is exploring new possibilities in catalysis by combining features of homogeneous catalysts with those of heterogeneous catalysts to develop new, bi-functional systems. The systems are more complex than traditional heterogeneous catalysts in that they utilize sequential active sites to accomplish the desiredmore » overall reaction. The interaction of metal—organic catalysts with surface supports and their interactions with reactants to enable the catalysis of critical reactions at lower temperatures are at the focus of this study. Our work targets key fundamental chemistry problems. How do the metal—organic complexes interact with the surface? Can those metal center sites be tuned for selectivity and activity as they are in the homogeneous system by ligand design? What steps are necessary to enable a cooperative chemistry to occur and open opportunities for bi-functional catalyst systems? Study of these systems will develop the concept of bringing together the advantages of heterogeneous catalysis with those of homogeneous catalysis, and take this a step further by pursuing the objective of a bi-functional system. The use of metal-organic complexes in surface catalysts is therefore of interest to create well-defined and highly regular single-site centers. While these are not likely to be stable in the high temperature environments (> 300 °C) typical of industrial heterogeneous catalysts, they could be applied in moderate temperature reactions (100-300 °C), made feasible by lowering reaction temperatures by better catalyst control. They also serve as easily tuned model systems for exploring the chemistry of single-site transition metals and tandem catalysts that could then be developed into a zeolite or other stable support structures. In this final technical report, three major advances our described that further these goals. The first is a study demonstrating the ability to tune the oxidation state of V single-site centers on a surface by design of the surrounding ligand field. The synthesis of the single-site centers was developed in a previous reporting period of this project and this new advance shows a distinct new ability of the systems to have a designed oxidation state of the metal center. Second, we demonstrate metal complexation at surfaces using vibrational spectroscopy and also show a metal replacement reaction on Ag surfaces. Third, we demonstrate a surface-catalyzed dehydrocyclization reaction important for metal-organic catalyst design at surfaces.« less
Enhanced development of a catalyst chamber for the decomposition of up to 1.0 kg/s hydrogen peroxide
NASA Astrophysics Data System (ADS)
Božić, Ognjan; Porrmann, Dennis; Lancelle, Daniel; May, Stefan
2016-06-01
A new innovative hybrid rocket engine concept is developed within the AHRES program of the German Aerospace Center (DLR). This rocket engine based on hydroxyl-terminated polybutadiene (HTPB) with metallic additives as solid fuel and high test peroxide (HTP) as liquid oxidizer. Instead of a conventional ignition system, a catalyst chamber with a silver mesh catalyst is designed to decompose the HTP. The newly modified catalyst chamber is able to decompose up to 1.0 kg/s of 87.5 wt% HTP. Used as a monopropellant thruster, this equals an average thrust of 1600 N. The catalyst chamber is designed using the self-developed software tool SHAKIRA. The applied kinetic law, which determines catalytic decomposition of HTP within the catalyst chamber, is given and commented. Several calculations are carried out to determine the appropriate geometry for complete decomposition with a minimum of catalyst material. A number of tests under steady state conditions are carried out, using 87.5 wt% HTP with different flow rates and a constant amount of catalyst material. To verify the decomposition, the temperature is measured and compared with the theoretical prediction. The experimental results show good agreement with the results generated by the design tool. The developed catalyst chamber provides a simple, reliable ignition system for hybrid rocket propulsion systems based on hydrogen peroxide as oxidizer. This system is capable for multiple reignition. The developed hardware and software can be used to design full scale monopropellant thrusters based on HTP and catalyst chambers for hybrid rocket engines.
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Mansell, J. Matthew
2010-01-01
Bosch-based reactors have been in development at NASA since the 1960's. Traditional operation involves the reduction of carbon dioxide with hydrogen over a steel wool catalyst to produce water and solid carbon. While the system is capable of completely closing the loop on oxygen and hydrogen for Atmosphere Revitalization, steel wool requires a reaction temperature of 650C or higher for optimum performance. The single pass efficiency of the reaction over steel wool has been shown to be less than 10% resulting in a high recycle stream. Finally, the formation of solid carbon on steel wool ultimately fouls the catalyst necessitating catalyst resupply. These factors result in high mass, volume and power demands for a Bosch system. Interplanetary transportation and surface exploration missions of the moon, Mars, and near-earth objects will require higher levels of loop closure than current technology cannot provide. A Bosch system can provide the level of loop closure necessary for these long-term missions if mass, volume, and power can be kept low. The keys to improving the Bosch system lie in reactor and catalyst development. In 2009, the National Aeronautics and Space Administration refurbished a circa 1980's developmental Bosch reactor and built a sub-scale Bosch Catalyst Test Stand for the purpose of reactor and catalyst development. This paper describes the baseline performance of two commercially available steel wool catalysts as compared to performance reported in the 1960's and 80's. Additionally, the results of sub-scale testing of alternative Bosch catalysts, including nickel- and cobalt-based catalysts, are discussed.
Baran, Talat; Sargin, Idris; Kaya, Murat; Menteş, Ayfer; Ceter, Talip
2017-01-15
Bio-based catalyst support materials with high thermal and structural stability are desired for catalysts systems requiring harsh conditions. In this study, a thermally stable palladium catalyst (up to 440°C) was designed from sporopollenin, which occurs naturally in the outer exine layer of pollens and is widely acknowledged as chemically very stable and inert biological material. Catalyst design procedure included (1) extraction of sporopollenin microcapsules from Betula pendula pollens (∼25μm), (2) amino-functionalisation of the microcapsules, (3) Schiff base modification and (4) preparation of Pd(II) catalyst. The catalytic activity of the sporopollenin microcapsule supported palladium catalyst was tested in catalysis of biaryls by following a fast, simple and green microwave-assisted method. We recorded outstanding turnover number (TON: 40,000) and frequency (TOF: 400,000) for the catalyst in Suzuki coupling reactions. The catalyst proved to be reusable at least in eight cycles. The catalyst can be suggested for different catalyst systems due to its thermal and structural durability, reusability, inertness to air and its eco-friendly nature. Copyright © 2016 Elsevier Inc. All rights reserved.
Pati, Palas Baran; Zhang, Lei; Philippe, Bertrand; Fernández-Terán, Ricardo; Ahmadi, Sareh; Tian, Lei; Rensmo, Håkan; Hammarström, Leif; Tian, Haining
2017-06-09
A covalently linked organic dye-cobaloxime catalyst system based on mesoporous NiO is synthesized by a facile click reaction for mechanistic studies and application in a dye-sensitized solar fuel device. The system is systematically investigated by photoelectrochemical measurements, density functional theory, time-resolved fluorescence, transient absorption spectroscopy, and photoelectron spectroscopy. The results show that irradiation of the dye-catalyst on NiO leads to ultrafast hole injection into NiO from the excited dye, followed by a fast electron transfer process to reduce the catalyst. Moreover, the dye adopts different structures with different excited state energies, and excitation energy transfer occurs between neighboring molecules on the semiconductor surface. The photoelectrochemical experiments also show hydrogen production by this system. The axial chloride ligands of the catalyst are released during photocatalysis to create the active sites for proton reduction. A working mechanism of the dye-catalyst system on the photocathode is proposed on the basis of this study. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Catalysts to reduce NO.sub.x in an exhaust gas stream and methods of preparation
Koermer, Gerald S [Basking Ridge, NJ; Moini, Ahmad [Princeton, NJ; Furbeck, Howard [Hamilton, NJ; Castellano, Christopher R [Ringoes, NJ
2012-05-08
Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having a catalyst comprising silver on a particulate alumina support, the silver having a diameter of less than about 20 nm. Methods of manufacturing catalysts are described in which ionic silver is impregnated on particulate hydroxylated alumina particles.
Process for producing ethanol from syngas
Krause, Theodore R; Rathke, Jerome W; Chen, Michael J
2013-05-14
The invention provides a method for producing ethanol, the method comprising establishing an atmosphere containing methanol forming catalyst and ethanol forming catalyst; injecting syngas into the atmosphere at a temperature and for a time sufficient to produce methanol; and contacting the produced methanol with additional syngas at a temperature and for a time sufficient to produce ethanol. The invention also provides an integrated system for producing methanol and ethanol from syngas, the system comprising an atmosphere isolated from the ambient environment; a first catalyst to produce methanol from syngas wherein the first catalyst resides in the atmosphere; a second catalyst to product ethanol from methanol and syngas, wherein the second catalyst resides in the atmosphere; a conduit for introducing syngas to the atmosphere; and a device for removing ethanol from the atmosphere. The exothermicity of the method and system obviates the need for input of additional heat from outside the atmosphere.
Exhaust gas purification system for lean burn engine
Haines, Leland Milburn
2002-02-19
An exhaust gas purification system for a lean burn engine includes a thermal mass unit and a NO.sub.x conversion catalyst unit downstream of the thermal mass unit. The NO.sub.x conversion catalyst unit includes at least one catalyst section. Each catalyst section includes a catalytic layer for converting NO.sub.x coupled to a heat exchanger. The heat exchanger portion of the catalyst section acts to maintain the catalytic layer substantially at a desired temperature and cools the exhaust gas flowing from the catalytic layer into the next catalytic section in the series. In a further aspect of the invention, the exhaust gas purification system includes a dual length exhaust pipe upstream of the NO.sub.x conversion catalyst unit. The dual length exhaust pipe includes a second heat exchanger which functions to maintain the temperature of the exhaust gas flowing into the thermal mass downstream near a desired average temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medros, F.G.; Eldridge, J.W.; Kittrell, J.R.
1989-08-01
The objective of the research discussed in this paper was to determine if a dual-catalyst system for NO reduction with NH/sub 3/ can achieve a given percent NO reduction over a wider range of temperatures and space velocities than either catalyst used alone in the same total reactor volume. Hydrogen mordenite (20/32 mesh) and copper-ion-exchanged hydrogen mordenite (2.2% Cu) were used in series at temperatures from 200 to 600 {sup 0}C and space velocities from 1000000 to 450000 h/sup -1/ (STP). The superiority of the dual-catalyst system was demonstrated experimentally, and a model was developed which predicted its performance verymore » well from data on the individual catalysts. A technique was then developed for predicting quantitatively the dual-catalyst enhancement of the space velocity versus temperature window for achieving a given percent NO conversion.« less
Yan, Shuli [Detroit, MI; Salley, Steven O [Grosse Pointe Park, MI; Ng, K Y. Simon [West Bloomfield, MI
2012-04-24
A method of forming a biodiesel product and a heterogeneous catalyst system used to form said product that has a high tolerance for the presence of water and free fatty acids (FFA) in the oil feedstock is disclosed. This catalyst system may simultaneously catalyze both the esterification of FAA and the transesterification of triglycerides present in the oil feedstock. The catalyst system according to one aspect of the present disclosure represents a class of zinc and lanthanum oxide heterogeneous catalysts that include different ratios of zinc oxide to lanthanum oxides (Zn:La ratio) ranging from about 10:0 to 0:10. The Zn:La ratio in the catalyst is believed to have an effect on the number and reactivity of Lewis acid and base sites, as well as the transesterification of glycerides, the esterification of fatty acids, and the hydrolysis of glycerides and biodiesel.
Study of removal of ammonia from urine vapor by dual catalyst
NASA Technical Reports Server (NTRS)
Budininkas, P.
1976-01-01
The feasibility of ammonia removal from urine vapor by a low temperature dual-catalyst system was investigated. The process is based on the initial catalytic oxidation of ammonia present in urine vapor to nitrogen and nitrous oxide, followed by a catalytic decomposition of the nitrous oxide formed into its elements. The most active catalysts for the oxidation of ammonia and for the decomposition of N2O, identified in screening tests, were then combined into dual catalyst systems and tested to establish their overall efficiencies for the removal of ammonia from artificial gas mixtures. Dual catalyst systems capable of ammonia removal from the artificial gas mixtures were then tested with the actual urine vapor produced by boiling untreated urine. A suitable dual catalyst bed arrangement was found that achieved the removal of ammonia and organic carbon, and recovered water of good quality from urine vapor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, P.V.
1995-12-31
Coal fired, low emission sources are a major factor in the air quality problems facing eastern European cities. These sources include: stoker-fired boilers which feed district heating systems and also meet local industrial steam demand, hand-fired boilers which provide heat for one building or a small group of buildings, and masonary tile stoves which heat individual rooms. Global Environmental Systems is marketing through Global Environmental Systems of Polane, Inc. catalysts to improve the combustion of coal, wood or fuel oils in these combustion systems. PCCL-II Combustion Catalysts promotes more complete combustion, reduces or eliminates slag formations, soot, corrosion and somemore » air pollution emissions and is especially effective on high sulfur-high vanadium residual oils. Glo-Klen is a semi-dry powder continuous acting catalyst that is injected directly into the furnace of boilers by operating personnel. It is a multi-purpose catalyst that is a furnace combustion catalyst that saves fuel by increasing combustion efficiency, a cleaner of heat transfer surfaces that saves additional fuel by increasing the absorption of heat, a corrosion-inhibiting catalyst that reduces costly corrosion damage and an air pollution reducing catalyst that reduces air pollution type stack emissions. The reduction of sulfur dioxides from coal or oil-fired boilers of the hand fired stoker design and larger, can be controlled by the induction of the Glo-Klen combustion catalyst and either hydrated lime or pulverized limestone.« less
The predicament of osteopathic postdoctoral education.
Cummings, Mark
2006-12-01
The growth of colleges of osteopathic medicine (COMs) during the past 20 years has been a catalyst for change and has created new challenges in osteopathic medicine. None of these challenges is more daunting than the task of sustaining an osteopathic graduate medical education (OGME) system that has suffered during this period of rapid development. Notable trends within the osteopathic medicine community since 1990 include allopathic residency programs obtaining OGME accreditation, COM graduates bypassing OGME, repeated major changes in American Osteopathic Association (AOA) accreditation policies, a growing dependence on Accreditation Council for Graduate Medical Education programs to train osteopathic graduates, and a lessening of options for the AOA to effectively direct its OGME system. The predicament is whether COMs can continue to grow without resulting in the demise of the OGME system and a loss of professional identity.
NASA Technical Reports Server (NTRS)
Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Sevener, Kathleen M. (Inventor)
2004-01-01
A method for designing and assembling a high performance catalyst bed gas generator for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in target, space, and on-orbit propulsion systems and low-emission terrestrial power and gas generation. The gas generator utilizes a sectioned catalyst bed system, and incorporates a robust, high temperature mixed metal oxide catalyst. The gas generator requires no special preheat apparatus or special sequencing to meet start-up requirements, enabling a fast overall response time. The high performance catalyst bed gas generator system has consistently demonstrated high decomposition efficiency, extremely low decomposition roughness, and long operating life on multiple test articles.
Study on Endurance and Performance of Impregnated Ruthenium Catalyst for Thruster System.
Kim, Jincheol; Kim, Taegyu
2018-02-01
Performance and endurance of the Ru catalyst were studied for nitrous oxide monopropellant thruster system. The thermal decomposition of N2O requires a considerably high temperature, which make it difficult to be utilized as a thruster propellant, while the propellant decomposition temperature can be reduced by using the catalyst through the decomposition reaction with the propellant. However, the catalyst used for the thruster was frequently exposed to high temperature and high-pressure environment. Therefore, the state change of the catalyst according to the thruster operation was analyzed. Characterization of catalyst used in the operation condition of the thruster was performed using FE-SEM and EDS. As a result, performance degradation was occurred due to the volatilization of Ru catalyst and reduction of the specific surface area according to the phase change of Al2O3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The LZ-105-6, a medium pore molecular sieve, similar in structure to ZSM-5, is the most active catalyst we have tested so far for the conversion of propylene. At optimal conditions, it converted 90% of the feed versus 63% found with UCC-104. However, the test carried out in the Berty reactor showed that this catalyst has inferior selectivity to C/sub 5//sup +/ (89%) relative to UCC-104 (96%). The lower C/sub 5//sup +/ yield with LZ-105 follows from the increased conversion of the propylene to saturated C/sub 3/-C/sub 4/ hydrocarbons. A Task 2 catalyst was prepared by the physical mixture of themore » reference Fischer-Tropsch catalyst used above and the large pore UCC-101. This catalyst, in contrast to the reference catalyst, did not produce the excess C/sub 20//sup +/ products. Here, the hydrocarbons were isomerized and the pour points of all condensed samples were below room temperature. Conditions were adjusted to obtain excellent selectivity to gasoline, 50 wt. %, and total motor fuel, 70 wt. %. The high selectivity was achieved with this catalyst, however, at a relatively low activity level. Importantly, the product distribution of two runs showed signs of a carbon number cut off (shape selective effect). Thus, this experiment demonstrated the efficiency of UCC-101 as SSC component in that it isomerized the hydrocarbons formed on the MC resulting in substantial improvement of the motor fuel products, and it also seemed to show a cut-off at the end of the motor fuel boiling range (C/sub 20/).« less
Schoen, Heidi R; Peyton, Brent M; Knighton, W Berk
2016-12-01
A novel analytical system was developed to rapidly and accurately quantify total volatile organic compound (VOC) production from microbial reactor systems using a platinum catalyst and a sensitive CO 2 detector. This system allows nearly instantaneous determination of total VOC production by utilizing a platinum catalyst to completely and quantitatively oxidize headspace VOCs to CO 2 in coordination with a CO 2 detector. Measurement of respiratory CO 2 by bypassing the catalyst allowed the total VOC content to be determined from the difference in the two signals. To the best of our knowledge, this is the first instance of a platinum catalyst and CO 2 detector being used to quantify the total VOCs produced by a complex bioreactor system. Continuous recording of these CO 2 data provided a record of respiration and total VOC production throughout the experiments. Proton transfer reaction-mass spectrometry (PTR-MS) was used to identify and quantify major VOCs. The sum of the individual compounds measured by PTR-MS can be compared to the total VOCs quantified by the platinum catalyst to identify potential differences in detection, identification and calibration. PTR-MS measurements accounted on average for 94 % of the total VOC carbon detected by the platinum catalyst and CO 2 detector. In a model system, a VOC producing endophytic fungus Nodulisporium isolate TI-13 was grown in a solid state reactor utilizing the agricultural byproduct beet pulp as a substrate. Temporal changes in production of major volatile compounds (ethanol, methanol, acetaldehyde, terpenes, and terpenoids) were quantified by PTR-MS and compared to the total VOC measurements taken with the platinum catalyst and CO 2 detector. This analytical system provided fast, consistent data for evaluating VOC production in the nonhomogeneous solid state reactor system.
Biphasic catalysis in water/carbon dioxide micellar systems
Jacobson, Gunilla B.; Tumas, William; Johnston, Keith P.
2002-01-01
A process is provided for catalyzing an organic reaction to form a reaction product by placing reactants and a catalyst for the organic reaction, the catalyst of a metal complex and at least one ligand soluble within one of the phases of said aqueous biphasic system, within an aqueous biphasic system including a water phase, a dense phase fluid, and a surfactant adapted for forming an emulsion or microemulsion within the aqueous biphasic system, the reactants soluble within one of the phases of the aqueous biphasic system and convertible in the presence of the catalyst to a product having low solubility in the phase in which the catalyst is soluble; and, maintaining the aqueous biphasic system under pressures, at temperatures, and for a period of time sufficient for the organic reaction to occur and form the reaction product and to maintain sufficient density on the dense phase fluid, the reaction product characterized as having low solubility in the phase in which the catalyst is soluble.
Cooling by Para-to-Ortho-Hydrogen Conversion
NASA Technical Reports Server (NTRS)
Sherman, A.; Nast, T.
1983-01-01
Catalyst speeds conversion, increasing capacity of solid hydrogen cooling system. In radial-flow catalytic converter, para-hydrogen is converted to equilibrium mixture of para-hydrogen and ortho-hydrogen as it passes through porous cylinder of catalyst. Addition of catalyst increases capacity of hydrogen sublimation cooling systems for radiation detectors.
Liquefaction chemistry and kinetics: Hydrogen utilization studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rothenberger, K.S.; Warzinski, R.P.; Cugini, A.V.
1995-12-31
The objectives of this project are to investigate the chemistry and kinetics that occur in the initial stages of coal liquefaction and to determine the effects of hydrogen pressure, catalyst activity, and solvent type on the quantity and quality of the products produced. The project comprises three tasks: (1) preconversion chemistry and kinetics, (2) hydrogen utilization studies, and (3) assessment of kinetic models for liquefaction. The hydrogen utilization studies work will be the main topic of this report. However, the other tasks are briefly described.
Yang, Huawei; Jiang, Bin; Sun, Yongli; Zhang, Luhong; Huang, Zhaohe; Sun, Zhaoning; Yang, Na
2017-07-05
In this work, the simple preparation of novel polymer supported polyoxometallates (POMs) catalysts has been reported. Soluble task-specific cross-linked poly (ionic liquid) (PIL) was prepared with N,N-dimethyl-dodecyl-(4-vinylbenzyl) ammonium chloride and divinylbenzene as co-monomers. The as-prepared cationic PILs were assembled with different commercial POMs to form the interlinked mesoporous catalysts, and the formation mechanism was provided. The catalytic oxidation activities of the catalysts were closely related to the formation pathway of their corresponding peroxide active species. The catalyst with H 2 W 12 O 42 10- as counterion, which exhibited the best activity in the oxidation of benzothiophene (BT) and dibenzothiophene (DBT) to sulfones in model oil with hydrogen peroxide (H 2 O 2 , 30wt%) as oxidant, was characterized by different techniques and systematically studied for its sulfur removal performance. As for the oxidative desulfurization of a real diesel, it was observed that almost all of the original sulfur compounds could be completely converted, and the catalyst could be reused for at least eight cycles without noticeable changes in both catalytic activity and chemical structure. In the end, a catalytic mechanism was put forward with the assistant of Raman analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
2015-01-01
The scalable chemical vapor deposition of monolayer hexagonal boron nitride (h-BN) single crystals, with lateral dimensions of ∼0.3 mm, and of continuous h-BN monolayer films with large domain sizes (>25 μm) is demonstrated via an admixture of Si to Fe catalyst films. A simple thin-film Fe/SiO2/Si catalyst system is used to show that controlled Si diffusion into the Fe catalyst allows exclusive nucleation of monolayer h-BN with very low nucleation densities upon exposure to undiluted borazine. Our systematic in situ and ex situ characterization of this catalyst system establishes a basis for further rational catalyst design for compound 2D materials. PMID:25664483
Catalysts and process for liquid hydrocarbon fuel production
White, Mark G.; Ranaweera, Samantha A.; Henry, William P.
2016-08-02
The present invention provides a novel process and system in which a mixture of carbon monoxide and hydrogen synthesis gas, or syngas, is converted into hydrocarbon mixtures composed of high quality distillates, gasoline components, and lower molecular weight gaseous olefins in one reactor or step. The invention utilizes a novel supported bimetallic ion complex catalyst for conversion, and provides methods of preparing such novel catalysts and use of the novel catalysts in the process and system of the invention.
Berry, David A; Shekhawat, Dushyant; Smith, Mark; Haynes, Daniel
2013-07-16
The disclosure relates to a method of utilizing a catalyst system for an oxidation process on a gaseous hydrocarbon stream with a mitigation of carbon accumulation. The system is comprised of a catalytically active phase deposited onto an oxygen conducting phase, with or without supplemental support. The catalytically active phase has a specified crystal structure where at least one catalytically active metal is a cation within the crystal structure and coordinated with oxygen atoms within the crystal structure. The catalyst system employs an optimum coverage ratio for a given set of oxidation conditions, based on a specified hydrocarbon conversion and a carbon deposition limit. Specific embodiments of the catalyst system are disclosed.
NASA Technical Reports Server (NTRS)
Voecks, G. E.
1983-01-01
Insufficient theoretical definition of heterogeneous catalysts is the major difficulty confronting industrial suppliers who seek catalyst systems which are more active, selective, and stable than those currently available. In contrast, progress was made in tailoring homogeneous catalysts to specific reactions because more is known about the reaction intermediates promoted and/or stabilized by these catalysts during the course of reaction. However, modeling heterogeneous catalysts on a microscopic scale requires compiling and verifying complex information on reaction intermediates and pathways. This can be achieved by adapting homogeneous catalyzed reaction intermediate species, applying theoretical quantum chemistry and computer technology, and developing a better understanding of heterogeneous catalyst system environments. Research in microscopic reaction modeling is now at a stage where computer modeling, supported by physical experimental verification, could provide information about the dynamics of the reactions that will lead to designing supported catalysts with improved selectivity and stability.
Enhanced catalyst for conversion of syngas to liquid motor fuels
Coughlin, Peter K.; Rabo, Jule A.
1985-01-01
Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.
Enhanced catalyst for conversion of syngas to liquid motor fuels
Coughlin, P.K.; Rabo, J.A.
1985-12-03
Synthesis gas comprising carbon monoxide and hydrogen is converted to C[sub 5][sup +] hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising a SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.
Iron catalyzed coal liquefaction process
Garg, Diwakar; Givens, Edwin N.
1983-01-01
A process is described for the solvent refining of coal into a gas product, a liquid product and a normally solid dissolved product. Particulate coal and a unique co-catalyst system are suspended in a coal solvent and processed in a coal liquefaction reactor, preferably an ebullated bed reactor. The co-catalyst system comprises a combination of a stoichiometric excess of iron oxide and pyrite which reduce predominantly to active iron sulfide catalysts in the reaction zone. This catalyst system results in increased catalytic activity with attendant improved coal conversion and enhanced oil product distribution as well as reduced sulfide effluent. Iron oxide is used in a stoichiometric excess of that required to react with sulfur indigenous to the feed coal and that produced during reduction of the pyrite catalyst to iron sulfide.
Process and catalyst for carbonylating olefins
Zoeller, Joseph Robert
1998-06-02
Disclosed is an improved catalyst system and process for preparing aliphatic carbonyl compounds such as aliphatic carboxylic acids, alkyl esters of aliphatic carboxylic acids and anhydrides of aliphatic carboxylic acids by carbonylating olefins in the presence of a catalyst system comprising (1) a first component selected from at least one Group 6 metal, i.e., chromium, molybdenum, and/or tungsten and (2) a second component selected from at least one of certain halides and tertiary and quaternary compounds of a Group 15 element, i.e., nitrogen, phosphorus and/or arsenic, and (3) as a third component, a polar, aprotic solvent. The process employing the improved catalyst system is carried out under carbonylating conditions of pressure and temperature discussed herein. The process constitutes and improvement over known processes since it can be carried out at moderate carbonylation conditions without the necessity of using an expensive noble metal catalyst, volatile, toxic materials such as nickel tetracarbonyl, formic acid or a formate ester. Further, the addition of a polar, aprotic solvent to the catalyst system significantly increases, or accelerates, the rate at which the carbonylation takes place.
Characterization of three-way automotive catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenik, E.A.; More, K.L.; LaBarge, W.
1997-04-01
The CRADA between Delphi Automotive Systems (Delphi; formerly General Motors - AC Delco, Systems) and Lockheed Martin Energy Research (LMER) on automotive catalysts was completed at the end of FY96, after a ten month, no-cost extension. The CRADA was aimed at improved performance and lifetime of noble metal based three-way-catalysts (TWC), which are the primary catalytic system for automotive emission control systems. While these TWC can meet the currently required emission standards, higher than optimum noble metal loadings are often required to meet lifetime requirements. In addition, more stringent emission standards will be imposed in the near future, demanding improvedmore » performance and service life from these catalysts. Understanding the changes of TWC conversion efficiency with ageing is a critical need in improving these catalysts. Initially in a fresh catalyst, the active material is often distributed on a very fine scale, approaching single atoms or small atomic clusters. As such, a wide range of analytical techniques have been employed to provide high spatial resolution characterization of the evolving state of the catalytic material.« less
Experimental research of technology activating catalysts for SCR DeNOx in boiler
NASA Astrophysics Data System (ADS)
Zeng, Xi; Yang, Zhengde; Li, Yan; Chen, Donglin
2018-01-01
In order to improve activity of the catalysts used in SCR DeNOx system of flue gas, a series of catalysts activated by different activating liquids under varied conditions in boiler directly were conducted. Then these catalysts were characterized by SEM, FT-IR and BET technology. And NO conversions of the activated catalysts were studied and compared with that of inactivated catalyst. The above experiment shows that NO conversion of the activated catalyst can be up to 99%, which 30% higher than that of inactivated catalyst, so activity of catalysts were improved greatly. Furthermore, optimal activating liquid labeled L2 and effective technology parameters were gained in the experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardeman, D.; Esconjauregui, S., E-mail: cse28@cam.ac.uk; Cartwright, R.
2015-01-28
We report the growth of multi-walled carbon nanotube forests employing an active-active bimetallic Fe-Co catalyst. Using this catalyst system, we observe a synergistic effect by which—in comparison to pure Fe or Co—the height of the forests increases significantly. The homogeneity in the as-grown nanotubes is also improved. By both energy dispersive spectroscopy and in-situ x-ray photoelectron spectroscopy, we show that the catalyst particles consist of Fe and Co, and this dramatically increases the growth rate of the tubes. Bimetallic catalysts are thus potentially useful for synthesising nanotube forests more efficiently.
NASA Astrophysics Data System (ADS)
Mitsudome, Takato; Urayama, Teppei; Kiyohiro, Taizo; Maeno, Zen; Mizugaki, Tomoo; Jitsukawa, Koichiro; Kaneda, Kiyotomi
2016-11-01
An environmentally friendly (“green”), H2-generation system was developed that involved hydrolytic oxidation of inexpensive organosilanes as hydrogen storage materials with newly developed heterogeneous gold nanoparticle catalysts. The gold catalyst functioned well at ambient temperature under aerobic conditions, providing efficient production of pure H2. The newly developed size-selective gold nanoparticle catalysts could be separated easily from the reaction mixture containing organosilanes, allowing an on/off-switchable H2-production by the introduction and removal of the catalyst. This is the first report of an on/off-switchable H2-production system employing hydrolytic oxidation of inexpensive organosilanes without requiring additional energy.
75 FR 81592 - National Energy Technology Laboratory; Notice of Intent To Grant Exclusive License
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-28
..., entitled ``Method for designing a reforming and/or combustion catalyst system'' and ``Pyrochlore-type catalysts for the reforming of hydrocarbon fuels,'' respectively, to Pyrochem Catalyst [[Page 81593... filing written objections. Pyrochem Catalyst Corporation, a new small business, has applied for an...
Catalysts to reduce NO.sub.x in an exhaust gas stream and methods of preparation
Castellano, Christopher R [Ringoes, NJ; Moini, Ahmad [Princeton, NJ; Koermer, Gerald S [Basking Ridge, NJ; Furbeck, Howard [Hamilton, NJ; Schmieg, Steven J [Troy, MI; Blint, Richard J [Shelby Township, MI
2011-05-17
Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having a catalyst comprising silver and a platinum group metal on a particulate alumina support, the atomic fraction of the platinum group metal being less than or equal to about 0.25. Methods of manufacturing catalysts are described in which silver is impregnated on alumina particles.
Evaluation of Bosch-Based Systems Using Non-Traditional Catalysts at Reduced Temperatures
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Mansell, J. Matthew
2011-01-01
Oxygen and water resupply make open loop atmosphere revitalization (AR) systems unfavorable for long-term missions beyond low Earth orbit. Crucial to closing the AR loop are carbon dioxide reduction systems with low mass and volume, minimal power requirements, and minimal consumables. For this purpose, NASA is exploring using Bosch-based systems. The Bosch process is favorable over state-of-the-art Sabatier-based processes due to complete loop closure. However, traditional operation of the Bosch required high reaction temperatures, high recycle rates, and significant consumables in the form of catalyst resupply due to carbon fouling. A number of configurations have been proposed for next-generation Bosch systems. First, alternative catalysts (catalysts other than steel wool) can be used in a traditional single-stage Bosch reactor to improve reaction kinetics and increase carbon packing density. Second, the Bosch reactor may be split into separate stages wherein the first reactor stage is dedicated to carbon monoxide and water formation via the reverse water-gas shift reaction and the second reactor stage is dedicated to carbon formation. A series system will enable maximum efficiency of both steps of the Bosch reaction, resulting in optimized operation and maximum carbon formation rate. This paper details the results of testing of both single-stage and two-stage Bosch systems with alternative catalysts at reduced temperatures. These results are compared to a traditional Bosch system operated with a steel wool catalyst.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, Stephen D.; Spies, Kurt A.; Mei, Donghai
We report on the markedly improved stability of a novel 2-bed catalytic system, as compared to a conventional 1-bed steam reforming catalyst, for the production of H2 from acetic acid. The 2-bed catalytic system comprises of i) a basic oxide ketonization catalyst for the conversion of acetic acid to acetone, and a ii) Co-based steam reforming catalyst, both catalytic beds placed in sequence within the same unit operation. Steam reforming catalysts are particularly prone to catalytic deactivation when steam reforming acetic acid, used here as a model compound for the aqueous fraction of bio-oil. Catalysts comprising MgAl2O4, ZnO, CeO2, andmore » activated carbon (AC) both with and without Co-addition were evaluated for conversion of acetic acid and acetone, its ketonization product, in the presence of steam. It was found that over the bare oxide support only ketonization activity was observed and coke deposition was minimal. With addition of Co to the oxide support steam reforming activity was facilitated and coke deposition was significantly increased. Acetone steam reforming over the same Co-supported catalysts demonstrated more stable performance and with less coke deposition than with acetic acid feedstock. DFT analysis suggests that over Co surface CHxCOO species are more favorably formed from acetic acid versus acetone. These CHxCOO species are strongly bound to the Co catalyst surface and could explain the higher propensity for coke formation from acetic acid. Based on these findings, in order to enhance stability of the steam reforming catalyst a dual-bed (2-bed) catalyst system was implemented. Comparing the 2-bed and 1-bed (Co-supported catalyst only) systems under otherwise identical reaction conditions the 2-bed demonstrated significantly improved stability and coke deposition was decreased by a factor of 4.« less
Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, A.; Burton, J.; McCormick, R. L.
2013-04-01
Alkali and alkaline earth metal impurities found in diesel fuels are potential poisons for diesel exhaust catalysts. A set of diesel engine production exhaust systems was aged to 150,000 miles. These exhaust systems included a diesel oxidation catalyst, selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF). Four separate exhaust systems were aged, each with a different fuel: ultralow sulfur diesel containing no measureable metals, B20 (a common biodiesel blend) containing sodium, B20 containing potassium, and B20 containing calcium, which were selected to simulate the maximum allowable levels in B100 according to ASTM D6751. Analysis included Federal Test Proceduremore » emissions testing, bench-flow reactor testing of catalyst cores, electron probe microanalysis (EPMA), and measurement of thermo-mechanical properties of the DPFs. EPMA imaging found that the sodium and potassium penetrated into the washcoat, while calcium remained on the surface. Bench-flow reactor experiments were used to measure the standard nitrogen oxide (NOx) conversion, ammonia storage, and ammonia oxidation for each of the aged SCR catalysts. Vehicle emissions tests were conducted with each of the aged catalyst systems using a chassis dynamometer. The vehicle successfully passed the 0.2 gram/mile NOx emission standard with each of the four aged exhaust systems.« less
Deng, Aojie; Lin, Qixuan; Yan, Yuhuan; Li, Huiling; Ren, Junli; Liu, Chuanfu; Sun, Runcang
2016-09-01
A feasible approach was developed to produce furfural from the pre-hydrolysis liquor of corncob via biochar catalysts as the solid acid catalyst in a new biphasic system with dichloromethane (DCM) as the organic phase and the concentrated pre-hydrolysis liquor (CPHL) containing NaCl as the aqueous phase. The biochar catalyst possessing many acidity groups (SO3H, COOH and phenolic OH groups) was prepared by the carbonization and sulfonation process of the corncob hydrolyzed residue. The influence of the catalytic condition on furfural yield and selectivity was comparatively studied. It was found that 81.14% furfural yield and 83.0% furfural selectivity were obtained from CPHL containing 5wt% xylose using this biochar catalyst in the CPHL-NaCl/DCM biphasic system at 170°C for 60min. In addition, with the regeneration process, this catalyst displayed the high performance and excellent recyclability. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Partridge Jr, William P.; Choi, Jae-Soon
By directly resolving spatial and temporal species distributions within operating honeycomb monolith catalysts, spatially resolved capillary inlet mass spectrometry (SpaciMS) provides a uniquely enabling perspective for advancing automotive catalysis. Specifically, the ability to follow the spatiotemporal evolution of reactions throughout the catalyst is a significant advantage over inlet-and-effluent-limited analysis. Intracatalyst resolution elucidates numerous catalyst details including the network and sequence of reactions, clarifying reaction pathways; the relative rates of different reactions and impacts of operating conditions and catalyst state; and reaction dynamics and intermediate species that exist only within the catalyst. These details provide a better understanding of how themore » catalyst functions and have basic and practical benefits; e.g., catalyst system design; strategies for on-road catalyst state assessment, control, and on-board diagnostics; and creating robust and accurate predictive catalyst models. Moreover, such spatiotemporally distributed data provide for critical model assessment, and identification of improvement opportunities that might not be apparent from effluent assessment; i.e., while an incorrectly formulated model may provide correct effluent predictions, one that can accurately predict the spatiotemporal evolution of reactions along the catalyst channels will be more robust, accurate, and reliable. In such ways, intracatalyst diagnostics comprehensively enable improved design and development tools, and faster and lower-cost development of more efficient and durable automotive catalyst systems. Beyond these direct contributions, SpaciMS has spawned and been applied to enable other analytical techniques for resolving transient distributed intracatalyst performance. This chapter focuses on SpaciMS applications and associated catalyst insights and improvements, with specific sections related to lean NOx traps, selective catalytic reduction catalysts, oxidation catalysts, and particulate filters. The objective is to promote broader use and development of intracatalyst analytical methods, and thereby expand the insights resulting from this detailed perspective for advancing automotive catalyst technologies.« less
Analyzing Mathematical Tasks: A Catalyst for Change?
ERIC Educational Resources Information Center
Arbaugh, Fran; Brown, Catherine A.
2005-01-01
In this study we investigate a strategy for engaging high school mathematics teachers in an "initial" examination of their teaching in a way that is nonthreatening and at the same time effectively supports the development of teachers' pedagogical content knowledge [Shulman (1986). "Educational Researcher," 15(2), 4-14]. Based on the work…
Community-Based Programming: An Opportunity and Imperative for the Community College.
ERIC Educational Resources Information Center
Boone, Edgar J.
1992-01-01
Defines community-based programing as a cooperative process in which the community college serves as leader and catalyst in effecting collaboration among community members, leaders, and groups. Recommends 15 tasks for community college leaders involved in community-based programing, including environmental scanning and coalition building. (DMM)
Production of aromatics from di- and polyoxygenates
Beck, Taylor; Blank, Brian; Jones, Casey; Woods, Elizabeth; Cortright, Randy
2016-08-02
Methods, catalysts, and reactor systems for producing in high yield aromatic chemicals and liquid fuels from a mixture of oxygenates comprising di- and polyoxygenates are disclosed. Also disclosed are methods, catalysts, and reactor systems for producing aromatic chemicals and liquid fuels from oxygenated hydrocarbons such as carbohydrates, sugars, sugar alcohols, sugar degradation products, and the like; and methods, catalysts, and reactor systems for producing the mixture of oxygenates from oxygenated hydrocarbons such as carbohydrates, sugars, sugar alcohols, sugar degradation products, and the like. The disclosed catalysts for preparing the mixture of oxygenates comprise a Ni.sub.nSn.sub.m alloy and a crystalline alumina support.
Charge transfer mediator based systems for electrocatalytic oxygen reduction
Stahl, Shannon S.; Gerken, James B.; Anson, Colin W.
2017-11-07
Disclosed are systems for the electrocatalytic reduction of oxygen, having redox mediator/redox catalyst pairs and an electrolyte solution in contact with an electrode. The redox mediator is included in the electrolyte solution, and the redox catalyst may be included in the electrolyte solution, or alternatively, may be in contact with the electrolyte solution. In one form a cobalt redox catalyst is used with a quinone redox mediator. In another form a nitrogen oxide redox catalyst is used with a nitroxyl type redox mediator. The systems can be used in electrochemical cells wherein neither the anode nor the cathode comprise an expensive metal such as platinum.
Charge transfer mediator based systems for electrocatalytic oxygen reduction
Stahl, Shannon S.; Gerken, James B.; Anson, Colin W.
2017-07-18
Disclosed are systems for the electrocatalytic reduction of oxygen, having redox mediator/redox catalyst pairs and an electrolyte solution in contact with an electrode. The redox mediator is included in the electrolyte solution, and the redox catalyst may be included in the electrolyte solution, or alternatively, may be in contact with the electrolyte solution. In one form a cobalt redox catalyst is used with a quinone redox mediator. In another form a nitrogen oxide redox catalyst is used with a nitroxyl type redox mediator. The systems can be used in electrochemical cells wherein neither the anode nor the cathode comprise an expensive metal such as platinum.
Production of aromatics from di- and polyoxygenates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, Taylor; Blank, Brian; Jones, Casey
Methods, catalysts, and reactor systems for producing in high yield aromatic chemicals and liquid fuels from a mixture of oxygenates comprising di- and polyoxygenates are disclosed. Also disclosed are methods, catalysts, and reactor systems for producing aromatic chemicals and liquid fuels from oxygenated hydrocarbons such as carbohydrates, sugars, sugar alcohols, sugar degradation products, and the like; and methods, catalysts, and reactor systems for producing the mixture of oxygenates from oxygenated hydrocarbons such as carbohydrates, sugars, sugar alcohols, sugar degradation products, and the like. The disclosed catalysts for preparing the mixture of oxygenates comprise a Ni.sub.nSn.sub.m alloy and a crystalline aluminamore » support.« less
Production of aromatics from di- and polyoxygenates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, Taylor; Blank, Brian; Jones, Casey
Methods, catalysts, and reactor systems for producing in high yield aromatic chemicals and liquid fuels from a mixture of oxygenates comprising di- and polyoxygenates are disclosed. Also disclosed are methods, catalysts, and reactor systems for producing aromatic chemicals and liquid fuels from oxygenated hydrocarbons such as carbohydrates, sugars, sugar alcohols, sugar degradation products, and the like; and methods, catalysts, and reactor systems for producing the mixture of oxygenates from oxygenated hydrocarbons such as carbohydrates, sugars, sugar alcohols, sugar degradation products, and the like. The disclosed catalysts for preparing the mixture of oxygenates comprise a Group VIII metal and a crystallinemore » alumina support.« less
Systems and methods for rebalancing redox flow battery electrolytes
Pham, Ai Quoc; Chang, On Kok
2015-03-17
Various methods of rebalancing electrolytes in a redox flow battery system include various systems using a catalyzed hydrogen rebalance cell configured to minimize the risk of dissolved catalyst negatively affecting flow battery performance. Some systems described herein reduce the chance of catalyst contamination of RFB electrolytes by employing a mediator solution to eliminate direct contact between the catalyzed membrane and the RFB electrolyte. Other methods use a rebalance cell chemistry that maintains the catalyzed electrode at a potential low enough to prevent the catalyst from dissolving.
Immobilization of molecular catalysts in supported ionic liquid phases.
Van Doorslaer, Charlie; Wahlen, Joos; Mertens, Pascal; Binnemans, Koen; De Vos, Dirk
2010-09-28
In a supported ionic liquid phase (SILP) catalyst system, an ionic liquid (IL) film is immobilized on a high-surface area porous solid and a homogeneous catalyst is dissolved in this supported IL layer, thereby combining the attractive features of homogeneous catalysts with the benefits of heterogeneous catalysts. In this review reliable strategies for the immobilization of molecular catalysts in SILPs are surveyed. In the first part, general aspects concerning the application of SILP catalysts are presented, focusing on the type of catalyst, support, ionic liquid and reaction conditions. Secondly, organic reactions in which SILP technology is applied to improve the performance of homogeneous transition-metal catalysts are presented: hydroformylation, metathesis reactions, carbonylation, hydrogenation, hydroamination, coupling reactions and asymmetric reactions.
Hoecker, Christian; Smail, Fiona; Pick, Martin; Weller, Lee; Boies, Adam M
2017-11-06
The floating catalyst chemical vapor deposition (FC-CVD) process permits macro-scale assembly of nanoscale materials, enabling continuous production of carbon nanotube (CNT) aerogels. Despite the intensive research in the field, fundamental uncertainties remain regarding how catalyst particle dynamics within the system influence the CNT aerogel formation, thus limiting effective scale-up. While aerogel formation in FC-CVD reactors requires a catalyst (typically iron, Fe) and a promotor (typically sulfur, S), their synergistic roles are not fully understood. This paper presents a paradigm shift in the understanding of the role of S in the process with new experimental studies identifying that S lowers the nucleation barrier of the catalyst nanoparticles. Furthermore, CNT aerogel formation requires a critical threshold of Fe x C y > 160 mg/m 3 , but is surprisingly independent of the initial catalyst diameter or number concentration. The robustness of the critical catalyst mass concentration principle is proved further by producing CNTs using alternative catalyst systems; Fe nanoparticles from a plasma spark generator and cobaltocene and nickelocene precursors. This finding provides evidence that low-cost and high throughput CNT aerogel routes may be achieved by decoupled and enhanced catalyst production and control, opening up new possibilities for large-scale CNT synthesis.
Catalysts for low-energy aldehyde processes
NASA Technical Reports Server (NTRS)
Gupta, A.; Rembaum, A.; Frazier, C.; Gray, H. B.
1977-01-01
Photochemical reaction of dicobalt octacarbonyl with polymeric support systems results in formation of polymer bonded metal catalyst. Catalyst is used in hydroformylation (addition of carbon dioxide and hydrogen) of olefins to yield aldehydes.
Zhang, Nan; Zhao, He; Zhang, Guangming; Chong, Shan; Liu, Yucan; Sun, Liyan; Chang, Huazhen; Huang, Ting
2017-02-01
High efficiency and facile separation are desirable for catalysts used in water treatment. In this study, a magnetic catalyst (nitrogen doped iron/activated carbon) was prepared and used for pharmaceutical wastewater treatment. The catalyst was characterized using BET, SEM, XRD, VSM and XPS. Results showed that iron and nitrogen were successfully loaded and doped, magnetic Fe 2 N was formed, large amount of active surface oxygen and Fe(II) were detected, and the catalyst could be easily separated from water. Diclofenac was then degraded using the catalyst in ultrasound system. The catalyst showed high catalytic activity with 95% diclofenac removal. Analysis showed that ·OH attack of diclofenac was a main pathway, and then ·OH generation mechanism was clarified. The effects of catalyst dosage, sonication time, ultrasonic density, initial pH, and inorganic anions on diclofenac degradation were studied. Sulfate anion enhanced the degradation of diclofenac. Mechanism in the catalytic ultrasonic process was analyzed and reactions were clarified. Large quantity of oxidants was generated on the catalyst surface, including ·OH, O 2 - , O - and HO 2 ·, which degraded diclofenac efficiently. In the solution and interior of cavitation bubbles, ·OH and "hot spot" effects contributed to the degradation of diclofenac. Reuse of the catalyst was further investigated to enhance its economy, and the catalyst maintained activity after seven uses. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burton Davis; Gary Jacobs; Wenping Ma
2009-09-30
There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased.more » Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations.« less
A self-improved water-oxidation catalyst: is one site really enough?
López, Isidoro; Ertem, Mehmed Z; Maji, Somnath; Benet-Buchholz, Jordi; Keidel, Anke; Kuhlmann, Uwe; Hildebrandt, Peter; Cramer, Christopher J; Batista, Victor S; Llobet, Antoni
2014-01-03
The homogeneous catalysis of water oxidation by transition-metal complexes has experienced spectacular development over the last five years. Practical energy-conversion schemes, however, require robust catalysts with large turnover frequencies. Herein we introduce a new oxidatively rugged and powerful dinuclear water-oxidation catalyst that is generated by self-assembly from a mononuclear catalyst during the catalytic process. Our kinetic and DFT computational analysis shows that two interconnected catalytic cycles coexist while the mononuclear system is slowly and irreversibly converted into the more stable dinuclear system: an extremely robust water-oxidation catalyst that does not decompose over extended periods of time. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reticulation of Aqueous Polyurethane Systems Controlled by DSC Method
Cakic, Suzana; Lacnjevac, Caslav; Rajkovic, Milos B.; Raskovic, Ljiljana; Stamenkovic, Jakov
2006-01-01
The DSC method has been employed to monitor the kinetics of reticulation of aqueous polyurethane systems without catalysts, and with the commercial catalyst of zirconium (CAT®XC-6212) and the highly selective manganese catalyst, the complex Mn(III)-diacetylacetonemaleinate (MAM). Among the polyol components, the acrylic emulsions were used for reticulation in this research, and as suitable reticulation agents the water emulsible aliphatic polyisocyanates based on hexamethylendoisocyanate with the different contents of NCO-groups were employed. On the basis of DSC analysis, applying the methods of Kissinger, Freeman-Carroll and Crane-Ellerstein the pseudo kinetic parameters of the reticulation reaction of aqueous systems were determined. The temperature of the examination ranged from 50°C to 450°C with the heat rate of 0.5°C/min. The reduction of the activation energy and the increase of the standard deviation indicate the catalytic action of the selective catalysts of zirconium and manganese. The impact of the catalysts on the reduction of the activation energy is the strongest when using the catalysts of manganese and applying all the three afore-said methods. The least aberrations among the stated methods in defining the kinetic parameters were obtained by using the manganese catalyst.
Choe, Jong Kwon; Bergquist, Allison M; Jeong, Sangjo; Guest, Jeremy S; Werth, Charles J; Strathmann, Timothy J
2015-09-01
Salt used to make brines for regeneration of ion exchange (IX) resins is the dominant economic and environmental liability of IX treatment systems for nitrate-contaminated drinking water sources. To reduce salt usage, the applicability and environmental benefits of using a catalytic reduction technology to treat nitrate in spent IX brines and enable their reuse for IX resin regeneration were evaluated. Hybrid IX/catalyst systems were designed and life cycle assessment of process consumables are used to set performance targets for the catalyst reactor. Nitrate reduction was measured in a typical spent brine (i.e., 5000 mg/L NO3(-) and 70,000 mg/L NaCl) using bimetallic Pd-In hydrogenation catalysts with variable Pd (0.2-2.5 wt%) and In (0.0125-0.25 wt%) loadings on pelletized activated carbon support (Pd-In/C). The highest activity of 50 mgNO3(-)/(min - g(Pd)) was obtained with a 0.5 wt%Pd-0.1 wt%In/C catalyst. Catalyst longevity was demonstrated by observing no decrease in catalyst activity over more than 60 days in a packed-bed reactor. Based on catalyst activity measured in batch and packed-bed reactors, environmental impacts of hybrid IX/catalyst systems were evaluated for both sequencing-batch and continuous-flow packed-bed reactor designs and environmental impacts of the sequencing-batch hybrid system were found to be 38-81% of those of conventional IX. Major environmental impact contributors other than salt consumption include Pd metal, hydrogen (electron donor), and carbon dioxide (pH buffer). Sensitivity of environmental impacts of the sequencing-batch hybrid reactor system to sulfate and bicarbonate anions indicate the hybrid system is more sustainable than conventional IX when influent water contains <80 mg/L sulfate (at any bicarbonate level up to 100 mg/L) or <20 mg/L bicarbonate (at any sulfate level up to 100 mg/L) assuming 15 brine reuse cycles. The study showed that hybrid IX/catalyst reactor systems have potential to reduce resource consumption and improve environmental impacts associated with treating nitrate-contaminated water sources. Copyright © 2015 Elsevier Ltd. All rights reserved.
