The Catalytic Asymmetric Intramolecular Stetter Reaction
de Alaniz, Javier Read; Rovis, Tomislav
2010-01-01
This account chronicles our efforts at the development of a catalytic asymmetric Stetter reaction using chiral triazolium salts as small molecule organic catalysts. Advances in the mechanistically related azolium-catalyzed asymmetric benzoin reaction are discussed, particularly as they apply to catalyst design. A chronological treatise of reaction discovery, catalyst optimization and reactivity extension follows. PMID:20585467
A catalytic tethering strategy: simple aldehydes catalyze intermolecular alkene hydroaminations.
MacDonald, Melissa J; Schipper, Derek J; Ng, Peter J; Moran, Joseph; Beauchemin, André M
2011-12-21
Herein we describe a catalytic tethering strategy in which simple aldehyde precatalysts enable, through temporary intramolecularity, room-temperature intermolecular hydroamination reactivity and the synthesis of vicinal diamines. The catalyst allows the formation of a mixed aminal from an allylic amine and a hydroxylamine, resulting in a facile intramolecular hydroamination event. The promising enantioselectivities obtained with a chiral aldehyde also highlight the potential of this catalytic tethering approach in asymmetric catalysis and demonstrate that efficient enantioinduction relying only on temporary intramolecularity is possible. © 2011 American Chemical Society
Catalytic asymmetric formal synthesis of beraprost
Kobayashi, Yusuke; Kuramoto, Ryuta
2015-01-01
Summary The first catalytic asymmetric synthesis of the key intermediate for beraprost has been achieved through an enantioselective intramolecular oxa-Michael reaction of an α,β-unsaturated amide mediated by a newly developed benzothiadiazine catalyst. The Weinreb amide moiety and bromo substituent of the Michael adduct were utilized for the C–C bond formations to construct the scaffold. All four contiguous stereocenters of the tricyclic core were controlled via Rh-catalyzed stereoselective C–H insertion and the subsequent reduction from the convex face. PMID:26734111
Activation of olefins via asymmetric Bronsted acid catalysis
Tsuji, Nobuya; Kennemur, Jennifer L.; Buyck, Thomas; ...
2018-03-30
The activation of olefins for asymmetric chemical synthesis traditionally relies on transition metal catalysts. In contrast, biological enzymes with Bronsted acidic sites of appropriate strength can protonate olefins and thereby generate carbocations that ultimately react to form natural products. Although chemists have recently designed chiral Bronsted acid catalysts to activate imines and carbonyl compounds, mimicking these enzymes to protonate simple olefins that then engage in asymmetric catalytic reactions has remained a substantial synthetic challenge. Here, we show that a class of confined and strong chiral Bronsted acids enables the catalytic asymmetric intramolecular hydroalkoxylation of unbiased olefins. In conclusion, the methodologymore » gives rapid access to biologically active 1,1-disubstituted tetrahydrofurans, including (–)-Boivinianin A.« less
Activation of olefins via asymmetric Bronsted acid catalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuji, Nobuya; Kennemur, Jennifer L.; Buyck, Thomas
The activation of olefins for asymmetric chemical synthesis traditionally relies on transition metal catalysts. In contrast, biological enzymes with Bronsted acidic sites of appropriate strength can protonate olefins and thereby generate carbocations that ultimately react to form natural products. Although chemists have recently designed chiral Bronsted acid catalysts to activate imines and carbonyl compounds, mimicking these enzymes to protonate simple olefins that then engage in asymmetric catalytic reactions has remained a substantial synthetic challenge. Here, we show that a class of confined and strong chiral Bronsted acids enables the catalytic asymmetric intramolecular hydroalkoxylation of unbiased olefins. In conclusion, the methodologymore » gives rapid access to biologically active 1,1-disubstituted tetrahydrofurans, including (–)-Boivinianin A.« less
Turlington, Mark; Yue, Yang; Yu, Xiao-Qi; Pu, Lin
2010-10-15
Several methods for the catalytic asymmetric alkyne addition to aldehydes are used to prepare the propargylic alcohol-based chiral en-ynes. Protection of the propargylic alcohols with either an acetyl or a methyl group allows the resulting en-ynes to undergo the intramolecular Pauson-Khand reaction to form the corresponding optically active 5,5- and 5,6-fused bicyclic products with high diastereoselectivity and high enantiomeric purity. In the major product, the propargylic substituent and the bridgehead hydrogen are cis with respect to each other on the fused bicyclic rings. The enantiomeric purity of the propargylic alcohols generated from the asymmetric alkyne addition is maintained in the cycloaddition products. The allylic ethers of the chiral propargylic alcohols are prepared which can also undergo the highly diastereoselective Pauson-Khand cycloaddition with retention of the high enantiomeric purity. This study has shown that the size of the substituents at the propargylic position as well as on the alkyne is important for the diastereoselectivity with the greater bulkiness of the substituents giving higher diastereoselectivity.
Catalytic asymmetric total synthesis of (+)-yohimbine.
Mergott, Dustin J; Zuend, Stephan J; Jacobsen, Eric N
2008-03-06
The total synthesis of (+)-yohimbine was achieved in 11 steps and 14% overall yield. The absolute configuration was established through a highly enantioselective thiourea-catalyzed acyl-Pictet-Spengler reaction, and the remaining 4 stereocenters were set simultaneously in a substrate-controlled intramolecular Diels-Alder reaction.
Catalytic Conia-ene and related reactions.
Hack, Daniel; Blümel, Marcus; Chauhan, Pankaj; Philipps, Arne R; Enders, Dieter
2015-10-07
Since its initial inception, the Conia-ene reaction, known as the intramolecular addition of enols to alkynes or alkenes, has experienced a tremendous development and appealing catalytic protocols have emerged. This review fathoms the underlying mechanistic principles rationalizing how substrate design, substrate activation, and the nature of the catalyst work hand in hand for the efficient synthesis of carbocycles and heterocycles at mild reaction conditions. Nowadays, Conia-ene reactions can be found as part of tandem reactions, and the road for asymmetric versions has already been paved. Based on their broad applicability, Conia-ene reactions have turned into a highly appreciated synthetic tool with impressive examples in natural product synthesis reported in recent years.
Asymmetric Additions to Dienes Catalyzed by a Dithiophosphoric Acid
Shapiro, Nathan D.; Rauniyar, Vivek; Hamilton, Gregory L.; Wu, Jeffrey; Toste, F. Dean
2011-01-01
Chiral Brønsted acids have become an invaluable tool for achieving a variety of asymmetric chemical transformations under catalytic conditions while avoiding the use of toxic and expensive metals1–8. While the catalysts developed so far are remarkably effective at activating polarized functional groups, chemists have not yet been able to use organic Brønsted acids to catalyze highly enantioselective transformations of unactivated carbon-carbon multiple bonds. This deficiency persists despite the fact that racemic acid-catalyzed “Markovnikov” additions to olefins are a well-established part of the chemist’s toolbox. Here we show that chiral dithiophosphoric acids catalyze the intramolecular hydroamination and hydroarylation of dienes and allenes to generate heterocyclic products in exceptional yield and enantiomeric excess. To help rationalize the unique success of this catalytic system, we present a mechanistic hypothesis that involves the addition of the acid catalyst to the diene followed by SN2′ displacement of the resulting dithiophosphate intermediate. Mass spectrometry and deuterium labelling studies are presented in support of the proposed mechanism. The catalysts and concepts revealed in this study should prove applicable to other asymmetric functionalizations of unsaturated systems. PMID:21307938
Denmark, Scott E; Kalyani, Dipannita; Collins, William R
2010-11-10
A systematic investigation into the Lewis base catalyzed, asymmetric, intramolecular selenoetherification of olefins is described. A critical challenge for the development of this process was the identification and suppression of racemization pathways available to arylseleniranium ion intermediates. This report details a thorough study of the influences of the steric and electronic modulation of the arylselenenyl group on the configurational stability of enantioenriched seleniranium ions. These studies show that the 2-nitrophenyl group attached to the selenium atom significantly attenuates the racemization of seleniranium ions. A variety of achiral Lewis bases catalyze the intramolecular selenoetherification of alkenes using N-(2-nitrophenylselenenyl)succinimide as the electrophile along with a Brønsted acid. Preliminary mechanistic studies suggest the intermediacy of ionic Lewis base-selenium(II) adducts. Most importantly, a broad survey of chiral Lewis bases revealed that 1,1'-binaphthalene-2,2'-diamine (BINAM)-derived thiophosphoramides catalyze the cyclization of unsaturated alcohols in the presence of N-(2-nitrophenylselenenyl)succinimide and methanesulfonic acid. A variety of cyclic seleno ethers were produced in good chemical yields and in moderate to good enantioselectivities, which constitutes the first catalytic, enantioselective selenofunctionalization of unactivated olefins.
Flores, Beatris; Molinski, Tadeusz F.
2011-01-01
The hexahydro-1H-isoindolin-1-one core of muironolide A was prepared by asymmetric intramolecular Diels Alder cycloaddition using a variant of the MacMillan organocatalyst which sets the C4,C5 and C11 stereocenters. PMID:21751773
Asymmetric Desymmetrization of 1,3-Diketones via Intramolecular Benzoin Reaction.
Li, Yuanzhen; Yang, Shuang; Wen, Genfa; Lin, Qiqiao; Zhang, Guoxiang; Qiu, Lin; Zhang, Xiaoyan; Du, Guangfen; Fang, Xinqiang
2016-04-01
A general method for the asymmetric desymmetrization of 1,3-diketone substrates via chiral N-heterocyclic carbene catalyzed intramolecular benzoin reactions was developed. Five- and six-membered cyclic ketones bearing two contiguous fully substituted stereocenters were generated with excellent diastereoselectivities and moderate to excellent enantioselectivities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawano, Takahiro; Thacker, Nathan C.; Lin, Zekai
2016-05-06
We report here the design of BINAP-based metal–organic frameworks and their postsynthetic metalation with Rh complexes to afford highly active and enantioselective single-site solid catalysts for the asymmetric cyclization reactions of 1,6-enynes. Robust, chiral, and porous Zr-MOFs of UiO topology, BINAP-MOF (I) or BINAP-dMOF (II), were prepared using purely BINAP-derived dicarboxylate linkers or by mixing BINAP-derived linkers with unfunctionalized dicarboxylate linkers, respectively. Upon metalation with Rh(nbd)2BF4 and [Rh(nbd)Cl]2/AgSbF6, the MOF precatalysts I·Rh(BF4) and I·Rh(SbF6) efficiently catalyzed highly enantioselective (up to 99% ee) reductive cyclization and Alder-ene cycloisomerization of 1,6-enynes, respectively. I·Rh catalysts afforded cyclization products at comparable enantiomeric excesses (ee’s)more » and 4–7 times higher catalytic activity than the homogeneous controls, likely a result of catalytic site isolation in the MOF which prevents bimolecular catalyst deactivation pathways. However, I·Rh is inactive in the more sterically encumbered Pauson–Khand reactions between 1,6-enynes and carbon monoxide. In contrast, with a more open structure, Rh-functionalized BINAP-dMOF, II·Rh, effectively catalyzed Pauson–Khand cyclization reactions between 1,6-enynes and carbon monoxide at 10 times higher activity than the homogeneous control. II·Rh was readily recovered and used three times in Pauson–Khand cyclization reactions without deterioration of yields or ee’s. Our work has expanded the scope of MOF-catalyzed asymmetric reactions and showed that the mixed linker strategy can effectively enlarge the open space around the catalytic active site to accommodate highly sterically demanding polycyclic metallocycle transition states/intermediates in asymmetric intramolecular cyclization reactions.« less
Matsumoto, Kouichi; Fujie, Shunsuke; Suga, Seiji; Nokami, Toshiki; Yoshida, Jun-ichi
2009-09-28
A catalytic amount of electrochemically generated "ArS+" ("ArS+" = ArS(ArSSAr)+) initiates a cation chain reaction of dienes that involves the addition of ArSSAr associated with stereoselective intramolecular carbon-carbon bond formation, and the direct (in-cell) electrolysis of a mixture of a diene and ArSSAr with a catalytic amount of electricity also effectively initiates the reaction.
Moberg, Viktor; Mottalib, M Abdul; Sauer, Désirée; Poplavskaya, Yulia; Craig, Donald C; Colbran, Stephen B; Deeming, Antony J; Nordlander, Ebbe
2008-05-14
Phosphine derivatives of alkylidyne tricobalt carbonyl clusters have been tested as catalysts/catalyst precursors in intermolecular and (asymmetric) intramolecular Pauson-Khand reactions. A number of new phosphine derivatives of the tricobalt alkylidyne clusters [Co3(micro3-CR)(CO)9] (R = H, CO2Et) were prepared and characterised. The clusters [Co3(micro3-CR)(CO)9-x(PR'3)x] (PR'3 = achiral or chiral monodentate phosphine, x = 1-3) and [Co3(micro3-CR)(CO)7)(P-P)] (P-P = chiral diphosphine; 1,1'- and 1,2-structural isomers) were assayed as catalysts for intermolecular and (asymmetric) intramolecular Pauson-Khand reactions. The phosphine-substituted tricobalt clusters proved to be viable catalysts/catalyst precursors that gave moderate to very good product yields (up to approximately 90%), but the enantiomeric excesses were too low for the clusters to be of practical use in the asymmetric reactions.
Catalytic asymmetric Michael reactions promoted by a lithium-free lanthanum-BINOL complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasai, Hiroaki; Arai, Takayoshi; Shibasaki, Masakatsu
1994-02-23
In this communication, we report about a new lithium-free BINOL-lanthanum complex, which is quite effective in catalytic asymmetric Michael reaction. We have succeeded in developing effective asymmetric base catalysts, in particular, asymmetric ester enolate catalysts for asymmetric Michael reactions. Two asymmetric lanthanum complexes are now available, namely, BINOL-lanthanum-lithium complex, which is quite effective in catalytic asymmetric nitrosaldol reactions, and a new lithium-free BINOL-lanthanum ester enolate complex, that is very effective in catalytic asymmetric Michael reactions. The two complexes complement each other in their ability to catalyze asymmetric nitroaldol and asymmetric Michael reactions. 14 refs., 1 fig., 2 tabs.
Gärtner, Martin; Satyanarayana, Gedu; Förster, Sebastian; Helmchen, Günter
2013-01-02
Short and concise syntheses of the hexahydroindene cores of the antibiotics indanomycin (X-14547 A) and stawamycin are presented. Key methods used are an asymmetric iridium-catalyzed allylic alkylation, a modified Julia olefination, a Suzuki-Miyaura coupling, and an intramolecular Diels-Alder reaction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ema, Tadashi; Nanjo, Yoshiko; Shiratori, Sho; Terao, Yuta; Kimura, Ryo
2016-11-04
The intermolecular or intramolecular asymmetric benzoin reaction was catalyzed by a small amount of N-heterocyclic carbene (NHC) (0.2-1 mol %) under solvent-free conditions. The solvent-free intramolecular asymmetric Stetter reaction also proceeded efficiently with NHC (0.2-1 mol %). In some cases, even solid-to-solid or solid-to-liquid conversions took place with low catalyst loading (0.2-1 mol %).
Yu, Yue-Na; Xu, Ming-Hua
2013-03-15
Enantioselective synthesis of potentially useful chiral 3-aryl-1-indanones was achieved through a rhodium-catalyzed asymmetric intramolecular 1,4-addition of pinacolborane chalcone derivatives using extraordinary simple MonoPhos as chiral ligand under relatively mild conditions. This novel protocol offers an easy access to a wide variety of enantioenriched 3-aryl-1-indanone derivatives in high yields (up to 95%) with excellent enantioselectivities (up to 95% ee).
Jia, Xiangna; Williams, Robert M
2008-12-12
Herein we describe an asymmetric approach to the synthesis of a BC-ring synthon in tuberostemoninol via an intramolecular Pauson-Khand reaction stereocontrolled by a commercially available chiral glycinate.
Jia, Xiangna; Williams, Robert M
2009-01-01
Herein we describe an asymmetric approach to the synthesis of a BC-ring synthon in tuberostemoninol via an intramolecular Pauson-Khand reaction stereocontrolled by a commercially available chiral glycinate. PMID:19779590
Gammack Yamagata, Adam D; Datta, Swarup; Jackson, Kelvin E; Stegbauer, Linus; Paton, Robert S; Dixon, Darren J
2015-04-13
A new catalytic asymmetric desymmetrization reaction for the synthesis of enantioenriched derivatives of 2-azabicyclo[3.3.1]nonane, a key motif common to many alkaloids, has been developed. Employing a cyclohexanediamine-derived primary amine organocatalyst, a range of prochiral cyclohexanone derivatives possessing an α,β-unsaturated ester moiety linked to the 4-position afforded the bicyclic products, which possess three stereogenic centers, as single diastereoisomers in high enantioselectivity (83-99% ee) and in good yields (60-90%). Calculations revealed that stepwise C-C bond formation and proton transfer via a chair-shaped transition state dictate the exclusive endo selectivity and enabled the development of a highly enantioselective primary amine catalyst. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recent progress in asymmetric bifunctional catalysis using multimetallic systems.
Shibasaki, Masakatsu; Kanai, Motomu; Matsunaga, Shigeki; Kumagai, Naoya
2009-08-18
The concept of bifunctional catalysis, wherein both partners of a bimolecular reaction are simultaneously activated, is very powerful for designing efficient asymmetric catalysts. Catalytic asymmetric processes are indispensable for producing enantiomerically enriched compounds in modern organic synthesis, providing more economical and environmentally benign results than methods requiring stoichiometric amounts of chiral reagents. Extensive efforts in this field have produced many asymmetric catalysts, and now a number of reactions can be rendered asymmetric. We have focused on the development of asymmetric catalysts that exhibit high activity, selectivity, and broad substrate generality under mild reaction conditions. Asymmetric catalysts based on the concept of bifunctional catalysis have emerged as a particularly effective class, enabling simultaneous activation of multiple reaction components. Compared with conventional catalysts, bifunctional catalysts generally exhibit enhanced catalytic activity and higher levels of stereodifferentiation under milder reaction conditions, attracting much attention as next-generation catalysts for prospective practical applications. In this Account, we describe recent advances in enantioselective catalysis with bifunctional catalysts. Since our identification of heterobimetallic rare earth-alkali metal-BINOL (REMB) complexes, we have developed various types of bifunctional multimetallic catalysts. The REMB catalytic system is effective for catalytic asymmetric Corey-Chaykovsky epoxidation and cyclopropanation. A dinucleating Schiff base has emerged as a suitable multidentate ligand for bimetallic catalysts, promoting catalytic syn-selective nitro-Mannich, anti-selective nitroaldol, and Mannich-type reactions. The sugar-based ligand GluCAPO provides a suitable platform for polymetallic catalysts; structural elucidation revealed that their higher order polymetallic structures are a determining factor for their function in the catalytic asymmetric Strecker reaction. Rational design identified a related ligand, FujiCAPO, which exhibits superior performance in catalytic asymmetric conjugate addition of cyanide to enones and a catalytic asymmetric Diels-Alder-type reaction. The combination of an amide-based ligand with a rare earth metal constitutes a unique catalytic system: the ligand-metal association is in equilibrium because of structural flexibility. These catalytic systems are effective for asymmetric amination of highly coordinative substrate as well as for Mannich-type reaction of alpha-cyanoketones, in which hydrogen bonding cooperatively contributes to substrate activation and stereodifferentiation. Most of the reactions described here generate stereogenic tetrasubstituted carbons or quaternary carbons, noteworthy accomplishments even with modern synthetic methods. Several reactions have been incorporated into the asymmetric synthesis of therapeutics (or their candidate molecules) such as Tamiflu, AS-3201 (ranirestat), GRL-06579A, and ritodrine, illustrating the usefulness of bifunctional asymmetric catalysis.
Microscale Synthesis of Chiral Alcohols via Asymmetric Catalytic Transfer Hydrogenation
ERIC Educational Resources Information Center
Peeters, Christine M.; Deliever, Rik; De Vos, Dirk
2009-01-01
Synthesis of pure enantiomers is a key issue in industry, especially in areas connected to life sciences. Catalytic asymmetric synthesis has emerged as a powerful and practical tool. Here we describe an experiment on racemic reduction and asymmetric reduction via a catalytic hydrogen transfer process. Acetophenone and substituted acetophenones are…
Dendritic effect in polymer-supported catalysis of the intramolecular Pauson-Khand reaction.
Dahan, Adi; Portnoy, Moshe
2002-11-21
A remarkable increase in catalytic activity and selectivity in the intramolecular Pauson-Khand reaction is observed for Co complexes, immobilised on second- and third-generation dendron-functionalized polystyrene, as compared with their analogues on non-dendronized support.
Sallio, Romain; Lebrun, Stéphane; Capet, Frédéric; Agbossou-Niedercorn, Francine
2018-01-01
A new asymmetric organocatalyzed intramolecular aza-Michael reaction by means of both a chiral auxiliary and a catalyst for stereocontrol is reported for the synthesis of optically active isoindolinones. A selected cinchoninium salt was used as phase-transfer catalyst in combination with a chiral nucleophile, a Michael acceptor and a base to provide 3-substituted isoindolinones in good yields and diastereomeric excesses. This methodology was applied to the asymmetric synthesis of a new pazinaclone analogue which is of interest in the field of benzodiazepine-receptor agonists. PMID:29623121
Asymmetric intramolecular Pauson-Khand reaction mediated by a remote sulfenyl or sulfinyl group.
García Ruano, José Luis; Torrente, Esther; Parra, Alejandro; Alemán, José; Martín-Castro, Ana M
2012-08-03
In this work, we report the use of the asymmetric intramolecular Pauson-Khand reactions of 4-aryl-4-cyano-1,6-enynes for obtaining enantiomerically enriched bicyclo[3.3.0]octenones, and the influence of both the quaternary stereocenter and the sulfur functions located at ortho-position of the aryl group, on their stereoselectivity and reactivity. The sulfenyl derivatives bearing substituted or unsubstituted triple bonds and mono- and disubstituted alkene moieties afford bicyclo[3.3.0]octenones in high yields with complete diastereocontrol. These results are explained by assuming the association of the lone electron pair at sulfur to the Co-alkyne complexes.
Nemoto, Tetsuhiro; Kakei, Hiroyuki; Gnanadesikan, Vijay; Tosaki, Shin-Ya; Ohshima, Takashi; Shibasaki, Masakatsu
2002-12-11
The catalytic asymmetric epoxidation of alpha,beta-unsaturated amides using Sm-BINOL-Ph3As=O complex was succeeded. Using 5-10 mol % of the asymmetric catalyst, a variety of amides were epoxidized efficiently, yielding the corresponding alpha,beta-epoxy amides in up to 99% yield and in more than 99% ee. Moreover, the novel one-pot tandem process, one-pot tandem catalytic asymmetric epoxidation-Pd-catalyzed epoxide opening process, was developed. This method was successfully utilized for the efficient synthesis of beta-aryl alpha-hydroxy amides, including beta-aryllactyl-leucine methyl esters. Interestingly, it was found that beneficial modifications on the Pd catalyst were achieved by the constituents of the first epoxidation, producing a more suitable catalyst for the Pd-catalyzed epoxide opening reaction in terms of chemoselectivity.
Phenanthridine synthesis through iron-catalyzed intramolecular N-arylation of O-acetyl oxime.
Deb, Indubhusan; Yoshikai, Naohiko
2013-08-16
O-Acetyl oximes derived from 2'-arylacetophenones undergo N-O bond cleavage/intramolecular N-arylation in the presence of a catalytic amount of iron(III) acetylacetonate in acetic acid. In combination with the conventional cross-coupling or directed C-H arylation, the reaction offers a convenient route to substituted phenanthridines.
Fukuta, Yuhei; Ohshima, Takashi; Gnanadesikan, Vijay; Shibuguchi, Tomoyuki; Nemoto, Tetsuhiro; Kisugi, Takaya; Okino, Tatsufumi; Shibasaki, Masakatsu
2004-01-01
Aeruginosin 298-A was isolated from the freshwater cyanobacterium Microcystis aeruginosa (NIES-298) and is an equipotent thrombin and trypsin inhibitor. A variety of analogs were synthesized to gain insight into the structure–activity relations. We developed a versatile synthetic process for aeruginosin 298-A as well as several attractive analogs, in which all stereocenters were controlled by catalytic asymmetric phase-transfer reaction promoted by two-center asymmetric catalysts and catalytic asymmetric epoxidation promoted by a lanthanide–BINOL complex. Furthermore, serine protease inhibitory activities of aeruginosin 298-A and its analogs were examined. PMID:15004282
Fukuta, Yuhei; Ohshima, Takashi; Gnanadesikan, Vijay; Shibuguchi, Tomoyuki; Nemoto, Tetsuhiro; Kisugi, Takaya; Okino, Tatsufumi; Shibasaki, Masakatsu
2004-04-13
Aeruginosin 298-A was isolated from the freshwater cyanobacterium Microcystis aeruginosa (NIES-298) and is an equipotent thrombin and trypsin inhibitor. A variety of analogs were synthesized to gain insight into the structure-activity relations. We developed a versatile synthetic process for aeruginosin 298-A as well as several attractive analogs, in which all stereocenters were controlled by catalytic asymmetric phase-transfer reaction promoted by two-center asymmetric catalysts and catalytic asymmetric epoxidation promoted by a lanthanide-BINOL complex. Furthermore, serine protease inhibitory activities of aeruginosin 298-A and its analogs were examined.
Copper(II) acetate promoted intramolecular diamination of unactivated olefins.
Zabawa, Thomas P; Kasi, Dhanalakshmi; Chemler, Sherry R
2005-08-17
A concise method for the synthesis of cyclic sulfamides and vicinal diamines is presented. This method is enabled by Cu(OAc)2 and demonstrates a new transformation for this metal. Both five- and six-membered vicinal diamine-containing heterocycles have been synthesized in good to excellent yields, and substrate-based asymmetric induction has been achieved. This is the first reported example of intramolecular diamination of olefins.
New stereoselective intramolecular
Alajarin; Vidal; Tovar; Ramirez De Arellano MC; Cossio; Arrieta; Lecea
2000-11-03
Efficient 1,4-asymmetric induction has been achieved in the highly stereocontrolled intramolecular [2 + 2] cycloadditions between ketenimines and imines, leading to 1,2-dihydroazeto[2, 1-b]quinazolines. The chiral methine carbon adjacent to the iminic nitrogen controls the exclusive formation of the cycloadducts with relative trans configuration at C2 and C8. The stepwise mechanistic model, based on theoretical calculations, fully supports the stereochemical outcome of these cycloadditions.
Catalysis and Multi-Component Reactions
NASA Astrophysics Data System (ADS)
Shibasaki, Masakatsu; Yus, Miguel; Bremner, Stacy; Comer, Eamon; Shore, Gjergji; Morin, Sylvie; Organ, Michael G.; van der Eycken, Erik; Merkul, Eugen; Dorsch, Dieter; Müller, Thomas J. J.; Ryabukhin, Sergey V.; Ostapchuk, Eugeniy N.; Plaskon, Andrey S.; Volochnyuk, Dmitriy M.; Shivanyuk, Alexander N.; Tolmachev, Andrey A.; Sheibani, Hassan; Babaie, Maryam; Behzadi, Soheila; Dabiri, Minoo; Bahramnejad, Mahboobeh; Bashiribod, Sahareh; Hekmatshoar, Rahim; Sadjadi, Sodeh; Khorasani, Mohammad; Polyakov, Anatoliy I.; Eryomina, Vera A.; Medvedeva, Lidiya A.; Tihonova, Nadezhda I.; Listratova, Anna V.; Voskressensky, Leonid G.; Merkul, Eugen; Dorsch, Dieter; Müller, Thomas J. J.; Sheibani, Hassan; Esfandiarpoor, Zeinab; Behzadi, Soheila; Titova, Julia A.; Fedorova, Olga V.; Ovchinnikova, Irina G.; Valova, Marina S.; Koryakova, Olga V.; Rusinov, Gennady L.; Charushin, Valery N.; Hekmatshoar, Rahim; Sadjadi, Sodeh
We have been studying the development of new asymmetric two-center catalysis using rare earth alkoxides and bifunctional sugar and related ligands. In The Fourth International Conference on Multi-Component Reactions and Related Chemistry (MCR 2009), new catalytic asymmetric reactions using catalysts 1 and 2 and catalytic asymmetric syntheses of ranirestat 3 and tamiflu 4 will be presented.
Direct catalytic asymmetric alpha-amination of aldehydes.
List, Benjamin
2002-05-22
The first direct catalytic asymmetric alpha-amination of aldehydes is described herein. alpha-Unbranched aldehydes react in this novel proline-catalyzed reaction with dialkyl azodicarboxylates to give alpha-amino aldehydes in excellent yields and enantioselectivities.
Asymmetric intramolecular α-cyclopropanation of aldehydes using a donor/acceptor carbene mimetic
Luo, Chaosheng; Wang, Zhen; Huang, Yong
2015-01-01
Enantioselective α-alkylation of carbonyl is considered as one of the most important processes for asymmetric synthesis. Common alkylation agents, that is, alkyl halides, are notorious substrates for both Lewis acids and organocatalysts. Recently, olefins emerged as a benign alkylating species via photo/radical mechanisms. However, examples of enantioselective alkylation of aldehydes/ketones are scarce and direct asymmetric dialkylation remains elusive. Here we report an intramolecular α-cyclopropanation reaction of olefinic aldehydes to form chiral cyclopropane aldehydes. We demonstrate that an α-iodo aldehyde can function as a donor/acceptor carbene equivalent, which engages in a formal [2+1] annulation with a tethered double bond. Privileged bicyclo[3.1.0]hexane-type scaffolds are prepared in good optical purity using a chiral amine. The synthetic utility of the products is demonstrated by versatile transformations of the bridgehead formyl functionality. We expect the concept of using α-iodo iminium as a donor/acceptor carbene surrogate will find wide applications in chemical reaction development. PMID:26644194
Iron(II)-catalyzed intramolecular aminohydroxylation of olefins with functionalized hydroxylamines.
Liu, Guan-Sai; Zhang, Yong-Qiang; Yuan, Yong-An; Xu, Hao
2013-03-06
A diastereoselective aminohydroxylation of olefins with a functionalized hydroxylamine is catalyzed by new iron(II) complexes. This efficient intramolecular process readily affords synthetically useful amino alcohols with excellent selectivity (dr up to > 20:1). Asymmetric catalysis with chiral iron(II) complexes and preliminary mechanistic studies reveal an iron nitrenoid is a possible intermediate that can undergo either aminohydroxylation or aziridination, and the selectivity can be controlled by careful selection of counteranion/ligand combinations.
Asymmetric total synthesis of (+)-fusarisetin A via the intramolecular Pauson-Khand reaction.
Huang, Jun; Fang, Lichao; Long, Rong; Shi, Li-Li; Shen, Hong-Juan; Li, Chuang-chuang; Yang, Zhen
2013-08-02
An asymmetic total synthesis of (+)-fusarisetin A has been achieved. The essential to our strategy was the application of the intramolecular Pauson-Khand reaction for the stereoselective construction of the trans-decalin subunit of (+)-fusarisetin A with a unique C16 quarternary chiral center. The developed chemistry offers an alternative to the IMDA reaction that has been used for fusarisetin A, and is applicable to analogue synthesis for biological evaluation.
Catalytic asymmetric nitro-Mannich reactions with a Yb/K heterobimetallic catalyst.
Nitabaru, Tatsuya; Kumagai, Naoya; Shibasaki, Masakatsu
2010-03-04
A catalytic asymmetric nitro-Mannich (aza-Henry) reaction with rare earth metal/alkali metal heterobimetallic catalysts is described. A Yb/K heterobimetallic catalyst assembled by an amide-based ligand promoted the asymmetric nitro-Mannich reaction to afford enantioenriched anti-b-nitroamines in up to 86% ee. Facile reduction of the nitro functionality allowed for efficient access to optically active 1,2-diamines.
Direct Catalytic Anti-Markovnikov Hydroetherification of Alkenols
Hamilton, David S.; Nicewicz, David A.
2012-01-01
A direct intramolecular anti-Markovnikov hydroetherification reaction of alkenols is described. By employing catalytic quantities of commercially-available 9-mesityl-10-methylacridinium perchlorate and 2-phenylmalononitrile as a redox-cycling source of a hydrogen atom, we report the anti-Markovnikov hydroetherification of alkenes with complete regioselectivity. In addition, we present results demonstrating that this novel catalytic system can be applied to the anti-Markovnikov hydrolactonization of alkenoic acids. PMID:23113557
Cell fate regulation governed by a repurposed bacterial histidine kinase
Childers, W. Seth; Xu, Qingping; Mann, Thomas H.; ...
2014-10-28
One of the simplest organisms to divide asymmetrically is the bacterium Caulobacter crescentus. The DivL pseudo-histidine kinase, positioned at one cell pole, regulates cell-fate by controlling the activation of the global transcription factor CtrA via an interaction with the response regulator (RR) DivK. DivL uniquely contains a tyrosine at the histidine phosphorylation site, and can achieve these regulatory functions in vivo without kinase activity. Determination of the DivL crystal structure and biochemical analysis of wild-type and site-specific DivL mutants revealed that the DivL PAS domains regulate binding specificity for DivK~P over DivK, which is modulated by an allosteric intramolecular interactionmore » between adjacent domains. We discovered that DivL's catalytic domains have been repurposed as a phosphospecific RR input sensor, thereby reversing the flow of information observed in conventional histidine kinase (HK)-RR systems and coupling a complex network of signaling proteins for cell-fate regulation.« less
Fustero, Santos; Lázaro, Rubén; Aiguabella, Nuria; Riera, Antoni; Simón-Fuentes, Antonio; Barrio, Pablo
2014-02-21
Asymmetric allylation of o-iodoarylsulfinylimines has been achieved in high diastereoselectivities. The thus-obtained o-iodoarylhomoallylic sulfinamides participate in a subsequent Sonogashira coupling followed by a diastereoselective intramolecular Pauson-Khand reaction. In this way, tricyclic amines showing a unique benzo-fused indenyl backbone were obtained. The methodology has been applied to the synthesis of amino steroid analogues.
Sureshkumar, Devarajulu; Hashimoto, Kazuki; Kumagai, Naoya; Shibasaki, Masakatsu
2013-11-15
A recyclable asymmetric metal-based catalyst is a rare entity among the vast collection of asymmetric catalysts developed so far. Recently we found that the combination of a self-assembling metal-based asymmetric catalyst and multiwalled carbon nanotubes (MWNTs) produced a highly active and recyclable catalyst in which the catalytically active metal complex was dispersed in the MWNT network. Herein we describe an improved preparation procedure and full details of a Nd/Na heterobimetallic complex confined in MWNTs. Facilitated self-assembly of the catalyst with MWNTs avoided the sacrificial use of excess chiral ligand for the formation of the heterobimetallic complex, improving the loading ratio of the catalyst components. Eighty-five percent of the catalyst components were incorporated onto MWNTs to produce the confined catalyst, which was a highly efficient and recyclable catalyst for the anti-selective asymmetric nitroaldol reaction. The requisite precautions for the catalyst preparation to elicit reproducible catalytic performance are summarized. Superior catalytic profiles over the prototype catalyst without MWNTs were revealed in the synthesis of optically active 1,2-nitroalkanols, which are key intermediates for the synthesis of therapeutics.
Suzuki, Yusuke; Seki, Tomoaki; Tanaka, Shinji; Kitamura, Masato
2015-08-05
Tsuji-Trost-type asymmetric allylation of carboxylic acids has been realized by using a cationic CpRu complex with an axially chiral picolinic acid-type ligand (Cl-Naph-PyCOOH: naph = naphthyl, py = pyridine). The carboxylic acid and allylic alcohol intramolecularly condense by the liberation of water without stoichiometric activation of either nucleophile or electrophile part, thereby attaining high atom- and step-economy, and low E factor. This success can be ascribed to the higher reactivity of allylic alcohols as compared with the allyl ester products in soft Ru/hard Brønstead acid combined catalysis, which can function under slightly acidic conditions unlike the traditional Pd-catalyzed system. Detailed analysis of the stereochemical outcome of the reaction using an enantiomerically enriched D-labeled substrate provides an intriguing view of enantioselection.
Asymmetric photoredox transition-metal catalysis activated by visible light.
Huo, Haohua; Shen, Xiaodong; Wang, Chuanyong; Zhang, Lilu; Röse, Philipp; Chen, Liang-An; Harms, Klaus; Marsch, Michael; Hilt, Gerhard; Meggers, Eric
2014-11-06
Asymmetric catalysis is seen as one of the most economical strategies to satisfy the growing demand for enantiomerically pure small molecules in the fine chemical and pharmaceutical industries. And visible light has been recognized as an environmentally friendly and sustainable form of energy for triggering chemical transformations and catalytic chemical processes. For these reasons, visible-light-driven catalytic asymmetric chemistry is a subject of enormous current interest. Photoredox catalysis provides the opportunity to generate highly reactive radical ion intermediates with often unusual or unconventional reactivities under surprisingly mild reaction conditions. In such systems, photoactivated sensitizers initiate a single electron transfer from (or to) a closed-shell organic molecule to produce radical cations or radical anions whose reactivities are then exploited for interesting or unusual chemical transformations. However, the high reactivity of photoexcited substrates, intermediate radical ions or radicals, and the low activation barriers for follow-up reactions provide significant hurdles for the development of efficient catalytic photochemical processes that work under stereochemical control and provide chiral molecules in an asymmetric fashion. Here we report a highly efficient asymmetric catalyst that uses visible light for the necessary molecular activation, thereby combining asymmetric catalysis and photocatalysis. We show that a chiral iridium complex can serve as a sensitizer for photoredox catalysis and at the same time provide very effective asymmetric induction for the enantioselective alkylation of 2-acyl imidazoles. This new asymmetric photoredox catalyst, in which the metal centre simultaneously serves as the exclusive source of chirality, the catalytically active Lewis acid centre, and the photoredox centre, offers new opportunities for the 'green' synthesis of non-racemic chiral molecules.
Asymmetric photoredox transition-metal catalysis activated by visible light
NASA Astrophysics Data System (ADS)
Huo, Haohua; Shen, Xiaodong; Wang, Chuanyong; Zhang, Lilu; Röse, Philipp; Chen, Liang-An; Harms, Klaus; Marsch, Michael; Hilt, Gerhard; Meggers, Eric
2014-11-01
Asymmetric catalysis is seen as one of the most economical strategies to satisfy the growing demand for enantiomerically pure small molecules in the fine chemical and pharmaceutical industries. And visible light has been recognized as an environmentally friendly and sustainable form of energy for triggering chemical transformations and catalytic chemical processes. For these reasons, visible-light-driven catalytic asymmetric chemistry is a subject of enormous current interest. Photoredox catalysis provides the opportunity to generate highly reactive radical ion intermediates with often unusual or unconventional reactivities under surprisingly mild reaction conditions. In such systems, photoactivated sensitizers initiate a single electron transfer from (or to) a closed-shell organic molecule to produce radical cations or radical anions whose reactivities are then exploited for interesting or unusual chemical transformations. However, the high reactivity of photoexcited substrates, intermediate radical ions or radicals, and the low activation barriers for follow-up reactions provide significant hurdles for the development of efficient catalytic photochemical processes that work under stereochemical control and provide chiral molecules in an asymmetric fashion. Here we report a highly efficient asymmetric catalyst that uses visible light for the necessary molecular activation, thereby combining asymmetric catalysis and photocatalysis. We show that a chiral iridium complex can serve as a sensitizer for photoredox catalysis and at the same time provide very effective asymmetric induction for the enantioselective alkylation of 2-acyl imidazoles. This new asymmetric photoredox catalyst, in which the metal centre simultaneously serves as the exclusive source of chirality, the catalytically active Lewis acid centre, and the photoredox centre, offers new opportunities for the `green' synthesis of non-racemic chiral molecules.
Papaleo, Elena; Renzetti, Giulia; Tiberti, Matteo
2012-01-01
Protein dynamics and the underlying networks of intramolecular interactions and communicating residues within the three-dimensional (3D) structure are known to influence protein function and stability, as well as to modulate conformational changes and allostery. Acylaminoacyl peptidase (AAP) subfamily of enzymes belongs to a unique class of serine proteases, the prolyl oligopeptidase (POP) family, which has not been thoroughly investigated yet. POPs have a characteristic multidomain three-dimensional architecture with the active site at the interface of the C-terminal catalytic domain and a β-propeller domain, whose N-terminal region acts as a bridge to the hydrolase domain. In the present contribution, protein dynamics signatures of a hyperthermophilic acylaminoacyl peptidase (AAP) of the prolyl oligopeptidase (POP) family, as well as of a deletion variant and alanine mutants (I12A, V13A, V16A, L19A, I20A) are reported. In particular, we aimed at identifying crucial residues for long range communications to the catalytic site or promoting the conformational changes to switch from closed to open ApAAP conformations. Our investigation shows that the N-terminal α1-helix mediates structural intramolecular communication to the catalytic site, concurring to the maintenance of a proper functional architecture of the catalytic triad. Main determinants of the effects induced by α1-helix are a subset of hydrophobic residues (V16, L19 and I20). Moreover, a subset of residues characterized by relevant interaction networks or coupled motions have been identified, which are likely to modulate the conformational properties at the interdomain interface. PMID:22558199
Bolm, Carsten; Xiao, Li; Kesselgruber, Martin
2003-01-07
Several novel planar chiral phosphinocyrhetrenyloxazolines have been synthesized, and their catalytic activities have been evaluated in a variety of asymmetric catalytic reactions. Preferable effects as compared to their ferrocenyl analogues have been observed in asymmetric allylic amination and asymmetric hydrosilylation, and up to 97% ee and 72% ee were reached, respectively. The Lewis basicity of the phosphorus on the ferrocene and the cyrhetrene, which contributes to their different behavior in catalysis, has been deduced by 31P NMR spectroscopy analysis, as indicated by 1J(77Se-31P) in the corresponding phosphine selenides.
Franco, Delphine; Wenger, Karine; Antonczak, Serge; Cabrol-Bass, Daniel; Duñach, Elisabet; Rocamora, Mercè; Gomez, Montserrat; Muller, Guillermo
2002-02-02
The intramolecular transfer of the allyl group of functionalized allyl aryl ethers to an aldehyde group in the presence of Ni0 complexes was studied from chemical, electrochemical and theoretical points of view. The chemical reaction involves the addition of Ni0 to the allyl ether followed by stoichiometric allylation. The electrochemical process is catalytic in nickel and involves the reduction of intermediate eta3-allylnickel(II) complexes.
Hoang, Gia L.; Yang, Zhao-Di; Smith, Sean M.; Pal, Rhitankar; Miska, Judy L.; Pérez, Damaris E.; Pelter, Libbie S. W.; Zeng, Xiao Cheng; Takacs, James M.
2015-01-01
The rhodium-catalyzed enantioselective desymmetrization of symmetric γ,δ–unsaturated amides via carbonyl-directed catalytic asymmetric hydroboration (directed CAHB) affords chiral secondary organoboronates with up to 98% ee. The chiral γ–borylated products undergo palladium-catalyzed Suzuki-Miyaura cross-coupling via the trifluoroborate salt with stereoretention. PMID:25642639
A One-Pot Tandem Strategy in Catalytic Asymmetric Vinylogous Aldol Reaction of Homoallylic Alcohols.
Hou, Xufeng; Jing, Zhenzhong; Bai, Xiangbin; Jiang, Zhiyong
2016-06-27
Reported is a rationally-designed one-pot sequential strategy that allows homoallylic alcohols to be employed in a catalytic, asymmetric, direct vinylogous aldol reaction with a series of activated acyclic ketones, including trifluoromethyl ketones, γ-ketoesters, and α-keto phosphonates, in high yields (up to 95%) with excellent regio- and enantio-selectivity (up to 99% ee). This modular combination, including Jones oxidation and asymmetric organocatalysis, has satisfactory compatibility and reliability even at a 20 mmol scale, albeit without intermediary purification.
Mengele, Alexander K; Kaufhold, Simon; Streb, Carsten; Rau, Sven
2016-04-21
A new dyad consisting of a Ru(II) chromophore, a tetrapyridophenazine bridging ligand and a Rh(Cp*)Cl catalytic center, [Ru(tbbpy)2(tpphz)Rh(Cp*)Cl]Cl(PF6)2, acts as durable photocatalyst for hydrogen production from water. Catalytic activity is observed for more than 650 hours. Electrochemical investigations reveal that up to two electrons can be transferred to the catalytic center by a thermodynamically favorable intramolecular process, which has so far not been reported for similar tpphz based supramolecular photocatalysts. Additionally, mercury poisoning tests indicate that the new dyad works as a homogeneous photocatalyst.
Handa, Shinya; Gnanadesikan, Vijay; Matsunaga, Shigeki; Shibasaki, Masakatsu
2010-04-07
The full details of a catalytic asymmetric syn-selective nitro-Mannich reaction promoted by heterobimetallic Cu/Sm/dinucleating Schiff base complexes are described, demonstrating the effectiveness of the heterobimetallic transition metal/rare earth metal bifunctional catalysis. The first-generation system prepared from Cu(OAc)(2)/Sm(O-iPr)(3)/Schiff base 1a = 1:1:1 with an achiral phenol additive was partially successful for achieving the syn-selective catalytic asymmetric nitro-Mannich reaction. The substrate scope and limitations of the first-generation system remained problematic. After mechanistic studies on the catalyst prepared from Sm(O-iPr)(3), we reoptimized the catalyst preparation method, and a catalyst derived from Sm(5)O(O-iPr)(13) showed broader substrate generality as well as higher reactivity and stereoselectivity compared to Sm(O-iPr)(3). The optimal system with Sm(5)O(O-iPr)(13) was applicable to various aromatic, heteroaromatic, and isomerizable aliphatic N-Boc imines, giving products in 66-99% ee and syn/anti = >20:1-13:1. Catalytic asymmetric synthesis of nemonapride is also demonstrated using the catalyst derived from Sm(5)O(O-iPr)(13).
Load-dependent ADP binding to myosins V and VI: Implications for subunit coordination and function
Oguchi, Yusuke; Mikhailenko, Sergey V.; Ohki, Takashi; Olivares, Adrian O.; De La Cruz, Enrique M.; Ishiwata, Shin'ichi
2008-01-01
Dimeric myosins V and VI travel long distances in opposite directions along actin filaments in cells, taking multiple steps in a “hand-over-hand” fashion. The catalytic cycles of both myosins are limited by ADP dissociation, which is considered a key step in the walking mechanism of these motors. Here, we demonstrate that external loads applied to individual actomyosin V or VI bonds asymmetrically affect ADP affinity, such that ADP binds weaker under loads assisting motility. Model-based analysis reveals that forward and backward loads modulate the kinetics of ADP binding to both myosins, although the effect is less pronounced for myosin VI. ADP dissociation is modestly accelerated by forward loads and inhibited by backward loads. Loads applied in either direction slow ADP binding to myosin V but accelerate binding to myosin VI. We calculate that the intramolecular load generated during processive stepping is ≈2 pN for both myosin V and myosin VI. The distinct load dependence of ADP binding allows these motors to perform different cellular functions. PMID:18509050
Chow, Chun P; Shea, Kenneth J
2005-03-23
The chiral ruthenium salen complex, 13b, functions as an efficient catalyst for the sequential oxidation and asymmetric Diels-Alder cycloaddition of hydroxamic acids and N-hydroxy formate esters. This result provides evidence for the formation of a ruthenium-nitroso formate (acyl nitroso) intermediate. The Diels-Alder precursors are prepared from simple building blocks, and the cycloadducts, bridged oxazinolactams, can serve as useful intermediates in organic synthesis.
2016-01-01
The development of a practical and scalable process for the asymmetric synthesis of sitagliptin is reported. Density functional theory calculations reveal that two noncovalent interactions are responsible for the high diastereoselection. The first is an intramolecular hydrogen bond between the enamide NH and the boryl mesylate S=O, consistent with MsOH being crucial for high selectivity. The second is a novel C–H···F interaction between the aryl C5-fluoride and the methyl of the mesylate ligand. PMID:25799267
Tunable chiral metal organic frameworks toward visible light–driven asymmetric catalysis
Zhang, Yin; Guo, Jun; Shi, Lin; Zhu, Yanfei; Hou, Ke; Zheng, Yonglong; Tang, Zhiyong
2017-01-01
A simple and effective strategy is developed to realize visible light–driven heterogeneous asymmetric catalysis. A chiral organic molecule, which only has very weak catalytic activity in asymmetric α-alkylation of aldehydes under visible light, is utilized as the ligand to coordinate with different types of metal ions, including Zn2+, Zr4+, and Ti4+, for construction of crystalline metal organic frameworks (MOFs). Impressively, when used as heterogeneous catalysts, all of the synthesized MOFs exhibit markedly enhanced activity. Furthermore, the asymmetric catalytic performance of these MOFs could be easily altered by selecting different metal ions, owing to the tunable electron transfer property between metal ions and chiral ligands. This work will provide a new approach for fabrication of heterogeneous catalysts and trigger more enthusiasm to conduct the asymmetric catalysis driven by visible light. PMID:28835929
Mihara, Hisashi; Xu, Yingjie; Shepherd, Nicholas E; Matsunaga, Shigeki; Shibasaki, Masakatsu
2009-06-24
Development of a new heterobimetallic Ga(O-iPr)(3)/Yb(OTf)(3)/Schiff base 2d complex for catalytic asymmetric alpha-additions of isocyanides to aldehydes is described. Schiff base 2d derived from o-vanillin was suitable to utilize cationic rare earth metal triflates with good Lewis acidity in bimetallic Schiff base catalysis. The Ga(O-iPr)(3)/Yb(OTf)(3)/Schiff base 2d complex promoted asymmetric alpha-additions of alpha-isocyanoacetamides to aryl, heteroaryl, alkenyl, and alkyl aldehydes in good to excellent enantioselectivity (88-98% ee).
Ohshima, Takashi; Gnanadesikan, Vijay; Shibuguchi, Tomoyuki; Fukuta, Yuhei; Nemoto, Tetsuhiro; Shibasaki, Masakatsu
2003-09-17
We developed a versatile synthetic process for aeruginosin 298-A as well as several attractive analogues, in which all stereocenters were controlled by a catalytic asymmetric phase-transfer reaction and epoxidation. Furthermore, drastic counteranion effects in phase-transfer catalysis were observed for the first time, making it possible to three-dimensionally fine-tune the catalyst (ketal part, aromatic part, and counteranion).
Meng, Qingxi; Li, Ming
2012-08-01
Density functional theory (DFT) was used to investigate the Mo-catalyzed intramolecular Pauson-Khand reaction of 3-allyloxy-1-propynylphosphonates. All intermediates and transition states were optimized completely at the B3LYP/6-31 G(d,p) level [LANL2DZ(f) for Mo]. In the Mo-catalyzed intramolecular Pauson-Khand reaction, the C–C oxidative cyclization reaction was the chirality-determining step, and the reductive elimination reaction was the rate-determining step. The carbonyl insertion reaction into the Mo–C(sp(3)) bondwas easier than into the Mo–C=C bond. And the dominant product predicted theoretically was of (S)-chirality, which agreed with experimental data. This reaction was solventd ependent, and toluene was the best among the three solvents toluene, CH3CN, and THF.
Orgué, Sílvia; León, Thierry; Riera, Antoni; Verdaguer, Xavier
2015-01-16
The asymmetric intermolecular and catalytic Pauson-Khand reaction has remained an elusive goal since Khand and Pauson discovered this transformation. Using a novel family of P-stereogenic phosphanes, we developed the first catalytic system with useful levels of enantioselection for the reaction of norbornadiene and trimethylsilylacetylene. The results demonstrate that Co-bisphosphane systems are sufficiently reactive and that they lead to high selectivity in the intermolecular process.
Schlüter, Johannes; Blazejak, Max; Boeck, Florian; Hintermann, Lukas
2015-03-23
The asymmetric catalytic addition of alcohols (phenols) to non-activated alkenes has been realized through the cycloisomerization of 2-allylphenols to 2-methyl-2,3-dihydrobenzofurans (2-methylcoumarans). The reaction was catalyzed by a chiral titanium-carboxylate complex at uncommonly high temperatures for asymmetric catalytic reactions. The catalyst was generated by mixing titanium isopropoxide, the chiral ligand (aS)-1-(2-methoxy-1-naphthyl)-2-naphthoic acid or its derivatives, and a co-catalytic amount of water in a ratio of 1:1:1 (5 mol % each). This homogeneous thermal catalysis (HOT-CAT) gave various (S)-2-methylcoumarans with yields of up to 90 % and in up to 85 % ee at 240 °C, and in 87 % ee at 220 °C. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kretzschmar, Martin; Hofmann, Fabian; Moock, Daniel; Schneider, Christoph
2018-04-16
Aza-Diels-Alder reactions (ADARs) are powerful processes that furnish N-heterocycles in a straightforward fashion. Intramolecular variants offer the additional possibility of generating bi- and polycyclic systems with high stereoselectivity. We report herein a novel Brønsted acid catalyzed process in which ortho-quinone methide imines tethered to the dienophile via the N substituent react in an intramolecular ADAR to form complex quinolizidines and oxazinoquinolines in a one-step process. The reactions proceed under very mild conditions, with very good yields and good to very good diastereo- and enantioselectivities. Furthermore, the process was extended to a domino reaction that efficiently combines substrate synthesis, ortho-quinone methide imine formation, and ADAR. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Turegun, Bengi; Baker, Richard W; Leschziner, Andres E; Dominguez, Roberto
2018-01-01
The catalytic subunits of SWI/SNF-family and INO80-family chromatin remodelers bind actin and actin-related proteins (Arps) through an N-terminal helicase/SANT-associated (HSA) domain. Between the HSA and ATPase domains lies a conserved post-HSA (pHSA) domain. The HSA domain of Sth1, the catalytic subunit of the yeast SWI/SNF-family remodeler RSC, recruits the Rtt102-Arp7/9 heterotrimer. Rtt102-Arp7/9 regulates RSC function, but the mechanism is unclear. We show that the pHSA domain interacts directly with another conserved region of the catalytic subunit, protrusion-1. Rtt102-Arp7/9 binding to the HSA domain weakens this interaction and promotes the formation of stable, monodisperse complexes with DNA and nucleosomes. A crystal structure of Rtt102-Arp7/9 shows that ATP binds to Arp7 but not Arp9. However, Arp7 does not hydrolyze ATP. Together, the results suggest that Rtt102 and ATP stabilize a conformation of Arp7/9 that potentiates binding to the HSA domain, which releases intramolecular interactions within Sth1 and controls DNA and nucleosome binding.
Adenylyl cyclase G is activated by an intramolecular osmosensor.
Saran, Shweta; Schaap, Pauline
2004-03-01
Adenylyl cyclase G (ACG) is activated by high osmolality and mediates inhibition of spore germination by this stress factor. The catalytic domains of all eukaryote cyclases are active as dimers and dimerization often mediates activation. To investigate the role of dimerization in ACG activation, we coexpressed ACG with an ACG construct that lacked the catalytic domain (ACGDeltacat) and was driven by a UV-inducible promoter. After UV induction of ACGDeltacat, cAMP production by ACG was strongly inhibited, but osmostimulation was not reduced. Size fractionation of native ACG showed that dimers were formed between ACG molecules and between ACG and ACGDeltacat. However, high osmolality did not alter the dimer/monomer ratio. This indicates that ACG activity requires dimerization via a region outside the catalytic domain but that dimer formation does not mediate activation by high osmolality. To establish whether ACG required auxiliary sensors for osmostimulation, we expressed ACG cDNA in a yeast adenylyl cyclase null mutant. In yeast, cAMP production by ACG was similarly activated by high osmolality as in Dictyostelium. This strongly suggests that the ACG osmosensor is intramolecular, which would define ACG as the first characterized primary osmosensor in eukaryotes.
Asymmetric Formal Synthesis of Azadirachtin.
Mori, Naoki; Kitahara, Takeshi; Mori, Kenji; Watanabe, Hidenori
2015-12-01
An asymmetric formal synthesis of azadirachtin, a potent insect antifeedant, was accomplished in 30 steps to Ley's synthetic intermediate (longest linear sequence). The synthesis features: 1) rapid access to the optically active right-hand segment starting from the known 5-hydroxymethyl-2-cyclopentenone scaffold; 2) construction of the B and E rings by a key intramolecular tandem radical cyclization; 3) formation of the hemiacetal moiety in the C ring through the α-oxidation of the six-membered lactone followed by methanolysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Diaminophosphine oxide ligand enabled asymmetric nickel-catalyzed hydrocarbamoylations of alkenes.
Donets, Pavel A; Cramer, Nicolai
2013-08-14
Chiral trivalent phosphorus species are the dominant class of ligands and the key controlling element in asymmetric homogeneous transition-metal catalysis. Here, novel chiral diaminophosphine oxide ligands are described. The arising catalyst system with nickel(0) and trimethylaluminum efficiently activates formamide C-H bonds under mild conditions providing pyrrolidones via intramolecular hydrocarbamoylation in a highly enantioselective manner with as little as 0.25% mol catalyst loading. Mechanistically, the secondary phosphine oxides behave as bridging ligands for the nickel center and the Lewis acidic organoaluminum center to give a heterobimetallic catalyst with superior reactivity.
Catalytic enantioselective addition of Grignard reagents to aromatic silyl ketimines
NASA Astrophysics Data System (ADS)
Rong, Jiawei; Collados, Juan F.; Ortiz, Pablo; Jumde, Ravindra P.; Otten, Edwin; Harutyunyan, Syuzanna R.
2016-12-01
α-Chiral amines are of significant importance in medicinal chemistry, asymmetric synthesis and material science, but methods for their efficient synthesis are scarce. In particular, the synthesis of α-chiral amines with the challenging tetrasubstituted carbon stereocentre is a long-standing problem and catalytic asymmetric additions of organometallic reagents to ketimines that would give direct access to these molecules are underdeveloped. Here we report a highly enantioselective catalytic synthesis of N-sulfonyl protected α-chiral silyl amines via the addition of inexpensive, easy to handle and readily available Grignard reagents to silyl ketimines. The key to this success was our ability to suppress any unselective background addition reactions and side reduction pathway, through the identification of an inexpensive, chiral Cu-complex as the catalytically active structure.
Becker, Holger M.; Klier, Michael; Schüler, Christina; McKenna, Robert; Deitmer, Joachim W.
2011-01-01
Carbonic anhydrases (CAs) catalyze the reversible hydration of CO2 to HCO3− and H+. The rate-limiting step in this reaction is the shuttle of protons between the catalytic center of the enzyme and the bulk solution. In carbonic anhydrase II (CAII), the fastest and most wide-spread isoform, this H+ shuttle is facilitated by the side chain of His64, whereas CA isoforms such as carbonic anhydrase III (CAIII), which lack such a shuttle, have only low catalytic activity in vitro. By using heterologous protein expression in Xenopus oocytes, we tested the role of this intramolecular H+ shuttle on CA activity in an intact cell. The data revealed that CAIII, shown in vitro to have ∼1,000-fold reduced activity as compared with CAII, displays significant catalytic activity in the intact cell. Furthermore, we tested the hypothesis that the H+ shuttle in CAII itself can facilitate transport activity of the monocarboxylate transporters 1 and 4 (MCT1/4) independent of catalytic activity. Our results show that His64 is essential for the enhancement of lactate transport via MCT1/4, because a mutation of this residue to alanine (CAII-H64A) abolishes the CAII-induced increase in MCT1/4 activity. However, injection of 4-methylimidazole, which acts as an exogenous H+ donor/acceptor, can restore the ability of CAII-H64A to enhance transport activity of MCT1/4. These findings support the hypothesis that the H+ shuttle in CAII not only facilitates CAII catalytic activity but also can enhance activity of acid-/base-transporting proteins such as MCT1/4 in a direct, noncatalytic manner, possibly by acting as an “H+-collecting antenna.” PMID:21282642
Zhang, Xuejun; Zhang, Yanshi; Huang, Jian; Hsung, Richard P; Kurtz, Kimberly C M; Oppenheimer, Jossian; Petersen, Matthew E; Sagamanova, Irina K; Shen, Lichun; Tracey, Michael R
2006-05-26
A general and efficient method for the coupling of a wide range of amides with alkynyl bromides is described here. This novel amidation reaction involves a catalytic protocol using copper(II) sulfate-pentahydrate and 1,10-phenanthroline to direct the sp-C-N bond formation, leading to a structurally diverse array of ynamides including macrocyclic ynamides via an intramolecular amidation. Given the surging interest in ynamide chemistry, this atom economical synthesis of ynamides should invoke further attention from the synthetic organic community.
Tabler, M; Homann, M; Tzortzakaki, S; Sczakiel, G
1994-01-01
Trans-cleaving hammerhead ribozymes with long target-specific antisense sequences flanking the catalytic domain share some features with conventional antisense RNA and are therefore termed 'catalytic antisense RNAs'. Sequences 5' to the catalytic domain form helix I and sequences 3' to it form helix III when complexed with the target RNA. A catalytic antisense RNA of more than 400 nucleotides, and specific for the human immunodeficiency virus type 1 (HIV-1), was systematically truncated within the arm that constituted originally a helix I of 128 base pairs. The resulting ribozymes formed helices I of 13, 8, 5, 3, 2, 1 and 0 nucleotides, respectively, and a helix III of about 280 nucleotides. When their in vitro cleavage activity was compared with the original catalytic antisense RNA, it was found that a helix I of as little as three nucleotides was sufficient for full endonucleolytic activity. The catalytically active constructs inhibited HIV-1 replication about four-fold more effectively than the inactive ones when tested in human cells. A conventional hammerhead ribozyme having helices of just 8 nucleotides on either side failed to cleave the target RNA in vitro when tested under the conditions for catalytic antisense RNA. Cleavage activity could only be detected after heat-treatment of the ribozyme substrate mixture which indicates that hammerhead ribozymes with short arms do not associate as efficiently to the target RNA as catalytic antisense RNA. The requirement of just a three-nucleotide helix I allows simple PCR-based generation strategies for asymmetric hammerhead ribozymes. Advantages of an asymmetric design will be discussed. Images PMID:7937118
Direct catalytic asymmetric aldol-Tishchenko reaction.
Gnanadesikan, Vijay; Horiuchi, Yoshihiro; Ohshima, Takashi; Shibasaki, Masakatsu
2004-06-30
A direct catalytic asymmetric aldol reaction of propionate equivalent was achieved via the aldol-Tishchenko reaction. Coupling an irreversible Tishchenko reaction to a reversible aldol reaction overcame the retro-aldol reaction problem and thereby afforded the products in high enantio and diastereoselectivity using 10 mol % of the asymmetric catalyst. A variety of ketones and aldehydes, including propyl and butyl ketones, were coupled efficiently, yielding the corresponding aldol-Tishchenko products in up to 96% yield and 95% ee. Diastereoselectivity was generally below the detection limit of 1H NMR (>98:2). Preliminary studies performed to clarify the mechanism revealed that the aldol products were racemic with no diastereoselectivity. On the other hand, the Tishchenko products were obtained in a highly enantiocontrolled manner.
Tan, Yuqi; Yuan, Wei; Gong, Lei; Meggers, Eric
2015-10-26
A sustainable C-C bond formation is merged with the catalytic asymmetric generation of one or two stereocenters. The introduced catalytic asymmetric cross-coupling of two C(sp3)-H groups with molecular oxygen as the oxidant profits from the oxidative robustness of a chiral-at-metal rhodium(III) catalyst and exploits an autoxidation mechanism or visible-light photosensitized oxidation. In the latter case, the catalyst serves a dual function, namely as a chiral Lewis acid for catalyzing enantioselective enolate chemistry and at the same time as a visible-light-driven photoredox catalyst. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chiral-catalyst-based convergent synthesis of HIV protease inhibitor GRL-06579A.
Mihara, Hisashi; Sohtome, Yoshihiro; Matsunaga, Shigeki; Shibasaki, Masakatsu
2008-02-01
Catalytic asymmetric synthesis of GRL-06579A (1), an HIV-1 protease inhibitor effective against multi-protease-inhibitor-resistant viruses, is described. A convergent strategy that utilizes heterobimetallic multifunctional catalysts developed in our group is a key feature of the synthesis. The chirality of the bicyclic tetrahydrofuran unit of 1 was introduced through Al-Li-bis(binaphthoxide) (ALB) catalyst-controlled Michael addition of dimethyl malonate to racemic 4-O-protected cyclopentenone. ALB afforded not only the trans adduct with up to 96% ee from a matched substrate through kinetic resolution, but also the cis adduct with 99% ee through a catalyst-controlled Michael addition to a mismatched substrate. The Michael addition to produce the unusual cis adduct is described in detail. The framework of the bicyclic tetrahydrofuran was constructed by an intramolecular oxy-Michael reaction. The amino alcohol unit was constructed by an La-Li3-tris(binaphthoxide) (LLB)-catalyzed diastereoselective nitroaldol reaction of N-Boc aldehyde (Boc = tert-butoxycarbonyl) derived from L-phenylalanine. LLB promoted the nitroaldol reaction without racemization of the chiral aldehyde to give the nitroaldol adduct in 85% yield and with 93:7 diastereoselectivity and over 99% ee.
Selvakumar, Karuthapandi; Shah, Poonam; Singh, Harkesh B; Butcher, Ray J
2011-11-04
The synthesis of some ebselen analogues and diaryl diselenides, which have amino acid functions as an intramolecularly coordinating group (Se···O) has been achieved by the DCC coupling procedure. The reaction of 2,2'-diselanediylbis(5-tert-butylisophthalic acid) or the activated ester tetrakis(2,5-dioxopyrrolidin-1-yl) 2,2'-diselanediylbis(5-tert-butylisophthalate) with different C-protected amino acids (Gly, L-Phe, L-Ala, and L-Trp) afforded the corresponding ebselen analogues. The used precursor diselenides have been found to undergo facile intramolecular cyclization during the amide bond formation reaction. In contrast, the DCC coupling of 2,2'-diselanediyldibenzoic acid with C-protected amino acids (Gly, L/D-Ala and L-Phe) affords the corresponding amide derivatives and not the ebselen analogues. Some of the representative compounds have been structurally characterized by single-crystal X-ray crystallography. The glutathione peroxidase (GPx)-like activities of the ebselen analogues and the diaryl diselenides have been evaluated by using the coupled reductase assay method. Intramolecularly stabilized ebselen analogues show slightly higher maximal velocity (V(max)) than ebselen. However, they do not show any GPx-like activity at low GSH concentrations at which ebselen and related diselenides are active. This could be attributed to the peroxide-mediated intramolecular cyclization of the corresponding selenenyl sulfide and diaryl diselenide intermediates generated during the catalytic cycle. Interestingly, the diaryl diselenides with alanine (L,L or D,D) amide moieties showed excellent catalytic efficiency (k(cat)/K(M)) with low K(M) values in comparison to the other compounds. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Catalytic Routes for the Conversion of Biomass Derivatives to Hydrocarbons and/or Platform Chemicals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silks, III, Louis A.
Unprotected carbohydrates were reacted in amine-catalyzed cascade reactions with various methyl ketones to give a direct access to C-glycosides by an operationally simple protocol. As the reaction mechanism,an aldol condensation followed by an intramolecular conjugate addition is assumed.
Magnetically Retrievable Catalysts for Asymmetric Synthesis
Surface modification of magnetic nanoparticles with chiral scaffolds for asymmetric catalytic applications is an elegant way of providing a special pseudo homogenous phase which could be separated using an external magnet. In this review, we summarize the use of magnetic nanopart...
The Catalytic Enantioselective Total Synthesis of (+)-Liphagal**
Day, Joshua J.; McFadden, Ryan M.; Virgil, Scott C.; Kolding, Helene; Alleva, Jennifer L.; Stoltz, Brian M.
2012-01-01
Ring a ding: The first catalytic enantioselective total synthesis of the meroterpenoid natural product (+)-liphagal is disclosed. The approach showcases a variety of technology including enantioselective enolate alkylation, a photochemical alkyne-alkene [2+2] reaction, microwave-assisted metal catalysis, and an intramolecular aryne capture cyclization reaction. Pivotal to the successful completion of the synthesis was a sequence involving ring expansion from a [6-5-4] tricycle to a [6-7] bicyclic core followed by stereoselective hydrogenation of a sterically occluded tri-substituted olefin to establish the trans homodecalin system found in the natural product. PMID:21671325
Sun, Hao; Han, Jianlin; Kattamuri, Padmanabha V.; Pan, Yi; Li, Guigen
2013-01-01
1.0 % Mol of K3PO4·3H2O was found to catalyze aminohalogenation reaction of nitrostyrenes with N,N-dibromo-tert-butylcarbamate (t-Boc-NBr2) in dichloroethane system. Good to excellent yields and complete regioselectivity have been achieved by taking advantage of the GAP work-up without using traditional purification techniques such as column chromatography and recrystallization. New mechanism was proposed involving radical and ionic catalytic cycles and an intramolecular migration. PMID:23311641
Xu, Zheng; Xu, Li-Wen
2015-10-01
Recently, academic chemists have renewed their interest in the development of 1,1'-binaphthalene-2,2'-diol (BINOL)-derived chiral ligands. Six years ago, a working hypothesis, that the chirality matching of hybrid chirality on a ligand could probably lead to high levels of stereoselective induction, prompted us to use the axial chirality of BINOL derivatives to generate new stereogenic centers within the same molecule with high stereoselectivity, obtaining as a result sterically favorable ligands for applications in asymmetric catalysis. This Personal Account describes our laboratory's efforts toward the development of a novel class of BINOL-derived atropisomers bearing both axial and sp(3) central chirality, the so-called Ar-BINMOLs, for asymmetric synthesis. Furthermore, on the basis of the successful application of Ar-BINMOLs and their derivatives in asymmetric catalysis, the search for highly efficient and enantioselective processes also compelled us to give special attention to the BINOL-derived multifunctional ligands with multiple stereogenic centers for use in catalytic asymmetric reactions. Copyright © 2015 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Exciton Correlations in Intramolecular Singlet Fission
Sanders, Samuel N.; Kumarasamy, Elango; Pun, Andrew B.; ...
