Science.gov

Sample records for catalytic carbonyl allylation

  1. Highly Concentrated Catalytic Asymmetric Allylation of Ketones

    PubMed Central

    Wooten, Alfred J.; Kim, Jeung Gon; Walsh, Patrick J.

    2008-01-01

    We report the catalytic asymmetric allylation of ketones under highly concentrated reaction conditions with a catalyst generated from titanium tetraisopropoxide and BINOL (1:2 ratio) in the presence of isopropanol. This catalyst promotes the addition of tetraallylstannane to a variety of ketones to produce tertiary homoallylic alcohols in excellent yield (80–99%) with high enantioselectivities (79–95%). The resulting homoallylic alcohols can also be epoxidized in situ using tert-butyl hydroperoxide (TBHP) to afford cyclic epoxy alcohols in high yield (84–87%). PMID:17249767

  2. Highly concentrated catalytic asymmetric allylation of ketones.

    PubMed

    Wooten, Alfred J; Kim, Jeung Gon; Walsh, Patrick J

    2007-02-01

    [reaction: see text] We report the catalytic asymmetric allylation of ketones under highly concentrated reaction conditions with a catalyst generated from titanium tetraisopropoxide and BINOL (1:2 ratio) in the presence of isopropanol. This catalyst promotes the addition of tetraallylstannane to a variety of ketones to produce tertiary homoallylic alcohols in excellent yield (80-99%) with high enantioselectivities (79-95%). The resulting homoallylic alcohols can also be epoxidized in situ using tert-butyl hydroperoxide (TBHP) to afford cyclic epoxy alcohols in high yield (84-87%).

  3. Enantioselective Iridium-Catalyzed Carbonyl Allylation from the Alcohol or Aldehyde Oxidation Level Using Allyl Acetate as an Allyl Metal Surrogate

    PubMed Central

    Kim, In Su; Ngai, Ming-Yu; Krische, Michael J.

    2010-01-01

    A method for carbonyl allylation and crotylation from the alcohol oxidation state via allyl acetate-alcohol transfer hydrogenative C-C coupling is described. Exposure of allyl acetate to benzylic and allylic alcohols 1a-9a in the presence of an iridium catalyst derived from [IrCl(cod)]2 and BIPHEP delivers products of C-allylation 1b-9b. Similarly, 3-acetoxy-1-butene couples to allylic alcohols 1a-9a to furnish crotylation products 1c-9c. The ability of this allylation protocol to transcend the boundaries imposed by oxidation level are demonstrated by the coupling of allyl acetate to aldehydes 1d-3d under standard conditions, but employing isopropanol as terminal reductant. The products of C-allylation 1b-3b are obtained in isolated yields comparable to those obtained in the corresponding alcohol coupling reactions. These studies contribute to a paradigm shift in carbonyl addition chemistry that defines a departure from preformed organometallic reagents. PMID:18444616

  4. Diastereo- and Enantioselective Iridium Catalyzed Carbonyl (α-Cyclopropyl)allylation via Transfer Hydrogenation.

    PubMed

    Tsutsumi, Ryosuke; Hong, Suckchang; Krische, Michael J

    2015-09-07

    The first examples of diastereo- and enantioselective carbonyl α-(cyclopropyl)allylation are reported. Under the conditions of iridium catalyzed transfer hydrogenation using the chiral precatalyst (R)-Ir-I modified by SEGPHOS, carbonyl α-(cyclopropyl)allylation may be achieved with equal facility from alcohol or aldehyde oxidation levels. This methodology provides a conduit to hitherto inaccessible inaccessible enantiomerically enriched cyclopropane-containing architectures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Dichloro(dodeca-2,6,10-triene-1,12-diyl)ruthenium(IV): a highly efficient catalyst for the isomerization of allylic alcohols into carbonyl compounds in organic and aqueous media.

    PubMed

    Cadierno, Victorio; García-Garrido, Sergio E; Gimeno, José

    2004-01-21

    The catalytic activity of the bis(allyl)-ruthenium(iv) complex [Ru([small eta](3):[small eta](2):[small eta](3)-C(12)H(18))Cl(2)] in the transposition of allylic alcohols into carbonyl compounds, both in THF and H(2)O as solvent, is reported.

  6. Direct Palladium-Catalyzed Carbonylative Transformation of Allylic Alcohols and Related Derivatives.

    PubMed

    Wu, Fu-Peng; Peng, Jin-Bao; Fu, Lu-Yang; Qi, Xinxin; Wu, Xiao-Feng

    2017-09-18

    A direct, palladium-catalyzed, carbonylative transformation of allylic alcohols for the synthesis of β,γ-unsaturated carboxylic acids has been developed. With formic acid as the CO source, various allylic alcohols were conveniently transformed into the corresponding β,γ-unsaturated carboxylic acids with excellent linear and (E)-selectivity. The reaction was performed under mild conditions; toxic CO gas manipulation and high-pressure equipment were avoided in this procedure.

  7. α-Regioselective Barbier Reaction of Carbonyl Compounds and Allyl Halides Mediated by Praseodymium.

    PubMed

    Wu, San; Li, Ying; Zhang, Songlin

    2016-09-02

    The first utility of praseodymium as a mediating metal in the Barbier reaction of carbonyl compounds with allyl halides was reported in this paper. In contrast to the traditional metal-mediated or catalyzed Barbier reactions, exclusive α-adducts were obtained in this one-pot reaction with a broad scope of substrates and feasible reaction conditions.

  8. Enantioselective Carbonyl Allylation, Crotylation and tert-Prenylation of Furan Methanols and Furfurals via Iridium Catalyzed Transfer Hydrogenation

    PubMed Central

    Bechem, Benjamin; Patman, Ryan L.; Hashmi, Stephen; Krische, Michael J.

    2010-01-01

    5-Substituted-2-furan methanols 1a–1c are subject to enantioselective carbonyl allylation, crotylation and tert-prenylation upon exposure to allyl acetate, α-methyl allyl acetate or 1,1,-dimethylallene in the presence of an ortho-cyclometallated iridium catalyst modified by (R)-Cl,MeO-BIPHEP, (R)-C3 -TUNEPHOS and (R)-C3-SEGPHOS, respectively. In the presence of isopropanol, but under otherwise identical conditions, the corresponding substituted furfurals 2a–2c are converted to identical products of allylation, crotylation and tert-prenylation. Optically enriched products carbonyl allylation, crotylation and reverse prenylation 3b, 4b and 5b were subjected to Achmatowicz rearrangement to furnish the corresponding γ-hydroxy-β-pyrones 6a–6c, respectively, with negligible erosion of enantiomeric excess. PMID:20131774

  9. Enantioselective Iridium Catalyzed Carbonyl Allylation from the Alcohol Oxidation Level via Transfer Hydrogenation: Minimizing Pre-Activation for Synthetic Efficiency

    PubMed Central

    Han, Soo Bong; Kim, In Su; Krische, Michael J.

    2010-01-01

    Existing methods for enantioselective carbonyl allylation, crotylation and tert-prenylation require stoichiometric generation of pre-metallated nucleophiles and often employ stoichiometric chiral modifiers. Under the conditions of transfer hydrogenation employing an ortho-cyclometallated iridium C,O-benzoate catalyst, enantioselective carbonyl allylations, crotylations and tert-prenylations are achieved in the absence of stoichiometric metallic reagents or stoichiometric chiral modifiers. Moreover, under transfer hydrogenation conditions, primary alcohols function dually as hydrogen donors and aldehyde precursors, enabling enantioselective carbonyl addition directly from the alcohol oxidation level. PMID:20024203

  10. Bis(allyl)-ruthenium(IV) complexes as highly efficient catalysts for the redox isomerization of allylic alcohols into carbonyl compounds in organic and aqueous media: scope, limitations, and theoretical analysis of the mechanism.

    PubMed

    Cadierno, Victorio; García-Garrido, Sergio E; Gimeno, José; Varela-Alvarez, Adrián; Sordo, José A

    2006-02-01

    The catalytic activity of the bis(allyl)-ruthenium(IV) dimer [[Ru(eta(3):eta(3)-C(10)H(16))(mu-Cl)Cl](2)] (C(10)H(16) = 2,7-dimethylocta-2,6-diene-1,8-diyl) (1), and that of its mononuclear derivatives [Ru(eta(3):eta(3)-C(10)H(16))Cl(2)(L)] (L = CO, PR(3), CNR, NCR) (2) and [Ru(eta(3):eta(3)-C(10)H(16))Cl(NCMe)(2)][SbF(6)] (3), in the redox isomerization of allylic alcohols into carbonyl compounds, both in tetrahydrofuran and in water, is reported. In particular, a variety of allylic alcohols have been quantitatively isomerized using [[Ru(eta(3):eta(3)-C(10)H(16))(mu-Cl)Cl](2)] (1) as catalyst, the reactions proceeding in all cases faster in water. Remarkably, complex 1 has been found to be the most efficient catalyst reported to date for this particular transformation, leading to TOF and TON values up to 62,500 h(-1) and 1 500,000, respectively. Moreover, catalyst 1 can be recycled and is capable of performing allylic alcohol isomerizations even in the presence of conjugated dienes, which are known to be strong poisons in isomerization catalysis. On the basis of both experimental data and theoretical calculations (DFT), a complete catalytic cycle for the isomerization of 2-propen-1-ol into propenal is described. The potential energy surfaces of the cycle have been explored at the B3LYP/6-311 + G(d,p)//B3LYP/6-31G(d,p) + LAN2DZ level. The proposed mechanism involves the coordination of the oxygen atom of the allylic alcohol to the metal. The DFT energy profile is consistent with the experimental observation that the reaction only proceeds under heating. Calculations predict the catalytic cycle to be strongly exergonic, in full agreement with the high yields experimentally observed.

  11. Catalytic enantioselective 1,6-conjugate additions of propargyl and allyl groups

    NASA Astrophysics Data System (ADS)

    Meng, Fanke; Li, Xiben; Torker, Sebastian; Shi, Ying; Shen, Xiao; Hoveyda, Amir H.

    2016-09-01

    Conjugate (or 1,4-) additions of carbanionic species to α,β-unsaturated carbonyl compounds are vital to research in organic and medicinal chemistry, and there are several chiral catalysts that facilitate the catalytic enantioselective additions of nucleophiles to enoates. Nonetheless, catalytic enantioselective 1,6-conjugate additions are uncommon, and ones that incorporate readily functionalizable moieties, such as propargyl or allyl groups, into acyclic α,β,γ,δ-doubly unsaturated acceptors are unknown. Chemical transformations that could generate a new bond at the C6 position of a dienoate are particularly desirable because the resulting products could then be subjected to further modifications. However, such reactions, especially when dienoates contain two equally substituted olefins, are scarce and are confined to reactions promoted by a phosphine-copper catalyst (with an alkyl Grignard reagent, dialkylzinc or trialkylaluminium compounds), a diene-iridium catalyst (with arylboroxines), or a bisphosphine-cobalt catalyst (with monosilyl-acetylenes). 1,6-Conjugate additions are otherwise limited to substrates where there is full substitution at the C4 position. It is unclear why certain catalysts favour bond formation at C6, and—although there are a small number of catalytic enantioselective conjugate allyl additions—related 1,6-additions and processes involving a propargyl unit are non-existent. Here we show that an easily accessible organocopper catalyst can promote 1,6-conjugate additions of propargyl and 2-boryl-substituted allyl groups to acyclic dienoates with high selectivity. A commercially available allenyl-boron compound or a monosubstituted allene may be used. Products can be obtained in up to 83 per cent yield, >98:2 diastereomeric ratio (for allyl additions) and 99:1 enantiomeric ratio. We elucidate the mechanistic details, including the origins of high site selectivity (1,6- versus 1,4-) and enantioselectivity as a function of the catalyst

  12. Catalytic enantioselective 1,6-conjugate additions of propargyl and allyl groups.

    PubMed

    Meng, Fanke; Li, Xiben; Torker, Sebastian; Shi, Ying; Shen, Xiao; Hoveyda, Amir H

    2016-09-15

    Conjugate (or 1,4-) additions of carbanionic species to α,β-unsaturated carbonyl compounds are vital to research in organic and medicinal chemistry, and there are several chiral catalysts that facilitate the catalytic enantioselective additions of nucleophiles to enoates. Nonetheless, catalytic enantioselective 1,6-conjugate additions are uncommon, and ones that incorporate readily functionalizable moieties, such as propargyl or allyl groups, into acyclic α,β,γ,δ-doubly unsaturated acceptors are unknown. Chemical transformations that could generate a new bond at the C6 position of a dienoate are particularly desirable because the resulting products could then be subjected to further modifications. However, such reactions, especially when dienoates contain two equally substituted olefins, are scarce and are confined to reactions promoted by a phosphine-copper catalyst (with an alkyl Grignard reagent, dialkylzinc or trialkylaluminium compounds), a diene-iridium catalyst (with arylboroxines), or a bisphosphine-cobalt catalyst (with monosilyl-acetylenes). 1,6-Conjugate additions are otherwise limited to substrates where there is full substitution at the C4 position. It is unclear why certain catalysts favour bond formation at C6, and-although there are a small number of catalytic enantioselective conjugate allyl additions-related 1,6-additions and processes involving a propargyl unit are non-existent. Here we show that an easily accessible organocopper catalyst can promote 1,6-conjugate additions of propargyl and 2-boryl-substituted allyl groups to acyclic dienoates with high selectivity. A commercially available allenyl-boron compound or a monosubstituted allene may be used. Products can be obtained in up to 83 per cent yield, >98:2 diastereomeric ratio (for allyl additions) and 99:1 enantiomeric ratio. We elucidate the mechanistic details, including the origins of high site selectivity (1,6- versus 1,4-) and enantioselectivity as a function of the catalyst

  13. Catalytic enantioselective 1,6-conjugate additions of propargyl and allyl groups

    PubMed Central

    Meng, Fanke; Li, Xiben; Torker, Sebastian; Shi, Ying; Shen, Xiao; Hoveyda, Amir H.

    2016-01-01

    Conjugate (or 1,4-) additions of carbanionic species to α,β-unsaturated carbonyl compounds are vital to research in organic and medicinal chemistry, and there are several known chiral catalysts that facilitate the catalytic enantioselective additions of nucleophiles to enoates1. However, catalytic enantioselective 1,6-conjugate additions are uncommon, and ones that are able to incorporate readily functionalizable moieties, such as propargyl or allyl groups, into acyclic α,β,γ,δ-doubly unsaturated acceptors are unknown2. Chemical transformations that could generate a new bond at the C6 position of a dienoate are particularly desirable, as the resulting products would be subjected to further modifications; such reactions, especially when dienoates contain two equally substituted olefins, are scarce3 and are confined to reactions promoted by a phosphine–copper (with alkyl Grignard4,5, dialkylzinc or trialkylaluminum compounds6,7), a diene–iridium (with arylboroxines)8,9, and a bisphosphine–cobalt catalyst (with monosilyl-acetylenes)10. 1,6-conjugate additions are otherwise limited to substrates where there is full substitution at C411. It is not clear why certain catalysts favor bond formation at C6, and – while there are a small number of catalytic enantioselective conjugate allyl additions12,13,14,15 – related 1,6-additions and processes involving a propargyl unit are non-existent. In this manuscript, we show that an easily accessible organocopper catalyst can promote 1,6-conjugate additions of propargyl and 2-boryl-substituted allyl groups to acyclic dienoates with high selectivity. A commercially available allenylboron compound or a monosubstituted allene may be used. Products can be obtained in up to 83 percent yield, >98 percent diastereo- (for allyl additions) and 99:1 enantiomeric ratio. Mechanistic details, including the origins of high site- (1,6- versus 1,4-) and enantioselectivity as a function of the catalyst structure and reaction type

  14. Catalytic production of metal carbonyls from metal oxides

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; Foran, M.T.

    1984-01-06

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150 to 260/sup 0/C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO/sub 4/ and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect. 3 tables.

  15. Catalytic production of metal carbonyls from metal oxides

    DOEpatents

    Sapienza, Richard S.; Slegeir, William A.; Foran, Michael T.

    1984-01-01

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150.degree.-260.degree. C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO.sub.4 and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect.

  16. Catalytic asymmetric generation of (Z)-disubstituted allylic alcohols.

    PubMed

    Salvi, Luca; Jeon, Sang-Jin; Fisher, Ethan L; Carroll, Patrick J; Walsh, Patrick J

    2007-12-26

    A one-pot method for the direct preparation of enantioenriched (Z)-disubstituted allylic alcohols is introduced. Hydroboration of 1-halo-1-alkynes with dicyclohexylborane, reaction with t-BuLi, and transmetalation with dialkylzinc reagents generate (Z)-disubstituted vinylzinc intermediates. In situ reaction of these reagents with aldehydes in the presence of a catalyst derived from (-)-MIB generates (Z)-disubstituted allylic alcohols. It was found that the resulting allylic alcohols were racemic, most likely due to a rapid addition reaction promoted by LiX (X = Br and Cl). To suppress the LiX-promoted reaction, a series of inhibitors were screened. It was found that 20-30 mol % tetraethylethylenediamine inhibited LiCl without inhibiting the chiral zinc-based Lewis acid. In this fashion, (Z)-disubstituted allylic alcohols were obtained with up to 98% ee. The asymmetric (Z)-vinylation could be coupled with tandem diastereoselective epoxidation reactions to provide epoxy alcohols and allylic epoxy alcohols with up to three contiguous stereogenic centers, enabling the rapid construction of complex building blocks with high levels of enantio- and diastereoselectivity.

  17. Catalytic Asymmetric Generation of (Z)-Disubstituted Allylic Alcohols

    PubMed Central

    Salvi, Luca; Jeon, Sang-Jin; Fisher, Ethan L.; Carroll, Patrick J.; Walsh, Patrick J.

    2008-01-01

    A one-pot method for the direct preparation of enantioenriched (Z)-disubstituted allylic alcohols is introduced. Hydroboration of 1-halo-1-alkynes with dicyclohexylborane, reaction with t-BuLi, and transmetallation with dialkylzinc reagents generates (Z)-disubstituted vinylzinc intermediates. In situ reaction of these reagents with aldehydes in the presence of a catalyst derived from (−)-MIB generates (Z)-disubstituted allylic alcohols. It was found that the resulting allylic alcohols were racemic, most likely due to a rapid addition reaction promoted by LiX (X = Br and Cl). To suppress the LiX promoted reaction, a series of inhibitors was screened. It was found that 20–30 mol % tetraethylethylene diamine (TEEDA) inhibited LiCl without inhibiting the chiral zinc-based Lewis acid. In this fashion, (Z)-disubstituted allylic alcohols were obtained with up to 98% ee. The asymmetric (Z)-vinylation could be coupled with tandem diastereoselective epoxidation reactions to provide epoxy alcohols and allylic epoxy alcohols with up to three contiguous stereogenic centers, enabling the rapid construction of complex building blocks with high levels of enantio- and diastereoselectivity. PMID:18052173

  18. Catalytic allylic oxidation of internal alkenes to a multifunctional chiral building block

    NASA Astrophysics Data System (ADS)

    Bayeh, Liela; Le, Phong Q.; Tambar, Uttam K.

    2017-07-01

    The stereoselective oxidation of hydrocarbons is one of the most notable advances in synthetic chemistry over the past fifty years. Inspired by nature, enantioselective dihydroxylations, epoxidations and other oxidations of unsaturated hydrocarbons have been developed. More recently, the catalytic enantioselective allylic carbon-hydrogen oxidation of alkenes has streamlined the production of pharmaceuticals, natural products, fine chemicals and other functional materials. Allylic functionalization provides a direct path to chiral building blocks with a newly formed stereocentre from petrochemical feedstocks while preserving the olefin functionality as a handle for further chemical elaboration. Various metal-based catalysts have been discovered for the enantioselective allylic carbon-hydrogen oxidation of simple alkenes with cyclic or terminal double bonds. However, a general and selective allylic oxidation using the more common internal alkenes remains elusive. Here we report the enantioselective, regioselective and E/Z-selective allylic oxidation of unactivated internal alkenes via a catalytic hetero-ene reaction with a chalcogen-based oxidant. Our method enables non-symmetric internal alkenes to be selectively converted into allylic functionalized products with high stereoselectivity and regioselectivity. Stereospecific transformations of the resulting multifunctional chiral building blocks highlight the potential for rapidly converting internal alkenes into a broad range of enantioenriched structures that can be used in the synthesis of complex target molecules.

  19. O-Allylation of phenols with allylic acetates in aqueous media using a magnetically separable catalytic system

    EPA Science Inventory

    Allylic ethers were synthesized in water using magnetically recoverable heterogeneous Pd catalyst via O-allylation of phenols with allylic acetates under ambient conditions. Aqueous reaction medium, easy recovery of the catalyst using an external magnet, efficient recycling, and ...

  20. O-Allylation of phenols with allylic acetates in aqueous media using a magnetically separable catalytic system

    EPA Science Inventory

    Allylic ethers were synthesized in water using magnetically recoverable heterogeneous Pd catalyst via O-allylation of phenols with allylic acetates under ambient conditions. Aqueous reaction medium, easy recovery of the catalyst using an external magnet, efficient recycling, and ...

  1. Catalytic enantioselective synthesis of naturally occurring butenolides via hetero-allylic alkylation and ring closing metathesis.

    PubMed

    Mao, Bin; Geurts, Koen; Fañanás-Mastral, Martín; van Zijl, Anthoni W; Fletcher, Stephen P; Minnaard, Adriaan J; Feringa, Ben L

    2011-03-04

    An efficient catalytic asymmetric synthesis of chiral γ-butenolides was developed based on the hetero-allylic asymmetric alkylation (h-AAA) in combination with ring closing metathesis (RCM). The synthetic potential of the h-AAA-RCM protocol was illustrated with the facile synthesis of (-)-whiskey lactone, (-)-cognac lactone, (-)-nephrosteranic acid, and (-)-roccellaric acid.

  2. GALLIUM-MEDIATED ALLYLATION OF CARBONYL COMPOUNDS IN WATER. (R828129)

    EPA Science Inventory

    Ga-mediated allylation of aldehydes or ketones in distilled or tap water generated the corresponding homoallyl alcohols in high yields without the assistance of either acidic media or sonication.


    Grap...

  3. GALLIUM-MEDIATED ALLYLATION OF CARBONYL COMPOUNDS IN WATER. (R828129)

    EPA Science Inventory

    Ga-mediated allylation of aldehydes or ketones in distilled or tap water generated the corresponding homoallyl alcohols in high yields without the assistance of either acidic media or sonication.


    Grap...

  4. Catalysis of the carbonylation of olefins by the cationic chromium complexes allyl(arene)dicarbonylchromium(I) tetrafluoroborates

    SciTech Connect

    Magomedov, G.K.I.; Morozova, L.V.; Sigachev, S.A.; Krivykh, V.V.; Taits, E.S.; Rybinskaya, M.I.

    1986-11-10

    A qualitative comparison of the catalytic activities of the title complexes and cobalt carbonyl showed that (arene)allyldicarbonylchromium(I) tetrafluoroborates are more active than cobalt carbonyl, and this applies particularly to (C/sub 6/H/sub 6/Cr(CO)/sub 2/..pi..-C/sub 3/H/sub 5/)/sup +/BF/sub 4/. The possibility is not ruled out that in the course of the synthesis the acid HBF/sub 4/ is generated, and this is known to be a catalyst for the Koch reaction, but in this reaction only secondary and tertiary carboxy derivatives, i.e., only products of addition in accordance with the Markovnikov rule, are formed. In view of these results the authors investigated the activity of the title complexes in the hydroformylation process, an important industrial method for the preparation of aldehydes and alcohols.

  5. Palladium-Catalyzed Carbonylation of (Hetero)Aryl, Alkenyl and Allyl Halides by Means of N-Hydroxysuccinimidyl Formate as CO Surrogate.

    PubMed

    Barré, Anaïs; Ţînţaş, Mihaela-Liliana; Alix, Florent; Gembus, Vincent; Papamicaël, Cyril; Levacher, Vincent

    2015-07-02

    An efficient Pd-catalyzed carbonylation protocol is described for the coupling of a large panel of aryl, heteroaryl, benzyl, vinyl and allyl halides 2 with the unusual N-hydroxysuccinimidyl (NHS) formate 1 as a CO surrogate to afford the corresponding valuable NHS esters 3. High conversion to the coupling products was achieved with up to 98% yield by means of Pd(OAc)2/Xantphos catalyst system.

  6. Catalytic asymmetric carbon-carbon bond formation via allylic alkylations with organolithium compounds.

    PubMed

    Pérez, Manuel; Fañanás-Mastral, Martín; Bos, Pieter H; Rudolph, Alena; Harutyunyan, Syuzanna R; Feringa, Ben L

    2011-05-01

    Carbon-carbon bond formation is the basis for the biogenesis of nature's essential molecules. Consequently, it lies at the heart of the chemical sciences. Chiral catalysts have been developed for asymmetric C-C bond formation to yield single enantiomers from several organometallic reagents. Remarkably, for extremely reactive organolithium compounds, which are among the most broadly used reagents in chemical synthesis, a general catalytic methodology for enantioselective C-C formation has proven elusive, until now. Here, we report a copper-based chiral catalytic system that allows carbon-carbon bond formation via allylic alkylation with alkyllithium reagents, with extremely high enantioselectivities and able to tolerate several functional groups. We have found that both the solvent used and the structure of the active chiral catalyst are the most critical factors in achieving successful asymmetric catalysis with alkyllithium reagents. The active form of the chiral catalyst has been identified through spectroscopic studies as a diphosphine copper monoalkyl species.

  7. Catalytic asymmetric allylation reactions using BITIP catalysis and 2-substituted allylstannanes as surrogates for beta-keto ester dianions.

    PubMed

    Keck, G E; Yu, T

    1999-07-29

    [formula: see text] Catalytic asymmetric allylation (CAA) reactions using the indicated allylstannane and the BITIP catalysts previously described by us give high yields and enantioselectivities in additions to aldehydes. The products are convertible to beta-keto esters by oxidative cleavage of the olefin. These reactions thus provide a useful catalytic enantioselective method for chain extension with introduction of a versatile four-carbon unit.

  8. Reactivity of Ir(III) carbonyl complexes with water: alternative by-product formation pathways in catalytic methanol carbonylation.

    PubMed

    Elliott, Paul I P; Haak, Susanne; Meijer, Anthony J H M; Sunley, Glenn J; Haynes, Anthony

    2013-12-21

    The reactions of water with a number of iridium(III) complexes relevant to the mechanism for catalytic methanol carbonylation are reported. The iridium acetyl, [Ir(CO)2I3(COMe)](-), reacts with water under mild conditions to release CO2 and CH4, rather than the expected acetic acid. Isotopic labeling and kinetic experiments are consistent with a mechanism involving nucleophilic attack by water on a terminal CO ligand of [Ir(CO)2I3(COMe)](-) to give an (undetected) hydroxycarbonyl species. Subsequent decarboxylation and elimination of methane gives [Ir(CO)2I2](-). Similar reactions with water are observed for [Ir(CO)2I3Me](-), [Ir(CO)2(NCMe)I2(COMe)] and [Ir(CO)3I2Me] with the neutral complexes exhibiting markedly higher rates. The results demonstrate that CO2 formation during methanol carbonylation is not restricted to the conventional water gas shift mechanism mediated by [Ir(CO)2I4](-) or [Ir(CO)3I3], but can arise directly from key organo-iridium(III) intermediates in the carbonylation cycle. An alternative pathway for methane formation not involving the intermediacy of H2 is also suggested. A mechanism is proposed for the conversion MeOH + CO → CO2 + CH4, which may account for the similar rates of formation of the two gaseous by-products during iridium-catalysed methanol carbonylation.

  9. FeCl3/NaI-catalyzed allylic C-H oxidation of arylalkenes with a catalytic amount of disulfide under air.

    PubMed

    Huang, Deshun; Wang, Haining; Xue, Fazhen; Shi, Yian

    2011-09-02

    This paper describes a FeCl(3)/NaI-catalyzed formal allylic C-H oxidation of arylalkenes using a catalytic amount of disulfide with BnOH and 4-nitroaniline as nucleophiles and air as oxidant to form the corresponding allyl ethers and amines. A possible reaction mechanism has been proposed.

  10. Synthesis of Substituted Benzenes via Bi(OTf)3-Mediated Intramolecular Carbonyl Allylation of α-Prenyl or α-Geranyl β-Arylketosulfones.

    PubMed

    Chang, Meng-Yang; Cheng, Yu-Chieh; Lu, Yi-Ju

    2015-06-19

    Intramolecular carbonyl allylation of α-prenyl or α-geranyl β-arylketosulfones 5 in the presence of molecule sieves (MS) affords substituted benzenes 6-7 in moderate to good yields. The facile transformation proceeds by a synthetic sequence starting with the α-prenylation or α-geranylation of 1 and the Bi(OTf)3-mediated annulation of 5 followed by a sequential desulfonative aromatization or then an intramolecular Friedel-Crafts alkylation. A plausible mechanism has been studied and proposed.

  11. Catalytic Enantioselective [2,3]-Rearrangements of Allylic Ammonium Ylides: A Mechanistic and Computational Study

    PubMed Central

    2017-01-01

    A mechanistic study of the isothiourea-catalyzed enantioselective [2,3]-rearrangement of allylic ammonium ylides is described. Reaction kinetic analyses using 19F NMR and density functional theory computations have elucidated a reaction profile and allowed identification of the catalyst resting state and turnover-rate limiting step. A catalytically relevant catalyst–substrate adduct has been observed, and its constitution elucidated unambiguously by 13C and 15N isotopic labeling. Isotopic entrainment has shown the observed catalyst–substrate adduct to be a genuine intermediate on the productive cycle toward catalysis. The influence of HOBt as an additive upon the reaction, catalyst resting state, and turnover-rate limiting step has been examined. Crossover experiments have probed the reversibility of each of the proposed steps of the catalytic cycle. Computations were also used to elucidate the origins of stereocontrol, with a 1,5-S···O interaction and the catalyst stereodirecting group providing transition structure rigidification and enantioselectivity, while preference for cation−π interactions over C–H···π is responsible for diastereoselectivity. PMID:28230365

  12. Catalytic Enantioselective [2,3]-Rearrangements of Allylic Ammonium Ylides: A Mechanistic and Computational Study.

    PubMed

    West, Thomas H; Walden, Daniel M; Taylor, James E; Brueckner, Alexander C; Johnston, Ryne C; Cheong, Paul Ha-Yeon; Lloyd-Jones, Guy C; Smith, Andrew D

    2017-03-10

    A mechanistic study of the isothiourea-catalyzed enantioselective [2,3]-rearrangement of allylic ammonium ylides is described. Reaction kinetic analyses using (19)F NMR and density functional theory computations have elucidated a reaction profile and allowed identification of the catalyst resting state and turnover-rate limiting step. A catalytically relevant catalyst-substrate adduct has been observed, and its constitution elucidated unambiguously by (13)C and (15)N isotopic labeling. Isotopic entrainment has shown the observed catalyst-substrate adduct to be a genuine intermediate on the productive cycle toward catalysis. The influence of HOBt as an additive upon the reaction, catalyst resting state, and turnover-rate limiting step has been examined. Crossover experiments have probed the reversibility of each of the proposed steps of the catalytic cycle. Computations were also used to elucidate the origins of stereocontrol, with a 1,5-S···O interaction and the catalyst stereodirecting group providing transition structure rigidification and enantioselectivity, while preference for cation-π interactions over C-H···π is responsible for diastereoselectivity.

  13. Catalytic Reduction of Noble Metal Salts by Sodium Hypophosphite Promoted by the Film Poly-(p-Allyl Ether Benzenesulfonic Acid)

    PubMed Central

    Costa, M. I. C. F.; Steter, J. R.; Purgato, F. L. S.; Romero, J. R.

    2011-01-01

    Glassy carbon electrodes were coated with the film poly-(p-allyl ether benzenesulfonic acid) by an anodic procedure. Nickel, platinum, and palladium ions were introduced into the film by ion exchange of H+ with the corresponding salts. These ions were catalytically reduced to their corresponding metals using the known electroless reducing agent sodium hypophosphite. Scanning electron microcopy and energy dispersive X-ray spectroscopy were carried out to demonstrate the occurrence of the catalytic process. To compare this method with another one carried out in our laboratory, the electrocatalytic reduction of H+ was studied using the same modified electrodes. A suggested mechanism for the catalysis is proposed. PMID:24052832

  14. Catalytic Addition of Simple Alkenes to Carbonyl Compounds Using Group 10 Metals

    PubMed Central

    Schleicher, Kristin D.

    2011-01-01

    Recent advances using nickel complexes in the activation of unactivated monosubstituted olefins for catalytic intermolecular carbon–carbon bond-forming reactions with carbonyl compounds, such as simple aldehydes, isocyanates, and conjugated aldehydes and ketones, are discussed. In these reactions, the olefins function as vinyl- and allylmetal equivalents, providing a new strategy for organic synthesis. Current limitations and the outlook for this new strategy are also discussed. PMID:21904421

  15. A Catalytic, Brønsted Base Strategy for Intermolecular Allylic C—H Amination

    PubMed Central

    Reed, Sean A.; Mazzotti, Anthony R.; White, M. Christina

    2009-01-01

    A Brønsted base activation mode for oxidative, Pd(II)/sulfoxide catalyzed, intermolecular C—H allylic amination is reported. N,N-diisopropylethylamine was found to promote amination of unactivated terminal olefins, forming the corresponding linear allylic amine products with high levels of stereo-, regio-, and chemoselectivity. The predictable and high selectivity of this C—H oxidation method enables late-stage incorporation of nitrogen into advanced synthetic intermediates and natural products. PMID:19645492

  16. Hydroxymethylation beyond Carbonylation: Enantioselective Iridium-Catalyzed Reductive Coupling of Formaldehyde with Allylic Acetates via Enantiotopic π-Facial Discrimination.

    PubMed

    Garza, Victoria J; Krische, Michael J

    2016-03-23

    Chiral iridium complexes modified by SEGPHOS catalyze the 2-propanol-mediated reductive coupling of branched allylic acetates 1a-1o with formaldehyde to form primary homoallylic alcohols 2a-2o with excellent control of regio- and enantioselectivity. These processes, which rely on enantiotopic π-facial discrimination of σ-allyliridium intermediates, represent the first examples of enantioselective formaldehyde C-C coupling beyond aldol addition.

  17. Reactivity of alkynes containing alpha-hydrogen atoms with a triruthenium hydrido carbonyl cluster: alkenyl versus allyl cluster derivatives.

    PubMed

    Cabeza, Javier A; del Río, Ignacio; García-Granda, Santiago; Martínez-Méndez, Lorena; Pérez-Carreño, Enrique

    2005-10-07

    The reactions of the hydrido-triruthenium cluster complex [Ru3(mu-H)(mu3-kappa(2)-HNNMe2)(CO)9] (1; H2NNMe2 = 1,1-dimethylhydrazine) with alkynes that have alpha-hydrogen atoms give trinuclear derivatives containing edge-bridging allyl or face-capping alkenyl ligands. Under mild conditions (THF, 70 degrees C) the isolated products are as follows: [Ru3(mu3-kappa(2)-HNNMe2)(mu-kappa(3)-1-syn-Me-3-anti-EtC3H3)(mu-CO)2(CO)6] (2) and [Ru3(mu3-kappa(2)-HNNMe2)(mu-kappa(3)-1-syn-Me-3-syn-EtC3H3)(mu-CO)2(CO)6] (3) from 3-hexyne; [Ru3(mu3-kappa(2)-HNNMe2)(mu-kappa(3)-3-anti-PhC3H4)(mu-CO)2(CO)6] (4), [Ru3(mu3-kappa(2)-HNNMe2)(mu-kappa(2)-MeCCHPh)(mu-CO)2(CO)6] (5) and [Ru3(mu3-kappa(2)-HNNMe2)(mu3-kappa(2)-PhCCHMe)(mu-CO)2(CO)6] (6) from 1-phenyl-1-propyne; [Ru3(mu3-kappa(2)-HNNMe2)(mu-kappa(2)-3-anti-PrC3H4)(mu-CO)2(CO)6] (7), [Ru3(mu3-kappa(2)-HNNMe2)(mu3-kappa(2)-BuCCH2)(mu-CO)2(CO)6] (8), and [Ru3(mu3-kappa(2)-HNNMe2)(mu3-kappa(2)-HCCHBu)(mu-CO)2(CO)6] (9) from 1-hexyne; [Ru3(mu3-kappa(2)-HNNMe2)(mu3-kappa(2)-HOH2CCCH2)(mu-CO)2(CO)6] (10) from propargyl alcohol; and [Ru3(mu3-kappa(2)-HNNMe2)(mu3-kappa(2)-MeOCH2CCH2)(mu-CO)2(CO)6] (11) from 3-methoxy-1-propyne. The regioselectivity of these reactions depends upon the nature of the alkyne reagent, which affects considerably the kinetic barriers of important reaction steps and the stability of the final products. It has been established that the face-capped alkenyl derivatives are not precursors to the allyl products, which are formed via edge-bridged alkenyl intermediates. At higher temperature (toluene, 110 degrees C), the complexes that have allyl ligands with an anti substituent are isomerized into allyl derivatives with that substituent in the syn position, for example, 4 into [Ru3(mu3-kappa(2)-HNNMe2)(mu-kappa(3)-3-syn-PhC3H4)(mu-CO)2(CO)6] (14). The diene complex [Ru3(mu-H)(mu3-kappa(2)-HNNMe2)(mu-kappa(4)-trans-EtC4H5)(CO)7] (13) has been obtained from the thermolysis of compounds 2 and 7 at 110 degrees C (3 and

  18. Catalytic, nucleophilic allylation of aldehydes with 2-substituted allylic acetates: carbon-carbon bond formation driven by the water-gas shift reaction.

    PubMed

    Denmark, Scott E; Matesich, Zachery D

    2014-07-03

    The ruthenium-catalyzed allylation of aldehydes with allylic acetates has been expanded to incorporate substituents at the 2-position of the allylic components. Allylic acetates bearing a variety of substituents (CO2-t-Bu, COMe, Ph, CH(OEt)2, and Me) undergo high-yielding additions with aromatic, α,β-unsaturated, and aliphatic aldehydes. The conditions of the reaction were found to be mild (75 °C, 24-48 h) and only required the use of 2-3 mol % of the triruthenium dodecacarbonyl catalyst under 40-80 psi of CO. The stoichiometries of water and allylic acetate employed were found to be critical to reaction efficiency.

  19. Crystallization experiments with the dinuclear chelate ring complex di-μ-chlorido-bis[(η(2)-2-allyl-4-methoxy-5-{[(propan-2-yloxy)carbonyl]methoxy}phenyl-κC(1))platinum(II)].

    PubMed

    Nguyen Thi Thanh, Chi; Pham Van, Thong; Le Thi Hong, Hai; Van Meervelt, Luc

    2016-10-01

    Crystallization experiments with the dinuclear chelate ring complex di-μ-chlorido-bis[(η(2)-2-allyl-4-methoxy-5-{[(propan-2-yloxy)carbonyl]methoxy}phenyl-κC(1))platinum(II)], [Pt2(C15H19O4)2Cl2], containing a derivative of the natural compound eugenol as ligand, have been performed. Using five different sets of crystallization conditions resulted in four different complexes which can be further used as starting compounds for the synthesis of Pt complexes with promising anticancer activities. In the case of vapour diffusion with the binary chloroform-diethyl ether or methylene chloride-diethyl ether systems, no change of the molecular structure was observed. Using evaporation from acetonitrile (at room temperature), dimethylformamide (DMF, at 313 K) or dimethyl sulfoxide (DMSO, at 313 K), however, resulted in the displacement of a chloride ligand by the solvent, giving, respectively, the mononuclear complexes (acetonitrile-κN)(η(2)-2-allyl-4-methoxy-5-{[(propan-2-yloxy)carbonyl]methoxy}phenyl-κC(1))chloridoplatinum(II) monohydrate, [Pt(C15H19O4)Cl(CH3CN)]·H2O, (η(2)-2-allyl-4-methoxy-5-{[(propan-2-yloxy)carbonyl]methoxy}phenyl-κC(1))chlorido(dimethylformamide-κO)platinum(II), [Pt(C15H19O4)Cl(C2H7NO)], and (η(2)-2-allyl-4-methoxy-5-{[(propan-2-yloxy)carbonyl]methoxy}phenyl-κC(1))chlorido(dimethyl sulfoxide-κS)platinum(II), determined as the analogue {η(2)-2-allyl-4-methoxy-5-[(ethoxycarbonyl)methoxy]phenyl-κC(1)}chlorido(dimethyl sulfoxide-κS)platinum(II), [Pt(C14H17O4)Cl(C2H6OS)]. The crystal structures confirm that acetonitrile interacts with the Pt(II) atom via its N atom, while for DMSO, the S atom is the coordinating atom. For the replacement, the longest of the two Pt-Cl bonds is cleaved, leading to a cis position of the solvent ligand with respect to the allyl group. The crystal packing of the complexes is characterized by dimer formation via C-H...O and C-H...π interactions, but no π-π interactions are observed despite the presence of

  20. Practical and Broadly Applicable Catalytic Enantioselective Additions of Allyl-B(pin) Compounds to Ketones and α-Ketoesters.

    PubMed

    Robbins, Daniel W; Lee, KyungA; Silverio, Daniel L; Volkov, Alexey; Torker, Sebastian; Hoveyda, Amir H

    2016-08-08

    A set of broadly applicable methods for efficient catalytic additions of easy-to-handle allyl-B(pin) (pin=pinacolato) compounds to ketones and acyclic α-ketoesters was developed. Accordingly, a large array of tertiary alcohols can be obtained in 60 to >98 % yield and up to 99:1 enantiomeric ratio. At the heart of this development is rational alteration of the structures of the small-molecule aminophenol-based catalysts. Notably, with ketones, increasing the size of a catalyst moiety (tBu to SiPh3 ) results in much higher enantioselectivity. With α-ketoesters, on the other hand, not only does the opposite hold true, since Me substitution leads to substantially higher enantioselectivity, but the sense of the selectivity is reversed as well. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. anti-Diastereo- and Enantioselective Carbonyl Crotylation from the Alcohol or Aldehyde Oxidation Level Employing a Cyclometallated Iridium Catalyst: α-Methyl Allyl Acetate as a Surrogate to Preformed Crotylmetal Reagents

    PubMed Central

    Kim, In Su; Han, Soo Bong; Krische, Michael J.

    2011-01-01

    Under the conditions of transfer hydrogenation employing an ortho-cyclometallated iridium catalyst generated in situ from [Ir(cod)Cl]2, 4-cyano-3-nitrobenzoic acid and the chiral phosphine ligand (S)-SEGPHOS, α-methyl allyl acetate couples to alcohols 1a–1j with complete levels of branched regioselectivity to furnish products of carbonyl crotylation 3a–3j, which are formed with good levels of anti-diastereoselectivity and exceptional levels of enantioselectivity. An identical set of optically enriched carbonyl crotylation products 3a–3j is accessible from the corresponding aldehydes 2a–2j under the same conditions, but employing isopropanol as the terminal reductant. Experiments aimed at probing the origins of stereoselection establish a matched mode of ionization for the (R)-acetate and the iridium catalyst modified by (S)-SEGPHOS, as well as reversible ionization of the allylic acetate with rapid π-facial interconversion of the resulting π-crotyl intermediate in advance of C-C bond formation. Additionally, rapid alcohol-aldehyde redox equilibration in advance of carbonyl addition is demonstrated. Thus, anti-diastereo- and enantioselective carbonyl crotylation from the alcohol or aldehyde oxidation level is achieved in the absence of any stoichiometric metallic reagents or stoichiometric metallic byproducts. PMID:19191498

  2. An enantioselective strategy for the total synthesis of (S)-tylophorine via catalytic asymmetric allylation and a one-pot DMAP-promoted isocyanate formation/Lewis acid catalyzed cyclization sequence.

    PubMed

    Su, Bo; Zhang, Hui; Deng, Meng; Wang, Qingmin

    2014-06-14

    A new asymmetric total synthesis of a phenanthroindolizidine alkaloid (S)-tylophorine is reported, which features a catalytic asymmetric allylation of aldehydes and an unexpected one-pot DMAP promoted isocyanate formation and Lewis acid catalyzed intramolecular cyclization reaction. In addition, White's direct C-H oxidation catalyst system converting monosubstituted olefins to linear allylic acetates was also employed for late-stage transformation.

  3. Efficient Synthesis of Polycyclic γ-Lactams by Catalytic Carbonylation of Ene-Imines via Nickelacycle Intermediates.

    PubMed

    Hoshimoto, Yoichi; Ashida, Keita; Sasaoka, Yukari; Kumar, Ravindra; Kamikawa, Ken; Verdaguer, Xavier; Riera, Antoni; Ohashi, Masato; Ogoshi, Sensuke

    2017-07-03

    The nickel(0)-catalyzed carbonylative cycloaddition of 1,5- and 1,6-ene-imines with carbon monoxide (CO) is reported. Key to this reaction is the efficient regeneration of the catalytically active nickel(0) species from nickel carbonyl complexes such as [Ni(CO)3 L]. A variety of tri- and tetracyclic γ-lactams were thus prepared in excellent yields with 100 % atom efficiency. Preliminary results on asymmetric derivatives promise potential in the synthesis of enantioenriched polycyclic γ-lactams. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Catalytic regioselective introduction of allyl alcohol into the nonpolar polyolefins: development of one-pot synthesis of hydroxyl-capped polyolefins mediated by a new metallocene IF catalyst.

    PubMed

    Imuta, Jun-ichi; Kashiwa, Norio; Toda, Yoshihisa

    2002-02-20

    A new catalytic regioselective one-pot synthesis of hydroxyl-capped polyolefins is reported. This synthesis employs a new stereorigid bridged metallocene having an indenyl and a fluorenyl ligand named IF catalyst 1, exhibiting high catalytic performances. Here, we report on (1) the first example of allyl alcohol incorporation into the nonpolar polymer backbone using IF catalyst 1 and methylaluminoxane with high activity, high molecular weight, and high polar monomer uptake at high temperature, and (2) the first example of predominant end-site-selective introduction of an alcohol group into the polyolefins. Moreover, we observed the mixed regioselectivity by the type of alkylaluminum.

  5. Reaction-driven surface restructuring and selectivity control in allylic alcohol catalytic aerobic oxidation over Pd.

    PubMed

    Lee, Adam F; Ellis, Christine V; Naughton, James N; Newton, Mark A; Parlett, Christopher M A; Wilson, Karen

    2011-04-20

    Synchronous, time-resolved DRIFTS/MS/XAS cycling studies of the vapor-phase selective aerobic oxidation of crotyl alcohol over nanoparticulate Pd have revealed surface oxide as the desired catalytically active phase, with dynamic, reaction-induced Pd redox processes controlling selective versus combustion pathways.

  6. Asymmetric Catalytic Enantio- and Diastereoselective Boron Conjugate Addition Reactions of α-Functionalized α,β-Unsaturated Carbonyl Substrates.

    PubMed

    Xie, Jian-Bo; Lin, Siqi; Qiao, Shuo; Li, Guigen

    2016-08-05

    An efficient catalytic system has been established for the asymmetric boron conjugate addition of B2pin2 onto α-functionalized (involving C, N, O, and Cl) α,β-unsaturated carbonyls under mild, neutral conditions involving Cu[(S)-(R)-ppfa]Cl, AgNTf2, and alcohols. The dual additives of AgNTf2 and alcohols were found to play crucial roles for achieving high catalytic activity and enantio- and diastereoselectivity (up to 98% ee and 70:1 dr).

  7. Water and catalytic isomerization of linear allylic alcohols by [RuCp(H2O-κO)(PTA)2](+) (PTA = 1,3,5-triaza-7-phosphaadamantane).

    PubMed

    Scalambra, Franco; Serrano-Ruiz, Manuel; Romerosa, Antonio

    2017-04-12

    A new water soluble complex [RuCp(H2O-κO)(PTA)2](+) (1) (PTA = 1,3,5-triaza-7-phosphaadamantane) has been synthesized and fully characterized by NMR and IR. The crystal structure of 1(CF3SO3)·3.5H2O was characterized by single crystal X-ray determination. The catalytic activity of this complex was evaluated for the isomerisation of linear allylic alcohols from 3-buten-2-ol to 1-octen-3-ol into the correspondent ketones under both an inert atmosphere and in air, using as solvents: water, the substrate, mixtures of water/substrate, MeOH and mixtures of MeOH/water. An isomerization experiment on a mixture of all the studied allylic alcohols was also carried out.

  8. Palladium-catalyzed amination of allyl alcohols.

    PubMed

    Ghosh, Raju; Sarkar, Amitabha

    2011-10-21

    An efficient catalytic amination of aryl-substituted allylic alcohols has been developed. The complex [(η(3)-allyl)PdCl](2) modified by a bis phosphine ligand, L, has been used as catalyst in the reaction that afforded a wide range of allyl amines in good to excellent yield under mild conditions.

  9. Carbonyl-bridged energetic materials: biomimetic synthesis, organic catalytic synthesis, and energetic performances.

    PubMed

    Feng, Yong-An; Qiu, Hao; Yang, Sa-Sha; Du, Jiang; Zhang, Tong-Lai

    2016-11-01

    In order to obtain high-performance energetic materials, in this work, carbonyl groups (C[double bond, length as m-dash]O) have been newly introduced as sole bridging groups in the field of energetic materials. To this end, two tailored green methods for the synthesis of carbonyl-bridged energetic compounds have been developed for the first time. One is a biomimetic synthesis, in which the conversion route of heme to biliverdin has been used to obtain metal-containing energetic compounds. The other one is an organocatalysis, in which guanidinium serves as an energetic catalyst to afford other energetic compounds. Experimental studies and theoretical calculations have shown that carbonyl-bridged energetic compounds exhibit excellent energetic properties, which is promising for the carbonyl group as a new important and effective linker in energetic materials.

  10. Allyl astatide

    SciTech Connect

    Norseev, Yu.V.; Vasaros, L.; Syuch, Z.

    1988-11-01

    Allyl astatide was prepared by the interhalogen exchange method, by replacement of the bromine in allyl bromide with astatide ion. The most favorable conditions for the synthesis were found by variations of the method that uses hydrazine hydrate and sodium formaldehyde sulfoxylate as reductants. A by-product is formed by the reaction of allyl bromide with excited astatine-211 which forms by disintegration of radon-211. Allyl astatide was identified by radio gas-liquid chromatography. Its retention indexes on nonpolar and weakly polar liquid phases were found. The stability of this newly prepared astatine compound was studied. The extrapolated boiling point of allyl astatide is 129 +/- 2/sup 0/C.

  11. Activity prediction of substrates in NADH-dependent carbonyl reductase by docking requires catalytic constraints and charge parameterization of catalytic zinc environment

    NASA Astrophysics Data System (ADS)

    Dhoke, Gaurao V.; Loderer, Christoph; Davari, Mehdi D.; Ansorge-Schumacher, Marion; Schwaneberg, Ulrich; Bocola, Marco

    2015-11-01

    Molecular docking of substrates is more challenging compared to inhibitors as the reaction mechanism has to be considered. This becomes more pronounced for zinc-dependent enzymes since the coordination state of the catalytic zinc ion is of greater importance. In order to develop a predictive substrate docking protocol, we have performed molecular docking studies of diketone substrates using the catalytic state of carbonyl reductase 2 from Candida parapsilosis (CPCR2). Different docking protocols using two docking methods (AutoDock Vina and AutoDock4.2) with two different sets of atomic charges (AM1-BCC and HF-RESP) for catalytic zinc environment and substrates as well as two sets of vdW parameters for zinc ion were examined. We have selected the catalytic binding pose of each substrate by applying mechanism based distance criteria. To compare the performance of the docking protocols, the correlation plots for the binding energies of these catalytic poses were obtained against experimental Vmax values of the 11 diketone substrates for CPCR2. The best correlation of 0.73 was achieved with AutoDock4.2 while treating catalytic zinc ion in optimized non-bonded (NBopt) state with +1.01 charge on the zinc ion, compared to 0.36 in non-bonded (+2.00 charge on the zinc ion) state. These results indicate the importance of catalytic constraints and charge parameterization of catalytic zinc environment for the prediction of substrate activity in zinc-dependent enzymes by molecular docking. The developed predictive docking protocol described here is in principle generally applicable for the efficient in silico substrate spectra characterization of zinc-dependent ADH.

  12. Indium-Catalyzed Amide Allylation of N-Carbonyl Imides: Formation of Azaspiro-γ-lactones via Ring Opening-Reclosure.

    PubMed

    Sengoku, Tetsuya; Murata, Yusuke; Aso, Yuwa; Kawakami, Ai; Inuzuka, Toshiyasu; Sakamoto, Masami; Takahashi, Masaki; Yoda, Hidemi

    2015-12-04

    A novel and facile synthesis of azaspiro-γ-lactones with a methylene-lactam framework from N-carbonyl imides is described. Mechanistic investigations provide evidence for a two-step reaction process involving ZnCl(2)-promoted addition of β-amido allylindium species followed by an unexpectedly molecular-sieves-mediated ring opening-reclosure concomitantly with the loss of an N-carbonyl unit.

  13. Luminescent property and catalytic activity of Ru(II) carbonyl complexes containing N, O donor of 2-hydroxy-1-naphthylideneimines

    NASA Astrophysics Data System (ADS)

    Sivagamasundari, M.; Ramesh, R.

    2007-05-01

    The reaction of the chelating ligands (obtained by the condensation of 2-hydroxy-1-naphthaldehyde with various primary amines) with [RuHCl(CO)(EPh 3) 2(B)] (where E = P; B = PPh 3, py or pip: E = As; B = AsPh 3) in benzene afforded new stable ruthenium(II) carbonyl complexes of the general formula [Ru(Cl)(CO)(EPh 3)(B)(L)] (L = anion of bidentate Schiff bases). The structure of the new complexes was investigated using elemental analyses, spectral (FT-IR, UV-vis and 1H NMR) and electrochemical studies and is found to be octahedral. All the metal complexes exhibit characteristic MLCT absorption and luminescence bands in the visible region. The luminescence efficiency of the ruthenium(II) complexes was explained based on the ligand environment around the metal ion. These complexes catalyze oxidation of primary and secondary alcohols into their corresponding carbonyl compounds in the presence of N-methylmorpholine- N-oxide (NMO) as the source of oxygen. The formation of high valent Ru IVdbnd O species as a catalytic intermediate is proposed for the catalytic process.

  14. Formation of C-C Bonds via Ruthenium Catalyzed Transfer Hydrogenation: Carbonyl Addition from the Alcohol or Aldehyde Oxidation Level.

    PubMed

    Shibahara, Fumitoshi; Krische, Michael J

    2008-01-01

    Under the conditions of ruthenium catalyzed transfer hydrogenation employing isopropanol as terminal reductant, π-unsaturated compounds (1,3-dienes, allenes, 1,3-enynes and alkynes) reductively couple to aldehydes to furnish products of carbonyl addition. In the absence of isopropanol, π-unsaturated compounds couple directly from the alcohol oxidation level to form identical products of carbonyl addition. Such "alcohol-unsaturate C-C couplings" enable carbonyl allylation, propargylation and vinylation from the alcohol oxidation level in the absence of stoichiometric organometallic reagents or metallic reductants. Thus, direct catalytic C-H functionalization of alcohols at the carbinol carbon is achieved.

  15. Direct catalytic asymmetric addition of allyl cyanide to ketones via soft Lewis acid/hard Brønsted base/hard Lewis base catalysis.

    PubMed

    Yazaki, Ryo; Kumagai, Naoya; Shibasaki, Masakatsu

    2010-04-21

    We report that a hard Lewis base substantially affects the reaction efficiency of direct catalytic asymmetric gamma-addition of allyl cyanide (1a) to ketones promoted by a soft Lewis acid/hard Brønsted base catalyst. Mechanistic studies have revealed that Cu/(R,R)-Ph-BPE and Li(OC(6)H(4)-p-OMe) serve as a soft Lewis acid and a hard Brønsted base, respectively, allowing for deprotonative activation of 1a as the rate-determining step. A ternary catalytic system comprising a soft Lewis acid/hard Brønsted base and an additional hard Lewis base, in which the basicity of the hard Brønsted base Li(OC(6)H(4)-p-OMe) was enhanced by phosphine oxide (the hard Lewis base) through a hard-hard interaction, outperformed the previously developed binary soft Lewis acid/hard Brønsted base catalytic system, leading to higher yields and enantioselectivities while using one-tenth the catalyst loading and one-fifth the amount of 1a. This second-generation catalyst allows efficient access to highly enantioenriched tertiary alcohols under nearly ideal atom-economical conditions (0.5-1 mol % catalyst loading and a substrate molar ratio of 1:2).

  16. Synthesis, electronic structure and catalytic activity of ruthenium-iodo-carbonyl complexes with thioether containing NNS donor ligand

    NASA Astrophysics Data System (ADS)

    Jana, Subrata; Jana, Mahendra Sekhar; Biswas, Sujan; Sinha, Chittaranjan; Mondal, Tapan Kumar

    2014-05-01

    The ruthenium carbonyl complexes 1 and 2 with redox noninnocent NNS donor ligand, 1-methyl-2-{(o-thiomethyl)phenylazo}imidazole (L) have been synthesized and characterized by various analytical and spectroscopic (IR, UV-Vis and 1H NMR) techniques. The complexes exhibit a quasi-reversible one electron Ru(II)/Ru(III) oxidation couple at 1.11 V for 1 and 0.76 V for 2 along with two successive one electron ligand reductions. Catalytic activity of the compounds has been investigated to the oxidation of PhCH2OH to PhCHO, 2-butanol (C4H9OH) to 2-butanone, 1-phenylethanol (PhC2H4OH) to acetophenone, cyclopentanol (C5H9OH) to cyclopentanone, cyclohexanol to cyclohexanone, cycloheptanol to cycloheptanone and cycloctanol to cycloctanone using N-methylmorpholine-N-oxide (NMO) as oxidant. The catalytic efficiency of 2 is greater than complex 1 and well correlate with the metal oxidation potential. DFT, NBO and TDDFT calculations in DFT/B3LYP/6-31G(d)/lanL2TZ(f) method are employed to interpret the structural and electronic features of the complexes.

  17. Carbene radicals in cobalt(II)-porphyrin-catalysed carbene carbonylation reactions; a catalytic approach to ketenes.

    PubMed

    Paul, Nanda D; Chirila, Andrei; Lu, Hongjian; Zhang, X Peter; de Bruin, Bas

    2013-09-23

    One-pot radicals: Cobalt(III)-carbene radicals, generated by metallo-radical activation of diazo compounds and N-tosylhydrazone sodium salts with cobalt(II) complexes of porphyrins, readily undergo radical addition to carbon monoxide, allowing the catalytic production of ketenes. These ketenes subsequently react with various amines, alcohols and imines in one-pot tandem transformations to produce differently substituted amides, esters and β-lactams in good isolated yields.

  18. Synthesis, characterization, electronic structure and catalytic activity of new ruthenium carbonyl complexes of N-[(2-pyridyl)methylidene]-2-aminothiazole

    NASA Astrophysics Data System (ADS)

    Kundu, Subhankar; Sarkar, Deblina; Jana, Mahendra Sekhar; Pramanik, Ajoy Kumar; Jana, Subrata; Mondal, Tapan Kumar

    2013-03-01

    Reaction of ruthenium carbonyls, [Ru(CO)2Cl2]n/[Ru(CO)4I2] with bidentate Schiffs base ligands derived by the condensation of pyridine-2-carboxaldehyde with 2-aminothiazole in a 1:1 mole ratio in acetonitrile led to the formation of complexes having general formula [Ru(CO)2(L)X2] (X = Cl (1) and I (2)) (L = N-[(2-pyridyl)methylidene]-2-aminothiazole). The compounds have been characterized by various analytical and spectroscopic (IR, electronic and 1H NMR) studies. In acetonitrile solution the complexes exhibit a weak broad metal-ligand to ligand charge transfer (MLLCT) band along with ILCT transitions. The compounds are emissive in room temperature upon excitation in the ILCT band. The complexes exhibit a quasi-reversible one electron Ru(II)/Ru(III) oxidation couple at 1.44 V for 1 and 0.94 V for 2. Catalytic activity of these compounds is investigated to the oxidation of PhCH2OH to PhCHO, 2-butanol (C4H9OH) to 2-butanone, 1-phenylethanol (PhC2H4OH) to acetophenone, cyclopentanol (C5H9OH) to cyclopentanone, cyclohexanol to cyclohexanone, cycloheptanol to cycloheptanone and cycloctanol to cycloctanone using N-methylmorpholine-N-oxide (NMO) as oxidant. The catalytic efficiency of 2 is greater than complex 1 and well correlate with the metal oxidation potential of the complexes. DFT, NBO and TDDFT calculations are employed to explain the structural and electronic features and to support the spectroscopic assignments.

  19. A novel NAD(P)H-dependent carbonyl reductase specifically expressed in the thyroidectomized chicken fatty liver: catalytic properties and crystal structure.

    PubMed

    Fukuda, Yudai; Sone, Takeki; Sakuraba, Haruhiko; Araki, Tomohiro; Ohshima, Toshihisa; Shibata, Takeshi; Yoneda, Kazunari

    2015-10-01

    A gene encoding a functionally unknown protein that is specifically expressed in the thyroidectomized chicken fatty liver and has a predicted amino acid sequence similar to that of NAD(P)H-dependent carbonyl reductase was overexpressed in Escherichia coli; its product was purified and characterized. The expressed enzyme was an NAD(P)H-dependent broad substrate specificity carbonyl reductase and was inhibited by arachidonic acid at 1.5 μm. Enzymological characterization indicated that the enzyme could be classified as a cytosolic-type carbonyl reductase. The enzyme's 3D structure was determined using the molecular replacement method at 1.98 Å resolution in the presence of NADPH and ethylene glycol. The asymmetric unit consisted of two subunits, and a noncrystallographic twofold axis generated the functional dimer. The structures of the subunits, A and B, differed from each other. In subunit A, the active site contained an ethylene glycol molecule absent in subunit B. Consequently, Tyr172 in subunit A rotated by 103.7° in comparison with subunit B, which leads to active site closure in subunit A. In Y172A mutant, the Km value for 9,10-phenanthrenequinone (model substrate) was 12.5 times higher than that for the wild-type enzyme, indicating that Tyr172 plays a key role in substrate binding in this carbonyl reductase. Because the Tyr172-containing active site lid structure (Ile164-Gln174) is not conserved in all known carbonyl reductases, our results provide new insights into substrate binding of carbonyl reductase. The catalytic properties and crystal structure revealed that thyroidectomized chicken fatty liver carbonyl reductase is a novel enzyme.