MicroChannel Reactors for ISRU Applications Using Nanofabricated Catalysts
NASA Astrophysics Data System (ADS)
Carranza, Susana; Makel, Darby B.; Vander Wal, Randall L.; Berger, Gordon M.; Pushkarev, Vladimir V.
2006-01-01
With the new direction of NASA to emphasize the exploration of the Moon, Mars and beyond, quick development and demonstration of efficient systems for In-Situ Resources Utilization (ISRU) is more critical and timely than ever before. Affordable planning and execution of prolonged manned space missions depend upon the utilization of local resources and the waste products which are formed in manned spacecraft and surface bases. This paper presents current development of miniaturized chemical processing systems that combine microchannel reactor design with nanofabricated catalysts. Carbon nanotubes (CNT) are used to produce a nanostructure within microchannel reactors, as support for catalysts. By virtue of their nanoscale dimensions, nanotubes geometrically restrict the catalyst particle size that can be supported upon the tube walls. By confining catalyst particles to sizes smaller than the CNT diameter, a more uniform catalyst particle size distribution may be maintained. The high dispersion permitted by the vast surface area of the nanoscale material serves to retain the integrity of the catalyst by reducing sintering or coalescence. Additionally, catalytic efficiency increases with decreasing catalyst particle size (reflecting higher surface area per unit mass) while chemical reactivity frequently is enhanced at the nanoscale. Particularly significant is the catalyst exposure. Rather than being confined within a porous material or deposited upon a 2-d surface, the catalyst is fully exposed to the reactant gases by virtue of the nanofabricated support structure. The combination of microchannel technology with nanofabricated catalysts provides a synergistic effect, enhancing both technologies with the potential to produce much more efficient systems than either technology alone. The development of highly efficient microchannel reactors will be applicable to multiple ISRU programs. By selection of proper nanofabricated catalysts, the microchannel reactors can be designed for the processes that generate the most benefit for each mission, from early demonstration missions to long term settlements.
Environmentally benign Friedel-Crafts benzylation over nano-TiO2/SO4 2-
NASA Astrophysics Data System (ADS)
Devi, Kalathiparambil RPS; Sreeja, Puthenveetil B.; Sugunan, Sankaran
2013-05-01
During the past decade, much attention has been paid to the replacement of homogeneous catalysts by solid acid catalysts. Friedel-Crafts benzylation of toluene with benzyl chloride (BC) in liquid phase was carried out over highly active, nano-crystalline sulfated titania systems. These catalysts were prepared using the sol gel method. Modification was done by loading 3% of transition metal oxides over sulfated titania. Reaction parameters such as catalyst mass, molar ratio, temperature, and time have been studied. More than 80% conversion of benzyl chloride and 100% selectivity are shown by all the catalysts under optimum conditions. Catalytic activity is correlated with Lewis acidity obtained from perylene adsorption studies. The reaction appears to proceed by an electrophile, which involves the reaction of BC with the acidic titania catalyst. The catalyst was regenerated and reused up to four reaction cycles with equal efficiency as in the first run. The prepared systems are environmentally friendly and are easy to handle.
Enhanced conversion of syngas to liquid motor fuels
Coughlin, Peter K.; Rabo, Jule A.
1986-01-01
Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.
Tethered catalysts for the hydration of carbon dioxide
Valdez, Carlos A; Satcher, Jr., Joe H; Aines, Roger D; Wong, Sergio E; Baker, Sarah E; Lightstone, Felice C; Stolaroff, Joshuah K
2014-11-04
A system is provided that substantially increases the efficiency of CO.sub.2 capture and removal by positioning a catalyst within an optimal distance from the air-liquid interface. The catalyst is positioned within the layer determined to be the highest concentration of carbon dioxide. A hydrophobic tether is attached to the catalyst and the hydrophobic tether modulates the position of the catalyst within the liquid layer containing the highest concentration of carbon dioxide.
NASA Astrophysics Data System (ADS)
Bo, Zheng; Hao, Han; Yang, Shiling; Zhu, Jinhui; Yan, Jianhua; Cen, Kefa
2018-04-01
This work reports the catalytic performance of vertically-oriented graphenes (VGs) supported manganese oxide catalysts toward toluene decomposition in post plasma-catalysis (PPC) system. Dense networks of VGs were synthesized on carbon paper (CP) via a microwave plasma-enhanced chemical vapor deposition (PECVD) method. A constant current approach was applied in a conventional three-electrode electrochemical system for the electrodeposition of Mn3O4 catalysts on VGs. The as-obtained catalysts were characterized and investigated for ozone conversion and toluene decomposition in a PPC system. Experimental results show that the Mn3O4 catalyst loading mass on VG-coated CP was significantly higher than that on pristine CP (almost 1.8 times for an electrodeposition current of 10 mA). Moreover, the decoration of VGs led to both enhanced catalytic activity for ozone conversion and increased toluene decomposition, exhibiting a great promise in PPC system for the effective decomposition of volatile organic compounds.
Ginosar, Daniel M.; Thompson, David N.; Anderson, Raymond P.
2008-08-05
A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.
Gaab, Manuela; Bellemin-Laponnaz, Stéphane; Gade, Lutz H
2009-01-01
Bis- and trisoxazolines (BOX and trisox), containing a linker unit in the ligand backbone that allows their covalent attachment to carbosilane dendrimers, have been employed as polyfunctional ligands for recyclable Cu(II) Lewis acid catalysts that were immobilised in a membrane bag. The oxazolines contained an alkynyl unit attached to their backbone that was deprotonated with LDA or BuLi and then reacted with the chlorosilyl termini of zeroth-, first- and second-generation carbosilane dendrimers in the presence of TlPF(6). The functionalised dendritic systems were subsequently separated from excess ligand by way of dialysis. The general catalytic potential of these systems was assessed by studying two benchmark reactions, the alpha-hydrazination of a beta-keto ester as well as the Henry reaction of 2-nitrobenzaldehyde with nitromethane. For both reactions the bisoxazoline-based catalysts displayed superior selectivity and, in particular, catalyst activity. The latter was interpreted as being due to the hindered decoordination of the third oxazoline unit, the key step in the generation of the active catalyst, in the immobilised trisox-copper complexes. Solutions of the second-generation dendrimer catalysts were placed in membrane bags, fabricated from commercially available dialysis membranes, with the purpose of catalyst recycling based on dialysis. Overall, the supported BOX catalyst gave good and highly reproducible results throughout the study, whereas the performance of the trisox dendrimer system decreased monotonically. The reason for the different behaviour is the markedly lower activity of trisox-based catalysts relative to those based on the BOX ligand. This necessitated an increased reaction time for each cycle of the trisox derivatives, resulting in higher levels of catalyst leaching, which was attributed to a modification of the structure of the membrane by its exposure to the solvent trifluoroethanol at 40 degrees C.
Sobolevskiy, Anatoly [Orlando, FL; Rossin, Joseph A [Columbus, OH; Knapke, Michael J [Columbus, OH
2011-08-02
A process and system (18) for reducing NO.sub.x in a gas using hydrogen as a reducing agent is provided. The process comprises contacting the gas stream (29) with a catalyst system (38) comprising sulfated zirconia washcoat particles (41), palladium, a pre-sulfated zirconia binder (44), and a promoter (45) comprising at least one of titanium, zinc, or a mixture thereof. The presence of zinc or titanium increases the resistance of the catalyst system to a sulfur and water-containing gas stream.
Synthesis, characterization and catalytic activity of nanosized Ni complexed aminoclay
NASA Astrophysics Data System (ADS)
Ranchani, A. Amala Jeya; Parthasarathy, V.; Devi, A. Anitha; Meenarathi, B.; Anbarasan, R.
2017-11-01
A novel Ni complexed aminoclay (AC) catalyst was prepared by complexation method followed by reduction reaction. Various analytical techniques such as FTIR spectroscopy, UV-visible spectroscopy, DSC, TGA, SEM, HRTEM, EDX, XPS and WCA measurement are used to characterize the synthesized material. The AC-Ni catalyst system exhibited improved thermal stability and fiber-like morphology. The XPS results declared the formation of Ni nanoparticles. Thus, synthesized catalyst was tested towards the Schiff base formation reaction between various bio-medical polymers and aniline under air atmosphere at 85 °C for 24 h. The catalytic activity of the catalyst was studied by varying the % weight loading of the AC-Ni system towards the Schiff base formation. The Schiff base formation was quantitatively calculated by the 1H-NMR spectroscopy. While increasing the % weight loading of the AC-Ni catalyst, the % yield of Schiff base was also increased. The k app and Ti values were determined for the reduction of indole and α-terpineol in the presence of AC-Ni catalyst system. The experimental results were compared with the literature report.
Wang, Ziyun; Wang, Hai-Feng; Hu, P
2015-10-01
The current theory of catalyst activity in heterogeneous catalysis is mainly obtained from the study of catalysts with mono-phases, while most catalysts in real systems consist of multi-phases, the understanding of which is far short of chemists' expectation. Density functional theory (DFT) and micro-kinetics simulations are used to investigate the activities of six mono-phase and nine bi-phase catalysts, using CO hydrogenation that is arguably the most typical reaction in heterogeneous catalysis. Excellent activities that are beyond the activity peak of traditional mono-phase volcano curves are found on some bi-phase surfaces. By analyzing these results, a new framework to understand the unexpected activities of bi-phase surfaces is proposed. Based on the framework, several principles for the design of multi-phase catalysts are suggested. The theoretical framework extends the traditional catalysis theory to understand more complex systems.
NASA Technical Reports Server (NTRS)
Moser, Thomas P.
1990-01-01
An extremely active class of noble metal catalysts supported on titania was developed and fabricated at Hughes for the recombination of oxygen (O2) and carbon monoxide (CO) in closed-cycle CO2 TEA lasers. The incipient wetness technique was used to impregnate titania and alumina pellets with precious metals including platinum and palladium. In particular, the addition of cerium (used as an oxygen storage promoter) produced an extremely active Pt/Ce/TiO2 catalyst. By comparison, the complementary Pt/Ce/ gamma-Al2O3 catalyst was considerably less active. In general, chloride-free catalyst precursors proved critical in obtaining an active catalyst while also providing uniform metal distributions throughout the support structure. Detailed characterization of the Pt/Ce/TiO2 catalyst demonstrated uniform dendritic crystal growth of the metals throughout the support. Electron spectroscopy for Chemical Analysis (ESCA) analysis was used to characterize the oxidation states of Pt, Ce and Ti. The performance of the catalysts was evaluated with an integral flow reactor system incorporating real time analysis of O2 and CO. With this system, the transient and steady-state behavior of the catalysts were evaluated. The kinetic evaluation was complemented by tests in a compact, closed-cycle Hughes CO2 TEA laser operating at a pulse repetition rate of 100 Hz with a catalyst temperature of 75 to 95 C. The Pt/Ce/TiO2 catalyst was compatible with a C(13)O(16)2 gas fill.
Lyu, Lingyun; Zeng, Xu; Yun, Jun; Wei, Feng; Jin, Fangming
2014-05-20
The "greenhouse effect" caused by the increasing atmospheric CO2 level is becoming extremely serious, and thus, the reduction of CO2 emissions has become an extensive, urgent, and long-term task. The dissociation of water for CO2 reduction with solar energy is regarded as one of the most promising methods for the sustainable development of the environment and energy. However, a high solar-to-fuel efficiency keeps a great challenge. In this work, the first observation of a highly effective, highly selective, and robust system of dissociating water for the reduction of carbon dioxide (CO2) into formic acid with metallic manganese (Mn) is reported. A considerably high formic acid yield of more than 75% on a carbon basis from NaHCO3 was achieved with 98% selectivity in the presence of simple commercially available Mn powder without the addition of any catalyst, and the proposed process is exothermic. Thus, this study may provide a promising method for the highly efficient dissociation of water for CO2 reduction by combining solar-driven thermochemistry with the reduction of MnO into Mn.
Iron-catalyzed hydrogenation of bicarbonates and carbon dioxide to formates.
Zhu, Fengxiang; Zhu-Ge, Ling; Yang, Guangfu; Zhou, Shaolin
2015-02-01
The catalytic hydrogenation of carbon dioxide and bicarbonate to formate has been explored extensively. The vast majority of the known active catalyst systems are based on precious metals. Herein, we describe an effective, phosphine-free, air- and moisture-tolerant catalyst system based on Knölker's iron complex for the hydrogenation of bicarbonate and carbon dioxide to formate. The catalyst system can hydrogenate bicarbonate at remarkably low hydrogen pressures (1-5 bar). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sun, MIn; Perry, Kevin L.
2015-11-20
A system according to the principles of the present disclosure includes a storage estimation module and an air/fuel ratio control module. The storage estimation module estimates a first amount of ammonia stored in a first selective catalytic reduction (SCR) catalyst and estimates a second amount of ammonia stored in a second SCR catalyst. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the first amount, the second amount, and a temperature of a substrate disposed in the second SCR catalyst.
Mechanism of Copper(I)/TEMPO-Catalyzed Aerobic Alcohol Oxidation
Hoover, Jessica M.; Ryland, Bradford L.; Stahl, Shannon S.
2013-01-01
Homogeneous Cu/TEMPO catalyst systems (TEMPO = 2,2,6,6-tetramethylpiperidine-N-oxyl) have emerged as some of the most versatile and practical catalysts for aerobic alcohol oxidation. Recently, we disclosed a (bpy)CuI/TEMPO/NMI catalyst system (NMI = N-methylimidazole) that exhibits fast rates and high selectivities, even with unactivated aliphatic alcohols. Here, we present a mechanistic investigation of this catalyst system, in which we compare the reactivity of benzylic and aliphatic alcohols. This work includes analysis of catalytic rates by gas-uptake and in situ IR kinetic methods and characterization of the catalyst speciation during the reaction by EPR and UV–visible spectroscopic methods. The data support a two-stage catalytic mechanism consisting of (1) “catalyst oxidation” in which CuI and TEMPO–H are oxidized by O2 via a binuclear Cu2O2 intermediate and (2) “substrate oxidation” mediated by CuII and the nitroxyl radical of TEMPO via a CuII-alkoxide intermediate. Catalytic rate laws, kinetic isotope effects, and spectroscopic data show that reactions of benzylic and aliphatic alcohols have different turnover-limiting steps. Catalyst oxidation by O2 is turnover limiting with benzylic alcohols, while numerous steps contribute to the turnover rate in the oxidation of aliphatic alcohols. PMID:23317450
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Fan; Xin, Le; Uzunoglu, Aytekin
In making a catalyst ink, the interaction between Nafion ionomer and catalyst support are the key factors that directly affect both ionic conductivity and electronic conductivity of the catalyst layer in a membrane electrode assembly (MEA). One of the major aims of this investigation is to understand the behavior of the catalyst support, Vulcan XC-72 (XC-72) aggregates, in the existence of the Nafion ionomer in a catalyst ink to fill the knowledge gap of the interaction of these components. The dispersion of catalyst ink not only depends on the solvent, but also depends on the interaction of Nafion and carbonmore » particles in the ink. The interaction of Nafion ionomer particles and XC-72 catalyst aggregates in liquid media was studied using ultra small angle x-ray scattering (USAXS) and cryogenic TEM techniques. Carbon black XC-72) and functionalized carbon black systems were introduced to study the interaction behaviors. A multiple curve fitting was used to extract the particle size and size distribution from scattering data. The results suggest that the particle size and size distribution of each system changed significantly in Nafion + XC-72 system, Nafion + NH2-XC72 system, and Nafion + SO3H-XC-72 system, which indicates that an interaction among these components (i.e. ionomer particles and XC-72 aggregates) exists. The cryogenic TEM, which allows for the observation the size of particles in a liquid, was used to validate the scattering results and shows excellent agreement.« less
NASA Astrophysics Data System (ADS)
Sui, Mao; Pandey, Puran; Li, Ming-Yu; Zhang, Quanzhen; Kunwar, Sundar; Lee, Jihoon
2017-01-01
Nanoscale patterning of sapphires is a challenging task due to the high mechanical strength, chemical stability as well as thermal durability. In this paper, we demonstrate a gold droplet assisted approach of nano-hole fabrication on c-plane sapphire via a thermal treatment. Uniformly distributed nano-holes are fabricated on the sapphire surface guided by dome shaped Au nanoparticles (NPs) as catalysts and the patterning process is discussed based on the disequilibrium of vapor, liquid, solid interface energies at the Au NP/sapphire interface induced by the Au evaporation at high temperature. Followed by the re-equilibration of interface energy, transport of alumina from the beneath of NPs to the sapphire surface can occur along the NP/sapphire interface resulting in the formation of nano-holes. The fabrication of nano-holes using Au NPs as catalysts is a flexible, economical and convenient approach and can find applications in various optoelectronics.
Kim, Yong Seung; Joo, Kisu; Jerng, Sahng-Kyoon; Lee, Jae Hong; Moon, Daeyoung; Kim, Jonghak; Yoon, Euijoon; Chun, Seung-Hyun
2014-03-25
The integration of graphene into devices is a challenging task because the preparation of a graphene-based device usually includes graphene growth on a metal surface at elevated temperatures (∼1000 °C) and a complicated postgrowth transfer process of graphene from the metal catalyst. Here we report a direct integration approach for incorporating polycrystalline graphene into light emitting diodes (LEDs) at low temperature by plasma-assisted metal-catalyst-free synthesis. Thermal degradation of the active layer in LEDs is negligible at our growth temperature, and LEDs could be fabricated without a transfer process. Moreover, in situ ohmic contact formation is observed between DG and p-GaN resulting from carbon diffusion into the p-GaN surface during the growth process. As a result, the contact resistance is reduced and the electrical properties of directly integrated LEDs outperform those of LEDs with transferred graphene electrodes. This relatively simple method of graphene integration will be easily adoptable in the industrialization of graphene-based devices.
Catalytic systems used for polymerization, biomass conversion, and enhancing diffusion
NASA Astrophysics Data System (ADS)
Pong, Frances
A significant amount of research has been dedicated towards the study and improvement of catalysts. A better understanding of how catalysts work can lead to developing more cost-efficient catalytic systems for a variety of applications. My research is focuses on catalytic systems used in three different fields, which are (i) organometallic polymerization catalysts, (ii) molecular motors and (iii) biomass conversion. Researchers have long studied and modified organometallic catalysts for use in the direct co- and homopolymerization of monomers with polar functional groups. The ability to add polar moieties to polymers, which can potentially yield materials with a wider range of physical properties, is highly desirable. In this study (i), a series of naphthoxyimine palladium(II) catalysts -- in which the naphthyl backbone had been functionalized with different moieties -- were synthesized and systematically studied to determine the ligand structure's impact on catalytic activity. The study showed that slight modifications of the naphthyl backbone led to significant changes in the polymer's molecular weight and polydispersity index. The catalysts were also displayed some ability to co-polymerize ethylene and functionalized norbornene. These positive results suggest that further exploration of naphthoxyimine palladium (II) catalysts may be fundamentally interesting. The effect of active, motile particles at the nanoscale has been vigorously researched during the past decade. By understanding how such active suspensions behave, researchers can gain new insights which can potentially provide new applications in many fields. Here (ii) the momentum transfer of active catalysts (Grubbs' 2nd generation catalyst with a hydrodynamic radius of 6A) to their immediate surroundings is observed in an organic suspension. This phenomenon, which has been coined "enhanced diffusion," has not been well studied at the angstrom scale until now. Diffusion-NMR spectroscopy surprisingly revealed that these angstrom sized catalysts nearly double the speed of diffusion of passive molecular tracers in their immediate surroundings. This result is particularly intriguing because in this size regime, the viscosity of the surroundings is expected to completely overcome the inertial forces of these catalysts. This study has prompted further diffusion-NMR studies of molecular catalysts and enzymes as molecular motors. Catalytic systems play a crucial role in the conversion of renewable biomasses into energy and useful materials. This field of research has become increasingly important and lucrative as fossil fuel sources continue to decline/destabilize in the face of increased worldwide demand for more resources. In this work (iii), the efficacy of a hydrogen-pressurized, biphasic catalytic system to convert linear sugar polyols to iodoalkanes was examined. These iodoalkanes can easily be converted to 1-alkenes which can then be used for the synthesis of low density polyethylene. The results indicated that the system products were relatively pure and that the catalytic layer had a degree of recyclability, hinting that such a system may be viable for industrial use.
Development of HAN-based Liquid Propellant Thruster
NASA Astrophysics Data System (ADS)
Hisatsune, K.; Izumi, J.; Tsutaya, H.; Furukawa, K.
2004-10-01
Many of propellants that are applied to the conventional spacecraft propulsion system are toxic propellants. Because of its toxicity, considering the environmental pollution or safety on handling, it will be necessary to apply the "green" propellant to the spacecraft propulsion system. The purpose of this study is to apply HAN based liquid propellant (LP1846) to mono propellant thruster. Compared to the hydrazine that is used in conventional mono propellant thruster, HAN based propellant is not only lower toxic but also can obtain higher specific impulse. Moreover, HAN based propellant can be decomposed by the catalyst. It means there are the possibility of applying to the mono propellant thruster that can leads to the high reliability of the propulsion system.[1],[2] However, there are two technical subjects, to apply HAN based propellant to the mono propellant thruster. One is the high combustion temperature. The catalyst will be damaged under high temperature condition. The other is the low catalytic activity. It is the serious problem on application of HAN based propellant to the mono propellant thruster that is used for attitude control of spacecraft. To improve the catalytic activity of HAN based propellant, it is necessary to screen the best catalyst for HAN based propellant. The adsorption analysis is conducted by Monte Carlo Simulation to screen the catalyst metal for HAN and TEAN. The result of analysis shows the Iridium is the best catalyst metal for HAN and TEAN. Iridium is the catalyst metal that is used at conventional mono propellant thruster catalyst Shell405. Then, to confirm the result of analysis, the reaction test about catalyst is conducted. The result of this test is the same as the result of adsorption analysis. That means the adsorption analysis is effective in screening the catalyst metal. At the evaluating test, the various types of carrier of catalyst are also compared to Shell 405 to improve catalytic activity. The test result shows the inorganic porous media is superior to Shell405 in catalytic activity. Next, the catalyst life with HAN based propellant (LP1846) is evaluated. The Shell405 and inorganic porous media catalyst are compared at the life test. The test result shows the inorganic porous media catalyst is superior to Shell405 in catalyst life. In this paper, the detail of the result of adsorption analysis and evaluating test are reported.
Sustainable Applications of Magnetic Nano-catalysts and Graphitic Carbon Nitrides (presentation)
Homogeneous catalysts, known for chemo-, regio- and enantioselectivity, have better contact with the reactants but the catalyst separation creates barriers. Heterogeneous systems enable better separation although at the cost of reduction in the availability of active sites. Becau...
Cyclic alkyl amino carbene (CAAC) ruthenium complexes as remarkably active catalysts for ethenolysis
Marx, Vanessa M.; Sullivan, Alexandra H.; Melaimi, Mohand; ...
2014-12-17
In this paper, an expanded family of ruthenium-based metathesis catalysts bearing cyclic alkyl amino carbene (CAAC) ligands was prepared. These catalysts exhibited exceptional activity in the ethenolysis of the seed-oil derivative methyl oleate. In many cases, catalyst turnover numbers (TONs) of more than 100,000 were achieved, at a catalyst loading of only 3 ppm. Remarkably, the most active catalyst system was able to achieve a TON of 340 000, at a catalyst loading of only 1 ppm. Finally, this is the first time a series of metathesis catalysts has exhibited such high performance in cross-metathesis reactions employing ethylene gas, withmore » activities sufficient to render ethenolysis applicable to the industrial-scale production of linear α-olefins (LAOs) and other terminal-olefin products.« less
NASA Astrophysics Data System (ADS)
Park, Sangki; Oh, Jungmo
2018-05-01
The current commonly used nitrogen oxides (NOx) emission reduction techniques employ hydrocarbons (HCs), urea solutions, and exhaust gas emissions as the reductants. Two of the primary denitrification NOx (DeNOx) catalyst systems are the HC-lean NOx trap (HC-LNT) catalyst and urea-selective catalytic reduction (urea-SCR) catalyst. The secondary injection method depends on the type of injector, injection pressure, atomization, and spraying technique. In addition, the catalyst reaction efficiency is directly affected by the distribution of injectors; hence, the uniformity index (UI) of the reductant is very important and is the basis for system optimization. The UI of the reductant is an indicator of the NOx conversion efficiency (NCE), and good UI values can reduce the need for a catalyst. Therefore, improving the UI can reduce the cost of producing a catalytic converter, which are expensive due to the high prices of the precious metals contained therein. Accordingly, measurement of the UI is an important process in the development of catalytic systems. Two of the commonly used methods for measuring the reductant UI are (i) measuring the exhaust emissions at many points located upstream/downstream of the catalytic converter and (ii) acquisition of a reductant distribution image on a section of the exhaust pipe upstream of the catalytic converter. The purpose of this study is to develop a system and measurement algorithms to measure the exothermic response distribution in the exhaust gas as the reductant passes through the catalytic converter of the SCR catalyst system using a set of thermocouples downstream of the SCR catalyst. The system is used to measure the reductant UI, which is applied in real-time to the actual SCR system, and the results are compared for various types of mixtures for various engine operating conditions and mixer types in terms of NCE.
Fang, Hui; Xiao, Qing; Wu, Fanghui; Floreancig, Paul E.; Weber, Stephen G.
2010-01-01
A high-throughput screening system for homogeneous catalyst discovery has been developed by integrating a continuous-flow capillary-based microreactor with ultra-high pressure liquid chromatography (UHPLC) for fast online analysis. Reactions are conducted in distinct and stable zones in a flow stream that allows for time and temperature regulation. UHPLC detection at high temperature allows high throughput online determination of substrate, product, and byproduct concentrations. We evaluated the efficacies of a series of soluble acid catalysts for an intramolecular Friedel-Crafts addition into an acyliminium ion intermediate within one day and with minimal material investment. The effects of catalyst loading, reaction time, and reaction temperature were also screened. This system exhibited high reproducibility for high-throughput catalyst screening and allowed several acid catalysts for the reaction to be identified. Major side products from the reactions were determined through off-line mass spectrometric detection. Er(OTf)3, the catalyst that showed optimal efficiency in the screening, was shown to be effective at promoting the cyclization reaction on a preparative scale. PMID:20666502
Catalyst activity maintenance study for the liquid phase dimethyl ether process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, X.D.; Toseland, B.A.; Underwood, R.P.
1995-12-31
The co-production of dimethyl ether (DME) and methanol from syngas is a process of considerable commercial attractiveness. DME coproduction can double the productivity of a LPMEOH process when using coal-derived syngas. This in itself may offer chemical producers and power companies increased flexibility and more profitable operation. DME is also known as a clean burning liquid fuel; Amoco and Haldor-Topsoe have recently announced the use of DME as an alternative diesel fuel. Moreover, DME can be an interesting intermediate in the production of chemicals such as olefins and vinyl acetate. The current APCl liquid phase dimethyl ether (LPDME) process utilizesmore » a physical mixture of a commercial methanol synthesis catalyst and a dehydration catalyst (e.g., {gamma}-alumina). While this arrangement provides a synergy that results in much higher syngas conversion per pass compared to the methanol-only process, the stability of the catalyst system suffers. The present project is aimed at reducing catalyst deactivation both by understanding the cause(s) of catalyst deactivation and by developing modified catalyst systems. This paper describes the current understanding of the deactivation mechanism.« less
Li, Hua; Li, Fei; Zhang, Biaobiao; Zhou, Xu; Yu, Fengshou; Sun, Licheng
2015-04-08
A highly active supramolecular system for visible light-driven water oxidation was developed with cyclodextrin-modified ruthenium complex as the photosensitizer, phenyl-modified ruthenium complexes as the catalysts, and sodium persulfate as the sacrificial electron acceptor. The catalysts were found to form 1:1 host-guest adducts with the photosensitizer. Stopped-flow measurement revealed the host-guest interaction is essential to facilitate the electron transfer from catalyst to sensitizer. As a result, a remarkable quantum efficiency of 84% was determined under visible light irradiation in neutral aqueous phosphate buffer. This value is nearly 1 order of magnitude higher than that of noninteraction system, indicating that the noncovalent incorporation of sensitizer and catalyst is an appealing approach for efficient conversion of solar energy into fuels.
Chang, Shu Hao; Yeh, Jhy Wei; Chein, Hung Min; Hsu, Li Yeh; Chi, Kai Hsien; Chang, Moo Been
2008-08-01
Catalytic destruction has been applied to control polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/Fs) emissions from different facilities. The cost of carbon-based catalysts is considerably lower than that of the metal oxide or zeolite-based catalysts used in the selective catalytic reduction (SCR) system. In this study, destruction and adsorption efficiencies of PCDD/Fs achieved with Cu/C and Fe/C catalysts from flue gas streams of a metal smelting plant (MSP) and a large-scale municipal waste incinerator (MWI), respectively, are evaluated via the pilot-scale catalytic reactor system (PCRS). The results indicate that Cu and Fe catalysts supported on carbon surface are capable of decomposing and adsorbing PCDD/ Fs from gas streams. In the testing sources of MSP and MWI, the PCDD/F removal efficiencies achieved with Cu/C catalyst at 250 degrees C reach 96%, however, the destruction efficiencies are negative (-1,390% and -112%, respectively) due to significant PCDD/F formation on catalyst promoted by copper. In addition, Fe/C catalyst is of higher removal and destruction efficiencies compared with Cu/C catalyst in both testing sources. The removal efficiencies of PCDD/Fs achieved with Fe/C catalyst are 97 and 94% for MSP and MWI, respectively, whereas the destruction efficiencies are both higher than 70%. Decrease of PCDD/F destruction efficiency and increase of adsorption efficiency with increasing chlorination of dioxin congeners is also observed in the test via three-layer Fe/C catalyst. Furthermore, the mass of 2,3,7,8-PCDD/Fs retained on catalyst decreases on the order of first to third layer of catalyst. Each gram Fe/C catalyst in first layer adsorbs 10.9, 6.91, and 3.04 ng 2,3,7,8-PCDD/Fs in 100 min testing duration as the operating temperature is controlled at 150, 200, and 250 degrees C, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bercaw, John E.
2014-05-23
The goal of this project is to develop new catalysts and provide understanding of ligand effects on catalyst composition in order to guide development of superior catalyst systems for polymerization of olefins. Our group is designing and synthesizing new “LX2”,“pincer” type ligands and complexing early transition metals to afford precatalysts. In a collaboration with Hans Brintzinger from the University of Konstanz, we are also examining the structures of the components of catalyst systems obtained from reaction of zirconocene dichlorides with aluminum alkyls and aluminum hydrides. Such systems are currently used commercially to produce polyolefins, but the nature of the activemore » and dormant species as well as the mechanisms of their interconversions are not understood. New information on catalyst design and performance may lead to new types of polymers and/or new chemical transformations between hydrocarbons and transition metal centers, ultimately contributing to the development of catalytic reactions for the production of fuels, commodity and polymeric materials.« less
Static and dynamic structural characterization of nanomaterial catalysts
NASA Astrophysics Data System (ADS)
Masiel, Daniel Joseph
Heterogeneous catalysts systems are pervasive in industry, technology and academia. These systems often involve nanostructured transition metal particles that have crucial interfaces with either their supports or solid products. Understanding the nature of these interfaces as well as the structure of the catalysts and support materials themselves is crucial for the advancement of catalysis in general. Recent developments in the field of transmission electron microscopy (TEM) including dynamic transmission electron microscopy (DTEM), electron tomography, and in situ techniques stand poised to provide fresh insight into nanostructured catalyst systems. Several electron microscopy techniques are applied in this study to elucidate the mechanism of silica nanocoil growth and to discern the role of the support material and catalyst size in carbon dioxide and steam reforming of methane. The growth of silica nanocoils by faceted cobalt nanoparticles is a process that was initially believed to take place via a vapor-liquid-solid growth mechanism similar to other nanowire growth techniques. The extensive TEM work described here suggests that the process may instead occur via transport of silicate and silica species over the nanoparticle surface. Electron tomography studies of the interface between the catalyst particles and the wire indicate that they grow from edges between facets. Studies on reduction of the Co 3O4 nanoparticle precursors to the faceted pure cobalt catalysts were carried out using DTEM and in situ heating. Supported catalyst systems for methane reforming were studied using dark field scanning TEM to better understand sintering effects and the increased activity of Ni/Co catalysts supported by carbon nanotubes. Several novel electron microscopy techniques are described including annular dark field DTEM and a metaheuristic algorithm for solving the phase problem of coherent diffractive imaging. By inserting an annular dark field aperture into the back focal plane of the objective lens in a DTEM, time-resolved dark field images can be produced that have vastly improved contrast for supported catalyst materials compared to bright field DTEM imaging. A new algorithm called swarm optimized phase retrieval is described that uses a population-based approach to solve for the missing phases of diffraction data from discrete particles.
Catalyst system and process for benzyl ether fragmentation and coal liquefaction
Zoeller, Joseph Robert
1998-04-28
Dibenzyl ether can be readily cleaved to form primarily benzaldehyde and toluene as products, along with minor amounts of bibenzyl and benzyl benzoate, in the presence of a catalyst system comprising a Group 6 metal, preferably molybdenum, a salt, and an organic halide. Although useful synthetically for the cleavage of benzyl ethers, this cleavage also represents a key model reaction for the liquefaction of coal; thus this catalyst system and process should be useful in coal liquefaction with the advantage of operating at significantly lower temperatures and pressures.
System and method for determining an ammonia generation rate in a three-way catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Min; Perry, Kevin L; Kim, Chang H
A system according to the principles of the present disclosure includes a rate determination module, a storage level determination module, and an air/fuel ratio control module. The rate determination module determines an ammonia generation rate in a three-way catalyst based on a reaction efficiency and a reactant level. The storage level determination module determines an ammonia storage level in a selective catalytic reduction (SCR) catalyst positioned downstream from the three-way catalyst based on the ammonia generation rate. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the ammonia storage level.
Removal of ammonia from urine vapor by a dual-catalyst system
NASA Technical Reports Server (NTRS)
Budininkas, P.
1977-01-01
The feasibility of removing ammonia from urine vapor by a low-temperature dual-catalyst system has been demonstrated. The process is based on the catalytic oxidation of ammonia to a mixture of nitrogen, nitrous oxide, and water, followed by a catalytic decomposition of the nitrous oxide into its elements. Potential ammonia oxidation and nitrous oxide decomposition catalysts were first screened with artificial gas mixtures, then tested with the actual urine vapor produced by boiling untreated urine. A suitable dual-catalyst bed arrangement was found that achieved the removal of ammonia and also organic carbon, and recovered water of good quality from urine vapor.
Canadian Athletic Therapists' Association Education Task Force Consensus Statements
ERIC Educational Resources Information Center
Lafave, Mark R.; Bergeron, Glen; Klassen, Connie; Parr, Kelly; Valdez, Dennis; Elliott, Jacqueline; Peeler, Jason; Orecchio, Elsa; McKenzie, Kirsty; Streed, Kristin; DeMont, Richard
2016-01-01
Context: A published commentary from 2 of the current authors acted as a catalyst for raising some key issues that have arisen in athletic therapy education in Canada over the years. Objective: The purpose of this article is to report on the process followed to establish a number of consensus statements related to postsecondary athletic therapy…
Fibrous Catalyst-Enhanced Acanthamoeba Disinfection by Hydrogen Peroxide.
Kilvington, Simon; Winterton, Lynn
2017-11-01
Hydrogen peroxide (H2O2) disinfection systems are contact-lens-patient problem solvers. The current one-step, criterion-standard version has been widely used since the mid-1980s, without any significant improvement. This work identifies a potential next-generation, one-step H2O2, not based on the solution formulation but rather on a case-based peroxide catalyst. One-step H2O2 systems are widely used for contact lens disinfection. However, antimicrobial efficacy can be limited because of the rapid neutralization of the peroxide from the catalytic component of the systems. We studied whether the addition of an iron-containing catalyst bound to a nonfunctional propylene:polyacryonitrile fabric matrix could enhance the antimicrobial efficacy of these one-step H2O2 systems. Bausch + Lomb PeroxiClear and AOSept Plus (both based on 3% H2O2 with a platinum-neutralizing disc) were the test systems. These were tested with and without the presence of the catalyst fabric using Acanthamoeba cysts as the challenge organism. After 6 hours' disinfection, the number of viable cysts was determined. In other studies, the experiments were also conducted with biofilm formed by Stenotrophomonas maltophilia and Elizabethkingia meningoseptica bacteria. Both control systems gave approximately 1-log10 kill of Acanthamoeba cysts compared with 3.0-log10 kill in the presence of the catalyst (P < .001). In the biofilm studies, no viable bacteria were recovered following disinfection in the presence of the catalyst compared with ≥3.0-log10 kill when it was omitted. In 30 rounds' recurrent usage, the experiments, in which the AOSept Plus system was subjected to 30 rounds of H2O2 neutralization with or without the presence of catalytic fabric, showed no loss in enhanced biocidal efficacy of the material. The catalytic fabric was also shown to not retard or increase the rate of H2O2 neutralization. We have demonstrated the catalyst significantly increases the efficacy of one-step H2O2 disinfection systems using highly resistant Acanthamoeba cysts and bacterial biofilm. Incorporating the catalyst into the design of these one-step H2O2 disinfection systems could improve the antimicrobial efficacy and provide a greater margin of safety for contact lens users.
Autothermal reforming catalyst having perovskite structure
Krumpel, Michael [Naperville, IL; Liu, Di-Jia [Naperville, IL
2009-03-24
The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.
Cobalt Fischer-Tropsch catalysts having improved selectivity
Miller, James G.; Rabo, Jule A.
1989-01-01
A cobalt Fischer-Tropsch catalyst having an improved steam treated, acid extracted LZ-210 support is taught. The new catalyst system demonstrates improved product selectivity at Fischer-Tropsch reaction conditions evidenced by lower methane production, higher C.sub.5.sup.+ yield and increased olefin production.
Gallium-rich Pd-Ga phases as supported liquid metal catalysts
NASA Astrophysics Data System (ADS)
Taccardi, N.; Grabau, M.; Debuschewitz, J.; Distaso, M.; Brandl, M.; Hock, R.; Maier, F.; Papp, C.; Erhard, J.; Neiss, C.; Peukert, W.; Görling, A.; Steinrück, H.-P.; Wasserscheid, P.
2017-09-01
A strategy to develop improved catalysts is to create systems that merge the advantages of heterogeneous and molecular catalysis. One such system involves supported liquid-phase catalysts, which feature a molecularly defined, catalytically active liquid film/droplet layer adsorbed on a porous solid support. In the past decade, this concept has also been extended to supported ionic liquid-phase catalysts. Here we develop this idea further and describe supported catalytically active liquid metal solutions (SCALMS). We report a liquid mixture of gallium and palladium deposited on porous glass that forms an active catalyst for alkane dehydrogenation that is resistant to coke formation and is thus highly stable. X-ray diffraction and X-ray photoelectron spectroscopy, supported by theoretical calculations, confirm the liquid state of the catalytic phase under the reaction conditions. Unlike traditional heterogeneous catalysts, the supported liquid metal reported here is highly dynamic and catalysis does not proceed at the surface of the metal nanoparticles, but presumably at homogeneously distributed metal atoms at the surface of a liquid metallic phase.
Hoover, Jessica M.; Stahl, Shannon S.
2011-01-01
Aerobic oxidation reactions have been the focus of considerable attention, but their use in mainstream organic chemistry has been constrained by limitations in their synthetic scope and by practical factors, such as the use of pure O2 as the oxidant or complex catalyst synthesis. Here, we report a new (bpy)CuI/TEMPO catalyst system that enables efficient and selective aerobic oxidation of a broad range of primary alcohols, including allylic, benzylic and aliphatic derivatives, to the corresponding aldehydes using readily available reagents, at room temperature with ambient air as the oxidant. The catalyst system is compatible with a wide range of functional groups and the high selectivity for 1° alcohols enables selective oxidation of diols that lack protecting groups. PMID:21861488
Soluble organic nanotubes for catalytic systems
NASA Astrophysics Data System (ADS)
Xiong, Linfeng; Yang, Kunran; Zhang, Hui; Liao, Xiaojuan; Huang, Kun
2016-03-01
In this paper, we report a novel method for constructing a soluble organic nanotube supported catalyst system based on single-molecule templating of core-shell bottlebrush copolymers. Various organic or metal catalysts, such as sodium prop-2-yne-1-sulfonate (SPS), 1-(2-(prop-2-yn-1-yloxy)ethyl)-1H-imidazole (PEI) and Pd(OAc)2 were anchored onto the tube walls to functionalize the organic nanotubes via copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Depending on the ‘confined effect’ and the accessible cavity microenvironments of tubular structures, the organic nanotube catalysts showed high catalytic efficiency and site-isolation features. We believe that the soluble organic nanotubes will be very useful for the development of high performance catalyst systems due to their high stability of support, facile functionalization and attractive textural properties.
Soluble organic nanotubes for catalytic systems.
Xiong, Linfeng; Yang, Kunran; Zhang, Hui; Liao, Xiaojuan; Huang, Kun
2016-03-18
In this paper, we report a novel method for constructing a soluble organic nanotube supported catalyst system based on single-molecule templating of core–shell bottlebrush copolymers. Various organic or metal catalysts, such as sodium prop-2-yne-1-sulfonate (SPS), 1-(2-(prop-2-yn-1-yloxy)ethyl)-1H-imidazole (PEI) and Pd(OAc)2 were anchored onto the tube walls to functionalize the organic nanotubes via copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Depending on the 'confined effect' and the accessible cavity microenvironments of tubular structures, the organic nanotube catalysts showed high catalytic efficiency and site-isolation features. We believe that the soluble organic nanotubes will be very useful for the development of high performance catalyst systems due to their high stability of support, facile functionalization and attractive textural properties.
Zinc-assisted hydrodeoxygenation of biomass-derived 5-hydroxymethylfurfural to 2,5-dimethylfuran.
Saha, Basudeb; Bohn, Christine M; Abu-Omar, Mahdi M
2014-11-01
2,5-Dimethylfuran (DMF), a promising cellulosic biofuel candidate from biomass derived intermediates, has received significant attention because of its low oxygen content, high energy density, and high octane value. A bimetallic catalyst combination containing a Lewis-acidic Zn(II) and Pd/C components is effective for 5-hydroxymethylfurfural (HMF) hydrodeoxygenation (HDO) to DMF with high conversion (99%) and selectivity (85% DMF). Control experiments for evaluating the roles of zinc and palladium revealed that ZnCl2 alone did not catalyze the reaction, whereas Pd/C produced 60% less DMF than the combination of both metals. The presence of Lewis acidic component (Zn) was also found to be beneficial for HMF HDO with Ru/C catalyst, but the synergistic effect between the two metal components is more pronounced for the Pd/Zn system than the Ru/Zn. A comparative analysis of the Pd/Zn/C catalyst to previously reported catalytic systems show that the Pd/Zn system containing at least four times less precious metal than the reported catalysts gives comparable or better DMF yields. The catalyst shows excellent recyclability up to 4 cycles, followed by a deactivation, which could be due to coke formation on the catalyst surface. The effectiveness of this combined bimetallic catalyst has also been tested for one-pot conversion of fructose to DMF. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stereocontrolled Additions to a Rigid Bicyclo [3.3.0] Octane Ring System
2008-05-05
bridgehead carbon. The metals studied were palladium, platinum, and the Raney nickel catalyst . The catalysts themselves are usually absorbed on an...Catalytic Hydrogenation Reaction The Raney nickel catalyst yielded extremely pure product in a single isomeric form when the reaction was run with...ethyl acetate was 68.7%, a noted increase over that obtained with the Raney nickel catalyst . 31 Disappearance of the double bond peak again
Polshettiwar, Vivek; Varma, Rajender S
2009-01-01
Magnetic attraction not filtration: A magnetic nanoparticle-supported ruthenium hydroxide catalyst (see figure) was readily prepared from inexpensive starting materials and shown to catalyze the hydration of nitriles with excellent yield in a benign aqueous medium. Catalyst recovery using an external magnetic field, superior activity, and the inherent stability of the catalyst system are additional sustainable attributes of this protocol.
NASA Astrophysics Data System (ADS)
Bacik, Deborah B.; Zhang, Man; Zhao, Dongye; Roberts, Christopher B.; Seehra, Mohinar S.; Singh, Vivek; Shah, Naresh
2012-07-01
Palladium (Pd) nanoparticle catalysts were successfully synthesized within an aqueous phase using sodium carboxymethyl cellulose (CMC) as a capping ligand which offers a green alternative to conventional nanoparticle synthesis techniques. The CMC-stabilized Pd nanoparticles were subsequently dispersed within support materials using the incipient wetness impregnation technique for utilization in heterogeneous catalyst systems. The unsupported and supported (both calcined and uncalcined) Pd nanoparticle catalysts were characterized using transmission electron microscopy, energy dispersive x-ray spectrometry, x-ray diffraction, and Brunauer-Emmett-Teller surface area measurement and their catalytic activity toward the hydrodechlorination of trichloroethylene (TCE) in aqueous media was examined using homogeneous and heterogeneous catalyst systems, respectively. The unsupported Pd nanoparticles showed considerable activity toward the degradation of TCE, as demonstrated by the reaction kinetics. Although the supported Pd nanoparticle catalysts had a lower catalytic activity than the unsupported particles that were homogeneously dispersed in the aqueous solutions, the supported catalysts retained sufficient activity toward the degradation of TCE. In addition, the use of the hydrophilic Al2O3 support material induced a mass transfer resistance to TCE that affected the initial hydrodechlorination rate. This paper demonstrates that supported Pd catalysts can be applied to the heterogeneous catalytic hydrodechlorination of TCE.
NASA Technical Reports Server (NTRS)
Poziomek, Edward J.
1990-01-01
Results from research on catalytic recombination of CO-O2 for stable closed-cycle operation of CO2 lasers hold much promise for a variety of technology transfer. Expansion of CO2 laser remote sensing applications toward chemical detection and pollution monitoring would certainly be expected. However, the catalysts themselves may be especially effective in low-temperature oxidation of a number of chemicals in addition to CO. It is therefore of interest to compare the CO-O2 catalysts with chemical systems designed for chemical sensing, air purification and process catalysis. Success in understanding the catalytic mechanisms of the recombination of CO-O2 could help to shed light on how catalyst systems operate. New directions in low-temperature oxidation catalysts, coatings for chemical sensors and sorbents for air purification could well emerge.
Shi, Yahong; Chen, Hongche; Wu, Yanlin; Dong, Wenbo
2018-01-01
Efficient oxidative degradation of pharmaceutical pollutants in aquatic environments is of great importance. This study used magnetic BiOCl@Fe 3 O 4 catalyst to activate persulfate (PS) under simulated solar light irradiation. This degradation system was evaluated using atenolol (ATL) as target pollutant. Four reactive species were identified in the sunlight/BiOCl@Fe 3 O 4 /PS system. The decreasing order of the contribution of each reactive species on ATL degradation was as follows: h + ≈ HO · > O 2 ·- > SO 4 ·- . pH significantly influenced ATL degradation, and an acidic condition favored the reaction. High degradation efficiencies were obtained at pH 2.3-5.5. ATL degradation rate increased with increased catalyst and PS contents. Moreover, ATL mineralization was higher in the sunlight/BiOCl@Fe 3 O 4 /PS system than in the sunlight/BiOCl@Fe 3 O 4 or sunlight/PS system. Nine possible intermediate products were identified through LC-MS analysis, and a degradation pathway for ATL was proposed. The BiOCl@Fe 3 O 4 nanomagnetic composite catalyst was synthesized in this work. This catalyst was easily separated and recovered from a treated solution by using a magnet, and it demonstrated a high catalytic activity. Increased amount of the BiOCl@Fe 3 O 4 catalyst obviously accelerated the efficiency of ATL degradation, and the reusability of the catalyst allowed the addition of a large dosage of BiOCl@Fe 3 O 4 to improve the degradation efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melman, Jonathan
The objectives of this project are: to discover cost-effective catalysts for release of hydrogen from chemical hydrogen storage systems; and to discover cost-effective catalysts for the regeneration of spent chemical hydrogen storage materials.
40 CFR 60.395 - Reporting and recordkeeping requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... temperature (or the gas temperature upstream and downstream of the catalyst bed), the total mass of VOC per... temperature upstream and downstream of the incinerator catalyst bed during coating operations for catalytic... which the average temperature immediately before the catalyst bed, when the coating system is...
Oh, Hyung-Suk; Nong, Hong Nhan; Reier, Tobias; Bergmann, Arno; Gliech, Manuel; Ferreira de Araújo, Jorge; Willinger, Elena; Schlögl, Robert; Teschner, Detre; Strasser, Peter
2016-09-28
Redox-active support materials can help reduce the noble-metal loading of a solid chemical catalyst while offering electronic catalyst-support interactions beneficial for catalyst durability. This is well known in heterogeneous gas-phase catalysis but much less discussed for electrocatalysis at electrified liquid-solid interfaces. Here, we demonstrate experimental evidence for electronic catalyst-support interactions in electrochemical environments and study their role and contribution to the corrosion stability of catalyst/support couples. Electrochemically oxidized Ir oxide nanoparticles, supported on high surface area carbons and oxides, were selected as model catalyst/support systems for the electrocatalytic oxygen evolution reaction (OER). First, the electronic, chemical, and structural state of the catalyst/support couple was compared using XANES, EXAFS, TEM, and depth-resolved XPS. While carbon-supported oxidized Ir particle showed exclusively the redox state (+4), the Ir/IrOx/ATO system exhibited evidence of metal/metal-oxide support interactions (MMOSI) that stabilized the metal particles on antimony-doped tin oxide (ATO) in sustained lower Ir oxidation states (Ir(3.2+)). At the same time, the growth of higher valent Ir oxide layers that compromise catalyst stability was suppressed. Then the electrochemical stability and the charge-transfer kinetics of the electrocatalysts were evaluated under constant current and constant potential conditions, where the analysis of the metal dissolution confirmed that the ATO support mitigates Ir(z+) dissolution thanks to a stronger MMOSI effect. Our findings raise the possibility that MMOSI effects in electrochemistry-largely neglected in the past-may be more important for a detailed understanding of the durability of oxide-supported nanoparticle OER catalysts than previously thought.
Zhou, Xu; Li, Fei; Li, Xiaona; Li, Hua; Wang, Yong; Sun, Licheng
2015-01-14
Photocatalytic oxidation of organic compounds proceeded efficiently in a hybrid system with ruthenium aqua complexes as catalysts, BiVO4 as a light absorber, [Co(NH3)5Cl](2+) as a sacrificial electron acceptor and water as an oxygen source. The photogenerated holes in the semiconductor are used to oxidize molecular catalysts into the high-valent Ru(IV)=O intermediates for 2e(-) oxidation.
Sobolevskiy, Anatoly [Orlando, FL; Rossin, Joseph A [Columbus, OH; Knapke, Michael J [Columbus, OH
2011-07-12
A process for the catalytic reduction of nitrogen oxides (NOx) in a gas stream (29) in the presence of H.sub.2 is provided. The process comprises contacting the gas stream with a catalyst system (38) comprising zirconia-silica washcoat particles (41), a pre-sulfated zirconia binder (44), and a catalyst combination (40) comprising palladium and at least one of rhodium, ruthenium, or a mixture of ruthenium and rhodium.