2016-05-16
We have synthesized a series of asymmetric pentacene-tetracene heterodimers with a variable-length conjugated bridge that undergo fast and efficient intramolecular singlet fission (iSF). These compounds have distinct singlet and triplet energies, which allow us to study the spatial dynamics of excitons during the iSF process, including the significant role of exciton correlations in promoting triplet pair generation and recombination. We demonstrate that the primary photoexcitations in conjugated dimers are delocalized singlets that enable fast and efficient iSF. However, in these asymmetric dimers, the singlet becomes more localized on the lower energy unit as the length of the bridge is increased,more » slowing down iSF relative to analogous symmetric dimers. We resolve the recombination kinetics of the inequivalent triplets produced via iSF, and find that they primarily decay via concerted processes. By identifying different decay channels, including delayed fluorescence via triplet-triplet annihilation, we can separate transient species corresponding to both correlated triplet pairs and uncorrelated triplets. Recombination of the triplet pair proceeds rapidly despite our experimental and theoretical demonstration that individual triplets are highly localized and unable to be transported across the conjugated linker. In this class of compounds, the rate of formation and yield of uncorrelated triplets increases with bridge length. Overall, these constrained, asymmetric systems provide a unique platform to isolate and study transient species essential for singlet fission, which are otherwise difficult to observe in symmetric dimers or condensed phases.« less
Asymmetric Ion-Pairing Catalysis
Brak, Katrien
2014-01-01
Charged intermediates and reagents are ubiquitous in organic transformations. The interaction of these ionic species with chiral neutral, anionic, or cationic small molecules has emerged as a powerful strategy for catalytic, enantioselective synthesis. This review describes developments in the burgeoning field of asymmetric ion-pairing catalysis with an emphasis on the insights that have been gleaned into the structural and mechanistic features that contribute to high asymmetric induction. PMID:23192886
Horiuchi, Yoshihiro; Gnanadesikan, Vijay; Ohshima, Takashi; Masu, Hyuma; Katagiri, Kosuke; Sei, Yoshihisa; Yamaguchi, Kentaro; Shibasaki, Masakatsu
2005-09-05
The development of a direct catalytic asymmetric aldol-Tishchenko reaction and the nature of its catalyst are described. An aldol-Tishchenko reaction of various propiophenone derivatives with aromatic aldehydes was promoted by [LaLi3(binol)3] (LLB), and reactivity and enantioselectivity were dramatically enhanced by the addition of lithium trifluoromethanesulfonate (LiOTf). First, we observed a dynamic structural change of LLB by the addition of LiOTf using 13C NMR spectroscopy, electronspray ionization mass spectrometry (ESI-MS), and cold-spray ionization mass spectrometry (CSI-MS). X-ray crystallography revealed that the structure of the newly generated self-assembled complex was a binuclear [La2Li4(binaphthoxide)5] complex 6. A reverse structural change of complex 6 to LLB by the addition of one equivalent of Li2(binol) was also confirmed by ESI-MS and experimental results. The drastic concentration effects on the direct catalytic asymmetric aldol-Tishchenko reaction suggested that the addition of LiOTf to LLB generated an active oligomeric catalyst species.
Chen, Wei; Tay, Jia-Hui; Ying, Jun; Yu, Xiao-Qi; Pu, Lin
2013-03-15
The 1,1'-bi-2-naphthol-ZnEt2-Ti(O(i)Pr)4-Cy2NH system is found to catalyze the 1,3-enyne addition to aliphatic aldehydes as well as other aldehydes at room temperature with 75-96% yield and 82-97% ee. This system is also broadly applicable for the highly enantioselective reaction of other alkyl-, aryl-, and silylalkynes with structurally diverse aldehydes. The propargylic alcohols prepared from the catalytic asymmetric enyne addition to aliphatic aldehydes are used to prepare a series of optically active trienynes. In the presence of a catalytic amount of [RhCl(CO)2]2 and 1 atm of CO, the optically active trienynes undergo highly stereoselective domino Pauson-Khand/[4 + 2] cycloaddition to generate optically active multicyclic products. The Rh(I) catalyst is also found to catalyze the coupling of a diyne with CO followed by [4 + 2] cycloaddition to generate an optically active multicyclic product. These transformations are potentially useful for the asymmetric synthesis of polyquinanes containing a quaternary chiral carbon center.
NASA Astrophysics Data System (ADS)
Smith, Eric Ryan; Farrow, Darcie A.; Jonas, David M.
2005-07-01
Four-wave-mixing nonlinear-response functions are given for intermolecular and intramolecular vibrations of a perpendicular dimer and intramolecular vibrations of a square-symmetric molecule containing a doubly degenerate state. A two-dimensional particle-in-a-box model is used to approximate the electronic wave functions and obtain harmonic potentials for nuclear motion. Vibronic interactions due to symmetry-lowering distortions along Jahn-Teller active normal modes are discussed. Electronic dephasing due to nuclear motion along both symmetric and asymmetric normal modes is included in these response functions, but population transfer between states is not. As an illustration, these response functions are used to predict the pump-probe polarization anisotropy in the limit of impulsive excitation.
CoBr2-TMTU-zinc catalysed-Pauson-Khand reaction.
Wang, Yuefan; Xu, Lingmin; Yu, Ruocheng; Chen, Jiahua; Yang, Zhen
2012-08-25
A cobalt-TMTU complex, derived from the in situ reduction of CoBr(2) with Zn in the presence of TMTU, can catalyze Pauson-Khand reaction at a balloon pressure of CO, which enables the synthesis of structurally diverse cyclopentenones. This catalytic system works efficiently for both intermolecular and intramolecular PK reactions.
Vila, Carlos; Rostoll-Berenguer, Jaume; Sánchez-García, Rubén; Blay, Gonzalo; Fernández, Isabel; Muñoz, M Carmen; Pedro, José R
2018-06-07
An asymmetric catalytic reaction of hydroxyindoles with nitroalkenes leading to the Friedel-Crafts alkylation in the carbocyclic ring of indole is presented. The method is based on the activating/directing effects of the hydroxy group situated in the carbocyclic ring of the indole providing nitroalkylated indoles functionalizated at the C-4, C-5, and C-7 positions with high yield, regio-, and enantioselectivity. The optically enriched nitroalkanes were transformed efficiently in optically enriched 2-amino-1,1-diarylalkanes bearing a carbocyclic ring substituted indole.
Sone, Toshihiko; Yamaguchi, Akitake; Matsunaga, Shigeki; Shibasaki, Masakatsu
2012-02-07
Catalytic asymmetric Corey-Chaykovsky epoxidation of various ketones with dimethyloxosulfonium methylide using a heterobimetallic La-Li(3)-BINOL complex (LLB) is described. The reaction proceeded smoothly at room temperature in the presence of achiral phosphine oxide additives, and 2,2-disubstituted terminal epoxides were obtained in high enantioselectivity (97%-91% ee) and yield ( > 99%-88%) from a broad range of methyl ketones with 1-5 mol% catalyst loading. Enantioselectivity was strongly dependent on the steric hindrance, and other ketones, such as ethyl ketones and propyl ketones resulted in slightly lower enantioselectivity (88%-67% ee).
Catalytic, Asymmetric Halofunctionalization of Alkenes—A Critical Perspective
Denmark, Scott E.; Kuester, William E.; Burk, Matthew T.
2012-01-01
Despite the fact that halogenation of alkenes has been known for centuries, enantioselective variants of this reaction have only recently been developed. In the past three years, catalytic enantioselective versions of halofunctionalizations with the four common halogens have appeared and although important breakthroughs, they represent just the very beginnings of a nascent field. This Minireview provides a critical analysis of the challenges that accompany the development of general and highly enantioselective halofunctionalization reactions. Moreover, the focus herein, diverges from previous reviews of the field by identifying the various modes of catalysis and the different strategies implemented for asymmetric induction. PMID:23011853
Scaleable catalytic asymmetric Strecker syntheses of unnatural alpha-amino acids.
Zuend, Stephan J; Coughlin, Matthew P; Lalonde, Mathieu P; Jacobsen, Eric N
2009-10-15
Alpha-amino acids are the building blocks of proteins and are widely used as components of medicinally active molecules and chiral catalysts. Efficient chemo-enzymatic methods for the synthesis of enantioenriched alpha-amino acids have been developed, but it is still a challenge to obtain non-natural amino acids. Alkene hydrogenation is broadly useful for the enantioselective catalytic synthesis of many classes of amino acids, but it is not possible to obtain alpha-amino acids bearing aryl or quaternary alkyl alpha-substituents using this method. The Strecker synthesis-the reaction of an imine or imine equivalent with hydrogen cyanide, followed by nitrile hydrolysis-is an especially versatile chemical method for the synthesis of racemic alpha-amino acids. Asymmetric Strecker syntheses using stoichiometric amounts of a chiral reagent have been applied successfully on gram-to-kilogram scales, yielding enantiomerically enriched alpha-amino acids. In principle, Strecker syntheses employing sub-stoichiometric quantities of a chiral reagent could provide a practical alternative to these approaches, but the reported catalytic asymmetric methods have seen limited use on preparative scales (more than a gram). The limited utility of existing catalytic methods may be due to several important factors, including the relatively complex and precious nature of the catalysts and the requisite use of hazardous cyanide sources. Here we report a new catalytic asymmetric method for the syntheses of highly enantiomerically enriched non-natural amino acids using a simple chiral amido-thiourea catalyst to control the key hydrocyanation step. This catalyst is robust, without sensitive functional groups, so it is compatible with aqueous cyanide salts, which are safer and easier to handle than other cyanide sources; this makes the method adaptable to large-scale synthesis. We have used this new method to obtain enantiopure amino acids that are not readily prepared by enzymatic methods or by chemical hydrogenation.
Scaleable catalytic asymmetric Strecker syntheses of unnatural α-amino acids
Zuend, Stephan J.; Coughlin, Matthew P.; Lalonde, Mathieu P.; Jacobsen, Eric N.
2009-01-01
α-Amino acids are essential building blocks for protein synthesis, and are also widely useful as components of medicinally active molecules and chiral catalysts.1,2,3,4,5 Efficient chemo-enzymatic methods for the synthesis of enantioenriched α-amino acids have been devised, but the scope of these methods for the synthesis of unnatural amino acids is limited.6,7 Alkene hydrogenation is broadly useful for enantioselective catalytic synthesis of many classes of amino acids,8,9 but this approach is not applicable to the synthesis of α-amino acids bearing aryl or quaternary alkyl α-substituents. The Strecker synthesis—the reaction of an imine or imine equivalent with hydrogen cyanide, followed by nitrile hydrolysis—is an especially versatile chemical method for the synthesis of racemic α-amino acids (Fig. 1).10,11 Asymmetric Strecker syntheses using stoichiometric chiral reagents have been applied successfully on gram-to-multi-kilogram scales to the preparation of enantiomerically enriched α-amino acids.12,13,14 In principle, Strecker syntheses employing sub-stoichiometric quantities of a chiral reagent provide a practical alternative to these approaches, but the reported catalytic asymmetric methods have seen only limited use on preparative scales (e.g., > 1 gram).15,16 The limited use of existing catalytic methodologies may be ascribed to several important practical drawbacks, including the relatively complex and precious nature of the catalysts, and the requisite use of hazardous cyanide sources. Herein we report a new catalytic asymmetric method for the syntheses of highly enantiomerically enriched non-proteinogenic amino acids using a simple chiral amido-thiourea catalyst to control the key hydrocyanation step. Because this catalyst is robust and lacks sensitive functional groups, it is compatible with safely handled aqueous cyanide salts, and is thus adaptable to large-scale synthesis. This new methodology can be applied to the efficient syntheses of amino acids that are not readily prepared by enzymatic methods or by chemical hydrogenation. PMID:19829379
Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent
NASA Astrophysics Data System (ADS)
Xue, Yang; Li, Ling-Po; He, Yan-Hong; Guan, Zhi
2012-10-01
We reported the first enzyme-catalysed, direct, three-component asymmetric Mannich reaction using protease type XIV from Streptomyces griseus (SGP) in acetonitrile. Yields of up to 92% with enantioselectivities of up to 88% e.e. and diastereoselectivities of up to 92:8 (syn:anti) were achieved under the optimised conditions. This enzyme's catalytic promiscuity expands the application of this biocatalyst and provides a potential alternative method for asymmetric Mannich reactions.
Catalytic intermolecular carbon electrophile induced semipinacol rearrangement.
Zhang, Qing-Wei; Zhang, Xiao-Bo; Li, Bao-Sheng; Xiang, Kai; Zhang, Fu-Min; Wang, Shao-Hua; Tu, Yong-Qiang
2013-02-25
A catalytic intermolecular carbon electrophile induced semipinacol rearrangement was realized and the asymmetric version was also preliminarily accomplished with 92% and 82% ee. The complex tricyclic system architecture with four continuous stereogenic centers could be achieved from simple starting materials in a single step under mild conditions.
Ciesielski, Jennifer; Lebœuf, David; Stern, Harry A.
2013-01-01
Alkynones were treated with boron trifluoride diethyl etherate to generate β-iodoallenolates, which underwent intramolecular aldol reactions to produce cycloalkenyl alcohols. Diastereoselective oxa-Michael ring closure could then be induced by treatment with a catalytic amount of gold(III) chloride, affording highly functionalized tetrahydropyran-containing ring systems. PMID:24032002
NASA Astrophysics Data System (ADS)
Gonthier, Jérôme F.; Corminboeuf, Clémence
2014-04-01
Non-covalent interactions occur between and within all molecules and have a profound impact on structural and electronic phenomena in chemistry, biology, and material science. Understanding the nature of inter- and intramolecular interactions is essential not only for establishing the relation between structure and properties, but also for facilitating the rational design of molecules with targeted properties. These objectives have motivated the development of theoretical schemes decomposing intermolecular interactions into physically meaningful terms. Among the various existing energy decomposition schemes, Symmetry-Adapted Perturbation Theory (SAPT) is one of the most successful as it naturally decomposes the interaction energy into physical and intuitive terms. Unfortunately, analogous approaches for intramolecular energies are theoretically highly challenging and virtually nonexistent. Here, we introduce a zeroth-order wavefunction and energy, which represent the first step toward the development of an intramolecular variant of the SAPT formalism. The proposed energy expression is based on the Chemical Hamiltonian Approach (CHA), which relies upon an asymmetric interpretation of the electronic integrals. The orbitals are optimized with a non-hermitian Fock matrix based on two variants: one using orbitals strictly localized on individual fragments and the other using canonical (delocalized) orbitals. The zeroth-order wavefunction and energy expression are validated on a series of prototypical systems. The computed intramolecular interaction energies demonstrate that our approach combining the CHA with strictly localized orbitals achieves reasonable interaction energies and basis set dependence in addition to producing intuitive energy trends. Our zeroth-order wavefunction is the primary step fundamental to the derivation of any perturbation theory correction, which has the potential to truly transform our understanding and quantification of non-bonded intramolecular interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonthier, Jérôme F.; Corminboeuf, Clémence, E-mail: clemence.corminboeuf@epfl.ch
2014-04-21
Non-covalent interactions occur between and within all molecules and have a profound impact on structural and electronic phenomena in chemistry, biology, and material science. Understanding the nature of inter- and intramolecular interactions is essential not only for establishing the relation between structure and properties, but also for facilitating the rational design of molecules with targeted properties. These objectives have motivated the development of theoretical schemes decomposing intermolecular interactions into physically meaningful terms. Among the various existing energy decomposition schemes, Symmetry-Adapted Perturbation Theory (SAPT) is one of the most successful as it naturally decomposes the interaction energy into physical and intuitivemore » terms. Unfortunately, analogous approaches for intramolecular energies are theoretically highly challenging and virtually nonexistent. Here, we introduce a zeroth-order wavefunction and energy, which represent the first step toward the development of an intramolecular variant of the SAPT formalism. The proposed energy expression is based on the Chemical Hamiltonian Approach (CHA), which relies upon an asymmetric interpretation of the electronic integrals. The orbitals are optimized with a non-hermitian Fock matrix based on two variants: one using orbitals strictly localized on individual fragments and the other using canonical (delocalized) orbitals. The zeroth-order wavefunction and energy expression are validated on a series of prototypical systems. The computed intramolecular interaction energies demonstrate that our approach combining the CHA with strictly localized orbitals achieves reasonable interaction energies and basis set dependence in addition to producing intuitive energy trends. Our zeroth-order wavefunction is the primary step fundamental to the derivation of any perturbation theory correction, which has the potential to truly transform our understanding and quantification of non-bonded intramolecular interactions.« less
Hack, Daniel; Chauhan, Pankaj; Deckers, Kristina; Mizutani, Yusuke; Raabe, Gerhard; Enders, Dieter
2015-02-11
A one-pot asymmetric Michael addition/hydroalkoxylation sequence, catalyzed by a sequential catalytic system consisting of a squaramide and a silver salt, provides a new series of chiral pyrano-annulated pyrazole derivatives in excellent yields (up to 95%) and high enantioselectivities (up to 97% ee).
Nieto, N; Molas, P; Benet-Buchholz, J; Vidal-Ferran, A
2005-11-25
[reaction: see text] A practical synthesis of Shi's diester 3 for catalytic asymmetric epoxidations has been developed. The catalyst has been prepared in multigram quantities from D-fructose in four steps with a 66% overall yield. Efficiency, cost, and selectivity aspects of the reagents involved for its preparation have been taken care of during its preparation. The workup procedures have been simplified to the bare minimum, rendering a very practical preparation method. The well-known high efficiency of this catalyst 3 in the epoxidation of alpha,beta-unsaturated carbonyl compounds has also proved to be high in unfunctionalized alkenes.
Size dependence of the propulsion velocity for catalytic Janus-sphere swimmers.
Ebbens, Stephen; Tu, Mei-Hsien; Howse, Jonathan R; Golestanian, Ramin
2012-02-01
The propulsion velocity of active colloids that asymmetrically catalyze a chemical reaction is probed experimentally as a function of their sizes. It is found that over the experimentally accessible range, the velocity decays as a function of size, with a rate that is compatible with an inverse size dependence. A diffusion-reaction model for the concentrations of the fuel and waste molecules that takes into account a two-step process for the asymmetric catalytic activity on the surface of the colloid is shown to predict a similar behavior for colloids at the large size limit, with a saturation for smaller sizes. © 2012 American Physical Society
Xu, Yingjie; Lin, Luqing; Kanai, Motomu; Matsunaga, Shigeki; Shibasaki, Masakatsu
2011-04-20
Catalytic asymmetric ring-opening of meso-aziridines with malonates is described. The combined use of two rare earth metal sources with different properties promoted the desired ring-opening reaction. A 1:1:1 mixture of a heterobimetallic La(O-iPr)(3)/Yb(OTf)(3)/Schiff base 1a (0.25-10 mol %) efficiently promoted the reaction of five-, six-, and seven-membered ring cyclic meso-aziridines as well as acyclic meso-aziridines with dimethyl, diethyl, and dibenzyl malonates, giving chiral cyclic and acyclic γ-amino esters in 99-63% yield and >99.5-97% ee.
Mechanism of autophosphorylation of mycobacterial PknB explored by molecular dynamics simulations.
Damle, Nikhil P; Mohanty, Debasisa
2014-07-22
Mycobacterial Ser/Thr kinase, PknB, is essential for the growth of the pathogen. Unphosphorylated PknB is catalytically inactive, and its activation requires autophosphorylation of Thr residues on the activation loop. Autophosphorylation can in principle take place via two distinct mechanisms. Intermolecular trans autophosphorylation involves dimerization and phosphorylation of the activation loop of one chain in the catalytic pocket of the other chain. On the other hand, intramolecular cis autophosphorylation involves phosphorylation of the activation loop of the kinases in its own catalytic pocket within a monomer. On the basis of the crystal structure of PknB in the front-to-front dimeric form, it is currently believed that activation of PknB involves trans autophosphorylation. However, because of the lack of coordinates of the activation loop in the crystal structures, atomic details of the conformational changes associated with activation are yet to be deciphered. Therefore, to understand the conformational transitions associated with activation via autophosphorylation, a series of explicit solvent molecular dynamics simulations with a duration of 1 μs have been performed on each of the phosphorylated and nonphosphorylated forms of the PknB catalytic domain in monomeric and dimeric states. Simulations on phosphorylated PknB revealed a differential network of crucial electrostatic and hydrophobic residues that stabilize the phosphorylated form in the active conformation. Interestingly, in our simulations on nonphosphorylated monomers, the activation loop was observed to fold into its own active site, thereby opening the novel possibility of activation through intramolecular cis autophosphorylation. Thus, our simulations suggest that autophosphorylation of PknB might also involve cis initiation followed by trans amplification as reported for other eukaryotic kinases based on recent reaction kinetics studies.
Suna, Yuki; Fujita, Etsuko; Ertem, Mehmed Z.; ...
2014-11-12
Proton-responsive half-sandwich Cp*Ir(III) complexes possessing a bipyridine ligand with two hydroxy groups at the 3,3'-, 4,4'-, 5,5'- or 6,6'-positions (3DHBP, 4DHBP, 5DHBP, or 6DHBP) were systematically investigated. UV-vis titration data provided average pK a values of the hydroxy groups on the ligands. Both hydroxy groups were found to deprotonate in the pH 4.6–5.6 range for the 4–6DHBP complexes. One of the hydroxy groups of the 3DHBP complex exhibited the low pK a value of < 0.4 because the deprotonation is facilitated by the strong intramolecular hydrogen bond formed between the generated oxyanion and the remaining hydroxy group, which in turnmore » leads to an elevated pK a value of ~13.6 for the second deprotonation step. The crystal structures of the 4– and 6DHBP complexes obtained from basic aqueous solutions revealed their deprotonated forms. The intramolecular hydrogen bond in the 3DHBP complex was also observed in the crystal structures. The catalytic activities of these complexes in aqueous phase reactions, at appropriate pH, for hydrogenation of carbon dioxide (pH 8.5), dehydrogenation of formic acid (pH 1.8), transfer hydrogenation reactions using formic acid/formate as a hydrogen source (pH 7.2 and 2.6) were investigated to compare the positional effects of the hydroxy groups. The 4– and 6DHBP complexes exhibited remarkably enhanced catalytic activities under basic conditions because of the resonance effect of the strong electrondonating oxyanions, whereas the 5DHBP complex exhibited negligible activity despite the presence of electron-donating groups. The 3DHBP complex exhibited relatively high catalytic activity at low pH owing to the one strong electron-donating oxyanion group stabilized by the intramolecular hydrogen bond. DFT calculations were employed to study the mechanism of CO₂ hydrogenation by the 4DHBP and 6DHBP complexes, and comparison of the activation free energies of the H₂ heterolysis and CO₂ insertion steps indicated that H₂ heterolysis is the rate-determining step for both complexes. The presence of a pendent base in the 6DHBP complex was found to facilitate the rate-determining step, and renders 6DHBP a more effective catalyst for formate production.« less
Branco, Luís C; Afonso, Carlos A M
2002-12-21
The use of the solvent systems water/ionic liquid or water/ionic liquid/tert-butanol provides a recoverable, reusable, robust and simple system for the asymmetric dihydroxylation of olefins, based on the immobilization of the osmium-ligand catalyst in the ionic liquid phase.
Dickstein, Joshua S.; Curto, John M.; Gutierrez, Osvaldo; Mulrooney, Carol A.; Kozlowski, Marisa C.
2013-01-01
Mechanism studies of a mild palladium catalyzed decarboxylation of aromatic carboxylic acids are described. In particular, reaction orders and activation parameters for the two stages of the transformation were determined. These studies guided development of a catalytic system capable of turnover. Further evidence reinforces that the second stage, protonation of the aryl palladium intermediate, is the rate-determining step of the reaction. The first step, decarboxylative palladation is proposed to occur through an intramolecular electrophilic palladation pathway, which is supported by computational and mechansim studies. In contrast to the reverse reaction (C-H insertion), the data support an electrophilic aromatic substitution mechanism involving a stepwise intramolecular protonation sequence for the protodepalladation portion of the reaction. PMID:23590518
Chiral poly-rare earth metal complexes in asymmetric catalysis
Shibasaki, Masakatsu
2006-01-01
Asymmetric catalysis is a powerful component of modern synthetic organic chemistry. To further broaden the scope and utility of asymmetric catalysis, new basic concepts for the design of asymmetric catalysts are crucial. Because most chemical reactions involve bond-formation between two substrates or moieties, high enantioselectivity and catalyst activity should be realized if an asymmetric catalyst can activate two reacting substrates simultaneously at defined positions. Thus, we proposed the concept of bifunctional asymmetric catalysis, which led us to the design of new asymmetric catalysts containing two functionalities (e.g. a Lewis acid and a Brønsted base or a Lewis acid and a Lewis base). These catalysts demonstrated broad reaction applicability with excellent substrate generality. Using our catalytic asymmetric reactions as keys steps, efficient total syntheses of pharmaceuticals and their biologically active lead natural products were achieved. PMID:25792774
Theoretical study of the hydrolysis mechanism of 2-pyrone-4,6-dicarboxylate (PDC) catalyzed by LigI.
Zhang, Shujun; Ma, Guangcai; Liu, Yongjun; Ling, Baoping
2015-09-01
2-Pyrone-4,6-dicarboxylate lactonase (LigI) is the first identified enzyme from amidohydrolase superfamily that does not require a divalent metal ion for catalytic activity. It catalyzes the reversible hydrolysis of 2-pyrone-4,6-dicarboxylate (PDC) to 4-oxalomesaconate (OMA) and 4-carboxy-2-hydroxymuconate (CHM) in the degradation of lignin. In this paper, a combined quantum mechanics and molecule mechanics (QM/MM) approach was employed to study the reaction mechanism of LigI from Sphingomonas paucimobilis. According to the results of our calculations, the whole catalytic reaction contains three elementary steps, including the nucleophilic attack, the cleavage of CO of lactone (substrate) and the intramolecular proton transfer. The intermediate has two intramolecular proton transfer pathways, due to which, two final hydrolysis products can be obtained. The energy profile indicates that 4-carboxy-2-hydroxymuconate (CHM) is the main hydrolysis product, therefore, the isomerization between 4-carboxy-2-hydroxymuconate (CHM) and 4-oxalomesaconate (OMA) is suggested to occur in solvent. During the catalytic reaction, residue Asp248 acts as a general base to activate the hydrolytic water molecule. Although His31, His33 and His180 do not directly participate in the chemical process, they play assistant roles by forming electrostatic interactions with the substrate and its involved species in activating the carbonyl group of the substrate and stabilizing the intermediates and transition states. Copyright © 2015 Elsevier Inc. All rights reserved.
Carbohydrates as efficient catalysts for the hydration of α-amino nitriles.
Chitale, Sampada; Derasp, Joshua S; Hussain, Bashir; Tanveer, Kashif; Beauchemin, André M
2016-11-01
Directed hydration of α-amino nitriles was achieved under mild conditions using simple carbohydrates as catalysts exploiting temporary intramolecularity. A broadly applicable procedure using both formaldehyde and NaOH as catalysts efficiently hydrated a variety of primary and secondary susbtrates, and allowed the hydration of enantiopure substrates to proceed without racemization. This work also provides a rare comparison of the catalytic activity of carbohydrates, and shows that the simple aldehydes at the basis of chemical evolution are efficient organocatalysts mimicking the function of hydratase enzymes. Optimal catalytic efficiency was observed with destabilized aldehydes, and with difficult substrates only simple carbohydrates such as formaldehyde and glycolaldehyde proved reliable.
Wang, Dan; Sun, Yuanmiao; Sun, Yinghui; Huang, Jing; Liang, Zhiqiang; Li, Shuzhou; Jiang, Lin
2017-06-14
It is hard for metal nanoparticle catalysts to control the selectivity of a catalytic reaction in a simple process. In this work, we obtain active Au nanoparticle catalysts with high selectivity for the hydrogenation reaction of aromatic nitro compounds, by simply employing spine-like Au nanoparticles. The density functional theory (DFT) calculations further elucidate that the morphological effect on thermal selectivity control is an internal key parameter to modulate the nitro hydrogenation process on the surface of Au spines. These results show that controlled morphological effects may play an important role in catalysis reactions of noble metal NPs with high selectivity.
Pd-Catalyzed Asymmetric β-Hydride Elimination En Route to Chiral Allenes
Crouch, Ian T.; Neff, Robynne K.; Frantz, Doug E.
2013-01-01
We wish to report our preliminary results on the discovery and development of a catalytic, asymmetric β-hydride elimination from vinyl Pd(II)-complexes derived from enol triflates to access chiral allenes. To achieve this, we developed a class of chiral phosphite ligands that demonstrate high enantioselectivity, allow access of either allene enantiomer, and are readily synthesized. The methodology is demonstrated on over 20 substrates and application to the formal asymmetric total synthesis of the natural product, (+)-epibatidine, is also provided. PMID:23488914
Ohshima, Takashi; Xu, Youjun; Takita, Ryo; Shimizu, Satoshi; Zhong, Dafang; Shibasaki, Masakatsu
2002-12-11
The enantioselective total synthesis of (-)-strychnine was accomplished through the use of the highly practical catalytic asymmetric Michael reaction (0.1 mol % of (R)-ALB, more than kilogram scale, without chromatography, 91% yield and >99% ee) as well as a tandem cyclization that simultaneously constructed B- and D-rings (>77% yield). Moreover, newly developed reaction conditions for thionium ion cyclization, NaBH3CN reduction of the imine moiety in the presence of Lewis acid to prevent ring opening reaction, and chemoselective reduction of the thioether (desulfurization) in the presence of exocyclic olefin were pivotal to complete the synthesis. The described chemistry paves the way for the synthesis of more advanced Strychnos alkaloids.
Balaraman, Kaluvu; Wolf, Christian
2017-01-01
Synthetically versatile 3,3-disubstituted fluorooxindoles exhibiting vicinal chirality centers were obtained in high yields and with excellent enantio-, diastereo- and regioselectivity by catalytic asymmetric fluoroenolate alkylation with allylic acetates. The reaction proceeds under mild conditions and can be upscaled without compromising the asymmetric induction. The unique synthetic usefulness of the products is highlighted with the incorporation of additional functionalities and the formation of 3-fluorinated oxindoles exhibiting an array of four adjacent chirality centers. A new C-F bond functionalization path that provides unprecedented means for stereoselective generation of a chiral quaternary carbon center in the alkaloid scaffold is introduced. PMID:28026079
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bortinger, A.
1977-01-01
Chiral polymer-supported metal complexes were catalytically active in the hydroformylation of prochiral olefins, but they induced only small optical activity. All the optical rotations in 2-phenylpropanal, obtained by the hydroformylation of styrene, were positive. In studies of asymmetric hydroformylation with homogeneous catalysts, no correlation was found between the optical inductions and ligand structure. Polymer-supported platinum catalysts having similar structure to their homogeneous counterparts showed the same high selectivity toward the formation of straight-chain aldehyde (89-95%) as the homogeneous catalysts in the hydroformylation of 1-hexene. Aldehyde yields were low (up to 45%); no reduction to alcohol occurred.
Lian, Yajing; Hummel, Joshua R; Bergman, Robert G; Ellman, Jonathan A
2013-08-28
We report formal [3 + 3] annulations of aromatic azides with aromatic imines and azobenzenes to give acridines and phenazines, respectively. These transformations proceed through a cascade process of Rh(III)-catalyzed amination followed by intramolecular electrophilic aromatic substitution and aromatization. Acridines can be directly prepared from aromatic aldehydes by in situ imine formation using catalytic benzylamine.
Hua, Zihao; Vassar, Victor C.; Choi, Hojae; Ojima, Iwao
2004-01-01
Monodentate phosphoramidite ligands have been developed based on enantiopure 6,6′-dimethylbiphenols with axial chirality. These chiral ligands are easy to prepare and flexible for modifications. The fine-tuning capability of these ligands plays a significant role in achieving high enantioselectivity in the asymmetric hydroformylation of allyl cyanide and the conjugate addition of diethylzinc to cycloalkenones. PMID:15020764
Qin, Hua-Li; Chen, Xiao-Qing; Huang, Yi-Zhen; Kantchev, Eric Assen B
2014-09-26
First-principles modelling of the diastereomeric transition states in the enantiodiscrimination stage of the catalytic cycle can reveal intimate details about the mechanism of enantioselection. This information can be invaluable for further improvement of the catalytic protocols by rational design. Herein, we present a density functional theory (IEFPCM/PBE0/DGDZVP level of theory) modelling of the carborhodation step for the asymmetric 1,4-arylation of cyclic α,β-unsaturated ketones mediated by a [(binap)Rh(I)] catalyst. The calculations completely support the older, qualitative, pictorial model predicting the sense of the asymmetric induction for both the chelating diphosphane (binap) and the more recent chiral diene (Phbod) ligands, while also permitting quantification of the enantiomeric excess (ee). The effect of dispersion interaction correction and basis sets has been also investigated. Dispersion-corrected functionals and solvation models significantly improve the predicted ee values. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Arceo, Elena; Jurberg, Igor D; Alvarez-Fernández, Ana; Melchiorre, Paolo
2013-09-01
Asymmetric catalytic variants of sunlight-driven photochemical processes hold extraordinary potential for the sustainable preparation of chiral molecules. However, the involvement of short-lived electronically excited states inherent to any photochemical reaction makes it challenging for a chiral catalyst to dictate the stereochemistry of the products. Here, we report that readily available chiral organic catalysts, with well-known utility in thermal asymmetric processes, can also confer a high level of stereocontrol in synthetically relevant intermolecular carbon-carbon bond-forming reactions driven by visible light. A unique mechanism of catalysis is proposed, wherein the catalyst is involved actively in both the photochemical activation of the substrates (by inducing the transient formation of chiral electron donor-acceptor complexes) and the stereoselectivity-defining event. We use this approach to enable transformations that are extremely difficult under thermal conditions, such as the asymmetric α-alkylation of aldehydes with alkyl halides, the formation of all-carbon quaternary stereocentres and the control of remote stereochemistry.
Carbon nanotube intramolecular p-i-n junction diodes with symmetric and asymmetric contacts
Chen, Changxin; Liao, Chenghao; Wei, Liangming; Zhong, Hanqing; He, Rong; Liu, Qinran; Liu, Xiaodong; Lai, Yunfeng; Song, Chuanjuan; Jin, Tiening; Zhang, Yafei
2016-01-01
A p-i-n junction diode based on the selectively doped single-walled carbon nanotube (SWCNT) had been investigated, in which two opposite ends of individual SWCNT channel were doped into the p- and n-type SWCNT respectively while the middle segment of SWCNT was kept as the intrinsic. The symmetric and asymmetric contacts were used to fabricate the p-i-n junction diodes respectively and studied the effect of the contact on the device characteristics. It was shown that a low reverse saturation current of ~20 pA could be achieved by these both diodes. We found that the use of the asymmetric contact can effectively improve the performance of the p-i-n diode, with the rectification ratio enhanced from ~102 for the device with the Au/Au symmetric contact to >103 for the one with the Pd/Al asymmetric contact. The improvement of the device performance by the asymmetric-contact structure was attributed to the decrease of the effective Schottky-barrier height at the contacts under forward bias, increasing the forward current of the diode. The p-i-n diode with asymmetric contact also had a higher rectification ratio than its counterpart before doping the SWCNT channel, which is because that the p-i-n junction in the device decreased the reverse saturated current. PMID:26915400
Cordier, Christopher J.; Lundgren, Rylan J.; Fu, Gregory C.
2013-01-01
Although enantioconvergent alkyl-alkyl couplings of racemic electrophiles have been developed, there have been no reports of the corresponding reactions of racemic nucleophiles. Herein, we describe Negishi cross-couplings of racemic α-zincated N-Boc-pyrrolidine with unactivated secondary halides, thus providing a one-pot, catalytic asymmetric method for the synthesis of a range of 2-alkylpyrrolidines (an important family of target molecules) from N-Boc-pyrrolidine, a commercially available precursor. Preliminary mechanistic studies indicate that two of the most straightforward mechanisms for enantioconvergence (a dynamic kinetic resolution of the organometallic coupling partner and a simple β-hydride elimination/β-migratory insertion pathway) are unlikely to be operative. PMID:23869442
Deng, Zhigang; Lu, Xiaoqing; Wen, Zengqiang; Wei, Shuxian; Liu, Yunjie; Fu, Dianling; Zhao, Lianming; Guo, Wenyue
2013-10-14
Periodic density functional theory (DFT) calculations have been performed to systematically investigate the effect of reaction intermediate on catalytic activity for hydrazine (N2H4) decomposition on Rh(111). Reaction mechanisms via intramolecular and NH2-assisted N2H4 decompositions are comparatively analyzed, including adsorption configuration, reaction energy and barrier of elementary step, and reaction network. Our results show that the most favorable N2H4 decomposition pathway starts with the initial N-N bond scission to the NH2 intermediate, followed by stepwise H stripping from adsorbed N2Hx (x = 1-4) species, and finally forms the N2 and NH3 products. Comparatively, the stepwise intramolecular dehydrogenation via N2H4→ N2H3→ N2H2→ N2H → N2, and N2H4→ NH2→ NH → N with or without NH2 promotion effect, are unfavorable due to higher energy barriers encountered. Energy barrier analysis, reaction rate constants, and electronic structures are used to identify the crucial competitive route. The promotion effect of the NH2 intermediate is structurally reflected in the weakening of the N-H bond and strengthening of the N-N bond in N2Hx in the coadsorption system; it results intrinsically from the less structural deformation of the adsorbate, and weakening of the interaction between dehydrogenated fragment and departing H in transition state. Our results highlight the crucial effect of reaction intermediate on catalytic activity and provide a theoretical approach to analyze the effect.
Smith, Sean W.; Fu, Gregory C.
2009-01-01
A chiral phosphine catalyzes the addition of a carbon nucleophile to the γ position of an electron-poor allene (amide-, ester-, or phosphonate-substituted), in preference to isomerization to a 1,3-diene, in good ee and yield. This strategy provides an attractive method for the catalytic asymmetric γ functionalization of carbonyl (and related) compounds. PMID:19772285
Wu, Wangbin; Zou, Sijia; Lin, Lili; Ji, Jie; Zhang, Yuheng; Ma, Baiwei; Liu, Xiaohua; Feng, Xiaoming
2017-03-18
An asymmetric Meerwein-Ponndorf-Verley (MPV) reduction of glyoxylates was for the first time accomplished via an N,N'-dioxide/Y(OTf) 3 complex with aluminium alkoxide and molecular sieves (MSs) as crucial additives. A variety of optically active α-hydroxyesters were obtained with excellent results. A possible reaction mechanism was proposed based on the experiments.
Lehmacher, A; Vogt, A B; Hensel, R
1990-10-15
Starting from 2-phosphoglycerate the biosynthesis of cDPG comprises two steps: (i) the phosphorylation of 2-phosphoglycerate to 2,3-diphosphoglycerate and (ii) the intramolecular cyclization to cyclic 2,3-diphosphoglycerate. The involved enzymes, 2-phosphoglycerate kinase and cyclic 2,3-diphosphoglycerate synthetase, were purified form Methanothermus fervidus. Their molecular and catalytic properties were characterized.
Read, Matthew Lovell; Gundersen, Lise-Lotte
2013-02-01
A novel and efficient synthesis of phenanthridines and aza analogues is reported. The key step is a microwave-mediated intramolecular Diels-Alder cyclization of o-furyl(allylamino)arenes. In the presence of a catalytic amount of acid, the DA-adduct reacts further to give the dihydrophenanthridines, which easily can be oxidized to fully aromatic compounds by air in the presence of UV light or by DDQ.
Berenger Biannic; Joseph J. Bozell; Thomas Elder
2014-01-01
New Co-Schiff base complexes that incorporate a sterically hindered ligand and an intramolecular bulky piperazine base in close proximity to the Co center are synthesized. Their utility as catalysts for the oxidation of para-substituted lignin model phenols with molecular oxygen is examined. Syringyl and guaiacyl alcohol, as models of S and G units in lignin, are...
Lian, Yajing; Hummel, Joshua R.; Bergman, Robert G.; Ellman, Jonathan A.
2013-01-01
New formal [3 + 3] annulations have been developed to obtain acridines and phenazines from aromatic azides and aromatic imines and azobenzenes, respectively. These transformations proceed through a cascade process of Rh(III)-catalyzed amination followed by intramolecular electrophilic aromatic substitution and aromatization. Acridines can be directly prepared from aromatic aldehydes by in situ imine formation using catalytic benzylamine. PMID:23957711
Zhou, Li; Morel, Mathieu; Rudiuk, Sergii; Baigl, Damien
2017-07-01
DNA micro- and nanogels-small-sized hydrogels made of a crosslinked DNA backbone-constitute new promising materials, but their functions have mainly been limited to those brought by DNA. Here a new way is described to prepare sub-micrometer-sized DNA gels of controllable crosslinking density that are able to embed novel functions, such as an enzymatic activity. It consists of using proteins, instead of traditional base-pairing assembly or covalent approaches, to form crosslinks inside individual DNA molecules, resulting in structures referred to as intramolecularly protein-crosslinked DNA gels (IPDGs). It is first shown that the addition of streptavidin to biotinylated T4DNA results in the successful formation of thermally stable IPDGs with a controllable crosslinking density, forming structures ranging from elongated to raspberry-shaped and pearl-necklace-like morphologies. Using reversible DNA condensation strategies, this paper shows that the gels can be reversibly actuated at a low crosslinking density, or further stabilized when they are highly crosslinked. Finally, by using streptavidin-protein conjugates, IPDGs with various enzymes are successfully functionalized. It is demonstrated that the enzymes keep their catalytic activity upon their incorporation into the gels, opening perspectives ranging from biotechnologies (e.g., enzyme manipulation) to nanomedicine (e.g., vectorization). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Asymmetric Preorganization of Inverted Pair Residues in the Sodium-Calcium Exchanger
Giladi, Moshe; Almagor, Lior; van Dijk, Liat; Hiller, Reuben; Man, Petr; Forest, Eric; Khananshvili, Daniel
2016-01-01
In analogy with many other proteins, Na+/Ca2+ exchangers (NCX) adapt an inverted twofold symmetry of repeated structural elements, while exhibiting a functional asymmetry by stabilizing an outward-facing conformation. Here, structure-based mutant analyses of the Methanococcus jannaschii Na+/Ca2+ exchanger (NCX_Mj) were performed in conjunction with HDX-MS (hydrogen/deuterium exchange mass spectrometry) to identify the structure-dynamic determinants of functional asymmetry. HDX-MS identified hallmark differences in backbone dynamics at ion-coordinating residues of apo-NCX_Mj, whereas Na+or Ca2+ binding to the respective sites induced relatively small, but specific, changes in backbone dynamics. Mutant analysis identified ion-coordinating residues affecting the catalytic capacity (kcat/Km), but not the stability of the outward-facing conformation. In contrast, distinct “noncatalytic” residues (adjacent to the ion-coordinating residues) control the stability of the outward-facing conformation, but not the catalytic capacity. The helix-breaking signature sequences (GTSLPE) on the α1 and α2 repeats (at the ion-binding core) differ in their folding/unfolding dynamics, while providing asymmetric contributions to transport activities. The present data strongly support the idea that asymmetric preorganization of the ligand-free ion-pocket predefines catalytic reorganization of ion-bound residues, where secondary interactions with adjacent residues couple the alternating access. These findings provide a structure-dynamic basis for ion-coupled alternating access in NCX and similar proteins. PMID:26876271
Mita, Tsuyoshi; Sugawara, Masumi; Saito, Keisuke; Sato, Yoshihiro
2014-06-06
A catalytic enantioselective silylation of N-tert-butylsulfonylimines using a Cu-secondary diamine complex was demonstrated. The resulting optically active α-amino silanes could be carboxylated under a CO2 atmosphere (1 atm) to afford the corresponding α-amino acids in a stereoretentive manner. This two-step sequence provides a new synthetic protocol for optically active α-amino acids from gaseous CO2 and imines in the presence of a catalytic amount of a chiral source.
Biotinylated Rh(III) complexes in engineered streptavidin for accelerated asymmetric C-H activation.
Hyster, Todd K; Knörr, Livia; Ward, Thomas R; Rovis, Tomislav
2012-10-26
Enzymes provide an exquisitely tailored chiral environment to foster high catalytic activities and selectivities, but their native structures are optimized for very specific biochemical transformations. Designing a protein to accommodate a non-native transition metal complex can broaden the scope of enzymatic transformations while raising the activity and selectivity of small-molecule catalysis. Here, we report the creation of a bifunctional artificial metalloenzyme in which a glutamic acid or aspartic acid residue engineered into streptavidin acts in concert with a docked biotinylated rhodium(III) complex to enable catalytic asymmetric carbon-hydrogen (C-H) activation. The coupling of benzamides and alkenes to access dihydroisoquinolones proceeds with up to nearly a 100-fold rate acceleration compared with the activity of the isolated rhodium complex and enantiomeric ratios as high as 93:7.
Qu, Chengke; Zhao, Wenshan; Zhang, Lei; Cui, Yuanchen
2014-04-01
Phenolic L-prolinamide was allowed to participate in enzymatic polymerization with horseradish peroxidase as the catalyst, generating immobilized L-prolinamide. The catalytic performance of the resultant polymer-supported L-prolinamide for direct asymmetric aldol reaction between aromatic aldehyde and cyclohexanone was studied. The results show that as prepared L-prolinamide can catalyze the aldol reaction at room temperature in the presence of H2O. Relevant aldol addition products are obtained with good yields (up to 91%), high diastereoselectivities (up to 6:94 dr), and medium enantioselectivities (up to 87% ee). Moreover, the title polymer-supported catalyst can be recovered and reused for at least five cycles while the activity remains almost unchanged. Copyright © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Denmark, Scott E.; Wilson, Tyler W.
2010-11-01
The reactions of acyl anion equivalents (d1 synthons) with carbonyl electrophiles allow for the construction of a wide range of molecules useful for the synthesis of biologically active compounds, natural products and chiral ligands. Despite their utility, significant challenges still exist for developing catalytic, enantioselective variants of these reactions. For example, the asymmetric benzoin process, arguably the most characteristic reaction of d synthetic equivalents, finds no general solution for reactions involving aliphatic acyl anions. In this Article, we introduce a new class of stable, isolable silyl ketene imines derived from protected cyanohydrins. These nucleophiles serve as acyl anion equivalents in Lewis base catalysed aldol addition reactions and allow for the preparation of cross-benzoin and glycolate-aldol products in high yield and with exceptional diastereo- and enantioselectivities.
Asymmetric conjugate addition of Grignard reagents to pyranones.
Mao, Bin; Fañanás-Mastral, Martín; Feringa, Ben L
2013-01-18
An efficient enantioselective synthesis of lactones was developed based on the catalytic asymmetric conjugate addition (ACA) of alkyl Grignard reagents to pyranones. The use of 2H-pyran-2-one for the first time in the ACA with Grignard reagents allows for a variety of further transformations to access highly versatile building blocks such as β-alkyl substituted aldehydes or β-bromo-γ-alkyl substituted alcohols with excellent regio- and stereoselectivity.
Bischoff, Matthias; Sippel, Claudia; Bracher, Andreas; Hausch, Felix
2014-10-17
A stereoselective synthesis of a derivatized bicyclic [4.3.1]decane scaffold based on an acyclic precursor is described. The key steps involve a Pd-catalyzed sp(3)-sp(2) Negishi-coupling, an asymmetric Shi epoxidation, and an intramolecular epoxide opening. Representative derivatives of this novel scaffold were synthesized and found to be potent inhibitors of the psychiatric risk factor FKBP51, which bound to FKBP51 with the intended molecular binding mode.
Chen, Hong-Xue; Kang, Jie; Chang, Rong; Zhang, Yun-Lai; Duan, Hua-Zhen; Li, Yan-Mei; Chen, Yong-Xiang
2018-06-01
A novel and facile synthetic strategy for α,α-difluorinated phosphonate mimetics of phosphoserine/phosphothreonine utilizing rhodium-catalyzed asymmetric hydrogenation was developed. The dehydrogenated substrate β-difluorophosphonomethyl α-(acylamino)acrylates were first prepared from protected serine/threonine followed by asymmetric hydrogenation using the rhodium-DuPhos catalytic system to generate the chiral center(s). These important phosphonate building blocks were successfully incorporated into phosphatase-resistant peptides, which displayed similar inhibition to the 14-3-3 ζ protein as the parent pSer/pThr peptides.
Presidential Green Chemistry Challenge: 2006 Greener Synthetic Pathways Award
Presidential Green Chemistry Challenge 2006 award winner, Merck, discovered the asymmetric catalytic hydrogenation of unprotected enamines to make beta-amino acids. Merck applied this to synthesize sitagliptin (Januvia).
Kinetics and mechanism of vanadium catalysed asymmetric cyanohydrin synthesis in propylene carbonate
Omedes-Pujol, Marta
2010-01-01
Summary Propylene carbonate can be used as a green solvent for the asymmetric synthesis of cyanohydrin trimethylsilyl ethers from aldehydes and trimethylsilyl cyanide catalysed by VO(salen)NCS, though reactions are slower in this solvent than the corresponding reactions carried out in dichloromethane. A mechanistic study has been undertaken, comparing the catalytic activity of VO(salen)NCS in propylene carbonate and dichloromethane. Reactions in both solvents obey overall second-order kinetics, the rate of reaction being dependent on the concentration of both the aldehyde and trimethylsilyl cyanide. The order with respect to VO(salen)NCS was determined and found to decrease from 1.2 in dichloromethane to 1.0 in propylene carbonate, indicating that in propylene carbonate, VO(salen)NCS is present only as a mononuclear species, whereas in dichloromethane dinuclear species are present which have previously been shown to be responsible for most of the catalytic activity. Evidence from 51V NMR spectroscopy suggested that propylene carbonate coordinates to VO(salen)NCS, blocking the free coordination site, thus inhibiting its Lewis acidity and accounting for the reduction in catalytic activity. This explanation was further supported by a Hammett analysis study, which indicated that Lewis base catalysis made a much greater contribution to the overall catalytic activity of VO(salen)NCS in propylene carbonate than in dichloromethane. PMID:21085513
Liu, Haoliang; Feng, Juan; Chen, Liuping
2015-01-01
A novel dynamic covalent gel strategy is reported to immobilize an asymmetric catalyst within the channels of a microfluidic flow reactor. A layer of a catalytically active Mn–salen dynamic covalent imine gel matrix was coated onto a functionalized capillary. Mn–salen active moiety was incorporated into dynamic covalent imine gel matrix via the reaction of a chiral Mn–salen dialdehyde unit with a tetraamine linker. The catalytic activity of the capillary reactor has been demonstrated in enantioselective kinetic resolution of secondary alcohols. PMID:28706652
Turning Cucurbit[8]uril into a Supramolecular Nanoreactor for Asymmetric Catalysis
Zheng, Lifei; Sonzini, Silvia; Ambarwati, Masyitha; Rosta, Edina
2015-01-01
Abstract Chiral macromolecules have been widely used as synthetic pockets to mimic natural enzymes and promote asymmetric reactions. An achiral host, cucurbit[8]uril (CB[8]), was used for an asymmetric Lewis acid catalyzed Diels–Alder reaction. We achieved a remarkable increase in enantioselectivity and a large rate acceleration in the presence of the nanoreactor by using an amino acid as the chiral source. Mechanistic and computational studies revealed that both the amino acid–Cu2+ complex and the dienophile substrate are included inside the macrocyclic host cavity, suggesting that contiguity and conformational constraints are fundamental to the catalytic process and rate enhancement. These results pave the way towards new studies on asymmetric reactions catalyzed in confined achiral cavities. PMID:27478269
Turning Cucurbit[8]uril into a Supramolecular Nanoreactor for Asymmetric Catalysis
Zheng, Lifei; Sonzini, Silvia; Ambarwati, Masyitha; Rosta, Edina; Scherman, Oren A; Herrmann, Andreas
2015-01-01
Chiral macromolecules have been widely used as synthetic pockets to mimic natural enzymes and promote asymmetric reactions. An achiral host, cucurbit[8]uril (CB[8]), was used for an asymmetric Lewis acid catalyzed Diels–Alder reaction. We achieved a remarkable increase in enantioselectivity and a large rate acceleration in the presence of the nanoreactor by using an amino acid as the chiral source. Mechanistic and computational studies revealed that both the amino acid–Cu2+ complex and the dienophile substrate are included inside the macrocyclic host cavity, suggesting that contiguity and conformational constraints are fundamental to the catalytic process and rate enhancement. These results pave the way towards new studies on asymmetric reactions catalyzed in confined achiral cavities. PMID:26383272
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Shiva; Krishnamoorthy, Kalyanaraman; Mudeppa, Devaraja G.
P. falciparum orotate phosphoribosyltransferase, a potential target for antimalarial drugs and a conduit for prodrugs, crystallized as a structure with eight molecules per asymmetric unit that included some unique parasite-specific auto-inhibitory interactions between catalytic dimers. The most severe form of malaria is caused by the obligate parasite Plasmodium falciparum. Orotate phosphoribosyltransferase (OPRTase) is the fifth enzyme in the de novo pyrimidine-synthesis pathway in the parasite, which lacks salvage pathways. Among all of the malaria de novo pyrimidine-biosynthesis enzymes, the structure of P. falciparum OPRTase (PfOPRTase) was the only one unavailable until now. PfOPRTase that could be crystallized was obtained aftermore » some low-complexity sequences were removed. Four catalytic dimers were seen in the asymmetic unit (a total of eight polypeptides). In addition to revealing unique amino acids in the PfOPRTase active sites, asymmetric dimers in the larger structure pointed to novel parasite-specific protein–protein interactions that occlude the catalytic active sites. The latter could potentially modulate PfOPRTase activity in parasites and possibly provide new insights for blocking PfOPRTase functions.« less
Nitabaru, Tatsuya; Nojiri, Akihiro; Kobayashi, Makoto; Kumagai, Naoya; Shibasaki, Masakatsu
2009-09-30
Full details of an anti-selective catalytic asymmetric nitroaldol reaction promoted by a heterobimetallic catalyst comprised of Nd(5)O(O(i)Pr)(13), an amide-based ligand, and NaHMDS (sodium hexamethyldisilazide) are described. A systematic synthesis and evaluation of amide-based ligands led to the identification of optimum ligand 1m, which provided a suitable platform for the Nd/Na heterobimetallic complex. During the catalyst preparation in THF, a heterogeneous mixture developed and centrifugation of the suspension allowed for separation of the precipitate, which contained the active catalyst and which could be stored for at least 1 month without any loss of catalytic performance. The precipitate promoted a nitroaldol (Henry) reaction for a broad range of nitroalkanes and aldehydes under heterogeneous conditions, affording the corresponding 1,2-nitroalkanol in a highly anti-selective (up to anti/syn = >40/1) and enantioselective manner (up to 98% ee). Inductively coupled plasma (ICP) and X-ray fluorescence (XRF) analyses revealed that the precipitate indeed included both neodymium and sodium, which was further supported by high-resolution ESI TOF MS spectrometry.
Biomimetically inspired asymmetric total synthesis of (+)-19-dehydroxyl arisandilactone A
NASA Astrophysics Data System (ADS)
Han, Yi-Xin; Jiang, Yan-Long; Li, Yong; Yu, Hai-Xin; Tong, Bing-Qi; Niu, Zhe; Zhou, Shi-Jie; Liu, Song; Lan, Yu; Chen, Jia-Hua; Yang, Zhen
2017-01-01
Complex natural products are a proven and rich source of disease-modulating drugs and of efficient tools for the study of chemical biology and drug discovery. The architectures of complex natural products are generally considered to represent significant barriers to efficient chemical synthesis. Here we describe a concise and efficient asymmetric synthesis of 19-dehydroxyl arisandilactone A--which belongs to a family of architecturally unique, highly oxygenated nortriterpenoids isolated from the medicinal plant Schisandra arisanensis. This synthesis takes place by means of a homo-Michael reaction, a tandem retro-Michael/Michael reaction, and Cu-catalysed intramolecular cyclopropanation as key steps. The proposed mechanisms for the homo-Michael and tandem retro-Michael/Michael reactions are supported by density functional theory (DFT) calculation. The developed chemistry may find application for the synthesis of its other family members of Schisandraceae nortriterpenoids.
Asymmetric Synthesis of β-Amino Amides by Catalytic Enantioconvergent 2-Aza-Cope Rearrangement
Goodman, C. Guy; Johnson, Jeffrey S.
2015-01-01
Dynamic kinetic resolutions of α-stereogenic-β-formyl amides in asymmetric 2-aza-Cope rearrangements are described. Chiral phosphoric acids catalyze this rare example of a non-hydrogenative DKR of a β-oxo acid derivative. The [3,3]-rearrangement occurs with high diastereo- and enantiocontrol, forming β-imino amides that can be deprotected to the primary β-amino amide or reduced to the corresponding diamine. PMID:26561873
Iridium Catalysts with f-Amphox Ligands: Asymmetric Hydrogenation of Simple Ketones.
Wu, Weilong; Liu, Shaodong; Duan, Meng; Tan, Xuefeng; Chen, Caiyou; Xie, Yun; Lan, Yu; Dong, Xiu-Qin; Zhang, Xumu
2016-06-17
A series of modular and rich electronic tridentate ferrocene aminophosphoxazoline ligands (f-amphox) have been successfully developed and used in iridium-catalytic asymmetric hydrogenation of simple ketones to afford corresponding enantiomerically enriched alcohols under mild conditions with superb activities and excellent enantioselectivities (up to 1 000 000 TON, almost all products up to >99% ee, full conversion). The resulting chiral alcohols and their derivatives are important intermediates in pharmaceuticals.
Zhao, Gui-Ling; Ullah, Farman; Deiana, Luca; Lin, Shuangzheng; Zhang, Qiong; Sun, Junliang; Ibrahem, Ismail; Dziedzic, Pawel; Córdova, Armando
2010-02-01
The first examples of one-pot highly chemo- and enantioselective dynamic kinetic asymmetric transformations (DYKATs) involving alpha,beta-unsaturated aldehydes and propargylated carbon acids are presented. These DYKATs, which proceed by a combination of catalytic iminium activation, enamine activation, and Pd(0)-catalyzed enyne cycloisomerization, give access to functionalized cyclopentenes with up to 99 % ee and can be used for the generation of all-carbon quaternary stereocenters.
Phenanthroline-based metal–organic frameworks for Fe-catalyzed C sp3 –H amination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thacker, Nathan C.; Ji, Pengfei; Lin, Zekai
2017-01-01
We report here the synthesis of a robust and highly porous Fe-phenanthroline-based metal–organic framework (MOF) and its application in catalyzing challenging inter- and intramolecular C–H amination reactions. For the intermolecular amination reactions, a FeBr 2-metalated MOF selectively functionalized secondary benzylic and allylic C–H bonds. The intramolecular amination reactions utilizing organic azides as the nitrene source required the reduction of the FeBr 2-metalated MOF with NaBHEt 3to generate the active catalyst. For both reactions, Fe or Zr leaching was less than 0.1%, and MOFs could be recycled and reused with no loss in catalytic activity. Furthermore, MOF catalysts were significantly moremore » active than the corresponding homogeneous analogs. This work demonstrates the great potential of MOFs in generating highly active, recyclable, and reusable earth abundant metal catalysts for challenging organic transformations.« less
Steering Asymmetric Lewis Acid Catalysis Exclusively with Octahedral Metal-Centered Chirality.
Zhang, Lilu; Meggers, Eric
2017-02-21
Catalysts for asymmetric synthesis must be chiral. Metal-based asymmetric catalysts are typically constructed by assembling chiral ligands around a central metal. In this Account, a new class of effective chiral Lewis acid catalysts is introduced in which the octahedral metal center constitutes the exclusive source of chirality. Specifically, the here discussed class of catalysts are composed of configurationally stable, chiral-at-metal Λ-configured (left-handed propeller) or Δ-configured (right-handed propeller) iridium(III) or rhodium(III) complexes containing two bidentate cyclometalating 5-tert-butyl-2-phenylbenzoxazole (dubbed IrO and RhO) or 5-tert-butyl-2-phenylbenzothiazole (dubbed IrS and RhS) ligands in addition to two exchange-labile acetonitriles. They are synthetically accessible in an enantiomerically pure fashion through a convenient auxiliary-mediated synthesis. Such catalysts are of interest due to their intrinsic structural simplicity (only achiral ligands) and the prospect of an especially effective asymmetric induction due to the intimate contact between the chiral metal center and the metal-coordinated substrates or reagents. With respect to chiral Lewis acid catalysis, the bis-cyclometalated iridium and rhodium complexes provide excellent catalytic activities and asymmetric inductions for a variety of reactions including Michael additions, Friedel-Crafts reactions, cycloadditions, α-aminations, α-fluorinations, Mannich reactions, and a cross-dehydrogenative coupling. Mechanistically, substrates such as 2-acyl imidazoles are usually activated by two-point binding. Exceptions exist as for example for an efficient iridium-catalyzed enantioselective transfer hydrogenation of arylketones with ammonium formate, which putatively proceeds through an iridium-hydride intermediate. The bis-cyclometalated iridium complexes catalyze visible-light-induced asymmetric reactions by intertwining asymmetric catalysis and photoredox catalysis in a unique fashion. This has been applied to the visible-light-induced α-alkylation of 2-acyl imidazoles (and in some instances 2-acylpyridines) with acceptor-substituted benzyl, phenacyl, trifluoromethyl, perfluoroalkyl, and trichloromethyl groups, in addition to photoinduced oxidative α-aminoalkylations and a photoinduced stereocontrolled radical-radical coupling, each employing a single iridium complex. In all photoinduced reaction schemes, the iridium complex serves as a chiral Lewis acid catalyst and at the same time as precursor of in situ assembled photoactive species. The nature of these photoactive intermediates then determines their photochemical properties and thereby the course of the asymmetric photoredox reactions. The bis-cyclometalated rhodium complexes are also very useful for asymmetric photoredox catalysis. Less efficient photochemical properties are compensated with a more rapid ligand exchange kinetics, which permits higher turnover frequencies of the catalytic cycle. This has been applied to a visible-light-induced enantioselective radical α-amination of 2-acyl imidazoles. In this reaction, an intermediate rhodium enolate is supposed to function as a photoactivatable smart initiator to initiate and reinitiate an efficient radical chain process. If a more efficient photoactivation is required, a rhodium-based Lewis acid can be complemented with a photoredox cocatalyst, and this has been applied to efficient catalytic asymmetric alkyl radical additions to acceptor-substituted alkenes. We believe that this class of chiral-only-at-metal Lewis acid catalysts will be of significant value in the field of asymmetric synthesis, in particular in combination with visible-light-induced redox chemistry, which has already resulted in novel strategies for asymmetric synthesis of chiral molecules. Hopefully, this work will also pave the way for the development of other asymmetric catalysts featuring exclusively octahedral centrochirality.
Naik, Vasant S; Shettigar, Venkataraya; Berglin, Tyler S; Coburn, Jillian S; Jasinski, Jerry P; Yathirajan, Hemmige S
2015-08-01
In the mol-ecules of the title compounds, (2E)-1-(3-bromo-thio-phen-2-yl)-3-(2-meth-oxy-phen-yl)prop-2-en-1-one, C14H11BrO2S, (I), which crystallizes in the space group P-1 with four independent mol-ecules in the asymmetric unit (Z' = 8), and (2E)-1-(3-bromo-thio-phen-2-yl)-3-(3,4-di-meth-oxy-phen-yl)prop-2-en-1-one, C15H13BrO3S, (II), which crystallizes with Z' = 8 in the space group I2/a, the non-H atoms are nearly coplanar. The mol-ecules of (I) pack with inversion symmetry stacked diagonally along the a-axis direction. Weak C-H⋯Br intra-molecular inter-actions in each of the four mol-ecules in the asymmetric unit are observed. In (II), weak C-H⋯O, bifurcated three-center inter-molecular inter-actions forming dimers along with weak C-H⋯π and π-π stacking inter-actions are observed, linking the mol-ecules into sheets along [001]. A weak C-H⋯Br intra-molecular inter-action is also present. There are no classical hydrogen bonds present in either structure.
2015-01-01
We report a study involving the successful merger of two separate chiral catalytic cycles: a chiral anion phase-transfer catalysis cycle to activate Selectfluor and an enamine activation cycle, using a protected amino acid as organocatalyst. We have demonstrated the viability of this approach with the direct asymmetric fluorination of α-substituted cyclohexanones to generate quaternary fluorine-containing stereocenters. With these two chiral catalytic cycles operating together in a matched sense, high enantioselectivites can be achieved, and we envisage that this dual catalysis method has the potential to be more broadly applicable, given the breadth of enamine catalysis. It also represents a rare example of chiral enamine catalysis operating successfully on α-branched ketones, substrates commonly inert to this activation mode. PMID:24684209
Rubina, Marina; Sherrill, William M; Barkov, Alexey Yu
2014-01-01
Summary A novel class of chiral phosphanyl-oxazoline (PHOX) ligands with a conformationally rigid cyclopropyl backbone was synthesized and tested in the intermolecular asymmetric Heck reaction. Mechanistic modelling and crystallographic studies were used to predict the optimal ligand structure and helped to design a very efficient and highly selective catalytic system. Employment of the optimized ligands in the asymmetric arylation of cyclic olefins allowed for achieving high enantioselectivities and significantly suppressing product isomerization. Factors affecting the selectivity and the rate of the isomerization were identified. It was shown that the nature of this isomerization is different from that demonstrated previously using chiral diphosphine ligands. PMID:25161709
Rhodium-catalyzed asymmetric hydrogenation of unprotected NH imines assisted by a thiourea.
Zhao, Qingyang; Wen, Jialin; Tan, Renchang; Huang, Kexuan; Metola, Pedro; Wang, Rui; Anslyn, Eric V; Zhang, Xumu
2014-08-04
Asymmetric hydrogenation of unprotected NH imines catalyzed by rhodium/bis(phosphine)-thiourea provided chiral amines with up to 97% yield and 95% ee. (1)H NMR studies, coupled with control experiments, implied that catalytic chloride-bound intermediates were involved in the mechanism through a dual hydrogen-bonding interaction. Deuteration experiments proved that the hydrogenation proceeded through a pathway consistent with an imine. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Asymmetric total synthesis of onoseriolide, bolivianine, and isobolivianine.
Du, Biao; Yuan, Changchun; Yu, Tianzi; Yang, Li; Yang, Yang; Liu, Bo; Qin, Song
2014-02-24
In this article, we describe our efforts on the total synthesis of bolivianine (1) and isobolivianine (2), involving the synthesis of onoseriolide (3). The first generation synthesis of bolivianine was completed in 21 steps by following a chiral resolution strategy. Based on the potential biogenetic relationship between bolivianine (1), onoseriolide (3), and β-(E)-ocimene (8), the second generation synthesis of bolivianine was biomimetically achieved from commercially available (+)-verbenone in 14 steps. The improved total synthesis features an unprecedented palladium-catalyzed intramolecular cyclopropanation through an allylic metal carbene, for the construction of the ABC tricyclic system, and a Diels-Alder/intramolecular hetero-Diels-Alder (DA/IMHDA) cascade for installation of the EFG tricyclic skeleton with the correct stereochemistry. Transformation from bolivianine to isobolivianine was facilitated in the presence of acid. The biosynthetic mechanism and the excellent regio- and endo selectivities in the cascade are well supported by theoretical chemistry based on the DFT calculations. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chi, Qijin; Zhang, Jingdong; Arslan, Taner; Borg, Lotte; Pedersen, Gert W; Christensen, Hans E M; Nazmudtinov, Renat R; Ulstrup, Jens
2010-04-29
Intramolecular electron transfer (ET) between metal centers is a core feature of large protein complexes in photosynthesis, respiration, and redox enzyme catalysis. The number of microscopic redox potentials and ET rate constants is, however, prohibitive for experimental cooperative ET mapping, but two-center proteins are simple enough to offer complete communication networks. At the same time, multicenter redox proteins operate in membrane environments where conformational dynamics may lead to gated ET features different from conditions in homogeneous solution. The bacterial respiratory diheme protein Pseudomonas stutzeri cytochrome c(4) has been a target for intramolecular, interheme ET. We report here voltammetric and in situ scanning tunneling microscopy (STM) data for P. stutzeri cyt c(4) at single-crystal, atomically planar Au(111)-electrode surfaces modified by variable-length omega-mercapto-alkanoic carboxylic acids. As evidenced by in situ STM, the strongly dipolar protein is immobilized in a close to vertical orientation at this surface with the positively charged high-potential heme domain adjacent to the electrode. This orientation gives asymmetric voltammograms with two one-ET peaks in the cathodic direction and a single two-ET peak in the anodic direction. Intramolecular, interheme ET with high, 8,000-30,000 s(-1), rate constants is notably an essential part of this mechanism. The high rate constants are in striking contrast to ET reactions of P. stutzeri cyt c(4) with small reaction partners in homogeneous solution for which kinetic analysis clearly testifies to electrostatic cooperative effects but no intramolecular, interheme ET higher than 0.1-10 s(-1). This difference suggests a strong gating feature of the process. On the basis of the three-dimensional structure of P. stutzeri cyt c(4), gating is understandable due to the through-space, hydrogen-bonded electronic contact between the heme propionates which is highly sensitive to environmental configurational fluctuations.
Asymmetric Functional Organozinc Additions to Aldehydes Catalyzed by 1,1′-Bi-2-naphthols (BINOLs)†
2015-01-01
Conspectus Chiral alcohols are ubiquitous in organic structures. One efficient method to generate chiral alcohols is the catalytic asymmetric addition of a carbon nucleophile to a carbonyl compound since this process produces a C–C bond and a chiral center simultaneously. In comparison with the carbon nucleophiles such as an organolithium or a Grignard reagent, an organozinc reagent possesses the advantages of functional group tolerance and more mild reaction conditions. Catalytic asymmetric reactions of aldehydes with arylzincs, vinylzincs, and alkynylzincs to generate functional chiral alcohols are discussed in this Account. Our laboratory has developed a series of 1,1′-bi-2-naphthol (BINOL)-based chiral catalysts for the asymmetric organozinc addition to aldehydes. It is found that the 3,3′-dianisyl-substituted BINOLs are not only highly enantioselective for the alkylzinc addition to aldehydes, but also highly enantioselective for the diphenylzinc addition to aldehydes. A one-step synthesis has been achieved to incorporate Lewis basic amine groups into the 3,3′-positions of the partially hydrogenated H8BINOL. These H8BINOL–amine compounds have become more generally enantioselective and efficient catalysts for the diphenylzinc addition to aldehydes to produce various types of chiral benzylic alcohols. The application of the H8BINOL–amine catalysts is expanded by using in situ generated diarylzinc reagents from the reaction of aryl iodides with ZnEt2, which still gives high enantioselectivity and good catalytic activity. Such a H8BINOL–amine compound is further found to catalyze the highly enantioselective addition of vinylzincs, in situ generated from the treatment of vinyl iodides with ZnEt2, to aldehydes to give the synthetically very useful chiral allylic alcohols. We have discovered that the unfunctionalized BINOL in combination with ZnEt2 and Ti(OiPr)4 can catalyze the terminal alkyne addition to aldehydes to produce chiral propargylic alcohols of high synthetic utility. The reaction was conducted by first heating an alkyne with ZnEt2 in refluxing toluene to generate an alkynylzinc reagent, which can then add to a broad range of aldehydes at room temperature in the presence of BINOL and Ti(OiPr)4 with high enantioselectivity. It was then found that the addition of a catalytic amount of dicyclohexylamine (Cy2NH) allows the entire process to be conducted at room temperature without the need to generate the alkynylzincs at elevated temperature. This BINOL–ZnEt2–Ti(OiPr)4–Cy2NH catalyst system can be used to catalyze the reaction of structurally diverse alkynes with a broad range of aldehydes at room temperature with high enantioselectivity and good catalytic activity. The work described in this Account demonstrates that BINOL and its derivatives can be used to develop highly enantioselective catalysts for the asymmetric organozinc addition to aldehydes. These processes have allowed the efficient synthesis of many functional chiral alcohols that are useful in organic synthesis. PMID:24738985
Asymmetric functional organozinc additions to aldehydes catalyzed by 1,1'-bi-2-naphthols (BINOLs).