  20. Allyl chloride

    Integrated Risk Information System (IRIS)

    Allyl chloride ; CASRN 107 - 05 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  1. Allyl alcohol

    Integrated Risk Information System (IRIS)

    Allyl alcohol ; CASRN 107 - 18 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  2. Indium-Mediated Stereoselective Allylation.

    PubMed

    Kumar, Dinesh; Vemula, Sandeep R; Balasubramanian, Narayanaganesh; Cook, Gregory R

    2016-10-04

    Stereoselective indium-mediated organic reactions have enjoyed tremendous growth in the last 25 years. This is in part due to the insensitivity of allylindium to moisture, affording facile and practical reaction conditions coupled with outstanding functional group tolerance and minimal side reactions. Despite the plethora of articles about allylindium, there is much yet to be discovered and exploited for efficient and sustainable synthesis. In this Account, we describe indium-mediated synthetic methods for the preparation of chiral amines with the aim to present a balance of practical method development, novel asymmetric chemistry, and mechanistic understanding that impact multiple chemical and materials science disciplines. In 2005, we demonstrated the indium-mediated allylation of chiral hydrazones with complete diastereoselectivity (>99:1) and quantitative yields. Further, we revealed the first example of enantioselective indium-mediated allylation of hydrazones using catalytic (R)-3,3'-bis(trifluoromethyl)-BINOL ligands to afford homoallylic amines with high enantioselectivity. The use of enantiopure perfluoroalkylsulfonate BINOLs greatly improved the indium-mediated allylation of N-acylhydrazones with exquisite enantiocontrol (99% yield, 99% ee). This laboratory has also investigated indium-mediated asymmetric intramolecular cyclization in the presence of amino acid additives to deliver biologically relevant chromanes with excellent diastereoselectivity (dr >99:1). The effect of amino acid additives (N-Boc-glycine) was further investigated during the indium-mediated allylation of isatins with allyl bromide to yield homoallylic alcohols in excellent yields in a short time with a wide range of functional group tolerance. Critical mechanistic insight was gained, and evidence suggests that the additive plays two roles: (1) to increase the rate of formation of allylindium from allyl bromide and In(0) and (2) to increase the nucleophilicity of the allylindium

  3. Amination of allylic alcohols in water at room temperature.

    PubMed

    Nishikata, Takashi; Lipshutz, Bruce H

    2009-06-04

    The "trick" to carrying out regiocontrolled aminations of allylic alcohols in water as the only medium is use of a nanomicelle's interior as the organic reaction solvent. When HCO(2)Me is present, along with the proper base and source of catalytic Pd, allylic amines are cleanly formed at room temperature.

  4. Palladium-Catalyzed Aminocarbonylation of Allylic Alcohols.

    PubMed

    Li, Haoquan; Neumann, Helfried; Beller, Matthias

    2016-07-11

    A benign and efficient palladium-catalyzed aminocarbonylation reaction of allylic alcohols is presented. The generality of this novel process is demonstrated by the synthesis of β,γ-unsaturated amides including aliphatic, cinnamyl, and terpene derivatives. The choice of ligand is crucial for optimal carbonylation processes: Whereas in most cases the combination of PdCl2 with Xantphos (L6) gave best results, sterically hindered substrates performed better in the presence of simple triphenylphosphine (L10), and primary anilines gave the best results using cataCXium® PCy (L8). The reactivity of the respective catalyst system is significantly enhanced by addition of small amounts of water. Mechanistic studies and control experiments revealed a tandem allylic alcohol amination/C-N bond carbonylation reaction sequence.

  5. The Allyl Intermediate in Regioselective and Enantioselective Iridium-Catalyzed Asymmetric Allylic Substitution Reactions

    PubMed Central

    Madrahimov, Sherzod T.; Markovic, Dean; Hartwig., John F.

    2010-01-01

    The isolation and structural characterization of metallacyclic allyl (2a) and crotyl (2b) iridium complexes are reported. Complexes 2a and 2b are rare examples of iriduim allyl complexes that undergo nucleophilic attack at terminal position, rather than the central position, of the allyl unit. Structures of 2a and 2b were obtained by X-ray diffraction. Nucleophilic attack was observed at the carbon that is bound to iridium trans to phosphorus through a longer Ir-C bond. However, the effect of the trans phosphine ligand on the Ir-C bond lengths was smaller than the effect of the substituent on the allyl group in 2b. The competence of complexes 2a and 2b to be intermediates in the catalytic asymmetric allylic substitutions was evaluated by studying their reactivity towards stabilized carbon and heteroatom nucleophiles and comparing the rates and selectivities to those of the catalytic reactions. The stereoselectivity and regioselectivity of stoichiometric reactions of 2b were similar to those of reactions catalyzed by the previously reported iridium catalysts, supporting their intermediacy in the catalytic reactions. Based on the structural data, a model is proposed for the origin of stereoselectivity in iridium-catalyzed asymmetric allylic substitution reactions. PMID:19432473

  6. The allyl intermediate in regioselective and enantioselective iridium-catalyzed asymmetric allylic substitution reactions.

    PubMed

    Madrahimov, Sherzod T; Markovic, Dean; Hartwig, John F

    2009-06-03

    The isolation and structural characterization of metallacyclic allyl (2a) and crotyl (2b) iridium complexes are reported. Complexes 2a and 2b are rare examples of iriduim allyl complexes that undergo nucleophilic attack at terminal position, rather than the central position, of the allyl unit. Structures of 2a and 2b were obtained by X-ray diffraction. Nucleophilic attack was observed at the carbon that is bound to iridium trans to phosphorus through a longer Ir-C bond. However, the effect of the trans phosphine ligand on the Ir-C bond lengths was smaller than the effect of the substituent on the allyl group in 2b. The competence of complexes 2a and 2b to be intermediates in the catalytic asymmetric allylic substitutions was evaluated by studying their reactivity toward stabilized carbon and heteroatom nucleophiles and comparing the rates and selectivities to those of the catalytic reactions. The stereoselectivity and regioselectivity of stoichiometric reactions of 2b were similar to those of reactions catalyzed by the previously reported iridium catalysts, supporting their intermediacy in the catalytic reactions. On the basis of the structural data, a model is proposed for the origin of stereoselectivity in iridium-catalyzed asymmetric allylic substitution reactions.

  7. Ruthenium(II) carbonyl complexes containing pyridine carboxamide ligands and PPh3/AsPh3/Py coligands: Synthesis, spectral characterization, catalytic and antioxidant studies

    NASA Astrophysics Data System (ADS)

    Ramachandran, Rangasamy; Viswanathamurthi, Periasamy

    2013-02-01

    New ruthenium(II) carbonyl complexes bearing pyridine carboxamide and triphenylphosphine/triphenylarsine/pyridine have been prepared by direct reaction of ruthenium(II) precursors with some pyridine carboxamide ligands, N,N-bis(2-pyridinecarboxamide)-1,2-ethane (H2L1), N,N-bis(2-pyridinecarboxamide)-1,2-benzene (H2L2) and N,N-bis(2-pyridinecarboxamide)-trans-1,2-cyclohexane (H2L3). The organic ligands offering two Namide and two Npyridine donor sites to the metal centre. They have been characterized by elemental analyses, FT-IR, UV-Visible, NMR (1H, 13C and 31P) and ESI-MS techniques. Based on the above data, an octahedral structure has been assigned for all the complexes. The catalytic efficiency of the complexes in transfer hydrogenation of ketones in the presence of iPrOH/KOH and N-alkylation of amine in the presence of tBuOK was examined. Furthermore, the antioxidant activity of the ligands and its ruthenium(II) complexes were determined by DPPH radical, nitric oxide radical, hydroxyl radical and hydrogen peroxide scavenging methods, which indicates that the ruthenium(II) complexes exhibit more effective antioxidant activity than the ligands alone.

  8. Metal carbonyl complexes with Schiff bases derived from 2-pyridinecarboxaldehyde: Syntheses, spectral, catalytic activity and antimicrobial activity studies

    NASA Astrophysics Data System (ADS)

    Ali, Omyma A. M.; El-Medani, Samir M.; Ahmed, Doaa A.; Nassar, Doaa A.

    2014-09-01

    Thermal reactions of [M(CO)6], M = Cr, Mo and W with the two Schiff bases: 2-[(pyridin-2-ylmethylidene)amino]-6-aminopyridine (L1) and 2-[(pyridin-2-ylmethylidene)amino]phenol (HL2) were investigated. Three complexes with molecular formulas [Cr(L1)3], 1, [MoO2(L1)2], 2 and [WO2(L1)2], 3 were isolated from the reactions with L1. The corresponding reactions with HL2 produced the complexes [Cr(HL2)2], 4, [Mo2(CO)4O2(HL2)2], 5 and [W(CO)4(HL2)], 6. All complexes were characterized by elemental analysis, infrared, mass and 1H NMR spectroscopy. The molar conductivities of the complexes in DMF indicated nonelectrolytic behavior. The prepared ligands and their complexes exhibited intraligand (π-π*) fluorescence and can potentially serve as photoactive materials. The catalytic activity of the complexes towards to hydrogen peroxide decomposition reaction was investigated. Both the ligands and their complexes have been screened for antibacterial activities.

  9. Enantioselective Allylation, Crotylation and Reverse Prenylation of Substituted Isatins via Iridium Catalyzed C-C Bond Forming Transfer Hydrogenation**

    PubMed Central

    Itoh, Junji; Han, Soo Bong; Krische, Michael J.

    2010-01-01

    Oxindoles with a Twist Transfer hydrogenation of substituted isatins in the presence of allyl acetate, α-methyl allyl acetate or 1,1,-dimethylallene employing an ortho-cyclometallated iridium catalyst modified by CTH-(R)-P-PHOS provides products of carbonyl allylation, crotylation and reverse prenylation, respectively, in highly enantiomerically enriched form. These studies represent the first use of activated ketones as electrophilic partners in asymmetric C-C bond forming transfer hydrogenation. PMID:19606435

  10. Chiral phosphinoferrocene carboxamides with amino acid substituents as ligands for Pd-catalysed asymmetric allylic substitutions. Synthesis and structural characterisation of catalytically relevant Pd complexes.

    PubMed

    Tauchman, Jiří; Císařová, Ivana; Stěpnička, Petr

    2011-11-28

    An extensive series of chiral amino acid amides prepared from 1'-(diphenylphosphino)ferrocene-1-carboxylic acid (Hdpf) or its planar-chiral isomer, 2-(diphenylphosphino)ferrocene-1-carboxylic acid, have been tested as ligands for Pd-catalysed asymmetric allylic substitution reactions. In alkylation of 1,3-diphenylallyl acetate as a model substrate with dimethyl malonate the ligands performed well in terms of both reaction rate and enantioselectivity, achieving up to 98% ee. In contrast, the reactions of the same substrate with other nucleophiles proceeded either slowly and with poor ee's (amination with benzylamine) or not at all (etherification with benzyl alcohol). In order to rationalise the influence of the ligand structure on the reaction course, three model complexes, viz. [(η(3)-methallyl)PdCl(L-κP)], [(η(3)-methallyl)Pd(L-κ(2)O,P)]ClO(4) and [(η(3)-methallyl)Pd(L-κP)(2)]ClO(4) have been prepared from the achiral amide Ph(2)PfcCONHCH(2)CO(2)Me (L; fc = ferrocene-1,1'-diyl) and structurally characterised. The coordination study showed that the amido-phosphines readily form 1 : 1 complexes as O,P-chelates where the amino acid chirality is brought close to the Pd atom. At higher ligand-to-metal ratios, however, simple P-monodentate coordination prevails, minimising the influence of the chiral amino acid pendant.

  11. Consecutive iridium catalyzed C–C and C–H bond forming hydrogenations for the diastereo- and enantioselective synthesis of syn-3-fluoro-1-alcohols: C–H (2-fluoro)allylation of primary alcohols†

    PubMed Central

    Hassan, Abbas; Montgomery, T. Patrick

    2012-01-01

    Commercially available (2-fluoro)allyl chloride serves as an efficient allyl donor in highly enantioselective iridium catalyzed carbonyl (2-fluoro)allylations from the alcohol or aldehyde oxidation level via transfer hydrogenation. Diastereoselective Crabtree hydrogenation of the resulting homoallylic alcohols provides syn-3-fluoro-1-alcohols. PMID:22473044

  12. Highly Stereoselective Intermolecular Haloetherification and Haloesterification of Allyl Amides

    PubMed Central

    Soltanzadeh, Bardia; Jaganathan, Arvind; Staples, Richard J.

    2016-01-01

    An organocatalytic and highly regio-, diastereo-, and enantioselective intermolecular haloetherification and haloesterification reaction of allyl amides is reported. A variety of alkene substituents and substitution patterns are compatible with this chemistry. Notably, electronically unbiased alkene substrates exhibit exquisite regio- and diastereoselectivity for the title transformation. We also demonstrate that the same catalytic system can be used in both chlorination and bromination reactions of allyl amides with a variety of nucleophiles with little or no modification. PMID:26110812

  13. Palladium-catalyzed allylic C-H fluorination.

    PubMed

    Braun, Marie-Gabrielle; Doyle, Abigail G

    2013-09-04

    The first catalytic allylic C-H fluorination reaction using a nucleophilic fluoride source is reported. Under the influence of a Pd/Cr cocatalyst system, simple olefin substrates undergo fluorination with Et3N·3HF in good yields with high branched:linear regioselectivity. The mild conditions and broad scope make this reaction a powerful alternative to established methods for the preparation of allylic fluorides from prefunctionalized substrates.

  14. Palladium-catalyzed regio- and enantioselective fluorination of acyclic allylic halides.

    PubMed

    Katcher, Matthew H; Sha, Allen; Doyle, Abigail G

    2011-10-12

    This report describes the Pd(0)-catalyzed fluorination of linear allylic chlorides and bromides, yielding branched allylic fluorides in high selectivity. Many of the significant synthetic limitations previously associated with the preparation of these products are overcome by this catalytic method. We also demonstrate that a chiral bisphosphine-ligated palladium catalyst enables highly enantioselective access to a class of branched allylic fluorides that can be readily diversified to valuable fluorinated products.

  15. Oxy-Allyl Cation Catalysis: An Enantioselective Electrophilic Activation Mode

    PubMed Central

    Liu, Chun; Oblak, E. Zachary; Vander Wal, Mark N.; Dilger, Andrew K.; Almstead, Danielle K.; MacMillan, David W. C.

    2016-01-01

    A generic activation mode for asymmetric LUMO-lowering catalysis has been developed using the long-established principles of oxy-allyl cation chemistry. Here, the enantioselective conversion of racemic α-tosyloxy ketones to optically enriched α-indolic carbonyls has been accomplished using a new amino alcohol catalyst in the presence of electron-rich indole nucleophiles. Kinetic studies reveal that the rate-determining step in this SN1 pathway is the catalyst-mediated α-tosyloxy ketone deprotonation step to form an enantiodiscriminant oxy-allyl cation prior to the stereodefining nucleophilic addition event. PMID:26797012

  16. Synthesis of acrylic and allylic bifunctional cross-linking monomers derived from PET waste

    NASA Astrophysics Data System (ADS)

    Cruz-Aguilar, A.; Herrera-González, A. M.; Vázquez-García, R. A.; Navarro-Rodríguez, D.; Coreño, J.

    2013-06-01

    An acrylic and two novel allylic monomers synthesized from bis (hydroxyethyl) terephthalate, BHET, are reported. This was obtained by glycolysis of post-consumer PET with boiling ethylene glycol. The bifunctional monomer bis(2-(acryloyloxy)ethyl) terephthalate was obtained from acryloyl chloride, while the allylic monomers 2-(((allyloxi)carbonyl)oxy) ethyl (2-hydroxyethyl) terephthalate and bis(2-(((allyloxi)carbonyl)oxy)ethyl) terephthalate, from allyl chloroformate. Cross-linking was studied in bulk polymerization using two different thermal initiators. Monomers were analyzed by means of 1H NMR and the cross-linked polymers by infrared spectroscopy. Gel content higher than 90% was obtained for the acrylic monomer. In the case of the mixture of the allylic monomers, the cross-linked polymer was 80 % using BPO initiator, being this mixture 24 times less reactive than the acrylic monomer.

  17. Direct and enantioselective α-allylation of ketones via singly occupied molecular orbital (SOMO) catalysis

    PubMed Central

    Mastracchio, Anthony; Warkentin, Alexander A.; Walji, Abbas M.; MacMillan, David W. C.

    2010-01-01

    The first enantioselective organocatalytic α-allylation of cyclic ketones has been accomplished via singly occupied molecular orbital catalysis. Geometrically constrained radical cations, forged from the one-electron oxidation of transiently generated enamines, readily undergo allylic alkylation with a variety of commercially available allyl silanes. A reasonable latitude in both the ketone and allyl silane components is readily accommodated in this new transformation. Moreover, three new oxidatively stable imidazolidinone catalysts have been developed that allow cyclic ketones to successfully participate in this transformation. The new catalyst platform has also been exploited in the first catalytic enantioselective α-enolation and α-carbooxidation of ketones. PMID:20921367

  18. Carbonyl sulfide

    Integrated Risk Information System (IRIS)

    Carbonyl sulfide ; CASRN 463 - 58 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  19. Nickel carbonyl

    Integrated Risk Information System (IRIS)

    Nickel carbonyl ; CASRN 13463 - 39 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  20. Regiospecific decarboxylative allylation of nitriles

    PubMed Central

    Recio, Antonio; Tunge, Jon A.

    2009-01-01

    Palladium-catalyzed decarboxylative α-allylation of nitriles readily occurs using Pd2(dba)3 and rac-BINAP. This catalyst mixture also allows the highly regiospecific α-allylation of nitriles in the presence of much more acidic α-protons. Thus, the reported method provides access to compounds that are not readily available via base-mediated allylation chemistries. Lastly, mechanistic investigations indicate that there is a competition between C- and N-allylation of an intermediate nitrile-stabilized anion and that N-allylation is followed by a rapid [3,3]-sigmatropic rearrangement. PMID:19921827

  1. Catalytic dehydrogenative N-((triisopropylsilyl)oxy)carbonyl (Tsoc) protection of amines using iPr3SiH and CO2.

    PubMed

    Tanaka, S; Yamamura, T; Nakane, S; Kitamura, M

    2015-08-25

    A versatile method has been found to catalyze the dehydrogenative N-((triisopropylsilyl)oxy)carbonyl (Tsoc) protection of amines using Pd/C, volatile iPr3SiH and CO2 gas without the liberation of any salts. A simple filtration/evaporation process facilitates the easy isolation of the product, thereby enhancing the utility of Tsoc as an amine-protecting group in organic synthesis.

  2. Allyl 4-hydroxy­phenyl carbonate

    PubMed Central

    Flores Ahuactzin, Víctor Hugo; López, Delia; Bernès, Sylvain

    2009-01-01

    The title mol­ecule, C10H10O4, is a functionalized carbonate used in the synthetic route to organic glasses. The central CH fragment of the allyl group is disordered over two positions, with occupancies in a 0.758 (10):0.242 (10)ratio. This disorder reflects the torsional flexibility of the oxygen–allyl group, although both disordered parts present the expected anti­clinal conformation, with O—CH2—CH=CH2 torsion angles of −111 (2) and 119.1 (4)°. The crystal structure is based on chains parallel to [010], formed by O⋯H—O hydrogen bonds involving hydroxyl and carbonyl groups as donors and acceptors, respectively. The mol­ecular packing is further stabilized by two weak C—H⋯π contacts from the benzene ring of the asymmetric unit with two benzene rings of neighboring mol­ecules. PMID:21582877

  3. Palladium-Catalyzed Allylic C-H Bond Functionalization of Olefins

    NASA Astrophysics Data System (ADS)

    Liu, Guosheng; Wu, Yichen

    Transition metal-mediated carbon-hydrogen bond cleavage and functionalization is a mechanistically interesting and synthetically attractive process. One of the important cases is the removal of a allylic hydrogen from an olefin by a PdII salt to yield a π-allylpalladium complex, followed by nucleophilic attack to efficient produce allylic derivatives. In contrast to the well-known allylic acetoxylation of cyclohexene, the reaction of open-chain olefins is fairly poor until recent several years. Some palladium catalytic systems have been reported to achieve allylic C-H functionalization, including acetoxylation, amination and alkylation of terminal alkenes. In the most of cases, ligand is crucial to the success of the transformation. This review surveys the recent development of palladium-catalyzed allylic C-H functionalziation of alkenes. These results promise a significant increase in the scope of olefin transformation.

  4. Cu-catalyzed enantioselective allylic alkylation with organolithium reagents.

    PubMed

    Hornillos, Valentín; Guduguntla, Sureshbabu; Fañanás-Mastral, Martín; Pérez, Manuel; Bos, Pieter H; Rudolph, Alena; Harutyunyan, Syuzanna R; Feringa, Ben L

    2017-03-01

    This protocol describes a method for the catalytic enantioselective synthesis of tertiary and quaternary carbon stereogenic centers, which are widely present in pharmaceutical and natural products. The method is based on the direct reaction between organolithium compounds, which are cheap, readily available and broadly used in chemical synthesis, and allylic electrophiles, using chiral copper catalysts. The methodology involves the asymmetric allylic alkylation (AAA) of allyl bromides, chlorides and ethers with organolithium compounds using catalyst systems based on Cu-Taniaphos and Cu-phosphoramidites. The protocol contains a complete description of the reaction setup, a method based on (1)H-NMR, gas chromatography-mass spectrometry (GC-MS) and chiral HPLC for assaying the regioselectivity and enantioselectivity of the product, and isolation, purification and characterization procedures. Six Cu-catalyzed AAA reactions between different organolithium reagents and allylic systems are detailed in the text as representative examples of these procedures. These reactions proceed within 1-10 h, depending on the nature of the allylic substrate (bromide, chloride, or ether and disubstituted or trisubstituted) or the chiral ligand used (Taniaphos or phosphoramidite). However, the entire protocol, including workup and purification, generally requires an additional 4-7 h to complete.

  5. Preconditioning with subneurotoxic allyl nitrile: protection against allyl nitrile neurotoxicity.

    PubMed

    Tanii, H; Higashi, T; Saijoh, K

    2010-02-01

    High-dose cruciferous allyl nitrile can induce behavioral abnormalities in rodents, while repeated exposure to allyl nitrile at subneurotoxic levels can increase phase 2 detoxification enzymes in many tissues, although the brain has not been investigated yet. In the present study, we examined the effect of 5 days repeated exposure to subneurotoxic allyl nitrile (0-400 micromol/kg/day) on the brain. Elevated glutathione S-transferase activity was recorded in the striatum, hippocampus, medulla oblongata plus pons, and cortex. Enhancement of quinone reductase activity was observed in the medulla oblongata plus pons, hippocampus, and cortex. In the medulla oblongata plus pons, elevated glutathione levels were recorded. Following repeated subneurotoxic allyl nitrile exposure (0-400 micromol/kg/day), mice were administered a high-dose allyl nitrile (1.2 mmol/kg) which alone led to appearance of behavioral abnormalities. Compared with the 0 micromol/kg/day group, animals in the 200 and 400 micromol/kg/day pre-treatment groups exhibited decreased behavioral abnormalities and elevated GABA-positive cell counts in the substantia nigra pars reticulata and the interpeduncular nucleus. These data suggest that repeated exposure to subneurotoxic levels of allyl nitrile can induce phase 2 enzymes in the brain, which together with induction in other tissues, may contribute to protection against allyl nitrile neurotoxicity. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Synthesis of complex allylic esters via C-H oxidation vs C-C bond formation.

    PubMed

    Vermeulen, Nicolaas A; Delcamp, Jared H; White, M Christina

    2010-08-18

    A highly general, predictably selective C-H oxidation method for the direct, catalytic synthesis of complex allylic esters is introduced. This Pd(II)/sulfoxide-catalyzed method allows a wide range of complex aryl and alkyl carboxylic acids to couple directly with terminal olefins to furnish (E)-allylic esters in synthetically useful yields and selectivities (16 examples, E/Z >or= 10:1) and without the use of stoichiometric coupling reagents or unstable intermediates. Strategic advantages of constructing allylic esters via C-H oxidation vs C-C bond-forming methods are evaluated and discussed in four "case studies".

  7. Direct use of allylic alcohols for platinum-catalyzed monoallylation of amines.

    PubMed

    Utsunomiya, Masaru; Miyamoto, Yoshiki; Ipposhi, Junji; Ohshima, Takashi; Mashima, Kazushi

    2007-08-16

    A new direct catalytic amination of allylic alcohols promoted by the combination of platinum and a large bite-angle ligand DPEphos was developed in which the allylic alcohol was effectively converted to a pi-allylplatinum intermediate without the use of an activating reagent. The use of the DPEphos ligand was essential for obtaining high catalyst activity and high monoallylation selectivity of primary amines, allowing the formation of a variety of monoallylation products in good to excellent yield.

  8. A simple, nontoxic iron system for the allylation of zinc enolates.

    PubMed

    Jarugumilli, Gopala K; Cook, Silas P

    2011-04-15

    Diiron nonacarbonyl in combination with triphenylphosphine has been identified as a low-cost and environmentally benign catalyst system for the allylation of zinc enolates generated in situ from copper-catalyzed asymmetric conjugate addition reactions. The catalyst system provides the allylated product in modest to good yields at room temperature with unprecedented diastereoselectivity in cyclic enone systems. While triphenylphosphine was uniquely effective among the investigated ligands, the exact nature of the active catalytic species remains unknown.

  9. Preconversion catalytic deoxygenation of phenolic functional groups. Quarterly report, January 1--March 30, 1996

    SciTech Connect

    Kubiak, C.P.

    1996-12-31

    Over the course of the studies on catalytic deoxygenation of phenolic residues in coal by carbon monoxide, the author performed preliminary investigations into the removal of other heteroatom groups. This report describes the attempted carbonylation of phenyl amido complexes. These studies resulted in the surprisingly facile formation of amidines. The amidine group is the nitrogen analog of carboxylic acids and esters. This functional group combines the properties of an azomethane-like C=N double bond with an amide-like C-N single bond. This group, like the related allyl (C-C-C), aza-allyl (C-N-C), and carboxylato (O-C-O) groups, form a number of transition metal derivatives, with both early and late transition metals. Various bonding modes of the amidino group have been reported. However, most isolated complexes have the amidino ligand as a chelating ligand or bridging two metals. This is due to the preference of amidines to bond via the nitrogen lone pairs, in contrast to the {eta}3 bonding observed in metal-allyl complexes. The experimental section of the paper describes the synthesis of platinum complexes, X-ray diffraction data for one Pt complex, and its reaction with carbon monoxide. Results are presented on the crystal and molecular structure of a platinum complex.

  10. Tsuji-Trost N-allylation with allylic acetates using cellulose-Pd catalyst

    EPA Science Inventory

    Allylic amines are synthesized using heterogeneous cellulose-Pd catalyst via N-allylation of amines; aliphatic and benzyl amines undergo facile reaction with substituted and unsubstituted allyl acetates in high yields.

  11. Tsuji-Trost N-allylation with allylic acetates using cellulose-Pd catalyst

    EPA Science Inventory

    Allylic amines are synthesized using heterogeneous cellulose-Pd catalyst via N-allylation of amines; aliphatic and benzyl amines undergo facile reaction with substituted and unsubstituted allyl acetates in high yields.

  12. Kinetic Studies that Evaluate the Solvolytic Mechanisms of Allyl and Vinyl Chloroformate Esters

    PubMed Central

    D’Souza, Malcolm J.; Givens, Aaron F.; Lorchak, Peter A.; Greenwood, Abigail E.; Gottschall, Stacey L.; Carter, Shannon E.; Kevill, Dennis N.

    2013-01-01

    At 25.0 °C the specific rates of solvolysis for allyl and vinyl chloroformates have been determined in a wide mix of pure and aqueous organic mixtures. In all the solvents studied, vinyl chloroformate was found to react significantly faster than allyl chloroformate. Multiple correlation analyses of these rates are completed using the extended (two-term) Grunwald-Winstein equation with incorporation of literature values for solvent nucleophilicity (NT) and solvent ionizing power (YCl). Both substrates were found to solvolyze by similar dual bimolecular carbonyl-addition and unimolecular ionization channels, each heavily dependent upon the solvents nucleophilicity and ionizing ability. PMID:23549265

  13. Allyl sulfides modify cell growth.

    PubMed

    Knowles, L M; Milner, J A

    2000-01-01

    Extensive evidence points to the ability of allyl sulfides from garlic to suppress tumor proliferation both in vitro and in vivo. This antineoplastic effect is generally greater for lipid-soluble than water-soluble allyl sulfides. Both concentration and duration of exposure can increase the antiproliferative effects of lipid- and water-soluble allyl sulfides. Part of their antiproliferative effects may relate to an increase in membrane fluidity and a suppression of integrin glycoprotein IIb-IIIa mediated adhesion. Alterations in cholesterol, arachidonic acid, phospholipids and/or thiols may account for these changes in membrane function. Allyl sulfides are also recognized for their ability to suppress cellular proliferation by blocking cells in the G2/M phase and by the induction of apoptosis. This increase in the G2/M and apoptotic cell populations correlates with depressed p34cdc2 kinase activity, increased histone acetylation, increased intracellular calcium and elevated cellular peroxide production. While impressive pre-clinical data exist about the antineoplastic effects of allyl sulfur compounds, considerably more attention needs to be given to their effects in humans. The composition of the entire diet and a host of genetic/epigenetic factors will likely determine the true benefits that might arise from allyl sulfur compounds from garlic and other Allium foods.

  14. Cloning and heterologous expression of cDNA encoding class alpha rat glutathione transferase 8-8, an enzyme with high catalytic activity towards genotoxic alpha,beta-unsaturated carbonyl compounds.

    PubMed Central

    Stenberg, G; Ridderström, M; Engström, A; Pemble, S E; Mannervik, B

    1992-01-01

    A cDNA clone, lambda GTRA8, encoding rat glutathione transferase subunit 8 has been isolated from a lambda gt10 rat hepatoma cDNA library. The previously known amino acid sequence of the enzyme was used to design primers for a polymerase chain reaction that yielded a 0.3 kb DNA fragment from the hepatoma library. The 0.3 kb fragment was used as a probe for screening and a 0.9 kb cDNA clone containing a complete open reading frame was obtained. After DNA sequencing and subcloning into an expression vector, the enzyme was expressed in Escherichia coli and purified. Specific activities and kcat./Km values were determined for a number of substrates, including alpha,beta-unsaturated carbonyl compounds. The highest activity was obtained with 4-hydroxyalkenals and with acrolein, genotoxic products of lipid peroxidation. In addition, the rat class Alpha glutathione transferase 8-8 displays high catalytic activity in the reaction between glutathione and the diuretic drug ethacrynic acid, a compound normally considered as a substrate characteristic for class Pi glutathione transferases. PMID:1599415

  15. Synthesis of Ruthenium Carbonyl Complexes with Phosphine or Substituted Cp Ligands, and Their Activity in the Catalytic Deoxygenation of 1,2-Propanediol

    SciTech Connect

    Ghosh, Prasenjit; Fagan, Paul J.; Marshall, William J.; Hauptman, Elisabeth; Bullock, R. Morris

    2009-07-20

    A ruthenium hydride with a bulky substituted Cp ligand, (CpiPr4)Ru(CO)2H (CpiPr4 = C5(i-C3H7)4H) was prepared from the reaction of Ru3(CO)12 with 1,2,3,4-tetraisopropylcyclopentadiene. The molecular structure of (CpiPr4)Ru(CO)2H was determined by x-ray crystallography. The ruthenium hydride complex (C5Bz5)Ru(CO)2H (Bz = CH2Ph) was similarly prepared. The Ru-Ru bonded dimer, [(1,2,3-trimethylindenyl)Ru(CO)2]2, was produced from the reaction of 1,2,3-trimethylindene with Ru3(CO)12, and protonation of this dimer with HOTf gives {[(1,2,3-trimethylindenyl)Ru(CO)2]2(μ H)}+OTf –. A series of ruthenium hydride complexes CpRu(CO)(L)H [L = P(OPh)3, PCy3, PMe3, P(p C6H4F)3] were prepared by reaction of Cp(CO)2RuH with added L. Protonation of (CpiPr4)Ru(CO)2H, Cp*Ru(CO)2H or CpRu(CO)[P(OPh)3]H by HOTf 80 °C led to equilibria with the cationic dihydrogen complexes, but H2 was released at higher temperatures. Protonation of CpRu[P(OPh)3]2H with HOTf gave an observable dihydrogen complex, {CpRu[P(OPh)3]2(η2 H2)}+OTf – that was converted at -20 °C to the dihydride complex {CpRu[P(OPh)3]2(H)2}+OTf –. These Ru complexes serve as catalyst precursors for the catalytic deoxygenation of 1,2-propanediol to give n-propanol. The catalytic reactions were carried out in sulfolane solvent with added HOTf under H2 (750 psi) at 110 °C. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. Pacific Northwest National Laboratory is operated by Battelle for DOE.

  16. Synthesis of Ruthenium Carbonyl Complexes with Phosphine or Substituted Cp Ligands, and Their Activity in the Catalytic Deoxygenation of 1,2-Propanediol

    SciTech Connect

    Bullock, R.M.; Ghosh, P.; Fagan, P.J.; Marshall, W.J.; Hauptman, E.

    2009-07-20

    A ruthenium hydride with a bulky tetra-substituted Cp ligand, (Cp{sup iPr{sub 4}})Ru(CO){sub 2}H (Cp{sup iPr{sub 4}} = C{sub 5}(i-C{sub 3}H{sub 7}){sub 4}H) was prepared from the reaction of Ru{sub 3}(CO){sub 12} with 1,2,3,4-tetraisopropylcyclopentadiene. The molecular structure of (Cp{sup iPr{sub 4}})Ru(CO){sub 2}H was determined by X-ray crystallography. The ruthenium hydride complex (C{sub 5}Bz{sub 5})Ru(CO){sub 2}H (Bz = CH{sub 2}Ph) was similarly prepared. The Ru-Ru bonded dimer, [(1,2,3-trimethylindenyl)Ru(CO){sub 2}]{sub 2}, was produced from the reaction of 1,2,3-trimethylindene with Ru{sub 3}(CO){sub 12}, and protonation of this dimer with HOTf gives {l_brace}[(1,2,3-trimethylindenyl)Ru(CO){sub 2}]{sub 2}-({mu}-H){r_brace}{sup +}OTf{sup -}. A series of ruthenium hydride complexes CpRu(CO)(L)H [L = P(OPh){sub 3}, PCy{sub 3}, PMe{sub 3}, P(p-C{sub 6}H{sub 4}F){sub 3}] were prepared by reaction of Cp(CO){sub 2}RuH with added L. Protonation of (Cp{sup iPr{sub 4}})Ru(CO){sub 2}H, Cp*Ru(CO){sub 2}H, or CpRu(CO)[P-(OPh){sub 3}]H by HOTf at -80 C led to equilibria with the cationic dihydrogen complexes, but H{sub 2} was released at higher temperatures. Protonation of CpRu[P(OPh){sub 3}]{sub 2}H with HOTf gave an observable dihydrogen complex, {l_brace}CpRu[P-(OPh){sub 3}]{sub 2}({eta}{sup 2}-H{sub 2}){r_brace}+OTf{sup -} that was converted at -20 C to the dihydride complex {l_brace}CpRu[P(OPh){sub 3}]{sub 2}(H){sub 2}{r_brace}{sup +}OTf{sup -}. These Ru complexes serve as catalyst precursors for the catalytic deoxygenation of 1,2-propanediol to give n-propanol. The catalytic reactions were carried out in sulfolane solvent with added HOTf under H{sub 2} (750 psi) at 110 C.

  17. Iridium-Catalyzed Selective Isomerization of Primary Allylic Alcohols.

    PubMed

    Li, Houhua; Mazet, Clément

    2016-06-21

    This Account presents the development of the iridium-catalyzed isomerization of primary allylic alcohols in our laboratory over the past 8 years. Our initial interest was driven by the long-standing challenge associated with the development of a general catalyst even for the nonasymmetric version of this seemingly simple chemical transformation. The added value of the aldehyde products and the possibility to rapidly generate molecular complexity from readily accessible allylic alcohols upon a redox-economical isomerization reaction were additional sources of motivation. Certainly influenced by the success story of the related isomerization of allylic amines, most catalysts developed for the selective isomerization of allylic alcohols were focused on rhodium as a transition metal of choice. Our approach has been based on the commonly accepted precept that hydrogenation and isomerization are often competing processes, with the latter being usually suppressed in favor of the former. The cationic iridium complexes [(Cy3P)(pyridine)Ir(cod)]X developed by Crabtree (X = PF6) and Pfaltz (X = BArF) are usually considered as the most versatile catalysts for the hydrogenation of allylic alcohols. Using molecular hydrogen to generate controlled amounts of the active form of these complexes but performing the reaction in the absence of molecular hydrogen enabled deviation from the typical hydrogenation manifold and favored exclusively the isomerization of allylic alcohols into aldehydes. Isotopic labeling and crossover experiments revealed the intermolecular nature of the process. Systematic variation of the ligand on the iridium center allowed us to identify the structural features beneficial for catalytic activity. Subsequently, three generations of chiral catalysts have been investigated and enabled us to reach excellent levels of enantioselectivity for a wide range of 3,3-disubstituted aryl/alkyl and alkyl/alkyl primary allylic alcohols leading to β-chiral aldehydes. The

  18. Enantioselective functionalization of allylic C-H bonds following a strategy of functionalization and diversification.

    PubMed

    Sharma, Ankit; Hartwig, John F

    2013-11-27

    We report the enantioselective functionalization of allylic C-H bonds in terminal alkenes by a strategy involving the installation of a temporary functional group at the terminal carbon atom by C-H bond functionalization, followed by the catalytic diversification of this intermediate with a broad scope of reagents. The method consists of a one-pot sequence of palladium-catalyzed allylic C-H bond oxidation under neutral conditions to form linear allyl benzoates, followed by iridium-catalyzed allylic substitution. This overall transformation forms a variety of chiral products containing a new C-N, C-O, C-S, or C-C bond at the allylic position in good yield with a high branched-to-linear selectivity and excellent enantioselectivity (ee ≤97%). The broad scope of the overall process results from separating the oxidation and functionalization steps; by doing so, the scope of nucleophile encompasses those sensitive to direct oxidative functionalization. The high enantioselectivity of the overall process is achieved by developing an allylic oxidation that occurs without acid to form the linear isomer with high selectivity. These allylic functionalization processes are amenable to an iterative sequence leading to (1,n)-functionalized products with catalyst-controlled diastereo- and enantioselectivity. The utility of the method in the synthesis of biologically active molecules has been demonstrated.

  19. The coordination chemistry of silyl-substituted allyl ligands.

    PubMed

    Solomon, Sophia A; Layfield, Richard A

    2010-03-14

    Metal allyl complexes in which the ligands carry bulky silyl substituents frequently show stability that cannot be achieved with unsubstituted analogues. As a result, it has been possible to characterize a large family of structurally diverse metal silyl-allyls from the s-, p-, d- and f-blocks of the Periodic Table, and to study the coordination chemistry of compounds that often have no counterparts without bulky substituents. The fact that the majority of compounds discussed in this Perspective have been published since 2000 reflects the newness of the area, and the article summarizes the main developments in the structural chemistry of metal silyl-allyls and also selected synthetic and catalytic applications. Although organometallic chemistry is often regarded as transcending traditional boundaries between 'organic' and 'inorganic' chemistry, an understanding persists that those working in the field can be labelled 'inorganic organometallic' chemists or 'organic organometallic' chemists. It is hoped that chemists from a broad range of backgrounds will be able to use this review as an entry point to an exciting new direction in metal allyl chemistry.

  20. Cross coupling of dialkylmagnesium derivatives with allylic compounds catalyzed by copper salts

    SciTech Connect

    Ibragimov, A.G.; Dzhemilev, U.M.; Saraev, R.A.

    1985-07-20

    The reaction of allylic compounds with Grignard reagents catalyzed by salts of copper, nickel, iron and cobalt, titanium and palladium is a simple and efficient method for the preparation of unsaturated hydrocarbons. However, information concerning the use of dialkylmagnesium derivatives, which are more reactive than Grignard reagents, is extremely limited in these reactions. To continue a study of the cross-coupling of allylic compounds with dialkylmagnesium derivatives in an effort to expand the scope of this reaction and to elucidate the effect of the R/sub 2/Mg reagent structure on its reactivity, the authors investigated the reaction of dialkylmagnesium and diarlmagnesium reagents with allylic ethers and esters, thioethers, and amines, by the action of transition metal salts. This work demonstrates the feasibility of the preparation of unsaturated hydrocarbons of given structure by the cross-coupling of dialkylmagnesium derivatives with functional allylic compounds by the action of catalytic amounts of copper complexes.

  1. Palladium-catalyzed allylation of acidic and less nucleophilic anilines using allylic alcohols directly.

    PubMed

    Hsu, Yi-Chun; Gan, Kim-Hong; Yang, Shyh-Chyun

    2005-10-01

    The direct activation of C-O bonds in allylic alcohols by palladium complexes has been accelerated by carrying out the reactions in the presence of titanium(IV) isoproxide and 4 A molecular sieves. The acidic and less nucleophilic anilines such as diphenylamine, phenothiazine, 4-cyanoaniline, and nitroanilines are efficiently allylated under palladium catalysis using allylic alcohols as allylating reagents.

  2. A Green Approach for Allylations of Aldehydes and Ketones: Combining Allylborate, Mechanochemistry and Lanthanide Catalyst.

    PubMed

    de Souza, Viviane P; Oliveira, Cristiane K; de Souza, Thiago M; Menezes, Paulo H; Alves, Severino; Longo, Ricardo L; Malvestiti, Ivani

    2016-11-16

    Secondary and tertiary alcohols synthesized via allylation of aldehydes and ketones are important compounds in bioactive natural products and industry, including pharmaceuticals. Development of a mechanochemical method using potassium allyltrifluoroborate salt and water, to successfully perform the allylation of aromatic and aliphatic carbonyl compounds is reported for the first time. By controlling the grinding parameters, the methodology can be selective, namely, very efficient for aldehydes and ineffective for ketones, but by employing lanthanide catalysts, the reactions with ketones can become practically quantitative. The catalyzed reactions can also be performed under mild aqueous stirring conditions. Considering the allylation agent and its by-products, aqueous media, energy efficiency and use of catalyst, the methodology meets most of the green chemistry principles.

  3. 1-Allyl-3-benzyl-1H-benzimidazol-2(3H)-one

    PubMed Central

    Kandri Rodi, Youssef; Haoudi, Amal; Capet, Frédéric; Mazzah, Ahmed; Essassi, El Mokhtar; El Ammari, Lahcen

    2013-01-01

    In the title compound, C17H16N2O, the fused benzimidazol-2(3H)-one system is essentially planar, the largest deviation from the mean plane being 0.006 (2) Å for the carbonyl C atom. Its mean plane is almost perpendicular to the benzyl plane and to the allyl group, making dihedral angles of 80.6 (1) and 77.4 (3)°, respectively. The benzyl group and the allyl subsituent lie on opposite sides of the fused ring system. In the crystal, mol­ecules are linked by bifurcated C—H⋯O hydrogen bonds in which the carbonyl O atom acts as accepter to two aromatic C—H groups, forming a two-dimensional network parallel to (001). PMID:24427099

  4. The Hydrolysis of Carbonyl Sulfide at Low Temperature: A Review

    PubMed Central

    Zhao, Shunzheng; Yi, Honghong; Tang, Xiaolong; Jiang, Shanxue; Gao, Fengyu; Zhang, Bowen; Zuo, Yanran; Wang, Zhixiang

    2013-01-01

    Catalytic hydrolysis technology of carbonyl sulfide (COS) at low temperature was reviewed, including the development of catalysts, reaction kinetics, and reaction mechanism of COS hydrolysis. It was indicated that the catalysts are mainly involved metal oxide and activated carbon. The active ingredients which can load on COS hydrolysis catalyst include alkali metal, alkaline earth metal, transition metal oxides, rare earth metal oxides, mixed metal oxides, and nanometal oxides. The catalytic hydrolysis of COS is a first-order reaction with respect to carbonyl sulfide, while the reaction order of water changes as the reaction conditions change. The controlling steps are also different because the reaction conditions such as concentration of carbonyl sulfide, reaction temperature, water-air ratio, and reaction atmosphere are different. The hydrolysis of carbonyl sulfide is base-catalyzed reaction, and the force of the base site has an important effect on the hydrolysis of carbonyl sulfide. PMID:23956697

  5. Iron-Catalyzed Allylic Amination Directly from Allylic Alcohols.

    PubMed

    Emayavaramban, Balakumar; Roy, Moumita; Sundararaju, Basker

    2016-03-14

    Allylic amination, directly from alcohols, has been demonstrated without any Lewis acid activators using an efficient and regiospecific molecular iron catalyst. Various amines and alcohols were employed and the reaction proceeded through the oxidation/reduction (redox) pathway. A direct one-step synthesis of common drugs, such as cinnarizine and nafetifine, was exhibited from cinnamyl alcohol that produced water as side product.

  6. Iridium-Catalyzed Allylic Substitution

    NASA Astrophysics Data System (ADS)

    Hartwig, John F.; Pouy, Mark J.

    Iridium-catalyzed asymmetric allylic substitution has become a valuable method to prepare products from the addition of nucleophiles at the more substituted carbon of an allyl unit. The most active and selective catalysts contain a phosphoramidite ligand possessing at least one arylethyl substituent on the nitrogen atom of the ligand. In these systems, the active catalyst is generated by a base-induced cyclometalation at the methyl group of this substituent to generate an iridium metalacycle bound by the COD ligand of the [Ir(COD)Cl]2 precursor and one additional labile dative ligand. Such complexes catalyze the reactions of linear allylic esters with alkylamines, arylamines, phenols, alcohols, imides, carbamates, ammonia, enolates and enolate equivalents, as well as typical stabilized carbon nucleophiles generated from malonates and cyanoesters. Iridium catalysts for enantioselective allylic substitution have also been generated from phosphorus ligands with substituents bound by heteroatoms, and an account of the studies of such systems, along with a description of the development of iridium catalysts is included.

  7. Enantioselective and Regiodivergent Copper-Catalyzed Electrophilic Arylation of Allylic Amides with Diaryliodonium Salts

    PubMed Central

    2015-01-01

    A catalytic enantioselective and regiodivergent arylation of alkenes is described. Chiral copper(II)bisoxazoline complexes catalyze the addition of diaryliodonium salts to allylic amides in excellent ee. Moreover, the arylation can be controlled by the electronic nature of the diaryliodonium salt enabling the preparation of nonracemic diaryloxazines or β,β′-diaryl enamides. PMID:26090564

  8. Cooperative catalysis by palladium and a chiral phosphoric acid: enantioselective amination of racemic allylic alcohols.

    PubMed

    Banerjee, Debasis; Junge, Kathrin; Beller, Matthias

    2014-11-24

    Cooperative catalysis by [Pd(dba)2] and the chiral phosphoric acid BA1 in combination with the phosphoramidite ligand L8 enabled the efficient enantioselective amination of racemic allylic alcohols with a variety of functionalized amines. This catalytic protocol is highly regio- and stereoselective (up to e.r. 96:4) and furnishes valuable chiral amines in almost quantitative yield.

  9. Preconversion catalytic deoxygenation of phenolic functional groups. Quarterly technical progress report, January 1--March 30, 1996 and April 1--June 30, 1996

    SciTech Connect

    Kubiak, C.P.

    1997-05-01

    Over the course of his studies on catalytic deoxygenation of phenolic residues in coal by carbon monoxide, the author performed preliminary investigations into the removal of other heteroatom groups. This report describes his attempted carbonylation of phenyl amido complexes. These studies resulted in the surprisingly facile formation of amidines. The amidine group is the nitrogen analog of carboxylic acids and esters. This functional group combines the properties of an azomethane-like C=N double bond with an amide-like C-N single bond. This group, like the related allyl (C-C-C), aza-allyl (C-N-C), and carboxylato (O-C-O) groups, form a number of transition metal derivatives, with both early and late transition metals. Various bonding modes of the amidino group have been reported. However, most isolated complexes have the amidino ligand as a chelating ligand or bridging two metals. This is due to the preference of amidines to bond via the nitrogen lone pairs, in contrast to the {eta}{sup 3} {pi} bonding observed in metal-allyl complexes.

  10. Allyl nitrile: Toxicity and health effects.

    PubMed

    Tanii, Hideji

    2017-03-28

    Allyl nitrile (3-butenenitrile) occurs naturally in the environment, in particular, in cruciferous vegetables, indicating a possible daily intake of the compound. There is no report on actual health effects of allyl nitrile in humans, although it is possible that individuals in the environment are at a risk of exposure to allyl nitrile. However, little is known about its quantitative assessment for the environment and bioactivity in the body. This study provides a review of previous accumulated studies on allyl nitrile. Published literature on allyl nitrile was examined for findings on toxicity, metabolism, risk of various cancers, generation, intake estimates, and low-dose effects in the body. High doses of allyl nitrile produce toxicity characterized by behavioral abnormalities, which are considered to be produced by an active metabolite, 3,4-epoxybutyronitrile. Cruciferous vegetables have been shown to have a potential role in reducing various cancers. Hydrolysis of the glucosinolate sinigrin, rich in cruciferous vegetables, results in the generation of allyl nitrile. An intake of allyl nitrile is estimated at 0.12 μmol/kg body weight in Japan. Repeated exposure to low doses of allyl nitrile upregulates antioxidant/phase II enzymes in various tissues; this may contribute to a reduction in neurotoxicity and skin inflammation. These high and low doses are far more than the intake estimate. Allyl nitrile in the environment is a compound with diverse bioactivities in the body, characterized by inducing behavioral abnormalities at high doses and some antioxidant/phase II enzymes at low doses.

  11. Nickel-Catalyzed Allylic Substitution of Simple Alkenes

    PubMed Central

    Matsubara, Ryosuke; Jamison, Timothy F.

    2011-01-01

    This report describes a nickel-catalyzed allylic substitution process of simple alkenes whereby an important structural motif, a 1,4-diene, was prepared. A key for this success is the use of an appropriate Ni-phosphine complex and a stoichiometric amount of silyl triflate. Reactions of 1-alkyl-substituted alkenes consistently provided 1,1-disubstituted alkenes with high selectivity. Insight into the reaction mechanism as well as miscellaneous application of the developed catalytic process is also documented. PMID:21387565

  12. O2-Promoted Allylic Acetoxylation of Alkenes: Assessment of “Push” vs. “Pull” Mechanisms and Comparison between O2 and Benzoquinone

    PubMed Central

    Diao, Tianning

    2014-01-01

    Palladium-catalyzed acetoxylation of allylic C–H bonds has been the subject of extensive study. These reactions proceed via allyl-palladium(II) intermediates that react with acetate to afford the allyl acetate product. Benzoquinone and molecular oxygen are two common oxidants for these reactions. Benzoquinone has been shown to promote allyl acetate formation from well-defined π-allyl palladium(II) complexes. Here, we assess the ability of O2 to promote similar reactions with a series of “unligated” π-allyl palladium(II) complexes (i.e., in the absence of ancillary phosphorus, nitrogen or related donor ligands). Stoichiometric and catalytic allyl acetate formation is observed under aerobic conditions with several different alkenes. Mechanistic studies are most consistent with a “pull” mechanism in which O2 traps the Pd0 intermediate following reversible C–O bond-formation from an allyl-palladium(II) species. A “push” mechanism, involving oxidatively induced C–O bond formation, does not appear to participate. These results and conclusions are compared with benzoquinone-promoted allylic acetoxylation, in which a “push” mechanism seems to be operative. PMID:25435646

  13. Biphilic Organophosphorus Catalysis: Regioselective Reductive Transposition of Allylic Bromides via PIII/PV Redox Cycling

    PubMed Central

    Reichl, Kyle D.; Dunn, Nicole L.; Fastuca, Nicholas J.; Radosevich, Alexander T.

    2016-01-01

    We report that a regioselective reductive transposition of primary allylic bromides is catalyzed by a biphilic organophosphorus (phosphetane) catalyst. Spectroscopic evidence supports the formation of a pentacoordinate (σ5-P) hydridophosphorane as a key reactive intermediate. Kinetics experiments and computational modeling are consistent with a unimolecular decomposition of the σ5-P hydridophosphorane via a concerted cyclic transition structure that delivers the observed allylic transposition and completes a novel PIII/PV redox catalytic cycle. These results broaden the growing repertoire of reactions catalyzed within the PIII/PV redox couple and suggest additional opportunities for organophosphorus catalysis in a biphilic mode. PMID:25874950

  14. Pd-catalyzed asymmetric allylic amination using easily accessible metallocenyl P,N-ligands.

    PubMed

    Wu, Hongwei; Xie, Fang; Wang, Yanlan; Zhao, Xiaohu; Liu, Delong; Zhang, Wanbin

    2015-04-14

    Compared to their C1-symmetric counterparts, planar chiral C2-symmetric metallocenyl P,N-ligands are efficient chiral ligands for Pd-catalyzed asymmetric allylic aminations, providing a number of amination products with high enantioselectivities. A non-C2-symmetric ferrocenyl P,N-ligand (a by-product obtained during the synthesis of the above C2-symmetric species) was also found to be an efficient ligand for asymmetric allylic aminations. A mixed ligand system consisting of both C2- and non-C2-symmetric ferrocene complexes was examined and showed high catalytic activity with the amination products being obtained with excellent enantioselectivities.

  15. Interplay of metal-allyl and metal-metal bonding in dimolybdenum allyl complexes

    SciTech Connect

    John, Kevin D; Martin, Richard L; Obrey, Steven J; Scott, Brian L

    2008-01-01

    Addition of PMe{sub 3} to Mo{sub 2}(allyl){sub 4} afforded Mo{sub 2}(allyl){sub 4}(PMe{sub 3}){sub 2}, in which two of the allyl groups adopt an unprecedented {mu}{sub 2{sup -}}{eta}{sup 1}, {eta}{sup 3} bonding mode; theoretical studies elucidate the role sof the {sigma}- and {pi}-donor ligands in the interplay of metal-allyl and metal-metal bonding.

  16. Regioselective hydroformylation of allylic alcohols.

    PubMed

    Lightburn, Thomas E; De Paolis, Omar A; Cheng, Ka H; Tan, Kian L

    2011-05-20

    A highly regioselective hydroformylation of allylic alcohols is reported toward the synthesis of β-hydroxy-acid and aldehyde products. The selectivity is achieved through the use of a ligand that reversibly binds to alcohols in situ, allowing for a directed hydroformylation to occur. The application to trisubstituted olefins was also demonstrated, which yields a single diastereomer product consistent with a stereospecific addition of CO and hydrogen.

  17. Aldehydes as alkyl carbanion equivalents for additions to carbonyl compounds

    NASA Astrophysics Data System (ADS)

    Wang, Haining; Dai, Xi-Jie; Li, Chao-Jun

    2016-12-01

    Nucleophilic addition reactions of organometallic reagents to carbonyl compounds for carbon-carbon bond construction have played a pivotal role in modern chemistry. However, this reaction's reliance on petroleum-derived chemical feedstocks and a stoichiometric quantity of metal have prompted the development of many carbanion equivalents and catalytic metal alternatives. Here, we show that naturally occurring carbonyls can be used as latent alkyl carbanion equivalents for additions to carbonyl compounds, via reductive polarity reversal. Such 'umpolung' reactivity is facilitated by a ruthenium catalyst and diphosphine ligand under mild conditions, delivering synthetically valuable secondary and tertiary alcohols in up to 98% yield. The unique chemoselectivity exhibited by carbonyl-derived carbanion equivalents is demonstrated by their tolerance to protic reaction media and good functional group compatibility. Enantioenriched tertiary alcohols can also be accessed with the aid of chiral ligands, albeit with moderate stereocontrol. Such carbonyl-derived carbanion equivalents are anticipated to find broad utility in chemical bond formation.

  18. Aldehydes as alkyl carbanion equivalents for additions to carbonyl compounds

    NASA Astrophysics Data System (ADS)

    Wang, Haining; Dai, Xi-Jie; Li, Chao-Jun

    2017-04-01

    Nucleophilic addition reactions of organometallic reagents to carbonyl compounds for carbon-carbon bond construction have played a pivotal role in modern chemistry. However, this reaction's reliance on petroleum-derived chemical feedstocks and a stoichiometric quantity of metal have prompted the development of many carbanion equivalents and catalytic metal alternatives. Here, we show that naturally occurring carbonyls can be used as latent alkyl carbanion equivalents for additions to carbonyl compounds, via reductive polarity reversal. Such 'umpolung' reactivity is facilitated by a ruthenium catalyst and diphosphine ligand under mild conditions, delivering synthetically valuable secondary and tertiary alcohols in up to 98% yield. The unique chemoselectivity exhibited by carbonyl-derived carbanion equivalents is demonstrated by their tolerance to protic reaction media and good functional group compatibility. Enantioenriched tertiary alcohols can also be accessed with the aid of chiral ligands, albeit with moderate stereocontrol. Such carbonyl-derived carbanion equivalents are anticipated to find broad utility in chemical bond formation.

  19. Enantioselective Conjugate Allylation of Cyclic Enones

    PubMed Central

    Taber, Douglass F.; Gerstenhaber, David A.; Berry, James F.

    2011-01-01

    Enantioselective organocatalytic 1,2-allylation of a cyclic enone followed by anionic oxy-Cope rearrangement delivered the ketone as a mixture of diastereomers. This appears to be a general method for the net enantioselective conjugate allylation of cyclic enones. PMID:21830779

  20. Palladium-catalyzed substitution of allylic fluorides.

    PubMed

    Hazari, Amaruka; Gouverneur, Véronique; Brown, John M

    2009-01-01

    As unusual substrates for the Tsuji-Trost allylation reaction, allylic fluorides are responsive to palladium-catalyzed substitution. Their activity towards this reaction fits in the series OCO(2)Me>OBz>F>OAc. The classic stereoretention mechanism that involves sequential inversions does not operate in this case. Several distinct cases are considered.

  1. The direct arylation of allylic sp3 C–H bonds via organocatalysis and photoredox catalysis

    PubMed Central

    Cuthbertson, James D.; MacMillan, David W. C.

    2015-01-01

    The direct functionalization of unactivated sp3 C–H bonds is still one of the most challenging problems facing synthetic organic chemists. The appeal of such transformations derives from their capacity to facilitate the construction of complex organic molecules via the coupling of simple and otherwise inert building blocks, without introducing extraneous functional groups. Despite notable recent efforts,1 the establishment of general and mild strategies for the engagement of sp3 C–H bonds in carbon–carbon bond forming reactions has proven difficult. Within this context, the discovery of chemical transformations that are able to directly functionalize allylic methyl, methylene, and methine carbons in a catalytic manner is a priority. While protocols for direct allylic C–H oxidation and amination have become widely established,2,3 the engagement of allylic substrates in carbon–carbon bond-forming reactions has thus far required the use of pre-functionalized coupling partners.4 In particular, the direct arylation of non-functionalized allylic systems would enable chemists to rapidly access a series of known pharmacophores, though a general solution to this longstanding challenge remains elusive. We describe herein the use of both photoredox and organic catalysis to accomplish the first mild, broadly effective direct allylic C–H arylation. This new C–C bond-forming reaction readily accommodates a broad range of alkene and electron-deficient arene reactants and has been used in the direct arylation of benzylic C–H bonds. PMID:25739630

  2. Highly efficient redox isomerisation of allylic alcohols catalysed by pyrazole-based ruthenium(IV) complexes in water: mechanisms of bifunctional catalysis in water.