Full Scale Alternative Catalyst Testing for Bosch Reactor Optimization
NASA Technical Reports Server (NTRS)
Barton, Katherine; Abney, Morgan B.
2011-01-01
Current air revitalization technology onboard the International Space Station (ISS) cannot provide complete closure of the oxygen and hydrogen loops. This makes re-supply necessary, which is possible for missions in low Earth orbit (LEO) like the ISS, but unviable for long term space missions outside LEO. In comparison, Bosch technology reduces carbon dioxide with hydrogen, traditionally over a steel wool catalyst, to create water and solid carbon. The Bosch product water can then be fed to the oxygen generation assembly to produce oxygen for crew members and hydrogen necessary to reduce more carbon dioxide. Bosch technology can achieve complete oxygen loop closure, but has many undesirable factors that result in a high energy, mass, and volume system. Finding a different catalyst with an equal reaction rate at lower temperatures with less catalyst mass and longer lifespan would make a Bosch flight system more feasible. Developmental testing of alternative catalysts for the Bosch has been performed using the Horizontal Bosch Test Stand. Nickel foam, nickel shavings, and cobalt shavings were tested at 500 C and compared to the original catalyst, steel wool. This paper presents data and analysis on the performance of each catalyst tested at comparable temperatures and recycle flow rates.
Catalytic dehydration of ethanol using transition metal oxide catalysts.
Zaki, T
2005-04-15
The aim of this work is to study catalytic ethanol dehydration using different prepared catalysts, which include Fe(2)O(3), Mn(2)O(3), and calcined physical mixtures of both ferric and manganese oxides with alumina and/or silica gel. The physicochemical properties of these catalysts were investigated via X-ray powder diffraction (XRD), acidity measurement, and nitrogen adsorption-desorption at -196 degrees C. The catalytic activities of such catalysts were tested through conversion of ethanol at 200-500 degrees C using a catalytic flow system operated under atmospheric pressure. The results obtained indicated that the dehydration reaction on the catalyst relies on surface acidity, whereas the ethylene production selectivity depends on the catalyst chemical constituents.
Systems and methods for controlling diesel engine emissions
Webb, Cynthia Chaffin; Weber, Phillip Anthony; Khair, Magdi K.
2004-06-01
Systems and methods for controlling diesel engine emissions, including, for example, oxides of nitrogen emissions, particulate matter emissions, and the like. The emission control system according to this invention is provided in the exhaust passageway of a diesel engine and includes a catalyst-based particulate filter; and first and second lean NO.sub.x trap systems coupled to the catalyst-based particulate filter. The first and second lean NO.sub.x trap systems are arranged in a parallel flow configuration with each other. Each of the first and second lean NO.sub.x trap systems include a carbon monoxide generating catalyst device, a sulfur trap device, a lean NO.sub.x device, a supplemental fuel injector device, and a plurality of flow diverter devices.
Reformer assisted lean NO.sub.x catalyst aftertreatment system and method
Kalyanaraman, Mohan [Media, PA; Park, Paul W [Peoria, IL; Ragle, Christie S [Havana, IL
2010-06-29
A method and apparatus for catalytically processing a gas stream passing therethrough to reduce the presence of NO.sub.x therein, wherein the apparatus includes a first catalyst composed of a silver-containing alumina that is adapted for catalytically processing the gas stream at a first temperature range, a second catalyst composed of a copper-containing zeolite located downstream from the first catalyst, wherein the second catalyst is adapted for catalytically processing the gas stream at a lower second temperature range relative to the first temperature range, a hydrocarbon compound for injection into the gas stream upstream of the first catalyst to provide a reductant, and a reformer for reforming a portion of the hydrocarbon compound into H.sub.2 and/or oxygenated hydrocarbon for injection into the gas stream upstream of the first catalyst. The second catalyst is adapted to facilitate the reaction of reducing NOx into N.sub.2, whereby the intermediates are produced via the first catalyst reacting with NOx and hydrocarbons.
Liu, Qiang; Wu, Lipeng; Fleischer, Ivana; Selent, Detlef; Franke, Robert; Jackstell, Ralf; Beller, Matthias
2014-06-02
An efficient domino ruthenium-catalyzed reverse water-gas-shift (RWGS)-hydroformylation-reduction reaction of olefins to alcohols is reported. Key to success is the use of specific bulky phosphite ligands and triruthenium dodecacarbonyl as the catalyst. Compared to the known ruthenium/chloride system, the new catalyst allows for a more efficient hydrohydroxymethylation of terminal and internal olefins with carbon dioxide at lower temperature. Unwanted hydrogenation of the substrate is prevented. Preliminary mechanism investigations uncovered the homogeneous nature of the active catalyst and the influence of the ligand and additive in individual steps of the reaction sequence. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amitava Sarkar; James K. Neathery; Burtron H. Davis
A fundamental filtration study was started to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. Slurry-phase FTS in slurry bubble column reactor systems is the preferred mode of operation since the reaction is highly exothermic. Consequently, heavy wax products in one approach may be separated from catalyst particles before being removed from the reactor system. Achieving an efficient wax product separation from iron-based catalysts is one of the most challenging technical problems associated with slurry-phase iron-based FTS and is a key factor for optimizing operating costs. The separation problem is further compounded by attrition of ironmore » catalyst particles and the formation of ultra-fine particles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abney, Carter W.; Patterson, Jacob T.; Gilhula, James C.
Precise control over the chemical structure of hard-matter materials is a grand challenge of basic science and a prerequisite for the development of advanced catalyst systems. In this work we report the application of a sacrificial metal-organic framework (MOF) template for the synthesis of a porous supported metal oxide catalyst, demonstrating proof-of-concept for a highly generalizable approach to the preparation new catalyst materials. Application of 2,2’-bipyridine-5,5’-dicarboxylic acid as the organic strut in the Ce MOF precursor results in chelation of Cu 2+ and affords isolation of the metal oxide precursor. Following pyrolysis of the template, homogeneously dispersed CuO nanoparticles aremore » formed in the resulting porous CeO 2 support. By partially substituting non-chelating 1,1’-biphenyl-4,4’-dicarboxylic acid, the Cu 2+ loading and dispersion can be finely tuned, allowing precise control over the CuO/CeO 2 interface in the final catalyst system. Characterization by x-ray diffraction, x-ray absorption fine structure spectroscopy, and in situ IR spectroscopy/mass spectrometry confirm control over interface formation to be a function of template composition, constituting the first report of a MOF template being used to control interfacial properties in a supported metal oxide. Using CO oxidation as a model reaction, the system with the greatest number of interfaces possessed the lowest activation energy and better activity under differential conditions, but required higher temperature for catalytic onset and displayed inferior efficiency at 100 °C than systems with higher Cu-loading. This finding is attributable to greater CO adsorption in the more heavily-loaded systems, and indicates catalyst performance for these supported oxide systems to be a function of at least two parameters: size of adsorption site and extent of interface. In conclusion, optimization of catalyst materials thus requires precise control over synthesis parameters, such as is demonstrated by this MOF-templating method.« less
Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf
2017-11-28
Current developments in exhaust gas aftertreatment led to a huge mistrust in diesel driven passenger cars due to their NO x emissions being too high. The selective catalytic reduction (SCR) with ammonia (NH₃) as reducing agent is the only approach today with the capability to meet upcoming emission limits. Therefore, the radio-frequency-based (RF) catalyst state determination to monitor the NH₃ loading on SCR catalysts has a huge potential in emission reduction. Recent work on this topic proved the basic capability of this technique under realistic conditions on an engine test bench. In these studies, an RF system calibration for the serial type SCR catalyst Cu-SSZ-13 was developed and different approaches for a temperature dependent NH₃ storage were determined. This paper continues this work and uses a fully calibrated RF-SCR system under transient conditions to compare different directly measured and controlled NH₃ storage levels, and NH₃ target curves. It could be clearly demonstrated that the right NH₃ target curve, together with a direct control on the desired level by the RF system, is able to operate the SCR system with the maximum possible NO x conversion efficiency and without NH₃ slip.
A novel nano-catalyst system which bridges the homogenous and heterogeneous system is described that is cheaper, easily accessible (sustainable) and requires no need of catalyst filtration during the work-up. Because of its nano-size, i.e. high surface area, the contact between r...
NASA Astrophysics Data System (ADS)
Borowiecki, Tadeusz; Denis, Andrzej; Rawski, Michał; Gołębiowski, Andrzej; Stołecki, Kazimierz; Dmytrzyk, Jaromir; Kotarba, Andrzej
2014-05-01
The effect of potassium addition to the Ni/Al2O3 steam reforming catalyst has been investigated on several model systems, including K/Al2O3 with various amounts of alkali promoters (1-4 wt% of K2O), a model catalyst 90%NiO-10%Al2O3 promoted with potassium and a commercial catalyst. The potassium surface state and stability were investigated by means of the Species Resolved Thermal Alkali Desorption method (SR-TAD). The activity of the catalysts in the steam reforming of methane and their coking-resistance were also evaluated. The results reveal that the beneficial effect of potassium addition is strongly related to its location in the catalysts. The catalyst surface should be promoted with potassium in order to obtain high coking-resistant catalysts. Moreover, the catalyst preparation procedure should ensure a direct interaction of potassium with the Al2O3 support surface. Due to the low stability of potassium on θ-Al2O3 this phase is undesirable during the preparation of a stable steam reforming catalyst.
Low-Energy, Low-Cost Production of Ethylene by Low- Temperature Oxidative Coupling of Methane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radaelli, Guido; Chachra, Gaurav; Jonnavittula, Divya
In this project, we develop a catalytic process technology for distributed small-scale production of ethylene by oxidative coupling of methane at low temperatures using an advanced catalyst. The Low Temperature Oxidative Coupling of Methane (LT-OCM) catalyst system is enabled by a novel chemical catalyst and process pioneered by Siluria, at private expense, over the last six years. Herein, we develop the LT-OCM catalyst system for distributed small-scale production of ethylene by identifying and addressing necessary process schemes, unit operations and process parameters that limit the economic viability and mass penetration of this technology to manufacture ethylene at small-scales. The outputmore » of this program is process concepts for small-scale LT-OCM catalyst based ethylene production, lab-scale verification of the novel unit operations adopted in the proposed concept, and an analysis to validate the feasibility of the proposed concepts.« less
NASA Astrophysics Data System (ADS)
Gutiérrez-Zapata, C. A.; Blanco Martínez, D.; Collazos, C. A.; Castellanos Acuña, H. E.; Cuervo, J. A.; Fernandez, C. P.
2017-01-01
This document compares homogeneous and heterogeneous catalysts used by production of biodiesel of sunflower oil and cooking oil used in frying. For this, NaOH was used as a catalyst homogeneous, and K2CO3 and Na2CO3 supported in gamma-alumina (K2CO3/γ Al2O3 y Na2CO3 /γ-Al2O3) were synthesized as heterogeneous catalysts, which were characterized by X-ray diffraction. The transesterification tests were carried out for the sunflower oil and used cooking oil, in a reflux system, to different molar relations methanol/oil, depending on the type of oil and characterization of the same. The reflux system is performed at a temperature of 55-60°C for one hour. Finally, biofuel was characterized and the yield of the reaction was calculated.
System for trapping and storing gases for subsequent chemical reduction to solids
Vogel, John S [San Jose, CA; Ognibene, Ted J [Oakland, CA; Bench, Graham S [Livermore, CA; Peaslee, Graham F [Holland, MI
2009-11-03
A system for quantitatively reducing oxide gases. A pre-selected amount of zinc is provided in a vial. A tube is provided in the vial. The zinc and the tube are separated. A pre-selected amount of a catalyst is provided in the tube. Oxide gases are injected into the vial. The vial, tube, zinc, catalyst, and the oxide gases are cryogenically cooled. At least a portion of the vial, tube, zinc, catalyst, and oxide gases are heated.
2008-01-01
may enter the soil , and subsequently the groundwater, along any portion of this unlined channel. The area south of the buildings has not been...the 1960s in the northwestern corner of Site 19, and an estimated 250,000 gallons of JP-4 jet fuel were released. Soil was excavated and...16,000 Pd catalyst treatment system $61,000 Pd catalyst with eggshell coating (20 kg @ $245 per lb) $11,000 Skid-mounted reactor system and
Hydrogen production from bio-fuels using precious metal catalysts
NASA Astrophysics Data System (ADS)
Pasel, Joachim; Wohlrab, Sebastian; Rotov, Mikhail; Löhken, Katrin; Peters, Ralf; Stolten, Detlef
2017-11-01
Fuel cell systems with integrated autothermal reforming unit require active and robust catalysts for H2 production. Thus, an experimental screening of catalysts for autothermal reforming of commercial biodiesel fuel was performed. Catalysts consisted of a monolithic cordierite substrate, an oxide support (γ-Al2O3) and Pt, Ru, Ni, PtRh and PtRu as active phase. Experiments were run by widely varying the O2/C and H2O/C molar ratios at different gas hourly space velocities. Fresh and aged catalysts were characterized by temperature programmed methods and thermogravimetry to find correlations with catalytic activity and stability.
Nanotechnology in Aerospace Applications
2007-03-01
CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING...logic and memory chips, sensors, catalyst support, adsorption media, actuators, etc. All early works in nanoelectronics use CNTs as a conducting...inspection cost effectively , quickly, and efficiently than the present procedures, composites, wear resistant tires, improved avionics, satellite
Equilibrating metal-oxide cluster ensembles for oxidation reactions using oxygen in water
Ira A. Weinstock; Elena M. G. Barbuzzi; Michael W. Wemple; Jennifer J. Cowan; Richard S. Reiner; Dan M. Sonnen; Robert A. Heintz; James S. Bond; Craig L. Hill
2001-01-01
Although many enzymes can readily and selectively use oxygen in water--the most familiar and attractive of all oxidants and solvents, respectivelyâ-the design of synthetic catalysts for selective water-based oxidation processes utilizing molecular oxygen remains a daunting task. Particularly problematic is the fact that oxidation of substrates by O2 involves radical...
ERIC Educational Resources Information Center
Leake, Robin; de Guzman, Anna; Rienks, Shauna; Archer, Gretchen; Potter, Cathryn
2015-01-01
The task of recruiting and retaining ethnically diverse, qualified, and committed social workers in child welfare is challenging. Federal funding supporting BSW and MSW education has been a catalyst for university-agency partnerships across the country. An important goal of these partnerships is to prepare social work students with the knowledge,…
Li, Xiukai; Ko, Jogie; Zhang, Yugen
2018-02-09
Maleic anhydride (MAnh) and its acids are critical intermediates in chemical industry. The synthesis of maleic anhydride from renewable furfural is one of the most sought after processes in the field of sustainable chemistry. In this study, a plate vanadium phosphorus oxide (VPO) catalyst synthesized by a hydrothermal method with glucose as a green reducing agent catalyzes furfural oxidation to MAnh in the gas phase. The plate catalyst-denoted as VPO HT -has a preferentially exposed (200) crystal plane and exhibited dramatically enhanced activity, selectivity and stability as compared to conventional VPO catalysts and other state-of-the-art catalytic systems. At 360 °C reaction temperature with air as an oxidant, about 90 % yield of MAnh was obtained at 10 vol % of furfural in the feed, a furfural concentration value that is much higher than those (<2 vol %) reported for other catalytic systems. The catalyst showed good long-term stability and there was no decrease in activity or selectivity for MAnh during the time-on-stream of 25 h. The high efficiency and catalyst stability indicate the great potential of this system for the synthesis of maleic anhydride from renewable furfural. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hegner, Franziska Simone; Cardenas-Morcoso, Drialys; Giménez, Sixto; López, Núria; Galan-Mascaros, Jose Ramon
2017-11-23
The realization of artificial photosynthesis may depend on the efficient integration of photoactive semiconductors and catalysts to promote photoelectrochemical water splitting. Many efforts are currently devoted to the processing of multicomponent anodes and cathodes in the search for appropriate synergy between light absorbers and active catalysts. No single material appears to combine both features. Many experimental parameters are key to achieve the needed synergy between both systems, without clear protocols for success. Herein, we show how computational chemistry can shed some light on this cumbersome problem. DFT calculations are useful to predict adequate energy-level alignment for thermodynamically favored hole transfer. As proof of concept, we experimentally confirmed the limited performance enhancement in hematite photoanodes decorated with cobalt hexacyanoferrate as a competent water-oxidation catalyst. Computational methods describe the misalignment of their energy levels, which is the origin of this mismatch. Photoelectrochemical studies indicate that the catalyst exclusively shifts the hematite surface state to lower potentials, which therefore reduces the onset for water oxidation. Although kinetics will still depend on interface architecture, our simple theoretical approach may identify and predict plausible semiconductor/catalyst combinations, which will speed up experimental work towards promising photoelectrocatalytic systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Baran, Talat
2017-06-15
In catalytic systems, the support materials need to be both eco friendly and low cost as well as having high thermal and chemical stability. In this paper, a novel starch supported palladium catalyst, which had these outstanding properties, was designed and its catalytic activity was evaluated in a Suzuki coupling reaction under microwave heating with solvent-free and mild reaction conditions. The starch supported catalyst gave remarkable reaction yields after only 5min as a result of the coupling reaction of the phenyl boronic acid with 23 different substrates, which are bearing aril bromide, iodide, and chloride. The longevity of the catalyst was also investigated, and the catalyst could be reused for 10 runs. The starch supported Pd(II) catalyst yielded remarkable TON (up to 25,000) and TOF (up to 312,500) values by using a simple, fast and eco-friendly method. In addition, the catalytic performance of the catalyst was tested against different commercial palladium catalysts, and the green starch supported catalyst had excellent selectivity. The catalytic tests showed that the novel starch based palladium catalyst proved to be an economical and practical catalyst for the synthesis of biaryl compounds. Copyright © 2017 Elsevier Inc. All rights reserved.
Rapid starting methanol reactor system
Chludzinski, Paul J.; Dantowitz, Philip; McElroy, James F.
1984-01-01
The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hongliang; Wang, Huamin; Kuhn, Eric
Super Lewis acids containing the triflate anion (e.g. Hf(OTf)4, Ln(OTf)3, Al(OTf)3) and noble metal catalysts (e.g. Ru/C, Ru/Al2O3) formed efficient catalytic systems to generate saturated hydrocarbons from lignin in high yields. In such catalytic systems, the metal triflates mediated rapid ether bond cleavage via selective bonding to etheric oxygens while the noble metal catalysed subsequent hydrodeoxygenation (HDO) reactions. Near theoretical yields of hydrocarbons were produced from lignin model compounds by the combined catalysis of Hf(OTf)4 and ruthenium-based catalysts. When a technical lignin derived from a pilot-scale biorefinery was used, more than 30 wt% of the hydrocarbons produced with this catalyticmore » system were cyclohexane and alkylcyclohexanes in the jet fuel range. Super Lewis acids are postulated to strongly interact with lignin substrates via protonating hydroxyls and ether linkages, forming intermediate species that enhance hydrogenation catalysis by supported noble metal catalysts. Meanwhile, the hydrogenation of aromatic rings by the noble metal catalysts can promote oxygenation reactions catalysed by super Lewis acids.« less
NASA Astrophysics Data System (ADS)
Liu, Qiusheng; Yabe, Akira; Kajiyama, Shiro; Fukuda, Katsuya
The study on thermal energy transport system by synthesis and decomposition reactions of methanol was reviewed. To promote energy conservation and global environment protection, a two-step liquid-phase methanol synthesis process, which starts with carbonylation of methanol to methyl formate, then followed by the hydrogenolysis of the formate, was studied to recover wasted or unused discharged heat from industrial sources for the thermal energy demands of residential and commercial areas by chemical reactions. The research and development of the system were focused on the following three points. (1) Development of low-temperature decomposition and synthetic catalysts, (2) Development of liquid phase reactor (heat exchanger accompanying chemical reaction), (3) Simulation of the energy transport efficiency of entire system which contains heat recovery and supply sections. As the result of the development of catalyst, promising catalysts which agree with the development purposes for the methyl formate decomposition reaction and the synthetic reaction are being developed though some studies remain for the methanol decomposition and synthetic reactions. In the fundamental development of liquid phase reactor, the solubilities of CO and H2 gases in methanol and methyl formate were measured by the method of total pressure decrease due to absorption under pressures up to 1500kPa and temperatures up to 140°C. The diffusivity of CO gas in methanol was determined by measuring the diameter and solution time of single CO bubbles in methanol. The chemical reaction rate of methanol synthesis by hydrogenolysis of methyl formate was measured using a plate-type of Raney copper catalyst in a reactor with rectangular channel and in an autoclave reactor. The reaction characteristics were investigated by carrying out the experiments at various temperatures, flow rates and at various catalyst development conditions. We focused on the effect of Raney copper catalyst thickness on the liquid-phase chemical reaction by varying the development time of the catalyst. Investigation results of the catalyst such as surface area, pore radius, lattice size, and photographs of scanning electron microscope (SEM) were also given. In the simulation of energy transport efficiency of this system, by simulating the energy transfer system using two-step liquid phase methanol decomposition and synthetic reactions, and comparing with the technology so far, it can be expected that an innovative energy transfer system is possible to realize.
Yao, Qingwei
2002-06-27
[reaction: see text] The combination of the ionic liquid [bmim]PF(6) and DMAP provides a most simple and practical approach to the immobilization of OsO(4) as catalyst for olefin dihydroxylation. Both the catalyst and the ionic liquid can be repeatedly recycled and reused in the dihydroxylation of a variety of olefins with only a very slight drop in catalyst activity.
Development of advanced fuel cell system, phase 3
NASA Technical Reports Server (NTRS)
Handley, L. M.; Meyer, A. P.; Bell, W. F.
1975-01-01
A multiple task research and development program was performed to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. Gradual wetting of the anode structure and subsequent long-term performance loss was determined to be caused by deposition of a silicon-containing material on the anode. This deposit was attributed to degradation of the asbestos matrix, and attention was therefore placed on development of a substitute matrix of potassium titanate. An 80 percent gold 20 percent platinum catalyst cathode was developed which has the same performance and stability as the standard 90 percent gold - 10 percent platinum cathode but at half the loading. A hybrid polysulfone/epoxy-glass fiber frame was developed which combines the resistance to the cell environment of pure polysulfone with the fabricating ease of epoxy-glass fiber laminate. These cell components were evaluated in various configurations of full-size cells. The ways in which the baseline engineering model system would be modified to accommodate the requirements of the space tug application are identified.
Novel self-healing materials chemistries for targeted applications
NASA Astrophysics Data System (ADS)
Wilson, Gerald O.
Self-healing materials of the type developed by White and co-workers [1] were designed to autonomically heal themselves when damaged, thereby extending the lifetime of various applications in which such material systems are employed. The system was based on urea-formaldehyde microcapsules containing dicyclopentadiene (DCPD) and Grubbs' catalyst particles embedded together in an epoxy matrix. When a crack propagates through the material, it ruptures the microcapsules, releasing DCPD into the crack plane, where it comes in contact and reacts with the catalyst to initiate a ring opening metathesis polymerization (ROMP), bonding the crack and restoring structural continuity. The present work builds on this concept in several ways. Firstly, it expands the scope and versatility of the ROMP self-healing chemistry by incorporation into epoxy vinyl ester matrices. Major technical challenges in this application include protection of the catalyst from deactivation by aggressive curing agents, and optimization of the concentration of healing agents in the matrix. Secondly, new ruthenium catalysts are evaluated for application in ROMP-based self-healing materials. The use of alternative derivatives of Grubbs' catalyst gave rise to self-healing systems with improved healing efficiencies and thermal properties. Evaluation of the stability of these new catalysts to primary amine curing agents used in the curing of common epoxy matrices also led to the discovery and characterization of new ruthenium catalysts which exhibited ROMP initiation kinetics superior to those of first and second generation Grubbs' catalysts. Finally, free radical polymerization was evaluated for application in the development of bio-compatible self-healing materials. [1] White, S. R.; Sottos, N. R.; Geubelle, P. R.; Moore, J. S.; Kessler, M. R.; Sriram, S. R.; Brown, E. N.; Viswanathan, S. Nature 2001, 409, 794.
Complex catalysts from self-repairing ensembles to highly reactive air-based oxidation systems
Craig L. Hill; Laurent Delannoy; Dean C. Duncan; Ira A. Weinstock; Roman F. Renneke; Richard S. Reiner; Rajai H. Atalla; Jong Woo Han; Daniel A. Hillesheim; Rui Cao; Travis M. Anderson; Nelya M. Okun; Djamaladdin G. Musaev; Yurii V. Geletii
2007-01-01
Progress in four interrelated catalysis research efforts in our laboratory are summarized: (1) catalytic photochemical functionalization of unactivated CeH bonds by polyoxometalates (POMs); (2) self-repairing catalysts; (3) catalysts for air-based oxidations under ambient conditions; and (4) terminal oxo complexes of the late-transition metal elements and their...
Altava, Belén; Burguete, M Isabel; García-Verdugo, Eduardo; Luis, Santiago V
2018-04-23
Positive effects of the polymeric support on the performance of supported chiral catalysts, in terms of activity, stability and selectivity-enantioselectivity, have been reported when the support is properly selected and optimized opening the way to the design of more efficient catalytic systems.
NASA Astrophysics Data System (ADS)
Yuliusman; Ramadhan, I. T.; Huda, M.
2018-03-01
Catalyst are often used in the petroleum refinery industry, especially cobalt-based catalyst such as CoMoX. Every year, Indonesia’s oil industry produces around 1350 tons of spent hydrodesulphurization catalyst in which cobalt makes up for 7%wt. of them. Cobalt is a non-renewable and highly valuable resource. Taking into account the aforementioned reasons, this research was made to recover cobalt from spent hydrodesulphurization catalyst so that it can be reused by industries needing them. The methods used in the recovery of cobalt from the waste catalyst leach solution are liquid-liquid extraction using a synergistic system of VersaticTM 10 and Cyanex®272. Based on the experiments done using the aforementioned methods and materials, the optimum condition for the extraction process: concentration of VersaticTM 10 of 0.35 M, Cyanex®272 of 0.25 M, temperature of 23-25°C (room temperature), and pH of 6 with an extraction percentage of 98.80% and co-extraction of Ni at 93.51%.
Magnetic nanocomposites for an efficient valorization of biomass
NASA Astrophysics Data System (ADS)
Kuncser, Victor; Coman, Simona M.; Kemnitz, Erhard; Parvulescu, Vasile I.
2015-05-01
The recovery of the catalysts from the reaction mixture and their recycling is important goals of the current applied catalysis. The stringent ecological and economical demands for sustainability made this concern even more important for the solid catalysts used in the area of biomass catalytic transformations where the raw material usually is not soluble in most of the organic solvents. Therefore, the solid catalyst cannot be easily separated from the mixture of untransformed raw material and by-products (e.g., humines). However, these goals can be achieved by using magnetic nanoparticles (MNPs) based catalysts. This study reports on the magnetic response of two types of new magnetic nanocomposite catalytic systems, Ru@MNP and Nb@AlF3, used in the synthesis of sorbitol/glycerol and of lactic acid, respectively, by direct cellulose degradation. The results showed that the recovering possibilities of the Nb@AlF3 catalysts, with a weaker magnetic response associated to the so called diluted magnetic oxide systems, are much diminished as compared to Ru@MNP, where the magnetic response is generated using MNP supported catalysts.
A Pd/C-CeO2 Anode Catalyst for High-Performance Platinum-Free Anion Exchange Membrane Fuel Cells.
Miller, Hamish A; Lavacchi, Alessandro; Vizza, Francesco; Marelli, Marcello; Di Benedetto, Francesco; D'Acapito, Francesco; Paska, Yair; Page, Miles; Dekel, Dario R
2016-05-10
One of the biggest obstacles to the dissemination of fuel cells is their cost, a large part of which is due to platinum (Pt) electrocatalysts. Complete removal of Pt is a difficult if not impossible task for proton exchange membrane fuel cells (PEM-FCs). The anion exchange membrane fuel cell (AEM-FC) has long been proposed as a solution as non-Pt metals may be employed. Despite this, few examples of Pt-free AEM-FCs have been demonstrated with modest power output. The main obstacle preventing the realization of a high power density Pt-free AEM-FC is sluggish hydrogen oxidation (HOR) kinetics of the anode catalyst. Here we describe a Pt-free AEM-FC that employs a mixed carbon-CeO2 supported palladium (Pd) anode catalyst that exhibits enhanced kinetics for the HOR. AEM-FC tests run on dry H2 and pure air show peak power densities of more than 500 mW cm(-2) . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A noble metal-free proton-exchange membrane fuel cell based on bio-inspired molecular catalysts.
Tran, P D; Morozan, A; Archambault, S; Heidkamp, J; Chenevier, P; Dau, H; Fontecave, M; Martinent, A; Jousselme, B; Artero, V
2015-03-01
Hydrogen is a promising energy vector for storing renewable energies: obtained from water-splitting, in electrolysers or photoelectrochemical cells, it can be turned back to electricity on demand in fuel cells (FCs). Proton exchange membrane (PEM) devices with low internal resistance, high compactness and stability are an attractive technology optimized over decades, affording fast start-up times and low operating temperatures. However, they rely on the powerful catalytic properties of noble metals such as platinum, while lower cost, more abundant materials would be needed for economic viability. Replacing these noble metals at both electrodes has long proven to be a difficult task, so far incompatible with PEM technologies. Here we take advantage of newly developed bio-inspired molecular H 2 oxidation catalysts and noble metal-free O 2 -reducing materials, to fabricate a noble metal-free PEMFC, with an 0.74 V open circuit voltage and a 23 μW cm -2 output power under technologically relevant conditions. X-ray absorption spectroscopy measurements confirm that the catalysts are stable and retain their structure during turnover.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burton Davis; Gary Jacobs; Wenping Ma
2011-09-30
There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased.more » Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations. In the second and third years, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H{sub 2}S and NH{sub 3}. Cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts were also subjected to a number of the same compounds in order to evaluate their sensitivities at different concentration levels of added contaminant.« less
NASA Astrophysics Data System (ADS)
Cui, Kehang; Kumamoto, Akihito; Xiang, Rong; An, Hua; Wang, Benjamin; Inoue, Taiki; Chiashi, Shohei; Ikuhara, Yuichi; Maruyama, Shigeo
2016-01-01
We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high-quality SWNTs are expected to pave the way to replace silicon for next-generation optoelectronic and photovoltaic devices.We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high-quality SWNTs are expected to pave the way to replace silicon for next-generation optoelectronic and photovoltaic devices. Electronic supplementary information (ESI) available: Comparison between the Co monometallic catalyst system and the Co/Mo bimetallic catalyst system, the effect of CVD temperature on the G/D ratio, the effect of ethanol partial pressure on the morphology, diameter and quality of SWNT films, and Raman spectra of the Si/SiO2 substrate. See DOI: 10.1039/c5nr06007a
Recent progress in asymmetric bifunctional catalysis using multimetallic systems.
Shibasaki, Masakatsu; Kanai, Motomu; Matsunaga, Shigeki; Kumagai, Naoya
2009-08-18
The concept of bifunctional catalysis, wherein both partners of a bimolecular reaction are simultaneously activated, is very powerful for designing efficient asymmetric catalysts. Catalytic asymmetric processes are indispensable for producing enantiomerically enriched compounds in modern organic synthesis, providing more economical and environmentally benign results than methods requiring stoichiometric amounts of chiral reagents. Extensive efforts in this field have produced many asymmetric catalysts, and now a number of reactions can be rendered asymmetric. We have focused on the development of asymmetric catalysts that exhibit high activity, selectivity, and broad substrate generality under mild reaction conditions. Asymmetric catalysts based on the concept of bifunctional catalysis have emerged as a particularly effective class, enabling simultaneous activation of multiple reaction components. Compared with conventional catalysts, bifunctional catalysts generally exhibit enhanced catalytic activity and higher levels of stereodifferentiation under milder reaction conditions, attracting much attention as next-generation catalysts for prospective practical applications. In this Account, we describe recent advances in enantioselective catalysis with bifunctional catalysts. Since our identification of heterobimetallic rare earth-alkali metal-BINOL (REMB) complexes, we have developed various types of bifunctional multimetallic catalysts. The REMB catalytic system is effective for catalytic asymmetric Corey-Chaykovsky epoxidation and cyclopropanation. A dinucleating Schiff base has emerged as a suitable multidentate ligand for bimetallic catalysts, promoting catalytic syn-selective nitro-Mannich, anti-selective nitroaldol, and Mannich-type reactions. The sugar-based ligand GluCAPO provides a suitable platform for polymetallic catalysts; structural elucidation revealed that their higher order polymetallic structures are a determining factor for their function in the catalytic asymmetric Strecker reaction. Rational design identified a related ligand, FujiCAPO, which exhibits superior performance in catalytic asymmetric conjugate addition of cyanide to enones and a catalytic asymmetric Diels-Alder-type reaction. The combination of an amide-based ligand with a rare earth metal constitutes a unique catalytic system: the ligand-metal association is in equilibrium because of structural flexibility. These catalytic systems are effective for asymmetric amination of highly coordinative substrate as well as for Mannich-type reaction of alpha-cyanoketones, in which hydrogen bonding cooperatively contributes to substrate activation and stereodifferentiation. Most of the reactions described here generate stereogenic tetrasubstituted carbons or quaternary carbons, noteworthy accomplishments even with modern synthetic methods. Several reactions have been incorporated into the asymmetric synthesis of therapeutics (or their candidate molecules) such as Tamiflu, AS-3201 (ranirestat), GRL-06579A, and ritodrine, illustrating the usefulness of bifunctional asymmetric catalysis.
Ding, Mingqiang; Jiang, Xiaowu; Peng, Jinying; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin
2015-03-01
A concept based on diffusion-regulated phase-transfer catalysis (DRPTC) in an aqueous-organic biphasic system with copper-mediated initiators for continuous activator regeneration is successfully developed for atom transfer radical polymerization (ICAR ATRP) (termed DRPTC-based ICAR ATRP here), using methyl methacrylate (MMA) as a model monomer, ethyl α-bromophenylacetate (EBrPA) as an initiator, and tris(2-pyridylmethyl)amine (TPMA) as a ligand. In this system, the monomer and initiating species in toluene (organic phase) and the catalyst complexes in water (aqueous phase) are simply mixed under stirring at room temperature. The trace catalyst complexes transfer into the organic phase via diffusion to trigger ICAR ATRP of MMA with ppm level catalyst content once the system is heated to the polymerization temperature (75 °C). It is found that well-defined PMMA with controlled molecular weights and narrow molecular weight distributions can be obtained easily. Furthermore, the polymerization can be conducted in the presence of limited amounts of air without using tedious degassed procedures. After cooling to room temperature, the upper organic phase is decanted and the lower aqueous phase is reused for another 10 recycling turnovers with ultra low loss of catalyst and ligand loading. At the same time, all the recycled catalyst complexes retain nearly perfect catalytic activity and controllability, indicating a facile and economical strategy for catalyst removal and recycling. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Iridium-Doped Ruthenium Oxide Catalyst for Oxygen Evolution
NASA Technical Reports Server (NTRS)
Valdez, Thomas I.; Narayan, Sri R.; Billings, Keith J.
2011-01-01
NASA requires a durable and efficient catalyst for the electrolysis of water in a polymer-electrolyte-membrane (PEM) cell. Ruthenium oxide in a slightly reduced form is known to be a very efficient catalyst for the anodic oxidation of water to oxygen, but it degrades rapidly, reducing efficiency. To combat this tendency of ruthenium oxide to change oxidation states, it is combined with iridium, which has a tendency to stabilize ruthenium oxide at oxygen evolution potentials. The novel oxygen evolution catalyst was fabricated under flowing argon in order to allow the iridium to preferentially react with oxygen from the ruthenium oxide, and not oxygen from the environment. Nanoparticulate iridium black and anhydrous ruthenium oxide are weighed out and mixed to 5 18 atomic percent. They are then heat treated at 300 C under flowing argon (in order to create an inert environment) for a minimum of 14 hours. This temperature was chosen because it is approximately the creep temperature of ruthenium oxide, and is below the sintering temperature of both materials. In general, the temperature should always be below the sintering temperature of both materials. The iridium- doped ruthenium oxide catalyst is then fabricated into a PEM-based membrane- electrode assembly (MEA), and then mounted into test cells. The result is an electrolyzer system that can sustain electrolysis at twice the current density, and at the same efficiency as commercial catalysts in the range of 100-200 mA/sq cm. At 200 mA/sq cm, this new system operates at an efficiency of 85 percent, which is 2 percent greater than commercially available catalysts. Testing has shown that this material is as stable as commercially available oxygen evolution catalysts. This means that this new catalyst can be used to regenerate fuel cell systems in space, and as a hydrogen generator on Earth.
Method of realizing catalytic processes under unsteady state conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noskov, A.S.; Lakhmostov, V.S.; Matros, Yu.S.
1988-07-01
The operation of a system with the catalyst bed divided into three parts was investigated theoretically and experimentally. The conditions under which the system will efficiently convert a reaction mixture with a low inlet temperature in an unsteady state regime are determined. Calculations were performed for the industrially typical process of afterburning CO on a copper-chrome catalyst in the form of Raschig rings. A flow sheet of the unit with the catalyst divided into three is shown with temperature profiles along the bed at various moments in time. The method can be used for processing large volumes of gaseous wastesmore » on very active catalysts and for catalytic reactions with optimum temperature profiles close to those presented.« less
NASA Astrophysics Data System (ADS)
Barbosa, Isaltino A.; Zanatta, Lucas D.; Espimpolo, Daniela M.; da Silva, Douglas L.; Nascimento, Leandro F.; Zanardi, Fabrício B.; de Sousa Filho, Paulo C.; Serra, Osvaldo A.; Iamamoto, Yassuko
2017-10-01
We explored the potential use of diatomite/Fe2O3/TiO2 composites as catalysts for heterogeneous photo-Fenton degradation of methylene blue under neutral pH. Such system consists in magnetic solids synthesized by co-precipitation with Fe2+/Fe3+ in the presence of diatomite, followed by impregnation of TiO2. The results showed that the optimal amount of the catalyst was 2.0 g L-1, since aggregation phenomena become significant above this concentration, which decreases the photodegradation activity. The catalyst is highly efficient in the degradation of methylene blue and shows an easy recovery by an external magnetic field. This allows for an effective catalyst reuse without significant loss of activity in catalytic cycles, which is a highly interesting prospect for recyclable dye degradation systems.
Evolution of a Fourth Generation Catalyst for the Amination and Thioetherification of Aryl Halides
Hartwig, John F.
2010-01-01
Conspectus Synthetic methods to form the carbon-nitrogen bonds in aromatic amines are fundamental enough to be considered part of introductory organic courses. Arylamines are important because they are common precursors to or substructures within active pharmaceutical ingredients and herbicides produced on ton scales, as well as conducting polymers and layers of organic light-emitting diodes produced on small scale. For many years, this class of compound was prepared from classical methods, such as nitration, reduction and reductive alkylation, copper-mediated chemistry at high temperatures, addition to benzyne intermediates, or direct nucleophilic substitution on particularly electron-poor aromatic or heteroaromatic halides. During the past decade, these methods to form aromatic amines have been largely supplanted by palladium-catalyzed coupling reactions of amines with aryl halides. The scope and efficiency of the palladium-catalyzed processes has gradually improved with successive generations of catalysts to the point of being useful for the synthesis of both milligrams and kilograms of product. This Account describes the conceptual basis and utility of our latest, “fourth-generation” catalyst for the coupling of amines and related reagents with aryl halides. The introductory sections of this account describe the progression of catalyst development from the first-generation to current systems and the motivation for selection of the components of the fourth-generation catalyst. This progression began with catalysts containing palladium and sterically hindered monodentate aromatic phosphines used initially for coupling of tin amides with haloarenes in the first work on C-N coupling. A second generation of catalysts was then developed based on the combination of palladium and aromatic bisphosphines. These systems were then followed by third-generation systems catalysts on the combination of palladium and a sterically hindered alkylmonophosphine or N-heterocyclic carbene. During the past five years, we have studied a fourth-generation catalyst for these reactions containing ligands that combine the chelating properties of the second-generation systems with the steric hindrance and strong electron donation of the third-generation systems. This combination has created a catalyst that couples aryl chlorides, bromides and iodides with primary amines, N-H imines, and hydrazones in high yield, with broad scope, high functional group tolerance, nearly perfect selectivity for monoarylation, and the lowest levels of palladium that have been used for C-N coupling. This catalyst is based on palladium and a sterically hindered version of the Josiphos family of ligands that possesses a ferrocenyl-1-ethylbackbone, a hindered di-tert-butylphosphino group, and a hindered dicyclohexylphosphino group. This latest generation of catalyst not only improves the coupling of primary amines and related nucleophiles, but it has dramatically improved the coupling of thiols with haloarenes to form C-S bonds. This catalyst system couples both aliphatic and aromatic thiols with chloroarenes with much greater scope, functional group tolerance, and turnover numbers than had been observed previously. The effects of structural features of the Josiphos ligand on catalyst activity have been revealed by examining the reactivity of catalysts generated from ligands lacking one or more of the structural elements of the most active catalyst. These modified ligands lack the relative stereochemistry of the ferrocenyl-1-ethyl backbone, the strong electron donation of the dialkylphosphino groups, the steric demands of the alkylphosphine groups, or the stability of the ferrocenyl unit. This set of studies showed that each one of these structural features contributed to the high reactivity and selectivity of the catalyst containing the hindered, bidentate Josiphos ligand. Finally, a series of studies on the effect of electronic properties on the rates of reductive elimination have recently distinguished between the effect of the properties of the M-N σ-bond and the nitrogen electron pair on the rate of reductive elimination. These studies have shown that the effect of substituents attached to the metal-bound nitrogen or carbon atoms on the rate of reductive elimination are similar. Because the amido ligands contain an electron pair, while the alkyl ligands do not, we have concluded that the major electronic effect is transmitted through the σ-bond. In other words, we have concluded that the electronic effect on the metal-nitrogen σ bond dominates an electronic effect on the nitrogen electron pair. PMID:18681463
1980-08-01
carbonylation of methanol to acetic acid reaction is well suited for a demonstration of the feasibility and value of ionically binding a catalyst to a...approximate doubling of the reaction rate. This result suggests that a liquid flow system design in which there is a large catalyst to methanol ratio could...Heterogenizing Anionic Solution Catalysts . The Carbonylation of Methanol by Russell S. Drago, Eric D. Nyberg, Anton El A’mma and Alan Zombeck ABSTRACT -’Few
Rathke, J.W.; Klingler, R.J.; Heiberger, J.J.
1983-09-26
It is an object of the present invention to provide an improved catalyst for the reaction of carbon monoxide with water to produce methanol and other lower alcohols. It is a further object to provide a process for the production of methanol from carbon monoxide and water in which a relatively inexpensive catalyst permits the reaction at low pressures. It is also an object to provide a process for the production of methanol from carbon monoxide and water in which a relatively inexpensive catalyst permits the reaction at low pressures. It is also an object to provide a process for the production of methanol in which ethanol is also directly produced. It is another object to provide a process for the production of mixtures of methanol with ethanol and propanol from the reaction of carbon monoxide and water at moderate pressure with inexpensive catalysts. It is likewise an object to provide a system for the catalytic production of lower alcohols from the reaction of carbon monoxide and water at moderate pressure with inexpensive catalysts. In accordance with the present invention, a catalyst is provided for the reaction of carbon monoxide and water to produce lower alcohols. The catalyst includes a lead heteropolyatomic salt in mixture with a metal formate or a precursor to a metal formate.
Catalysts of worker-to-worker violence and incivility in hospitals.
Hamblin, Lydia E; Essenmacher, Lynnette; Upfal, Mark J; Russell, Jim; Luborsky, Mark; Ager, Joel; Arnetz, Judith E
2015-09-01
To identify common catalysts of worker-to-worker violence and incivility in hospital settings. Worker-to-worker violence and incivility are prevalent forms of mistreatment in healthcare workplaces. These are forms of counterproductive work behaviour that can lead to negative outcomes for employees, patients and the organisation overall. Identifying the factors that lead to co-worker mistreatment is a critical first step in the development of interventions targeting these behaviours. Retrospective descriptive study. Qualitative content analysis was conducted on the total sample (n = 141) of employee incident reports of worker-to-worker violence and incivility that were documented in 2011 at a large American hospital system. More than 50% of the incidents involved nurses, and the majority of incidents did not involve physical violence. Two primary themes emerged from the analysis: Work Behaviour and Work Organisation. Incidents in the Work Behaviour category were often sparked by unprofessional behaviour, disagreement over responsibilities for work tasks or methods of patient care, and dissatisfaction with a co-worker's performance. Incidents in the Work Organisation category involved conflicts or aggression arising from failure to following protocol, patient assignments, limited resources and high workload. Incidents of worker-to-worker violence and incivility stemmed from dissatisfaction with employee behaviour or from organisational practices or work constraints. These incident descriptions reflect worker dissatisfaction and frustration, resulting from poor communication and collaboration between employees, all of which threaten work productivity. Violence and incivility between hospital employees can contribute to turnover of top performers, hinder effective teamwork and jeopardise the quality of patient care. Identification of common catalysts for worker-to-worker violence and incivility informs the development of mistreatment prevention programmes that can be used to educate hospital staff. © 2015 John Wiley & Sons Ltd.
Sobolevskiy, Anatoly
2015-08-11
An exhaust gas treatment process, apparatus, and system for reducing the concentration of NOx, CO and hydrocarbons in a gas stream, such as an exhaust stream (29), via selective catalytic reduction with ammonia is provided. The process, apparatus and system include a catalytic bed (32) having a reducing only catalyst portion (34) and a downstream reducing-plus-oxidizing portion (36). Each portion (34, 36) includes an amount of tungsten. The reducing-plus-oxidizing catalyst portion (36) advantageously includes a greater amount of tungsten than the reducing catalyst portion (36) to markedly limit ammonia salt formation.
Mechanistically Driven Development of Iridium Catalysts for Asymmetric Allylic Substitution
Hartwig, John F.; Stanley, Levi M.
2010-01-01
Conspectus Enantioselective allylic substitution reactions comprise some of the most versatile methods for preparing enantiomerically enriched materials. These reactions form products that contain multiple functionalities by creating carbon–nitrogen, carbon–oxygen, carbon–carbon, and carbon–sulfur bonds. For many years, the development of catalysts for allylic substitution focused on palladium complexes. However, studies of complexes of other metals have revealed selectivities that often complement those of palladium systems. Most striking is the observation that reactions with unsymmetrical allylic electrophiles that typically occur with palladium catalysts at the less hindered site of an allylic electrophile occur at the more hindered site with catalysts based on other metals. In this Account, we describe an iridium precursor and a phosphoramidite ligand that catalyze reactions with a particularly broad scope of nucleophiles. The active form of this iridium catalyst is not generated by the simple binding of the phosphoramidite ligand to the metal precursor. Instead, the initial phosphoramidite and iridium precursor react in the presence of base to form a metallacyclic species that is the active catalyst. This species is generated either in situ or separately in isolated form by reactions with added base. The identification of the structure of the active catalyst led to the development of simplified catalysts as well as the most active form of the catalyst now available, which is stabilized by a loosely bound ethylene. Most recently, this structure was used to prepare intermediates containing allyl ligands, the structures of which provide a model for the enantioselectivities discussed here. Initial studies from our laboratory on the scope of iridium-catalyzed allylic substitution showed that reactions of primary and secondary amines, including alkylamines, benzylamines, and allylamines, and reactions of phenoxides and alkoxides occurred in high yields, with high branched-to-linear ratios and high enantioselectivities. Parallel mechanistic studies had revealed the metallacyclic structure of the active catalyst, and subsequent experiments with the purposefully formed metallacycle increased the reaction scope dramatically. Aromatic amines, azoles, ammonia, and amides and carbamates as ammonia equivalents all reacted with high selectivities and yields. Moreover, weakly basic enolates (such as silyl enol ethers) and enolate equivalents (such as enamines) also reacted, and other research groups have used this catalyst to conduct reactions of stabilized carbon nucleophiles in the absence of additional base. One hallmark of the reactions catalyzed by this iridium system is the invariably high enantioselectivity, which reflects a high stereoselectivity for formation of the allyl intermediate. Enantioselectivity typically exceeds 95%, regioselectivity for formation of branched over linear products is usually near 20:1, and yields generally exceed 75% and are often greater than 90%. Thus, the development of iridium catalysts for enantioselective allylic substitution shows how studies of reaction mechanism can lead to a particularly active and a remarkably general system for an enantioselective process. In this case, a readily accessible catalyst effects allylic substitution, with high enantioselectivity and regioselectivity complementary to that of the venerable palladium systems. PMID:20873839
Task 3.9 -- Catalytic tar cracking. Semi-annual report, January 1--June 30, 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, B.C.; Timpe, R.C.
1995-12-31
Tar produced in the gasification of coal is deleterious to the operation of downstream equipment including fuel cells, gas turbines, hot-gas stream cleanup filters, and pressure swing adsorption systems. Catalytic cracking of tars to smaller hydrocarbons can be an effective means to remove these tars from gas streams and, in the process, generate useful products, e.g., methane gas, which is crucial to the operation of molten carbonate fuel cells. The objectives of this project are to investigate whether gasification tars can be cracked by synthetic nickel-substituted micamontmorillonite, zeolite, or dolomite material; and whether the tars can be cracked selectively bymore » these catalysts to produce a desired liquid and/or gas stream. Results to date are presented in the cited papers.« less
Methanol Steam Reforming Promoted by Molten Salt-Modified Platinum on Alumina Catalysts
Kusche, Matthias; Agel, Friederike; Ní Bhriain, Nollaig; Kaftan, Andre; Laurin, Mathias; Libuda, Jörg; Wasserscheid, Peter
2014-01-01
We herein describe a straight forward procedure to increase the performance of platinum-on-alumina catalysts in methanol steam reforming by applying an alkali hydroxide coating according to the “solid catalyst with ionic liquid layer” (SCILL) approach. We demonstrate by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature-programmed desorption (TPD) studies that potassium doping plays an important role in the catalyst activation. Moreover, the hygroscopic nature and the basicity of the salt modification contribute to the considerable enhancement in catalytic performance. During reaction, a partly liquid film of alkali hydroxides/carbonates forms on the catalyst/alumina surface, thus significantly enhancing the availability of water at the catalytically active sites. Too high catalyst pore fillings with salt introduce a considerable mass transfer barrier into the system as indicated by kinetic studies. Thus, the optimum interplay between beneficial catalyst modification and detrimental mass transfer effects had to be identified and was found on the applied platinum-on-alumina catalyst at KOH loadings around 7.5 mass %. PMID:25124120
NASA Astrophysics Data System (ADS)
Baran, Talat; Menteş, Ayfer
2017-04-01
In this paper we described the fabrication, characterization and application of a new biopolymer (chitosan)-based pincer-type Pd(II) catalyst in Suzuki cross coupling reactions using a non-toxic, cheap, eco-friendly and practical method. The catalytic activity tests showed remarkable product yields as well as TON (19800) and TOF (330000) values with a small catalyst loading. In addition, the catalyst indicated good recyclability in the Suzuki C-C reaction. This biopolymer supported catalyst can be used with various catalyst systems due to its unique properties, such as being inert, green in nature, low cost and chemically durable.
Shaffer, David W.; Xie, Yan; Szalda, David J.; ...