Pu, Lin
2014-05-20
Chiral alcohols are ubiquitous in organic structures. One efficient method to generate chiral alcohols is the catalytic asymmetric addition of a carbon nucleophile to a carbonyl compound since this process produces a C-C bond and a chiral center simultaneously. In comparison with the carbon nucleophiles such as an organolithium or a Grignard reagent, an organozinc reagent possesses the advantages of functional group tolerance and more mild reaction conditions. Catalytic asymmetric reactions of aldehydes with arylzincs, vinylzincs, and alkynylzincs to generate functional chiral alcohols are discussed in this Account. Our laboratory has developed a series of 1,1'-bi-2-naphthol (BINOL)-based chiral catalysts for the asymmetric organozinc addition to aldehydes. It is found that the 3,3'-dianisyl-substituted BINOLs are not only highly enantioselective for the alkylzinc addition to aldehydes, but also highly enantioselective for the diphenylzinc addition to aldehydes. A one-step synthesis has been achieved to incorporate Lewis basic amine groups into the 3,3'-positions of the partially hydrogenated H8BINOL. These H8BINOL-amine compounds have become more generally enantioselective and efficient catalysts for the diphenylzinc addition to aldehydes to produce various types of chiral benzylic alcohols. The application of the H8BINOL-amine catalysts is expanded by using in situ generated diarylzinc reagents from the reaction of aryl iodides with ZnEt2, which still gives high enantioselectivity and good catalytic activity. Such a H8BINOL-amine compound is further found to catalyze the highly enantioselective addition of vinylzincs, in situ generated from the treatment of vinyl iodides with ZnEt2, to aldehydes to give the synthetically very useful chiral allylic alcohols. We have discovered that the unfunctionalized BINOL in combination with ZnEt2 and Ti(O(i)Pr)4 can catalyze the terminal alkyne addition to aldehydes to produce chiral propargylic alcohols of high synthetic utility. The reaction was conducted by first heating an alkyne with ZnEt2 in refluxing toluene to generate an alkynylzinc reagent, which can then add to a broad range of aldehydes at room temperature in the presence of BINOL and Ti(O(i)Pr)4 with high enantioselectivity. It was then found that the addition of a catalytic amount of dicyclohexylamine (Cy2NH) allows the entire process to be conducted at room temperature without the need to generate the alkynylzincs at elevated temperature. This BINOL-ZnEt2-Ti(O(i)Pr)4-Cy2NH catalyst system can be used to catalyze the reaction of structurally diverse alkynes with a broad range of aldehydes at room temperature with high enantioselectivity and good catalytic activity. The work described in this Account demonstrates that BINOL and its derivatives can be used to develop highly enantioselective catalysts for the asymmetric organozinc addition to aldehydes. These processes have allowed the efficient synthesis of many functional chiral alcohols that are useful in organic synthesis.
Giant optical activity of sugar in thin soap films.
Emile, Janine; Emile, Olivier; Ghoufi, Aziz; Moréac, Alain; Casanova, Federico; Ding, Minxia; Houizot, Patrick
2013-10-15
We report on enhanced experimental optical activity measurements of thin soap films in the presence of sugar. This unusual optical activity is linked to the intramolecular chiral conformation of the glucose molecules at the air/liquid interface. Choosing sodium dodecylsulfate (SDS) as a model surfactant and glucose as model sugar, favorable interactions between the anionic group -OSO3(-)- and the glucose molecules are highlighted. This induces an interfacial anchoring of glucose molecules leading to a perturbing influence of the asymmetric chiral environment. Copyright © 2013 Elsevier Inc. All rights reserved.
Arnold, Jeffrey S; Mwenda, Edward T; Nguyen, Hien M
2014-04-01
Dynamic kinetic asymmetric amination of branched allylic acetimidates has been applied to the synthesis of 2-alkyl-dihydrobenzoazepin-5-ones. These seven-membered-ring aza ketones are prepared in good yield with high enantiomeric excess by rhodium-catalyzed allylic substitution with 2-amino aryl aldehydes followed by intramolecular olefin hydroacylation of the resulting alkenals. This two-step procedure is amenable to varied functionality and proves useful for the enantioselective preparation of these ring systems. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Concise copper-catalyzed synthesis of tricyclic biaryl ether-linked aza-heterocyclic ring systems.
Mestichelli, Paola; Scott, Matthew J; Galloway, Warren R J D; Selwyn, Jamie; Parker, Jeremy S; Spring, David R
2013-11-01
A new method for the synthesis of tricyclic biaryl ether-linked ring systems incorporating seven-, eight-, and nine-membered ring amines is presented. In the presence of catalytic quantities of copper(I), readily accessible acyclic precursors undergo an intramolecular carbon-oxygen bond-forming reaction facilitated by a "templating" chelating nitrogen atom. The methodology displays a broad substrate scope, is practical, and generates rare and biologically interesting tricyclic heteroaromatic products that are difficult to access by other means.
Dual catalysis for enantioselective convergent synthesis of enantiopure vicinal amino alcohols.
Ye, Chen-Xi; Melcamu, Yared Yohannes; Li, Heng-Hui; Cheng, Jiang-Tao; Zhang, Tian-Tian; Ruan, Yuan-Ping; Zheng, Xiao; Lu, Xin; Huang, Pei-Qiang
2018-01-29
Enantiopure vicinal amino alcohols and derivatives are essential structural motifs in natural products and pharmaceutically active molecules, and serve as main chiral sources in asymmetric synthesis. Currently known asymmetric catalytic protocols for this class of compounds are still rare and often suffer from limited scope of substrates, relatively low regio- or stereoselectivities, thus prompting the development of more effective methodologies. Herein we report a dual catalytic strategy for the convergent enantioselective synthesis of vicinal amino alcohols. The method features a radical-type Zimmerman-Traxler transition state formed from a rare earth metal with a nitrone and an aromatic ketyl radical in the presence of chiral N,N'-dioxide ligands. In addition to high level of enantio- and diastereoselectivities, our synthetic protocol affords advantages of simple operation, mild conditions, high-yielding, and a broad scope of substrates. Furthermore, this protocol has been successfully applied to the concise synthesis of pharmaceutically valuable compounds (e.g., ephedrine and selegiline).
Shintani, Ryo; Yamagami, Takafumi; Kimura, Takahiro; Hayashi, Tamio
2005-11-10
[reaction: see text] The first catalytic asymmetric synthesis of 2-aryl-2,3-dihydro-4-quinolones has been developed by way of a rhodium-catalyzed 1,4-addition of arylzinc reagents to 4-quinolones. These 1,4-adducts can be obtained with high enantioselectivity by the use of (R)-binap as a ligand, and high yields are realized by conducting the reactions in the presence of chlorotrimethylsilane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kochem, Amélie; O'Hagan, Molly; Wiedner, Eric S.
2015-06-03
The [Ni(P R 2N R' 2) 2] 2+ family of complexes are exceptionally active catalysts for proton reduction to H 2. In this manuscript, we explore the first protonation step of the proposed catalytic cycle by using a catalytically inactive Ni I complex possessing a sterically demanding variation of the ligand. Due to the paramagnetic nature of the Ni I oxidation state, the protonated Ni I intermediate has been characterized through a combination of cyclic voltammetry, electron nuclear double resonance (ENDOR) spectroscopy, and hyperfine sublevel correlation (HYSCORE) spectroscopy. Both the electrochemical and spectroscopic studies indicate that the NiI complex ismore » protonated at a pendant amine that is endo to Ni, which suggests the presence of an intramolecular Ni I---HN bonding interaction. Using density functional theory, the hydrogen bond was found to involve three doubly-occupied, localized molecular orbitals: the 3d xz, 3d z2, and 3d yz orbitals of nickel. These studies provide the first direct experimental evidence for this critical catalytic intermediate, and implications for catalytic H 2 production are discussed.« less
Asymmetric catalytic formation of quaternary carbons by iminium ion trapping of radicals
NASA Astrophysics Data System (ADS)
Murphy, John J.; Bastida, David; Paria, Suva; Fagnoni, Maurizio; Melchiorre, Paolo
2016-04-01
An important goal of modern organic chemistry is to develop new catalytic strategies for enantioselective carbon-carbon bond formation that can be used to generate quaternary stereogenic centres. Whereas considerable advances have been achieved by exploiting polar reactivity, radical transformations have been far less successful. This is despite the fact that open-shell intermediates are intrinsically primed for connecting structurally congested carbons, as their reactivity is only marginally affected by steric factors. Here we show how the combination of photoredox and asymmetric organic catalysis enables enantioselective radical conjugate additions to β,β-disubstituted cyclic enones to obtain quaternary carbon stereocentres with high fidelity. Critical to our success was the design of a chiral organic catalyst, containing a redox-active carbazole moiety, that drives the formation of iminium ions and the stereoselective trapping of photochemically generated carbon-centred radicals by means of an electron-relay mechanism. We demonstrate the generality of this organocatalytic radical-trapping strategy with two sets of open-shell intermediates, formed through unrelated light-triggered pathways from readily available substrates and photoredox catalysts—this method represents the application of iminium ion activation (a successful catalytic strategy for enantioselective polar chemistry) within the realm of radical reactivity.
Asymmetric Catalysis with bis(hydroxyphenyl)diamides/rare-earth metal complexes.
Kumagai, Naoya; Shibasaki, Masakatsu
2013-01-02
A series of asymmetric catalysts composed of conformationally flexible amide-based chiral ligands and rare-earth metals was developed for proton-transfer catalysis. These ligands derived from amino acids provide an intriguing chiral platform for the formation of asymmetric catalysts upon complexation with rare-earth metals. The scope of this arsenal of catalysts was further broadened by the development of heterobimetallic catalytic systems. The cooperative function of hydrogen bonding and metal coordination resulted in intriguing substrate specificity and stereocontrol, and the dynamic nature of the catalysts led to a switch of their function. Herein, we summarize our recent exploration of this class of catalysts. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chughtai, Adeel H; Ahmad, Nazir; Younus, Hussein A; Laypkov, A; Verpoort, Francis
2015-10-07
Novel catalytic materials are highly demanded to perform a variety of catalytic organic reactions. MOFs combine the benefits of heterogeneous catalysis like easy post reaction separation, catalyst reusability, high stability and homogeneous catalysis such as high efficiency, selectivity, controllability and mild reaction conditions. The possible organization of active centers like metallic nodes, organic linkers, and their chemical synthetic functionalization on the nanoscale shows potential to build up MOFs particularly modified for catalytic challenges. In this review, we have summarized the recent research progress in heterogeneous catalysis by MOFs and their catalytic behavior in various organic reactions, highlighting the key features of MOFs as catalysts based on the active sites in the framework. Examples of their post functionalization, inclusion of active guest species and metal nanoparticles have been discussed. Finally, the use of MOFs as catalysts for asymmetric heterogeneous catalysis and stability of MOFs has been presented as separate sections.
Silyl Ketene Imines: Highly Versatile Nucleophiles for Catalytic, Asymmetric Synthesis
Denmark, Scott E.; Wilson, Tyler W.
2012-01-01
This Minireview provides an overview on the development of silyl ketene imines and their recent applications in catalytic, enantioselective reactions. The unique structure of the ketene imine allows a diverse range of reactivity patterns and provides solutions to existing challenges in the enantioselective construction of quaternary stereogenic carbon centers and cross-benzoin adducts. A variety of reactions for which silyl ketene imines have been applied are presented with an overall goal of inspiring new uses for these underutilized nucleophiles. PMID:22968901
Intermolecular cleavage by UmuD-like mutagenesis proteins
McDonald, John P.; Frank, Ekaterina G.; Levine, Arthur S.; Woodgate, Roger
1998-01-01
The activity of a number of proteins is regulated by self-processing reactions. Elegant examples are the cleavage of the prokaryotic LexA and λCI transcriptional repressors and the UmuD-like mutagenesis proteins. Various studies support the hypothesis that LexA and λCI cleavage reactions are predominantly intramolecular in nature. The recently described crystal structure of the Escherichia coli UmuD′ protein (the posttranslational cleavage product of the UmuD protein) suggests, however, that the region of the protein corresponding to the cleavage site is at least 50 Å away from the catalytic active site. We considered the possibility, therefore, that the UmuD-like proteins might undergo self-processing that, in contrast to LexA and λCI, occurs via an intermolecular rather than intramolecular reaction. To test this hypothesis, we introduced into E. coli compatible plasmids with mutations at either the cleavage or the catalytic site of three UmuD-like proteins. Cleavage of these proteins only occurs in the presence of both plasmids, indicating that the reaction is indeed intermolecular in nature. Furthermore, this intermolecular reaction is completely dependent upon the multifunctional RecA protein and leads to the restoration of cellular mutagenesis in nonmutable E. coli strains. Intermolecular cleavage of a biotinylated UmuD active site mutant was also observed in vitro in the presence of the wild-type UmuD′ protein, indicating that in addition to the intact UmuD protein, the normal cleavage product (UmuD′) can also act as a classical enzyme. PMID:9465040
2016-01-01
Conspectus The development of catalytic enantioselective transformations has been the focus of many research groups over the past half century and is of paramount importance to the pharmaceutical and agrochemical industries. Since the award of the Nobel Prize in 2001, the field of enantioselective transition metal catalysis has soared to new heights, with the development of more efficient catalysts and new catalytic transformations at increasing frequency. Furthermore, catalytic reactions that allow higher levels of redox- and step-economy are being developed. Thus, alternatives to asymmetric alkene dihydroxylation and the enantioselective reduction of α,β-unsaturated ketones can invoke more strategic C–C bond forming reactions, such as asymmetric aldol reactions of an aldehyde with α-hydroxyketone donors or enantioselective alkynylation of an aldehyde, respectively. To facilitate catalytic enantioselective addition reactions, including the aforementioned aldol and alkynylation reactions, our lab has developed the ProPhenol ligand. In this Account, we describe the development and application of the ProPhenol ligand for asymmetric additions of both carbon- and heteroatom-based nucleophiles to various electrophiles. The ProPhenol ligand spontaneously forms chiral dinuclear metal complexes when treated with an alkyl metal reagent, such as Et2Zn or Bu2Mg. The resulting complex contains both a Lewis acidic site to activate an electrophile and a Brønsted basic site to deprotonate a pronucleophile. Initially, our research focused on the use of Zn-ProPhenol complexes to facilitate the direct aldol reaction. Fine tuning of the reaction through ligand modification and the use of additives enabled the direct aldol reaction to proceed in high yields and stereoselectivities with a broad range of donor substrates, including acetophenones, methyl ynones, methyl vinyl ketone, acetone, α-hydroxy carbonyl compounds, and glycine Schiff bases. Additionally, an analogous magnesium ProPhenol complex was used to facilitate enantioselective diazoacetate aldol reactions with aryl, α,β-unsaturated, and aliphatic aldehydes. The utility of bimetallic ProPhenol catalysts was extended to asymmetric additions with a wide range of substrate combinations. Effective pronucleophiles include oxazolones, 2-furanone, nitroalkanes, pyrroles, 3-hydroxyoxindoles, alkynes, meso-1,3-diols, and dialkyl phosphine oxides. These substrates were found to be effective with a number of electrophiles, including aldehydes, imines, nitroalkenes, acyl silanes, vinyl benzoates, and α,β-unsaturated carbonyls. A truly diverse range of enantioenriched compounds have been prepared using the ProPhenol ligand, and the commercial availability of both ligand enantiomers makes it ideally suited for the synthesis of complex molecules. To date, enantioselective ProPhenol-catalyzed reactions have been used in the synthesis of more than 20 natural products. PMID:25650587
NASA Astrophysics Data System (ADS)
Kuznetsov, N. Yu; Bubnov, Yu N.
2015-07-01
The review presents a historical excursion into catalytic alkene metathesis, covering the problems of history of the discovery of this process, as well as investigations on the properties, structure and reactivity of the most popular ruthenium catalysts for metathesis, mechanism of their action and decomposition. The main part covers studies devoted to the syntheses of bridged azabicyclic and 1-azaspirocyclic compounds comprising the intramolecular metathesis of dienes as the key step. The formation of a bicyclic skeleton of a series of natural bridged (cocaine, ferruginine, calystegines, and anatoxin-a) and spiro (pinnaic acids, halichlorine, hystrionicotoxin, and cephalotaxine) azabicycles, as well as their analogues and compounds with larger rings is demonstrated. The methods for the synthesis of diene precursors and the conditions for final assembling of the bicyclic compounds are considered in detail. The generalization of the literature data allows one to efficiently carry out the mentioned process taking into account the most important features. The bibliography includes 129 references.
Molecular Basis of Gain-of-Function LEOPARD Syndrome-Associated SHP2 Mutations
2015-01-01
The Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 2 (SHP2) is a critical signal transducer downstream of growth factors that promotes the activation of the RAS-ERK1/2 cascade. In its basal state, SHP2 exists in an autoinhibited closed conformation because of an intramolecular interaction between its N-SH2 and protein tyrosine phosphatase (PTP) domains. Binding to pTyr ligands present on growth factor receptors and adaptor proteins with its N-SH2 domain localizes SHP2 to its substrates and frees the active site from allosteric inhibition. Germline mutations in SHP2 are known to cause both Noonan syndrome (NS) and LEOPARD syndrome (LS), two clinically similar autosomal dominant developmental disorders. NS-associated SHP2 mutants display elevated phosphatase activity, while LS-associated SHP2 mutants exhibit reduced catalytic activity. A conundrum in how clinically similar diseases result from mutations to SHP2 that have opposite effects on this enzyme’s catalytic functionality exists. Here we report a comprehensive investigation of the kinetic, structural, dynamic, and biochemical signaling properties of the wild type as well as all reported LS-associated SHP2 mutants. The results reveal that LS-causing mutations not only affect SHP2 phosphatase activity but also induce a weakening of the intramolecular interaction between the N-SH2 and PTP domains, leading to mutants that are more readily activated by competing pTyr ligands. Our data also indicate that the residual phosphatase activity associated with the LS SHP2 mutant is required for enhanced ERK1/2 activation. Consequently, catalytically impaired SHP2 mutants could display gain-of-function properties because of their ability to localize to the vicinity of substrates for longer periods of time, thereby affording the opportunity for prolonged substrate turnover and sustained RAS-ERK1/2 activation. PMID:24935154
Asymmetric catalytic cascade reactions for constructing diverse scaffolds and complex molecules.
Wang, Yao; Lu, Hong; Xu, Peng-Fei
2015-07-21
With the increasing concerns about chemical pollution and sustainability of resources, among the significant challenges facing synthetic chemists are the development and application of elegant and efficient methods that enable the concise synthesis of natural products, drugs, and related compounds in a step-, atom- and redox-economic manner. One of the most effective ways to reach this goal is to implement reaction cascades that allow multiple bond-forming events to occur in a single vessel. This Account documents our progress on the rational design and strategic application of asymmetric catalytic cascade reactions in constructing diverse scaffolds and synthesizing complex chiral molecules. Our research is aimed at developing robust cascade reactions for the systematic synthesis of a range of interesting molecules that contain structural motifs prevalent in natural products, pharmaceuticals, and biological probes. The strategies employed to achieve this goal can be classified into three categories: bifunctional base/Brønsted acid catalysis, covalent aminocatalysis/N-heterocyclic carbene catalysis, and asymmetric organocatalytic relay cascades. By the use of rationally designed substrates with properly reactive sites, chiral oxindole, chroman, tetrahydroquinoline, tetrahydrothiophene, and cyclohexane scaffolds were successfully assembled under bifunctional base/Brønsted acid catalysis from simple and readily available substances such as imines and nitroolefins. We found that some of these reactions are highly efficient since catalyst loadings as low as 1 mol % can promote the multistep sequences affording complex architectures with high stereoselectivities and yields. Furthermore, one of the bifunctional base/Brønsted acid-catalyzed cascade reactions for the synthesis of chiral cyclohexanes has been used as a key step in the construction of the tetracyclic core of lycorine-type alkaloids and the formal synthesis of α-lycorane. Guided by the principles of covalent aminocatalysis and N-heterocyclic carbene catalysis, we synthesized chiral piperidine, indole, and cyclobutane derivatives. The synthesis of chiral cyclobutanes and pyrroloindolones showed unprecedented reactivity of substrates and catalysts. The development of the strategy of asymmetric organocatalytic relay cascades has provided a useful tool for the controlled synthesis of specific diastereomers in complex molecules. This Account gives a panoramic view and the logic of our research on the design, development, and applications of asymmetric catalytic cascade reactions that will potentially provide useful insights into exploring new reactions.
Exploring the Scope of Asymmetric Synthesis of β-Hydroxy-γ-lactams via Noyori-type Reductions.
Lynch, Denis; Deasy, Rebecca E; Clarke, Leslie-Ann; Slattery, Catherine N; Khandavilli, U B Rao; Lawrence, Simon E; Maguire, Anita R; Magnus, Nicholas A; Moynihan, Humphrey A
2016-10-07
Enantio- and diastereoselective hydrogenation of β-keto-γ-lactams with a ruthenium-BINAP catalyst, involving dynamic kinetic resolution, has been employed to provide a general, asymmetric approach to β-hydroxy-γ-lactams, a structural motif common to several bioactive compounds. Full conversion to the desired β-hydroxy-γ-lactams was achieved with high diastereoselectivity (up to >98% de) by addition of catalytic HCl and LiCl, while β-branching of the ketone substituent demonstrated a pronounced effect on the modest to excellent enantioselectivity (up to 97% ee) obtained.
Lyubimov, Sergey E; Rastorguev, Eugenie A; Davankov, Vadim A
2011-09-01
New chiral amidophosphite ligand was synthesized and tested in the Rh-catalyzed asymmetric hydrogenation of (Z)-β-(acylamino)acrylates in protic solvents and supercritical carbon dioxide (scCO(2) ) The catalytic performance is affected greatly by the acidity of the solvents. Better enantioselectivity (up to 88% ee) was achieved in scCO(2) containing 1,1,1,3,3,3-hexafluoro-2-propanol, compared to neat protic solvents. Copyright © 2011 Wiley-Liss, Inc.
Cecere, Giuseppe; König, Christian M; Alleva, Jennifer L; MacMillan, David W C
2013-08-07
The direct, asymmetric α-amination of aldehydes has been accomplished via a combination of photoredox and organocatalysis. Photon-generated N-centered radicals undergo enantioselective α-addition to catalytically formed chiral enamines to directly produce stable α-amino aldehyde adducts bearing synthetically useful amine substitution patterns. Incorporation of a photolabile group on the amine precursor obviates the need to employ a photoredox catalyst in this transformation. Importantly, this photoinduced transformation allows direct and enantioselective access to α-amino aldehyde products that do not require postreaction manipulation.
Ren, Dong-Mei
2012-05-01
The asymmetric unit of the title compound, C(6)H(4)ClNO(3), contains two independent mol-ecules in which the dihedral angles between the benzene ring and the nitro groups are 2.5 (1) and 8.5 (1)°. Intra-molecular O-H⋯O hydrogen bonds involving the hy-droxy and nitro substituents result in the formation of S(6) six-membered rings. In the crystal, O-H⋯O, O-H⋯Cl and C-H⋯O hydrogen bonds together with Cl⋯O contacts [3.238 (3) and 3.207 (3) Å] generate a three-dimensional network.
An Adaptor Domain-Mediated Auto-Catalytic Interfacial Kinase Reaction
Liao, Xiaoli; Su, Jing; Mrksich, Milan
2010-01-01
This paper describes a model system for studying the auto-catalytic phosphorylation of an immobilized substrate by a kinase enzyme. This work uses self-assembled monolayers (SAMs) of alkanethiolates on gold to present the peptide substrate on a planar surface. Treatment of the monolayer with Abl kinase results in phosphorylation of the substrate. The phosphorylated peptide then serves as a ligand for the SH2 adaptor domain of the kinase and thereby directs the kinase activity to nearby peptide substrates. This directed reaction is intramolecular and proceeds with a faster rate than does the initial, intermolecular reaction, making this an auto-catalytic process. The kinetic non-linearity gives rise to properties that have no counterpart in the corresponding homogeneous phase reaction: in one example, the rate for phosphorylation of a mixture of two peptides is faster than the sum of the rates for phosphorylation of each peptide when presented alone. This work highlights the use of an adaptor domain in modulating the activity of a kinase enzyme for an immobilized substrate and offers a new approach for studying biochemical reactions in spatially inhomogeneous settings. PMID:19821459
Wang, Yong; Wen, Xin; Cui, Xin; Wojtas, Lukasz; Zhang, X Peter
2017-01-25
Donor-substituted diazo reagents, generated in situ from sulfonyl hydrazones in the presence of base, can serve as suitable radical precursors for Co(II)-based metalloradical catalysis (MRC). The cobalt(II) complex of D 2 -symmetric chiral porphyrin [Co(3,5-Di t Bu-Xu(2'-Naph)Phyrin)] is an efficient metalloradical catalyst that is capable of activating different N-arylsulfonyl hydrazones for asymmetric radical cyclopropanation of a broad range of alkenes, affording the corresponding cyclopropanes in high yields with effective control of both diastereo- and enantioselectivity. This Co(II)-based metalloradical system represents the first catalytic protocol that can effectively utilize donor-type diazo reagents for asymmetric olefin cyclopropanation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, M.; Shi, W; Rinaldo-Mathis, A
Inhibition of human purine nucleoside phosphorylase (PNP) stops growth of activated T-cells and the formation of 6-oxypurine bases, making it a target for leukemia, autoimmune disorders, and gout. Four generations of ribocation transition-state mimics bound to PNP are structurally characterized. Immucillin-H (K*{sub i} = 58 pM, first-generation) contains an iminoribitol cation with four asymmetric carbons. DADMe-Immucillin-H (K*{sub i} = 9 pM, second-generation), uses a methylene-bridged dihydroxypyrrolidine cation with two asymmetric centers. DATMe-Immucillin-H (K*{sub i} = 9 pM, third-generation) contains an open-chain amino alcohol cation with two asymmetric carbons. SerMe-ImmH (K*{sub i} = 5 pM, fourth-generation) uses achiral dihydroxyaminoalcohol seramide asmore » the ribocation mimic. Crystal structures of PNPs establish features of tight binding to be; (1) ion-pair formation between bound phosphate (or its mimic) and inhibitor cation, (2) leaving-group interactions to N1, O6, and N7 of 9-deazahypoxanthine, (3) interaction between phosphate and inhibitor hydroxyl groups, and (4) His257 interacting with the 5{prime}-hydroxyl group. The first generation analogue is an imperfect fit to the catalytic site with a long ion pair distance between the iminoribitol and bound phosphate and weaker interactions to the leaving group. Increasing the ribocation to leaving-group distance in the second- to fourth-generation analogues provides powerful binding interactions and a facile synthetic route to powerful inhibitors. Despite chemical diversity in the four generations of transition-state analogues, the catalytic site geometry is almost the same for all analogues. Multiple solutions in transition-state analogue design are available to convert the energy of catalytic rate enhancement to binding energy in human PNP.« less
2015-01-01
Catalytic, enantioselective hydroacylations of N-allylindole-2-carboxaldehydes and N-allylpyrrole-2-carboxaldehydes are reported. In contrast to many alkene hydroacylations that form six-membered rings, these annulative processes occur in the absence of ancillary functionality to stabilize the acylrhodium(III) hydride intermediate. The intramolecular hydroacylation reactions generate 7,8-dihydropyrido[1,2-a]indol-9(6H)ones and 6,7-dihydroindolizin-8(5H)-ones in moderate to high yields with excellent enantioselectivities. PMID:25020184
Closser, Kristina D; Quintal, Miriam M; Shea, Kevin M
2009-05-15
We studied the scope and limitations of a tandem intramolecular Nicholas/Pauson-Khand strategy for the synthesis of tricyclic oxygen- and nitrogen-containing heterocycles. This methodology enables conversion of simple acyclic starting materials into a series of previously unknown heterocyclic architectures. For the preparation of cyclic ethers (Z = O), tricyclic [5,6,5]- through [5,9,5]-systems (m = 1, n = 1-4) are available with the [5,7,5]- and [5,8,5]-systems amenable to quick and efficient synthesis. Tricyclic [5,7,5]- and [5,8,5]-amine-containing (Z = NTs) heterocycles can be successfully prepared. Attempts to make larger ring systems (Z = O, m = 2; Z = O, n = 5; or Z = NTs, n = 4-5) or prepare lactones via Nicholas reactions with carboxylic acid nucleophiles (available via oxidation of alcohol nucleophiles, Z = O) result in decomposition or dimerization. The latter process enables formation of 14-, 16-, and 18-membered ring diolides when using carboxylic acid nucleophiles. We also investigated the use of chiral amine promoters in the Pauson-Khand step but found no asymmetric induction.
On the mechanism of the palladium catalyzed intramolecular Pauson-Khand-type reaction.
Lan, Yu; Deng, Lujiang; Liu, Jing; Wang, Can; Wiest, Olaf; Yang, Zhen; Wu, Yun-Dong
2009-07-17
Density functional theory calculations and experimental studies have been carried out on the intramolecular Pauson-Khand-Type reaction mediated by a PdCl(2)-thiourea catalyst, which proceeds under mild reaction conditions and provides a useful alternative to traditional Pauson-Khand reactions. The classical mechanism of the Pauson-Khand reaction involving the alkyne/alkene C-C bond formation as the key step has been found to be energetically unfavorable and is not in line with the experimental observations. A novel reaction mechanism has been proposed for the reaction. The first step involves the cis-halometalation of the alkyne, followed by sequential alkene and carbonyl insertion. The rate-determining fourth step is an intramolecular C-Cl oxidative addition, leading to a Pd(IV) intermediate. A C-C bond formation by reductive elimination completes the reaction. The mechanism is in agreement with the key experimental observations including (1) the need of a chloride for catalytic activity and the absence of catalysis with Pd(OAc)(2) alone; (2) the rate acceleration by the addition of LiCl; both with PdCl(2) and Pd(OAc)(2) catalysts; and (3) the preferred formation of the trans diastereomer in substituted cases. The cis halometalation and the formation and stability of the Pd(IV) intermediate is studied in detail and provides general insights into these novel steps.
Catalytic Asymmetric Synthesis of Butenolides and Butyrolactones
2017-01-01
γ-Butenolides, γ-butyrolactones, and derivatives, especially in enantiomerically pure form, constitute the structural core of numerous natural products which display an impressive range of biological activities which are important for the development of novel physiological and therapeutic agents. Furthermore, optically active γ-butenolides and γ-butyrolactones serve also as a prominent class of chiral building blocks for the synthesis of diverse biological active compounds and complex molecules. Taking into account the varying biological activity profiles and wide-ranging structural diversity of the optically active γ-butenolide or γ-butyrolactone structure, the development of asymmetric synthetic strategies for assembling such challenging scaffolds has attracted major attention from synthetic chemists in the past decade. This review offers an overview of the different enantioselective synthesis of γ-butenolides and γ-butyrolactones which employ catalytic amounts of metal complexes or organocatalysts, with emphasis focused on the mechanistic issues that account for the observed stereocontrol of the representative reactions, as well as practical applications and synthetic potentials. PMID:28640622
Hydrophobic Shielding Drives Catalysis of Hydride Transfer in a Family of F420H2-Dependent Enzymes.
Mohamed, A Elaaf; Condic-Jurkic, Karmen; Ahmed, F Hafna; Yuan, Peng; O'Mara, Megan L; Jackson, Colin J; Coote, Michelle L
2016-12-13
A family of flavin/deazaflavin-dependent oxidoreductases (FDORs) from mycobacteria has been recently characterized and found to play a variety of catalytic roles, including the activation of prodrugs such as the candidate anti-tuberculosis drug pretomanid (PA-824). However, our understanding of the catalytic mechanism used by these enzymes is relatively limited. To address this, we have used a combination of quantum mechanics and molecular dynamics calculations to study the catalytic mechanism of the activation of pretomanid by the deazaflavin-dependent nitroreductase (Ddn) from Mycobacterium tuberculosis. The preferred pathway involves an initial hydride transfer step from the deprotonated cofactor (i.e., F 420 H - ), with subsequent protonation, before a series of spontaneous intramolecular reactions to form the final reactive nitrogen species. The most likely proton source is a hydroxonium ion within the solvent accessible active site. Intriguingly, catalysis of the rate-determining hydride transfer step is aided by three tyrosine residues that form a hydrophobic barrier around the active site that, upon reaction, is then disrupted to allow increased water accessibility to facilitate the subsequent proton transfer step. The catalytic mechanism we propose is consistent with previous experimental observations of the Ddn enzyme and will inform the design of improved prodrugs in the future.
Organic reactions mediated by electrochemically generated ArS+.
Matsumoto, Kouichi; Suga, Seiji; Yoshida, Jun-ichi
2011-04-21
Low-temperature electrochemical oxidation of ArSSAr was carried out to generate a pool of "ArS(+)". Spectroscopic studies ((1)H NMR and CSI-MS) of the resulting solution revealed the accumulation of ArS(ArSSAr)(+). The resulting "ArS(+)" pool reacted with alkenes and alkynes to give diarylthio-substituted products. The "ArS(+)" pool rapidly reacted with thioacetals to give the corresponding alkoxycarbenium ion pools, which reacted with various carbon nucleophiles (indirect cation pool method). The reaction of the alkoxycarbenium ion pools with stilbene derivatives in the presence of ArSSAr gave thiochroman derivatives. In addition to such stoichiometric reactions, a catalytic amount of "ArS(+)" serves as an initiator and a chain carrier of some cationic chain reactions involving intramolecular carbon-carbon bond formation. In situ generation of "ArS(+)" by electrochemical oxidation of ArSSAr with a catalytic amount of electricity in the presence of a substrate is also effective for such cationic chain reactions.
Mebs, Stefan; Chilleck, Maren Annika; Meindl, Kathrin; Hübschle, Christian Bertram
2014-06-19
Despite numerous advanced and widely distributed bonding theories such as MO, VB, NBO, AIM, and ELF/ELI-D, complex modes of bonding such as M-Cp*((R)) interactions (hapticities) in asymmetrical metallocenes or weak intramolecular interactions (e.g., hydrogen-hydrogen (H···H) bonds) still remain a challenge for these theories in terms of defining whether or not an atom-atom interaction line (a "chemical bond") should be drawn. In this work the intramolecular Zn-C(Cp*(R)) (R = Me, -(CH2)2NMe2, and -(CH2)3NMe2) and H···H connectivity of a systematic set of 12 zincocene-related compounds is analyzed in terms of AIM and ELI-D topology combined with the recently introduced aspherical stockholder fragment (ASF) surfaces. This computational analysis unravels a distinct dependency of the AIM and ELI-D topology against the molecular geometry for both types of interactions, which confirms and extends earlier findings on smaller sets of compounds. According to these results the complete real-space topology including strong, medium, and weak interactions of very large compounds such as proteins may be reliably predicted by sole inspection of accurately determined molecular geometries, which would on the one hand afford new applications (e.g., accurate estimation of numbers, types, and strengths of intra- and intermolecular interactions) and on the other hand have deep implications on the significance of the method.
NASA Astrophysics Data System (ADS)
Leforestier, Claude; van Harrevelt, Rob; van der Avoird, Ad
2009-05-01
The 12-dimensional ab initio potential for the water dimer with flexible monomers from Huang et al. (J. Chem. Phys. 2008, 128, 034312) was used in accurate calculations of the vibration-rotation-tunneling (VRT) levels of (H2O)2 and (D2O)2 involving the intermolecular rovibrational and tunneling states as well as the intramolecular vibrations. For the intermolecular VRT levels we used a 6 + 6d model in which the fast intramolecular vibrations are adiabatically separated from the much slower intermolecular vibrations, tunneling motions, and overall rotations. We also tested two six-dimensional (6d) rigid monomer models in which the monomers were frozen either at their equilibrium geometry or at their ground state vibrationally averaged geometry. All the results from the 6 + 6d model agree well with the large amount of detailed experimental data available from high-resolution spectroscopy. For most of the parameters characterizing the spectra the results of the two 6d rigid monomer models do not significantly differ from the 6 + 6d results. An exception is the relatively large acceptor tunneling splitting, which was the only quantity for which the 6d model with the monomers frozen at their equilibrium geometry was not in good agreement with the experimental data. The 6d model with monomers at their vibrationally averaged geometry performs considerably better, and the full 6 + 6d results agree with the measurements also for this quantity. For the excited intramolecular vibrations we tested two 6 + 6d models. In the first model the excitation was assumed to be either on the donor in the hydrogen bond or on the acceptor, and to hop from one monomer to the other upon donor-acceptor interchange. In the second model the monomer excitation remains localized on a given monomer for all dimer geometries. Almost the same frequencies of the intramolecular vibrations were found for the two models. The calculations show considerable variations in the frequencies of the intramolecular modes for transitions involving different tunneling levels and different values of the rotational quantum number K. For K = 0 → 0 transitions these variations largely cancel, however. A comparison with experimental data is difficult, except for the acceptor asymmetric stretch mode observed in high-resolution spectra, because it is not clear how much the different transitions contribute to the (unresolved) peaks in most of the experimental spectra. The large red shift of the donor bound OH stretch mode is correctly predicted, but the value calculated for this red shift is too small by more than 20%. Also in the smaller shifts of the other modes we find relatively large errors. It is useful, however, that our detailed calculations including all ground and excited state tunneling levels provide an explanation for the splitting of the acceptor asymmetric stretch band observed in He nanodroplet spectra, as well as for the fact that the other bands in these spectra show much smaller or no splittings.
Asymmetric Synthesis of 1,2,9,9a-Tetrahydrocyclopropa[c]benzo[e]indol-4-one (CBI)
Lajiness, James P.; Boger, Dale L.
2011-01-01
A short, asymmetric synthesis of the 1,2,9,9a-tetrahydrocyclopropa[c]benzo[e]indol-4-one (CBI) analogue of the CC-1065 and duocarmycin DNA alkylation subunits is described. Treatment of iodo-epoxide 5, prepared by late-stage alkylation of 4 with (S)-glycidal-3-nosylate, with EtMgBr at room temperature directly provides the optically pure alcohol 6 in 87% yield (99% ee) derived from selective metal–halogen exchange and subsequent regioselective intramolecular 6-endo-tet cyclization. The use of MeMgBr or i-PrMgBr also provides the product in high yields (82–87%), but requires larger amounts of the Grignard reagent to effect metal–halogen exchange and cyclization. Direct transannular spirocyclization of 7 following O-debenzylation of 6 provides N-Boc-CBI. This approach represents the most efficient (9-steps, 31% overall) and effective (99% ee) route to the optically pure CBI alkylation subunit yet described. PMID:21192653
2012-01-01
Background The bacterium Acetobacter sp. CCTCC M209061 is a promising whole-cell biocatalyst with exclusive anti-Prelog stereoselectivity for the reduction of prochiral ketones that can be used to make valuable chiral alcohols such as (R)-4-(trimethylsilyl)-3-butyn-2-ol. Although it has promising catalytic properties, its stability and reusability are relatively poor compared to other biocatalysts. Hence, we explored various materials for immobilizing the active cells, in order to improve the operational stability of biocatalyst. Results It was found that Ca-alginate give the best immobilized biocatalyst, which was then coated with chitosan to further improve its mechanical strength and swelling-resistance properties. Conditions were optimized for formation of reusable immobilized beads which can be used for repeated batch asymmetric reduction of 4′-chloroacetophenone. The optimized immobilized biocatalyst was very promising, with a specific activity of 85% that of the free-cell biocatalyst (34.66 μmol/min/g dw of cells for immobilized catalyst vs 40.54 μmol/min/g for free cells in the asymmetric reduction of 4′-chloroacetophenone). The immobilized cells showed better thermal stability, pH stability, solvent tolerance and storability compared with free cells. After 25 cycles reaction, the immobilized beads still retained >50% catalytic activity, which was 3.5 times higher than degree of retention of activity by free cells reused in a similar way. The cells could be recultured in the beads to regain full activity and perform a further 25 cycles of the reduction reaction. The external mass transfer resistances were negligible as deduced from Damkohler modulus Da < <1, and internal mass transfer restriction affected the reduction action but was not the principal rate-controlling step according to effectiveness factors η < 1 and Thiele modulus 0.3<∅ <1. Conclusions Ca-alginate coated with chitosan is a highly effective material for immobilization of Acetobacter sp. CCTCC M209061 cells for repeated use in the asymmetric reduction of ketones. Only a small cost in terms of the slightly lower catalytic activity compared to free cells could give highly practicable immobilized biocatalyst. PMID:22947394
Chen, Xiao-Hong; Wang, Xiao-Ting; Lou, Wen-Yong; Li, Ying; Wu, Hong; Zong, Min-Hua; Smith, Thomas J; Chen, Xin-De
2012-09-04
The bacterium Acetobacter sp. CCTCC M209061 is a promising whole-cell biocatalyst with exclusive anti-Prelog stereoselectivity for the reduction of prochiral ketones that can be used to make valuable chiral alcohols such as (R)-4-(trimethylsilyl)-3-butyn-2-ol. Although it has promising catalytic properties, its stability and reusability are relatively poor compared to other biocatalysts. Hence, we explored various materials for immobilizing the active cells, in order to improve the operational stability of biocatalyst. It was found that Ca-alginate give the best immobilized biocatalyst, which was then coated with chitosan to further improve its mechanical strength and swelling-resistance properties. Conditions were optimized for formation of reusable immobilized beads which can be used for repeated batch asymmetric reduction of 4'-chloroacetophenone. The optimized immobilized biocatalyst was very promising, with a specific activity of 85% that of the free-cell biocatalyst (34.66 μmol/min/g dw of cells for immobilized catalyst vs 40.54 μmol/min/g for free cells in the asymmetric reduction of 4'-chloroacetophenone). The immobilized cells showed better thermal stability, pH stability, solvent tolerance and storability compared with free cells. After 25 cycles reaction, the immobilized beads still retained >50% catalytic activity, which was 3.5 times higher than degree of retention of activity by free cells reused in a similar way. The cells could be recultured in the beads to regain full activity and perform a further 25 cycles of the reduction reaction. The external mass transfer resistances were negligible as deduced from Damkohler modulus Da < <1, and internal mass transfer restriction affected the reduction action but was not the principal rate-controlling step according to effectiveness factors η < 1 and Thiele modulus 0.3<∅ <1. Ca-alginate coated with chitosan is a highly effective material for immobilization of Acetobacter sp. CCTCC M209061 cells for repeated use in the asymmetric reduction of ketones. Only a small cost in terms of the slightly lower catalytic activity compared to free cells could give highly practicable immobilized biocatalyst.
Shiota, Masaki; Yamazaki, Tomohiko; Yoshimatsu, Keiichi; Kojima, Katsuhiro; Tsugawa, Wakako; Ferri, Stefano; Sode, Koji
2016-12-01
Several bacterial flavin adenine dinucleotide (FAD)-harboring dehydrogenase complexes comprise three distinct subunits: a catalytic subunit with FAD, a cytochrome c subunit containing three hemes, and a small subunit. Owing to the cytochrome c subunit, these dehydrogenase complexes have the potential to transfer electrons directly to an electrode. Despite various electrochemical applications and engineering studies of FAD-dependent dehydrogenase complexes, the intra/inter-molecular electron transfer pathway has not yet been revealed. In this study, we focused on the conserved Cys-rich region in the catalytic subunits using the catalytic subunit of FAD dependent glucose dehydrogenase complex (FADGDH) as a model, and site-directed mutagenesis and electron paramagnetic resonance (EPR) were performed. By co-expressing a hitch-hiker protein (γ-subunit) and a catalytic subunit (α-subunit), FADGDH γα complexes were prepared, and the properties of the catalytic subunit of both wild type and mutant FADGDHs were investigated. Substitution of the conserved Cys residues with Ser resulted in the loss of dye-mediated glucose dehydrogenase activity. ICP-AEM and EPR analyses of the wild-type FADGDH catalytic subunit revealed the presence of a 3Fe-4S-type iron-sulfur cluster, whereas none of the Ser-substituted mutants showed the EPR spectrum characteristic for this cluster. The results suggested that three Cys residues in the Cys-rich region constitute an iron-sulfur cluster that may play an important role in the electron transfer from FAD (intra-molecular) to the multi-heme cytochrome c subunit (inter-molecular) electron transfer pathway. These features appear to be conserved in the other three-subunit dehydrogenases having an FAD cofactor. Copyright © 2016 Elsevier B.V. All rights reserved.
Ng, Ley-Moy; Soon, Fen-Fen; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Suino-Powell, Kelly M.; Chalmers, Michael J.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric
2011-01-01
Abscisic acid (ABA) is an essential hormone that controls plant growth, development, and responses to abiotic stresses. Central for ABA signaling is the ABA-mediated autoactivation of three monomeric Snf1-related kinases (SnRK2.2, -2.3, and -2.6). In the absence of ABA, SnRK2s are kept in an inactive state by forming physical complexes with type 2C protein phosphatases (PP2Cs). Upon relief of this inhibition, SnRK2 kinases can autoactivate through unknown mechanisms. Here, we report the crystal structures of full-length Arabidopsis thaliana SnRK2.3 and SnRK2.6 at 1.9- and 2.3-Å resolution, respectively. The structures, in combination with biochemical studies, reveal a two-step mechanism of intramolecular kinase activation that resembles the intermolecular activation of cyclin-dependent kinases. First, release of inhibition by PP2C allows the SnRK2s to become partially active because of an intramolecular stabilization of the catalytic domain by a conserved helix in the kinase regulatory domain. This stabilization enables SnRK2s to gain full activity by activation loop autophosphorylation. Autophosphorylation is more efficient in SnRK2.6, which has higher stability than SnRK2.3 and has well-structured activation loop phosphate acceptor sites that are positioned next to the catalytic site. Together, these data provide a structural framework that links ABA-mediated release of PP2C inhibition to activation of SnRK2 kinases. PMID:22160701
Tobisch, Sven
2012-06-04
The present study comprehensively explores diverse mechanistic pathways for intramolecular hydroamination of prototype 2,2-dimethyl-4-penten-1-amine by Cp*Ir chloropyrazole (1; Cp*=pentamethylcyclopentadienyl) in the presence of KOtBu base with the aid of density functional theory (DFT) calculations. The most accessible mechanistic pathway for catalytic turnover commences from Cp*Ir pyrazolato (Pz) substrate adduct 2⋅S, representing the catalytically competent compound and proceeds via initial electrophilic activation of the olefin C=C bond by the metal centre. It entails 1) facile and reversible anti nucleophilic amine attack on the iridium-olefin linkage; 2) Ir-C bond protonolysis via stepwise transfer of the ammonium N-H proton at the zwitterionic [Cp*IrPz-alkyl] intermediate onto the metal that is linked to turnover-limiting, reductive, cycloamine elimination commencing from a high-energy, metastable [Cp*IrPz-hydrido-alkyl] species; and 3) subsequent facile cycloamine liberation to regenerate the active catalyst species. The amine-iridium bound 2 a⋅S likely corresponds to the catalyst resting state and the catalytic reaction is expected to proceed with a significant primary kinetic isotope. This study unveils the vital role of a supportive hydrogen-bonded network involving suitably aligned β-basic pyrazolato and cycloamido moieties together with an external amine molecule in facilitating metal protonation and reductive elimination. Cooperative hydrogen bonding thus appears pivotal for effective catalysis. The mechanistic scenario is consonant with catalyst performance data and furthermore accounts for the variation in performance for [Cp*IrPz] compounds featuring a β- or γ-basic pyrazolato unit. As far as the route that involves amine N-H bond activation is concerned, a thus far undocumented pathway for concerted amidoalkene → cycloamine conversion through olefin protonation by the pyrazole N-H concurrent with N-C ring closure is disclosed as a favourable scenario. Although not practicable in the present system, this pathway describes a novel mechanistic variant in late transition metal-ligand bifunctional hydroamination catalysis that can perhaps be viable for tailored catalyst designs. The insights revealed herein concerning the operative mechanism and the structure-reactivity relationships will likely govern the rational design of late transition metal-ligand bifunctional catalysts and facilitate further conceptual advances in the area. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Progress in aminosugar derived asymmetric organocatalysis.
Agarwal, Jyoti
2016-11-22
In the last decade aminosugars, especially d-glucoamine based organocatalysts, have been applied to catalyze various asymmetric reactions such as aldol reactions, Michael addition, Strecker reactions, Biginelli reactions, epoxidation, fluorination, and imine reduction, and for the synthesis of various biologically important molecules such as 3-alkylnitro-2-hydroxynaphthoquinones, trans-dihydrobenzofurans etc. Immense growth has been also observed in the structural modification of aminosugar based organocatalysts to obtain the best results from them. This review sheds light on such organocatalytic transformations reported in last the decade including the effect of the structural modification of sugar amines on their catalytic efficiency and the stereoselectivity of the reaction.
Easy To Synthesize, Robust Organo‐osmium Asymmetric Transfer Hydrogenation Catalysts
Coverdale, James P. C.; Sanchez‐Cano, Carlos; Clarkson, Guy J.; Soni, Rina
2015-01-01
Abstract Asymmetric transfer hydrogenation (ATH) is an important process in organic synthesis for which the Noyori‐type RuII catalysts [(arene)Ru(Tsdiamine)] are now well established and widely used. We now demonstrate for the first time the catalytic activity of the osmium analogues. X‐ray crystal structures of the 16‐electron OsII catalysts are almost identical to those of RuII. Intriguingly the precursor complex was isolated as a dichlorido complex with a monodentate amine ligand. The OsII catalysts are readily synthesised (within 1 h) and exhibit excellent enantioselectivity in ATH reactions of ketones. PMID:25853228
Li, Yi; Xu, Ming-Hua
2014-05-16
The first Rh-catalyzed asymmetric tandem cyclization of nitrogen- or oxygen-bridged 5-alkynones with arylboronic acids was achieved. The simple catalytic system involving a rhodium(I) complex with readily available chiral BINAP ligand promotes the reaction to proceed in a highly stereocontrolled manner. This protocol provides a very reliable and practical access to a variety of chiral heterocyclic tertiary allylic alcohols possessing a tetrasubstituted carbon stereocenter and an all-carbon tetrasubstituted olefin functionality in good yields with great enantioselectivities up to 99% ee.
Cecere, Giuseppe; Koenig, Christian M.; Alleva, Jennifer L.
2013-01-01
The direct, asymmetric α-amination of aldehydes has been accomplished via a combination of photoredox and organocatalysis. Photon-generated, nitrogen-centered radicals undergo enantioselective α-addition to catalytically formed chiral enamines to directly produce stable α-amino aldehyde adducts bearing synthetically useful amine substitution patterns. Incorporation of a photolabile group on the amine precursor obviates the need to employ a photoredox catalyst in this transformation. Importantly, this photoinduced transformation allows direct and enantioselective access to α-amino aldehyde products that do not require post-reaction manipulation. PMID:23869694
Catalytic asymmetric conjugate addition of Grignard reagents to chromones.
Vila, Carlos; Hornillos, Valentín; Fañanás-Mastral, Martín; Feringa, Ben L
2013-07-07
A highly regio- and enantioselective copper catalysed direct conjugate addition of Grignard reagents to chromones has been developed taking advantage of the reduced reactivity of the resulting magnesium enolates. This methodology tolerates a broad scope of alkyl Grignards including secondary alkyl magnesium reagents as well as functionalised chromones.
Recent Advances in the Pauson-Khand Reaction.
Ricker, J David; Geary, Laina M
2017-06-01
The Pauson-Khand [2+2+1] cycloaddition of alkynes, alkenes, and carbon monoxide has been a vibrant area of research for more than 40 years. This review highlights recent achievements in the Pauson-Khand reaction, particularly in catalytic and asymmetric variants. Discussion of regioselectivity and advances in substrate scope is also presented.
Ultrafast vibrational dynamics of BH{sub 4}{sup −} ions in liquid and crystalline environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyborski, Tobias, E-mail: tyborski@mbi-berlin.de; Costard, Rene; Woerner, Michael
2014-07-21
Ultrafast vibrational dynamics of BH{sub 4}{sup −} ions, the key units in boron hydride materials for hydrogen storage, are studied in diluted polar liquid solution and in NaBH{sub 4} crystallites by femtosecond infrared spectroscopy. Two-color pump-probe experiments reveal v = 1 lifetimes of 3 ps for the asymmetric BH{sub 4}{sup −} stretching mode ν{sub 3} and of 3.6 ps for the asymmetric bending mode ν{sub 4} in the solvent isopropylamine. We provide direct evidence for the BH{sub 4}{sup −} stretching relaxation pathway via the asymmetric bending mode ν{sub 4} by probing the latter after femtosecond excitation of ν{sub 3}. Pump-probemore » traces measured in the crystalline phase show signatures of radiative coupling between the densely packed BH{sub 4}{sup −} oscillators, most clearly manifested in an accelerated subpicosecond depopulation of the v = 1 state of the ν{sub 4} mode. The radiative decay is followed by incoherent vibrational relaxation similar to the liquid phase. The excess energy released in the relaxation processes of the BH{sub 4}{sup −} intramolecular modes is transferred into the environment with thermal pump-probe signals being much more pronounced in the dense solid than in the diluted solution.« less
Zhang, Qing-Wei; An, Kun; Liu, Li-Chuan; Yue, Yuan; He, Wei
2015-06-01
Reported herein is the rhodium-catalyzed enantioselective C-H bond silylation of the cyclopentadiene rings in Fe and Ru metallocenes. Thus, in the presence of (S)-TMS-Segphos, the reactions took place under very mild conditions to afford metallocene-fused siloles in good to excellent yields and with ee values of up to 97%. During this study it was observed that the steric hindrance of chiral ligands had a profound influence on the reactivity and enantioselectivity of the reaction, and might hold the key to accomplishing conventionally challenging asymmetric C-H silylations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Abbasov, Mikail E; Romo, Daniel
2014-10-01
Following the turn of the millennium, the role of asymmetric covalent organocatalysis has developed into a scalable, synthetic paradigm galvanizing the synthetic community toward utilization of these methods toward more practical, metal-free syntheses of natural products. A myriad of reports on asymmetric organocatalytic modes of substrate activation relying on small, exclusively organic molecules are delineating what has now become the multifaceted field of organocatalysis. In covalent catalysis, the catalyst and substrate combine to first form a covalent, activated intermediate that enters the catalytic cycle. Following asymmetric bond formation, the chiral catalyst is recycled through hydrolysis or displacement by a pendant group on the newly formed product. Amine- and phosphine-based organocatalysts are the most common examples that have led to a vast array of reaction types. This Highlight provides a brief overview of covalent modes of organocatalysis and applications of scalable versions of these methods applied to the total synthesis of natural products including examples from our own laboratory.
Caner, Sami; Nguyen, Nham; Aguda, Adeleke; Zhang, Ran; Pan, Yuan T; Withers, Stephen G; Brayer, Gary D
2013-01-01
Trehalose synthase (TreS) catalyzes the reversible conversion of maltose into trehalose in mycobacteria as one of three biosynthetic pathways to this nonreducing disaccharide. Given the importance of trehalose to survival of mycobacteria, there has been considerable interest in understanding the enzymes involved in its production; indeed the structures of the key enzymes in the other two pathways have already been determined. Herein, we present the first structure of TreS from Mycobacterium smegmatis, thereby providing insights into the catalytic machinery involved in this intriguing intramolecular reaction. This structure, which is of interest both mechanistically and as a potential pharmaceutical target, reveals a narrow and enclosed active site pocket within which intramolecular substrate rearrangements can occur. We also present the structure of a complex of TreS with acarbose, revealing a hitherto unsuspected oligosaccharide-binding site within the C-terminal domain. This may well provide an anchor point for the association of TreS with glycogen, thereby enhancing its role in glycogen biosynthesis and degradation. PMID:23735230
Mandal, Pijus K; Birtwistle, J Sanderson; McMurray, John S
2014-09-05
We report a very mild synthesis of N-protected α-methylamines from the corresponding amino acids. Carboxyl groups of amino acids are reduced to iodomethyl groups via hydroxymethyl intermediates. Reductive deiodination to methyl groups is achieved by hydrogenation or catalytic transfer hydrogenation under alkaline conditions. Basic hydrodehalogenation is selective for the iodomethyl group over hydrogenolysis-labile protecting groups, such as benzyloxycarbonyl, benzyl ester, benzyl ether, and 9-fluorenyloxymethyl, thus allowing the conversion of virtually any protected amino acid into the corresponding N-protected α-methylamine.
Yang, Hui; Wong, Ming Wah
2011-09-16
A new type of chiral β-amino acid catalyst has been computationally designed, mimicking the enzyme catalysis of serine proteases. Our catalyst approach is based on the bioinspired catalytic acid/base dyad, namely, a carboxyl and imidazole pair. DFT calculations predict that this designed organocatalyst catalyzes Michael additions of aldehydes to nitroalkenes with excellent enantioselectivities and remarkably high anti diastereoselectivities. The unusual stacked geometry of the enamine intermediate, hydrogen bonding network, and the adoption of an exo transition state are the keys to understand the stereoselectivity. © 2011 American Chemical Society
2015-01-01
We report a very mild synthesis of N-protected α-methylamines from the corresponding amino acids. Carboxyl groups of amino acids are reduced to iodomethyl groups via hydroxymethyl intermediates. Reductive deiodination to methyl groups is achieved by hydrogenation or catalytic transfer hydrogenation under alkaline conditions. Basic hydrodehalogenation is selective for the iodomethyl group over hydrogenolysis-labile protecting groups, such as benzyloxycarbonyl, benzyl ester, benzyl ether, and 9-fluorenyloxymethyl, thus allowing the conversion of virtually any protected amino acid into the corresponding N-protected α-methylamine. PMID:25116734
Block copolymer hollow fiber membranes with catalytic activity and pH-response.
Hilke, Roland; Pradeep, Neelakanda; Madhavan, Poornima; Vainio, Ulla; Behzad, Ali Reza; Sougrat, Rachid; Nunes, Suzana P; Peinemann, Klaus-Viktor
2013-08-14
We fabricated block copolymer hollow fiber membranes with self-assembled, shell-side, uniform pore structures. The fibers in these membranes combined pores able to respond to pH and acting as chemical gates that opened above pH 4, and catalytic activity, achieved by the incorporation of gold nanoparticles. We used a dry/wet spinning process to produce the asymmetric hollow fibers and determined the conditions under which the hollow fibers were optimized to create the desired pore morphology and the necessary mechanical stability. To induce ordered micelle assembly in the doped solution, we identified an ideal solvent mixture as confirmed by small-angle X-ray scattering. We then reduced p-nitrophenol with a gold-loaded fiber to confirm the catalytic performance of the membranes.
Expression, purification and crystallization of a plant polyketide cyclase from Cannabis sativa
Yang, Xinmei; Matsui, Takashi; Mori, Takahiro; Taura, Futoshi; Noguchi, Hiroshi; Abe, Ikuro; Morita, Hiroyuki
2015-01-01
Plant polyketides are a structurally diverse family of natural products. In the biosynthesis of plant polyketides, the construction of the carbocyclic scaffold is a key step in diversifying the polyketide structure. Olivetolic acid cyclase (OAC) from Cannabis sativa L. is the only known plant polyketide cyclase that catalyzes the C2–C7 intramolecular aldol cyclization of linear pentyl tetra-β-ketide-CoA to generate olivetolic acid in the biosynthesis of cannabinoids. The enzyme is also thought to belong to the dimeric α+β barrel (DABB) protein family. However, because of a lack of functional analysis of other plant DABB proteins and low sequence identity with the functionally distinct bacterial DABB proteins, the catalytic mechanism of OAC has remained unclear. To clarify the intimate catalytic mechanism of OAC, the enzyme was overexpressed in Escherichia coli and crystallized using the vapour-diffusion method. The crystals diffracted X-rays to 1.40 Å resolution and belonged to space group P3121 or P3221, with unit-cell parameters a = b = 47.3, c = 176.0 Å. Further crystallographic analysis will provide valuable insights into the structure–function relationship and catalytic mechanism of OAC. PMID:26625288
Expression, purification and crystallization of a plant polyketide cyclase from Cannabis sativa.
Yang, Xinmei; Matsui, Takashi; Mori, Takahiro; Taura, Futoshi; Noguchi, Hiroshi; Abe, Ikuro; Morita, Hiroyuki
2015-12-01
Plant polyketides are a structurally diverse family of natural products. In the biosynthesis of plant polyketides, the construction of the carbocyclic scaffold is a key step in diversifying the polyketide structure. Olivetolic acid cyclase (OAC) from Cannabis sativa L. is the only known plant polyketide cyclase that catalyzes the C2-C7 intramolecular aldol cyclization of linear pentyl tetra-β-ketide-CoA to generate olivetolic acid in the biosynthesis of cannabinoids. The enzyme is also thought to belong to the dimeric α+β barrel (DABB) protein family. However, because of a lack of functional analysis of other plant DABB proteins and low sequence identity with the functionally distinct bacterial DABB proteins, the catalytic mechanism of OAC has remained unclear. To clarify the intimate catalytic mechanism of OAC, the enzyme was overexpressed in Escherichia coli and crystallized using the vapour-diffusion method. The crystals diffracted X-rays to 1.40 Å resolution and belonged to space group P3121 or P3221, with unit-cell parameters a = b = 47.3, c = 176.0 Å. Further crystallographic analysis will provide valuable insights into the structure-function relationship and catalytic mechanism of OAC.
NASA Astrophysics Data System (ADS)
Zhang, Zhipeng; Bae, Han Yong; Guin, Joyram; Rabalakos, Constantinos; van Gemmeren, Manuel; Leutzsch, Markus; Klussmann, Martin; List, Benjamin
2016-08-01
Due to the high versatility of chiral cyanohydrins, the catalytic asymmetric cyanation reaction of carbonyl compounds has attracted widespread interest. However, efficient protocols that function at a preparative scale with low catalyst loading are still rare. Here, asymmetric counteranion-directed Lewis acid organocatalysis proves to be remarkably successful in addressing this problem and enabled a molar-scale cyanosilylation in quantitative yield and with excellent enantioselectivity. Also, the catalyst loading could be lowered to a part-per-million level (50 ppm: 0.005 mol%). A readily accessible chiral disulfonimide was used, which in combination with trimethylsilyl cyanide, turned into the active silylium Lewis acid organocatalyst. The nature of a peculiar phenomenon referred to as a ``dormant period'', which is mainly induced by water, was systematically investigated by means of in situ Fourier transform infrared analysis.
Ding, Wendu; Koepf, Matthieu; Koenigsmann, Christopher; ...
2015-11-03
Here, we report a systematic computational search of molecular frameworks for intrinsic rectification of electron transport. The screening of molecular rectifiers includes 52 molecules and conformers spanning over 9 series of structural motifs. N-Phenylbenzamide is found to be a promising framework with both suitable conductance and rectification properties. A targeted screening performed on 30 additional derivatives and conformers of N-phenylbenzamide yielded enhanced rectification based on asymmetric functionalization. We demonstrate that electron-donating substituent groups that maintain an asymmetric distribution of charge in the dominant transport channel (e.g., HOMO) enhance rectification by raising the channel closer to the Fermi level. These findingsmore » are particularly valuable for the design of molecular assemblies that could ensure directionality of electron transport in a wide range of applications, from molecular electronics to catalytic reactions.« less
De, Sandip Kumar; Mondal, Subrata; Sen, Pintu; Pal, Uttam; Pathak, Biswarup; Rawat, Kuber Singh; Bardhan, Munmun; Bhattacharya, Maireyee; Satpati, Biswarup; De, Amitabha; Senapati, Dulal
2018-06-14
Understanding and exploring the decisive factors responsible for superlative catalytic efficiency is necessary to formulate active electrode materials for improved electrocatalysis and high-throughput sensing. This research demonstrates the ability of bud-shaped gold nanoflowers (AuNFs), intermediates in the bud-to-blossom gold nanoflower synthesis, to offer remarkable electrocatalytic efficiency in the oxidation of ascorbic acid (AA) at nanomolar concentrations. Multicomponent sensing in a single potential sweep is measured using differential pulse voltammetry while the kinetic parameters are estimated using electrochemical impedance spectroscopy. The outstanding catalytic activity of bud-structured AuNF [iAuNFp(Bud)/iGCp ≅ 100] compared with other bud-to-blossom intermediate nanostructures is explained by studying their structural transitions, charge distributions, crystalline patterns, and intrinsic irregularities/defects. Detailed microscopic analysis shows that density of crystal defects, such as edges, terraces, steps, ledges, kinks, and dislocation, plays a major role in producing the high catalytic efficiency. An associated ab initio simulation provides necessary support for the projected role of different crystal facets as selective catalytic sites. Density functional theory corroborates the appearance of inter- and intra-molecular hydrogen bonding within AA molecules to control the resultant fingerprint peak potentials at variable concentrations. Bud-structured AuNF facilitates AA detection at nanomolar levels in a multicomponent pathological sample.
Adsorption of NH2 on Graphene in the Presence of Defects and Adsorbates
2013-02-05
Carbobenzy- loxy Derivatives in High-Performance Liquid Chromatography and Supercritical Fluid Chromatography . J. Chromatogr., A 2005, 1100, 108−115. (7) Wang...being NH2. Amines are of interest because they are used in catalytic asymmetric synthesis,5 chromatography ,6 and as a biconjugate linker7 (i.e., between
Sone, Toshihiko; Lu, Gang; Matsunaga, Shigeki; Shibasaki, Masakatsu
2009-01-01
Better the second time around: The title compounds were synthesized by using a one-pot double methylene transfer catalyzed by a heterobimetallic La/Li complex. Chiral amplification in the second step was the key to obtaining oxetanes in high enantiomeric excess (see scheme).
Li, You-Gui; He, Gang; Qin, Hua-Li; Kantchev, Eric Assen B
2015-02-14
Transmetalation is a key elementary reaction of many important catalytic reactions. Among these, 1,4-addition of arylboronic acids to organic acceptors such as α,β-unsaturated ketones has emerged as one of the most important methods for asymmetric C-C bond formation. A key intermediate for the B-to-Rh transfer arising from quaternization on a boronic acid by a Rh-bound hydroxide (the active catalyst) has been proposed. Herein, DFT calculations (IEFPCM/PBE0/DGDZVP level of theory) establish the viability of this proposal, and characterize the associated pathways. The delivery of phenylboronic acid in the orientation suited for the B-to-Rh transfer from the very beginning is energetically preferable, and occurs with expulsion of Rh-coordinated water molecules. For the bulkier binap ligand, the barriers are higher (particularly for the phenylboronic acid activation step) due to a less favourable entropy term to the free energy, in accordance with the experimentally observed slower transmetalation rate.
Chen, Qian; Kuriyama, Masami; Soeta, Takahiro; Hao, Xinyu; Yamada, Ken-ichi; Tomioka, Kiyoshi
2005-09-29
[reaction: see text] A catalytic asymmetric conjugate arylation of racemic 5-(trimethylsilyl)cyclohex-2-enone with arylboronic acids was catalyzed by 3 mol % chiral amidophosphane- or BINAP-Rh(I) in dioxane-water (10:1) to afford trans- and cis-3-aryl-5-(trimethylsilyl)cyclohexanones in high enantioselectivity. Dehydrosilylation of the product mixture with cupric chloride in DMF gave 5-arylcyclohex-2-enones with up to 93% ee in good yield. Enantiofacial selectivity with chiral phosphane-Rh(I) exceeds the trans-diastereoselectivity that is maintained in the achiral or racemic phosphane-Rh(I)-catalyzed conjugate arylation of 5-(trimethylsilyl)cyclohexenone.
Dudding, Travis; Houk, Kendall N
2004-04-20
The catalytic asymmetric thiazolium- and triazolium-catalyzed benzoin condensations of aldehydes and ketones were studied with computational methods. Transition-state geometries were optimized by using Morokuma's IMOMO [integrated MO (molecular orbital) + MO method] variation of ONIOM (n-layered integrated molecular orbital method) with a combination of B3LYP/6-31G(d) and AM1 levels of theory, and final transition-state energies were computed with single-point B3LYP/6-31G(d) calculations. Correlations between experiment and theory were found, and the origins of stereoselection were identified. Thiazolium catalysts were predicted to be less selective then triazolium catalysts, a trend also found experimentally.
Machado, Luciana E S F; Shen, Tun-Li; Page, Rebecca; Peti, Wolfgang
2017-05-26
The kinase interaction motif (KIM) family of protein-tyrosine phosphatases (PTPs) includes hematopoietic protein-tyrosine phosphatase (HePTP), striatal-enriched protein-tyrosine phosphatase (STEP), and protein-tyrosine phosphatase receptor type R (PTPRR). KIM-PTPs bind and dephosphorylate mitogen-activated protein kinases (MAPKs) and thereby critically modulate cell proliferation and differentiation. PTP activity can readily be diminished by reactive oxygen species (ROS), e.g. H 2 O 2 , which oxidize the catalytically indispensable active-site cysteine. This initial oxidation generates an unstable sulfenic acid intermediate that is quickly converted into either a sulfinic/sulfonic acid (catalytically dead and irreversible inactivation) or a stable sulfenamide or disulfide bond intermediate (reversible inactivation). Critically, our understanding of ROS-mediated PTP oxidation is not yet sufficient to predict the molecular responses of PTPs to oxidative stress. However, identifying distinct responses will enable novel routes for PTP-selective drug design, important for managing diseases such as cancer and Alzheimer's disease. Therefore, we performed a detailed biochemical and molecular study of all KIM-PTP family members to determine their H 2 O 2 oxidation profiles and identify their reversible inactivation mechanism(s). We show that despite having nearly identical 3D structures and sequences, each KIM-PTP family member has a unique oxidation profile. Furthermore, we also show that whereas STEP and PTPRR stabilize their reversibly oxidized state by forming an intramolecular disulfide bond, HePTP uses an unexpected mechanism, namely, formation of a reversible intermolecular disulfide bond. In summary, despite being closely related, KIM-PTPs significantly differ in oxidation profiles. These findings highlight that oxidation protection is critical when analyzing PTPs, for example, in drug screening. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Tandem catalysis for the production of alkyl lactates from ketohexoses at moderate temperatures
Orazov, Marat; Davis, Mark E.