    PubMed

    Bellarosa, Luca; Díez, Josefina; Gimeno, José; Lledós, Agustí; Suárez, Francisco J; Ujaque, Gregori; Vicent, Cristian

    2012-06-18

    The catalytic activity of ruthenium(IV) ([Ru(η(3):η(3)-C(10)H(16))Cl(2)L]; C(10)H(16) = 2,7-dimethylocta-2,6-diene-1,8-diyl, L = pyrazole, 3-methylpyrazole, 3,5-dimethylpyrazole, 3-methyl-5-phenylpyrazole, 2-(1H-pyrazol-3-yl)phenol or indazole) and ruthenium(II) complexes ([Ru(η(6)-arene)Cl(2)(3,5-dimethylpyrazole)]; arene = C(6)H(6), p-cymene or C(6)Me(6)) in the redox isomerisation of allylic alcohols into carbonyl compounds in water is reported. The former show much higher catalytic activity than ruthenium(II) complexes. In particular, a variety of allylic alcohols have been quantitatively isomerised by using [Ru(η(3):η(3)-C(10)H(16))Cl(2)(pyrazole)] as a catalyst; the reactions proceeded faster in water than in THF, and in the absence of base. The isomerisations of monosubstituted alcohols take place rapidly (10-60 min, turn-over frequency = 750-3000 h(-1)) and, in some cases, at 35 °C in 60 min. The nature of the aqueous species formed in water by this complex has been analysed by ESI-MS. To analyse how an aqueous medium can influence the mechanism of the bifunctional catalytic process, DFT calculations (B3LYP) including one or two explicit water molecules and using the polarisable continuum model have been carried out and provide a valuable insight into the role of water on the activity of the bifunctional catalyst. Several mechanisms have been considered and imply the formation of aqua complexes and their deprotonated species generated from [Ru(η(3):η(3)-C(10)H(16))Cl(2)(pyrazole)]. Different competitive pathways based on outer-sphere mechanisms, which imply hydrogen-transfer processes, have been analysed. The overall isomerisation implies two hydrogen-transfer steps from the substrate to the catalyst and subsequent transfer back to the substrate. In addition to the conventional Noyori outer-sphere mechanism, which involves the pyrazolide ligand, a new mechanism with a hydroxopyrazole complex as the active species can be at work in water. The

  3. Transition-metal-catalyzed asymmetric allylic dearomatization reactions.

    PubMed

    Zhuo, Chun-Xiang; Zheng, Chao; You, Shu-Li

    2014-08-19

    Dearomatization reactions serve as powerful methods for the synthesis of highly functionalized, three-dimensional structures starting with simple planar aromatic compounds. Among processes of this type, catalytic asymmetric dearomatization (CADA) reactions are attractive owing to the large number of aromatic compounds that are readily available and the fact that they enable direct access to enantiopure polycycles and spirocycles, which frequently are key structural motifs in biologically active natural products and pharmaceuticals. However, as a consequence of their high stabilities, arenes only difficultly participate in dearomatization reactions that take place with high levels of enantioselectivity. Transition-metal-catalyzed asymmetric allylic substitution reactions have been demonstrated to be powerful methods for enantioselective formation of C-C and C-X (X = O, N, S, etc.) bonds. However, the scope of these processes has been explored mainly using soft carbon nucleophiles, some hard carbon nucleophiles such as enolates and preformed organometallic reagents, and heteroatom nucleophiles. Readily accessible aromatic compounds have been only rarely used directly as nucleophiles in these reactions. In this Account, we present the results of studies we have conducted aimed at the development of transition-metal-catalyzed asymmetric allylic dearomatization reactions. By utilizing this general process, we have devised methods for direct dearomatization of indoles, pyrroles, phenols, naphthols, pyridines, and pyrazines, which produce various highly functionalized structural motifs bearing all-carbon quaternary stereogenic centers in a straightforward manner. In mechanistic investigations of the dearomatization process, we found that the five-membered spiroindolenines serve as intermediates, which readily undergo stereospecific allylic migration to form corresponding tetrahydro-1H-carbazoles upon treatment with a catalytic amount of TsOH. It is worth noting that no

  4. Iridium-Catalyzed Kinetic Asymmetric Transformations of Racemic Allylic Benzoates

    PubMed Central

    Stanley, Levi M.; Bai, Chen; Ueda, Mitsuhiro; Hartwig, John F.

    2010-01-01

    Versatile methods for iridium-catalyzed, kinetic asymmetric substitution of racemic, branched allylic esters are reported. These reactions occur with a variety of aliphatic, aryl, and heteroaryl allylic benzoates to form the corresponding allylic substitution products in high yields (74–96%) with good to excellent enantioselectivity (84–98% ee) with a scope that encompasses a range of anionic carbon and heteroatom nucleophiles. These kinetic asymmetric processes occur with distinct stereochemical courses for racemic aliphatic and aromatic allylic benzoates, and the high reactivity of branched allylic benzoates enables enantioselective allylic substitutions that are slow or poorly selective with linear allylic electrophiles. PMID:20552969

  5. Nickel-Catalyzed α-Allylation of Aldehydes and Tandem Aldol Condensation/Allylation Reaction with Allylic Alcohols.

    PubMed

    Bernhard, Yann; Thomson, Brodie; Ferey, Vincent; Sauthier, Mathieu

    2017-06-19

    An additive-free nickel-catalyzed α-allylation of aldehydes with allyl alcohol is reported. The reaction is promoted by 1 mol % of in situ formed nickel complex in methanol, and water is the sole by-product of the reaction. The experimental conditions allow the conversion of various α-branched aldehydes and α,β-unsaturated aldehydes as nucleophiles. The same catalyst and reaction conditions enabled a tandem aldol condensation of aldehyde/α-allylation reaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Friedel-Crafts-type allylation of nitrogen-containing aromatic compounds with allylic alcohols catalyzed by a [Mo3S4Pd(η3-allyl)] cluster.

    PubMed

    Tao, Yinsong; Wang, Baomin; Zhao, Jinfeng; Song, Yuming; Qu, Lihong; Qu, Jingping

    2012-03-16

    With the direct use of allylic alcohols as allylating agents, the Friedel-Crafts-type allylic alkylation of nitrogen-containing aromatic compounds catalyzed by a [Mo(3)S(4)Pd(η(3)-allyl)] cluster is achieved. With a 3 mol % catalyst loading in acetonitrile at reflux or 60 °C, a variety of N,N-dialkylanilines and indoles reacted smoothly with allylic alcohols to afford the Friedel-Crafts-type allylation products in good to excellent yields with high levels of regioselectivity.

  7. Phosphine-catalyzed [4 + 1] annulation between α,β-unsaturated imines and allylic carbonates: synthesis of 2-pyrrolines.

    PubMed

    Tian, Junjun; Zhou, Rong; Sun, Haiyun; Song, Haibin; He, Zhengjie

    2011-04-01

    In this report, a phosphine-catalyzed [4 + 1] annulation between α,β-unsaturated imines and allylic carbonates is described. This reaction represents the first realization of catalytic [4 + 1] cyclization of 1,3-azadienes with in situ formed phosphorus ylides, which provides highly efficient and diastereoselective synthesis of 2-pyrrolines.

  8. Highly enantio- and diastereoselective allylic alkylation of Morita-Baylis-Hillman carbonates with allyl ketones.

    PubMed

    Tong, Guanghu; Zhu, Bo; Lee, Richmond; Yang, Wenguo; Tan, Davin; Yang, Caiyun; Han, Zhiqiang; Yan, Lin; Huang, Kuo-Wei; Jiang, Zhiyong

    2013-05-17

    The asymmetric allylic alkylation of Morita-Baylis-Hillman (MBH) carbonates with allyl ketones has been developed. The α-regioselective alkylation adducts, containing a hexa-1,5-diene framework with important synthetic value, were achieved in up to 83% yield, >99% ee, and 50:1 dr by using a commercially available Cinchona alkaloid as the catalyst. From the allylic alkylation adduct, a cyclohexene bearing two adjacent chiral centers was readily prepared.

  9. Enantioselective Palladium-Catalyzed Alkenylation of Trisubstituted Alkenols to form Allylic Quaternary Centers

    PubMed Central

    Patel, Harshkumar H.; Sigman, Matthew S.

    2016-01-01

    In this report, we describe the generation of remote allylic quaternary stereocenters β, γ, and δ relative to a carbonyl in high enantioselectivity. We utilize a redox-relay Heck reaction between alkenyl triflates and acyclic trisubstituted alkenols of varying chain-lengths. A wide array of terminal (E)-alkenyl triflates are suitable for this process. The utility of this functionalization is validated further by conversion of the products, via simple organic processes to access remotely functionalized chiral tertiary acid, amine and alcohol products. PMID:27768842

  10. Iron(III)-Catalyzed Ring-Closing Carbonyl-Olefin Metathesis.

    PubMed

    Saá, Carlos

    2016-09-05

    Recent developments in catalytic carbonyl-olefin metathesis are summarized in this Highlight. Schindler and co-workers have reported that the environmentally benign FeCl3 catalyst promotes ring-closing carbonyl-olefin metathesis (RCCOM) in high yield under very mild conditions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. COATING URANIUM FROM CARBONYLS

    DOEpatents

    Gurinsky, D.H.; Storrs, S.S.

    1959-07-14

    Methods are described for making adherent corrosion resistant coatings on uranium metal. According to the invention, the uranium metal is heated in the presence of an organometallic compound such as the carbonyls of nickel, molybdenum, chromium, niobium, and tungsten at a temperature sufficient to decompose the metal carbonyl and dry plate the resultant free metal on the surface of the uranium metal body. The metal coated body is then further heated at a higher temperature to thermally diffuse the coating metal within the uranium bcdy.

  12. Novel C2-symmetric planar chiral diphosphine ligands and their application in pd-catalyzed asymmetric allylic substitutions.

    PubMed

    Liu, Delong; Xie, Fang; Zhang, Wanbin

    2007-08-31

    Novel C(2)-symmetric diphosphine ligands possessing only the planar chirality of ruthenocene, 1,1'-bis(diphenylphosphino)-2,2'-disubstituted-ruthenocenes (4), were prepared. With this kind of ligands, excellent enantioselectivity and especially highly catalytic activity in palladium-catalyzed asymmetric allylic substitutions of rac-1,3-diphenyl-2-propenyl acetate (9) were observed, compared to their ferrocene analogues 1. Good enantioselectivity and highly catalytic activity were also obtained with 4 in palladium-catalyzed asymmetric allylic substitutions of cyclohexen-1-yl acetate (12). Further study on the effect of R in ester group on enantioselectivity of 4 showed an opposite trend compared with their ferrocene analogues 1 in asymmetric allylic substitutions. For ruthenocene ligands 4, the one with the smaller R in the ester group gave higher enantioselectivity for the palladium-catalyzed asymmetric allylic substitutions of 9, while a converse trend had been observed with 1. However, for the palladium-catalyzed asymmetric allylic substitutions of 12, ligand 4 with a larger R in the ester group resulted in somewhat higher enantioselectivity but still an opposite trend with ligand 1. The X-ray diffraction study of crystal structures of 4 and 1 with Pd(II) was carried out and showed that the enantioselectivity was correlated to the twist angle existing in the palladium complex.

  13. N-heterocyclic carbene catalyzed direct carbonylation of dimethylamine.

    PubMed

    Li, Xiaonian; Liu, Kun; Xu, Xiaoliang; Ma, Lei; Wang, Hong; Jiang, Dahao; Zhang, Qunfeng; Lu, Chunshan

    2011-07-21

    N-Heterocyclic carbene (NHC) catalyzed direct carbonylation of dimethylamine leading to the formation of DMF was successfully accomplished under metal-free conditions. The catalytic efficiency was investigated and the turnover numbers can reach as high as >300. The possible mechanism was also proposed.

  14. Copper-Catalyzed Enantioselective Allyl-Allyl Coupling between Allylic Boronates and Phosphates with a Phenol/N-Heterocyclic Carbene Chiral Ligand.

    PubMed

    Yasuda, Yuto; Ohmiya, Hirohisa; Sawamura, Masaya

    2016-08-26

    Copper-catalyzed enantioselective allyl-allyl coupling between allylboronates and either Z-acyclic or cyclic allylic phosphates using a new chiral N-heterocyclic carbene ligand, bearing a phenolic hydroxy, is reported. This reaction occurs with exceptional SN 2'-type regioselectivities and high enantioselectivities to deliver chiral 1,5-diene derivatives with a tertiary stereogenic center at the allylic/homoallylic position.

  15. Oxidation state, aggregation, and heterolytic dissociation of allyl indium reagents.

    PubMed

    Koszinowski, Konrad

    2010-05-05

    Solutions of allyl indium reagents formed in the reactions of indium with allyl bromide and allyl iodide, respectively, in N,N-dimethylformamide, tetrahydrofuran, and water were analyzed by a combination of electrospray-ionization mass spectrometry, temperature-dependent (1)H NMR spectroscopy, and electrical conductivity measurements. Additional mass spectrometric experiments probed charge-tagged derivatives of the allyl indium reagents. The results obtained indicate the presence of allyl indium(+3) species, which undergo heterolytic dissociation to yield ions such as InR(2)(solv)(+) and InRX(3)(-) with R = allyl and X = Br and I. The extent of dissociation is greatest for N,N-dimethylformamide, whereas aggregation effects are more pronounced for the less polar tetrahydrofuran. The heterolytic dissociation of the allyl indium reagents supposedly enhances their reactivity by simultaneously providing highly Lewis acidic allyl indium cations and nucleophilic allyl indate anions.

  16. Palladium-catalyzed asymmetric allylic amination of racemic butadiene monoxide with isatin derivatives.

    PubMed

    Li, Gen; Feng, Xiangqing; Du, Haifeng

    2015-05-28

    Isatins and their derivatives are important functional moities and building blocks in pharmaceutical and synthetic chemistry. Numerous enantioselective transformations at the C-3 carbonyl group have been well developed. However, the asymmetric substitution reaction with isatins and their derivatives as nucleophiles based on the free N-H groups has been less studied due to the relatively weaker nucleophilicity resulting from the two electron-withdrawing carbonyl groups. In this paper, a palladium-catalyzed asymmetric allylic amination of racemic butadiene monoxide with isatin derivatives using a chiral phosphoramidite olefin hybrid ligand has been successfully developed under mild conditions. A variety of chiral amino alcohols were afforded in 55-87% yields with 10/1->20/1 regioselectivity ratios and 80-97% ees.

  17. Intermolecular cross-double-michael addition between nitro and carbonyl activated olefins as a new approach in C-C bond formation.

    PubMed

    Sun, Xiaohua; Sengupta, Sujata; Petersen, Jeffrey L; Wang, Hong; Lewis, James P; Shi, Xiaodong

    2007-10-25

    A novel intermolecular cross-double-Michael addition between nitro and carbonyl activated olefins has been developed through Lewis base catalysis. The reaction took place with a large group of beta-alkyl nitroalkenes and alpha,beta-unsaturated ketone/esters, producing an allylic nitro compound in good to excellent yields.

  18. Why platinum catalysts involving ligands with large bite angle are so efficient in the allylation of amines: design of a highly active catalyst and comprehensive experimental and DFT study.

    PubMed

    Mora, Guilhem; Piechaczyk, Olivier; Houdard, Romaric; Mézailles, Nicolas; Le Goff, Xavier-Frederic; le Floch, Pascal

    2008-01-01

    The platinum-catalyzed allylation of amines with allyl alcohols was studied experimentally and theoretically. The complexes [Pt(eta(3)-allyl)(dppe)]OTf (2) and [Pt(eta(3)-allyl)(DPP-Xantphos)]PF(6) (5) were synthesized and structurally characterized, and their reactivity toward amines was explored. The bicyclic aminopropyl complex [Pt(CH(2)CH(2)CH(2)NHBn-kappa-C,N)(dppe)]OTf (3) was obtained from the reaction of complex 2 with an excess of benzylamine, and this complex was shown to be a deactivated form of catalyst 2. On the other hand, reaction of complex 5 with benzylamine and allyl alcohol led to formation of the 16-VE platinum(0) complex [Pt(eta(2)-C(3)H(5)OH)(DPP-Xantphos)] (7), which was structurally characterized and appears to be a catalytic intermediate. A DFT study showed that the mechanism of the platinum-catalyzed allylation of amines with allyl alcohols differs from the palladium-catalyzed process, since it involves an associative ligand-exchange step involving formation of a tetracoordinate 18-VE complex. This DFT study also revealed that ligands with large bite angles disfavor the formation of platinum hydride complexes and therefore the formation of a bicyclic aminopropyl complex, which is a thermodynamic sink. Finally, a combination of 5 and a proton source was shown to efficiently catalyze the allylation of a broad variety of amines with allyl alcohols under mild conditions.

  19. Biphilic Organophosphorus Catalysis: Regioselective Reductive Transposition of Allylic Bromides via P(III)/P(V) Redox Cycling.

    PubMed

    Reichl, Kyle D; Dunn, Nicole L; Fastuca, Nicholas J; Radosevich, Alexander T

    2015-04-29

    We report that a regioselective reductive transposition of primary allylic bromides is catalyzed by a biphilic organophosphorus (phosphetane) catalyst. Spectroscopic evidence supports the formation of a pentacoordinate (σ(5)-P) hydridophosphorane as a key reactive intermediate. Kinetics experiments and computational modeling are consistent with a unimolecular decomposition of the σ(5)-P hydridophosphorane via a concerted cyclic transition structure that delivers the observed allylic transposition and completes a novel P(III)/P(V) redox catalytic cycle. These results broaden the growing repertoire of reactions catalyzed within the P(III)/P(V) redox couple and suggest additional opportunities for organophosphorus catalysis in a biphilic mode.

  20. Cobalt-Catalyzed Cross-Coupling of Grignards with Allylic and Vinylic Bromides: Use of Sarcosine as a Natural Ligand.

    PubMed

    Frlan, Rok; Sova, Matej; Gobec, Stanislav; Stavber, Gaj; Časar, Zdenko

    2015-08-07

    Sarcosine was discovered to be an excellent ligand for cobalt-catalyzed carbon-carbon cross-coupling of Grignard reagents with allylic and vinylic bromides. The Co(II)/sarcosine catalytic system is shown to perform efficiently when phenyl and benzyl Grignards are coupled with alkenyl bromides. Notably, previously unachievable Co-catalyzed coupling of allylic bromides with Grignards to linearly coupled α-products was also realized with Co(II)/sarcosine catalyst. This method was used for efficient preparation of the key intermediate in an alternative synthesis of the antihyperglycemic drug sitagliptin.

  1. N-Allylation of amines with allyl acetates using chitosan-immobilized palladium

    EPA Science Inventory

    A simple procedure for N-Allylation of allyl Acetates has been developed using a biodegradable and easily recyclable heterogeneous chitosan-supported palladium catalyst. The general methodology, applicable to wide range of substrates, has sustainable features that include a ligan...

  2. N-Allylation of amines with allyl acetates using chitosan-immobilized palladium

    EPA Science Inventory

    A simple procedure for N-Allylation of allyl Acetates has been developed using a biodegradable and easily recyclable heterogeneous chitosan-supported palladium catalyst. The general methodology, applicable to wide range of substrates, has sustainable features that include a ligan...

  3. Origins of enantioselectivity during allylic substitution reactions catalyzed by metallacyclic iridium complexes.

    PubMed

    Madrahimov, Sherzod T; Hartwig, John F

    2012-05-16

    In depth mechanistic studies of iridium catalyzed regioselective and enantioselective allylic substitution reactions are presented. A series of cyclometalated allyliridium complexes that are kinetically and chemically competent to be intermediates in the allylic substitution reactions was prepared and characterized by 1D and 2D NMR spectroscopies and single-crystal X-ray difraction. The rates of epimerization of the less thermodynamically stable diastereomeric allyliridium complexes to the thermodynamically more stable allyliridium stereoisomers were measured. The rates of nucleophilic attack by aniline and by N-methylaniline on the isolated allyliridium complexes were also measured. Attack on the thermodynamically less stable allyliridium complex was found to be orders of magnitude faster than attack on the thermodynamically more stable complex, yet the major enantiomer of the catalytic reaction is formed from the more stable diastereomer. Comparison of the rates of nucleophilic attack to the rates of epimerization of the diastereomeric allyliridium complexes containing a weakly coordinating counterion showed that nucleophilic attack on the less stable allyliridium species is much faster than conversion of the less stable isomer to the more stable isomer. These observations imply that Curtin-Hammett conditions are not met during iridium catalyzed allylic substitution reactions by η(3)-η(1)-η(3) interconversion. Rather, these data imply that when these conditions exist for this reaction, they are created by reversible oxidative addition, and the high selectivity of this oxidative addition step to form the more stable diastereomeric allyl complex leads to the high enantioselectivity. The stereochemical outcome of the individual steps of allylic substitution was assessed by reactions of deuterium-labeled substrates. The allylic substitution was shown to occur by oxidative addition with inversion of configuration, followed by an outer sphere nucleophilic attack

  4. Asymmetric synthesis of N-allylic indoles via regio- and enantioselective allylation of aryl hydrazines

    PubMed Central

    Xu, Kun; Gilles, Thomas; Breit, Bernhard

    2015-01-01

    The asymmetric synthesis of N-allylic indoles is important for natural product synthesis and pharmaceutical research. The regio- and enantioselective N-allylation of indoles is a true challenge due to the favourable C3-allylation. We develop here a new strategy to the asymmetric synthesis of N-allylic indoles via rhodium-catalysed N-selective coupling of aryl hydrazines with allenes followed by Fischer indolization. The exclusive N-selectivities and good to excellent enantioselectivities are achieved applying a rhodium(I)/DTBM-Segphos or rhodium(I)/DTBM-Binap catalyst. This method permits the practical synthesis of valuable chiral N-allylated indoles, and avoids the N- or C-selectivity issue. PMID:26137886

  5. Asymmetric Catalysis with CO2 : The Direct α-Allylation of Ketones.

    PubMed

    Pupo, Gabriele; Properzi, Roberta; List, Benjamin

    2016-05-10

    Quaternary stereocenters are found in numerous bioactive molecules. The Tsuji-Trost reaction has proven to be a powerful C-C bond forming process, and, at least in principle, should be well suited to access quaternary stereocenters via the α-allylation of ketones. However, while indirect approaches are known, the direct, catalytic asymmetric α-allylation of branched ketones has been elusive until today. By combining "enol catalysis" with the use of CO2 as a formal catalyst for asymmetric catalysis, we have now developed a solution to this problem: we report a direct, highly enantioselective and highly atom-economic Tsuji-Trost allylation of branched ketones with allylic alcohol. Our reaction delivers products bearing quaternary stereocenters with high enantioselectivity and water as the sole by-product. We expect our methodology to be of utility in asymmetric catalysis and inspire the design of other highly atom-economic transformations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. FeCl3 -Catalyzed Ring-Closing Carbonyl-Olefin Metathesis.

    PubMed

    Ma, Lina; Li, Wenjuan; Xi, Hui; Bai, Xiaohui; Ma, Enlu; Yan, Xiaoyu; Li, Zhiping

    2016-08-22

    Exploiting catalytic carbonyl-olefin metathesis is an ongoing challenge in organic synthesis. Reported herein is an FeCl3 -catalyzed ring-closing carbonyl-olefin metathesis. The protocol allows access to a range of carbo-/heterocyclic alkenes with good efficiency and excellent trans diastereoselectivity. The methodology presents one of the rare examples of catalytic ring-closing carbonyl-olefin metathesis. This process is proposed to take place by FeCl3 -catalyzed oxetane formation followed by retro-ring-opening to deliver metathesis products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. THE METAL CARBONYLS.

    PubMed

    Blanchard, A A

    1941-10-03

    When the metal carbonyls were first discovered, their properties were startling because they seemed to violate nearly all the previously recognized generalizations of chemistry. Even to-day the existence of the carbonyls is not particularly emphasized in elementary courses of chemistry because it is rather hard to reconcile them with the first presentations of the generalizations of chemistry. Nevertheless, as the student progresses deeper into the knowledge of chemistry it becomes desirable to include the knowledge of the carbonyls both because they become more comprehensible when viewed in the light of Werner's system of coordination and because they themselves contribute to the comprehension of the Werner theory. As long ago as 1931, Reiff in his discussion of cobalt nitrosyl carbonyl recognized the correlation between the effective atomic number and the volatility of carbonyls. A more recent study of charged Werner coordination complexes, that is, of complex ions, has shown a similar role of the effective atomic number. We are standing on fairly firm ground when we point out the correlation between E.A.N. and the volatility of the carbonyl complexes and the existence of complex ions. Be it noted that we have made no postulates as to the arrangement of the electrons in quantum levels. In the inert gases the outer principal quantum group is supposed always to contain eight electrons. In the carbonyls and other Werner complexes there is no compelling reason to suppose that the electrons in the coordinating layer, be this layer of eight, ten, twelve or sixteen electrons, are not all at the same energy level. Although we have confined our discussion almost exclusively to the property of volatility, the carbonyls are very interesting from the standpoint of several other properties, for example, magnetic susceptibility and dielectric constant. Enthusiasts in the interpretation of such properties try to draw conclusions as to the condition of the electrons, sometimes

  8. The stability of allyl radicals following the photodissociation of allyl iodide at 193 nm.

    SciTech Connect

    Fan, H.; Pratt, S. T.; Chemistry

    2006-01-01

    The photodissociation of allyl iodide (C{sub 3}H{sub 5}I) at 193 nm was investigated by using a combination of vacuum-ultraviolet photoionization of the allyl radical, resonant multiphoton ionization of the iodine atoms, and velocity map imaging. The data provide insight into the primary C-I bond fission process and into the dissociative ionization of the allyl radical to produce C{sub 3}H{sup 3+}. The experimental results are consistent with the earlier results of Szpunar et al. [J. Chem. Phys. 119, 5078 (2003)], in that some allyl radicals with internal energies higher than the secondary dissociation barrier are found to be stable. This stability results from the partitioning of available energy between the rotational and vibrational degrees of freedom of the radical, the effects of a centrifugal barrier along the reaction coordinate, and the effects of the kinetic shift in the secondary dissociation of the allyl radical. The present results suggest that the primary dissociation of allyl iodide to allyl radicals plus I*({sup 2}P{sub 1/2}) is more important than previously suspected.

  9. One-Pot Multicomponent Coupling Methods for the Synthesis of Diastereo- and Enantioenriched (Z)-Trisubstituted Allylic Alcohols

    PubMed Central

    Kerrigan, Michael H.; Jeon, Sang-Jin; Chen, Young K.; Salvi, Luca; Carroll, Patrick J.; Walsh, Patrick J.

    2009-01-01

    (Z)-Trisubstituted allylic alcohols are widespread structural motifs in natural products and biologically active compounds but are difficult to directly prepare. Introduced herein is a general one-pot multicomponent coupling method for the synthesis of (Z)-α,α,β-trisubstituted allylic alcohols. (Z)-Trisubstituted vinylzinc reagents are formed in situ by initial hydroboration of 1-bromo-1-alkynes. Addition of dialkylzinc reagents induces a 1,2-metallate rearrangement that is followed by a boron-to-zinc transmetallation. The resulting vinylzinc reagents add to a variety of prochiral aldehydes to produce racemic (Z)-trisubstituted allylic alcohols. When enantioenriched aldehyde substrates are employed (Z)-trisubstituted allylic alcohols are isolated with high dr (>20:1 in many cases). For example, vinylation of enantioenriched benzyl protected α- and β-hydroxy propanal derivatives furnished the expected anti-Felkin addition products via chelation control. Surprisingly, silyl protected α-hydroxy aldehydes also afford anti-Felkin addition products. A protocol for the catalytic asymmetric addition of (Z)-trisubstituted vinylzinc reagents to prochiral aldehydes with a (−)-MIB-based catalyst has also been developed. Several additives were investigated as inhibitors of the Lewis acidic alkylzinc halide byproducts, which promote the background reaction to form the racemate. α-Ethyl and α-cyclohexyl (Z)-trisubstituted allylic alcohols can now be synthesized with excellent levels of enantioselectivity in the presence of diamine inhibitors. PMID:19476375

  10. Rh-Catalyzed Chemo- and Enantioselective Hydrogenation of Allylic Hydrazones.

    PubMed

    Hu, Qiupeng; Hu, Yanhua; Liu, Yang; Zhang, Zhenfeng; Liu, Yangang; Zhang, Wanbin

    2017-01-23

    A highly efficient P-stereogenic diphosphine-rhodium complex was applied to the chemo- and enantioselective hydrogenation of allylic hydrazones for the synthesis of chiral allylic hydrazines in 89-96 % yields and with 82-99 % ee values. This methodology was successfully applied to the preparation of versatile chiral allylic amine derivatives.

  11. Asymmetric Iridium Catalyzed C-C Coupling of Chiral Diols via Site-Selective Redox-Triggered Carbonyl Addition

    PubMed Central

    Shin, Inji; Krische, Michael J.

    2015-01-01

    Cyclometalated π-allyliridium C,O-benzoate complexes modified by axially chiral chelating phosphine ligands display a pronounced kinetic preference for primary alcohol dehydrogenation, enabling highly site-selective redox-triggered carbonyl additions of chiral primary-secondary 1,3-diols with exceptional levels of catalyst-directed diastereoselectivity. Unlike conventional methods for carbonyl allylation, the present redox-triggered alcohol C-H functionalizations bypass the use of protecting groups, premetalated reagents, and discrete alcohol-to-aldehyde redox reactions. PMID:26187028

  12. Enhanced anti-Diastereo- and Enantioselectivity in Alcohol Mediated Carbonyl Crotylation Using an Isolable Single Component Iridium Catalyst

    PubMed Central

    Gao, Xin; Townsend, Ian A.; Krische, Michael J.

    2011-01-01

    The cyclometallated iridium complex (S)-I derived from [Ir(cod)Cl]2, 4-cyano-3-nitrobenzoic acid, allyl acetate and (S)-SEGPHOS is conveniently isolated by precipitation or through conventional silica gel flash chromatography. This single component precatalyst allows alcohol mediated carbonyl crotylations to be performed at significantly lower temperature, resulting in enhanced levels of anti-diastereo- and enantioselectivity. Most significantly, the chromatographically isolated precatalyst (S)-I enables carbonyl crotylations that are not possible under previously reported conditions involving in situ generation of (S)-I. PMID:21375283

  13. Asymmetric Iridium-Catalyzed C-C Coupling of Chiral Diols via Site-Selective Redox-Triggered Carbonyl Addition.

    PubMed

    Shin, Inji; Krische, Michael J

    2016-01-01

    Cyclometalated π-allyliridium C,O-benzoate complexes modified by axially chiral chelating phosphine ligands display a pronounced kinetic preference for primary alcohol dehydrogenation, enabling highly site-selective redox-triggered carbonyl additions of chiral primary-secondary 1,3-diols with exceptional levels of catalyst-directed diastereoselectivity. Unlike conventional methods for carbonyl allylation, the present redox-triggered alcohol C-H functionalizations bypass the use of protecting groups, premetalated reagents, and discrete alcohol-to-aldehyde redox reactions.

  14. The direct arylation of allylic sp(3) C-H bonds via organic and photoredox catalysis.

    PubMed

    Cuthbertson, James D; MacMillan, David W C

    2015-03-05

    The direct functionalization of unactivated sp(3) C-H bonds is still one of the most challenging problems facing synthetic organic chemists. The appeal of such transformations derives from their capacity to facilitate the construction of complex organic molecules via the coupling of simple and otherwise inert building blocks, without introducing extraneous functional groups. Despite notable recent efforts, the establishment of general and mild strategies for the engagement of sp(3) C-H bonds in C-C bond forming reactions has proved difficult. Within this context, the discovery of chemical transformations that are able to directly functionalize allylic methyl, methylene and methine carbons in a catalytic manner is a priority. Although protocols for direct oxidation and amination of allylic C-H bonds (that is, C-H bonds where an adjacent carbon is involved in a C = C bond) have become widely established, the engagement of allylic substrates in C-C bond forming reactions has thus far required the use of pre-functionalized coupling partners. In particular, the direct arylation of non-functionalized allylic systems would enable access to a series of known pharmacophores (molecular features responsible for a drug's action), though a general solution to this long-standing challenge remains elusive. Here we report the use of both photoredox and organic catalysis to accomplish a mild, broadly effective direct allylic C-H arylation. This C-C bond forming reaction readily accommodates a broad range of alkene and electron-deficient arene reactants, and has been used in the direct arylation of benzylic C-H bonds.

  15. The direct arylation of allylic sp3 C-H bonds via organic and photoredox catalysis

    NASA Astrophysics Data System (ADS)

    Cuthbertson, James D.; MacMillan, David W. C.

    2015-03-01

    The direct functionalization of unactivated sp3 C-H bonds is still one of the most challenging problems facing synthetic organic chemists. The appeal of such transformations derives from their capacity to facilitate the construction of complex organic molecules via the coupling of simple and otherwise inert building blocks, without introducing extraneous functional groups. Despite notable recent efforts, the establishment of general and mild strategies for the engagement of sp3 C-H bonds in C-C bond forming reactions has proved difficult. Within this context, the discovery of chemical transformations that are able to directly functionalize allylic methyl, methylene and methine carbons in a catalytic manner is a priority. Although protocols for direct oxidation and amination of allylic C-H bonds (that is, C-H bonds where an adjacent carbon is involved in a C = C bond) have become widely established, the engagement of allylic substrates in C-C bond forming reactions has thus far required the use of pre-functionalized coupling partners. In particular, the direct arylation of non-functionalized allylic systems would enable access to a series of known pharmacophores (molecular features responsible for a drug's action), though a general solution to this long-standing challenge remains elusive. Here we report the use of both photoredox and organic catalysis to accomplish a mild, broadly effective direct allylic C-H arylation. This C-C bond forming reaction readily accommodates a broad range of alkene and electron-deficient arene reactants, and has been used in the direct arylation of benzylic C-H bonds.

  16. Identification of allyl esters in garlic cheese.

    PubMed

    Herbrand, Klaus; Hammerschmidt, Franz J; Brennecke, Stefan; Liebig, Margit; Lösing, Gerd; Schmidt, Claus Oliver; Gatfield, Ian; Krammer, Gerhard; Bertram, Heinz-Jürgen

    2007-09-19

    This study describes the identification of six allyl esters in a garlic cheese preparation and in a commercial cream cheese. The extracts were prepared by liquid/liquid extraction and concentrated by the SAFE process. The identification of the allyl esters of acetic, butyric, hexanoic, heptanoic, octanoic, and decanoic acids is based on the correlation of their mass spectrometric data and chromatographic retention time data obtained from the extracts with those of authentic standards. In addition to the gas chromatography (GC)/mass spectrometry analysis, the flavor ingredients were characterized by GC sniffing by a trained flavorist. Some of the esters were isolated by preparative GC.

  17. Enantioselective transformation of allyl carbonates into branched allyl carbamates by using amines and recycling CO2 under iridium catalysis.

    PubMed

    Zheng, Sheng-Cai; Zhang, Min; Zhao, Xiao-Ming

    2014-06-10

    Enantioselective transformation of allyl carbonates into branched allyl carbamates by using amines and recycling CO2 in the presence of an Ir complex and K3PO4 was accomplished. This provided branched allyl carbamates in fair to excellent yields with up to 98:2 regioselectivity and 93 % ee. The role of CO2 in this transformation is discussed as well.

  18. Asymmetric synthesis of allylic sulfonic acids: enantio- and regioselective iridium-catalyzed allylations of Na2SO3.

    PubMed

    Liu, Wei; Zhao, Xiao-ming; Zhang, Hong-bo; Zhang, Liang; Zhao, Ming-zhu

    2014-12-15

    An enantioselective allylation reaction of allylic carbonates with sodium sulfite (Na2 SO3 ) catalyzed by Ir complex was accomplished, providing allylic sulfonic acids in good to excellent yields with a high level of enantio- and regioselectivities. (R)-2-Phenyl-2-sulfoacetic acid, a key intermediate for the synthesis of Cefsulodin and Sulbenicillin, was synthesized as well.

  19. Platinum-catalyzed direct amination of allylic alcohols under mild conditions: ligand and microwave effects, substrate scope, and mechanistic study.

    PubMed

    Ohshima, Takashi; Miyamoto, Yoshiki; Ipposhi, Junji; Nakahara, Yasuhito; Utsunomiya, Masaru; Mashima, Kazushi

    2009-10-14

    Transition metal-catalyzed amination of allylic compounds via a pi-allylmetal intermediate is a powerful and useful method for synthesizing allylamines. Direct catalytic substitution of allylic alcohols, which forms water as the sole coproduct, has recently attracted attention for its environmental and economical advantages. Here, we describe the development of a versatile direct catalytic amination of both aryl- and alkyl-substituted allylic alcohols with various amines using Pt-Xantphos and Pt-DPEphos catalyst systems, which allows for the selective synthesis of various monoallylamines, such as the biologically active compounds Naftifine and Flunarizine, in good to high yield without need for an activator. The choice of the ligand was crucial toward achieving high catalytic activity, and we demonstrated that not only the large bite-angle but also the linker oxygen atom of the Xantphos and DPEphos ligands was highly important. In addition, microwave heating dramatically affected the catalyst activity and considerably decreased the reaction time compared with conventional heating. Furthermore, several mechanistic investigations, including (1)H and (31)P{(1)H} NMR studies; isolation and characterization of several catalytic intermediates, Pt(xantphos)Cl(2), Pt(eta(2)-C(3)H(5)OH)(xantphos), etc; confirmation of the structure of [Pt(eta(3)-allyl)(xantphos)]OTf by X-ray crystallographic analysis; and crossover experiments, suggested that formation of the pi-allylplatinum complex through the elimination of water is an irreversible rate-determining step and that the other processes in the catalytic cycle are reversible, even at room temperature.

  20. Origins of Enantioselectivity during Allylic Substitution Reactions Catalyzed by Metallacyclic Iridium Complexes

    PubMed Central

    Madrahimov, Sherzod T.; Hartwig, John F.

    2012-01-01

    In depth mechanistic studies of iridium catalyzed regioselective and enantioselective allylic substitution reactions are presented. A series of cyclometallated allyliridium complexes that are kinetically and chemically competent to be intermediates in the allylic substitution reactions was prepared and characterized by 1D and 2D NMR spectroscopies and solid state structural analysis. The rates of epimerization of the less thermodynamically stable diastereomeric allyliridium complexes to the thermodynamically more stable allyliridium stereoisomers were measured. The rates of nucleophilic attack by aniline and by N-methylaniline on the isolated allyliridium complexes were also measured. Attack on the thermodynamically less stable allyliridium complex was found to be orders of magnitude faster than attack on the thermodynamically more stable complex, yet the major enantiomer of the catalytic reaction is formed from the more stable diastereomer. Comparison of the rates of nucleophilic attack to the rates of epimerization of the diastereomeric allyliridium complexes containing a weakly-coordinating counterion showed that nucleophilic attack on the less stable allyliridium species is much faster than conversion of the less stable isomer to the more stable isomer. These observations imply that Curtin-Hammett conditions are not met during iridium catalyzed allylic substitution reactions by η3-η1-η3 interconversion. Rather, these data imply that when these conditions exist for this reaction, they are created by reversible oxidative addition and the high selectivity of this oxidative addition step to form the more stable diastereomeric allyl complex leads to the high enantioselectivity. The stereochemical outcome of the individual steps of allylic substitution was assessed by reaction of deuterium-labeled substrates. The reaction was shown to occur by oxidative addition with inversion of configuration, followed by an outer sphere nucleophilic attack that leads to a second

  1. Origin of fast catalysis in allylic amination reactions catalyzed by Pd-Ti heterobimetallic complexes.

    PubMed

    Walker, Whitney K; Kay, Benjamin M; Michaelis, Scott A; Anderson, Diana L; Smith, Stacey J; Ess, Daniel H; Michaelis, David J

    2015-06-17

    Experiments and density functional calculations were used to quantify the impact of the Pd-Ti interaction in the cationic heterobimetallic Cl2Ti(N(t)BuPPh2)2Pd(η(3)-methallyl) catalyst 1 used for allylic aminations. The catalytic significance of the Pd-Ti interaction was evaluated computationally by examining the catalytic cycle for catalyst 1 with a conformation where the Pd-Ti interaction is intact versus one where the Pd-Ti interaction is severed. Studies were also performed on the relative reactivity of the cationic monometallic (CH2)2(N(t)BuPPh2)2Pd(η(3)-methallyl) catalyst 2 where the Ti from catalyst 1 was replaced by an ethylene group. These computational and experimental studies revealed that the Pd-Ti interaction lowers the activation barrier for turnover-limiting amine reductive addition and accelerates catalysis up to 10(5). The Pd-Ti distance in 1 is the result of the N(t)Bu groups enforcing a boat conformation that brings the two metals into close proximity, especially in the transition state. The turnover frequency of classic Pd π allyl complexes was compared to that of 1 to determine the impact of P-Pd-P coordination angle and ligand electronic properties on catalysis. These experiments identified that cationic (PPh3)2Pd(η(3)-CH2C(CH3)CH2) catalyst 3 performs similarly to 1 for allylic aminations with diethylamine. However, computations and experiment reveal that the apparent similarity in reactivity is due to very fast reaction kinetics. The higher reactivity of 1 versus 3 was confirmed in the reaction of methallyl chloride and 2,2,6,6-tetramethylpiperidine (TMP). Overall, experiments and calculations demonstrate that the Pd-Ti interaction induces and is responsible for significantly lower barriers and faster catalysis for allylic aminations.

  2. Dehydrative cross-coupling reactions of allylic alcohols with olefins.

    PubMed

    Gumrukcu, Yasemin; de Bruin, Bas; Reek, Joost N H

    2014-08-25

    The direct dehydrative activation of allylic alcohols and subsequent cross-coupling with alkenes by using palladium catalyst containing a phosphoramidite ligand is described. The activation of the allyl alcohol does not require stoichiometric additives, thus allowing clean, waste-free reactions. The scope is demonstrated by application of the protocol to a series allylic alcohols and vinyl arenes, leading to variety of 1,4-diene products. Based on kinetic studies, a mechanism is proposed that involves a palladium hydride species that activates the allyl alcohol to form the allyl intermediate.

  3. C1-symmetric carbohydrate diphosphite ligands for asymmetric Pd-allylic alkylation reactions. Study of the key Pd-allyl intermediates.

    PubMed

    Gual, Aitor; Castillón, Sergio; Pàmies, Oscar; Diéguez, Montserrat; Claver, Carmen

    2011-03-28

    A series of C(1)-symmetrical 1,3-diphosphite ligands with a furanoside backbone have been applied in the Pd-catalysed asymmetric allylic alkylation of mono- and disubstituted linear substrates. These diphosphite ligands were designed by selective modification of the successful diphosphite ligand L1a with the 6-deoxy-1,2-O-isopropylidene-glucofuranose backbone in order to study the effect of the ligand structure on the catalytic performance. The effect of the solvent, the substrate/metal ratio and ligand/metal ratio were also investigated. The results in the Pd-allylic alkylation of rac-1,3-diphenyl-3-acetoxyprop-1-ene showed that the ligand structure and the reaction conditions had a considerable effect on enantioselectivity and on the kinetics of the reaction producing the kinetic resolution of the substrate. The alkylated product 2 was therefore obtained in 95% ee at 53% conversion and the enantiopure substrate 1 was recovered in 99.9% ee. Furthermore, the effect of the ligand structure and solvent were also observed in the Pd-allylic alkylation of monosubstituted 1-phenyl-3-acetoxyprop-1-ene. The use of a pro-chiral nucleophile was also explored in this reaction leading to excellent regioselectivities but moderate enantioselectivities. Finally, in order to determine how the ligand structure affected the chiral pocket of the Pd-π-allyl intermediates, the complexes [Pd(η(3)-C(15)H(13))(L)]PF(6), where L = L1a, L5-L8a, were synthesised and characterised by NMR spectroscopy.

  4. Origins of Regioselectivity in Iridium Catalyzed Allylic Substitution.

    PubMed

    Madrahimov, Sherzod T; Li, Qian; Sharma, Ankit; Hartwig, John F

    2015-12-02

    Detailed studies on the origin of the regioselectivity for formation of branched products over linear products have been conducted with complexes containing the achiral triphenylphosphite ligand. The combination of iridium and P(OPh)3 was the first catalytic system shown to give high regioselectivity for the branched product with iridium and among the most selective for forming branched products among any combination of metal and ligand. We have shown the active catalyst to be generated from [Ir(COD)Cl]2 and P(OPh)3 by cyclometalation of the phenyl group on the ligand and have shown such species to be the resting state of the catalyst. A series of allyliridium complexes ligated by the resulting P,C ligand have been generated and shown to be competent intermediates in the catalytic system. We have assessed the potential impact of charge, metal-iridium bond length, and stability of terminal vs internal alkenes generated by attack at the branched and terminal positions of the allyl ligand, respectively. These factors do not distinguish the regioselectivity for attack on allyliridium complexes from that for attack on allylpalladium complexes. Instead, detailed computational studies suggest that a series of weak, attractive, noncovalent interactions, including interactions of H-bond acceptors with a vinyl C-H bond of the alkene ligand, favor formation of the branched product with the iridium catalyst. This conclusion underscores the importance of considering attractive interactions, as well as repulsive steric interactions, when seeking to rationalize selectivities.

  5. Enantioselective construction of C-chiral allylic sulfilimines via the iridium-catalyzed allylic amination with S,S-diphenylsulfilimine: asymmetric synthesis of primary allylic amines.

    PubMed

    Grange, Rebecca L; Clizbe, Elizabeth A; Counsell, Emma J; Evans, P Andrew

    2015-01-01

    We have devised a highly regio- and enantioselective iridium-catalyzed allylic amination reaction with the sulfur-stabilized aza-ylide, S,S-diphenylsulfilimine. This process provides a robust and scalable method for the construction of aryl-, alkyl- and alkenyl-substituted C-chiral allylic sulfilimines, which are important functional groups for organic synthesis. Additionally, the combination of the allylic amination with an in situ deprotection of the sulfilimine constitutes a convenient one-pot protocol for the construction of chiral nonracemic primary allylic amines.

  6. General, Simple, and Chemoselective Catalysts for the Isomerization of Allylic Alcohols: The Importance of the Halide Ligand.

    PubMed

    Erbing, Elis; Vázquez-Romero, Ana; Bermejo Gómez, Antonio; Platero-Prats, Ana E; Carson, Fabian; Zou, Xiaodong; Tolstoy, Päivi; Martín-Matute, Belén

    2016-10-24

    Remarkably simple Ir(III) catalysts enable the isomerization of primary and sec-allylic alcohols under very mild reaction conditions. X-ray absorption spectroscopy (XAS) and mass spectrometry (MS) studies indicate that the catalysts, with the general formula [Cp*Ir(III) ], require a halide ligand for catalytic activity, but no additives or additional ligands are needed. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Iron(III)-catalysed carbonyl-olefin metathesis

    NASA Astrophysics Data System (ADS)

    Ludwig, Jacob R.; Zimmerman, Paul M.; Gianino, Joseph B.; Schindler, Corinna S.

    2016-05-01

    The olefin metathesis reaction of two unsaturated substrates is one of the most powerful carbon-carbon-bond-forming reactions in organic chemistry. Specifically, the catalytic olefin metathesis reaction has led to profound developments in the synthesis of molecules relevant to the petroleum, materials, agricultural and pharmaceutical industries. These reactions are characterized by their use of discrete metal alkylidene catalysts that operate via a well-established mechanism. While the corresponding carbonyl-olefin metathesis reaction can also be used to construct carbon-carbon bonds, currently available methods are scarce and severely hampered by either harsh reaction conditions or the required use of stoichiometric transition metals as reagents. To date, no general protocol for catalytic carbonyl-olefin metathesis has been reported. Here we demonstrate a catalytic carbonyl-olefin ring-closing metathesis reaction that uses iron, an Earth-abundant and environmentally benign transition metal, as a catalyst. This transformation accommodates a variety of substrates and is distinguished by its operational simplicity, mild reaction conditions, high functional-group tolerance, and amenability to gram-scale synthesis. We anticipate that these characteristics, coupled with the efficiency of this reaction, will allow for further advances in areas that have historically been enhanced by olefin metathesis.

  8. Rhodium-catalysed asymmetric allylic arylation of racemic halides with arylboronic acids

    NASA Astrophysics Data System (ADS)

    Sidera, Mireia; Fletcher, Stephen P.

    2015-11-01

    Csp2-Csp2 cross-coupling reactions between arylboronic acid and aryl halides are widely used in both academia and industry and are strategically important in the development of new agrochemicals and pharmaceuticals. Csp2-Csp3 cross-coupling reactions have been developed, but enantioselective variations are rare and simply retaining the stereochemistry is a problem. Here we report a highly enantioselective Csp2-Csp3 bond-forming method that couples arylboronic acids to racemic allyl chlorides. Both enantiomers of a cyclic chloride are converted into a single enantiomer of product via a dynamic kinetic asymmetric transformation. This Rh-catalysed method uses readily available and inexpensive building blocks and is mild and broadly applicable. For electron-deficient, electron-rich or ortho-substituted boronic acids better results are obtained with racemic allyl bromides. Oxygen substitution in the allyl halide is tolerated and the products can be functionalized to provide diverse building blocks. The approach fills a significant gap in the methods for catalytic asymmetric synthesis.

  9. Protein carbonylation in human diseases.

    PubMed

    Dalle-Donne, Isabella; Giustarini, Daniela; Colombo, Roberto; Rossi, Ranieri; Milzani, Aldo

    2003-04-01

    Oxidative modifications of enzymes and structural proteins play a significant role in the aetiology and/or progression of several human diseases. Protein carbonyl content is the most general and well-used biomarker of severe oxidative protein damage. Human diseases associated with protein carbonylation include Alzheimer's disease, chronic lung disease, chronic renal failure, diabetes and sepsis. Rapid recent progress in the identification of carbonylated proteins should provide new diagnostic (possibly pre-symptomatic) biomarkers for oxidative damage, and yield basic information to aid the establishment an efficacious antioxidant therapy.

  10. Hydrogen-Bond Directed Regioselective Pd-Catalyzed Asymmetric Allylic Alkylation: The Construction of Chiral α-Amino Acids with Vicinal Tertiary and Quaternary Stereocenters.

    PubMed

    Wei, Xuan; Liu, Delong; An, Qianjin; Zhang, Wanbin

    2015-12-04

    A Pd-catalyzed asymmetric allylic alkylation of azlactones with 4-arylvinyl-1,3-dioxolan-2-ones was developed, providing "branched" chiral α-amino acids with vicinal tertiary and quaternary stereocenters, in high yields and with excellent selectivities. Mechanistic studies revealed that the formation of a hydrogen bond between the Pd-allylic complex and azlactone isomer is responsible for the excellent regioselectivities. This asymmetric alkylation can be carried out on a gram scale without a loss of catalytic efficiency, and the resulting product can be further transformed to a chiral azetidine in two simple steps.

  11. 1,1,3,3-Tetratriflylpropene (TTP): A Strong, Allylic C-H Acid for Brønsted and Lewis Acid Catalysis.

    PubMed

    Höfler, Denis; van Gemmeren, Manuel; Wedemann, Petra; Kaupmees, Karl; Leito, Ivo; Leutzsch, Markus; Lingnau, Julia B; List, Benjamin

    2017-01-24

    Tetratrifylpropene (TTP) has been developed as a highly acidic, allylic C-H acid for Brønsted and Lewis acid catalysis. It can readily be obtained in two steps and consistently shows exceptional catalytic activities for Mukaiyama aldol, Hosomi-Sakurai, and Friedel-Crafts acylation reactions. X-ray analyses of TTP and its salts confirm its designed, allylic structure, in which the negative charge is delocalized over four triflyl groups. NMR experiments, acidity measurements, and theoretical investigations provide further insights to rationalize the remarkable reactivity of TTP.

  12. The Construction of All-Carbon Quaternary Stereocenters by Use of Pd-Catalyzed Asymmetric Allylic Alkylation Reactions in Total Synthesis

    PubMed Central

    Hong, Allen Y.

    2014-01-01

    All-carbon quaternary stereocenters have posed significant challenges in the synthesis of complex natural products. These important structural motifs have inspired the development of broadly applicable palladium-catalyzed asymmetric allylic alkylation reactions of unstabilized non-biased enolates for the synthesis of enantioenriched α-quaternary products. This microreview outlines key considerations in the application of palladium-catalyzed asymmetric allylic alkylation reactions and presents recent total syntheses of complex natural products that have employed these powerful transformations for the direct, catalytic, enantioselective construction of all-carbon quaternary stereocenters. PMID:24944521

  13. Iridium-Catalyzed Regioselective and Enantioselective Allylation of Trimethylsiloxyfuran

    PubMed Central

    Chen, Wenyong; Hartwig, John F.

    2012-01-01

    We report the regioselective and enantioselective allylation of an ester enolate, trimethylsiloxyfuran. This enolate reacts in the 3-position with linear aromatic allylic carbonates or aliphatic allylic benzoates to form the branched substitution products in the presence of a metallacyclic iridium catalyst. This process provides access to synthetically important 3-substituted butenolides in enantioenriched form. Stoichiometric reactions of the allyliridium intermediate imply that the trimethylsiloxyfuran is activated by the carboxylate leaving group. PMID:22954355

  14. The microwave spectrum of allyl acetone

    NASA Astrophysics Data System (ADS)

    Tulimat, Layla; Mouhib, Halima; Kleiner, Isabelle; Stahl, Wolfgang

    2015-06-01

    Allyl acetone was investigated using a combination of quantum chemical calculations and molecular beam Fourier transform microwave spectroscopy. The microwave spectrum was recorded in the frequency range from 10.0 to 14.0 GHz. The most abundant conformer in the supersonic jet possesses a C1 symmetry and appears as a pair of enantiomers. The observed conformer does not correspond to the most abundant conformer observed for allyl acetate, which is structurally related to allyl acetone. Here, we report on its structure and dynamics, for which a set of highly accurate rotational and centrifugal distortion constants, as well as the barrier to internal rotation of the acetyl methyl group could be determined with high accuracy. Splittings due to the internal rotation of the methyl group of up to 360 MHz were observed in the spectrum. Using the programs XIAM and BELGI-C1, a barrier height (V3) of about 225 cm-1 as well as the other molecular parameters were determined. The results obtained from the different codes were subsequently compared to each other. Additionally, the experimental rotational constants were used to validate quantum chemical calculations at different levels of theory.

  15. 49 CFR 173.198 - Nickel carbonyl.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Nickel carbonyl. 173.198 Section 173.198... Nickel carbonyl. (a) Nickel carbonyl must be packed in specification steel or nickel cylinders as prescribed for any compressed gas except acetylene. A cylinder used exclusively for nickel carbonyl may...

  16. 49 CFR 173.198 - Nickel carbonyl.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Nickel carbonyl. 173.198 Section 173.198... Nickel carbonyl. (a) Nickel carbonyl must be packed in specification steel or nickel cylinders as prescribed for any compressed gas except acetylene. A cylinder used exclusively for nickel carbonyl may...

  17. 49 CFR 173.198 - Nickel carbonyl.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Nickel carbonyl. 173.198 Section 173.198... Nickel carbonyl. (a) Nickel carbonyl must be packed in specification steel or nickel cylinders as prescribed for any compressed gas except acetylene. A cylinder used exclusively for nickel carbonyl may...

  18. 49 CFR 173.198 - Nickel carbonyl.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Nickel carbonyl. 173.198 Section 173.198... Nickel carbonyl. (a) Nickel carbonyl must be packed in specification steel or nickel cylinders as prescribed for any compressed gas except acetylene. A cylinder used exclusively for nickel carbonyl may...

  19. 49 CFR 173.198 - Nickel carbonyl.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Nickel carbonyl. 173.198 Section 173.198... Nickel carbonyl. (a) Nickel carbonyl must be packed in specification steel or nickel cylinders as prescribed for any compressed gas except acetylene. A cylinder used exclusively for nickel carbonyl may...

  20. Polarity-Reversed Allylations of Aldehydes, Ketones, and Imines Enabled by Hantzsch Ester in Photoredox Catalysis.

    PubMed

    Qi, Li; Chen, Yiyun

    2016-10-10

    The polarity reversal (umpolung) reaction is an invaluable tool for reversing the chemical reactivity of carbonyl and iminyl groups, which subsequent cross-coupling reactions to form C-C bonds offers a unique perspective in synthetic planning and implementation. Reported herein is the first visible-light-induced polarity-reversed allylation and intermolecular Michael addition reaction of aldehydes, ketones, and imines. This chemoselective reaction has broad substrate scope and the engagement of alkyl imines is reported for the first time. The mechanistic investigations indicate the formation of ketyl (or α-aminoalkyl) radicals from single-electron reduction, where the Hantzsch ester is crucial as the electron/proton donor and the activator.

  1. Catalytic Organometallic Reactions of Ammonia

    PubMed Central

    Klinkenberg, Jessica L.

    2012-01-01

    Until recently, ammonia had rarely succumbed to catalytic transformations with homogeneous catalysts, and the development of such reactions that are selective for the formation of single products under mild conditions has encountered numerous challenges. However, recently developed catalysts have allowed several classes of reactions to create products with nitrogen-containing functional groups from ammonia. These reactions include hydroaminomethylation, reductive amination, alkylation, allylic substitution, hydroamination, and cross-coupling. This Minireview describes examples of these processes and the factors that control catalyst activity and selectivity. PMID:20857466

  2. Metal-catalyzed reductive coupling of olefin-derived nucleophiles: Reinventing carbonyl addition.

    PubMed

    Nguyen, Khoa D; Park, Boyoung Y; Luong, Tom; Sato, Hiroki; Garza, Victoria J; Krische, Michael J

    2016-10-21

    α-Olefins are the most abundant petrochemical feedstock beyond alkanes, yet their use in commodity chemical manufacture is largely focused on polymerization and hydroformylation. The development of byproduct-free catalytic C-C bond-forming reactions that convert olefins to value-added products remains an important objective. Here, we review catalytic intermolecular reductive couplings of unactivated and activated olefin-derived nucleophiles with carbonyl partners. These processes represent an alternative to the longstanding use of stoichiometric organometallic reagents in carbonyl addition. Copyright © 2016, American Association for the Advancement of Science.

  3. Substituent Effects on Electrophilic Catalysis by the Carbonyl Group: Anatomy of the Rate Acceleration for PLP-Catalyzed Deprotonation of Glycine

    PubMed Central

    Crugeiras, Juan; Rios, Ana; Riveiros, Enrique; Richard, John P.

    2011-01-01

    First-order rate constants, determined by 1H NMR, are reported for deuterium exchange between solvent D2O and the α-amino carbon of glycine in the presence of increasing concentrations of carbonyl compounds (acetone, benzaldehyde and salicylaldehyde) and at different pD and buffer concentrations. These rate data were combined with 1H NMR data that define the position of the equilibrium for formation of imines/iminium ions from addition of glycine to the respective carbonyl compounds, to give second-order rate constants kDO for deprotonation of α-imino carbon by DO−. The assumption that these second-order rate constants lie on linear structure-reactivity correlations between log kOL and pKa was made in estimating the following pKas for deprotonation of α-imino carbon: pKa = 22, glycine–acetone iminium ion; pKa = 27, glycine–benzaldehyde imine; pKa ≈ 23, glycine–benzaldehyde iminium ion; and, pKa = 25, glycine–salicylaldehyde iminium ion. The much lower pKa of 17 [Toth, K.; Richard, J. P. J. Am. Chem. Soc. 2007, 129, 3013–3021] for carbon deprotonation of the adduct between 5′-deoxypyridoxal (DPL) and glycine shows that the strongly electron-withdrawing pyridinium ion is unique in driving the extended delocalization of negative charge from the α-iminium to the α-pyridinium carbon. This favors carbanion protonation at the α–pyridinium carbon, and catalysis of the 1,3-aza-allylic isomerization reaction that is a step in enzyme-catalyzed transamination reactions. An analysis of the effect of incremental changes in structure on the activity of benzaldehyde in catalysis of deprotonation of glycine shows the carbonyl group electrophile, the 2-O− ring substituent and the cation pyridinium nitrogen of DPL each make a significant contribution to the catalytic activity of this cofactor analog. The extraordinary activity of DPL in catalysis of deprotonation of α–amino carbon results from the summation of these three smaller effects. PMID:21323335

  4. Palladium-Catalyzed Decarbonylative Dehydration for the Synthesis of α-Vinyl Carbonyl Compounds and Total Synthesis of (−)-Aspewentin A, B, and C

    PubMed Central

    Liu, Yiyang; Virgil, Scott C.; Grubbs, Robert H.; Stoltz, Brian M.

    2015-01-01

    The direct α-vinylation of carbonyl compounds that forms a quaternary stereocenter is a challenging transformation. We discovered that δ-oxocarboxylic acids can serve as masked vinyl compounds and be unveiled by palladium-catalyzed decarbonylative dehydration. The carboxylic acids are readily available through enantioselective acrylate addition or asymmetric allylic alkylation. A variety of α-vinyl quaternary carbonyl compounds are obtained in good yields, and an application in the first enantioselective total synthesis of (−)-aspewentin A, B, and C is demonstrated. PMID:26230413

  5. Bradykinetic alcohol dehydrogenases make yeast fitter for growth in the presence of allyl alcohol.

    PubMed

    Plapp, Bryce V; Lee, Ann Ting-I; Khanna, Aditi; Pryor, John M

    2013-02-25

    Previous studies showed that fitter yeast (Saccharomyces cerevisiae) that can grow by fermenting glucose in the presence of allyl alcohol, which is oxidized by alcohol dehydrogenase I (ADH1) to toxic acrolein, had mutations in the ADH1 gene that led to decreased ADH activity. These yeast may grow more slowly due to slower reduction of acetaldehyde and a higher NADH/NAD(+) ratio, which should decrease the oxidation of allyl alcohol. We determined steady-state kinetic constants for three yeast ADHs with new site-directed substitutions and examined the correlation between catalytic efficiency and growth on selective media of yeast expressing six different ADHs. The H15R substitution (a test for electrostatic effects) is on the surface of ADH and has small effects on the kinetics. The H44R substitution (affecting interactions with the coenzyme pyrophosphate) was previously shown to decrease affinity for coenzymes 2-4-fold and turnover numbers (V/Et) by 4-6-fold. The W82R substitution is distant from the active site, but decreases turnover numbers by 5-6-fold, perhaps by effects on protein dynamics. The E67Q substitution near the catalytic zinc was shown previously to increase the Michaelis constant for acetaldehyde and to decrease turnover for ethanol oxidation. The W54R substitution, in the substrate binding site, increases kinetic constants (Ks, by >10-fold) while decreasing turnover numbers by 2-7-fold. Growth of yeast expressing the different ADHs on YPD plates (yeast extract, peptone and dextrose) plus antimycin to require fermentation, was positively correlated with the log of catalytic efficiency for the sequential bi reaction (V1/KiaKb=KeqV2/KpKiq, varying over 4 orders of magnitude, adjusted for different levels of ADH expression) in the order: WT≈H15R>H44R>W82R>E67Q>W54R. Growth on YPD plus 10mM allyl alcohol was inversely correlated with catalytic efficiency. The fitter yeast are "bradytrophs" (slow growing) because the ADHs have decreased catalytic

  6. Bradykinetic alcohol dehydrogenases make yeast fitter for growth in the presence of allyl alcohol

    PubMed Central

    Plapp, Bryce V.; Lee, Ann Ting-I.; Khanna, Aditi; Pryor, John M.