2017-09-24
Here, a critical step in creating an artificial photosynthesis system for energy storage is designing catalysts that can thrive in an assembled device. Single-site catalysts have an advantage over bimolecular catalysts because they remain effective when immobilized. Hybrid water oxidation catalysts described here, combining the features of single-site bis-phosphonate catalysts and fast bimolecular bis-carboxylate catalysts, have reached turnover frequencies over 100 s –1, faster than both related catalysts under identical conditions. The new [(bpHc)Ru(L) 2] (bpH 2cH = 2,2'-bipyridine-6-phosphonic acid-6'-carboxylic acid, L = 4-picoline or isoquinoline) catalysts proceed through a single-site water nucleophilic attack pathway. The pendant phosphonate base mediatesmore » O–O bond formation via intramolecular atom-proton transfer with a calculated barrier of only 9.1 kcal/mol. Additionally, the labile carboxylate group allows water to bind early in the catalytic cycle, allowing intramolecular proton-coupled electron transfer to lower the potentials for oxidation steps and catalysis. That a single-site catalyst can be this fast lends credence to the possibility that the oxygen evolving complex adopts a similar mechanism.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaffer, David W.; Xie, Yan; Szalda, David J.
Here, a critical step in creating an artificial photosynthesis system for energy storage is designing catalysts that can thrive in an assembled device. Single-site catalysts have an advantage over bimolecular catalysts because they remain effective when immobilized. Hybrid water oxidation catalysts described here, combining the features of single-site bis-phosphonate catalysts and fast bimolecular bis-carboxylate catalysts, have reached turnover frequencies over 100 s –1, faster than both related catalysts under identical conditions. The new [(bpHc)Ru(L) 2] (bpH 2cH = 2,2'-bipyridine-6-phosphonic acid-6'-carboxylic acid, L = 4-picoline or isoquinoline) catalysts proceed through a single-site water nucleophilic attack pathway. The pendant phosphonate base mediatesmore » O–O bond formation via intramolecular atom-proton transfer with a calculated barrier of only 9.1 kcal/mol. Additionally, the labile carboxylate group allows water to bind early in the catalytic cycle, allowing intramolecular proton-coupled electron transfer to lower the potentials for oxidation steps and catalysis. That a single-site catalyst can be this fast lends credence to the possibility that the oxygen evolving complex adopts a similar mechanism.« less
NREL's Thermochemical Conversion Facility Video Text Version | Bioenergy |
steady-state. We use a tandem fast pyrolysis reactor and Davison recirculating reactor system to study ex be continually added and withdrawn so we can study catalyst activity and product composition at catalyst. Here we can study the impact of catalyst formulation and processing conditions on bio-oil
Choi, M; Han, C; Kim, I T; An, J C; Lee, J J; Lee, H K; Shim, J
2011-01-01
To improve the catalytic activity of palladium (Pd) as a cathode catalyst in direct methanol fuel cells (DMFCs), we prepared palladium-titanium oxide (Pd-TiO2) catalysts which the Pd and TiO2 nanoparticles were simultaneously impregnated on carbon. We selected Pd and TiO2 as catalytic materials because of their electrochemical stability in acid solution. The crystal structure and the loading amount of Pd and TiO2 on carbon were characterized by X-ray diffraction (XRD) and energy dispersive X-ray microanalysis (EDX). The electrochemical characterization of Pd-TiO2/C catalysts for the oxygen reduction reaction was carried out in half and single cell systems. The catalytic activities of the Pd-TiO2 catalysts were strongly influenced by the TiO2 content. In the single cell test, the Pd-TiO2 catalysts showed very comparable performance to the Pt catalyst.
Experimental study of isopropanol dehydrogenation over amorphous alloy raney nickel catalysts
NASA Astrophysics Data System (ADS)
Xin, Fang; Xu, Min; Li, Xun-Feng; Huai, Xiu-Lan
2013-12-01
The dehydrogenation reaction of isopropanol occurring at low temperature is of great industrial importance. It is a key procedure in isopropanol/acetone/hydrogen chemical heat pump system. An experimental investigation was performed to study the behavior of the liquid phase dehydrogenation of isopropanol over amorphous alloy Raney nickel catalysts. Un-promoted and promoted catalysts were used and their performances were compared under various catalyst amounts, acetone content in the reactant and reaction temperature ranging from 348 K to 355 K. It is found that there exists an optimum catalyst concentration which is about 0.34 g in 300 ml isopropanol. The temperature has evident effect on the reaction. The presence of activities of Fe-promoted catalyst decrease slightly compared to the un-promoted catalyst when the temperature are 348 K and 351 K. Besides, the reaction rate decreases almost linearly with the increase of acetone volume fraction in the reactant.
Photoreactor with self-contained photocatalyst recapture
Gering, Kevin L.
2004-12-07
A system for the continuous use and recapture of a catalyst in liquid, comprising: a generally vertical reactor having a reaction zone with generally downwardly flowing liquid, and a catalyst recovery chamber adjacent the reaction zone containing a catalyst consisting of buoyant particles. The liquid in the reaction zone flows downward at a rate which exceeds the speed of upward buoyant migration of catalyst particles in the liquid, whereby catalyst particles introduced into the liquid in the reaction zone are drawn downward with the liquid. A slow flow velocity flotation chamber disposed below the reaction zone is configured to recapture the catalyst particles and allow them to float back into the catalyst recovery chamber for recycling into the reaction zone, rather than being swept downstream. A novel 3-dimensionally adjustable solar reflector directs light into the reaction zone to induce desired photocatalytic reactions within the liquid in the reaction zone.
Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter
2015-01-01
Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions. PMID:26574523
Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter
2015-12-28
Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions. © 2015 The Authors.
Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf
2017-01-01
Current developments in exhaust gas aftertreatment led to a huge mistrust in diesel driven passenger cars due to their NOx emissions being too high. The selective catalytic reduction (SCR) with ammonia (NH3) as reducing agent is the only approach today with the capability to meet upcoming emission limits. Therefore, the radio-frequency-based (RF) catalyst state determination to monitor the NH3 loading on SCR catalysts has a huge potential in emission reduction. Recent work on this topic proved the basic capability of this technique under realistic conditions on an engine test bench. In these studies, an RF system calibration for the serial type SCR catalyst Cu-SSZ-13 was developed and different approaches for a temperature dependent NH3 storage were determined. This paper continues this work and uses a fully calibrated RF-SCR system under transient conditions to compare different directly measured and controlled NH3 storage levels, and NH3 target curves. It could be clearly demonstrated that the right NH3 target curve, together with a direct control on the desired level by the RF system, is able to operate the SCR system with the maximum possible NOx conversion efficiency and without NH3 slip. PMID:29182589
Molecular system identification for enzyme directed evolution and design
NASA Astrophysics Data System (ADS)
Guan, Xiangying; Chakrabarti, Raj
2017-09-01
The rational design of chemical catalysts requires methods for the measurement of free energy differences in the catalytic mechanism for any given catalyst Hamiltonian. The scope of experimental learning algorithms that can be applied to catalyst design would also be expanded by the availability of such methods. Methods for catalyst characterization typically either estimate apparent kinetic parameters that do not necessarily correspond to free energy differences in the catalytic mechanism or measure individual free energy differences that are not sufficient for establishing the relationship between the potential energy surface and catalytic activity. Moreover, in order to enhance the duty cycle of catalyst design, statistically efficient methods for the estimation of the complete set of free energy differences relevant to the catalytic activity based on high-throughput measurements are preferred. In this paper, we present a theoretical and algorithmic system identification framework for the optimal estimation of free energy differences in solution phase catalysts, with a focus on one- and two-substrate enzymes. This framework, which can be automated using programmable logic, prescribes a choice of feasible experimental measurements and manipulated input variables that identify the complete set of free energy differences relevant to the catalytic activity and minimize the uncertainty in these free energy estimates for each successive Hamiltonian design. The framework also employs decision-theoretic logic to determine when model reduction can be applied to improve the duty cycle of high-throughput catalyst design. Automation of the algorithm using fluidic control systems is proposed, and applications of the framework to the problem of enzyme design are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarty, Jon; Berry, Brian; Lundberg, Kare
This final report describes a 2000-2003 program for the development of components and processes to enhance the commercialization of ultra-low emissions catalytic combustion in industrial gas turbines. The range of project tasks includes: development of more durable, lower-cost catalysts and catalytic combustor components; development and design of a catalytic pre-burner and a catalytic pilot burner for gas turbines, and on-site fuel conversion processing for utilization of liquid fuel.
Jiang, Xiaowu; Wu, Jian; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin
2016-01-01
How to simply and efficiently separate and recycle catalyst has still been a constraint for the wide application of atom transfer radical polymerization (ATRP), especially for the polymerization systems with hydrophilic monomers because the polar functional groups may coordinate with transition metal salts, resulting in abundant catalyst residual in the resultant water-soluble polymers. In order to overcome this problem, a latent-biphasic system is developed, which can be successfully used for ATRP catalyst separation and recycling in situ for various kinds of hydrophilic monomers for the first time, such as poly(ethylene glycol) monomethyl ether methacrylate (PEGMA), 2-hydroxyethyl methacrylate (HEMA), 2-(dimethylamino)ethyl methacrylate (DMAEMA), N,N-dimethyl acrylamide (DMA), and N-isopropylacrylamide (NIPAM). Herein, random copolymer of octadecyl acrylate (OA), MA-Ln (2-(bis(pyridin-2-ylmethyl)amino)ethyl acrylate), and POA-ran-P(MA-Ln) is designed as the macroligand, and heptane/ethanol is selected as the biphasic solvent. Copper(II) bromide (CuBr2 ) is employed as the catalyst, PEG-bound 2-bromo-2-methylpropanoate (PEG350 -Br) as the water-soluble ATRP initiator and 2,2'-azobis(isobutyronitrile) (AIBN) as the azo-initiator to establish an ICAR (initiators for continuous activator regeneration) ATRP system. Importantly, well-defined water-soluble polymers are obtained even though the recyclable catalyst is used for sixth times. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Apparatus and Process for Controlled Nanomanufacturing Using Catalyst Retaining Structures
NASA Technical Reports Server (NTRS)
Nguyen, Cattien (Inventor)
2013-01-01
An apparatus and method for the controlled fabrication of nanostructures using catalyst retaining structures is disclosed. The apparatus includes one or more modified force microscopes having a nanotube attached to the tip portion of the microscopes. An electric current is passed from the nanotube to a catalyst layer of a substrate, thereby causing a localized chemical reaction to occur in a resist layer adjacent the catalyst layer. The region of the resist layer where the chemical reaction occurred is etched, thereby exposing a catalyst particle or particles in the catalyst layer surrounded by a wall of unetched resist material. Subsequent chemical vapor deposition causes growth of a nanostructure to occur upward through the wall of unetched resist material having controlled characteristics of height and diameter and, for parallel systems, number density.
In-situ activation of CuO/ZnO/Al.sub.2 O.sub.3 catalysts in the liquid phase
Brown, Dennis M.; Hsiung, Thomas H.; Rao, Pradip; Roberts, George W.
1989-01-01
The present invention relates to a method of activation of a CuO/ZnO/Al.sub.2 O.sub.3 catalyst slurried in a chemically inert liquid. Successful activation of the catalyst requires the use of a process in which the temperature of the system at any time is not allowed to exceed a certain critical value, which is a function of the specific hydrogen uptake of the catalyst at that same time. This process is especially critical for activating highly concentrated catalyst slurries, typically 25 to 50 wt %. Activation of slurries of CuO/ZnO/Al.sub.2 O.sub.3 catalyst is useful in carrying out the liquid phase methanol or the liquid phase shift reactions.
Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf
2017-01-01
The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF) catalyst state determination offers the only approach for directly measuring the NH3 loading on selective catalytic reduction (SCR) catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH3 storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13) was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH3 storage control, the influence of the storage degree on the catalyst performance, i.e., on NOx conversion and NH3 slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH3 storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals. PMID:28704929
Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf
2017-07-12
The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF) catalyst state determination offers the only approach for directly measuring the NH₃ loading on selective catalytic reduction (SCR) catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH₃ storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13) was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH₃ storage control, the influence of the storage degree on the catalyst performance, i.e., on NO x conversion and NH₃ slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH₃ storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals.
Ng, Chee Koon; Wu, Jie; Hor, T S Andy; Luo, He-Kuan
2016-12-22
Correction for 'A binary catalyst system of a cationic Ru-CNC pincer complex with an alkali metal salt for selective hydroboration of carbon dioxide' by Chee Koon Ng et al., Chem. Commun., 2016, 52, 11842-11845.
Code of Federal Regulations, 2013 CFR
2013-07-01
... different reactors in the catalytic reforming unit are regenerated in separate regeneration systems, then these emission limitations apply to each separate regeneration system. These emission limitations apply... catalyst rejuvenation operations during coke burn-off and catalyst regeneration. You can choose from the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... different reactors in the catalytic reforming unit are regenerated in separate regeneration systems, then these emission limitations apply to each separate regeneration system. These emission limitations apply... catalyst rejuvenation operations during coke burn-off and catalyst regeneration. You can choose from the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... different reactors in the catalytic reforming unit are regenerated in separate regeneration systems, then these emission limitations apply to each separate regeneration system. These emission limitations apply... catalyst rejuvenation operations during coke burn-off and catalyst regeneration. You can choose from the...
Space power systems technology
NASA Technical Reports Server (NTRS)
Coulman, George A.
1994-01-01
Reported here is a series of studies which examine several potential catalysts and electrodes for some fuel cell systems, some materials for space applications, and mathematical modeling and performance predictions for some solid oxide fuel cells and electrolyzers. The fuel cell systems have a potential for terrestrial applications in addition to solar energy conversion in space applications. Catalysts and electrodes for phosphoric acid fuel cell systems and for polymer electrolyte membrane (PEM) fuel cell and electrolyzer systems were examined.
Wang, Mei; Chen, Lin; Li, Xueqiang; Sun, Licheng
2011-12-28
The research on structural and functional biomimics of the active site of [FeFe]-hydrogenases is in an attempt to elucidate the mechanisms of H(2)-evolution and uptake at the [FeFe]-hydrogenase active site, and to learn from Nature how to create highly efficient H(2)-production catalyst systems. Undoubtedly, it is a challenging, arduous, and long-term work. In this perspective, the progresses in approaches to photochemical H(2) production using mimics of the [FeFe]-hydrogenase active site as catalysts in the last three years are reviewed, with emphasis on adjustment of the redox potentials and hydrophilicity of the [FeFe]-hydrogenase active site mimics to make them efficient catalysts for H(2) production. With gradually increasing understanding of the chemistry of the [FeFe]-hydrogenases and their mimics, more bio-inspired proton reduction catalysts with significantly improved efficiency of H(2) production will be realized in the future. This journal is © The Royal Society of Chemistry 2011
Wang, Hongliang; Wang, Huamin; Kuhn, Eric; ...
2017-11-14
Super Lewis acids containing the triflate anion [e.g., Hf(OTf) 4, Ln(OTf) 3, In(OTf) 3, Al(OTf) 3] and noble metal catalysts (e.g., Ru/C, Ru/Al2O 3) formed efficient catalytic systems to generate saturated hydrocarbons from lignin in high yields. In such catalytic systems, the metal triflates mediated rapid ether bond cleavage through selective bonding to etheric oxygens while the noble metal catalyzed subsequent hydrodeoxygenation (HDO) reactions. Near theoretical yields of hydrocarbons were produced from lignin model compounds by the combined catalysis of Hf(OTf)4 and ruthenium-based catalysts. When a technical lignin derived from a pilot-scale biorefinery was used, more than 30 wt %more » of the hydrocarbons produced with this catalytic system were cyclohexane and alkylcyclohexanes in the jet fuel range. Super Lewis acids are postulated to strongly interact with lignin substrates by protonating hydroxyl groups and ether linkages, forming intermediate species that enhance hydrogenation catalysis by supported noble metal catalysts. Meanwhile, the hydrogenation of aromatic rings by the noble metal catalysts can promote oxygenation reactions catalyzed by super Lewis acids.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hongliang; Wang, Huamin; Kuhn, Eric
Super Lewis acids containing the triflate anion [e.g., Hf(OTf) 4, Ln(OTf) 3, In(OTf) 3, Al(OTf) 3] and noble metal catalysts (e.g., Ru/C, Ru/Al2O 3) formed efficient catalytic systems to generate saturated hydrocarbons from lignin in high yields. In such catalytic systems, the metal triflates mediated rapid ether bond cleavage through selective bonding to etheric oxygens while the noble metal catalyzed subsequent hydrodeoxygenation (HDO) reactions. Near theoretical yields of hydrocarbons were produced from lignin model compounds by the combined catalysis of Hf(OTf)4 and ruthenium-based catalysts. When a technical lignin derived from a pilot-scale biorefinery was used, more than 30 wt %more » of the hydrocarbons produced with this catalytic system were cyclohexane and alkylcyclohexanes in the jet fuel range. Super Lewis acids are postulated to strongly interact with lignin substrates by protonating hydroxyl groups and ether linkages, forming intermediate species that enhance hydrogenation catalysis by supported noble metal catalysts. Meanwhile, the hydrogenation of aromatic rings by the noble metal catalysts can promote oxygenation reactions catalyzed by super Lewis acids.« less
Wang, Hongliang; Wang, Huamin; Kuhn, Eric; Tucker, Melvin P; Yang, Bin
2018-01-10
Super Lewis acids containing the triflate anion [e.g., Hf(OTf) 4 , Ln(OTf) 3 , In(OTf) 3 , Al(OTf) 3 ] and noble metal catalysts (e.g., Ru/C, Ru/Al 2 O 3 ) formed efficient catalytic systems to generate saturated hydrocarbons from lignin in high yields. In such catalytic systems, the metal triflates mediated rapid ether bond cleavage through selective bonding to etheric oxygens while the noble metal catalyzed subsequent hydrodeoxygenation (HDO) reactions. Near theoretical yields of hydrocarbons were produced from lignin model compounds by the combined catalysis of Hf(OTf) 4 and ruthenium-based catalysts. When a technical lignin derived from a pilot-scale biorefinery was used, more than 30 wt % of the hydrocarbons produced with this catalytic system were cyclohexane and alkylcyclohexanes in the jet fuel range. Super Lewis acids are postulated to strongly interact with lignin substrates by protonating hydroxyl groups and ether linkages, forming intermediate species that enhance hydrogenation catalysis by supported noble metal catalysts. Meanwhile, the hydrogenation of aromatic rings by the noble metal catalysts can promote deoxygenation reactions catalyzed by super Lewis acids. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Martha, Cornelius T; Hoogendoorn, Jan-Carel; Irth, Hubertus; Niessen, Wilfried M A
2011-05-15
Current development in catalyst discovery includes combinatorial synthesis methods for the rapid generation of compound libraries combined with high-throughput performance-screening methods to determine the associated activities. Of these novel methodologies, mass spectrometry (MS) based flow chemistry methods are especially attractive due to the ability to combine sensitive detection of the formed reaction product with identification of introduced catalyst complexes. Recently, such a mass spectrometry based continuous-flow reaction detection system was utilized to screen silver-adducted ferrocenyl bidentate catalyst complexes for activity in a multicomponent synthesis of a substituted 2-imidazoline. Here, we determine the merits of different ionization approaches by studying the combination of sensitive detection of product formation in the continuous-flow system with the ability to simultaneous characterize the introduced [ferrocenyl bidentate+Ag](+) catalyst complexes. To this end, we study the ionization characteristics of electrospray ionization (ESI), atmospheric-pressure chemical ionization (APCI), no-discharge APCI, dual ESI/APCI, and dual APCI/no-discharge APCI. Finally, we investigated the application potential of the different ionization approaches by the investigation of ferrocenyl bidentate catalyst complex responses in different solvents. Copyright © 2011 Elsevier B.V. All rights reserved.
NO.sub.x catalyst and method of suppressing sulfate formation in an exhaust purification system
Balmer-Millar, Mari Lou [Chillicothe, IL; Park, Paul W [Peoria, IL; Panov, Alexander G [Peoria, IL
2007-06-26
The activity and durability of a zeolite lean-burn NOx catalyst can be increased by loading metal cations on the outer surface of the zeolite. However, the metal loadings can also oxidize sulfur dioxide to cause sulfate formation in the exhaust. The present invention is a method of suppressing sulfate formation in an exhaust purification system including a NO.sub.x catalyst. The NO.sub.x catalyst includes a zeolite loaded with at least one metal. The metal is selected from among an alkali metal, an alkaline earth metal, a lanthanide metal, a noble metal, and a transition metal. In order to suppress sulfate formation, at least a portion of the loaded metal is complexed with at least one of sulfate, phosphate, and carbonate.
NO.sub.x catalyst and method of suppressing sulfate formation in an exhaust purification system
Balmer-Millar, Mari Lou; Park, Paul W.; Panov, Alexander G.
2006-08-22
The activity and durability of a zeolite lean-bum NOx catalyst can be increased by loading metal cations on the outer surface of the zeolite. However, the metal loadings can also oxidize sulfur dioxide to cause sulfate formation in the exhaust. The present invention is a method of suppressing sulfate formation in an exhaust purification system including a NO.sub.x catalyst. The NO.sub.x catalyst includes a zeolite loaded with at least one metal. The metal is selected from among an alkali metal, an alkaline earth metal, a lanthanide metal, a noble metal, and a transition metal. In order to suppress sulfate formation, at least a portion of the loaded metal is complexed with at least one of sulfate, phosphate, and carbonate.
NASA Astrophysics Data System (ADS)
Lun Li, Oi; Lee, Hoonseung; Ishizaki, Takahiro
2018-01-01
Carbon-based materials have been widely utilized as the electrode materials in energy conversion and storage technologies, such as fuel cells and metal-air batteries. In these systems, the oxygen reduction reaction is an important step that determines the overall performance. A novel synthesis route, named the solution plasma process, has been recently utilized to synthesize various types of metal-based and heteroatom-doped carbon catalysts. In this review, we summarize cutting-edge technologies involving the synthesis and modeling of carbon-supported catalysts synthesized via solution plasma process, followed by current progress on the electrocatalytic performance of these catalysts. This review provides the fundamental and state-of-the-art performance of solution-plasma-synthesized electrode materials, as well as the remaining scientific and technological challenges for this process.
The e-beam sustained CO2 laser amplifier
NASA Technical Reports Server (NTRS)
Brown, M. J.; Shaw, S. R.; Evans, M. H.; Smith, I. M.; Holman, W.
1990-01-01
The design features of an e-beam sustained CO2 amplifier are described. The amplifier is designed specifically as a catalyst test-bed to study the performance of room temperature precious metal CO-oxidation catalysts under e-beam sustained operation. The amplifier has been designed to provide pulse durations of 30 microseconds in a discharge volume of 2 litres. With a gas flow velocity of 2 metres per second, operation at repetition rates of 10 Hz is accommodated. The system is designed for sealed-off operation and a catalyst bed is housed in the gas circulation system downstream from the discharge region. CO and oxygen monitors are used for diagnosis of gas composition in the amplifier so that catalyst performance can be monitored in situ during sealed lifetests.
40 CFR Appendix Vii to Part 86 - Standard Bench Cycle (SBC)
Code of Federal Regulations, 2011 CFR
2011-07-01
... procedures [Ref. § 86.1823-08(d)] consist of aging a catalyst-oxygen-sensor system on an aging bench which... bench with an engine as the source of feed gas for the catalyst. 3. The SBC is a 60-second cycle which... occurs in the hottest catalyst. Alternatively, the feed gas temperature may be measured and converted to...
40 CFR Appendix Vii to Part 86 - Standard Bench Cycle (SBC)
Code of Federal Regulations, 2010 CFR
2010-07-01
... procedures [Ref. § 86.1823-08(d)] consist of aging a catalyst-oxygen-sensor system on an aging bench which... bench with an engine as the source of feed gas for the catalyst. 3. The SBC is a 60-second cycle which... occurs in the hottest catalyst. Alternatively, the feed gas temperature may be measured and converted to...
Foamed-metal-based catalytic afterburners in automotive exhaust systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pestryakov, A.N.; Ametov, V.A.
1994-08-10
Properties of exhaust afterburning catalysts based on porous cellular materials (foamed metals) have been investigated. Catalysts containing oxides of base metals provide a two-to-threefold reduction of CO emission. Platinum-containing foamed catalysts lower the toxicity of exhaust by 85-90%. A favorable effect is demonstrated by the combined use of afterburners and a motor oil additive based on ultradispersed copper.
USDA-ARS?s Scientific Manuscript database
Catalytic fast pyrolysis of eucalyptus wood was performed on a continuous laboratory scale fluidized bed fast pyrolysis system. Catalytic activity was monitored from use of fresh catalyst up to a cumulative biomass to catalyst ratio (B/C) of 4/1 over extruded pellets of three different ZSM-5 catalys...
Cao, Qun; Hughes, N. Louise
2016-01-01
Abstract A homogeneous PdII catalyst, utilizing a simple and inexpensive amine ligand (TMEDA), allows 2‐alkynoates to be prepared in high yields by an oxidative carbonylation of terminal alkynes and alcohols. The catalyst system overcomes many of the limitations of previous palladium carbonylation catalysts. It has an increased substrate scope, avoids large excesses of alcohol substrate and uses a desirable solvent. The catalyst employs oxygen as the terminal oxidant and can be operated under safer gas mixtures. PMID:27305489
Asymmetric Catalysis with bis(hydroxyphenyl)diamides/rare-earth metal complexes.
Kumagai, Naoya; Shibasaki, Masakatsu
2013-01-02
A series of asymmetric catalysts composed of conformationally flexible amide-based chiral ligands and rare-earth metals was developed for proton-transfer catalysis. These ligands derived from amino acids provide an intriguing chiral platform for the formation of asymmetric catalysts upon complexation with rare-earth metals. The scope of this arsenal of catalysts was further broadened by the development of heterobimetallic catalytic systems. The cooperative function of hydrogen bonding and metal coordination resulted in intriguing substrate specificity and stereocontrol, and the dynamic nature of the catalysts led to a switch of their function. Herein, we summarize our recent exploration of this class of catalysts. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Guoqiang; Feng, Ligang; Chang, Jinfa; Wickman, Björn; Grönbeck, Henrik; Liu, Changpeng; Xing, Wei
2014-12-01
Ethanol is an alternative fuel for direct alcohol fuel cells, in which the electrode materials are commonly based on Pt or Pd. Owing to the excellent promotion effect of Ni2 P that was found in methanol oxidation, we extended the catalyst system of Pt or Pd modified by Ni2 P in direct ethanol fuel cells. The Ni2 P-promoted catalysts were compared to commercial catalysts as well as to reference catalysts promoted with only Ni or only P. Among the studied catalysts, Pt/C and Pd/C modified by Ni2 P (30 wt %) showed both the highest activity and stability. Upon integration into the anode of a homemade direct ethanol fuel cell, the Pt-Ni2 P/C-30 % catalyst showed a maximum power density of 21 mW cm(-2) , which is approximately two times higher than that of a commercial Pt/C catalyst. The Pd-Ni2 P/C-30 % catalyst exhibited a maximum power density of 90 mW cm(-2) . This is approximately 1.5 times higher than that of a commercial Pd/C catalyst. The discharge stability on both two catalysts was also greatly improved over a 12 h discharge operation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Magnetic nanoparticles conjugated to chiral imidazolidinone as recoverable catalyst
NASA Astrophysics Data System (ADS)
Mondini, Sara; Puglisi, Alessandra; Benaglia, Maurizio; Ramella, Daniela; Drago, Carmelo; Ferretti, Anna M.; Ponti, Alessandro
2013-11-01
The immobilization of an ad hoc designed chiral imidazolidin-4-one onto iron oxide magnetic nanoparticles (MNPs) is described, to afford MNP-supported MacMillan's catalyst. Morphological and structural analysis of the materials, during preparation, use, and recycle, has been carried out by transmission electron microscopy. The supported catalyst was tested in the Diels-Alder reaction of cyclopentadiene with cinnamic aldehyde, affording the products in good yields and enantiomeric excesses up to 93 %, comparable to those observed with the non-supported catalyst. Recovery of the chiral catalyst has been successfully performed by simply applying an external magnet to achieve a perfect separation of the MNPs from the reaction product. The recycle of the catalytic system has been also investigated. Noteworthy, this immobilized MacMillan's catalyst proved to be able to efficiently promote the reaction in pure water.
Kilic, Hamdullah; Adam, Waldemar; Alsters, Paul L
2009-02-06
The catalytic oxidations of chiral allylic alcohols 2 by manganese complexes of the cyclic triamine 1,4,7-trimethyl-1,4,7-triazacyclononane (tmtacn) 1 and hydrogen peroxide as oxygen donor in the presence of co-catalyst are investigated to understand the factors that affect the catalyst selectivity. Chemoselectivity and diastereoselectivity of catalyst 1 are significantly affected by the structure of the allylic alcohol and the nature and amount of co-catalyst. More pronounced is the influence of the amount of added molar equivalents of H(2)O(2) (20-110 mol % with respect to the substrate). Our present results reflect the complex redox chemistry of the Mn catalyst 1/H(2)O(2)/co-catalyst system in the early phase of the alkene oxidation.
Posset, Tobias; Blümel, Janet
2006-07-05
The title technique, high-resolution magic angle spinning NMR of suspensions, constitutes a powerful new tool for investigating the structures and mobilities of immobilized species and, thus, for optimizing heterobimetallic catalyst systems, such as the Sonogashira coupling of terminal alkynes and aryl halides.
Jiang, Xiaowu; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin
2016-08-01
Photoinduced initiators for continuous activator regeneration atom transfer radical polymerization (ATRP) of hydrophilic monomers in heptane/ethanol latent-biphasic system for copper catalyst separation and recycling have been realized for the first time at room temperature with different wavelengths of visible light LED (green, blue, purple, and white LED) as external stimulus, using 2-bromophenylacetate as the ATRP initiator and camphorquinone/triethylamine as the photoinitiator. In this system, hybrid catalyst complex (HCc) is synthesized as a novel nonpolar catalyst, which is preferentially dissolved in heptane. The hydrophilic polymers obtained catalyzed by HCc in heptane/ethanol mixture solvent show typical "living" features, for example, the values of Mn,GPC increase linearly with monomer conversion up to quantitative level (>96%) and the molecular weight distributions were kept narrow (Mw /Mn < 1.20) throughout the polymerization process. It should be noted that the excellent controllability of this novel polymerization system can be achieved even after 5 catalyst recycling experiments under LED irradiation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fabbri, Emiliana; Pătru, Alexandra; Rabis, Annett; Kötz, Rüdiger; Schmidt, Thomas J
2014-01-01
The development of stable catalyst systems for application at the cathode side of polymer electrolyte fuel cells (PEFCs) requires the substitution of the state-of-the-art carbon supports with materials showing high corrosion resistance in a strongly oxidizing environment. Metal oxides in their highest oxidation state can represent viable support materials for the next generation PEFC cathodes. In the present work a multilevel approach has been adopted to investigate the kinetics and the activity of Pt nanoparticles supported on SnO2-based metal oxides. Particularly, model electrodes made of SnO2 thin films supporting Pt nanoparticles, and porous catalyst systems made of Pt nanoparticles supported on Sb-doped SnO2 high surface area powders have been investigated. The present results indicate that SnO2-based supports do not modify the oxygen reduction reaction mechanism on the Pt nanoparticle surface, but rather lead to catalysts with enhanced specific activity compared to Pt/carbon systems. Different reasons for the enhancement in the specific activity are considered and discussed.
Platinum Group Metal-free Catalysts for Hydrogen Evolution Reaction in Microbial Electrolysis Cells.
Yuan, Heyang; He, Zhen
2017-07-01
Hydrogen gas is a green energy carrier with great environmental benefits. Microbial electrolysis cells (MECs) can convert low-grade organic matter to hydrogen gas with low energy consumption and have gained a growing interest in the past decade. Cathode catalysts for the hydrogen evolution reaction (HER) present a major challenge for the development and future applications of MECs. An ideal cathode catalyst should be catalytically active, simple to synthesize, durable in a complex environment, and cost-effective. A variety of noble-metal free catalysts have been developed and investigated for HER in MECs, including Nickel and its alloys, MoS 2 , carbon-based catalysts and biocatalysts. MECs in turn can serve as a research platform to study the durability of the HER catalysts. This personal account has reviewed, analyzed, and discussed those catalysts with an emphasis on synthesis and modification, system performance and potential for practical applications. It is expected to provide insights into the development of HER catalysts towards MEC applications. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Methanol steam reforming promoted by molten salt-modified platinum on alumina catalysts.
Kusche, Matthias; Agel, Friederike; Ní Bhriain, Nollaig; Kaftan, Andre; Laurin, Mathias; Libuda, Jörg; Wasserscheid, Peter
2014-09-01
We herein describe a straight forward procedure to increase the performance of platinum-on-alumina catalysts in methanol steam reforming by applying an alkali hydroxide coating according to the "solid catalyst with ionic liquid layer" (SCILL) approach. We demonstrate by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature-programmed desorption (TPD) studies that potassium doping plays an important role in the catalyst activation. Moreover, the hygroscopic nature and the basicity of the salt modification contribute to the considerable enhancement in catalytic performance. During reaction, a partly liquid film of alkali hydroxides/carbonates forms on the catalyst/alumina surface, thus significantly enhancing the availability of water at the catalytically active sites. Too high catalyst pore fillings with salt introduce a considerable mass transfer barrier into the system as indicated by kinetic studies. Thus, the optimum interplay between beneficial catalyst modification and detrimental mass transfer effects had to be identified and was found on the applied platinum-on-alumina catalyst at KOH loadings around 7.5 mass%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
System Engineering Concept Demonstration, Effort Summary. Volume 1
1992-12-01
involve only the system software, user frameworks and user tools. U •User Tool....s , Catalyst oExternal 00 Computer Framwork P OSystems • •~ Sysytem...analysis, synthesis, optimization, conceptual design of Catalyst. The paper discusses the definition, design, test, and evaluation; operational concept...This approach will allow system engineering The conceptual requirements for the Process Model practitioners to recognize and tailor the model. This
Heterogeneous base catalysts for edible palm and non-edible Jatropha-based biodiesel production
2014-01-01
Background Transesterification catalyzed by solid base catalyst is a brilliant technology for the noble process featuring the fast reaction under mild reacting condition in biodiesel production. Heterogeneous base catalysts are generally more reactive than solid acid catalysts which require extreme operating condition for high conversion and biodiesel yield. In the present study, synthesis of biodiesel was studied by using edible (palm) or non-edible (Jatropha) feedstock catalyzed by heterogeneous base catalysts such as supported alkali metal (NaOH/Al2O3), alkaline-earth metal oxide (MgO, CaO and SrO) and mixed metal oxides catalysts (CaMgO and CaZnO). Results The chemical characteristic, textural properties, basicity profile and leaching test of synthesized catalysts were studied by using X-ray diffraction, BET measurement, TPD-CO2 and ICP-AES analysis, respectively. Transesterification activity of solid base catalysts showed that > 90% of palm biodiesel and > 80% of Jatropha biodiesel yield under 3 wt.% of catalyst, 3 h reaction time, methanol to oil ratio of 15:1 under 65°C. This indicated that other than physicochemical characteristic of catalysts; different types of natural oil greatly influence the catalytic reaction due to the presence of free fatty acids (FFAs). Conclusions Among the solid base catalysts, calcium based mixed metal oxides catalysts with binary metal system (CaMgO and CaZnO) showed capability to maintain the transesterification activity for 3 continuous runs at ~ 80% yield. These catalysts render high durability characteristic in transesterification with low active metal leaching for several cycles. PMID:24812574
Lee, You-Jin; Kim, Eun-Sang; Kim, Jeong-Rang; Kim, Joo-Wan; Kim, Tae-Wan; Chae, Ho-Jeong; Kim, Chul-Ung; Lee, Chang-Ha; Jeong, Soon-Yong
2016-05-01
Bi-functional catalysts were prepared using HY zeolites with various SiO2/Al2O3 ratios for acidic function, NiW for metallic function, and K for acidity control. 1-Methylnaphthalene was selected as a model compound for multi-ring aromatics in heavy oil, and its selective ring opening reaction was investigated using the prepared bi-functional catalysts with different levels of acidity in a fixed bed reactor system. In NiW/HY catalysts without K addition, the acidity decreased with the SiO2/Al2O3 mole ratio of the HY zeolite. Ni1.1W1.1/HY(12) catalyst showed the highest acidity but slightly lower yields for the selective ring opening than Ni1.1W1.1/HY(30) catalyst. The acidity of the catalyst seemed to play an important role as the active site for the selective ring opening of 1-methylnaphthalene but there should be some optimum catalyst acidity for the reaction. Catalyst acidity could be controlled between Ni1.1W1.1/HY(12) and Ni1.1W1.1/HY(30) by adding a moderate amount of K to Ni1.1W1.1/HY(12) catalyst. K0.3Ni1.1W1.1/HY(12) catalyst should have the optimum acidity for the selective ring opening. The addition of a moderate amount of K to the NiW/HY catalyst must improve the catalytic performance due to the optimization of catalyst acidity.
Solid fuel volatilization to produce synthesis gas
Schmidt, Lanny D.; Dauenhauer, Paul J.; Degenstein, Nick J.; Dreyer, Brandon J.; Colby, Joshua L.
2014-07-29
A method comprising contacting a carbon and hydrogen-containing solid fuel and a metal-based catalyst in the presence of oxygen to produce hydrogen gas and carbon monoxide gas, wherein the contacting occurs at a temperature sufficiently high to prevent char formation in an amount capable of stopping production of the hydrogen gas and the carbon monoxide gas is provided. In one embodiment, the metal-based catalyst comprises a rhodium-cerium catalyst. Embodiments further include a system for producing syngas. The systems and methods described herein provide shorter residence time and high selectivity for hydrogen and carbon monoxide.
Fu, Wen Gan
2018-05-02
Artificial photosynthesis has attracted wide attention, particularly the development of efficient solar light-driven methods to reduce CO2 to form energy-rich carbon-based products. Because CO2 reduction is an uphill process with a large energy barrier, suitable catalysts are necessary to achieve this transformation. In addition, CO2 adsorption on a catalyst and proton transfer to CO2 are two important factors for the conversion reaction,and catalysts with high surface area and more active sites are required to improve the efficiency of CO2 reduction. Here, we report a visible light-driven system for CO2-to-CO conversion that consists of a heterogeneous hybrid catalyst of Co and Co2P nanoparticles embedded in carbon nanolayers codoped with N and P (Co-Co2P@NPC) and a homogeneous Ru(II)-based complex photosensitizer. The average generation rate of CO of the system was up to 35,000 μmol h-1 g-1 with selectivity of 79.1% in 3 h. Linear CO production at an exceptionally high rate of 63,000 μmol h-1 g-1 was observed in the first hour of reaction. Inspired by this highly active catalyst, we also synthesized Co@NC and Co2P@NPC materials and explored their structure, morphology, and catalytic properties for CO2 photoreduction. The results showed that the nanoparticle size, partially adsorbed H2O molecules on the catalyst surface, and the hybrid nature of the systems influenced their photocatalytic CO2 reduction performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Quantifying ligand effects in high-oxidation-state metal catalysis
NASA Astrophysics Data System (ADS)
Billow, Brennan S.; McDaniel, Tanner J.; Odom, Aaron L.
2017-09-01
Catalysis by high-valent metals such as titanium(IV) impacts our lives daily through reactions like olefin polymerization. In any catalysis, optimization involves a careful choice of not just the metal but also the ancillary ligands. Because these choices dramatically impact the electronic structure of the system and, in turn, catalyst performance, new tools for catalyst development are needed. Understanding ancillary ligand effects is arguably one of the most critical aspects of catalyst optimization and, while parameters for phosphines have been used for decades with low-valent systems, a comparable system does not exist for high-valent metals. A new electronic parameter for ligand donation, derived from experiments on a high-valent chromium species, is now available. Here, we show that the new parameters enable quantitative determination of ancillary ligand effects on catalysis rate and, in some cases, even provide mechanistic information. Analysing reactions in this way can be used to design better catalyst architectures and paves the way for the use of such parameters in a host of high-valent processes.
ZnO nanoparticle catalysts for use in biodiesel production and method of making
Yan, Shuli; Salley, Steven O; Ng, K. Y. Simon
2014-11-25
A method of forming a biodiesel product and a heterogeneous catalyst system used to form said product that has a high tolerance for the presence of water and free fatty acids (FFA) in the oil feedstock is disclosed. This catalyst system may simultaneously catalyze both the esterification of FAA and the transesterification of triglycerides present in the oil feedstock. The catalyst system is comprised of a mixture of zinc oxide and a second metal oxide. The zinc oxide includes a mixture of amorphous zinc oxide and zinc oxide nanocrystals, the zinc nanocrystals having a mean grain size between about 20 and 80 nanometers with at least one of the nanocrystals including a mesopore having a diameter of about 5 to 15 nanometers. Preferably, the second metal oxide is a lanthanum oxide, the lanthanum oxide being selected as one from the group of La.sub.2CO.sub.5, LaOOH, and combinations or mixtures thereof.
Chambers, Matthew B; Wang, Xia; Elgrishi, Noémie; Hendon, Christopher H; Walsh, Aron; Bonnefoy, Jonathan; Canivet, Jérôme; Quadrelli, Elsje Alessandra; Farrusseng, David; Mellot-Draznieks, Caroline; Fontecave, Marc
2015-02-01
The first photosensitization of a rhodium-based catalytic system for CO2 reduction is reported, with formate as the sole carbon-containing product. Formate has wide industrial applications and is seen as valuable within fuel cell technologies as well as an interesting H2 -storage compound. Heterogenization of molecular rhodium catalysts is accomplished via the synthesis, post-synthetic linker exchange, and characterization of a new metal-organic framework (MOF) Cp*Rh@UiO-67. While the catalytic activities of the homogeneous and heterogeneous systems are found to be comparable, the MOF-based system is more stable and selective. Furthermore it can be recycled without loss of activity. For formate production, an optimal catalyst loading of ∼10 % molar Rh incorporation is determined. Increased incorporation of rhodium catalyst favors thermal decomposition of formate into H2 . There is no precedent for a MOF catalyzing the latter reaction so far. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Supported Dendrimer-Encapsulated Metal Clusters: Toward Heterogenizing Homogeneous Catalysts
Ye, Rong; Zhukhovitskiy, Aleksandr V.; Deraedt, Christophe V.; ...
2017-07-13
Recyclable catalysts, especially those that display selective reactivity, are vital for the development of sustainable chemical processes. Among available catalyst platforms, heterogeneous catalysts are particularly well-disposed toward separation from the reaction mixture via filtration methods, which renders them readily recyclable. Furthermore, heterogeneous catalysts offer numerous handles—some without homogeneous analogues—for performance and selectivity optimization. These handles include nanoparticle size, pore profile of porous supports, surface ligands and interface with oxide supports, and flow rate through a solid catalyst bed. Despite these available handles, however, conventional heterogeneous catalysts are themselves often structurally heterogeneous compared to homogeneous catalysts, which complicates efforts to optimizemore » and expand the scope of their reactivity and selectivity. Ongoing efforts in our laboratories are aimed to address the above challenge by heterogenizing homogeneous catalysts, which can be defined as the modification of homogeneous catalysts to render them in a separable (solid) phase from the starting materials and products. Specifically, we grow the small nanoclusters in dendrimers, a class of uniform polymers with the connectivity of fractal trees and generally radial symmetry. Thanks to their dense multivalency, shape persistence, and structural uniformity, dendrimers have proven to be versatile scaffolds for the synthesis and stabilization of small nanoclusters. Then these dendrimer-encapsulated metal clusters (DEMCs) are adsorbed onto mesoporous silica. Through this method, we have achieved selective transformations that had been challenging to accomplish in a heterogeneous setting, e.g., π-bond activation and aldol reactions. Extensive investigation into the catalytic systems under reaction conditions allowed us to correlate the structural features (e.g., oxidation states) of the catalysts and their activity. Moreover, we have demonstrated that supported DEMCs are also excellent catalysts for typical heterogeneous reactions, including hydrogenation and alkane isomerization. Critically, these investigations also confirmed that the supported DEMCs are heterogeneous and stable against leaching. Catalysts optimization is achieved through the modulation of various parameters. The clusters are oxidized (e.g., with PhICl 2) or reduced (e.g., with H 2) in situ. Changing the dendrimer properties (e.g., generation, terminal functional groups) is analogous to ligand modification in homogeneous catalysts, which affect both catalytic activity and selectivity. Similarly, pore size of the support is another factor in determining product distribution. In a flow reactor, the flow rate is adjusted to control the residence time of the starting material and intermediates, and thus the final product selectivity. Our approach to heterogeneous catalysis affords various advantages: (1) the catalyst system can tap into the reactivity typical to homogeneous catalysts, which conventional heterogeneous catalysts could not achieve; (2) unlike most homogeneous catalysts with comparable performance, the heterogenized homogeneous catalysts can be recycled; (3) improved activity or selectivity compared to conventional homogeneous catalysts is possible because of uniquely heterogeneous parameters for optimization. Here in this Account, we will briefly introduce metal clusters and describe the synthesis and characterizations of supported DEMCs. We will present the catalysis studies of supported DEMCs in both the batch and flow modes. Lastly, we will summarize the current state of heterogenizing homogeneous catalysis and provide future directions for this area of research.« less
Topalov, Angel A; Katsounaros, Ioannis; Meier, Josef C; Klemm, Sebastian O; Mayrhofer, Karl J J
2011-11-01
This paper describes a system for performing electrochemical catalyst testing where all hardware components are controlled simultaneously using a single LabVIEW-based software application. The software that we developed can be operated in both manual mode for exploratory investigations and automatic mode for routine measurements, by using predefined execution procedures. The latter enables the execution of high-throughput or combinatorial investigations, which decrease substantially the time and cost for catalyst testing. The software was constructed using a modular architecture which simplifies the modification or extension of the system, depending on future needs. The system was tested by performing stability tests of commercial fuel cell electrocatalysts, and the advantages of the developed system are discussed. © 2011 American Institute of Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favaro, Marco; Yang, Jinhui; Nappini, Silvia
Photoelectrochemical water splitting is a promising approach for renewable production of hydrogen from solar energy and requires interfacing advanced water-splitting catalysts with semiconductors. Understanding the mechanism of function of such electrocatalysts at the atomic scale and under realistic working conditions is a challenging, yet important, task for advancing efficient and stable function. This is particularly true for the case of oxygen evolution catalysts and, here, we study a highly active Co 3O 4/Co(OH) 2 biphasic electrocatalyst on Si by means of operando ambient-pressure X-ray photoelectron spectroscopy performed at the solid/liquid electrified interface. Spectral simulation and multiplet fitting reveal that themore » catalyst undergoes chemical-structural transformations as a function of the applied anodic potential, with complete conversion of the Co(OH) 2 and partial conversion of the spinel Co 3O 4 phases to CoO(OH) under precatalytic electrochemical conditions. Furthermore, we observe new spectral features in both Co 2p and O 1s core-level regions to emerge under oxygen evolution reaction conditions on CoO(OH). The operando photoelectron spectra support assignment of these newly observed features to highly active Co 4+ centers under catalytic conditions. Comparison of these results to those from a pure phase spinel Co 3O 4 catalyst supports this interpretation and reveals that the presence of Co(OH) 2 enhances catalytic activity by promoting transformations to CoO(OH). The direct investigation of electrified interfaces presented in this work can be extended to different materials under realistic catalytic conditions, thereby providing a powerful tool for mechanism discovery and an enabling capability for catalyst design.« less
Favaro, Marco; Yang, Jinhui; Nappini, Silvia; ...
2017-06-09
Photoelectrochemical water splitting is a promising approach for renewable production of hydrogen from solar energy and requires interfacing advanced water-splitting catalysts with semiconductors. Understanding the mechanism of function of such electrocatalysts at the atomic scale and under realistic working conditions is a challenging, yet important, task for advancing efficient and stable function. This is particularly true for the case of oxygen evolution catalysts and, here, we study a highly active Co 3O 4/Co(OH) 2 biphasic electrocatalyst on Si by means of operando ambient-pressure X-ray photoelectron spectroscopy performed at the solid/liquid electrified interface. Spectral simulation and multiplet fitting reveal that themore » catalyst undergoes chemical-structural transformations as a function of the applied anodic potential, with complete conversion of the Co(OH) 2 and partial conversion of the spinel Co 3O 4 phases to CoO(OH) under precatalytic electrochemical conditions. Furthermore, we observe new spectral features in both Co 2p and O 1s core-level regions to emerge under oxygen evolution reaction conditions on CoO(OH). The operando photoelectron spectra support assignment of these newly observed features to highly active Co 4+ centers under catalytic conditions. Comparison of these results to those from a pure phase spinel Co 3O 4 catalyst supports this interpretation and reveals that the presence of Co(OH) 2 enhances catalytic activity by promoting transformations to CoO(OH). The direct investigation of electrified interfaces presented in this work can be extended to different materials under realistic catalytic conditions, thereby providing a powerful tool for mechanism discovery and an enabling capability for catalyst design.« less
40 CFR 85.1512 - Admission of catalyst and O2 sensor-equipped vehicles.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Admission of catalyst and O2 sensor... Vehicles and Motor Vehicle Engines § 85.1512 Admission of catalyst and O2 sensor-equipped vehicles. (a)(1... system and/or O2 sensor; (iii) Is labeled in accordance with 40 CFR part 86, subpart A or subpart S, or...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutta, Abhijit; Schaidle, Joshua A.; Humbird, David
Ex situ catalytic fast pyrolysis of biomass is a promising route for the production of fungible liquid biofuels. There is significant ongoing research on the design and development of catalysts for this process. However, there are a limited number of studies investigating process configurations and their effects on biorefinery economics. Herein we present a conceptual process design with techno-economic assessment; it includes the production of upgraded bio-oil via fixed bed ex situ catalytic fast pyrolysis followed by final hydroprocessing to hydrocarbon fuel blendstocks. This study builds upon previous work using fluidized bed systems, as detailed in a recent design reportmore » led by the National Renewable Energy Laboratory (NREL/TP-5100-62455); overall yields are assumed to be similar, and are based on enabling future feasibility. Assuming similar yields provides a basis for easy comparison and for studying the impacts of areas of focus in this study, namely, fixed bed reactor configurations and their catalyst development requirements, and the impacts of an inline hot gas filter. A comparison with the fluidized bed system shows that there is potential for higher capital costs and lower catalyst costs in the fixed bed system, leading to comparable overall costs. The key catalyst requirement is to enable the effective transformation of highly oxygenated biomass into hydrocarbons products with properties suitable for blending into current fuels. Potential catalyst materials are discussed, along with their suitability for deoxygenation, hydrogenation and C–C coupling chemistry. This chemistry is necessary during pyrolysis vapor upgrading for improved bio-oil quality, which enables efficient downstream hydroprocessing; C–C coupling helps increase the proportion of diesel/jet fuel range product. One potential benefit of fixed bed upgrading over fluidized bed upgrading is catalyst flexibility, providing greater control over chemistry and product composition. Since this study is based on future projections, the impacts of uncertainties in the underlying assumptions are quantified via sensitivity analysis. As a result, this analysis indicates that catalyst researchers should prioritize by: carbon efficiency > catalyst cost > catalyst lifetime, after initially testing for basic operational feasibility.« less
Dutta, Abhijit; Schaidle, Joshua A.; Humbird, David; ...