2015-09-08
Retro-aldol reactions have been implicated as the limiting steps in catalytic routes to convert biomass-derived hexoses and pentoses into valuable C2, C3, and C4 products such as glycolic acid, lactic acid, 2-hydroxy-3-butenoic acid, 2,4-dihydroxybutanoic acid, and alkyl esters thereof. Due to a lack of efficient retro-aldol catalysts, most previous investigations of catalytic pathways involving these reactions were conducted at high temperatures (≥160 °C). Here, we report moderate-temperature (around 100 °C) retro-aldol reactions of various hexoses in aqueous and alcoholic media with catalysts traditionally known for their capacity to catalyze 1,2-intramolecular carbon shift (1,2-CS) reactions of aldoses, i.e., various molybdenum oxidemore » and molybdate species, nickel(II) diamine complexes, alkali-exchanged stannosilicate molecular sieves, and amorphous TiO2–SiO2 coprecipitates. Solid Lewis acid cocatalysts that are known to catalyze 1,2-intramolecular hydride shift (1,2-HS) reactions that enable the formation of α-hydroxy carboxylic acids from tetroses, trioses, and glycolaldehyde, but cannot readily catalyze retro-aldol reactions of hexoses and pentoses at these moderate temperatures, are shown to be compatible with the aforementioned retro-aldol catalysts. The combination of a distinct retro-aldol catalyst with a 1,2-HS catalyst enables lactic acid and alkyl lactate formation from ketohexoses at moderate temperatures (around 100 °C), with yields comparable to best-reported chemocatalytic examples at high temperature conditions (≥160 °C). The use of moderate temperatures enables numerous desirable features such as lower pressure and significantly less catalyst deactivation.« less
SH2-catalytic domain linker heterogeneity influences allosteric coupling across the SFK family.
Register, A C; Leonard, Stephen E; Maly, Dustin J
2014-11-11
Src-family kinases (SFKs) make up a family of nine homologous multidomain tyrosine kinases whose misregulation is responsible for human disease (cancer, diabetes, inflammation, etc.). Despite overall sequence homology and identical domain architecture, differences in SH3 and SH2 regulatory domain accessibility and ability to allosterically autoinhibit the ATP-binding site have been observed for the prototypical SFKs Src and Hck. Biochemical and structural studies indicate that the SH2-catalytic domain (SH2-CD) linker, the intramolecular binding epitope for SFK SH3 domains, is responsible for allosterically coupling SH3 domain engagement to autoinhibition of the ATP-binding site through the conformation of the αC helix. As a relatively unconserved region between SFK family members, SH2-CD linker sequence variability across the SFK family is likely a source of nonredundant cellular functions between individual SFKs via its effect on the availability of SH3 and SH2 domains for intermolecular interactions and post-translational modification. Using a combination of SFKs engineered with enhanced or weakened regulatory domain intramolecular interactions and conformation-selective inhibitors that report αC helix conformation, this study explores how SH2-CD sequence heterogeneity affects allosteric coupling across the SFK family by examining Lyn, Fyn1, and Fyn2. Analyses of Fyn1 and Fyn2, isoforms that are identical but for a 50-residue sequence spanning the SH2-CD linker, demonstrate that SH2-CD linker sequence differences can have profound effects on allosteric coupling between otherwise identical kinases. Most notably, a dampened allosteric connection between the SH3 domain and αC helix leads to greater autoinhibitory phosphorylation by Csk, illustrating the complex effects of SH2-CD linker sequence on cellular function.
Lactate flux in astrocytes is enhanced by a non-catalytic action of carbonic anhydrase II
Stridh, Malin H; Alt, Marco D; Wittmann, Sarah; Heidtmann, Hella; Aggarwal, Mayank; Riederer, Brigitte; Seidler, Ursula; Wennemuth, Gunther; McKenna, Robert; Deitmer, Joachim W; Becker, Holger M
2012-01-01
Rapid exchange of metabolites between different cell types is crucial for energy homeostasis of the brain. Besides glucose, lactate is a major metabolite in the brain and is primarily produced in astrocytes. In the present study, we report that carbonic anhydrase 2 (CAII) enhances both influx and efflux of lactate in mouse cerebellar astrocytes. The augmentation of lactate transport is independent of the enzyme's catalytic activity, but requires direct binding of CAII to the C-terminal of the monocarboxylate transporter MCT1, one of the major lactate/proton cotransporters in astrocytes and most tissues. By employing its intramolecular proton shuttle, CAII, bound to MCT1, can act as a ‘proton collecting antenna’ for the transporter, suppressing the formation of proton microdomains at the transporter-pore and thereby enhancing lactate flux. By this mechanism CAII could enhance transfer of lactate between astrocytes and neurons and thus provide the neurons with an increased supply of energy substrate. PMID:22451434
Kinome signaling through regulated protein-protein interactions in normal and cancer cells.
Pawson, Tony; Kofler, Michael
2009-04-01
The flow of molecular information through normal and oncogenic signaling pathways frequently depends on protein phosphorylation, mediated by specific kinases, and the selective binding of the resulting phosphorylation sites to interaction domains present on downstream targets. This physical and functional interplay of catalytic and interaction domains can be clearly seen in cytoplasmic tyrosine kinases such as Src, Abl, Fes, and ZAP-70. Although the kinase and SH2 domains of these proteins possess similar intrinsic properties of phosphorylating tyrosine residues or binding phosphotyrosine sites, they also undergo intramolecular interactions when linked together, in a fashion that varies from protein to protein. These cooperative interactions can have diverse effects on substrate recognition and kinase activity, and provide a variety of mechanisms to link the stimulation of catalytic activity to substrate recognition. Taken together, these data have suggested how protein kinases, and the signaling pathways in which they are embedded, can evolve complex properties through the stepwise linkage of domains within single polypeptides or multi-protein assemblies.
Catalytic, Enantioselective, Intramolecular Sulfenofunctionalization of Alkenes with Phenols
2017-01-01
The catalytic, enantioselective, cyclization of phenols with electrophilic sulfenophthalimides onto isolated or conjugated alkenes affords 2,3-disubstituted benzopyrans and benzoxepins. The reaction is catalyzed by a BINAM-based phosphoramide Lewis base catalyst which assists in the highly enantioselective formation of a thiiranium ion intermediate. The influence of nucleophile electron density, alkene substitution pattern, tether length and Lewis base functional groups on the rate, enantio- and site-selectivity for the cyclization is investigated. The reaction is not affected by the presence of substituents on the phenol ring. In contrast, substitutions around the alkene strongly affect the reaction outcome. Sequential lengthening of the tether results in decreased reactivity, which necessitated increased temperatures for reaction to occur. Sterically bulky aryl groups on the sulfenyl moiety prevented erosion of enantiomeric composition at these elevated temperatures. Alcohols and carboxylic acids preferentially captured thiiranium ions in competition with phenolic hydroxyl groups. An improved method for the selective C(2) allylation of phenols is also described. PMID:28257203
Jamali, Somayeh; Klier, Michael; Ames, Samantha; Barros, L Felipe; McKenna, Robert; Deitmer, Joachim W; Becker, Holger M
2015-09-04
The most aggressive tumour cells, which often reside in hypoxic environments, rely on glycolysis for energy production. Thereby they release vast amounts of lactate and protons via monocarboxylate transporters (MCTs), which exacerbates extracellular acidification and supports the formation of a hostile environment. We have studied the mechanisms of regulated lactate transport in MCF-7 human breast cancer cells. Under hypoxia, expression of MCT1 and MCT4 remained unchanged, while expression of carbonic anhydrase IX (CAIX) was greatly enhanced. Our results show that CAIX augments MCT1 transport activity by a non-catalytic interaction. Mutation studies in Xenopus oocytes indicate that CAIX, via its intramolecular H(+)-shuttle His200, functions as a "proton-collecting/distributing antenna" to facilitate rapid lactate flux via MCT1. Knockdown of CAIX significantly reduced proliferation of cancer cells, suggesting that rapid efflux of lactate and H(+), as enhanced by CAIX, contributes to cancer cell survival under hypoxic conditions.
Jamali, Somayeh; Klier, Michael; Ames, Samantha; Felipe Barros, L.; McKenna, Robert; Deitmer, Joachim W.; Becker, Holger M.
2015-01-01
The most aggressive tumour cells, which often reside in hypoxic environments, rely on glycolysis for energy production. Thereby they release vast amounts of lactate and protons via monocarboxylate transporters (MCTs), which exacerbates extracellular acidification and supports the formation of a hostile environment. We have studied the mechanisms of regulated lactate transport in MCF-7 human breast cancer cells. Under hypoxia, expression of MCT1 and MCT4 remained unchanged, while expression of carbonic anhydrase IX (CAIX) was greatly enhanced. Our results show that CAIX augments MCT1 transport activity by a non-catalytic interaction. Mutation studies in Xenopus oocytes indicate that CAIX, via its intramolecular H+-shuttle His200, functions as a “proton-collecting/distributing antenna” to facilitate rapid lactate flux via MCT1. Knockdown of CAIX significantly reduced proliferation of cancer cells, suggesting that rapid efflux of lactate and H+, as enhanced by CAIX, contributes to cancer cell survival under hypoxic conditions. PMID:26337752
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhiyuan; Liu, Dong; Camacho-Bunquin, Jeffrey
ABSTRACT: A stable and structurally well-defined titanium alkoxide catalyst supported on a metal-organic-framework (MOF) of UiO-67 topology (ANL1-Ti(OiPr)2) was synthesized and fully characterized by a variety of analytical and spectroscopic techniques, including BET, TGA, PXRD, XAS, DRIFT, SEM, and DFT computations. The Ti-functionalized MOF was demonstrated active for the catalytic hydroboration of a wide range of aldehydes and ketones with HBpin as the boron source. Compared to traditional homogeneous and supported hydroboration catalysts, ANL1-Ti(OiPr)2 is completely recyclable and reusable, making it a promising hydroboration catalyst alternative for green and sustainable chemical synthesis. DFT calculations suggest that the catalytic hydroboration proceedsmore » via a (1) hydride transfer between the active Ti-hydride species and a carbonyl moiety (rate determining step), and (2) alkoxide transfer (intramolecular σ-bond metathesis) to generate the boronate ester product.« less
Enantioselective remote meta-C-H arylation and alkylation via a chiral transient mediator.
Shi, Hang; Herron, Alastair N; Shao, Ying; Shao, Qian; Yu, Jin-Quan
2018-06-18
Enantioselective carbon-hydrogen (C-H) activation reactions by asymmetric metallation could provide new routes for the construction of chiral molecules 1,2 . However, current methods are typically limited to the formation of five- or six-membered metallacycles, thereby preventing the asymmetric functionalization of C-H bonds at positions remote to existing functional groups. Here we report enantioselective remote C-H activation using a catalytic amount of a chiral norbornene as a transient mediator, which relays initial ortho-C-H activation to the meta position. This was used in the enantioselective meta-C-H arylation of benzylamines, as well as the arylation and alkylation of homobenzylamines. The enantioselectivities obtained using the chiral transient mediator are comparable across different classes of substrates containing either neutral σ-donor or anionic coordinating groups. This relay strategy could provide an alternative means to remote chiral induction, one of the most challenging problems in asymmetric catalysis 3,4 .
Biomass conversion to high value chemicals: from furfural to chiral hydrofuroins in two steps.
Kabro, Anzhelika; Escudero-Adán, Eduardo C; Grushin, Vladimir V; van Leeuwen, Piet W N M
2012-08-03
Catalytic asymmetric transfer hydrogenation of rac-furoin and furil produces hydrofuroin with up to 99% ee and 9:1 dr. This reaction provides an exceptionally easy access to optically active hydrofuroins in two straightforward steps from biomass-derived furfural (global production 200,000-300,000 t annually) using benzoin condensation.
Longevial, Jean-François; Clément, Sébastien; Wytko, Jennifer A; Ruppert, Romain; Weiss, Jean; Richeter, Sébastien
2018-04-24
Porphyrins are conjugated, stable chromophores with a central core that binds a variety of metal ions and an easily functionalized peripheral framework. By combining the catalytic, electronic or cytotoxic properties of selected transition metal complexes with the binding and electronic properties of porphyrins, enhanced characteristics of the ensemble are generated. This review article focuses on porphyrins bearing one or more peripheral transition metal complexes and discusses their potential applications in catalysis or biomedicine. Modulation of the electronic properties and intramolecular communication through coordination bond linkages in bis-porphyrin scaffolds is also presented. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kochem, Amelie; O'Hagan, Molly J.; Wiedner, Eric S.
2015-07-13
The [Ni(PR2NR’2)2]2+ family of complexes are exceptionally active catalysts for proton reduction to H2. In this manuscript, we explore the first protonation step of the proposed catalytic cycle by using a catalytically inactive NiI complex possessing a sterically demanding variation of the ligand. Due to the paramagnetic nature of the NiI oxidation state, the protonated NiI intermediate has been characterized through a combination of cyclic voltammetry, ENDOR, and HYSCORE spectroscopy. Both the electrochemical and spectroscopic studies indicate that the NiI complex is protonated at a pendant amine that is endo to Ni, which suggests the presence of an intramolecular NiI•••HNmore » bonding interaction. Using density functional theory, the proton was found to hydrogen bond to three doubly-occupied, localized molecular orbitals: the 3dxz, 3dz2, and 3dyz orbitals of nickel. These studies provide the first direct experimental evidence for this critical catalytic intermediate, and implications for catalytic H2 production are discussed. Research was supported by the Max Planck Society (EPR, ENDOR, and HYSCORE spectroscopy, computational studies), and as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (electrochemistry, NMR spectroscopy). Pacific Northwest National Laboratory is operated by Battelle for DOE.« less
Dudding, Travis; Houk, Kendall N.
2004-01-01
The catalytic asymmetric thiazolium- and triazolium-catalyzed benzoin condensations of aldehydes and ketones were studied with computational methods. Transition-state geometries were optimized by using Morokuma's IMOMO [integrated MO (molecular orbital) + MO method] variation of ONIOM (n-layered integrated molecular orbital method) with a combination of B3LYP/6–31G(d) and AM1 levels of theory, and final transition-state energies were computed with single-point B3LYP/6–31G(d) calculations. Correlations between experiment and theory were found, and the origins of stereoselection were identified. Thiazolium catalysts were predicted to be less selective then triazolium catalysts, a trend also found experimentally. PMID:15079058
Truongvan, Ngoc; Chung, Hye-Shin; Jang, Sei-Heon; Lee, ChangWoo
2016-03-01
An aromatic amino acid, Tyr or Trp, located in the esterase active site wall, is highly conserved, with hyperthermophilic esterases showing preference for Tyr and lower temperature esterases showing preference for Trp. In this study, we investigated the role of Tyr(182) in the active site wall of hyperthermophilic esterase EstE1. Mutation of Tyr to Phe or Ala had a moderate effect on EstE1 thermal stability. However, a small-to-large mutation such as Tyr to His or Trp had a devastating effect on thermal stability. All mutant EstE1 enzymes showed reduced catalytic rates and enhanced substrate affinities as compared with wild-type EstE1. Hydrogen bond formation involving Tyr(182) was unimportant for maintaining EstE1 thermal stability, as the EstE1 structure is already adapted to high temperatures via increased intramolecular interactions. However, removal of hydrogen bond from Tyr(182) significantly decreased EstE1 catalytic activity, suggesting its role in stabilization of the active site. These results suggest that Tyr is preferred over a similarly sized Phe residue or bulky His or Trp residue in the active site walls of hyperthermophilic esterases for stabilizing the active site and regulating catalytic activity at high temperatures.
Shaffer, David W.; Xie, Yan; Szalda, David J.; ...
2017-09-24
Here, a critical step in creating an artificial photosynthesis system for energy storage is designing catalysts that can thrive in an assembled device. Single-site catalysts have an advantage over bimolecular catalysts because they remain effective when immobilized. Hybrid water oxidation catalysts described here, combining the features of single-site bis-phosphonate catalysts and fast bimolecular bis-carboxylate catalysts, have reached turnover frequencies over 100 s –1, faster than both related catalysts under identical conditions. The new [(bpHc)Ru(L) 2] (bpH 2cH = 2,2'-bipyridine-6-phosphonic acid-6'-carboxylic acid, L = 4-picoline or isoquinoline) catalysts proceed through a single-site water nucleophilic attack pathway. The pendant phosphonate base mediatesmore » O–O bond formation via intramolecular atom-proton transfer with a calculated barrier of only 9.1 kcal/mol. Additionally, the labile carboxylate group allows water to bind early in the catalytic cycle, allowing intramolecular proton-coupled electron transfer to lower the potentials for oxidation steps and catalysis. That a single-site catalyst can be this fast lends credence to the possibility that the oxygen evolving complex adopts a similar mechanism.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaffer, David W.; Xie, Yan; Szalda, David J.
Here, a critical step in creating an artificial photosynthesis system for energy storage is designing catalysts that can thrive in an assembled device. Single-site catalysts have an advantage over bimolecular catalysts because they remain effective when immobilized. Hybrid water oxidation catalysts described here, combining the features of single-site bis-phosphonate catalysts and fast bimolecular bis-carboxylate catalysts, have reached turnover frequencies over 100 s –1, faster than both related catalysts under identical conditions. The new [(bpHc)Ru(L) 2] (bpH 2cH = 2,2'-bipyridine-6-phosphonic acid-6'-carboxylic acid, L = 4-picoline or isoquinoline) catalysts proceed through a single-site water nucleophilic attack pathway. The pendant phosphonate base mediatesmore » O–O bond formation via intramolecular atom-proton transfer with a calculated barrier of only 9.1 kcal/mol. Additionally, the labile carboxylate group allows water to bind early in the catalytic cycle, allowing intramolecular proton-coupled electron transfer to lower the potentials for oxidation steps and catalysis. That a single-site catalyst can be this fast lends credence to the possibility that the oxygen evolving complex adopts a similar mechanism.« less
NASA Astrophysics Data System (ADS)
Akerman, Matthew P.; Mkhize, Zimbili; van Heerden, Fanie R.
2018-07-01
Owing to their bioactivity and prevalence in medicinal plant extracts, prenylated phloroglucinols have garnered significant interest. Towards the synthesis of prenylated phloroglucinol derivatives, 2,4,6-trihydroxy-3-(3-methylbut-2-enyl)acetophenone is required as an intermediate. Herein, this was synthesised by a tandem Claisen-Cope rearrangement reaction on 2,4-bis(methoxymethoxy)-6-(3-methylbut-2-enyloxy)acetophenone and a subsequent hydrolysis to remove protecting groups. This reaction yielded the desired product as well as three by-products. Two of these by-products were isomeric chromane derivatives (2 and 3) and the third was a methoxy derivative (4). These compounds have been studied by single crystal X-ray crystallography and DFT methods. Compound (2) crystallised in the P21/c space group with two hydrogen-bonded molecules in the asymmetric unit (Z = 8). Compound (4) crystallised in the Pbca space group with a single molecule in the asymmetric unit (Z = 8). Both compounds formed extensive supramolecular structures supported by hydrogen bonds in the solid state. Compound (2) forms a simple one-dimensional hydrogen-bonded chain co-linear with the a-axis. Compound (4) forms a two-dimensional supramolecular structure comprising "pentameric" hydrogen-bonded motifs linked by additional H-bonds to form the supramolecular structure. Both structures showed intramolecular hydrogen bonds between the acetyl oxygen and adjacent OH group. DFT simulations were used to probe the relative energies of the molecules and hydrogen bonds. These simulations showed that the intramolecular hydrogen bond has a substantial stabilising effect with an interaction strength of 70.64 kJ mol-1. The formation of the hydrogen-bonded dimer of (2) from which the supramolecular structure is formed has a ΔHassoc constant of -42.32 kJ mol-1, illustrating that the formation of the hydrogen-bonded structure is energetically favourable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyazawa, Masayuki; Kitadokoro, Kengo; Kamitani, Shigeki
2006-09-01
The C-terminal catalytic domain of P. multocida toxin, which is the virulence factor of the organism in P. multocida, has been expressed, purified and subsequently crystallized using the sitting-drop vapour-diffusion technique. The C-terminal catalytic domain of Pasteurella multocida toxin, which is the virulence factor of the organism in P. multocida, has been expressed, purified and subsequently crystallized using the sitting-drop vapour-diffusion technique. Native diffraction data to 1.9 Å resolution were obtained at the BL44XU beamline of SPring-8 from a flash-frozen crystal at 100 K. The crystals belong to space group C2, with unit-cell parameters a = 111.0, b = 150.4,more » c = 77.1 Å, β = 105.5°, and are likely to contain one C-PMT (726 residues) per asymmetric unit.« less
Gravitaxis in Spherical Janus Swimming Devices
2013-01-01
In this work, we show that the asymmetrical distribution of mass at the surface of catalytic Janus swimmers results in the devices preferentially propelling themselves upward in a gravitational field. We demonstrate the existence of this gravitaxis phenomenon by observing the trajectories of fueled Janus swimmers, which generate thrust along a vector pointing away from their metallically coated half. We report that as the size of the spherical swimmer increases, the propulsive trajectories are no longer isotropic with respect to gravity, and they start to show a pronounced tendency to move in an upward direction. We suggest that this effect is due to the platinum caps asymmetric mass exerting an increasing influence on the azimuthal angle of the Janus sphere with size, biasing its orientation toward a configuration where the heavier propulsion generating surface faces down. This argument is supported by the good agreement we find between the experimentally observed azimuthal angle distribution for the Janus swimmers and predictions made by simple Boltzmann statistics. This gravitaxis phenomenon provides a mechanism to autonomously control and direct the motion of catalytic swimming devices and so enable a route to make autonomous transport devices and develop new separation, sensing, and controlled release applications. PMID:24134682
Raugei, Simone; Helm, Monte L; Hammes-Schiffer, Sharon; Appel, Aaron M; O'Hagan, Molly; Wiedner, Eric S; Bullock, R Morris
2016-01-19
Understanding how to control the movement of protons and electrons is crucial to the design of fast, efficient electrocatalysts for H2 production and oxidation based on earth-abundant metals. Our work seeks to address fundamental questions about proton movement. We have demonstrated that incorporating a pendant amine functioning as a proton relay in the second coordination sphere of a metal complex helps proton mobility, resulting in faster and more energy-efficient catalysts. Proton-transfer reactions can be rate-limiting and are influenced by several factors, such as pKa values, steric effects, hydrogen bonding, and solvation/desolvation of the exogenous base and acid employed. The presence of multiple protonation sites introduces branching points along the catalytic cycle, making less productive pathways accessible or leading to the formation of stable off-cycle species. Using ligands with only one pendant amine mitigates this problem and results in catalysts with high rates for production of H2, although generally at higher overpotentials. For H2 oxidation catalysts, iron complexes with a high H2 binding affinity were developed. However, these iron complexes had a pKa mismatch between the protonated metal center and the protonated pendant amine, and consequently intramolecular proton movement was slow. Taken altogether, our results demonstrate the necessity of optimizing the entire catalytic cycle because optimization of a specific catalytic step can negatively influence another step and not necessarily lead to a better catalytic performance. We discuss a general procedure, based on thermodynamic arguments, which allows the simultaneous minimization of the free-energy change of each catalytic step, yielding a nearly flat free-energy surface, with no large barriers due to energy mismatches from either high- or low-energy intermediates.
Crystal Structure of Hyperthermophilic Endo-β-1,4-glucanase
Zheng, Baisong; Yang, Wen; Zhao, Xinyu; Wang, Yuguo; Lou, Zhiyong; Rao, Zihe; Feng, Yan
2012-01-01
Endo-β-1,4-glucanase from thermophilic Fervidobacterium nodosum Rt17-B1 (FnCel5A), a new member of glycosyl hydrolase family 5, is highly thermostable and exhibits the highest activity on carboxymethylcellulose among the reported homologues. To understand the structural basis for the thermostability and catalytic mechanism, we report here the crystal structures of FnCel5A and the complex with glucose at atomic resolution. FnCel5A exhibited a (β/α)8-barrel structure typical of clan GH-A of the glycoside hydrolase families with a large and deep catalytic pocket located in the C-terminal end of the β-strands that may permit substrate access. A comparison of the structure of FnCel5A with related structures from thermopile Clostridium thermocellum, mesophile Clostridium cellulolyticum, and psychrophile Pseudoalteromonas haloplanktis showed significant differences in intramolecular interactions (salt bridges and hydrogen bonds) that may account for the difference in their thermostabilities. The substrate complex structure in combination with a mutagenesis analysis of the catalytic residues implicates a distinctive catalytic module Glu167-His226-Glu283, which suggests that the histidine may function as an intermediate for the electron transfer network between the typical Glu-Glu catalytic module. Further investigation suggested that the aromatic residues Trp61, Trp204, Phe231, and Trp240 as well as polar residues Asn51, His127, Tyr228, and His235 in the active site not only participated in substrate binding but also provided a unique microenvironment suitable for catalysis. These results provide substantial insight into the unique characteristics of FnCel5A for catalysis and adaptation to extreme temperature. PMID:22128157
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meemken, Fabian; Müller, Philipp; Hungerbühler, Konrad
Design and performance of a reactor set-up for attenuated total reflection infrared (ATR-IR) spectroscopy suitable for simultaneous reaction monitoring of bulk liquid and catalytic solid-liquid-gas interfaces under working conditions are presented. As advancement of in situ spectroscopy an operando methodology for gas-liquid-solid reaction monitoring was developed that simultaneously combines catalytic activity and molecular level detection at the catalytically active site of the same sample. Semi-batch reactor conditions are achieved with the analytical set-up by implementing the ATR-IR flow-through cell in a recycle reactor system and integrating a specifically designed gas feeding system coupled with a bubble trap. By the usemore » of only one spectrometer the design of the new ATR-IR reactor cell allows for simultaneous detection of the bulk liquid and the catalytic interface during the working reaction. Holding two internal reflection elements (IRE) the sample compartments of the horizontally movable cell are consecutively flushed with reaction solution and pneumatically actuated, rapid switching of the cell (<1 s) enables to quasi simultaneously follow the heterogeneously catalysed reaction at the catalytic interface on a catalyst-coated IRE and in the bulk liquid on a blank IRE. For a complex heterogeneous reaction, the asymmetric hydrogenation of 2,2,2-trifluoroacetophenone on chirally modified Pt catalyst the elucidation of catalytic activity/enantioselectivity coupled with simultaneous monitoring of the catalytic solid-liquid-gas interface is shown. Both catalytic activity and enantioselectivity are strongly dependent on the experimental conditions. The opportunity to gain improved understanding by coupling measurements of catalytic performance and spectroscopic detection is presented. In addition, the applicability of modulation excitation spectroscopy and phase-sensitive detection are demonstrated.« less
Optical manipulation and catalytic activity enhanced by surface plasmon effect
NASA Astrophysics Data System (ADS)
Zou, Ningmu; Min, Jiang; Jiao, Wenxiang; Wang, Guanghui
2017-02-01
For optical manipulation, a nano-optical conveyor belt consisting of an array of gold plasmonic non-concentric nano-rings (PNNRs) is demonstrated for the realization of trapping and unidirectional transportation of nanoparticles by polarization rotation of excitation beam. These hot spots of an asymmetric plasmonic nanostructure are polarization dependent, therefore, one can use the incident polarization state to manipulate the trapped targets. Trapped particles could be transferred between adjacent PNNRs in a given direction just by rotating the polarization of incident beam due to unbalanced potential. The angular dependent distribution of electric field around PNNR has been solved using the three- dimensional finite-difference time-domain (FDTD) technique. For optical enhanced catalytic activity, the spectral properties of dimers of Au nanorod-Au nanorod nanostructures under the excitation of 532nm photons have been investigated. With a super-resolution catalytic mapping technique, we identified the existence of "hot spot" in terms of catalytic reactivity at the gap region within the twined plasmonic nanostructure. Also, FDTD calculation has revealed an intrinsic correlation between hot electron transfer.
Shi, Jiao Yi; Wang, Chang An; Li, Zhi Jun; Wang, Qiong; Zhang, Yuan; Wang, Wei
2011-05-23
We report a new method for the synthesis of hollow-structured phenylene-bridged periodic mesoporous organosilica (PMO) spheres with a uniform particle size of 100-200 nm using α-Fe(2)O(3) as a hard template. Based on this method, the hollow-structured phenylene PMO could be easily functionalized with MacMillan catalyst (H-PhPMO-Mac) by a co-condensation process and a "click chemistry" post-modification. The synthesized H-PhPMO-Mac catalyst has been found to exhibit high catalytic activity (98% yield, 81% enantiomeric excess (ee) for endo and 81% ee for exo) in asymmetric Diels-Alder reactions with water as solvent. The catalyst could be reused for at least seven runs without a significant loss of catalytic activity. Our results have also indicated that hollow-structured PMO spheres exhibit higher catalytic efficiency than solid (non-hollow) PMO spheres, and that catalysts prepared by the co-condensation process and "click chemistry" post-modification exhibit higher catalytic efficiency than those prepared by a grafting method. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Pauson-Khand reaction: the catalytic age is here!
Gibson, Susan E; Stevenazzi, Andrea
2003-04-25
As a consequence of growing environmental awareness, it is now inappropriate to design a synthetic metal-mediated transformation that involves a noncatalytic use of toxic and expensive transition-metal species. One of the earliest examples of such a metal-mediated transformation is the Pauson-Khand reaction, a [2+2+1] cyclocarbonylation that generates a cyclopentenone. Despite the early descriptions by Pauson and co-workers of catalytic versions of the reaction with octacarbonyldicobalt(0), applications of the Pauson-Khand reaction have to date almost exclusively used approaches that involve stoichiometric quantities of cobalt-carbonyl complexes. In the last decade, and, most markedly, in the last two to three years, however, there have been many exciting and novel developments in the catalytic Pauson-Khand reaction. Furthermore, asymmetric catalysis of the Pauson-Khand reaction has been shown to be a viable process. In view of the impressive developments in Pauson-Khand catalysis in the last two to three years, we present a comprehensive and critical coverage of the catalytic Pauson-Khand reaction that is designed to facilitate its application and to point to exciting future developments.
Trisodium citrate, Na 3 (C 6 H 5 O 7 )
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rammohan, Alagappa; Kaduk, James A.
2016-05-10
The crystal structure of anhydrous trisodium citrate, Na 3(C 6H 5O 7), has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional theory (DFT). There are two independent five-coordinate Na +and one six-coordinate Na +cations in the asymmetric unit. The [NaO 5] and [NaO 6] polyhedra share edges and corners to form a three-dimensional framework. There are channels parallel to theaandbaxes in which the remainder of the citrate anions reside. The only hydrogen bonds are an intramolecular one between the hydroxy group and one of the terminal carboxylate O atoms and an intermolecular onemore » between a methylene group and the hydroxyl O atom.« less
(N-Benzyl-N-isopropyl-dithio-carbamato)chloridodiphenyl-tin(IV).
Abdul Muthalib, Amirah Faizah; Baba, Ibrahim; Mohamed Tahir, Mohamed Ibrahim; Ng, Seik Weng; Tiekink, Edward R T
2010-08-11
The Sn(IV) atom in the title organotin dithio-carbamate, [Sn(C(6)H(5))(2)(C(11)H(14)NS(2))Cl], is penta-coordinated by an asymmetrically coordinating dithio-carbamate ligand, a Cl and two ispo-C atoms of the Sn-bound phenyl groups. The resulting C(2)ClS(2) donor set defines a coordination geometry inter-mediate between square-pyramidal and trigonal-bipyramidal with a slight tendency towards the latter. The formation of close intra-molecular C-H⋯Cl and C-H⋯S contacts precludes the Cl and S atoms from forming significant inter-molecular contacts. The presence of C-H⋯π contacts leads to the formation of supra-molecular arrays that stack along the b axis.
Xu, Di; Zhou, Zhi-Ming; Dai, Li; Tang, Li-Wei; Zhang, Jun
2015-05-01
Newly developed ferrocene-oxazoline-phosphine ligands containing quaternary ammonium ionic groups exhibited excellent catalytic performance for the ruthenium-catalyzed hydrogenation of aromatic ketonic substrates to give chiral secondary alcohols with high levels of conversions and enantioselectivities. Simple manipulation process, water tolerance, high activity and good recyclable property make this catalysis practical and appealing. Copyright © 2015 Elsevier Ltd. All rights reserved.
Non-stabilized nucleophiles in Cu-catalysed dynamic kinetic asymmetric allylic alkylation
NASA Astrophysics Data System (ADS)
You, Hengzhi; Rideau, Emeline; Sidera, Mireia; Fletcher, Stephen P.
2015-01-01
The development of new reactions forming asymmetric carbon-carbon bonds has enabled chemists to synthesize a broad range of important carbon-containing molecules, including pharmaceutical agents, fragrances and polymers. Most strategies to obtain enantiomerically enriched molecules rely on either generating new stereogenic centres from prochiral substrates or resolving racemic mixtures of enantiomers. An alternative strategy--dynamic kinetic asymmetric transformation--involves the transformation of a racemic starting material into a single enantiomer product, with greater than 50 per cent maximum yield. The use of stabilized nucleophiles (pKa < 25, where Ka is the acid dissociation constant) in palladium-catalysed asymmetric allylic alkylation reactions has proved to be extremely versatile in these processes. Conversely, the use of non-stabilized nucleophiles in such reactions is difficult and remains a key challenge. Here we report a copper-catalysed dynamic kinetic asymmetric transformation using racemic substrates and alkyl nucleophiles. These nucleophiles have a pKa of >=50, more than 25 orders of magnitude more basic than the nucleophiles that are typically used in such transformations. Organometallic reagents are generated in situ from alkenes by hydrometallation and give highly enantioenriched products under mild reaction conditions. The method is used to synthesize natural products that possess activity against tuberculosis and leprosy, and an inhibitor of para-aminobenzoate biosynthesis. Mechanistic studies indicate that the reaction proceeds through a rapidly isomerizing intermediate. We anticipate that this approach will be a valuable complement to existing asymmetric catalytic methods.
Oxidation of ethanol on NaX zeolite modified with transition metals
NASA Astrophysics Data System (ADS)
Mirzai, J. I.; Nadirov, P. A.; Velieva, A. D.; Muradkhanli, V. G.
2017-06-01
NaLaX, NaX + Co, and NaPdX catalysts are synthesized by modification of NaX zeolite with transition metals (La, Co, Pd). The activity of the prepared materials in catalytic ethanol oxidation is studied in the temperature range of 423-723 K. It is shown that NaPdX and NaX + Co accelerate the reactions of partial and complete oxidation of ethanol as the temperature rises. NaLaX accelerates both intramolecular and intermolecular dehydration of alcohol. It is shown that the NaPdX (1.0% Pd) sample has the highest activity in the complete oxidation of alcohol with the formation of CO2.
Grassi, David; Dolka, Chrysanthi; Jackowski, Olivier; Alexakis, Alexandre
2013-01-21
The Cu-free asymmetric allylic alkylation, catalysed by NHC, with Grignard reagents is reported on allyl bromide derivatives with good results. The enantioselectivity was quite homogeneous (around 85% ee) on large and various substrates, regardless of the nature of the Grignard reagent. The formation of stereogenic quaternary centres was highly regioselective for both aliphatic and aromatic derivatives with good enantiomeric excess (up to 92% ee). The methodology developed was found to be complementary with the Cu-catalysed version. Several new NHCs were tested with improved efficiency. In addition, mechanistic studies, using NMR spectroscopy, led to the discovery of the catalytically active species. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corrêa, L. C.; Marchi-Salvador, D. P.; Cintra, A. C. O.
2006-08-01
A myotoxic Asp49-PLA{sub 2} with low catalytic activity from B. jararacussu (BthTX-II) was crystallized in the monoclinic crystal system; a complete X-ray diffraction data set was collected and a molecular-replacement solution was obtained. The oligomeric structure of BthTX-II resembles those of the Asp49-PLA{sub 2} PrTX-III and all bothropic Lys49-PLA{sub 2}s. For the first time, a complete X-ray diffraction data set has been collected from a myotoxic Asp49-phospholipase A{sub 2} (Asp49-PLA{sub 2}) with low catalytic activity (BthTX-II from Bothrops jararacussu venom) and a molecular-replacement solution has been obtained with a dimer in the asymmetric unit. The quaternary structure of BthTX-II resemblesmore » the myotoxin Asp49-PLA{sub 2} PrTX-III (piratoxin III from B. pirajai venom) and all non-catalytic and myotoxic dimeric Lys49-PLA{sub 2}s. In contrast, the oligomeric structure of BthTX-II is different from the highly catalytic and non-myotoxic BthA-I (acidic PLA{sub 2} from B. jararacussu). Thus, comparison between these structures should add insight into the catalytic and myotoxic activities of bothropic PLA{sub 2}s.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, Lydia M.; Celeste, Lesa R.; Lovelace, Leslie L.
Thymidylate synthase (TS) is a well validated target in cancer chemotherapy. Here, a new crystal form of the R163K variant of human TS (hTS) with five subunits per asymmetric part of the unit cell, all with loop 181-197 in the active conformation, is reported. This form allows binding studies by soaking crystals in artificial mother liquors containing ligands that bind in the active site. Using this approach, crystal structures of hTS complexes with FdUMP and dUMP were obtained, indicating that this form should facilitate high-throughput analysis of hTS complexes with drug candidates. Crystal soaking experiments using oxidized glutathione revealed thatmore » hTS binds this ligand. Interestingly, the two types of binding observed are both asymmetric. In one subunit of the physiological dimer covalent modification of the catalytic nucleophile Cys195 takes place, while in another dimer a noncovalent adduct with reduced glutathione is formed in one of the active sites.« less
NASA Astrophysics Data System (ADS)
Zhang, Dacheng; Gao, Xiaoshuang; Cheng, Tanyu; Liu, Guohua
2014-05-01
The construction of chiral biaryl alcohols using enantio-relay catalysis is a particularly attractive synthetic method in organic synthesis. However, overcoming the intrinsic incompatibility of distinct organometallic complexes and the reaction conditions used are significant challenges in asymmetric catalysis. To overcome these barriers, we have taken advantage of an enantio-relay catalysis strategy and a combined dual-immobilization approach. We report the use of an imidazolium-based organopalladium-functionalized organic-inorganic hybrid silica and ethylene-coated chiral organoruthenium-functionalized magnetic nanoparticles to catalyze a cascade Suzuki cross-coupling-asymmetric transfer hydrogenation reaction to prepare chiral biaryl alcohols in a two-step, one-pot process. As expected, the site-isolated active species, salient imidazolium phase-transfer character and high ethylene-coated hydrophobicity can synergistically boost the catalytic performance. Furthermore, enantio-relay catalysis has the potential to efficiently prepare a variety of chiral biaryl alcohols. Our synthetic strategy is a general method that shows the potential of developing enantio-relay catalysis towards environmentally benign and sustainable organic synthesis.
Rhodium-catalysed asymmetric allylic arylation of racemic halides with arylboronic acids
NASA Astrophysics Data System (ADS)
Sidera, Mireia; Fletcher, Stephen P.
2015-11-01
Csp2-Csp2 cross-coupling reactions between arylboronic acid and aryl halides are widely used in both academia and industry and are strategically important in the development of new agrochemicals and pharmaceuticals. Csp2-Csp3 cross-coupling reactions have been developed, but enantioselective variations are rare and simply retaining the stereochemistry is a problem. Here we report a highly enantioselective Csp2-Csp3 bond-forming method that couples arylboronic acids to racemic allyl chlorides. Both enantiomers of a cyclic chloride are converted into a single enantiomer of product via a dynamic kinetic asymmetric transformation. This Rh-catalysed method uses readily available and inexpensive building blocks and is mild and broadly applicable. For electron-deficient, electron-rich or ortho-substituted boronic acids better results are obtained with racemic allyl bromides. Oxygen substitution in the allyl halide is tolerated and the products can be functionalized to provide diverse building blocks. The approach fills a significant gap in the methods for catalytic asymmetric synthesis.
Song, Qing-Wen; Chen, Wei-Qiang; Ma, Ran; Yu, Ao; Li, Qiu-Yue; Chang, Yao; He, Liang-Nian
2015-03-01
The chemical conversion of CO2 at atmospheric pressure and room temperature remains a great challenge. The triphenylphosphine complex of silver(I) carbonate was proved to be a robust bifunctional catalyst for the carboxylative cyclization of propargylic alcohols and CO2 at ambient conditions leading to the formation of α-methylene cyclic carbonates in excellent yields. The unprecedented performance of [(PPh3)2Ag]2CO3 is presumably attributed to the simultaneous activation of CO2 and propargylic alcohol. Moreover, the highly compatible basicity of the catalytic species allows propargylic alcohol to react with CO2 leading to key silver alkylcarbonate intermediates: the bulkier [(Ph3P)2Ag(I)](+) effectively activates the carbon-carbon triple bond and enhances O-nucleophilicity of the alkylcarbonic anion, thereby greatly promoting the intramolecular nucleophilic cyclization. Notably, this catalytic protocol also worked well for the reaction of propargylic alcohols, secondary amines, and CO2 (at atmospheric pressure) to afford β-oxopropylcarbamates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Conformational Dynamics of Cas9 Governing DNA Cleavage Are Revealed by Single-Molecule FRET.
Yang, Mengyi; Peng, Sijia; Sun, Ruirui; Lin, Jingdi; Wang, Nan; Chen, Chunlai
2018-01-09
Off-target binding and cleavage by Cas9 pose major challenges in its application. How the conformational dynamics of Cas9 govern its nuclease activity under on- and off-target conditions remains largely unknown. Here, using intra-molecular single-molecule fluorescence resonance energy transfer measurements, we revealed that Cas9 in apo, sgRNA-bound, and dsDNA/sgRNA-bound forms spontaneously transits among three major conformational states, mainly reflecting significant conformational mobility of the catalytic HNH domain. We also uncovered surprising long-range allosteric communication between the HNH domain and the RNA/DNA heteroduplex at the PAM-distal end to ensure correct positioning of the catalytic site, which demonstrated that a unique proofreading mechanism served as the last checkpoint before DNA cleavage. Several Cas9 residues were likely to mediate the allosteric communication and proofreading step. Modulating interactions between Cas9 and heteroduplex at the PAM-distal end by introducing mutations on these sites provides an alternative route to improve and optimize the CRISPR/Cas9 toolbox. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Ikemoto, Hideya; Yoshino, Tatsuhiko; Sakata, Ken; Matsunaga, Shigeki; Kanai, Motomu
2014-04-09
A unique synthetic utility of a Cp*Co(III) catalyst in comparison with related Cp*Rh(III) catalysts is described. A C2-selective indole alkenylation/annulation sequence proceeded smoothly with catalytic amount of a [Cp*Co(III)(C6H6)](PF6)2 complex and KOAc. Intramolecular addition of an alkenyl-Cp*Co species to a carbamoyl moiety gave pyrroloindolones in 58-89% yield in one pot. Clear difference was observed between the catalytic activity of the Cp*Co(III) complex and those of Cp*Rh(III) complexes, highlighting the unique nucleophilic activity of the organocobalt species. The Cp*Co(III) catalysis was also suitable for simple alkenylation process of N-carbamoyl indoles, and broad range of alkynes, including terminal alkynes, were applicable to give C2-alkenylated indoles in 50-99% yield. Mechanistic studies on C-H activation step under Cp*Co(III) catalysis with the aid of an acetate unit as well as evaluation of the difference between organo-Co(III) species and organo-Rh(III) species are also described.
Wang, Yuguo; Tang, Rentao; Tao, Jin; Wang, Xiaonan; Zheng, Baisong; Feng, Yan
2012-08-24
The conversion of renewable cellulosic biomass is of considerable interest for the production of biofuels and materials. The bottleneck in the efficient conversion is the compactness and resistance of crystalline cellulose. Carbohydrate-binding modules (CBMs), which disrupt crystalline cellulose via non-hydrolytic mechanisms, are expected to overcome this bottleneck. However, the lack of convenient methods for quantitative analysis of the disruptive functions of CBMs have hindered systematic studies and molecular modifications. Here we established a practical and systematic platform for quantifying and comparing the non-hydrolytic disruptive activities of CBMs via the synergism of CBMs and a catalytic module within designed chimeric cellulase molecules. Bioinformatics and computational biology were also used to provide a deeper understanding. A convenient vector was constructed to serve as a cellulase matrix into which heterologous CBM sequences can be easily inserted. The resulting chimeric cellulases were suitable for studying disruptive functions, and their activities quantitatively reflected the disruptive functions of CBMs on crystalline cellulose. In addition, this cellulase matrix can be used to construct novel chimeric cellulases with high hydrolytic activities toward crystalline cellulose.
Yang, Yang; Hardman, Clayton
2017-10-18
Chiral 2-substituted-6-methyl 2,3-dihydropyidinones 9, which can be facilely obtained from an asymmetric vinylogous Mannich reaction (VMR) with 1,3-bis-trimethysily enol ether, were used as versatile intermediates in constructing chiral polyfunctional piperidine-based compounds. The 6-methyl group of such compounds can be conveniently functionalized via alkylation and acylation reactions to provide efficient entries to the synthesis of a variety of chiral multi-substituted piperidine-based compounds. Further elaboration of the corresponding intermediates also provided access to polyfunctional indolizidine-based compounds. These methods were showcased in an asymmetric synthesis of 2,6-di-substituted piperidine compound 13, reported as the key intermediate in the synthesis of (+)-calvine and a natural alkaloid (-)-indolizidine 209D. Furthermore, selective C5 iodination of compound 9 enabled the installation of additional functional groups at this position. Finally, we demonstrated that the oxidative cleavage of 2-substituted-6-methyl-2,3-dihydropyidinones is a practical and efficient method for the enantioselective synthesis of β-amino acids, which can undergo further intra-molecular cyclization to give the corresponding chiral four-membered β-lactam derivatives.
Lacroix, M B; Aude, C A; Arlaud, G J; Colomb, M G
1989-01-01
The proenzyme form of C1r catalytic domains was generated by limited proteolysis of native C1r with thermolysin in the presence of 4-nitrophenyl-4'-guanidinobenzoate. The final preparation, isolated by high-pressure gel permeation in the presence of 2 M-NaCl, was 70-75% proenzyme and consisted of a dimeric association of two gamma B domains, each resulting from cleavage of peptide bonds at positions 285 and 286 of C1r. Like native C1r, the isolated domains autoactivated upon incubation at 37 degrees C. Activation was inhibited by 4-nitrophenyl-4'-guanidinobenzoate but was nearly insensitive to di-isopropyl phosphorofluoridate; likewise, compared to pH 7.4, the rate of activation was decreased at pH 5.0, but was not modified at pH 10.0. In contrast, activation of the (gamma B)2 domains was totally insensitive to Ca2+. Activation of the catalytic domains, which was correlated with an irreversible increase of intrinsic fluorescence, comparable with that previously observed with native C1r [Villiers, Arlaud & Colomb (1983) Biochem. J. 215, 369-375], was reversibly inhibited at high ionic strength (2 M-NaCl), presumably through stabilization of a non-activatable conformational state. Detailed comparison of the properties of native C1r and its catalytic domains indicates that the latter contain all the structural elements that are necessary for intramolecular activation, but probably lack a regulatory mechanism associated with the N-terminal alpha beta region of C1r. Images Fig. 2. PMID:2539098
Generation and exploitation of acyclic azomethine imines in chiral Brønsted acid catalysis
NASA Astrophysics Data System (ADS)
Hashimoto, Takuya; Kimura, Hidenori; Kawamata, Yu; Maruoka, Keiji
2011-08-01
Successful implementation of a catalytic asymmetric synthesis strategy to produce enantiomerically enriched compounds requires the adoption of suitable prochiral substrates. The combination of an azomethine imine electrophile with various nucleophiles could give straightforward access to a number of synthetically useful chiral hydrazines, but is used rarely. Here we report the exploitation of acyclic azomethine imines as a new type of prochiral electrophile. They can be generated in situ by the condensation of N‧-benzylbenzoylhydrazide with a variety of aldehydes in the presence of a catalytic amount of an axially chiral dicarboxylic acid. By trapping these electrophiles with alkyl diazoacetate or (diazomethyl)phosphonate nucleophiles, we produced a diverse array of chiral α-diazo-β-hydrazino esters and phosphonates with excellent enantioselectivities.
Heterogeneous Catalysis of Polyoxometalate Based Organic–Inorganic Hybrids
Ren, Yuanhang; Wang, Meiyin; Chen, Xueying; Yue, Bin; He, Heyong
2015-01-01
Organic–inorganic hybrid polyoxometalate (POM) compounds are a subset of materials with unique structures and physical/chemical properties. The combination of metal-organic coordination complexes with classical POMs not only provides a powerful way to gain multifarious new compounds but also affords a new method to modify and functionalize POMs. In parallel with the many reports on the synthesis and structure of new hybrid POM compounds, the application of these compounds for heterogeneous catalysis has also attracted considerable attention. The hybrid POM compounds show noteworthy catalytic performance in acid, oxidation, and even in asymmetric catalytic reactions. This review summarizes the design and synthesis of organic–inorganic hybrid POM compounds and particularly highlights their recent progress in heterogeneous catalysis. PMID:28788017
Light-Induced Activation of a Molybdenum Oxotransferase Model within a Ru(II)-Mo(VI) Dyad.
Ducrot, Aurélien B; Coulson, Ben A; Perutz, Robin N; Duhme-Klair, Anne-Kathrin
2016-12-19
Nature uses molybdenum-containing enzymes to catalyze oxygen atom transfer (OAT) from water to organic substrates. In these enzymes, the two electrons that are released during the reaction are rapidly removed, one at a time, by spatially separated electron transfer units. Inspired by this design, a Ru(II)-Mo(VI) dyad was synthesized and characterized, with the aim of accelerating the rate-determining step in the cis-dioxo molybdenum-catalyzed OAT cycle, the transfer of an oxo ligand to triphenyl phosphine, via a photo-oxidation process. The dyad consists of a photoactive bis(bipyridyl)-phenanthroline ruthenium moiety that is covalently linked to a bioinspired cis-dioxo molybdenum thiosemicarbazone complex. The quantum yield and luminescence lifetimes of the dyad [Ru(bpy) 2 (L 2 )MoO 2 (solv)] 2+ were determined. The major component of the luminescence decay in MeCN solution (τ = 1149 ± 2 ns, 67%) corresponds closely to the lifetime of excited [Ru(bpy) 2 (phen-NH 2 )] 2+ , while the minor component (τ = 320 ± 1 ns, 31%) matches that of [Ru(bpy) 2 (H 2 -L 2 )] 2+ . In addition, the (spectro)electrochemical properties of the system were investigated. Catalytic tests showed that the dyad-catalyzed OAT from dimethyl sulfoxide to triphenyl phosphine proceeds significantly faster upon irradiation with visible light than in the dark. Methylviologen acts as a mediator in the photoredox cycle, but it is regenerated and hence only required in stoichiometric amounts with respect to the catalyst rather than sacrificial amounts. It is proposed that oxidative quenching of the photoexcited Ru unit, followed by intramolecular electron transfer, leads to the production of a reactive one-electron oxidized catalyst, which is not accessible by electrochemical methods. A significant, but less pronounced, rate enhancement was observed when an analogous bimolecular system was tested, indicating that intramolecular electron transfer between the photosensitizer and the catalytic center is more efficient than intermolecular electron transfer between the separate components.
Telalović, Selvedin; Ramanathan, Anand; Ng, Jeck Fei; Maheswari, Rajamanickam; Kwakernaak, Cees; Soulimani, Fouad; Brouwer, Hans C; Chuah, Gaik Khuan; Weckhuysen, Bert M; Hanefeld, Ulf
2011-01-01
Bimetallic three-dimensional amorphous mesoporous materials, Al-Zr-TUD-1 materials, were synthesised by using a surfactant-free, one-pot procedure employing triethanolamine (TEA) as a complexing reagent. The amount of aluminium and zirconium was varied in order to study the effect of these metals on the Brønsted and Lewis acidity, as well as on the resulting catalytic activity of the material. The materials were characterised by various techniques, including elemental analysis, X-ray diffraction, high-resolution TEM, N2 physisorption, temperature-programmed desorption (TPD) of NH3, and 27Al MAS NMR, XPS and FT-IR spectroscopy using pyridine and CO as probe molecules. Al-Zr-TUD-1 materials are mesoporous with surface areas ranging from 700–900 m2 g−1, an average pore size of around 4 nm and a pore volume of around 0.70 cm3 g−1. The synthesised Al-Zr-TUD-1 materials were tested as catalyst materials in the Lewis acid catalysed Meerwein–Ponndorf–Verley reduction of 4-tert-butylcyclohexanone, the intermolecular Prins synthesis of nopol and in the intramolecular Prins cyclisation of citronellal. Although Al-Zr-TUD-1 catalysts possess a lower amount of acid sites than their monometallic counterparts, according to TPD of NH3, these materials outperformed those of the monometallic Al-TUD-1 as well as Zr-TUD-1 in the Prins cyclisation of citronellal. This proves the existence of synergistic properties of Al-Zr-TUD-1. Due to the intramolecular nature of the Prins cyclisation of citronellal, the hydrophilic surface of the catalyst as well as the presence of both Brønsted and Lewis acid sites synergy could be obtained with bimetallic Al-Zr-TUD-1. Besides spectroscopic investigation of the active sites of the catalyst material a thorough testing of the catalyst in different types of reactions is crucial in identifying its specific active sites. PMID:21259348
1994-08-01
Diels - Alder reactions (58-60), Claisen rearrangements (43-45), olefin isomerization (73), a O-elimination (74), an asymmetric ketone reduction (54...phosphorothioate hapten3 ........ 19 Figure 5. Carboxylic acid hydrolysis .................... 21 Figure 6. Reaction coordinates for antibody catalyzed ...and catalyze the reaction. Thus, it is important to design transition analogs that closely mimic the transition state in every possible chemical
Karasawa, Tomoya; Kumagai, Naoya; Shibasaki, Masakatsu
2018-01-05
A highly anti-selective catalytic asymmetric nitroaldol reaction of trifluoromethyl ketones based on Nd/Na and Pr/Na heterobimetallic catalysts was developed. These catalysts function as heterogeneous catalysts to engage nitroethane and a range of trifluoromethyl ketones in a stereoselective assembly to afford CF 3 -appended vic-nitroalkanols that could be readily converted to enantioenriched vic-amino alcohols, which are privileged structural motifs in medicinal chemistry.
Martin, Timothy J.; Rovis, Tomislav
2013-01-01
An enantioselective rhodium (I) catalyzed [2+2+2] cycloaddition with a cleavable tether has been developed. The reaction proceeds with a variety of alkyne substrates in good yield and high enantioselectivity. Upon reduction of the vinylogous amide in high diastereoselectivity (>19:1) and cleavage of the tether, N-methylpiperidine products with functional group handles can be accessed. PMID:23606664
Feng, Zhu-Jia; Xuan, Jun; Xia, Xu-Dong; Ding, Wei; Guo, Wei; Chen, Jia-Rong; Zou, You-Quan; Lu, Liang-Qiu; Xiao, Wen-Jing
2014-04-07
Sequence catalysis merging photoredox catalysis (PC) and nucleophilic catalysis (NC) has been realized for the direct sp(3) C-H acroleination of N-aryl-tetrahydroisoquinoline (THIQ). The reaction was performed under very mild conditions and afforded products in 50-91% yields. A catalytic asymmetric variant was proved to be successful with moderate enantioselectivities (up to 83 : 17 er).
Calow, Adam D J; Fernández, Elena; Whiting, Andrew
2014-08-28
We report efficient, catalytic, asymmetric total syntheses of both (R)-fluoxetine and (S)-duloxetine from α,β-unsaturated aldehydes conducting five sequential one-pot steps (imine formation/copper mediated β-borylation/transimination/reduction/oxidation) followed by the specific ether group formation which deliver the desired products (R)-fluoxetine in 45% yield (96% ee) and (S)-duloxetine in 47% yield (94% ee).
NASA Astrophysics Data System (ADS)
Pei, Peng-Xiang; Hu, Jing-Han; Long, Chen; Ni, Peng-Wei
2018-06-01
A novel chemosensor 2-((Z)-(((E)-quinolin-2-ylmethylene)hydrazono)methyl)phenol PX has been successfully designed and synthesized, which showed both colorimetric and "turn-on" fluorescence responses for CN- in DMSO/H2O (3:2, v/v; pH = 7.20) solution. The sensor could respond effectively to the stimulation of CN- ions via deprotonation and sensing mechanism of intramolecular charge transfer (ICT). Moreover, the sensor PX was successfully utilized to detect CN- in bitter almond, and the detection limit on fluorescence response of PX towards CN- was down to 4.5 × 10-7 M. Test strips containing PX were also prepared, which could act as a practical colorimetric tool to detect CN- in aqueous media.
Ligand-accelerated enantioselective methylene C(sp3)-H bond activation.
Chen, Gang; Gong, Wei; Zhuang, Zhe; Andrä, Michal S; Chen, Yan-Qiao; Hong, Xin; Yang, Yun-Fang; Liu, Tao; Houk, K N; Yu, Jin-Quan
2016-09-02
Effective differentiation of prochiral carbon-hydrogen (C-H) bonds on a single methylene carbon via asymmetric metal insertion remains a challenge. Here, we report the discovery of chiral acetyl-protected aminoethyl quinoline ligands that enable asymmetric palladium insertion into prochiral C-H bonds on a single methylene carbon center. We apply these palladium complexes to catalytic enantioselective functionalization of β-methylene C-H bonds in aliphatic amides. Using bidentate ligands to accelerate C-H activation of otherwise unreactive monodentate substrates is crucial for outcompeting the background reaction driven by substrate-directed cyclopalladation, thereby avoiding erosion of enantioselectivity. The potential of ligand acceleration in C-H activation is also demonstrated by enantioselective β-C-H arylation of simple carboxylic acids without installing directing groups. Copyright © 2016, American Association for the Advancement of Science.
Hong, Allen Y.; Bennett, Nathan B.; Krout, Michael R.; Jensen, Thomas; Harned, Andrew. M.
2011-01-01
General catalytic asymmetric routes toward cyclopentanoid and cycloheptanoid core structures embedded in numerous natural products have been developed. The central stereoselective transformation in our divergent strategies is the enantioselective decarboxylative alkylation of seven-membered β-ketoesters to form α-quaternary vinylogous esters. Recognition of the unusual reactivity of β-hydroxyketones resulting from the addition of hydride or organometallic reagents enabled divergent access to γ-quaternary acylcyclopentenes through a ring contraction pathway or γ-quaternary cycloheptenones through a carbonyl transposition pathway. Synthetic applications of these compounds were explored through the preparation of mono-, bi-, and tricyclic derivatives that can serve as valuable intermediates for the total synthesis of complex natural products. This work complements our previous work with cyclohexanoid systems. PMID:22347731
Microwave-Induced Inactivation of DNA-Based Hybrid Catalyst in Asymmetric Catalysis
Zhao, Hua; Shen, Kai
2015-01-01
DNA-based hybrid catalysts have gained strong interests in asymmetric reactions. However, to maintain the high enantioselectivity, these reactions are usually conducted at relatively low temperatures (e.g. < 5 °C) for 2–3 days. Aiming to improve the reaction’s turnover rate, we evaluated microwave irradiation with simultaneous cooling as potential energy source since this method has been widely used to accelerate various chemical and enzymatic reactions. However, our data indicated that microwave irradiation induced an inactivation of DNA-based hybrid catalyst even at low temperatures (such as 5 °C). Circular dichroism (CD) spectra and gel electrophoresis of DNA suggest that microwave exposure degrades DNA molecules and disrupts DNA double-stranded structures, causing changes of DNA–metal ligand binding properties and thus poor DNA catalytic performance. PMID:26712696
Ting, Ying-Fang; Chang, Chihliang; Reddy, Raju Jannapu; Magar, Dhananjay R; Chen, Kwunmin
2010-06-18
Practical and convenient synthetic routes have been developed for the synthesis of a new class of pyrrolidinyl-camphor derivatives (7 a-h). These novel compounds were screened as catalysts for the direct Michael addition of symmetrical alpha,alpha-disubstituted aldehydes to beta-nitroalkenes. When this asymmetric transformation was catalyzed by organocatalyst 7 f, the desired Michael adducts were obtained in high chemical yields, with high to excellent stereoselectivities (up to 98:2 diastereomeric ratio (d.r.) and 99 % enantiomeric excess (ee)). The scope of the catalytic system was expanded to encompass various aldehydes and ketones as the donor sources. The synthetic application was demonstrated by the synthesis of a tetrasubstituted-cyclohexane derivative from (S)-citronellal, with high stereoselectivity.
Total Synthesis of Biselyngbyolide B and Its C21-C22 Z-Isomer.
Kämmler, Lena; Maier, Martin E
2018-04-20
Investigations toward the synthesis of the 18-membered macrolactone biselyngbyolide B (2) from a C1-C13 and a C14-C23 fragment are described. As a key reaction in the synthesis of the C1-C13 fragment, we used an asymmetric propargylation of chiral vinylketene silyl N, O-acetal 12. Access to a C14-C23 fragment featuring a skipped diene and a sensitive allyl alcohol function was initially attempted via reductive fragmentation of a pyran template. However, this ring opening on iodide 32 with t-BuLi led to dienynol 33 with a 21 Z double bond. With a silyl protecting group at 3-OH and by implementing an intramolecular Stille coupling for macrolactonization, the 21 Z-isomer of biselyngbyolide B (47) was obtained. For preparation of a C14-C23 fragment with the 21 E-configuration, a cross-coupling of vinylstannane 48 with 4-bromocrotonate (49) set the configuration of the two double bonds. Biselyngbyolide B (2) was then accessed by an intramolecular Heck coupling. In preliminary biological cytotoxicity assays, 2 turned out to be active, whereas the 21 Z-isomer 47 was much less active. The 3-OMEM analogue 40 was devoid of activity. These results support the notion that the side chain with the correct configuration is relevant for binding to the Ca 2+ -ATPase and the biological activity.
Fe(III)-solar light induced degradation of diethyl phthalate (DEP) in aqueous solutions.
Mailhot, G; Sarakha, M; Lavedrine, B; Cáceres, J; Malato, S
2002-11-01
The degradation of diethyl phthalate (DEP) photoinduced by Fe(III) in aqueous solutions has been investigated under solar irradiation in the compound parabolic collector reactor at Plataforma Solar de Almeria. Hydroxyl radicals *OH, responsible of the degradation, are formed via an intramolecular photoredox process in the excited state of Fe(III) aquacomplexes. The primary step of the reaction is mainly due to the attack of *OH radicals on the aromatic ring. For prolonged irradiations DEP and its photoproducts are completely mineralized due to the regeneration of the absorbing species and the continuous formation of *OH radicals that confers a catalytic aspect to the process. Consequently, the degradation photoinduced by Fe(III) could be an efficient method of DEP removal from water.
Parfenova, Lyudmila V; Zakirova, Irina V; Kovyazin, Pavel V; Karchevsky, Stanislav G; Istomina, Galina P; Khalilov, Leonard M; Dzhemilev, Usein M
2016-08-09
The effect of solvent nature (CD2Cl2, d8-toluene, d8-THF) on the conformational behavior of neomenthyl-substituted zirconocenes CpInd*ZrCl2 (Cp = η(5)-C5H5, Ind* = η(5)-neomenthylindenyl), CpCp'ZrCl2 (Cp = η(5)-C5H5, Cp' = η(5)-neomenthyl-4,5,6,7-tetrahydroindenyl), and Ind*2ZrCl2 (Ind* = η(5)-neomenthylindenyl) was shown by means of dynamic NMR spectroscopy, and the constants and thermodynamic parameters of conformer exchange were determined. The experimental conformational composition of the complexes was compared with structures obtained by quantum chemical modeling using the DFT methods PBE/3ζ and M06-2X/cc-pVDZ(H, C, Cl)/cc-pVDZ-PP(Zr), which predicted three rotamers in the case of both CpInd*ZrCl2 and CpCp'ZrCl2, and seven rotational isomers for Ind*2ZrCl2, three of these being C2-symmetric and the others being asymmetric. The enantioselectivity of the conformationally mobile complex Ind*2ZrCl2 in the reactions of terminal alkenes with AlR3 (R = Me, Et) was compared with that of rigid ansa-complexes, rac-p-S, p-S-[Y(η(5)-C9H10)2]ZrX2 (Y = SiMe2, C2H4; X = S-binaphtholate). Faster exchange between the conformers of Ind*2ZrCl2 in a chlorinated solvent gives the structural isomer of catalytically active sites, which affords higher substrate conversion and reaction enantioselectivity. Binding of the ligands to ansa-zirconocenes prevents the rotational isomerism of the complexes, providing the same configuration of the β-stereogenic center in the methyl- and ethylalumination products (unlike the conformationally mobile complex Ind*2ZrCl2) with an enantiomeric purity of 50-65%.
Current status of chirality in agrochemicals.
Jeschke, Peter
2018-04-27
The agrochemical industry is continuously searching for new pesticides to develop products with optimal efficacy, lower application rates in the field, increased selectivity, favorable toxicological and environmental safety, enhanced user friendliness and better economic viability. One strategy to achieve these ambitious goals makes use of the unique properties of molecules containing asymmetric centers. In the past, many natural products and their congeners have been a source of inspiration for designing new active ingredients, and the molecular structure of the resulting molecules have become increasingly complex. 30% contain fragments with asymmetric centers. However, despite the enormous progress that has been made in catalytic asymmetric processes over the last decade, only few agrochemicals are produced in enantiomerically pure or enriched form on an industrial scale. Since 2007, around 43% of the 44 launched products (insecticides, acaricides, fungicides, nematicides, and herbicides) contain one or more asymmetric centers in the molecule (≈ 47 %) and most of them were launched as racemic mixtures of enantiomers or diastereomers. This review gives an overview of the current status of chiral agrochemicals launched over the past 10 years and describes the inherently connected challenges of modern agricultural chemistry by managing important aspects resulting from stereochemistry of these innovative products. This article is protected by copyright. All rights reserved.
Burrows, Lauren C; Jesikiewicz, Luke T; Lu, Gang; Geib, Steven J; Liu, Peng; Brummond, Kay M
2017-10-25
The Rh(I)-catalyzed allenic Pauson-Khand reaction (APKR) is an efficient, redox-neutral method of synthesizing α-acyloxy cyclopentenones. An enantioselective APKR could provide access to chiral, nonracemic α-acyloxy and α-hydroxy cyclopentenones and their corresponding redox derivatives, such as thapsigargin, a cytotoxic natural product with potent antitumor activity. Rapid scrambling of axial chirality of allenyl acetates in the presence of Rh(I) catalysts enables the conversion of racemic allene to enantiopure cyclopentenone product in a dynamic kinetic asymmetric transformation (DyKAT). A combined experimental and computational approach was taken to develop an effective catalytic system to achieve the asymmetric transformation. The optimization of the denticity, and steric and electronic properties of the ancillary ligand (initially (S)-MonoPhos, 58:42 er), afforded a hemilabile bidentate (S)-MonoPhos-alkene-Rh(I) catalyst that provided α-acyloxy cyclopentenone product in up to 14:86 er. Enantioselectivity of the Rh(I)-(S)-MonoPhos-alkene catalyst was rationalized using ligand-substrate steric interactions and distortion energies in the computed transition states. This asymmetric APKR of allenyl acetates is a rare example of a Type I DyKAT reaction of an allene, the first example of DyKAT in a cyclocarbonylation reaction, and the first catalyst-controlled enantioselective APKR.
Highly catalytic asymmetric addition of deactivated alkyl grignard reagents to aldehydes.
Da, Chao-Shan; Wang, Jun-Rui; Yin, Xiao-Gang; Fan, Xin-Yuan; Liu, Yi; Yu, Sheng-Li
2009-12-17
Generally used and highly reactive RMgBr reagents were effectively deactivated by bis[2-(N,N-dimethylamino)ethyl] ether and then were employed in the highly enantioselective addition of Grignard reagents to aldehydes. The reaction was catalyzed by the complex of commercially available (S)-BINOL and Ti(O(i-)Pr)(4) under mild conditions. Compared with the other observed Grignard reagents, alkyl Grignard reagents showed higher enantioselectivity and they achieved >99% ee.
Dornan, Peter K.; Kou, Kevin G. M.; Houk, K. N.; Dong, Vy M.
2014-01-01
A dynamic kinetic resolution (DKR) of allylic sulfoxides has been demonstrated by combining the Mislow [2,3]-sigmatropic rearrangement with catalytic asymmetric hydrogenation. The efficiency of our DKR was optimized by using low pressures of hydrogen gas to decrease the rate of hydrogenation relative to the rate of sigmatropic rearrangement. Kinetic studies reveal that the rhodium complex acts as a dual-role catalyst and accelerates the substrate racemization while catalyzing olefin hydrogenation. Scrambling experiments and theoretical modeling support a novel mode of sulfoxide racemization which occurs via a rhodium π-allyl intermediate in polar solvents. In non-polar solvents, however, the substrate racemization is primarily uncatalyzed. Computational studies suggest that the sulfoxide binds to rhodium via O–coordination throughout the catalytic cycle for hydrogenation. PMID:24350903
A dual-catalysis approach to enantioselective [2 + 2] photocycloadditions using visible light.
Du, Juana; Skubi, Kazimer L; Schultz, Danielle M; Yoon, Tehshik P
2014-04-25
In contrast to the wealth of catalytic systems that are available to control the stereochemistry of thermally promoted cycloadditions, few similarly effective methods exist for the stereocontrol of photochemical cycloadditions. A major unsolved challenge in the design of enantioselective catalytic photocycloaddition reactions has been the difficulty of controlling racemic background reactions that occur by direct photoexcitation of substrates while unbound to catalyst. Here, we describe a strategy for eliminating the racemic background reaction in asymmetric [2 + 2] photocycloadditions of α,β-unsaturated ketones to the corresponding cyclobutanes by using a dual-catalyst system consisting of a visible light-absorbing transition-metal photocatalyst and a stereocontrolling Lewis acid cocatalyst. The independence of these two catalysts enables broader scope, greater stereochemical flexibility, and better efficiency than previously reported methods for enantioselective photochemical cycloadditions.
2010-01-01
Summary The development of efficient Friedel–Crafts alkylations of arenes and heteroarenes using only catalytic amounts of a Lewis acid has gained much attention over the last decade. The new catalytic approaches described in this review are favoured over classical Friedel–Crafts conditions as benzyl-, propargyl- and allyl alcohols, or styrenes, can be used instead of toxic benzyl halides. Additionally, only low catalyst loadings are needed to provide a wide range of products. Following a short introduction about the origin and classical definition of the Friedel–Crafts reaction, the review will describe the different environmentally benign substrates which can be applied today as an approach towards greener processes. Additionally, the first diastereoselective and enantioselective Friedel–Crafts-type alkylations will be highlighted. PMID:20485588
Kobayashi, Junya; Matsuura, Yoshiyuki
2017-10-01
In the budding yeast Saccharomyces cerevisiae, the protein phosphatase Cdc14p orchestrates various events essential for mitotic exit. We have determined the X-ray crystal structures at 1.85 Å resolution of the catalytic domain of Cdc14p in both the apo state, and as a complex with S160-phosphorylated Swi6p peptide. Each asymmetric unit contains two Cdc14p chains arranged in an intimately associated homodimer, consistent with its oligomeric state in solution. The dimerization interface is located on the backside of the substrate-binding cleft. Structure-based mutational analyses indicate that the dimerization of Cdc14p is required for normal growth of yeast cells. © 2017 The Protein Society.