    2012-01-01

    Previous studies showed that fitter yeast (Saccharomyces cerevisiae) that can grow by fermenting glucose in the presence of allyl alcohol, which is oxidized by alcohol dehydrogenase I (ADH1) to toxic acrolein, had mutations in the ADH1 gene that led to decreased ADH activity. These yeast may grow more slowly due to slower reduction of acetaldehyde and a higher NADH/NAD+ ratio, which should decrease the oxidation of allyl alcohol. We determined steady-state kinetic constants for three yeast ADHs with new site-directed substitutions and examined the correlation between catalytic efficiency and growth on selective media of yeast expressing six different ADHs. The H15R substitution (a test for electrostatic effects) is on the surface of ADH and has small effects on the kinetics. The H44R substitution (affecting interactions with the coenzyme pyrophosphate) was previously shown to decrease affinity for coenzymes 2-4-fold and turnover numbers (V/Et) by 4-6-fold. The W82R substitution is distant from the active site, but decreases turnover numbers by 5-6-fold, perhaps by effects on protein dynamics. The E67Q substitution near the catalytic zinc was shown previously to increase the Michaelis constant for acetaldehyde and to decrease turnover for ethanol oxidation. The W54R substitution, in the substrate binding site, increases kinetic constants (K’s, by > 10-fold) while decreasing turnover numbers by 2-7-fold. Growth of yeast expressing the different ADHs on YPD plates (yeast extract, peptone and dextrose) plus antimycin to require fermentation, was positively correlated with the log of catalytic efficiency for the sequential bi reaction (V1/KiaKb = KeqV2/KpKiq, varying over 4 orders of magnitude, adjusted for different levels of ADH expression) in the order: WT H15R > H44R > W82R > E67Q > W54R. Growth on YPD plus 10 mM allyl alcohol was inversely correlated with catalytic efficiency. The fitter yeast are “bradytrophs” (slow growing) because the ADHs have decreased

  7. Palladium-Catalyzed, Site-Selective Direct Allylation of Aryl C–H Bonds by Silver-Mediated C–H Activation: A Synthetic and Mechanistic Investigation

    PubMed Central

    Lee, Sarah Yunmi; Hartwig, John F.

    2016-01-01

    We describe a method for the site-selective construction of a C(aryl)–C(sp3) bond by the palladium-catalyzed direct allylation of arenes with allylic pivalates in the presence of AgOPiv to afford the linear (E)-allylated arene with excellent regioselectivity; this reaction occurs with arenes that have not undergone site-selective and stereoselective direct allylation previously, such as monofluorobenzenes and non-fluorinated arenes. Mechanistic studies indicate that AgOPiv ligated by a phosphine reacts with the arene to form an arylsilver(I) species, presumably through a concerted metalation–deprotonation pathway. The activated aryl moiety is then transferred to an allylpalladium(II) intermediate formed by oxidative addition of the allylic pivalate to the Pd(0) complex. Subsequent reductive elimination furnishes the allyl–aryl coupled product. The aforementioned proposed intermediates, including an arylsilver complex, have been isolated, structurally characterized, and determined to be chemically and kinetically competent to undergo the proposed elementary steps of the catalytic cycle. PMID:27797512

  8. Aryl-palladium-NHC complex: efficient phosphine-free catalyst precursors for the carbonylation of aryl iodides with amines or alkynes.

    PubMed

    Zhang, Chunyan; Liu, Jianhua; Xia, Chungu

    2014-12-21

    A series of aryl-palladium-NHC compounds was prepared according to the reported methods and their catalytic activity in the carbonylation of aryl iodides to synthesize α-keto amides and alkynones was examined. These practical aryl-palladium-NHC complexes have shown highly efficient catalyzed carbonylation and Sonogashira carbonylation reactions, with high turnover number in synthesis of α-keto amides (TON = 4300) and in synthesis of alkynones (TON = 980).

  9. Transition-metal-catalyzed carbonylation reactions of olefins and alkynes: a personal account.

    PubMed

    Wu, Xiao-Feng; Fang, Xianjie; Wu, Lipeng; Jackstell, Ralf; Neumann, Helfried; Beller, Matthias

    2014-04-15

    Carbon monoxide was discovered and identified in the 18th century. Since the first applications in industry 80 years ago, academic and industrial laboratories have broadly explored CO's use in chemical reactions. Today organic chemists routinely employ CO in organic chemistry to synthesize all kinds of carbonyl compounds. Despite all these achievements and a century of carbonylation catalysis, many important research questions and challenges remain. Notably, apart from academic developments, industry applies carbonylation reactions with CO on bulk scale. In fact, today the largest applications of homogeneous catalysis (regarding scale) are carbonylation reactions, especially hydroformylations. In addition, the vast majority of acetic acid is produced via carbonylation of methanol (Monsanto or Cativa process). The carbonylation of olefins/alkynes with nucleophiles, such as alcohols and amines, represent another important type of such reactions. In this Account, we discuss our work on various carbonylations of unsaturated compounds and related reactions. Rhodium-catalyzed isomerization and hydroformylation reactions of internal olefins provide straightforward access to higher value aldehydes. Catalytic hydroaminomethylations offer an ideal way to synthesize substituted amines and even heterocycles directly. More recently, our group has also developed so-called alternative metal catalysts based on iridium, ruthenium, and iron. What about the future of carbonylation reactions? CO is already one of the most versatile C1 building blocks for organic synthesis and is widely used in industry. However, because of CO's high toxicity and gaseous nature, organic chemists are often reluctant to apply carbonylations more frequently. In addition, new regulations have recently made the transportation of carbon monoxide more difficult. Hence, researchers will need to develop and more frequently use practical and benign CO-generating reagents. Apart from formates, alcohols, and metal

  10. Carbonylations of alkenes with CO surrogates.

    PubMed

    Wu, Lipeng; Liu, Qiang; Jackstell, Ralf; Beller, Matthias

    2014-06-16

    Alkene carbonylation reactions are important for the production of value-added bulk and fine chemicals. Nowadays, all industrial carbonylation processes make use of highly toxic and flammable carbon monoxide. In fact, these properties impede the wider use of carbonylation reactions in industry and academia. Hence, performing carbonylations without the use of CO is highly desired and will contribute to the further advancement of sustainable chemistry. Although the use of carbon monoxide surrogates in alkene carbonylation reactions has been reported intermittently in the last 30 years, only recently has this area attracted significant interest. This Minireview summarizes carbonylation reactions of alkenes using different carbon monoxide surrogates.

  11. Kinetic resolution of allyl fluorides by enantioselective allylic trifluoromethylation based on silicon-assisted C-F bond cleavage.

    PubMed

    Nishimine, Takayuki; Fukushi, Kazunobu; Shibata, Naoyuki; Taira, Hiromi; Tokunaga, Etsuko; Yamano, Akihito; Shiro, Motoo; Shibata, Norio

    2014-01-07

    Two birds, one stone! The first kinetic resolution of allyl fluorides was achieved by the development of an organocatalyzed enantioselective allylic trifluoromethylation. Two kinds of chiral fluorinated compounds, which incorporate C*F and C*CF3 units, respectively, can thus be accessed by a single transformation.

  12. Enantioselective synthesis of α-quaternary Mannich adducts by palladium-catalyzed allylic alkylation: total synthesis of (+)-sibirinine.

    PubMed

    Numajiri, Yoshitaka; Pritchett, Beau P; Chiyoda, Koji; Stoltz, Brian M

    2015-01-28

    A catalytic enantioselective method for the synthesis of α-quaternary Mannich-type products is reported. The two-step sequence of (1) Mannich reaction followed by (2) decarboxylative enantioselective allylic alkylation serves as a novel strategy to in effect access asymmetric Mannich-type products of "thermodynamic" enolates of substrates possessing additional enolizable positions and acidic protons. Palladium-catalyzed decarboxylative allylic alkylation enables the enantioselective synthesis of five-, six-, and seven-membered ketone, lactam, and other heterocyclic systems. The mild reaction conditions are notable given the acidic free N-H groups and high functional group tolerance in each of the substrates. The utility of this method is highlighted in the first total synthesis of (+)-sibirinine.

  13. Metal Carbonyl-Hydrosilane Reactions and Hydrosilation Catalysis

    SciTech Connect

    Cutler, A. R.

    2001-04-14

    Manganese carbonyl complexes serve as hydrosilation precatalysts for selectively transforming a carbonyl group into a siloxy methylene or a fully reduced methylene group. Substrates of interest include (1) aldehydes, ketones, carboxylic acids, silyl esters, and esters, and (2) their organometallic acyl counterparts. Three relevant catalytic reactions are shown. Two types of manganese precatalysts have been reported: (a) alkyl and acyl complexes (L)(C0){sub 4}MnR [L = CO, PPh{sub 3}; R = COCH{sub 3}, COPh, CH{sub 3}] and (b) halides (CO){sub 5}MnX and [(CO){sub 4}MnX]{sub 2} (X = Br, I). The former promote hydrosilation and deoxygenation catalysis; the latter promote dehydrogenative silation of alcohols and carboxylic acids as well as hydrosilation and deoxygenation of some metallocarboxylic acid derivatives. In every case studied, these Mn precatalysts are far more reactive or selective than traditional Rh(I) precatalysts.

  14. Pentacoordinated carboxylate π-allyl nickel complexes as key intermediates for the Ni-catalyzed direct amination of allylic alcohols.

    PubMed

    Kita, Yusuke; Sakaguchi, Hironobu; Hoshimoto, Yoichi; Nakauchi, Daisuke; Nakahara, Yasuhito; Carpentier, Jean-François; Ogoshi, Sensuke; Mashima, Kazushi

    2015-10-05

    Direct amination of allylic alcohols with primary and secondary amines catalyzed by a system made of [Ni(1,5-cyclooctadiene)2 ] and 1,1'-bis(diphenylphosphino)ferrocene was effectively enhanced by adding nBu4 NOAc and molecular sieves, affording the corresponding allyl amines in high yield with high monoallylation selectivity for primary amines and high regioselectivity for monosubstituted allylic alcohols. Such remarkable additive effects of nBu4 NOAc were elucidated by isolating and characterizing some nickel complexes, manifesting the key role of a charge neutral pentacoordinated η(3) -allyl acetate complex in the present system, in contrast to usual cationic tetracoordinated complexes earlier reported in allylic substitution reactions.

  15. Protein carbonylation, cellular dysfunction, and disease progression

    PubMed Central

    Dalle-Donne, Isabella; Aldini, Giancarlo; Carini, Marina; Colombo, Roberto; Rossi, Ranieri; Milzani, Aldo

    2006-01-01

    Carbonylation of proteins is an irreversible oxidative damage, often leading to a loss of protein function, which is considered a widespread indicator of severe oxidative damage and disease-derived protein dysfunction. Whereas moderately carbonylated proteins are degraded by the proteasomal system, heavily carbonylated proteins tend to form high-molecular-weight aggregates that are resistant to degradation and accumulate as damaged or unfolded proteins. Such aggregates of carbonylated proteins can inhibit proteasome activity. A large number of neurodegenerative diseases are directly associated with the accumulation of proteolysis-resistant aggregates of carbonylated proteins in tissues. Identification of specific carbonylated protein(s) functionally impaired and development of selective carbonyl blockers should lead to the definitive assessment of the causative, correlative or consequential role of protein carbonylation in disease onset and/or progression, possibly providing new therapeutic aproaches. PMID:16796807

  16. Enantioselective α-Arylation of Carbonyls via Cu(I)-Bisoxazoline Catalysis

    PubMed Central

    Harvey, James S.; Simonovich, Scott P.; Jamison, Christopher R.; MacMillan, David W. C.

    2011-01-01

    The enantioselective α-arylation of both lactones and acyl oxazolidones has been accomplished using a combination of diaryliodonium salts and copper catalysis. These mild catalytic conditions provide a new strategy for the enantioselective construction and retention of enolizable α-carbonyl benzylic stereocenters, a valuable synthon for the production of medicinal agents. PMID:21848265

  17. Efficient preparation of carbamates by Rh-catalysed oxidative carbonylation: unveiling the role of the oxidant.

    PubMed

    Iturmendi, Amaia; Iglesias, Manuel; Munárriz, Julen; Polo, Victor; Pérez-Torrente, Jesús J; Oro, Luis A

    2016-12-22

    The synthesis of a wide variety of carbamates from amines, alcohols and carbon monoxide has been achieved by means of a Rh-catalysed oxidative carbonylation reaction that uses Oxone as a stoichiometric oxidant. In-depth studies on the reaction mechanism shed light on the intimate role of Oxone in the catalytic cycle.

  18. Carbonyl clusters of transition metals on oxide supports as heterogeneous catalysts for hydrocarbon synthesis

    SciTech Connect

    Kuznetsov, B.N.; Koval`chuk, V.I.

    1995-05-01

    The methods of preparation of heterogeneous catalysts by immobilization of carbonyl clusters of transition metals on oxide supports, as well as the study of the state of supported compounds and their catalytic properties in CO hydrogenation and olefin hydroformulation are briefly reviewed.

  19. Synthesis of an Epoxide Carbonylation Catalyst: Exploration of Contemporary Chemistry for Advanced Undergraduates

    ERIC Educational Resources Information Center

    Getzler, Yutan D. Y. L.; Schmidt, Joseph A. R.; Coates, Geoffrey W.

    2005-01-01

    A class of highly active, well-defined compounds for the catalytic carbonylation of epoxides and aziridines to beta-lactones and beta-lactams are introduced. The synthesis of one of the catalysts involves a simple imine condensation to form the ligand followed by air-sensitive metalation and salt metathesis steps.

  20. Synthesis of an Epoxide Carbonylation Catalyst: Exploration of Contemporary Chemistry for Advanced Undergraduates

    ERIC Educational Resources Information Center

    Getzler, Yutan D. Y. L.; Schmidt, Joseph A. R.; Coates, Geoffrey W.

    2005-01-01

    A class of highly active, well-defined compounds for the catalytic carbonylation of epoxides and aziridines to beta-lactones and beta-lactams are introduced. The synthesis of one of the catalysts involves a simple imine condensation to form the ligand followed by air-sensitive metalation and salt metathesis steps.

  1. Reactivity of silicon carbonyl with ethylene

    NASA Astrophysics Data System (ADS)

    Belanzoni, P.; Giorgi, G.; Cerofolini, G. F.

    2006-02-01

    The reaction of silicon atom with carbonyl has recently been investigated by density functional calculations. A few relatively stable silicon carbonyl compounds have been found. In this Letter, the reactivity of silicon tetracarbonyl with ethylene has been investigated by a density functional approach. The calculations predict this carbonylation procedure as an alternative to the use of highly toxic phosgene commonly required in addition reactions of carbonyl to unsaturated compounds.

  2. Palladium-Catalyzed Decarboxylative Asymmetric Allylic Alkylation of Enol Carbonates

    PubMed Central

    Trost, Barry M.; Xu, Jiayi; Schmidt, Thomas

    2009-01-01

    Palladium-catalyzed decarboxylative asymmetric allylic alkylation (DAAA) of allyl enol carbonates as a highly chemo-, regio- and enantio-selective process for the synthesis of ketones bearing either a quaternary or a tertiary α-stereogenic center has been investigated in detail. Chiral ligand L4 was found to be optimal in the DAAA of a broad scope of cyclic and acyclic ketones including simple aliphatic ketones with more than one enolizable proton. The allyl moiety of the carbonates has been extended to a variety of cyclic or acyclic di-substituted allyl groups. Our mechanistic studies reveal that, similar to the direct allylation of lithium enolates, the DAAA reaction proceeds through an “outer sphere” SN2 type of attack on the π-allylpalladium complex by the enolate. An important difference between the DAAA reaction and the direct allylation of lithium enolates is that in the DAAA reaction, the nucleophile and the electrophile were generated simultaneously. Since the π-allylpalladium cation must serve as the counterion for the enolate, the enolate probably exists as a tight-ion-pair. This largely prevents the common side reactions of enolates associated with the equilibrium between different enolates. The much milder reaction conditions as well as the much broader substrate scope also represent the advantages of the DAAA reaction over the direct allylation of preformed metal enolates. PMID:19928805

  3. Carbonyl derivatives of boradiazaindacene via catalytic CO insertion.

    PubMed

    Ulrich, Gilles; Haefele, Alexandre; Retailleau, Pascal; Ziessel, Raymond

    2012-06-01

    A methodological study is presented dealing with carbopalladation reactions on BODIPY dyes bearing aryl-halogen functions. Using this technique, several ester and amide groups were efficiently introduced on the dyes. These changes do not affect the optical properties of the dyes and thus allow the construction of new BODIPY-based functional dyes with carboxylic anchoring groups or peptide links.

  4. Catalytic Amination of Alcohols, Aldehydes, and Ketones

    NASA Astrophysics Data System (ADS)

    Klyuev, M. V.; Khidekel', M. L.

    1980-01-01

    Data on the catalytic amination of alcohols and carbonyl compounds are examined, the catalysts for these processes are described, and the problems of their effectiveness, selectivity, and stability are discussed. The possible mechanisms of the reactions indicated are presented. The bibliography includes 266 references.

  5. Iridium(I)-Catalyzed Regio- and Enantioselective Allylic Amidation

    PubMed Central

    Singh, Om V.; Han, Hyunsoo

    2009-01-01

    Ir(I)-catalyzed intermolecular allylic amidation of ethyl allylic carbonates with soft nitrogen nucleophiles under completely “salt-free” conditions is described. A combination of [Ir(COD)Cl]2, a chiral phosphoramidite ligand L*, and DBU as a base in THF effects the reaction. The reaction appears to be quite general, accommodating a wide variety of R-groups and soft nitrogen nucleophiles, and proceeds with excellent regio- and enantioselectivities to afford the branched N-protected allylic amines. The developed reaction was conveniently utilized in the asymmetric synthesis of Boc protected α- and β-amino acids as well as (−)-cytoxazone. PMID:19554202

  6. Palladium-catalyzed asymmetric synthesis of allylic fluorides.

    PubMed

    Katcher, Matthew H; Doyle, Abigail G

    2010-12-15

    The enantioselective fluorination of readily available cyclic allylic chlorides with AgF has been accomplished using a Pd(0) catalyst and Trost bisphosphine ligand. The reactions proceed with unprecedented ease of operation for Pd-mediated nucleophilic fluorination, allowing access to highly enantioenriched cyclic allylic fluorides that bear diverse functional groups. Evidence that supports a mechanism in which C-F bond formation occurs by an S(N)2-type attack of fluoride on a Pd(II)-allyl intermediate is presented.

  7. Direct, Intermolecular, Enantioselective, Iridium-Catalyzed Allylation of Carbamates to Form Carbamate-Protected, Branched Allylic Amines

    PubMed Central

    Weix, Daniel J.; Marković, Dean; Ueda, Mitsuhiro; Hartwig, John F.

    2009-01-01

    The direct reaction between carbamates and achiral allylic carbonates to form branched, conveniently protected primary allylic amines with high regioselectivity and enantioselectivity is reported. This process occurs without base or with 0.5 equiv K3PO4 in the presence of a metalacyclic iridium catalyst containing a labile ethylene ligand. The reactions of aryl, heteroaryl and alkyl-substituted allylic carbonates with BocNH2, FmocNH2, CbzNH2, TrocNH2, TeocNH2, and 2-oxazolidinone occur in good yields, with high selectivity for the branched isomer, and high enantioselectivities (98% average ee). PMID:19552468

  8. Direct, intermolecular, enantioselective, iridium-catalyzed allylation of carbamates to form carbamate-protected, branched allylic amines.

    PubMed

    Weix, Daniel J; Marković, Dean; Ueda, Mitsuhiro; Hartwig, John F

    2009-07-02

    The direct reaction between carbamates and achiral allylic carbonates to form branched, conveniently protected primary allylic amines with high regioselectivity and enantioselectivity is reported. This process occurs without base or with 0.5 equiv K(3)PO(4) in the presence of a metalacyclic iridium catalyst containing a labile ethylene ligand. The reactions of aryl-, heteroaryl-, and alkyl-substituted allylic carbonates with BocNH(2), FmocNH(2), CbzNH(2), TrocNH(2), TeocNH(2), and 2-oxazolidinone occur in good yields, with high selectivity for the branched isomer and high enantioselectivities (98% average ee).

  9. Silicon-directed rhenium-catalyzed allylic carbaminations and oxidative fragmentations of γ-silyl allylic alcohols.

    PubMed

    Chavhan, Sanjay W; Cook, Matthew J

    2014-04-22

    A highly regioselective allylic substitution of β-silyl allylic alcohols has been achieved that provides the branched isomer as a single product. This high level of regiocontrol is achieved through the use of a vinyl silane group that can perform a Hiyama coupling providing 1,3-disubstituted allylic amines. An unusual oxidative fragmentation product was also observed at elevated temperature that appears to proceed by a Fleming-Tamao-type oxidation-elimination pathway. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Strong Lewis acids of air-stable metallocene bis(perfluorooctanesulfonate)s as high-efficiency catalysts for carbonyl-group transformation reactions.

    PubMed

    Qiu, Renhua; Xu, Xinhua; Peng, Lifeng; Zhao, Yalei; Li, Ningbo; Yin, Shuangfeng

    2012-05-14

    Strong Lewis acids of air-stable metallocene bis(perfluorooctanesulfonate)s [M(Cp)(2)][OSO(2)C(8)F(17)](2)⋅nH(2)O⋅THF (M = Zr (2 a⋅3 H(2)O⋅THF), M = Ti (2 b⋅2 H(2)O⋅THF)) were synthesized by the reaction of [M(Cp)(2)]Cl(2) (M = Zr (1 a), M = Ti (1 b)) with nBuLi and C(8)F(17)SO(3)H (2 equiv) or with C(8)F(17)SO(3)Ag (2 equiv). The hydrate numbers (n) of these complexes were variable, changing from 0 to 4 depending on conditions. In contrast to well-known metallocene triflates, these complexes suffered no change in open air for a year. thermogravimetry-differential scanning calorimetry (TG-DSC) analysis showed that 2 a and 2 b were thermally stable at 300 and 180 °C, respectively. These complexes exhibited unusually high solubility in polar organic solvents. Conductivity measurement showed that the complexes (2 a and 2 b) were ionic dissociation in CH(3)CN solution. X-ray analysis result confirmed 2 a⋅3 H(2)O⋅THF was a cationic organometallic Lewis acid. UV/Vis spectra showed a significant red shift due to the strong complex formation between 10-methylacridone and 2 a. Fluorescence spectra showed that the Lewis acidity of 2 a fell between those of Sc(3+) (λ(em)=474 nm) and Fe(3+) (λ(em)=478 nm). ESR spectra showed the Lewis acidity of 2 a (0.91 eV) was at the same level as that of Sc(3+) (1.00 eV) and Y(3+) (0.85 eV), while the Lewis acidity of 2 b (1.06 eV) was larger than that of Sc(3+) (1.00 eV) and Y(3+) (0.85 eV). They showed high catalytic ability in carbonyl-compound transformation reactions, such as the Mannich reaction, the Mukaiyama aldol reaction, allylation of aldehydes, the Friedel-Crafts acylation of alkyl aromatic ethers, and cyclotrimerization of ketones. Moreover, the complexes possessed good reusability. On account of their excellent catalytic efficiency, stability, and reusability, the complexes will find broad catalytic applications in organic synthesis.

  11. Time- and frequency-resolved photoionisation of the allyl radical

    PubMed

    Schultz; Clarke; Gilbert; Deyerl; Fischer

    2000-01-01

    We report picosecond time-resolved pump-probe photoelectron spectra of the allyl radical, C3H5, and the fully deuterated allyl, C3D5, carried out in order to elucidate the primary photophysical processes upon UV excitation. It is shown that the UV bands of allyl decay in a two-step process: the first step is an internal conversion to the lower-lying A-state within 20 ps or less, while the second step is a very fast decay from the A-state to the electronic ground state through a conical intersection. In addition we report the first zero kinetic energy (ZEKE) photoelectron spectrum of allyl, yielding an ionisation energy of 65762 cm-1.

  12. The zeolite mediated isomerization of allyl phenyl ether

    NASA Astrophysics Data System (ADS)

    Pebriana, R.; Mujahidin, D.; Syah, Y. M.

    2017-04-01

    Allyl phenyl ether is an important starting material in organic synthesis that has several applications in agrochemical industry. The green transformation of allyl phenyl ether assisted by heterogeneous catalyst is an attractive topic for an industrial process. In this report, we investigated the isomerization of allyl phenyl ether by heating it in zeolite H-ZSM-5 and Na-ZSM-5. The conversion of allyl phenyl ether (neat) in H-ZSM-5 was 67% which produced 40% of 2-allylphenol, 17% of 2-methyldihydrobenzofuran, and other product (4:1.7:1), while in Na-ZSM-5 produced exclusively 2-allylphenol with 52% conversion. These results showed that zeolite properties can be tuned to give a selective transformation by substitution of metal ion into the zeolite interior.

  13. Synthesis of Quaternary Carbon Stereogenic Centers through Enantioselective Cu-Catalyzed Allylic Substitutions with Vinylaluminum Reagents

    PubMed Central

    Gao, Fang; McGrath, Kevin P.; Lee, Yunmi; Hoveyda, Amir H.

    2010-01-01

    Catalytic enantioselective allylic substitution (EAS) reactions, which involve the use of alkyl- or aryl-substituted vinylaluminum reagents and afford 1,4-dienes containing a quaternary carbon stereogenic center at their C-3 site, are disclosed. The C–C bond forming transformations are promoted by 0.5–2.5 mol % of sulfonate bearing chiral bidentate N-heterocyclic carbene (NHC) complexes, furnishing the desired products efficiently (66–97% yield of isolated products) and in high site- (>98% SN2′) and enantioselectivity [up to 99:1 enantiomer ratio (er)]. To the best of our knowledge, the present report puts forward the first cases of allylic substitution reactions that result in the generation of all-carbon quaternary stereogenic centers through the addition of a vinyl unit. The aryl- and vinyl-substituted vinylaluminum reagents, which cannot be prepared in high efficiency through direct reaction with diisobutylaluminum hydride, are accessed through a recently introduced Ni-catalyzed reaction of the corresponding terminal alkynes with the same inexpensive metal-hydride agent. Sequential Ni-catalyzed hydrometallations and Cu-catalyzed C–C bond forming reactions allow for efficient and selective synthesis of a range of enantiomerically enriched EAS products, which cannot cannot be accessed by previously disclosed strategies (due to inefficient vinylmetal synthesis or low reactivity and/or selectivity with Si-substituted derivatives). The utility of the protocols developed is demonstrated through a concise enantioselective synthesis of natural product bakuchiol. PMID:20860365

  14. Biocatalytic Synthesis of Allylic and Allenyl Sulfides through a Myoglobin-Catalyzed Doyle-Kirmse Reaction.

    PubMed

    Tyagi, Vikas; Sreenilayam, Gopeekrishnan; Bajaj, Priyanka; Tinoco, Antonio; Fasan, Rudi

    2016-10-17

    The first example of a biocatalytic [2,3]-sigmatropic rearrangement reaction involving allylic sulfides and diazo reagents (Doyle-Kirmse reaction) is reported. Engineered variants of sperm whale myoglobin catalyze this synthetically valuable C-C bond-forming transformation with high efficiency and product conversions across a variety of sulfide substrates (e.g., aryl-, benzyl-, and alkyl-substituted allylic sulfides) and α-diazo esters. Moreover, the scope of this myoglobin-mediated transformation could be extended to the conversion of propargylic sulfides to give substituted allenes. Active-site mutations proved effective in enhancing the catalytic efficiency of the hemoprotein in these reactions as well as modulating the enantioselectivity, resulting in the identification of the myoglobin variant Mb(L29S,H64V,V68F), which is capable of mediating asymmetric Doyle-Kirmse reactions with an enantiomeric excess up to 71 %. This work extends the toolbox of currently available biocatalytic strategies for the asymmetric formation of carbon-carbon bonds.

  15. General allylic C-H alkylation with tertiary nucleophiles.

    PubMed

    Howell, Jennifer M; Liu, Wei; Young, Andrew J; White, M Christina

    2014-04-16

    A general method for intermolecular allylic C-H alkylation of terminal olefins with tertiary nucleophiles has been accomplished employing palladium(II)/bis(sulfoxide) catalysis. Allylic C-H alkylation furnishes products in good yields (avg. 64%) with excellent regio- and stereoselectivity (>20:1 linear:branched, >20:1 E:Z). For the first time, the olefin scope encompasses unactivated aliphatic olefins as well as activated aromatic/heteroaromatic olefins and 1,4-dienes. The ease of appending allyl moieties onto complex scaffolds is leveraged to enable this mild and selective allylic C-H alkylation to rapidly diversify phenolic natural products. The tertiary nucleophile scope is broad and includes latent functionality for further elaboration (e.g., aliphatic alcohols, α,β-unsaturated esters). The opportunities to effect synthetic streamlining with such general C-H reactivity are illustrated in an allylic C-H alkylation/Diels-Alder reaction cascade: a reactive diene is generated via intermolecular allylic C-H alkylation and approximated to a dienophile contained within the tertiary nucleophile to furnish a common tricyclic core found in the class I galbulimima alkaloids.

  16. Influence of extracellular calcium on allyl alcohol-induced hepatotoxicity.

    PubMed

    Strubelt, O; Younes, M; Pentz, R

    1986-07-01

    The role of calcium in allyl alcohol-induced hepatotoxicity was investigated in the isolated haemoglobin-free perfused rat liver. At a Ca++ concentration of 2.5 mmol/l in the perfusate, allyl alcohol (initial concentration 1.17 mmol/l) produced an enhanced release of GPT and SDH from the liver, an increase in the lactate/pyruvate ratio of the perfusate, a decrease in hepatic oxygen consumption and an increase of both hepatic calcium and malondialdehyde content. In the absence of Ca++ in the perfusate, no hepatic calcium accumulation occurred with allyl alcohol, but all other signs of hepatic damage were as severe as with 2.5 mmol/l Ca++. On the other hand, high extracellular Ca++ (5 mmol/l) alone led to a threefold increase of liver calcium but produced only marginal hepatotoxicity and only slightly enhanced the hepatotoxic effects of allyl alcohol. The concentrations of allyl alcohol in the perfusate were not altered at different Ca++ concentrations. In conclusion, the primary allyl alcohol-induced hepatotoxic injury does not appear to depend upon an influx of extracellular calcium.

  17. Characterization of an Allylic/Benzyl Alcohol Dehydrogenase from Yokenella sp. Strain WZY002, an Organism Potentially Useful for the Synthesis of α,β-Unsaturated Alcohols from Allylic Aldehydes and Ketones

    PubMed Central

    Ying, Xiangxian; Wang, Yifang; Xiong, Bin; Wu, Tingting; Xie, Liping; Yu, Meilan

    2014-01-01

    A novel whole-cell biocatalyst with high allylic alcohol-oxidizing activities was screened and identified as Yokenella sp. WZY002, which chemoselectively reduced the C=O bond of allylic aldehydes/ketones to the corresponding α,β-unsaturated alcohols at 30°C and pH 8.0. The strain also had the capacity of stereoselectively reducing aromatic ketones to (S)-enantioselective alcohols. The enzyme responsible for the predominant allylic/benzyl alcohol dehydrogenase activity was purified to homogeneity and designated YsADH (alcohol dehydrogenase from Yokenella sp.), which had a calculated subunit molecular mass of 36,411 Da. The gene encoding YsADH was subsequently expressed in Escherichia coli, and the purified recombinant YsADH protein was characterized. The enzyme strictly required NADP(H) as a coenzyme and was putatively zinc dependent. The optimal pH and temperature for crotonaldehyde reduction were pH 6.5 and 65°C, whereas those for crotyl alcohol oxidation were pH 8.0 and 55°C. The enzyme showed moderate thermostability, with a half-life of 6.2 h at 55°C. It was robust in the presence of organic solvents and retained 87.5% of the initial activity after 24 h of incubation with 20% (vol/vol) dimethyl sulfoxide. The enzyme preferentially catalyzed allylic/benzyl aldehydes as the substrate in the reduction of aldehydes/ketones and yielded the highest activity of 427 U mg−1 for benzaldehyde reduction, while the alcohol oxidation reaction demonstrated the maximum activity of 79.9 U mg−1 using crotyl alcohol as the substrate. Moreover, kinetic parameters of the enzyme showed lower Km values and higher catalytic efficiency for crotonaldehyde/benzaldehyde and NADPH than for crotyl alcohol/benzyl alcohol and NADP+, suggesting the nature of being an aldehyde reductase. PMID:24509923

  18. Characterization of an allylic/benzyl alcohol dehydrogenase from Yokenella sp. strain WZY002, an organism potentially useful for the synthesis of α,β-unsaturated alcohols from allylic aldehydes and ketones.

    PubMed

    Ying, Xiangxian; Wang, Yifang; Xiong, Bin; Wu, Tingting; Xie, Liping; Yu, Meilan; Wang, Zhao

    2014-04-01

    A novel whole-cell biocatalyst with high allylic alcohol-oxidizing activities was screened and identified as Yokenella sp. WZY002, which chemoselectively reduced the C=O bond of allylic aldehydes/ketones to the corresponding α,β-unsaturated alcohols at 30°C and pH 8.0. The strain also had the capacity of stereoselectively reducing aromatic ketones to (S)-enantioselective alcohols. The enzyme responsible for the predominant allylic/benzyl alcohol dehydrogenase activity was purified to homogeneity and designated YsADH (alcohol dehydrogenase from Yokenella sp.), which had a calculated subunit molecular mass of 36,411 Da. The gene encoding YsADH was subsequently expressed in Escherichia coli, and the purified recombinant YsADH protein was characterized. The enzyme strictly required NADP(H) as a coenzyme and was putatively zinc dependent. The optimal pH and temperature for crotonaldehyde reduction were pH 6.5 and 65°C, whereas those for crotyl alcohol oxidation were pH 8.0 and 55°C. The enzyme showed moderate thermostability, with a half-life of 6.2 h at 55°C. It was robust in the presence of organic solvents and retained 87.5% of the initial activity after 24 h of incubation with 20% (vol/vol) dimethyl sulfoxide. The enzyme preferentially catalyzed allylic/benzyl aldehydes as the substrate in the reduction of aldehydes/ketones and yielded the highest activity of 427 U mg(-1) for benzaldehyde reduction, while the alcohol oxidation reaction demonstrated the maximum activity of 79.9 U mg(-1) using crotyl alcohol as the substrate. Moreover, kinetic parameters of the enzyme showed lower Km values and higher catalytic efficiency for crotonaldehyde/benzaldehyde and NADPH than for crotyl alcohol/benzyl alcohol and NADP(+), suggesting the nature of being an aldehyde reductase.

  19. Branched/linear selectivity in palladium-catalyzed allyl-allyl cross-couplings: The role of ligands.

    PubMed

    Ardolino, Michael J; Morken, James P

    2015-09-16

    While Pd-catalyzed allyl-allyl cross-couplings in the presence of small-bite-angle bidentate ligands reliably furnish the branched regioisomer with high levels of selectivity, cross-couplings in the presence of large-bite-angle bidentate ligands give varying, often unpredictable, levels of selectivity. In a combined computational and experimental study, we probe the underlying features that govern the regioselectivity in these metal-catalyzed cross-couplings.

  20. Methanol carbonylation over copper-modified mordenite zeolite: A solid-state NMR study.

    PubMed

    Zhou, Lei; Li, Shenhui; Qi, Guodong; Su, Yongchao; Li, Jing; Zheng, Anmin; Yi, Xianfeng; Wang, Qiang; Deng, Feng

    2016-11-01

    The carbonylation of methanol with carbon monoxide to generate methyl acetate over Cu-H-MOR and H-MOR zeolites is studied using solid-state NMR spectroscopy. It is found that the catalytic activity of Cu-H-MOR zeolite is much higher than that of H-MOR zeolite. The presence of Cu(+) species enables the stabilization of dimethyl ether, which efficiently suppresses the hydrocarbon formation during carbonylation process over Cu-H-MOR zeolite. In addition, the carbon monoxide adsorbed on Cu(+) site is not an active species to produce either methyl acetate or acetic acid.

  1. Asymmetric Petasis Borono-Mannich Allylation Reactions Catalyzed by Chiral Biphenols.

    PubMed

    Jiang, Yao; Schaus, Scott E

    2017-02-01

    Chiral biphenols catalyze the asymmetric Petasis borono-Mannich allylation of aldehydes and amines through the use of a bench-stable allyldioxaborolane. The reaction proceeds via a two-step, one-pot process and requires 2-8 mole % of 3,3'-Ph2 -BINOL as the optimal catalyst. Under microwave heating the reaction affords chiral homoallylic amines in excellent yields (up to 99 %) and high enantioselectivies (er up to 99:1). The catalytic reaction is a true multicomponent condensation reaction whereas both the aldehyde and the amine can possess a wide range of structural and electronic properties. Use of crotyldioxaborolane in the reaction results in stereodivergent products with anti- and syn-diastereomers both in good diastereoselectivities and enantioselectivities from the corresponding E- and Z-borolane stereoisomers.

  2. Synthesis and proteasome inhibition of N-allyl vinyl ester-based peptides.

    PubMed

    Baldisserotto, Anna; Franceschini, Christian; Scalambra, Franco; Trapella, Claudio; Marastoni, Mauro; Sforza, Fabio; Gavioli, Riccardo; Tomatis, Roberto

    2010-11-01

    Inhibition of the proteasome, the multicatalytic protease complex responsible for the turnover of many cellular proteins, represents an attractive target in the development of new drug therapies, proteasome inhibitors being potentially useful tools for the treatment of pathologies such as cancer, as well as inflammatory, immune and neurodegenerative diseases. Based on our previous development of a new class of inhibitors bearing a C-terminal VE cluster able to interact with catalytic threonine, we report herein the synthesis and activity of new VE-based peptide analogs bearing an additional allyl pharmacophore unit at the C- or N-terminal position of the pseudotripeptide sequence. In the new series, the structural modification carried out to the prototype determine a decrease of proteasome inhibition. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.

  3. Asymmetric Construction of Functionalized 1,2-Dihydropyridine and Pyridine Derivatives with Adjacent Stereocenters via a Unified Metal-Free Catalytic Approach.

    PubMed

    Zou, Gong-Feng; Zhang, Shi-Qiang; Wang, Jia-Xin; Liao, Wei-Wei

    2016-07-01

    A novel asymmetric catalytic approach for the construction of enantioenriched functionalized 1,2-dihydropyridines and pyridine derivatives incorporating adjacent quaternary and tertiary stereocenters has been reported. This process involved a metal-free catalytic asymmetric allylic alkylation and a stereospecifically nonoxidative aromatization approach for the desired chiral molecules.

  4. Catalytic Reforming

    SciTech Connect

    Little, D.M.

    1985-01-01

    Don Little's Catalytic Reforming deals exclusively with reforming. With the increasing need for unleaded gasoline, the importance of this volume has escalated since it combines various related aspects of reforming technology into a single publication. For those with no practical knowledge of catalytic reforming, the chemical reactions, flow schemes and how the cat reformer fits into the overall refinery process will be of interest. Contents include: Catalytic reforming in refinery processing: How catalytic reformers work - chemical reactions; Process design; The catalyst, process variables and unit operation; Commercial processes; BTX operation; Feed preparation; naphtha hydrotreating and catalytic reforming; Index.

  5. Allyl-silica Hybrid Monoliths For Chromatographic Application

    NASA Astrophysics Data System (ADS)

    Guo, Wenjuan

    Column technology continues to be the most investigated topics in the separation world, since the column is the place where the chromatographic separation happens, making it the heart of the separation system. Allyl-silica hybrid monolithic material has been exploited as support material and potential stationary phases for liquid chromatography; the stationary phase anchored to the silica surface by Si-C bond, which is more pH stable than traditional stationary phase. First, nuclear magnetic resonance spectroscopy has been used to study the sol in the synthesis of allyl-silica hybrid monoliths. Allyl-trimethoxysilane (allyl-TrMOS), dimethyldimethoxysilane (DMDMOS) and tetramethoxysilane (TMOS) have been served as co-precursors in the sol-gel synthesis of organo-silica hybrid monolithic columns for liquid chromatography (LC). 29Si nuclear magnetic resonance (NMR) and 1H NMR spectroscopy were employed to monitor reaction profiles for the acid-catalyzed hydrolysis and initial condensation reactions of the individual precursor and the hybrid system. 29Si-NMR has also been used to identify different silane species formed during the reactions. The overall hydrolysis rate has been found to follow the trend DMDMOS > allyl-TrMOS > TMOS, if each precursor is reacted individually (homo-polymerization). Precursors show different hydrolysis rate when reacted together in the hybrid system than they are reacted individually. Cross-condensation products of TMOS and DMDMOS (QD) arise about 10 minutes of initiation of the reaction. The allyl-silica monolithic columns for capillary liquid chromatography can only be prepared in capillaries with 50 im internal diameter with acceptable performance. One of the most prominent problems related to the synthesis of silica monolithic structures is the volume shrinkage. The synthesis of allylfunctionalized silica hybrid monolithic structures has been studied in an attempt to reduce the volume shrinkage during aging, drying and heat treatment

  6. Structurally defined allyl compounds of main group metals: coordination and reactivity.

    PubMed

    Lichtenberg, Crispin; Okuda, Jun

    2013-05-10

    Organometallic allyl compounds are important as allylation reagents in organic synthesis, as polymerization catalysts, and as volatile metal precursors in material science. Whereas the allyl chemistry of synthetically relevant transition metals such as palladium and of the lanthanoids is well-established, that of main group metals has been lagging behind. Recent progress on allyl complexes of Groups 1, 2, and 12-16 now provides a more complete picture. This is based on a fundamental understanding of metal-allyl bonding interactions in solution and in the solid state. Furthermore, reactivity trends have been rationalized and new types of allyl-specific reactivity patterns have been uncovered. Key features include 1) the exploitation of the different types of metal-allyl bonding (highly ionic to predominantly covalent), 2) the use of synergistic effects in heterobimetallic compounds, and 3) the adjustment of Lewis acidity by variation of the charge of allyl compounds.

  7. Effect of Allylic Groups on SN2 Reactivity

    PubMed Central

    2015-01-01

    The activating effects of the benzyl and allyl groups on SN2 reactivity are well-known. 6-Chloromethyl-6-methylfulvene, also a primary, allylic halide, reacts 30 times faster with KI/acetone than does benzyl chloride at room temperature. The latter result, as well as new experimental observations, suggests that the fulvenyl group is a particularly activating allylic group in SN2 reactions. Computational work on identity SN2 reactions, e.g., chloride– displacing chloride– and ammonia displacing ammonia, shows that negatively charged SN2 transition states (tss) are activated by allylic groups according to the Galabov–Allen–Wu electrostatic model but with the fulvenyl group especially effective at helping to delocalize negative charge due to some cyclopentadienide character in the transition state (ts). In contrast, the triafulvenyl group is deactivating. However, the positively charged SN2 transition states of the ammonia reactions are dramatically stabilized by the triafulvenyl group, which directly conjugates with a reaction center having SN1 character in the ts. Experiments and calculations on the acidities of a variety of allylic alcohols and carboxylic acids support the special nature of the fulvenyl group in stabilizing nearby negative charge and highlight the ability of fulvene species to dramatically alter the energetics of processes even in the absence of direct conjugation. PMID:24977317

  8. Scalable and Sustainable Electrochemical Allylic C–H Oxidation

    PubMed Central

    Chen, Yong; Tang, Jiaze; Chen, Ke; Eastgate, Martin D.; Baran, Phil S.

    2016-01-01

    New methods and strategies for the direct functionalization of C–H bonds are beginning to reshape the fabric of retrosynthetic analysis, impacting the synthesis of natural products, medicines, and even materials1. The oxidation of allylic systems has played a prominent role in this context as possibly the most widely applied C–H functionalization due to the utility of enones and allylic alcohols as versatile intermediates, along with their prevalence in natural and unnatural materials2. Allylic oxidations have been featured in hundreds of syntheses, including some natural product syntheses regarded as “classics”3. Despite many attempts to improve the efficiency and practicality of this powerful transformation, the vast majority of conditions still employ highly toxic reagents (based around toxic elements such as chromium, selenium, etc.) or expensive catalysts (palladium, rhodium, etc.)2. These requirements are highly problematic in industrial settings; currently, no scalable and sustainable solution to allylic oxidation exists. As such, this oxidation strategy is rarely embraced for large-scale synthetic applications, limiting the adoption of this important retrosynthetic strategy by industrial scientists. In this manuscript, we describe an electrochemical solution to this problem that exhibits broad substrate scope, operational simplicity, and high chemoselectivity. This method employs inexpensive and readily available materials, representing the first example of a scalable allylic C–H oxidation (demonstrated on 100 grams), finally opening the door for the adoption of this C–H oxidation strategy in large-scale industrial settings without significant environmental impact. PMID:27096371

  9. Scalable and sustainable electrochemical allylic C-H oxidation.

    PubMed

    Horn, Evan J; Rosen, Brandon R; Chen, Yong; Tang, Jiaze; Chen, Ke; Eastgate, Martin D; Baran, Phil S

    2016-05-05

    New methods and strategies for the direct functionalization of C-H bonds are beginning to reshape the field of retrosynthetic analysis, affecting the synthesis of natural products, medicines and materials. The oxidation of allylic systems has played a prominent role in this context as possibly the most widely applied C-H functionalization, owing to the utility of enones and allylic alcohols as versatile intermediates, and their prevalence in natural and unnatural materials. Allylic oxidations have featured in hundreds of syntheses, including some natural product syntheses regarded as "classics". Despite many attempts to improve the efficiency and practicality of this transformation, the majority of conditions still use highly toxic reagents (based around toxic elements such as chromium or selenium) or expensive catalysts (such as palladium or rhodium). These requirements are problematic in industrial settings; currently, no scalable and sustainable solution to allylic oxidation exists. This oxidation strategy is therefore rarely used for large-scale synthetic applications, limiting the adoption of this retrosynthetic strategy by industrial scientists. Here we describe an electrochemical C-H oxidation strategy that exhibits broad substrate scope, operational simplicity and high chemoselectivity. It uses inexpensive and readily available materials, and represents a scalable allylic C-H oxidation (demonstrated on 100 grams), enabling the adoption of this C-H oxidation strategy in large-scale industrial settings without substantial environmental impact.

  10. Reactions of allylic radicals that impact molecular weight growth kinetics.

    PubMed

    Wang, Kun; Villano, Stephanie M; Dean, Anthony M

    2015-03-07

    The reactions of allylic radicals have the potential to play a critical role in molecular weight growth (MWG) kinetics during hydrocarbon oxidation and/or pyrolysis. Due to their stability (when compared to alkyl radicals), they can accumulate to relatively high concentrations. Thus, even though the rate coefficients for their various reactions are small, the rates of these reactions may be significant. In this work, we use electronic structure calculations to examine the recombination, addition, and abstraction reactions of allylic radicals. For the recombination reaction of allyl radicals, we assign a high pressure rate rule that is based on experimental data. Once formed, the recombination product can potentially undergo an H-atom abstraction reaction followed by unimolecular cyclization and β-scission reactions. Depending upon the conditions (e.g., higher pressures) these pathways can lead to the formation of stable MWG species. The addition of allylic radicals to olefins can also lead to MWG species formation. Once again, cyclization of the adduct followed by β-scission is an important energy accessible route. Since the recombination and addition reactions produce chemically-activated adducts, we have explored the pressure- and temperature-dependence of the overall rate constants as well as that for the multiple product channels. We describe a strategy for estimating these pressure-dependencies for systems where detailed electronic structure information is not available. We also derive generic rate rules for hydrogen abstraction reactions from olefins and diolefins by methyl and allyl radicals.

  11. Iridium-catalyzed regio- and enantioselective allylic substitution of silyl dienolates derived from dioxinones.

    PubMed

    Chen, Ming; Hartwig, John F

    2014-11-03

    Reported herein is the iridium-catalyzed regio- and enantioselective allylic substitution reactions of unstabilized silyl dienolates derived from dioxinones. Asymmetric allylic substitution of a variety of allylic trichloroethyl carbonates with these silyl dienolates gave γ-allylated products selectively in 60-84% yield and 90-98% ee. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Ruthenium(IV)-catalyzed isomerization of the C=C bond of o-allylic substrates: a theoretical and experimental study.

    PubMed

    Varela-Álvarez, Adrián; Sordo, José A; Piedra, Estefanía; Nebra, Noel; Cadierno, Victorio; Gimeno, José

    2011-09-12

    A general mechanism to rationalize Ru(IV) -catalyzed isomerization of the C=C bond in O-allylic substrates is proposed. Calculations supporting the proposed mechanism were performed at the MPWB1K/6-311+G(d,p)+SDD level of theory. All experimental observations in different solvents (water and THF) and under different pH conditions (neutral and basic) can be interpreted in terms of the new mechanism. Theoretical analysis of the transformation from precatalyst to catalyst led to structural identification of the active species in different media. The experimentally observed induction period is related to the magnitudes of the energy barriers computed for that process. The theoretical energy profile for the catalytic cycle requires application of relatively high temperatures, as is experimentally observed. Participation of a water molecule in the reaction coordinate is mechanistically essential when the reaction is carried out in aqueous medium. The new mechanistic proposal helped to develop a new experimental procedure for isomerization of allyl ethers to 1-propenyl ethers under neutral aqueous conditions. This process is an unique example of efficient and selective catalytic isomerization of allyl ethers in aqueous medium.

  13. Redox-Neutral Rh(III)-Catalyzed Olefination of Carboxamides with Trifluoromethyl Allylic Carbonate.

    PubMed

    Park, Jihye; Han, Sangil; Jeon, Mijin; Mishra, Neeraj Kumar; Lee, Seok-Yong; Lee, Jong Suk; Kwak, Jong Hwan; Um, Sung Hee; Kim, In Su

    2016-11-18

    The rhodium(III)-catalyzed olefination of various carboxamides with α-CF3-substituted allylic carbonate is described. This reaction provides direct access to linear CF3-allyl frameworks with complete trans-selectivity. In particular, a rhodium catalyst provided Heck-type γ-CF3-allylation products via the β-O-elimination of rhodacycle intermediate and subsequent olefin migration process.

  14. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide...

  15. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide...

  16. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide (P-91...

  17. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide (P-91...

  18. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide (P-91...

  19. Enantioselective allylic alkylation of stereodefined polysubstituted copper enolates as an entry to acyclic quaternary carbon stereocentres† †Electronic supplementary information (ESI) available. CCDC 1488151. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6sc03036j Click here for additional data file. Click here for additional data file.

    PubMed Central

    Nairoukh, Zackaria; Kumar, Gunda G. K. S. Narayana; Minko, Yury

    2017-01-01

    A sequence of regio- and stereoselective carbometalation followed by oxidation of ynamides leads to stereodefined fully substituted enolates that subsequently react with various functionalized allyl bromide reagents to provide the expected products possessing an enantiomerically pure quaternary carbon stereocentre in the α-position to the carbonyl group in excellent yields and enantiomeric ratios after cleavage of the oxazolidinone moiety. Three new bonds are formed in a single-pot operation. PMID:28451210

  20. Neuroprotective role for carbonyl reductase?

    PubMed

    Maser, Edmund

    2006-02-24

    Oxidative stress is increasingly implicated in neurodegenerative disorders including Alzheimer's, Parkinson's, Huntington's, and Creutzfeld-Jakob diseases or amyotrophic lateral sclerosis. Reactive oxygen species seem to play a significant role in neuronal cell death in that they generate reactive aldehydes from membrane lipid peroxidation. Several neuronal diseases are associated with increased accumulation of abnormal protein adducts of reactive aldehydes, which mediate oxidative stress-linked pathological events, including cellular growth inhibition and apoptosis induction. Combining findings on neurodegeneration and oxidative stress in Drosophila with studies on the metabolic characteristics of the human enzyme carbonyl reductase (CR), it is clear now that CR has a potential physiological role for neuroprotection in humans. Several lines of evidence suggest that CR represents a significant pathway for the detoxification of reactive aldehydes derived from lipid peroxidation and that CR in humans is essential for neuronal cell survival and to confer protection against oxidative stress-induced brain degeneration.

  1. Surface decorated platinum carbonyl clusters

    NASA Astrophysics Data System (ADS)

    Ciabatti, Iacopo; Femoni, Cristina; Iapalucci, Maria Carmela; Longoni, Giuliano; Zacchini, Stefano; Zarra, Salvatore

    2012-06-01

    Four molecular Pt-carbonyl clusters decorated by Cd-Br fragments, i.e., [Pt13(CO)12{Cd5(μ-Br)5Br2(dmf)3}2]2- (1), [Pt19(CO)17{Cd5(μ-Br)5Br3(Me2CO)2}{Cd5(μ-Br)5Br(Me2CO)4}]2- (2), [H2Pt26(CO)20(CdBr)12]8- (3) and [H4Pt26(CO)20(CdBr)12(PtBr)x]6- (4) (x = 0-2), have been obtained from the reactions between [Pt3n(CO)6n]2- (n = 2-6) and CdBr2.H2O in dmf at 120 °C. The structures of these molecular clusters with diameters of 1.5-2 nm have been determined by X-ray crystallography. Both 1 and 2 are composed of icosahedral or bis-icosahedral Pt-CO cores decorated on the surface by Cd-Br motifs, whereas 3 and 4 display a cubic close packed Pt26Cd12 metal frame decorated by CO and Br ligands. An oversimplified and unifying approach to interpret the electron count of these surface decorated platinum carbonyl clusters is suggested, and extended to other low-valent organometallic clusters and Au-thiolate nanoclusters.Four molecular Pt-carbonyl clusters decorated by Cd-Br fragments, i.e., [Pt13(CO)12{Cd5(μ-Br)5Br2(dmf)3}2]2- (1), [Pt19(CO)17{Cd5(μ-Br)5Br3(Me2CO)2}{Cd5(μ-Br)5Br(Me2CO)4}]2- (2), [H2Pt26(CO)20(CdBr)12]8- (3) and [H4Pt26(CO)20(CdBr)12(PtBr)x]6- (4) (x = 0-2), have been obtained from the reactions between [Pt3n(CO)6n]2- (n = 2-6) and CdBr2.H2O in dmf at 120 °C. The structures of these molecular clusters with diameters of 1.5-2 nm have been determined by X-ray crystallography. Both 1 and 2 are composed of icosahedral or bis-icosahedral Pt-CO cores decorated on the surface by Cd-Br motifs, whereas 3 and 4 display a cubic close packed Pt26Cd12 metal frame decorated by CO and Br ligands. An oversimplified and unifying approach to interpret the electron count of these surface decorated platinum carbonyl clusters is suggested, and extended to other low-valent organometallic clusters and Au-thiolate nanoclusters. CCDC 867747 and 867748. For crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr30400g

  2. Asymmetric Carbon–Carbon Bond Formation γ to a Carbonyl Group: Phosphine-Catalyzed Addition of Nitromethane to Allenes

    PubMed Central

    Smith, Sean W.; Fu, Gregory C.

    2009-01-01

    A chiral phosphine catalyzes the addition of a carbon nucleophile to the γ position of an electron-poor allene (amide-, ester-, or phosphonate-substituted), in preference to isomerization to a 1,3-diene, in good ee and yield. This strategy provides an attractive method for the catalytic asymmetric γ functionalization of carbonyl (and related) compounds. PMID:19772285

  3. Synthesis of Neoglycoconjugates by the Desulfurative Rearrangement of Allylic Disulfides

    PubMed Central

    Crich, David; Yang, Fan

    2009-01-01

    Two series of neoglucosyl donors are prepared based on connection of the allylic disulfide motif to the anomeric center via either a simple O-glycosyl linkage or N-glycosyl amide unit. Conjugation of both sets of donors to cysteine in peptides is demonstrated through classical disulfide exchange followed by the phosphine-mediated desulfurative allylic rearrangement resulting in neoglycopeptides characterized by a simple thioether spacer. The conjugation reaction functions in the absence of protecting groups on both the neoglycosyl donor and peptide in aqueous media at room temperature. PMID:18729514

  4. Mesoporous Silica-Supported Amidozirconium-Catalyzed Carbonyl Hydroboration

    DOE PAGES

    Eedugurala, Naresh; Wang, Zhuoran; Chaudhary, Umesh; ...

    2015-11-04

    The hydroboration of aldehydes and ketones using a silica-supported zirconium catalyst is reported. Reaction of Zr(NMe2)4 and mesoporous silica nanoparticles (MSN) provides the catalytic material Zr(NMe2)n@MSN. Exhaustive characterization of Zr(NMe2)n@MSN with solid-state (SS)NMR and infrared spectroscopy, as well as through reactivity studies, suggests its surface structure is primarily ≡SiOZr(NMe2)3. The presence of these nitrogen-containing zirconium sites is supported by 15N NMR spectroscopy, including natural abundance 15N NMR measurements using dynamic nuclear polarization (DNP) SSNMR. The Zr(NMe2)n@MSN material reacts with pinacolborane (HBpin) to provide Me2NBpin and the material ZrH/Bpin@MSN that is composed of interacting surface-bonded zirconium hydride and surface-bonded borane ≡SiOBpinmore » moieties in an approximately 1:1 ratio, as well as zirconium sites coordinated by dimethylamine. The ZrH/Bpin@MSN is characterized by 1H/2H and 11B SSNMR and infrared spectroscopy and through its reactivity with D2. The zirconium hydride material or the zirconium amide precursor Zr(NMe2)n@MSN catalyzes the selective hydroboration of aldehydes and ketones with HBpin in the presence of functional groups that are often reduced under hydroboration conditions or are sensitive to metal hydrides, including olefins, alkynes, nitro groups, halides, and ethers. Remarkably, this catalytic material may be recycled without loss of activity at least eight times, and air-exposed materials are catalytically active. These supported zirconium centers are robust catalytic sites for carbonyl reduction and that surface-supported, catalytically reactive zirconium hydride may be generated from zirconium-amide or zirconium alkoxide sites.« less

  5. Catalytic enantioselective construction of quaternary stereocenters: assembly of key building blocks for the synthesis of biologically active molecules.

    PubMed

    Liu, Yiyang; Han, Seo-Jung; Liu, Wen-Bo; Stoltz, Brian M

    2015-03-17

    The ever-present demand for drugs with better efficacy and fewer side effects continually motivates scientists to explore the vast chemical space. Traditionally, medicinal chemists have focused much attention on achiral or so-called "flat" molecules. More recently, attention has shifted toward molecules with stereogenic centers since their three-dimensional structures represent a much larger fraction of the chemical space and have a number of superior properties compared with flat aromatic compounds. Quaternary stereocenters, in particular, add greatly to the three-dimensionality and novelty of the molecule. Nevertheless, synthetic challenges in building quaternary stereocenters have largely prevented their implementation in drug discovery. The lack of effective and broadly general methods for enantioselective formation of quaternary stereocenters in simple molecular scaffolds has prompted us to investigate new chemistry and develop innovative tools and solutions. In this Account, we describe three approaches to constructing quaternary stereocenters: nucleophilic substitution of 3-halooxindoles, conjugate addition of boronic acids to cyclic enones, and allylic alkylation of enolates. In the first approach, malonic ester nucleophiles attack electrophilic 3-halooxindoles, mediated by a copper(II)-bisoxazoline catalyst. A variety of oxindoles containing a benzylic quaternary stereocenter can be accessed through this method. However, it is only applicable to the specialized 3,3-disubstituted oxindole system. To access benzylic quaternary stereocenters in a more general context, we turned our attention to the enantioselective conjugate addition of carbon nucleophiles to α,β-unsaturated carbonyl acceptors. We discovered that in the presence of catalytic palladium-pyridinooxazoline complex, arylboronic acids add smoothly to β-substituted cyclic enones to furnish ketones with a β-benzylic quaternary stereocenter in high yields and enantioselectivities. The reaction is

  6. Metal-free metathesis reaction of C-chiral allylic sulfilimines with aryl isocyanates: construction of chiral nonracemic allylic isocyanates.

    PubMed

    Grange, Rebecca L; Evans, P Andrew

    2014-08-27

    We report the facile and efficient metal-free metathesis reaction of C-chiral allylic sulfilimines with aryl isocyanates. This process facilitates the room temperature construction of an array of chiral nonracemic allylic isocyanates, which are versatile intermediates for the construction of unsymmetrical ureas, carbamates, thiocarbamates and amides. Furthermore, the sulfilimine/isocyanate metathesis reaction with 4,4'-methylene diphenyl diisocyanate (4,4'-MDI) circumvents harsh reaction conditions and/or hazardous reagents employed with more classical methods for the preparation of this important functional group.

  7. Theoretical investigation of N-nitrosodimethylamine formation from dimethylamine nitrosation catalyzed by carbonyl compounds.

    PubMed

    Lv, Chun-Lin; Liu, Yong Dong; Zhong, Ru-Gang

    2009-01-29

    The carbonyl-compound-catalyzed nitrosation of amines to form carcinogenic nitrosamines under nonacidic condition is different from the classic nitrosation via acidification of nitrite anion. The mechanistic pathways of N-nitrosodimethylamine (NDMA) formation by the reactions of dimethylamine (DMA) with the nitrite anion catalyzed by carbonyl compounds have been investigated using the DFT/B3LYP method at the 6-311+G(d,p) level. The computational results show that the energy barriers of the nucleophilic addition reaction, which were calculated as 27-40 kcal/mol, increase significantly with methylation but vary slightly with chloromethylation on the carbonyl group. Comparison of energy barriers of this nucleophilic addition reaction and the electrophilic substitution reaction indicates that the former is the rate-determining step, from which the order of the catalytic activity is obtained as formaldehyde > chloral > acetaldehyde > acetone. Furthermore, analysis of electronic and steric effects on catalytic activity reveals that electron-withdrawing substituents decrease the energy barrier but electron-donating substituents and steric hindrance will block this catalytic reaction. Based on this discovery, fluoral is proposed as a good catalyst for the nitrosation of DMA by nitrite anion, which has a calculated energy barrier of about 26 kcal/mol. The results obtained in this work will help elucidate the mechanisms of formation of nitrosamines.