2015-10-06
Ex situ catalytic fast pyrolysis of biomass is a promising route for the production of fungible liquid biofuels. There is significant ongoing research on the design and development of catalysts for this process. However, there are a limited number of studies investigating process configurations and their effects on biorefinery economics. Herein we present a conceptual process design with techno-economic assessment; it includes the production of upgraded bio-oil via fixed bed ex situ catalytic fast pyrolysis followed by final hydroprocessing to hydrocarbon fuel blendstocks. This study builds upon previous work using fluidized bed systems, as detailed in a recent design reportmore » led by the National Renewable Energy Laboratory (NREL/TP-5100-62455); overall yields are assumed to be similar, and are based on enabling future feasibility. Assuming similar yields provides a basis for easy comparison and for studying the impacts of areas of focus in this study, namely, fixed bed reactor configurations and their catalyst development requirements, and the impacts of an inline hot gas filter. A comparison with the fluidized bed system shows that there is potential for higher capital costs and lower catalyst costs in the fixed bed system, leading to comparable overall costs. The key catalyst requirement is to enable the effective transformation of highly oxygenated biomass into hydrocarbons products with properties suitable for blending into current fuels. Potential catalyst materials are discussed, along with their suitability for deoxygenation, hydrogenation and C–C coupling chemistry. This chemistry is necessary during pyrolysis vapor upgrading for improved bio-oil quality, which enables efficient downstream hydroprocessing; C–C coupling helps increase the proportion of diesel/jet fuel range product. One potential benefit of fixed bed upgrading over fluidized bed upgrading is catalyst flexibility, providing greater control over chemistry and product composition. Since this study is based on future projections, the impacts of uncertainties in the underlying assumptions are quantified via sensitivity analysis. As a result, this analysis indicates that catalyst researchers should prioritize by: carbon efficiency > catalyst cost > catalyst lifetime, after initially testing for basic operational feasibility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manos Mavrikakis; James A. Dumesic; Amit A. Gokhale
2005-03-22
Efforts during this first year focused on four areas: (1) searching/summarizing published FTS mechanistic and kinetic studies of FTS reactions on iron catalysts; (2) construction of mass spectrometer-TPD and Berty CSTR reactor systems; (3) preparation and characterization of unsupported iron and alumina-supported iron catalysts at various iron loadings (4) Determination of thermochemical parameters such as binding energies of reactive intermediates, heat of FTS elementary reaction steps, and kinetic parameters such as activation energies, and frequency factors of FTS elementary reaction steps on a number of model surfaces. Literature describing mechanistic and kinetic studies of Fischer-Tropsch synthesis on iron catalysts wasmore » compiled in a draft review. Construction of the mass spectrometer-TPD system is 90% complete and of a Berty CSTR reactor system 98% complete. Three unsupported iron catalysts and three alumina-supported iron catalysts were prepared by nonaqueous-evaporative deposition (NED) or aqueous impregnation (AI) and characterized by chemisorption, BET, extent-of-reduction, XRD, and TEM methods. These catalysts, covering a wide range of dispersions and metal loadings, are well-reduced and relatively thermally stable up to 500-600 C in H{sub 2}, thus ideal for kinetic and mechanistic studies. The alumina-supported iron catalysts will be used for kinetic and mechanistic studies. In the coming year, adsorption/desorption properties, rates of elementary steps, and global reaction rates will be measured for these catalysts, with and without promoters, providing a database for understanding effects of dispersion, metal loading, and support on elementary kinetic parameters and for validation of computational models that incorporate effects of surface structure and promoters. Furthermore, using state-of-the-art self-consistent Density Functional Theory (DFT) methods, we have extensively studied the thermochemistry and kinetics of various elementary steps on three different model surfaces: (1) Fe(110), (2) Fe(110) modified by subsurface C, and (3) Fe surface modified with Pt adatoms. These studies have yielded valuable insights into the reactivity of Fe surfaces for FTS, and provided accurate estimates for the effect of Fe modifiers such as subsurface C and surface Pt.« less
Advanced Catalysts for the Ambient Temperature Oxidation of Carbon Monoxide and Formaldehyde
NASA Technical Reports Server (NTRS)
Nalette, Tim; Eldridge, Christopher; Yu, Ping; Alpetkin, Gokhan; Graf, John
2010-01-01
The primary applications for ambient temperature carbon monoxide (CO) oxidation catalysts include emergency breathing masks and confined volume life support systems, such as those employed on the Shuttle. While Hopcalite is typically used in emergency breathing masks for terrestrial applications, in the 1970s, NASA selected a 2% platinum (Pt) on carbon for use on the Shuttle since it is more active and also more tolerant to water vapor. In the last 10-15 years there have been significant advances in ambient temperature CO oxidation catalysts. Langley Research Center developed a monolithic catalyst for ambient temperature CO oxidation operating under stoichiometric conditions for closed loop carbon dioxide (CO2) laser applications which is also advertised as having the potential to oxidize formaldehyde (HCHO) at ambient temperatures. In the last decade it has been discovered that appropriate sized nano-particles of gold are highly active for CO oxidation, even at sub-ambient temperatures, and as a result there has been a wealth of data reported in the literature relating to ambient/low temperature CO oxidation. In the shorter term missions where CO concentrations are typically controlled via ambient temperature oxidation catalysts, formaldehyde is also a contaminant of concern, and requires specially treated carbons such as Calgon Formasorb as untreated activated carbon has effectively no HCHO capacity. This paper examines the activity of some of the newer ambient temperature CO and formaldehyde (HCHO) oxidation catalysts, and measures the performance of the catalysts relative to the NASA baseline Ambient Temperature Catalytic Oxidizer (ATCO) catalyst at conditions of interest for closed loop trace contaminant control systems.
NASA Astrophysics Data System (ADS)
Yang, Henglong; Lung, Louis; Wei, Yu-Chien; Huang, Yi-Bo; Chen, Zi-Yu; Chou, Yu-Yang; Lin, Anne-Chin
2017-08-01
The feasibility of applying ultraviolet light-emitting diodes (UV-LED's) as triggering sources of photo-catalyst based on titanium dioxide (TiO2) nano-coating specifically for water-cleaning process in an aquaponics system was designed and proposed. The aquaponics system is a modern farming system to integrate aquaculture and hydroponics into a single system to establish an environmental-friendly and lower-cost method for farming fish and vegetable all together in urban area. Water treatment in an aquaponics system is crucial to avoid mutual contamination. we proposed a modularized watercleaning device composed of all commercially available components and parts to eliminate organic contaminants by using UV-LED's for TiO2 photo-catalyst reaction. This water-cleaning module consisted of two coaxial hollowed cylindrical pipes can be submerged completely in water for water treatment and cooling UV-LED's. The temperature of the UV-LED after proper thermal management can be reduced about 16% to maintain the optimal operation condition. Our preliminary experimental result by using Methylene Blue solution to simulate organic contaminants indicated that TiO2 photo-catalyst triggered by UV-LED's can effectively decompose organic compound and decolor Methylene Blue solution.
Zhao, Qingxia; Mao, Qiming; Zhou, Yaoyu; Wei, Jianhong; Liu, Xiaocheng; Yang, Junying; Luo, Lin; Zhang, Jiachao; Chen, Hong; Chen, Hongbo; Tang, Lin
2017-12-01
In recent years, advanced oxidation processes (AOPs), especially sulfate radical based AOPs have been widely used in various fields of wastewater treatment due to their capability and adaptability in decontamination. Recently, metal-free carbon materials catalysts in sulfate radical production has been more and more concerned because these materials have been demonstrated to be promising alternatives to conventional metal-based catalysts, but the review of metal-free catalysts is rare. The present review outlines the current state of knowledge on the generation of sulfate radical using metal-free catalysts including carbon nanotubes, graphene, mesoporous carbon, activated carbon, activated carbon fiber, nanodiamond. The mechanism such as the radical pathway and non-radical pathway, and factors influencing of the activation of sulfate radical was also be revealed. Knowledge gaps and research needs have been identified, which include the perspectives on challenges related to metal-free catalyst, heterogeneous metal-free catalyst/persulfate systems and their potential in practical environmental remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Surface studies of heterogeneous catalysts by time-of-flight secondary ion mass spectrometry.
Grams, Jacek
2010-01-01
The aim of this paper was to present potentialities of time-of-flight secondary ion mass spectrometry (ToF- SIMS) in the studies of heterogeneous catalysts. The results of ToF-SIMS investigations of Co/Al2O3, Mo/Al2O3, Co-Mo/Al2O3, Au/Al2O3, Pt/TiO2 and Pd/TiO2 systems were described. It was demonstrated that, in this case, an application of ToF-SIMS makes possible the determination of surface composition of investigated catalysts (including an identification of surface contaminants), characterization of interactions between an active phase and support, estimation of active phase dispersion on the analyzed surface, comparison of the degree of metal oxidation after treatment of the catalyst in different conditions, investigation of catalyst deactivation processes (formation of new chemical compounds, adsorption of various impurities and poisons on the catalyst surface) and determination of organic precursors of catalysts.
Binder, Andrew J.; Toops, Todd J.; Unocic, Raymond R.; ...
2015-09-11
Platinum group metal (PGM) catalysts are the current standard for control of pollutants in automotive exhaust streams. Aside from their high cost, PGM catalysts struggle with CO oxidation at low temperatures (<200 °C) due to inhibition by hydrocarbons in exhaust streams. Here we present a ternary mixed oxide catalyst composed of copper oxide, cobalt oxide, and ceria (dubbed CCC) that outperforms synthesized and commercial PGM catalysts for CO oxidation in simulated exhaust streams while showing no signs of inhibition by propene. Diffuse reflectance IR (DRIFTS) and light-off data both indicate low interaction between propene and the CO oxidation active sitemore » on this catalyst, and a separation of adsorption sites is proposed as the cause of this inhibition resistance. In conclusion, this catalyst shows great potential as a low-cost component for low temperature exhaust streams that are expected to be a characteristic of future automotive systems.« less
NASA Astrophysics Data System (ADS)
Son, Youn-Suk; Kim, Ki-Joon; Kim, Ji-Yong; Kim, Jo-Chun
2010-12-01
We applied a hybrid technique to assess the decomposition characteristics of ethylbenzene and toluene that annexed the catalyst technique with existing electron beam (EB) technology. The removal efficiency of ethylbenzene in the EB-catalyst hybrid turned out to be 30% greater than that of EB-only treatment. We concluded that ethylbenzene was decomposed more easily than toluene by EB irradiation. We compared the independent effects of the EB-catalyst hybrid and catalyst-only methods, and observed that the efficiency of the EB-catalyst hybrid demonstrated approximately 6% improvement for decomposing toluene and 20% improvement for decomposing ethylbenzene. The G-values for ethylbenzene increased with initial concentration and reactor type: for example, the G-values by reactor type at 2800 ppmC were 7.5-10.9 (EB-only) and 12.9-25.7 (EB-catalyst hybrid). We also observed a significant decrease in by-products as well as in the removal efficiencies associated with the EB-catalyst hybrid technique.
Yuan, Yong-Jun; Lu, Hong-Wei; Tu, Ji-Ren; Fang, Yong; Yu, Zhen-Tao; Fan, Xiao-Xing; Zou, Zhi-Gang
2015-10-05
The complex [Ni(bpy)3](2+) (bpy=2,2'-bipyridine) is an active catalyst for visible-light-driven H2 production from water when employed with [Ir(dfppy)2 (Hdcbpy)] [dfppy=2-(3,4-difluorophenyl)pyridine, Hdcbpy=4-carboxy-2,2'-bipyridine-4'-carboxylate] as the photosensitizer and triethanolamine as the sacrificial electron donor. The highest turnover number of 520 with respect to the nickel(II) catalyst is obtained in a 8:2 acetonitrile/water solution at pH 9. The H2 -evolution system is more stable after the addition of an extra free bpy ligand, owing to faster catalyst regeneration. The photocatalytic results demonstrate that the nickel(II) polypyridyl catalyst can act as a more effective catalyst than the commonly utilized [Co(bpy)3 ](2+). This study may offer a new paradigm for constructing simple and noble-metal-free catalysts for photocatalytic hydrogen production. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The United States Army Medical Department Journal. April-June 2010
2010-06-01
AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) US Army Medical Department...change catalyst, conflict management, building bonds, collaboration and cooperation, and teamwork ). Given the goals of the workshop, the mentoring...do just that—provide medical professionals with a multitude of resiliency building skills to enhance their resiliency framework over time across
Gavia, Diego J.
2015-01-01
This Minireview summarizes a variety of intriguing catalytic studies accomplished by employing unsupported, either solubilized or freely mobilized, and small organic ligand-capped palladium nanoparticles as catalysts. Small organic ligands are gaining more attention as nanoparticle stabilizers and alternates to larger organic supports, such as polymers and dendrimers, owing to their tremendous potential for a well-defined system with spatial control in surrounding environments of reactive surfaces. The nanoparticle catalysts are grouped depending on the type of surface stabilizers with reactive head groups, which include thiolate, phosphine, amine, and alkyl azide. Applications for the reactions such as hydrogenation, alkene isomerization, oxidation, and carbon-carbon cross coupling reactions are extensively discussed. The systems defined as “ligandless” Pd nanoparticle catalysts and solvent (e.g. ionic liquid)-stabilized Pd nanoparticle catalysts are not discussed in this review. PMID:25937846
A Dual-Catalysis Approach to Enantioselective [2+2] Photocycloadditions Using Visible Light
Du, Juana; Skubi, Kazimer L.; Schultz, Danielle M.; Yoon, Tehshik P.
2015-01-01
In contrast to the wealth of catalytic systems that are available to control the stereochemistry of thermally promoted cycloadditions, few similarly effective methods exist for the stereocontrol of photochemical cycloadditions. A major unsolved challenge in the design of enantioselective catalytic photocycloaddition reactions has been the difficulty of controlling racemic background reactions that occur by direct photoexcitation of substrates while unbound to catalyst. Here we describe a strategy for eliminating the racemic background reaction in asymmetric [2+2] photocycloadditions of α,β-unsaturated ketones to the corresponding cyclobutanes by employing a dual-catalyst system consisting of a visible light-absorbing transition metal photocatalyst and a stereocontrolling Lewis acid co-catalyst. The independence of these two catalysts enables broader scope, greater stereochemical flexibility, and better efficiency than previously reported methods for enantioselective photochemical cycloadditions. PMID:24763585
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
A system according to the principles of the present disclosure includes an air/fuel ratio determination module and an emission level determination module. The air/fuel ratio determination module determines an air/fuel ratio based on input from an air/fuel ratio sensor positioned downstream from a three-way catalyst that is positioned upstream from a selective catalytic reduction (SCR) catalyst. The emission level determination module selects one of a predetermined value and an input based on the air/fuel ratio. The input is received from a nitrogen oxide sensor positioned downstream from the three-way catalyst. The emission level determination module determines an ammonia level basedmore » on the one of the predetermined value and the input received from the nitrogen oxide sensor.« less
Recent Advances in the Application of Magnetic Nanoparticles as a Support for Homogeneous Catalysts
Govan, Joseph; Gun’ko, Yurii K.
2014-01-01
Magnetic nanoparticles are a highly valuable substrate for the attachment of homogeneous inorganic and organic containing catalysts. This review deals with the very recent main advances in the development of various nanocatalytic systems by the immobilisation of homogeneous catalysts onto magnetic nanoparticles. We discuss magnetic core shell nanostructures (e.g., silica or polymer coated magnetic nanoparticles) as substrates for catalyst immobilisation. Then we consider magnetic nanoparticles bound to inorganic catalytic mesoporous structures as well as metal organic frameworks. Binding of catalytically active small organic molecules and polymers are also reviewed. After that we briefly deliberate on the binding of enzymes to magnetic nanocomposites and the corresponding enzymatic catalysis. Finally, we draw conclusions and present a future outlook for the further development of new catalytic systems which are immobilised onto magnetic nanoparticles. PMID:28344220
Wang, Bo; Zhu, Jianpeng; Ma, Hongzhu
2009-05-15
Thiophene, due to its poison, together with its combustion products which causes air pollution and highly toxic characteristic itself, attracted more and more attention to remove from gasoline and some high concentration systems. As the purpose of achieving the novel method of de-thiophene assisted by SO(4)(2-)/ZrO(2) (SZ), three reactions about thiophene in different atmosphere at room temperature and atmospheric pressure were investigated. SO(4)(2-)/ZrO(2) catalyst were synthesized and characterized by X-ray photoelectron spectroscopy (XPS), Fourier transformation infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscope (SEM). The products were detected by gas chromatography-mass spectrometry (GC-MS). XP spectra show that ozone-catalyst system (SZO) have two forms of sulfur element (S(6+) and S(2-)) on the catalyst surface, which distinguished from that of air-catalyst system (SZA) and blank-catalyst system (SZB) (S(6+)). And the results of GC-MS exhibited that some new compounds has been produced under this extremely mild condition. Especially, many kinds of sulfur compounds containing oxygen, that is easier to be extracted by oxidative desulfurization (ODS), have been detected in the SZA-1.5h and SZB-3h system. In addition, some long chain hydrocarbons have also been detected. While in SZO-0.5h system, only long chain hydrocarbons were found. The results show that total efficiency of desulfurization from thiophene with ozone near to 100% can be obtained with the SO(4)(2-)/ZrO(2) catalytic oxidation reaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Cheol-Woo W.; Kwak, Ja Hun; Peden, Charles H.F.
2007-09-21
Modern surface science techniques have been commonly applied to understand issues arising from practical catalytic systems.[1-4] However, the applicability of most of the results obtained from model systems has been limited, due, primarily, to the vastly different conditions studies on model and practical systems are carried out (catalyst composition, reaction conditions etc.).[5, 6] Therefore, the need to conduct experiments on compositionally similar systems (model and practical) is necessary to obtain valuable information on the workings of real catalysts. In this communication we demonstrate the utility of surface science studies on model catalysts in understanding the properties of high surface area,more » BaO-based NO x storage-reduction (NSR) catalysts.[7] We present evidence for the facile formation of surface barium aluminate-like species even at very low coverages of BaO. This Ba-aluminate layer, however, can react with NO 2 resulting in the formation of a bulk-like Ba(NO 3) 2 phase. In order to construct model catalysts that are representative of the practical NO x storage systems, we first needed to estimate the BaO covareges on the high surface area catalysts. Since the publication of the work by Fanson et al.[8], BaO loadings of 8 – 10 wt.% on a γ-alumina support (200 m 2/g) have been regarded as corresponding to one monolayer (ML) coverage, based on the unit cell size of bulk BaO. The coverage equivalent of one ML, however, was significantly underestimated. Assuming complete spreading of the BaO layer and using a Ba–O distance of ~ 2.77 Å (one unit of BaO occupies 1.53 × 10 -19 m 2), 10 wt.% loading of BaO would cover only about 1/3 of the alumina surface. Table 1 shows our calculated estimates of two-dimensional BaO coverages as a function of loading on a -Al 2O 3 surface (200 m 2/g) based on the lattice parameters of bulk BaO[9] (5.54 Å). Based on these values, for our model system studies we prepared BaO/Al 2O 3/NiAl(110) materials in which the BaO coverages were very close to those of 4, 8, and 20 wt.% BaO/γ-Al 2O 3 high surface area catalysts used in prior studies.« less
Gao, Wenpei; Hood, Zachary D; Chi, Miaofang
2017-04-18
Developing novel catalysts with high efficiency and selectivity is critical for enabling future clean energy conversion technologies. Interfaces in catalyst systems have long been considered the most critical factor in controlling catalytic reaction mechanisms. Interfaces include not only the catalyst surface but also interfaces within catalyst particles and those formed by constructing heterogeneous catalysts. The atomic and electronic structures of catalytic surfaces govern the kinetics of binding and release of reactant molecules from surface atoms. Interfaces within catalysts are introduced to enhance the intrinsic activity and stability of the catalyst by tuning the surface atomic and chemical structures. Examples include interfaces between the core and shell, twin or domain boundaries, or phase boundaries within single catalyst particles. In supported catalyst nanoparticles (NPs), the interface between the metallic NP and support serves as a critical tuning factor for enhancing catalytic activity. Surface electronic structure can be indirectly tuned and catalytically active sites can be increased through the use of supporting oxides. Tuning interfaces in catalyst systems has been identified as an important strategy in the design of novel catalysts. However, the governing principle of how interfaces contribute to catalyst behavior, especially in terms of interactions with intermediates and their stability during electrochemical operation, are largely unknown. This is mainly due to the evolving nature of such interfaces. Small changes in the structural and chemical configuration of these interfaces may result in altering the catalytic performance. These interfacial arrangements evolve continuously during synthesis, processing, use, and even static operation. A technique that can probe the local atomic and electronic interfacial structures with high precision while monitoring the dynamic interfacial behavior in situ is essential for elucidating the role of interfaces and providing deeper insight for fine-tuning and optimizing catalyst properties. Scanning transmission electron microscopy (STEM) has long been a primary characterization technique used for studying nanomaterials because of its exceptional imaging resolution and simultaneous chemical analysis. Over the past decade, advances in STEM, that is, the commercialization of both aberration correctors and monochromators, have significantly improved the spatial and energy resolution. Imaging atomic structures with subangstrom resolution and identifying chemical species with single-atom sensitivity are now routine for STEM. These advancements have greatly benefitted catalytic research. For example, the roles of lattice strain and surface elemental distribution and their effect on catalytic stability and reactivity have been well documented in bimetallic catalysts. In addition, three-dimensional atomic structures revealed by STEM tomography have been integrated in theoretical modeling for predictive catalyst NP design. Recent developments in stable electronic and mechanical devices have opened opportunities to monitor the evolution of catalysts in operando under synthesis and reaction conditions; high-speed direct electron detectors have achieved sub-millisecond time resolutions and allow for rapid structural and chemical changes to be captured. Investigations of catalysts using these latest microscopy techniques have provided new insights into atomic-level catalytic mechanisms. Further integration of new microscopy methods is expected to provide multidimensional descriptions of interfaces under relevant synthesis and reaction conditions. In this Account, we discuss recent insights on understanding catalyst activity, selectivity, and stability using advanced STEM techniques, with an emphasis on how critical interfaces dictate the performance of precious metal-based heterogeneous catalysts. The role of extended interfacial structures, including those between core and shell, between separate phases and twinned grains, between the catalyst surface and gas, and between metal and support are discussed. We also provide an outlook on how emerging electron microscopy techniques, such as vibrational spectroscopy and electron ptychography, will impact future catalysis research.
Process for magnetic beneficiating petroleum cracking catalyst
Doctor, R.D.
1993-10-05
A process is described for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded. 1 figures.
Process for magnetic beneficiating petroleum cracking catalyst
Doctor, Richard D.
1993-01-01
A process for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded.
The Variation of Catalyst and Carrier Gas on Anisole Deoxygenation Reaction
NASA Astrophysics Data System (ADS)
Ariyani, D.; Dwi Nugrahaningtyas, Khoirina; Heraldy, E.
2018-03-01
This research aims to determine the best catalyst and carrier gas in anisole deoxygenation reaction. The reaction was carried out over a flow system with a variation of catalyst CoMo A (CoMo/USY reduction), CoMo B (CoMo/USY oxidation-reduction), and CoMo C (CoMo/ZAA oxidation-reduction). In addition, variation of carrier gas nitrogen and hydrogen was investigated. The result was analyzed using Gas Chromatography-Mass Spectroscopy (GC-MS). The deoxygenation anisole result showed that CoMo A catalyst with hydrogen as the carrier gas has the highest total product yield (50.72 %), intermediate product yield (38.49 % in phenol and 6.99 % in benzaldehyde), and deoxygenation yield (5.24 %). The CoMo C catalyst exhibited the most selective deoxygenation product. The nitrogen carrier gas with the CoMo C catalyst has the best selectivity of benzene product (93.92 %).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binder, Andrew J.; Toops, Todd J.; Unocic, Raymond R.
Platinum group metal (PGM) catalysts are the current standard for control of pollutants in automotive exhaust streams. Aside from their high cost, PGM catalysts struggle with CO oxidation at low temperatures (<200 °C) due to inhibition by hydrocarbons in exhaust streams. Here we present a ternary mixed oxide catalyst composed of copper oxide, cobalt oxide, and ceria (dubbed CCC) that outperforms synthesized and commercial PGM catalysts for CO oxidation in simulated exhaust streams while showing no signs of inhibition by propene. Diffuse reflectance IR (DRIFTS) and light-off data both indicate low interaction between propene and the CO oxidation active sitemore » on this catalyst, and a separation of adsorption sites is proposed as the cause of this inhibition resistance. In conclusion, this catalyst shows great potential as a low-cost component for low temperature exhaust streams that are expected to be a characteristic of future automotive systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Rong; Zhukhovitskiy, Aleksandr V.; Deraedt, Christophe V.
Recyclable catalysts, especially those that display selective reactivity, are vital for the development of sustainable chemical processes. Among available catalyst platforms, heterogeneous catalysts are particularly well-disposed toward separation from the reaction mixture via filtration methods, which renders them readily recyclable. Furthermore, heterogeneous catalysts offer numerous handles—some without homogeneous analogues—for performance and selectivity optimization. These handles include nanoparticle size, pore profile of porous supports, surface ligands and interface with oxide supports, and flow rate through a solid catalyst bed. Despite these available handles, however, conventional heterogeneous catalysts are themselves often structurally heterogeneous compared to homogeneous catalysts, which complicates efforts to optimizemore » and expand the scope of their reactivity and selectivity. Ongoing efforts in our laboratories are aimed to address the above challenge by heterogenizing homogeneous catalysts, which can be defined as the modification of homogeneous catalysts to render them in a separable (solid) phase from the starting materials and products. Specifically, we grow the small nanoclusters in dendrimers, a class of uniform polymers with the connectivity of fractal trees and generally radial symmetry. Thanks to their dense multivalency, shape persistence, and structural uniformity, dendrimers have proven to be versatile scaffolds for the synthesis and stabilization of small nanoclusters. Then these dendrimer-encapsulated metal clusters (DEMCs) are adsorbed onto mesoporous silica. Through this method, we have achieved selective transformations that had been challenging to accomplish in a heterogeneous setting, e.g., π-bond activation and aldol reactions. Extensive investigation into the catalytic systems under reaction conditions allowed us to correlate the structural features (e.g., oxidation states) of the catalysts and their activity. Moreover, we have demonstrated that supported DEMCs are also excellent catalysts for typical heterogeneous reactions, including hydrogenation and alkane isomerization. Critically, these investigations also confirmed that the supported DEMCs are heterogeneous and stable against leaching. Catalysts optimization is achieved through the modulation of various parameters. The clusters are oxidized (e.g., with PhICl 2) or reduced (e.g., with H 2) in situ. Changing the dendrimer properties (e.g., generation, terminal functional groups) is analogous to ligand modification in homogeneous catalysts, which affect both catalytic activity and selectivity. Similarly, pore size of the support is another factor in determining product distribution. In a flow reactor, the flow rate is adjusted to control the residence time of the starting material and intermediates, and thus the final product selectivity. Our approach to heterogeneous catalysis affords various advantages: (1) the catalyst system can tap into the reactivity typical to homogeneous catalysts, which conventional heterogeneous catalysts could not achieve; (2) unlike most homogeneous catalysts with comparable performance, the heterogenized homogeneous catalysts can be recycled; (3) improved activity or selectivity compared to conventional homogeneous catalysts is possible because of uniquely heterogeneous parameters for optimization. Here in this Account, we will briefly introduce metal clusters and describe the synthesis and characterizations of supported DEMCs. We will present the catalysis studies of supported DEMCs in both the batch and flow modes. Lastly, we will summarize the current state of heterogenizing homogeneous catalysis and provide future directions for this area of research.« less
Develop and test fuel cell powered on-site integrated total energy system
NASA Technical Reports Server (NTRS)
Kaufman, A.; Johnson, G. K.
1982-01-01
Satisfactory performance is reported for the first 12-cell sub-stack of the 5 kW rebuild using improved ABA reactant distribution plates. Construction and test results are described for the first full-sized single-cell test (0.33 m x 0.56 m). Test duration was 450 hours. Plans are outlined for construction and testing of two methanol reformer units based on commercially-available shell-and-tube heat exchangers. A 5 kW-equivalent precursor and a 50 kW-equivalent prototype will be built. Supporting design and single-tube experimental data are presented. Stack support efforts are summarized on corrosion currents of graphite materials and acid-management of single-cell test facilities. Comparative properties are summarized for the two methanol/steam reforming catalysts evauated under Task V (now completed); T2107RS and C70-2RS.
Code of Federal Regulations, 2011 CFR
2011-07-01
... entering the scrubber during coke burn-off and catalyst rejuvenation; and continuous parameter monitoring system to measure and record gas flow rate entering or exiting the scrubber during coke burn-off and... alkalinity of the water (or scrubbing liquid) exiting the scrubber during coke burn-off and catalyst...
Code of Federal Regulations, 2012 CFR
2012-07-01
... scrubbing liquid) flow rate entering the scrubber during coke burn-off and catalyst rejuvenation; and... during coke burn-off and catalyst rejuvenation 1; and continuous parameter monitoring system to measure and record the pH or alkalinity of the water (or scrubbing liquid) exiting the scrubber during coke...
Code of Federal Regulations, 2014 CFR
2014-07-01
... scrubbing liquid) flow rate entering the scrubber during coke burn-off and catalyst rejuvenation; and... during coke burn-off and catalyst rejuvenation 1; and continuous parameter monitoring system to measure and record the pH or alkalinity of the water (or scrubbing liquid) exiting the scrubber during coke...
Code of Federal Regulations, 2013 CFR
2013-07-01
... scrubbing liquid) flow rate entering the scrubber during coke burn-off and catalyst rejuvenation; and... during coke burn-off and catalyst rejuvenation 1; and continuous parameter monitoring system to measure and record the pH or alkalinity of the water (or scrubbing liquid) exiting the scrubber during coke...
Design and fabrication of a four-man capacity urine wick evaporator system
NASA Technical Reports Server (NTRS)
1979-01-01
The integrated system was tested to determine the performance characteristics and limitations of the dual catalyst concept. The primary objective of the dual catalyst concept is to remove ammonia and other noxious substances in the gas phase and thereby eliminate the need for and current practice of chemically or electrochemically pretreating urine prior to distillation.
"Catalyst Data": Perverse Systemic Effects of Audit and Accountability in Australian Schooling
ERIC Educational Resources Information Center
Lingard, Bob; Sellar, Sam
2013-01-01
This paper examines the perverse effects of the new accountability regime central to the Labor government's national reform agenda in schooling. The focus is on National Assessment Program -- Literacy and Numeracy (NAPLAN) results that now act as "catalyst data" and are pivotal to school and system accountability. We offer a case study,…
Use of ionic liquids as coordination ligands for organometallic catalysts
Li, Zaiwei [Moreno Valley, CA; Tang, Yongchun [Walnut, CA; Cheng,; Jihong, [Arcadia, CA
2009-11-10
Aspects of the present invention relate to compositions and methods for the use of ionic liquids with dissolved metal compounds as catalysts for a variety of chemical reactions. Ionic liquids are salts that generally are liquids at room temperature, and are capable of dissolving a many types of compounds that are relatively insoluble in aqueous or organic solvent systems. Specifically, ionic liquids may dissolve metal compounds to produce homogeneous and heterogeneous organometallic catalysts. One industrially-important chemical reaction that may be catalyzed by metal-containing ionic liquid catalysts is the conversion of methane to methanol.
Simultaneous absorption of NO and SO2 into hexamminecobalt(II)/iodide solution.
Long, Xiang-Li; Xiao, Wen-De; Yuan, Wei-kang
2005-05-01
An innovative catalyst system has been developed to simultaneously remove NO and SO2 from combustion flue gas. Such catalyst system may be introduced to the scrubbing solution using ammonia solution to accomplish sequential absorption and catalytic oxidation of both NO and SO2 in the same reactor. When the catalyst system is utilized for removing NO and SO2 from the flue gas, Co(NH3)(6)2+ ions act as the catalyst and I- as the co-catalyst. Dissolved oxygen, in equilibrium with the residual oxygen in the flue gas, is the oxidant. The overall removal process is further enhanced by UV irradiation at 365 nm. More than 95% of NO is removed at a feed concentration of 250-900 ppm, and nearly 100% of SO2 is removed at a feed concentration of 800-2500 ppm. The sulfur dioxide co-existing in the flue gas is beneficial to NO absorption into hexamminecobalt(II)/iodide solution. NO and SO2 can be converted to ammonium sulfate and ammonium nitrate that can be used as fertilizer materials. The process described here demonstrates the feasibility of removing SO2 and NO simultaneously only by retrofitting the existing wet ammonia flue-gas-desulfurization (FGD) scrubbers.
Liu, Xuejun; Piao, Xianglan; Wang, Yujun; Zhu, Shenlin
2010-03-25
Modeling of the transesterification of vegetable oils to biodiesel using a solid base as a catalyst is very important because the mutual solubilities of oil and methanol will increase with the increasing biodiesel yield. The heterogeneous liquid-liquid-solid reaction system would become a liquid-solid system when the biodiesel reaches a certain content. In this work, we adopted a two-film theory and a steady state approximation assumption, then established a heterogeneous liquid-liquid-solid model in the first stage. After the diffusion coefficients on the liquid-liquid interface and the liquid-solid interface were calculated on the basis of the properties of the system, the theoretical value of biodiesel productivity changing with time was obtained. The predicted values were very near the experimental data, which indicated that the proposed models were suitable for the transesterification of soybean oil to biodiesel when solid bases were used as catalysts. Meanwhile, the model indicated that the transesterification reaction was controlled by both mass transfer and reaction. The total resistance will decrease with the increase in biodiesel yield in the liquid-liquid-solid stage. The solid base catalyst exhibited an activation energy range of 9-20 kcal/mol, which was consistent with the reported activation energy range of homogeneous catalysts.
Zang, Hongjun; Chen, Eugene Y X
2015-03-30
There is increasing interest in the upgrading of C5 furfural (FF) and C6 5-hydroxymethyl furfural (HMF) into C10 and C12 furoins as higher energy-density intermediates for renewable chemicals, materials, and biofuels. This work utilizes the organocatalytic approach, using the in situ generated N,S-heterocyclic carbene catalyst derived from thiazolium ionic liquids (ILs), to achieve highly efficient self-coupling reactions of FF and HMF. Specifically, variations of the thiazolium IL structure have led to the most active and efficient catalyst system of the current series, which is derived from a new thiazolium IL carrying the electron-donating acetate group at the 5-ring position. For FF coupling by this IL (0.1 mol %, 60 °C, 1 h), when combined with Et3N, furoin was obtained in >99% yield. A 97% yield of the C12 furoin was also achieved from the HMF coupling by this catalyst system (10 mol % loading, 120 °C, 3 h). On the other hand, the thiazolium IL bearing the electron-withdrawing group at the 5-ring position is the least active and efficient catalyst. The mechanistic aspects of the coupling reaction by the thiazolium catalyst system have also been examined and a mechanism has been proposed.
Audemar, Maïté; Ciotonea, Carmen; De Oliveira Vigier, Karine; Royer, Sébastien; Ungureanu, Adrian; Dragoi, Brindusa; Dumitriu, Emil; Jérôme, François
2015-06-08
The hydrogenation of furfural to furfuryl alcohol was performed in the presence of a Co/SBA-15 catalyst. High selectivity (96 %) at a conversion higher than 95 % is reported over this catalytic system. As the conversion of furfural to furfuryl alcohol occurs over metallic Co sites, the effect of reduction temperature, H2 pressure, and reaction temperature were studied. Optimum reaction conditions were: 150 °C, 1.5 h, 2.0 MPa of H2 . The catalyst was recyclable, and furfuryl alcohol was recovered with a purity higher than 90 %. The effect of the solvent concentration was also studied. With a minimum of 50 wt % of solvent, the selectivity to furfuryl alcohol and the conversion of furfural remained high (both over 80 %). Likewise, the activity of the catalyst is maintained even in pure furfural, which confirms the real potential of the proposed catalytic system. This catalyst was also used in the hydrogenation of levulinic acid to produce γ-valerolactone selectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James K. Neathery; Gary Jacobs; Burtron H. Davis
In this reporting period, a fundamental filtration study was started to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. Slurry-phase FTS in slurry bubble column reactor systems is the preferred mode of production since the reaction is highly exothermic. Consequently, heavy wax products must be separated from catalyst particles before being removed from the reactor system. Achieving an efficient wax product separation from iron-based catalysts is one of the most challenging technical problems associated with slurry-phase FTS. The separation problem is further compounded by catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbonmore » particles. Existing pilot-scale equipment was modified to include a filtration test apparatus. After undergoing an extensive plant shakedown period, filtration tests with cross-flow filter modules using simulant FTS wax slurry were conducted. The focus of these early tests was to find adequate mixtures of polyethylene wax to simulate FTS wax. Catalyst particle size analysis techniques were also developed. Initial analyses of the slurry and filter permeate particles will be used by the research team to design improved filter media and cleaning strategies.« less
Innocenzi, Plinio; Malfatti, Luca; Carboni, Davide; Takahashi, Masahide
2015-06-22
The in situ observation of a sol-to-gel transition in fast evaporating systems is a challenging task and the lack of a suitable experimental design, which includes the chemistry and the analytical method, has limited the observations. We synthesise an acidic sol, employing only tetraethylorthosilicate, SiCl4 as catalyst and deuterated water; the absence of water added to the sol allows us to follow the absorption from the external environment and the evaporation of deuterated water. The time-resolved data, obtained by attenuated total reflection infrared spectroscopy on an evaporating droplet, enables us to identify four different stages during evaporation. They are linked to specific hydrolysis and condensation rates that affect the uptake of water from external environment. The second stage is characterized by a decrease in hydroxyl content, a fast rise of condensation rate and an almost stationary absorption of water. This stage has been associated with the sol-to-gel transition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Amende, Max; Kaftan, Andre; Bachmann, Philipp; Brehmer, Richard; Preuster, Patrick; Koch, Marcus; Wasserscheid, Peter; Libuda, Jörg
2016-01-01
The Liquid Organic Hydrogen Carrier (LOHC) concept offers an efficient route to store hydrogen using organic compounds that are reversibly hydrogenated and dehydrogenated. One important challenge towards application of the LOHC technology at a larger scale is to minimize degradation of Pt-based dehydrogenation catalysts during long-term operation. Herein, we investigate the regeneration of Pt/alumina catalysts poisoned by LOHC degradation. We combine ultrahigh vacuum (UHV) studies on Pt(111), investigations on well-defined Pt/Al2O3 model catalysts, and near-ambient pressure (NAP) measurements on real coreshell Pt/Al2O3 catalyst pellets. The catalysts were purposely poisoned by reaction with the LOHC perhydro-dibenzyltoluene (H18-MSH) and with dicyclohexylmethane (DCHM) as a simpler model compound. We focus on oxidative regeneration under conditions that may be applied in real dehydrogenation reactors. The degree of poisoning and regeneration under oxidative reaction conditions was quantified using CO as a probe molecule and measured by infrared reflection-absorption spectroscopy (IRAS) and diffuse reflectance Fourier transform IR spectroscopy (DRIFTS) for planar model systems and real catalysts, respectively. We find that regeneration strongly depends on the composition of the catalyst surface. While the clean surface of a poisoned Pt(111) single crystal is fully restored upon thermal treatment in oxygen up to 700 K, contaminated Pt/Al2O3 model catalyst and coreshell pellet were only partially restored under the applied reaction conditions. Whereas partial regeneration on facet-like sites on supported catalysts is more facile than on Pt(111), carbonaceous deposits adsorbed at low-coordinated defect sites impede full regeneration of the Pt/Al2O3 catalysts.
NiFe(C2O4)x as a heterogeneous Fenton catalyst for removal of methyl orange.
Liu, Yucan; Zhang, Guangming; Chong, Shan; Zhang, Nan; Chang, Huazhen; Huang, Ting; Fang, Shunyan
2017-05-01
This paper studies a heterogeneous Fenton catalyst NiFe(C 2 O 4 ) x , which showed better catalytic activity than Ni(C 2 O 4 ) x and better re-usability than Fe(C 2 O 4 ) x . The methyl orange removal efficiency was 98% in heterogeneous Fenton system using NiFe(C 2 O 4 ) x . The prepared NiFe(C 2 O 4 ) x had a laminated shape and the size was in the range of 2-4 μm, and Ni was doped into catalyst's structure successfully. The NiFe(C 2 O 4 ) x had a synergistic effect of catalyst of 24.7 for methyl orange removal, and the dope of Ni significantly reduced the leaching of Fe by 77%. The reaction factors and kinetics were investigated. Under the optimal conditions, 0.4 g/L of catalyst dose and 10 mmol/L of hydrogen peroxide concentration, 98% of methyl orange was removed within 20 min. Analysis showed that hydroxyl radicals and superoxide radicals participated in the reaction. With NiFe(C 2 O 4 ) x catalyst, the suitable pH range for heterogeneous Fenton system was wide from 3 to 10. The catalyst showed good efficiency after five times re-use. NiFe(C 2 O 4 ) x provided great potential in treatment of refractory wastewater with excellent property. Copyright © 2017 Elsevier Ltd. All rights reserved.
LaRC-developed catalysts for CO2 lasers
NASA Technical Reports Server (NTRS)
Upchurch, Billy T.; Kielin, Erik J.; Miller, Irvin M.
1990-01-01
Pulsed CO2 lasers have many remote sensing applications from space, airborne, and ground platforms. The NASA Laser Atmospheric Wind Sounder (LAWS) system will be designed to measure wind velocities from polar earth orbit for a period of up to three years. Accordingly, this and other applications require a closed-cycle pulsed CO2 laser which necessitates the use of an efficient CO-O2 recombination catalyst for these dissociation products which otherwise would degrade the laser operation. The required catalyst must not only operate at low temperatures but also must operate efficiently for long time periods. The research effort at NASA LaRC has centered around development and testing of CO oxidation catalysts for closed-cycle, pulsed, common and rare-isotope CO2 lasers. Researchers examined available commercial catalysts both in a laser and under simulated closed-cycle laser conditions with efforts aimed toward a thorough understanding of the fundamental catalytic reaction. These data were used to design and synthesize new catalyst compositions to better meet the catalyst requirements for closed-cycle pulsed CO2 lasers. Syntheses and test results for catalysts developed at Langley Research Center which have significantly better long-term decay characteristics than previously available catalysts and at the same time operate quite well under lower temperature conditions are discussed.
Investigation of NO(x) Removal from Small Engine Exhaust
NASA Technical Reports Server (NTRS)
Akyurtlu, Ates; Akyurtlu, Jale F.
1999-01-01
Contribution of emissions from small engines to the air pollution is significant. Due to differences in operating conditions and economics, the pollution control systems designed for automobiles will be neither suitable nor economically feasible for use on small engines. The objective of this project was to find a catalyst for the removal of NOx from the exhaust of small engines which use a rich air to fuel ratio. The desired catalyst should be inexpensive so that the cost of the pollution control unit will be only a small fraction of the total equipment cost. The high cost of noble metals makes them too expensive for use as NOx catalyst for small engines. Catalytic reduction of NO can also be accomplished by base-metal oxide catalysts. The main disadvantage of base-metal catalysts is their deactivation by poisons and high temperatures. Requirements for the length of the life of the small engine exhaust catalysts are much less than those for automobile exhaust catalysts. Since there is no oxygen in the exhaust gases, reduction selectivity is not a problem. Also, the reducing exhaust gases might help prevent the harmful interactions of the catalyst with the support. For these reasons only the supported metal oxide catalysts were investigated in this project.
Investigation of NOx Removal from Small Engine Exhaust
NASA Technical Reports Server (NTRS)
Akyurtlu, Ates; Akyurtlu, Jale F.
1999-01-01
Contribution of emissions from small engines to the air pollution is significant. Due to differences in operating conditions and economics, the pollution control systems designed for automobiles will be neither suitable nor economically feasible for use on small engines. The objective of this project was to find a catalyst for the removal of NOx from the exhaust of small engines which use a rich air to fuel ratio. The desired catalyst should be inexpensive so that the cost of the pollution control unit will be only a small fraction of the total equipment cost. The high cost of noble metals makes them too expensive for use as NOx catalyst for small engines. Catalytic reduction of Nitrogen Oxide (NO) can also be accomplished by base-metal oxide catalysts. The main disadvantage of base-metal catalysts is their deactivation by poisons and high temperatures. Requirements for the length of the life of the small engine exhaust catalysts are much less than those for automobile exhaust catalysts. Since there is no oxygen in the exhaust gases, reduction selectivity is not a problem. Also, the reducing exhaust gases might help prevent the harmful interactions of the catalyst with the support. For these reasons only the supported metal oxide catalysts were investigated in this project.
Jadhav, Arvind H; Chinnappan, Amutha; Hiremath, Vishwanath; Seo, Jeong Gil
2015-10-01
Aluminum trichloride (AlCl3) impregnated molybdenum oxide heterogeneous nano-catalyst was prepared by using simple impregnation method. The prepared heterogeneous catalyst was characterized by powder X-ray diffraction, FT-IR spectroscopy, solid-state NMR spectroscopy, SEM imaging, and EDX mapping. The catalytic activity of this protocol was evaluated as heterogeneous catalyst for the Friedel-Crafts acylation reaction at room temperature. The impregnated MoO4(AlCl2)2 catalyst showed tremendous catalytic activity in Friedel-Crafts acylation reaction under solvent-free and mild reaction condition. As a result, 84.0% yield of acyl product with 100% consumption of reactants in 18 h reaction time at room temperature was achieved. The effects of different solvents system with MoO4(AlCl2)2 catalyst in acylation reaction was also investigated. By using optimized reaction condition various acylated derivatives were prepared. In addition, the catalyst was separated by simple filtration process after the reaction and reused several times. Therefore, heterogeneous MoO4(AlCl2)2 catalyst was found environmentally benign catalyst, very convenient, high yielding, and clean method for the Friedel-Crafts acylation reaction under solvent-free and ambient reaction condition.
Devices and methods for managing noncombustible gasses in nuclear power plants
Marquino, Wayne; Moen, Stephan C; Wachowiak, Richard M; Gels, John L; Diaz-Quiroz, Jesus; Burns, Jr., John C
2014-12-23
Systems passively eliminate noncondensable gasses from facilities susceptible to damage from combustion of built-up noncondensable gasses, such as H2 and O2 in nuclear power plants, without the need for external power and/or moving parts. Systems include catalyst plates installed in a lower header of the Passive Containment Cooling System (PCCS) condenser, a catalyst packing member, and/or a catalyst coating on an interior surface of a condensation tube of the PCCS condenser or an annular outlet of the PCCS condenser. Structures may have surfaces or hydrophobic elements that inhibit water formation and promote contact with the noncondensable gas. Noncondensable gasses in a nuclear power plant are eliminated by installing and using the systems individually or in combination. An operating pressure of the PCCS condenser may be increased to facilitate recombination of noncondensable gasses therein.
Devices and methods for managing noncondensable gasses in nuclear power plants
Marquino, Wayne; Moen, Stephan C.; Wachowiak, Richard M.; Gels, John L.; Diaz-Quiroz, Jesus; Burns, Jr., John C.
2016-11-15
Systems passively eliminate noncondensable gasses from facilities susceptible to damage from combustion of built-up noncondensable gasses, such as H2 and O2 in nuclear power plants, without the need for external power and/or moving parts. Systems include catalyst plates installed in a lower header of the Passive Containment Cooling System (PCCS) condenser, a catalyst packing member, and/or a catalyst coating on an interior surface of a condensation tube of the PCCS condenser or an annular outlet of the PCCS condenser. Structures may have surfaces or hydrophobic elements that inhibit water formation and promote contact with the noncondensable gas. Noncondensable gasses in a nuclear power plant are eliminated by installing and using the systems individually or in combination. An operating pressure of the PCCS condenser may be increased to facilitate recombination of noncondensable gasses therein.
Crist, P
1993-02-01
Occupational therapy has focused on activity as a catalyst for understanding human roles and interactions, regardless of whether disability or chronic illness is present. Parenting is an important interactional activity accompanied by specific role expectations. This investigation examined the interaction patterns of mothers with multiple sclerosis and their daughters. Thirty-one mothers with multiple sclerosis and their daughters aged 8 to 12 years were compared with 34 mothers without disabilities and their daughters aged 8 to 12 years. Videotaped mother-daughter interactions during a work task and a play task were scored by two raters for 11 different behaviors. These behaviors were collapsed into three behavioral composites--receptiveness, directiveness, and dissuasiveness--for statistical analysis. Statistical analysis revealed no significant differences between the two groups on the behavioral composites for either mothers or their daughters. The two tasks stimulated a different pattern of mother-daughter interactions. For both members of the dyad, interactions during the work task were more directive and less dissuasive than those in the play task. The clinical implication of this finding indicates the importance of understanding the influence of the task selected when observing interaction. Because of recent social and legal changes, understanding parenting and chronic illness is critical.
Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery.
Park, Young Jun; Park, Jung-Woo; Jun, Chul-Ho
2008-02-01
The development of an efficient catalytic activation (cleavage) system for C-H and C-C bonds is an important challenge in organic synthesis, because these bonds comprise a variety of organic molecules such as natural products, petroleum oils, and polymers on the earth. Among many elegant approaches utilizing transition metals to activate C-H and C-C bonds facilely, chelation-assisted protocols based on the coordinating ability of an organic moiety have attracted great attention, though they have often suffered from the need for an intact coordinating group in a substrate. In this Account, we describe our entire efforts to activate C-H or C-C bonds adjacent to carbonyl groups by employing a new concept of metal-organic cooperative catalysis (MOCC), which enables the temporal installation of a 2-aminopyridyl group into common aldehydes or ketones in a catalytic way. Consequently, a series of new catalytic reactions such as alcohol hydroacylation, oxo-ester synthesis, C-C triple bond cleavage, hydrative dimerization of alkynes, and skeletal rearrangements of cyclic ketones was realized through MOCC. In particular, in the quest for an optimized MOCC system composed of a Wilkinson's catalyst (Ph 3P) 3RhCl and an organic catalyst (2-amino-3-picoline), surprising efficiency enhancements could be achieved when benzoic acid and aniline were introduced as promoters for the aldimine formation process. Furthermore, a notable accomplishment of C-C bond activation has been made using 2-amino-3-picoline as a temporary chelating auxiliary in the reactions of unstrained ketones with various terminal olefins and Wilkinson's catalyst. In the case of seven-membered cyclic ketones, an interesting ring contraction to five- or six-membered ones takes place through skeletal rearrangements initiated by the C-C bond activation of MOCC. On the other hand, the fundamental advances of these catalytic systems into recyclable processes could be achieved by immobilizing both metal and organic components using a hydrogen-bonded self-assembled system as a catalyst support. This catalyst-recovery system provides a homogeneous phase at high temperature during the reaction and a heterogeneous phase at room temperature after the reaction. The product could be separated conveniently from the self-assembly support system by decanting the upper layer. The immobilized catalysts of both 2-aminopyridine and rhodium metal species sustained high catalytic activity for up to the eight catalytic reactions. In conclusion, the successful incorporation of an organocatalytic cycle into a transition metal catalyzed reaction led us to find MOCC for C-H and C-C bond activation. In addition, the hydrogen-bonded self-assembled support has been developed for an efficient and effective recovery system of homogeneous catalysts and could be successful in immobilizing both metal and organic catalysts.