Harper, Stephen; Gratton, Hayley E; Cornaciu, Irina; Oberer, Monika; Scott, David J; Emsley, Jonas; Dreveny, Ingrid
2014-05-13
The ubiquitin specific protease 11 (USP11) is implicated in DNA repair, viral RNA replication, and TGFβ signaling. We report the first characterization of the USP11 domain architecture and its role in regulating the enzymatic activity. USP11 consists of an N-terminal "domain present in USPs" (DUSP) and "ubiquitin-like" (UBL) domain, together referred to as DU domains, and the catalytic domain harboring a second UBL domain. Crystal structures of the DU domains show a tandem arrangement with a shortened β-hairpin at the two-domain interface and altered surface characteristics compared to the homologues USP4 and USP15. A conserved VEVY motif is a signature feature at the two-domain interface that shapes a potential protein interaction site. Small angle X-ray scattering and gel filtration experiments are consistent with the USP11DU domains and full-length USP11 being monomeric. Unexpectedly, we reveal, through kinetic assays of a series of deletion mutants, that the catalytic activity of USP11 is not regulated through intramolecular autoinhibition or activation by the N-terminal DU or UBL domains. Moreover, ubiquitin chain cleavage assays with all eight linkages reveal a preference for Lys(63)-, Lys(6)-, Lys(33)-, and Lys(11)-linked chains over Lys(27)-, Lys(29)-, and Lys(48)-linked and linear chains consistent with USP11's function in DNA repair pathways that is mediated by the protease domain. Our data support a model whereby USP11 domains outside the catalytic core domain serve as protein interaction or trafficking modules rather than a direct regulatory function of the proteolytic activity. This highlights the diversity of USPs in substrate recognition and regulation of ubiquitin deconjugation.
Grainger, Richard J.; Barrass, J. David; Jacquier, Alain; Rain, Jean-Christophe; Beggs, Jean D.
2009-01-01
In Saccharomyces cerevisiae, Cwc21p is a protein of unknown function that is associated with the NineTeen Complex (NTC), a group of proteins involved in activating the spliceosome to promote the pre-mRNA splicing reaction. Here, we show that Cwc21p binds directly to two key splicing factors—namely, Prp8p and Snu114p—and becomes the first NTC-related protein known to dock directly to U5 snRNP proteins. Using a combination of proteomic techniques we show that the N-terminus of Prp8p contains an intramolecular fold that is a Snu114p and Cwc21p interacting domain (SCwid). Cwc21p also binds directly to the C-terminus of Snu114p. Complementary chemical cross-linking experiments reveal reciprocal protein footprints between the interacting Prp8 and Cwc21 proteins, identifying the conserved cwf21 domain in Cwc21p as a Prp8p binding site. Genetic and functional interactions between Cwc21p and Isy1p indicate that they have related functions at or prior to the first catalytic step of splicing, and suggest that Cwc21p functions at the catalytic center of the spliceosome, possibly in response to environmental or metabolic changes. We demonstrate that SRm300, the only SR-related protein known to be at the core of human catalytic spliceosomes, is a functional ortholog of Cwc21p, also interacting directly with Prp8p and Snu114p. Thus, the function of Cwc21p is likely conserved from yeast to humans. PMID:19854871
Domain alternation and active site remodeling are conserved structural features of ubiquitin E1.
Lv, Zongyang; Yuan, Lingmin; Atkison, James H; Aldana-Masangkay, Grace; Chen, Yuan; Olsen, Shaun K
2017-07-21
E1 enzymes for ubiquitin (Ub) and Ub-like modifiers (Ubls) harbor two catalytic activities that are required for Ub/Ubl activation: adenylation and thioester bond formation. Structural studies of the E1 for the Ubl s mall u biquitin-like mo difier (SUMO) revealed a single active site that is transformed by a conformational switch that toggles its competency for catalysis of these two distinct chemical reactions. Although the mechanisms of adenylation and thioester bond formation revealed by SUMO E1 structures are thought to be conserved in Ub E1, there is currently a lack of structural data supporting this hypothesis. Here, we present a structure of Schizosaccharomyces pombe Uba1 in which the second catalytic cysteine half-domain (SCCH domain) harboring the catalytic cysteine has undergone a 106° rotation that results in a completely different network of intramolecular interactions between the SCCH and adenylation domains and translocation of the catalytic cysteine 12 Å closer to the Ub C terminus compared with previous Uba1 structures. SCCH domain alternation is accompanied by conformational changes within the Uba1 adenylation domains that effectively disassemble the adenylation active site. Importantly, the structural and biochemical data suggest that domain alternation and remodeling of the adenylation active site are interconnected and are intrinsic structural features of Uba1 and that the overall structural basis for adenylation and thioester bond formation exhibited by SUMO E1 is indeed conserved in Ub E1. Finally, the mechanistic insights provided by the novel conformational snapshot of Uba1 presented in this study may guide efforts to develop small molecule inhibitors of this critically important enzyme that is an active target for anticancer therapeutics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Tu, Tao; Meng, Kun; Luo, Huiying; Turunen, Ossi; Zhang, Lujia; Cheng, Yanli; Su, Xiaoyun; Ma, Rui; Shi, Pengjun; Wang, Yaru; Yang, Peilong; Yao, Bin
2015-01-01
Intramolecular mobility and conformational changes of flexible loops have important roles in the structural and functional integrity of proteins. The Achaetomium sp. Xz8 endo-polygalacturonase (PG8fn) of glycoside hydrolase (GH) family 28 is distinguished for its high catalytic activity (28,000 U/mg). Structure modeling indicated that PG8fn has a flexible T3 loop that folds partly above the substrate in the active site, and forms a hydrogen bond to the substrate by a highly conserved residue Asn94 in the active site cleft. Our research investigates the catalytic roles of Asn94 in T3 loop which is located above the catalytic residues on one side of the substrate. Molecular dynamics simulation performed on the mutant N94A revealed the loss of the hydrogen bond formed by the hydroxyl group at O34 of pentagalacturonic acid and the crucial ND2 of Asn94 and the consequent detachment and rotation of the substrate away from the active site, and that on N94Q caused the substrate to drift away from its place due to the longer side chain. In line with the simulations, site-directed mutagenesis at this site showed that this position is very sensitive to amino acid substitutions. Except for the altered K m values from 0.32 (wild type PG8fn) to 0.75–4.74 mg/ml, all mutants displayed remarkably lowered k cat (~3–20,000 fold) and k cat/K m (~8–187,500 fold) values and significantly increased △(△G) values (5.92–33.47 kJ/mol). Taken together, Asn94 in the GH28 T3 loop has a critical role in positioning the substrate in a correct way close to the catalytic residues. PMID:26327390
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorensen, John L., E-mail: John_Sorensen@umanitoba.ca; Stetefeld, Joerg, E-mail: stetefel@cc.umanitoba.ca
2011-10-07
Highlights: {yields} Inhibitors of tetrapyrrole cofactor biosynthesis may be useful antibiotics. {yields} Mechanism of critical enzyme, glutamate-1-semialdehyde aminomutase, is presented. {yields} Unique vitamin B6-dependant enzyme traps intermediate in active site. {yields} Molecular dynamics show that a re-orientation of the substrate is required. -- Abstract: Glutamate-1-semialdehyde aminomutase (GSAM), a key enzyme in tetrapyrrole cofactor biosynthesis, performs a unique transamination on a single substrate. The substrate, glutamate-1-semialdehyde (GSA), undergoes a reaction that exchanges the position of an amine and a carbonyl group to produce 5-aminolevulinic acid (ALA). This transamination reaction is unique in the fact that is does not require an externalmore » cofactor to act as a nitrogen donor or acceptor in this transamination reaction. One of the other remarkable features of the catalytic mechanism is the release free in the enzyme active site of the intermediate 4,5-diaminovaleric acid (DAVA). The action of a gating loop prevents the escape of DAVA from the active site. In a MD simulation approach, using snapshots provided by X-ray crystallography and protein crystal absorption spectrometry data, the individual catalytic steps in this unique intramolecular transamination have been elucidated.« less
Polyreactivity of natural antibodies: exchange by HL-fragments.
Sedykh, M A; Buneva, V N; Nevinsky, G A
2013-12-01
The polyreactivity of binding (formation of antibody (AB) complexes not only with specific but also with foreign antigens) is a widespread phenomenon that in some cases can be caused by a conformational lability of the antigen-binding sites of antibodies (which increases upon treatment with various destabilizing agents) and leads to AB binding with very different antigens. Some ABs exist as dimers of the initial ABs and their idiotypes (or anti-idiotypes) capable of producing intramolecular cyclic complexes with features of polyreactants. Another mechanism of binding polyreactivity is an exchange in blood by halves of IgG4 molecules (HL-fragments) against various antigens. Also, for the first time catalytic polyfunctionality of human milk ABs has been detected, which is caused by an exchange by HL-fragments between molecules of λ- and κ-IgG (IgG1-IgG4) and also by λ- and κ-sIgA against different antigens with formation of very different chimeric antibodies. This review considers all possible pathways of formation of polyspecific immunoglobulins and their biological functions described in the literature, as well as mechanisms of binding polyreactivity and catalytic polyfunctionality of natural antibodies.
Wang, Yuguo; Tang, Rentao; Tao, Jin; Wang, Xiaonan; Zheng, Baisong; Feng, Yan
2012-01-01
The conversion of renewable cellulosic biomass is of considerable interest for the production of biofuels and materials. The bottleneck in the efficient conversion is the compactness and resistance of crystalline cellulose. Carbohydrate-binding modules (CBMs), which disrupt crystalline cellulose via non-hydrolytic mechanisms, are expected to overcome this bottleneck. However, the lack of convenient methods for quantitative analysis of the disruptive functions of CBMs have hindered systematic studies and molecular modifications. Here we established a practical and systematic platform for quantifying and comparing the non-hydrolytic disruptive activities of CBMs via the synergism of CBMs and a catalytic module within designed chimeric cellulase molecules. Bioinformatics and computational biology were also used to provide a deeper understanding. A convenient vector was constructed to serve as a cellulase matrix into which heterologous CBM sequences can be easily inserted. The resulting chimeric cellulases were suitable for studying disruptive functions, and their activities quantitatively reflected the disruptive functions of CBMs on crystalline cellulose. In addition, this cellulase matrix can be used to construct novel chimeric cellulases with high hydrolytic activities toward crystalline cellulose. PMID:22778256
Wilks, A; Black, S M; Miller, W L; Ortiz de Montellano, P R
1995-04-04
A human heme oxygenase (hHO-1) gene without the sequence coding for the last 23 amino acids has been expressed in Escherichia coli behind the pho A promoter. The truncated enzyme is obtained in high yields as a soluble, catalytically-active protein, making it available for the first time for detailed mechanistic studies. The purified, truncated hHO-1/heme complex is spectroscopically indistinguishable from that of the rat enzyme and converts heme to biliverdin when reconstituted with rat liver cytochrome P450 reductase. A self-sufficient heme oxygenase system has been obtained by fusing the truncated hHO-1 gene to the gene for human cytochrome P450 reductase without the sequence coding for the 20 amino acid membrane binding domain. Expression of the fusion protein in pCWori+ yields a protein that only requires NADPH for catalytic turnover. The failure of exogenous cytochrome P450 reductase to stimulate turnover and the insensitivity of the catalytic rate toward changes in ionic strength establish that electrons are transferred intramolecularly between the reductase and heme oxygenase domains of the fusion protein. The Vmax for the fusion protein is 2.5 times higher than that for the reconstituted system. Therefore, either the covalent tether does not interfere with normal docking and electron transfer between the flavin and heme domains or alternative but equally efficient electron transfer pathways are available that do not require specific docking.
Metallophosphite-Catalyzed Asymmetric Acylation of α,β -Unsaturated Amides
Nahm, Mary R.; Potnick, Justin R.; White, Peter S.; Johnson, Jeffrey S.
2007-01-01
The l-menthone-derived TADDOL phosphite 6b catalyzes highly enantioselective conjugate additions of acyl silanes to α,β-unsaturated amides. p-Methoxybenzoyl cyclohexyldimethylsilane adds to a variety of N,N-dimethyl acrylamide derivatives in the presence of the lithium salt of 6b. In many instances the α-silyl-γ-ketoamide product undergoes facile enantioenrichment (to 97–99% ee) upon recrystallization. Desilylation with HF·pyr affords the formal Stetter addition products. Baeyer–Villiger oxidation of the desilylated γ-ketoamides affords useful ester products. An X-ray diffraction study of 6b reveals that the isopropyl group of the menthone ketal influences the position of the syn-pseudoaxial phenyl group in the TADDOL structure. Through a crossover experiment, the silicon migration step in the reaction mechanism is shown to be strictly intramolecular. PMID:16492064
Möller, Tobias; Wonneberger, Peter; Sárosi, Menyhárt B; Coburger, Peter; Hey-Hawkins, Evamarie
2016-02-07
The principle of stereotopic face differentiation was successfully applied to 2H-phospholes which undergo a very efficient and highly stereoselective Diels-Alder reaction giving phosphorus-chiral 1-phosphanorbornenes with up to 87% yield. The observed reaction pathway has been supported by theoretical calculations showing that the cycloaddition reaction between 2H-phosphole 3a and the dienophile (5R)-(-)-menthyloxy-2(5H)-furanone (8) is of normal electron demand. Optically pure phosphanes were obtained by separation of the single diastereomers and subsequent desulfurisation of the sulfur-protected phosphorus atom. Finally, divergent ligand synthesis is feasible by reduction of the chiral auxiliary, subsequent stereospecific intramolecular Michael addition, and various functionalisations of the obtained key compound 13a. Furthermore, the unique structural properties of phospanorbornenes are presented and compared to those of phosphanorbornanes.
A Dual-Catalysis Approach to Enantioselective [2+2] Photocycloadditions Using Visible Light
Du, Juana; Skubi, Kazimer L.; Schultz, Danielle M.; Yoon, Tehshik P.
2015-01-01
In contrast to the wealth of catalytic systems that are available to control the stereochemistry of thermally promoted cycloadditions, few similarly effective methods exist for the stereocontrol of photochemical cycloadditions. A major unsolved challenge in the design of enantioselective catalytic photocycloaddition reactions has been the difficulty of controlling racemic background reactions that occur by direct photoexcitation of substrates while unbound to catalyst. Here we describe a strategy for eliminating the racemic background reaction in asymmetric [2+2] photocycloadditions of α,β-unsaturated ketones to the corresponding cyclobutanes by employing a dual-catalyst system consisting of a visible light-absorbing transition metal photocatalyst and a stereocontrolling Lewis acid co-catalyst. The independence of these two catalysts enables broader scope, greater stereochemical flexibility, and better efficiency than previously reported methods for enantioselective photochemical cycloadditions. PMID:24763585
Erb, Jeremy; Paull, Daniel H.; Dudding, Travis; Belding, Lee
2012-01-01
We report in full detail our studies on the catalytic, asymmetric α-fluorination of acid chlorides, a practical method that produces an array of α-fluorocarboxylic acid derivatives in which improved yield and virtually complete enantioselectivity are controlled through electrophilic fluorination of a ketene enolate intermediate. We discovered, for the first time, that a third catalyst, a Lewis acidic lithium salt, could be introduced into a dually-activated system to amplify yields of aliphatic products, primarily through activation of the fluorinating agent. Through our mechanistic studies (based on kinetic data, isotopic labeling, spectroscopic measurements, and theoretical calculations) we were able to utilize our understanding of this “trifunctional” reaction to optimize the conditions and obtain new products in good yield and excellent enantioselectivity. PMID:21513338
Ni-Catalyzed Carbon-Carbon Bond-Forming Reductive Amination.
Heinz, Christoph; Lutz, J Patrick; Simmons, Eric M; Miller, Michael M; Ewing, William R; Doyle, Abigail G
2018-02-14
This report describes a three-component, Ni-catalyzed reductive coupling that enables the convergent synthesis of tertiary benzhydryl amines, which are challenging to access by traditional reductive amination methodologies. The reaction makes use of iminium ions generated in situ from the condensation of secondary N-trimethylsilyl amines with benzaldehydes, and these species undergo reaction with several distinct classes of organic electrophiles. The synthetic value of this process is demonstrated by a single-step synthesis of antimigraine drug flunarizine (Sibelium) and high yielding derivatization of paroxetine (Paxil) and metoprolol (Lopressor). Mechanistic investigations support a sequential oxidative addition mechanism rather than a pathway proceeding via α-amino radical formation. Accordingly, application of catalytic conditions to an intramolecular reductive coupling is demonstrated for the synthesis of endo- and exocyclic benzhydryl amines.
Functionalized multi-walled carbon nanotubes in an aldol reaction
NASA Astrophysics Data System (ADS)
Chronopoulos, D. D.; Kokotos, C. G.; Karousis, N.; Kokotos, G.; Tagmatarchis, N.
2015-01-01
The covalent functionalization of multi-walled carbon nanotubes (MWCNTs) with a proline-based derivative is reported. Initially, MWCNTs were oxidized in order to introduce a large number of carboxylic units on their tips followed by N-tert-butoxycarbonyl-2,2'(ethylenedioxy)bis-(ethylamine) conjugation through an amide bond. Then, a proline derivative bearing a carboxylic terminal moiety at the 4-position was coupled furnishing proline-modified MWCNTs. This new hybrid material was fully characterized by spectroscopic and microscopy means and its catalytic activity in the asymmetric aldol reaction between acetone and 4-nitrobenzaldehyde was evaluated for the first time, showing to proceed almost quantitatively in aqueous media. Furthermore, several amino-modified MWCNTs were prepared and examined in the particular aldol reaction. These new hybrid materials exhibited an enhanced catalytic activity in water, contrasting with the pristine MWCNTs as well as the parent organic molecule, which failed to catalyze the reaction efficiently. Furthermore, the modified MWCNTs proved to catalyze the aldol reaction even after three repetitive cycles. Overall, a green approach for the aldol reaction is presented, where water can be employed as the solvent and modified MWCNTs can be used as catalysts, which can be successfully recovered and reused, while their catalytic activity is retained.The covalent functionalization of multi-walled carbon nanotubes (MWCNTs) with a proline-based derivative is reported. Initially, MWCNTs were oxidized in order to introduce a large number of carboxylic units on their tips followed by N-tert-butoxycarbonyl-2,2'(ethylenedioxy)bis-(ethylamine) conjugation through an amide bond. Then, a proline derivative bearing a carboxylic terminal moiety at the 4-position was coupled furnishing proline-modified MWCNTs. This new hybrid material was fully characterized by spectroscopic and microscopy means and its catalytic activity in the asymmetric aldol reaction between acetone and 4-nitrobenzaldehyde was evaluated for the first time, showing to proceed almost quantitatively in aqueous media. Furthermore, several amino-modified MWCNTs were prepared and examined in the particular aldol reaction. These new hybrid materials exhibited an enhanced catalytic activity in water, contrasting with the pristine MWCNTs as well as the parent organic molecule, which failed to catalyze the reaction efficiently. Furthermore, the modified MWCNTs proved to catalyze the aldol reaction even after three repetitive cycles. Overall, a green approach for the aldol reaction is presented, where water can be employed as the solvent and modified MWCNTs can be used as catalysts, which can be successfully recovered and reused, while their catalytic activity is retained. Electronic supplementary information (ESI) available: Experimental details for the synthesis of 5, 8 and 11; 1H & 13C NMR of compounds 8 and 11; ATR-IR spectra, thermographs and TEM imaging of hybrids 10 and 13. See DOI: 10.1039/c4nr06543c
El Alami, Mohammed Samir Ibn; El Amrani, Mohamed Amin; Agbossou-Niedercorn, Francine; Suisse, Isabelle; Mortreux, André
2015-01-19
The preparation of optically pure secondary alcohols in the presence of catalysts based on chiral ligands derived from monoterpenes, such as pinenes, limonenes and carenes, is reviewed. A wide variety of these ligands has been synthesized and used in several catalytic reactions, including hydrogen transfer, C-C bond formation via addition of organozinc compounds to aldehydes, hydrosilylation, and oxazaborolidine reduction, leading to high activities and enantioselectivities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis of Enantiomerically Pure Lignin Dimer Models for Catalytic Selectivity Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Njiojob, Costyl N.; Rhinehart, Jennifer L.; Bozell, Joseph J.
2015-02-06
A series of highly enantioselective transformations, such as the Sharpless asymmetric epoxidation and Jacobsen hydrolytic kinetic resolution, were utilized to achieve the complete stereoselective synthesis of β-O-4 lignin dimer models containing the S, G, and H subunits with excellent ee (>99%) and moderate to high yields. This unprecedented synthetic method can be exploited for enzymatic, microbial, and chemical investigations into lignin’s degradation and depolymerization as related to its stereochemical constitution. Preliminary degradation studies using enantiopure Co(salen) catalysts are also reported.
Asymmetric 3d Electronic Structure for Enhanced Oxygen Evolution Catalysis.
Liu, Yang; Yin, Shibin; Shen, Pei Kang
2018-06-27
The oxygen evolution reaction (OER) is an essential process for renewable energy, and designing a bifunctional oxygen electrocatalyst with high catalytic performance plays a significant role. In this work, FeS, Ni 3 S 2 , Fe 5 Ni 4 S 8 , and N, O, S-doped meshy carbon base were successfully synthesized. The sample containing Fe 5 Ni 4 S 8 exhibited excellent OER performance. The density functional theory calculations indicate that the partial density of states for 3d electrons (3d-PDOS) of Fe and Ni atoms are changed from monometallic sulfide to bimetallic sulfide at the sulfur vacancy. The asymmetric 3d electronic structure optimizes the 3d-PDOS of Fe and Ni atoms, and leads to an enhanced OER activity. This work provides a new strategy to prepare a low-cost electrocatalyst for oxygen evolution with high-efficiency.
NASA Astrophysics Data System (ADS)
Guo, Shuo; Cong, Fei; Guo, Rui; Wang, Liang; Tang, Pingping
2017-06-01
Fluorinated organic compounds are becoming increasingly important in pharmaceuticals, agrochemicals and materials science. The introduction of trifluoromethoxy groups into new drugs and agrochemicals has attracted much attention due to their strongly electron-withdrawing nature and high lipophilicity. However, synthesis of trifluoromethoxylated organic molecules is difficult owing to the decomposition of trifluoromethoxide anion and β-fluoride elimination from transition-metal-trifluoromethoxide complexes, and no catalytic enantioselective trifluoromethoxylation reaction has been reported until now. Here, we present an example of an asymmetric silver-catalysed intermolecular bromotrifluoromethoxylation of alkenes with trifluoromethyl arylsulfonate (TFMS) as a new trifluoromethoxylation reagent. Compared to other trifluoromethoxylation reagents, TFMS is easily prepared and thermally stable with good reactivity. In addition, this reaction is operationally simple, scalable and proceeds under mild reaction conditions. Furthermore, broad scope and good functional group compatibility has been demonstrated by application of the method to the bromotrifluoromethoxylation of double bonds in natural products and natural product derivatives.
Development of the titanium–TADDOLate-catalyzed asymmetric fluorination of β-ketoesters
Hintermann, Lukas; Perseghini, Mauro
2011-01-01
Summary Titanium-based Lewis acids catalyze the α-fluorination of β-ketoesters by electrophilic N–F-fluorinating reagents. Asymmetric catalysis with TADDOLato–titanium(IV) dichloride (TADDOL = α,α,α',α'-tetraaryl-(1,3-dioxolane-4,5-diyl)-dimethanol) Lewis acids produces enantiomerically enriched α-fluorinated β-ketoesters in up to 91% enantiomeric excess, with either F–TEDA (1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate)) in acetonitrile solution or NFSI (N-fluorobenzenesulfonimide) in dichloromethane solution as fluorinating reagents. The effects of various reaction parameters and of the TADDOL ligand structure on the catalytic activity and enantioselectivity were investigated. The absolute configuration of several fluorination products was assigned through correlation. Evidence for ionization of the catalyst complex by chloride dissociation, followed by generation of titanium β-ketoenolates as key reaction intermediates, was obtained. Based on the experimental findings, a general mechanistic sketch and a steric model of induction are proposed. PMID:22043253
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duong-Ly, Krisna C.; Gabelli, Sandra B.; Xu, WenLian
2011-09-06
A Nudix enzyme from Bacillus cereus catalyzes the hydrolysis of CDP-choline to produce CMP and phosphocholine. Here, we show that in addition, the enzyme has a 3{prime} {yields} 5{prime} RNA exonuclease activity. The structure of the free enzyme, determined to a 1.8-{angstrom} resolution, shows that the enzyme is an asymmetric dimer. Each monomer consists of two domains, an N-terminal helical domain and a C-terminal Nudix domain. The N-terminal domain is placed relative to the C-terminal domain such as to result in an overall asymmetric arrangement with two distinct catalytic sites: one with an 'enclosed' Nudix pyrophosphatase site and the othermore » with a more open, less-defined cavity. Residues that may be important for determining the asymmetry are conserved among a group of uncharacterized Nudix enzymes from Gram-positive bacteria. Our data support a model where CDP-choline hydrolysis is catalyzed by the enclosed Nudix site and RNA exonuclease activity is catalyzed by the open site. CDP-Chase is the first identified member of a novel Nudix family in which structural asymmetry has a profound effect on the recognition of substrates.« less
Rinaldi, S; Maioli, M; Pigliaru, G; Castagna, A; Santaniello, S; Basoli, V; Fontani, V; Ventura, C
2014-09-16
Decline in the gene expression of senescence repressor Bmi1, and telomerase, together with telomere shortening, underlay senescence of stem cells cultured for multiple passages. Here, we investigated whether the impairment of senescence preventing mechanisms can be efficiently counteracted by exposure of human adipose-derived stem cells to radio electric asymmetrically conveyed fields by an innovative technology, named Radio Electric Asymmetric Conveyer (REAC). Due to REAC exposure, the number of stem cells positively stained for senescence associated β-galactosidase was significantly reduced along multiple culturing passages. After a 90-day culture, REAC-treated cells exhibited significantly higher transcription of Bmi1 and enhanced expression of other stem cell pluripotency genes and related proteins, compared to unexposed cells. Transcription of the catalytic telomerase subunit (TERT) was also increased in REAC-treated cells at all passages. Moreover, while telomere shortening occurred at early passages in both REAC-treated and untreated cells, a significant rescue of telomere length could be observed at late passages only in REAC-exposed cells. Thus, REAC-asymmetrically conveyed radio electric fields acted on a gene and protein expression program of both telomerase-independent and telomerase-dependent patterning to optimize stem cell ability to cope with senescence progression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dub, Pavel A.; Gordon, John C.
For years, following the ideas of Shvo and Noyori, the core assumption of metal–ligand bifunctional molecular catalysis has relied on the direct involvement of the chelating ligand in the catalytic reaction via a reversible proton (H +) transfer through cleavage/formation of one of its X–H bonds (X = O, N, C). A recently revised mechanism of the Noyori asymmetric hydrogenation reaction (Dub, P. A. et al. J. Am. Chem. Soc. 2014, 136, 3505) suggests that the ligand is rather involved in the catalytic reaction via the stabilization of determining transition states through N–H···O hydrogen-bonding interactions (HBIs) and not via amore » reversible H + transfer, behaving in a chemically intact manner within the productive cycle or predominantly in a chemically intact manner within productive cycles. By reexamining selected examples of computational mechanistic studies involving bifunctional catalysts from the literature in the years between 2012–2017, the purpose of this paper is to point out common misconceptions in modeling concerted reactions and show that the actual stepwise nature of key transition states unveils a more complicated catalytic reaction pool (all conceivable catalytic pathways and their crossovers). Such a realization can not only potentially result in a reconsideration of the “accepted” mechanism but also lead us to a new conceptual understanding of the role that the ligand plays in the reaction. Finally, the ultimate goal of this paper is, therefore, to encourage the reader to reconsider the function of the ligand in catalytic cycles of hydrogenation/dehydrogenation with bifunctional catalysts, which until recently has relied almost exclusively on a chemically noninnocent ligand.« less
Dub, Pavel A.; Gordon, John C.
2017-08-21
For years, following the ideas of Shvo and Noyori, the core assumption of metal–ligand bifunctional molecular catalysis has relied on the direct involvement of the chelating ligand in the catalytic reaction via a reversible proton (H +) transfer through cleavage/formation of one of its X–H bonds (X = O, N, C). A recently revised mechanism of the Noyori asymmetric hydrogenation reaction (Dub, P. A. et al. J. Am. Chem. Soc. 2014, 136, 3505) suggests that the ligand is rather involved in the catalytic reaction via the stabilization of determining transition states through N–H···O hydrogen-bonding interactions (HBIs) and not via amore » reversible H + transfer, behaving in a chemically intact manner within the productive cycle or predominantly in a chemically intact manner within productive cycles. By reexamining selected examples of computational mechanistic studies involving bifunctional catalysts from the literature in the years between 2012–2017, the purpose of this paper is to point out common misconceptions in modeling concerted reactions and show that the actual stepwise nature of key transition states unveils a more complicated catalytic reaction pool (all conceivable catalytic pathways and their crossovers). Such a realization can not only potentially result in a reconsideration of the “accepted” mechanism but also lead us to a new conceptual understanding of the role that the ligand plays in the reaction. Finally, the ultimate goal of this paper is, therefore, to encourage the reader to reconsider the function of the ligand in catalytic cycles of hydrogenation/dehydrogenation with bifunctional catalysts, which until recently has relied almost exclusively on a chemically noninnocent ligand.« less
Orphenadrinium picrate picric acid.
Fun, Hoong-Kun; Hemamalini, Madhukar; Siddaraju, B P; Yathirajan, H S; Narayana, B
2010-02-24
The asymmetric unit of the title compound N,N-dimethyl-2-[(2-methyl-phen-yl)phenyl-meth-oxy]ethanaminium picrate picric acid, C(18)H(24)NO(+)·C(6)H(2)N(3)O(7) (-)·C(6)H(3)N(3)O(7), contains one orphenadrinium cation, one picrate anion and one picric acid mol-ecule. In the orphenadrine cation, the two aromatic rings form a dihedral angle of 70.30 (7)°. There is an intra-molecular O-H⋯O hydrogen bond in the picric acid mol-ecule, which generates an S(6) ring motif. In the crystal structure, the orphenadrine cations, picrate anions and picric acid mol-ecules are connected by strong inter-molecular N-H⋯O hydrogen bonds, π⋯π inter-actions between the benzene rings of cations and anions [centroid-centroid distance = 3.5603 (9) Å] and weak C-H⋯O hydrogen bonds, forming a three-dimensional network.
Architecture of a Diels-Alderase ribozyme with a preformed catalytic pocket.
Keiper, Sonja; Bebenroth, Dirk; Seelig, Burckhard; Westhof, Eric; Jäschke, Andres
2004-09-01
Artificial ribozymes catalyze a variety of chemical reactions. Their structures and reaction mechanisms are largely unknown. We have analyzed a ribozyme catalyzing Diels-Alder cycloaddition reactions by comprehensive mutation analysis and a variety of probing techniques. New tertiary interactions involving base pairs between nucleotides of the 5' terminus and a large internal loop forming a pseudoknot fold were identified. The probing data indicate a preformed tertiary structure that shows no major changes on substrate or product binding. Based on these observations, a molecular architecture featuring a Y-shaped arrangement is proposed. The tertiary structure is formed in a rather unusual way; that is, the opposite sides of the asymmetric internal loop are clamped by the four 5'-terminal nucleotides, forming two adjacent two base-pair helices. It is proposed that the catalytic pocket is formed by a wedge within one of these helices.
Visualizing autophosphorylation in histidine kinases.
Casino, Patricia; Miguel-Romero, Laura; Marina, Alberto
2014-01-01
Reversible protein phosphorylation is the most widespread regulatory mechanism in signal transduction. Autophosphorylation in a dimeric sensor histidine kinase is the first step in two-component signalling, the predominant signal-transduction device in bacteria. Despite being the most abundant sensor kinases in nature, the molecular bases of the histidine kinase autophosphorylation mechanism are still unknown. Furthermore, it has been demonstrated that autophosphorylation can occur in two directions, cis (intrasubunit) or trans (intersubunit) within the dimeric histidine kinase. Here, we present the crystal structure of the complete catalytic machinery of a chimeric histidine kinase. The structure shows an asymmetric histidine kinase dimer where one subunit is caught performing the autophosphorylation reaction. A structure-guided functional analysis on HK853 and EnvZ, two prototypical cis- and trans-phosphorylating histidine kinases, has allowed us to decipher the catalytic mechanism of histidine kinase autophosphorylation, which seems to be common independently of the reaction directionality.
Dynamic control of chirality in phosphine ligands for enantioselective catalysis
Zhao, Depeng; Neubauer, Thomas M.; Feringa, Ben L.
2015-01-01
Chirality plays a fundamental role in biology and chemistry and the precise control of chirality in a catalytic conversion is a key to modern synthesis most prominently seen in the production of pharmaceuticals. In enantioselective metal-based catalysis, access to each product enantiomer is commonly achieved through ligand design with chiral bisphosphines being widely applied as privileged ligands. Switchable phosphine ligands, in which chirality is modulated through an external trigger signal, might offer attractive possibilities to change enantioselectivity in a catalytic process in a non-invasive manner avoiding renewed ligand synthesis. Here we demonstrate that a photoswitchable chiral bisphosphine based on a unidirectional light-driven molecular motor, can be used to invert the stereoselectivity of a palladium-catalysed asymmetric transformation. It is shown that light-induced changes in geometry and helicity of the switchable ligand enable excellent selectivity towards the racemic or individual enantiomers of the product in a Pd-catalysed desymmetrization reaction. PMID:25806856
Propulsion Mechanism of Catalytic Microjet Engines
Fomin, Vladimir M.; Hippler, Markus; Magdanz, Veronika; Soler, Lluís; Sanchez, Samuel; Schmidt, Oliver G.
2014-01-01
We describe the propulsion mechanism of the catalytic microjet engines that are fabricated using rolled-up nanotech. Microjets have recently shown numerous potential applications in nanorobotics but currently there is a lack of an accurate theoretical model that describes the origin of the motion as well as the mechanism of self-propulsion. The geometric asymmetry of a tubular microjet leads to the development of a capillary force, which tends to propel a bubble toward the larger opening of the tube. Because of this motion in an asymmetric tube, there emerges a momentum transfer to the fluid. In order to compensate this momentum transfer, a jet force acting on the tube occurs. This force, which is counterbalanced by the linear drag force, enables tube velocities of the order of 100 μm/s. This mechanism provides a fundamental explanation for the development of driving forces that are acting on bubbles in tubular microjets. PMID:25177214
Maucher, Isabelle V; Rühl, Michael; Kretschmer, Simon B M; Hofmann, Bettina; Kühn, Benjamin; Fettel, Jasmin; Vogel, Anja; Flügel, Karsten T; Manolikakes, Georg; Hellmuth, Nadine; Häfner, Ann-Kathrin; Golghalyani, Vahid; Ball, Ann-Katrin; Piesche, Matthias; Matrone, Carmela; Geisslinger, Gerd; Parnham, Michael J; Karas, Michael; Steinhilber, Dieter; Roos, Jessica; Maier, Thorsten J
2017-02-01
Recently, we published that nitro-fatty acids (NFA) are potent electrophilic molecules which inhibit 5-lipoxygenase (5-LO) by interacting catalytically with cysteine residues next to a substrate entry channel. The electrophilicity is derived from an intramolecular Michael acceptor moiety consisting of an electron-withdrawing group in close proximity to a double bond. The potential of the Michael acceptor moiety to interact with functionally relevant cysteines of proteins potentially renders them effective and sustained enzyme activity modulators. We screened a large library of naturally derived and synthetic electrophilic compounds to investigate whether other types of Michael acceptor containing drugs suppress 5-LO enzyme activity. The activity was measured by assessing the effect on the 5-LO product formation of intact human polymorphonuclear leukocytes. We demonstrated that a number of structurally different compounds were suppressive in the activity assays and showed that Michael acceptors of the quinone and nitro-alkene group produced the strongest inhibition of 5-LO product formation. Reactivity with the catalytically relevant cysteines 416 and 418 was confirmed using mutated recombinant 5-LO and mass spectrometric analysis (MALDI-MS). In the present study, we show for the first time that a number of well-recognized naturally occurring or synthetic anti-inflammatory compounds carrying a Michael acceptor, such as thymoquinone (TQ), the paracetamol metabolite NAPQI, the 5-LO inhibitor AA-861, and bardoxolone methyl (also known as RTA 402 or CDDO-methyl ester) are direct covalent 5-LO enzyme inhibitors that target the catalytically relevant cysteines 416 and 418. Copyright © 2016 Elsevier Inc. All rights reserved.
Agresti, Jeremy J.; Kelly, Bernard T.; Jäschke, Andres; Griffiths, Andrew D.
2005-01-01
In vitro compartmentalization (IVC) has previously been used to evolve protein enzymes. Here, we demonstrate how IVC can be applied to select RNA enzymes (ribozymes) for a property that has previously been unselectable: true intermolecular catalysis. Libraries containing 1011 ribozyme genes are compartmentalized in the aqueous droplets of a water-in-oil emulsion, such that most droplets contain no more than one gene, and transcribed in situ. By coencapsulating the gene, RNA, and the substrates/products of the catalyzed reaction, ribozymes can be selected for all enzymatic properties: substrate recognition, product formation, rate acceleration, and turnover. Here we exploit the complementarity of IVC with systematic evolution of ligands by exponential enrichment (SELEX), which allows selection of larger libraries (≥1015) and for very small rate accelerations (kcat/kuncat) but only selects for intramolecular single-turnover reactions. We selected ≈1014 random RNAs for Diels–Alderase activity with five rounds of SELEX, then six to nine rounds with IVC. All selected ribozymes catalyzed the Diels–Alder reaction in a truly bimolecular fashion and with multiple turnover. Nearly all ribozymes selected by using eleven rounds of SELEX alone contain a common catalytic motif. Selecting with SELEX then IVC gave ribozymes with significant sequence variations in this catalytic motif and ribozymes with completely novel motifs. Interestingly, the catalytic properties of all of the selected ribozymes were quite similar. The ribozymes are strongly product inhibited, consistent with the Diels–Alder transition state closely resembling the product. More efficient Diels–Alderases may need to catalyze a second reaction that transforms the product and prevents product inhibition. PMID:16260754
Wang, Hao-Yang; Zhou, Juan; Guo, Yin-Long
2012-03-30
Hypervalent iodine compounds are important and widely used oxidants in organic chemistry. In 2005, Ochiai reported the PhI-catalyzed α-acetoxylation reaction of acetophenone by the oxidation of PhI with m-chloroperbenzoic acid (m-CPBA) in acetic acid. However, until now, the most critical reactive α-λ(3)-iodine alkyl acetophenone intermediate (3) had not been isolated or directly detected. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) was used to intercept and characterize the transient reactive α-λ(3)-iodine alkyl acetophenone intermediate in the reaction solution. The trivalent iodine species was detected when PhI and m-CPBA in acetic acid were mixed, which indicated the facile oxidation of a catalytic amount of PhI(I) to the iodine(III) species by m-CPBA. Most importantly, 3·H(+) was observed at m/z 383 from the reaction solution and this ion gave the protonated α-acetoxylation product 4·H(+) at m/z 179 in MS/MS by an intramolecular reductive elimination of PhI. These ESI-MS/MS studies showed the existence of the reactive α-λ(3)-iodine alkyl acetophenone intermediate 3 in the catalytic cycle. Moreover, the gas-phase reactivity of 3·H(+) was consistent with the proposed solution-phase reactivity of the α-λ(3)-iodine alkyl acetophenone intermediate 3, thus confirming the reaction mechanism proposed by Ochiai. Copyright © 2012 John Wiley & Sons, Ltd.
Neelon, Kelly; Roberts, Mary F; Stec, Boguslaw
2011-12-07
1-L-myo-inositol-phosphate synthase (mIPS) catalyzes the first step of the unique, de novo pathway of inositol biosynthesis. However, details about the complex mIPS catalytic mechanism, which requires oxidation, enolization, intramolecular aldol cyclization, and reduction, are not fully known. To gain further insight into this mechanism, we determined the crystal structure of the wild-type mIPS from Archaeoglobus fulgidus at 1.7 Å, as well as the crystal structures of three active-site mutants. Additionally, we obtained the structure of mIPS with a trapped 5-keto-glucose-6-phosphate intermediate at 2 Å resolution by a novel (to our knowledge) process of activating the crystal at high temperature. A comparison of all of the crystal structures of mIPS described in this work suggests a novel type of catalytic mechanism that relies on the forced atomic proximity of functional groups. The lysine cluster is contained in a small volume in the active site, where random motions of these side chains are responsible for the progress of the complex multistep reaction as well as for the low rate of catalysis. The mechanism requires that functional groups of Lys-274, Lys-278, Lys-306, and Lys-367 assume differential roles in the protonation/deprotonation steps that must occur during the mIPS reaction. This mechanism is supported by the complete loss of activity of the enzyme caused by the Leu-257 mutation to Ala that releases the lysine containment. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Vernhet, Aude; Dubascoux, Stéphane; Cabane, Bernard; Fulcrand, Hélène; Dubreucq, Eric; Poncet-Legrand, Céline
2011-09-01
Condensed tannins are a major class of plant polyphenols. They play an important part in the colour and taste of foods and beverages. Due to their chemical reactivity, tannins are not stable once extracted from plants. A number of chemical reactions can take place, leading to structural changes of the native structures to give so-called derived tannins and pigments. This paper compares results obtained on native and oxidized tannins with different techniques: depolymerization followed by high-performance liquid chromatography analysis, small-angle X-ray scattering (SAXS) and asymmetric flow field-flow fractionation (AF4). Upon oxidation, new macromolecules were formed. Thioglycolysis experiments showed no evidence of molecular weight increase, but thioglycolysis yields drastically decreased. When oxidation was performed at high concentration (e.g., 10 g L(-1)), the weight average degree of polymerization determined from SAXS increased, whereas it remained stable when oxidation was done at low concentration (0.1 g L(-1)), indicating that the reaction was intramolecular, yet the conformations were different. Differences in terms of solubility were observed; ethanol being a better solvent than water. We also separated soluble and non-water-soluble species of a much oxidized fraction. Thioglycolysis showed no big differences between the two fractions, whereas SAXS and AF4 showed that insoluble macromolecules have a weight average molecular weight ten times higher than the soluble ones.
Xu, Feng; Corley, Edward; Zacuto, Michael; Conlon, David A; Pipik, Brenda; Humphrey, Guy; Murry, Jerry; Tschaen, David
2010-03-05
A practical asymmetric synthesis of a novel aminopiperidine-fused imidazopyridine dipeptidyl peptidase IV (DPP-4) inhibitor 1 has been developed. Application of a unique three-component cascade coupling with chiral nitro diester 7, which is easily accessed via a highly enantioselective Michael addition of dimethyl malonate to a nitrostyrene, allows for the assembly of the functionalized piperidinone skeleton in one pot. Through a base-catalyzed, dynamic crystallization-driven process, the cis-piperidionone 16a is epimerized to the desired trans isomer 16b, which is directly crystallized from the crude reaction stream in high yield and purity. Isomerization of the allylamide 16b in the presence of RhCl(3) is achieved without any epimerization of the acid/base labile stereogenic center adjacent to the nitro group on the piperidinone ring, while the undesired enamine intermediate is consumed to <0.5% by utilizing a trace amount of HCl generated from RhCl(3). The amino lactam 4, obtained through hydrogenation and hydrolysis, is isolated as its crystalline pTSA salt from the reaction solution directly, as such intramolecular transamidation has been dramatically suppressed via kinetic control. Finally, a Cu(I) catalyzed coupling-cyclization allows for the formation of the tricyclic structure of the potent DPP-4 inhibitor 1. The synthesis, which is suitable for large scale preparation, is accomplished in 23% overall yield.
Modeling dioxygen reduction at multicopper oxidase cathodes.
Agbo, Peter; Heath, James R; Gray, Harry B
2014-10-01
We report a general kinetics model for catalytic dioxygen reduction on multicopper oxidase (MCO) cathodes. Our rate equation combines Butler-Volmer (BV) electrode kinetics and the Michaelis-Menten (MM) formalism for enzymatic catalysis, with the BV model accounting for interfacial electron transfer (ET) between the electrode surface and the MCO type 1 copper site. Extending the principles of MM kinetics to this system produced an analytical expression incorporating the effects of subsequent intramolecular ET and dioxygen binding to the trinuclear copper cluster into the cumulative model. We employed experimental electrochemical data on Thermus thermophilus laccase as benchmarks to validate our model, which we suggest will aid in the design of more efficient MCO cathodes. In addition, we demonstrate the model's utility in determining estimates for both the electronic coupling and average distance between the laccase type-1 active site and the cathode substrate.
Tailoring nanoscopic confines to maximize catalytic activity of hydronium ions
NASA Astrophysics Data System (ADS)
Shi, Hui; Eckstein, Sebastian; Vjunov, Aleksei; Camaioni, Donald M.; Lercher, Johannes A.
2017-05-01
Acid catalysis by hydronium ions is ubiquitous in aqueous-phase organic reactions. Here we show that hydronium ion catalysis, exemplified by intramolecular dehydration of cyclohexanol, is markedly influenced by steric constraints, yielding turnover rates that increase by up to two orders of magnitude in tight confines relative to an aqueous solution of a Brønsted acid. The higher activities in zeolites BEA and FAU than in water are caused by more positive activation entropies that more than offset higher activation enthalpies. The higher activity in zeolite MFI with pores smaller than BEA and FAU is caused by a lower activation enthalpy in the tighter confines that more than offsets a less positive activation entropy. Molecularly sized pores significantly enhance the association between hydronium ions and alcohols in a steric environment resembling the constraints in pockets of enzymes stabilizing active sites.
Cyclisation versus 1,1-Carboboration: Reactions of B(C6F5)3 with Propargyl Amides.
Melen, Rebecca L; Hansmann, Max M; Lough, Alan J; Hashmi, A Stephen K; Stephan, Douglas W
2013-09-02
A series of propargyl amides were prepared and their reactions with the Lewis acidic compound B(C6F5)3 were investigated. These reactions were shown to afford novel heterocycles under mild conditions. The reaction of a variety of N-substituted propargyl amides with B(C6F5)3 led to an intramolecular oxo-boration cyclisation reaction, which afforded the 5-alkylidene-4,5-dihydrooxazolium borate species. Secondary propargyl amides gave oxazoles in B(C6F5)3 mediated (catalytic) cyclisation reactions. In the special case of disubstitution adjacent to the nitrogen atom, 1,1-carboboration is favoured as a result of the increased steric hindrance (1,3-allylic strain) in the 5-alkylidene-4,5-dihydrooxazolium borate species. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
Surface Sites for Engineering Allosteric Control in Proteins
Lee, Jeeyeon; Natarajan, Madhusudan; Nashine, Vishal C.; Socolich, Michael; Vo, Tina; Russ, William P.; Benkovic, Stephen J.; Ranganathan, Rama
2010-01-01
Statistical analyses of protein families reveal networks of coevolving amino acids that functionally link distantly positioned functional surfaces. Such linkages suggest a concept for engineering allosteric control into proteins: The intramolecular networks of two proteins could be joined across their surface sites such that the activity of one protein might control the activity of the other. We tested this idea by creating PAS-DHFR, a designed chimeric protein that connects a light-sensing signaling domain from a plant member of the Per/Arnt/Sim (PAS) family of proteins with Escherichia coli dihydrofolate reductase (DHFR). With no optimization, PAS-DHFR exhibited light-dependent catalytic activity that depended on the site of connection and on known signaling mechanisms in both proteins. PAS-DHFR serves as a proof of concept for engineering regulatory activities into proteins through interface design at conserved allosteric sites. PMID:18927392
Improved catalytic properties of halohydrin dehalogenase by modification of the halide-binding site.
Tang, Lixia; Torres Pazmiño, Daniel E; Fraaije, Marco W; de Jong, René M; Dijkstra, Bauke W; Janssen, Dick B
2005-05-03
Halohydrin dehalogenase (HheC) from Agrobacterium radiobacter AD1 catalyzes the dehalogenation of vicinal haloalcohols by an intramolecular substitution reaction, resulting in the formation of the corresponding epoxide, a halide ion, and a proton. Halide release is rate-limiting during the catalytic cycle of the conversion of (R)-p-nitro-2-bromo-1-phenylethanol by the enzyme. The recent elucidation of the X-ray structure of HheC showed that hydrogen bonds between the OH group of Tyr187 and between the Odelta1 atom of Asn176 and Nepsilon1 atom of Trp249 could play a role in stabilizing the conformation of the halide-binding site. The possibility that these hydrogen bonds are important for halide binding and release was studied using site-directed mutagenesis. Steady-state kinetic studies revealed that mutant Y187F, which has lost both hydrogen bonds, has a higher catalytic activity (k(cat)) with two of the three tested substrates compared to the wild-type enzyme. Mutant W249F also shows an enhanced k(cat) value with these two substrates, as well as a remarkable increase in enantiopreference for (R)-p-nitro-2-bromo-1-phenylethanol. In case of a mutation at position 176 (N176A and N176D), a 1000-fold lower catalytic efficiency (k(cat)/K(m)) was obtained, which is mainly due to an increase of the K(m) value of the enzyme. Pre-steady-state kinetic studies showed that a burst of product formation precedes the steady state, indicating that halide release is still rate-limiting for mutants Y187F and W249F. Stopped-flow fluorescence experiments revealed that the rate of halide release is 5.6-fold higher for the Y187F mutant than for the wild-type enzyme and even higher for the W249F enzyme. Taken together, these results show that the disruption of two hydrogen bonds around the halide-binding site increases the rate of halide release and can enhance the overall catalytic activity of HheC.
Synthesis, characterization, DNA binding and catalytic applications of Ru(III) complexes.
Shoair, A F; El-Shobaky, A R; Azab, E A
2015-01-01
A new series of azodye ligands 5-chloro-3-hydroxy-4-(aryldiazenyl)pyridin-2(1H)-one (HLn) were synthesized by coupling of 5-chloro-3-hydroxypyridin-2(1H)-one with aniline and its p-derivatives. These ligands and their Ru(III) complexes of the type trans-[Ru(Ln)2(AsPh3)2]Cl were characterized by elemental analyses, IR, (1)H NMR and UV-Visible spectra as well as magnetic and thermal measurements. The molar conductance measurements proved that all the complexes are electrolytes. IR spectra show that the ligands (HLn) acts as a monobasic bidentate ligand by coordinating via the nitrogen atom of the azo group (NN) and oxygen atom of the deprotonated phenolic OH group, thereby forming a six-membered chelating ring and concomitant formation of an intramolecular hydrogen bond. The molecular and electronic structures of the investigated compounds (HLn) were also studied using quantum chemical calculations. The calf thymus DNA binding activity of the ligands (HLn) and their Ru(III) complexes were studied by absorption spectra and viscosity measurements. The mechanism and the catalytic oxidation of benzyl alcohol by trans-[Ru(Ln)2(AsPh3)2]Cl with hydrogen peroxide as co-oxidant were described. Copyright © 2015 Elsevier B.V. All rights reserved.
Auto-inhibition and phosphorylation-induced activation of PLC-γ isozymes
Hajicek, Nicole; Charpentier, Thomas H.; Rush, Jeremy R.; Harden, T. Kendall; Sondek, John
2013-01-01
Multiple extracellular stimuli, such as growth factors and antigens, initiate signaling cascades through tyrosine phosphorylation and activation of phospholipase C (PLC)-γ isozymes. Like most other PLCs, PLC-γ1 is basally auto-inhibited by its X-Y linker, which separates the X-and Y-boxes of the catalytic core. The C-terminal SH2 (cSH2) domain within the X-Y linker is the critical determinant for auto-inhibition of phospholipase activity. Release of auto-inhibition requires an intramolecular interaction between the cSH2 domain and a phosphorylated tyrosine, Tyr783, also located within the X-Y linker. The molecular mechanisms that mediate auto-inhibition and phosphorylation-induced activation have not been defined. Here, we describe structures of the cSH2 domain both alone and bound to a PLC-γ1 peptide encompassing phosphorylated Tyr783. The cSH2 domain remains largely unaltered by peptide engagement. Point mutations in the cSH2 domain located at the interface with the peptide were sufficient to constitutively activate PLC-γ1 suggesting that peptide engagement directly interferes with the capacity of the cSH2 domain to block the lipase active site. This idea is supported by mutations in a complimentary surface of the catalytic core that also enhanced phospholipase activity. PMID:23777354
da Silva, Ronivaldo Rodrigues; Caetano, Renato Cesar; Okamoto, Debora Nona; de Oliveira, Lilian Caroline Goncalves; Bertolin, Thiago Carlos; Juliano, Maria Aparecida; Juliano, Luiz; de Oliveira, Arthur H C; Rosae, Jose C; Cabral, Hamilton
2014-07-01
Aspergillus fumigatus is a saprophytic fungus as well as a so-called opportunist pathogen. Its biochemical potential and enzyme production justify intensive studies about biomolecules secreted by this microorganism. We describe the alkaline serine peptidase production, with optimum activity at 50°C and a pH of 7.5 and a reduction in proteolytic activity in the presence of the Al(+3) ions. When using intramolecularly quenched fluorogenic substrates, the highest catalytic efficiency was observed with the amino acid leucine on subsite S'(3) (60,000 mM(-1)s(-1)) and preference to non-polar amino acids on subsite S(3). In general, however, the peptidase shows non-specificity on other subsites studied. According to the biochemical characteristics, this peptidase may be an important biocatalyst for the hydrolysis of an enormous variety of proteins and can constitute an essential molecule for the saprophytic lifestyle or invasive action of the opportunistic pathogen. The peptidase described herein exhibits an estimated molecular mass of 33 kDa. Mass spectrometry analysis identified the sequence GAPWGLGSISHK displaying similarities to that of serine peptidase from Aspergillus fumigatus. These data may lead to a greater understanding of the advantageous biochemical potential, biotechnological interest, and trends of this fungus in spite of being an opportunist pathogen.
Kim, Han Ie; Jung, Jinwon; Lee, Eun-Saem; Kim, Yong-Chul; Lee, Weontae; Lee, Seung-Taek
2007-11-03
PTK6 (also known as Brk) is an intracellular tyrosine kinase that contains SH3, SH2, and tyrosine kinase catalytic (Kinase) domains. The SH3 domain of PTK6 interacts with the N-terminal half of the linker (Linker) region between the SH2 and Kinase domains. Site-directed mutagenesis and surface plasmon resonance studies showed that a tryptophan residue (Trp44) in the SH3 domain and proline residues in the Linker region, in the order of Pro177, Pro175, and Pro179, contribute to the interaction. The three-dimensional modeled structure of the SH3-Linker complex was in agreement with the biochemical data. Disruption of the intramolecular interaction between the SH3 domain and the Linker region by mutation of Trp44, Pro175, Pro177, and Pro179 markedly increased the catalytic activity of PTK6 in HEK 293 cells. These results demonstrate that Trp44 in the SH3 domain and Pro177, Pro175, and Pro179 in the N-terminal half of the Linker region play important roles in the SH3-Linker interaction to maintain the protein in an inactive conformation along with the phosphorylated Tyr447-SH2 interaction.
Choudary, Boyapati M; Chowdari, Naidu S; Jyothi, Karangula; Kantam, Mannepalli L
2002-05-15
Exchanger-OsO(4) catalysts are prepared by an ion-exchange technique using layered double hydroxides and quaternary ammonium salts covalently bound to resin and silica as ion-exchangers. The ion-exchangers with different characteristics and opposite ion selectivities are specially chosen to produce the best heterogeneous catalyst that can operate using the various cooxidants in the asymmetric dihydroxylation reaction. LDH-OsO(4) catalysts composed of different compositions are evaluated for the asymmetric dihydroxylation of trans-stilbene. Resin-OsO(4) and SiO(2)-OsO(4) designed to overcome the problems associated with LDH-OsO(4) indeed show consistent activity and enantioselectivity in asymmetric dihydroxylation of olefins using K(3)Fe(CN)(6) and molecular oxygen as cooxidants. Compared to the Kobayashi heterogeneous systems, resin-OsO(4) is a very efficient catalyst for the dihydroxylation of a wide variety of aromatic, aliphatic, acyclic, cyclic, mono-, di-, and trisubstituted olefins to afford chiral vicinal diols with high yields and enantioselectivities irrespective of the cooxidant used. Resin-OsO(4) is recovered quantitatively by a simple filtration and reused for a number of cycles with consistent activity. The high binding ability of the heterogeneous osmium catalyst enables the use of an equimolar ratio of ligand to osmium to give excellent enantioselectives in asymmetric dihydroxylation in contrast to the homogeneous osmium system in which excess molar quantities of the expensive chiral ligand to osmium are invariably used. The complexation of the chiral ligand (DHQD)(2)PHAL, having very large dimension, a prerequisite to obtain higher ee, is possible only with the OsO(4)(2-) located on the surface of the supports.
Chen, Xu; Jiang, Hong; Hou, Bang; Gong, Wei; Liu, Yan; Cui, Yong
2017-09-27
A key challenge in heterogeneous catalysis is the design and synthesis of heterogeneous catalysts featuring high catalytic activity, selectivity, and recyclability. Here we demonstrate that high-performance heterogeneous asymmetric catalysts can be engineered from a metal-organic framework (MOF) platform by using a ligand design strategy. Three porous chiral MOFs with the framework formula [Mn 2 L(H 2 O) 2 ] are prepared from enantiopure phosphono-carboxylate ligands of 1,1'-biphenol that are functionalized with 3,5-bis(trifluoromethyl)-, bismethyl-, and bisfluoro-phenyl substituents at the 3,3'-position. For the first time, we show that not only chemical stability but also catalytic activity and stereoselectivity of the MOFs can be tuned by modifying the ligand structures. Particularly, the MOF incorporated with -CF 3 groups on the pore walls exhibits enhanced tolerance to water, weak acid, and base compared with the MOFs with -F and -Me groups. Under both batch and flow reaction systems, the CF 3 -containing MOF demonstrated excellent reactivity, selectivity, and recyclability, affording high yields and enantioselectivities for alkylations of indoles and pyrrole with a range of ketoesters or nitroalkenes. In contrast, the corresponding homogeneous catalysts gave low enantioselectivity in catalyzing the tested reactions.
NASA Astrophysics Data System (ADS)
Jia, Lei; Zhou, Tao; Xu, Jun; Li, Xiaohui; Dong, Kun; Huang, Jiancui; Xu, Zhouqing
2016-02-01
Janus particles (JPs) are unique among the nano-/microobjects because they provide asymmetry and can thus impart drastically different chemical or physical properties. In this work, we have fabricated the magnetic halloysite nanotube (HNT)-based HNTs@Fe3O4 nanocomposite (NCs) and then anchored the Janus Au-Ni or isotropic Au nanoparticles (NPs) to the surface of external wall of sulfydryl modified magnetic nanotubes. The characterization by physical methods authenticates the successful fabrication of two different magnetic HNTs@Fe3O4@Au and HNTs@Fe3O4@Au-Ni NCs. The catalytic activity and recyclability of the two NCs have been evaluated considering the degradation of Congo red (CR) and 4-nitrophenol (4-NP) using sodium borohydride as a model reaction. The results reveal that the symmetric Au NPs participated NCs display low activity in the degradation of the above organic dyes. However, a detailed kinetic study demonstrates that the employ of bimetallic Janus Au-Ni NPs in the NCs indicates enhanced catalytic activity, owing to the structurally specific nature. Furthermore, the magnetic functional NCs reported here can be used as recyclable catalyst which can be recovered simply by magnet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Dan; Ma, Yong-Tao; Zhang, Xiao-Long
2016-01-07
The origin and strength of intra- and inter-molecular vibrational coupling is difficult to probe by direct experimental observations. However, explicitly including or not including some specific intramolecular vibrational modes to study intermolecular interaction provides a precise theoretical way to examine the effects of anharmonic coupling between modes. In this work, a full-dimension intra- and inter-molecular ab initio potential energy surface (PES) for H{sub 2}O–Ar, which explicitly incorporates interdependence on the intramolecular (Q{sub 1}, Q{sub 2}, Q{sub 3}) normal-mode coordinates of the H{sub 2}O monomer, has been calculated. In addition, four analytic vibrational-quantum-state-specific PESs are obtained by least-squares fitting vibrationally averagedmore » interaction energies for the (v{sub 1}, v{sub 2}, v{sub 3}) = (0, 0, 0), (0, 0, 1), (1, 0, 0), (0, 1, 0) states of H{sub 2}O to the three-dimensional Morse/long-range potential function. Each vibrationally averaged PES fitted to 442 points has root-mean-square (rms) deviation smaller than 0.15 cm{sup −1}, and required only 58 parameters. With the 3D PESs of H{sub 2}O–Ar dimer system, we employed the combined radial discrete variable representation/angular finite basis representation method and Lanczos algorithm to calculate rovibrational energy levels. This showed that the resulting vibrationally averaged PESs provide good representations of the experimental infrared data, with rms discrepancies smaller than 0.02 cm{sup −1} for all three rotational branches of the asymmetric stretch fundamental transitions. The infrared band origin shifts associated with three fundamental bands of H{sub 2}O in H{sub 2}O–Ar complex are predicted for the first time and are found to be in good agreement with the (extrapolated) experimental values. Upon introduction of additional intramolecular degrees of freedom into the intermolecular potential energy surface, there is clear spectroscopic evidence of intra- and intermolecular vibrational couplings.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrickx, Antoni P.A.; Poor, Catherine B.; Jureller, Justin E.
Bacillus cereus strains elaborate pili on their surface using a mechanism of sortase-mediated cross-linking of major and minor pilus components. Here we used a combination of electron microscopy and atomic force microscopy to visualize these structures. Pili occur as single, double or higher order assemblies of filaments formed from monomers of the major pilin, BcpA, capped by the minor pilin, BcpB. Previous studies demonstrated that within assembled pili, four domains of BcpA -- CNA{sub 1}, CNA{sub 2}, XNA and CNA{sub 3} -- each acquire intramolecular lysine-asparagine isopeptide bonds formed via catalytic glutamic acid or aspartic acid residues. Here we showedmore » that mutants unable to form the intramolecular isopeptide bonds in the CNA2 or CNA3 domains retain the ability to form pilus bundles. A mutant lacking the CNA{sub 1} isopeptide bond assembled deformed pilin subunits that failed to associate as bundles. X-ray crystallography revealed that the BcpA variant Asp{sup 312}Ala, lacking an aspartyl catalyst, did not generate the isopeptide bond within the jelly-roll structure of XNA. The Asp{sup 312}Ala mutant was also unable to form bundles and promoted the assembly of deformed pili. Thus, structural integrity of the CNA{sub 1} and XNA domains are determinants for the association of pili into higher order bundle structures and determine native pilus structure.« less
Koland, John G.
2014-01-01
Upon the ligand-dependent dimerization of the epidermal growth factor receptor (EGFR), the intrinsic protein tyrosine kinase (PTK) activity of one receptor monomer is activated, and the dimeric receptor undergoes self-phosphorylation at any of eight candidate phosphorylation sites (P-sites) in either of the two C-terminal (CT) domains. While the structures of the extracellular ligand binding and intracellular PTK domains are known, that of the ∼225-amino acid CT domain is not, presumably because it is disordered. Receptor phosphorylation on CT domain P-sites is critical in signaling because of the binding of specific signaling effector molecules to individual phosphorylated P-sites. To investigate how the combination of conventional substrate recognition and the unique topological factors involved in the CT domain self-phosphorylation reaction lead to selectivity in P-site phosphorylation, we performed coarse-grained molecular simulations of the P-site/catalytic site binding reactions that precede EGFR self-phosphorylation events. Our results indicate that self-phosphorylation of the dimeric EGFR, although generally believed to occur in trans, may well occur with a similar efficiency in cis, with the P-sites of both receptor monomers being phosphorylated to a similar extent. An exception was the case of the most kinase-proximal P-site-992, the catalytic site binding of which occurred exclusively in cis via an intramolecular reaction. We discovered that the in cis interaction of P-site-992 with the catalytic site was facilitated by a cleft between the N-terminal and C-terminal lobes of the PTK domain that allows the short CT domain sequence tethering P-site-992 to the PTK core to reach the catalytic site. Our work provides several new mechanistic insights into the EGFR self-phosphorylation reaction, and demonstrates the potential of coarse-grained molecular simulation approaches for investigating the complexities of self-phosphorylation in molecules such as EGFR (HER/ErbB) family receptors and growth factor receptor PTKs in general. PMID:24453959
Lu, Zhe; Wilsily, Ashraf; Fu, Gregory C.
2011-01-01
A new family of stereoconvergent cross-couplings of unactivated secondary alkyl electrophiles has been developed, specifically, arylamine-directed alkyl–alkyl Suzuki reactions. This represents the first such investigation to be focused on the use of alkyl chlorides as substrates. Structure-enantioselectivity studies are consistent with the nitrogen, not the aromatic ring, serving as the primary site of coordination of the arylamine to the catalyst. The rate law for this asymmetric cross-coupling is compatible with transmetalation being the turnover-limiting step of the catalytic cycle. PMID:21553917
Witten, Michael R; Jacobsen, Eric N
2015-06-05
A new primary amine catalyst for the asymmetric α-hydroxylation and α-fluorination of α-branched aldehydes is described. The products of the title transformations are generated in excellent yields with high enantioselectivities. Both processes can be performed within short reaction times and on gram scale. The similarity in results obtained in both reactions, combined with computational evidence, implies a common basis for stereoinduction and the possibility of a general catalytic mechanism for α-functionalizations. Promising initial results in α-amination and α-chlorination reactions support this hypothesis.
Chen, Jia-Rong; Cao, Yi-Ju; Zou, You-Quan; Tan, Fen; Fu, Liang; Zhu, Xiao-Yu; Xiao, Wen-Jing
2010-03-21
A series of thiourea-amine bifunctional catalysts have been developed by a rational combination of prolines with cinchona alkaloids, which are connected by a thiourea motif. The catalyst 3a, prepared from L-proline and cinchonidine, was found to be a highly efficient catalyst for the conjugate addition of ketones/aldehydes to a wide range of nitroalkenes (up to 98/2 dr and 96% ee). The privileged cinchonidine backbone and the thiourea motif are essential to the reaction activity and enantioselectivity.
NASA Astrophysics Data System (ADS)
Tiwari, Vivek; Peters, William K.; Jonas, David M.
2017-10-01
Non-adiabatic vibrational-electronic resonance in the excited electronic states of natural photosynthetic antennas drastically alters the adiabatic framework, in which electronic energy transfer has been conventionally studied, and suggests the possibility of exploiting non-adiabatic dynamics for directed energy transfer. Here, a generalized dimer model incorporates asymmetries between pigments, coupling to the environment, and the doubly excited state relevant for nonlinear spectroscopy. For this generalized dimer model, the vibrational tuning vector that drives energy transfer is derived and connected to decoherence between singly excited states. A correlation vector is connected to decoherence between the ground state and the doubly excited state. Optical decoherence between the ground and singly excited states involves linear combinations of the correlation and tuning vectors. Excitonic coupling modifies the tuning vector. The correlation and tuning vectors are not always orthogonal, and both can be asymmetric under pigment exchange, which affects energy transfer. For equal pigment vibrational frequencies, the nonadiabatic tuning vector becomes an anti-correlated delocalized linear combination of intramolecular vibrations of the two pigments, and the nonadiabatic energy transfer dynamics become separable. With exchange symmetry, the correlation and tuning vectors become delocalized intramolecular vibrations that are symmetric and antisymmetric under pigment exchange. Diabatic criteria for vibrational-excitonic resonance demonstrate that anti-correlated vibrations increase the range and speed of vibronically resonant energy transfer (the Golden Rule rate is a factor of 2 faster). A partial trace analysis shows that vibronic decoherence for a vibrational-excitonic resonance between two excitons is slower than their purely excitonic decoherence.
Tiwari, Vivek; Peters, William K; Jonas, David M
2017-10-21
Non-adiabatic vibrational-electronic resonance in the excited electronic states of natural photosynthetic antennas drastically alters the adiabatic framework, in which electronic energy transfer has been conventionally studied, and suggests the possibility of exploiting non-adiabatic dynamics for directed energy transfer. Here, a generalized dimer model incorporates asymmetries between pigments, coupling to the environment, and the doubly excited state relevant for nonlinear spectroscopy. For this generalized dimer model, the vibrational tuning vector that drives energy transfer is derived and connected to decoherence between singly excited states. A correlation vector is connected to decoherence between the ground state and the doubly excited state. Optical decoherence between the ground and singly excited states involves linear combinations of the correlation and tuning vectors. Excitonic coupling modifies the tuning vector. The correlation and tuning vectors are not always orthogonal, and both can be asymmetric under pigment exchange, which affects energy transfer. For equal pigment vibrational frequencies, the nonadiabatic tuning vector becomes an anti-correlated delocalized linear combination of intramolecular vibrations of the two pigments, and the nonadiabatic energy transfer dynamics become separable. With exchange symmetry, the correlation and tuning vectors become delocalized intramolecular vibrations that are symmetric and antisymmetric under pigment exchange. Diabatic criteria for vibrational-excitonic resonance demonstrate that anti-correlated vibrations increase the range and speed of vibronically resonant energy transfer (the Golden Rule rate is a factor of 2 faster). A partial trace analysis shows that vibronic decoherence for a vibrational-excitonic resonance between two excitons is slower than their purely excitonic decoherence.
NASA Astrophysics Data System (ADS)
Zhang, Zhikun; Sheng, Zhe; Yu, Weizhi; Wu, Guojiao; Zhang, Rui; Chu, Wen-Dao; Zhang, Yan; Wang, Jianbo
2017-10-01
The trifluoromethylthio (SCF3) functional group has been of increasing importance in drug design and development as a consequence of its unique electronic properties and high stability coupled with its high lipophilicity. As a result, methods to introduce this highly electronegative functional group have attracted considerable attention in recent years. Although significant progress has been made in the introduction of SCF3 functionality into a variety of molecules, there remain significant challenges regarding the enantioselective synthesis of SCF3-containing compounds. Here, an asymmetric trifluoromethylthiolation that proceeds through the enantioselective [2,3]-sigmatropic rearrangement of a sulfonium ylide generated from a metal carbene and sulfide (Doyle-Kirmse reaction) has been developed using chiral Rh(II) and Cu(I) catalysts. This transformation features mild reaction conditions and excellent enantioselectivities (up to 98% yield and 98% e.e.), thus providing a unique, highly efficient and enantioselective method for the construction of C(sp3)-SCF3 bonds bearing chiral centres.