  8. Single pulse shock tube study of allyl radical recombination.

    PubMed

    Fridlyand, Aleksandr; Lynch, Patrick T; Tranter, Robert S; Brezinsky, Kenneth

    2013-06-13

    The recombination and disproportionation of allyl radicals has been studied in a single pulse shock tube with gas chromatographic measurements at 1-10 bar, 650-1300 K, and 1.4-2 ms reaction times. 1,5-Hexadiene and allyl iodide were used as precursors. Simulation of the results using derived rate expressions from a complementary diaphragmless shock tube/laser schlieren densitometry study provided excellent agreement with precursor consumption and formation of all major stable intermediates. No significant pressure dependence was observed at the present conditions. It was found that under the conditions of these experiments, reactions of allyl radicals in the cooling wave had to be accounted for to accurately simulate the experimental results, and this unusual situation is discussed. In the allyl iodide experiments, higher amounts of allene, propene, and benzene were found at lower temperatures than expected. Possible mechanisms are discussed and suggest that iodine containing species are responsible for the low temperature formation of allene, propene, and benzene.

  9. Copper-Catalyzed Oxidative Dehydrogenative Carboxylation of Unactivated Alkanes to Allylic Esters via Alkenes

    PubMed Central

    2015-01-01

    We report copper-catalyzed oxidative dehydrogenative carboxylation (ODC) of unactivated alkanes with various substituted benzoic acids to produce the corresponding allylic esters. Spectroscopic studies (EPR, UV–vis) revealed that the resting state of the catalyst is [(BPI)Cu(O2CPh)] (1-O2CPh), formed from [(BPI)Cu(PPh3)2], oxidant, and benzoic acid. Catalytic and stoichiometric reactions of 1-O2CPh with alkyl radicals and radical probes imply that C–H bond cleavage occurs by a tert-butoxy radical. In addition, the deuterium kinetic isotope effect from reactions of cyclohexane and d12-cyclohexane in separate vessels showed that the turnover-limiting step for the ODC of cyclohexane is C–H bond cleavage. To understand the origin of the difference in products formed from copper-catalyzed amidation and copper-catalyzed ODC, reactions of an alkyl radical with a series of copper–carboxylate, copper–amidate, and copper–imidate complexes were performed. The results of competition experiments revealed that the relative rate of reaction of alkyl radicals with the copper complexes follows the trend Cu(II)–amidate > Cu(II)–imidate > Cu(II)–benzoate. Consistent with this trend, Cu(II)–amidates and Cu(II)–benzoates containing more electron-rich aryl groups on the benzamidate and benzoate react faster with the alkyl radical than do those with more electron-poor aryl groups on these ligands to produce the corresponding products. These data on the ODC of cyclohexane led to preliminary investigation of copper-catalyzed oxidative dehydrogenative amination of cyclohexane to generate a mixture of N-alkyl and N-allylic products. PMID:25389772

  10. 40 CFR 721.10409 - Poly(oxyalkylenediyl), .alpha. - [ [ [methyl - 3 - [ [ [ (polyfluoroalkyl)oxy]carbonyl ] amino...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... - carbonyl ] amino] phenyl]amino]carbonyl] - .omega. - methoxy - (generic). 721.10409 Section 721.10409... Poly(oxyalkylenediyl), .alpha. - carbonyl ] amino] phenyl]amino]carbonyl] - .omega. - methoxy... identified generically as poly(oxyalkylenediyl), .alpha.- carbonyl]amino]phenyl]amino]...

  11. Mutational analysis of allylic substrate binding site of Micrococcus luteus B-P 26 undecaprenyl diphosphate synthase.

    PubMed

    Fujikura, Keitaro; Zhang, Yuan-Wei; Fujihashi, Masahiro; Miki, Kunio; Koyama, Tanetoshi

    2003-04-15

    Undecaprenyl diphosphate (UPP) synthase catalyzes the sequential cis-condensation of isopentenyl diphosphate (IPP) onto (E,E)-farnesyl diphosphate (FPP). In our previous reports on the Micrococcus luteus B-P 26 UPP synthase, we have shown that the conserved residues in the disordered region from Ser-74 to Val-85 is crucial for the binding of FPP and the catalytic function [Fujikura, K., et al. (2000) J. Biochem. (Tokyo) 128, 917-922] and the existence of a structural P-loop motif for the FPP binding site [Fujihashi, M., et al. (2001) Proc. Natl. Acad. Sci. U.S.A., 98, 4337-4342]. To elucidate the allylic substrate binding site in more detail, we prepared eight mutant enzymes and examined their kinetic behavior. The mutant with respect to the two complementarily conserved Arg residues among the structural P-loop motif, G32R-R42G, retained the activity and showed product distribution pattern exactly similar to that of the wild-type, indicating that the complementarily conserved Arg is important for maintaining the catalytic function. Substitutions of Asp-29, Arg-33, or Arg-80 with Ala resulted in a large loss of enzyme activity, suggesting that these residues are essential for catalytic function. However, the K(m) values of these mutant enzymes for Z-GGPP, which is the first intermediate during the enzymatic cis-condensations of IPP onto FPP, were only moderately different or little changed from those of the wild type. These results suggest that the binding site for the intermediate Z-GGPP having a cis double bond is different to that for the intrinsic allylic substrate, FPP, whose diphosphate moiety is recognized by the structural P-loop.

  12. Histone carbonylation occurs in proliferating cells.

    PubMed

    García-Giménez, José Luis; Ledesma, Ana María Velázquez; Esmoris, Isabel; Romá-Mateo, Carlos; Sanz, Pascual; Viña, José; Pallardó, Federico V

    2012-04-15

    Chromatin is a dynamic structure formed mainly by DNA and histones, and chemical modifications on these elements regulate its compaction. Histone posttranslational modifications (PTMs) have a direct impact on chromatin conformation, controlling important cellular events such as cell proliferation and differentiation. Redox-related posttranslational modifications may have important effects on chromatin structure and function, offering a new intriguing area of research termed "redox epigenetics." Little is known about histone carbonylation, a PTM that may be related to modifications in the cellular redox environment. The aim of our study was to determine the carbonylation of the various histones during cell proliferation, a moment in cell life during which important redox changes take place. Here, we describe changes in histone carbonylation during cell proliferation in NIH3T3 fibroblasts. In addition, we have studied the variations of poly(ADP-ribosyl)ation and phospho-H2AX at the same time, because both modifications are related to DNA damage responses. High levels of carbonylation on specific histones (H1, H1(0), and H3.1 dimers) were found when cells were in an active phase of DNA synthesis. The modification decreased when nuclear proteasome activity was activated. However, these results did not correlate completely with poly(ADP-ribosyl)ation and phospho-H2AX levels. Therefore, histone carbonylation may represent a specific event during cell proliferation. We describe a new methodology named oxy-2D-TAU Western blot that allowed us to separate and analyze the carbonylation patterns of the histone variants. In addition we offer a new role for histone carbonylation and its implication in redox epigenetics. Our results suggest that histone carbonylation is involved in histone detoxification during DNA synthesis. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Photochemical Carbonylation of Ethane Under Supercritical Conditions

    SciTech Connect

    Bitterwolf, Thomas E.; Klein, Dinara L.; Linehan, John C. ); Yonker, Clement R. ); Addleman, Raymond S. )

    2001-01-01

    The photochemical carbonylation of hydrocarbons and aromatic compounds[Eq. (1)] by rhodium catalysts of the general formula[Rh(CO)L2 Cl] (where L? PMe3 , PPh3 ) is well known,[1] and the mechanism of these reactions has been examined by several groups.[2] This reaction has been extended to liquid propane[3] and recently the carbonylation of benzene to benzaldehyde and benzyl alcohol in supercritical CO2 (scCO2 ), has been reported in the patent literature.[4

  14. Protein Carbonylation and Adipocyte Mitochondrial Function*

    PubMed Central

    Curtis, Jessica M.; Hahn, Wendy S.; Stone, Matthew D.; Inda, Jacob J.; Droullard, David J.; Kuzmicic, Jovan P.; Donoghue, Margaret A.; Long, Eric K.; Armien, Anibal G.; Lavandero, Sergio; Arriaga, Edgar; Griffin, Timothy J.; Bernlohr, David A.

    2012-01-01

    Carbonylation is the covalent, non-reversible modification of the side chains of cysteine, histidine, and lysine residues by lipid peroxidation end products such as 4-hydroxy- and 4-oxononenal. In adipose tissue the effects of such modifications are associated with increased oxidative stress and metabolic dysregulation centered on mitochondrial energy metabolism. To address the role of protein carbonylation in the pathogenesis of mitochondrial dysfunction, quantitative proteomics was employed to identify specific targets of carbonylation in GSTA4-silenced or overexpressing 3T3-L1 adipocytes. GSTA4-silenced adipocytes displayed elevated carbonylation of several key mitochondrial proteins including the phosphate carrier protein, NADH dehydrogenase 1α subcomplexes 2 and 3, translocase of inner mitochondrial membrane 50, and valyl-tRNA synthetase. Elevated protein carbonylation is accompanied by diminished complex I activity, impaired respiration, increased superoxide production, and a reduction in membrane potential without changes in mitochondrial number, area, or density. Silencing of the phosphate carrier or NADH dehydrogenase 1α subcomplexes 2 or 3 in 3T3-L1 cells results in decreased basal and maximal respiration. These results suggest that protein carbonylation plays a major instigating role in cytokine-dependent mitochondrial dysfunction and may be linked to the development of insulin resistance in the adipocyte. PMID:22822087

  15. Selective transformation of carbonyl ligands to organic molecules

    SciTech Connect

    Cutler, A.R.

    1992-05-12

    Studies on the carbonylation of ({eta}{sup 5}-indenyl)(L)(CO)Ru-R complexes (L = CO, PPh{sub 3}; R = CH{sub 2}OMe, CH{sub 3}) have been completed. Particularly noteworthy is that the methoxymethyl complexes readily transform to their acyl derivatives under mild conditions that leave their iron congeners inert towards CO. Surprisingly, even ({eta}{sup 5}-indenyl)(PPh{sub 3}){sub 2}Ru-CH{sub 3} carbonylates and gives ({eta}{sup 5}-indenyl)(PPh{sub 3})(CO)Ru-C(O)CH{sub 3}. Mechanistic studies on the non catalyzed'' hydrosilation of the manganese acyls (CO){sub 5}Mn-C(O)CH{sub 2}R (R = H, OCH{sub 3}, CH{sub 3}) with Et{sub 3}SiH and of cobalt acetyls (CO){sub 3}(PR{sub 3})CoC(O)CH{sub 3} with several monohydrosilanes have been completed. The cobalt acetyls cleanly give ethoxysilanes (not acetaldehyde), and the manganese acyls provide {alpha}-siloxyvinyl complexes Z-(CO){sub 5}Mn-C(OSiEt{sub 3})=CHR (R = H, CH{sub 3}, OCH{sub 3}). Carbonylation and protolytic cleavage of the latter generate pyruvoyl complexes (CO){sub 5}Mn-COCOR (R = CH{sub 3}, CH{sub 2}CH{sub 3}), formally the products of net double carbonylation'' sequences. Studies in progress are concerned with how manganese complexes as diverse as (CO){sub 5}Mn-Y (Y = C(O)R, R, BR - but not SiMe{sub 3} or Mn(CO){sub 5}) and ({eta}{sup 3}-C{sub 3}H{sub 5})Mn(CO){sub 2}L (but not CpMn(CO){sub 3} or CpMn(CO){sub 2}({eta}{sup 2}HSiR{sub 3})) function as efficient hydrosilation catalysts towards Cp(CO){sub 2}FeC(O)CH{sub 3}, for example. These reactions cleanly afford fully characterized {alpha}-siloxyethyl complexes Fp-CH(OSiR{sub 3})CH{sub 3} under conditions where typically Rh(1) hydrosilation catalysts are inactive. Several of these manganese complexes also catalytically hydrosilate organic esters, including lactones, to their ethers R-CH{sub 2}OR; these novel ester reductions occur quantitatively at room temperature and appear to be general in scope.

  16. Biobased methacrylic acid via selective catalytic decarboxylation of itaconic acid

    USDA-ARS?s Scientific Manuscript database

    We report a bio-based route to methacrylic acid via selective decarboxylation of itaconic acid utilizing catalytic ruthenium carbonyl propionate in an aqueous solvent system. High selectivity (>90%) was achieved at low catalyst loading (0.1 mol %) with high substrate concentration (5.5 M) at low tem...

  17. Mechanistically Driven Development of Iridium Catalysts for Asymmetric Allylic Substitution

    PubMed Central

    Hartwig, John F.; Stanley, Levi M.

    2010-01-01

    Conspectus Enantioselective allylic substitution reactions comprise some of the most versatile methods for preparing enantiomerically enriched materials. These reactions form products that contain multiple functionalities by creating carbon–nitrogen, carbon–oxygen, carbon–carbon, and carbon–sulfur bonds. For many years, the development of catalysts for allylic substitution focused on palladium complexes. However, studies of complexes of other metals have revealed selectivities that often complement those of palladium systems. Most striking is the observation that reactions with unsymmetrical allylic electrophiles that typically occur with palladium catalysts at the less hindered site of an allylic electrophile occur at the more hindered site with catalysts based on other metals. In this Account, we describe an iridium precursor and a phosphoramidite ligand that catalyze reactions with a particularly broad scope of nucleophiles. The active form of this iridium catalyst is not generated by the simple binding of the phosphoramidite ligand to the metal precursor. Instead, the initial phosphoramidite and iridium precursor react in the presence of base to form a metallacyclic species that is the active catalyst. This species is generated either in situ or separately in isolated form by reactions with added base. The identification of the structure of the active catalyst led to the development of simplified catalysts as well as the most active form of the catalyst now available, which is stabilized by a loosely bound ethylene. Most recently, this structure was used to prepare intermediates containing allyl ligands, the structures of which provide a model for the enantioselectivities discussed here. Initial studies from our laboratory on the scope of iridium-catalyzed allylic substitution showed that reactions of primary and secondary amines, including alkylamines, benzylamines, and allylamines, and reactions of phenoxides and alkoxides occurred in high yields

  18. Enantioselective [4 + 1]-Annulation of α,β-Unsaturated Imines with Allylic Carbonates Catalyzed by a Hybrid P-Chiral Phosphine Oxide-Phosphine.

    PubMed

    Li, Hanyuan; Luo, Jiesi; Li, Bojuan; Yi, Xizhen; He, Zhengjie

    2017-10-03

    A highly enantio- and diastereoselective [4 + 1]-annulation reaction between α,β-unsaturated imines and allylic carbonates has been realized under the catalysis of a novel hybrid P-chiral phosphine oxide-phosphine, providing enantioenriched polysubstituted 2-pyrrolines in good to excellent yields and up to 99% ee. Based on Han's methods, the catalyst featuring a sole P(O)-chirality in the molecule is readily accessible and represents a class of new chiral phosphine organocatalysts. In the plausible catalytic mechanism, an intramolecular Coulombic interaction between the in situ generated phosphonium cation and polar chiral P═O moiety may play a positive role.

  19. Carbonyl-carbonyl interactions stabilize the partially allowed Ramachandran conformations of asparagine and aspartic acid.

    PubMed

    Deane, C M; Allen, F H; Taylor, R; Blundell, T L

    1999-12-01

    Asparagine and aspartate are known to adopt conformations in the left-handed alpha-helical region and other partially allowed regions of the Ramachandran plot more readily than any other non-glycyl amino acids. The reason for this preference has not been established. An examination of the local environments of asparagine and aspartic acid in protein structures with a resolution better than 1.5 A revealed that their side-chain carbonyls are frequently within 4 A of their own backbone carbonyl or the backbone carbonyl of the previous residue. Calculations using protein structures with a resolution better than 1.8 A reveal that this close contact occurs in more than 80% of cases. This carbonyl-carbonyl interaction offers an energetic sabilization for the partially allowed conformations of asparagine and aspartic acid with respect to all other non-glycyl amino acids. The non-covalent attractive interactions between the dipoles of two carbonyls has recently been calculated to have an energy comparable to that of a hydrogen bond. The preponderance of asparagine in the left-handed alpha-helical region, and in general of aspartic acid and asparagine in the partially allowed regions of the Ramachandran plot, may be a consequence of this carbonyl-carbonyl stacking interaction.

  20. Mechanism of heterogeneous reaction of carbonyl sulfide on magnesium oxide.

    PubMed

    Liu, Yongchun; He, Hong; Xu, Wenqing; Yu, Yunbo

    2007-05-24

    Heterogeneous reaction of carbonyl sulfide (OCS) on magnesium oxide (MgO) under ambient conditions was investigated by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), quadrupole mass spectrometer (QMS), and density functional theory (DFT) calculations. It reveals that OCS can be catalytically hydrolyzed by surface hydroxyl on MgO to produce carbon dioxide (CO2) and hydrogen sulfide (H2S), and then H2S can be further catalytically oxidized by surface oxygen or gaseous oxygen on MgO to form sulfite (SO3(2-)) and sulfate (SO4(2-)). Hydrogen thiocarbonate (HSCO2-) was found to be the crucial intermediate. Surface hydrogen sulfide (HS), sulfur dioxide (SO2), and surface sulfite (SO3(2-)) were also found to be intermediates for the formation of sulfate. Furthermore, the surface hydroxyl contributes not only to the formation of HSCO2- but also to HSCO2- decomposition. On the basis of experimental results, the heterogeneous reaction mechanism of OCS on MgO was discussed.

  1. ION EXCHANGE SUBSTANCES BY SAPONIFICATION OF ALLYL PHOSPHATE POLYMERS

    DOEpatents

    Kennedy, J.

    1959-04-14

    An ion exchange resin having a relatively high adsorption capacity tor uranyl ion as compared with many common cations is reported. The resin comprises an alphyl-allyl hydrogen phosphate polymer, the alphyl group being either allyl or a lower alkyl group having up to 5 carbon atoins. The resin is prepared by polymerizing compounds such as alkyl-diallyl phosphate and triallyl phosphate in the presence of a free radical generating substance and then partially hydrolyzing the resulting polymer to cause partial replacement of organic radicals by cations. A preferred free radical gencrating agent is dibenzoyl peroxide. The partial hydrolysis is brought about by refluxing the polymer with concentrated aqueous NaOH for three or four hours.

  2. Highly selective indium mediated allylation of unprotected pentosylamines.

    PubMed

    Behr, Jean-Bernard; Hottin, Audrey; Ndoye, Alpha

    2012-03-16

    A straightforward functionalization of D-pentoses is reported, which affords homoallylaminopolyols in two steps and uses ion exchange chromatography as the only purification operation. The key indium-mediated allylation is effected on unprotected glycosylamines and occurs with good to excellent syn stereoselection. Validation of the synthetic utility of the method was exemplified by a 3-step synthesis of an optically active 1,2,3,6-tetrahydropyridine from D-xylose.

  3. Rh2(esp)2-catalyzed allylic and benzylic oxidations.

    PubMed

    Wang, Yi; Kuang, Yi; Wang, Yuanhua

    2015-04-07

    The dirhodium(II) catalyst Rh2(esp)2 allows direct solvent-free allylic and benzylic oxidations by T-HYDRO with a remarkably low catalyst loading. This method is operationally simple and scalable at ambient temperature without the use of any additives. The high catalyst stability in these reactions may be attributed to a dirhodium(II,II) catalyst resting state, which is less prone to decomposition.

  4. Copper-catalyzed trifluoromethylation of trisubstituted allylic and homoallylic alcohols.

    PubMed

    Lei, Jian; Liu, Xiaowu; Zhang, Shaolin; Jiang, Shuang; Huang, Minhao; Wu, Xiaoxing; Zhu, Qiang

    2015-04-27

    An efficient copper-catalyzed trifluoromethylation of trisubstituted allylic and homoallylic alcohols with Togni's reagent has been developed. This strategy, accompanied by a double-bond migration, leads to various branched CF3-substituted alcohols by using readily available trisubstituted cyclic/acyclic alcohols as substrates. Moreover, for alcohols in which β-H elimination is prohibited, CF3-containing oxetanes are isolated as the sole product.

  5. Fast photolysis of carbonyl nitrates from isoprene

    NASA Astrophysics Data System (ADS)

    Müller, Jean-Francois; Peeters, Jozef; Stavrakou, Trisevgeni

    2014-05-01

    We show that photolysis is, by far, the major atmospheric sink of isoprene-derived carbonyl nitrates. Empirical evidence from published laboratory studies on the absorption cross sections and photolysis rates of α-nitrooxy ketones suggests that the presence of the nitrate group (i) greatly enhances the absorption cross sections, and (ii) facilitates dissociation to a point that the photolysis quantum yield is close to unity, with O-NO2 dissociation as the likely major channel. On this basis, we provide new recommendations for estimating the cross sections and photolysis rates of carbonyl nitrates. The newly estimated photorates are validated using a chemical box model against measured temporal profiles of carbonyl nitrates in an isoprene oxidation experiment by Paulot et al. (2009). The comparisons for ethanal nitrate and for the sum of methacrolein- and methylvinylketone nitrates strongly supports our assumptions of large cross section enhancements and a near-unit quantum yield for these compounds. These findings have significant atmospheric implications, as carbonyl nitrates constitute an important component of the total organic nitrate pool over vegetated areas: the photorates of key carbonyl nitrates from isoprene are estimated to be typically between ~3 and 20 times higher than their sink due to reaction with OH in relevant atmospheric conditions. Moreover, since the reaction is expected to release NO2, photolysis is especially effective in depleting the total organic nitrate pool.

  6. Process and catalyst for carbonylating olefins

    DOEpatents

    Zoeller, J.R.

    1998-06-02

    Disclosed is an improved catalyst system and process for preparing aliphatic carbonyl compounds such as aliphatic carboxylic acids, alkyl esters of aliphatic carboxylic acids and anhydrides of aliphatic carboxylic acids by carbonylating olefins in the presence of a catalyst system comprising (1) a first component selected from at least one Group 6 metal, i.e., chromium, molybdenum, and/or tungsten and (2) a second component selected from at least one of certain halides and tertiary and quaternary compounds of a Group 15 element, i.e., nitrogen, phosphorus and/or arsenic, and (3) as a third component, a polar, aprotic solvent. The process employing the improved catalyst system is carried out under carbonylating conditions of pressure and temperature discussed herein. The process constitutes and improvement over known processes since it can be carried out at moderate carbonylation conditions without the necessity of using an expensive noble metal catalyst, volatile, toxic materials such as nickel tetracarbonyl, formic acid or a formate ester. Further, the addition of a polar, aprotic solvent to the catalyst system significantly increases, or accelerates, the rate at which the carbonylation takes place.

  7. Process and catalyst for carbonylating olefins

    DOEpatents

    Zoeller, Joseph Robert

    1998-06-02

    Disclosed is an improved catalyst system and process for preparing aliphatic carbonyl compounds such as aliphatic carboxylic acids, alkyl esters of aliphatic carboxylic acids and anhydrides of aliphatic carboxylic acids by carbonylating olefins in the presence of a catalyst system comprising (1) a first component selected from at least one Group 6 metal, i.e., chromium, molybdenum, and/or tungsten and (2) a second component selected from at least one of certain halides and tertiary and quaternary compounds of a Group 15 element, i.e., nitrogen, phosphorus and/or arsenic, and (3) as a third component, a polar, aprotic solvent. The process employing the improved catalyst system is carried out under carbonylating conditions of pressure and temperature discussed herein. The process constitutes and improvement over known processes since it can be carried out at moderate carbonylation conditions without the necessity of using an expensive noble metal catalyst, volatile, toxic materials such as nickel tetracarbonyl, formic acid or a formate ester. Further, the addition of a polar, aprotic solvent to the catalyst system significantly increases, or accelerates, the rate at which the carbonylation takes place.

  8. Asymmetric Allylic C-H Oxidation for the Synthesis of Chromans.

    PubMed

    Wang, Pu-Sheng; Liu, Peng; Zhai, Yu-Jia; Lin, Hua-Chen; Han, Zhi-Yong; Gong, Liu-Zhu

    2015-10-14

    An enantioselective intramolecular allylic C-H oxidation to generate optically active chromans has been accomplished under the cooperative catalysis of a palladium complex of chiral phosphoramidite ligand and 2-fluorobenzoic acid. Mechanistic studies suggest that this reaction commences with a Pd-catalyzed allylic C-H activation event and then undergoes asymmetric allylic alkoxylation. The synthetic significance of the method has been embodied by concisely building up a key chiral intermediate to access (+)-diversonol.

  9. Novel anti-Prelog stereospecific carbonyl reductases from Candida parapsilosis for asymmetric reduction of prochiral ketones.

    PubMed

    Nie, Yao; Xiao, Rong; Xu, Yan; Montelione, Gaetano T

    2011-06-07

    The application of biocatalysis to the synthesis of chiral molecules is one of the greenest technologies for the replacement of chemical routes due to its environmentally benign reaction conditions and unparalleled chemo-, regio- and stereoselectivities. We have been interested in searching for carbonyl reductase enzymes and assessing their substrate specificity and stereoselectivity. We now report a gene cluster identified in Candida parapsilosis that consists of four open reading frames including three putative stereospecific carbonyl reductases (scr1, scr2, and scr3) and an alcohol dehydrogenase (cpadh). These newly identified three stereospecific carbonyl reductases (SCRs) showed high catalytic activities for producing (S)-1-phenyl-1,2-ethanediol from 2-hydroxyacetophenone with NADPH as the coenzyme. Together with CPADH, all four enzymes from this cluster are carbonyl reductases with novel anti-Prelog stereoselectivity. SCR1 and SCR3 exhibited distinct specificities to acetophenone derivatives and chloro-substituted 2-hydroxyacetophenones, and especially very high activities towards ethyl 4-chloro-3-oxobutyrate, a β-ketoester with important pharmaceutical potential. Our study also showed that genomic mining is a powerful tool for the discovery of new enzymes.

  10. Novel anti-Prelog stereospecific carbonyl reductases from Candida parapsilosis for asymmetric reduction of prochiral ketones

    PubMed Central

    Nie, Yao; Xiao, Rong; Xu, Yan; Montelione, Gaetano T.

    2014-01-01

    Application of biocatalysis in the synthesis of chiral molecules is one of the greenest technologies for the replacement of chemical routes due to its environmentally benign reaction conditions and unparalleled chemo-, regio-and stereoselectivities. We have been interested in searching for carbonyl reductase enzymes and assessing their substrate specificity and stereoselectivity. We now report a gene cluster identified in Candida parapsilosis that consists of four open reading frames including three putative stereospecific carbonyl reductases (scr1, scr2, and scr3) and an alcohol dehydrogenase (cpadh). These newly identified three stereospecific carbonyl reductases (SCRs) showed high catalytic activities for producing (S)-1-phenyl-1,2-ethanediol from 2-hydroxyacetophenone with NADPH as the coenzyme. Together with CPADH, all four enzymes from this cluster are carbonyl reductases with novel anti-Prelog stereoselectivity. SCR1 and SCR3 exhibited distinct specificities to acetophenone derivatives and chloro-substituted 2-hydroxyacetophenones, and especially very high activities to ethyl 4-chloro-3-oxobutyrate, a β-ketoester with important pharmaceutical potentials. Our study also showed that genomic mining is a powerful tool for the discovery of new enzymes. PMID:21505708

  11. Palladium complexes with a tridentate PNO ligand. Synthesis of eta1-allyl complexes and cross-coupling reactions promoted by boron compounds.

    PubMed

    Crociani, Bruno; Antonaroli, Simonetta; Burattini, Marcello; Paoli, Paola; Rossi, Patrizia

    2010-04-21

    The iminophosphine 2-(2-Ph(2)P)C(6)H(4)N=CHC(6)H(4)OH (P-N-OH) reacts with [Pd(mu-Cl)(eta(3)-C(3)H(5))](2) yielding [PdCl(P-N-O)] and propene. In the presence of NEt(3), the reaction of P-N-OH with [Pd(mu-Cl)(eta(3)-1-R(1),3-R(2)C(3)H(3))](2) (R(1) = R(2) = H, Ph; R(1) = H, R(2) = Ph) affords the eta(1)-allyl derivatives [Pd(eta(1)-1-R(1),3-R(2)C(3)H(3))](P-N-O)] (R(1) = R(2) = H: 1; R(1) = H, R(2) = Ph: 2; R(1) = R(2) = Ph: 3). In solution, the complexes 1 and 3 undergo a slow dynamic process which interconverts the bonding site of the allyl ligand. The X-ray structural analysis of 1 indicates a square-planar coordination geometry around the palladium centre with a P,N,O,-tridentate ligand and a sigma bonded allyl group. The complexes [PdR(P-N-O)] (R = C(6)H(4)Me-4, C[triple bond]CPh) react slowly with p-bromoanisole in the presence of p-tolylboronic acid to give [PdBr(P-N-O)] and the coupling product RC(6)H(4)OMe-4. The latter reactions also proceed at a low rate under catalytic conditions. The coupling of allyl bromide with p-tolylboronic acid is catalyzed by [PdCl(P-N-O)]/K(2)CO(3) to give 4-allyltoluene.

  12. Catalytic, formal homo-Nazarov-type cyclizations of alkylidene cyclopropane-1,1-ketoesters: access to functionalized arenes and heteroaromatics.

    PubMed

    Aponte-Guzmán, Joel; Taylor, J Evans; Tillman, Elayna; France, Stefan

    2014-07-18

    A catalytic, formal homo-Nazarov-type cyclization of alkylidene cyclopropanes (ACPs) to give functionalized arenes and heteroaromatics is reported. In the presence of a Lewis acid catalyst, the ACP 1,1-ketoesters undergo distal bond cleavage to afford an allyl cation intermediate. Adjacent π-attack on the allyl cation then provides a six-membered ring that undergoes rapid aromatization. In these cases, benzenoid products are formed in up to 98% yield. Strategic choice of the substitution about the ACP allows for the generation of other useful isomeric products in good yields.

  13. Iridium-catalyzed enantioselective allylic substitution of unstabilized enolates derived from α,β-unsaturated ketones.

    PubMed

    Chen, Ming; Hartwig, John F

    2014-08-11

    We report Ir-catalyzed, enantioselective allylic substitution reactions of unstabilized silyl enolates derived from α,β-unsaturated ketones. Asymmetric allylic substitution of a variety of allylic carbonates with silyl enolates gave allylated products in 62-94% yield with 90-98% ee and >20:1 branched-to-linear selectivity. The synthetic utility of this method was illustrated by the short synthesis of an anticancer agent, TEI-9826. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Nickel-Catalyzed Allylic Alkylation with Diarylmethane Pronucleophiles: Reaction Development and Mechanistic Insights.

    PubMed

    Sha, Sheng-Chun; Jiang, Hui; Mao, Jianyou; Bellomo, Ana; Jeong, Soo A; Walsh, Patrick J

    2016-01-18

    Palladium-catalyzed allylic substitution reactions are among the most efficient methods to construct C-C bonds between sp(3)-hybridized carbon atoms. In contrast, much less work has been done with nickel catalysts, perhaps because of the different mechanisms of the allylic substitution reactions. Palladium catalysts generally undergo substitution by a "soft"-nucleophile pathway, wherein the nucleophile attacks the allyl group externally. Nickel catalysts are usually paired with "hard" nucleophiles, which attack the metal before C-C bond formation. Introduced herein is a rare nickel-based catalyst which promotes substitution with diarylmethane pronucleophiles by the soft-nucleophile pathway. Preliminary studies on the asymmetric allylic alkylation are promising.

  15. Carbonyl compounds indoors in a changing climate

    PubMed Central

    2012-01-01

    Background Formic acid, acetic acid and formaldehyde are important compounds in the indoor environment because of the potential for these acids to degrade calcareous materials (shells, eggs, tiles and geological specimens), paper and corrode or tarnish metals, especially copper and lead. Carbonyl sulfide tarnishes both silver and copper encouraging the formation of surface sulfides. Results Carbonyls are evolved more quickly at higher temperatures likely in the Cartoon Gallery at Knole, an important historic house near Sevenoaks in Kent, England where the study is focused. There is a potential for higher concentrations to accumulate. However, it may well be that in warmer climates they will be depleted more rapidly if ventilation increases. Conclusions Carbonyls are likely to have a greater impact in the future. PMID:22439648

  16. Mesoporous Silica-Supported Amidozirconium-Catalyzed Carbonyl Hydroboration

    SciTech Connect

    Eedugurala, Naresh; Wang, Zhuoran; Chaudhary, Umesh; Nelson, Nicholas; Kandel, Kapil; Kobayashi, Takeshi; Slowing, Igor I.; Pruski, Marek; Sadow, Aaron D.

    2015-11-04

    The hydroboration of aldehydes and ketones using a silica-supported zirconium catalyst is reported. Reaction of Zr(NMe2)4 and mesoporous silica nanoparticles (MSN) provides the catalytic material Zr(NMe2)n@MSN. Exhaustive characterization of Zr(NMe2)n@MSN with solid-state (SS)NMR and infrared spectroscopy, as well as through reactivity studies, suggests its surface structure is primarily ≡SiOZr(NMe2)3. The presence of these nitrogen-containing zirconium sites is supported by 15N NMR spectroscopy, including natural abundance 15N NMR measurements using dynamic nuclear polarization (DNP) SSNMR. The Zr(NMe2)n@MSN material reacts with pinacolborane (HBpin) to provide Me2NBpin and the material ZrH/Bpin@MSN that is composed of interacting surface-bonded zirconium hydride and surface-bonded borane ≡SiOBpin moieties in an approximately 1:1 ratio, as well as zirconium sites coordinated by dimethylamine. The ZrH/Bpin@MSN is characterized by 1H/2H and 11B SSNMR and infrared spectroscopy and through its reactivity with D2. The zirconium hydride material or the zirconium amide precursor Zr(NMe2)n@MSN catalyzes the selective hydroboration of aldehydes and ketones with HBpin in the presence of functional groups that are often reduced under hydroboration conditions or are sensitive to metal hydrides, including olefins, alkynes, nitro groups, halides, and ethers. Remarkably, this catalytic material may be recycled without loss of activity at least eight times, and air-exposed materials are catalytically active. These supported zirconium centers are robust catalytic sites for carbonyl reduction and that surface-supported, catalytically reactive zirconium hydride may be generated from zirconium-amide or zirconium alkoxide sites.

  17. The O- Acylation of Ketone Enolates by Allyl 1H-imidazole-1-carboxylate Mediated with Boron Trifluoride Etherate---A Convenient Procedure for the Synthesis of Substituted Allyl Enol Carbonates

    PubMed Central

    Trost, Barry M.; Xu, Jiayi

    2008-01-01

    A convenient access to substituted allyl enol carbonates was established through the reaction of ketone enolates with the complex of allyl 1H-imidazole-1-carboxylates and boron trifluoride etherate. PMID:17963405

  18. Regio- and stereoselective palladium-pincer complex catalyzed allylation of sulfonylimines with trifluoro(allyl)borates and allylstannanes: a combined experimental and theoretical study.

    PubMed

    Wallner, Olov A; Szabó, Kálmán J

    2006-09-06

    Regio- and stereoselective palladium-pincer complex catalyzed allylation of sulfonylimines has been performed by using substituted trifluoro(allyl)borates and trimethylallylstannanes. The reactions provide the corresponding branched allylic products with excellent regioselectivity. The stereoselectivity of these processes is very high when trifluoro(cinnamyl)borate and trimethyl cinnamyl stannane are employed as allylic precursors; however, the reaction with trifluoro(crotyl)borate results in poor stereoselectivity. The major diastereomer formed in these reactions was the syn isomer, while the (previously reported) reactions with aldehyde electrophiles afforded the anti products, indicating that the mechanism of the stereoselection is dependent on the applied electrophile. Therefore, we have studied the mechanistic aspects of the allylation reactions by experimental studies and DFT modeling. The experimental mechanistic studies have clearly shown that potassium trifluoro(allyl)borate undergoes transmetallation with palladium-pincer complex 1 a affording an eta(1)-allylpalladium-pincer complex (1 e). The mechanism of the transfer of the allyl moiety from palladium to the sulfonylimine substrate was studied by DFT calculations at the B3PW91/LANL2DZ+P level of theory. These calculations have shown that the electrophilic substitution of sulfonylimines proceeds in a one-step process with a relatively low activation energy. The topology of the potential energy surface in the vicinity of the transition-state structure proved to be rather complicated as nine different geometries with similar energies were located as first order saddle points. Our studies have also shown that the high stereoselectivity with cinnamyl metal reagents stems from steric interactions in the TS structure of the allylation reaction. In addition, these studies have revealed that the mechanism of the stereoselection in the allylation of aldehydes and sulfonylimines is fundamentally different.

  19. Electrocatalytic reduction of carbon dioxide with Mn(terpyridine) carbonyl complexes.

    PubMed

    Machan, Charles W; Kubiak, Clifford P

    2016-11-01

    The behavior of a series of Manganese (Mn) carbonyl compounds with 2,2':6',2''-terpyridine (tpy) in κ(2)-N,N' and κ(3)-N,N',N'' coordination modes under electrochemically reducing conditions is reported. In the presence of carbon dioxide (CO2) and Brønsted acid (phenol), two-electron reduction to carbon monoxide (CO) and water (H2O) is observed. Based on data obtained from cyclic voltammetry and infrared spectroelectrochemistry, the active state of the catalyst in the proposed mechanism for all cases is [Mn(κ(3)-N,N',N''-tpy)(CO)2](-). Under these conditions, competing decomposition reactions limit the overall Faradaic efficiency. These results suggest the possibility of developing new tridentate ligand frameworks suitable for catalytic systems with Mn carbonyl cores.

  20. Non-stabilized nucleophiles in Cu-catalysed dynamic kinetic asymmetric allylic alkylation

    NASA Astrophysics Data System (ADS)

    You, Hengzhi; Rideau, Emeline; Sidera, Mireia; Fletcher, Stephen P.

    2015-01-01

    The development of new reactions forming asymmetric carbon-carbon bonds has enabled chemists to synthesize a broad range of important carbon-containing molecules, including pharmaceutical agents, fragrances and polymers. Most strategies to obtain enantiomerically enriched molecules rely on either generating new stereogenic centres from prochiral substrates or resolving racemic mixtures of enantiomers. An alternative strategy--dynamic kinetic asymmetric transformation--involves the transformation of a racemic starting material into a single enantiomer product, with greater than 50 per cent maximum yield. The use of stabilized nucleophiles (pKa < 25, where Ka is the acid dissociation constant) in palladium-catalysed asymmetric allylic alkylation reactions has proved to be extremely versatile in these processes. Conversely, the use of non-stabilized nucleophiles in such reactions is difficult and remains a key challenge. Here we report a copper-catalysed dynamic kinetic asymmetric transformation using racemic substrates and alkyl nucleophiles. These nucleophiles have a pKa of >=50, more than 25 orders of magnitude more basic than the nucleophiles that are typically used in such transformations. Organometallic reagents are generated in situ from alkenes by hydrometallation and give highly enantioenriched products under mild reaction conditions. The method is used to synthesize natural products that possess activity against tuberculosis and leprosy, and an inhibitor of para-aminobenzoate biosynthesis. Mechanistic studies indicate that the reaction proceeds through a rapidly isomerizing intermediate. We anticipate that this approach will be a valuable complement to existing asymmetric catalytic methods.

  1. Hydrolysis of cellulose catalyzed by quaternary ammonium perrhenates in 1-allyl-3-methylimidazolium chloride.

    PubMed

    Wang, Jingyun; Zhou, Mingdong; Yuan, Yuguo; Zhang, Quan; Fang, Xiangchen; Zang, Shuliang

    2015-12-01

    Quaternary ammonium perrhenates were applied as catalyst to promote the hydrolysis of cellulose in 1-allyl-3-methylimidazolium chloride ([Amim]Cl). The quaternary ammonium perrhenates displayed good catalytic performance for cellulose hydrolysis. Water was also proven to be effective to promote cellulose hydrolysis. Accordingly, 97% of total reduced sugar (TRS) and 42% of glucose yields could be obtained under the condition of using 5mol% of tetramethyl ammonium perrhenate as catalyst, 70μL of water, ca. 0.6mmol of microcrystalline cellulose (MCC) and 2.0g of [Amim]Cl as solvent under microwave irradiation for 30min at 150°C (optimal conditions). The influence of quaternary ammonium cation on the efficiency of cellulose hydrolysis was examined based on different cation structures of perrhenates. The mechanism on perrhenate catalyzed cellulose hydrolysis is also discussed, whereas hydrogen bonding between ReO4 anion and hydroxyl groups of cellulose is assumed to be the key step for depolymerization of cellulose.

  2. Catalyst life in imidazolium-based ionic liquids for palladium-catalysed asymmetric allylic alkylation.

    PubMed

    Guerrero-Ríos, I; Martin, E

    2014-05-28

    A Pd/(S)-BINAP system was successfully applied to the asymmetric allylic alkylation of rac-1,3-diphenyl-3-acetoxyprop-1-ene () using imidazolium-based ionic liquids (ILs) attaining up to 225 h(-1) TOF and 88% ee of the (R)-product. Although the system was barely active in the recycling experiments, the catalyst life was confirmed after recharging the system with substrate/reactants resulting in an alkylated product. In the latter case, the conversion rates and enantiomeric excesses were similar or lower compared to those in the first cycle. In order to explain the observed catalyst performance in the recycling as well as in the recharging experiments, we investigated the reactivity between the catalyst precursors, substrate and reactants in ILs. We were able to identify the species involved in the catalytic reactions under various conditions by means of (31)P NMR analyses. Allylpalladium intermediates () were found to be the active and selective species at a high substrate concentration. When the substrate was consumed, competing reactions took place leading to different palladium complexes. [PdCl(NHC(Bu,Me))((S)-BINAP)]Cl (), together with [Pd((S)-BINAP)2] (), were recognised as the species responsible for the loss of activity, meanwhile, the decrease in enantioselectivity was accounted for by the formation of mixed (NHC)(monophosphine)-palladium species.

  3. Catalyst-free synthesis of skipped dienes from phosphorus ylides, allylic carbonates, and aldehydes via a one-pot SN2' allylation-Wittig strategy.

    PubMed

    Xu, Silong; Zhu, Shaoying; Shang, Jian; Zhang, Junjie; Tang, Yuhai; Dou, Jianwei

    2014-04-18

    A catalyst-free allylic alkylation of stabilized phosphorus ylides with allylic carbonates via a regioselective SN2' process is presented. Subsequent one-pot Wittig reaction with both aliphatic and aromatic aldehydes as well as ketenes provides structurally diverse skipped dienes (1,4-dienes) in generally high yields and moderate to excellent stereoselectivity with flexible substituent patterns. This one-pot SN2' allylation-Wittig strategy constitutes a convenient and efficient synthetic method for highly functionalized skipped dienes from readily available starting materials.

  4. Fast photolysis of carbonyl nitrates from isoprene

    NASA Astrophysics Data System (ADS)

    Müller, J.-F.; Peeters, J.; Stavrakou, T.

    2013-11-01

    Photolysis is shown to be a major sink for isoprene-derived carbonyl nitrates, which constitute an important component of the total organic nitrate pool over vegetated areas. Empirical evidence from published laboratory studies on the absorption cross sections and photolysis rates of α-nitrooxy ketones suggests that the presence of the nitrate group (i) greatly enhances the absorption cross sections, and (ii) facilitates dissociation to a point that the photolysis quantum yield is close to unity, with O-NO2 dissociation as the likely major channel. On this basis, we provide new recommendations for estimating the cross sections and photolysis rates of carbonyl nitrates. The newly estimated photorates are validated using a chemical box model against measured temporal profiles of carbonyl nitrates in an isoprene oxidation experiment by Paulot et al. (2009). The comparisons for ethanal nitrate and for the sum of methacrolein- and methylvinylketone nitrates strongly supports our assumptions of large cross section enhancements and a near-unit quantum yield for these compounds. These findings have significant atmospheric implications: the photorates of key carbonyl nitrates from isoprene are estimated to be typically between ~3 and 20 times higher than their sink due to reaction with OH in relevant atmospheric conditions. Moreover, since the reaction is expected to release NO2, photolysis is especially effective in depleting the total organic nitrate pool.

  5. Fast photolysis of carbonyl nitrates from isoprene

    NASA Astrophysics Data System (ADS)

    Müller, J.-F.; Peeters, J.; Stavrakou, T.

    2014-03-01

    Photolysis is shown to be a major sink for isoprene-derived carbonyl nitrates, which constitute an important component of the total organic nitrate pool over vegetated areas. Empirical evidence from published laboratory studies on the absorption cross sections and photolysis rates of α-nitrooxy ketones suggests that the presence of the nitrate group (i) greatly enhances the absorption cross sections and (ii) facilitates dissociation to a point that the photolysis quantum yield is close to unity, with O-NO2 dissociation as a likely major channel. On this basis, we provide new recommendations for estimating the cross sections and photolysis rates of carbonyl nitrates. The newly estimated photo rates are validated using a chemical box model against measured temporal profiles of carbonyl nitrates in an isoprene oxidation experiment by Paulot et al. (2009). The comparisons for ethanal nitrate and for the sum of methacrolein- and methyl vinyl ketone nitrates strongly supports our assumptions of large cross-section enhancements and a near-unit quantum yield for these compounds. These findings have significant atmospheric implications: the photorates of key carbonyl nitrates from isoprene are estimated to be typically between ~ 3 and 20 times higher than their sink due to reaction with OH in relevant atmospheric conditions. Moreover, since the reaction is expected to release NO2, photolysis is especially effective in depleting the total organic nitrate pool.

  6. High Pressure Synthesis of Transition Metal Carbonyls.

    ERIC Educational Resources Information Center

    Hagen, A. P.; And Others

    1979-01-01

    Presents an experiment which uses readily available starting materials and inexpensive equipment for synthesis of transition metal carbonyls at 1000 atm and which is intended to give students experience in techniques used in research and industry. Safety precautions are emphasized. (Author/SA)

  7. Organocatalytic Hydrophosphonylation Reaction of Carbonyl Groups.

    PubMed

    Herrera, Raquel P

    2017-02-07

    This revision is covering the limited examples reported for a pivotal strategy in the formation of C-P bonds such as the asymmetric organocatalytic hydrophosphonylation of carbonyl groups (Pudovik reaction). The scope and limitations, and the proposed mechanisms for the scarce different possibilities of asymmetric induction are also shown. The recent evolution and future trends of this undeveloped approach are commented.

  8. Organocatalyzed Intramolecular Carbonyl-Ene Reactions.

    PubMed

    Dahlmann, Heidi A; McKinney, Amanda J; Santos, Maria P; Davis, Lindsey O

    2016-05-31

    An organocatalyzed intramolecular carbonyl-ene reaction was developed to produce carbocyclic and heterocyclic 5- and 6-membered rings from a citronellal-derived trifluoroketone and a variety of aldehydes. A phosphoramide derivative was found to promote the cyclization of the trifluoroketone, whereas a less acidic phosphoric acid proved to be a superior catalyst for the aldehyde substrates.

  9. Interception and characterization of catalyst species in rhodium bis(diazaphospholane)-catalyzed hydroformylation of octene, vinyl acetate, allyl cyanide, and 1-phenyl-1,3-butadiene.

    PubMed

    Nelsen, Eleanor R; Brezny, Anna C; Landis, Clark R

    2015-11-11

    In the absence of H2, reaction of [Rh(H) (CO)2(BDP)] [BDP = bis(diazaphospholane)] with hydroformylation substrates vinyl acetate, allyl cyanide, 1-octene, and trans-1-phenyl-1,3-butadiene at low temperatures and pressures with passive mixing enables detailed NMR spectroscopic characterization of rhodium acyl and, in some cases, alkyl complexes of these substrates. For trans-1-phenyl-1,3-butadiene, the stable alkyl complex is an η(3)-allyl complex. Five-coordinate acyl dicarbonyl complexes appear to be thermodynamically preferred over the four-coordinate acyl monocarbonyls at low temperatures and one atmosphere of CO. Under noncatalytic (i.e., no H2 present) reaction conditions, NMR spectroscopy reveals the kinetic and thermodynamic selectivity of linear and branched acyl dicarbonyl formation. Over the range of substrates investigated, the kinetic regioselectivity observed at low temperatures under noncatalytic conditions roughly predicts the regioselectivity observed for catalytic transformations at higher temperatures and pressures. Thus, kinetic distributions of off-cycle acyl dicarbonyls constitute reasonable models for catalytic selectivity. The Wisconsin high-pressure NMR reactor (WiHP-NMRR) enables single-turnover experiments with active mixing; such experiments constitute a powerful strategy for elucidating the inherent selectivity of acyl formation and acyl hydrogenolysis in hydroformylation reactions.

  10. Silicon- and tin-based cuprates: now catalytic in copper!

    PubMed

    Weickgenannt, Andreas; Oestreich, Martin

    2010-01-11

    Silicon- and tin-containing molecules are versatile building blocks in organic synthesis. A stalwart method for their preparation relies on the stoichiometric use of silicon- and tin-based cuprates, although a few copper(I)-catalyzed or even copper-free protocols have been known for decades. In this Concept, we describe our efforts towards copper(I)-catalyzed carbon--silicon and also carbon--tin bond formations using soft bis(triorganosilyl) and bis(triorganostannyl) zinc reagents as powerful sources of nucleophilic silicon and tin. Conjugate addition, allylic substitution, and carbon--carbon multiple bond functionalization is now catalytic in copper!

  11. Millimeter wave spectra of carbonyl cyanide ⋆

    PubMed Central

    Bteich, S.B.; Tercero, B.; Cernicharo, J.; Motiyenko, R.A.; Margulès, L.; Guillemin, J.-C.

    2016-01-01

    Context More than 30 cyanide derivatives of simple organic molecules have been detected in the interstellar medium, but only one dicarbonitrile has been found and that very recently. There is still a lack of high-resolution spectroscopic data particularly for dinitriles derivatives. The carbonyl cyanide molecule is a new and interesting candidate for astrophysical detection. It could be formed by the reaction of CO and CN radicals, or by substitution of the hydrogen atom by a cyano group in cyanoformaldehyde, HC(=O)CN, that has already been detected in the interstellar medium. Aims The available data on the rotational spectrum of carbonyl cyanide is limited in terms of quantum number values and frequency range, and does not allow accurate extrapolation of the spectrum into the millimeter-wave range. To provide a firm basis for astrophysical detection of carbonyl cyanide we studied its millimeter-wave spectrum. Methods The rotational spectrum of carbonyl cyanide was measured in the frequency range 152 - 308 GHz and analyzed using Watson’s A- and S-reduction Hamiltonians. Results The ground and first excited state of v5 vibrational mode were assigned and analyzed. More than 1100 distinct frequency lines of the ground state were fitted to produce an accurate set of rotational and centrifugal distortion constants up to the eighth order. The frequency predictions based on these constants should be accurate enough for astrophysical searches in the frequency range up to 500 GHz and for transition involving energy levels with J ≤ 100 and Ka ≤ 42. Based on the results we searched for interstellar carbonyl cyanide in available observational data without success. Thus, we derived upper limits to its column density in different sources. PMID:27738349

  12. Millimeter wave spectra of carbonyl cyanide.

    PubMed

    Bteich, S B; Tercero, B; Cernicharo, J; Motiyenko, R A; Margulès, L; Guillemin, J-C

    2016-08-01

    More than 30 cyanide derivatives of simple organic molecules have been detected in the interstellar medium, but only one dicarbonitrile has been found and that very recently. There is still a lack of high-resolution spectroscopic data particularly for dinitriles derivatives. The carbonyl cyanide molecule is a new and interesting candidate for astrophysical detection. It could be formed by the reaction of CO and CN radicals, or by substitution of the hydrogen atom by a cyano group in cyanoformaldehyde, HC(=O)CN, that has already been detected in the interstellar medium. The available data on the rotational spectrum of carbonyl cyanide is limited in terms of quantum number values and frequency range, and does not allow accurate extrapolation of the spectrum into the millimeter-wave range. To provide a firm basis for astrophysical detection of carbonyl cyanide we studied its millimeter-wave spectrum. The rotational spectrum of carbonyl cyanide was measured in the frequency range 152 - 308 GHz and analyzed using Watson's A- and S-reduction Hamiltonians. The ground and first excited state of v5 vibrational mode were assigned and analyzed. More than 1100 distinct frequency lines of the ground state were fitted to produce an accurate set of rotational and centrifugal distortion constants up to the eighth order. The frequency predictions based on these constants should be accurate enough for astrophysical searches in the frequency range up to 500 GHz and for transition involving energy levels with J ≤ 100 and Ka ≤ 42. Based on the results we searched for interstellar carbonyl cyanide in available observational data without success. Thus, we derived upper limits to its column density in different sources.

  13. Copper-Catalyzed SN2'-Selective Allylic Substitution Reaction of gem-Diborylalkanes.

    PubMed

    Zhang, Zhen-Qi; Zhang, Ben; Lu, Xi; Liu, Jing-Hui; Lu, Xiao-Yu; Xiao, Bin; Fu, Yao

    2016-03-04

    A Cu/(NHC)-catalyzed SN2'-selective substitution reaction of allylic electrophiles with gem-diborylalkanes is reported. Different substituted gem-diborylalkanes and allylic electrophiles can be employed in this reaction, and various synthetic valuable functional groups can be tolerated. The asymmetric version of this reaction was initially researched with chiral N-heterocyclic carbene (NHC) ligands.

  14. Magnetic silica supported palladium catalyst: synthesis of allyl aryl ethers in water

    EPA Science Inventory

    A simple and benign procedure for the synthesis of aryl allyl ethers has been developed using phenols, allyl acetates and magnetically recyclable silica supported palladium catalyst in water; performance of reaction in air and easy separation of the catalyst using an external mag...

  15. Magnetic silica supported palladium catalyst: synthesis of allyl aryl ethers in water

    EPA Science Inventory

    A simple and benign procedure for the synthesis of aryl allyl ethers has been developed using phenols, allyl acetates and magnetically recyclable silica supported palladium catalyst in water; performance of reaction in air and easy separation of the catalyst using an external mag...

  16. Enantio- and diastereoselective asymmetric allylic alkylation catalyzed by a planar-chiral cyclopentadienyl ruthenium complex.

    PubMed

    Kanbayashi, Naoya; Hosoda, Kazuki; Kato, Masanori; Takii, Koichiro; Okamura, Taka-aki; Onitsuka, Kiyotaka

    2015-07-11

    We report asymmetric allylic alkylation of allylic chloride with β-diketones as the prochiral carbon nucleophiles using a planar-chiral Cp'Ru catalyst. The reaction proceeds under mild conditions; the resulting chiral products containing vicinal tertiary stereocenters are obtained with high regio-, diastereo-, and enantioselectivities. These chiral products can then be transformed into a chiral diol by controlling the four stereocentres.

  17. Corn oil and milk enhance the absorption of orally administered allyl isothiocyanate in rats.

    PubMed

    Ippoushi, Katsunari; Ueda, Hiroshi; Takeuchi, Atsuko

    2013-11-15

    Allyl isothiocyanate, a chief component of mustard oil, exhibits anticancer effects in both cultured cancer cells and animal models. The accumulation of the N-acetylcysteine conjugate of allyl isothiocyanate, the final metabolite of allyl isothiocyanate, in urine was evaluated in rats that were orally coadministered allyl isothiocyanate with fluids (e.g., water, green tea, milk, and 10% ethanol) or corn oil. The N-acetylcysteine conjugate of allyl isothiocyanate content in urine when allyl isothiocyanate (2 or 4μmol) was coadministered with corn oil or milk showed a greater increase (1.4±0.22 or 2.7±0.34μmol or 1.2±0.32 or 2.5±0.36μmol, 1.6- to 1.8-fold or 1.5-fold, respectively) than when allyl isothiocyanate (2 or 4μmol) was coadministered with water (0.78±0.10 or 1.7±0.17μmol). This result demonstrates that corn oil and milk enhance the absorption of allyl isothiocyanate in rats.

  18. Gold(I)-catalyzed amination of allylic alcohols with cyclic ureas and related nucleophiles.

    PubMed

    Mukherjee, Paramita; Widenhoefer, Ross A

    2010-03-19

    A 1:1 mixture of [P(t-Bu)(2)-o-biphenyl]AuCl and AgSbF(6) catalyzes the intermolecular amination of allylic alcohols with 1-methylimidazolidin-2-one and related nucleophiles that, in the case of gamma-unsubstituted or gamma-methyl-substituted allylic alcohols, occurs with high gamma-regioselectivity and syn-stereoselectivity.

  19. Cross coupling of magnesium diacetylenides with functional allylic and halide-containing compounds catalyzed by transition metal complexes

    SciTech Connect

    Dzhemilev, U.M.; Ibragimov, A.G.; Saraev, R.A.

    1986-08-20

    An efficient method has been developed for the synthesis of 1,4-enynes, conjugated acetylenes and aryl acetylenes by the cross coupling of magnesium diacetylenides with allyl ethers and esters, alkyl halides, allyl halides, aryl halides, allyl sulfides, and allylsulfones, using Ni and Pd complexes as the catalyst.

  20. Hafnium trifluoromethanesulfonate (hafnium triflate) as a highly efficient catalyst for chemoselective thioacetalization and transthioacetalization of carbonyl compounds.

    PubMed

    Wu, Yan-Chao; Zhu, Jieping

    2008-12-05

    A range of carbonyl compounds including aliphatic and aromatic aldehydes and ketones were converted to the corresponding thioacetals in high yields in the presence of a catalytic amount of hafnium trifluoromethanesulfonate (0.1 mol %, room temperature). The mild conditions tolerated various sensitive functional and protecting groups and were racemization-free when applied to alpha-aminoaldehydes. Transacetalization and chemoselective thioacetalization of aromatic aldehydes in the presence of aliphatic aldehydes and ketones were also documented.

  1. Palladium-catalyzed carbonylation reactions of aryl bromides at atmospheric pressure: a general system based on Xantphos.

    PubMed

    Martinelli, Joseph R; Watson, Donald A; Freckmann, Dominique M M; Barder, Timothy E; Buchwald, Stephen L

    2008-09-19

    A method for the Pd-catalyzed carbonylation of aryl bromides has been developed using Xantphos as the ligand. This method is effective for the direct synthesis of Weinreb amides, primary and secondary benzamides, and methyl esters from the corresponding aryl bromides at atmospheric pressure. In addition, a putative catalytic intermediate, (Xanphos)Pd(Br)benzoyl, was prepared and an X-ray crystal structure was obtained revealing an unusual cis-coordination mode of Xantphos in this palladium-acyl complex.

  2. Method for conversion of .beta.-hydroxy carbonyl compounds

    DOEpatents

    Lilga, Michael A.; White, James F.; Holladay, Johnathan E.; Zacher, Alan H.; Muzatko, Danielle S.; Orth, Rick J.

    2010-03-30

    A process is disclosed for conversion of salts of .beta.-hydroxy carbonyl compounds forming useful conversion products including, e.g., .alpha.,.beta.-unsaturated carbonyl compounds and/or salts of .alpha.,.beta.-unsaturated carbonyl compounds. Conversion products find use, e.g., as feedstock and/or end-use chemicals.

  3. Transition-Metal-Catalyzed Carbonylation of Methyl Acetate.

    ERIC Educational Resources Information Center

    Polichnowski, S. W.

    1986-01-01

    Presents a study of the rhodium-catalyzed, ioding-promoted carbonylation of methyl acetate. This study provides an interesting contrast between the carbonylation of methyl acetate and the carbonylation of methanol when similar rhodium/iodine catalyst systems are used. (JN)

  4. Transition-Metal-Catalyzed Carbonylation of Methyl Acetate.

    ERIC Educational Resources Information Center

    Polichnowski, S. W.

    1986-01-01

    Presents a study of the rhodium-catalyzed, ioding-promoted carbonylation of methyl acetate. This study provides an interesting contrast between the carbonylation of methyl acetate and the carbonylation of methanol when similar rhodium/iodine catalyst systems are used. (JN)

  5. Palladium-Catalyzed Chemoselective Allylic Substitution, Suzuki-Miyaura Cross-Coupling, and Allene Formation of Bifunctional 2-B(pin)-Substituted Allylic Acetate Derivatives

    PubMed Central

    Kim, Byeong-Seon; Hussain, Mahmud M.; Hussain, Nusrah

    2014-01-01

    A formidable challenge at the forefront of organic synthesis is the control of chemoselectivity to enable the selective formation of diverse structural motifs from a readily available substrate class. Presented herein is a detailed study of chemoselectivity with palladium-based phosphine catalysts and readily available 2-B(pin)-substituted allylic acetates, benzoates, and carbonates. Depending on the choice of reagents, catalysts and reaction conditions, 2-B(pin)-substituted allylic acetates and derivatives can be steered into one of three reaction manifolds: allylic substitution, Suzuki-Miyaura cross-coupling, or elimination to form allenes, all with excellent chemoselectivity. The studies on chemoselectivity of Pd catalysts in their reactivity with boron-bearing allylic acetate derivatives led to the development of diverse and practical reactions with potential utility in synthetic organic chemistry. PMID:25077980

  6. One pot iridium-catalyzed asymmetrical double allylations of sodium sulfide: a fast and economic way to construct chiral C2-symmetric bis(1-substituted-allyl)sulfane.

    PubMed

    Zheng, Shengcai; Huang, Weiqing; Gao, Ning; Cui, Ruimin; Zhang, Min; Zhao, Xiaoming

    2011-06-28

    One pot asymmetrical double allylations of sodium sulfide catalyzed by an iridium complex along with a combination of caesium fluoride and water in dichloromethane have been realized and the double allylation products with two C-S bond chiral centers were obtained in 67-99% yields with b/l 81/19-99/1, dr 85/15-99/1, and 96-99% ee.