Gutmann, Torsten; Ratajczyk, Tomasz; Dillenberger, Sonja; Xu, Yeping; Grünberg, Anna; Breitzke, Hergen; Bommerich, Ute; Trantzschel, Thomas; Bernarding, Johannes; Buntkowsky, Gerd
2011-09-01
It is shown that the para-hydrogen induced polarization (PHIP) phenomenon in homogenous solution containing the substrate styrene is also observable employing simple inorganic systems of the form MCl(3)·xH(2)O (M=Rh, Ir) as catalyst. Such observation confirms that already very simple metal complexes enable the creation of PHIP signal enhancement in solution. This opens up new pathways to increase the sensitivity of NMR and MRT by PHIP enhancement using cost-effective catalysts and will be essential for further mechanistic studies of simple transition metal systems. Copyright © 2011 Elsevier Inc. All rights reserved.
Titanium-containing Raney nickel catalyst for hydrogen electrodes in alkaline fuel cell systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mund, K.; Richter, G.; von Sturm, F.
In alkaline hydrogen-oxygen fuel cells Raney nickel is employed as catalyst for hydrogen electrodes. The rate of anodic hydrogen conversion has been increased significantly by using a titanium-containing Raney nickel. The properties of the catalyst powder, the influence of particle diameter, and the behavior of electrodes under load are described. Impedance measurements have been used to characterize the electrodes. In fuel cell systems the supported electrodes are normally operated at current densities up to 0.4 A . cm/sup -2/; the overload current density of 1 A . cm/sup -2/ can be maintained for several hours. (15 fig.)
NASA Astrophysics Data System (ADS)
Jia, Xiangqing; Huang, Zheng
2016-02-01
The conversion of inexpensive, saturated hydrocarbon feedstocks into value-added speciality chemicals using regiospecific, catalytic functionalization of alkanes is a major goal of organometallic chemistry. Linear alkylsilanes represent one such speciality chemical—they have a wide range of applications, including release coatings, silicone rubbers and moulding products. Direct, selective, functionalization of alkanes at primary C-H bonds is difficult and, to date, methods for catalytically converting alkanes into linear alkylsilanes are unknown. Here, we report a well-defined, dual-catalyst system for one-pot, two-step alkane silylations. The system comprises a pincer-ligated Ir catalyst for alkane dehydrogenation and an Fe catalyst that effects a subsequent tandem olefin isomerization-hydrosilylation. This method exhibits exclusive regioselectivity for the production of terminally functionalized alkylsilanes. This dual-catalyst strategy has also been applied to regioselective alkane borylations to form linear alkylboronate esters.
Computational Modeling of Cobalt-Based Water Oxidation: Current Status and Future Challenges
Schilling, Mauro; Luber, Sandra
2018-01-01
A lot of effort is nowadays put into the development of novel water oxidation catalysts. In this context, mechanistic studies are crucial in order to elucidate the reaction mechanisms governing this complex process, new design paradigms and strategies how to improve the stability and efficiency of those catalysts. This review is focused on recent theoretical mechanistic studies in the field of homogeneous cobalt-based water oxidation catalysts. In the first part, computational methodologies and protocols are summarized and evaluated on the basis of their applicability toward real catalytic or smaller model systems, whereby special emphasis is laid on the choice of an appropriate model system. In the second part, an overview of mechanistic studies is presented, from which conceptual guidelines are drawn on how to approach novel studies of catalysts and how to further develop the field of computational modeling of water oxidation reactions. PMID:29721491
Supramolecular water oxidation with Ru-bda-based catalysts.
Richmond, Craig J; Matheu, Roc; Poater, Albert; Falivene, Laura; Benet-Buchholz, Jordi; Sala, Xavier; Cavallo, Luigi; Llobet, Antoni
2014-12-22
Extremely slow and extremely fast new water oxidation catalysts based on the Ru-bda (bda=2,2'-bipyridine-6,6'-dicarboxylate) systems are reported with turnover frequencies in the range of 1 and 900 cycles s(-1) , respectively. Detailed analyses of the main factors involved in the water oxidation reaction have been carried out and are based on a combination of reactivity tests, electrochemical experiments, and DFT calculations. These analyses give a convergent interpretation that generates a solid understanding of the main factors involved in the water oxidation reaction, which in turn allows the design of catalysts with very low energy barriers in all the steps involved in the water oxidation catalytic cycle. We show that for this type of system π-stacking interactions are the key factors that influence reactivity and by adequately controlling them we can generate exceptionally fast water oxidation catalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts
Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol
2003-04-08
A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n }.sup.+ {A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, and SnR".sub.3 containing groups (R"=C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.
Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts
Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol
2003-12-30
A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, SnR".sub.3, and C.dbd.C containing groups (R".dbd.C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.
Catalyst recycling via specific non-covalent adsorption on modified silicas.
Kluwer, Alexander M; Simons, Chretien; Knijnenburg, Quinten; van der Vlugt, Jarl Ivar; de Bruin, Bas; Reek, Joost N H
2013-03-14
This article describes a new strategy for the recycling of a homogeneous hydroformylation catalyst, by selective adsorption of the catalyst to tailor-made supports after a batchwise reaction. The separation of the catalyst from the product mixture is based on selective non-covalent supramolecular interactions between a ligand and the support. Changing the solvent releases the active catalyst back into the reactor and allows a subsequent batch reaction with the recycled active catalyst. For this purpose, the bidentate NixantPhos ligand has been equipped with a pyridine group. The corresponding rhodium pre-catalyst [Rh(Nix-py)(acac)] (acac = acetylacetonate) forms a very selective, active and highly stable catalyst, and able to reach a turnover number (TON) of 170 000 in a single run (reaction performed in nearly neat 1-octene, S/C ratio of 200 000, at 140 °C, 20 bars syngas pressure). Various commercially available supports have been explored in binding studies and recycling experiments. The end-capped silica-alumina performs the best so far with respect to ligand-adsorbing properties for the current purpose. Although this system has not been fully optimized, four recycling runs could be performed successfully.
Wang, Jindong; Li, Wenzhi; Wang, Huizhen; Ma, Qiaozhi; Li, Song; Chang, Hou-Min; Jameel, Hasan
2017-11-01
In this study, a novel catalyst, S 2 O 8 2- -KNO 3 /TiO 2 , which has active acidic and basic sites, was prepared and used in lignin hydrocracking with a co-catalyst, Ru/C. Ru/C is an efficient hydrogenation catalyst and S 2 O 8 2- -KNO 3 /TiO 2 is a dual catalyst, which could efficiently degrade lignin. This catalytic hydrogenation system can reduce solid products to less than 1%, while giving a high liquid product yield of 93%. Catalytic hydrocracking of kraft lignin at 320°C for 6h gave 93% liquid product with 0.5% solid product. Most of this liquid product was soluble in petroleum ether (60% of 93%), which is a clear liquid and comprises mainly of monomeric and dimeric degradation products. These results demonstrated that the combination of the two catalysts is an efficient catalyst for liquefaction of lignin, with little char formation (∼1%). This concept has the potential to produce valuable chemicals and fuels from lignin under moderate conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
González, J.; Chen, L. F.; Wang, J. A.; Manríquez, Ma.; Limas, R.; Schachat, P.; Navarrete, J.; Contreras, J. L.
2016-08-01
A series of vanadium oxide supported on Ti-MCM-41 catalysts was synthesized via the incipient impregnation method by varying the vanadia loading from 5 wt% to 10, 15, 20 and 25 wt%. These catalysts were characterized by a variety of advanced techniques for investigating their crystalline structure, textural properties, and surface chemistry information including surface acidity, reducibility, vanadium oxidation states, and morphological features. The catalytic activities of the catalysts were evaluated in a biphasic reaction system for oxidative desulfurization (ODS) of a model diesel containing 300 ppm of dibenzothiophene (DBT) where acetonitrile was used as extraction solvent and H2O2 as oxidant. ODS activity was found to be proportional to the V5+/(V4+ + V5+) values of the catalysts, indicating that the surface vanadium pentoxide (V2O5) was the active phase. Reaction temperature would influence significantly the ODS efficiency; high temperature, i.e., 80 °C, would lead to low ODS reaction due to the partial decomposition of oxidant. All the catalysts contained both Lewis and Brønsted acid sites but the former was predominant. The catalysts with low vanadia loading (5 or 10 wt%V2O5) had many Lewis acid sites and could strongly adsorb DBT molecule via the electron donation/acceptance action which resulted in an inhibition for the reaction of DBT with the surface peroxometallic species. The catalyst with high vanadia loading (25wt%V2O5/Ti-MCM-41) showed the highest catalytic activity and could remove 99.9% of DBT at 60 °C within 60 min.
NASA Astrophysics Data System (ADS)
Balakrishnan, A.; Frei, M.; Kerzenmacher, S.; Reinecke, H.; Mueller, C.
2015-12-01
In this work we present the design and fabrication of the miniaturized PEM fuel cell combined microreactor system with hydrogen regulation mechanism and testing of prototype microreactor. The system consists of two components (i) fuel cell component and (ii) microreactor component. The fuel cell component represents the miniaturized PEM fuel cell system (combination of screen printed fuel cell assembly and an on-board hydrogen storage medium). Hydrogen production based on catalytic hydrolysis of chemical hydride takes place in the microreactor component. The self-regulated hydrogen mechanism based on the gaseous hydrogen produced from the catalytic hydrolysis of sodium borohydride (NaBH4) gets accumulated as bubbles at the vicinity of the hydrophobic coated hydrogen exhaust holes. When the built up hydrogen bubbles pressure exceeds the burst pressure at the hydrogen exhaust holes the bubble collapses. This collapse causes a surge of fresh NaBH4 solution onto the catalyst surface leading to the removal of the reaction by-products formed at the active sites of the catalyst. The catalyst used in the system is platinum deposited on a base substrate. Nickel foam, carbon porous medium (CPM) and ceramic plate were selected as candidates for base substrate for developing a robust catalyst surface. For the first time the platinum layer fabricated by pulsed electrodeposition and dealloying (EPDD) technique is used for hydrolysis of NaBH4. The major advantages of such platinum catalyst layers are its high surface area and their mechanical stability. Prototype microreactor system with self-regulated hydrogen mechanism is demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiting, G.K.; Liu, Y.A.; Squires, A.M.
1986-10-01
Vibrofluidized microreactor systems have been developed for studies of unsteady-state Fischer-Tropsch synthesis. This development is aimed at preventing carbon deposition on a fused-iron catalyst in a novel reactor called the ''heat tray.'' This reactor involves a supernatant gas flowing over a shallow fluidized bed of catalyst particles. Three systems were built: (1) a vibrofluidized-bed microreactor system for obtaining baseline carbon deposition information under industrially important reaction conditions; (2) a sliding-plug vibrofluidized-bed microreactor system for rapid switching of feed gases in the F-T synthesis; and (3) a cold-flow microreactor model for studying the gas mixing characteristics of the sliding-plug vibrofluidized-bed microreactor.more » The results show that catalyst defluidization occurred under steady-state synthesis conditions below 395 C using a feed gas of H/sub 2//CO ratio of 2:1 or less. Above 395 C, the probability of hydrocarbon chain growth (..cap alpha.. < 0.50 to prevent accumulation of high-molecular-weight species that cause defluidization. Carbon deposition was rapid above 395 C when a feed gas of H/sub 2//CO ratio of 2:1 or less was used. Cold-flow microreactor model studies show that rapid (on the order of seconds), quantitative switching of feed gases over a vibrofluidized bed of catalyst could be achieved. Vibrofluidization of the catalyst bed induced little backmixing of feed gas over the investigated flow-rate range of 417 to 1650 actual mm/sup 3//s. Further, cold-flow microreactor model studies showed intense solid mixing when a bed of fused-iron catalyst (150 to 300 microns) was vibrofluidized at 24 cycles per second with a peak-to-peak amplitude of 4 mm. The development of the microreactor systems provided an easy way of accurately determining integral fluid-bed kinetics in a laboratory reactor. 408 refs., 156 figs., 27 tabs.« less
NASA Astrophysics Data System (ADS)
Loh, Ben Tun-Bin
2003-07-01
The demand for students to engage in complex student-driven and information-rich inquiry investigations poses challenges to existing learning environments. Students are not familiar with this style of work, and lack the skills, tools, and expectations it demands, often forging blindly forward in the investigation. If students are to be successful, they need to learn to be reflective inquirers, periodically stepping back from an investigation to evaluate their work. The fundamental goal of my dissertation is to understand how to design learning environments to promote and support reflective inquiry. I have three basic research questions: how to define this mode of work, how to help students learn it, and understanding how it facilitates reflection when enacted in a classroom. I take an exploratory approach in which, through iterative cycles of design, development, and reflection, I develop principles of design for reflective inquiry, instantiate those principles in the design of a software environment, and test that software in the context of classroom work. My work contributes to the understanding of reflective inquiry in three ways: First, I define a task model that describes the kinds of operations (cognitive tasks) that students should engage in as reflective inquirers. These operations are defined in terms of two basic tasks: articulation and inscription, which serve as catalysts for externalizing student thinking as objects of and triggers for reflection. Second, I instantiate the task model in the design of software tools (the Progress Portfolio). And, through proof of concept pilot studies, I examine how the task model and tools helped students with their investigative classroom work. Finally, I take a step back from these implementations and articulate general design principles for reflective inquiry with the goal of informing the design of other reflective inquiry learning environments. There are three design principles: (1) Provide a designated work space for reflection activities to focus student attention on reflection. (2) Help students create and use artifacts that represent their work and their thinking as a means to create referents for reflection. (3) Support and take advantage of social processes that help students reflect on their own work.
Approaches to Polymer Curing and Imaging Via the In Situ Generation of a Catalyst
1992-04-20
polyimide can be formulated from a polyamic acid derivative and a photo- precursor of base. Of particular interest are systems that incorporate chemical...amplification. In these systems the initial radiation induced proc- ess, photogeneration of the acid or base catalyst within the polymer film, is...different, new systems better suited for the high demands of modem microlithography have been developed. Issues of particular relevance in the design of
Method for removing soot from exhaust gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suib, Steven L.; Dharmarathna, D. A. Saminda; Pahalagedara, Lakshitha R.
A method for oxidizing soot from diesel exhaust gas from a diesel engine. The method involves providing a diesel particulate filter for receiving the diesel exhaust gas; coating a catalyst composition on the diesel particulate filter; and contacting the soot from the diesel exhaust gas with the catalyst coated diesel particulate filter at a temperature sufficient to oxidize the soot to carbon dioxide. The catalyst composition is a doped or undoped manganese oxide octahedral molecular sieve (OMS-2) material. A diesel exhaust gas treatment system that includes a diesel particulate filter for receiving diesel exhaust gas from a diesel engine andmore » collecting soot; and a catalyst composition coated on the diesel particulate filter. The catalyst composition is a doped or undoped manganese oxide octahedral molecular sieve (OMS-2).« less
Yang, Ke R; Matula, Adam J; Kwon, Gihan; Hong, Jiyun; Sheehan, Stafford W; Thomsen, Julianne M; Brudvig, Gary W; Crabtree, Robert H; Tiede, David M; Chen, Lin X; Batista, Victor S
2016-05-04
The solution structures of highly active Ir water-oxidation catalysts are elucidated by combining density functional theory, high-energy X-ray scattering (HEXS), and extended X-ray absorption fine structure (EXAFS) spectroscopy. We find that the catalysts are Ir dimers with mono-μ-O cores and terminal anionic ligands, generated in situ through partial oxidation of a common catalyst precursor. The proposed structures are supported by (1)H and (17)O NMR, EPR, resonance Raman and UV-vis spectra, electrophoresis, etc. Our findings are particularly valuable to understand the mechanism of water oxidation by highly reactive Ir catalysts. Importantly, our DFT-EXAFS-HEXS methodology provides a new in situ technique for characterization of active species in catalytic systems.
Method and apparatus for maintaining the pH in zinc-bromine battery systems
Grimes, Patrick G.
1985-09-10
A method and apparatus for maintaining the pH level in a zinc-bromine battery features reacting decomposition hydrogen with bromine in the presence of a catalyst. The catalyst encourages the formation of hydrogen and bromine ions. The decomposition hydrogen is therefore consumed, alloying the pH of the system to remain substantially at a given value.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Hazardous Air Pollutants for Surface Coating of Plastic Parts and Products Compliance Requirements for the... procedures. If problems are found during the catalyst activity test, you must replace the catalyst bed or... inspection of the catalytic oxidizer system, including the burner assembly and fuel supply lines for problems...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Hazardous Air Pollutants for Surface Coating of Plastic Parts and Products Compliance Requirements for the... procedures. If problems are found during the catalyst activity test, you must replace the catalyst bed or... inspection of the catalytic oxidizer system, including the burner assembly and fuel supply lines for problems...
Oxygen evolution reaction catalysis
Haber, Joel A.; Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Jones, Ryan J.; Guevarra, Dan W.; Shinde, Aniketa A.
2016-09-06
An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.
Janus structured Pt–FeNC nanoparticles as a catalyst for the oxygen reduction reaction
Kuttiyiel, Kurian A.; Sasaki, Kotaro; Park, Gu -Gon; ...
2017-01-03
Here, we present a new Janus structured catalyst consisting of Pt nanoparticles on Fe–N–C nanoparticles encapsulated by graphene layers for the ORR. The ORR activity of the catalyst increases under potential cycling as the unique Janus nanostructure is further bonded due to a synergetic effect. The present study describes an important advanced approach for the future design of efficient, stable, and low-cost Pt-based electrocatalytic systems.
Investigating the Catalytic Growth of Carbon Nanotubes with In Situ Raman Monitoring
2015-06-01
single-walled carbon nanotube growth using cobalt deposited on Si/SiO2 as a model system. In situ Raman studies revealed that thin catalyst layers... cobalt thickness were studied. Surface analyses showed that during the catalyst preparation, catalyst atoms at the interface with silica form small...nanostructures. However, highly-reducing conditions are required to reduce the small silicate domains into small cobalt particles able to grow single-walled
Sabatier Catalyst Poisoning Investigation
NASA Technical Reports Server (NTRS)
Nallette, Tim; Perry, Jay; Abney, Morgan; Knox, Jim; Goldblatt, Loel
2013-01-01
The Carbon Dioxide Reduction Assembly (CRA) on the International Space Station (ISS) has been operational since 2010. The CRA uses a Sabatier reactor to produce water and methane by reaction of the metabolic CO2 scrubbed from the cabin air and the hydrogen byproduct from the water electrolysis system used for metabolic oxygen generation. Incorporating the CRA into the overall air revitalization system has facilitated life support system loop closure on the ISS reducing resupply logistics and thereby enhancing longer term missions. The CRA utilizes CO2 which has been adsorbed in a 5A molecular sieve within the Carbon Dioxide Removal Assembly, CDRA. There is a potential of compounds with molecular dimensions similar to, or less than CO2 to also be adsorbed. In this fashion trace contaminants may be concentrated within the CDRA and subsequently desorbed with the CO2 to the CRA. Currently, there is no provision to remove contaminants prior to entering the Sabatier catalyst bed. The risk associated with this is potential catalyst degradation due to trace organic contaminants in the CRA carbon dioxide feed acting as catalyst poisons. To better understand this risk, United Technologies Aerospace System (UTAS) has teamed with MSFC to investigate the impact of various trace contaminants on the CRA catalyst performance at relative ISS cabin air concentrations and at about 200/400 times of ISS concentrations, representative of the potential concentrating effect of the CDRA molecular sieve. This paper summarizes our initial assessment results.
A comparison between artificial and natural water oxidation.
Li, Xichen; Chen, Guangju; Schinzel, Sandra; Siegbahn, Per E M
2011-11-14
Two artificial water oxidation catalysts, the blue dimer and the Llobet catalyst, have been studied using hybrid DFT methods. The results are compared to those for water oxidation in the natural photosystem II enzyme. Studies on the latter system have now reached a high level of understanding, at present much higher than the one for the artificial systems. A recent high resolution X-ray structural investigation of PSII has confirmed the main features of the structure of the oxygen evolving complex (OEC) suggested by previous DFT cluster studies. The O-O bond formation mechanism suggested is of direct coupling (DC) type between an oxygen radical and a bridging oxo ligand. A similar DC mechanism is found for the Llobet catalyst, while an acid-base (AB) mechanism is preferred for the blue dimer. All of them require at least one oxygen radical. Full energy diagrams, including both redox and chemical steps, have been constructed illustrating similarities and differences to the natural system. Unlike previous DFT studies, the results of the present study suggest that the blue dimer is rate-limited by the initial redox steps, and the Llobet catalyst by O(2) release. The results could be useful for further improvement of the artificial systems.
Exploration Of `Click' Chemistry For Microelectronic Applications
NASA Astrophysics Data System (ADS)
Musa, Osama M.; Sridhar, Laxmisha M.
The ‘Click’ chemistry was explored for low temperature snap cure and for possible use as an adhesion promoter in electronic applications. Several azide and alkyne resins were synthesized and their curing potential was evaluated with a special emphasis on exploring Cu(I) catalyst effect. The preliminary curing study in the absence of catalysts showed a strong dependence of cure temperatures on the electronic nature of alkynes. The cure temperatures showed a tendency to increase with decreasing electronegativity of the substituent on alkynes. The capability of Cu(I) catalysts to accelerate the ‘Click’ chemistry was demonstrated for the first time in bulk phase. Using several Cu(I) catalysts, the cure temperatures could be lowered by as much as 40-100°C compared to the control, depending on the nature of catalyst and the catalyst loading. We discovered a novel synergistic effect between Cu(I) and silver filler in lowering the cure temperatures. Using this combination, lower cure temperatures could be obtained than using either alone. Among several resins screened, one resin system has shown promise for 80°C snap-cure in which the aforementioned synergistic effect is operative. Solution phase ‘Click’ chemistry was employed for the synthesis of a hybrid triazole-epoxy resin system. This system was found to cure without added amine curative. The triazole group here serves as a linker as well as an internal adhesion promoter. To address the incompatibility and volatility issues, which arose during evaluation, a controlled oligomerization method has been developed using controlled heating of azides and alkynes in solution phase.
Yang, Chia Cheng; Chang, Shu Hao; Hong, Bao Zhen; Chi, Kai Hsien; Chang, Moo Been
2008-10-01
Development of effective PCDD/F (polychlorinated dibenzo-p-dioxin and dibenzofuran) control technologies is essential for environmental engineers and researchers. In this study, a PCDD/F-containing gas stream generating system was developed to investigate the efficiency and effectiveness of innovative PCDD/F control technologies. The system designed and constructed can stably generate the gas stream with the PCDD/F concentration ranging from 1.0 to 100ng TEQ Nm(-3) while reproducibility test indicates that the PCDD/F recovery efficiencies are between 93% and 112%. This new PCDD/F-containing gas stream generating device is first applied in the investigation of the catalytic PCDD/F control technology. The catalytic decomposition of PCDD/Fs was evaluated with two types of commercial V(2)O(5)-WO(3)/TiO(2)-based catalysts (catalyst A and catalyst B) at controlled temperature, water vapor content, and space velocity. 84% and 91% PCDD/F destruction efficiencies are achieved with catalysts A and B, respectively, at 280 degrees C with the space velocity of 5000h(-1). The results also indicate that the presence of water vapor inhibits PCDD/F decomposition due to its competition with PCDD/F molecules for adsorption on the active vanadia sites for both catalysts. In addition, this study combined integral reaction and Mars-Van Krevelen model to calculate the activation energies of OCDD and OCDF decomposition. The activation energies of OCDD and OCDF decomposition via catalysis are calculated as 24.8kJmol(-1) and 25.2kJmol(-1), respectively.
A highly active and stable IrO x/SrIrO 3 catalyst for the oxygen evolution reaction
Seitz, Linsey C.; Dickens, Colin F.; Nishio, Kazunori; ...
2016-09-02
Oxygen electrochemistry plays a key role in renewable energy technologies such as fuel cells and electrolyzers, but the slow kinetics of the oxygen evolution reaction (OER) limit the performance and commercialization of such devices. Here we report an iridium oxide/strontium iridium oxide (IrO x/SrIrO 3) catalyst formed during electrochemical testing by strontium leaching from surface layers of thin films of SrIrO 3. This catalyst has demonstrated specific activity at 10 milliamps per square centimeter of oxide catalyst (OER current normalized to catalyst surface area), with only 270 to 290 millivolts of overpotential for 30 hours of continuous testing in acidicmore » electrolyte. Here, density functional theory calculations suggest the formation of highly active surface layers during strontium leaching with IrO 3 or anatase IrO 2 motifs. The IrO x/SrIrO 3 catalyst outperforms known IrO x and ruthenium oxide (RuO x) systems, the only other OER catalysts that have reasonable activity in acidic electrolyte.« less
NASA Astrophysics Data System (ADS)
Zhang, Pingbo; Han, Qiuju; Fan, Mingming; Jiang, Pingping
2014-10-01
A novel magnetic solid base catalyst CaO/CoFe2O4 was successfully prepared with CoFe2O4 synthesized by hydrothermal method as the magnetic core and applied to the transesterification of soybean oil for the production of biodiesel. The magnetic solid base catalysts were characterized by a series of techniques including CO2-TPD, powder XRD, TGA, TEM and the contact angle measurement of the water droplet. It was demonstrated that CaO/CoFe2O4 has stronger magnetic strength indicating perfect utility for repeated use and better basic strength. Compared with CaO/ZnFe2O4 and CaO/MnFe2O4, solid base catalyst CaO/CoFe2O4 has better catalytic performance, weaker hydroscopicity and stronger wettability, demonstrating that catalytic performance was relative to both basicity of catalyst and the full contact between the catalyst and the reactants, but the latter was a main factor in the catalytic system.
Catalytic conversion of syngas to mixed alcohols over Zn-Mn promoted Cu-Fe based catalyst
Lu, Yongwu; Yu, Fei; Hu, Jin; ...
2012-04-12
Zn-Mn promoted Cu-Fe based catalyst was synthesized by the co-precipitation method. Mixed alcohols synthesis from syngas was studied in a half-inch tubular reactor system after the catalyst was reduced. Zn-Mn promoted Cu-Fe based catalyst was characterized by SEM-EDS, TEM, XRD, and XPS. The liquid phase products (alcohol phase and hydrocarbon phase) were analyzed by GC-MS and the gas phase products were analyzed by GC. The results showed that Zn-Mn promoted Cu-Fe based catalyst had high catalytic activity and high alcohol selectivity. The maximal CO conversion rate was 72%, and the yield of alcohol and hydrocarbons were also very high. Cumore » (111) was the active site for mixed alcohols synthesis, Fe 2C (101) was the active site for olefin and paraffin synthesis. The reaction mechanism of mixed alcohols synthesis from syngas over Zn-Mn promoted Cu-Fe based catalyst was proposed. Here, Zn-Mn promoted Cu-Fe based catalyst can be regarded as a potential candidate for catalytic conversion of biomass-derived syngas to mixed alcohols.« less
Lueangchaichaweng, Warunee; Geukens, Inge; Peeters, Annelies; Jarry, Benjamin; Launay, Franck; Bonardet, Jean-Luc; Jacobs, Pierre A; Pescarmona, Paolo P
2012-02-01
Transition-metal-free oxides were studied as heterogeneous catalysts for the sustainable epoxidation of alkenes with aqueous H₂O₂ by means of high throughput experimentation (HTE) techniques. A full-factorial HTE approach was applied in the various stages of the development of the catalysts: the synthesis of the materials, their screening as heterogeneous catalysts in liquid-phase epoxidation and the optimisation of the reaction conditions. Initially, the chemical composition of transition-metal-free oxides was screened, leading to the discovery of gallium oxide as a novel, active and selective epoxidation catalyst. On the basis of these results, the research line was continued with the study of structured porous aluminosilicates, gallosilicates and silica-gallia composites. In general, the gallium-based materials showed the best catalytic performances. This family of materials represents a promising class of heterogeneous catalysts for the sustainable epoxidation of alkenes and offers a valid alternative to the transition-metal heterogeneous catalysts commonly used in epoxidation. High throughput experimentation played an important role in promoting the development of these catalytic systems.
A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction.
Seitz, Linsey C; Dickens, Colin F; Nishio, Kazunori; Hikita, Yasuyuki; Montoya, Joseph; Doyle, Andrew; Kirk, Charlotte; Vojvodic, Aleksandra; Hwang, Harold Y; Norskov, Jens K; Jaramillo, Thomas F
2016-09-02
Oxygen electrochemistry plays a key role in renewable energy technologies such as fuel cells and electrolyzers, but the slow kinetics of the oxygen evolution reaction (OER) limit the performance and commercialization of such devices. Here we report an iridium oxide/strontium iridium oxide (IrO x /SrIrO 3 ) catalyst formed during electrochemical testing by strontium leaching from surface layers of thin films of SrIrO 3 This catalyst has demonstrated specific activity at 10 milliamps per square centimeter of oxide catalyst (OER current normalized to catalyst surface area), with only 270 to 290 millivolts of overpotential for 30 hours of continuous testing in acidic electrolyte. Density functional theory calculations suggest the formation of highly active surface layers during strontium leaching with IrO 3 or anatase IrO 2 motifs. The IrO x /SrIrO 3 catalyst outperforms known IrO x and ruthenium oxide (RuO x ) systems, the only other OER catalysts that have reasonable activity in acidic electrolyte. Copyright © 2016, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Kumar, Bhupendra
Light assisted or driven fuel generation by carbon dioxide and proton reduction can be achieved by a p-type semiconductor/liquid junction. There are four different types of schemes which are typically used for carbon dioxide and proton reduction for fuel generation applications. In these systems, the semiconductor can serve the dual role of a catalyst and a light absorber. Specific electrocatalysts (heterogeneous and homogeneous) can be driven by p-type semiconductor where it works only as light absorber in order to achieve better selectivity and faster rates of catalysis. The p-type semiconductor/molecular catalyst junction is primarily explored in this dissertation for CO2 and proton photoelectrochemical reduction. A general principle for the operation of p-type semiconductor/molecular junctions is proposed and validated for several molecular catalysts in contact with p-Si photocathode. It is also shown that the light assisted homogeneous and heterogeneous catalysis can coexist. This principle is extended to achieve direct conversion of CO 2 to methanol on Platinum nanoparticles decorated p-Si in aqueous medium through pyridine/pyridinium system for CO2 reduction. An open circuit voltage higher than 600 mV is achieved for p-Si/Re(bipy-tBu)(CO) 3Cl [where bipy-tBu = 4,4'- tert-butyl-2,2'-bipyridine] (Re-catalyst) junction. The photoelectrochemical conversion of CO2 to CO using a p-Si/Re-catalyst junction is obtained at 100 % Faradaic efficiency. The homogeneous catalytic current density for CO2 by p-Si/Re-catalyst junction under illumination scales linearly with illumination intensity (both polychromatic and monochromatic). This indicates that the homogeneous catalysis is light driven for the p-Si/Re-catalyst junction system up to light intensities approaching one sun. The photoelectrochemical reduction of other active members of Re(bipyridyl)(CO)3Cl molecular catalyst family is also observed on illuminated p-Si photocathode. Effects of surface modification and nanowire morphology of the p-Si photocathode on the homogeneous catalytic reduction of CO2 by using p-Si/Re-catalyst junction are also described in this dissertation. For phenyl ethyl modified p-Si photocathode, the rate of homogeneous catalysis for CO2 reduction by Re-catalyst is three times greater than glassy carbon electrode and six times greater than the hexyl modified and the hydrogen terminated p-Si photocathodes. When hexyl modified p-Si nanowires are used as photocathode, the homogeneous catalytic current density increased by a factor of two compared to planar p-Si (both freshly etched and hexyl modified) photocathode. A successful light assisted generation of syngas (H2:CO = 2:1) from CO2 and water is achieved by using p-Si/Re-catalyst. In this system, water is reduced heterogeneously on p-Si surface and CO2 is reduced homogeneously by Re-catalyst. The same principle is extended to the homogeneous proton reduction by using p-Si/[FeFe] complex junction where [FeFe] complex [Fe2(micro-bdt)(CO) 6] (bdt = benzene-1,2-dithiolate)] is a proton reduction molecular catalyst. A short circuit quantum efficiency of 79 % with 100 % Faradaic efficiency and 600 mV open circuit are achieved by using p-Si/[FeFe] complex for proton reduction with 300 mM perchloric acid as a proton source. Cobalt difluororyl-diglyoximate (Co-catalyst) is a proton reduction catalyst with only 200 mV of overpotential for the hydrogen evolution reaction (HRE). The Co-catalyst is photoelectrochemically reduced with a photovoltage of 470 mV on illuminated p-Si photocathode. For p-Si photocathodes, the overpotential for proton reduction is over 1 V. In principle, p-Si/Co-catalyst junction can reduce proton to hydrogen homogeneously at underpotential. In a concluding effort, a wireless monolithic dual face single photoelectrode (multi junction photovoltaic cell which can generate a voltage higher 1.7 V) based photochemical cell is proposed for direct conversion of solar energy into liquid fuel. In this device, the two faces of the multijunction photoelectrode are serve as an anode and a cathode for water oxidation and fuel generation, respectively, and are separated by proton exchange membrane.
NASA Astrophysics Data System (ADS)
Pinithchaisakula, A.; Ounnunkad, K.; Themsirimongkon, S.; Promsawan, N.; Waenkaew, P.; Saipanya, S.
2017-02-01
In this work, the preparation, characterization, and electrocatalytic analysis of the catalysts on various carbon substrates for direct alcohol fuel cells were studied. Selected carbons were modified with/without polydopamine (labelled as PDA-C and C) and further metal electrodeposited incorporated onto the glassy carbon (labelled as 5Pt1Pd/PDA-C and 5Pt1Pd/C). Four various carbon materials were used e.g. graphite (G), carbon nanotube (CNT), graphene (GP) and graphene oxide (GO) and the carbons were modified with PDA denoted as PDA-G, PDA-CNT, PDA-GP and PDA-GO, respectively. The transmission electron microscopy (TEM) and scanning electron microscopy (SEM) experimental observation showed narrow size distribution of metal anchored on the PDA-C and C materials. Chemical compositions and oxidation states of the catalysts were determined by X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX). The catalytic performances for small organic electro-oxidation (e.g. methanol and ethanol) were measured by cyclic voltammetry (CV). Among different PDA-C and C catalysts, monometallic Pt showed less activity than the bimetallic catalysts. Among catalysts with PDA, the 5Pt1Pd/PDA-GO catalyst facilitated methanol and ethanol oxidations with high oxidation currents and If/Ib value and stability with low potentials while among catalysts without PDA, the 5Pt1Pd/CNT provides highest activity and stability. It was found that the catalysts with PDA provided high activity and stability than the catalysts without PDA. The improved catalytic performance of the prepared catalysts could be related to the higher active surface area from polymer modification and bimetallic catalyst system in the catalyst composites.
Jlalia, Ibtissem; Beauvineau, Claire; Beauvière, Sophie; Onen, Esra; Aufort, Marie; Beauvineau, Aymeric; Khaba, Eihab; Herscovici, Jean; Meganem, Faouzi; Girard, Christian
2010-04-28
This article deal with the parallel synthesis of a 96 product-sized library using a polymer-based copper catalyst that we developed which can be easily separated from the products by simple filtration. This gave us the opportunity to use this catalyst in an automated chemical synthesis station (Chemspeed ASW-2000). Studies and results about the preparation of the catalyst, its use in different solvent systems, its recycling capabilities and its scope and limitations in the synthesis of this library will be addressed. The synthesis of the triazole library and the very good results obtained will finally be discussed.
Haw, James F.; Song, Weiguo
2006-07-18
In accordance with the present invention there is provided a novel catalyst system in which the catalytic structure is tailormade at the nanometer scale using the invention's novel ship-in-a-bottle synthesis techniques. The invention describes modified forms of solid catalysts for use in heterogeneous catalysis that have a microporous structure defined by nanocages. Examples include zeolites, SAPOs, and analogous materials that have the controlled pore dimensions and hydrothermal stability required for many industrial processes. The invention provides for modification of these catalysts using reagents that are small enough to pass through the windows used to access the cages. The small reagents are then reacted to form larger molecules in the cages.
Aardahl, Christopher L [Richland, WA; Balmer-Miller, Mari Lou [West Richland, WA; Chanda, Ashok [Peoria, IL; Habeger, Craig F [West Richland, WA; Koshkarian, Kent A [Peoria, IL; Park, Paul W [Peoria, IL
2006-07-25
The present disclosure pertains to a system and method for treatment of oxygen rich exhaust and more specifically to a method and system that combines non-thermal plasma with a metal doped .gamma.-alumina catalyst. Current catalyst systems for the treatment of oxygen rich exhaust are capable of achieving only approximately 7 to 12% NO.sub.x reduction as a passive system and only 25 40% reduction when a supplemental hydrocarbon reductant is injected into the exhaust stream. It has been found that treatment of an oxygen rich exhaust initially with a non-thermal plasma and followed by subsequent treatment with a metal doped .gamma.-alumina prepared by the sol gel method is capable of increasing the NO.sub.x reduction to a level of approximately 90% in the absence of SO.sub.2 and 80% in the presence of 20 ppm of SO.sub.2. Especially useful metals have been found to be indium, gallium, and tin.
Controlled growth of vertically aligned carbon nanotubes on metal substrates
NASA Astrophysics Data System (ADS)
Gao, Zhaoli
Carbon nanotube (CNT) is a fascinating material with extraordinary electrical thermal and mechanical properties. Growing vertically aligned CNT (VACNT) arrays on metal substrates is an important step in bringing CNT into practical applications such as thermal interface materials (TIMs) and microelectrodes. However, the growth process is challenging due to the difficulties in preventing catalyst diffusion and controlling catalyst dewetting on metal substrates with physical surface heterogeneity. In this work, the catalyst diffusion mechanism and catalyst dewetting theory were studied for the controlled growth of VACNTs on metal substrates. The diffusion time of the catalyst, the diffusion coefficients for the catalyst in the substrate materials and the number density of catalyst nanoparticles after dewetting are identified as the key parameters, based on which three strategies are developed. Firstly, a fast-heating catalyst pretreatment strategy was used, aiming at preserving the amount of catalyst prior to CNT growth by reducing the catalyst diffusion time. The catalyst lifetime is extended from half an hour to one hour on a patterned Al thin film and a VACNT height of 106 mum, about twenty fold of that reported in the literature, was attained. Secondly, a diffusion barrier layer strategy is employed for a reduction of catalyst diffusion into the substrate materials. Enhancement of VACNT growth on Cu substrates was achieved by adopting a conformal Al2O 3 diffusion barrier layer fabricated by a specially designed atomic layer deposition (ALD) system. Lastly, a novel catalyst glancing angle deposition (GLAD) strategy is performed to manipulate the morphology of a relatively thick catalyst on metal substrates with physical surface heterogeneity, aiming to obtain uniform and dense catalyst nanoparticles after dewetting in the pretreatment process for enhanced VACNT growth. We are able to control the VACNT growth conditions on metal substrates in terms of their distribution, heights and alignments. Catalyst loss is controlled by the catalyst diffusion time and catalyst diffusion coefficients. A shorter catalyst diffusion time and smaller diffusion coefficient enhance VACNT growth on metals due to reduced catalyst loss during the pretreatment process. The dewetting behaviors of the thin film catalysts are influenced by the physical surface heterogeneity of the substrates which leads to non-uniform growth of VACNTs. The GLAD process facilitates the deposition of a relatively thick catalyst layer for the creation of dense and uniform catalyst nanoparticles. Applications of VACNT-metal structures in TIMs and microelectrodes are demonstrated. The VACNT-TIMs fabricated on Al alloy substrates have a typical thermal contact resistivity of 17.1 mm2˙K/W and their effective application in high-brightness LED thermal management was demonstrated. Electrochemical characterization was carried out on VACNT microelectrodes for the development of high resolution retinal prostheses and a satisfactory electrochemical property was again demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuang, Shiqiang; Nunna, Bharath Babu; Boscoboinik, Jorge Anibal
Nitrogen-doped graphene (N-G) catalyst emerges as one of the promising non-platinum group metal (non-PGM) catalysts with the advantages of low cost, high oxygen reduction reaction (ORR) activity, stability, and selectivity to replace expensive PGM catalysts in electrochemical systems. This research investigated nanoscale high energy wet (NHEW) ball milling for the synthesis of N-G catalysts to make conventional problems such as sintering or localized overheating issues negligible. The successful synthesis of N-G catalysts with comparable catalytic performance to 10 wt% Pt/C by using this method has been published. This paper focuses on understanding the effect of grinding speed and grinding timemore » on the particle size and chemical state of N-G catalysts through the physical and chemical characterization. The research result shows that (1) the final particle size, nitrogen doping percentage, and nitrogen bonding composition of synthesized N-G catalysts are predictable and controllable by adjusting the grinding time, the grinding speed, and other relative experimental parameters; (2) the final particle size of N-G catalysts could be estimated from the derived relation between the cracking energy density and the particle size of ground material in the NHEW ball milling process with specified experimental parameters; and (3) the chemical composition of N-G catalysts synthesized by NHEW ball milling is controllable by adjusting the grinding time and grinding speed.« less
Zhuang, Shiqiang; Nunna, Bharath Babu; Boscoboinik, Jorge Anibal; ...
2017-07-26
Nitrogen-doped graphene (N-G) catalyst emerges as one of the promising non-platinum group metal (non-PGM) catalysts with the advantages of low cost, high oxygen reduction reaction (ORR) activity, stability, and selectivity to replace expensive PGM catalysts in electrochemical systems. This research investigated nanoscale high energy wet (NHEW) ball milling for the synthesis of N-G catalysts to make conventional problems such as sintering or localized overheating issues negligible. The successful synthesis of N-G catalysts with comparable catalytic performance to 10 wt% Pt/C by using this method has been published. This paper focuses on understanding the effect of grinding speed and grinding timemore » on the particle size and chemical state of N-G catalysts through the physical and chemical characterization. The research result shows that (1) the final particle size, nitrogen doping percentage, and nitrogen bonding composition of synthesized N-G catalysts are predictable and controllable by adjusting the grinding time, the grinding speed, and other relative experimental parameters; (2) the final particle size of N-G catalysts could be estimated from the derived relation between the cracking energy density and the particle size of ground material in the NHEW ball milling process with specified experimental parameters; and (3) the chemical composition of N-G catalysts synthesized by NHEW ball milling is controllable by adjusting the grinding time and grinding speed.« less
Nellist, Michael R; Laskowski, Forrest A L; Lin, Fuding; Mills, Thomas J; Boettcher, Shannon W
2016-04-19
Light-absorbing semiconductor electrodes coated with electrocatalysts are key components of photoelectrochemical energy conversion and storage systems. Efforts to optimize these systems have been slowed by an inadequate understanding of the semiconductor-electrocatalyst (sem|cat) interface. The sem|cat interface is important because it separates and collects photoexcited charge carriers from the semiconductor. The photovoltage generated by the interface drives "uphill" photochemical reactions, such as water splitting to form hydrogen fuel. Here we describe efforts to understand the microscopic processes and materials parameters governing interfacial electron transfer between light-absorbing semiconductors, electrocatalysts, and solution. We highlight the properties of transition-metal oxyhydroxide electrocatalysts, such as Ni(Fe)OOH, because they are the fastest oxygen-evolution catalysts known in alkaline media and are (typically) permeable to electrolyte. We describe the physics that govern the charge-transfer kinetics for different interface types, and show how numerical simulations can explain the response of composite systems. Emphasis is placed on "limiting" behavior. Electrocatalysts that are permeable to electrolyte form "adaptive" junctions where the interface energetics change during operation as charge accumulates in the catalyst, but is screened locally by electrolyte ions. Electrocatalysts that are dense, and thus impermeable to electrolyte, form buried junctions where the interface physics are unchanged during operation. Experiments to directly measure the interface behavior and test the theory/simulations are challenging because conventional photoelectrochemical techniques do not measure the electrocatalyst potential during operation. We developed dual-working-electrode (DWE) photoelectrochemistry to address this limitation. A second electrode is attached to the catalyst layer to sense or control current/voltage independent from that of the semiconductor back ohmic contact. Consistent with simulations, electrolyte-permeable, redox-active catalysts such as Ni(Fe)OOH form "adaptive" junctions where the effective barrier height for electron exchange depends on the potential of the catalyst. This is in contrast to sem|cat interfaces with dense electrolyte-impermeable catalysts, such as nanocrystalline IrOx, that behave like solid-state buried (Schottky-like) junctions. These results elucidate a design principle for catalyzed photoelectrodes. The buried heterojunctions formed by dense catalysts are often limited by Fermi-level pinning and low photovoltages. Catalysts deposited by "soft" methods, such as electrodeposition, form adaptive junctions that tend to provide larger photovoltages and efficiencies. We also preview efforts to improve theory/simulations to account for the presence of surface states and discuss the prospect of carrier-selective catalyst contacts.
Light Absorbers and Catalysts for Solar to Fuel Conversion
NASA Astrophysics Data System (ADS)
Kornienko, Nikolay I.
Increasing fossil fuel consumption and the resulting consequences to the environment has propelled research into means of utilizing alternative, clean energy sources. Solar power is among the most promising of renewable energy sources but must be converted into an energy dense medium such as chemical bonds to render it useful for transport and energy storage. Photoelectrochemistry (PEC), the splitting of water into oxygen and hydrogen fuel or reducing CO 2 to hydrocarbon fuels via sunlight is a promising approach towards this goal. Photoelectrochemical systems are comprised of several components, including light absorbers and catalysts. These parts must all synergistically function in a working device. Therefore, the continual development of each component is crucial for the overall goal. For PEC systems to be practical for large scale use, the must be efficient, stable, and composed of cost effective components. To this end, my work focused on the development of light absorbing and catalyst components of PEC solar to fuel converting systems. In the direction of light absorbers, I focused of utilizing Indium Phosphide (InP) nanowires (NWs) as photocathodes. I first developed synthetic techniques for InP NW solution phase and vapor phase growth. Next, I developed light absorbing photocathodes from my InP NWs towards PEC water splitting cells. I studied cobalt sulfide (CoSx) as an earth abundant catalyst for the reductive hydrogen evolution half reaction. Using in situ spectroscopic techniques, I elucidated the active structure of this catalyst and offered clues to its high activity. In addition to hydrogen evolution catalysts, I established a new generation of earth abundant catalysts for CO2 reduction to CO fuel/chemical feedstock. I first worked with molecularly tunable homogeneous catalysts that exhibited high selectivity for CO2 reduction in non-aqueous media. Next, in order to retain molecular tunability while achieving stability and efficiency in aqueous solvents, I aimed to heterogenize a class of molecular porphyrin catalysts into a 3D mesoscopic porous catalytic structure in the form of a metal-organic framework (MOF). To do so, I initially developed a growth for thin film MOFs that were embedded with catalytic groups in their linkers. Next, I utilized these thin film MOFs grown on conductive substrates and functionalized with cobalt porphyrin units as 3D porous CO2 reduction catalysts. This new class of catalyst exhibited high efficiency, selectivity, and stability in neutral pH aqueous electrolytes. Finally, as a last chapter of my work, I explored hybrid inorganic/biological CO2 reduction pathways. Specifically, I used time-resolved spectroscopic and biochemical techniques to investigate charge transfer pathways from light absorber to CO2-derived acetate in acetogenic self-sensitized bacteria.
NASA Astrophysics Data System (ADS)
Boucher, Matthew B.
Most industrial catalysts are very complex, comprising of non-uniform materials with varying structures, impurities, and interaction between the active metal and supporting substrate. A large portion of the ongoing research in heterogeneous catalysis focuses on understanding structure-function relationships in catalytic materials. In parallel, there is a large area of surface science research focused on studying model catalytic systems for which structural parameters can be tuned and measured with high precision. It is commonly argued, however, that these systems are oversimplified, and that observations made in model systems do not translate to robust catalysts operating in practical environments; this discontinuity is often referred to as a "gap." The focus of this thesis is to explore the mutual benefits of surface science and catalysis, or "bridge the gap," by studying two catalytic systems in both ultra-high vacuum (UHV) and near ambient-environments. The first reaction is the catalytic steam reforming of methanol (SRM) to hydrogen and carbon dioxide. The SRM reaction is a promising route for on-demand hydrogen production. For this catalytic system, the central hypothesis in this thesis is that a balance between redox capability and weak binding of reaction intermediates is necessary for high SRM activity and selectivity to carbon dioxide. As such, a new catalyst for the SRM reaction is developed which incorporates very small amounts of gold (<1 atomic %) supported on zinc oxide nanoparticles with controlled crystal structures. The performance of these catalysts was studied in a fixed-bed micro-reactor system at ambient pressures, and their structure was characterized by high-resolution microscopic and spectroscopic techniques. Pre-existing oxygen defects in zinc oxide {0001} surfaces, and those created by a perturbation of the defect equilibrium by addition of gold, provide an anchoring site for highly dispersed gold species. By utilizing shape control of zinc oxide supports, it is found that highly dispersed gold, capable of low-temperature redox behavior is most prominent on zinc oxide {0001} surfaces and leads to high SRM activity and selectivity to carbon dioxide. Like other Group IB metal catalysts the SRM over gold-zinc oxide proceeds through the formation and weak binding of formaldehyde, and subsequent coupling with methoxy to produce methyl formate. Mechanistic clarification of this point was achieved by studying the interaction methanol-water mixtures with model catalyst surfaces. Model catalysts were studied in a UHV chamber where the base pressure was maintained at 10-10 mbar. High resolutions surface science techniques show that hydrogen-bonded networks of water are capable of deprotonating methanol to methoxy on low index surfaces in the absence of atomic oxygen. These UHV studies show that adsorbates, other than oxygen, are capable of activating methanol on Group IB metal surfaces. The second reaction involves the selective hydrogenation of alkynes to alkenes. Selective hydrogenations of carbon-carbon multiple bonds are important for a wide range of industrial processes. The governing hypothesis for this reaction system is that cooperation between a minority metal with a low barrier for hydrogen dissociation, and a less-reactive host metal capable of hydrogen uptake via spillover will lead to high alkene selectivity. A strategy for the preparation of such a catalyst is developed using model catalyst studied in a UHV chamber. The model catalyst features isolated palladium atoms in a copper(111) surface, termed single atom alloy (SAA). Individual, isolated palladium atoms act as sites for hydrogen uptake, dissociation, and spillover onto an otherwise inert copper(111) host. Weak binding offered by copper provides a surface where selective hydrogenation reactions can take place. Palladium-copper SAA model catalysts are highly selective to the partial hydrogenation of acetylene, whereas surfaces containing larger palladium ensembles facilitate complete hydrogenation and decomposition. Nanoparticle analogs of palladium-copper SAAs were prepared to investigate the feasibility of this strategy for practical application. Very small amounts of palladium (<0.2 atomic %) on the surface of copper nanoparticles are highly active and selective catalysts for the partial hydrogenation of phenylacetylene to styrene. The performance of these catalysts was studied in a liquid-phase, stirred-tank batch reactor under a hydrogen head pressure of approximately 7 bar. Palladium alloyed into the surface of otherwise inactive copper nanoparticles shows a marked improvement in selectivity when compared to monometallic palladium catalysts with the same metal loading. This effect is attributed hydrogen spillover onto the copper surface. In summary, the development of new, highly active and selective catalysts for the methanol steam reforming reaction and for the partial hydrogenation of alkynes to alkenes was accomplished by the use of state-of-the-art techniques in both surface science and heterogeneous catalysis. The implications of this work can be extended to a wide variety of catalytic systems.