Zhu, Feng-Xia; Wang, Wei; Li, He-Xing
2011-08-03
An operationally simple approach for the preparation of a new class of bifunctional Au nanoparticle-acid catalysts has been developed. In situ reduction of Au(3+) with HS-functionalized periodic mesoporous organosilicas (PMOs) creates robust, fine Au nanoparticles and concomitantly produces a sulfonic acid moiety strongly bonded to PMOs. Characterizations of the nanostructures reveal that Au nanoparticles are formed with uniformed, narrow size distribution around 1-2 nm, which is very critical for essential catalytic activities. Moreover, the Au nanoparticles are mainly attached onto the pore surface rather than onto the outer surface with ordered mesoporous channels, allowing for maximal exposure to reaction substrates while minimizing Au nanoparticle leaching. Their higher S(BET), V(P), and D(P) than either the Au-HS-PMO(Et) or the Au/SO(3)H-PMO(Et) render the catalyst with comparably even higher catalytic efficiency than its homogeneous counterparts. Furthermore, the unique amphiphilic compartment of the Au-HS/SO(3)H-PMO(Et) nanostructures enables organic reactions to proceed efficiently in a pure aqueous solution without using any organic solvents or even without water. As demonstrated experimentally, remarkably, the unique bifunctional Au-HS/SO(3)H-PMO(Et) catalyst displays higher efficiencies in promoting water-medium alkyne hydration, intramolecular hydroamination, styrene oxidation, and three-component coupling reactions and even the solvent-free alkyne hydration process than its homogeneous catalysts. The robust catalyst can be easily recycled and used repetitively at least 10 times without loss of catalytic efficiency. These features render the catalyst particularly attractive in the practice of organic synthesis in an environmentally friendly manner.
Cundari, Thomas R; Grimes, Thomas V; Gunnoe, T Brent
2007-10-31
Recent reports of 1,2-addition of C-H bonds across Ru-X (X = amido, hydroxo) bonds of TpRu(PMe3)X fragments {Tp = hydridotris(pyrazolyl)borate} suggest opportunities for the development of new catalytic cycles for hydrocarbon functionalization. In order to enhance understanding of these transformations, computational examinations of the efficacy of model d6 transition metal complexes of the form [(Tab)M(PH3)2X]q (Tab = tris-azo-borate; X = OH, NH2; q = -1 to +2; M = TcI, Re(I), Ru(II), Co(III), Ir(III), Ni(IV), Pt(IV)) for the activation of benzene C-H bonds, as well as the potential for their incorporation into catalytic functionalization cycles, are presented. For the benzene C-H activation reaction steps, kite-shaped transition states were located and found to have relatively little metal-hydrogen interaction. The C-H activation process is best described as a metal-mediated proton transfer in which the metal center and ligand X function as an activating electrophile and intramolecular base, respectively. While the metal plays a primary role in controlling the kinetics and thermodynamics of the reaction coordinate for C-H activation/functionalization, the ligand X also influences the energetics. On the basis of three thermodynamic criteria characterizing salient energetic aspects of the proposed catalytic cycle and the detailed computational studies reported herein, late transition metal complexes (e.g., Pt, Co, etc.) in the d6 electron configuration {especially the TabCo(PH3)2(OH)+ complex and related Co(III) systems} are predicted to be the most promising for further catalyst investigation.
Bhaumik, Prasenjit; Xiao, Huogen; Hidaka, Koushi; Gustchina, Alla; Kiso, Yoshiaki; Yada, Rickey Y.; Wlodawer, Alexander
2012-01-01
Histo-aspartic protease (HAP) from Plasmodium falciparum offers a promising target for the development of novel antimalarial drugs. HAP exhibits high sequence similarity to pepsin-like aspartic proteases, but one of the two catalytic aspartates, Asp32, is replaced by histidine. Crystal structures of the truncated zymogen of HAP and of the complex of the mature enzyme with inhibitor KNI-10395 have been determined at 2.1 and 2.5 Å resolution, respectively. As in other proplasmepsins, the propeptide of the zymogen interacts with the C-terminal domain of the enzyme, forcing the N- and C- terminal domains apart, thereby separating His32 and Asp215 and preventing formation of the mature active site. In the inhibitor complex the enzyme forms a tight domain-swapped dimer, not previously seen in any aspartic proteases. The inhibitor is found in an unprecedented conformation resembling the letter “U”, stabilized by two intramolecular hydrogen bonds. Surprisingly, the location and conformation of the inhibitor are similar to the fragment of helix 2 comprising residues 34p–38p in the prosegments of the zymogens of gastric aspartic proteases; a corresponding helix assumes a vastly different orientation in proplasmepsins. Each inhibitor molecule is in contact with two molecules of HAP, interacting with the carboxylate group of the catalytic Asp215 of one HAP protomer through a water molecule, while also making a direct hydrogen bond to Glu278A′ of the other protomer. A comparison of the shifts in the positions of the catalytic residues in the inhibitor complex presented here with those published previously gives further hints regarding the enzymatic mechanism of HAP. PMID:21928835
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhaumik, Prasenjit; Xiao, Huogen; Hidaka, Koushi
2012-09-17
Histo-aspartic protease (HAP) from Plasmodium falciparum is a promising target for the development of novel antimalarial drugs. The sequence of HAP is highly similar to those of pepsin-like aspartic proteases, but one of the two catalytic aspartates, Asp32, is replaced with histidine. Crystal structures of the truncated zymogen of HAP and of the complex of the mature enzyme with inhibitor KNI-10395 have been determined at 2.1 and 2.5 {angstrom} resolution, respectively. As in other proplasmepsins, the propeptide of the zymogen interacts with the C-terminal domain of the enzyme, forcing the N- and C-terminal domains apart, thereby separating His32 and Asp215more » and preventing formation of the mature active site. In the inhibitor complex, the enzyme forms a tight domain-swapped dimer, not previously seen in any aspartic proteases. The inhibitor is found in an unprecedented conformation resembling the letter U, stabilized by two intramolecular hydrogen bonds. Surprisingly, the location and conformation of the inhibitor are similar to those of the fragment of helix 2 comprising residues 34p-38p in the prosegments of the zymogens of gastric aspartic proteases; a corresponding helix assumes a vastly different orientation in proplasmepsins. Each inhibitor molecule is in contact with two molecules of HAP, interacting with the carboxylate group of the catalytic Asp215 of one HAP protomer through a water molecule, while also making a direct hydrogen bond to Glu278A' of the other protomer. A comparison of the shifts in the positions of the catalytic residues in the inhibitor complex presented here with those published previously gives further hints regarding the enzymatic mechanism of HAP.« less
Smith, Andrew T; Doyle, Wendy A; Dorlet, Pierre; Ivancich, Anabella
2009-09-22
The surface oxidation site (Trp-171) in lignin peroxidase (LiP) required for the reaction with veratryl alcohol a high-redox-potential (1.4 V) substrate, was engineered into Coprinus cinereus peroxidase (CiP) by introducing a Trp residue into a heme peroxidase that has similar protein fold but lacks this activity. To create the catalytic activity toward veratryl alcohol in CiP, it was necessary to reproduce the Trp site and its negatively charged microenvironment by means of a triple mutation. The resulting D179W+R258E+R272D variant was characterized by multifrequency EPR spectroscopy. The spectra unequivocally showed that a new Trp radical [g values of g(x) = 2.0035(5), g(y) = 2.0027(5), and g(z) = 2.0022(1)] was formed after the [Fe(IV)=O Por(*+)] intermediate, as a result of intramolecular electron transfer between Trp-179 and the porphyrin. Also, the EPR characterization crucially showed that [Fe(IV)=O Trp-179(*)] was the reactive intermediate with veratryl alcohol. Accordingly, our work shows that it is necessary to take into account the physicochemical properties of the radical, fine-tuned by the microenvironment, as well as those of the preceding [Fe(IV)=O Por(*+)] intermediate to engineer a catalytically competent Trp site for a given substrate. Manipulation of the microenvironment of the Trp-171 site in LiP allowed the detection by EPR spectroscopy of the Trp-171(*), for which direct evidence has been missing so far. Our work also highlights the role of Trp residues as tunable redox-active cofactors for enzyme catalysis in the context of peroxidases with a unique reactivity toward recalcitrant substrates that require oxidation potentials not realized at the heme site.
NASA Astrophysics Data System (ADS)
Auwärter, Willi; Écija, David; Klappenberger, Florian; Barth, Johannes V.
2015-02-01
Porphyrins and other tetrapyrrole macrocycles possess an impressive variety of functional properties that have been exploited in natural and artificial systems. Different metal centres incorporated within the tetradentate ligand are key for achieving and regulating vital processes, including reversible axial ligation of adducts, electron transfer, light-harvesting and catalytic transformations. Tailored substituents optimize their performance, dictating their arrangement in specific environments and mediating the assembly of molecular nanoarchitectures. Here we review the current understanding of these species at well-defined interfaces, disclosing exquisite insights into their structural and chemical properties, and also discussing methods by which to manipulate their intramolecular and organizational features. The distinct characteristics arising from the interfacial confinement offer intriguing prospects for molecular science and advanced materials. We assess the role of surface interactions with respect to electronic and physicochemical characteristics, and describe in situ metallation pathways, molecular magnetism, rotation and switching. The engineering of nanostructures, organized layers, interfacial hybrid and bio-inspired systems is also addressed.
García Santos, William H; Puerto Galvis, Carlos E; Kouznetsov, Vladimir V
2015-02-07
A selective and mild method for the esterification of a variety of carboxylic acids with geraniol is developed. We demonstrated that the use of triphenylphosphine, I2, 2-methylimidazole or imidazole and a catalytic amount of Gd(OTf)3 resulted to be more active than the previous protocols, providing a 16-membered library of geranyl esters in higher yields and in shorter reaction times. The use of essential oil of palmarosa (Cymbopogon martinii), enriched with geraniol, as a raw material for the synthesis of the target compounds complemented and proved how sustainable and eco-friendly this protocol is. Finally, the selective 6,7-epoxidation of the obtained geranyl esters led us to study their regio-controlled radical cyclization mediated by titanocene(III) for the synthesis of novel (8-hydroxy-9,9-dimethyl-5-methylene cyclohexyl)methyl esters in moderate yields and with excellent stereoselectivities.
Creze, Christophe; Castang, Sandra; Derivery, Emmanuel; Haser, Richard; Hugouvieux-Cotte-Pattat, Nicole; Shevchik, Vladimir E; Gouet, Patrice
2008-06-27
The crystallographic structure of the family 3 polysaccharide lyase (PL-3) PelI from Erwinia chrysanthemi has been solved to 1.45 A resolution. It consists of an N-terminal domain harboring a fibronectin type III fold linked to a catalytic domain displaying a parallel beta-helix topology. The N-terminal domain is located away from the active site and is not involved in the catalytic process. After secretion in planta, the two domains are separated by E. chrysanthemi proteases. This event turns on the hypersensitive response of the host. The structure of the single catalytic domain determined to 2.1 A resolution shows that the domain separation unveils a "Velcro"-like motif of asparagines, which might be recognized by a plant receptor. The structure of PelI in complex with its substrate, a tetragalacturonate, has been solved to 2.3 A resolution. The sugar binds from subsites -2 to +2 in one monomer of the asymmetric unit, although it lies on subsites -1 to +3 in the other. These two "Michaelis complexes" have never been observed simultaneously before and are consistent with the dual mode of bond cleavage in this substrate. The bound sugar adopts a mixed 2(1) and 3(1) helical conformation similar to that reported in inactive mutants from families PL-1 and PL-10. However, our study suggests that the catalytic base in PelI is not a conventional arginine but a lysine as proposed in family PL-9.
Lou, Xiangdi; Ran, Tingting; Han, Ning; Gao, Yanyan; He, Jianhua; Tang, Lin; Xu, Dongqing; Wang, Weiwu
2014-04-25
Prodigiosin, a tripyrrole red pigment synthesized by Serratia and some other microbes through a bifurcated biosynthesis pathway, MBC (4-methoxy-2,2'-bipyrrole-5-carbaldehyde) and MAP (2-methyl-3-n-amyl-pyrrole) are synthesized separately and then condensed by PigC to form prodigiosin. MAP is synthesized sequentially by PigD, PigE and PigB. PigE catalyzes the transamination of an amino group to the aldehyde group of 3-acetyloctanal, resulting in an aminoketone, which spontaneously cyclizes to form H2MAP. Here we report the crystal structure of the catalytic domain of PigE which involved in the biosynthesis of prodigiosin precursor MAP for the first time to a resolution of 2.3Å with a homodimer in the asymmetric unit. The monomer of PigE catalytic domain is composed of three domains with PLP as cofactor: a small N-terminal domain connecting the catalytic domain with the front part of PigE, a large PLP-binding domain and a C-terminal domain. The residues from both monomers build the PLP binding site at the interface of the dimer which resembles the other PLP-dependent enzymes. Structural comparison of PigE with Thermus thermophilus AcOAT showed a higher hydrophobic and smaller active site of PigE, these differences may be the reason for substrate specificity. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Saeyoung; Park, Eun-Hye; Ko, Hyeok-Jin
2015-11-13
The atomic structure of a bacterial aryl acylamidase (EC 3.5.1.13; AAA) is reported and structural features are investigated to better understand the catalytic profile of this enzyme. Structures of AAA were determined in its native form and in complex with the analgesic acetanilide, p-acetaminophenol, at 1.70 Å and 1.73 Å resolutions, respectively. The overall structural fold of AAA was identified as an α/β fold class, exhibiting an open twisted β-sheet core surrounded by α-helices. The asymmetric unit contains one AAA molecule and the monomeric form is functionally active. The core structure enclosing the signature sequence region, including the canonical Ser-cisSer-Lys catalytic triad,more » is conserved in all members of the Amidase Signature enzyme family. The structure of AAA in a complex with its ligand reveals a unique organization in the substrate-binding pocket. The binding pocket consists of two loops (loop1 and loop2) in the amidase signature sequence and one helix (α10) in the non-amidase signature sequence. We identified two residues (Tyr{sup 136} and Thr{sup 330}) that interact with the ligand via water molecules, and a hydrogen-bonding network that explains the catalytic affinity over various aryl acyl compounds. The optimum activity of AAA at pH > 10 suggests that the reaction mechanism employs Lys{sup 84} as the catalytic base to polarize the Ser{sup 187} nucleophile in the catalytic triad. - Highlights: • We determined the first structure of a bacterial aryl acylamidase (EC 3.5.1.13). • Structure revealed spatially distinct architecture of the substrate-binding pocket. • Hydrogen-bonding with Tyr{sup 136} and Thr{sup 330} mediates ligand-binding and substrate.« less
Li, Huei-Jiun; Li, Xiaokai; Liu, Nina; Zhang, Huaning; Truglio, James J.; Mishra, Shambhavi; Kisker, Caroline; Garcia-Diaz, Miguel; Tonge, Peter J.
2014-01-01
MenB, the 1,4-dihydroxy-2-naphthoyl-CoA synthase from the bacterial menaquinone biosynthesis pathway, catalyzes an intramolecular Claisen condensation (Dieckmann reaction) in which the electrophile is an unactivated carboxylic acid. Mechanistic studies on this crotonase family member have been hindered by partial active site disorder in existing MenB X-ray structures. In the current work the 2.0 Å structure of O-succinylbenzoyl-aminoCoA (OSB-NCoA) bound to the MenB from Escherichia coli provides important insight into the catalytic mechanism by revealing the position of all active site residues. This has been accomplished by the use of a stable analogue of the O-succinylbenzoyl-CoA (OSB-CoA) substrate in which the CoA thiol has been replaced by an amine. The resulting OSB-NCoA is stable and the X-ray structure of this molecule bound to MenB reveals the structure of the enzyme-substrate complex poised for carbon-carbon bond formation. The structural data support a mechanism in which two conserved active site Tyr residues, Y97 and Y258, participate directly in the intramolecular transfer of the substrate α-proton to the benzylic carboxylate of the substrate, leading to protonation of the electrophile and formation of the required carbanion. Y97 and Y258 are also ideally positioned to function as the second oxyanion hole required for stabilization of the tetrahedral intermediate formed during carbon-carbon bond formation. In contrast, D163, which is structurally homologous to the acid-base catalyst E144 in crotonase, is not directly involved in carbanion formation and may instead play a structural role by stabilizing the loop that carries Y97. When similar studies were performed on the MenB from Mycobacterium tuberculosis, a twisted hexamer was unexpectedly observed, demonstrating the flexibility of the interfacial loops that are involved in the generation of the novel tertiary and quaternary structures found in the crotonase superfamily. This work reinforces the utility of using a stable substrate analogue as a mechanistic probe in which only one atom has been altered leading to a decrease in α-proton acidity. PMID:21830810
Li, Huei-Jiun; Li, Xiaokai; Liu, Nina; Zhang, Huaning; Truglio, James J; Mishra, Shambhavi; Kisker, Caroline; Garcia-Diaz, Miguel; Tonge, Peter J
2011-11-08
MenB, the 1,4-dihydroxy-2-naphthoyl-CoA synthase from the bacterial menaquinone biosynthesis pathway, catalyzes an intramolecular Claisen condensation (Dieckmann reaction) in which the electrophile is an unactivated carboxylic acid. Mechanistic studies on this crotonase family member have been hindered by partial active site disorder in existing MenB X-ray structures. In the current work the 2.0 Å structure of O-succinylbenzoyl-aminoCoA (OSB-NCoA) bound to the MenB from Escherichia coli provides important insight into the catalytic mechanism by revealing the position of all active site residues. This has been accomplished by the use of a stable analogue of the O-succinylbenzoyl-CoA (OSB-CoA) substrate in which the CoA thiol has been replaced by an amine. The resulting OSB-NCoA is stable, and the X-ray structure of this molecule bound to MenB reveals the structure of the enzyme-substrate complex poised for carbon-carbon bond formation. The structural data support a mechanism in which two conserved active site Tyr residues, Y97 and Y258, participate directly in the intramolecular transfer of the substrate α-proton to the benzylic carboxylate of the substrate, leading to protonation of the electrophile and formation of the required carbanion. Y97 and Y258 are also ideally positioned to function as the second oxyanion hole required for stabilization of the tetrahedral intermediate formed during carbon-carbon bond formation. In contrast, D163, which is structurally homologous to the acid-base catalyst E144 in crotonase (enoyl-CoA hydratase), is not directly involved in carbanion formation and may instead play a structural role by stabilizing the loop that carries Y97. When similar studies were performed on the MenB from Mycobacterium tuberculosis, a twisted hexamer was unexpectedly observed, demonstrating the flexibility of the interfacial loops that are involved in the generation of the novel tertiary and quaternary structures found in the crotonase superfamily. This work reinforces the utility of using a stable substrate analogue as a mechanistic probe in which only one atom has been altered leading to a decrease in α-proton acidity.
Livanos, Pantelis; Giannoutsou, Eleni; Apostolakos, Panagiotis; Galatis, Basil
2015-01-01
The data presented in this work revealed that in Zea mays the exogenously added auxins indole-3-acetic acid (IAA) and 1-napthaleneacetic acid (NAA), promoted the establishment of subsidiary cell mother cell (SMC) polarity and the subsequent subsidiary cell formation, while treatment with auxin transport inhibitors 2,3,5-triiodobenzoic acid (TIBA) and 1-napthoxyacetic acid (NOA) specifically blocked SMC polarization and asymmetrical division. Furthermore, in young guard cell mother cells (GMCs) the PIN1 auxin efflux carriers were mainly localized in the transverse GMC faces, while in the advanced GMCs they appeared both in the transverse and the lateral ones adjacent to SMCs. Considering that phosphatidyl-inositol-3-kinase (PI3K) is an active component of auxin signal transduction and that phospholipid signaling contributes in the establishment of polarity, treatments with the specific inhibitor of the PI3K LY294002 were carried out. The presence of LY294002 suppressed polarization of SMCs and prevented their asymmetrical division, whereas combined treatment with exogenously added NAA and LY294002 restricted the promotional auxin influence on subsidiary cell formation. These findings support the view that auxin is involved in Z. mays subsidiary cell formation, probably functioning as inducer of the asymmetrical SMC division. Collectively, the results obtained from treatments with auxin transport inhibitors and the appearance of PIN1 proteins in the lateral GMC faces indicate a local transfer of auxin from GMCs to SMCs. Moreover, auxin signal transduction seems to be mediated by the catalytic function of PI3K.
Livanos, Pantelis; Giannoutsou, Eleni; Apostolakos, Panagiotis; Galatis, Basil
2015-01-01
The data presented in this work revealed that in Zea mays the exogenously added auxins indole-3-acetic acid (IAA) and 1-napthaleneacetic acid (NAA), promoted the establishment of subsidiary cell mother cell (SMC) polarity and the subsequent subsidiary cell formation, while treatment with auxin transport inhibitors 2,3,5-triiodobenzoic acid (TIBA) and 1-napthoxyacetic acid (NOA) specifically blocked SMC polarization and asymmetrical division. Furthermore, in young guard cell mother cells (GMCs) the PIN1 auxin efflux carriers were mainly localized in the transverse GMC faces, while in the advanced GMCs they appeared both in the transverse and the lateral ones adjacent to SMCs. Considering that phosphatidyl-inositol-3-kinase (PI3K) is an active component of auxin signal transduction and that phospholipid signaling contributes in the establishment of polarity, treatments with the specific inhibitor of the PI3K LY294002 were carried out. The presence of LY294002 suppressed polarization of SMCs and prevented their asymmetrical division, whereas combined treatment with exogenously added NAA and LY294002 restricted the promotional auxin influence on subsidiary cell formation. These findings support the view that auxin is involved in Z. mays subsidiary cell formation, probably functioning as inducer of the asymmetrical SMC division. Collectively, the results obtained from treatments with auxin transport inhibitors and the appearance of PIN1 proteins in the lateral GMC faces indicate a local transfer of auxin from GMCs to SMCs. Moreover, auxin signal transduction seems to be mediated by the catalytic function of PI3K. PMID:25831267
Dynamic asymmetry and the role of the conserved active-site thiol in rabbit muscle creatine kinase.
Londergan, Casey H; Baskin, Rachel; Bischak, Connor G; Hoffman, Kevin W; Snead, David M; Reynoso, Christopher
2015-01-13
Symmetric and asymmetric crystal structures of the apo and transition state analogue forms, respectively, of the dimeric rabbit muscle creatine kinase have invoked an "induced fit" explanation for asymmetry between the two subunits and their active sites. However, previously reported thiol reactivity studies at the dual active-site cysteine 283 residues suggest a more latent asymmetry between the two subunits. The role of that highly conserved active-site cysteine has also not been clearly determined. In this work, the S-H vibrations of Cys283 were observed in the unmodified MM isoform enzyme via Raman scattering, and then one and both Cys283 residues in the same dimeric enzyme were modified to covalently attach a cyano group that reports on the active-site environment via its infrared CN stretching absorption band while maintaining the catalytic activity of the enzyme. Unmodified and Cys283-modified enzymes were investigated in the apo and transition state analogue forms of the enzyme. The narrow and invariant S-H vibrational bands report a homogeneous environment for the unmodified active-site cysteines, indicating that their thiols are hydrogen bonded to the same H-bond acceptor in the presence and absence of the substrate. The S-H peak persists at all physiologically relevant pH's, indicating that Cys283 is protonated at all pH's relevant to enzymatic activity. Molecular dynamics simulations identify the S-H hydrogen bond acceptor as a single, long-resident water molecule and suggest that the role of the conserved yet catalytically unnecessary thiol may be to dynamically rigidify that part of the active site through specific H-bonding to water. The asymmetric and broad CN stretching bands from the CN-modified Cys283 suggest an asymmetric structure in the apo form of the enzyme in which there is a dynamic exchange between spectral subpopulations associated with water-exposed and water-excluded probe environments. Molecular dynamics simulations indicate a homogeneous orientation of the SCN probe group in the active site and thus rule out a local conformational explanation at the residue level for the multipopulation CN stretching bands. The homogeneous simulated SCN orientation suggests strongly that a more global asymmetry between the two subunits is the cause of the CN probe's broad and asymmetric infrared line shape. Together, these spectral observations localized at the active-site cysteines indicate an intrinsic, dynamic asymmetry between the two subunits that exists already in the apo form of the dimeric creatine kinase enzyme, rather than being induced by the substrate. Biochemical and methodological consequences of these conclusions are considered.
Tree-ring cellulose exhibits several distinct intramolecular 13C signals
NASA Astrophysics Data System (ADS)
Wieloch, Thomas; Ehlers, Ina; Frank, David; Gessler, Arthur; Grabner, Michael; Yu, Jun; Schleucher, Jürgen
2017-04-01
Stable carbon isotopes are a key tool in biogeosciences. Present applications including compound-specific isotope analysis measure 13C/12C ratios (δ13C) of bulk material or of whole molecules. However, it is well known that primary metabolites also show large intramolecular 13C variation - also called isotopomer variation. This variation reflects 13C fractionation by enzyme reactions and therefore encodes metabolic information. Furthermore, δ13C must be considered an average of the intramolecular 13C distribution. Here we will present (1) methodology to analyse intramolecular 13C distributions of tree-ring cellulose by quantitative 13C NMR (Chaintreau et al., 2013, Anal Chim Acta, 788, 108-113); (2) intramolecular 13C distributions of an annually-resolved tree ring chronology (Pinus nigra, 1961-1995); (3) isotope parameters and terminology for analysis of intramolecular isotope time series; (4) a method for correcting for heterotrophic C redistribution. We will show that the intramolecular 13C distribution of tree-ring cellulose shows large variation, with differences between isotopomers exceeding 10‰Ṫhus, individual 13C isotopomers of cellulose constitute distinct 13C inputs into major global C pools such as wood and soil organic matter. When glucose units with the observed intramolecular 13C pattern are broken down along alternative catabolic pathways, it must be expected that respired CO2 with strongly differing δ13C will be released; indicating that intramolecular 13C variation affects isotope signals of atmosphere-biosphere C exchange fluxes. taking this variation into account will improve modelling of the global C cycle. Furthermore, cluster analysis shows that tree-ring glucose exhibits several independent intramolecular 13C signals, which constitute distinct ecophysiological information channels. Thus, whole-molecule 13C analysis likely misses a large part of the isotope information stored in tree rings. As we have shown for deuterium (Ehlers et al., 2015, PNAS, 112, 15585), intramolecular isotope signals allow tracing plant acclimation over centuries, and intramolecular 13C distributions will also improve our understanding of 13C signatures of global C fluxes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Ting; Ooi, Amy; Lee, Hooi Chen
An orthorhombic crystal form of the SARS CoV main proteinase diffracting to a resolution of 1.9 Å is reported. The conformation of residues in the catalytic site indicates an active enzyme. The 34 kDa main proteinase (M{sup pro}) from the severe acute respiratory syndrome coronavirus (SARS-CoV) plays an important role in the virus life cycle through the specific processing of viral polyproteins. As such, SARS-CoV M{sup pro} is a key target for the identification of specific inhibitors directed against the SARS virus. With a view to facilitating the development of such compounds, crystals were obtained of the enzyme at pHmore » 6.5 in the orthorhombic space group P2{sub 1}2{sub 1}2 that diffract to a resolution of 1.9 Å. These crystals contain one monomer per asymmetric unit and the biologically active dimer is generated via the crystallographic twofold axis. The conformation of the catalytic site indicates that the enzyme is active in the crystalline form and thus suitable for structure-based inhibition studies.« less
Jouffroy, Matthieu; Gramage-Doria, Rafael; Sémeril, David; Oberhauser, Werner; Toupet, Loïc
2014-01-01
Summary The capacity of two cavity-shaped ligands, HUGPHOS-1 and HUGPHOS-2, to generate exclusively singly phosphorus-ligated complexes, in which the cyclodextrin cavity tightly wraps around the metal centre, was explored with a number of late transition metal cations. Both cyclodextrin-derived ligands were assessed in palladium-catalysed Mizoroki–Heck coupling reactions between aryl bromides and styrene on one hand, and the rhodium-catalysed asymmetric hydroformylation of styrene on the other hand. The inability of both chiral ligands to form standard bis(phosphine) complexes under catalytic conditions was established by high-pressure NMR studies and shown to have a deep impact on the two carbon–carbon bond forming reactions both in terms of activity and selectivity. For example, when used as ligands in the rhodium-catalysed hydroformylation of styrene, they lead to both high isoselectivity and high enantioselectivity. In the study dealing with the Mizoroki–Heck reactions, comparative tests were carried out with WIDEPHOS, a diphosphine analogue of HUGPHOS-2. PMID:25383109
Asymmetric transfer hydrogenation by synthetic catalysts in cancer cells
NASA Astrophysics Data System (ADS)
Coverdale, James P. C.; Romero-Canelón, Isolda; Sanchez-Cano, Carlos; Clarkson, Guy J.; Habtemariam, Abraha; Wills, Martin; Sadler, Peter J.
2018-03-01
Catalytic anticancer metallodrugs active at low doses could minimize side-effects, introduce novel mechanisms of action that combat resistance and widen the spectrum of anticancer-drug activity. Here we use highly stable chiral half-sandwich organometallic Os(II) arene sulfonyl diamine complexes, [Os(arene)(TsDPEN)] (TsDPEN, N-(p-toluenesulfonyl)-1,2-diphenylethylenediamine), to achieve a highly enantioselective reduction of pyruvate, a key intermediate in metabolic pathways. Reduction is shown both in aqueous model systems and in human cancer cells, with non-toxic concentrations of sodium formate used as a hydride source. The catalytic mechanism generates selectivity towards ovarian cancer cells versus non-cancerous fibroblasts (both ovarian and lung), which are commonly used as models of healthy proliferating cells. The formate precursor N-formylmethionine was explored as an alternative to formate in PC3 prostate cancer cells, which are known to overexpress a deformylase enzyme. Transfer-hydrogenation catalysts that generate reductive stress in cancer cells offer a new approach to cancer therapy.
Decelerating and Trapping Large Polar Molecules.
Patterson, David
2016-11-18
Manipulating the motion of large polyatomic molecules, such as benzonitrile (C 6 H 5 CN), presents significant difficulties compared to the manipulation of diatomic molecules. Although recent impressive results have demonstrated manipulation, trapping, and cooling of molecules as large as CH 3 F, no general technique for trapping such molecules has been demonstrated, and cold neutral molecules larger than 5 atoms have not been trapped (M. Zeppenfeld, B. G. U. Englert, R. Glöckner, A. Prehn, M. Mielenz, C. Sommer, L. D. van Buuren, M. Motsch, G. Rempe, Nature 2012, 491, 570-573). In particular, extending Stark deceleration and electrostatic trapping to such species remains challenging. Here, we propose to combine a novel "asymmetric doublet state" Stark decelerator with recently demonstrated slow, cold, buffer-gas-cooled beams of closed-shell volatile molecules to realize a general system for decelerating and trapping samples of a broad range of volatile neutral polar prolate asymmetric top molecules. The technique is applicable to most stable volatile molecules in the 100-500 AMU range, and would be capable of producing trapped samples in a single rotational state and at a motional temperature of hundreds of mK. Such samples would immediately allow for spectroscopy of unprecedented resolution, and extensions would allow for further cooling and direct observation of slow intramolecular processes such as vibrational relaxation and Hertz-level tunneling dynamics. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fukuda, Yohta; Tse, Ka Man; Nakane, Takanori; Nakatsu, Toru; Suzuki, Mamoru; Sugahara, Michihiro; Inoue, Shigeyuki; Masuda, Tetsuya; Yumoto, Fumiaki; Matsugaki, Naohiro; Nango, Eriko; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Song, Changyong; Hatsui, Takaki; Yabashi, Makina; Nureki, Osamu; Murphy, Michael E P; Inoue, Tsuyoshi; Iwata, So; Mizohata, Eiichi
2016-03-15
Proton-coupled electron transfer (PCET), a ubiquitous phenomenon in biological systems, plays an essential role in copper nitrite reductase (CuNiR), the key metalloenzyme in microbial denitrification of the global nitrogen cycle. Analyses of the nitrite reduction mechanism in CuNiR with conventional synchrotron radiation crystallography (SRX) have been faced with difficulties, because X-ray photoreduction changes the native structures of metal centers and the enzyme-substrate complex. Using serial femtosecond crystallography (SFX), we determined the intact structures of CuNiR in the resting state and the nitrite complex (NC) state at 2.03- and 1.60-Å resolution, respectively. Furthermore, the SRX NC structure representing a transient state in the catalytic cycle was determined at 1.30-Å resolution. Comparison between SRX and SFX structures revealed that photoreduction changes the coordination manner of the substrate and that catalytically important His255 can switch hydrogen bond partners between the backbone carbonyl oxygen of nearby Glu279 and the side-chain hydroxyl group of Thr280. These findings, which SRX has failed to uncover, propose a redox-coupled proton switch for PCET. This concept can explain how proton transfer to the substrate is involved in intramolecular electron transfer and why substrate binding accelerates PCET. Our study demonstrates the potential of SFX as a powerful tool to study redox processes in metalloenzymes.
Dong, Kaiwu; Sang, Rui; Wei, Zhihong; Liu, Jie; Dühren, Ricarda; Spannenberg, Anke; Jiao, Haijun; Neumann, Helfried; Jackstell, Ralf; Franke, Robert
2018-01-01
Mechanistic studies of the catalyst [Pd2(dba)3/1,1′-bis(tert-butyl(pyridin-2-yl)phosphanyl)ferrocene, L2] for olefin alkoxycarbonylation reactions are described. X-ray crystallography reveals the coordination of the pyridyl nitrogen atom in L2 to the palladium center of the catalytic intermediates. DFT calculations on the elementary steps of the industrially relevant carbonylation of ethylene (the Lucite α-process) indicate that the protonated pyridyl moiety is formed immediately, which facilitates the formation of the active palladium hydride complex. The insertion of ethylene and CO into this intermediate leads to the corresponding palladium acyl species, which is kinetically reversible. Notably, this key species is stabilized by the hemilabile coordination of the pyridyl nitrogen atom in L2. The rate-determining alcoholysis of the acyl palladium complex is substantially facilitated by metal–ligand cooperation. Specifically, the deprotonation of the alcohol by the built-in base of the ligand allows a facile intramolecular nucleophilic attack on the acyl palladium species concertedly. Kinetic measurements support this mechanistic proposal and show that the rate of the carbonylation step is zero-order dependent on ethylene and CO. Comparing CH3OD and CH3OH as nucleophiles suggests the involvement of (de)protonation in the rate-determining step. PMID:29732128
Processing, stability, and kinetic parameters of C5a peptidase from Streptococcus pyogenes.
Anderson, Elizabeth T; Wetherell, Michael G; Winter, Laurie A; Olmsted, Stephen B; Cleary, Patrick P; Matsuka, Yury V
2002-10-01
A recombinant streptococcal C5a peptidase was expressed in Escherichia coli and its catalytic properties and thermal stability were subjected to examination. It was shown that the NH2-terminal region of C5a peptidase (Asn32-Asp79/Lys90) forms the pro-sequence segment. Upon maturation the propeptide is hydrolyzed either via an autocatalytic intramolecular cleavage or by exogenous protease streptopain. At pH 7.4 the enzyme exhibited maximum activity in the narrow range of temperatures between 40 and 43 degrees C. The process of heat denaturation of C5a peptidase investigated by fluorescence and circular dichroism spectroscopy revealed that the protein undergoes biphasic unfolding transition with Tm of 50 and 70 degrees C suggesting melting of different parts of the molecule with different stability. Unfolding of the less stable structures was accompanied by the loss of proteolytic activity. Using synthetic peptides corresponding to the COOH-terminus of human complement C5a we demonstrated that in vitro peptidase catalyzes hydrolysis of two His67-Lys68 and Ala58-Ser59 peptide bonds. The high catalytic efficiency obtained for the SQLRANISHKDMQLGR extended peptide compared to the poor hydrolysis of its derivative Ac-SQLRANISH-pNA that lacks residues at P2'-P7' positions, suggest the importance of C5a peptidase interactions with the P' side of the substrate.
Chen, Zan; Dempsey, Daniel R.; Thomas, Stefani N.; Hayward, Dawn; Bolduc, David M.; Cole, Philip A.
2016-01-01
PTEN is a tumor suppressor that functions to negatively regulate the PI3K/AKT pathway as the lipid phosphatase for phosphatidylinositol 3,4,5-triphosphate. Phosphorylation of a cluster of Ser/Thr residues (amino acids 380–385) on the C-terminal tail serves to alter the conformational state of PTEN from an open active state to a closed inhibited state, resulting in a reduction of plasma membrane localization and inhibition of enzyme activity. The relative contribution of each phosphorylation site to PTEN autoinhibition and the structural basis for the conformational closure is still unclear. To further the structural understanding of PTEN regulation by C-terminal tail phosphorylation, we used protein semisynthesis to insert stoichiometric and site-specific phospho-Ser/Thr(s) in the C-terminal tail of PTEN. Additionally, we employed photo-cross-linking to map the intramolecular PTEN interactions of the phospho-tail. Systematic evaluation of the PTEN C-tail phospho-cluster showed autoinhibition, and conformational closure was influenced by the aggregate effect of multiple phospho-sites rather than dominated by a single phosphorylation site. Moreover, photo-cross-linking suggested a direct interaction between the PTEN C-tail and a segment in the N-terminal region of the catalytic domain. Mutagenesis experiments provided additional insights into how the PTEN phospho-tail interacts with both the C2 and catalytic domains. PMID:27226612
Guaitoli, Giambattista; Raimondi, Francesco; Gilsbach, Bernd K.; Gómez-Llorente, Yacob; Deyaert, Egon; Renzi, Fabiana; Li, Xianting; Schaffner, Adam; Jagtap, Pravin Kumar Ankush; Boldt, Karsten; von Zweydorf, Felix; Gotthardt, Katja; Lorimer, Donald D.; Yue, Zhenyu; Burgin, Alex; Janjic, Nebojsa; Sattler, Michael; Versées, Wim; Ueffing, Marius; Ubarretxena-Belandia, Iban; Kortholt, Arjan; Gloeckner, Christian Johannes
2016-01-01
Leucine-rich repeat kinase 2 (LRRK2) is a large, multidomain protein containing two catalytic domains: a Ras of complex proteins (Roc) G-domain and a kinase domain. Mutations associated with familial and sporadic Parkinson’s disease (PD) have been identified in both catalytic domains, as well as in several of its multiple putative regulatory domains. Several of these mutations have been linked to increased kinase activity. Despite the role of LRRK2 in the pathogenesis of PD, little is known about its overall architecture and how PD-linked mutations alter its function and enzymatic activities. Here, we have modeled the 3D structure of dimeric, full-length LRRK2 by combining domain-based homology models with multiple experimental constraints provided by chemical cross-linking combined with mass spectrometry, negative-stain EM, and small-angle X-ray scattering. Our model reveals dimeric LRRK2 has a compact overall architecture with a tight, multidomain organization. Close contacts between the N-terminal ankyrin and C-terminal WD40 domains, and their proximity—together with the LRR domain—to the kinase domain suggest an intramolecular mechanism for LRRK2 kinase activity regulation. Overall, our studies provide, to our knowledge, the first structural framework for understanding the role of the different domains of full-length LRRK2 in the pathogenesis of PD. PMID:27357661
O'Neill, P; Fielden, E M; Morpurgo, L; Agostinelli, E
1984-08-15
The interactions of one-electron reduced metronidazole (ArNO2.-) and O2.- with native and Type-2-copper-depleted Vietnamese- and Japanese-lacquer-tree laccases were studied in aqueous solution at pH 6.0 and 7.4 by using the technique of pulse radiolysis. On reaction with ArNO2.-, in the absence of O2, the holo- and the Type-2-copper-depleted proteins accept, with reduction of Type 1 copper, 2 and 1 reducing equivalents respectively. On reaction with O2.- of both holo- and Type-2-copper-depleted Vietnamese-lacquer-tree laccase, almost complete reduction of Type 1 copper was observed and, after completion of the reaction, some (less than 20%) reoxidation of Type 1 copper occurs. Reduction of Type 1 copper of the laccases by these one-electron donors occurs via a bimolecular step; however, the rate of reduction of Vietnamese-lacquer-tree laccase is over 10 times that of Japanese-lacquer-tree laccase. It is inferred that electrons enter the protein via Type 1 copper with, in the case of the holoprotein, subsequent rapid intramolecular transfer of 1 reducing equivalent within the protein. Furthermore it is suggested that intra-molecular electron transfer to Type 3 copper atoms is slow and, in the case of Type-2-copper-depleted protein, may not occur. This slow process may partially account for the variation of the catalytic activities of 'blue' oxidases.
Le Bailly, Bryden A. F.; Byrne, Liam
2016-01-01
Abstract Small changes in the structure of a foldamer may lead to gross changes in conformational preference. We show that the simple insertion or deletion of a single hydrogen bond by changes in pH or by photochemical deprotection is sufficient to refold a helical oligomer, interconverting M and P screw‐sense preference. As a consequence of the switch, information may be transmitted to a remote catalytic site, selectively directing the formation of either of two enantiomeric products by a reaction involving 1,22‐remote intermolecular asymmetric induction. PMID:26762559
Gibson, Susan E; Kaufmann, Karina A C; Loch, Jennifer A; Steed, Jonathan W; White, Andrew J P
2005-04-08
Understanding the interaction of chiral ligands, alkynes, and alkenes with cobaltcarbonyl sources is critical to learning more about the mechanism of the catalytic, asymmetric Pauson-Khand reaction. We have successfully characterized complexes of the type [Co2(alkyne)(binap)(CO)4] (BINAP=(1,1'-binaphthalene)-2,2'-diylbis(diphenylphosphine)) and shown that diastereomer interconversion occurs under Pauson-Khand reaction conditions when alkyne=HC[triple bond]CCO2Me. Attempts to isolate [Co2(alkyne)(binap)(CO)x] complexes with coordinated alkenes led to the formation of cobaltacyclopentadiene species.
Witten, Michael R.; Jacobsen, Eric N.
2016-01-01
A new primary amine catalyst for the asymmetric α-hydroxylation and α-fluorination of α-branched aldehydes is described. The products of the title transformations are generated in excellent yields and with high enantioselectivities. Both processes can be performed within short reaction times and on gram scale. The similarity in the results obtained in both reactions, combined with computational evidence, implies a common basis for stereoinduction and the possibility of a general catalytic mechanism for α-functionalizations. Promising initial results in α-amination and α-chlorination reactions support this hypothesis. PMID:25952578
Oinen, Mark Emil; Yu, Robert T.; Rovis, Tomislav
2009-01-01
Excess substrate has been identified as an unintended spectator ligand affecting enantioselectivity in the [2+2+2] cycloaddition of alkenyl isocyanates with tolanes. Replacement of excess substrate with an exogenous additive affords products with consistent and higher ee’s. The increase in enantioselectivity is the result of a change in composition of a proposed rhodium(III) intermediate on the catalytic cycle. The net result is a rational probe of a short-lived rhodium(III) intermediate, and gives insight that may have applications in many rhodium catalyzed reactions. PMID:19803471
Xu, Jianfeng; Chen, Xingkuan; Wang, Ming; Zheng, Pengcheng; Song, Bao-An; Chi, Yonggui Robin
2015-04-20
A convergent, organocatalytic asymmetric aminomethylation of α,β-unsaturated aldehydes by N-heterocyclic carbene (NHC) and (in situ generated) Brønsted acid cooperative catalysis is disclosed. The catalytically generated conjugated acid from the base plays dual roles in promoting the formation of azolium enolate intermediate, formaldehyde-derived iminium ion (as an electrophilic reactant), and methanol (as a nucleophilic reactant). This redox-neutral strategy is suitable for the scalable synthesis of enantiomerically enriched β(2) -amino acids bearing various substituents. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhou, Yu-Qiang; Wang, Nai-Xing; Zhou, Shu-Bao; Huang, Zhong; Cao, Linghua
2011-01-21
A novel intermolecular [4 + 3] cycloaddition method to construct 1,4-dioxide seven-membered oxacycles was developed. This one-step method was carried out in the presence of catalytic amount of (C(2)H(5))(2)OBF(3) under mild conditions. Seven-membered oxacycles and some natural compounds could be easily synthesized via this protocol. Control experiments were carried out and possible mechanism for the reaction was proposed. Asymmetric reactions were proceeded and 3e was obtained with moderate ee value.
Chelators Exhibiting Triple Fluorescence.
1998-08-31
l-NN-dimethylamino-propane, forms an intramolecular 9 exciplex between the phenyl and amino end groups. The formation of an intramolecular exciplex 10...alkyl amino chains. e.g. 3-(4-cyanophenyl)-l-N.N- 21 dimethylaminopropane (CNP3NM, Fig. I b), can form intramolecular exciplexes which arise due to 2...for intramolecular exciplex formation in CNP3NM is indicated by 4 the strong. red-shifted fluorescence observed, and the complete absence of LE
NASA Astrophysics Data System (ADS)
Wang, Se; Wang, Zhuang; Hao, Ce
2016-01-01
The time-dependent density functional theory (TDDFT) method was performed to investigate the excited-state intramolecular double proton transfer (ESIDPT) reaction of calix[4] arene (C4A) and the role of the intramolecular hydrogen bonds in the ESIDPT process. The geometries of C4A in the ground state and excited states (S1, S2 and T1) were optimized. Four intramolecular hydrogen bonds formed in the C4A are strengthened or weakened in the S2 and T1 states compared to those in the ground state. Interestingly, upon excitation to the S1 state of C4A, two protons H1 and H2 transfer along the two intramolecular hydrogen bonds O1-H1···O2 and O2-H2···O3, while the other two protons do not transfer. The ESIDPT reaction breaks the primary symmetry of C4A in the ground state. The potential energy curves of proton transfer demonstrate that the ESIDPT process follows the stepwise mechanism but not the concerted mechanism. Findings indicate that intramolecular hydrogen bonding is critical to the ESIDPT reactions in intramolecular hydrogen-bonded systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lei; Cole, Jacqueline M.; Liu, Xiaogang
2013-11-25
“Smart tuning” of optical properties in three azo dyes containing intramolecular hydrogen bonding is realized by the judicious control of solvents, when the dyes are in solution or adsorbed onto titanium dioxide nanoparticles. In solution, certain solvents destabilizing intramolecular hydrogen bonding induce a distinctive ≈70 nm “blue-shifted” absorption peak, compared with other solvents. In parallel, the optical properties of azo dye/TiO2 nanocomposites can be tuned using solvents with different hydrogen-bond accepting/donating abilities, giving insights into smart materials and dye-sensitized solar cell device design. It is proposed that intramolecular hydrogen bonding alone plays the leading role in such phenomena, which ismore » fundamentally different to other mechanisms, such as tautomerism and cis–trans isomerization, that explain the optical control of azo dyes. Hybrid density functional theory (DFT) is employed in order to trace the origin of this optical control, and these calculations support the mechanism involving intramolecular hydrogen bonding. Two complementary studies are also reported: 1H NMR spectroscopy is conducted in order to further understand the solvent effects on intramolecular hydrogen bonding; crystal structure analysis from associated research indicates the importance of intramolecular hydrogen bonding on intramolecular charge transfer.« less
Structure, IR and Raman spectra of phosphotrihydrazide studied by DFT
NASA Astrophysics Data System (ADS)
Furer, V. L.; Vandyukov, A. E.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.
2016-09-01
The FTIR and FT Raman measurements of the phosphotrihydrazide (S)P[N(Me)-NH2]3 have been performed. This compound is a zero generation dendrimer G0 with terminal amine groups. Structural optimization and normal mode analysis were obtained for G0 by the density functional theory (DFT). Optimized geometric bond length and angles obtained by DFT show good agreement with experiment. The amine terminal groups are characterized by the well-defined bands at 3321, 3238, 1614 cm- 1 in the experimental IR spectrum and by bands at 3327, 3241 cm- 1 in the Raman spectrum of G0. The experimental frequencies of asymmetric and symmetric NH2 stretching vibrations of amine group are lower than theoretical values due to intramolecular Nsbnd H ⋯ S hydrogen bond. This hydrogen bond is also responsible for higher experimental infrared intensity of these bands as compared with theoretical values. Relying on DFT calculations a complete vibrational assignment is proposed for the studied dendrimer.
β N-O turns and helices induced by β2-aminoxy peptides: synthesis and conformational studies.
Jiao, Zhi-Gang; Chang, Xiao-Wei; Ding, Wei; Liu, Guo-Jun; Song, Ke-Sheng; Zhu, Nian-Yong; Zhang, Dan-Wei; Yang, Dan
2011-07-04
Herein, we report an efficient route for the asymmetric synthesis of β(2)-aminoxy acids as well as experimental and theoretical studies of conformations of peptides composed of β(2)-aminoxy acids. The nine-membered-ring intramolecular hydrogen bonds, namely, β N-O turns, are generated between adjacent residues in those peptides, in accordance with our computational results. The presence of two consecutive homochiral β N-O turns leads to the formation of β N-O helical structures in solution, although both helical (composed of two β N-O turns of the same handedness) and reverse-turn (composed of two β N-O turns with opposite handedness) structures are of similar stability, as suggested by theoretical studies. Nevertheless, two slightly different conformations, with the same handedness, of β(2)-aminoxy monomers have been observed in the solid state and in solution according to our X-ray and 2D NOESY studies. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Orozco, Fabián; Insuasty, Braulio; Cobo, Justo; Glidewell, Christopher
2009-05-01
The title compound, piperidinium 6-amino-3-methyl-5-nitroso-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-ide 6-amino-3-methyl-5-nitrosopyrimidine-2,4(1H,3H)-dione, C(5)H(12)N(+).C(5)H(5)N(4)O(3)(-).C(5)H(6)N(4)O(3), (I), crystallizes with Z' = 2 in the space group P1. There is an intramolecular N-H...O hydrogen bond in each pyrimidine unit and within the selected asymmetric unit the six independent components are linked by 11 hydrogen bonds, seven of the N-H...O type and four of the N-H...N type. These six-component aggregates are linked into sheets by five further hydrogen bonds, three of the N-H...O type and one each of the N-H...N and C-H...O types.
Shooter, Jesse; Allen, Caleb J; Tinsley, Colby W K; Zakharov, Lev N; Abbey, Eric R
2017-11-01
The title compound [systematic name: 4-(di-methyl-amino)-pyridine-4-meth-oxy-phenyl-borane (1/1)], C 14 H 19 BN 2 O, contains two independent mol-ecules in the asymmetric unit. Both molecules exhibit coplanar, mostly sp 2 -hybridized meth-oxy and di-methyl-amino substituents on their respective aromatic rings, consistent with π-donation into the aromatic systems. The B-H groups exhibit an intra-molecular close contact with a C-H group of the pyridine ring, which may be evidence of electrostatic attraction between the hydridic B-H and the electropositive aromatic C-H. There appears to be weak C-H⋯π(arene) inter-actions between two of the H atoms of an amino-methyl group and the meth-oxy-substituted benzene ring of the other independent mol-ecule, and another C-H⋯π (arene) inter-action between one of the pyridine ring H atoms and the same benzene ring.
Boros, Eszter; Srinivas, Raja; Kim, Hee -Kyung; ...
2017-04-11
Aqua ligands can undergo rapid internal rotation about the M-O bond. For magnetic resonance contrast agents, this rotation results in diminished relaxivity. Herein, we show that an intramolecular hydrogen bond to the aqua ligand can reduce this internal rotation and increase relaxivity. Molecular modeling was used to design a series of four Gd complexes capable of forming an intramolecular H-bond to the coordinated water ligand, and these complexes had anomalously high relaxivities compared to similar complexes lacking a H-bond acceptor. Molecular dynamics simulations supported the formation of a stable intramolecular H-bond, while alternative hypotheses that could explain the higher relaxivitymore » were systematically ruled out. Finally, intramolecular H-bonding represents a useful strategy to limit internal water rotational motion and increase relaxivity of Gd complexes.« less
NASA Astrophysics Data System (ADS)
Zhou, Tian
Computational chemistry has achieved vast progress in the last decades in the field, which was considered to be only experimental before. DFT (density functional theory) calculations have been proven to be able to be applied to large systems, while maintaining high accuracy. One of the most important achievements of DFT calculations is in exploring the mechanism of bond activation reactions catalyzed by organometallic complexes. In this dissertation, we discuss DFT studies of several catalytic systems explored in the lab of Professor Alan S. Goldman. Headlines in the work are: (1) (R4PCP)Ir alkane dehydrogenation catalysts are highly selective and different from ( R4POCOP)Ir catalysts, predicting different rate-/selectivity-determining steps; (2) The study of the mechanism for double C-H addition/cyclometalation of phenanthrene or biphenyl by (tBu4PCP)Ir(I) and ( iPr4PCP)Ir illustrates that neutral Ir(III) C-H addition products can undergo a very facile second C-H addition, particularly in the case of sterically less-crowded Ir(I) complexes; (3) (iPr4PCP)Ir pure solid phase catalyst is highly effective in producing high yields of alpha-olefin products, since the activation enthalpy for dehydrogenation is higher than that for isomerization via an allyl pathway; higher temperatures favor the dehydrogenation/isomerization ratio; (4) (PCP)Ir(H)2(N2H4) complex follows a hydrogen transfer mechanism to undergo both dehydrogenation to form N 2 and H2, as well as hydrogen transfer followed by N-N bond cleavage to form NH3, N2, and H2; (5) The key for the catalytic effect of solvent molecule in CO insertion reaction for RMn(CO)5 is hydrogen bond assisted interaction. The basicity of the solvent determines the strength of the hydrogen bond interaction during the catalytic path and determines the catalytic power of the solvent; and (6) Dehydrogenative coupling of unactivated C-H bonds (intermolecular vinyl-vinyl, intramolecular vinyl-benzyl) is catalyzed by precursors of the (iPr4 PCP)Ir fragment. The key step for this mechanism is a Ir(III) vinyl hydride complex undergoing addition of a styrenyl ortho C-H bond to give an Ir(III) metalloindene plus H2.
Comparative characterization of novel ene-reductases from cyanobacteria.
Fu, Yilei; Castiglione, Kathrin; Weuster-Botz, Dirk
2013-05-01
The growing importance of biocatalysis in the syntheses of enantiopure molecules results from the benefits of enzymes regarding selectivity and specificity of the reaction and ecological issues of the process. Ene-reductases (ERs) from the old yellow enzyme family have received much attention in the last years. These flavo-enzymes catalyze the trans-specific reduction of activated C=C bonds, which is an important reaction in asymmetric synthesis, because up to two stereogenic centers can be created in one reaction. However, limitations of ERs described in the literature such as their moderate catalytic activity and their strong preference for NADPH promote the search for novel ERs with improved properties. In this study, we characterized nine novel ERs from cyanobacterial strains belonging to different taxonomic orders and habitats. ERs were identified with activities towards a broad spectrum of alkenes. The reduction of maleimide was catalyzed with activities of up to 35.5 U mg(-1) using NADPH. Ketoisophorone and (R)-carvone, which were converted to the highly valuable compounds (R)-levodione and (2R,5R)-dihydrocarvone, were reduced with reaction rates of up to 2.2 U mg(-1) with NADPH. In contrast to other homologous ERs from the literature, NADH was accepted at moderate to high rates as well: Enzyme activities of up to 16.7 U mg(-1) were obtained for maleimide and up to 1.3 U mg(-1) for ketoisophorone and (R)-carvone. Additionally, excellent stereoselectivities were achieved in the reduction of (R)-carvone (97-99% de). In particular, AnabaenaER3 from Anabaena variabilis ATCC 29413 and AcaryoER1 from Acaryochloris marina MBIC 11017 were identified as useful biocatalysts. Therefore, novel ERs from cyanobacteria with high catalytic efficiency were added to the toolbox for the asymmetric reduction of alkenes. Copyright © 2012 Wiley Periodicals, Inc.
Sikorav, J L; Duval, N; Anselmet, A; Bon, S; Krejci, E; Legay, C; Osterlund, M; Reimund, B; Massoulié, J
1988-01-01
In this paper, we show the existence of alternative splicing in the 3' region of the coding sequence of Torpedo acetylcholinesterase (AChE). We describe two cDNA structures which both diverge from the previously described coding sequence of the catalytic subunit of asymmetric (A) forms (Schumacher et al., 1986; Sikorav et al., 1987). They both contain a coding sequence followed by a non-coding sequence and a poly(A) stretch. Both of these structures were shown to exist in poly(A)+ RNAs, by S1 mapping experiments. The divergent region encoded by the first sequence corresponds to the precursor of the globular dimeric form (G2a), since it contains the expected C-terminal amino acids, Ala-Cys. These amino acids are followed by a 29 amino acid extension which contains a hydrophobic segment and must be replaced by a glycolipid in the mature protein. Analyses of intact G2a AChE showed that the common domain of the protein contains intersubunit disulphide bonds. The divergent region of the second type of cDNA consists of an adjacent genomic sequence, which is removed as an intron in A and Ga mRNAs, but may encode a distinct, less abundant catalytic subunit. The structures of the cDNA clones indicate that they are derived from minor mRNAs, shorter than the three major transcripts which have been described previously (14.5, 10.5 and 5.5 kb). Oligonucleotide probes specific for the asymmetric and globular terminal regions hybridize with the three major transcripts, indicating that their size is determined by 3'-untranslated regions which are not related to the differential splicing leading to A and Ga forms. Images PMID:3181125
Niu, Jun-Long; Hao, Xin-Qi; Gong, Jun-Fang; Song, Mao-Ping
2011-05-21
Aryl-based pincer metal complexes with anionic terdentate ligands have been widely applied in organic synthesis, organometallic catalysis and other related areas. Synthetically, the most simple and convenient method for the construction of these complexes is the direct metal-induced C(aryl)-H bond activation, which can be fulfilled by choosing the appropriate functional donor groups in the two side arms of the aryl-based pincer preligands. In this perspective, we wish to summarize some results achieved by our group in this context. Successful examples include symmetrical chiral bis(imidazoline) NCN pincer complexes with Ni(II), Pd(II) and Pt(II), bis(phosphinite) and bis(phosphoramidite) PCP pincer Pd(II) complexes, unsymmetrical (pyrazolyl)phosphinite, (amino)phosphinite and (imino)phosphinite PCN pincer Pd(II) complexes, chiral (imidazolinyl)phosphinite and (imidazolinyl)phosphoramidite PCN pincer complexes with Ni(II) and Pd(II) as well as unsymmetrical (oxazolinyl)amine and (oxazolinyl)pyrazole NCN' pincer Pd(II) complexes. Among them, the P-donor containing complexes are efficiently synthesized by the "one-pot phosphorylation/metalation" method. The obtained symmetrical and unsymmetrical pincer complexes have been used as catalysts in Suzuki-Miyaura reaction (Pd), asymmetric Friedel-Crafts alkylation of indole with trans-β-nitrostyrene (Pt) as well as in asymmetric allylation of aldehyde and sulfonimine (Pd). In the Suzuki couplings conducted at 40-50 °C, some unsymmetrical Pd complexes exhibit much higher activity than the related symmetrical ones which can be attributed to their faster release of active Pd(0) species resulting from the hemilabile coordination of the ligands. Literature results on the synthesis of some related pincer complexes as well as their activities in the above catalytic reactions are also presented.
NASA Astrophysics Data System (ADS)
Davis, Scott; Anderson, David T.; Farrell, John T., Jr.; Nesbitt, David J.
1996-06-01
High resolution near infrared spectra of the two high frequency intramolecular modes in (DF)2 have been characterized using a slit-jet infrared spectrometer. In total, four pairs of vibration-rotation-tunneling (VRT) bands are observed, corresponding to K=0 and K=1 excitation of both the ν2 (``bound'') and ν1 (``free'') intramolecular DF stretching modes. Analysis of the rotationally resolved spectra provides vibrational origins, rotational constants, tunneling splittings and upper state predissociation lifetimes for all four states. The rotational constants indicate that the deuterated hydrogen bond contracts and bends upon intramolecular excitation, analogous to what has been observed for (HF)2. The isotope and K dependence of tunneling splittings for (HF)2 and (DF)2 in both intramolecular modes is interpreted in terms of a semiclassical 1-D tunneling model. High resolution line shape measurements reveal vibrational predissociation broadening in (DF)2: 56(2) and 3(2) MHz for the ν2 (bound) and ν1 (free) intramolecular stretching modes, respectively. This 20-fold mode specific enhancement parallels the ≥30-fold enhancement observed between analogous intramolecular modes of (HF)2, further elucidating the role of nonstatistical predissociation dynamics in such hydrogen bonded clusters.
Minyaev, Mikhail E; Tavtorkin, Alexander N; Korchagina, Sof'ya A; Bondarenko, Galina N; Churakov, Andrei V; Nifant'ev, Ilya E
2018-05-01
Crystals of mononuclear tris[bis(2,6-diisopropylphenyl) phosphato-κO]pentakis(methanol-κO)lanthanide methanol monosolvates of lanthanum, [La(C 24 H 34 O 4 P) 3 (CH 3 OH) 5 ]·CH 3 OH, (1), cerium, [Ce(C 24 H 34 O 4 P) 3 (CH 3 OH) 5 ]·CH 3 OH, (2), and neodymium, [Nd(C 24 H 34 O 4 P) 3 (CH 3 OH) 5 ]·CH 3 OH, (3), have been obtained by reactions between LnCl 3 (H 2 O) n (n = 6 or 7) and lithium bis(2,6-diisopropylphenyl) phosphate in a 1:3 molar ratio in methanol media. Compounds (1)-(3) crystallize in the monoclinic P2 1 /c space group and have isomorphous crystal structures. All three bis(2,6-diisopropylphenyl) phosphate ligands display a κO-monodentate coordination mode. The coordination number of the metal atom is 8. Each [Ln{O 2 P(O-2,6- i Pr 2 C 6 H 3 ) 2 } 3 (CH 3 OH) 5 ] molecular unit exhibits four intramolecular O-H...O hydrogen bonds, forming six-membered rings. The unit forms two intermolecular O-H...O hydrogen bonds with one noncoordinating methanol molecule. All six hydroxy H atoms are involved in hydrogen bonding within the [Ln{O 2 P(O-2,6- i Pr 2 C 6 H 3 ) 2 } 3 (CH 3 OH) 5 ]·CH 3 OH unit. This, along with the high steric hindrance induced by the three bulky diaryl phosphate ligands, prevents the formation of a hydrogen-bond network. Complexes (1)-(3) exhibit disorder of two of the isopropyl groups of the phosphate ligands. The cerium compound (2) demonstrates an essential catalytic inhibition in the thermal decomposition of polydimethylsiloxane in air at 573 K. Catalytic systems based on the neodymium complex tris[bis(2,6-diisopropylphenyl) phosphato-κO]neodymium, (3'), which was obtained as a dry powder of (3) upon removal of methanol, display a high catalytic activity in isoprene and butadiene polymerization.
NASA Astrophysics Data System (ADS)
Liu, Xiaochun; Yin, Hang; Li, Hui; Shi, Ying
2017-04-01
DFT and TDDFT methods were carried out to investigate the influences of intramolecular and intermolecular hydrogen bonding on excited state charge transfer for coumarin 343 (C343). Intramolecular hydrogen bonding is formed between carboxylic acid group and carbonyl group in C343 monomer. However, in dimethylsulfoxide (DMSO) solution, DMSO 'opens up' the intramolecular hydrogen bonding and forms solute-solvent intermolecular hydrogen bonded C343-DMSO complex. Analysis of frontier molecular orbitals reveals that intramolecular charge transfer (ICT) occurs in the first excited state both for C343 monomer and complex. The results of optimized geometric structures indicate that the intramolecular hydrogen bonding interaction is strengthened while the intermolecular hydrogen bonding is weakened in excited state, which is confirmed again by monitoring the shifts of characteristic peaks of infrared spectra. We demonstrated that DMSO solvent can not only break the intramolecular hydrogen bonding to form intermolecular hydrogen bonding with C343 but also alter the mechanism of excited state hydrogen bonding strengthening.
Szekrenyi, Anna; Soler, Anna; Garrabou, Xavier; Guérard-Hélaine, Christine; Parella, Teodor; Joglar, Jesús; Lemaire, Marielle; Bujons, Jordi; Clapés, Pere
2014-09-22
D-Fructose-6-phosphate aldolase (FSA) is a unique catalyst for asymmetric cross-aldol additions of glycolaldehyde. A combination of a structure-guided approach of saturation mutagenesis, site-directed mutagenesis, and computational modeling was applied to construct a set of FSA variants that improved the catalytic efficiency towards glycolaldehyde dimerization up to 1800-fold. A combination of mutations in positions L107, A129, and A165 provided a toolbox of FSA variants that expand the synthetic possibilities towards the preparation of aldose-like carbohydrate compounds. The new FSA variants were applied as highly efficient catalysts for cross-aldol additions of glycolaldehyde to N-carbobenzyloxyaminoaldehydes to furnish between 80-98 % aldol adduct under optimized reaction conditions. Donor competition experiments showed high selectivity for glycolaldehyde relative to dihydroxyacetone or hydroxyacetone. These results demonstrate the exceptional malleability of the active site in FSA, which can be remodeled to accept a wide spectrum of donor and acceptor substrates with high efficiency and selectivity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fernandes, Carlos A. H.; Gartuzo, Elaine C. G.; Pagotto, Ivan; Comparetti, Edson J.; Huancahuire-Vega, Salomón; Ponce-Soto, Luis Alberto; Costa, Tássia R.; Marangoni, Sergio; Soares, Andreimar M.; Fontes, Marcos R. M.
2012-01-01
Two myotoxic and noncatalytic Lys49-phospholipases A2 (braziliantoxin-II and MT-II) and a myotoxic and catalytic phospholipase A2 (braziliantoxin-III) from the venom of the Amazonian snake Bothrops brazili were crystallized. The crystals diffracted to resolutions in the range 2.56–2.05 Å and belonged to space groups P3121 (braziliantoxin-II), P6522 (braziliantoxin-III) and P21 (MT-II). The structures were solved by molecular-replacement techniques. Both of the Lys49-phospholipases A2 (braziliantoxin-II and MT-II) contained a dimer in the asymmetric unit, while the Asp49-phospholipase A2 braziliantoxin-III contained a monomer in its asymmetric unit. Analysis of the quaternary assemblies of the braziliantoxin-II and MT-II structures using the PISA program indicated that both models have a dimeric conformation in solution. The same analysis of the braziliantoxin-III structure indicated that this protein does not dimerize in solution and probably acts as a monomer in vivo, similar to other snake-venom Asp49-phospholipases A2. PMID:22869126
Regio- and Stereoselective Aliphatic-Aromatic Cross-Benzoin Reaction: Enzymatic Divergent Catalysis.
Beigi, Maryam; Gauchenova, Ekaterina; Walter, Lydia; Waltzer, Simon; Bonina, Fabrizio; Stillger, Thomas; Rother, Dörte; Pohl, Martina; Müller, Michael
2016-09-19
The catalytic asymmetric synthesis of chiral 2-hydroxy ketones by using different thiamine diphosphate dependent enzymes, namely benzaldehyde lyase from Pseudomonas fluorescens (PfBAL), a variant of benzoylformate decarboxylase from Pseudomonas putida (PpBFD-L461A), branched-chain 2-keto acid decarboxylase from Lactococcus lactis (LlKdcA) and a variant of pyruvate decarboxylase from Acetobacter pasteurianus (ApPDC-E469G), was studied. Starting with the same set of substrates, substituted benzaldehydes in combination with different aliphatic aldehydes, PfBAL and PpBFD-L461A selectively deliver the (R)- and (S)-2-hydroxy-propiophenone derivatives, respectively. The (R)- and (S)-phenylacetylcarbinol (1-hydroxy-1-phenylacetone) derivatives are accessible in a similar way using LlKdcA and ApPDC-E469G, respectively. In many cases excellent stereochemical purities (>98 % enantiomeric excess) could be achieved. Hence, the regio- and stereochemistry of the product in the asymmetric aliphatic-aromatic cross-benzoin reaction can be controlled solely by choice of the appropriate enzyme or enzyme variant. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Intramolecular addition of benzylic radicals onto ketenimines. Synthesis of 2-alkylindoles.
Alajarín, Mateo; Vidal, Angel; Ortín, María-Mar
2003-12-07
The inter- and intramolecular addition of free radicals onto ketenimines is studied. All the attempts to add intermolecularly several silicon, oxygen or carbon centered radicals to N-(4-methylphenyl)-C,C-diphenyl ketenimine were unsuccessful. In contrast, the intramolecular addition of benzylic radicals, generated from xanthates, onto the central carbon of a ketenimine function with its N atom linked to the ortho position of the aromatic ring occurred under a variety of reaction conditions. These intramolecular cyclizations provide a novel radical-mediated synthesis of 2-alkylindoles.
Enantioselective Allylation of (2E,4E)-2,4-Dimethylhexadienal: Synthesis of (5R,6S)-(+)-Pteroenone.
Koukal, Petr; Kotora, Martin
2015-05-11
Allylation, trans- and cis-crotylation of (2E,4E)-2,4-dimethylhexadienal, a representative α,β,γ,δ-unsaturated aldehyde, was carried out under different catalytic and stoichiometric conditions. The reactions catalyzed by organocatalysts TRIP-PA and N,N'-dioxides gave the best results with respect to yields, asymmetric induction, and catalyst load in comparison to other procedures. The developed methodology was applied in the enantioselective synthesis of (5R,6S)-(+)-pteroenone, a defensive metabolite (ichthyodeterrent) of the Antarctic pteropod Clione antarctica. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Steib, Philip; Breit, Bernhard
2018-04-19
Herein, we report on the first enantioselective and atom-efficient catalytic one-step dimerization method to selectively transform ω-allenyl carboxylic acids into C 2 -symmetric 14- to 28-membered bismacrolactones (macrodiolides). This convenient asymmetric access serves as an attractive route towards multiple naturally occuring homodimeric macrocyclic scaffolds and demonstrates excellent efficiency to construct the complex, symmetric core structures. By utilizing a rhodium catalyst with a modified chiral cyclopentylidene-diop ligand, the desired diolides were obtained in good to high yields, high diastereoselectivity, and excellent enantioselectivity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lin, Lu; Bai, Xiangbin; Ye, Xinyi; Zhao, Xiaowei; Tan, Choon-Hong; Jiang, Zhiyong
2017-10-23
The first catalytic asymmetric photoreduction of 1,2-diketones and α-keto ketimines under visible light irradiation is reported. A transition-metal-free synergistic catalysis platform harnessing dicyanopyrazine-derived chromophore (DPZ) as the photoredox catalyst and a non-covalent chiral organocatalyst is effective for these transformations. With the flexible use of a chiral Brønsted acid or base in H + transfer interchange to control the elusive enantioselective protonation, a variety of chiral α-hydroxy ketones and α-amino ketones were obtained with high yields and enantioselectivities. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Catalytic and transport cycles of ABC exporters.