  7. Palladium-Catalyzed Enantioselective Decarboxylative Allylic Alkylation of Cyclopentanones.

    PubMed

    Craig, Robert A; Loskot, Steven A; Mohr, Justin T; Behenna, Douglas C; Harned, Andrew M; Stoltz, Brian M

    2015-11-06

    The first general method for the enantioselective construction of all-carbon quaternary centers on cyclopentanones by enantioselective palladium-catalyzed decarboxylative allylic alkylation is described. Employing the electronically modified (S)-(p-CF3)3-t-BuPHOX ligand, α-quaternary cyclopentanones were isolated in yields up to >99% with ee's up to 94%. Additionally, in order to facilitate large-scale application of this method, a low catalyst loading protocol was employed, using as little as 0.15 mol % Pd, furnishing the product without any loss in ee.

  8. Pd-catalyzed carbonylative α-arylation of aryl bromides: scope and mechanistic studies.

    PubMed

    Nielsen, Dennis U; Lescot, Camille; Gøgsig, Thomas M; Lindhardt, Anders T; Skrydstrup, Troels

    2013-12-23

    Reaction conditions for the three-component synthesis of aryl 1,3-diketones are reported applying the palladium-catalyzed carbonylative α-arylation of ketones with aryl bromides. The optimal conditions were found by using a catalytic system derived from [Pd(dba)2] (dba=dibenzylideneacetone) as the palladium source and 1,3-bis(diphenylphosphino)propane (DPPP) as the bidentate ligand. These transformations were run in the two-chamber reactor, COware, applying only 1.5 equivalents of carbon monoxide generated from the CO-releasing compound, 9-methylfluorene-9-carbonyl chloride (COgen). The methodology proved adaptable to a wide variety of aryl and heteroaryl bromides leading to a diverse range of aryl 1,3-diketones. A mechanistic investigation of this transformation relying on 31P and 13C NMR spectroscopy was undertaken to determine the possible catalytic pathway. Our results revealed that the combination of [Pd(dba)2] and DPPP was only reactive towards 4-bromoanisole in the presence of the sodium enolate of propiophenone suggesting that a [Pd(dppp)(enolate)] anion was initially generated before the oxidative-addition step. Subsequent CO insertion into an [Pd(Ar)(dppp)(enolate)] species provided the 1,3-diketone. These results indicate that a catalytic cycle, different from the classical carbonylation mechanism proposed by Heck, is operating. To investigate the effect of the dba ligand, the Pd0 precursor, [Pd(η3-1-PhC3H4)(η5-C5H5)], was examined. In the presence of DPPP, and in contrast to [Pd(dba)2], its oxidative addition with 4-bromoanisole occurred smoothly providing the [PdBr(Ar)(dppp)] complex. After treatment with CO, the acyl complex [Pd(CO)Br(Ar)(dppp)] was generated, however, its treatment with the sodium enolate led exclusively to the acylated enol in high yield. Nevertheless, the carbonylative α-arylation of 4-bromoanisole with either catalytic or stoichiometric [Pd(η3-1-PhC3H4)(η5-C5H5)] over a short reaction time, led to the 1,3-diketone product

  9. Controlled Hydrosilylation of Carbonyls and Imines Catalyzed by a Cationic Alkyl Complex

    SciTech Connect

    Koller, Jurgen; Bergman, Robert G.

    2012-04-09

    The synthesis, characterization, and unprecedented catalytic activity of cationic aluminum alkyl complexes toward hydrosilylation are described. X-ray crystallographic analysis of Tp*AlMe₂ (1) and [Tp*AlMe][I₃] (3) revealed the preference of Al for a tetrahedral coordination environment and the versatility of the Tp* ligand in stabilizing Al in bi- and tridentate coordination modes. [Tp*AlMe][MeB(C₆F₅)₃] (2) is highly active toward the hydrosilylation of a wide variety of carbonyls and imines, thus providing an inexpensive and versatile alternative to late transition metal catalysts.

  10. Distinctive activation and functionalization of hydrocarbon C-H bonds initiated by Cp*W(NO)(η(3)-allyl)(CH2CMe3) complexes.

    PubMed

    Baillie, Rhett A; Legzdins, Peter

    2014-02-18

    Converting hydrocarbon feedstocks into value-added chemicals continues to offer challenges to contemporary preparative chemists. A particularly important remaining challenge is the selective activation and functionalization of the C(sp(3))-H linkages of alkanes, which are relatively abundant but chemically inert. This Account outlines the discovery and development of C-H bond functionalization mediated by a family of tungsten organometallic nitrosyl complexes. Specifically, it describes how gentle thermolyses of any of four 18-electron Cp*W(NO)(η(3)-allyl)(CH2CMe3) complexes (Cp* = η(5)-C5Me5; η(3)-allyl = η(3)-H2CCHCHMe, η(3)-H2CCHCHSiMe3, η(3)-H2CCHCHPh, or η(3)-H2CCHCMe2) results in the loss of neopentane and the transient formation of a 16-electron intermediate species, Cp*W(NO)(η(2)-allene) and/or Cp*W(NO)(η(2)-diene). We have never detected any of these species spectroscopically, but we infer their existence based on trapping experiments with trimethylphosphine (PMe3) and labeling experiments using deuterated hydrocarbon substrates. This Account first summarizes the syntheses and properties of the four chiral Cp*W(NO)(η(3)-allyl)(CH2CMe3) complexes. It then outlines the various types of C-H activations we have effected with each of the 16-electron (η(2)-allene) or (η(2)-diene) intermediate nitrosyl complexes, and presents the results of mechanistic investigations of some of these processes. It next describes the characteristic chemical properties of the Cp*W(NO)(η(3)-allyl)(η(1)-hydrocarbyl) compounds formed by the single activations of C(sp(3))-H bonds, with particular emphasis on those reactions that result in the selective functionalization of the original hydrocarbon substrate. We are continuing development of methods to release the acyl ligands from the metal centers while keeping the Cp*W(NO)(η(3)-allyl) fragments intact, with the ultimate aim of achieving these distinctive conversions of alkanes into functionalized organics in a

  11. Synthesis of nearly enantiopure allylic amines by aza-Claisen rearrangement of Z-configured allylic trifluoroacetimidates catalyzed by highly active ferrocenylbispalladacycles.

    PubMed

    Jautze, Sascha; Seiler, Paul; Peters, René

    2008-01-01

    The development of the first highly active enantioselective catalyst for the aza-Claisen rearrangement of Z-configured allylic trifluoroacetimidates generating valuable almost enantiopure protected allylic amines is described. Usually Z-configured allylic imidates react significantly slower than their E-configured counterparts, but in the present study the opposite effect was observed. Z-Configured olefins have the principal practical advantage that a geometrically pure C=C double bond can be readily obtained, for example, by semihydrogenations of alkynes. Our catalyst, a C(2)-symmetric planar chiral bispalladacycle complex, is rapidly prepared from ferrocene in four simple steps. Key step of this protocol is an unprecedented highly diastereoselective biscyclopalladation providing dimeric macrocyclic complexes of fascinating structure. In the present study as little as 0.1 mol % of catalyst precursor were sufficient for most of the alkyl substituted substrates to give in general almost quantitative yields. NMR investigations revealed a monomeric structure for the active catalyst species. The bispalladacycle can also be used for the formation of almost enantiomerically pure allylic amines (ee > or =96 %) substituted with important functional groups such as ester, ketone, ether, silyl ether, acetal or protected amino moieties providing high-added-value allylic amine building blocks in excellent yield (> or =94 %). The preparative advantages should render this methodology highly appealing as a practical and valuable tool for the formation of allylic amines in target oriented synthesis.

  12. C1-C14 carbonyls in Los Angeles air

    SciTech Connect

    Grosjean, E.; Grosjean, D.; Fraser, M.; Cass, G.R.

    1995-12-01

    Air samples collected at five Los Angeles locations have been analyzed for carbonyls as their DNPH derivatives using liquid chromatography and chemical ionization mass spectrometry. Twenty-three carbonyls have been measured: 14 aliphatic aldehydes (from formaldehyde to tetradecanal); 2 aromatics (benzaldehyde and m-tolualdehyde), 3 ketones (acetone, 2-butanone and cyclohexanone), one unsaturated carbonyl (crotonaldehyde) and 3 dicarbonyls (glyoxal, methylglyoxal and biacetyl). Another nineteen carbonyls have been tentatively identified including four high MW (C{sub 15}-C{sub 18}) aliphatic carbonyls.

  13. Catalytic reforming

    SciTech Connect

    Aldag, A.W. Jr.

    1986-01-28

    This patent describes a process for the catalytic reforming of a feedstock which contains at least one reformable organic compound. The process consists of contacting the feedstock under suitable reforming conditions with a catalyst composition selected from the group consisting of a catalyst. The catalyst essentially consists of zinc oxide and a spinel structure alumina. Another catalyst consists essentially of a physical mixture of zinc titanate and a spinel structure alumina in the presence of sufficient added hydrogen to substantially prevent the formation of coke. Insufficient zinc is present in the catalyst composition for the formation of a bulk zinc aluminate.

  14. New Ir Bis-Carbonyl Precursor for Water Oxidation Catalysis.

    PubMed

    Huang, Daria L; Beltrán-Suito, Rodrigo; Thomsen, Julianne M; Hashmi, Sara M; Materna, Kelly L; Sheehan, Stafford W; Mercado, Brandon Q; Brudvig, Gary W; Crabtree, Robert H

    2016-03-07

    This paper introduces Ir(I)(CO)2(pyalc) (pyalc = (2-pyridyl)-2-propanoate) as an atom-efficient precursor for Ir-based homogeneous oxidation catalysis. This compound was chosen to simplify analysis of the water oxidation catalyst species formed by the previously reported Cp*Ir(III)(pyalc)OH water oxidation precatalyst. Here, we present a comparative study on the chemical and catalytic properties of these two precursors. Previous studies show that oxidative activation of Cp*Ir-based precursors with NaIO4 results in formation of a blue Ir(IV) species. This activation is concomitant with the loss of the placeholder Cp* ligand which oxidatively degrades to form acetic acid, iodate, and other obligatory byproducts. The activation process requires substantial amounts of primary oxidant, and the degradation products complicate analysis of the resulting Ir(IV) species. The species formed from oxidation of the Ir(CO)2(pyalc) precursor, on the other hand, lacks these degradation products (the CO ligands are easily lost upon oxidation) which allows for more detailed examination of the resulting Ir(pyalc) active species both catalytically and spectroscopically, although complete structural analysis is still elusive. Once Ir(CO)2(pyalc) is activated, the system requires acetic acid or acetate to prevent the formation of nanoparticles. Investigation of the activated bis-carbonyl complex also suggests several Ir(pyalc) isomers may exist in solution. By (1)H NMR, activated Ir(CO)2(pyalc) has fewer isomers than activated Cp*Ir complexes, allowing for advanced characterization. Future research in this direction is expected to contribute to a better structural understanding of the active species. A diol crystallization agent was needed for the structure determination of 3.

  15. The importance of the Lewis base in lithium mediated metallation and bond cleavage reaction of allyl amines and allyl phosphines.

    PubMed

    Blair, V L; Stevens, M A; Thompson, C D

    2016-06-21

    Metallation of two analogous N- and P-allyl molecules Ph2NCH2CHCH2 and Ph2PCH2CHCH2 with nBuLi have shown contrasting reactivities based on the choice of Lewis donor. With metallation of the alpha carbon atom was achieved regardless of the Lewis donor used while in comparison metallation of showed an unexpected donor denticity dependence with P-C bond clevage induced with the tri-dentate PMDETA. Complementary DFT and solution studies rationalise this outcome.

  16. Zirconium-mediated coupling reactions of amines and enol or allyl ethers: synthesis of allyl- and homoallylamines.

    PubMed

    Barluenga, José; Rodríguez, Félix; Alvarez-Rodrigo, Lucía; Zapico, José M; Fañanás, Francisco J

    2004-01-05

    An easy and efficient zirconium-mediated synthesis of allylamines from simple amines and enol ethers is described. This strategy also allows the synthesis of amino alcohol derivatives containing a Z double bond in their structure when 2,3-dihydrofuran is used. Simple conventional modification of these amino alcohols leads to 2-substituted piperidine derivatives. By applying this approach, a formal total synthesis of the alkaloid coniine is easily achieved from a protected butylamine. Finally, the zirconium-mediated reaction of amines and allyl phenyl ether furnishes homoallylamines or amino ethers depending on the structure of the starting amine.

  17. Cation control of diastereoselectivity in iridium-catalyzed allylic substitutions. Formation of enantioenriched tertiary alcohols and thioethers by allylation of 5H-oxazol-4-ones and 5H-thiazol-4-ones.

    PubMed

    Chen, Wenyong; Hartwig, John F

    2014-01-08

    We report highly diastereo- and enantioselective allylations of substituted 5H-oxazol-4-ones and 5H-thiazol-4-ones catalyzed by a metallacyclic iridium complex. Enantioselective Ir-catalyzed allylation of substituted 5H-oxazol-4-ones occurs with high diastereoselectivity by employing the corresponding zinc enolates; enantioselective Ir-catalyzed allylation of substituted 5H-thiazol-4-ones occurs with the corresponding magnesium enolates with high diastereoselectivity. The allylation of substituted 5H-oxazol-4-ones provides rapid access to enantioenriched tertiary α-hydroxy acid derivatives unavailable through Mo-catalyzed allylic substitution. The allylation of substituted 5H-thiazol-4-ones provides a novel method to synthesize enantioenriched tertiary thiols and thioethers. The observed cation effect implies a novel method to control the diastereoselectivity in Ir-catalyzed allylic substitution.

  18. Cation Control of Diastereoselectivity in Iridium-Catalyzed Allylic Substitutions. Formation of Enantioenriched Tertiary Alcohols and Thioethers by Allylation of 5H-Oxazol-4-ones and 5H-Thiazol-4-ones

    PubMed Central

    Chen, Wenyong; Hartwig, John F.

    2014-01-01

    We report a highly diastereo- and enantioselective allylation of substituted 5H-oxazol-4-ones and 5H-thiazol-4-ones catalyzed by the metallacyclic iridium complex. Enantioselective Ir-catalyzed allylation of substituted 5H-oxazol-4-ones occurs with high diastereoselectivity by employing the corresponding zinc enolates; enantioselective Ir-catalyzed allylation of substituted 5H-thiazol-4-ones requires the corresponding magnesium enolates to achieve high diastereoselectivity. The allylation of substituted 5H-oxazol-4-ones provides rapid access to enantioenriched tertiary α-hydroxy acid derivatives unavailable through Mo-catalyzed allylic substitution. The allylation of substituted 5H-thiazol-4-ones provides a novel method to synthesize enantioenriched tertiary thiols and thioethers. The observed cation effect implies a novel method to control the diastereoselectivity in Ir-catalyzed allylic substitution. PMID:24295427

  19. Glycosyl Cations versus Allylic Cations in Spontaneous and Enzymatic Hydrolysis.

    PubMed

    Danby, Phillip M; Withers, Stephen G

    2017-08-09

    Enzymatic prenyl and glycosyl transfer are seemingly unrelated reactions that yield molecules and protein modifications with disparate biological functions. However, both reactions employ diphosphate-activated donors and each proceed via cationic species: allylic cations and oxocarbenium ions, respectively. In this study, we explore the relationship between these processes by preparing valienyl ethers to serve as glycoside mimics that are capable of allylic rather than oxocarbenium cation stabilization. Rate constants for spontaneous hydrolysis of aryl glycosides and their analogous valienyl ethers were found to be almost identical, as were the corresponding activation enthalpies and entropies. This close similarity extended to the associated secondary kinetic isotope effects (KIEs), indicating very similar transition state stabilities and structures. Screening a library of over 100 β-glucosidases identified a number of enzymes that catalyze hydrolysis of these valienyl ethers with kcat values up to 20 s(-1). Detailed analysis of one such enzyme showed that ether hydrolysis occurs via the analogous mechanisms found for glycosides, and through a very similar transition state. This suggests that the generally lower rates of enzymatic cleavage of the cyclitol ethers reflects evolutionary specialization of these enzymes toward glycosides rather than inherent reactivity differences.

  20. Do garlic-derived allyl sulfides scavenge peroxyl radicals?

    PubMed

    Amorati, Riccardo; Pedulli, Gian Franco

    2008-03-21

    The chain-breaking antioxidant activities of two garlic-derived allyl sulfides, i.e. diallyl disulfide (1), the main component of steam-distilled garlic oil, and allyl methyl sulfide (3) were evaluated by studying the thermally initiated autoxidation of cumene or styrene in their presence. Although the rate of cumene oxidation was reduced by addition of both 1 and 3, the dependence on the concentration of the two sulfides could not be explained on the basis of the classic antioxidant mechanism as with phenolic antioxidants. The rate of oxidation of styrene, on the other hand, did not show significant changes upon addition of either 1 or 3. This unusual behaviour was explained in terms of the co-oxidant effect, consisting in the decrease of the autoxidation rate of a substrate forming tertiary peroxyl radicals (i.e. cumene) upon addition of little amounts of a second oxidizable substrate giving rise instead to secondary peroxyl radicals. The relevant rate constants for the reaction of ROO(.) with 1 and 3 were measured as 1.6 and 1.0 M(-1) s(-1), respectively, fully consistent with the H-atom abstraction from substituted sulfides. It is therefore concluded that sulfides 1 and 3 do not scavenge peroxyl radicals and therefore cannot be considered chain-breaking antioxidants.

  1. Cross-coupling of aromatic bromides with allylic silanolate salts.

    PubMed

    Denmark, Scott E; Werner, Nathan S

    2008-12-03

    The sodium salts of allyldimethylsilanol and 2-butenyldimethylsilanol undergo palladium-catalyzed cross-coupling with a wide variety of aryl bromides to afford allylated and crotylated arenes. The coupling of both silanolates required extensive optimization to deliver the expected products in high yields. The reaction of the allyldimethylsilanolate takes place at 85 degrees C in 1,2-dimethoxyethane with allylpalladium chloride dimer (2.5 mol %) to afford 73-95% yields of the allylation products. Both electron-rich and sterically hindered bromides reacted smoothly, whereas electron-poor bromides cross-coupled in poor yield because of a secondary isomerization to the 1-propenyl isomer (and subsequent polymerization). The 2-butenyldimethylsilanolate (E/Z, 80:20) required additional optimization to maximize the formation of the branched (gamma-substitution) product. A remarkable influence of added alkenes (dibenzylideneacetone and norbornadiene) led to good selectivities for electron-rich and electron-poor bromides in 40-83% yields. However, bromides containing coordinating groups (particularly in the ortho position) gave lower, and in one case even reversed, selectivity. Configurationally homogeneous (E)-silanolates gave slightly higher gamma-selectivity than the pure (Z)-silanolates. A unified mechanistic picture involving initial gamma-transmetalation followed by direct reductive elimination or sigma-pi isomerization can rationalize all of the observed trends.

  2. Kinetic mechanism of pulmonary carbonyl reductase.

    PubMed

    Matsuura, K; Nakayama, T; Nakagawa, M; Hara, A; Sawada, H

    1988-05-15

    The kinetic mechanism of guinea-pig lung carbonyl reductase was studied at pH 7 in the forward reaction with five carbonyl substrates and NAD(P)H and in the reverse reaction with propan-2-ol and NAD(P)+. In each case the enzyme mechanism was sequential, and product-inhibition studies were consistent with a di-iso ordered bi bi mechanism, in which NAD(P)H binds to the enzyme first and NAD(P)+ leaves last and the binding of cofactor induces isomerization. The kinetic and binding studies of the cofactors and several inhibitors such as pyrazole, benzoic acid, Cibacron Blue and benzamide indicate that the cofactor and Cibacron Blue bind to the free enzyme whereas the other inhibitors bind to the binary and/or ternary complexes.

  3. Kinetic mechanism of pulmonary carbonyl reductase.

    PubMed Central

    Matsuura, K; Nakayama, T; Nakagawa, M; Hara, A; Sawada, H

    1988-01-01

    The kinetic mechanism of guinea-pig lung carbonyl reductase was studied at pH 7 in the forward reaction with five carbonyl substrates and NAD(P)H and in the reverse reaction with propan-2-ol and NAD(P)+. In each case the enzyme mechanism was sequential, and product-inhibition studies were consistent with a di-iso ordered bi bi mechanism, in which NAD(P)H binds to the enzyme first and NAD(P)+ leaves last and the binding of cofactor induces isomerization. The kinetic and binding studies of the cofactors and several inhibitors such as pyrazole, benzoic acid, Cibacron Blue and benzamide indicate that the cofactor and Cibacron Blue bind to the free enzyme whereas the other inhibitors bind to the binary and/or ternary complexes. PMID:3048244

  4. Oxidative carbonylation of amines to carbamates

    SciTech Connect

    Waller, F.J.

    1987-04-01

    Within the last several years, new technologies have appeared to replace phosgene for isocyanate manufacture. These include carbamate chemistries based upon dialkyl carbonate, reductive carbonylation of nitroaromatics, and oxidative carbonylation of amines. The carbamate ester can be handled safely and is reversibly cleaved to the isocyanate. The technology described here involves the preparation of both aliphatic and aromatic carbamates from an amine, alcohol, CO, oxidant, and a non-corrosive catalyst. The catalyst precursor is Pd(OAc){sub 2} and the oxidants are copper carboxylates or copper carboxylates and molecular oxygen. The latter represents a one-step carbamate synthesis with high catalyst activity, nearly quantitative conversions and alcohol selectivities greater than 90%. Operating temperatures and pressures are 80-110{degree}C and less than 500 psi, respectively. Experiments designed to probe the mechanism will be presented along with a discussion of novel (Cu(O{sub 2}CR){sub 2}){sub 2}R'NH{sub 2} complexes.

  5. The oceanic cycle and global atmospheric budget of carbonyl sulfide

    SciTech Connect

    Weiss, P.S.

    1994-12-31

    A significant portion of stratospheric air chemistry is influenced by the existence of carbonyl sulfide (COS). This ubiquitous sulfur gas represents a major source of sulfur to the stratosphere where it is converted to sulfuric acid aerosol particles. Stratospheric aerosols are climatically important because they scatter incoming solar radiation back to space and are able to increase the catalytic destruction of ozone through gas phase reactions on particle surfaces. COS is primarily formed at the surface of the earth, in both marine and terrestrial environments, and is strongly linked to natural biological processes. However, many gaps in the understanding of the global COS cycle still exist, which has led to a global atmospheric budget that is out of balance by a factor of two or more, and a lack of understanding of how human activity has affected the cycling of this gas. The goal of this study was to focus on COS in the marine environment by investigating production/destruction mechanisms and recalculating the ocean-atmosphere flux.

  6. Heterogeneous oxidation of carbonyl sulfide on atmospheric particles and alumina.

    PubMed

    He, Hong; Liu, Junfeng; Mu, Yujing; Yu, Yunbo; Chen, Meixue

    2005-12-15

    Heterogeneous oxidation of carbonyl sulfide (OCS) on atmospheric particles and alumina (Al2O3) was investigated in a closed system and a flowed system using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). At room temperature, OCS could be catalytically oxidized on the surface of atmospheric particles and Al2O3 to form gas-phase CO2 and surface sulfate (SO4(2-)), sulfite (HSO3-), and hydrogen carbonate (HCO3-) species. The real atmospheric particles were characterized using X-ray fluorescence (XRF) and the Brunauer-Emmett-Teller (BET) method. As a simplified model, Al2O3 was used to study the reaction mechanism of heterogeneous oxidation of OCS. The hydrogen thiocarbonate surface (HSCO2-) species, an intermediate formed in the reaction of OCS with surface hydroxyl (OH), could only be observed on the prereduced Al2O3 sample. The experimental results also indicate that surface oxygen containing species on the atmospheric particle sample and the Al2O3 sample might be the key reactant for OCS oxidation. A reaction mechanism of heterogeneous oxidation of OCS on Al2O3 surface is discussed.

  7. Importance of ligand exchanges in Pd(II)-Brønsted acid cooperative catalytic approach to spirocyclic rings.

    PubMed

    Jindal, Garima; Sunoj, Raghavan B

    2014-11-12

    Increasing number of reports in the most recent literature convey the use of palladium and Brønsted acids as cooperative catalytic partners. However, the mechanistic understanding of several such cooperative catalytic reactions and the origin of cooperativity continue to remain limited. In transition metal catalysis, it is typically assumed that the native ligands, such as the acetates in palladium acetate, are retained throughout the catalytic cycle. Herein, we convey the significance of invoking ligand exchanges in transition metal catalysis by using the mechanism of a representative cooperative dual-catalytic reaction. Density functional theory (M06 and B3LYP) computations have been employed to decipher the mechanism of Pd(II)-Brønsted acid catalyzed migratory ring expansion reaction of an indenyl cyclobutanol to a spirocyclic indene bearing a quaternary carbon. The molecular role of water, benzoquinone and phosphoric acid has been probed by computing the energetics using several combinations of all these as ligands on palladium. Of the two key mechanistic possibilities examined, a Wacker-type pathway (involving a semipinacol ring expansion of cyclobutanol followed by a reductive elimination) is found to be energetically more preferred over an allylic pathway wherein the ring expansion in a Pd-π-allyl intermediate occurs subsequent to the initial allylic C-H activation. The Gibbs free energies of the transition states with the native palladium acetate are much higher than a Pd-bis-phosphate species generated through ligand exchanges.

  8. Spatiotemporal distribution of carbonyl compounds in China.

    PubMed

    Ho, K F; Ho, Steven Sai Hang; Huang, R-J; Dai, W T; Cao, J J; Tian, Linwei; Deng, W J

    2015-02-01

    A sampling campaign was carried out at nine Chinese cities in 2010/2011. Fifteen monocarbonyls (C# = 1-9) were quantified. Temperature is the rate-determining factor of the summertime carbonyl levels. The carbonyl emissions in winter are mainly driven by the primary anthropogenic sources like automobile. A molar ratio of propionaldehyde to nonaldehyde is a barometer of the impact of atmospheric vegetation emission which suggesting that strong vegetation emissions exist in summer and high propionaldehyde abundance is caused by fossil fuel combustion in winter. Potential health risk assessment of formaldehyde and acetaldehyde was conducted and the highest cumulative risks were observed at Chengdu in summer and Wuhan in winter. Because of the strong photochemical reaction and large amount of anthropogenic emissions, high concentrations of carbonyl compounds were observed in Chengdu. The use of ethanol-blended gasoline in Wuhan is the key reason of acetaldehyde emission and action should be taken to avoid potential health risks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Carbonyl compounds generated from electronic cigarettes.

    PubMed

    Bekki, Kanae; Uchiyama, Shigehisa; Ohta, Kazushi; Inaba, Yohei; Nakagome, Hideki; Kunugita, Naoki

    2014-10-28

    Electronic cigarettes (e-cigarettes) are advertised as being safer than tobacco cigarettes products as the chemical compounds inhaled from e-cigarettes are believed to be fewer and less toxic than those from tobacco cigarettes. Therefore, continuous careful monitoring and risk management of e-cigarettes should be implemented, with the aim of protecting and promoting public health worldwide. Moreover, basic scientific data are required for the regulation of e-cigarette. To date, there have been reports of many hazardous chemical compounds generated from e-cigarettes, particularly carbonyl compounds such as formaldehyde, acetaldehyde, acrolein, and glyoxal, which are often found in e-cigarette aerosols. These carbonyl compounds are incidentally generated by the oxidation of e-liquid (liquid in e-cigarette; glycerol and glycols) when the liquid comes in contact with the heated nichrome wire. The compositions and concentrations of these compounds vary depending on the type of e-liquid and the battery voltage. In some cases, extremely high concentrations of these carbonyl compounds are generated, and may contribute to various health effects. Suppliers, risk management organizations, and users of e-cigarettes should be aware of this phenomenon.

  10. Carbonyl Compounds Generated from Electronic Cigarettes

    PubMed Central

    Bekki, Kanae; Uchiyama, Shigehisa; Ohta, Kazushi; Inaba, Yohei; Nakagome, Hideki; Kunugita, Naoki

    2014-01-01

    Electronic cigarettes (e-cigarettes) are advertised as being safer than tobacco cigarettes products as the chemical compounds inhaled from e-cigarettes are believed to be fewer and less toxic than those from tobacco cigarettes. Therefore, continuous careful monitoring and risk management of e-cigarettes should be implemented, with the aim of protecting and promoting public health worldwide. Moreover, basic scientific data are required for the regulation of e-cigarette. To date, there have been reports of many hazardous chemical compounds generated from e-cigarettes, particularly carbonyl compounds such as formaldehyde, acetaldehyde, acrolein, and glyoxal, which are often found in e-cigarette aerosols. These carbonyl compounds are incidentally generated by the oxidation of e-liquid (liquid in e-cigarette; glycerol and glycols) when the liquid comes in contact with the heated nichrome wire. The compositions and concentrations of these compounds vary depending on the type of e-liquid and the battery voltage. In some cases, extremely high concentrations of these carbonyl compounds are generated, and may contribute to various health effects. Suppliers, risk management organizations, and users of e-cigarettes should be aware of this phenomenon. PMID:25353061

  11. Synthesis of metal-carbonyl-dendrimer-antibody immunoconjugates: towards a new format for carbonyl metallo immunoassay.

    PubMed

    Fischer-Durand, Nathalie; Salmain, Michèle; Rudolf, Bogna; Vessières, Anne; Zakrzewski, Janusz; Jaouen, Gérard

    2004-04-02

    We report the preparation of metal-carbonyl-dendrimer-antibody conjugates. These metal-carbonyl-multilabeled antibodies are designed to be used in a new solid-phase-format carbonyl metallo immunoassay (CMIA). A fourth-generation polyamidoamine dendrimer was labeled with 10-25 (eta5-cyclopentadienyl)iron dicarbonyl (eta1-N-succinimidyl) entities. An antibody was chemically modified at its carbohydrate chains by a site-directed process used to preserve the antigen-antibody binding site. The antibody was then coupled with the dendrimer labeled with 10 metal carbonyl groups. An average of 1.4 labeled dendrimers were grafted per antibody molecule. These metal-carbonyl-dendrimer-antibody conjugates were used as new universal detection reagents that recognize their specific antigens. The antigens were spotted onto nitrocellulose membranes and detected by using the conjugates in combination with Fourier transform infrared spectroscopy. A detection level in the range 5-200 pmol per membrane was achieved. This approach opens the way to a new CMIA format.

  12. Carbonyl compound emissions from passenger cars fueled with methanol/gasoline blends.

    PubMed

    Zhao, Hong; Ge, Yunshan; Hao, Chunxiao; Han, Xiukun; Fu, Mingliang; Yu, Linxiao; Shah, Asad Naeem

    2010-08-01

    Carbonyl compound emissions from two passenger cars fueled with different methanol/gasoline blends (M15 and M100) and operated with three-way catalytic converters (TWC) were investigated. The tests were performed on a chassis dynamometer with constant volume sampling over the New European Driving Cycle (NEDC). Carbonyls were trapped on dinitrophenylhydrazine (DNPH) cartridges. The hydrazones formed on the cartridge were analyzed by means of high-performance liquid chromatography (HPLC) and detected with a variable wavelength detector. The results show that when cars were fueled with methanol/gasoline blends, carbon monoxide (CO) and total hydrocarbon (THC) emissions decreased by 9-21% and 1-55% respectively, while nitrogen oxide (NO(x)) emissions increased by 175-233%. Compared with gasoline vehicles, formaldehyde emissions with M15 and M100 were two and four times higher respectively, and total carbonyls with M15 and M100 increased by 3% and 104% respectively. With the use of the new TWC, both regulated gas pollutants and formaldehyde decreased. The new TWC caused a decrease of 5% and 31% in formaldehyde concentration for M15 and M100, respectively. Specific reactivity (SR) with the new TWC was reduced from 5.92 to 5.72 for M15 and from 7.00 to 6.93 for M100, indicating that M15 and M100 with the new TWC were friendlier to the environment.

  13. Enantioselective Functionalization of Allylic C-H Bonds Following a Strategy of Functionalization and Diversification

    PubMed Central

    Sharma, Ankit; Hartwig, John F.

    2013-01-01

    We report the enantioselective functionalization of allylic C-H bonds in terminal alkenes by a strategy involving the installation of a temporary functional group at the terminal carbon atom by C-H bond functionalization, followed by diversification of this intermediate with a broad scope of reagents. The method consists of a one-pot sequence of palladium-catalyzed allylic C-H bond oxidation under neutral conditions to form linear allyl benzoates, followed by iridium-catalyzed allylic substitution. This overall transformation forms a variety of chiral products containing a new C-N, C-O, C-S or C-C bond at the allylic position in good yield with high branched-to-linear selectivity and excellent enantioselectivity (ee ≤ 97%). The broad scope of the overall process results from separating the oxidation and functionalization steps; by doing so, the scope of nucleophile encompasses those sensitive to direct oxidative functionalization. The high enantioselectivity of the overall process is achieved by developing an allylic oxidation that occurs without acid to form the linear isomer with high selectivity. These allylic functionalization processes are amenable to an iterative sequence leading to (1,n)-functionalized products with catalyst-controlled diastereo- and enantioselectivity. The utility of the method in the synthesis of biologically active molecules has been demonstrated. PMID:24156776

  14. Millimeter wave spectra of carbonyl cyanide

    NASA Astrophysics Data System (ADS)

    Bteich, S. B.; Tercero, B.; Cernicharo, J.; Motiyenko, R. A.; Margulès, L.; Guillemin, J.-C.

    2016-07-01

    Context. More than 30 cyanide derivatives of simple organic molecules have been detected in the interstellar medium, but only one dicarbonitrile has been found and that very recently. There is still a lack of high-resolution spectroscopic data particularly for dinitriles derivatives. The carbonyl cyanide molecule is a new and interesting candidate for astrophysical detection. It could be formed by the reaction of CO and CN radicals, or by substitution of the hydrogen atom by a cyano group in cyanoformaldehyde, HC(=O)CN, that has already been detected in the interstellar medium. Aims: The available data on the rotational spectrum of carbonyl cyanide is limited in terms of quantum number values and frequency range, and does not allow accurate extrapolation of the spectrum into the millimeter-wave range. To provide a firm basis for astrophysical detection of carbonyl cyanide we studied its millimeter-wave spectrum. Methods: The rotational spectrum of carbonyl cyanide was measured in the frequency range 152-308 GHz and analyzed using Watson's A- and S-reduction Hamiltonians. Results: The ground and first excited state of v5 vibrational mode were assigned and analyzed. More than 1100 distinct frequency lines of the ground state were fitted to produce an accurate set of rotational and centrifugal distortion constants up to the eighth order. The frequency predictions based on these constants should be accurate enough for astrophysical searches in the frequency range up to 500 GHz and for transition involving energy levels with J ≤ 100 and Ka ≤ 42. Based on the results we searched for interstellar carbonyl cyanide in available observational data without success. Thus, we derived upper limits to its column density in different sources. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2011.0.00009.SV. ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan) with NRC (Canada), NSC, and ASIAA (Taiwan), and KASI (Republic of

  15. Evolution of a Catalytic Mechanism

    PubMed Central

    Rauwerdink, Alissa; Lunzer, Mark; Devamani, Titu; Jones, Bryan; Mooney, Joanna; Zhang, Zhi-Jun; Xu, Jian-He; Kazlauskas, Romas J.; Dean, Antony M.

    2016-01-01

    The means by which superfamilies of specialized enzymes arise by gene duplication and functional divergence are poorly understood. The escape from adaptive conflict hypothesis, which posits multiple copies of a gene encoding a primitive inefficient and highly promiscuous generalist ancestor, receives support from experiments showing that resurrected ancestral enzymes are indeed more substrate-promiscuous than their modern descendants. Here, we provide evidence in support of an alternative model, the innovation–amplification–divergence hypothesis, which posits a single-copied ancestor as efficient and specific as any modern enzyme. We argue that the catalytic mechanisms of plant esterases and descendent acetone cyanohydrin lyases are incompatible with each other (e.g., the reactive substrate carbonyl must bind in opposite orientations in the active site). We then show that resurrected ancestral plant esterases are as catalytically specific as modern esterases, that the ancestor of modern acetone cyanohydrin lyases was itself only very weakly promiscuous, and that improvements in lyase activity came at the expense of esterase activity. These observations support the innovation–amplification–divergence hypothesis, in which an ancestor gains a weak promiscuous activity that is improved by selection at the expense of the ancestral activity, and not the escape from adaptive conflict in which an inefficient generalist ancestral enzyme steadily loses promiscuity throughout the transition to a highly active specialized modern enzyme. PMID:26681154

  16. Catalytic reactor

    SciTech Connect

    Aaron, Timothy Mark; Shah, Minish Mahendra; Jibb, Richard John

    2009-03-10

    A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

  17. Carbonyl emissions from gasoline and diesel motor vehicles.

    PubMed

    Jakober, Chris A; Robert, Michael A; Riddle, Sarah G; Destaillats, Hugo; Charles, M Judith; Green, Peter G; Kleeman, Michael J

    2008-07-01

    Carbonyls from gasoline-powered light-duty vehicles (LDVs) and heavy-duty diesel-powered vehicles (HDDVs) operated on chassis dynamometers were measured by use of an annular denuder-quartz filter-polyurethane foam sampler with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine derivatization and chromatography-mass spectrometry analyses. Two internal standards were utilized based on carbonyl recovery: 4-fluorobenzaldehyde for < C8 carbonyls and 6-fluoro-4-chromanone for > or = C8 compounds. Gas- and particle-phase emissions for 39 aliphatic and 20 aromatic carbonyls ranged from 0.1 to 2000 microg/L of fuel for LDVs and from 1.8 to 27 000 microg/L of fuel for HDDVs. Gas-phase species accounted for 81-95% of the total carbonyls from LDVs and 86-88% from HDDVs. Particulate carbonyls emitted from a HDDV under realistic driving conditions were similar to concentrations measured in a diesel particulate matter (PM) standard reference material. Carbonyls accounted for 19% of particulate organic carbon (POC) emissions from low-emission LDVs and 37% of POC emissions from three-way catalyst-equipped LDVs. This identifies carbonyls as one of the largest classes of compounds in LDV PM emissions. The carbonyl fraction of HDDV POC was lower, 3.3-3.9% depending upon operational conditions. Partitioning analysis indicates the carbonyls had not achieved equilibrium between the gas and particle phases under the dilution factors of 126-584 used in the present study.

  18. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    SciTech Connect

    Destaillats, Hugo; Jakober, Chris A.; Robert, Michael A.; Riddle, Sarah G.; Destaillats, Hugo; Charles, M. Judith; Green, Peter G.; Kleeman, Michael J.

    2007-12-01

    Carbonyls from gasoline powered light-duty vehicles (LDVs) and heavy-duty diesel powered vehicles (HDDVs) operated on chassis dynamometers were measured using an annular denuder-quartz filter-polyurethane foam sampler with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine derivatization and chromatography-mass spectrometry analyses. Two internal standards were utilized based on carbonyl recovery, 4-fluorobenzaldehyde forcarbonyls and 6-fluoro-4-chromanone for>_C8 compounds. Gas- and particle-phase emissions for 39 aliphatic and 20 aromatic carbonyls ranged from 0.1 ? 2000 ?g/L fuel for LDVs and 1.8 - 27000 mu g/L fuel for HDDVs. Gas-phase species accounted for 81-95percent of the total carbonyls from LDVs and 86-88percent from HDDVs. Particulate carbonyls emitted from a HDDV under realistic driving conditions were similar to concentrations measured in a diesel particulate matter (PM) standard reference material. Carbonyls accounted for 19percent of particulate organic carbon (POC) emissions from low-emission LDVs and 37percent of POC emissions from three-way catalyst equipped LDVs. This identifies carbonyls as one of the largest classes of compounds in LDV PM emissions. The carbonyl fraction of HDDV POC was lower, 3.3-3.9percent depending upon operational conditions. Partitioning analysis indicates the carbonyls had not achieved equilibrium between the gas- and particle-phase under the dilution factors of 126-584 used in the current study.

  19. Validation of protein carbonyl measurement: a multi-centre study.

    PubMed

    Augustyniak, Edyta; Adam, Aisha; Wojdyla, Katarzyna; Rogowska-Wrzesinska, Adelina; Willetts, Rachel; Korkmaz, Ayhan; Atalay, Mustafa; Weber, Daniela; Grune, Tilman; Borsa, Claudia; Gradinaru, Daniela; Chand Bollineni, Ravi; Fedorova, Maria; Griffiths, Helen R

    2015-01-01

    Protein carbonyls are widely analysed as a measure of protein oxidation. Several different methods exist for their determination. A previous study had described orders of magnitude variance that existed when protein carbonyls were analysed in a single laboratory by ELISA using different commercial kits. We have further explored the potential causes of variance in carbonyl analysis in a ring study. A soluble protein fraction was prepared from rat liver and exposed to 0, 5 and 15min of UV irradiation. Lyophilised preparations were distributed to six different laboratories that routinely undertook protein carbonyl analysis across Europe. ELISA and Western blotting techniques detected an increase in protein carbonyl formation between 0 and 5min of UV irradiation irrespective of method used. After irradiation for 15min, less oxidation was detected by half of the laboratories than after 5min irradiation. Three of the four ELISA carbonyl results fell within 95% confidence intervals. Likely errors in calculating absolute carbonyl values may be attributed to differences in standardisation. Out of up to 88 proteins identified as containing carbonyl groups after tryptic cleavage of irradiated and control liver proteins, only seven were common in all three liver preparations. Lysine and arginine residues modified by carbonyls are likely to be resistant to tryptic proteolysis. Use of a cocktail of proteases may increase the recovery of oxidised peptides. In conclusion, standardisation is critical for carbonyl analysis and heavily oxidised proteins may not be effectively analysed by any existing technique.

  20. Homogeneous Pd-catalyzed transformation of terminal alkenes into primary allylic alcohols and derivatives.

    PubMed

    Tomita, Ren; Mantani, Kohei; Hamasaki, Akiyuki; Ishida, Tamao; Tokunaga, Makoto

    2014-08-04

    Synthesis of primary alcohols from terminal alkenes is an important process in both bulk and fine chemical syntheses. Herein, a homogeneous Pd-complex-catalyzed transformation of terminal alkenes into primary allylic alcohols, by using 5 mol % [Pd(PPh3)4] as a catalyst, and H2O, CO2, and quinone derivatives as reagents, is reported. When alcohols were used instead of H2O, allylic ethers were obtained. A proposed mechanism includes the addition of oxygen nucleophiles at the less-hindered terminal position of π-allyl Pd intermediates.

  1. Highly selective allylborations of aldehydes using α,α-disubstituted allylic pinacol boronic esters.

    PubMed

    Hesse, Matthew J; Essafi, Stéphanie; Watson, Charlotte G; Harvey, Jeremy N; Hirst, David; Willis, Christine L; Aggarwal, Varinder K

    2014-06-10

    α,α-Disubstituted allylic pinacol boronic esters undergo highly selective allylborations of aldehydes to give tetrasubstituted homoallylic alcohols with exceptional levels of anti-Z-selectivity (>20:1). The scope of the reaction includes both acyclic and cyclic allylic boronic esters which lead to acyclic and exocyclic tetrasubstituted homoallylic alcohols. The use of β-borylated allylic boronic esters gave fully substituted alkenes bearing a boronic ester which underwent further cross-coupling enabling a highly modular and stereoselective approach to the synthesis of diaryl tetrasubstituted alkenes. Computational analysis revealed the origin of the remarkable selectivity observed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Hydrogen-bond-assisted activation of allylic alcohols for palladium-catalyzed coupling reactions.

    PubMed

    Gumrukcu, Yasemin; de Bruin, Bas; Reek, Joost N H

    2014-03-01

    We report direct activation of allylic alcohols using a hydrogen-bond-assisted palladium catalyst and use this for alkylation and amination reactions. The novel catalyst comprises a palladium complex based on a functionalized monodentate phosphoramidite ligand in combination with urea additives and affords linear alkylated and aminated allylic products selectively. Detailed kinetic analysis show that oxidative addition of the allyl alcohol is the rate-determining step, which is facilitated by hydrogen bonds between the alcohol, the ligand functional group, and the additional urea additive.

  3. Aqueous reactions of triplet excited states with allylic compounds

    NASA Astrophysics Data System (ADS)

    Kaur, R.; Anastasio, C.; Hudson, B. M.; Tantillo, D. J.

    2016-12-01

    Triplet excited states of dissolved organic matter react with several classes of aromatic organics such as phenols, anilines, sulfonamide antibiotics and phenylurea herbicides. Aqueous triplets appear to be among the most important oxidants for atmospheric phenols in regions with biomass burning, with phenol lifetimes on the order of a few hours to a day. However, little is known of the reactions of triplets with other classes of organic compounds. Recent work from our group shows that triplets react rapidly with several biogenic volatile organic compounds (BVOCs), such as methyl jasmonate, cis-3-hexenyl acetate, and cis-3-hexen-1-ol. However, there are only a few rate constants for aqueous reactions between alkenes such as these and triplet excited states. For our work, we refer to these and similar alkenes which have hydrogen(s) attached to a carbon adjacent to the double bond, as allylic compounds. To better assess the importance of triplets as aqueous oxidants, we measured second-order rate constants (kAC+3BP*) for a number of allylic compounds (ACs) with the triplet state of benzophenone; then established a quantitative structure-activity relationship (QSAR) between kAC+3BP* and computed oxidation potential of the ACs (R2 =0.65). Using the QSAR, we estimated the rate constants for triplets with some allylic isoprene and limonene oxidation products that have high Henry's law constants (KH>103 M atm-1). Hydroxylated limonene products and the delta-isomers of isoprene hydroxyhydroperoxides (δ4ISOPOOH) and hydroxynitrates (δ4ISONO2) were faster with predicted kAC+3BP* values ranging between (0.5-3.5) x 109 M-1-s-1 whereas the beta-isomers of ISOPOOH and ISONO2 were slower (kAC+3BP* < 0.5 x 109 M-1s-1). We scaled the predicted kAC+3BP* to represent less reactive atmospheric triplets that have been measured in fog drops, and compared to gas and aqueous hydroxyl radical and ozone, triplets in fog could account for up to 20 % of the measured loss of these compounds

  4. Enolizable Carbonyls and N,O-Acetals: A Rational Approach for Room-Temperature Lewis Superacid-Catalyzed Direct α-Amidoalkylation of Ketones and Aldehydes.

    PubMed

    Touati, Bahria; El Bouakher, Abderrahman; Taillier, Catherine; Othman, Raja Ben; Trabelsi-Ayadi, Malika; Antoniotti, Sylvain; Duñach, Elisabet; Dalla, Vincent

    2016-04-18

    An efficient catalytic room-temperature direct α-amidoalkylation of carbonyl donors, that is, ketones and aldehydes with unbiased N,O-acetals, is described. Sn(NTf2 )4 is an optimal catalyst to promote this challenging transformation at low loading and the reaction shows promising scope. A comprehensive and rational evaluation of this reaction has led to the establishment of an empirical scale of nucleophilic reactivity for a broad set of ketones that should be helpful in the synthetic design and development of carbonyl α-functionalization methods. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Adsorption of acrolein, propanal, and allyl alcohol on Pd(111): a combined infrared reflection-absorption spectroscopy and temperature programmed desorption study.

    PubMed

    Dostert, Karl-Heinz; O'Brien, Casey P; Mirabella, Francesca; Ivars-Barceló, Francisco; Schauermann, Swetlana

    2016-05-18

    Atomistic-level understanding of the interaction of α,β-unsaturated aldehydes and their derivatives with late transition metals is of fundamental importance for the rational design of new catalytic materials with the desired selectivity towards C[double bond, length as m-dash]C vs. C[double bond, length as m-dash]O bond partial hydrogenation. In this study, we investigate the interaction of acrolein, and its partial hydrogenation products propanal and allyl alcohol, with Pd(111) as a prototypical system. A combination of infrared reflection-absorption spectroscopy (IRAS) and temperature programmed desorption (TPD) experiments was applied under well-defined ultrahigh vacuum (UHV) conditions to obtain detailed information on the adsorption geometries of acrolein, propanal, and allyl alcohol as a function of coverage. We compare the IR spectra obtained for multilayer coverages, reflecting the molecular structure of unperturbed molecules, with the spectra acquired for sub-monolayer coverages, at which the chemical bonds of the molecules are strongly distorted. Coverage-dependent IR spectra of acrolein on Pd(111) point to the strong changes in the adsorption geometry with increasing acrolein coverage. Acrolein adsorbs with the C[double bond, length as m-dash]C and C[double bond, length as m-dash]O bonds lying parallel to the surface in the low coverage regime and changes its geometry to a more upright orientation with increasing coverage. TPD studies indicate decomposition of the species adsorbed in the sub-monolayer regime upon heating. Similar strong coverage dependence of the IR spectra were found for propanal and allyl alcohol. For all investigated molecules a detailed assignment of vibrational bands is reported.

  6. Adsorption of acrolein, propanal, and allyl alcohol on Pd(111): a combined infrared reflection–absorption spectroscopy and temperature programmed desorption study

    PubMed Central

    Dostert, Karl-Heinz; O'Brien, Casey P.; Mirabella, Francesca; Ivars-Barceló, Francisco

    2016-01-01

    Atomistic-level understanding of the interaction of α,β-unsaturated aldehydes and their derivatives with late transition metals is of fundamental importance for the rational design of new catalytic materials with the desired selectivity towards C 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 C vs. CO bond partial hydrogenation. In this study, we investigate the interaction of acrolein, and its partial hydrogenation products propanal and allyl alcohol, with Pd(111) as a prototypical system. A combination of infrared reflection–absorption spectroscopy (IRAS) and temperature programmed desorption (TPD) experiments was applied under well-defined ultrahigh vacuum (UHV) conditions to obtain detailed information on the adsorption geometries of acrolein, propanal, and allyl alcohol as a function of coverage. We compare the IR spectra obtained for

  7. On the regiochemical differences between Pd-catalyzed heterocyclization-allylation and -arylation reactions of alkynylbenzamides: preparation of 4-allyl-isochromen-1-imines and computational study.

    PubMed

    Álvarez, Rosana; Vilar, Unai; Madich, Youssef; Aurrecoechea, José M

    2017-10-05

    The Pd(0)-catalyzed cyclization-allylation reactions of 2-alkynylbenzamides proceed with high regioselectivity to afford the 6-endo-cyclization-derived products 4-allyl-isochromen-1-imines. DFT calculations have been performed on this and the related arylation reaction, that has been reported to afford the products corresponding to an exo-cyclization under similarly Pd(0)-catalyzed conditions. Under the reaction conditions, these cyclizations are presumed to be triggered by activation of the C-C triple bond with either an allyl- or an aryl palladium complex, generated by oxidative addition of an allyl- or aryl halide to the Pd(0) catalyst. For reactions promoted by allylpalladium species, calculations predict a reversible cyclization, followed by a regioselectivity-determining endo-selective reductive elimination. In contrast, according to calculations, the corresponding arylations would proceed through irreversible exo-selective cyclization and reductive elimination steps. These predictions are consistent with the experimental observations. The divergent regiochemical outcome appears to have its origin in the differences caused on the intermediate palladium complexes by the groups derived from the coupling agents (allyl or aryl) and by the reaction conditions (solvent and ligands) through a subtle interplay of polarity and coordinative effects.

  8. Adaptive organic nanoparticles of a teflon-coated iron (III) porphyrin catalytically activate dioxygen for cyclohexene oxidation.

    PubMed

    Aggarwal, Amit; Singh, Sunaina; Samson, Jacopo; Drain, Charles Michael

    2012-07-26

    Self-organized organic nanoparticles (ONP) are adaptive to the environmental reaction conditions. ONP of fluorous alkyl iron(III) porphyrin catalytically oxidize cyclohexene to the allylic oxidation products. In contrast, the solvated metalloporphyrin yields both allylic oxidation and epoxidation products. The ONP system facilitates a greener reaction because about 89% reaction medium is water, molecular oxygen is used in place of synthetic oxidants, and the ambient reaction conditions used require less energy. The enhanced catalytic activity of these ONP is unexpected because the metalloporphyrins in the nanoaggregates are in the close proximity and the TON should diminish by self-oxidative degradation. The fluorous alkyl chain stabilizes the ONP toward self-oxidative degradation.

  9. Proteome-wide profiling of carbonylated proteins and carbonylation sites in HeLa cells under mild oxidative stress conditions.

    PubMed

    Bollineni, Ravi Chand; Hoffmann, Ralf; Fedorova, Maria

    2014-03-01

    A number of oxidative protein modifications have been well characterized during the past decade. Presumably, reversible oxidative posttranslational modifications (PTMs) play a significant role in redox signaling pathways, whereas irreversible modifications including reactive protein carbonyl groups are harmful, as their levels are typically increased during aging and in certain diseases. Despite compelling evidence linking protein carbonylation to numerous disorders, the underlying molecular mechanisms at the proteome remain to be identified. Recent advancements in analysis of PTMs by mass spectrometry provided new insights into the mechanisms of protein carbonylation, such as protein susceptibility and exact modification sites, but only for a limited number of proteins. Here we report the first proteome-wide study of carbonylated proteins including modification sites in HeLa cells for mild oxidative stress conditions. The analysis relied on our recent strategy utilizing mass spectrometry-based enrichment of carbonylated peptides after DNPH derivatization. Thus a total of 210 carbonylated proteins containing 643 carbonylation sites were consistently identified in three replicates. Most carbonylation sites (284, 44.2%) resulted from oxidation of lysine residues (aminoadipic semialdehyde). Additionally, 121 arginine (18.8%), 121 threonine (18.8%), and 117 proline residues (18.2%) were oxidized to reactive carbonyls. The sequence motifs were significantly enriched for lysine and arginine residues near carbonylation sites (±10 residues). Gene Ontology analysis revealed that 80% of the carbonylated proteins originated from organelles, 50% enrichment of which was demonstrated for the nucleus. Moreover, functional interactions between carbonylated proteins of kinetochore/spindle machinery and centrosome organization were significantly enriched. One-third of the 210 carbonylated proteins identified here are regulated during apoptosis.

  10. Sequence-defined polymers via orthogonal allyl acrylamide building blocks.

    PubMed

    Porel, Mintu; Alabi, Christopher A

    2014-09-24

    Biological systems have long recognized the importance of macromolecular diversity and have evolved efficient processes for the rapid synthesis of sequence-defined biopolymers. However, achieving sequence control via synthetic methods has proven to be a difficult challenge. Herein we describe efforts to circumvent this difficulty via the use of orthogonal allyl acrylamide building blocks and a liquid-phase fluorous support for the de novo design and synthesis of sequence-specific polymers. We demonstrate proof-of-concept via synthesis and characterization of two sequence-isomeric 10-mer polymers. (1)H NMR and LCMS were used to confirm their chemical structure while tandem MS was used to confirm sequence identity. Further validation of this methodology was provided via the successful synthesis of a sequence-specific 16-mer polymer incorporating nine different monomers. This strategy thus shows promise as an efficient approach for the assembly of sequence-specific functional polymers.

  11. Measurements of lower carbonyls in Rome ambient air

    NASA Astrophysics Data System (ADS)

    Possanzini, M.; Di Palo, V.; Petricca, M.; Fratarcangeli, R.; Brocco, D.

    Ambient levels and diurnal profiles of lower carbonyls were measured in Rome during selected days of summer 1994 and winter 1995. The most abundant carbonyls were formaldehyde (up to 27 ppb) followed by ethanal (< 17 ppb) and acetone (< 9 ppb). Gas-phase concentrations of other seven carbonyls were in the 0-3 ppb range. The results were discussed with respect to direct emissions and photochemical production. Using carbonyl/CO concentration ratios mobil source emissions of carbonyls were estimated for the urban area. The secondary production of C 1-C 3 aldehydes from reactions of alkenes with O 3 and OH radicals during the early morning hours of summer days was also calculated. The daytime pattern of carbonyls was found to be similar to that of toluene in wintertime and close to that of ozone in summer periods conductive to photochemical pollution episodes.

  12. Chemoselective Intramolecular Carbonyl Ylide Formation through Electronically Differentiated Malonate Diesters.

    PubMed

    Nakhla, Mina C; Lee, Che-Wah; Wood, John L

    2015-12-04

    A method for chemoselective carbonyl ylide formation utilizing the Rh(II) catalyzed decomposition of electronically differentiated diazo malonates is disclosed. Treatment of ethyl, trifluoro ethyl diazo malonate with a Rh(II) catalyst selectively forms a carbonyl ylide from the relatively electron rich ethyl ester. This carbonyl ylide can be trapped by various alkynes giving highly functionalized oxabicyclic compounds in a chemo-, regio-, and diastereoselective fashion.

  13. Acute inhalation toxicity of carbonyl sulfide

    SciTech Connect

    Benson, J.M.; Hahn, F.F.; Barr, E.B.

    1995-12-01

    Carbonyl sulfide (COS), a colorless gas, is a side product of industrial procedures sure as coal hydrogenation and gasification. It is structurally related to and is a metabolite of carbon disulfide. COS is metabolized in the body by carbonic anhydrase to hydrogen sulfide (H{sub 2}S), which is thought to be responsible for COS toxicity. No threshold limit value for COS has been established. Results of these studies indicate COS (with an LC{sub 50} of 590 ppm) is slightly less acutely toxic than H{sub 2}S (LC{sub 50} of 440 ppm).

  14. Expanding the scope of Metal-Free enantioselective allylic substitutions: Anthrones

    PubMed Central

    Ceban, Victor; Tauchman, Jiří; Meazza, Marta; Gallagher, Greg; Light, Mark E.; Gergelitsová, Ivana; Veselý, Jan; Rios, Ramon

    2015-01-01

    The highly enantioselective asymmetric allylic alkylation of Morita–Baylis–Hillman carbonates with anthrones is presented. The reaction is simply catalyzed by cinchona alkaloid derivatives affording the final alkylated products in good yields and excellent enantioselectivities. PMID:26592555

  15. Palladium-catalyzed allylic amination: a powerful tool for the enantioselective synthesis of acyclic nucleoside phosphonates.

    PubMed

    Azzouz, Mariam; Soriano, Sébastien; Escudero-Casao, Margarita; Matheu, M Isabel; Castillón, Sergio; Díaz, Yolanda

    2017-08-30

    Acyclic nucleoside phosphonates have been prepared in a straightforward manner and in high yields by an enantioselective palladium-catalyzed allylic substitution involving nucleic bases as nucleophiles followed by cross-metathesis reaction with diethyl allylphosphonate.

  16. Structurally simple pyridine N-oxides as efficient organocatalysts for the enantioselective allylation of aromatic aldehydes.

    PubMed

    Pignataro, Luca; Benaglia, Maurizio; Annunziata, Rita; Cinquini, Mauro; Cozzi, Franco

    2006-02-17

    A series of structurally simple pyridine N-oxides have readily been assembled from inexpensive amino acids and tested as organocatalysts in the allylation of aldehydes with allyl(trichloro)silane to afford homoallylic alcohols. (S)-proline-based catalysts afforded the products derived from aromatic aldehydes in fair to good yields and in up to 84% enantiomeric excess (ee). The allylation of heteroaromatic, unsaturated, and aliphatic aldehydes was less satisfactory. By running the reaction in the presence of achiral and chiral additives and structurally different catalysts, we collected some insights into the relationship between the stereochemical outcome and the catalyst's structural features. Even if the ee's obtained are inferior to the best values observed with other catalysts, this work concurs to show that structurally simple pyridine N-oxides can also promote the allylation reaction with satisfactory stereocontrol.

  17. Effect of Allyl Isothiocyanate on developmental toxicity in exposed Xenopus laevis embryos

    USDA-ARS?s Scientific Manuscript database

    The pungent natural compound allyl isothiocyanate isolated from the seeds of Cruciferous (Brassica) plants such as mustard is reported to exhibit numerous beneficial health-promoting antimicrobial, antifungal, anticarcinogenic, cardioprotective, and neuroprotective properties. Because it is also re...

  18. O-allyl decoration on alpha-glucan isolated from the haloalkaliphilic Halomonas pantelleriensis bacterium.

    PubMed

    Corsaro, Maria Michela; Gambacorta, Agata; Lanzetta, Rosa; Nicolaus, Barbara; Pieretti, Giuseppina; Romano, Ida; Parrilli, Michelangelo

    2007-07-02

    An alpha-glucan containing the unprecedented peculiar O-allyl substituent was isolated from the haloalkaliphilic Gram-negative Halomonas pantelleriensis bacterium. Its dextran-like structure was deduced from chemical degradative and spectroscopic methods.

  19. Expanding the scope of Metal-Free enantioselective allylic substitutions: Anthrones

    NASA Astrophysics Data System (ADS)

    Ceban, Victor; Tauchman, Jiří; Meazza, Marta; Gallagher, Greg; Light, Mark E.; Gergelitsová, Ivana; Veselý, Jan; Rios, Ramon

    2015-11-01

    The highly enantioselective asymmetric allylic alkylation of Morita-Baylis-Hillman carbonates with anthrones is presented. The reaction is simply catalyzed by cinchona alkaloid derivatives affording the final alkylated products in good yields and excellent enantioselectivities.

  20. Conversion of allylic alcohols to stereodefined trisubstituted alkenes: a complementary process to the Claisen rearrangement.

    PubMed

    Belardi, Justin K; Micalizio, Glenn C

    2008-12-17

    A stereoselective method for the conversion of allylic alcohols to (Z)-trisubstituted alkenes is presented. Overall, the reaction sequence described is stereochemically complementary to related Claisen rearrangement reactions--processes that typically deliver the stereoisomeric trisubstituted alkene containing products.