NASA Astrophysics Data System (ADS)
Park, Jong Cheol; Choi, Chang Hyuck
2017-08-01
Non-precious metal catalysts (typically Fe(Co)-N-C catalysts) have been widely investigated for use as cost-effective cathode materials in low temperature fuel cells. Despite the high oxygen reduction activity and methanol-tolerance of graphene-based Fe(Co)-N-C catalysts in an acidic medium, their use in direct methanol fuel cells (DMFCs) has not yet been successfully implemented, and only a few studies have investigated this topic. Herein, we synthesized a nano-sized graphene-derived Fe/Co-N-C catalyst by physical ball-milling and a subsequent chemical modification of the graphene oxide. Twelve membrane-electrode-assemblies are fabricated with various cathode compositions to determine the effects of the methanol concentration, ionomer (i.e. Nafion) content, and catalyst loading on the DMFC performance. The results show that a graphene-based catalyst is capable of tolerating a highly-concentrated methanol feed up to 10.0 M. The optimized electrode composition has an ionomer content and catalyst loading of 66.7 wt% and 5.0 mg cm-2, respectively. The highest maximum power density is ca. 32 mW cm-2 with a relatively low PtRu content (2 mgPtRu cm-2). This study overcomes the drawbacks of conventional graphene-based electrodes using a nano-sized graphene-based catalyst and further shows the feasibility of their potential applications in DMFC systems.
2007-06-01
runoff from Drainage Area B. Potentially contaminated surface runoff from Drainage Area B may enter the soil , and subsequently the groundwater, along...an estimated 250,000 gallons of JP-4 jet fuel were released. Soil was excavated and approximately 100,000 gallons of fuel were recovered during...Monitoring wells (4 wells, $4,000 per well) $16,000 Palladium catalyst treatment system $61,000 Palladium catalyst with eggshell coating (20 kg, $245
Solvent free oxidation of primary alcohols and diols using thymine iron(III) catalyst.
Al-Hunaiti, Afnan; Niemi, Teemu; Sibaouih, Ahlam; Pihko, Petri; Leskelä, Markku; Repo, Timo
2010-12-28
In this study, we developed an efficient and selective iron-based catalyst system for the synthesis of ketones from secondary alcohols and carboxylic acids from primary alcohol. In situ generated iron catalyst of thymine-1-acetate (THA) and FeCl(3) under solvent-free condition exhibits high activity. As an example, 1-octanol and 2-octanol were oxidized to 1-octanoic acid and 2-octanone with 89% and 98% yields respectively.
Series-Bosch Technology for Oxygen Recovery During Lunar or Martian Surface Missions
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Mansell, J. Matthew; Rabenberg, Ellen; Stanley, Christine M.; Edmunson, Jennifer; Alleman, James E.; Chen, Kevin; Dumez, Sam
2014-01-01
Long-duration surface missions to the Moon or Mars will require life support systems that maximize resource recovery to minimize resupply from Earth. To address this need, NASA previously proposed a Series-Bosch (S-Bosch) oxygen recovery system, based on the Bosch process, which can theoretically recover 100% of the oxygen from metabolic carbon dioxide. Bosch processes have the added benefits of the potential to recover oxygen from atmospheric carbon dioxide and the use of regolith materials as catalysts, thereby eliminating the need for catalyst resupply from Earth. In 2012, NASA completed an initial design for an S-Bosch development test stand that incorporates two catalytic reactors in series including a Reverse Water-Gas Shift (RWGS) Reactor and a Carbon Formation Reactor (CFR). In 2013, fabrication of system components, with the exception of a CFR, and assembly of the test stand was initiated. Stand-alone testing of the RWGS reactor was completed to compare performance with design models. Continued testing of Lunar and Martian regolith simulants provided sufficient data to design a CFR intended to utilize these materials as catalysts. Finally, a study was conducted to explore the possibility of producing bricks from spent regolith catalysts. The results of initial demonstration testing of the RWGS reactor, results of continued catalyst performance testing of regolith simulants, and results of brick material properties testing are reported. Additionally, design considerations for a regolith-based CFR are discussed.
Zang, Hongjun; Chen, Eugene Y. X.
2015-01-01
There is increasing interest in the upgrading of C5 furfural (FF) and C6 5-hydroxymethyl furfural (HMF) into C10 and C12 furoins as higher energy-density intermediates for renewable chemicals, materials, and biofuels. This work utilizes the organocatalytic approach, using the in situ generated N,S-heterocyclic carbene catalyst derived from thiazolium ionic liquids (ILs), to achieve highly efficient self-coupling reactions of FF and HMF. Specifically, variations of the thiazolium IL structure have led to the most active and efficient catalyst system of the current series, which is derived from a new thiazolium IL carrying the electron-donating acetate group at the 5-ring position. For FF coupling by this IL (0.1 mol %, 60 °C, 1 h), when combined with Et3N, furoin was obtained in >99% yield. A 97% yield of the C12 furoin was also achieved from the HMF coupling by this catalyst system (10 mol % loading, 120 °C, 3 h). On the other hand, the thiazolium IL bearing the electron-withdrawing group at the 5-ring position is the least active and efficient catalyst. The mechanistic aspects of the coupling reaction by the thiazolium catalyst system have also been examined and a mechanism has been proposed. PMID:25830482
Series-Bosch Technology for Oxygen Recovery During Lunar or Martian Surface Missions
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Mansell, James M.; Stanley, Christine; Edmunson, Jennifer; Dumez, Samuel; Chen, Kevin; Alleman, James E.
2014-01-01
Long-duration surface missions to the Moon or Mars will require life support systems that maximize resource recovery to minimize resupply from Earth. To address this need, NASA previously proposed a Series-Bosch (S-Bosch) oxygen recovery system, based on the Bosch process, which can theoretically recover 100% of the oxygen from metabolic carbon dioxide. Bosch processes have the added benefits of the potential to recover oxygen from atmospheric carbon dioxide and the use of regolith materials as catalysts, thereby eliminating the need for catalyst resupply from Earth. In 2012, NASA completed an initial design for an S-Bosch development test stand that incorporates two catalytic reactors in series including a Reverse Water-Gas Shift (RWGS) Reactor and a Carbon Formation Reactor (CFR). In 2013, fabrication of system components, with the exception of a CFR, and assembly of the test stand was initiated. Stand-alone testing of the RWGS reactor was completed to compare performance with design models. Continued testing of Lunar and Martian regolith simulants provided sufficient data to design a CFR intended to utilize these materials as catalysts. Finally, a study was conducted to explore the possibility of producing bricks from spend regolith catalysts. The results of initial demonstration testing of the RWGS reactor, results of continued catalyst performance testing of regolith simulants, and results of brick material properties testing are reported. Additionally, design considerations for a regolith-based CFR are discussed.
Catalytic performance of heterogeneous Rh/C3N4 for the carbonylation of methanol
NASA Astrophysics Data System (ADS)
Budiman, Anatta Wahyu; Choi, Myoung Jae; Nur, Adrian
2018-02-01
The excess of water in homogeneous the carbonylation of methanol system could increase the amount of by-products formed through water-gas shift reaction and could accelerate the rusting of equipment. Many scientists tried to decrease the content of water in the carbonylation of methanol system by using lithium and iodide promoter that results a moderate catalytic activity in the water content at 2wt%. The heterogenized catalyst offers several distinct advantages such as it was enables increased catalyst concentration in the reaction mixture, which is directly proportional to acetic acid production rate, without the addition of an alkali iodide salt promoter. The heterogeneous catalyst also results in reduced by-product formation. This study is aimed to produce a novel catalyst (Rh/C3N4) with a high selectivity of acetic acid in a relatively lower water and halide content. This novel catalyst performs high conversion and selectivity of acetic acid as the result of the strong ionic bonding of melamine and rhodium complex species that was caused by the presence of methyl iodide species. The CO2 in feed gas significantly decreases the catalytic activity of Rh-melamine because of its inert characteristics. The kinetic test was performed as that the first order kinetic equation. The kinetic tests revealed the reaction route of the the carbonylation of methanol in this system was performed trough the methyl acetate.
Rodriguez, José A.; Grinter, David C.; Liu, Zongyuan; ...
2017-02-17
Model metal/ceria and ceria/metal catalysts have been shown to be excellent systems for studying fundamental phenomena linked to the operation of technical catalysts. In the last fifteen years, many combinations of well-defined systems involving different kinds of metals and ceria have been prepared and characterized using the modern techniques of surface science. So far most of the catalytic studies have been centered on a few reactions: CO oxidation, the hydrogenation of CO 2, and the production of hydrogen through the water–gas shift reaction and the reforming of methane or alcohols. By using model catalysts it is been possible to examinemore » in detail correlations between the structural, electronic and catalytic properties of ceria–metal interfaces. In situ techniques (X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, infrared spectroscopy, scanning tunneling microscopy) have been combined to study the morphological changes under reaction conditions and investigate the evolution of active phases involved in the cleavage of C–O, C–H and C–C bonds. Several studies with model ceria catalysts have shown the importance of strong metal–support interactions. Generally, a substantial body of knowledge has been acquired and concepts have been developed for a more rational approach to the design of novel technical catalysts containing ceria.« less
Parejas, Almudena; Montes, Vicente; Hidalgo-Carrillo, Jesús; Sánchez-López, Elena; Marinas, Alberto; Urbano, Francisco J
2017-12-18
Two series of catalysts were prepared by sol-gel and microemulsion synthetic procedure (SG and ME, respectively). Each series includes both pure Mg and Zr solids as well as Mg-Zr mixed solids with 25%, 50% and 75% nominal Zr content. The whole set of catalysts was characterized from thermal, structural and surface chemical points of view and subsequently applied to the liquid-phase xylose dehydration to furfural. Reactions were carried out in either a high-pressure autoclave or in an atmospheric pressure multi-reactor under a biphasic (organic/water) reaction mixture. Butan-2-ol and toluene were essayed as organic solvents. Catalysts prepared by microemulsion retained part of the surfactant used in the synthetic procedure, mainly associated with the Zr part of the solid. The MgZr-SG solid presented the highest surface acidity while the Mg3Zr-SG one exhibited the highest surface basicity among mixed systems. Xylose dehydration in the high-pressure system and with toluene/water solvent mixture led to the highest furfural yield. Moreover, the yield of furfural increases with the Zr content of the catalyst. Therefore, the catalysts constituted of pure ZrO₂ (especially Zr-SG) are the most suitable to carry out the process under study although MgZr mixed solids could be also suitable for overall processes with additional reaction steps.
Ho, Pui-Yu; Lu, Yu-Jing; Tang, Qian
2017-01-01
Latent catalysts can be tuned to function smartly by assigning a sensing threshold using the displacement approach for targeted analytes. Three cyano-bridged bimetallic complexes were synthesized as “smart” latent catalysts through the supramolecular assembly of different metallic donors [FeII(CN)6]4–, [FeII(tBubpy)(CN)4]2–, and FeII(tBubpy)2(CN)2 with a metallic acceptor [CuII(dien)]2+. The investigation of both their thermodynamic and kinetic properties on binding with toxic pollutants provided insight into their smart off–on catalytic capabilities, enabling us to establish a threshold-controlled catalytic system for the degradation of pollutants such as cyanide and oxalate. With these smart latent catalysts, a new catalyst displacement assay (CDA) was demonstrated and applied in a real wastewater treatment process to degrade cyanide pollutants in both domestic (level I, untreated) and industrial wastewater samples collected in Hong Kong, China. The smart system was adjusted to be able to initiate the catalytic oxidation of cyanide at a threshold concentration of 20 μM (the World Health Organization’s suggested maximum allowable level for cyanide in wastewater) to the less harmful cyanate under ambient conditions. PMID:28580114
Sugime, Hisashi; Esconjauregui, Santiago; D'Arsié, Lorenzo; Yang, Junwei; Makaryan, Taron; Robertson, John
2014-09-10
We evaluate the growth kinetics and growth mechanism of ultrahigh mass density carbon nanotube forests. They are synthesized by chemical vapor deposition at 450 °C using a conductive Ti/Cu support and Co-Mo catalyst system. We find that Mo stabilizes Co particles preventing lift off during the initial growth stage, thus promoting the growth of ultrahigh mass density nanotube forests by the base growth mechanism. The morphology of the forest gradually changes with growth time, mostly because of a structural change of the catalyst particles. After 100 min growth, toward the bottom of the forest, the area density decreases from ∼ 3-6 × 10(11) cm(-2) to ∼ 5 × 10(10) cm(-2) and the mass density decreases from 1.6 to 0.38 g cm(-3). We also observe part of catalyst particles detached and embedded within nanotubes. The progressive detachment of catalyst particles results in the depletion of the catalyst metals on the substrate surfaces. This is one of the crucial reasons for growth termination and may apply to other catalyst systems where the same features are observed. Using the packed forest morphology, we demonstrate patterned forest growth with a pitch of ∼ 300 nm and a line width of ∼ 150 nm. This is one of the smallest patterning of the carbon nanotube forests to date.
Visible-light-driven methane formation from CO2 with a molecular iron catalyst.
Rao, Heng; Schmidt, Luciana C; Bonin, Julien; Robert, Marc
2017-08-03
Converting CO 2 into fuel or chemical feedstock compounds could in principle reduce fossil fuel consumption and climate-changing CO 2 emissions. One strategy aims for electrochemical conversions powered by electricity from renewable sources, but photochemical approaches driven by sunlight are also conceivable. A considerable challenge in both approaches is the development of efficient and selective catalysts, ideally based on cheap and Earth-abundant elements rather than expensive precious metals. Of the molecular photo- and electrocatalysts reported, only a few catalysts are stable and selective for CO 2 reduction; moreover, these catalysts produce primarily CO or HCOOH, and catalysts capable of generating even low to moderate yields of highly reduced hydrocarbons remain rare. Here we show that an iron tetraphenylporphyrin complex functionalized with trimethylammonio groups, which is the most efficient and selective molecular electro- catalyst for converting CO 2 to CO known, can also catalyse the eight-electron reduction of CO 2 to methane upon visible light irradiation at ambient temperature and pressure. We find that the catalytic system, operated in an acetonitrile solution containing a photosensitizer and sacrificial electron donor, operates stably over several days. CO is the main product of the direct CO 2 photoreduction reaction, but a two-pot procedure that first reduces CO 2 and then reduces CO generates methane with a selectivity of up to 82 per cent and a quantum yield (light-to-product efficiency) of 0.18 per cent. However, we anticipate that the operating principles of our system may aid the development of other molecular catalysts for the production of solar fuels from CO 2 under mild conditions.
Visible-light-driven methane formation from CO2 with a molecular iron catalyst
NASA Astrophysics Data System (ADS)
Rao, Heng; Schmidt, Luciana C.; Bonin, Julien; Robert, Marc
2017-08-01
Converting CO2 into fuel or chemical feedstock compounds could in principle reduce fossil fuel consumption and climate-changing CO2 emissions. One strategy aims for electrochemical conversions powered by electricity from renewable sources, but photochemical approaches driven by sunlight are also conceivable. A considerable challenge in both approaches is the development of efficient and selective catalysts, ideally based on cheap and Earth-abundant elements rather than expensive precious metals. Of the molecular photo- and electrocatalysts reported, only a few catalysts are stable and selective for CO2 reduction; moreover, these catalysts produce primarily CO or HCOOH, and catalysts capable of generating even low to moderate yields of highly reduced hydrocarbons remain rare. Here we show that an iron tetraphenylporphyrin complex functionalized with trimethylammonio groups, which is the most efficient and selective molecular electro- catalyst for converting CO2 to CO known, can also catalyse the eight-electron reduction of CO2 to methane upon visible light irradiation at ambient temperature and pressure. We find that the catalytic system, operated in an acetonitrile solution containing a photosensitizer and sacrificial electron donor, operates stably over several days. CO is the main product of the direct CO2 photoreduction reaction, but a two-pot procedure that first reduces CO2 and then reduces CO generates methane with a selectivity of up to 82 per cent and a quantum yield (light-to-product efficiency) of 0.18 per cent. However, we anticipate that the operating principles of our system may aid the development of other molecular catalysts for the production of solar fuels from CO2 under mild conditions.
NASA Technical Reports Server (NTRS)
Tomsik, Thomas M.; Yen, Judy C.H.; Budge, John R.
2006-01-01
Solid oxide fuel cell systems used in the aerospace or commercial aviation environment require a compact, light-weight and highly durable catalytic fuel processor. The fuel processing method considered here is an autothermal reforming (ATR) step. The ATR converts Jet-A fuel by a reaction with steam and air forming hydrogen (H2) and carbon monoxide (CO) to be used for production of electrical power in the fuel cell. This paper addresses the first phase of an experimental catalyst screening study, looking at the relative effectiveness of several monolith catalyst types when operating with untreated Jet-A fuel. Six monolith catalyst materials were selected for preliminary evaluation and experimental bench-scale screening in a small 0.05 kWe micro-reactor test apparatus. These tests were conducted to assess relative catalyst performance under atmospheric pressure ATR conditions and processing Jet-A fuel at a steam-to-carbon ratio of 3.5, a value higher than anticipated to be run in an optimized system. The average reformer efficiencies for the six catalysts tested ranged from 75 to 83 percent at a constant gas-hourly space velocity of 12,000 hr 1. The corresponding hydrocarbon conversion efficiency varied from 86 to 95 percent during experiments run at reaction temperatures between 750 to 830 C. Based on the results of the short-duration 100 hr tests reported herein, two of the highest performing catalysts were selected for further evaluation in a follow-on 1000 hr life durability study in Phase II.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayram, Ercan; Linehan, John C.; Fulton, John L.
Determining the kinetically dominant catalyst in a given catalytic system is a forefront topic in catalysis. The [RhCp*Cl₂]₂ (Cp* =[η⁵-C₅(CH₃)₅]) system pioneered by Maitlis and co-workers is a classic precatalyst system from which homogeneous mononuclear Rh₁, subnanometer Rh₄ cluster, and heterogeneous polymetallic Rh(0) n nanoparticle have all arisen as viable candidates for the true hydrogenation catalyst, depending on the precise substrate, H₂ pressure, temperature, and catalyst concentration conditions. Addressed herein is the question of whether the prior assignment of homogeneous, mononuclear Rh₁Cp*-based catalysis is correct, or are trace Rh₄ subnanometer clusters or possibly Rh(0) n nanoparticles the dominant, actualmore » cyclohexene hydrogenation catalyst at 22 °C and 2.7 atm initial H₂ pressure? The observation herein of Rh₄ species by in operando-X-ray absorption fine structure (XAFS) spectroscopy, at the only slightly more vigorous conditions of 26 °C and 8.3 atm H₂ pressure, and the confirmation of Rh₄ clusters by ex situ mass spectroscopy raises the question of the dominant, room temperature, and mild pressure cyclohexene hydrogenation catalyst derived from the classic [RhCp*Cl₂]₂ precatalyst pioneered by Maitlis and co-workers. Ten lines of evidence are provided herein to address the nature of the true room temperature and mild pressure cyclohexene hydrogenation catalyst derived from [RhCp*Cl₂]₂. Especially significant among those experiments are quantitative catalyst poisoning experiments, in the present case using 1,10-phenanthroline. Those poisoning studies allow one to distinguish mononuclear Rh₁, subnanometer Rh₄ cluster, and Rh(0) n nanoparticle catalysis hypotheses. The evidence obtained provides a compelling case for a mononuclear, Rh₁Cp*-based cyclohexene hydrogenation catalyst at 22 °C and 2.7 atm H₂ pressure. The resultant methodology, especially the quantitative catalyst poisoning experiments in combination with in operando spectroscopy, is expected to be more broadly applicable to the study of other systems and the “what is the true catalyst?” question. The authors would like to thank Finke Group members and Prof. Saim Ö zkar for their valuable input as this work was proceeding. This work was supported at Colorado State University by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences, vial DOE Grant SE-FG402-03ER15453. The work at PNNL was also supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geo-sciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for the DOE by Battelle. XSD/PNC facilities at the Advanced Photon Source and research at these facilities are supported by the U.S. Department of Energy, Basic Energy Sciences; a Major Resources Support Grant from NSERC; the University of Washington; the Canadian Light Source; and the Advanced Photon Source. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory was supported by the U.S. DOE under Contract No. DE-AC02- 06CH11357.« less
Progress in the Development of Oxygen Reduction Reaction Catalysts for Low-Temperature Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dongguo; Lv, Haifeng; Kang, Yijin
2016-04-06
In this paper, we present a brief summary on the most recent progress in the design of catalysts for electrochemical reduction of oxygen. The main challenge in the wide spread of fuel cell technology is to lower the content of, or even eliminate, Pt and other precious metals in catalysts without sacrificing their performance. Pt-based nanosized catalysts with novel and refined architectures continue to dominate in catalytic performance, and formation of Pt-skin-like surfaces is key to achieving the highest values in activity. Moreover, durability has also been improved in Pt-based systems with addition of Au, which plays an important rolemore » in stabilizing the Pt topmost layers against dissolution. However, various carbon-based materials without precious metal have shown improvement in activity and durability and have been explored to serve as catalyst supports. Finally, understanding how the doped elements interact with each other and/or carbon is challenging and necessary in the design of robust fuel cell catalysts.« less
Thushari, Indika; Babel, Sandhya
2018-01-01
In this study, an inexpensive, environmental benign acid catalyst is prepared using coconut meal residue (CMR) and employed for biodiesel production from waste palm oil (WPO). The total acid density of the catalyst is found to be 3.8mmolg -1 . The catalyst shows a unique amorphous structure with 1.33m 2 g -1 of surface area and 0.31cm 3 g -1 of mean pore volume. Successful activation is confirmed by Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The highest biodiesel yield of 92.7% was obtained from WPO in an open reflux system using the catalyst. Results show that biodiesel yield increases with increasing methanol:oil (molar ratio) and reaction time up to an optimum value. It is found that the catalyst can be reused for at least four cycles for >80% biodiesel yield. Fuel properties of the produced biodiesel meet international biodiesel standards. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thompson, Levi T.; Patt, Jeremy; Moon, Dong Ju; Phillips, Cory
2003-09-23
Mono- and bimetallic transition metal carbides, nitrides and borides, and their oxygen containing analogs (e.g. oxycarbides) for use as water gas shift catalysts are described. In a preferred embodiment, the catalysts have the general formula of M1.sub.A M2.sub.B Z.sub.C O.sub.D, wherein M1 is selected from the group consisting of Mo, W, and combinations thereof; M2 is selected from the group consisting of Fe, Ni, Cu, Co, and combinations thereof; Z is selected from the group consisting of carbon, nitrogen, boron, and combinations thereof; A is an integer; B is 0 or an integer greater than 0; C is an integer; O is oxygen; and D is 0 or an integer greater than 0. The catalysts exhibit good reactivity, stability, and sulfur tolerance, as compared to conventional water shift gas catalysts. These catalysts hold promise for use in conjunction with proton exchange membrane fuel cell powered systems.
Challenging nickel-catalysed amine arylations enabled by tailored ancillary ligand design
Lavoie, Christopher M.; MacQueen, Preston M.; Rotta-Loria, Nicolas L.; Sawatzky, Ryan S.; Borzenko, Andrey; Chisholm, Alicia J.; Hargreaves, Breanna K. V.; McDonald, Robert; Ferguson, Michael J.; Stradiotto, Mark
2016-01-01
Palladium-catalysed C(sp2)–N cross-coupling (that is, Buchwald–Hartwig amination) is employed widely in synthetic chemistry, including in the pharmaceutical industry, for the synthesis of (hetero)aniline derivatives. However, the cost and relative scarcity of palladium provides motivation for the development of alternative, more Earth-abundant catalysts for such transformations. Here we disclose an operationally simple and air-stable ligand/nickel(II) pre-catalyst that accommodates the broadest combination of C(sp2)–N coupling partners reported to date for any single nickel catalyst, without the need for a precious-metal co-catalyst. Key to the unprecedented performance of this pre-catalyst is the application of the new, sterically demanding yet electron-poor bisphosphine PAd-DalPhos. Featured are the first reports of nickel-catalysed room temperature reactions involving challenging primary alkylamine and ammonia reaction partners employing an unprecedented scope of electrophiles, including transformations involving sought-after (hetero)aryl mesylates for which no capable catalyst system is known. PMID:27004442
Activation of surface lattice oxygen in single-atom Pt/CeO 2 for low-temperature CO oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, Lei; Mei, Donghai; Xiong, Haifeng
While single-atom catalysts can provide high catalytic activity and selectivity, application in industrial catalysts demands long term performance and the ability to regenerate the catalysts. We have investigated the factors that lead to improved catalytic activity of a Pt/CeO2 catalyst for low temperature CO oxidation. Single-atom Pt/CeO2 becomes active for CO oxidation under lean condition only at elevated temperatures, because CO is strongly bound to ionic Pt sites. Reducing the catalyst, even under mild conditions, leads to onset of CO oxidation activity even at room temperature. This high activity state involves the transformation of mononuclear Pt species to sub-nanometer sizedmore » Pt particles. Under oxidizing conditions, the Pt can be restored to its stable, single-atom state. The key to facile regeneration is the ability to create mobile Pt species and suitable trapping sites on the support, making this a prototypical catalyst system for industrial application of single-atom catalysis.« less
NASA Astrophysics Data System (ADS)
Matsumoto, Takeshi; Sadakiyo, Masaaki; Ooi, Mei Lee; Kitano, Sho; Yamamoto, Tomokazu; Matsumura, Syo; Kato, Kenichi; Takeguchi, Tatsuya; Yamauchi, Miho
2014-07-01
An Fe group ternary nanoalloy (NA) catalyst enabled selective electrocatalysis towards CO2-free power generation from highly deliverable ethylene glycol (EG). A solid-solution-type FeCoNi NA catalyst supported on carbon was prepared by a two-step reduction method. High-resolution electron microscopy techniques identified atomic-level mixing of constituent elements in the nanoalloy. We examined the distribution of oxidised species, including CO2, produced on the FeCoNi nanoalloy catalyst in the EG electrooxidation under alkaline conditions. The FeCoNi nanoalloy catalyst exhibited the highest selectivities toward the formation of C2 products and to oxalic acid, i.e., 99 and 60%, respectively, at 0.4 V vs. the reversible hydrogen electrode (RHE), without CO2 generation. We successfully generated power by a direct EG alkaline fuel cell employing the FeCoNi nanoalloy catalyst and a solid-oxide electrolyte with oxygen reduction ability, i.e., a completely precious-metal-free system.
Balakrishnan, K; Olutoye, M A; Hameed, B H
2013-01-01
The current research investigates synthesis of methyl esters by transesterification of waste cooking oil in a heterogeneous system, using barium meliorated construction site waste marble as solid base catalyst. The pretreated catalyst was calcined at 830 °C for 4h prior to its activity test to obtained solid oxide characterized by scanning electron microscopy/energy dispersive spectroscopy, BET surface area and pore size measurement. It was found that the as prepared catalyst has large pores which contributed to its high activity in transesterification reaction. The methyl ester yield of 88% was obtained when the methanol/oil molar ratio was 9:1, reaction temperature at 65 °C, reaction time 3h and catalyst/oil mass ratio of 3.0 wt.%. The catalyst can be reused over three cycles, offer low operating conditions, reduce energy consumption and waste generation in the production of biodiesel. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bai, Zhiyong; Wang, Jianlong; Yang, Qi
2018-04-01
Sulfonamide antibiotics are ubiquitous pollutants in aquatic environments due to their large production and extensive application. In this paper, the iron doped fibrous-structured silica (KCC-1) nanospheres (Fe-KCC-1) was prepared, characterized, and applied as a catalyst for catalytic ozonation of sulfamethazine (SMT). The effects of ozone dosage, catalyst dosage, and initial concentration of SMT were examined. The experimental results showed that Fe-KCC-1 had large surface area (464.56 m2 g -1 ) and iron particles were well dispersed on the catalyst. The catalyst had high catalytic performance especially for the mineralization of SMT, with mineralization ratio of about 40% in a wide pH range. With addition of Fe-KCC-1, the ozone utilization increased nearly two times than single ozonation. The enhancement of SMT degradation was mainly due to the surface reaction, and the increased mineralization of SMT was due to radical mechanism. Fe-KCC-1 was an efficient catalyst for SMT degradation in catalytic ozonation system.
Enhanced furfural production from raw corn stover employing a novel heterogeneous acid catalyst.
Li, Wenzhi; Zhu, Yuanshuai; Lu, Yijuan; Liu, Qiyu; Guan, Shennan; Chang, Hou-Min; Jameel, Hasan; Ma, Longlong
2017-12-01
With the aim to enhance the direct conversion of raw corn stover into furfural, a promising approach was proposed employing a novel heterogeneous strong acid catalyst (SC-CaC t -700) in different solvents. The novel catalyst was characterized by elemental analysis, N 2 adsorption-desorption, FT-IR, XPS, TEM and SEM. The developed catalytic system demonstrated superior efficacy for furfural production from raw corn stover. The effects of reaction temperature, residence time, catalyst loading, substrate concentration and solvent were investigated and optimized. 93% furfural yield was obtained from 150mg corn stover at 200°C in 100min using 45mg catalyst in γ-valerolactone (GVL). In comparison, 51.5% furfural yield was achieved in aqueous media under the same conditions (200°C, 5h, and 45mg catalyst), which is of great industrial interest. Furfural was obtained from both hemicelluloses and cellulose in corn stover, which demonstrated a promising routine to make the full use of biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tan, Qiang; Du, Chunyu; Sun, Yongrong; Du, Lei; Yin, Geping; Gao, Yunzhi
2015-08-01
A novel palladium-doped ceria and carbon core-sheath nanowire network (Pd-CeO2@C CSNWN) is synthesized by a template-free and surfactant-free solvothermal process, followed by high temperature carbonization. This hierarchical network serves as a new class of catalyst support to enhance the activity and durability of noble metal catalysts for alcohol oxidation reactions. Its supported Pd nanoparticles, Pd/(Pd-CeO2@C CSNWN), exhibit >9 fold increase in activity toward the ethanol oxidation over the state-of-the-art Pd/C catalyst, which is the highest among the reported Pd systems. Moreover, stability tests show a virtually unchanged activity after 1000 cycles. The high activity is mainly attributed to the superior oxygen-species releasing capability of Pd-doped CeO2 nanowires by accelerating the removal of the poisoning intermediate. The unique interconnected one-dimensional core-sheath structure is revealed to facilitate immobilization of the metal catalysts, leading to the improved durability. This core-sheath nanowire network opens up a new strategy for catalyst performance optimization for next-generation fuel cells.A novel palladium-doped ceria and carbon core-sheath nanowire network (Pd-CeO2@C CSNWN) is synthesized by a template-free and surfactant-free solvothermal process, followed by high temperature carbonization. This hierarchical network serves as a new class of catalyst support to enhance the activity and durability of noble metal catalysts for alcohol oxidation reactions. Its supported Pd nanoparticles, Pd/(Pd-CeO2@C CSNWN), exhibit >9 fold increase in activity toward the ethanol oxidation over the state-of-the-art Pd/C catalyst, which is the highest among the reported Pd systems. Moreover, stability tests show a virtually unchanged activity after 1000 cycles. The high activity is mainly attributed to the superior oxygen-species releasing capability of Pd-doped CeO2 nanowires by accelerating the removal of the poisoning intermediate. The unique interconnected one-dimensional core-sheath structure is revealed to facilitate immobilization of the metal catalysts, leading to the improved durability. This core-sheath nanowire network opens up a new strategy for catalyst performance optimization for next-generation fuel cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03023d
Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.
We report that identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Furthermore, we report for the very first time, F doped Cu 1.5Mn 1.5O 4, identified by exploiting theoretical first principles calculations for ORR and OERmore » in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO 2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO 2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.« less
Surface science approach to Pt/carbon model catalysts: XPS, STM and microreactor studies
NASA Astrophysics Data System (ADS)
Motin, Abdul Md.; Haunold, Thomas; Bukhtiyarov, Andrey V.; Bera, Abhijit; Rameshan, Christoph; Rupprechter, Günther
2018-05-01
Pt nanoparticles supported on carbon are an important technological catalyst. A corresponding model catalyst was prepared by physical vapor deposition (PVD) of Pt on sputtered HOPG (highly oriented pyrolytic graphite). The carbon substrate before and after sputtering as well as the Pt/HOPG system before and after Pt deposition and annealing were examined by XPS and STM. This yielded information on the surface density of defects, which serve as nucleation centres for Pt, and on the size distribution (mean size/height) of the Pt nanoparticles. Two different model catalysts were prepared with mean sizes of 2.0 and 3.6 nm, both turned out to be stable upon UHV-annealing to 300 °C. After transfer into a UHV-compatible flow microreactor and subsequent cleaning in UHV and under mbar pressure, the catalytic activity of the Pt/HOPG model system for ethylene hydrogenation was examined under atmospheric pressure flow conditions. This enabled to determine temperature-dependent conversion rates, turnover frequencies (TOFs) and activation energies. The catalytic results obtained are in line with the characteristics of technological Pt/C, demonstrating the validity of the current surface science based model catalyst approach.
NASA Technical Reports Server (NTRS)
Meier, Anne J.; Shah, Malay; Petersen, Elspeth; Hintze, Paul; Muscatello, Tony
2017-01-01
The Atmospheric Processing Module (APM) is a Mars In-Situ Resource Utilization (ISRU) technology designed to demonstrate conversion of the Martian atmosphere into methane and water. The Martian atmosphere consists of approximately 95 carbon dioxide (CO2) and residual argon and nitrogen. APM utilizes cryocoolers for CO2 acquisition from a simulated Martian atmosphere and pressure. The captured CO2 is sublimated and pressurized as a feedstock into the Sabatier reactor, which converts CO2 and hydrogen to methane and water. The Sabatier reaction occurs over a packed bed reactor filled with Ru/Al2O3 pellets. The long duration use of the APM system and catalyst was investigated for future scaling and failure limits. Failure of the catalyst was detected by gas chromatography and temperature sensors on the system. Following this, characterization and experimentation with the catalyst was carried out with analysis including x-ray photoelectron spectroscopy and scanning electron microscopy with elemental dispersive spectroscopy. This paper will discuss results of the catalyst performance, the overall APM Sabatier approach, as well as intrinsic catalyst considerations of the Sabatier reactor performance incorporated into a chemical model.
Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts
Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; ...
2016-07-06
We report that identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Furthermore, we report for the very first time, F doped Cu 1.5Mn 1.5O 4, identified by exploiting theoretical first principles calculations for ORR and OERmore » in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO 2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO 2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.« less
Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts
Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.
2016-01-01
Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations. PMID:27380719
Process for the production of liquid hydrocarbons
Bhatt, Bharat Lajjaram; Engel, Dirk Coenraad; Heydorn, Edward Clyde; Senden, Matthijis Maria Gerardus
2006-06-27
The present invention concerns a process for the preparation of liquid hydrocarbons which process comprises contacting synthesis gas with a slurry of solid catalyst particles and a liquid in a reactor vessel by introducing the synthesis gas at a low level into the slurry at conditions suitable for conversion of the synthesis gas into liquid hydrocarbons, the solid catalyst particles comprising a catalytic active metal selected from cobalt or iron on a porous refractory oxide carrier, preferably selected from silica, alumina, titania, zirconia or mixtures thereof, the catalyst being present in an amount between 10 and 40 vol. percent based on total slurry volume liquids and solids, and separating liquid material from the solid catalyst particles by using a filtration system comprising an asymmetric filtration medium (the selective side at the slurry side), in which filtration system the average pressure differential over the filtration medium is at least 0.1 bar, in which process the particle size distribution is such that at least a certain amount of the catalyst particles is smaller than the average pore size of the selective layer of the filtration medium. The invention also comprises an apparatus to carry out the process described above.
Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts
NASA Astrophysics Data System (ADS)
Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.
2016-07-01
Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.
Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts.
Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S; Kumta, Prashant N
2016-07-06
Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.
McCann, Scott D; Lumb, Jean-Philip; Arndtsen, Bruce A; Stahl, Shannon S
2017-04-26
A homogeneous Cu-based catalyst system consisting of [Cu(MeCN) 4 ]PF 6 , N , N '-di- tert -butylethylenediamine (DBED), and p -( N , N -dimethylamino)pyridine (DMAP) mediates efficient aerobic oxidation of alcohols. Mechanistic study of this reaction shows that the catalyst undergoes an in situ oxidative self-processing step, resulting in conversion of DBED into a nitroxyl that serves as an efficient cocatalyst for aerobic alcohol oxidation. Insights into this behavior are gained from kinetic studies, which reveal an induction period at the beginning of the reaction that correlates with the oxidative self-processing step, EPR spectroscopic analysis of the catalytic reaction mixture, which shows the buildup of the organic nitroxyl species during steady state turnover, and independent synthesis of oxygenated DBED derivatives, which are shown to serve as effective cocatalysts and eliminate the induction period in the reaction. The overall mechanism bears considerable resemblance to enzymatic reactivity. Most notable is the "oxygenase"-type self-processing step that mirrors generation of catalytic cofactors in enzymes via post-translational modification of amino acid side chains. This higher-order function within a synthetic catalyst system presents new opportunities for the discovery and development of biomimetic catalysts.
Development of Molecular Catalysts to Bridge the Gap between Heterogeneous and Homogeneous Catalysts
NASA Astrophysics Data System (ADS)
Ye, Rong
Catalysts, heterogeneous, homogeneous, and enzymatic, are comprised of nanometer-sized inorganic and/or organic components. They share molecular factors including charge, coordination, interatomic distance, bonding, and orientation of catalytically active atoms. By controlling the governing catalytic components and molecular factors, catalytic processes of a multichannel and multiproduct nature could be run in all three catalytic platforms to create unique end-products. Unifying the fields of catalysis is the key to achieving the goal of 100% selectivity in catalysis. Recyclable catalysts, especially those that display selective reactivity, are vital for the development of sustainable chemical processes. Among available catalyst platforms, heterogeneous catalysts are particularly well-disposed toward separation from the reaction mixture via filtration methods, which renders them readily recyclable. Furthermore, heterogeneous catalysts offer numerous handles - some without homogeneous analogues - for performance and selectivity optimization. These handles include nanoparticle size, pore profile of porous supports, surface ligands and interface with oxide supports, and flow rate through a solid catalyst bed. Despite these available handles, however, conventional heterogeneous catalysts are themselves often structurally heterogeneous compared to homogeneous catalysts, which complicates efforts to optimize and expand the scope of their reactivity and selectivity. Ongoing efforts are aimed to address the above challenge by heterogenizing homogeneous catalysts, which can be defined as the modification of homogeneous catalysts to render them in a separable (solid) phase from the starting materials and products. Specifically, we grow the small nanoclusters in dendrimers, a class of uniform polymers with the connectivity of fractal trees and generally radial symmetry. Thanks to their dense multivalency, shape persistence and structural uniformity, dendrimers have proven to be versatile scaffolds for the synthesis and stabilization of small nanoclusters. Then these dendrimer-encapsulated metal clusters (DEMCs) are adsorbed onto mesoporous silica. Through this method, we have achieved selective transformations that had been challenging to accomplish in a heterogeneous setting, e.g. pi-bond activation and aldol reactions. Extensive investigation into the catalytic systems under reaction conditions allowed us to correlate the structural features (e.g. oxidation states) of the catalysts and their activity. Moreover, we have demonstrated that supported DEMCs are also excellent catalysts for typical heterogeneous reactions, including hydrogenation and alkane isomerization. Critically, these investigations also confirmed that the supported DEMCs are heterogeneous and stable against leaching. Catalysts optimization is achieved through the modulation of various parameters. The clusters are oxidized (e.g., with PhICl2) or reduced (e.g., with H2) in situ. Changing the dendrimer properties (e.g., generation, terminal functional groups) is analogous to ligand modification in homogeneous catalysts, which affect both catalytic activity and selectivity. Similarly, pore size of the support is another factor in determining product distribution. In a flow reactor, the flow rate is adjusted to control the residence time of the starting material and intermediates, and thus the final product selectivity. Our approach to heterogeneous catalysis affords various advantages: (1) the catalyst system can tap into the reactivity typical to homogeneous catalysts, which conventional heterogeneous catalysts could not achieve; (2) unlike most homogeneous catalysts with comparable performance, the heterogenized homogeneous catalysts can be recycled; (3) improved activity or selectivity compared to conventional homogeneous catalysts is possible because of uniquely heterogeneous parameters for optimization. While localized surface plasmon resonance (LSPR) provides a powerful platform for nanoparticle catalysis, our studies suggest that in some cases interband transitions should be considered as an alternative mechanism of light-driven nanoparticle catalysis. The benefits already demonstrated by plasmonic nanostructures as catalysts provided the impetus for examining complementary activation modes based on the metal nanoparticle itself. Leveraging these transitions has the potential to provide a means to highly active catalysis modes that would otherwise be challenging to access. For example, for the preparation of highly active metal catalysts on a subnanosized scale is challenging, thus limiting their exploitation and study in catalysis. Our work suggests a novel and facile strategy for the formation of highly active gold nanocluster catalysts by light illumination of the interband transitions in the presence of the appropriate substrate.
Madhavan, Nandita; Jones, Christopher W; Weck, Marcus
2008-09-01
Supported catalysis is emerging as a cornerstone of transition metal catalysis, as environmental awareness necessitates "green" methodologies and transition metal resources become scarcer and more expensive. Although these supported systems are quite useful, especially in their capacity for transition metal catalyst recycling and recovery, higher activity and selectivity have been elusive compared with nonsupported catalysts. This Account describes recent developments in polymer-supported metal-salen complexes, which often surpass nonsupported analogues in catalytic activity and selectivity, demonstrating the effectiveness of a systematic, logical approach to designing supported catalysts from a detailed understanding of the catalytic reaction mechanism. Over the past few decades, a large number of transition metal complex catalysts have been supported on a variety of materials ranging from polymers to mesoporous silica. In particular, soluble polymer supports are advantageous because of the development of controlled and living polymerization methods that are tolerant to a wide variety of functional groups, including controlled radical polymerizations and ring-opening metathesis polymerization. These methods allow for tuning the density and structure of the catalyst sites along the polymer chain, thereby enabling the development of structure-property relationships between a catalyst and its polymer support. The fine-tuning of the catalyst-support interface, in combination with a detailed understanding of catalytic reaction mechanisms, not only permits the generation of reusable and recyclable polymer-supported catalysts but also facilitates the design and realization of supported catalysts that are significantly more active and selective than their nonsupported counterparts. These superior supported catalysts are accessible through the optimization of four basic variables in their design: (i) polymer backbone rigidity, (ii) the nature of the linker, (iii) catalyst site density, and (iv) the nature of the catalyst attachment. Herein, we describe the design of polymer supports tuned to enhance the catalytic activity or decrease, or even eliminate, decomposition pathways of salen-based transition metal catalysts that follow either a monometallic or a bimetallic reaction mechanism. These findings result in the creation of some of the most active and selective salen catalysts in the literature.
lignocellulosic biomass enzymes Design of new catalysts for vapor phase upgrading of biomass pyrolysis Enzymatic Engineering for Continuous Hydrocarbon Fuel Production (PI) Computational Pyrolysis Consortium Zeolite design Celluase enzyme structure-function relationships to design enhanced cellulose systems Catalyst
Patthamasang, Supanan; Jongsomjit, Bunjerd; Praserthdam, Piyasan
2011-09-29
MgCl(2)-SiO(2)/TiCl(4) Ziegler-Natta catalysts for ethylene polymerization were prepared by impregnation of MgCl(2) on SiO(2) in heptane and further treatment with TiCl(4). MgCl(2)·nEtOH adduct solutions were prepared with various EtOH/MgCl(2) molar ratios for preparation of the MgCl(2)-supported and MgCl(2)-SiO(2)-supported catalysts in order to investigate the effect on polymerization performance of both catalyst systems. The catalytic activities for ethylene polymerization decreased markedly with increased molar ratios of [EtOH]/[MgCl(2)] for the MgCl(2)-supported catalysts, while for the bi-supported catalysts, the activities only decreased slightly. The MgCl(2)-SiO(2)-supported catalyst had relatively constant activity, independent of the [EtOH]/[MgCl(2)] ratio. The lower [EtOH]/[MgCl(2)] in MgCl(2)-supported catalyst exhibited better catalytic activity. However, for the MgCl(2)-SiO(2)-supported catalyst, MgCl(2) can agglomerate on the SiO(2) surface at low [EtOH]/[MgCl(2)] thus not being not suitable for TiCl(4) loading. It was found that the optimized [EtOH]/[MgCl(2)] value for preparation of bi-supported catalysts having high activity and good spherical morphology with little agglomerated MgCl(2) was 7. Morphological studies indicated that MgCl(2)-SiO(2)-supported catalysts have good morphology with spherical shapes that retain the morphology of SiO(2). The BET measurement revealed that pore size is the key parameter dictating polymerization activity. The TGA profiles of the bi-supported catalyst also confirmed that it was more stable than the mono-supported catalyst, especially in the ethanol removal region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumta, Prashant
2014-10-03
Identification and development of non-noble metal based electro-catalysts or electro-catalysts with significant reduction of expensive noble metal contents (E.g. IrO2, Pt) with comparable electrochemical performance as the standard noble metal/metal oxide for proton exchange membrane (PEM) based water electrolysis would constitute a major breakthrough in the generation of hydrogen by water electrolysis. Accomplishing such a system would not only result reduction of the overall capital costs of PEM based water electrolyzers, but also help attain the targeted hydrogen production cost [< $ 3.0 / gallon gasoline equivalent (gge)] comparable to conventional liquid fuels. In line with these goals, it wasmore » demonstrated that fluorine doped IrO2 thin films and nanostructured high surface area powders display remarkably higher electrochemical activity, and comparable durability as pure IrO2 electro-catalyst for the oxygen evolution reaction (OER) in PEM based water electrolysis. Furthermore, corrosion resistant SnO2 and NbO2 support has been doped with F and coupled with IrO2 or RuO2 for use as an OER electro-catalyst. A solid solution of SnO2:F or NbO2:F with only 20 - 30 mol.% IrO2 or RuO2 yielding a rutile structure in the form of thin films and bulk nanoparticles displays similar electrochemical activity and stability as pure IrO2/RuO2. This would lead to more than 70 mol.% reduction in the noble metal oxide content. Novel nanostructured ternary (Ir,Sn,Nb)O2 thin films of different compositions FUNDAMENTAL STUDY OF NANOSTRUCTURED ELECTRO-CATALYSTS WITH REDUCED NOBLE METAL CONTENT FOR PEM BASED WATER ELECTROLYSIS 4 have also been studied. It has been shown that (Ir0.40Sn0.30Nb0.30)O2 shows similar electrochemical activity and enhanced chemical robustness as compared to pure IrO2. F doping of the ternary (Ir,Sn,Nb)O2 catalyst helps in further decreasing the noble metal oxide content of the catalyst. As a result, these reduced noble metal oxide catalyst systems would potentially be preferred as OER electro-catalysts for PEM electrolysis. The excellent performance of the catalysts coupled with its robustness would make them great candidates for contributing to significant reduction in the overall capital costs of PEM based water electrolyzers. This s.thesis provides a detailed fundamental study of the synthesis, materials, characterization, theoretical studies and detailed electrochemical response and potential mechanisms of these novel electro-catalysts for OER processes.« less
NASA Astrophysics Data System (ADS)
You, Rui; Li, Zhaorui; Zeng, Hongyu; Huang, Weixin
2018-06-01
A pulse chemisorption system combining a Tian-Calvet microcalorimeter (Setaram Sensys EVO 600) and an automated chemisorption apparatus (Micromeritics Autochem II 2920) was established to accurately measure differential adsorption heats of gas molecules' chemisorption on solid surfaces in a flow-pulse mode. Owing to high sensitivity and high degree of automation in a wide range of temperatures from -100 to 600 °C, this coupled system can present adsorption heats as a function of adsorption temperature and adsorbate coverage. The functions of this system were demonstrated by successful measurements of CO adsorption heats on Pd surfaces at various temperatures and also at different CO coverages by varying the CO concentration in the pulse dose. Key parameters, including adsorption amounts, integral adsorption heats, and differential adsorption heats of CO adsorption on a Pd/CeO2 catalyst, were acquired. Our adsorption-microcalorimetry system provides a powerful technique for the investigation of adsorption processes on powder catalysts.
Conversion of CO2 from Air into Methanol Using a Polyamine and a Homogeneous Ruthenium Catalyst.
Kothandaraman, Jotheeswari; Goeppert, Alain; Czaun, Miklos; Olah, George A; Prakash, G K Surya
2016-01-27
A highly efficient homogeneous catalyst system for the production of CH3OH from CO2 using pentaethylenehexamine and Ru-Macho-BH (1) at 125-165 °C in an ethereal solvent has been developed (initial turnover frequency = 70 h(-1) at 145 °C). Ease of separation of CH3OH is demonstrated by simple distillation from the reaction mixture. The robustness of the catalytic system was shown by recycling the catalyst over five runs without significant loss of activity (turnover number > 2000). Various sources of CO2 can be used for this reaction including air, despite its low CO2 concentration (400 ppm). For the first time, we have demonstrated that CO2 captured from air can be directly converted to CH3OH in 79% yield using a homogeneous catalytic system.
Hassan, Ayaz; Ticianelli, Edson A
2018-01-01
Studies aiming at improving the activity and stability of dispersed W and Mo containing Pt catalysts for the CO tolerance in proton exchange membrane fuel cell (PEMFC) anodes are revised for the following catalyst systems: (1) a carbon supported PtMo electrocatalyst submitted to heat treatments; (2) Pt and PtMo nanoparticles deposited on carbon-supported molybdenum carbides (Mo2C/C); (3) ternary and quaternary materials formed by PtMoFe/C, PtMoRu/C and PtMoRuFe/C and; (4) Pt nanoparticles supported on tungsten carbide/carbon catalysts and its parallel evaluation with carbon supported PtW catalyst. The heat-treated (600 oC) Pt-Mo/C catalyst showed higher hydrogen oxidation activity in the absence and in the presence of CO and better stability, compared to all other Mo-containing catalysts. PtMoRuFe, PtMoFe, PtMoRu supported on carbon and Pt supported on Mo2C/C exhibited similar CO tolerances but better stability, as compared to as-prepared PtMo supported on carbon. Among the tungsten-based catalysts, tungsten carbide supported Pt catalyst showed reasonable performance and reliable stability in comparison to simple carbon supported PtW catalyst, though an uneven level of catalytic activity towards H2 oxidation in presence of CO is observed for the former as compared to Mo containing catalyst. However, a small dissolution of Mo, Ru, Fe and W from the anodes and their migration toward cathodes during the cell operation is observed. These results indicate that the fuel cell performance and stability has been improved but not yet totally resolved.
An intermolecular heterobimetallic system for photocatalytic water reduction.
Hansen, Sven; Klahn, Marcus; Beweries, Torsten; Rosenthal, Uwe
2012-04-01
Teamwork: A new intermolecular heterobimetallic system for photocatalytic water reduction, consisting of a photosensitizer of the type [Ru(bpy)(2)(L)](PF(6))(2) (L=bidentate ligand), a dichloro palladium complex PdCl(2)(L) serving as the water reduction catalyst, and triethyl amine as electron donor, is presented. Variations of the ligand as well as of the palladium source results in a significant improvement of the performance of the catalyst system. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A BGO detector for Positron Emission Profiling in catalysts
NASA Astrophysics Data System (ADS)
Mangnus, A. V. G.; van Ijzendoorn, L. J.; de Goeij, J. J. M.; Cunningham, R. H.; van Santen, R. A.; de Voigt, M. J. A.