Al-Shawi, Marwan K
2011-09-07
ABC (ATP-binding cassette) transporters are arguably the most important family of ATP-driven transporters in biology. Despite considerable effort and advances in determining the structures and physiology of these transporters, their fundamental molecular mechanisms remain elusive and highly controversial. How does ATP hydrolysis by ABC transporters drive their transport function? Part of the problem in answering this question appears to be a perceived need to formulate a universal mechanism. Although it has been generally hoped and assumed that the whole superfamily of ABC transporters would exhibit similar conserved mechanisms, this is proving not to be the case. Structural considerations alone suggest that there are three overall types of coupling mechanisms related to ABC exporters, small ABC importers and large ABC importers. Biochemical and biophysical characterization leads us to the conclusion that, even within these three classes, the catalytic and transport mechanisms are not fully conserved, but continue to evolve. ABC transporters also exhibit unusual characteristics not observed in other primary transporters, such as uncoupled basal ATPase activity, that severely complicate mechanistic studies by established methods. In this chapter, I review these issues as related to ABC exporters in particular. A consensus view has emerged that ABC exporters follow alternating-access switch transport mechanisms. However, some biochemical data suggest that alternating catalytic site transport mechanisms are more appropriate for fully symmetrical ABC exporters. Heterodimeric and asymmetrical ABC exporters appear to conform to simple alternating-access-type mechanisms.
NASA Astrophysics Data System (ADS)
Abosadiya, Hamza M.; Anouar, El Hassane; Abusaadiya, Salima M.; Hasbullah, Siti Aishah; Yamin, Bohari M.
2018-01-01
A simple efficient method for synthesis of some new 1,2,4-Triazole and Triazolidin derivatives namely, 5-(4-methoxyphenyl)-2-phenyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (1a), (2-chlorophenyl)(3,3-dimethyl-1-phenyl-5-thioxo-1,2,4-triazolidin-4-yl)methanone (1b) and (2-iodophenyl)(3,3-dimethyl-1-phenyl-5-thioxo-1,2,4-triazolidin-4-yl)methanone (1c) have been synthesized in high yields from the reaction of carbonoyl isothiocyanate with phenyl hydrazine. The final products were characterized by FT-IR, 1H and 13C NMR spectroscopic techniques. X-ray crystallographic studies showed that 1a crystallized in triclinic crystal system with space group Pī, while both 1b and 1c crystallized in orthorhombic crystal system with space group Pna21. The asymmetric unit of 1a consists two crystallographically independent molecules, while only one molecule in asymmetric unit for both 1b and 1c compounds. All molecules possess Csbnd H ….S intramolecular hydrogen bonds which formed a pseudo-six-membered ring. Experimental results have been confirmed by the state-of-art density functional theory (DFT) in gas and solvent phase by using five different hybrid functionals B3LYP, B3P86, CAM-B3LYP, M06-2X and PBE0 combined with 6-311++G(d, p) basis set. The experimental data are relatively well produced, and relatively good correlations are obtained between the predicted and experimental data.
A New Concept to Reveal Protein Dynamics Based on Energy Dissipation
Ma, Cheng-Wei; Xiu, Zhi-Long; Zeng, An-Ping
2011-01-01
Protein dynamics is essential for its function, especially for intramolecular signal transduction. In this work we propose a new concept, energy dissipation model, to systematically reveal protein dynamics upon effector binding and energy perturbation. The concept is applied to better understand the intramolecular signal transduction during allostery of enzymes. The E. coli allosteric enzyme, aspartokinase III, is used as a model system and special molecular dynamics simulations are designed and carried out. Computational results indicate that the number of residues affected by external energy perturbation (i.e. caused by a ligand binding) during the energy dissipation process shows a sigmoid pattern. Using the two-state Boltzmann equation, we define two parameters, the half response time and the dissipation rate constant, which can be used to well characterize the energy dissipation process. For the allostery of aspartokinase III, the residue response time indicates that besides the ACT2 signal transduction pathway, there is another pathway between the regulatory site and the catalytic site, which is suggested to be the β15-αK loop of ACT1. We further introduce the term “protein dynamical modules” based on the residue response time. Different from the protein structural modules which merely provide information about the structural stability of proteins, protein dynamical modules could reveal protein characteristics from the perspective of dynamics. Finally, the energy dissipation model is applied to investigate E. coli aspartokinase III mutations to better understand the desensitization of product feedback inhibition via allostery. In conclusion, the new concept proposed in this paper gives a novel holistic view of protein dynamics, a key question in biology with high impacts for both biotechnology and biomedicine. PMID:22022616
Intramolecular interactions in the polar headgroup of sphingosine: serinol.
Loru, Donatella; Peña, Isabel; Alonso, José L; Sanz, M Eugenia
2016-03-04
The intramolecular interactions in the lipid sphingosine have been elucidated through the investigation of the amino alcohol serinol which mimics its polar headgroup. Intricate networks of intramolecular hydrogen bonds involving the hydroxyl groups and the amino group contribute to the stabilisation of five different conformations observed in the broadband rotational spectrum.
NASA Astrophysics Data System (ADS)
Wang, Ye; Shi, Ying; Cong, Lin; Li, Hui
2015-02-01
Time-dependent density functional theory method at the def-TZVP/B3LYP level was employed to investigate the intramolecular and intermolecular hydrogen bonding dynamics in the first excited (S1) state of 4‧-dimethylaminoflavonol (DMAF) monomer and in ethanol solution. In the DMAF monomer, we demonstrated that the intramolecular charge transfer (ICT) takes place in the S1 state. This excited state ICT process was followed by intramolecular proton transfer. Our calculated results are in good agreement with the mechanism proposed in experimental work. For the hydrogen-bonded DMAF-EtOH complex, it was demonstrated that the intermolecular hydrogen bonds can induce the formation of the twisted intramolecular charge transfer (TICT) state and the conformational twisting is along the C3-C4 bond. Moreover, the intermolecular hydrogen bonds can also facilitate the intermolecular double proton transfer in the TICT state. A stepwise intermolecular double proton transfer process was revealed. Therefore, the intermolecular hydrogen bonds can alter the mechanism of intramolecular charge transfer and proton transfer in the excited state for the DMAF molecule.
Kinetic characterization of the critical step in HIV-1 protease maturation.
Sadiq, S Kashif; Noé, Frank; De Fabritiis, Gianni
2012-12-11
HIV maturation requires multiple cleavage of long polyprotein chains into functional proteins that include the viral protease itself. Initial cleavage by the protease dimer occurs from within these precursors, and yet only a single protease monomer is embedded in each polyprotein chain. Self-activation has been proposed to start from a partially dimerized protease formed from monomers of different chains binding its own N termini by self-association to the active site, but a complete structural understanding of this critical step in HIV maturation is missing. Here, we captured the critical self-association of immature HIV-1 protease to its extended amino-terminal recognition motif using large-scale molecular dynamics simulations, thus confirming the postulated intramolecular mechanism in atomic detail. We show that self-association to a catalytically viable state requires structural cooperativity of the flexible β-hairpin "flap" regions of the enzyme and that the major transition pathway is first via self-association in the semiopen/open enzyme states, followed by enzyme conformational transition into a catalytically viable closed state. Furthermore, partial N-terminal threading can play a role in self-association, whereas wide opening of the flaps in concert with self-association is not observed. We estimate the association rate constant (k(on)) to be on the order of ∼1 × 10(4) s(-1), suggesting that N-terminal self-association is not the rate-limiting step in the process. The shown mechanism also provides an interesting example of molecular conformational transitions along the association pathway.
NASA Technical Reports Server (NTRS)
Ciszak, Ewa; Dominiak, Paulina
2003-01-01
The derivative of vitamin B1 thiamin pyrophosphate (TPP) is a cofactor of enzymes performing catalysis in pathways of energy production, including (i) decarboxylation of alpha-keto acids followed by (ii) transketolation. These enzymes have shown a common mechanism of TPP activation by imposing an active V-conformation of this coenzyme that brings the N4 atom of the aminopyrimidine ring to the distance required for the intramolecular C-H N hydrogen-bonding with the C2- atom of the thiazolium ring. The reactive C2 atom of TPP is the nucleophile that attacks the carbonyl carbon of different substrates used by the TPP-dependent enzymes. The structure of the heterotetrameric human pyruvate dehydrogenase (Elp) recently determined in our laboratory (1) revealed the association pattern of the subunits and the specifics of two chemically equivalent cofactor binding sites. Dynamic nonequivalence of these two cofactor sites directs the flip-flop action of this enzyme, depending upon which two active sites effect each other (2). The crystal structure derived from the holo-form of Elp provided the basis for the model of the flip-flop action of Elp in which different steps of the catalytic reaction are performed in each of the two cofactor sites at any given moment, where these steps are governed by the concerted shuttle-like motion of the subunits. It is further proposed that balancing a hydrogen-bond network and related cofactor geometry determine the continuity of catalytic events.
Gagne, Steve J; Stout, Jake M; Liu, Enwu; Boubakir, Zakia; Clark, Shawn M; Page, Jonathan E
2012-07-31
Δ(9)-Tetrahydrocannabinol (THC) and other cannabinoids are responsible for the psychoactive and medicinal properties of Cannabis sativa L. (marijuana). The first intermediate in the cannabinoid biosynthetic pathway is proposed to be olivetolic acid (OA), an alkylresorcinolic acid that forms the polyketide nucleus of the cannabinoids. OA has been postulated to be synthesized by a type III polyketide synthase (PKS) enzyme, but so far type III PKSs from cannabis have been shown to produce catalytic byproducts instead of OA. We analyzed the transcriptome of glandular trichomes from female cannabis flowers, which are the primary site of cannabinoid biosynthesis, and searched for polyketide cyclase-like enzymes that could assist in OA cyclization. Here, we show that a type III PKS (tetraketide synthase) from cannabis trichomes requires the presence of a polyketide cyclase enzyme, olivetolic acid cyclase (OAC), which catalyzes a C2-C7 intramolecular aldol condensation with carboxylate retention to form OA. OAC is a dimeric α+β barrel (DABB) protein that is structurally similar to polyketide cyclases from Streptomyces species. OAC transcript is present at high levels in glandular trichomes, an expression profile that parallels other cannabinoid pathway enzymes. Our identification of OAC both clarifies the cannabinoid pathway and demonstrates unexpected evolutionary parallels between polyketide biosynthesis in plants and bacteria. In addition, the widespread occurrence of DABB proteins in plants suggests that polyketide cyclases may play an overlooked role in generating plant chemical diversity.
Anisotropic Covalency Contributions to Superexchange Pathways in Type One Copper Active Sites
2015-01-01
Type one (T1) Cu sites deliver electrons to catalytic Cu active sites: the mononuclear type two (T2) Cu site in nitrite reductases (NiRs) and the trinuclear Cu cluster in the multicopper oxidases (MCOs). The T1 Cu and the remote catalytic sites are connected via a Cys-His intramolecular electron-transfer (ET) bridge, which contains two potential ET pathways: P1 through the protein backbone and P2 through the H-bond between the Cys and the His. The high covalency of the T1 Cu–S(Cys) bond is shown here to activate the T1 Cu site for hole superexchange via occupied valence orbitals of the bridge. This covalency-activated electronic coupling (HDA) facilitates long-range ET through both pathways. These pathways can be selectively activated depending on the geometric and electronic structure of the T1 Cu site and thus the anisotropic covalency of the T1 Cu–S(Cys) bond. In NiRs, blue (π-type) T1 sites utilize P1 and green (σ-type) T1 sites utilize P2, with P2 being more efficient. Comparing the MCOs to NiRs, the second-sphere environment changes the conformation of the Cys-His pathway, which selectively activates HDA for superexchange by blue π sites for efficient turnover in catalysis. These studies show that a given protein bridge, here Cys-His, provides different superexchange pathways and electronic couplings depending on the anisotropic covalencies of the donor and acceptor metal sites. PMID:25310460
Microscopic and continuum descriptions of Janus motor fluid flow fields
Reigh, Shang Yik; Schofield, Jeremy; Kapral, Raymond
2016-01-01
Active media, whose constituents are able to move autonomously, display novel features that differ from those of equilibrium systems. In addition to naturally occurring active systems such as populations of swimming bacteria, active systems of synthetic self-propelled nanomotors have been developed. These synthetic systems are interesting because of their potential applications in a variety of fields. Janus particles, synthetic motors of spherical geometry with one hemisphere that catalyses the conversion of fuel to product and one non-catalytic hemisphere, can propel themselves in solution by self-diffusiophoresis. In this mechanism, the concentration gradient generated by the asymmetric catalytic activity leads to a force on the motor that induces fluid flows in the surrounding medium. These fluid flows are studied in detail through microscopic simulations of Janus motor motion and continuum theory. It is shown that continuum theory is able to capture many, but not all, features of the dynamics of the Janus motor and the velocity fields of the fluid. This article is part of the themed issue ‘Multiscale modelling at the physics–chemistry–biology interface’. PMID:27698037
Compact Conformations of Human Protein Disulfide Isomerase
Cui, Lei; Ding, Xiang; Niu, Lili; Yang, Fuquan; Wang, Chao; Wang, Chih-chen; Lou, Jizhong
2014-01-01
Protein disulfide isomerase (PDI) composed of four thioredoxin-like domains a, b, b', and a', is a key enzyme catalyzing oxidative protein folding in the endoplasmic reticulum. Large scale molecular dynamics simulations starting from the crystal structures of human PDI (hPDI) in the oxidized and reduced states were performed. The results indicate that hPDI adopts more compact conformations in solution than in the crystal structures, which are stabilized primarily by inter-domain interactions, including the salt bridges between domains a and b' observed for the first time. A prominent feature of the compact conformations is that the two catalytic domains a and a' can locate close enough for intra-molecular electron transfer, which was confirmed by the characterization of an intermediate with a disulfide between the two domains. Mutations, which disrupt the inter-domain interactions, lead to decreased reductase activity of hPDI. Our molecular dynamics simulations and biochemical experiments reveal the intrinsic conformational dynamics of hPDI and its biological impact. PMID:25084354
Self-assembly Controls Self-cleavage of HHR from ASBVd (-): a Combined SANS and Modeling Study
NASA Astrophysics Data System (ADS)
Leclerc, Fabrice; Zaccai, Giuseppe; Vergne, Jacques; Řìhovà, Martina; Martel, Anne; Maurel, Marie-Christine
2016-07-01
In the Avocado Sunblotch Viroid (ASBVd: 249-nt) from the Avsunviroidae family, a symmetric rolling-circle replication operates through an autocatalytic mechanism mediated by hammerhead ribozymes (HHR) embedded in both polarity strands. The concatenated multimeric ASBVd (+) and ASBVd (-) RNAs thus generated are processed by cleavage to unit-length where ASBVd (-) self-cleaves with more efficiency. Absolute scale small angle neutron scattering (SANS) revealed a temperature-dependent dimer association in both ASBVd (-) and its derived 79-nt HHR (-). A joint thermodynamic analysis of SANS and catalytic data indicates the rate-determining step corresponds to the dimer/monomer transition. 2D and 3D models of monomeric and dimeric HHR (-) suggest that the inter-molecular contacts stabilizing the dimer (between HI and HII domains) compete with the intra-molecular ones stabilizing the active conformation of the full-length HHR required for an efficient self-cleavage. Similar competing intra- and inter-molecular contacts are proposed in ASBVd (-) though with a remoter region from an extension of the HI domain.
Function and application of a non-ester-hydrolyzing carboxylesterase discovered in tulip.
Nomura, Taiji
2017-01-01
Plants have evolved secondary metabolite biosynthetic pathways of immense rich diversity. The genes encoding enzymes for secondary metabolite biosynthesis have evolved through gene duplication followed by neofunctionalization, thereby generating functional diversity. Emerging evidence demonstrates that some of those enzymes catalyze reactions entirely different from those usually catalyzed by other members of the same family; e.g. transacylation catalyzed by an enzyme similar to a hydrolytic enzyme. Tuliposide-converting enzyme (TCE), which we recently discovered from tulip, catalyzes the conversion of major defensive secondary metabolites, tuliposides, to antimicrobial tulipalins. The TCEs belong to the carboxylesterase family in the α/β-hydrolase fold superfamily, and specifically catalyze intramolecular transesterification, but not hydrolysis. This non-ester-hydrolyzing carboxylesterase is an example of an enzyme showing catalytic properties that are unpredictable from its primary structure. This review describes the biochemical and physiological aspects of tulipalin biogenesis, and the diverse functions of plant carboxylesterases in the α/β-hydrolase fold superfamily.
Liu, Yunyun; Wan, Jie-Ping
2012-06-01
Active methylene compounds are a major class of reaction partners for C-C bond formation with sp(2) C-X (X = halide) fragments. As one of the most-classical versions of the Ullmann-type coupling reaction, activated-methylene-based C-C coupling reactions have been efficiently employed in a large number of syntheses. Although this type of reaction has long relied on noble-metal catalysis, the renaissance of copper catalysis at the end of last century has led to dramatic developments in Ullmann C-C coupling reactions. Owing to its low cost, abundance, as well as excellent catalytic activity, the exceptional atom economy of copper catalysis is gaining widespread attention in various organic synthesis. This review summarizes the advances in copper-catalyzed intermolecular and intramolecular C-C coupling reactions that use activated methylene species as well as in tandem reactions that are initiated by this transformation. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Targeting the SH2-Kinase Interface in Bcr-Abl Inhibits Leukemogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grebien, Florian; Hantschel, Oliver; Wojcik, John
2012-10-25
Chronic myelogenous leukemia (CML) is caused by the constitutively active tyrosine kinase Bcr-Abl and treated with the tyrosine kinase inhibitor (TKI) imatinib. However, emerging TKI resistance prevents complete cure. Therefore, alternative strategies targeting regulatory modules of Bcr-Abl in addition to the kinase active site are strongly desirable. Here, we show that an intramolecular interaction between the SH2 and kinase domains in Bcr-Abl is both necessary and sufficient for high catalytic activity of the enzyme. Disruption of this interface led to inhibition of downstream events critical for CML signaling and, importantly, completely abolished leukemia formation in mice. Furthermore, disruption of themore » SH2-kinase interface increased sensitivity of imatinib-resistant Bcr-Abl mutants to TKI inhibition. An engineered Abl SH2-binding fibronectin type III monobody inhibited Bcr-Abl kinase activity both in vitro and in primary CML cells, where it induced apoptosis. This work validates the SH2-kinase interface as an allosteric target for therapeutic intervention.« less
Targeting the SH2-kinase interface in Bcr-Abl inhibits leukemogenesis.
Grebien, Florian; Hantschel, Oliver; Wojcik, John; Kaupe, Ines; Kovacic, Boris; Wyrzucki, Arkadiusz M; Gish, Gerald D; Cerny-Reiterer, Sabine; Koide, Akiko; Beug, Hartmut; Pawson, Tony; Valent, Peter; Koide, Shohei; Superti-Furga, Giulio
2011-10-14
Chronic myelogenous leukemia (CML) is caused by the constitutively active tyrosine kinase Bcr-Abl and treated with the tyrosine kinase inhibitor (TKI) imatinib. However, emerging TKI resistance prevents complete cure. Therefore, alternative strategies targeting regulatory modules of Bcr-Abl in addition to the kinase active site are strongly desirable. Here, we show that an intramolecular interaction between the SH2 and kinase domains in Bcr-Abl is both necessary and sufficient for high catalytic activity of the enzyme. Disruption of this interface led to inhibition of downstream events critical for CML signaling and, importantly, completely abolished leukemia formation in mice. Furthermore, disruption of the SH2-kinase interface increased sensitivity of imatinib-resistant Bcr-Abl mutants to TKI inhibition. An engineered Abl SH2-binding fibronectin type III monobody inhibited Bcr-Abl kinase activity both in vitro and in primary CML cells, where it induced apoptosis. This work validates the SH2-kinase interface as an allosteric target for therapeutic intervention. Copyright © 2011 Elsevier Inc. All rights reserved.
Targeting the SH2-Kinase Interface in Bcr-Abl Inhibits Leukemogenesis
Grebien, Florian; Hantschel, Oliver; Wojcik, John; Kaupe, Ines; Kovacic, Boris; Wyrzucki, Arkadiusz M.; Gish, Gerald D.; Cerny-Reiterer, Sabine; Koide, Akiko; Beug, Hartmut; Pawson, Tony; Valent, Peter; Koide, Shohei; Superti-Furga, Giulio
2011-01-01
Summary Chronic myelogenous leukemia (CML) is caused by the constitutively active tyrosine kinase Bcr-Abl and treated with the tyrosine kinase inhibitor (TKI) imatinib. However, emerging TKI resistance prevents complete cure. Therefore, alternative strategies targeting regulatory modules of Bcr-Abl in addition to the kinase active site are strongly desirable. Here, we show that an intramolecular interaction between the SH2 and kinase domains in Bcr-Abl is both necessary and sufficient for high catalytic activity of the enzyme. Disruption of this interface led to inhibition of downstream events critical for CML signaling and, importantly, completely abolished leukemia formation in mice. Furthermore, disruption of the SH2-kinase interface increased sensitivity of imatinib-resistant Bcr-Abl mutants to TKI inhibition. An engineered Abl SH2-binding fibronectin type III monobody inhibited Bcr-Abl kinase activity both in vitro and in primary CML cells, where it induced apoptosis. This work validates the SH2-kinase interface as an allosteric target for therapeutic intervention. PaperFlick PMID:22000011
Gunther, William R.; Wang, Yuran; Ji, Yuewei; Michaelis, Vladimir K.; Hunt, Sean T.; Griffin, Robert G.; Román-Leshkov, Yuriy
2012-01-01
Carbohydrate epimerization is an essential technology for the widespread production of rare sugars. In contrast to other enzymes, most epimerases are only active on sugars substituted with phosphate or nucleotide groups, thus drastically restricting their use. Here we show that Sn-Beta zeolite in the presence of sodium tetraborate catalyses the selective epimerization of aldoses in aqueous media. Specifically, a 5 wt% aldose (for example, glucose, xylose or arabinose) solution with a 4:1 aldose:sodium tetraborate molar ratio reacted with catalytic amounts of Sn-Beta yields near-equilibrium epimerization product distributions. The reaction proceeds by way of a 1,2 carbon shift wherein the bond between C-2 and C-3 is cleaved and a new bond between C-1 and C-3 is formed, with C-1 moving to the C-2 position with an inverted configuration. This work provides a general method of performing carbohydrate epimerizations that surmounts the main disadvantages of current enzymatic and inorganic processes. PMID:23047667
Intramolecular hydrogen bonding in malonaldehyde and its radical analogues.
Lin, Chen; Kumar, Manoj; Finney, Brian A; Francisco, Joseph S
2017-09-28
High level Brueckner doubles with triples correction method-based ab initio calculations have been used to investigate the nature of intramolecular hydrogen bonding and intramolecular hydrogen atom transfer in cis-malonaldehyde (MA) and its radical analogues. The radicals considered here are the ones that correspond to the homolytic cleavage of C-H bonds in cis-MA. The results suggest that cis-MA and its radical analogues, cis-MA RS , and cis-MA RA , both exist in planar geometry. The calculated intramolecular O-H⋯O=C bond in cis-MA is shorter than that in the radical analogues. The intramolecular hydrogen bond in cis-MA is stronger than in its radicals by at least 3.0 kcal/mol. The stability of a cis-malonaldehyde radical correlates with the extent of electron spin delocalization; cis-MA RA , in which the radical spin is more delocalized, is the most stable MA radical, whereas cis-MA RS , in which the radical spin is strongly localized, is the least stable radical. The natural bond orbital analysis indicates that the intramolecular hydrogen bonding (O⋯H⋯O) in cis-malonaldehyde radicals is stabilized by the interaction between the lone pair orbitals of donor oxygen and the σ * orbital of acceptor O-H bond (n → σ * OH ). The calculated barriers indicate that the intramolecular proton transfer in cis-MA involves 2.2 kcal/mol lower barrier than that in cis-MA RS .
Li, Jian-Fang; Li, Xue-Qing; Liu, Yan; Yuan, Feng-Jiao; Zhang, Ting; Wu, Min-Chen; Zhang, Ji-Ru
2018-05-22
To improve the specific activity and catalytic efficiency of L-LcLDH1, an NADH-dependent allosteric L-lactate dehydrogenase from L. casei, towards phenylpyruvic acid (PPA), its directed modification was conducted based on the semi-rational design. The three variant genes, Lcldh1 Q88R , Lcldh1 I229A and Lcldh1 T235G , were constructed by whole-plasmid PCR as designed theoretically, and expressed in E. coli BL21(DE3), respectively. The purified mutant, L-LcLDH1 Q88R or L-LcLDH1 I229A , displayed the specific activity of 451.5 or 512.4 U/mg towards PPA, by which the asymmetric reduction of PPA afforded L-phenyllactic acid (PLA) with an enantiomeric excess (ee p ) more than 99%. Their catalytic efficiencies (k cat /K m ) without D-fructose-1,6-diphosphate (D-FDP) were 4.8- and 5.2-fold that of L-LcLDH1. Additionally, the k cat /K m values of L-LcLDH1 Q88R and L-LcLDH1 I229A with D-FDP were 168.4- and 8.5-fold higher than those of the same enzymes without D-FDP, respectively. The analysis of catalytic mechanisms by molecular docking (MD) simulation indicated that substituting I229 in L-LcLDH1 with Ala enlarges the space of substrate-binding pocket, and that the replacement of Q88 with Arg makes the inlet of pocket larger than that of L-LcLDH1. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Ordine, Robert L.; Rydel, Timothy J.; Storek, Michael J.
2009-09-08
Dicamba (2-methoxy-3,6-dichlorobenzoic acid) O-demethylase (DMO) is the terminal Rieske oxygenase of a three-component system that includes a ferredoxin and a reductase. It catalyzes the NADH-dependent oxidative demethylation of the broad leaf herbicide dicamba. DMO represents the first crystal structure of a Rieske non-heme iron oxygenase that performs an exocyclic monooxygenation, incorporating O{sub 2} into a side-chain moiety and not a ring system. The structure reveals a 3-fold symmetric trimer ({alpha}{sub 3}) in the crystallographic asymmetric unit with similar arrangement of neighboring inter-subunit Rieske domain and non-heme iron site enabling electron transport consistent with other structurally characterized Rieske oxygenases. While themore » Rieske domain is similar, differences are observed in the catalytic domain, which is smaller in sequence length than those described previously, yet possessing an active-site cavity of larger volume when compared to oxygenases with larger substrates. Consistent with the amphipathic substrate, the active site is designed to interact with both the carboxylate and aromatic ring with both key polar and hydrophobic interactions observed. DMO structures were solved with and without substrate (dicamba), product (3,6-dichlorosalicylic acid), and either cobalt or iron in the non-heme iron site. The substitution of cobalt for iron revealed an uncommon mode of non-heme iron binding trapped by the non-catalytic Co{sup 2+}, which, we postulate, may be transiently present in the native enzyme during the catalytic cycle. Thus, we present four DMO structures with resolutions ranging from 1.95 to 2.2 {angstrom}, which, in sum, provide a snapshot of a dynamic enzyme where metal binding and substrate binding are coupled to observed structural changes in the non-heme iron and catalytic sites.« less
Xu, Shiqing; Oda, Akimichi; Kamada, Hirofumi; Negishi, Ei-ichi
2014-01-01
Despite recent advances of asymmetric synthesis, the preparation of enantiomerically pure (≥99% ee) compounds remains a challenge in modern organic chemistry. We report here a strategy for a highly enantioselective (≥99% ee) and catalytic synthesis of various γ- and more-remotely chiral alcohols from terminal alkenes via Zr-catalyzed asymmetric carboalumination of alkenes (ZACA reaction)–Cu- or Pd-catalyzed cross-coupling. ZACA–in situ oxidation of tert-butyldimethylsilyl (TBS)-protected ω-alkene-1-ols produced both (R)- and (S)-α,ω-dioxyfunctional intermediates (3) in 80–88% ee, which were readily purified to the ≥99% ee level by lipase-catalyzed acetylation through exploitation of their high selectivity factors. These α,ω-dioxyfunctional intermediates serve as versatile synthons for the construction of various chiral compounds. Their subsequent Cu-catalyzed cross-coupling with various alkyl (primary, secondary, tertiary, cyclic) Grignard reagents and Pd-catalyzed cross-coupling with aryl and alkenyl halides proceeded smoothly with essentially complete retention of stereochemical configuration to produce a wide variety of γ-, δ-, and ε-chiral 1-alkanols of ≥99% ee. The MαNP ester analysis has been applied to the determination of the enantiomeric purities of δ- and ε-chiral primary alkanols, which sheds light on the relatively undeveloped area of determination of enantiomeric purity and/or absolute configuration of remotely chiral primary alcohols. PMID:24912191
Intramolecular proton transfer boosts water oxidation catalyzed by a Ru complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matheu, Roc; Ertem, Mehmed Z.; Benet-Buchholz, J.
We introduce a new family of complexes with the general formula [Ru n(tda)(py)2] m+ (n = 2, m = 0, 1; n = 3, m = 1, 2 +; n = 4, m = 2, 3 2+), with tda 2– being [2,2':6',2"-terpyridine]-6,6"-dicarboxylate, including complex [Ru IV(OH)(tda-κ-N 3O)(py) 2] +, 4H +, which we find to be an impressive water oxidation catalyst, formed by hydroxo coordination to 3 2+ under basic conditions. The complexes are synthesized, isolated, and thoroughly characterized by analytical, spectroscopic (UV–vis, nuclear magnetic resonance, electron paramagnetic resonance), computational, and electrochemical techniques (cyclic voltammetry, differential pulse voltammetry, coulometry), includingmore » solid-state monocrystal X-ray diffraction analysis. In oxidation state IV, the Ru center is seven-coordinated and diamagnetic, whereas in oxidation state II, the complex has an unbonded dangling carboxylate and is six-coordinated while still diamagnetic. With oxidation state III, the coordination number is halfway between the coordination of oxidation states II and IV. Species generated in situ have also been characterized by spectroscopic, computational, and electrochemical techniques, together with the related species derived from a different degree of protonation and oxidation states. 4H + can be generated potentiometrically, or voltammetrically, from 3 2+, and both coexist in solution. While complex 3 2+ is not catalytically active, the catalytic performance of complex 4H + is characterized by the foot of the wave analysis, giving an impressive turnover frequency record of 8000 s –1 at pH 7.0 and 50,000 s –1 at pH 10.0. Density functional theory calculations provide a complete description of the water oxidation catalytic cycle of 4H +, manifesting the key functional role of the dangling carboxylate in lowering the activation free energies that lead to O–O bond formation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeh, Joanne I.; Kettering, Regina; Saxl, Ruth
2009-09-11
Glycerol metabolism provides a central link between sugar and fatty acid catabolism. In most bacteria, glycerol kinase plays a crucial role in regulating channel/facilitator-dependent uptake of glycerol into the cell. In the firmicute Enterococcus casseliflavus, this enzyme's activity is enhanced by phosphorylation of the histidine residue (His232) located in its activation loop, approximately 25 A from its catalytic cleft. We reported earlier that some mutations of His232 altered enzyme activities; we present here the crystal structures of these mutant GlpK enzymes. The structure of a mutant enzyme with enhanced enzymatic activity, His232Arg, reveals that residues at the catalytic cleft aremore » more optimally aligned to bind ATP and mediate phosphoryl transfer. Specifically, the position of Arg18 in His232Arg shifts by approximately 1 A when compared to its position in wild-type (WT), His232Ala, and His232Glu enzymes. This new conformation of Arg18 is more optimally positioned at the presumed gamma-phosphate location of ATP, close to the glycerol substrate. In addition to structural changes exhibited at the active site, the conformational stability of the activation loop is decreased, as reflected by an approximately 35% increase in B factors ('thermal factors') in a mutant enzyme displaying diminished activity, His232Glu. Correlating conformational changes to alteration of enzymatic activities in the mutant enzymes identifies distinct localized regions that can have profound effects on intramolecular signal transduction. Alterations in pairwise interactions across the dimer interface can communicate phosphorylation states over 25 A from the activation loop to the catalytic cleft, positioning Arg18 to form favorable interactions at the beta,gamma-bridging position with ATP. This would offset loss of the hydrogen bonds at the gamma-phosphate of ATP during phosphoryl transfer to glycerol, suggesting that appropriate alignment of the second substrate of glycerol kinase, the ATP molecule, may largely determine the rate of glycerol 3-phosphate production.« less
Isotopomeric characterization of N2O produced, consumed, and emitted by automobiles.
Toyoda, Sakae; Yamamoto, Sei-ichiro; Arai, Shinji; Nara, Hideki; Yoshida, Naohiro; Kashiwakura, Kiriko; Akiyama, Ken-ichi
2008-01-01
Fossil fuel combustion is the second largest anthropogenic source of nitrous oxide (N2O) after agriculture. The estimated global N2O flux from combustion sources, as well as from other sources, still has a large uncertainty. Herein, we characterize automobile sources using N2O isotopomer ratios (nitrogen and oxygen isotope ratios and intramolecular site preference of 15N, SP) to assess their contributions to total global sources and to deconvolute complex production/consumption processes during combustion and subsequent catalytic treatments of exhaust. Car exhaust gases were sampled under running and idling state, and N2O isotopomer ratios were measured by mass spectrometry. The N2O directly emitted from an engine of a vehicle running at constant velocity had almost constant isotopomer ratios (delta15Nbulk = -28.7 +/- 1.2 per thousand, delta18O = 28.6 +/- 3.3 per thousand, and SP = 4.2 +/- 0.8 per thousand) irrespective of the velocity. After passing through catalytic converters, the isotopomer ratios showed an increase which varied with the temperature and the aging of the catalysts. The increase suggests that both production and consumption of N2O occur on the catalyst and that their rates can be comparable. It was noticed that in the idling state, the N2O emitted from a brand new car has higher isotopomer ratios than that from used cars, which indicate that technical improvements in catalytic converters can reduce the N2O from mobile combustion sources. On average, the isotopomeric signatures of N2O finally emitted from automobiles are not sensitive to running/idling states or to aging of the catalysts. Characteristic average isotopomer ratios of N2O from automobile sources are estimated at -4.9 +/- 8.2 per thousand, 43.5 +/- 13.9 per thousand, and 12.2 +/- 9.1 per thousand for delta15Nbulk, delta18O, and SP, respectively.
2016-01-01
Through the combination of reaction kinetics (both stoichiometric and catalytic), solution- and solid-state characterization of arylpalladium(II) arylsilanolates, and computational analysis, the intermediacy of covalent adducts containing Si–O–Pd linkages in the cross-coupling reactions of arylsilanolates has been unambiguously established. Two mechanistically distinct pathways have been demonstrated: (1) transmetalation via a neutral 8-Si-4 intermediate that dominates in the absence of free silanolate (i.e., stoichiometric reactions of arylpalladium(II) arylsilanolate complexes), and (2) transmetalation via an anionic 10-Si-5 intermediate that dominates in the cross-coupling under catalytic conditions (i.e., in the presence of free silanolate). Arylpalladium(II) arylsilanolate complexes bearing various phosphine ligands have been isolated, fully characterized, and evaluated for their kinetic competence under thermal (stoichiometric) and anionic (catalytic) conditions. Comparison of the rates for thermal and anionic activation suggested, but did not prove, that intermediates containing the Si–O–Pd linkage were involved in the cross-coupling process. The isolation of a coordinatively unsaturated, T-shaped arylpalladium(II) arylsilanolate complex ligated with t-Bu3P allowed the unambiguous demonstration of the operation of both pathways involving 8-Si-4 and 10-Si-5 intermediates. Three kinetic regimes were identified: (1) with 0.5–1.0 equiv of added silanolate (with respect to arylpalladium bromide), thermal transmetalation via a neutral 8-Si-4 intermediate; (2) with 1.0–5.0 equiv of added silanolate, activated transmetalation via an anionic 10-Si-5 intermediate; and (3) with >5.0 equiv of added silanolate, concentration-independent (saturation) activated transmetalation via an anionic 10-Si-5 intermediate. Transition states for the intramolecular transmetalation of neutral (8-Si-4) and anionic (10-Si-5) intermediates have been located computationally, and the anionic pathway is favored by 1.8 kcal/mol. The energies of all intermediates and transition states are highly dependent on the configuration around the palladium atom. PMID:25945516
Moussaud-Lamodière, Elisabeth L.; Dourado, Daniel F. A. R.; Flores, Samuel C.; Springer, Wolfdieter
2014-01-01
Loss-of-function mutations in PINK1 or PARKIN are the most common causes of autosomal recessive Parkinson's disease. Both gene products, the Ser/Thr kinase PINK1 and the E3 Ubiquitin ligase Parkin, functionally cooperate in a mitochondrial quality control pathway. Upon stress, PINK1 activates Parkin and enables its translocation to and ubiquitination of damaged mitochondria to facilitate their clearance from the cell. Though PINK1-dependent phosphorylation of Ser65 is an important initial step, the molecular mechanisms underlying the activation of Parkin's enzymatic functions remain unclear. Using molecular modeling, we generated a complete structural model of human Parkin at all atom resolution. At steady state, the Ub ligase is maintained inactive in a closed, auto-inhibited conformation that results from intra-molecular interactions. Evidently, Parkin has to undergo major structural rearrangements in order to unleash its catalytic activity. As a spark, we have modeled PINK1-dependent Ser65 phosphorylation in silico and provide the first molecular dynamics simulation of Parkin conformations along a sequential unfolding pathway that could release its intertwined domains and enable its catalytic activity. We combined free (unbiased) molecular dynamics simulation, Monte Carlo algorithms, and minimal-biasing methods with cell-based high content imaging and biochemical assays. Phosphorylation of Ser65 results in widening of a newly defined cleft and dissociation of the regulatory N-terminal UBL domain. This motion propagates through further opening conformations that allow binding of an Ub-loaded E2 co-enzyme. Subsequent spatial reorientation of the catalytic centers of both enzymes might facilitate the transfer of the Ub moiety to charge Parkin. Our structure-function study provides the basis to elucidate regulatory mechanisms and activity of the neuroprotective Parkin. This may open up new avenues for the development of small molecule Parkin activators through targeted drug design. PMID:25375667
Intramolecular proton transfer boosts water oxidation catalyzed by a Ru complex
Matheu, Roc; Ertem, Mehmed Z.; Benet-Buchholz, J.; ...
2015-07-30
We introduce a new family of complexes with the general formula [Ru n(tda)(py)2] m+ (n = 2, m = 0, 1; n = 3, m = 1, 2 +; n = 4, m = 2, 3 2+), with tda 2– being [2,2':6',2"-terpyridine]-6,6"-dicarboxylate, including complex [Ru IV(OH)(tda-κ-N 3O)(py) 2] +, 4H +, which we find to be an impressive water oxidation catalyst, formed by hydroxo coordination to 3 2+ under basic conditions. The complexes are synthesized, isolated, and thoroughly characterized by analytical, spectroscopic (UV–vis, nuclear magnetic resonance, electron paramagnetic resonance), computational, and electrochemical techniques (cyclic voltammetry, differential pulse voltammetry, coulometry), includingmore » solid-state monocrystal X-ray diffraction analysis. In oxidation state IV, the Ru center is seven-coordinated and diamagnetic, whereas in oxidation state II, the complex has an unbonded dangling carboxylate and is six-coordinated while still diamagnetic. With oxidation state III, the coordination number is halfway between the coordination of oxidation states II and IV. Species generated in situ have also been characterized by spectroscopic, computational, and electrochemical techniques, together with the related species derived from a different degree of protonation and oxidation states. 4H + can be generated potentiometrically, or voltammetrically, from 3 2+, and both coexist in solution. While complex 3 2+ is not catalytically active, the catalytic performance of complex 4H + is characterized by the foot of the wave analysis, giving an impressive turnover frequency record of 8000 s –1 at pH 7.0 and 50,000 s –1 at pH 10.0. Density functional theory calculations provide a complete description of the water oxidation catalytic cycle of 4H +, manifesting the key functional role of the dangling carboxylate in lowering the activation free energies that lead to O–O bond formation.« less
Miranda, James A; Wade, Carolyn J; Little, R Daniel
2005-09-30
[Chemical reaction: See text] We describe efforts to achieve the electroreductive cyclization (ERC) and the electrohydrocyclization (EHC) reactions using catalytic nickel(II) salen as a mediator. While nickel(II) salen proved effective, the analogous cobalt complex as well as nickel(II) cyclam were not. The transformations were achieved in yields ranging from 60 to 94% using either a mercury pool or an environmentally preferable reticulated vitreous carbon (RVC) cathode. These examples represent the first instances wherein a nickel salen complex has been used in this manner. Clear differences between the voltammetric behavior of the ERC and EHC substrates were observed. The bisenoate 14, for example, displays a substantially larger catalytic current. When the structurally modified mediator 31 was used, the electron-transfer pathway shuts down. Instead, the reduced form of 31 behaves as an electrogenerated base, leading to the formation of the intramolecular Michael adduct 23. Presumably, the methyl groups of the modified ligand diminish the ability of the reduced form of the complex to serve as a nucleophile but not as a base. Aldehyde 23 was also characterized as a side product of the nickel(II) salen mediated electroreductive cyclization of 11. Given that it is absent from nonmediated processes, its formation is linked to the presence of the mediator. To account for the results, we favor the existence of a mechanistic continuum involving an equilibrium between nickel(II) salen (15) and two reduced forms, one being the metal-centered species 16, the other being a ligand-centered species 17. We postulate that one form may be more prominently involved with the chemistry than another, depending upon the electronic properties/requirements of the substrate, and suggest that the equilibrium will shift to accommodate the need. Thus, for a hard electrophile like an alkyl halide, the properties of 16 ought to dominate, whereas 17 ought to predominate as the reactive species accounting for the chemistry described herein since it properly matches a soft ligand-centered nucleophile with a soft electron deficient alkene.
Li, Min; Zhang, Zhi-Jun; Kong, Xu-Dong; Yu, Hui-Lei
2017-01-01
ABSTRACT Streptomyces coelicolor CR1 (ScCR1) has been shown to be a promising biocatalyst for the synthesis of an atorvastatin precursor, ethyl-(S)-4-chloro-3-hydroxybutyrate [(S)-CHBE]. However, limitations of ScCR1 observed for practical application include low activity and poor stability. In this work, protein engineering was employed to improve the catalytic efficiency and stability of ScCR1. First, the crystal structure of ScCR1 complexed with NADH and cosubstrate 2-propanol was solved, and the specific activity of ScCR1 was increased from 38.8 U/mg to 168 U/mg (ScCR1I158V/P168S) by structure-guided engineering. Second, directed evolution was performed to improve the stability using ScCR1I158V/P168S as a template, affording a triple mutant, ScCR1A60T/I158V/P168S, whose thermostability (T5015, defined as the temperature at which 50% of initial enzyme activity is lost following a heat treatment for 15 min) and substrate tolerance (C5015, defined as the concentration at which 50% of initial enzyme activity is lost following incubation for 15 min) were 6.2°C and 4.7-fold higher than those of the wild-type enzyme. Interestingly, the specific activity of the triple mutant was further increased to 260 U/mg. Protein modeling and docking analysis shed light on the origin of the improved activity and stability. In the asymmetric reduction of ethyl-4-chloro-3-oxobutyrate (COBE) on a 300-ml scale, 100 g/liter COBE could be completely converted by only 2 g/liter of lyophilized ScCR1A60T/I158V/P168S within 9 h, affording an excellent enantiomeric excess (ee) of >99% and a space-time yield of 255 g liter−1 day−1. These results suggest high efficiency of the protein engineering strategy and good potential of the resulting variant for efficient synthesis of the atorvastatin precursor. IMPORTANCE Application of the carbonyl reductase ScCR1 in asymmetrically synthesizing (S)-CHBE, a key precursor for the blockbuster drug Lipitor, from COBE has been hindered by its low catalytic activity and poor thermostability and substrate tolerance. In this work, protein engineering was employed to improve the catalytic efficiency and stability of ScCR1. The catalytic efficiency, thermostability, and substrate tolerance of ScCR1 were significantly improved by structure-guided engineering and directed evolution. The engineered ScCR1 may serve as a promising biocatalyst for the biosynthesis of (S)-CHBE, and the protein engineering strategy adopted in this work would serve as a useful approach for future engineering of other reductases toward potential application in organic synthesis. PMID:28389544
Roden, Jan; Strunz, Walter T; Whaley, K Birgitta; Eisfeld, Alexander
2012-11-28
Electronic-vibrational dynamics in molecular systems that interact with an environment involve a large number of degrees of freedom and are therefore often described by means of open quantum system approaches. A popular approach is to include only the electronic degrees of freedom into the system part and to couple these to a non-Markovian bath of harmonic vibrational modes that is characterized by a spectral density. Since this bath represents both intra-molecular and external vibrations, it is important to understand how to construct a spectral density that accounts for intra-molecular vibrational modes that couple further to other modes. Here, we address this problem by explicitly incorporating an intra-molecular vibrational mode together with the electronic degrees of freedom into the system part and using the Fano theory for a resonance coupled to a continuum to derive an "effective" bath spectral density, which describes the contribution of intra-molecular modes. We compare this effective model for the intra-molecular mode with the method of pseudomodes, a widely used approach in simulation of non-Markovian dynamics. We clarify the difference between these two approaches and demonstrate that the respective resulting dynamics and optical spectra can be very different.
Functionalization of Carbon-Hydrogen Bonds Through Transition Metal Carbenoid Insertion
NASA Astrophysics Data System (ADS)
Davies, Huw M. L.; Dick, Allison R.
The functionalization of carbon-hydrogen bonds through transition metal carbenoid insertion is becoming a powerful method for the construction of new carbon-carbon bonds in organic synthesis. This chapter will highlight recent developments in this field, while placing it within its historical context. Intramolecular carbenoid C-H insertion will be covered first, focusing on formation of three- and six-membered rings, as well as the use of nontraditional substrates. Additionally, the most recent progress in asymmetric catalysis will be discussed. The bulk of the chapter will concentrate on intermolecular transformations, emphasizing both the effect of substrate structure and the influence of carbene substituent electronics on the regioselectivity of the reactions. Vinyldiazoacetates will be covered as a distinct class of carbenoid precursor, as they have been shown to initiate a variety of unique transformations, such as the combined C-H activation/Cope rearrangement. Finally, the synthetic utility of carbenoid C-H insertion reactions, both intra- and intermolecular, will be displayed through their use in the total syntheses of a number of natural products and pharmaceuticals.
Functionalization of carbon-hydrogen bonds through transition metal carbenoid insertion.
Davies, Huw M L; Dick, Allison R
2010-01-01
The functionalization of carbon-hydrogen bonds through transition metal carbenoid insertion is becoming a powerful method for the construction of new carbon-carbon bonds in organic synthesis. This chapter will highlight recent developments in this field, while placing it within its historical context. Intramolecular carbenoid C-H insertion will be covered first, focusing on formation of three- and six-membered rings, as well as the use of nontraditional substrates. Additionally, the most recent progress in asymmetric catalysis will be discussed. The bulk of the chapter will concentrate on intermolecular transformations, emphasizing both the effect of substrate structure and the influence of carbene substituent electronics on the regioselectivity of the reactions. Vinyldiazoacetates will be covered as a distinct class of carbenoid precursors, as they have been shown to initiate a variety of unique transformations, such as the combined C-H activation/Cope rearrangement. Finally, the synthetic utility of carbenoid C-H insertion reactions, both intra- and intermolecular, will be displayed through their use in the total syntheses of a number of natural products and pharmaceuticals.
NASA Astrophysics Data System (ADS)
Delor, Milan; Archer, Stuart A.; Keane, Theo; Meijer, Anthony J. H. M.; Sazanovich, Igor V.; Greetham, Gregory M.; Towrie, Michael; Weinstein, Julia A.
2017-11-01
Ultrafast electron transfer in condensed-phase molecular systems is often strongly coupled to intramolecular vibrations that can promote, suppress and direct electronic processes. Recent experiments exploring this phenomenon proved that light-induced electron transfer can be strongly modulated by vibrational excitation, suggesting a new avenue for active control over molecular function. Here, we achieve the first example of such explicit vibrational control through judicious design of a Pt(II)-acetylide charge-transfer donor-bridge-acceptor-bridge-donor 'fork' system: asymmetric 13C isotopic labelling of one of the two -C≡C- bridges makes the two parallel and otherwise identical donor→acceptor electron-transfer pathways structurally distinct, enabling independent vibrational perturbation of either. Applying an ultrafast UVpump(excitation)-IRpump(perturbation)-IRprobe(monitoring) pulse sequence, we show that the pathway that is vibrationally perturbed during UV-induced electron transfer is dramatically slowed down compared to its unperturbed counterpart. One can thus choose the dominant electron transfer pathway. The findings deliver a new opportunity for precise perturbative control of electronic energy propagation in molecular devices.
Pierre, Cathleen; Baudoin, Olivier
2011-04-01
Polycyclic molecules were obtained in good yields by double C(sp(2))-H/C(sp(3))-H arylations mediated by a single palladium/phosphine catalyst. Both double intermolecular/intramolecular and intramolecular/intramolecular C-C couplings were performed successfully, which indicates that this concept has a broad applicability for the rapid construction of molecular complexity.
Ebert, Maximilian C C J C; Morley, Krista L; Volpato, Jordan P; Schmitzer, Andreea R; Pelletier, Joelle N
2015-04-01
Type II R67 dihydrofolate reductase (DHFR) is a bacterial plasmid-encoded enzyme that is intrinsically resistant to the widely-administered antibiotic trimethoprim. R67 DHFR is genetically and structurally unrelated to E. coli chromosomal DHFR and has an unusual architecture, in that four identical protomers form a single symmetrical active site tunnel that allows only one substrate binding/catalytic event at any given time. As a result, substitution of an active-site residue has as many as four distinct consequences on catalysis, constituting an atypical model of enzyme evolution. Although we previously demonstrated that no single residue of the native active site is indispensable for function, library selection here revealed a strong bias toward maintenance of two native protomers per mutated tetramer. A variety of such "half-native" tetramers were shown to procure native-like catalytic activity, with similar KM values but kcat values 5- to 33-fold lower, illustrating a high tolerance for active-site substitutions. The selected variants showed a reduced thermal stability (Tm ∼12°C lower), which appears to result from looser association of the protomers, but generally showed a marked increase in resilience to heat denaturation, recovering activity to a significantly greater extent than the variant with no active-site substitutions. Our results suggest that the presence of two native protomers in the R67 DHFR tetramer is sufficient to provide native-like catalytic rate and thus ensure cellular proliferation. © 2014 The Protein Society.
Faiella, Marina; Maglio, Ornella; Nastri, Flavia; Lombardi, Angela; Lista, Liliana; Hagen, Wilfred R; Pavone, Vincenzo
2012-12-07
A new artificial metalloenzyme, MP3 (MiniPeroxidase 3), designed by combining the excellent structural properties of four-helix bundle protein scaffolds with the activity of natural peroxidases, was synthesised and characterised. This new hemeprotein model was developed by covalently linking the deuteroporphyrin to two peptide chains of different compositions to obtain an asymmetric helix-loop-helix/heme/helix-loop-helix sandwich arrangement, characterised by 1) a His residue on one chain that acts as an axial ligand to the iron ion; 2) a vacant distal site that is able to accommodate exogenous ligands or substrates; and 3) an Arg residue in the distal site that should assist in hydrogen peroxide activation to give an HRP-like catalytic process. MP3 was synthesised and characterised as its iron complex. CD measurements revealed the high helix-forming propensity of the peptide, confirming the appropriateness of the model procedure; UV/Vis, MCD and EPR experiments gave insights into the coordination geometry and the spin state of the metal. Kinetic experiments showed that Fe(III)-MP3 possesses peroxidase-like activity comparable to R38A-hHRP, highlighting the possibility of mimicking the functional features of natural enzymes. The synergistic application of de novo design methods, synthetic procedures, and spectroscopic characterisation, described herein, demonstrates a method by which to implement and optimise catalytic activity for an enzyme mimetic. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ghislieri, Diego; Green, Anthony P; Pontini, Marta; Willies, Simon C; Rowles, Ian; Frank, Annika; Grogan, Gideon; Turner, Nicholas J
2013-07-24
The development of cost-effective and sustainable catalytic methods for the production of enantiomerically pure chiral amines is a key challenge facing the pharmaceutical and fine chemical industries. This challenge is highlighted by the estimate that 40-45% of drug candidates contain a chiral amine, fueling a demand for broadly applicable synthetic methods that deliver target structures in high yield and enantiomeric excess. Herein we describe the development and application of a "toolbox" of monoamine oxidase variants from Aspergillus niger (MAO-N) which display remarkable substrate scope and tolerance for sterically demanding motifs, including a new variant, which exhibits high activity and enantioselectivity toward substrates containing the aminodiphenylmethane (benzhydrylamine) template. By combining rational structure-guided engineering with high-throughput screening, it has been possible to expand the substrate scope of MAO-N to accommodate amine substrates containing bulky aryl substituents. These engineered MAO-N biocatalysts have been applied in deracemization reactions for the efficient asymmetric synthesis of the generic active pharmaceutical ingredients Solifenacin and Levocetirizine as well as the natural products (R)-coniine, (R)-eleagnine, and (R)-leptaflorine. We also report a novel MAO-N mediated asymmetric oxidative Pictet-Spengler approach to the synthesis of (R)-harmicine.
Zhou, Huan-Xiang
2006-11-01
Flexible linkers are often found to tether binding sequence motifs or connect protein domains. Here we analyze three usages of flexible linkers: 1), intramolecular binding of proline-rich peptides (PRPs) to SH3 domains for kinase regulation; 2), intramolecular binding of PRP for increasing the folding stability of SH3 domains; and 3), covalent linking of PRPs and other ligands for high-affinity bivalent binding. The basis of these analyses is a quantitative relation between intermolecular and intramolecular binding constants. This relation has the form K(i) = K(e0)p for intramolecular binding and K(e) = K(e01)K(e02)p for bivalent binding. The effective concentration p depends on the length of the linker and the distance between the linker attachment points in the bound state. Several applications illustrate the usefulness of the quantitative relation. These include intramolecular binding to the Itk SH3 domain by an internal PRP and to a circular permutant of the alpha-spectrin SH3 domain by a designed PRP, and bivalent binding to the two SH3 domains of Grb2 by two linked PRPs. These and other examples suggest that flexible linkers and sequence motifs tethered to them, like folded protein domains, are also subject to tight control during evolution.
Brimble, Margaret A; Bryant, Christina J
2007-09-07
The synthesis of the spiroacetal-containing anti-Helicobacter pylori agents (3S,2''S,5''S,7''S)- (ent-CJ-12,954) and (3S,2''S,5''R,7''S)- (ent-CJ-13,014) has been carried out based on the convergent union of a 1:1 mixture of heterocycle-activated spiroacetal sulfones and with (3S)-phthalide aldehyde . The synthesis of the (3R)-diastereomers (3R,2''S,5''S,7''S)- and (3R,2''S,5''R,7''S)- was also undertaken in a similar manner by union of (3R)-phthalide aldehyde with a 1:1 mixture of spiroacetal sulfones and . Comparison of the (1)H and (13)C NMR data, optical rotations and HPLC retention times of the synthetic compounds (3S,2''S,5''S,7''S)- and (3S,2''S,5''R,7''S)- and the (3R)-diastereomers (3R,2''S,5''S,7''S)- and (3R,2''S,5''R,7''S)-, with the naturally occurring compounds, established that the synthetic isomers and were in fact enantiomeric to the natural products CJ-12,954 and CJ-13,014. The (2S,8S)-stereochemistry in protected dihydroxyketone , the precursor to the mixture of spiroacetal sulfones and was established via union of readily available (S)-acetylene with aldehyde in which the (4S)-stereochemistry was established via asymmetric allylation. Deprotection and cyclization of protected dihydroxyketone afforded an inseparable 1:1 mixture of spiroacetal alcohols and that were converted into a 1:1 inseparable mixture of spiroacetal sulfones and . Phthalide-aldehyde was prepared via intramolecular acylation of bromocarbamate in which the (3S)-stereochemistry was established via asymmetric CBS reduction of ketone .
Hirshfeld atom refinement for modelling strong hydrogen bonds.
Woińska, Magdalena; Jayatilaka, Dylan; Spackman, Mark A; Edwards, Alison J; Dominiak, Paulina M; Woźniak, Krzysztof; Nishibori, Eiji; Sugimoto, Kunihisa; Grabowsky, Simon
2014-09-01
High-resolution low-temperature synchrotron X-ray diffraction data of the salt L-phenylalaninium hydrogen maleate are used to test the new automated iterative Hirshfeld atom refinement (HAR) procedure for the modelling of strong hydrogen bonds. The HAR models used present the first examples of Z' > 1 treatments in the framework of wavefunction-based refinement methods. L-Phenylalaninium hydrogen maleate exhibits several hydrogen bonds in its crystal structure, of which the shortest and the most challenging to model is the O-H...O intramolecular hydrogen bond present in the hydrogen maleate anion (O...O distance is about 2.41 Å). In particular, the reconstruction of the electron density in the hydrogen maleate moiety and the determination of hydrogen-atom properties [positions, bond distances and anisotropic displacement parameters (ADPs)] are the focus of the study. For comparison to the HAR results, different spherical (independent atom model, IAM) and aspherical (free multipole model, MM; transferable aspherical atom model, TAAM) X-ray refinement techniques as well as results from a low-temperature neutron-diffraction experiment are employed. Hydrogen-atom ADPs are furthermore compared to those derived from a TLS/rigid-body (SHADE) treatment of the X-ray structures. The reference neutron-diffraction experiment reveals a truly symmetric hydrogen bond in the hydrogen maleate anion. Only with HAR is it possible to freely refine hydrogen-atom positions and ADPs from the X-ray data, which leads to the best electron-density model and the closest agreement with the structural parameters derived from the neutron-diffraction experiment, e.g. the symmetric hydrogen position can be reproduced. The multipole-based refinement techniques (MM and TAAM) yield slightly asymmetric positions, whereas the IAM yields a significantly asymmetric position.
Alpha-helical regions of the protein molecule as organic nanotubes
NASA Astrophysics Data System (ADS)
Suprun, Anatol D.; Shmeleva, Liudmyla V.
2014-05-01
An α-helical region of protein molecule was considered in a model of nanotube. The molecule is in conditions of quantum excitations. Such model corresponds to a one-dimensional molecular nanocrystal with three molecules in an elementary cell at the presence of excitation. For the analysis of different types of conformational response of the α-helical area of the protein molecule on excitation, the nonlinear response of this area to the intramolecular quantum excitation caused by hydrolysis of adenosine triphosphate (ATP) is taken into account. It has been established that in the simplest case, three types of excitation are realized. As estimates show, each of them `serves' different kinds of protein. The symmetrical type of excitation, most likely, is realized in the reduction of traversal-striped skeletal muscles. It has the highest excitation energy. This well protects from casual actions. Antisymmetric excitations have intermediate energy (between symmetrical and asymmetrical). They, most likely, are realized in membranous and nucleic proteins. It is shown that the conformational response of the α-helical region of the protein is (in angstroms) a quantity of order N c /5, where N c is the number of spiral turns. For the number of turns typical in this case: N c ~ 10, displacement compounds are a quantity of order 2 Å. It qualitatively corresponds to observable values. Asymmetrical excitations have the lowest energy. Therefore, most likely, they are realized in enzymatic proteins. It was shown that at this type of excitation, the bending of the α-helix is formally directed to the opposite side with respect to the antisymmetric excitations. Also, it has a greater value than the antisymmetric case for N c ≤ 14 and smaller for N c > 14.
Wang, Tao; Liang, Yong; Yu, Zhi-Xiang
2011-06-22
Asymmetric Simmons-Smith reaction using Charette chiral dioxaborolane ligand is a widely applied method for the construction of enantiomerically enriched cyclopropanes. The detailed mechanism and the origins of stereoselectivity of this important reaction were investigated using density functional theory (DFT) calculations. Our computational studies suggest that, in the traditional Simmons-Smith reaction conditions, the monomeric iodomethylzinc allyloxide generated in situ from the allylic alcohol and the zinc reagent has a strong tendency to form a dimer or a tetramer. The tetramer can easily undergo an intramolecular cyclopropanation to give the racemic cyclopropane product. However, when a stoichiometric amount of Charette chiral dioxaborolane ligand is employed, monomeric iodomethylzinc allyloxide is converted into an energetically more stable four-coordinated chiral zinc/ligand complex. The chiral complex has the zinc bonded to the CH(2)I group and coordinated by three oxygen atoms (one from the allylic alcohol and the other two oxygen atoms from the carbonyl oxygen and the ether oxygen in the dioxaborolane ligand), and it can undergo the cyclopropanation reaction easily. Three key factors influencing the enantioselectivity have been identified through examining the cyclopropanation transition states: (1) the torsional strain along the forming C-C bond, (2) the 1,3-allylic strain caused by the chain conformation, and (3) the ring strain generated in the transition states. In addition, the origin of the high anti diastereoselectivity for the substituent on the zinc reagent and the hydroxymethyl group of the allylic alcohol has been rationalized through analyzing the steric repulsion and the ring strain in the cyclopropanation transition states.
NASA Technical Reports Server (NTRS)
Gregurick, Susan K.; Chaban, Galina M.; Gerber, R. Benny; Kwak, Dochou (Technical Monitor)
2001-01-01
The second-order Moller-Plesset ab initio electronic structure method is used to compute points for the anharmonic mode-coupled potential energy surface of N-methylacetamide (NMA) in the trans(sub ct) configuration, including all degrees of freedom. The vibrational states and the spectroscopy are directly computed from this potential surface using the Correlation Corrected Vibrational Self-Consistent Field (CC-VSCF) method. The results are compared with CC-VSCF calculations using both the standard and improved empirical Amber-like force fields and available low temperature experimental matrix data. Analysis of our calculated spectroscopic results show that: (1) The excellent agreement between the ab initio CC-VSCF calculated frequencies and the experimental data suggest that the computed anharmonic potentials for N-methylacetamide are of a very high quality; (2) For most transitions, the vibrational frequencies obtained from the ab initio CC-VSCF method are superior to those obtained using the empirical CC-VSCF methods, when compared with experimental data. However, the improved empirical force field yields better agreement with the experimental frequencies as compared with a standard AMBER-type force field; (3) The empirical force field in particular overestimates anharmonic couplings for the amide-2 mode, the methyl asymmetric bending modes, the out-of-plane methyl bending modes, and the methyl distortions; (4) Disagreement between the ab initio and empirical anharmonic couplings is greater than the disagreement between the frequencies, and thus the anharmonic part of the empirical potential seems to be less accurate than the harmonic contribution;and (5) Both the empirical and ab initio CC-VSCF calculations predict a negligible anharmonic coupling between the amide-1 and other internal modes. The implication of this is that the intramolecular energy flow between the amide-1 and the other internal modes may be smaller than anticipated. These results may have important implications for the anharmonic force fields of peptides, for which N-methylacetamide is a model.
Angeli, A; Peat, T S; Bartolucci, G; Nocentini, A; Supuran, C T; Carta, F
2016-12-28
A mild, efficient and one pot procedure to access benzoxazoles using easily accessible acylselenoureas as starting materials has been discovered. Mechanistic studies revealed a pH dependent intramolecular oxidative deselenization, with ring closure due to an intramolecular nucleophilic attack of a phenoxide ion. All the benzoxazoles herein reported possessed a primary sulfonamide zinc binding group and showed effective inhibitory action on the enzymes, carbonic anhydrases.
2016-04-12
AFRL-AFOSR-CL-TR-2016-0012 Intramolecular Charge Transfer of Conjugated Liquid Crystal Ferrocene Macromolecules Ronald Ziolo CIQA Final Report 07/07...3. DATES COVERED (From - To) 15 Aug 2014 to 14 Jan 2016 4. TITLE AND SUBTITLE Intramolecular Charge Transfer of Conjugated Liquid Crystal Ferrocene...characterization of a new series of conjugated macromolecules bearing ferrocene as a highly efficient electron donor material coupled to 2,5-di(alcoxy) benzene
Fang, Zhongxue; Liu, Ying; Barry, Badru-Deen; Liao, Peiqiu; Bi, Xihe
2015-02-20
An atom-economic route to benzo[f]-1-indanone frameworks has been developed starting from the readily available gem-dialkylthio trienynes by intramolecular annulations. The chemoselectivity of the intramolecular cyclizations can be regulated by both the base and the type of gas atmosphere used in the reaction, thus allowing the divergent synthesis of the corresponding functionalized benzo[f]-1-indanones in good to excellent yields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boros, Eszter; Srinivas, Raja; Kim, Hee -Kyung
Aqua ligands can undergo rapid internal rotation about the M-O bond. For magnetic resonance contrast agents, this rotation results in diminished relaxivity. Herein, we show that an intramolecular hydrogen bond to the aqua ligand can reduce this internal rotation and increase relaxivity. Molecular modeling was used to design a series of four Gd complexes capable of forming an intramolecular H-bond to the coordinated water ligand, and these complexes had anomalously high relaxivities compared to similar complexes lacking a H-bond acceptor. Molecular dynamics simulations supported the formation of a stable intramolecular H-bond, while alternative hypotheses that could explain the higher relaxivitymore » were systematically ruled out. Finally, intramolecular H-bonding represents a useful strategy to limit internal water rotational motion and increase relaxivity of Gd complexes.« less
Allosteric regulation of focal adhesion kinase by PIP₂ and ATP.
Zhou, Jing; Bronowska, Agnieszka; Le Coq, Johanne; Lietha, Daniel; Gräter, Frauke
2015-02-03
Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that regulates cell signaling, proliferation, migration, and development. A major mechanism of regulation of FAK activity is an intramolecular autoinhibitory interaction between two of its domains--the catalytic and FERM domains. Upon cell adhesion to the extracellular matrix, FAK is being translocated toward focal adhesion sites and activated. Interactions of FAK with phosphoinositide phosphatidylinsositol-4,5-bis-phosphate (PIP₂) are required to activate FAK. However, the molecular mechanism of the activation remains poorly understood. Recent fluorescence resonance energy transfer experiments revealed a closure of the FERM-kinase interface upon ATP binding, which is reversed upon additional binding of PIP₂. Here, we addressed the allosteric regulation of FAK by performing all-atom molecular-dynamics simulations of a FAK fragment containing the catalytic and FERM domains, and comparing the dynamics in the absence or presence of ATP and PIP₂. As a major conformational change, we observe a closing and opening motion upon ATP and additional PIP₂ binding, respectively, in good agreement with the fluorescence resonance energy transfer experiments. To reveal how the binding of the regulatory PIP₂ to the FERM F2 lobe is transduced to the very distant F1/N-lobe interface, we employed force distribution analysis. We identified a network of mainly charged residue-residue interactions spanning from the PIP₂ binding site to the distant interface between the kinase and FERM domains, comprising candidate residues for mutagenesis to validate the predicted mechanism of FAK activation. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Chiral alkynylcarbinols from marine sponges: asymmetric synthesis and biological relevance.
Listunov, Dymytrii; Maraval, Valérie; Chauvin, Remi; Génisson, Yves
2015-01-01
Covering: up to March 2014. Previous review on the topic: B. W. Gung, C. R. Chim., 2009, 12, 489-505. Chiral α-functional lipidic propargylic alcohols extracted from marine sponges, in particular of the pacific genus Petrosia, constitute a class of acetylenic natural products exhibiting remarkable in vitro biological activities, especially anti-tumoral cytotoxicity. These properties, associated to functionalities that are uncommon among natural products, have prompted recent projects on asymmetric total synthesis. On the basis of a three-sector structural typology, three main sub-types of secondary alkynylcarbinols (with either alkyl, alkenyl, or alkynyl as the second substituent) can be identified as the minimal pharmacophoric units. Selected natural products containing these functionalities have been targeted using previously known or on purpose-designed procedures, where the stereo-determining step can be: (i) a C-C bond forming reaction (e.g. the Zn-mediated addition of alkynyl nucleophiles to aldehydes in the presence of chiral aminoalcohols), (ii) a functional layout (e.g. the asymmetric organo- or metallo-catalytic reduction of ynones), or (iii) an enantiomeric resolution (e.g. a lipase-mediated kinetic resolution via acetylation). The promising medicinal importance of these targets is finally surveyed, and future investigation prospects are proposed, such as: (i) further total synthesis of known or future extraction products; (ii) the synthesis of non-natural analogues, with simpler lipophilic environments of the alkynylcarbinol-based pharmacophoric units; (iii) the variation and optimization of both the pharmacophoric units and their lipophilic environment; and (iv) investigations into the biological mode of action of these unique structures.
Design of ferrocene-dipeptide bioorganometallic conjugates to induce chirality-organized structures.
Moriuchi, Toshiyuki; Hirao, Toshikazu
2010-07-20
The highly ordered molecular assemblies in proteins can have a variety of functions, as observed in enzymes, receptors, and the like. Synthetic scientists are constructing bioinspired systems by harnessing the self-assembling properties of short peptides. Secondary structures such as alpha-helices, beta-sheets, and beta-turns are important in protein folding, which is mostly directed and stabilized by hydrogen bonding and the hydrophobic interactions of side chains. The design of secondary structure mimics that are composed of short peptides has attracted much attention, both for gaining fundamental insight into the factors affecting protein folding and for developing pharmacologically useful compounds, artificial receptors, asymmetric catalysts, and new materials. Ferrocenes are an organometallic scaffold with a central reverse-turn unit based on the inter-ring spacing of about 3.3 A, which is a suitable distance for hydrogen bonding between attached peptide strands. The conjugation of organometallic compounds with biomolecules such as amino acids, peptides, and DNA should provide novel systems that reflect properties of both the ferrocene and the biologically derived moieties. In this Account, we focus on recent advances in the design of ferrocene-peptide bioconjugates, which help illustrate the peptidomimetic basis for protein folding and the means of constructing highly ordered molecular assemblies. Ferrocene-peptide bioconjugates are constructed to form chirality-organized structures in both solid and solution states. The ferrocene serves as a reliable organometallic scaffold for the construction of protein secondary structures via intramolecular hydrogen bonding: the attached dipeptide strands are constrained within the appropriate dimensions. The introduction of the chiral dipeptide chains into the ferrocene scaffold induces the conformational enantiomerization of the ferrocenyl moiety; the chirality-organized structure results from intramolecular hydrogen bonding. The configuration and sequence of the amino acids are instrumental in the process. Regulation of the directionality and specificity of hydrogen bonding is a key component in the design of various molecular assemblies. Ferrocene-peptide bioconjugates also have a strong tendency to self-assemble through the contributions of available hydrogen-bonding donors in the solid state. Some ferrocene-peptide bioconjugates bearing only one dipeptide chain exhibit a helically ordered molecular assembly through a network of intermolecular (rather than intramolecular) hydrogen bonds. The propensity to form the chiral helicity appears to be controlled by the chirality of the dipeptide chains. Organization of host molecules is a useful strategy for forming artificial receptors. The conformationally regulated ferrocene-peptide bioconjugate provides the chirality-organized binding site for size-selective and chiral recognition of dicarboxylic acids through multipoint hydrogen bonds. Metal ions serve a variety of purposes in proteins, including structural stabilization for biological function. The complexation of ferrocene-peptide bioconjugates with palladium(II) compounds not only stabilizes the chirality conformational regulation but also induces conformational regulation of the dipeptide chain through complexation and intramolecular chirality organization. Construction of the chirality-organized ferrocene-peptide bioconjugates is also achieved by metal-directed assembly. These varied examples amply demonstrate the value of ferrocene-peptide bioconjugates in asserting architectural control over highly ordered molecular assemblies.