  1. A Concomitant Allylic Azide Rearrangement/Intramolecular Azide–Alkyne Cycloaddition Sequence

    PubMed Central

    2015-01-01

    An intramolecular Huisgen cycloaddition of an interconverting set of isomeric allylic azides with alkynes affords substituted triazoles in high yield. The stereoisomeric vinyl-substituted triazoloxazines formed depend on the rate of cycloaddition of the different allylic azide precursors when the reaction is carried out under thermal conditions. In contrast, dimerized macrocyclic products were obtained when the reaction was done using copper(I)-catalyzed conditions, demonstrating the ability to control the reaction products through changing conditions. PMID:24635056

  2. A concomitant allylic azide rearrangement/intramolecular azide-alkyne cycloaddition sequence.

    PubMed

    Vekariya, Rakesh H; Liu, Ruzhang; Aubé, Jeffrey

    2014-04-04

    An intramolecular Huisgen cycloaddition of an interconverting set of isomeric allylic azides with alkynes affords substituted triazoles in high yield. The stereoisomeric vinyl-substituted triazoloxazines formed depend on the rate of cycloaddition of the different allylic azide precursors when the reaction is carried out under thermal conditions. In contrast, dimerized macrocyclic products were obtained when the reaction was done using copper(I)-catalyzed conditions, demonstrating the ability to control the reaction products through changing conditions.

  3. Control of Diastereoselectivity for Iridium-catalyzed Allylation of a Prochiral Nucleophile with a Phosphate Counterion

    PubMed Central

    Chen, Wenyong; Hartwig, John F.

    2013-01-01

    We report a highly diastereo- and enantioselective allylation of azlactones catalyzed by the combination of a metallayclic iridium complex and an optically inactive phosphate anion. The process demonstrates an approach to conduct diastereoselective reactions with prochiral nucleophiles in the presence of metallacyclic allyliridium complexes. The reaction provides access to an array of enantioenriched allylated azlactones containing adjacent tertiary and quaternary carbon centers. Preliminary mechanistic studies suggest that the phosphate and methyl carbonate anions together induce the unusually high diastereoselectivity. PMID:23286279

  4. Diene-ligated iridium catalyst for allylation reactions of ketones and imines.

    PubMed

    Barker, Timothy J; Jarvo, Elizabeth R

    2009-03-05

    [Ir(cod)Cl](2) is a highly reactive catalyst for allylation reactions of ketones using allylboronic ester. Mechanistic experiments are consistent with formation of a nucleophilic allyliridium(I) complex that is activated by the diene ligand toward attack of a ketone. Aryl and alkyl ketones react smoothly at room temperature. Aldimines also undergo allylation under these reaction conditions, requiring increased reaction times relative to the corresponding ketones.

  5. Regio- and Stereoselective Modification of Chiral α-Amino Ketones by Pd-Catalyzed Allylic Alkylation.

    PubMed

    Huwig, Kai; Schultz, Katharina; Kazmaier, Uli

    2015-07-27

    Chiral α-amino ketones are excellent nucleophiles for stereoselective palladium-catalyzed allylic alkylations. Both chiral as well as achiral allylic substrates can be applied, while the stereochemical outcome of the reaction is controlled by the chiral ketone enolate. The substituted amino ketones formed can be reduced stereoselectively, and up to five consecutive stereogenic centers can be obtained. This approach can be used for the synthesis of highly substituted piperidine derivatives.

  6. Indole synthesis by palladium-catalyzed tandem allylic isomerization - furan Diels-Alder reaction.

    PubMed

    Xu, Jie; Wipf, Peter

    2017-08-30

    A Pd(0)-catalyzed elimination of an allylic acetate generates a π-allyl complex that is postulated to initiate a novel intramolecular Diels-Alder cycloaddition to a tethered furan (IMDAF). Under the reaction conditions, this convergent, microwave-accelerated cascade process provides substituted indoles in moderate to good yields after Pd-hydride elimination, aromatization by dehydration, and in situ N-Boc cleavage.

  7. An efficient and convenient palladium catalyst system for the synthesis of amines from allylic alcohols.

    PubMed

    Banerjee, Debasis; Jagadeesh, Rajenahally V; Junge, Kathrin; Junge, Henrik; Beller, Matthias

    2012-10-01

    A novel catalyst system for efficient amination of allylic alcohols with aryl and alkyl amines is presented. By applying a convenient combination consisting of Pd(OAc)(2)/1,10-phenanthroline, a variety of allylic alcohols reacted smoothly to give the corresponding secondary and tertiary amines in good to excellent yields with high regioselectivity. The usefulness of our protocol is demonstrated in the one-step synthesis of the antifungal drug naftifine and the calcium channel blocker flunarizine.

  8. Effect of hydrogen atoms on the structures of trinuclear metal carbonyl clusters: trinuclear manganese carbonyl hydrides.

    PubMed

    Liu, Xian-mei; Wang, Chao-yang; Li, Qian-shu; Xie, Yaoming; King, R Bruce; Schaefer, Henry F

    2009-05-18

    The structures of the trinuclear manganese carbonyl hydrides H(3)Mn(3)(CO)(n) (n = 12, 11, 10, 9) have been investigated by density functional theory (DFT). Optimization of H(3)Mn(3)(CO)(12) gives the experimentally known structure in which all carbonyl groups are terminal and each edge of a central Mn(3) equilateral triangle is bridged by a single hydrogen atom. This structure establishes the canonical distance 3.11 A for the Mn-Mn single bond satisfying the 18-electron rule. The central triangular (mu-H)(3)Mn(3) unit is retained in the lowest energy structure of H(3)Mn(3)(CO)(11), which may thus be derived from the H(3)Mn(3)(CO)(12) structure by removal of a carbonyl group with concurrent conversion of one of the remaining carbonyl groups into a semibridging carbonyl group to fill the resulting hole. The potential energy surface of H(3)Mn(3)(CO)(10) is relatively complicated with six singlet and five triplet structures. One of the lower energy H(3)Mn(3)(CO)(10) structures has one of the hydrogen atoms bridging the entire Mn(3) triangle and the other two hydrogen atoms bridging Mn-Mn edges. This H(3)Mn(3)(CO)(10) structure achieves the favored 18-electron configuration with a very short MnMn triple bond of 2.36 A. The other low energy H(3)Mn(3)(CO)(10) structure retains the (mu-H)(3)Mn(3) core of H(3)Mn(3)(CO)(12) but has a unique six-electron donor eta(2)-mu(3) carbonyl group bridging the entire Mn(3) triangle similar to the unique carbonyl group in the known compound Cp(3)Nb(3)(CO)(6)(eta(2)-mu(3)-CO). For H(3)Mn(3)(CO)(9) a structure with a central (mu(3)-H)(2)Mn(3) trigonal bipyramid lies >20 kcal/mol below any of the other structures. Triplet structures were found for the unsaturated H(3)Mn(3)(CO)(n) (n = 11, 10, 9) systems but at significantly higher energies than the lowest lying singlet structures.

  9. Atmospheric degradation of 2-chloroethyl vinyl ether, allyl ether and allyl ethyl ether: Kinetics with OH radicals and UV photochemistry.

    PubMed

    Antiñolo, M; Ocaña, A J; Aranguren, J P; Lane, S I; Albaladejo, J; Jiménez, E

    2017-08-01

    Unsaturated ethers are oxygenated volatile organic compounds (OVOCs) emitted by anthropogenic sources. Potential removal processes in the troposphere are initiated by hydroxyl (OH) radicals and photochemistry. In this work, we report for the first time the rate coefficients of the gas-phase reaction with OH radicals (kOH) of 2-chloroethyl vinyl ether (2ClEVE), allyl ether (AE), and allyl ethyl ether (AEE) as a function of temperature in the 263-358 K range, measured by the pulsed laser photolysis-laser induced fluorescence technique. No pressure dependence of kOH was observed in the 50-500 Torr range in He as bath gas, while a slightly negative T-dependence was observed. The temperature dependent expressions for the rate coefficients determined in this work are: The estimated atmospheric lifetimes (τOH) assuming kOH at 288 K were 3, 2, and 4 h for 2ClEVE, AE and AEE, respectively. The kinetic results are discussed in terms of the chemical structure of the unsaturated ethers by comparison with similar compounds. We also report ultraviolet (UV) and infrared (IR) absorption cross sections (σλ and σ(ν˜), respectively). We estimate the photolysis rate coefficients in the solar UV actinic region to be less than 10(-7) s(-1), implying that these compounds are not removed from the atmosphere by this process. In addition, from σ(ν˜) and τOH, the global warming potential of each unsaturated ether was calculated to be almost zero. A discussion on the atmospheric implications of the titled compounds is presented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Carbonyl sulfide: No remedy for global warming

    NASA Astrophysics Data System (ADS)

    Taubman, Steven J.; Kasting, James F.

    1995-04-01

    The enhancement of the stratospheric aerosol layer caused by the eruption of Mt. Pinatubo (June 15, 1991), and the subsequent cooling of the earth's lower atmosphere [Dutton and Christy, 1992; Minnis et al., 1993] shows that stratospheric aerosols can have a strong effect on the earth's climate. This supports the notion that the intentional enhancement of the stratospheric aerosol layer through increased carbonyl sulfide (OCS) emissions might be an effective means for counteracting global warming. Through the use of a one-dimensional photochemical model, we investigate what effect such a program might have on global average stratospheric ozone. In addition, we consider the impact of enhanced OCS emissions on rainwater acidity and on the overall health of both plants and animals. We find that while the warming produced by a single CO2 doubling (1 to 4°C) might be offset with ozone losses of less than 5%, any attempt to use carbonyl sulfide as a permanent solution to global warming could result in depletion of global average ozone by 30% or more. We estimate that in order to achieve cooling of 4°C rainwater pH would fall to between 3.5 and 3.8. Finally, a 4°C cooling at the surface will require that ambient near ground OCS levels rise to above 10 ppmv which is probably greater than the safe exposure limit for humans. Thus, enhanced OCS emissions do not provide an environmentally acceptable solution to the problem of global warming.

  11. Role of planar chirality of S,N- and P,N-ferrocene ligands in palladium-catalyzed allylic substitutions.

    PubMed

    You, Shu-Li; Hou, Xue-Long; Dai, Li-Xin; Yu, Yi-Hua; Xia, Wei

    2002-07-12

    Palladium-catalyzed asymmetric allylic substitutions using thioether and phosphino derivatives of ferrocenyloxazoline as ligands have been investigated with a focus on studying the role of planar chirality. In allylic alkylation, up to 98% ee and 95% ee were achieved with S,N- and P,N-ligands, respectively. In allylic amination, 97% ee was realized with P,N-ligands in the presence of TBAF. Several palladium allylic complexes were characterized by X-ray diffraction and/or solution NMR. Thioether derivatives of ferrocenyloxazolines with only planar chirality showed lower enantioselectivity in the allylic alkylation except 5c because of the formation of a new chirality on sulfur atom during the coordination of sulfur with palladium. On the other hand, in the planar chiral P,N-ligands without central chirality, (Sp)-11a-c there was no such disturbance and comparatively higher enantioselectivity in both palladium-catalyzed allylic alkylation and amination was provided.

  12. Raney nickel catalytic device

    DOEpatents

    O'Hare, Stephen A.

    1978-01-01

    A catalytic device for use in a conventional coal gasification process which includes a tubular substrate having secured to its inside surface by expansion a catalytic material. The catalytic device is made by inserting a tubular catalytic element, such as a tubular element of a nickel-aluminum alloy, into a tubular substrate and heat-treating the resulting composite to cause the tubular catalytic element to irreversibly expand against the inside surface of the substrate.

  13. Gas-phase chemistry of ruthenium and rhodium carbonyl complexes.

    PubMed

    Cao, Shiwei; Wang, Yang; Qin, Zhi; Fan, Fangli; Haba, Hiromitsu; Komori, Yukiko; Wu, Xiaolei; Tan, Cunmin; Zhang, Xin

    2016-01-07

    Short-lived ruthenium and rhodium isotopes were produced from a (252)Cf spontaneous fission (SF) source. Their volatile carbonyl complexes were formed in gas-phase reactions in situ with the carbon-monoxide containing gas. A gas-jet system was employed to transport the volatile carbonyls from the recoil chamber to the chemical separation apparatus. The gas-phase chemical behaviors of these carbonyl complexes were studied using an online low temperature isothermal chromatography (IC) technique. Long IC columns made up of FEP Teflon were used to obtain the chemical information of the high-volatile Ru and Rh carbonyls. By excluding the influence of precursor effects, short-lived isotopes of (109-110)Ru and (111-112)Rh were used to represent the chemical behaviours of Ru and Rh carbonyls. Relative chemical yields of about 75% and 20% were measured for Ru(CO)5 and Rh(CO)4, respectively, relative to the yields of KCl aerosols transported in Ar gas. The adsorption enthalpies of ruthenium and rhodium carbonyl complexes on a Teflon surface were determined to be around ΔHads = -33(+1)(-2) kJ mol(-1) and -36(+2)(-1) kJ mol(-1), respectively, by fitting the breakthrough curves of the corresponding carbonyl complexes with a Monte Carlo simulation program. Different from Mo and Tc carbonyls, a small amount of oxygen gas was found to be not effective for the chemical yields of ruthenium and rhodium carbonyl complexes. The general chemical behaviors of short-lived carbonyl complexes of group VI-IX elements were discussed, which can be used in the future study on the gas-phase chemistry of superheavy elements - Bh, Hs, and Mt carbonyls.

  14. Cp*Rh(III)-Catalyzed Low Temperature C-H Allylation of N-Aryl-trichloro Acetimidamide.

    PubMed

    Debbarma, Suvankar; Bera, Sourav Sekhar; Maji, Modhu Sudan

    2016-12-02

    The readily synthesized trichloro acetimidamide was found to be an excellent directing group for the directed C-H-allylation reactions. Depending on the allylating agent used, selectively either mono- or diallylated products were readily synthesized. Moreover, the trichloro acetimidamide directing group was found to be highly efficient even at lower temperature for the C-H-allylation reaction. Due to mildness of the reaction conditions, double bond isomerization or cyclization to indole side product was not observed.

  15. Fluorination Enables a Ligand-Controlled Regiodivergent Palladium-Catalyzed Decarboxylative Allylation Reaction to Access α,α-Difluoroketones

    PubMed Central

    Yang, Ming–Hsiu; Orsi, Douglas L.

    2015-01-01

    α,α-Difluoroketones possess unique physicochemical properties that are useful for developing therapeutics and probes for chemical biology. In order to access the α-allyl-α,α-difluoroketone substructure, complementary Pd-catalyzed decarboxylative allylation reactions were developed to provide linear and branched α-allyl-α,α-difluoroketones. For these orthogonal processes, the regioselectivity was uniquely controlled by fluorination of the substrate and the structure of ligand. PMID:25581845

  16. Catalyst- and solvent-dependent stereodivergence in the intramolecular Et(2)Zn/Pd(0) -promoted carbonyl propargylation: mechanistic implications.

    PubMed

    Arrate, Mónica; Durana, Aritz; Lorenzo, Paula; de Lera, Ángel R; Álvarez, Rosana; Aurrecoechea, José M

    2013-10-04

    Carbonyl-tethered propargylic benzoates undergo intramolecular carbonylpropargylation upon treatment with Et2 Zn in the presence of a catalytic amount of Pd(0) with the formation of 2-alkynylcyclopentanol products. A ligand/solvent effect on the cis/trans selectivity (referring to the relative positions of alkynyl and OH groups) of ring-closure has been found. In a non-coordinating solvent (benzene), increasing the electron-donating ability of the phosphine ligand (while decreasing its dissociation ability) leads to an increased tendency towards the trans product. On the other hand, the combination of a coordinating solvent (THF) and PPh3 , an easily dissociated phosphine, results in the exclusive formation of cis products. Experimental and computational results are compatible with a divergent behavior of an allenylethylpalladium intermediate that partitions between competitive carbonyl-addition and transmetalation pathways, each leading to a different diastereoisomer. These results also suggest that the dissociating ability of the phosphine regulates that behavior.

  17. Synthesis of 3-[(N-carboalkoxy)ethylamino]-indazole-dione derivatives and their biological activities on human liver carbonyl reductase.

    PubMed

    Berhe, Solomon; Slupe, Andrew; Luster, Choice; Charlier, Henry A; Warner, Don L; Zalkow, Leon H; Burgess, Edward M; Enwerem, Nkechi M; Bakare, Oladapo

    2010-01-01

    A series of indazole-dione derivatives were synthesized by the 1,3-dipolar cycloaddition reaction of appropriate substituted benzoquinones or naphthoquinones and N-carboalkoxyamino diazopropane derivatives. These compounds were evaluated for their effects on human carbonyl reductase. Several of the analogs were found to serve as substrates for carbonyl reductase with a wide range of catalytic efficiencies, while four analogs display inhibitory activities with IC(50) values ranging from 3-5 microM. Two of the inhibitors were studied in greater detail and were found to be noncompetitive inhibitors against both NADPH and menadione with K(I) values ranging between 2 and 11 microM. Computational studies suggest that conformation of the compounds may determine whether the indazole-diones bind productively to yield product or nonproductively to inhibit the enzyme.

  18. [Carbonyl compounds emission and uptake by plant: Research progress].

    PubMed

    Li, Jian; Cai, Jing; Yan, Liu-Shui; Li, Ling-Na; Tao, Min

    2013-02-01

    This paper reviewed the researches on the carbonyl compounds emission and uptake by plants, and discussed the compensation point of the bidirectional exchange of carbonyl compounds between plants and atmosphere. The uptake by leaf stomata and stratum corneum is the principal way for the purification of air aldehydes by plants. After entering into plant leaves, most parts of carbonyl compounds can be metabolized into organic acid, glucide, amino acid, and carbon dioxide, etc. , by the endoenzymes in leaves. The exchange direction of the carbonyl compounds between plants and atmosphere can be preliminarily predicted by the compensation point and the concentrations of ambient carbonyl compounds. This paper summarized the analytical methods such as DNPH/HPLC/UV and PFPH/GC/MS used for the determination of carbonyl compounds emitted from plants or in plant leaves. The main research interests in the future were pointed out, e. g. , to improve and optimize the analytical methods for the determination of carbonyl compounds emitted from plants and the researches on systems (e. g. , plant-soil system), to enlarge the detection species of carbonyl compounds emitted from plants, to screen the plant species which can effectively metabolize the pollutants, and to popularize the phytoremediation techniques for atmospheric

  19. Characterization of oxidative carbonylation on recombinant monoclonal antibodies.

    PubMed

    Yang, Yi; Stella, Cinzia; Wang, Weiru; Schöneich, Christian; Gennaro, Lynn

    2014-05-20

    In the biotechnology industry, oxidative carbonylation as a post-translational modification of protein pharmaceuticals has not been studied in detail. Using Quality by Design (QbD) principles, understanding the impact of oxidative carbonylation on product quality of protein pharmaceuticals, particularly from a site-specific perspective, is critical. However, comprehensive identification of carbonylation sites has so far remained a very difficult analytical challenge for the industry. In this paper, we report for the first time the identification of specific carbonylation sites on recombinant monoclonal antibodies with a new analytical approach via derivatization with Girard's Reagent T (GRT) and subsequent peptide mapping with high-resolution mass spectrometry. Enhanced ionization efficiency and high quality MS(2) data resulted from GRT derivatization were observed as key benefits of this approach, which enabled direct identification of carbonylation sites without any fractionation or affinity enrichment steps. A simple data filtering process was also incorporated to significantly reduce false positive assignments. Sensitivity and efficiency of this approach were demonstrated by identification of carbonylation sites on both unstressed and oxidized antibody bulk drug substances. The applicability of this approach was further demonstrated by identification of 14 common carbonylation sites on three highly similar IgG1s. Our approach represents a significant improvement to the existing analytical methodologies and facilitates extended characterization of oxidative carbonylation on recombinant monoclonal antibodies and potentially other protein pharmaceuticals in the biotechnology industry.

  20. Radiation synthesis and characterization of new hydrogels based on acrylamide copolymers cross-linked with 1-allyl-2-thiourea

    NASA Astrophysics Data System (ADS)

    Şahiner, Nurettin; Malcı, Savaş; Çelikbıçak, Ömür; Kantoğlu, Ömer; Salih, Bekir

    2005-10-01

    Poly(acrylamide-1-allyl-2-thiourea) hydrogels, Poly(AA-AT), were synthesized by gamma irradiation using 60Co γ source in different irradiation dose and at different 1-allyl-2-thiourea content in the monomer mixture. For the characterization of the hydrogels, Fourier transform infrared spectrometer (FT-IR), thermogravimetric analyzer (TGA), elemental analyzer and the swellability of the hydrogels were used. It was noted that 1-allyl-2-thiourea in the synthesized hydrogels was increased by the increasing the content of the 1-allyl-2-thiourea in the irradiation monomer mixture and increasing the radiation dose for the hydrogel synthesis.

  1. PROTEOMIC IDENTIFICATION OF CARBONYLATED PROTEINS AND THEIR OXIDATION SITES

    PubMed Central

    Madian, Ashraf G.; Regnier, Fred E.

    2011-01-01

    Excessive oxidative stress leaves a protein carbonylation fingerprint in biological systems. Carbonylation is an irreversible post translational modification (PTM) that often leads to the loss of protein function and can be a component of multiple diseases. Protein carbonyl groups can be generated directly (by amino acids oxidation and the a-amidation pathway) or indirectly by forming adducts with lipid peroxidation products or glycation and advanced glycation end-products. Studies of oxidative stress are complicated by the low concentration of oxidation products and wide array of routes by which proteins are carbonylated. The development of new selection and enrichment techniques coupled with advances in mass spectrometry are allowing identification of hundreds of new carbonylated protein products from a broad range of proteins located at many sites in biological systems. The focus of this review is on the use of proteomics tools and methods to identify oxidized proteins along with specific sites of oxidative damage and the consequences of protein oxidation. PMID:20521848

  2. Atmospheric carbonyl sulfide exchange in bog microcosms

    SciTech Connect

    Fried, A.; Klinger, L.F.; Erickson, D.J. III )

    1993-01-22

    Measurements of Carbonyl sulfide (OCS) fluxes were carried out on bog microcosms using chamber sampling and tunable diode laser analysis. Intact bog microcosms (vascular plants, mosses, and peat) removed ambient levels of OCS in the light and dark with rates from [minus]2.4 to [minus]8.1 ng S min[sup [minus]1] m[sup [minus]2]. Peat and peat plus mosses emitted OCS in the light with rates of 17.4 and 10.9 ng S min[sup [minus]1] m[sup [minus]2], respectively. In the dark, the mosses apparently removed OCS at a rate equivalent to the peat emissions. A 3-D numerical tracer model using this data indicated that boreal bog ecosystems remove at most 1% of ambient OCS, not sufficient to account for an observed OCS depletion in boreal air masses. 13 refs., 1 fig., 1 tab.

  3. Global Budgets of Atmospheric Carbonyl Sulfide

    NASA Astrophysics Data System (ADS)

    Campbell, J. E.; Whelan, M.; Seibt, U. H.; Smith, S.; Berry, J. A.; Montzka, S. A.; Hilton, T. W.

    2014-12-01

    This study investigates the magnitudes and temporal trends of sources and sinks of tropospheric carbonyl sulfide (COS) and their relationship to understanding the atmospheric lifetime as well as other important atmospheric species including carbon dioxide, carbon disulfide, dimethyl sulfide, and biogenic volatile organic compounds. Our analysis incorporates data that was overlooked in previous budgets, recent advances in the understanding of budget components, and temporal data relevant to estimating recent and long-term changes in budget components. While the uncertainty estimates are large and include a missing source that may be the largest individual source, atmospheric inverse studies can constrain these budgets while also addressing critical knowledge gaps for related species, particularly CO2.

  4. Detection of carbonyl fluoride in the stratosphere

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Park, J. H.; Russell, J. M., III; Zander, R.; Brown, L. R.; Farmer, C. B.; Norton, R. H.; Raper, O. F.

    1986-01-01

    Infrared solar absorption spectra of the stratosphere recorded at a resolution of 0.01/cm by the ATMOS (Atmospheric Trace Molecule Spectroscopy) instrument from onboard Spacelab 3 (04/30 to 05/6/85) have revealed the existence of many previously unobserved absorption features in the 1925 to 1960/cm and 1249 to 1255/cm regions and one at 774/cm. On the basis of comparisons with laboratory spectra, these features have been identified as belonging to the nu1, nu4, and nu6 bands of carbonyl fluoride, respectively. Volume mixing ratios of COF2 between 17 and 40 km have been deduced from analysis of the nu1 and nu6 bands.

  5. Carbonyl Emissions From Oil and Gas Production Facilities

    NASA Astrophysics Data System (ADS)

    Lyman, S. N.; O'Neil, T.; Tran, T.

    2015-12-01

    A number of recent studies have targeted emissions of methane and other hydrocarbons from oil and gas exploration and production activity. These measurements are greatly increasing understanding of the atmospheric impacts of oil and gas development. Very few measurements exist, however, of emissions of formaldehyde and other carbonyls from oil and gas equipment. Carbonyls are toxic and serve as important ozone precursors, especially during winter ozone episodes in places like Utah's Uintah Basin. Current air quality models are only able to reproduce observed high wintertime ozone if they incorporate emissions inventories with very high carbonyl emissions. We measured carbonyl emissions from oil and gas equipment and facilities—including glycol dehydrators, liquid storage tanks, raw gas leaks, raw gas-burning engines, and produced water surface impoundments—in Rocky Mountain oil and gas fields. Carbonyl emissions from raw gas were below detection, but emissions of formaldehyde, acetaldehyde, and other carbonyls were detected from liquid storage tanks, glycol dehydrators, and other oil and gas equipment. In some cases, carbonyls may be formed from the degradation of methanol and other chemicals used in oil and gas production, but the collected data provide evidence for other non-combustion formation pathways. Raw gas-burning engines also emitted carbonyls. Emissions from all measured sources were a small fraction of total volatile organic compound emissions. We incorporated our measurements into an emissions inventory, used that inventory in an air quality model (WRF-SMOKE-CAMx), and were unable to reproduce observed high wintertime ozone. This could be because (1) emission sources we have not yet measured, including compressors, gas processing plants, and others, are large; (2) non-carbonyl emissions, especially those that quickly degrade into carbonyls during photochemical processing, are underestimated in the inventory; or (3) the air quality model is unable

  6. Gas-phase chemistry of technetium carbonyl complexes.

    PubMed

    Wang, Yang; Qin, Zhi; Fan, Fang-Li; Haba, Hiromitsu; Komori, Yukiko; Cao, Shi-Wei; Wu, Xiao-Lei; Tan, Cun-Min

    2015-05-28

    Gas-phase chemical behaviors of short-lived technetium carbonyl complexes were studied using a low temperature isothermal chromatograph (IC) coupled with a (252)Cf spontaneous fission (SF) source. Fission products recoiled from the (252)Cf SF source were thermalized in a mixed gas containing CO, and then technetium carbonyl complexes were formed from reactions between CO gas and various technetium isotopes. A gas-jet system was employed to transport the volatile carbonyl complexes from a recoil chamber to the IC. Short IC columns made of Fluorinated Ethylene Propylene (FEP) Teflon and quartz were used to obtain chemical information about the technetium carbonyl complexes. The results for the (104)Tc-(106)Tc carbonyl complexes were found to be strongly influenced by the precursors, and showed the chemical behaviors of (104)Mo-(106)Mo carbonyl complexes, respectively. However, (107)Tc and (108)Tc could represent the chemical information of the element technetium due to their high independent yields and the very short half-lives of their precursors (107)Mo and (108)Mo. An adsorption enthalpy of about ΔHads = -43 kJ mol(-1) was determined for the Tc carbonyl complexes on both the Teflon and quartz surfaces by fitting the breakthrough curves of the (107)Tc and (108)Tc carbonyl complexes with a Monte Carlo simulation program. Chemical yields of around 25% were measured for the Tc carbonyl complexes relative to the transport yields obtained with the gas-jet transport of KCl aerosol particles with Ar carrier gas. Furthermore, the influence of a small amount of O2 gas on the yields of the Mo and Tc carbonyl complexes was studied.

  7. Enantioselective construction of C-chiral allylic sulfilimines via the iridium-catalyzed allylic amination with S,S-diphenylsulfilimine: asymmetric synthesis of primary allylic amines† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sc01317d Click here for additional data file.

    PubMed Central

    Grange, Rebecca L.; Clizbe, Elizabeth A.; Counsell, Emma J.

    2015-01-01

    We have devised a highly regio- and enantioselective iridium-catalyzed allylic amination reaction with the sulfur-stabilized aza-ylide, S,S-diphenylsulfilimine. This process provides a robust and scalable method for the construction of aryl-, alkyl- and alkenyl-substituted C-chiral allylic sulfilimines, which are important functional groups for organic synthesis. Additionally, the combination of the allylic amination with an in situ deprotection of the sulfilimine constitutes a convenient one-pot protocol for the construction of chiral nonracemic primary allylic amines.

  8. [Assessment of the concentrations of carbonylated proteins and carbonyl reductase enzyme in mexican women with breast cancer: A pilot study].

    PubMed

    Gutiérrez-Salinas, José; García-Ortiz, Liliana; Mondragón-Terán, Paul; Hernández-Rodríguez, Sergio; Ramírez-García, Sotero; Núñez-Ramos, Norma Rebeca

    2016-01-01

    Oxidative stress could promote the development of cancer and implicate carbonylated proteins in the carcinogenic process. The goal of this study was to assess the concentrations of carbonylated proteins and carbonyl reductase enzyme in women with breast cancer and determine whether these markers were possible indicators of tissue damage caused by the disease. A total of 120 healthy women and 123 women with a diagnosis of breast cancer were included. The concentration of carbonylated proteins in plasma and the concentration of carbonyl reductase enzyme in leukocytes were determined using the ELISA assay. There was a 3.76-fold increase in the amount of carbonylated proteins in the plasma from the patient group compared with healthy control group (5±3.27 vs. 1.33±2.31 nmol carbonyls/mg protein; p<0.05). Additionally, a 60% increase in the carbonyl reductase enzyme was observed in the patient group compared with the healthy control group (3.27±0.124 vs. 2.04±0.11 ng/mg protein; p<0.05). A positive correlation (r=0.95; p<0.001) was found between both measurements. These results suggest the presence of tissue damage produced by cancer; therefore, these parameters could be used to indicate tissue damage in cancer patients.

  9. SN2 reactions with allylic substrates--Trends in reactivity

    NASA Astrophysics Data System (ADS)

    Ochran, Richard A.; Uggerud, Einar

    2007-09-01

    The gas-phase identity SN2 reactions of allylic substrates has been studied by systematic altering of the nucleophile/nucleofuge X, the remote substituent Y, and the number of methyl substituents at the reaction centre: X- + YCHCHCZ2X --> YCHCHCZ2X + X- (X = H, CH3, NH2, F, Cl; Y = F, OH, H, CHO, BH2; Z = H, CH3). Key regions of the potential energy surfaces have been explored by MP2, B3LYP, G3B3 and G3 calculations; the latter two methods providing accurate estimates of the reaction barrier. The calculations show that irrespective of theoretical level, for the second row of the periodic table (X = CH3, NH2, OH, and F), the tendency is that the barrier height decreases in going from left to right in agreement with the previously observed trend for identity SN2 reactions at methyl. The barrier height decreases by introduction a [pi] electron withdrawing substituents, Y, remote 6rom the reaction centre. The barrier height increases by introducing methyl groups (Z = CH3) next to the reaction centre, but the effect is less than half of that of changing the remote substituent from Y = CHO to Y = OH. The trends cannot be explained by simplified valence bond theory and are discussed in light of a simple electrostatic bonding model of the transition structure.

  10. Allyl isothiocyanate induces stomatal closure in Vicia faba.

    PubMed

    Sobahan, Muhammad Abdus; Akter, Nasima; Okuma, Eiji; Uraji, Misugi; Ye, Wenxiu; Mori, Izumi C; Nakamura, Yoshimasa; Murata, Yoshiyuki

    2015-01-01

    Isothiocyanates are enzymatically produced from glucosinolates in plants, and allyl isothiocyanate (AITC) induces stomatal closure in Arabidopsis thaliana. In this study, we investigated stomatal responses to AITC in Vicia faba. AITC-induced stomatal closure accompanied by reactive oxygen species (ROS) and NO production, cytosolic alkalization and glutathione (GSH) depletion in V. faba. GSH monoethyl ester induced stomatal reopening and suppressed AITC-induced GSH depletion in guard cells. Exogenous catalase and a peroxidase inhibitor, salicylhydroxamic acid, inhibited AITC-induced stomatal closure, unlike an NAD(P)H oxidase inhibitor, diphenylene iodonium chloride. The peroxidase inhibitor also abolished the AITC-induced ROS production, NO production, and cytosolic alkalization. AITC-induced stomatal closure was suppressed by an NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, and an agent to acidify cytosol, butyrate. These results indicate that AITC-induced stomatal closure in V. faba as well as in A. thaliana and suggest that AITC signaling in guard cells is conserved in both plants.

  11. Allyl isothiocyanate enhances shelf life of minimally processed shredded cabbage.

    PubMed

    Banerjee, Aparajita; Penna, Suprasanna; Variyar, Prasad S

    2015-09-15

    The effect of allyl isothiocyanate (AITC), in combination with low temperature (10°C) storage on post harvest quality of minimally processed shredded cabbage was investigated. An optimum concentration of 0.05μL/mL AITC was found to be effective in maintaining the microbial and sensory quality of the product for a period of 12days. Inhibition of browning was shown to result from a down-regulation (1.4-fold) of phenylalanine ammonia lyase (PAL) gene expression and a consequent decrease in PAL enzyme activity and o-quinone content. In the untreated control samples, PAL activity increased following up-regulation in PAL gene expression that could be linearly correlated with enhanced o-quinone formation and browning. The efficacy of AITC in extending the shelf life of minimally processed shredded cabbage and its role in down-regulation of PAL gene expression resulting in browning inhibition in the product is reported here for the first time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Resonance effect in the allyl cation and anion: a revisit.

    PubMed

    Mo, Yirong

    2004-08-20

    The interest over the magnitude of the conjugation effect in the allyl cation (1) and anion (2) has been revived recently by Barbour and Karty (J. Org. Chem. 2004, 69, 648-654), who derived the resonance energies of 20-22 and 17-18 kcal/mol for 1 and 2, respectively, using an empirical extrapolation approximation. This paper revisits the case by explicitly calculating the Pauling-Wheland resonance energy, which measures the stabilization from the most stable resonance structure to the delocalized energy-minimum state of a conjugated system, using our newly developed block-localized wave function (BLW) method. This BLW method has the geometrical optimization capability. The computations result in adiabatic resonance energies of 37 kcal/mol for 1 and 38 kcal/mol for 2. The significant disagreement between these values and Barbour and Karty's results originates from the neglect of structural and electronic variations in their derivation which are energy costing. Copyright 2004 American Chemical Society

  13. Allyl isothiocyanate affects the cell cycle of Arabidopsis thaliana

    PubMed Central

    Åsberg, Signe E.; Bones, Atle M.; Øverby, Anders

    2015-01-01

    Isothiocyanates (ITCs) are degradation products of glucosinolates present in members of the Brassicaceae family acting as herbivore repellents and antimicrobial compounds. Recent results indicate that allyl ITC (AITC) has a role in defense responses such as glutathione depletion, ROS generation and stomatal closure. In this study we show that exposure to non-lethal concentrations of AITC causes a shift in the cell cycle distribution of Arabidopsis thaliana leading to accumulation of cells in S-phases and a reduced number of cells in non-replicating phases. Furthermore, transcriptional analysis revealed an AITC-induced up-regulation of the gene encoding cyclin-dependent kinase A while several genes encoding mitotic proteins were down-regulated, suggesting an inhibition of mitotic processes. Interestingly, visualization of DNA synthesis indicated that exposure to AITC reduced the rate of DNA replication. Taken together, these results indicate that non-lethal concentrations of AITC induce cells of A. thaliana to enter the cell cycle and accumulate in S-phases, presumably as a part of a defensive response. Thus, this study suggests that AITC has several roles in plant defense and add evidence to the growing data supporting a multifunctional role of glucosinolates and their degradation products in plants. PMID:26042144

  14. Release of allyl isothiocyanate from mustard seed meal powder.

    PubMed

    Dai, Ruyan; Lim, Loong-Tak

    2014-01-01

    Allyl isothiocyanate (AITC) is a wide-spectrum antimicrobial compound found in mustard seeds, produced when their tissues are disrupted. The formation of AITC in mustard seed is mediated by the myrosinase enzyme which catalyzes the release of volatile AITC from a glucosinolate-sinigrin. Since water is a substrate in the reaction, humidity from the air can be used to activate the release of AITC from mustard seed. In this study, defatted and partially defatted mustard seed meals were ground into powders with particle size ranging from 5 to 300 μm. The mustard seed meal powder (MSMP) samples were enclosed within hermetically sealed glass jars wherein the headspace air was adjusted to 85% or 100% relative humidity at 5, 20, or 35 °C. Data from gas chromatography analysis showed that AITC release rate and amount increased with increasing relative humidity and temperature. Moreover, the release rate can be manipulated by particle size and lipid content of the MSMP samples. The amount of AITC released ranged from 2 to 17 mg/g MSMP within 24 h under the experimental conditions tested. In view of the antimicrobial properties of AITC, the mustard meal powder may be used as a natural antimicrobial material for extending the shelf life of food products.

  15. A dioxygenase of Pleurotus sapidus transforms (+)-valencene regio-specifically to (+)-nootkatone via a stereo-specific allylic hydroperoxidation.

    PubMed

    Krügener, Sven; Krings, Ulrich; Zorn, Holger; Berger, Ralf G

    2010-01-01

    A selective and highly efficient allylic oxidation of the sesquiterpene (+)-valencene to the grapefruit flavour compound (+)-nootkatone was achieved with lyophilisate of the edible mushroom Pleurotus sapidus. The catalytic reaction sequence was elucidated through the identification of intermediate, (+)-valencene derived hydroperoxides. A specific staining of hydroperoxides allowed the semi-preparative isolation of two secondary (+)-valencene hydroperoxides, 6(R)-Isopropenyl-4(R),4a(S)-dimethyl-2,3,4,4a,5,6,7,8-octahydro-naphthalen-4(S)-yl-hydroperoxide and 6(R)-Isopropenyl-4(R),4a(S)-dimethyl-2,3,4,4a,5,6,7,8-octahydro-naphthalen-2(R)-yl-hydroperoxide. Chemical reduction of the biotransformation products yielded a tertiary alcohol identified as 2(R)-Isopropenyl-8(R),8a(S)-dimethyl-1,3,4,7,8,8a-hexahydro-2H-naphthalen-4a(R)-ol. This suggested a lipoxygenase-type oxidation of (+)-valencene via secondary and tertiary hydroperoxides and confirmed homology data of the key enzyme obtained previously from amino acid sequencing.

  16. The Effects of Different Garlic-Derived Allyl Sulfides on Anaerobic Sulfur Metabolism in the Mouse Kidney

    PubMed Central

    Iciek, Małgorzata; Bilska-Wilkosz, Anna; Górny, Magdalena; Sokołowska-Jeżewicz, Maria; Kowalczyk-Pachel, Danuta

    2016-01-01

    Diallyl sulfide (DAS), diallyl disulfide (DADS) and diallyl trisulfide (DATS) are major oil-soluble organosulfur compounds of garlic responsible for most of its pharmacological effects. The present study investigated the influence of repeated intraperitoneally (ip) administration of DAS, DADS and DATS on the total level of sulfane sulfur, bound sulfur (S-sulfhydration) and hydrogen sulfide (H2S) and on the activity of enzymes, which catalyze sulfane sulfur formation and transfer from a donor to an acceptor in the normal mouse kidney, i.e., γ-cystathionase (CSE) and rhodanese (TST). The activity of aldehyde dehydrogenase (ALDH), which is a redox-sensitive protein, containing an –SH group in its catalytic center, was also determined. The obtained results indicated that all tested compounds significantly increased the activity of TST. Moreover, DADS and DATS increased the total sulfane sulfur level and CSE activity in the normal mouse kidney. ALDH activity was inhibited in the kidney after DATS administration. The results indicated also that none of the studied allyl sulfides affected the level of bound sulfur or H2S. Thus, it can be concluded that garlic-derived DADS and DATS can be a source of sulfane sulfur for renal cells but they are not connected with persulfide formation. PMID:27929399

  17. Rhodium-Catalyzed NH-Indole-Directed C-H Carbonylation with Carbon Monoxide: Synthesis of 6H-Isoindolo[2,1-a]indol-6-ones.

    PubMed

    Huang, Qiufeng; Han, Qingshuai; Fu, Shurong; Yao, Zizhu; Su, Lv; Zhang, Xiaofeng; Lin, Shen; Xiang, Shengchang

    2016-12-16

    An efficient synthesis of 6H-isoindolo[2,1-a]indol-6-ones through rhodium-catalyzed NH-indole-directed C-H carbonylation of 2-arylindoles with carbon monoxide has been developed. Preliminary mechanistic studies revealed that this reaction proceeds via N-H bond cleavage and subsequent C-H bond cleavage. Reaction monitoring via ESI-MS was used to support the formation of five-membered rhodacycle species in the catalytic cycle.

  18. Catalytic asymmetric direct-type 1,4-addition reactions of simple amides.

    PubMed

    Suzuki, Hirotsugu; Sato, Io; Yamashita, Yasuhiro; Kobayashi, Shū

    2015-04-08

    The development of catalytic asymmetric direct-type reactions of less acidic carbonyl compounds such as amides and esters has been a challenging theme in organic chemistry for decades. Here we describe the asymmetric direct 1,4-addition reactions of simple amides with α,β-unsaturated carbonyl compounds using a catalytic amount of a novel chiral catalyst consisting of a potassium base and a macrocyclic chiral crown ether. The desired 1,5-dicarbonyl compounds were obtained in high yields with excellent diastereo- and enantioselectivities. This is the first example of a highly enantioselective catalytic direct-type reaction of simple amides. In addition, the structure of the chiral potassium catalyst has been investigated by X-ray crystallographic, dynamic (1)H NMR, and MALDI-TOF MS analyses.

  19. Involvement of cyclooxygenase-2 in the potentiation of allyl alcohol-induced liver injury by bacterial lipopolysaccharide.

    PubMed

    Ganey, P E; Barton, Y W; Kinser, S; Sneed, R A; Barton, C C; Roth, R A

    2001-07-15

    Bacterial endotoxin (lipopolysaccharide; LPS) augments the hepatotoxicity of a number of xenobiotics including allyl alcohol. The mechanism for this effect is known to involve the inflammatory response elicited by LPS. Upregulation of cyclooxygenase-2 (COX-2) and production of eicosanoids are important aspects of inflammation, therefore studies were undertaken to investigate the role of COX-2 in LPS-induced enhancement of liver injury from allyl alcohol. Rats were pretreated (iv) with a noninjurious dose of LPS or sterile saline vehicle and 2 h later were treated (ip) with a noninjurious dose of allyl alcohol or saline vehicle. COX-2 mRNA was determined by semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR), and liver injury was assessed from activities in serum of alanine and aspartate aminotransferases (ALT and AST, respectively) and from histology. Liver injury was observed only in rats cotreated with LPS and allyl alcohol. Serum ALT activity was increased by 4 h after administration of LPS and continued to increase through 8 h. COX-2 mRNA was detectable at low levels in livers from rats receiving only the vehicles at any time up to 8 h. Expression of COX-2 mRNA was increased by 30 min after administration of LPS and remained elevated through 6 h. Allyl alcohol treatment alone caused an increase in COX-2 mRNA at 4 h (2 h after allyl alcohol) that lasted less than 2 h. In livers from rats cotreated with LPS and allyl alcohol, levels of COX-2 mRNA were greater than levels seen with either LPS or allyl alcohol alone. The increased expression of COX-2 mRNA was accompanied by an increase in the concentration of prostaglandin (PG) D(2) in plasma. Plasma PGD(2) concentration was increased to a greater extent in rats treated with LPS plus allyl alcohol compared to allyl alcohol or LPS alone. Pretreatment with the COX-2 selective inhibitor, NS-398, abolished the increase in plasma PGD(2) and reduced the increase in ALT and AST activities observed in

  20. Spectroscopic characterization of alumina-supported bis(allyl)iridium complexes : site-isolation, reactivity, and decomposition studies.

    SciTech Connect

    Trovitch, R. J.; Guo, N.; Janicke, M. T.; Li, H.; Marshall, C. L.; Miller, J. T.; Sattelberger, A. P.; John, K. D.; Baker, R. T.; LANL; Univ. of Ottawa

    2010-01-01

    The covalent attachment of tris(allyl)iridium to partially dehydroxylated ?-alumina is found to proceed via surface hydroxyl group protonation of one allyl ligand to form an immobilized bis(allyl)iridium moiety, (?AlO)Ir(allyl)2, as characterized by CP-MAS 13C NMR, inductively coupled plasma-mass spectrometry, and Ir L3 edge X-ray absorption spectroscopy. Extended X-ray absorption fine-structure (EXAFS) measurements taken on unsupported Ir(allyl)3 and several associated tertiary phosphine addition complexes suggest that the ?3-allyl ligands generally account for an Ir-C coordination number of 2 rather than 3, with an average Ir-C distance of 2.16 A. Using this knowledge, combined EXAFS and X-ray absorption near-edge structure studies reveal that a small amount of Ir0 is also formed upon reaction of Ir(allyl)3 with the surface. It was found that the addition of either 2,6-dimethylphenyl isocyanide or carbon monoxide to the supported complex allows spectroscopic identification of the supported bis(allyl)iridium complexes, (?AlO)Ir(allyl)2(CNAr) [Ar = 2,6-(CH3)2C6H4] and (?AlO)Ir(allyl)2(CO)2, respectively. Although samples of the supported bis(allyl)iridium complex are active for the dehydrogenation of cyclohexane to benzene at temperatures between 180 and 220C, in situ temperature-programmed reaction XAFS and continuous-flow reactor studies suggest that Ir0 nanoparticles, rather than a well-defined Ir3+ complex, are responsible for the observed activity.

  1. Spectroscopic characterization of alumina-supported bis(allyl)iridium complexes: site-isolation, reactivity, and decomposition studies.

    PubMed

    Trovitch, Ryan J; Guo, Neng; Janicke, Michael T; Li, Hongbo; Marshall, Christopher L; Miller, Jeffrey T; Sattelberger, Alfred P; John, Kevin D; Baker, R Thomas

    2010-03-01

    The covalent attachment of tris(allyl)iridium to partially dehydroxylated gamma-alumina is found to proceed via surface hydroxyl group protonation of one allyl ligand to form an immobilized bis(allyl)iridium moiety, (=AlO)Ir(allyl)(2), as characterized by CP-MAS (13)C NMR, inductively coupled plasma-mass spectrometry, and Ir L(3) edge X-ray absorption spectroscopy. Extended X-ray absorption fine-structure (EXAFS) measurements taken on unsupported Ir(allyl)(3) and several associated tertiary phosphine addition complexes suggest that the eta(3)-allyl ligands generally account for an Ir-C coordination number of 2 rather than 3, with an average Ir-C distance of 2.16 A. Using this knowledge, combined EXAFS and X-ray absorption near-edge structure studies reveal that a small amount of Ir(0) is also formed upon reaction of Ir(allyl)(3) with the surface. It was found that the addition of either 2,6-dimethylphenyl isocyanide or carbon monoxide to the supported complex allows spectroscopic identification of the supported bis(allyl)iridium complexes, (=AlO)Ir(allyl)(2)(CNAr) [Ar = 2,6-(CH(3))(2)C(6)H(4)] and (=AlO)Ir(allyl)(2)(CO)(2), respectively. Although samples of the supported bis(allyl)iridium complex are active for the dehydrogenation of cyclohexane to benzene at temperatures between 180 and 220 degrees C, in situ temperature-programmed reaction XAFS and continuous-flow reactor studies suggest that Ir(0) nanoparticles, rather than a well-defined Ir(3+) complex, are responsible for the observed activity.

  2. Resonance interactions in acyclic systems. 1. Energies and charge distributions in allyl anions and related compounds

    SciTech Connect

    Wiberg, K.B.; Breneman, C.M.; LePage, T.J. )

    1990-01-03

    The energies of dissociation of propane to 1-propyl cation and anion and of propene to allyl cation and anion may be satisfactorily reproduced via ab initio calculations at the MP4/6-311++G**//6-31G* level. The reaction of 1-propyl cation with propene to give the unconjugated allyl cation was found to be endothermic, whereas the corresponding reaction of the anion was exothermic. The rotational barrier for allyl cation was 36 kcal/mol, whereas that for the anion was 19 kcal/mol. These data were analyzed in terms of electron delocalization and the electrostatic energies of the ions, and it was concluded that whereas the cation had significant resonance stabilization, the anion had little stabilization. A series of allyl type anions were examined making use of 6-311++G** wave functions calculated at the 6-31G* geometries. Correction for electron correlation at the MP3 level led to calculated proton affinities which agreed well with the experimental values. Electronegative atoms at the central position had little affect on the proton affinities, but when they were at the terminal positions, there was a large change. The changes in electron population among the amions were studied via numerical integration of the charge densities within boundaries which may be assigned to the atoms in the ions. The more stable anions are characterized by a -+- charge distribution for the three atoms in the allylic system, leading to internal coulombic stabilization.

  3. Metallocene-catalyzed alkene polymerization and the observation of Zr-allyls.

    PubMed

    Landis, Clark R; Christianson, Matthew D

    2006-10-17

    Single-site polymerization catalysts enable exquisite control over alkene polymerization reactions to produce new materials with unique properties. Knowledge of catalyst speciation and fundamental kinetics are essential for full mechanistic understanding of zirconocene-catalyzed alkene polymerization. Currently the effect of activators on fundamental polymerization steps is not understood. Progress in understanding activator effects requires determination of fundamental kinetics for zirconocene catalysts with noncoordinating anions such as [B(C6F5)4]-. Kinetic NMR studies at low temperature demonstrate a very fast propagation rate for 1-hexene polymerization catalyzed by [(SBI)Zr(CH2SiMe3)][B(C6F5)4] [where SBI is rac-Me2Si(indenyl)2] with complete consumption of 1-hexene before the first NMR spectrum. Surprisingly, the first NMR spectrum reveals, aside from uninitiated catalyst, Zr-allyls as the sole catalyst-containing species. These Zr-allyls, which exist in two diastereomeric forms, have been characterized by physical and chemical methods. The mechanism of Zr-allyl formation was probed with a trapping experiment, leading us to favor a mechanism in which Zr-polymeryl undergoes beta-H transfer to metal without dissociation of coordinated alkene followed by sigma-bond metathesis to form H2 and Zr-allyl. Zr-allyl species undergo slow reactions with alkene but react rapidly with H2 to form hydrogenation products.

  4. Direct access to [(Mes*P)2As](-), a 1,3-diphosphaarsa-2-allyl anion, isoelectronic with the allyl anion (Mes* = 2,4,6-(t)Bu3C6H2).

    PubMed

    Dixon, Lily S H; Allen, Lucy K; Less, Robert J; Wright, Dominic S

    2014-03-21

    The reaction of As(NMe2)3 with Mes*PHLi provides a direct source of the 1,3-diphosphaarsa-2-allyl anion, [(Mes*P)2As](-) (isoelectronic with the allyl anion). The equilibrium between the E,E and E,Z isomers of this anion depends on the extent of Li(+) ion-pairing.

  5. Seasonal and diurnal characteristics of atmospheric carbonyls in Nanning, China

    NASA Astrophysics Data System (ADS)

    Guo, Songjun; Chen, Mei; Tan, Jihua

    2016-03-01

    For the first time, atmospheric carbonyls were measured to identify seasonal and diurnal variations in Nanning from October 2011 to July 2012. Formaldehyde (6.79 ± 3.39 μg/m3), acetaldehyde (15.81 ± 10.48 μg/m3) and acetone (5.43 ± 6.91 μg/m3) were the three most abundant carbonyls, accounting for ~ 85% of the total carbonyls. The average total concentrations of carbonyls and three abundant carbonyls showed significant high levels in summer compared to those in winter. Diurnal variations suggested that photochemical conditions, combustion of charcoal and straw, and solvent usage are important for the distributions of atmospheric carbonyls. The highest average C1/C2 ratio was observed in summer (0.75) compared to those (0.31-0.70) in other seasons, implying the positive effect of photochemical activities on raising C1/C2 ratio, and the significant low C2/C3 ratio (12.01-18.23) in winter and autumn than those (95.83-24.49) in both spring and summer suggested the important anthropogenic emissions such as charcoal and biomass combustion. O3 formation potentials in summer and spring were significantly higher by ~ 2 times than those in autumn and winter. Formaldehyde and acetaldehyde are the top two carbonyls which contribute 82-97% to total O3 formation potentials.

  6. Two-Electron Carbon Dioxide Reduction Catalyzed by Rhenium(I) Bis(imino)acenaphthene Carbonyl Complexes

    PubMed Central

    Portenkirchner, Engelbert; Kianfar, Elham; Sariciftci, Niyazi Serdar; Knör, Günther

    2014-01-01

    Rhenium(I) carbonyl complexes carrying substituted bis(arylimino)acenaphthene ligands (BIAN-R) have been tested as potential catalysts for the two-electron reduction of carbon dioxide. Cyclic voltammetric studies as well as controlled potential electrolysis experiments were performed using CO2-saturated solutions of the complexes in acetonitrile and acetonitrile–water mixtures. Faradaic efficiencies of more than 30 % have been determined for the electrocatalytic production of CO. The effects of ligand substitution patterns and water content of the reaction medium on the catalytic performance of the new catalysts are discussed. PMID:24737649

  7. Palladium-Catalyzed Carbonylation Reactions of Aryl Bromides at Atmospheric Pressure: A General System Based on Xantphos

    PubMed Central

    Martinelli, Joseph R.; Watson, Donald A.; Freckmann, Dominique M. M.; Barder, Timothy E.; Buchwald, Stephen L.

    2009-01-01

    A method for the Pd-catalyzed carbonylation of aryl bromides has been developed using Xantphos as the ligand. This method is effective for the direct synthesis of Weinreb amides, 1° and 2° benzamides and methyl esters from the corresponding aryl bromides at atmospheric pressure. In addition, a putative catalytic intermediate, (Xanphos)Pd(Br)benzoyl, was prepared and an X-ray crystal structure was obtained revealing an unusual cis-coordination mode of Xantphos in this palladium-acyl complex. PMID:18720970

  8. Bis(μ-N,N-di-allyl-dithio-carbamato)bis[(N,N-di-allyl-dithio-carbamato)cadmium].

    PubMed

    Onwudiwe, Damian C; Hrubaru, Madalina; Hosten, Eric C; Arderne, Charmaine

    2017-09-01

    The title compound, [Cd2(C7H10NS2)4], is a neutral dinuclear cadmium(II) complex bearing four bis N,N-di-allyl-di-thio-carbamate ligands coordinating to two Cd(II) cations. In each of the monomeric subunits, there are four S atoms of two di-thio-carbamate ligands [Cd-S = 2.5558 (3), 2.8016 (3), 2.6050 (3) and 2.5709 (3) Å] that coordinate to one Cd(II) atom in a bidentate mode. The dimers are located over an inversion centre bridged by two additional bridging Cd-S bonds [2.6021 (3) Å], leading to a substantial distortion of the geometry of the monomeric subunit from the expected square-planar geometry. The five-coordinate environment around each of the Cd(II) ions in the dimer is best described as substanti-ally tetra-gonally distorted square pyramidal. The di-thio-carbamate groups are themselves planar and are also coplanar with the Cd(II) ions. The negative charge on these groups is delocalized by resonance across the S atoms bound to the Cd(II) cation. This delocalization of the π electrons in the di-thio-carbamate groups also extends to the C-N bonds as they reveal significant double bond character [C-N = 1.3213 (16) and 1.3333 (15) Å].

  9. High throughput assay for evaluation of reactive carbonyl scavenging capacity☆

    PubMed Central

    Vidal, N.; Cavaille, J.P.; Graziani, F.; Robin, M.; Ouari, O.; Pietri, S.; Stocker, P.

    2014-01-01

    Many carbonyl species from either lipid peroxidation or glycoxidation are extremely reactive and can disrupt the function of proteins and enzymes. 4-hydroxynonenal and methylglyoxal are the most abundant and toxic lipid-derived reactive carbonyl species. The presence of these toxics leads to carbonyl stress and cause a significant amount of macromolecular damages in several diseases. Much evidence indicates trapping of reactive carbonyl intermediates may be a useful strategy for inhibiting or decreasing carbonyl stress-associated pathologies. There is no rapid and convenient analytical method available for the assessment of direct carbonyl scavenging capacity, and a very limited number of carbonyl scavengers have been identified to date, their therapeutic potential being highlighted only recently. In this context, we have developed a new and rapid sensitive fluorimetric method for the assessment of reactive carbonyl scavengers without involvement glycoxidation systems. Efficacy of various thiol- and non-thiol-carbonyl scavenger pharmacophores was tested both using this screening assay adapted to 96-well microplates and in cultured cells. The scavenging effects on the formation of Advanced Glycation End-product of Bovine Serum Albumin formed with methylglyoxal, 4-hydroxynonenal and glucose-glycated as molecular models were also examined. Low molecular mass thiols with an α-amino-β-mercaptoethane structure showed the highest degree of inhibitory activity toward both α,β-unsaturated aldehydes and dicarbonyls. Cysteine and cysteamine have the best scavenging ability toward methylglyoxal. WR-1065 which is currently approved for clinical use as a protective agent against radiation and renal toxicity was identified as the best inhibitor of 4-hydroxynonenal. PMID:24688895

  10. 40 CFR 721.10409 - Poly(oxyalkylenediyl), .alpha.-[[[methyl-3-[[[(polyfluoroalkyl)oxy]carbonyl] amino]phenyl]amino...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....- carbonyl] amino]phenyl]amino]carbonyl]- .omega.-methoxy-(generic). 721.10409 Section 721.10409 Protection...(oxyalkylenediyl), .alpha.- carbonyl] amino]phenyl]amino]carbonyl]- .omega.-methoxy-(generic). (a) Chemical... as poly(oxyalkylenediyl), .alpha.- carbonyl]amino]phenyl]amino] carbonyl]-.omega.-methoxy- (PMN...

  11. 40 CFR 721.10409 - Poly(oxyalkylenediyl), .alpha.-[[[methyl-3-[[[(polyfluoroalkyl) oxy]carbonyl]amino]phenyl]amino...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....- carbonyl]amino]phenyl]amino] carbonyl]-.omega.-methoxy- (generic). 721.10409 Section 721.10409 Protection...(oxyalkylenediyl), .alpha.- carbonyl]amino]phenyl]amino] carbonyl]-.omega.-methoxy- (generic). (a) Chemical... as poly(oxyalkylenediyl), .alpha.- carbonyl]amino]phenyl]amino] carbonyl]-.omega.-methoxy- (PMN...

  12. 16th Carbonyl Metabolism Meeting: from enzymology to genomics.

    PubMed

    Maser, Edmund

    2012-12-01

    The 16th International Meeting on the Enzymology and Molecular Biology of Carbonyl Metabolism, Castle of Ploen (Schleswig-Holstein, Germany), July 10-15, 2012, covered all aspects of NAD(P)-dependent oxido-reductases that are involved in the general metabolism of xenobiotic and physiological carbonyl compounds. Starting 30 years ago with enzyme purification, structure elucidation and enzyme kinetics, the Carbonyl Society members have meanwhile established internationally recognized enzyme nomenclature systems and now consider aspects of enzyme genomics and enzyme evolution along with their roles in diseases. The 16th international meeting included lectures from international speakers from all over the world.

  13. 16th Carbonyl Metabolism Meeting: from enzymology to genomics

    PubMed Central

    2012-01-01

    The 16th International Meeting on the Enzymology and Molecular Biology of Carbonyl Metabolism, Castle of Ploen (Schleswig-Holstein, Germany), July 10–15, 2012, covered all aspects of NAD(P)-dependent oxido-reductases that are involved in the general metabolism of xenobiotic and physiological carbonyl compounds. Starting 30 years ago with enzyme purification, structure elucidation and enzyme kinetics, the Carbonyl Society members have meanwhile established internationally recognized enzyme nomenclature systems and now consider aspects of enzyme genomics and enzyme evolution along with their roles in diseases. The 16th international meeting included lectures from international speakers from all over the world. PMID:23199258

  14. Gel-free proteomic methodologies to study reversible cysteine oxidation and irreversible protein carbonyl formation.

    PubMed

    Boronat, S; García-Santamarina, S; Hidalgo, E

    2015-05-01

    Oxidative modifications in proteins have been traditionally considered as hallmarks of damage by oxidative stress and aging. However, oxidants can generate a huge variety of reversible and irreversible modifications in amino acid side chains as well as in the protein backbones, and these post-translational modifications can contribute to the activation of signal transduction pathways, and also mediate the toxicity of oxidants. Among the reversible modifications, the most relevant ones are those arising from cysteine oxidation. Thus, formation of sulfenic acid or disulfide bonds is known to occur in many enzymes as part of their catalytic cycles, and it also participates in the activation of signaling cascades. Furthermore, these reversible modifications have been usually attributed with a protective role, since they may prevent the formation of irreversible damage by scavenging reactive oxygen species. Among irreversible modifications, protein carbonyl formation has been linked to damage and death, since it cannot be repaired and can lead to protein loss-of-function and to the formation of protein aggregates. This review is aimed at researchers interested on the biological consequences of oxidative stress, both at the level of signaling and toxicity. Here we are providing a concise overview on current mass-spectrometry-based methodologies to detect reversible cysteine oxidation and irreversible protein carbonyl formation in proteomes. We do not pretend to impose any of the different methodologies, but rather to provide an objective catwalk on published gel-free approaches to detect those two types of modifications, from a biologist's point of view.