1995-05-01
As part of a project to study the reaction kinetics in catalysts, a detector system has been designed and built. The detector will measure in one dimension the activity distribution of positron emitters in catalyst reactors under operational conditions as a function of time. The detector consists of two arrays of ten BGO crystals each and has the flexibility to measure with high sensitivity the activity profile in various reactor sizes; the position resolution that can be reached is 3 mm.
Well-defined iron catalyst for improved hydrogenation of carbon dioxide and bicarbonate.
Ziebart, Carolin; Federsel, Christopher; Anbarasan, Pazhamalai; Jackstell, Ralf; Baumann, Wolfgang; Spannenberg, Anke; Beller, Matthias
2012-12-26
The most efficient, stable, and easy-to-synthesize non-noble metal catalyst system for the reduction of CO(2) and bicarbonates is presented. In the presence of the iron(II)-fluoro-tris(2-(diphenylphosphino)phenyl)phosphino]tetrafluoroborate complex 3, the hydrogenation of bicarbonates proceeds in good yields with high catalyst productivity and activity (TON > 7500, TOF > 750). High-pressure NMR studies of the hydrogenation of carbon dioxide demonstrate that the corresponding iron-hydridodihydrogen complex 4 is crucial in the catalytic cycle.
Pyrene-Tagged Ionic Liquids: Separable Organic Catalysts for SN2 Fluorination.
Taher, Abu; Lee, Kyo Chul; Han, Hye Ji; Kim, Dong Wook
2017-07-07
We prepared pyrene-substituted imidazolium-based ionic liquids (PILs) as organic catalysts for the S N 2 fluorination using alkali metal fluoride (MF). In this system, the PIL significantly enhanced the reactivity of MF due to the phase-transfer catalytic effect of the imidazolium moiety as well as the metal cation-π (pyrene) interactions. Furthermore, this homogeneous catalyst PIL was easily separated from the reaction mixture using reduced graphene oxide by π-π stacking with the pyrene of PIL.
Performance of (CoPC)n catalyst in active lithium-thionyl chloride cells
NASA Technical Reports Server (NTRS)
Shah, Pinakin M.
1990-01-01
An experimental study was conducted with anode limited D size cells to characterize the performance of an active lithium-thionyl chloride (Li/SOCl2) system using the polymeric cobalt phthalocyanine, (CoPC)n, catalyst in carbon cathodes. The author describes the results of this experiment with respect to initial voltage delays, operating voltages, and capacities. The effectiveness of the preconditioning methods evolved to alleviate passivation effects on storage are also discussed. The results clearly demonstrated the superior high rate capability of cells with the catalyst. The catalyst did not adversely impact the performance of cells after active storage for up to 6 months, while retaining its beneficial influences.
Discovery of Novel NOx Catalysts for CIDI Applications by High-throughput Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blint, Richard J.
DOE project DE-PS26-00NT40758 has developed very active, lean exhaust, NOx reduction catalysts that have been tested on the discovery system, laboratory reactors and engine dynamometer systems. The goal of this project is the development of effective, affordable NOx reduction catalysts for lean combustion engines in the US light duty vehicle market which can meet Tier II emission standards with hydrocarbons based reductants for reducing NOx. General Motors (prime contractor) along with subcontractors BASF (Engelhard) (a catalytic converter developer) and ACCELRYS (an informatics supplier) carried out this project which began in August of 2002. BASF (Engelhard) has run over 16,000 testsmore » of 6100 possible catalytic materials on a high throughput discovery system suitable for automotive catalytic materials. Accelrys developed a new database informatics system which allowed material tracking and data mining. A program catalyst was identified and evaluated at all levels of the program. Dynamometer evaluations of the program catalyst both with and without additives show 92% NOx conversions on the HWFET, 76% on the US06, 60% on the cold FTP and 65% on the Set 13 heavy duty test using diesel fuel. Conversions of over 92% on the heavy duty FTP using ethanol as a second fluid reductant have been measured. These can be competitive with both of the alternative lean NOx reduction technologies presently in the market. Conversions of about 80% were measured on the EUDC for lean gasoline applications without using active dosing to adjust the C:N ratio for optimum NOx reduction at all points in the certification cycle. A feasibility analysis has been completed and demonstrates the advantages and disadvantages of the technology using these materials compared with other potential technologies. The teaming agreements among the partners contain no obstacles to commercialization of new technologies to any potential catalyst customers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, R.; Kelley, D.E.
In 1998, when Sunlaw Energy Corporation needed to retrofit their two natural gas fired power plants to meet new emissions requirements that were soon to come into place, they looked at existing technologies and found them either economically or environmentally undesirable. With the help of General Electric they developed a program of water injection that was capable of reducing the NO{sub x} emissions to 25 ppm. This, however, was not low enough to meet coming regulations. Sunlaw concluded that the best option for pollution control was to invert their own system. A partnership was formed between Sunlaw and Advanced Catalystmore » Systems, a catalyst development and manufacturing firm. The result of their efforts was Goal Line Environmental Technologies and the SCONOx catalytic absorption system. The newest SCONOx system, commissioned at Sunlaw's Federal cogeneration plant in December 1996, treats the exhaust of a GELM2500 gas turbine. Combined with water injection, it has reduced NO{sub x} emission from 160 ppm down to 1--2 ppm. Carbon monoxide emissions are virtually eliminated, with stack readings less than ambient levels. The SCONOx system uses single catalyst for both CO and NO{sub x} control. It oxidizes CO to CO{sub 2} and NO to NO{sub 2}, and the NO{sub 2} is then absorbed onto the surface of the catalyst. Just as a sponge absorbs water and must be periodically regenerated, the catalyst must be regenerated. This is accomplished by passing a dilute hydrogen gas across the surface of the catalyst in the absence of oxygen. Nitrogen oxygen are broken down into nitrogen and water, and this is exhausted up the stack instead of NO{sub x}. The SCONOx system is a breakthrough in CO and NO{sub x} control technology that makes it possible to have clean air without the use of ammonia or other hazardous materials. It is truly an environmentally friendly NO{sub x} system.« less
NASA Astrophysics Data System (ADS)
Zhang, Yongli; Zhou, Yanbo; Peng, Chao; Shi, Junjun; Wang, Qingyu; He, Lingfeng; Shi, Liang
2018-04-01
By successive impregnation method, the Ce-modified Cu-O/γ-Al2O3 catalyst was prepared and characterized using nitrogen adsorption-desorption, scanning electron microscopy energy dispersive X-ray analysis (SEM-EDS), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman, and H2-Temperature programming reduction (H2-TPR). In catalytic wet-air oxidation (CWAO) process for the printing and dyeing wastewater (PDW), the effects of Ce addition on performance, mechanism and kinetics of the catalyst were investigated. The Ce addition increases the Brunauer-Emmett-Teller (BET) surface area and pore volume of the catalyst and makes the active components uniformly distributed on the catalyst surface. Formation of a stable CuAl2O4 solid solution by anchoring Cu onto the γ-Al2O3 crystal lattice leads to a significant decrease in metal leaching of the Ce-modified catalyst. The proportion of lattice oxygen in the catalyst substantially increases and the apparent activation energy of Cu-O/γ-Al2O3 catalyst decreases owing to Ce addition. Therefore, the catalytic activity and stability of the Ce-modified catalyst are considerably improved. The scavengers experiments identify the active species existed in the CWAO reaction system, with the order of reactivity: h+ > O2•- > H2O2 > HO•. This novel Cu-Ce-O/γ-Al2O3 catalyst has great potential in applications for treatment of concentrated organic wastewater due to its superior catalytic activity and improved stability.
Hydrogen evolution reaction catalyst
Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan
2016-02-09
Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.
Catalyst-free reductive amination of aromatic aldehydes with ammonium formate and Hantzsch ester.
Zhao, Pan-Pan; Zhou, Xin-Feng; Dai, Jian-Jun; Xu, Hua-Jian
2014-12-07
The protocol of the reductive amination of aromatic aldehydes using ammonium formate and Hantzsch ester is described. It is a mild, convenient, acid- and catalyst-free system applied for the synthesis of both symmetric and asymmetric aromatic secondary amines.
Development of Advanced ISS-WPA Catalysts for Organic Oxidation at Reduced Pressure/Temperature
NASA Technical Reports Server (NTRS)
Yu, Ping; Nalette, Tim; Kayatin, Matthew
2016-01-01
The Water Processor Assembly (WPA) at International Space Station (ISS) processes a waste stream via multi-filtration beds, where inorganic and non-volatile organic contaminants are removed, and a catalytic reactor, where low molecular weight organics not removed by the adsorption process are oxidized at elevated pressure in the presence of oxygen and elevated temperature above the normal water boiling point. Operation at an elevated pressure requires a more complex system design compared to a reactor that could operate at ambient pressure. However, catalysts currently available have insufficient activity to achieve complete oxidation of the organic load at a temperature less than the water boiling point and ambient pressure. Therefore, it is highly desirable to develop a more active and efficient catalyst at ambient pressure and a moderate temperature that is less than water boiling temperature. This paper describes our efforts in developing high efficiency water processing catalysts. Different catalyst support structures and coating metals were investigated in subscale reactors and results were compared against the flight WPA catalyst. Detailed improvements achieved on alternate metal catalysts at ambient pressure and 200 F will also be presented in the paper.
Kim, Eun-Sang; Lee, You-Jin; Kim, Jeong-Rang; Kim, Joo-Wan; Kim, Tae-Wan; Chae, Ho-Jeong; Kim, Chul-Ung; Lee, Chang-Ha; Jeong, Soon-Yong
2016-02-01
Nanoporous Beta zeolite was dealuminated by weak acid treatment for reducing the acidity. Bi-functional catalysts were prepared using commercial Beta zeolites and the dealuminated zeolites for acidic function, NiW for metallic function. 1-Methylnaphthalene was selected as a model compound for multi-ring aromatics in heavy oil, and its selective ring opening reaction has been investigated using the prepared bi-functional catalysts with different acidity in fixed bed reaction system. The dealuminated Beta zeolites, which crystal structure and nanoporosity were maintained, showed the higher SiO2/Al2O3 ratio and smaller acidity than their original zeolite. NiW-supported catalyst using the dealuminated Beta zeolite with SiO2/Al203 mole ratio of 55 showed the highest performance for the selective ring opening. The acidity of catalyst seemed to play an important role as active sites for the selective ring opening of 1-methylnaphthalene but there should be some optimum catalyst acidity for the reaction. The acidity of Beta zeolite could be controlled by the acid treatment and the catalyst with the optimum acidity for the selective ring opening could be prepared.
Leo, Pedro; Orcajo, Gisela; Briones, David; Calleja, Guillermo; Sánchez-Sánchez, Manuel; Martínez, Fernando
2017-01-01
The activity and recyclability of Cu-MOF-74 as a catalyst was studied for the ligand-free C–O cross-coupling reaction of 4-nitrobenzaldehyde (NB) with phenol (Ph) to form 4-formyldiphenyl ether (FDE). Cu-MOF-74 is characterized by having unsaturated copper sites in a highly porous metal-organic framework. The influence of solvent, reaction temperature, NB/Ph ratio, catalyst concentration, and basic agent (type and concentration) were evaluated. High conversions were achieved at 120 °C, 5 mol % of catalyst, NB/Ph ratio of 1:2, DMF as solvent, and 1 equivalent of K2CO3 base. The activity of Cu-MOF-74 material was higher than other ligand-free copper catalytic systems tested in this study. This catalyst was easily separated and reused in five successive runs, achieving a remarkable performance without significant porous framework degradation. The leaching of copper species in the reaction medium was negligible. The O-arylation between NB and Ph took place only in the presence of Cu-MOF-74 material, being negligible without the solid catalyst. The catalytic advantages of using nanostructured Cu-MOF-74 catalyst were also proven. PMID:28621710
NASA Astrophysics Data System (ADS)
Thomas, John Meurig
2008-05-01
Predominantly this article deals with the question of how to design new solid catalysts for a variety of industrial and laboratory-orientated purposes. A generally applicable strategy, illustrated by numerous examples, is made possible based on the use of nanoporous materials on to the (high-area) inner surfaces of which well-defined (experimentally and computationally) active centers are placed in a spatially separated fashion. Such single-site catalysts, which have much in common with metal-centered homogenous catalysts and enzymes, enable a wide range of new catalysts to be designed for a variety of selective oxidations, hydrogenations, hydrations and hydrodewaxing, and other reactions that the "greening" of industrial processes demand. Examples are given of new shape-selective, regio-selective, and enantioselective catalysts, many of which operate under mild, environmentally benign conditions. Also considered are some of the reasons why detailed studies of adsorption and stoichiometric reactions at single-crystal surfaces have, disappointingly, not hitherto paved the way to the design and production of many new heterogenous catalysts. Recent work of a theoretical and high-throughout nature, allied to some experimental studies of well-chosen model systems, holds promise for the identification of new catalysts for simple, but industrially important reactions.
Leo, Pedro; Orcajo, Gisela; Briones, David; Calleja, Guillermo; Sánchez-Sánchez, Manuel; Martínez, Fernando
2017-06-16
The activity and recyclability of Cu-MOF-74 as a catalyst was studied for the ligand-free C-O cross-coupling reaction of 4-nitrobenzaldehyde (NB) with phenol (Ph) to form 4-formyldiphenyl ether (FDE). Cu-MOF-74 is characterized by having unsaturated copper sites in a highly porous metal-organic framework. The influence of solvent, reaction temperature, NB/Ph ratio, catalyst concentration, and basic agent (type and concentration) were evaluated. High conversions were achieved at 120 °C, 5 mol % of catalyst, NB/Ph ratio of 1:2, DMF as solvent, and 1 equivalent of K₂CO₃ base. The activity of Cu-MOF-74 material was higher than other ligand-free copper catalytic systems tested in this study. This catalyst was easily separated and reused in five successive runs, achieving a remarkable performance without significant porous framework degradation. The leaching of copper species in the reaction medium was negligible. The O-arylation between NB and Ph took place only in the presence of Cu-MOF-74 material, being negligible without the solid catalyst. The catalytic advantages of using nanostructured Cu-MOF-74 catalyst were also proven.
NASA Technical Reports Server (NTRS)
Yazzie, Cyriah A.; Locke, Darren R.; Johnson, Natasha M.
2014-01-01
Fischer-Tropsch Type (FTT) synthesis of organic compounds has been hypothesized to occur in the early solar nebula that formed our Solar System. FTT is a collection of abiotic chemical reactions that convert a mixture of carbon monoxide and hydrogen over nano-catalysts into hydrocarbons and other more complex aromatic compounds. We hypothesized that FTT can generate similar organic compounds as those seen in chondritic meteorites; fragments of asteroids that are characteristic of the early solar system. Specific goals for this project included: 1) determining the effects of different FTT catalyst, reaction temperature, and cycles on organic compounds produced, 2) imaging of organic coatings found on the catalyst, and 3) comparison of organic compounds produced experimentally by FTT synthesis and those found in the ordinary chondrite LL5 Chelyabinsk meteorite. We used Pyrolysis Gas Chromatography Mass Spectrometry (PY-GCMS) to release organic compounds present in experimental FTT and meteorite samples, and Scanning Electron Microscopy (SEM) to take images of organic films on catalyst grains.
Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts
Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol
2006-10-10
A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n}.sup.+{A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 C.sub.20 hydrocarbyl, SiR''.sub.3, NR''.sub.2, OR'', SR'', GeR''.sub.3, SnR''.sub.3, and C.dbd.C-containing groups (R''=C.sub.1 C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.
Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts
Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol
2007-01-09
A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n}.sup.+{A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 C.sub.20 hydrocarbyl, SiR''.sub.3, NR''.sub.2, OR'', SR'', GeR''.sub.3, SnR''.sub.3, and C.dbd.C-containing groups (R''=C.sub.1 C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.
Cyclopentadienyl-Containing Low-Valent Early Transition Metal Olefin Polymerization Catalysts
Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol
2004-06-08
A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n }.sup.+ {A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, SnR".sub.3, and C.dbd.C-containing groups (R"=C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.
NASA Technical Reports Server (NTRS)
Pisharody, Suresh A.; Fisher, John W.; Wignarajah, K.
2002-01-01
The success of physico-chemical waste processing and resource recovery technologies for life support application depends partly on the ability of gas clean-up systems to efficiently remove trace contaminants generated during the process with minimal use of expendables. Carbon nanotubes promise superior performance over conventional approaches to gas clean-up due to their ability to direct the selective uptake of gaseous species based on their controlled pore size, high surface area, ordered chemical structure that allows functionalization and their effectiveness also as catalyst support materials for toxic gas conversion. We present results and findings from a preliminary study on the effectiveness of metal impregnated single walled nanotubes as catalyst/catalyst support materials for toxic gas contaminate control. The study included the purification of single walled nanotubes, the catalyst impregnation of the purified nanotubes, the experimental characterization of the surface properties of purified single walled nanotubes and the characterization of physisorption and chemisorption of uptake molecules.
Nafion induced surface confinement of oxygen in carbon-supported oxygen reduction catalysts
Chlistunoff, Jerzy; Sansinena, Jose -Maria
2016-11-17
We studied the surface confinement of oxygen inside layers of Nafion self-assembled on carbon-supported oxygen reduction reaction (ORR) catalysts. It is demonstrated that oxygen accumulates in the hydrophobic component of the polymer remaining in contact with the carbon surface. Furthermore, the amount of surface confined oxygen increases with the degree of carbon surface graphitization, which promotes the self-assembly of the polymer. Planar macrocyclic ORR catalysts possessing a delocalized system of π electrons such as Co and Fe porphyrins and phthalocyanines have virtually no effect on the surface confinement of oxygen, in accordance with their structural similarity to graphitic carbon surfacesmore » where they adsorb. Platinum particles in carbon-supported ORR catalysts with high metal contents (20%) disrupt the self-assembly of Nafion and virtually eliminate the oxygen confinement, but the phenomenon is still observed for low Pt loading (4.8%) catalysts.« less
In-line localized monitoring of catalyst activity in selective catalytic NO.sub.x reduction systems
Muzio, Lawrence J [Laguna Niguel, CA; Smith, Randall A [Huntington Beach, CA
2009-12-22
Localized catalyst activity in an SCR unit for controlling emissions from a boiler, power plant, or any facility that generates NO.sub.x-containing flue gases is monitored by one or more modules that operate on-line without disrupting the normal operation of the facility. Each module is positioned over a designated lateral area of one of the catalyst beds in the SCR unit, and supplies ammonia, urea, or other suitable reductant to the catalyst in the designated area at a rate that produces an excess of the reductant over NO.sub.x on a molar basis through the designated area. Sampling probes upstream and downstream of the designated area draw samples of the gas stream for NO.sub.x analysis, and the catalyst activity is determined from the difference in NO.sub.x levels between the two probes.
Nafion induced surface confinement of oxygen in carbon-supported oxygen reduction catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chlistunoff, Jerzy; Sansinena, Jose -Maria
We studied the surface confinement of oxygen inside layers of Nafion self-assembled on carbon-supported oxygen reduction reaction (ORR) catalysts. It is demonstrated that oxygen accumulates in the hydrophobic component of the polymer remaining in contact with the carbon surface. Furthermore, the amount of surface confined oxygen increases with the degree of carbon surface graphitization, which promotes the self-assembly of the polymer. Planar macrocyclic ORR catalysts possessing a delocalized system of π electrons such as Co and Fe porphyrins and phthalocyanines have virtually no effect on the surface confinement of oxygen, in accordance with their structural similarity to graphitic carbon surfacesmore » where they adsorb. Platinum particles in carbon-supported ORR catalysts with high metal contents (20%) disrupt the self-assembly of Nafion and virtually eliminate the oxygen confinement, but the phenomenon is still observed for low Pt loading (4.8%) catalysts.« less
Catalytic destruction of PCDD/Fs over vanadium oxide-based catalysts.
Yu, Ming-Feng; Lin, Xiao-Qing; Li, Xiao-Dong; Yan, Mi; Prabowo, Bayu; Li, Wen-Wei; Chen, Tong; Yan, Jian-Hua
2016-08-01
Vanadium oxide-based catalysts were developed for the destruction of vapour phase PCDD/Fs (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans). A vapour phase PCDD/Fs generating system was designed to supply stable PCDD/Fs steam with initial concentration of 3.2 ng I-TEQ Nm(-3). Two kinds of titania (nano-TiO2 and conventional TiO2) and alumina were used as catalyst supports. For vanadium-based catalysts supported on nano-TiO2, catalyst activity is enhanced with operating temperature increasing from 160 to 300 °C and then reduces with temperature rising further to 350 °C. It is mainly due to the fact that high volatility of organic compounds at 350 °C suppresses adsorption of PCDD/Fs on catalysts surface and then further inhibits the reaction between catalyst and PCDD/Fs. The optimum loading of vanadium on nano-TiO2 support is 5 wt.% where vanadium oxide presents highly dispersed amorphous state according to the Raman spectra and XRD patterns. Excessive vanadium will block the pore space and form microcrystalline V2O5 on the support surface. At the vanadium loading of 5 wt.%, nano-TiO2-supported catalyst performs best on PCDD/Fs destruction compared to Al2O3 and conventional TiO2. Chemical states of vanadium in the fresh, used and reoxidized VOx(5 %)/TiO2 catalysts at different operating temperature are also analysed by XPS.
NASA Astrophysics Data System (ADS)
Ndolomingo, Matumuene Joe; Meijboom, Reinout
2017-03-01
Benzyl alcohol oxidation to benzaldehyde was performed by tert-butyl hydroperoxide (TBHP) in the absence of any solvent using γ-Al2O3 supported copper and gold nanoparticles. Li2O and ionic liquids were used as additive and stabilizers for the synthesis of the catalysts. The physico-chemical properties of the catalysts were characterized by atomic absorption spectroscopy (AAS), X-ray diffraction spectroscopy (XRD), N2 absorption/desorption (BET), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and temperature programmed reduction (TPR), whereas, the oxidation reaction was followed by gas chromatography with a flame ionization detector (GC-FID). The as prepared catalysts exhibited good catalytic performance in terms of conversion and selectivity towards benzaldehyde. The performance of the Au-based catalysts is significantly higher than that of the Cu-based catalysts. For both Cu and Au catalysts, the conversion of benzyl alcohol increased as the reaction proceeds, while the selectivity for benzaldehyde decreased. Moreover, the catalysts can be easily recycled and reused with neither significant loss of activity nor selectivity. A kinetic study for the Cu and Au-catalyzed oxidation of benzyl alcohol to benzyldehyde is reported. The rate at which the oxidation of benzyl alcohol is occurring as a function of catalyst and oxidant amounts was investigated, with the apparent rate constant, kapp being proportional to the amount of nano catalyst and oxygen present in the system.
Organometallic catalysts for primary phosphoric acid fuel cells
NASA Technical Reports Server (NTRS)
Walsh, Fraser
1987-01-01
A continuing effort by the U.S. Department of Energy to improve the competitiveness of the phosphoric acid fuel cell by improving cell performance and/or reducing cell cost is discussed. Cathode improvement, both in performance and cost, available through the use of a class of organometallic cathode catalysts, the tetraazaannulenes (TAAs), was investigated. A new mixed catalyst was identified which provides improved cathode performance without the need for the use of a noble metal. This mixed catalyst was tested under load for 1000 hr. in full cell at 160 to 200 C in phosphoric acid H3PO4, and was shown to provide stable performance. The mixed catalyst contains an organometallic to catalyze electroreduction of oxygen to hydrogen peroxide and a metal to catalyze further electroreduction of the hydrogen peroxide to water. Cathodes containing an exemplar mixed catalyst (e.g., Co bisphenyl TAA/Mn) operate at approximately 650 mV vs DHE in 160 C, 85% H3PO4 with oxygen as reactant. In developing this mixed catalyst, a broad spectrum of TAAs were prepared, tested in half-cell and in a rotating ring-disk electrode system. TAAs found to facilitate the production of hydrogen peroxide in electroreduction were shown to be preferred TAAs for use in the mixed catalyst. Manganese (Mn) was identified as a preferred metal because it is capable of catalyzing hydrogen peroxide electroreduction, is lower in cost and is of less strategic importance than platinum, the cathode catalyst normally used in the fuel cell.
Miao, Jie; Sunarso, Jaka; Su, Chao; Zhou, Wei; Wang, Shaobin; Shao, Zongping
2017-01-01
Perovskite-like oxides SrCo1−xTixO3−δ (SCTx, x = 0.1, 0.2, 0.4, 0.6) were used as heterogeneous catalysts to activate peroxymonosulfate (PMS) for phenol degradation under a wide pH range, exhibiting more rapid phenol oxidation than Co3O4 and TiO2. The SCT0.4/PMS system produced a high activity at increased initial pH, achieving optimized performance at pH ≥ 7 in terms of total organic carbon removal, the minimum Co leaching and good catalytic stability. Kinetic studies showed that the phenol oxidation kinetics on SCT0.4/PMS system followed the pseudo-zero order kinetics and the rate on SCT0.4/PMS system decreased with increasing initial phenol concentration, decreased PMS amount, catalyst loading and solution temperature. Quenching tests using ethanol and tert-butyl alcohol demonstrated sulfate and hydroxyl radicals for phenol oxidation. This investigation suggested promising heterogeneous catalysts for organic oxidation with PMS, showing a breakthrough in the barriers of metal leaching, acidic pH, and low efficiency of heterogeneous catalysis. PMID:28281656
Efficient Dual-Site Carbon Monoxide Electro-Catalysts via Interfacial Nano-Engineering.
Liu, Zhen; Huang, Zhongyuan; Cheng, Feifei; Guo, Zhanhu; Wang, Guangdi; Chen, Xu; Wang, Zhe
2016-09-21
Durable, highly efficient, and economic sound electrocatalysts for CO electrooxidation (COE) are the emerging key for wide variety of energy solutions, especially fuel cells and rechargeable metal-air batteries. Herein, we report the novel system of nickel-aluminum double layered hydroxide (NiAl-LDH) nanoplates on carbon nanotubes (CNTs) network. The formulation of such complexes system was to be induced through the assistance of gold nanoparticles in order to form dual-metal active sites so as to create a extended Au/NiO two phase zone. Bis (trifluoromethylsulfonyl)imide (NTf2) anion of ionic liquid electrolyte was selected to enhance the CO/O2 adsorption and to facilitate electro-catalyzed oxidation of Ni (OH)2 to NiOOH by increasing the electrophilicity of catalytic interface. The resulting neutral catalytic system exhibited ultra-high electrocatalytic activity and stability for CO electrooxidation than commercial and other reported precious metal catalysts. The turnover frequency (TOF) of the LDH-Au/CNTs COE catalyst was much higher than the previous reported other similar electrocatalysts, even close to the activity of solid-gas chemical catalysts at high temperature. Moreover, in the long-term durability testing, the negligible variation of current density remains exsisting after 1000 electrochemistry cycles.
Esmaeili, Chakavak; Ghasemi, Mostafa; Heng, Lee Yook; Hassan, Sedky H A; Abdi, Mahnaz M; Daud, Wan Ramli Wan; Ilbeygi, Hamid; Ismail, Ahmad Fauzi
2014-12-19
A novel nano-bio composite polypyrrole (PPy)/kappa-carrageenan(KC) was fabricated and characterized for application as a cathode catalyst in a microbial fuel cell (MFC). High resolution SEM and TEM verified the bud-like shape and uniform distribution of the PPy in the KC matrix. X-ray diffraction (XRD) has approved the amorphous structure of the PPy/KC as well. The PPy/KC nano-bio composites were then studied as an electrode material, due to their oxygen reduction reaction (ORR) ability as the cathode catalyst in the MFC and the results were compared with platinum (Pt) as the most common cathode catalyst. The produced power density of the PPy/KC was 72.1 mW/m(2) while it was 46.8 mW/m(2) and 28.8 mW/m(2) for KC and PPy individually. The efficiency of the PPy/KC electrode system is slightly lower than a Pt electrode (79.9 mW/m(2)) but due to the high cost of Pt electrodes, the PPy/KC electrode system has potential to be an alternative electrode system for MFCs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Efficient Dual-Site Carbon Monoxide Electro-Catalysts via Interfacial Nano-Engineering
Liu, Zhen; Huang, Zhongyuan; Cheng, Feifei; Guo, Zhanhu; Wang, Guangdi; Chen, Xu; Wang, Zhe
2016-01-01
Durable, highly efficient, and economic sound electrocatalysts for CO electrooxidation (COE) are the emerging key for wide variety of energy solutions, especially fuel cells and rechargeable metal−air batteries. Herein, we report the novel system of nickel−aluminum double layered hydroxide (NiAl-LDH) nanoplates on carbon nanotubes (CNTs) network. The formulation of such complexes system was to be induced through the assistance of gold nanoparticles in order to form dual-metal active sites so as to create a extended Au/NiO two phase zone. Bis (trifluoromethylsulfonyl)imide (NTf2) anion of ionic liquid electrolyte was selected to enhance the CO/O2 adsorption and to facilitate electro-catalyzed oxidation of Ni (OH)2 to NiOOH by increasing the electrophilicity of catalytic interface. The resulting neutral catalytic system exhibited ultra-high electrocatalytic activity and stability for CO electrooxidation than commercial and other reported precious metal catalysts. The turnover frequency (TOF) of the LDH-Au/CNTs COE catalyst was much higher than the previous reported other similar electrocatalysts, even close to the activity of solid-gas chemical catalysts at high temperature. Moreover, in the long-term durability testing, the negligible variation of current density remains exsisting after 1000 electrochemistry cycles. PMID:27650532
Efficient Dual-Site Carbon Monoxide Electro-Catalysts via Interfacial Nano-Engineering
NASA Astrophysics Data System (ADS)
Liu, Zhen; Huang, Zhongyuan; Cheng, Feifei; Guo, Zhanhu; Wang, Guangdi; Chen, Xu; Wang, Zhe
2016-09-01
Durable, highly efficient, and economic sound electrocatalysts for CO electrooxidation (COE) are the emerging key for wide variety of energy solutions, especially fuel cells and rechargeable metal-air batteries. Herein, we report the novel system of nickel-aluminum double layered hydroxide (NiAl-LDH) nanoplates on carbon nanotubes (CNTs) network. The formulation of such complexes system was to be induced through the assistance of gold nanoparticles in order to form dual-metal active sites so as to create a extended Au/NiO two phase zone. Bis (trifluoromethylsulfonyl)imide (NTf2) anion of ionic liquid electrolyte was selected to enhance the CO/O2 adsorption and to facilitate electro-catalyzed oxidation of Ni (OH)2 to NiOOH by increasing the electrophilicity of catalytic interface. The resulting neutral catalytic system exhibited ultra-high electrocatalytic activity and stability for CO electrooxidation than commercial and other reported precious metal catalysts. The turnover frequency (TOF) of the LDH-Au/CNTs COE catalyst was much higher than the previous reported other similar electrocatalysts, even close to the activity of solid-gas chemical catalysts at high temperature. Moreover, in the long-term durability testing, the negligible variation of current density remains exsisting after 1000 electrochemistry cycles.
Handa, Shinya; Gnanadesikan, Vijay; Matsunaga, Shigeki; Shibasaki, Masakatsu
2010-04-07
The full details of a catalytic asymmetric syn-selective nitro-Mannich reaction promoted by heterobimetallic Cu/Sm/dinucleating Schiff base complexes are described, demonstrating the effectiveness of the heterobimetallic transition metal/rare earth metal bifunctional catalysis. The first-generation system prepared from Cu(OAc)(2)/Sm(O-iPr)(3)/Schiff base 1a = 1:1:1 with an achiral phenol additive was partially successful for achieving the syn-selective catalytic asymmetric nitro-Mannich reaction. The substrate scope and limitations of the first-generation system remained problematic. After mechanistic studies on the catalyst prepared from Sm(O-iPr)(3), we reoptimized the catalyst preparation method, and a catalyst derived from Sm(5)O(O-iPr)(13) showed broader substrate generality as well as higher reactivity and stereoselectivity compared to Sm(O-iPr)(3). The optimal system with Sm(5)O(O-iPr)(13) was applicable to various aromatic, heteroaromatic, and isomerizable aliphatic N-Boc imines, giving products in 66-99% ee and syn/anti = >20:1-13:1. Catalytic asymmetric synthesis of nemonapride is also demonstrated using the catalyst derived from Sm(5)O(O-iPr)(13).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rioux, Robert M.
In this work, we have primarily utilized isothermal titration calorimetry (ITC) and complimentary catalyst characterization techniques to study and assess the impact of solution conditions (i.e., solid-liquid) interface on the synthesis of heterogeneous and electro-catalysts. Isothermal titration calorimetry is well-known technique from biochemistry/physics, but has been applied to a far lesser extent to characterize buried solid-liquid interfaces in materials science. We demonstrate the utility and unique information provided by ITC for two distinct catalytic systems. We explored the thermodynamics associated catalyst synthesis for two systems: (i) ion-exchange or strong electrostatic adsorption for Pt and Pd salts on silica and aluminamore » materials (ii) adsorption to provide covalent attachment of metal and metal-oxo clusters to Dion-Jacobsen perovskite materials.« less
Intracellular Chemistry: Integrating Molecular Inorganic Catalysts with Living Systems.
Ngo, Anh H; Bose, Sohini; Do, Loi H
2018-03-23
This concept article focuses on the rapid growth of intracellular chemistry dedicated to the integration of small-molecule metal catalysts with living cells and organisms. Although biological systems contain a plethora of biomolecules that can deactivate inorganic species, researchers have shown that small-molecule metal catalysts could be engineered to operate in heterogeneous aqueous environments. Synthetic intracellular reactions have recently been reported for olefin hydrogenation, hydrolysis/oxidative cleavage, azide-alkyne cycloaddition, allylcarbamate cleavage, C-C bond cross coupling, and transfer hydrogenation. Other promising targets for new biocompatible reaction discovery will also be discussed, with a special emphasis on how such innovations could lead to the development of novel technologies and chemical tools. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Monopropellant engine investigation for space shuttle reaction control system, volume 1
NASA Technical Reports Server (NTRS)
1975-01-01
The results are presented of an investigation to determine the capability of a monopropellant hydrazine thruster to meet the requirements specified for the space shuttle reaction control system (RCS). Of those requirements, the major concern was whether the 100,000 seconds life could be achieved at thrust levels within the specified range. Although burn times in excess of 200,000 seconds have been demonstrated at low thrust levels, the corresponding total impulse values have been substantially lower than that required for the space shuttle RCS. Two other areas of concern, involving the catalyst, were: (1) the effects of the relatively high vehicle vibration levels on catalyst attrition and (2) the effect of exposure of the catalyst to air during atmospheric reentry of the vehicle.
Recombination Catalysts for Hypersonic Fuels
NASA Technical Reports Server (NTRS)
Chinitz, W.
1998-01-01
The goal of commercially-viable access to space will require technologies that reduce propulsion system weight and complexity, while extracting maximum energy from the products of combustion. This work is directed toward developing effective nozzle recombination catalysts for the supersonic and hypersonic aeropropulsion engines used to provide such access to space. Effective nozzle recombination will significantly reduce rk=le length (hence, propulsion system weight) and reduce fuel requirements, further decreasing the vehicle's gross lift-off weight. Two such catalysts have been identified in this work, barium and antimony compounds, by developing chemical kinetic reaction mechanisms for these materials and determining the engine performance enhancement for a typical flight trajectory. Significant performance improvements are indicated, using only 2% (mole or mass) of these compounds in the combustor product gas.
Fuel processor for fuel cell power system
Vanderborgh, Nicholas E.; Springer, Thomas E.; Huff, James R.
1987-01-01
A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.
Allylic ethers were synthesized in water using magnetically recoverable heterogeneous Pd catalyst via O-allylation of phenols with allylic acetates under ambient conditions. Aqueous reaction medium, easy recovery of the catalyst using an external magnet, efficient recycling, and ...
40 CFR 86.1806-01 - On-board diagnostics.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-board diagnostic system during the certification process, that functions properly on low-sulfur gasoline... equipped. (1) A catalyst is replaced with a deteriorated or defective catalyst, or an electronic simulation... oxygen sensor is replaced with a deteriorated or defective oxygen sensor, or an electronic simulation of...
Qi, Wei; Yan, Pengqiang; Su, Dang Sheng
2018-03-20
Sustainable and environmentally benign catalytic processes are vital for the future to supply the world population with clean energy and industrial products. The replacement of conventional metal or metal oxide catalysts with earth abundant and renewable nonmetallic materials has attracted considerable research interests in the field of catalysis and material science. The stable and efficient catalytic performance of nanocarbon materials was discovered at the end of last century, and these materials are considered as potential alternatives for conventional metal-based catalysts. With its rapid development in the past 20 years, the research field of carbon catalysis has been experiencing a smooth transition from the discovery of novel nanocarbon materials or related new reaction systems to the atomistic-level mechanistic understanding on the catalytic process and the subsequent rational design of the practical catalytic reaction systems. In this Account, we summarize the recent progress in the kinetic and mechanistic studies on nanocarbon catalyzed alkane oxidative dehydrogenation (ODH) reactions. The paper attempts to extract general concepts and basic regularities for carbon catalytic process directing us on the way for rational design of novel efficient metal-free catalysts. The nature of the active sites for ODH reactions has been revealed through microcalorimetric analysis, ambient pressure X-ray photoelectron spectroscopy (XPS) measurement, and in situ chemical titration strategies. The detailed kinetic analysis and in situ catalyst structure characterization suggests that carbon catalyzed ODH reactions involve the redox cycles of the ketonic carbonyl-hydroxyl pairs, and the key physicochemical parameters (activation energy, reaction order, and rate/equilibrium constants, etc.) of the carbon catalytic systems are proposed and compared with conventional transition metal oxide catalysts. The proposal of the intrinsic catalytic activity (TOF) provides the possibility for the fair comparisons of different nanocarbon catalysts and the consequent structure-function relation regularity. Surface modification and heteroatom doping are proved as the most effective strategies to adjust the catalytic property (activity and product selectivity etc.) of the nanocarbon catalysts. Nanocarbon is actually a proper candidate platform helping us to understand the classical catalytic reaction mechanism better, since there is no lattice oxygen and all the catalytic process happens on nanocarbon surface. This Account also exhibits the importance of the in situ structural characterizations for heterogeneous nanocarbon catalysis. The research strategy and methods proposed for carbon catalysts may also shed light on other complicated catalytic systems or fields concerning the applications of nonmetallic materials, such as energy storage and environment protection etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelkar, A.A.; Ubale, R.S.; Deshpande, R.M.
The carbonylation of alcohols to give carboxylic acids is of commercial importance, as evidenced by the Monsanto process for the manufacture of acetic acid. Several transition metal complexes consisting of Co, Rh, Ir, Ru, and Ni are known to catalyze the carbonylation of alcohols, but Rh was found to be the most active and selective catalyst. Recent reports described Ni catalyzed carbonylation of methanol at lower temperatures and pressures giving high activity and selectivity. This development is particularly important as it will provide a cheaper and alternative catalyst to rhodium. For NiI{sub 2}-PPh{sub 3} and Ni(PPh{sub 3}){sup 2}(CO){sub 2}-PPh{sub 3}more » catalysts with methyl iodide as a promoter, methanol conversion of 98% with a selectivity of 75 to 90% has been reported. Further, Kelkar et al. have reported that Ni(isoq){sub 4}Cl{sub 2} as a catalyst is highly active with 99% conversion and 90-98% selectivity for carbonylation of methanol as well as higher alcohols. Rizkalla has also investigated the influence of catalyst, methyl iodide, methanol, and water concentrations and partial pressure of CO and hydrogen on the rate of reaction for NiI{sub 2}-PPh{sub 3} system; however, this study was limited to only one temperature (453 K) and no rate equation has been proposed. The present work was undertaken to study the intrinsic kinetics of the reaction using the Ni-isoquinoline catalyst system to develop a rate equation. 14 refs., 8 figs., 1 tab.« less
Palladium-catalyzed Reppe carbonylation.
Kiss, G
2001-11-01
PdX2L2/L/HA (A = weakly coordinating anion, L = phosphine) complexes are active catalysts in the hydroesterification of alkenes, alkynes, and conjugated dienes. Shell, the only major corporate player in the field, recently developed two very active catalyst systems tailored to the hydroesterification of either alkenes or alkynes. The hydroesterification of propyne with their Pd(OAc)2/PN/HA (PN = (2-pyridyl)diphenylphosphine, HA = strong acid with weakly coordinating anion, like methanesulfonic acid) catalyst has been declared commercially ready. However, despite the significant progress in the activity of Pd-hydroesterification catalysts, further improvements are warranted. Thus, for example, activity maintenance still seems to be an issue. Homogeneous Pd catalysts are prone to a number of deactivation reactions. Activity and stability promoters are often corrosive and add to the complexity of the system, making it less attractive. Nonetheless, the versatility of the process and its tolerance toward the functional groups of substrates should appeal especially to the makers of specialty products. Although hydroesterification yields esters from alkenes, alkynes, and dienes in fewer steps than hydroformylation does, the latter has some advantages at the current state of the art. (1) Hydroformylation catalysts, particularly some recently published phosphine-modified Rh systems, can achieve very high regioselectivity for the linear product that hydroesterification catalysts cannot match yet. By analogy with hydroformylation, bulkier ligands ought to be tested in hydroesterification to increase normal-ester selectivity. (2) Hydroformylation is proven, commercial. Hydroesterification can only replace it if it can provide significant economic incentives. Similar or just marginally better performance could not justify the cost of development of a new technology. (3) Hydroesterification requires pure CO while hydroformylation uses syngas, a mixture of CO and H2. The latter is typically more available and less expensive (for industrial applications CO is most often separated from syngas). (4) The acid component of the hydroesterification catalyst makes the process corrosive. It would be desirable to develop new hydroesterification catalysts that do not require acid stabilizer/activity booster. Clearly, any new hydroesterification technology will directly compete with the hydroformylation route. This is especially true for olefin feeds, since both processes add one CO to the olefin, yielding oxygenates that can be converted into identical products. For some niche applications, like the production of MMA from propyne, hydroesterification seems to have an advantage as compared to hydroformylation due to the high activity and selectivity of the Pd(OAc)2/(2-pyridyl)diphenylphosphine catalyst. Since hydroesterification is an emerging technology, it is reasonable to assume that the potential for improvement is greater than in the mature hydroformylation. It is therefore possible that hydroesterification will become competitive in the future; thus, continued effort in the field is warranted.
Wang, Wenju; Ren, Junli; Li, Huiling; Deng, Aojie; Sun, Runcang
2015-05-01
Direct catalytic transformation of xylan-type hemicelluloses to furfural in the aqueous system and the biphasic system were comparatively investigated under mild conditions. Screening of several promising chlorides for conversion of beech xylan in the aqueous system revealed the Lewis acid SnCl4 was the most effective catalyst. Comparing to the single aqueous system, the bio-based 2-methyltetrahydrofuran (2-MTHF)/H2O biphasic system was more conducive to the synthesis of furfural, in which the highest furfural yield of 78.1% was achieved by using SnCl4 as catalysts under the optimized reaction conditions (150°C, 120 min). Additionally, the influences of xylan-type hemicelluloses with different chemical and structural features from beech, corncob and bagasse on the furfural production were studied. It was found that furfural yield to some extent was determined by the xylose content in hemicelluloses and also had relationships with the molecular weight of hemicelluloses and the degree of crystallization. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yaakob, Zahira; Bshish, Ahmed; Ebshish, Ali; Tasirin, Siti Masrinda; Alhasan, Fatah H.
2013-01-01
Selecting a proper support in the catalyst system plays an important role in hydrogen production via ethanol steam reforming. In this study, sol gel made alumina supports prepared for nickel (Ni) catalysts were calcined at different temperatures. A series of (Ni/AlS.G.) catalysts were synthesized by an impregnation procedure. The influence of varying the calcination temperature of the sol gel made supports on catalyst activity was tested in ethanol reforming reaction. The characteristics of the sol gel alumina supports and Ni catalysts were affected by the calcination temperature of the supports. The structure of the sol gel made alumina supports was transformed in the order of γ → (γ + θ) → θ-alumina as the calcination temperature of the supports increased from 600 °C to 1000 °C. Both hydrogen yield and ethanol conversion presented a volcano-shaped behavior with maximum values of 4.3 mol/mol ethanol fed and 99.5%, respectively. The optimum values were exhibited over Ni/AlS.G800 (Ni catalyst supported on sol gel made alumina calcined at 800 °C). The high performance of the Ni/AlS.G800 catalyst may be attributed to the strong interaction of Ni species and sol gel made alumina which lead to high nickel dispersion and small particle size. PMID:28809270
Yaakob, Zahira; Bshish, Ahmed; Ebshish, Ali; Tasirin, Siti Masrinda; Alhasan, Fatah H
2013-05-30
Selecting a proper support in the catalyst system plays an important role in hydrogen production via ethanol steam reforming. In this study, sol gel made alumina supports prepared for nickel (Ni) catalysts were calcined at different temperatures. A series of (Ni/Al S.G. ) catalysts were synthesized by an impregnation procedure. The influence of varying the calcination temperature of the sol gel made supports on catalyst activity was tested in ethanol reforming reaction. The characteristics of the sol gel alumina supports and Ni catalysts were affected by the calcination temperature of the supports. The structure of the sol gel made alumina supports was transformed in the order of γ → (γ + θ) → θ-alumina as the calcination temperature of the supports increased from 600 °C to 1000 °C. Both hydrogen yield and ethanol conversion presented a volcano-shaped behavior with maximum values of 4.3 mol/mol ethanol fed and 99.5%, respectively. The optimum values were exhibited over Ni/Al S.G800 (Ni catalyst supported on sol gel made alumina calcined at 800 °C). The high performance of the Ni/Al S.G800 catalyst may be attributed to the strong interaction of Ni species and sol gel made alumina which lead to high nickel dispersion and small particle size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalbasi, Roozbeh Javad, E-mail: rkalbasi@iaush.ac.ir; Mosaddegh, Neda
2011-11-15
Composite poly(N-vinyl-2-pyrrolidone)/KIT-5 (PVP/KIT-5) was prepared by in situ polymerization method and used as a support for palladium nanoparticles obtained through the reduction of Pd(OAc){sub 2} by hydrazine hydrate. The physical and chemical properties of the catalyst were investigated by XRD, FT-IR, UV-vis, TG, BET, SEM, and TEM techniques. The catalytic performance of this novel heterogeneous catalyst was determined for the Suzuki-Miyaura cross-coupling reaction between aryl halides and phenylboronic acid in the presence of water at room temperature. The stability of the nanocomposite catalyst was excellent and could be reused 8 times without much loss of activity in the Suzuki-Miyaura cross-couplingmore » reaction. - Graphical Abstract: Pd-poly(N-vinyl-2-pyrrolidone)/KIT-5 was prepared as an organic-inorganic hybrid catalyst for the Suzuki-Miyaura reaction. The stability of the catalyst was excellent and could be reused 8 times in the Suzuki-Miyaura reaction. Highlights: > Pd-poly(N-vinyl-2-pyrrolidone)/KIT-5 was prepared as a novel nanocomposite. > Nanocomposite was prepared based on a cage-type mesoporous system. > Catalyst showed excellent activity for Suzuki-Miyaura reaction in water. > Stability of the catalyst was excellent and could be reused 8 times.« less
Kusche, Matthias; Bustillo, Karen; Agel, Friederike; ...
2015-01-29
Here, we describe an economical and convenient method to improve the performance of Pt/alumina catalysts for the water–gas shift reaction through surface modification of the catalysts with alkali hydroxides according to the solid catalyst with ionic liquid layer approach. The results are in agreement with our findings reported earlier for methanol steam reforming. This report indicates that alkali doping of the catalyst plays an important role in the observed catalyst activation. In addition, the basic and hygroscopic nature of the salt coating contributes to a significant improvement in the performance of the catalyst. During the reaction, a partly liquid filmmore » of alkali hydroxide forms on the alumina surface, which increases the availability of H 2O at the catalytically active sites. Kinetic studies reveal a negligible effect of the KOH coating on the rate dependence of CO and H 2O partial pressures. In conclusion, TEM studies indicate an agglomeration of the active Pt clusters during catalyst preparation; restructuring of Pt nanoparticles occurs under reaction conditions, which leads to a highly active and stable system over 240h time on stream. Excessive pore fillings with KOH introduce a mass transfer barrier as indicated in a volcano-shaped curve of activity versus salt loading. The optimum KOH loading was found to be 7.5wt%.« less
Energy curable compositions having improved cure speeds
Halm, L.W.
1993-05-18
The composition and method provide improved physical properties and cure speed of polyurethane precursors, with or without free radical polymerizable monomers or oligomers present, by use of a two component catalyst system. The resin blend can be activated with a latent organometallic catalyst combined with an organic peroxide which can be a hydroperoxide or an acyl peroxide to decrease the cure time while increasing the break energy and tangent modulus of the system.
Energy curable compositions having improved cure speeds
Halm, Leo W.
1993-01-01
A composition and method provide improved physical properties and cure speed of polyurethane precursors, with or without free radical polymerizable monomers or oligomers present, by use of a two component catalyst system. The resin blend can be activated with a latent organometallic catalyst combined with an organic peroxide which can be a hydroperoxide or an acyl peroxide to decrease the cure time while increasing the break energy and tangent modulus of the system.
2014-11-03
Rob Mueller, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, demonstrates the Regolith Advanced Surface System Operations Robot, or RASSOR, during a media event at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.
Cooperation of catalysts and templates
NASA Technical Reports Server (NTRS)
White, D. H.; Kanavarioti, A.; Nibley, C. W.; Macklin, J. W.
1986-01-01
In order to understand how self-reproducing molecules could have originated on the primitive Earth or extraterrestrial bodies, it would be useful to find laboratory models of simple molecules which are able to carry out processes of catalysis and templating. Furthermore, it may be anticipated that systems in which several components are acting cooperatively to catalyze each other's synthesis will have different behavior with respect to natural selection than those of purely replicating systems. As the major focus of this work, laboratory models are devised to study the influence of short peptide catalysts on template reactions which produce oligonucleotides or additional peptides. Such catalysts could have been the earliest protoenzymes of selective advantage produced by replicating oligonucleotides. Since this is a complex problem, simpler systems are also studied which embody only one aspect at a time, such as peptide formation with and without a template, peptide catalysis of nontemplated peptide synthesis, and model reactions for replication of the type pioneered by Orgel.
Wet-oxidation waste management system for CELSS
NASA Technical Reports Server (NTRS)
Takahashi, Y.; Ohya, H.
1986-01-01
A wet oxidation system will be useful in the Closed Ecological Life Support System (CELSS) as a facility to treat organic wastes and to redistribute inorganic compounds and elements. However at rather higher temperatures needed in this reaction, for instance, at 260 deg C, only 80% of organic in a raw material can be oxidized, and 20% of it will remain in the liquid mainly as acetic acid, which is virtually noncombustible. Furthermore, nitrogen is transformed to ammonium ions which normally cannot be absorbed by plants. To resolve these problems, it becomes necessary to use catalysts. Noble metals such as Ru, Rh and so on have proved to be partially effective as these catalysts. That is, oxidation does not occur completely, and the unexpected denitrification, instead of the expected nitrification, occurs. So, it is essential to develop the catalysts which are able to realize the complete oxidation and the nitrification.