Imoto, Mitsutaka; Ikeda, Hiroshi; Fujii, Takayuki; Taniguchi, Hisaji; Tamaki, Akihiro; Takeda, Motonori; Mizuno, Kazuhiko
2010-05-07
An intramolecular exciplex is formed upon excitation of the cyclohexane solution of the 1,4-dicyano-2-methylnaphthalene-N,N-dimethyl-p-toluidine dyad, but little if any intramolecular CT complex exists in the ground state of this substance in solution. In contrast, in the crystalline state, the dyad forms an intermolecular mixed-stack CT complex in the ground state and an intermolecular exciplex when it is photoexcited.
Li, An Yong
2007-04-21
Upon formation of a H bond Y...H-XZ, intramolecular hyperconjugation n(Z)-->sigma*(X-H) of the proton donor plays a key role in red- and blueshift characters of H bonds and must be introduced in the concepts of hyperconjugation and rehybridization. Intermolecular hyperconjugation transfers electron density from Y to sigma*(X-H) and causes elongation and stretch frequency redshift of the X-H bond; intramolecular hyperconjugation couples with intermolecular hyperconjugation and can adjust electron density in sigma*(X-H); rehybridization causes contraction and stretch frequency blueshift of the X-H bond on complexation. The three factors--intra- and intermolecular hyperconjugations and rehybridization--determine commonly red- or blueshift of the formed H bond. A proton donor that has strong intramolecular hyperconjugation often forms blueshifted H bonds.
Chen, Jun; Zhang, Tao; Wang, Shuangqing; Hu, Rui; Li, Shayu; Ma, Jin Shi; Yang, Guoqiang
2015-10-05
A series of triazine-linked mono-, bis- and tris-phthalocyanines are synthesized, intramolecular aggregation is found in bis- and tris-phthalocyanines via π-π stacking interaction. Theoretical and experimental studies reveal the formation of the intramolecular aggregation. The spectrographic, photophysical and nonlinear optical properties of these compounds are adjusted for the formation of the intramolecular aggregation. The bis-phthalocyanine dimer presents smaller fluorescence quantum yield, lower triplet formation yield and the triplet-minus-ground state extinction coefficient, which causes poorer optical limiting performance. It is interesting that the tris-phthalocyanine is composed of a mono-phthalocyanine part and a bis-phthalocyanine part, the optical limiting property of the tris-phthalocyanine is similar to that of mono-phthalocyanine. Copyright © 2015 Elsevier B.V. All rights reserved.
Sakuma; Sakai; Itooka; Miyaura
2000-09-22
Arylboronic acids underwent the conjugate 1,4-addition to alpha, beta-unsaturated esters to give beta-aryl esters in high yields in the presence of a rhodium(I) catalyst. The addition of arylboronic acids to isopropyl crotonate resulted in high yields and high enantioselectivity exceeding 90% ee in the presence of 3 mol % of Rh(acac)(C(2)H(4))(2) and (S)-binap at 100 degrees C. The rhodium/(S)-binap complex provided (R)-3-phenylbutanoate in the addition of phenylboronic acid to benzyl crotonate. The effects on the enantioselectivity of chiral phosphine ligands, rhodium precursors, and substituents on alpha,beta-unsaturated esters are discussed, as well as the mechanistic aspect of the catalytic cycle.
Im, Dong-Won; Kim, Tae-O; Jung, Ha Yun; Oh, Ji Eun; Lee, Se Jin; Heo, Yong-Seok
2012-01-01
Primase is the enzyme that synthesizes RNA primers on single-stranded DNA during normal DNA replication. In this study, the catalytic core domain of primase from Streptococcus mutans UA159 was overexpressed in Escherichia coli, purified and crystallized. Diffraction data were collected to 1.60 Å resolution using a synchrotron-radiation source. The crystal belonged to space group P41 or P43, with unit-cell parameters a = b = 52.63, c = 110.31 Å. The asymmetric unit is likely to contain one molecule, with a corresponding V M of 1.77 Å3 Da−1 and a solvent content of 30.7%. PMID:22232183
Enantioselective photochemistry via Lewis acid catalyzed triplet energy transfer
Blum, Travis R.; Miller, Zachary D.; Bates, Desiree M.; Guzei, Ilia A.; Yoon, Tehshik P.
2017-01-01
Relatively few catalytic systems are able to control the stereochemistry of electronically excited organic intermediates. Here we report the discovery that a chiral Lewis acid complex can catalyze triplet energy transfer from an electronically excited photosensitizer. This strategy is applied to asymmetric [2+2] photocycloadditions of 2′-hydroxychalcones using tris(bipyridyl) ruthenium(II) as a sensitizer. A variety of electrochemical, computational, and spectroscopic data rule out substrate activation via photoinduced electron transfer and instead support a mechanism in which Lewis acid coordination dramatically lowers the triplet energy of the chalcone substrate. We expect that this approach will enable chemists to more broadly apply their detailed understanding of chiral Lewis acid catalysis to stereocontrol in reactions of electronically excited states. PMID:27980203
Fluctuating chemohydrodynamics and the stochastic motion of self-diffusiophoretic particles
NASA Astrophysics Data System (ADS)
Gaspard, Pierre; Kapral, Raymond
2018-04-01
The propulsion of active particles by self-diffusiophoresis is driven by asymmetric catalytic reactions on the particle surface that generate a mechanochemical coupling between the fluid velocity and the concentration fields of fuel and product in the surrounding solution. Because of thermal and molecular fluctuations in the solution, the motion of micrometric or submicrometric active particles is stochastic. Coupled Langevin equations describing the translation, rotation, and reaction of such active particles are deduced from fluctuating chemohydrodynamics and fluctuating boundary conditions at the interface between the fluid and the particle. These equations are consistent with microreversibility and the Onsager-Casimir reciprocal relations between affinities and currents and provide a thermodynamically consistent basis for the investigation of the dynamics of active particles propelled by diffusiophoretic mechanisms.
Silver Films with Hierarchical Chirality.
Ma, Liguo; Cao, Yuanyuan; Duan, Yingying; Han, Lu; Che, Shunai
2017-07-17
Physical fabrication of chiral metallic films usually results in singular or large-sized chirality, restricting the optical asymmetric responses to long electromagnetic wavelengths. The chiral molecule-induced formation of silver films prepared chemically on a copper substrate through a redox reaction is presented. Three levels of chirality were identified: primary twisted nanoflakes with atomic crystal lattices, secondary helical stacking of these nanoflakes to form nanoplates, and tertiary micrometer-sized circinates consisting of chiral arranged nanoplates. The chiral Ag films exhibited multiple plasmonic absorption- and scattering-based optical activities at UV/Vis wavelengths based on their hierarchical chirality. The Ag films showed chiral selectivity for amino acids in catalytic electrochemical reactions, which originated from their primary atomic crystal lattices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Riise, Ellen Kristin; Lorentzen, Marit Sjo; Helland, Ronny; Willassen, Nils Peder
2006-01-01
Catalase (EC 1.11.1.6) catalyses the breakdown of hydrogen peroxide to water and molecular oxygen. Recombinant Vibrio salmonicida catalase (VSC) possesses typical cold-adapted features, with higher catalytic efficiency, lower thermal stability and a lower temperature optimum than its mesophilic counterpart from Proteus mirabilis. Crystals of VSC were produced by the hanging-drop vapour-diffusion method using ammonium sulfate as precipitant. The crystals belong to the monoclinic space group P21, with unit-cell parameters a = 98.15, b = 217.76, c = 99.28 Å, β = 110.48°. Data were collected to 1.96 Å and a molecular-replacement solution was found with eight molecules in the asymmetric unit. PMID:16511268
Regulation of the catalytic activity of the EGF receptor
Endres, Nicholas F.; Engel, Kate; Das, Rahul; Kovacs, Erika; Kuriyan, John
2011-01-01
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase involved in cell growth that is often misregulated in cancer. Several recent studies highlight the unique structural mechanisms involved in its regulation. Some elucidate the important role that the juxtamembrane segment and the transmembrane helix play in stabilizing the activating asymmetric kinase dimer, and suggest that its activation mechanism is likely to be conserved amongst the other human EGFR-related receptors. Other studies provide new explanations for two long observed, but poorly understood phenomena, the apparent heterogeneity in ligand binding and the formation of ligand-independent dimers. New insights into the allosteric mechanisms utilized by intracellular regulators of EGFR provide hope that allosteric sites could be used as targets for drug development. PMID:21868214
Femtochemistry of Intramolecular Charge and Proton Transfer Reactions in Solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douhal, Abderrazzak; Sanz, Mikel; Carranza, Maria Angeles
2005-03-17
We report on the first observation of ultrafast intramolecular charge- and proton-transfer reactions in 4'-dimethylaminoflavonol (DAMF) in solution. Upon femtosecond excitation of a non-planar structure of DMAF in apolar medium, the intramolecular charge transfer (ICT) does not occur, and a slow (2 ps) proton motion takes place. However, in polar solvents, the ICT is very fast (100-200 fs) and the produced structure is stabilized that proton motion takes place in few or tens of ps.
Luo, Gang-Yi; Huang, Hai-Hua; Wang, Jia-Wei; Lu, Tong-Bu
2016-03-08
The reaction of N,N'-dimethyl-N,N'-bis(pyridin-2-ylmethyl)-1,2-diaminoethane ligand (L) with Ni(ClO4)2 ⋅6 H2O generated a complex of [NiL(H2O)2](ClO4)2 (1) with two cis labile sites occupied by two coordinated H2O molecules, which can homogeneously electrocatalyze water oxidation in pH 6.5 acetate (OAc(-)) buffer at room temperature. The catalytic mechanism was studied by electrochemical experiments and density functional theory calculations to elucidate the following steps: (a) one of two water molecules in 1 is exchanged by OAc(-) to generate [NiL(H2O)(OAc)](+) when dissolved in OAc(-) buffer, (b) Ni(II) is directly oxidized to Ni(IV) and OAc(-) is replaced with OH(-) to form [Ni(IV) L(OH)2 ](2+), and (c) a peroxide intermediate is formed through the intramolecular O-O coupling in the presence of OAc(-), which undergoes further oxidation to release O2. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Misono, Kunio S; Ogawa, Haruo; Qiu, Yue; Ogata, Craig M
2005-06-01
The atrial natriuretic peptide (ANP) receptor is a single-span transmembrane receptor that is coupled to its intrinsic intracellular guanylate cyclase (GCase) catalytic activity. To investigate the mechanisms of hormone binding and signal transduction, we have expressed the extracellular hormone-binding domain of the ANP receptor (ANPR) and characterized its structure and function. The disulfide-bond structure, state of glycosylation, binding-site residues, chloride-dependence of ANP binding, dimerization, and binding stoichiometry have been determined. More recently, the crystal structures of both the apoANPR dimer and ANP-bound complex have been determined. The structural comparison between the two has shown that, upon ANP binding, two ANPR molecules in the dimer undergo an inter-molecular twist with little intra-molecular conformational change. This motion produces a Ferris wheel-like translocation of two juxtamembrane domains with essentially no change in the inter-domain distance. This movement alters the relative orientation of the two domains equivalent to counter-clockwise rotation of each by 24 degrees . These results suggest that transmembrane signaling by the ANP receptor is mediated by a novel hormone-induced rotation mechanism.
An Activity Switch in Human Telomerase Based on RNA Conformation and Shaped by TCAB1.
Chen, Lu; Roake, Caitlin M; Freund, Adam; Batista, Pedro J; Tian, Siqi; Yin, Yi A; Gajera, Chandresh R; Lin, Shengda; Lee, Byron; Pech, Matthew F; Venteicher, Andrew S; Das, Rhiju; Chang, Howard Y; Artandi, Steven E
2018-05-18
Ribonucleoprotein enzymes require dynamic conformations of their RNA constituents for regulated catalysis. Human telomerase employs a non-coding RNA (hTR) with a bipartite arrangement of domains-a template-containing core and a distal three-way junction (CR4/5) that stimulates catalysis through unknown means. Here, we show that telomerase activity unexpectedly depends upon the holoenzyme protein TCAB1, which in turn controls conformation of CR4/5. Cells lacking TCAB1 exhibit a marked reduction in telomerase catalysis without affecting enzyme assembly. Instead, TCAB1 inactivation causes unfolding of CR4/5 helices that are required for catalysis and for association with the telomerase reverse-transcriptase (TERT). CR4/5 mutations derived from patients with telomere biology disorders provoke defects in catalysis and TERT binding similar to TCAB1 inactivation. These findings reveal a conformational "activity switch" in human telomerase RNA controlling catalysis and TERT engagement. The identification of two discrete catalytic states for telomerase suggests an intramolecular means for controlling telomerase in cancers and progenitor cells. Copyright © 2018 Elsevier Inc. All rights reserved.
Owen, C David; Tailford, Louise E; Monaco, Serena; Šuligoj, Tanja; Vaux, Laura; Lallement, Romane; Khedri, Zahra; Yu, Hai; Lecointe, Karine; Walshaw, John; Tribolo, Sandra; Horrex, Marc; Bell, Andrew; Chen, Xi; Taylor, Gary L; Varki, Ajit; Angulo, Jesus; Juge, Nathalie
2017-12-19
Ruminococcus gnavus is a human gut symbiont wherein the ability to degrade mucins is mediated by an intramolecular trans-sialidase (RgNanH). RgNanH comprises a GH33 catalytic domain and a sialic acid-binding carbohydrate-binding module (CBM40). Here we used glycan arrays, STD NMR, X-ray crystallography, mutagenesis and binding assays to determine the structure and function of RgNanH_CBM40 (RgCBM40). RgCBM40 displays the canonical CBM40 β-sandwich fold and broad specificity towards sialoglycans with millimolar binding affinity towards α2,3- or α2,6-sialyllactose. RgCBM40 binds to mucus produced by goblet cells and to purified mucins, providing direct evidence for a CBM40 as a novel bacterial mucus adhesin. Bioinformatics data show that RgCBM40 canonical type domains are widespread among Firmicutes. Furthermore, binding of R. gnavus ATCC 29149 to intestinal mucus is sialic acid mediated. Together, this study reveals novel features of CBMs which may contribute to the biogeography of symbiotic bacteria in the gut.
Bolduc, David; Rahdar, Meghdad; Tu-Sekine, Becky; Sivakumaren, Sindhu Carmen; Raben, Daniel; Amzel, L Mario; Devreotes, Peter; Gabelli, Sandra B; Cole, Philip
2013-01-01
The tumor suppressor PIP3 phosphatase PTEN is phosphorylated on four clustered Ser/Thr on its C-terminal tail (aa 380–385) and these phosphorylations are proposed to induce a reduction in PTEN’s plasma membrane recruitment. How these phosphorylations affect the structure and enzymatic function of PTEN is poorly understood. To gain insight into the mechanistic basis of PTEN regulation by phosphorylation, we generated semisynthetic site-specifically tetra-phosphorylated PTEN using expressed protein ligation. By employing a combination of biophysical and enzymatic approaches, we have found that purified tail-phosphorylated PTEN relative to its unphosphorylated counterpart shows reduced catalytic activity and membrane affinity and undergoes conformational compaction likely involving an intramolecular interaction between its C-tail and the C2 domain. Our results suggest that there is a competition between membrane phospholipids and PTEN phospho-tail for binding to the C2 domain. These findings reveal a key aspect of PTEN’s regulation and suggest pharmacologic approaches for direct PTEN activation. DOI: http://dx.doi.org/10.7554/eLife.00691.001 PMID:23853711
Efficient cluster-based catalysts for asymmetric hydrogenation of α-unsaturated carboxylic acids.
Moberg, Viktor; Duquesne, Robin; Contaldi, Simone; Röhrs, Oliver; Nachtigall, Jonny; Damoense, Llewellyn; Hutton, Alan T; Green, Michael; Monari, Magda; Santelia, Daniela; Haukka, Matti; Nordlander, Ebbe
2012-09-24
The new clusters [H(4)Ru(4)(CO)(10)(μ-1,2-P-P)], [H(4)Ru(4)(CO)(10) (1,1-P-P)] and [H(4)Ru(4)(CO)(11)(P-P)] (P-P=chiral diphosphine of the ferrocene-based Josiphos or Walphos ligand families) have been synthesised and characterised. The crystal and molecular structures of eleven clusters reveal that the coordination modes of the diphosphine in the [H(4)Ru(4)(CO)(10)(μ-1,2-P-P)] clusters are different for the Josiphos and the Walphos ligands. The Josiphos ligands bridge a metal-metal bond of the ruthenium tetrahedron in the "conventional" manner, that is, with both phosphine moieties coordinated in equatorial positions relative to a triangular face of the tetrahedron, whereas the phosphine moieties of the Walphos ligands coordinate in one axial and one equatorial position. The differences in the ligand size and the coordination mode between the two types of ligands appear to be reflected in a relative propensity for isomerisation; in solution, the [H(4)Ru(4)(CO)(10)(1,1-Walphos)] clusters isomerise to the corresponding [H(4)Ru(4)(CO)(10)(μ-1,2-Walphos)] clusters, whereas the Josiphos-containing clusters show no tendency to isomerisation in solution. The clusters have been tested as catalysts for asymmetric hydrogenation of four prochiral α-unsaturated carboxylic acids and the prochiral methyl ester (E)-methyl 2-methylbut-2-enoate. High conversion rates (>94%) and selectivities of product formation were observed for almost all catalysts/catalyst precursors. The observed enantioselectivities were low or nonexistent for the Josiphos-containing clusters and catalyst (cluster) recovery was low, suggesting that cluster fragmentation takes place. On the other hand, excellent conversion rates (99-100%), product selectivities (99-100% in most cases) and good enantioselectivities, reaching 90% enantiomeric excess (ee) in certain cases, were observed for the Walphos-containing clusters, and the clusters could be recovered in good yield after completed catalysis. Results from high-pressure NMR and IR studies, catalyst poisoning tests and comparison of catalytic properties of two [H(4)Ru(4)(CO)(10)(μ-1,2-P-P)] clusters (P-P=Walphos ligands) with the analogous mononuclear catalysts [Ru(P-P)(carboxylato)(2)] suggest that these clusters may be the active catalytic species, or direct precursors of an active catalytic cluster species. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Divergent Synthesis of Solanidine and 22-epi-Solanidine.
Hou, Ling-Li; Shi, Yong; Zhang, Zhi-Dan; Wu, Jing-Jing; Yang, Qing-Xiong; Tian, Wei-Sheng
2017-07-21
A divergent synthesis of solanidine and 22-epi-solanidine, two 25S natural steroidal alkaloids, from 25R-configured diosgenin acetate, is described. Initially, solanidine was synthesized through a series of transformations including a cascade ring-switching process of furostan-26-acid, an epimerization of C25 controlled by the conformation of six-membered lactone ring, an intramolecular Schmidt reaction, and an imine reduction/intramolecular aminolysis process. To address the epimerization issue during Schmidt reaction, an improved synthesis was developed, which also led to a synthesis of 22-epi-solanidine. In this synthesis, selective transformation of azido lactone to azido diol and amino diol was realized through a reduction relay tactic. The azido diol was transformed to solanidine via an intramolecular Schmidt reaction/N-alkylation/reduction process and to 22-epi-solanidine via an intramolecular double N-alkylation process.
Hernández, Karel; Parella, Teodor; Petrillo, Giovanna; Usón, Isabel; Wandtke, Claudia M; Joglar, Jesús; Bujons, Jordi; Clapés, Pere
2017-05-02
Intramolecular benzoin reactions catalyzed by benzaldehyde lyase from Pseudomonas fluorescens biovar I (BAL) are reported. The structure of the substrates envisaged for this reaction consists of two benzaldehyde derivatives linked by an alkyl chain. The structural requirements needed to achieve the intramolecular carbon-carbon bond reaction catalyzed by BAL were established. Thus, a linker consisting of a linear alkyl chain of three carbon atoms connected through ether-type bonds to the 2 and 2' positions of two benzaldehyde moieties, which could be substituted with either Cl, Br, or OCH 3 at either the 3 and 3' or 5 and 5' positions, were suitable substrates for BAL. Reactions with 61-84 % yields of the intramolecular product and ee values between 64 and 98 %, were achieved. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
De Boeck, Benoit; Herbert, Nicola M A; Harrington-Frost, Nicole M; Pattenden, Gerald
2005-01-21
Treatment of a variety of substituted vinylcyclopropyl selenyl esters, e.g. 11, with Bu(3)SnH-AIBN in refluxing benzene leads to the corresponding acyl radical intermediates, which undergo rearrangement and intramolecular cyclisations via their ketene alkyl radical equivalents producing cyclohexenones in 50-60% yield. By contrast, treatment of conjugated triene selenyl esters, e.g. 32, with Bu(3)SnH-AIBN produces substituted 2-cyclopentenones via intramolecular cyclisations of their ketene alkyl radical intermediates. Under the same radical-initiating conditions the selenyl esters derived from o-vinylbenzoic acid and o-vinylcinnamic acid undergo intramolecular cyclisations producing 1-indanone and 5,6-dihydrobenzocyclohepten-7-one respectively in 60-70% yields. A tandem radical cyclisation from the alpha,beta,gamma,delta-diene selenyl ester 31 provides an expeditious synthesis of the diquinane 35 in 69% yield.
Reddy, Samala Murali Mohan; Shanmugam, Ganesh
2016-09-19
Although the role of intermolecular aromatic π-π interactions in the self-assembly of di-l-phenylalanine (l-Phe-l-Phe, FF), a peptide that is known for hierarchical structure, is well established, the influence of intramolecular π-π interactions on the morphology of the self-assembled structure of FF has not been studied. Herein, the role of intramolecular aromatic π-π interactions is investigated for FF and analogous alanine (Ala)-containing dipeptides, namely, l-Phe-l-Ala (FA) and l-Ala-l-Phe (AF). The results reveal that these dipeptides not only form self-assemblies, but also exhibit remarkable differences in structural morphology. The morphological differences between FF and the analogues indicate the importance of intramolecular π-π interactions, and the structural difference between FA and AF demonstrates the crucial role of the nature of intramolecular side-chain interactions (aromatic-aliphatic or aliphatic-aromatic), in addition to intermolecular interactions, in deciding the final morphology of the self-assembled structure. The current results emphasise that intramolecular aromatic π-π interaction may not be essential to induce self-assembly in smaller peptides, and π (aromatic)-alkyl or alkyl-π (aromatic) interactions may be sufficient. This work also illustrates the versatility of aromatic and a combination of aromatic and aliphatic residues in dipeptides in the formation of structurally diverse self-assembled structures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Theoretical verification of nonthermal microwave effects on intramolecular reactions.
Kanno, Manabu; Nakamura, Kosuke; Kanai, Eri; Hoki, Kunihito; Kono, Hirohiko; Tanaka, Motohiko
2012-03-08
There have been a growing number of articles that report dramatic improvements in the experimental performance of chemical reactions by microwave irradiation compared to that under conventional heating conditions. We theoretically examined whether nonthermal microwave effects on intramolecular reactions exist or not, in particular, on Newman-Kwart rearrangements and intramolecular Diels-Alder reactions. The reaction rates of the former calculated by the transition state theory, which consider only the thermal effects of microwaves, agree quantitatively with experimental data, and thus, the increases in reaction rates can be ascribed to dielectric heating of the solvent by microwaves. In contrast, for the latter, the temperature dependence of reaction rates can be explained qualitatively by thermal effects but the possibility of nonthermal effects still remains regardless of whether competitive processes are present or not. The effective intramolecular potential energy surface in the presence of a microwave field suggests that nonthermal effects arising from potential distortion are vanishingly small in intramolecular reactions. It is useful in the elucidation of the reaction mechanisms of microwave synthesis to apply the present theoretical approach with reference to the experiments where thermal and nonthermal effects are separated by screening microwave fields.
Dutta Banik, Sindrila; Chandra, Amalendu
2014-09-25
Pyridoxal 5'-phosphate (PLP) Schiff base, a versatile cofactor, exhibits a tautomeric equilibrium that involves an intramolecular proton transfer between the N-protonated zwitterionic ketoenamine tautomer and the O-protonated covalent enolimine tautomer. It has been postulated that for the catalytic activity, the PLP has to be in the zwitterionic ketoenamine tautomeric form. However, the exact position of the tautomeric equilibrium of Schiff base in the active site of PLP-dependent enzyme is not known yet. In the present work, we investigated the tautomeric equilibrium for the external aldimine state of PLP aspartate (PLP-Asp) Schiff base in the active site of aspartate aminotransferase (AspAT) using combined quantum mechanical and molecular mechanical simulations. The main focus of the present study is to analyze the factors that control the tautomeric equilibrium in the active sites of various PLP-dependent enzymes. The results show that the ketoenamine tautomer is more preferred than the enolimine tautomer both in the gas and aqueous phases as well as in the active site of AspAT. Current simulations show that the active site of AspAT is more suitable for the ketoenamine tautomer compared to the enolimine tautomer. Interestingly, the Tyr225 acts as a proton donor to the phenolic oxygen in the ketoenamine tautomer, while in the covalent enolimine tautomer, it acts as a proton acceptor to the phenolic oxygen. Finally, the metadynamics study confirms this result. The calculated free energy barrier is about 7.5 kcal/mol. A comparative analysis of the microenvironment created by the active site residues of three different PLP-dependent enzymes (aspartate aminotransferase, Dopa decarboxylase, and Ala-racemase) has been carried out to understand the controlling factor(s) of the tautomeric equilibrium. The analysis shows that the intermolecular hydrogen bonding between active site residues and the phenolic oxygen of PLP shifts the tautomeric equilibrium toward the N-protonated ketoenamine tautomeric form.
Expeditious construction of (+)-mintlactone via intramolecular hetero-Pauson-Khand reaction.
Gao, Peng; Xu, Peng-Fei; Zhai, Hongbin
2009-03-20
(+)-Mintlactone, a bicyclic monoterpene natural product, has been efficiently assembled from (-)-citronellol in three steps. The synthesis features nitrous acid-induced formal isopropylidene "demethanation" and the molybdenum-mediated intramolecular hetero-Pauson-Khand reaction.
Soares, Emilie; Schwartz, Annie; Nollmann, Marcello; Margeat, Emmanuel; Boudvillain, Marc
2014-08-01
Rho is a ring-shaped, ATP-dependent RNA helicase/translocase that dissociates transcriptional complexes in bacteria. How RNA recognition is coupled to ATP hydrolysis and translocation in Rho is unclear. Here, we develop and use a new combinatorial approach, called time-resolved Nucleotide Analog Interference Probing (trNAIP), to unmask RNA molecular determinants of catalytic Rho function. We identify a regulatory step in the translocation cycle involving recruitment of the 2'-hydroxyl group of the incoming 3'-RNA nucleotide by a Rho subunit. We propose that this step arises from the intrinsic weakness of one of the subunit interfaces caused by asymmetric, split-ring arrangement of primary RNA tethers around the Rho hexamer. Translocation is at highest stake every seventh nucleotide when the weak interface engages the incoming 3'-RNA nucleotide or breaks, depending on RNA threading constraints in the Rho pore. This substrate-governed, 'test to run' iterative mechanism offers a new perspective on how a ring-translocase may function or be regulated. It also illustrates the interest and versatility of the new trNAIP methodology to unveil the molecular mechanisms of complex RNA-based systems. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Ranieri, Giuseppe; Mazzei, Rosalinda; Wu, Zhentao; Li, Kang; Giorno, Lidietta
2016-03-14
Biocatalytic membrane reactors (BMR) combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic hollow fibre membranes and their use in a two-separate-phase biocatalytic membrane reactor will be described. The asymmetric ceramic hollow fibre membranes were prepared using a combined phase inversion and sintering technique. The prepared fibres were then used as support for lipase covalent immobilization in order to develop a two-separate-phase biocatalytic membrane reactor. A functionalization method was proposed in order to increase the density of the reactive hydroxyl groups on the surface of ceramic membranes, which were then amino-activated and treated with a crosslinker. The performance and the stability of the immobilized lipase were investigated as a function of the amount of the immobilized biocatalytst. Results showed that it is possible to immobilize lipase on a ceramic membrane without altering its catalytic performance (initial residual specific activity 93%), which remains constant after 6 reaction cycles.
Liu, Xiang; Henderson, James A.; Sasaki, Takeo; Kishi, Yoshito
2009-01-01
Two new ligands 1a,b have been reported. Upon treatment with one equivalent of NiCl2·(MeOCH2)2, 1a,b give the corresponding Ni-complexes. X-ray analysis of 1a·NiCl2 has established that the NiCl2 is selectively coordinated to the phenanthroline nitrogens. Ni/Cr-heterobimetallic catalysts 1a,b·CrCl2/NiCl2, prepared from 1a,b·NiCl2, have been shown to behave exceptionally well for the catalytic asymmetric Ni/Cr-mediated couplings, with the highlights including: (1) 1~2 mol % catalysts are sufficient to complete the coupling, (2) only a negligible amount of the dimers, by-products formed through the alkenyl Ni-species, is observed, (3) the coupling completes even with a 1:1 molar ratio of the coupling partners, and (4) the asymmetric induction is practically identical with that obtained in the coupling with the Cr-catalyst prepared from (S)-sulfonamide 2a,b. Using 4 additional aldehydes, a scope of the new Ni/Cr-heterobimetallic catalysts is briefly studied. Applicability of new catalysts to polyfunctional substrates has been demonstrated, with use of two C-C bond-formations chosen from the halichondrin/E7389 synthesis as examples. PMID:19874019
Missaglia, Sara; Maggi, Lorenzo; Mora, Marina; Gibertini, Sara; Blasevich, Flavia; Agostoni, Piergiuseppe; Moro, Laura; Cassandrini, Denise; Santorelli, Filippo Maria; Gerevini, Simonetta; Tavian, Daniela
2017-05-01
Neutral lipid storage disease with myopathy (NLSDM) presents with skeletal muscle myopathy and severe dilated cardiomyopathy in nearly 40% of cases. NLSDM is caused by mutations in the PNPLA2 gene, which encodes the adipose triglyceride lipase (ATGL). Here we report clinical and genetic findings of a patient carrying two novel PNPLA2 mutations (c.696+4A>G and c.553_565delGTCCCCCTTCTCG). She presented at age 39 with right upper limb abduction weakness slowly progressing over the years with asymmetric involvement of proximal upper and lower limb muscles. Cardiological evaluation through ECG and heart echo scan was normal until the age 53, when mild left ventricular diastolic dysfunction was detected. Molecular analysis revealed that only one type of PNPLA2 transcript, with exon 5 skipping, was expressed in patient cells. Such aberrant mRNA causes the production of a shorter ATGL protein, lacking part of the catalytic domain. This is an intriguing case, displaying severe PNPLA2 mutations with clinical presentation characterized by slight cardiac impairment and full expression of severe asymmetric myopathy. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kırca, Başak Koşar; Çakmak, Şükriye; Kütük, Halil; Odabaşoğlu, Mustafa; Büyükgüngör, Orhan
2018-01-01
This study treats about two successfully synthesized secondary amide compounds 3-Acetoxy-2-methyl-N-(phenyl)benzamide, I and 3-Acetoxy-2-methyl-N-(4-methylphenyl)benzamide, II. Compounds were characterized by FTIR, 1H NMR, 13C NMR and X-ray single crystal diffraction analysis techniques. Single crystal X-ray diffraction analyses show that while I crystallized in the orthorhombic system with space group Pbca, II crystallized in the triclinic system with space group P-1 and the asymmetric unit of II consists of two crystallographically independent molecules. Lattice constants are a = 7.9713 (3) Å, b = 9.5059 (3) Å, c = 37.1762 (2) Å, Z = 8 for I and a = 7.5579 (8) Å, b = 8.8601 (8) Å, c = 23.363 (3) Å, α = 97.011 (9) °, β = 96.932 (9)°, γ = 90.051 (8)°, Z = 4 for II. Crystallographic studies also show that the supramolecular structures were stabilized by intramolecular, intermolecular hydrogen bonds and Csbnd H … π interactions for both compounds. Characteristic amide bonds were observed in IR and NMR spectra.
Crystal structure of N-deacetyllappaconitine
Shi, Xin-Wei; Lu, Qiang-Qiang; Zhou, Jun-Hui; Cui, Xin-Ai
2015-01-01
The title compound, C30H42N2O7 [systematic name: (1S,4S,5S,7S,8S,9S,10S,11S,13R,14S,16S,17R)-20-ethyl-4,8,9-trihydroxy-1,14,16-trimethoxyaconitan-4-yl 2-aminobenzoate], isolated from roots of Aconitum sinomontanum Nakai, is a typical aconitane-type C19-diterpenoid alkaloid, which crystallizes with two independent molecules in the asymmetric unit. The conformations of the two independent molecules are closely similar. Each molecule comprises four six-membered rings (A, B, D and E) including one six-membered N-containing heterocyclic ring (E), and two five-membered rings (C and F). Rings A, B and E adopt chair conformations, while ring D displays a boat conformation. Five-membered rings C and F exhibit envelope conformations. IntramolecularN—H⋯O hydrogen bonds between the amino group and carbonyl O atom help to stabilize molecular structure. In the crystal, O—H⋯O hydrogen bonds link the molecules into zigzag chains propagating in [010]. PMID:26396805
Diffuse Vibrational Signature of a Single Proton Embedded in the Oxalate Scaffold, HO2CCO2(-).
Wolke, Conrad T; DeBlase, Andrew F; Leavitt, Christopher M; McCoy, Anne B; Johnson, Mark A
2015-12-31
To understand how the D2d oxalate scaffold (C2O4)(2-) distorts upon capture of a proton, we report the vibrational spectra of the cryogenically cooled HO2CCO2(-) anion and its deuterated isotopologue DO2CCO2(-). The transitions associated with the skeletal vibrations and OH bending modes are sharp and are well described by inclusion of cubic terms in the normal mode expansion of the potential surface through an extended Fermi resonance analysis. The ground state structure features a five-membered ring with an asymmetric intramolecular proton bond. The spectral signatures of the hydrogen stretches, on the contrary, are surprisingly diffuse, and this behavior is not anticipated by the extended Fermi scheme. We trace the diffuse bands to very strong couplings between the high-frequency OH-stretch and the low-frequency COH bends as well as heavy particle skeletal deformations. A simple vibrationally adiabatic model recovers this breadth of oscillator strength as a 0 K analogue of the motional broadening commonly used to explain the diffuse spectra of H-bonded systems at elevated temperatures, but where these displacements arise from the configurations present at the vibrational zero-point level.
Demarque, Daniel P; Merten, Christian
2017-12-19
When predicting binding properties of small molecules or larger supramolecular aggregates, intra- and intermolecular hydrogen bonds are often considered the most important factor. Spectroscopic techniques such as 1 H NMR spectroscopy are typically utilized to characterize such binding events, but interpretation is often qualitative and follows chemical intuition. In this study, we compare the effects of intramolecular hydrogen bonding and solvation on two chiral 2,6-pyridinediyl-dialkylamides. In comparison with 1 H NMR spectroscopy, vibrational circular dichroism (VCD) spectroscopy proved to be more sensitive to conformational changes. In fact, the change of the solvent from CDCl 3 to [D 6 ]DMSO generates mirror-image VCD spectra for the same enantiomer. Here, the common sense that the sterically less hindered group is more prone to solvation proved to be wrong according predicted VCD spectra, which clearly show that both asymmetric amide hydrogens are equally likely to be solvated, but never simultaneously. The competition between intra- and intermolecular hydrogen bonding and their importance for a correct prediction of spectral properties are discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Boudalis, Athanassios K; Aston, Robyn E; Smith, Sarah J; Mirams, Ruth E; Riley, Mark J; Schenk, Gerhard; Blackman, Allan G; Hanton, Lyall R; Gahan, Lawrence R
2007-11-28
The ligand, 2-((2-hydroxy-5-methyl-3-((pyridin-2-ylmethylamino)methyl)benzyl)(2-hydroxybenzyl)amino)acetic acid (H(3)HPBA), which contains a donor atom set that mimics that of the active site of purple acid phosphatase is described. Reaction of H(3)HPBA with iron(III) or iron(II) salts results in formation of the tetranuclear complex, [Fe(4)(HPBA)(2)(OAc)(2)(mu-O)(mu-OH)(OH(2))(2)]ClO(4) x 5H(2)O. X-Ray structural analysis reveals the cation consists of four iron(III) ions, two HPBA(3-) ligands, two bridging acetate ligands, a bridging oxide ion and a bridging hydroxide ion. Each binucleating HPBA(3-) ligand coordinates two structurally distinct hexacoordinate iron(III) ions. The two metal ions coordinated to a HPBA(3-) ligand are linked to the two iron(III) metal ions of a second, similar binuclear unit by intramolecular oxide and hydroxide bridging moieties to form a tetramer. The complex has been further characterised by elemental analysis, mass spectrometry, UV-vis and MCD spectroscopy, X-ray crystallography, magnetic susceptibility measurements and variable-temperature Mössbauer spectroscopy.
Karukurichi, Kannan R.; Fei, Xiang; Swyka, Robert A.; Broussy, Sylvain; Shen, Weijun; Dey, Sangeeta; Roy, Sandip K.; Berkowitz, David B.
2015-01-01
This study introduces new methods of screening for and tuning chiral space and in so doing identifies a promising set of chiral ligands for asymmetric synthesis. The carbafructopyranosyl-1,2-diamine(s) and salens constructed therefrom are particularly compelling. It is shown that by removing the native anomeric effect in this ligand family, one can tune chiral ligand shape and improve chiral bias. This concept is demonstrated by a combination of (i) x-ray crystallographic structure determination, (ii) assessment of catalytic performance, and (iii) consideration of the anomeric effect and its underlying dipolar basis. The title ligands were identified by a new mini version of the in situ enzymatic screening (ISES) procedure through which catalyst-ligand combinations are screened in parallel, and information on relative rate and enantioselectivity is obtained in real time, without the need to quench reactions or draw aliquots. Mini-ISES brings the technique into the nanomole regime (200 to 350 nmol catalyst/20 μl organic volume) commensurate with emerging trends in reaction development/process chemistry. The best-performing β-d-carbafructopyranosyl-1,2-diamine–derived salen ligand discovered here outperforms the best known organometallic and enzymatic catalysts for the hydrolytic kinetic resolution of 3-phenylpropylene oxide, one of several substrates examined for which the ligand is “matched.” This ligand scaffold defines a new swath of chiral space, and anomeric effect tunability defines a new concept in shaping that chiral space. Both this ligand set and the anomeric shape-tuning concept are expected to find broad application, given the value of chiral 1,2-diamines and salens constructed from these in asymmetric catalysis. PMID:26501130
The preparation and use of metal salen complexes derived from cyclobutane diamine
NASA Astrophysics Data System (ADS)
Patil, Smita
The helix is an important chiral motif in nature, there is increasing development in field of helical transition metal complexes and related supramolecular structures. Hence, the goals of this work are to apply the principles of helicity in order to produce metal complexes with predictable molecular shapes and to study their properties as asymmetric catalysts. Computational studies suggest that the (1R,2 R)-cyclobutyldiamine unit can produce highly twisted salen complexes with a large energy barrier between the M and P helical forms. To test this prediction, the tartrate salt of (1R,2R)-cyclobutyldiamine was synthesized and condensed with a series of saliclaldehydes to produce novel salen ligands. The salicylaldehydes chosen have extended phenanthryl or benz[a]anthryl sidearms to encourage formation of helical coordination complexes. These ligands were metallated with zinc, iron and manganese salts to produce salen metal complexes which were characterized by NMR analysis, high-resolution mass spectrometry, and IR spectroscopy. A second ligand type, neutral bis(pyridine-imine) has also been synthesized from (1R,2R)-cyclobutyldiamine and quinolylaldehydes. The synthesis of bis(pyridine-imine) ligands was conducted using greener method, solvent assisted grinding. These ligands, in-situ with nickel metal salts, showed good catalytic activity for asymmetric Diels-Alder reactions. The third ligand type studied was chiral acid-functionalized Schiff-base ligands. These were synthesized by the condensation of 3-formyl-5-methyl salicylic acid and (1R,2R)-cyclobutyldiamine. With this type of ligand, there is possibility of producing both mono and dinuclear metal complexes. In our studies, we were only able to synthesize mononuclear complexs. These were tested as catalysts for asymmetric direct Mannich-type reaction, but were found to be ineffective.
Vinyard, David J; Zachary, Chase E; Ananyev, Gennady; Dismukes, G Charles
2013-07-01
Forty-three years ago, Kok and coworkers introduced a phenomenological model describing period-four oscillations in O2 flash yields during photosynthetic water oxidation (WOC), which had been first reported by Joliot and coworkers. The original two-parameter Kok model was subsequently extended in its level of complexity to better simulate diverse data sets, including intact cells and isolated PSII-WOCs, but at the expense of introducing physically unrealistic assumptions necessary to enable numerical solutions. To date, analytical solutions have been found only for symmetric Kok models (inefficiencies are equally probable for all intermediates, called "S-states"). However, it is widely accepted that S-state reaction steps are not identical and some are not reversible (by thermodynamic restraints) thereby causing asymmetric cycles. We have developed a mathematically more rigorous foundation that eliminates unphysical assumptions known to be in conflict with experiments and adopts a new experimental constraint on solutions. This new algorithm termed STEAMM for S-state Transition Eigenvalues of Asymmetric Markov Models enables solutions to models having fewer adjustable parameters and uses automated fitting to experimental data sets, yielding higher accuracy and precision than the classic Kok or extended Kok models. This new tool provides a general mathematical framework for analyzing damped oscillations arising from any cycle period using any appropriate Markov model, regardless of symmetry. We illustrate applications of STEAMM that better describe the intrinsic inefficiencies for photon-to-charge conversion within PSII-WOCs that are responsible for damped period-four and period-two oscillations of flash O2 yields across diverse species, while using simpler Markov models free from unrealistic assumptions. Copyright © 2013 Elsevier B.V. All rights reserved.
Sky-blue emitting bridged diiridium complexes: beneficial effects of intramolecular π-π stacking.
Congrave, Daniel G; Hsu, Yu-Ting; Batsanov, Andrei S; Beeby, Andrew; Bryce, Martin R
2018-02-06
The potential of intramolecular π-π interactions to influence the photophysical properties of diiridium complexes is an unexplored topic, and provides the motivation for the present study. A series of diarylhydrazide-bridged diiridium complexes functionalised with phenylpyridine (ppy)-based cyclometalating ligands is reported. It is shown by NMR studies in solution and single crystal X-ray analysis that intramolecular π-π interactions between the bridging and cyclometalating ligands rigidify the complexes leading to high luminescence quantum efficiencies in solution and in doped films. Fluorine substituents on the phenyl rings of the bridge promote the intramolecular π-π interactions. Notably, these non-covalent interactions are harnessed in the rational design and synthesis of the first examples of highly emissive sky-blue diiridium complexes featuring conjugated bridging ligands, for which they play a vital role in the structural and photophysical properties. Experimental results are supported by computational studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinberger, Jutta; Kontaxis, Georg; Rancan, Chiara
The foot-and-mouth disease virus leader proteinase (Lb{sup pro}) cleaves itself off the nascent viral polyprotein. NMR studies on the monomeric variant Lb{sup pro} L200F provide structural evidence for intramolecular self-processing. {sup 15}N-HSQC measurements of Lb{sup pro} L200F showed specifically shifted backbone signals in the active and substrate binding sites compared to the monomeric variant sLb{sup pro}, lacking six C-terminal residues. This indicates transient intramolecular interactions between the C-terminal extension (CTE) of one molecule and its own active site. Contrastingly, the porcine reproductive and respiratory syndrome virus (PRRSV) leader proteinase nsp1α, with a papain-like fold like Lb{sup pro}, stably binds itsmore » own CTE. Parts of the β-sheet domains but none of the α-helical domains of Lb{sup pro} and nsp1α superimpose; consequently, the α-helical domain of nsp1α is oriented differently relative to its β-sheet domain. This provides a large interaction surface for the CTE with the globular domain, stabilising the intramolecular complex. Consequently, self-processing inactivates nsp1α but not Lb{sup pro}. - Highlights: • We examine self-processing of the leader protease of foot-and-mouth disease virus. • NMR analysis strongly supports intramolecular self-processing. • Self-processing is a dynamic process with no stable complex. • Structural comparison with nsp1α of PRRSV which forms stable intramolecular complex. • Subdomain orientation explains differences in stability of intramolecular complexes.« less
Ehlers, Ina; Betson, Tatiana R.; Vetter, Walter; Schleucher, Jürgen
2014-01-01
The persistent organic pollutant DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane) is still indispensable in the fight against malaria, although DDT and related compounds pose toxicological hazards. Technical DDT contains the dichloro congener DDD (1-chloro-4-[2,2-dichloro-1-(4-chlorophenyl)ethyl]benzene) as by-product, but DDD is also formed by reductive degradation of DDT in the environment. To differentiate between DDD formation pathways, we applied deuterium NMR spectroscopy to measure intramolecular deuterium distributions (2H isotopomer abundances) of DDT and DDD. DDD formed in the technical DDT synthesis was strongly deuterium-enriched at one intramolecular position, which we traced back to 2H/1H fractionation of a chlorination step in the technical synthesis. In contrast, DDD formed by reductive degradation was strongly depleted at the same position, which was due to the incorporation of 2H-depleted hydride equivalents during reductive degradation. Thus, intramolecular isotope distributions give mechanistic information on reaction pathways, and explain a puzzling difference in the whole-molecule 2H/1H ratio between DDT and DDD. In general, our results highlight that intramolecular isotope distributions are essential to interpret whole-molecule isotope ratios. Intramolecular isotope information allows distinguishing pathways of DDD formation, which is important to identify polluters or to assess DDT turnover in the environment. Because intramolecular isotope data directly reflect isotope fractionation of individual chemical reactions, they are broadly applicable to elucidate transformation pathways of small bioactive molecules in chemistry, physiology and environmental science. PMID:25350380
Nomura, Taiji; Ogita, Shinjiro; Kato, Yasuo
2012-06-01
Tuliposides, the glucose esters of 4-hydroxy-2-methylenebutanoate and 3,4-dihydroxy-2-methylenebutanoate, are major secondary metabolites in tulip (Tulipa gesneriana). Their lactonized aglycons, tulipalins, function as defensive chemicals due to their biological activities. We recently found that tuliposide-converting enzyme (TCE) purified from tulip bulbs catalyzed the conversion of tuliposides to tulipalins, but the possibility of the presence of several TCE isozymes was raised: TCE in tissues other than bulbs is different from bulb TCE. Here, to prove this hypothesis, TCE was purified from petals, which have the second highest TCE activity after bulbs. The purified enzyme, like the bulb enzyme, preferentially accepted tuliposides as substrates, with 6-tuliposide A the best substrate, which allowed naming the enzyme tuliposide A-converting enzyme (TCEA), but specific activity and molecular mass differed between the petal and bulb enzymes. After peptide sequencing, a novel cDNA (TgTCEA) encoding petal TCEA was isolated, and the functional characterization of the recombinant enzyme verified that TgTCEA catalyzes the conversion of 6-tuliposide A to tulipalin A. TgTCEA was transcribed in all tulip tissues but not in bulbs, indicating the presence of a bulb-specific TgTCEA, as suggested by the distinct enzymatic characters between the petal and bulb enzymes. Plastidial localization of TgTCEA enzyme was revealed, which allowed proposing a cytological mechanism of TgTCE-mediated tulipalin formation in the tulip defensive strategy. Site-directed mutagenesis of TgTCEA suggested that the oxyanion hole and catalytic triad characteristic of typical carboxylesterases are essential for the catalytic process of TgTCEA enzyme. To our knowledge, TgTCEA is the first identified member of the lactone-forming carboxylesterases, specifically catalyzing intramolecular transesterification.
Nomura, Taiji; Ogita, Shinjiro; Kato, Yasuo
2012-01-01
Tuliposides, the glucose esters of 4-hydroxy-2-methylenebutanoate and 3,4-dihydroxy-2-methylenebutanoate, are major secondary metabolites in tulip (Tulipa gesneriana). Their lactonized aglycons, tulipalins, function as defensive chemicals due to their biological activities. We recently found that tuliposide-converting enzyme (TCE) purified from tulip bulbs catalyzed the conversion of tuliposides to tulipalins, but the possibility of the presence of several TCE isozymes was raised: TCE in tissues other than bulbs is different from bulb TCE. Here, to prove this hypothesis, TCE was purified from petals, which have the second highest TCE activity after bulbs. The purified enzyme, like the bulb enzyme, preferentially accepted tuliposides as substrates, with 6-tuliposide A the best substrate, which allowed naming the enzyme tuliposide A-converting enzyme (TCEA), but specific activity and molecular mass differed between the petal and bulb enzymes. After peptide sequencing, a novel cDNA (TgTCEA) encoding petal TCEA was isolated, and the functional characterization of the recombinant enzyme verified that TgTCEA catalyzes the conversion of 6-tuliposide A to tulipalin A. TgTCEA was transcribed in all tulip tissues but not in bulbs, indicating the presence of a bulb-specific TgTCEA, as suggested by the distinct enzymatic characters between the petal and bulb enzymes. Plastidial localization of TgTCEA enzyme was revealed, which allowed proposing a cytological mechanism of TgTCE-mediated tulipalin formation in the tulip defensive strategy. Site-directed mutagenesis of TgTCEA suggested that the oxyanion hole and catalytic triad characteristic of typical carboxylesterases are essential for the catalytic process of TgTCEA enzyme. To our knowledge, TgTCEA is the first identified member of the lactone-forming carboxylesterases, specifically catalyzing intramolecular transesterification. PMID:22474185
The origin and evolution of human glutaminases and their atypical C-terminal ankyrin repeats
Pasquali, Camila Cristina; Islam, Zeyaul; Adamoski, Douglas; ...
2017-05-19
On the basis of tissue-specific enzyme activity and inhibition by catalytic products, Hans Krebs first demonstrated the existence of multiple glutaminases in mammals. Currently, two human genes are known to encode at least four glutaminase isoforms. But, the phylogeny of these medically relevant enzymes remains unclear, prompting us to investigate their origin and evolution. Using prokaryotic and eukaryotic glutaminase sequences, we built a phylogenetic tree whose topology suggested that the multidomain architecture was inherited from bacterial ancestors, probably simultaneously with the hosting of the proto-mitochondrion endosymbiont. We propose an evolutionary model wherein the appearance of the most active enzyme isoform,more » glutaminase C (GAC), which is expressed in many cancers, was a late retrotransposition event that occurred in fishes from the Chondrichthyes class. The ankyrin (ANK) repeats in the glutaminases were acquired early in their evolution. In order to obtain information on ANK folding, we solved two high-resolution structures of the ANK repeat-containing C termini of both kidney-type glutaminase (KGA) and GLS2 isoforms (glutaminase B and liver-type glutaminase). We also found that the glutaminase ANK repeats form unique intramolecular contacts through two highly conserved motifs; curiously, this arrangement occludes a region usually involved in ANK-mediated protein-protein interactions. We also solved the crystal structure of full-length KGA and present a small-angle X-ray scattering model for full-length GLS2. These structures explain these proteins' compromised ability to assemble into catalytically active supra-tetrameric filaments, as previously shown for GAC. Collectively, these results provide information about glutaminases that may aid in the design of isoform-specific glutaminase inhibitors.« less
Heide, C; Pfeiffer, T; Nolan, J M; Hartmann, R K
1999-01-01
We have identified by nucleotide analog interference mapping (NAIM) exocyclic NH2 groups of guanosines in RNase P RNA from Escherichia coli that are important for tRNA binding. The majority of affected guanosines represent phylogenetically conserved nucleotides. Several sites of interference could be assigned to direct contacts with the tRNA moiety, whereas others were interpreted as reflecting indirect effects on tRNA binding due to the disruption of tertiary contacts within the catalytic RNA. Our results support the involvement of the 2-NH2 groups of G292/G293 in pairing with C74 and C75 of tRNA CCA-termini, as well as formation of two consecutive base triples involving C75 and A76 of CCA-ends interacting with G292/A258 and G291/G259, respectively. Moreover, we present first biochemical evidence for two tertiary contacts (L18/P8 and L8/P4) within the catalytic RNA, whose formation has been postulated previously on the basis of phylogenetic comparative analyses. The tRNA binding interference data obtained in this and our previous studies are consistent with the formation of a consecutive nucleotide triple and quadruple between the tetraloop L18 and helix P8. Formation of the nucleotide triple (G316 and A94:U104 in wild-type E. coli RNase P RNA) is also supported by mutational analysis. For the mutant RNase P RNA carrying a G94:C104 double mutation, an additional G316-to-A mutation resulted in a restoration of binding affinity for mature and precursor tRNA. PMID:9917070
The origin and evolution of human glutaminases and their atypical C-terminal ankyrin repeats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasquali, Camila Cristina; Islam, Zeyaul; Adamoski, Douglas
On the basis of tissue-specific enzyme activity and inhibition by catalytic products, Hans Krebs first demonstrated the existence of multiple glutaminases in mammals. Currently, two human genes are known to encode at least four glutaminase isoforms. But, the phylogeny of these medically relevant enzymes remains unclear, prompting us to investigate their origin and evolution. Using prokaryotic and eukaryotic glutaminase sequences, we built a phylogenetic tree whose topology suggested that the multidomain architecture was inherited from bacterial ancestors, probably simultaneously with the hosting of the proto-mitochondrion endosymbiont. We propose an evolutionary model wherein the appearance of the most active enzyme isoform,more » glutaminase C (GAC), which is expressed in many cancers, was a late retrotransposition event that occurred in fishes from the Chondrichthyes class. The ankyrin (ANK) repeats in the glutaminases were acquired early in their evolution. In order to obtain information on ANK folding, we solved two high-resolution structures of the ANK repeat-containing C termini of both kidney-type glutaminase (KGA) and GLS2 isoforms (glutaminase B and liver-type glutaminase). We also found that the glutaminase ANK repeats form unique intramolecular contacts through two highly conserved motifs; curiously, this arrangement occludes a region usually involved in ANK-mediated protein-protein interactions. We also solved the crystal structure of full-length KGA and present a small-angle X-ray scattering model for full-length GLS2. These structures explain these proteins' compromised ability to assemble into catalytically active supra-tetrameric filaments, as previously shown for GAC. Collectively, these results provide information about glutaminases that may aid in the design of isoform-specific glutaminase inhibitors.« less
2015-01-01
Lanthipeptides are a class of ribosomally synthesized and posttranslationally modified peptide natural products (RiPPs) that typically harbor multiple intramolecular thioether linkages. For class II lanthipeptides, these cross-links are installed in a multistep reaction pathway by a single enzyme (LanM). The multifunctional nature of LanMs and the manipulability of their genetically encoded peptide substrates (LanAs) make LanM/LanA systems promising targets for the engineering of new antibacterial compounds. Here, we report the development of a semiquantitative mass spectrometry-based assay for kinetic characterization of LanM-catalyzed reactions. The assay was used to conduct a comparative kinetic analysis of two LanM enzymes (HalM2 and ProcM) that exhibit drastically different substrate selectivity. Numerical simulation of the kinetic data was used to develop models for the multistep HalM2- and ProcM-catalyzed reactions. These models illustrate that HalM2 and ProcM have markedly different catalytic efficiencies for the various reactions they catalyze. HalM2, which is responsible for the biosynthesis of a single compound (the Halβ subunit of the lantibiotic haloduracin), catalyzes reactions with higher catalytic efficiency than ProcM, which modifies 29 different ProcA precursor peptides during prochlorosin biosynthesis. In particular, the rates of thioether ring formation are drastically reduced in ProcM, likely because this enzyme is charged with installing a variety of lanthipeptide ring architectures in its prochlorosin products. Thus, ProcM appears to pay a kinetic price for its relaxed substrate specificity. In addition, our kinetic models suggest that conformational sampling of the LanM/LanA Michaelis complex could play an important role in the kinetics of LanA maturation. PMID:25409537
The controlled relay of multiple protons required at the active site of nitrogenase.
Dance, Ian
2012-07-07
The enzyme nitrogenase, when reducing natural and unnatural substrates, requires large numbers of protons per chemical catalytic cycle. The active face of the catalytic site (the FeMo-cofactor, FeMo-co) is situated in a protein domain which is largely hydrophobic and anhydrous, and incapable of serial provision of multiple protons. Through detailed analysis of the high quality protein crystal structures available the characteristics of a chain of water molecules leading from the protein surface to a key sulfur atom (S3B) of FeMo-co are described. The first half of the water chain from the surface inwards is branched, slightly variable, and able to accommodate exogenous small molecules: this is dubbed the proton bay. The second half, from the proton bay to S3B, is comprised of a single chain of eight hydrogen bonded water molecules. This section is strictly conserved, and is intimately involved in hydrogen bonds with homocitrate, an essential component that chelates Mo. This is the proton wire, and a detailed Grotthuss mechanism for serial translocation of protons through this proton wire to S3B is proposed. This controlled serial proton relay from the protein surface to S3B is an essential component of the intramolecular hydrogenation paradigm for the complete chemical mechanisms of nitrogenase. Each proton reaching S3B, instigated by electron transfer to FeMo-co, becomes a hydrogen atom that migrates to other components of the active face of FeMo-co and to bound substrates and intermediates, allowing subsequent multiple proton transfers along the proton wire. Experiments to test the proposed mechanism of proton supply are suggested. The water chain in nitrogenase is comparable with the purported proton pumping pathway of cytochrome c oxidase.
NASA Astrophysics Data System (ADS)
Sato, Harumi; Dybal, Jiří; Murakami, Rumi; Noda, Isao; Ozaki, Yukihiro
2005-06-01
This review paper reports infrared (IR) and Raman spectroscopy and quantum chemistry calculation studies of C-H⋯O hydrogen bondings and thermal behavior of biodegradable polyhydroxyalkanoates. IR and Raman spectra were measured for poly(3-hydroxybutyrate) (PHB) and a new type of bacterial copolyester, poly(3-hydroxybutyrate- co-3-hydroxyhexanoate), P(HB- co-HHx) (HHx=12 mol%) over a temperature range of 20 °C to higher temperatures (PHB, 200 °C; HHx=12 mol%, 140 °C) to explore their structure and thermal behavior. One of bands due to the CH 3 asymmetric stretching modes appears near 3010 cm -1 in the IR and Raman spectra of PHB and P(HB- co-HHx) at 20 °C. These frequencies of IR and Raman CH 3 asymmetric stretching bands are much higher than usual. These anomalous frequencies of the CH 3 asymmetric stretching bands together with the X-ray crystallographic structure of PHB have suggested that there is an inter- or intra-molecular C-H⋯O hydrogen bond between the C dbnd6 O group in one helical structure and the CH 3 group in the other helical structure in PHB and P(HB- co-HHx). The quantum chemical calculation of model compounds of PHB also has suggested the existence of C-H⋯O hydrogen bonds in PHB and P(HB- co-HHx). It is very likely that a chain of C-H⋯O hydrogen bond pairs link two parallel helical structures in the crystalline parts. The temperature-dependent IR and Raman spectral variations have revealed that the crystallinity of P(HB- co-HHx) (HHx=12 mol%) decreases gradually from a fairly low temperature (about 60 °C), while the crystallinity of PHB remains almost unchanged until just below its melting temperature. It has also been found from the IR and Raman studies that for both PHB and P(HB- co-HHx) the weakening of the C-H⋯O hydrogen bonds starts from just above room temperature, but the deformation of helical structures occurs after the weakening of the C-H⋯O hydrogen bonds advances to some extent.
Verma, Anil Kumar; Goyal, Arun; Freire, Filipe; Bule, Pedro; Venditto, Immacolata; Brás, Joana L. A.; Santos, Helena; Cardoso, Vânia; Bonifácio, Cecília; Thompson, Andrew; Romão, Maria João; Prates, José A. M.; Ferreira, Luís M. A.; Fontes, Carlos M. G. A.; Najmudin, Shabir
2013-01-01
The modular carbohydrate-active enzyme belonging to glycoside hydrolase family 30 (GH30) from Clostridium thermocellum (CtXynGH30) is a cellulosomal protein which plays an important role in plant cell-wall degradation. The full-length CtXynGH30 contains an N-terminal catalytic module (Xyn30A) followed by a family 6 carbohydrate-binding module (CBM6) and a dockerin at the C-terminus. The recombinant protein has a molecular mass of 45 kDa. Preliminary structural characterization was carried out on Xyn30A crystallized in different conditions. All tested crystals belonged to space group P1 with one molecule in the asymmetric unit. Molecular replacement has been used to solve the Xyn30A structure. PMID:24316849
Copper-catalyzed selective hydroamination reactions of alkynes
Shi, Shi-Liang; Buchwald, Stephen L.
2014-01-01
The development of selective reactions that utilize easily available and abundant precursors for the efficient synthesis of amines is a longstanding goal of chemical research. Despite the centrality of amines in a number of important research areas, including medicinal chemistry, total synthesis and materials science, a general, selective, and step-efficient synthesis of amines is still needed. In this work we describe a set of mild catalytic conditions utilizing a single copper-based catalyst that enables the direct preparation of three distinct and important amine classes (enamines, α-chiral branched alkylamines, and linear alkylamines) from readily available alkyne starting materials with high levels of chemo-, regio-, and stereoselectivity. This methodology was applied to the asymmetric synthesis of rivastigmine and the formal synthesis of several other pharmaceutical agents, including duloxetine, atomoxetine, fluoxetine, and tolterodine. PMID:25515888
Li, Yang
2011-01-01
We have accomplished an asymmetric synthesis of each enantiomer of 4,4-difluoroglutamic acid. This α-amino acid has been of interest in medicinal chemistry circles. Key features of the synthesis include highly scalable procedures, a Reformatsky-based coupling reaction, and straightforward functional group manipulations to make the parent amino acid. Enantioenrichment derives from an enzymatic resolution of the synthetic material. Conversion of the optically enriched compounds to orthogonally protected forms allows selective formation of peptide bonds. 4,4- Difluoroglutamic acid, in a suitably protected form, is also shown to exhibit enhanced catalytic activity in both an oxidation reaction and a reduction reaction, in comparison to the analogous glutamic acid derivative. PMID:22039908
Copper-catalysed selective hydroamination reactions of alkynes
NASA Astrophysics Data System (ADS)
Shi, Shi-Liang; Buchwald, Stephen L.
2015-01-01
The development of selective reactions that utilize easily available and abundant precursors for the efficient synthesis of amines is a long-standing goal of chemical research. Despite the centrality of amines in a number of important research areas, including medicinal chemistry, total synthesis and materials science, a general, selective and step-efficient synthesis of amines is still needed. Here, we describe a set of mild catalytic conditions utilizing a single copper-based catalyst that enables the direct preparation of three distinct and important amine classes (enamines, α-chiral branched alkylamines and linear alkylamines) from readily available alkyne starting materials with high levels of chemo-, regio- and stereoselectivity. This methodology was applied to the asymmetric synthesis of rivastigmine and the formal synthesis of several other pharmaceutical agents, including duloxetine, atomoxetine, fluoxetine and tolterodine.
Zhang, Lilan; Zhao, Puya; Chen, Chun-Chi; Huang, Chun-Hsiang; Ko, Tzu-Ping; Zheng, Yingying; Guo, Rey-Ting
2014-07-01
β-1,3-1,4-Glucanases catalyze the specific hydrolysis of internal β-1,4-glycosidic bonds adjacent to the 3-O-substituted glucose residues in mixed-linked β-glucans. The thermophilic glycoside hydrolase CtGlu16A from Clostridium thermocellum exhibits superior thermal profiles, high specific activity and broad pH adaptability. Here, the catalytic domain of CtGlu16A was expressed in Escherichia coli, purified and crystallized in the trigonal space group P3121, with unit-cell parameters a=b=74.5, c=182.9 Å, by the sitting-drop vapour-diffusion method and diffracted to 1.95 Å resolution. The crystal contains two protein molecules in an asymmetric unit. Further structural determination and refinement are in progress.
Bioreduction of α,β-unsaturated ketones and aldehydes by non-conventional yeast (NCY) whole-cells.
Goretti, Marta; Ponzoni, Chiara; Caselli, Elisa; Marchegiani, Elisabetta; Cramarossa, Maria Rita; Turchetti, Benedetta; Forti, Luca; Buzzini, Pietro
2011-03-01
The bioreduction of α,β-unsaturated ketones (ketoisophorone, 2-methyl- and 3-methyl-cyclopentenone) and aldehydes [(S)-(-)-perillaldehyde and α-methyl-cinnamaldehyde] by 23 "non-conventional" yeasts (NCYs) belonging to 21 species of the genera Candida, Cryptococcus, Debaryomyces, Hanseniaspora, Kazachstania, Kluyveromyces, Lindnera, Nakaseomyces, Vanderwaltozyma, and Wickerhamomyces was reported. The results highlight the potential of NCYs as whole-cell biocatalysts for selective biotransformation of electron-poor alkenes. A few NCYs exhibited extremely high (>90%) or even total ketoisophorone and 2-methyl-cyclopentenone bioconversion yields via asymmetric reduction of the conjugated CC bond catalyzed by enoate reductases. Catalytic efficiency declined after switching from ketones to aldehydes. High chemoselectivity due to low competing carbonyl reductases was also sometimes observed. Copyright © 2010 Elsevier Ltd. All rights reserved.
Unusual para-substituent effects on the intramolecular hydrogen-bond in hydrazone-based switches.
Su, Xin; Lõkov, Märt; Kütt, Agnes; Leito, Ivo; Aprahamian, Ivan
2012-11-04
A "V"-shaped Hammett plot shows that resonance-assisted hydrogen bonding does not dictate the strength of the intramolecular hydrogen bond in the E isomers of hydrazone-based switches because it involves an aromatic pyridyl ring.
Loru, Donatella; Peña, Isabel; Alonso, José L.
2016-01-01
The intramolecular interactions in the lipid sphingosine have been elucidated through the investigation of the amino alcohol serinol which mimics its polar headgroup. Intricate networks of intramolecular hydrogen bonds involving the hydroxyl groups and the amino group contribute to the stabilisation of five different conformations observed in the broadband rotational spectrum. PMID:26727395
Stokes, Benjamin J.; Richert, Kathleen J.; Driver, Tom G.
2009-01-01
The use of a rhodium(II) carboxylate catalyst enables the mild and stereoselective formation of carbazoles from biaryl azides. Intramolecular competition experiments of triaryl azides suggested the source of the selectivity. A primary intramolecular kinetic isotope effect was not observed and correlation of the product ratios with Hammett σ+-values produced a plot with two intersecting lines with opposite ρ-values. These data suggest that electronic donation by the biaryl π-system accelerates the formation of rhodium nitrenoid and that C–N bond formation occurs through a 4π-electron-5-atom electrocyclization. PMID:19663433
Esteban, Francisco; Cieślik, Wioleta; Arpa, Enrique M; Guerrero-Corella, Andrea; Díaz-Tendero, Sergio; Perles, Josefina; Fernández-Salas, José A; Fraile, Alberto; Alemán, José
2018-03-02
An organocatalytic strategy for the synthesis of tetrasubstituted pyrrolidines with monoactivated azomethine ylides in high enantiomeric excess and excellent exo/endo selectivity is presented. The key to success is the intramolecular activation via hydrogen bonding through an o -hydroxy group, which allows the dipolar cycloaddition to take place in the presence of azomethine ylides bearing only one activating group. The intramolecular hydrogen bond in the azomethine ylide and the intermolecular hydrogen bond with the catalyst have been demonstrated by DFT calculations and mechanistic proofs to be crucial for the reaction to proceed.
The Strength of Hydrogen Bonds between Fluoro-Organics and Alcohols, a Theoretical Study.
Rosenberg, Robert E
2018-05-10
Fluorinated organic compounds are ubiquitous in the pharmaceutical and agricultural industries. To better discern the mode of action of these compounds, it is critical to understand the strengths of hydrogen bonds involving fluorine. There are only a few published examples of the strengths of these bonds. This study provides a high level ab initio study of inter- and intramolecular hydrogen bonds between RF and R'OH, where R and R' are aryl, vinyl, alkyl, and cycloalkyl. Intermolecular binding energies average near 5 kcal/mol, while intramolecular binding energies average about 3 kcal/mol. Inclusion of zero-point energies and applying a counterpoise correction lessen the difference. In both series, modest increases in binding energies are seen with increased acidity of R'OH and increased electron donation of R in RF. In the intramolecular compounds, binding energy increases with the rigidity of the F-(C) n -OH ring. Inclusion of free energy corrections at 298 K results in exoergic binding energies for the intramolecular compounds and endoergic binding energies for the intermolecular compounds. Parameters such as bond lengths, vibrational frequencies, and atomic populations are consistent with formation of a hydrogen bond and with slightly stronger binding in the intermolecular cases over the intramolecular cases. However, these parameters correlated poorly with binding energies.
Hu, W S; Bowman, E H; Delviks, K A; Pathak, V K
1997-01-01
Homologous recombination and deletions occur during retroviral replication when reverse transcriptase switches templates. While recombination occurs solely by intermolecular template switching (between copackaged RNAs), deletions can occur by an intermolecular or an intramolecular template switch (within the same RNA). To directly compare the rates of intramolecular and intermolecular template switching, two spleen necrosis virus-based vectors were constructed. Each vector contained a 110-bp direct repeat that was previously shown to delete at a high rate. The 110-bp direct repeat was flanked by two different sets of restriction site markers. These vectors were used to form heterozygotic virions containing RNAs of each parental vector, from which recombinant viruses were generated. By analyses of the markers flanking the direct repeats in recombinant and nonrecombinant proviruses, the rates of intramolecular and intermolecular template switching were determined. The results of these analyses indicate that intramolecular template switching is much more efficient than intermolecular template switching and that direct repeat deletions occur primarily through intramolecular template switching events. These studies also indicate that retroviral recombination occurs within a distinct viral subpopulation and exhibits high negative interference, whereby the selection of one recombination event increases the probability that a second recombination event will be observed. PMID:9223494