  15. Crystallization and preliminary X-ray diffraction analysis of (R)-carbonyl reductase from Candida parapsilosis

    PubMed Central

    Wang, Shanshan; Nie, Yao; Yan, Xu; Ko, Tzu-Ping; Huang, Chun-Hsiang; Chan, Hsiu-Chien; Guo, Rey-Ting; Xiao, Rong

    2014-01-01

    The NADH-dependent (R)-carbonyl reductase from Candida parapsilosis (RCR) catalyzes the asymmetric reduction of 2-hydroxyacetophenone (HAP) to produce (R)-1-phenyl-1,2-ethanediol [(R)-PED], which is used as a versatile building block for the synthesis of pharmaceuticals and fine chemicals. To gain insight into the catalytic mechanism, the structures of complexes of RCR with ligands, including the coenzyme, are important. Here, the recombinant RCR protein was expressed and purified in Escherichia coli and was crystallized in the presence of NAD+. The crystals, which belonged to the orthorhombic space group P212121, with unit-cell parameters a = 85.64, b = 106.11, c = 145.55 Å, were obtained by the sitting-drop vapour-diffusion method and diffracted to 2.15 Å resolution. Initial model building indicates that RCR forms a homotetramer, consistent with previous reports of medium-chain-type alcohol dehydrogenases. PMID:24915097

  16. A New Entry to Azomethine Ylides from Allylic Amines and Glyoxals: Shifting the Reliance on Amino Ester Precursors

    PubMed Central

    2015-01-01

    The first examples of azomethine ylides derived from allylic amine and glyoxal precursors are reported. The condensation of primary allylic and α-aryl amines with glyoxylates or α-aryl glyoxals affords conjugated azomethine ylides that undergo facile [3 + 2] cycloaddition, providing 5-alkenyl pyrrolidine cycloadducts that cannot be accessed through the classical use of amino esters as ylide precursors. PMID:25247255

  17. Synthesis of a C1-C11 fragment of Zincophorin using planar chiral, neutral π-allyl iron complexes.

    PubMed

    Cooksey, John P

    2013-08-21

    A key step in the synthesis of a C1-C11 fragment of the ionophore antibiotic Zincophorin involves the addition of an α-alkoxyalkylcopper(I) reagent to a planar chiral, neutral π-allyl iron complex. The key allylic alkylation reaction is highly regio- and stereoselective with addition taking place at the γ-position anti to the metal centre.

  18. Regio- and Enantioselective N-Allylations of Imidazole, Benzimidazole, and Purine Heterocycles Catalyzed by Single-Component Metallacyclic Iridium Complexes

    PubMed Central

    Stanley, Levi M.

    2010-01-01

    Highly regio- and enantioselective iridium-catalyzed N-allylations of benzimidazoles, imidazoles, and purines have been developed. N-Allylated benzimidazoles and imidazoles were isolated in high yields (up to 97%) with high branched-to-linear selectivity (up to 99:1) and enantioselectivity (up to 98% ee) from the reactions of benzimidazole and imidazole nucleophiles with unsymmetrical allylic carbonates in the presence of single component, ethylene-bound, metallacyclic iridium catalysts. N-Allylated purines were also obtained in high yields (up to 91%) with high N9:N7 selectivity (up to 96:4), high branched-to-linear selectivity (98:2), and high enantioselectivity (up to 98% ee) under similar conditions. The reactions encompass a range of benzimidazole, imidazole, and purine nucleophiles, as well as a variety of unsymmetrical aryl, heteroaryl, and aliphatic allylic carbonates. Competition experiments between common amine nucleophiles and the heterocyclic nitrogen nucleophiles studied in this work illustrate the effect of nucleophile pKa on the rate of iridium-catalyzed N-allylation reactions. Kinetic studies on the allylation of benzimidazole catalyzed by metallacyclic iridium-phosphoramidite complexes, in combination with studies on the deactivation of these catalysts in the presence of heterocyclic nucleophiles, provide insight into the effects of the structure of the phosphoramidite ligands on the stability of the metallacyclic catalysts. The data obtained from these studies has led to the development of N-allylations of benzimidazoles and imidazoles in the absence of an exogenous base. PMID:19480431

  19. Dual platinum and pyrrolidine catalysis in the direct alkylation of allylic alcohols: selective synthesis of monoallylation products.

    PubMed

    Shibuya, Ryozo; Lin, Lu; Nakahara, Yasuhito; Mashima, Kazushi; Ohshima, Takashi

    2014-04-22

    A dual platinum- and pyrrolidine-catalyzed direct allylic alkylation of allylic alcohols with various active methylene compounds to produce products with high monoallylation selectivity was developed. The use of pyrrolidine and acetic acid was essential, not only for preventing undesirable side reactions, but also for obtaining high monoallylation selectivity.

  20. Catalyst control in sequential asymmetric allylic substitution: stereodivergent access to N,N-diprotected unnatural amino acids.

    PubMed

    Tosatti, Paolo; Campbell, Amanda J; House, David; Nelson, Adam; Marsden, Stephen P

    2011-07-01

    The sequential use of Cu-catalyzed asymmetric allylic alkylation, olefin cross-metathesis, and Ir-catalyzed asymmetric allylic amination allows the concise, stereodivergent synthesis of complex chiral amines with complete regiocontrol and good diastereoselectivity, exemplified by the synthesis of a pair of diastereoisomeric unnatural branched amino acid derivatives.

  1. Waveguide Chirped-Pulse Fourier Transform Microwave Spectroscopy of Allyl Bromide

    NASA Astrophysics Data System (ADS)

    McCabe, Morgan N.; Shipman, Steven

    2014-06-01

    The rotational spectrum of allyl bromide was recorded from 8.7 to 26.5 GHz at -20 °C with a waveguide chirped-pulse Fourier transform microwave spectrometer. The rotational spectrum of allyl bromide has been previously studied by Niide and coworkers. However, previous assignments of this spectrum only extended to J = 12 and K_a = 1. Newly acquired data from our spectrometer has allowed us to extend the previous work to higher values of J and K_a, leading to significant improvements in the distortion constants in particular. Comparisons between the spectra and conformational preferences of the allyl halides will also be discussed. Y. Niide, M, Takano,T. Satoh, and Y. Sasada J. Mol. Spectrosc., 63, 108(1976) Niide, Yuzuru, J. Sci. Hiroshima Univ., Ser. A, 48, 1(1984)

  2. Synthesis of 3-fluoropyrrolidines and 4-fluoropyrrolidin-2-ones from allylic fluorides.

    PubMed

    Combettes, Lorraine E; Schuler, Marie; Patel, Rakesh; Bonillo, Baltasar; Odell, Barbara; Thompson, Amber L; Claridge, Tim D W; Gouverneur, Véronique

    2012-10-08

    Various 3-fluoropyrrolidines and 4-fluoropyrrolidin-2-ones were prepared by 5-exo-trig iodocyclisation from allylic fluorides bearing a pending nitrogen nucleophile. These bench-stable precursors were made accessible upon electrophilic fluorination of the corresponding allylsilanes. The presence of the allylic fluorine substituent induces syn-stereocontrol upon iodocyclisation with diastereomeric ratios ranging from 10:1 to > 20:1 for all N-tosyl-3-fluoropent-4-en-1-amines and amides. The sense and level of stereocontrol is strikingly similar to the corresponding iodocyclisation of structurally related allylic fluorides bearing pending oxygen nucleophiles. These results suggest that the syn selectivity observed upon ring closure involves I(2)-π complexes with the fluorine positioned inside.

  3. Stereochemistry of C7-allyl yohimbine explored by X-ray crystallography

    NASA Astrophysics Data System (ADS)

    Kagawa, Natsuko; Masuda, Yoshitake; Morimoto, Tsumoru; Kakiuchi, Kiyomi

    2013-03-01

    X-ray crystallographic analysis revealed that the palladium-catalyzed β-allylation of yohimbine proceeded in a (7S)-selective manner. The crystal structure had an indolenine unit that was generally unstable in air. A stereoselective outcome was obtained when the palladium π-allyl complex approached yohimbine from the less-hindered pro-S side. However, during reserpine allylation—because the structure of reserpine is that of a transoid-3, 15-ring junction—the palladium π-allyl complex approached from both sides: pro-S and pro-R. A computational method was developed to discuss this selectivity. Experimental details and considerations of the reaction are provided.

  4. Allyl isothiocyanate induced stress response in Caenorhabditis elegans

    PubMed Central

    2011-01-01

    Background Allyl isothiocyanate (AITC) from mustard is cytotoxic; however the mechanism of its toxicity is unknown. We examined the effects of AITC on heat shock protein (HSP) 70 expression in Caenorhabditis elegans. We also examined factors affecting the production of AITC from its precursor, sinigrin, a glucosinolate, in ground Brassica juncea cv. Vulcan seed as mustard has some potential as a biopesticide. Findings An assay to determine the concentration of AITC in ground mustard seed was improved to allow the measurement of AITC release in the first minutes after exposure of ground mustard seed to water. Using this assay, we determined that temperatures above 67°C decreased sinigrin conversion to AITC in hydrated ground B. juncea seed. A pH near 6.0 was found to be necessary for AITC release. RT-qPCR revealed no significant change in HSP70A mRNA expression at low concentrations of AITC (< 0.1 μM). However, treatment with higher concentrations (> 1.0 μM) resulted in a four- to five-fold increase in expression. A HSP70 ELISA showed that AITC toxicity in C. elegans was ameliorated by the presence of ground seed from low sinigrin B. juncea cv. Arrid. Conclusions • AITC induced toxicity in C. elegans, as measured by HSP70 expression. • Conditions required for the conversion of sinigrin to AITC in ground B. juncea seed were determined. • The use of C. elegans as a bioassay to test AITC or mustard biopesticide efficacy is discussed. PMID:22093285

  5. Allyl isothiocyanate sensitizes TRPV1 to heat stimulation.

    PubMed

    Alpizar, Yeranddy A; Boonen, Brett; Gees, Maarten; Sanchez, Alicia; Nilius, Bernd; Voets, Thomas; Talavera, Karel

    2014-03-01

    The powerful plant-derived irritant allyl isothiocyanate (AITC, aka mustard oil) induces hyperalgesia to heat in rodents and humans through mechanisms that are not yet fully understood. It is generally believed that AITC activates the broadly tuned chemosensory cation channel transient receptor potential cation channel subfamily A member 1 (TRPA1), triggering an inflammatory response that sensitizes the heat sensor transient receptor potential cation channel subfamily V member 1 (TRPV1). In the view of recent data demonstrating that AITC can directly activate TRPV1, we here explored the possibility that this compound sensitizes TRPV1 to heat stimulation in a TRPA1-independent manner. Patch-clamp recordings and intracellular Ca(2+) imaging experiments in HEK293T cells over-expressing mouse TRPV1 revealed that the increase in channel activation induced by heating is larger in the presence of AITC than in control conditions. The analysis of the effects of AITC and heat on the current-voltage relationship of TRPV1 indicates that the mechanism of sensitization is based on additive shifts of the voltage dependence of activation towards negative voltages. Finally, intracellular Ca(2+) imaging experiments in mouse sensory neurons isolated from Trpa1 KO mice yielded that AITC enhances the response to heat, specifically in the subpopulation expressing TRPV1. Furthermore, this effect was strongly reduced by the TRPV1 inhibitor capsazepine and virtually absent in neurons isolated from double Trpa1/Trpv1 KO mice. Taken together, these findings demonstrate that TRPV1 is a locus for cross sensitization between AITC and heat in sensory neurons and may help explaining, at least in part, the role of this channel in AITC-induced hyperalgesia to heat.

  6. Allyl isothiocyanate: comparative disposition in rats and mice

    SciTech Connect

    Ioannou, Y.M.; Burka, L.T.; Matthews, H.B.

    1984-09-15

    Allyl isothiocyanate (AITC), the major component of volatile oil of mustard, was recently reported to induce transitional-cell papillomas in the urinary bladder of male Fischer 344 rats, but not in the bladders of female rats or B6C3F1 mice. The present investigation of comparative disposition in both sexes of each species was designed to detect sex or species differences in disposition which might explain susceptibility to AITC toxicity. AITC was readily cleared from all rat and mouse tissues so that within 24 hrs. after administration less than 5% of the total dose was retained in tissues. The highest concentration of AITC-derived radioactivity was observed in male rat bladder. Clearance of AITC-derived radioactivity by each species was primarily in urine (70 to 80%) and in exhaled air (13 to 15%) with lesser amounts in feces (3 to 5%). Rats excreted one major and four minor metabolites in urine. The major metabolite from rat urine was identified by NMR spectroscopy to be the mercapturic acid N-acetyl-S-(N-allylthiocarbamoyl)-L-cysteine. Mice excreted in urine the same major metabolite identified in rat urine as well as three other major and two minor metabolites. Sex-related variations were observed in the relative amounts of these metabolites. Both species excreted a single metabolite in feces. Metabolism of AITC by male and female rats was similar, but female rats excreted over twice the urine volume of male rats. Results of the present study indicate that excretion of a more concentrated solution of AITC metabolite(s) in urine may account for the toxic effects of AITC on the bladder of male rats.

  7. Switchable catalytic DNA catenanes.

    PubMed

    Hu, Lianzhe; Lu, Chun-Hua; Willner, Itamar

    2015-03-11

    Two-ring interlocked DNA catenanes are synthesized and characterized. The supramolecular catenanes show switchable cyclic catalytic properties. In one system, the catenane structure is switched between a hemin/G-quadruplex catalytic structure and a catalytically inactive state. In the second catenane structure the catenane is switched between a catalytically active Mg(2+)-dependent DNAzyme-containing catenane and an inactive catenane state. In the third system, the interlocked catenane structure is switched between two distinct catalytic structures that include the Mg(2+)- and the Zn(2+)-dependent DNAzymes.

  8. The effects of γ-irradiation on garlic oil content in garlic bulbs and on the radiolysis of allyl trisulfide

    NASA Astrophysics Data System (ADS)

    Genshuan, Wei; Guanghui, Wang; Ruipu, Yang; Jilan, Wu

    1996-02-01

    A study of the effects of γ-radiation on garlic oil content in garlic bulbs and on the radiolysis of allyl trisulfide and disulfide was carried out. The content of garlic oil in fresh garlic bulbs treated by gamma ray keeps nearly constant when stored for 10 months. The main components of garlic oil are allyl trisulfide (about 60%) and allyl disulfide (about 30%). The G values of radiolysis products of allyl disulfide and trisulfide in ethanol system were determined. The results show that allyl trisulfide is a very effective solvated electron scavenger and can oxidize CH 3CHOH radical into acetaldehyde, which means that the formation of 2,3-butanediol is extensively inhibited.

  9. Dose-dependent S-allyl cysteine ameliorates multiple sclerosis disease-related pathology by reducing oxidative stress and biomerkers of dysbiosis in experimental autoimmune encephalomyelitis.

    PubMed

    Escribano, B M; Luque, E; Aguilar-Luque, M; Feijóo, M; Caballero-Villarraso, J; Torres, L A; Ramirez, V; García-Maceira, F I; Agüera, E; Santamaria, A; Túnez, I

    2017-09-19

    Garlic is a component of the Mediterranean diet. S-allyl cysteine (SAC), the most common organosulphur present in garlic, possesses neuroprotective properties. This investigation was performed to evaluate the dose-dependent protective action of SAC on oxidative damage, inflammation and gut microbiota alterations biomarkers. Experimental autoimmune encephalomyelitis (EAE) as a model of multiple sclerosis (MS) was induced by the myelin oligodendrocyte glycoprotein (MOG), whose effects were quantified by examining the changes in: clinical score, lipid peroxidation products, carbonylated proteins, glutathione system, tumor necrosis factor alpha (TNFα), and lipopolysaccharide membrane bacteria (LPS). Our results reveal that MOG induces paralysis, oxidative damage and increases in LPS binding protein (LBP) and LPS levels. In this work, two doses of SAC were compared with two dose of N-acetyl cysteine (NAC). SAC was more effective than NAC and it prevented the harmful effects induced by MOG more effectively at the dose of 50mg/kg than that of 18mg/kg. Surprisingly, NAC increases LBP levels while SAC had not such negative effect. In conclusion the data show the ability of SAC to modify EAE evolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Triplet Harvesting with a Simple Aromatic Carbonyl.

    PubMed

    Torres Ziegenbein, Christian; Fröbel, Sascha; Glöß, Maria; Nobuyasu, Roberto S; Data, Przemyslaw; Monkman, Andrew; Gilch, Peter

    2017-09-06

    The efficiency of organic light-emitting diodes crucially depends on triplet harvesters. These accept energy from triplet correlated electron hole pairs and convert it into light. Here, experimental evidence is given that simple aromatic carbonyls, such as thioxanthone, could serve this purpose. In these compounds, the emissive (1) ππ* excitation may rapidly equilibrate with an upper triplet state ((3) nπ*). This equilibrium may persist for nanoseconds. Population of the (3) nπ* state via energy transfer from an electron hole pair should result in fluorescence emission and thereby triplet harvesting. To demonstrate the effect, solutions of 1,4-dichlorobenzene (triplet sensitizer) and thioxanthone (harvester) were excited at 266 nm with a nanosecond laser. The emission decay reveals a 100 ns decay absent in the thioxanthone only sample. This matches predictions for an energy transfer limited by diffusion and gives clear evidence that thioxanthone can convert triplet excitations into light. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. 31P{1H}NMR and carbonyl force constants of unsymmetrical bidentate phosphine complexes of group (VI) metal carbonyls

    NASA Astrophysics Data System (ADS)

    Jesu Raj, Joe Gerald; Pathak, Devendra Deo; Kapoor, Pramesh N.

    2015-05-01

    In our present work we report synthesis of an unsymmetrical diphos ligand, 1-diphenylphosphino-2-di-m-tolylphosphinoethane and its coordinate complexes with group (VI) metal carbonyls such as Cr(CO)6 Mo(CO)6 and W(CO)6. The synthesized ligand and its complexes have been completely characterized by elemental analyses, FTIR, 1HNMR, 31P{1H}NMR and FAB mass spectrometry methods. Special emphasis has been given to calculations of carbonyl force constants. Based on the spectroscopic evidences it has been confirmed that these metal carbonyl complexes with the ditertiary phosphine ligand showed cis geometry in their molecular structure.

  12. In situ carbonyl extraction of Ni from gaseous diffusion cells

    SciTech Connect

    Visnapuu, A.; Hollenberg, G.W.; Bundy, R.D.

    1995-12-31

    This paper discusses the use of carbonyl processing technology for recovery of nickel from uranium isotope separation diffusion cells, and potential applications to recover nickel, iron, chromium, cobalt, and other carbonyl forming metals from nuclear waste while reducing the volume of the high level residue for more economic disposal. Nickel powder was carbonylated under static and dynamic conditions using only carbon monoxide to determine if the nickel powder would react rapidly enough to require no promoter. Nickel to Ni(CO){sub 4} conversion was realized in all cases and nickel metal was vapor deposited in the thermal decomposer, but the conversion rates in all cases the reaction were too slow for practical recovery. Addition of hydrogen sulfide gas as a promoter increased the conversion rate more than 500-fold over conversion with no promoter. Test summaries are provided in the paper; results indicate that promoter activated carbonylation is a viable approach for recovery of nickel from uranium isotope diffusion cells.

  13. Targeting Reactive Carbonyl Species with Natural Sequestering Agents.

    PubMed

    Hwang, Sung Won; Lee, Yoon-Mi; Aldini, Giancarlo; Yeum, Kyung-Jin

    2016-02-27

    Reactive carbonyl species generated by the oxidation of polyunsaturated fatty acids and sugars are highly reactive due to their electrophilic nature, and are able to easily react with the nucleophilic sites of proteins as well as DNA causing cellular dysfunction. Levels of reactive carbonyl species and their reaction products have been reported to be elevated in various chronic diseases, including metabolic disorders and neurodegenerative diseases. In an effort to identify sequestering agents for reactive carbonyl species, various analytical techniques such as spectrophotometry, high performance liquid chromatography, western blot, and mass spectrometry have been utilized. In particular, recent advances using a novel high resolution mass spectrometry approach allows screening of complex mixtures such as natural products for their sequestering ability of reactive carbonyl species. To overcome the limited bioavailability and bioefficacy of natural products, new techniques using nanoparticles and nanocarriers may offer a new attractive strategy for increased in vivo utilization and targeted delivery of bioactives.

  14. Formaldehyde and other carbonyls in Los Angeles ambient air

    SciTech Connect

    Grosjean, D.

    1982-05-01

    From selective sampling and liquid chromatography analysis, ambient levels of carbonyl compounds as 2,4-dinitrophenylhydrazones have been measured in the Los Angeles area during severe photochemical pollution episodes. Gas-phase concentrations and diurnal profiles are presented for six carbonyls: formaldehyde (up to 48 ppb), acetaldehyde (less than or equal to 35 ppb), propanal (less than or equal to 14 ppb), butanal (less than or equal to 7 ppb), 2-butanone (less than or equal to 14 ppb), and benzaldehyde (less than or equal to 1 ppb). Also presented are particulate-phase concentrations and particle/gas distribution ratios for five carbonyls. Ambient carbonyl levels are discussed with respect to anthropogenic emissions and to photochemical production and removal in polluted air. Advantages and current limitations of the method employed are briefly discussed.

  15. Additive-Free Pd-Catalyzed α-Allylation of Imine-Containing Heterocycles.

    PubMed

    Kljajic, Marko; Puschnig, Johannes G; Weber, Hansjörg; Breinbauer, Rolf

    2017-01-06

    An additive-free Pd-catalyzed α-allylation of different imino-group-ontaining heterocycles is reported. The activation of α-CH pronucleophiles (pKa (DMSO) > 25) occurs without the addition of strong bases or Lewis acids using only the Pd/Xantphos catalyst system. The reaction scope has been studied for various 5- and 6-membered nitrogen-containing heterocycles (yields up to 96%). Mechanistic investigations suggest an initial allylation of the imine-N followed by a Pd-catalyzed formal aza-Claisen rearrangement.

  16. Transient overexpression of adh8a increases allyl alcohol toxicity in zebrafish embryos.

    PubMed

    Klüver, Nils; Ortmann, Julia; Paschke, Heidrun; Renner, Patrick; Ritter, Axel P; Scholz, Stefan

    2014-01-01

    Fish embryos are widely used as an alternative model to study toxicity in vertebrates. Due to their complexity, embryos are believed to more resemble an adult organism than in vitro cellular models. However, concerns have been raised with respect to the embryo's metabolic capacity. We recently identified allyl alcohol, an industrial chemical, to be several orders of magnitude less toxic to zebrafish embryo than to adult zebrafish (embryo LC50 = 478 mg/L vs. fish LC50 = 0.28 mg/L). Reports on mammals have indicated that allyl alcohol requires activation by alcohol dehydrogenases (Adh) to form the highly reactive and toxic metabolite acrolein, which shows similar toxicity in zebrafish embryos and adults. To identify if a limited metabolic capacity of embryos indeed can explain the low allyl alcohol sensitivity of zebrafish embryos, we compared the mRNA expression levels of Adh isoenzymes (adh5, adh8a, adh8b and adhfe1) during embryo development to that in adult fish. The greatest difference between embryo and adult fish was found for adh8a and adh8b expression. Therefore, we hypothesized that these genes might be required for allyl alcohol activation. Microinjection of adh8a, but not adh8b mRNA led to a significant increase of allyl alcohol toxicity in embryos similar to levels reported for adults (LC50 = 0.42 mg/L in adh8a mRNA-injected embryos). Furthermore, GC/MS analysis of adh8a-injected embryos indicated a significant decline of internal allyl alcohol concentrations from 0.23-58 ng/embryo to levels below the limit of detection (< 4.6 µg/L). Injection of neither adh8b nor gfp mRNA had an impact on internal allyl alcohol levels supporting that the increased allyl alcohol toxicity was mediated by an increase in its metabolization. These results underline the necessity to critically consider metabolic activation in the zebrafish embryo. As demonstrated here, mRNA injection is one useful approach to study the role of candidate enzymes involved in

  17. Nickel complex-catalyzed codimerization of allyl esters with compounds in the norbornene series

    SciTech Connect

    Dzhemilev, U.M.; Khusnutdinov, R.I.; Galeev, D.K.; Nefedov, O.M.; Tolstikov, G.A.

    1987-07-20

    The basic principles governing the cyclocodimerization of norbornene with allyl compounds have been elucidated for their reaction in the presence of a three-component catalyst system, Ni(acac)/sub 2/-P(OR)/sub 3/-AlR'/sub 3/ (or MgR''/sub 2/); a highly selective method has also been developed for the introduction of a methylenecyclobutane fragment to a norbornene hydrocarbon derivative. A new Ni complex has been prepared; it appears to be the catalyst which is active for the cyclocodimerization of norbornene with allylic compounds.

  18. Iridium-Catalyzed Diastereoselective and Enantioselective Allylic Substitutions with Acyclic α-Alkoxy Ketones

    DOE PAGES

    Jiang, Xingyu; Chen, Wenyong; Hartwig, John F.

    2016-04-01

    The asymmetric alkylation of acyclic ketones is a longstanding challenge in organic synthesis. Here, are the diastereoselective and enantioselective allylic substitutions with acyclic α-alkoxy ketones catalyzed by a metallacyclic iridium complex to form products with contiguous stereogenic centers derived from the nucleophile and electrophile. These reactions occur between allyl methyl carbonates and unstabilized copper(I) enolates generated in situ from acyclic α-alkoxy ketones. The resulting products can be readily converted into enantioenriched tertiary alcohols and tetrahydrofuran derivatives without erosion of enantiomeric purity.

  19. Additive-Free Pd-Catalyzed α-Allylation of Imine-Containing Heterocycles

    PubMed Central

    2016-01-01

    An additive-free Pd-catalyzed α-allylation of different imino-group-ontaining heterocycles is reported. The activation of α-CH pronucleophiles (pKa (DMSO) > 25) occurs without the addition of strong bases or Lewis acids using only the Pd/Xantphos catalyst system. The reaction scope has been studied for various 5- and 6-membered nitrogen-containing heterocycles (yields up to 96%). Mechanistic investigations suggest an initial allylation of the imine-N followed by a Pd-catalyzed formal aza-Claisen rearrangement. PMID:27936786

  20. Chemo- and Stereoselective Crotylation of Aldehydes and Cyclic Aldimines with Allylic gem-Diboronate Ester.

    PubMed

    Park, Jinyoung; Choi, Seoyoung; Lee, Yeosan; Cho, Seung Hwan

    2017-08-04

    We report a highly chemo- and stereoselective crotylation of aldehydes and cyclic aldimines with allylic-gem-diboronate ester as a new type of organoboron reagent. The allylic-gem-diboronate ester undergoes the crotylation with aldehydes and cyclic aldimines in excellent stereoselectivity, forming anti-5,6-disubstituted oxaborinin-2-ols or (E)-δ-boryl-anti-homoallylic amines in high efficiency. The reaction shows a wide range of substrate scope and excellent functional group tolerance. The synthetic applications of the obtained products, including stereospecific C-C, C-O, and C-Cl bond formation, are also demonstrated.

  1. Synthesis of gem-difluoromethylene building blocks through regioselective allylation of gem-difluorocyclopropanes.

    PubMed

    Munemori, Daisuke; Narita, Kent; Nokami, Toshiki; Itoh, Toshiyuki

    2014-05-16

    gem-Difluorocyclopropane derivatives react with allyltributylstannane in the presence of 2,2'-azobis(isobutyronitrile) to afford 1,6-dienes with a gem-difluoromethylene moiety at the allylic position. The reaction proceeds regioselectively with high yields, and the 1,6-dinenes obtained are good precursors for cyclic systems containing a gem-difluoromethylene moiety. Although S-methyl carbonodithioate also works as a leaving group, rearrangement of the leaving group competes with the desired allylation, depending on the amount of allyltributylstannane.

  2. Allylic rearrangement of 1-alkenyl(ethynyl)carbinols catalyzed by polyvanadium organosiloxane

    SciTech Connect

    Gulyi, S.E.; Novikov, N.A.; Erman, M.B.

    1986-12-20

    Ethynylcarbinols upon heating with polyvanadium organosiloxanes and other esters of vanadic acid isomerize to unsaturated aldehydes, while 1-alkenylcarbinols under the same conditions undergo allylic rearrangement. The authors have studied the rearrangement of these carbinols capable of reacting by both pathways and thus serving as models for a study of intramolecular competition between these two type of processes. In the presence of polyvanadium organosiloxane, the carbinols undergo virtually complete isomerization to 2-hydroxy-3-alken-5-ynes. In other words, the allylic rearrangement predominates. No significant amounts of sorbinaldehydes, which would be formed as the products of the other reaction, were detected. An analysis of the NMR spectra is given.

  3. Enantioselective Synthesis of Acyclic α-Quaternary Carboxylic Acid Derivatives through Iridium-Catalyzed Allylic Alkylation.

    PubMed

    Shockley, Samantha E; Hethcox, J Caleb; Stoltz, Brian M

    2017-09-11

    The first highly enantioselective iridium-catalyzed allylic alkylation that provides access to products bearing an allylic all-carbon quaternary stereogenic center has been developed. The reaction utilizes a masked acyl cyanide (MAC) reagent, which enables the one-pot preparation of α-quaternary carboxylic acids, esters, and amides with a high degree of enantioselectivity. The utility of these products is further explored through a series of diverse product transformations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Allylation of aldehydes and imines: promoted by reuseable polymer-supported sulfonamide of N-glycine.

    PubMed

    Li, Gui-long; Zhao, Gang

    2006-02-16

    [reaction: see text] A allylation of aldehydes and imines (generated in situ from aldehydes and amines) with allyltributyltin promoted by recoverable and reusable the polymer-supported sulfonamide of N-glycine has been developed. Good to high yields were obtained in various cases. Most of the SnBu(3) residue can be recovered as Bu(3)SnCl. Highly stereoselective synthesis of N-Boc-(2S,3S)-3-hydroxy-2-phenylpiperidine 7 was achieved by using the P4a-mediated allylation of Boc-l-phenylglycinal as a key step.

  5. Allylic Amines as Key Building Blocks in the Synthesis of (E)-Alkene Peptide Isosteres

    PubMed Central

    Skoda, Erin M.; Davis, Gary C.

    2012-01-01

    Nucleophilic imine additions with vinyl organometallics have developed into efficient, high yielding, and robust methodologies to generate structurally diverse allylic amines. We have used the hydrozirconation-transmetalation-imine addition protocol in the synthesis of allylic amine intermediates for peptide bond isosteres, phosphatase inhibitors, and mitochondria-targeted peptide mimetics. The gramicidin S-derived XJB-5-131 and JP4-039 and their analogs have been prepared on up to 160 g scale for preclinical studies. These (E)-alkene peptide isosteres adopt type II′ β-turn secondary structures and display impressive biological properties, including selective reactions with reactive oxygen species (ROS) and prevention of apoptosis. PMID:22323894

  6. Antimicrobial activity of allylic thiocyanates derived from the Morita-Baylis-Hillman reaction

    PubMed Central

    Sá, Marcus Mandolesi; Ferreira, Misael; Lima, Emerson Silva; dos Santos, Ivanildes; Orlandi, Patrícia Puccinelli; Fernandes, Luciano

    2014-01-01

    Bacterial resistance to commonly used antibiotics has been recognized as a significant global health issue. In this study, we carried out the screening of a family of allylic thiocyanates for their action against a diversity of bacteria and fungi with a view to developing new antimicrobial agents. Allylic thiocyanates bearing halogenated aryl groups, which were readily obtained in two steps from the Morita-Baylis-Hillman adducts, showed moderate-to-high activity against selective pathogens, including a methicillin-resistant S. aureus (MRSA) strain. In particular cases, methyl (Z)-3-(2,4-dichlorophenyl)-2-(thiocyanomethyl)-2-propenoate exhibited antimicrobial activity comparable to the reference antibiotic Imipenem. PMID:25477911

  7. η(3) -Allyl coordination at tin(II)-reactivity towards alkynes and benzonitrile.

    PubMed

    Krebs, Kilian M; Wiederkehr, Jessica; Schneider, Julia; Schubert, Hartmut; Eichele, Klaus; Wesemann, Lars

    2015-04-27

    We herein report the synthesis and characterization of a terphenyl-substituted Sn(II) allyl compound featuring an η(3)  coordination mode in solution and in the solid state. Two examples for the interesting reactivity of the allyl Sn(II) molecule are presented: Reactions with terminal alkynes result in the formation of tricyclic compounds by CC bond formation and the dimerization of two Sn moieties whereas the reaction with benzonitrile leads to a sixteen-membered ring system through CH activation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Make the most of catalytic hydrogenations

    SciTech Connect

    Landert, J.P.; Scubla, T.

    1995-03-01

    Liquid-phase catalytic hydrogenation is one of the most useful and versatile reactions available for organic synthesis. Because it is environmentally clean, it has replaced other reduction processes, such as the Bechamp reaction, and zinc and sulfide reductions. Moreover, the economics are favorable, provided that raw materials free of catalyst poisons are used. The hydrogenation reaction is very selective with appropriate catalysts and can often be carried out without a solvent. Applications include reduction of unsaturated carbon compounds to saturated derivatives (for example, in vegetable-oil processing), carbonyl compounds to alcohols (such as sorbitol), and nitrocompounds to amines. the reactions are usually run in batch reactors to rapidly reach complete conversion and allow quick change-over of products. The paper describes the basics of hydrogenation; steering clear of process hazards; scale-up and optimization; and system design in practice.

  9. Triruthenium carbonyl clusters derived from chiral aminooxazolines: synthesis and catalytic activity.

    PubMed

    Cabeza, Javier A; da Silva, Iván; del Río, Ignacio; Gossage, Robert A; Miguel, Daniel; Suárez, Marta

    2006-05-28

    Treatment of [Ru3(CO)12] with the chiral aminooxazolines (+)-2-amino-(4R)-phenyl-2-oxazoline (H2amphox), (+)-2-amino-(4R,5S)-indanyl-2-oxazoline (H2aminox) and (+)-2-(2-anilinyl)-(4R,5S)-indanyl-2-oxazoline (H2aninox) in THF at reflux temperature, affords the complexes [Ru3(mu-H)(mu3-kappa2-Hox-N,N)(CO)9] (H2ox = H2amphox, 1; H2aminox, 2) and [Ru3(mu-H)(mu-kappa2-Haninox-N,N)(CO)9] (3). In all cases, the activation of an N-H bond has occurred and the resulting amido fragment spans an edge of the metal triangle, while the N atom of the oxazoline ring is attached to the remaining metal atom (as in 1 and 2), or to one of the metal atoms of the bridged edge (as in 3). The use of 1-3 as catalyst precursors in the asymmetric hydrogen-transfer reduction of acetophenone and in the asymmetric cycloaddition of cyclopentadiene and acroleine is reported.

  10. A general catalytic β-C-H carbonylation of aliphatic amines to β-lactams.

    PubMed

    Willcox, Darren; Chappell, Ben G N; Hogg, Kirsten F; Calleja, Jonas; Smalley, Adam P; Gaunt, Matthew J

    2016-11-18

    Methods for the synthesis and functionalization of amines are intrinsically important to a variety of chemical applications. We present a general carbon-hydrogen bond activation process that combines readily available aliphatic amines and the feedstock gas carbon monoxide to form synthetically versatile value-added amide products. The operationally straightforward palladium-catalyzed process exploits a distinct reaction pathway, wherein a sterically hindered carboxylate ligand orchestrates an amine attack on a palladium anhydride to transform aliphatic amines into β-lactams. The reaction is successful with a wide range of secondary amines and can be used as a late-stage functionalization tactic to deliver advanced, highly functionalized amine products of utility for pharmaceutical research and other areas. Copyright © 2016, American Association for the Advancement of Science.

  11. Catalytic, Stereospecific Syn-Dichlorination of Alkenes

    PubMed Central

    Cresswell, Alexander J.; Eey, Stanley T.-C.; Denmark, Scott E.

    2015-01-01

    As some of the oldest organic chemical reactions known, the ionic additions of elemental halogens such as bromine and chlorine to alkenes are prototypical examples of stereospecific reactions, typically delivering vicinal dihalides resulting from anti-addition. Whilst the invention of enantioselective variants is an ongoing challenge, the ability to overturn the intrinsic anti-diastereospecificity of these transformations is also a largely unsolved problem. In this Article, we describe the first catalytic, syn-stereospecific dichlorination of alkenes, employing a group transfer catalyst based on a redox-active main group element (i.e., selenium). Thus, with diphenyl diselenide (PhSeSePh) (5 mol %) as the pre-catalyst, benzyltriethylammonium chloride (BnEt3NCl) as the chloride source, and an N-fluoropyridinium salt as the oxidant, a wide variety of functionalized cyclic and acyclic 1,2-disubstituted alkenes, including simple allylic alcohols, deliver syn-dichlorides with exquisite stereocontrol. This methodology is expected to find applications in streamlining the synthesis of polychlorinated natural products such as the chlorosulfolipids. PMID:25615668

  12. Carbonyl species characteristics during the evaporation of essential oils

    NASA Astrophysics Data System (ADS)

    Chiang, Hsiu-Mei; Chiu, Hua-Hsien; Lai, Yen-Ming; Chen, Ching-Yen; Chiang, Hung-Lung

    2010-06-01

    Carbonyls emitted from essential oils can affect the air quality when they are used in indoors, especially under poor ventilation conditions. Lavender, lemon, rose, rosemary, and tea tree oils were selected as typical and popular essential oils to investigate in terms of composition, thermal characteristics and fifteen carbonyl constituents. Based on thermogravimetric (TG) analysis, the activation energy was 7.6-8.3 kcal mol -1, the reaction order was in the range of 0.6-0.7 and the frequency factor was 360-2838 min -1. Formaldehyde, acetaldehyde, acetone, and propionaldehyde were the dominant carbonyl compounds, and their concentrations were 0.034-0.170 ppm. The emission factors of carbonyl compounds were 2.10-3.70 mg g -1, and acetone, propionaldehyde, acetaldehyde, and formaldehyde accounted for a high portion of the emission factor of carbonyl compounds in essential oil exhaust. Some unhealthy carbonyl species such as formaldehyde and valeraldehyde, were measured at low-temperature during the vaporization of essential oils, indicating a potential effect on indoor air quality and human health.

  13. Ecosystem photosynthesis inferred from measurements of carbonyl sulphide flux

    NASA Astrophysics Data System (ADS)

    Asaf, David; Rotenberg, Eyal; Tatarinov, Fyodor; Dicken, Uri; Montzka, Stephen A.; Yakir, Dan

    2013-03-01

    Limited understanding of carbon dioxide sinks and sources on land is often linked to the inability to distinguish between the carbon dioxide taken up by photosynthesis, and that released by respiration. Carbonyl sulphide, a sulphur-containing analogue of carbon dioxide, is also taken up by plants, and could potentially serve as a powerful proxy for photosynthetic carbon dioxide uptake, which cannot be directly measured above the leaf scale. Indeed, variations in atmospheric concentrations of carbonyl sulphide are closely related to those of carbon dioxide at regional, local and leaf scales. Here, we use eddy covariance and laser spectroscopy to estimate the net exchange of carbon dioxide and carbonyl sulphide across three pine forests, a cotton field and a wheat field in Israel. We estimate gross primary productivity--a measure of ecosystem photosynthesis--directly from the carbonyl sulphide fluxes, and indirectly from carbon dioxide fluxes. The two estimates agree within an error of +/-15%. The ratio of carbonyl sulphide to carbon dioxide flux at the ecosystem scale was consistent with the variability in mixing ratios observed on seasonal timescales in the background atmosphere. We suggest that atmospheric measurements of carbonyl sulphide flux could provide an independent constraint on estimates of gross primary productivity, key to projecting the response of the land biosphere to climate change.

  14. Selective transformation of carbonyl ligands to organic molecules. Progress report, September 1, 1989--November 14, 1992

    SciTech Connect

    Cutler, A.R.

    1992-05-12

    Studies on the carbonylation of ({eta}{sup 5}-indenyl)(L)(CO)Ru-R complexes (L = CO, PPh{sub 3}; R = CH{sub 2}OMe, CH{sub 3}) have been completed. Particularly noteworthy is that the methoxymethyl complexes readily transform to their acyl derivatives under mild conditions that leave their iron congeners inert towards CO. Surprisingly, even ({eta}{sup 5}-indenyl)(PPh{sub 3}){sub 2}Ru-CH{sub 3} carbonylates and gives ({eta}{sup 5}-indenyl)(PPh{sub 3})(CO)Ru-C(O)CH{sub 3}. Mechanistic studies on the ``non catalyzed`` hydrosilation of the manganese acyls (CO){sub 5}Mn-C(O)CH{sub 2}R (R = H, OCH{sub 3}, CH{sub 3}) with Et{sub 3}SiH and of cobalt acetyls (CO){sub 3}(PR{sub 3})CoC(O)CH{sub 3} with several monohydrosilanes have been completed. The cobalt acetyls cleanly give ethoxysilanes (not acetaldehyde), and the manganese acyls provide {alpha}-siloxyvinyl complexes Z-(CO){sub 5}Mn-C(OSiEt{sub 3})=CHR (R = H, CH{sub 3}, OCH{sub 3}). Carbonylation and protolytic cleavage of the latter generate pyruvoyl complexes (CO){sub 5}Mn-COCOR (R = CH{sub 3}, CH{sub 2}CH{sub 3}), formally the products of net ``double carbonylation`` sequences. Studies in progress are concerned with how manganese complexes as diverse as (CO){sub 5}Mn-Y [Y = C(O)R, R, BR - but not SiMe{sub 3} or Mn(CO){sub 5}] and ({eta}{sup 3}-C{sub 3}H{sub 5})Mn(CO){sub 2}L [but not CpMn(CO){sub 3} or CpMn(CO){sub 2}({eta}{sup 2}HSiR{sub 3})] function as efficient hydrosilation catalysts towards Cp(CO){sub 2}FeC(O)CH{sub 3}, for example. These reactions cleanly afford fully characterized {alpha}-siloxyethyl complexes Fp-CH(OSiR{sub 3})CH{sub 3} under conditions where typically Rh(1) hydrosilation catalysts are inactive. Several of these manganese complexes also catalytically hydrosilate organic esters, including lactones, to their ethers R-CH{sub 2}OR; these novel ester reductions occur quantitatively at room temperature and appear to be general in scope.

  15. A new class of modular P,N-ligand library for asymmetric Pd-catalyzed allylic substitution reactions: a study of the key Pd-pi-allyl intermediates.

    PubMed

    Mazuela, Javier; Paptchikhine, Alexander; Tolstoy, Päivi; Pàmies, Oscar; Diéguez, Montserrat; Andersson, Pher G

    2010-01-11

    A new class of modular P,N-ligand library has been synthesized and screened in the Pd-catalyzed allylic substitution reactions of several substrate types. These series of ligands can be prepared efficiently from easily accessible hydroxyl-oxazole/thiazole derivatives. Their modular nature enables the bridge length, the substituents at the heterocyclic ring and in the alkyl backbone chain, the configuration of the ligand backbone, and the substituents/configurations in the biaryl phosphite moiety to be easily and systematically varied. By carefully selecting the ligand components, therefore, high regio- and enantioselectivities (ee values up to 96 %) and good activities are achieved in a broad range of mono-, di-, and trisubstituted linear hindered and unhindered substrates and cyclic substrates. The NMR spectroscopic and DFT studies on the Pd-pi-allyl intermediates provide a deeper understanding of the effect of ligand parameters on the origin of enantioselectivity.

  16. Unlocking ylide reactivity in the metal-catalyzed allylic substitution reaction: stereospecific construction of primary allylic amines with aza-ylides.

    PubMed

    Evans, P Andrew; Clizbe, Elizabeth A

    2009-07-01

    The transition metal catalyzed allylic amination represents a powerful and versatile cross-coupling for the asymmetric construction of stereogenic C-N bonds that are present in secondary metabolites and medicinally important agents. We have developed a regio- and enantiospecific rhodium-catalyzed allylic amination reaction using the aza-ylide derived from 1-aminopyridinium iodide. This investigation demonstrates the importance of the ylide-stabilizing group for obtaining the desired nucleophilicity and the ability to utilize the aza-ylide as a commercially available ammonia equivalent, which serves to illustrate the synthetic potential of this nucleophile for the preparation of primary amines. Overall, this work provides an opportunity to investigate the utility of this new class of nucleophiles in related metal-catalyzed reactions.

  17. Protective effect of phenolic compounds on carbonyl-amine reactions produced by lipid-derived reactive carbonyls.

    PubMed

    Hidalgo, Francisco J; Delgado, Rosa M; Zamora, Rosario

    2017-08-15

    The degradation of phenylalanine initiated by 2-pentenal, 2,4-heptadienal, 4-oxo-2-pentenal, 4,5-epoxy-2-heptenal, or 4,5-epoxy-2-decenal in the presence of phenolic compounds was studied to determine the structure-activity relationship of phenolic compounds on the protection of amino compounds against modifications produced by lipid-derived carbonyls. The obtained results showed that flavan-3-ols were the most efficient phenolic compounds followed by single m-diphenols. The effectiveness of these compounds was found to be related to their ability to trap rapidly the carbonyl compound, avoiding in this way the reaction of the carbonyl compound with the amino acid. The ability of flavan-3-ols for this reaction is suggested to be related to the high electronic density existing in some of the aromatic carbons of their ring A. This is the first report showing that carbonyl-phenol reactions involving lipid-derived reactive carbonyls can be produced more rapidly than carbonyl-amine reactions, therefore providing a satisfactory protection of amino compounds.

  18. Rich catalytic injection

    SciTech Connect

    Veninger, Albert

    2008-12-30

    A gas turbine engine includes a compressor, a rich catalytic injector, a combustor, and a turbine. The rich catalytic injector includes a rich catalytic device, a mixing zone, and an injection assembly. The injection assembly provides an interface between the mixing zone and the combustor. The injection assembly can inject diffusion fuel into the combustor, provides flame aerodynamic stabilization in the combustor, and may include an ignition device.

  19. Kinetics of the reaction of diethylene glycol bis-chloroformate with allyl alcohol

    SciTech Connect

    Alekseev, N.N.; Shtoda, N.F.; Dzumedzei, N.V.

    1988-10-01

    The kinetics of diethylene glycol bis-chloroformate solvolysis by excess allyl alcohol in toluene and carbon tetrachloride has been studied. Under conditions of a pseudofirst order reaction with respect to diethylene glycol bis-chloroformate the activation parameters confirm an addition-detachment mechanism.

  20. The Defense Metabolite, Allyl Glucosinolate, Modulates Arabidopsis thaliana Biomass Dependent upon the Endogenous Glucosinolate Pathway

    PubMed Central

    Francisco, Marta; Joseph, Bindu; Caligagan, Hart; Li, Baohua; Corwin, Jason A.; Lin, Catherine; Kerwin, Rachel; Burow, Meike; Kliebenstein, Daniel J.

    2016-01-01

    Glucosinolates (GSLs) play an important role in plants as direct mediators of biotic and abiotic stress responses. Recent work is beginning to show that the GSLs can also inducing complex defense and growth networks. However, the physiological significance of these GSL-induced responses and the molecular mechanisms by which GSLs are sensed and/or modulate these responses are not understood. To identify these potential mechanisms within the plant and how they may relate to the endogenous GSLs, we tested the regulatory effect of exogenous allyl GSL application on growth and defense metabolism across sample of Arabidopsis thaliana accessions. We found that application of exogenous allyl GSL had the ability to initiate changes in plant biomass and accumulation of defense metabolites that genetically varied across accessions. This growth effect was related to the allyl GSL side-chain structure. Utilizing this natural variation and mutants in genes within the GSL pathway we could show that the link between allyl GSL and altered growth responses are dependent upon the function of known genes controlling the aliphatic GSL pathway. PMID:27313596

  1. The Defense Metabolite, Allyl Glucosinolate, Modulates Arabidopsis thaliana Biomass Dependent upon the Endogenous Glucosinolate Pathway.

    PubMed

    Francisco, Marta; Joseph, Bindu; Caligagan, Hart; Li, Baohua; Corwin, Jason A; Lin, Catherine; Kerwin, Rachel; Burow, Meike; Kliebenstein, Daniel J

    2016-01-01

    Glucosinolates (GSLs) play an important role in plants as direct mediators of biotic and abiotic stress responses. Recent work is beginning to show that the GSLs can also inducing complex defense and growth networks. However, the physiological significance of these GSL-induced responses and the molecular mechanisms by which GSLs are sensed and/or modulate these responses are not understood. To identify these potential mechanisms within the plant and how they may relate to the endogenous GSLs, we tested the regulatory effect of exogenous allyl GSL application on growth and defense metabolism across sample of Arabidopsis thaliana accessions. We found that application of exogenous allyl GSL had the ability to initiate changes in plant biomass and accumulation of defense metabolites that genetically varied across accessions. This growth effect was related to the allyl GSL side-chain structure. Utilizing this natural variation and mutants in genes within the GSL pathway we could show that the link between allyl GSL and altered growth responses are dependent upon the function of known genes controlling the aliphatic GSL pathway.

  2. Organocatalytic asymmetric allylic amination of Morita–Baylis–Hillman carbonates of isatins

    PubMed Central

    Zhang, Hang; Zhang, Shan-Jun; Zhou, Qing-Qing; Dong, Lin

    2012-01-01

    Summary The investigation of a Lewis base catalyzed asymmetric allylic amination of Morita–Baylis–Hillman carbonates derived from isatins afforded an electrophilic pathway to access multifunctional oxindoles bearing a C3-quaternary stereocenter, provided with good to excellent enantioselectivity (up to 94% ee) and in high yields (up to 97%). PMID:23019454

  3. Enantioselective synthesis of β-substituted chiral allylic amines via Rh-catalyzed asymmetric hydrogenation.

    PubMed

    Wang, Qingli; Gao, Wenchao; Lv, Hui; Zhang, Xumu

    2016-09-27

    An asymmetric mono-hydrogenation of 2-acetamido-1,3-dienes catalyzed by a Rh-DuanPhos complex has been developed. This approach provides easy access to chiral allylic amines with excellent enantioselectivities and high regioselectivities. The products are valuable chiral building blocks for pharmaceuticals.

  4. Assessment of DNA damage and repair in adults consuming allyl isothiocyanate or Brassica vegetables

    USDA-ARS?s Scientific Manuscript database

    Allyl isothiocyanate (AITC) is a dietary component with potentially important anti-cancer effects, though much of the information about AITC and cancer processes has been obtained from cell studies. To investigate the effect of AITC on DNA integrity and repair in vivo, a human feeding study was con...

  5. Method of preparing water purification membranes. [polymerization of allyl amine as thin films in plasma discharge

    NASA Technical Reports Server (NTRS)

    Hollahan, J. R.; Wydeven, T. J., Jr. (Inventor)

    1974-01-01

    Allyl amine and chemically related compounds are polymerized as thin films in the presence of a plasma discharge. The monomer compound can be polymerized by itself or in the presence of an additive gas to promote polymerization and act as a carrier. The polymerized films thus produced show outstanding advantages when used as reverse osmosis membranes.

  6. Lewis base catalyzed enantioselective allylic hydroxylation of Morita-Baylis-Hillman carbonates with water.

    PubMed

    Zhu, Bo; Yan, Lin; Pan, Yuanhang; Lee, Richmond; Liu, Hongjun; Han, Zhiqiang; Huang, Kuo-Wei; Tan, Choon-Hong; Jiang, Zhiyong

    2011-08-19

    A Lewis base catalyzed allylic hydroxylation of Morita-Baylis-Hillman (MBH) carbonates has been developed. Various chiral MBH alcohols can be synthesized in high yields (up to 99%) and excellent enantioselectivities (up to 94% ee). This is the first report using water as a nucleophile in asymmetric organocatalysis. The nucleophilic role of water has been verified using (18)O-labeling experiments.

  7. Allylic oxidation of steroidal olefins by vanadyl acetylacetonate and tert-butyl hydroperoxide.

    PubMed

    Grainger, Wendell S; Parish, Edward J

    2015-09-01

    Readily available vanadyl acetylacetonate was found to oxidize the allylic sites of Δ(5) steroidal alcohols without protection of hydroxyl groups. Cholesterol, dehydroepiandrosterone, cholesterol benzoate, cholesterol acetate, pregnenolone, and 5-pregnen-3,20-diene were oxidized to 7-keto products using vanadyl acetylacetonate in one pot reactions at room temperature in the presence of oxygen and water.

  8. Innovative application of metal-organic frameworks for encapsulation and controlled release of allyl isothiocyanate

    USDA-ARS?s Scientific Manuscript database

    This research investigated the technical feasibility of metal-organic frameworks (MOFs) as novel delivery systems for encapsulation and controlled release of volatile allyl isothiocyanate (AITC) molecules. We hypothesized that water vapor molecules could act as an external stimulus to trigger the re...

  9. Lewis acid/CpRu dual catalysis in the enantioselective decarboxylative allylation of ketone enolates.

    PubMed

    Linder, David; Austeri, Martina; Lacour, Jérôme

    2009-10-07

    The addition of a Lewis acidic metal triflate salt Mg(OTf)(2) as co-catalyst in the CpRu-catalyzed decarboxylative allylation of in situ-generated ketone enolates allows the reaction to proceed at lower temperature with higher regio- and enantioselectivity. Even so-far-unreactive substrates react.

  10. A Palladium-Catalyzed Asymmetric Allylic Alkylation Approach to α-Quaternary γ-Butyrolactones.

    PubMed

    Nascimento de Oliveira, Marllon; Fournier, Jeremy; Arseniyadis, Stellios; Cossy, Janine

    2017-01-06

    The Pd-catalyzed asymmetric allylic alkylation (Pd-AAA) of enol carbonates derived from γ-butyrolactones is reported, affording the corresponding enantioenriched α,α'-disubstituted γ-butyrolactones in both high yields and high enantioselectivities (up to 94% ee). This method was eventually applied to the synthesis of chiral spirocyclic compounds.

  11. Diastereo- and enantioselective carbolithiation of allyl o-lithioaryl ethers. New chiral cyclopropane derivatives.

    PubMed

    Barluenga, José; Fañanás, Francisco J; Sanz, Roberto; Marcos, César

    2002-06-27

    [reaction: see text] Different allyl 2-lithioaryl ethers undergo a tandem carbolithiation/gamma-elimination in Et(2)O/TMEDA affording o-cyclopropyl phenol or naphthol derivatives in a diastereoselective manner. The use of (-)-sparteine as a chiral ligand instead of TMEDA allows the synthesis of cyclopropane derivatives with up 81% ee.

  12. [N-allyl-Dmt1]-endomorphins are micro-opioid receptor antagonists lacking inverse agonist properties.

    PubMed

    Marczak, Ewa D; Jinsmaa, Yunden; Li, Tingyou; Bryant, Sharon D; Tsuda, Yuko; Okada, Yoshio; Lazarus, Lawrence H

    2007-10-01

    [N-allyl-Dmt1]-endomorphin-1 and -2 ([N-allyl-Dmt1]-EM-1 and -2) are new selective micro-opioid receptor antagonists obtained by N-alkylation with an allyl group on the amino terminus of 2',6'-dimethyl-L-tyrosine (Dmt) derivatives. To further characterize properties of these compounds, their intrinsic activities were assessed by functional guanosine 5'-O-(3-[35S]thiotriphosphate) binding assays and forskolin-stimulated cyclic AMP accumulation in cell membranes obtained from vehicle, morphine, and ethanol-treated SK-N-SH cells and brain membranes isolated from naive and morphine-dependent mice; their mode of action was compared with naloxone or naltrexone, which both are standard nonspecific opioid-receptor antagonists. [N-allyl-Dmt1]-EM-1 and -2 were neutral antagonists under all of the experimental conditions examined, in contrast to naloxone and naltrexone, which behave as neutral antagonists only in membranes from vehicle-treated cells and mice but act as inverse agonists in membranes from morphine- and ethanol-treated cells as well as morphine-treated mice. Both endomorphin analogs inhibited the naloxone- and naltrexone-elicited withdrawal syndromes from acute morphine dependence in mice. This suggests their potential therapeutic application in the treatment of drug addiction and alcohol abuse without the adverse effects observed with inverse agonist alkaloid-derived compounds that produce severe withdrawal symptoms.

  13. Total Synthesis of Cryptocaryol A by Enantioselective Iridium-Catalyzed Alcohol C-H Allylation.

    PubMed

    Perez, Felix; Waldeck, Andrew R; Krische, Michael J

    2016-04-11

    The polyketide natural product cryptocaryol A is prepared in 8 steps via iridium catalyzed enantioselective diol double C-H allylation, which directly generates an acetate-based triketide stereodiad. In 4 previously reported total syntheses, 17-28 steps were required. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Ozone Effects on Protein Carbonyl Content in the Frontal ...

    EPA Pesticide Factsheets

    Oxidative stress (OS) plays an important role in susceptibility and disease in old age. Understanding age-related susceptibility is a critical part of community-based human health risk assessment of chemical exposures. There is growing concern over a common air pollutant, ozone (03), and adverse health effects including dysfunction of the pulmonary, cardiac, and nervous systems. The objective of this study was to test whether OS plays a role in the adverse effects caused by 03 exposure, and if so, if effects were age-dependent. We selected protein carbonyl as an indicator of OS because carbonyl content of cells is a useful indicator of oxidative protein damage and has been linked to chemical-induced adverse effects. Male Brown Norway rats (4, 12, and 24 months) were exposed to 03 (0,0.25 or 1 ppm) via inhalation for 6 h/day, 2 days per week for 13 weeks. Frontal cortex (FC) and cerebellum (CB) were dissected, quick frozen on dry ice, and stored at -80°C. Protein carbonyls were assayed using commercial kits. Hydrogen peroxide, a positive control, increased protein carbonyls in cortical tissue in vitro in a concentration-dependent manner. Significant effects of age on protein carbonyls in FC and a significant effect of age and 03 dose on protein carbonyls in CB were observed. In control rats, there was an age-dependent increase in protein carbonyls indicating increased OS in 12 and 24 month old rats compared to 4 month old rats. Although 03 increase

  15. Ozone Effects on Protein Carbonyl Content in the Frontal ...

    EPA Pesticide Factsheets

    Oxidative stress (OS) plays an important role in susceptibility and disease in old age. Understanding age-related susceptibility is a critical part of community-based human health risk assessment of chemical exposures. There is growing concern over a common air pollutant, ozone (03), and adverse health effects including dysfunction of the pulmonary, cardiac, and nervous systems. The objective of this study was to test whether OS plays a role in the adverse effects caused by 03 exposure, and if so, if effects were age-dependent. We selected protein carbonyl as an indicator of OS because carbonyl content of cells is a useful indicator of oxidative protein damage and has been linked to chemical-induced adverse effects. Male Brown Norway rats (4, 12, and 24 months) were exposed to 03 (0,0.25 or 1 ppm) via inhalation for 6 h/day, 2 days per week for 13 weeks. Frontal cortex (FC) and cerebellum (CB) were dissected, quick frozen on dry ice, and stored at -80°C. Protein carbonyls were assayed using commercial kits. Hydrogen peroxide, a positive control, increased protein carbonyls in cortical tissue in vitro in a concentration-dependent manner. Significant effects of age on protein carbonyls in FC and a significant effect of age and 03 dose on protein carbonyls in CB were observed. In control rats, there was an age-dependent increase in protein carbonyls indicating increased OS in 12 and 24 month old rats compared to 4 month old rats. Although 03 increase

  16. Carbonyl emissions from vehicular exhausts sources in Hong Kong.

    PubMed

    Ho, Steven Sai Hang; Ho, Kin Fai; Lee, Shun Cheng; Cheng, Yan; Yu, Jian Zhen; Lam, Ka Man; Feng, Natale Sin Yau; Huang, Yu

    2012-02-01

    Vehicular emission (VE) is one of the important anthropogenic sources for airborne carbonyls in urban area. Six types of VE-dominated samples were collected at representative locations in Hong Kong where polluted by a particular fueled type of vehicles, including (i) a gas refilling taxis station (liquefied petroleum gas [LPG] emission); (ii) a light-duty passenger car park (gasoline emission); (iii) a minibus station (diesel emission); (iv) a single-deck-bus depot (diesel emission); (v) a double-deck-bus depot (diesel emission); and (vi) a whole-food market entrance for light- and heavy-duty vehicles (diesel emission). A total of 15 carbonyls in the samples were quantified. Formaldehyde was the most abundant carbonyl among the VE-dominated samples, and its contribution to the total quantified amount on a molar basis ranged from 54.8% to 60.8%. Acetaldehyde and acetone were the next two abundant carbonyls. The carbonyls were quantified at three roadside locations in Hong Kong. The highest concentrations of formaldehyde and acetaldehyde, 22.7 +/- 8.4 and 6.0 +/- 2.8 microg/m3, respectively, were determined in the samples collected at a main transportation gate for goods between Hong Kong and Mainland China. The total quantified carbonyl concentration, 37.9 +/- 9.3 microg/m3, was the highest at an entrance of a cross-harbor tunnel in downtown area. The theoretical carbonyls compositions of the three roadside locations were estimated according to the VE-dominated sample profiles and the statistics on vehicle numbers and types during the sampling period. The measured compositions of formaldehyde were much higher than the theoretical compositions in summer, demonstrating that photochemical reactions significantly contributed to the formaldehyde production in the roadsides.

  17. Two stage catalytic combustor

    NASA Technical Reports Server (NTRS)

    Alvin, Mary Anne (Inventor); Bachovchin, Dennis (Inventor); Smeltzer, Eugene E. (Inventor); Lippert, Thomas E. (Inventor); Bruck, Gerald J. (Inventor)

    2010-01-01

    A catalytic combustor (14) includes a first catalytic stage (30), a second catalytic stage (40), and an oxidation completion stage (49). The first catalytic stage receives an oxidizer (e.g., 20) and a fuel (26) and discharges a partially oxidized fuel/oxidizer mixture (36). The second catalytic stage receives the partially oxidized fuel/oxidizer mixture and further oxidizes the mixture. The second catalytic stage may include a passageway (47) for conducting a bypass portion (46) of the mixture past a catalyst (e.g., 41) disposed therein. The second catalytic stage may have an outlet temperature elevated sufficiently to complete oxidation of the mixture without using a separate ignition source. The oxidation completion stage is disposed downstream of the second catalytic stage and may recombine the bypass portion with a catalyst exposed portion (48) of the mixture and complete oxidation of the mixture. The second catalytic stage may also include a reticulated foam support (50), a honeycomb support, a tube support or a plate support.

  18. Synthesis, Characterization, and Some Properties of Cp*W(NO)(H)(η(3)-allyl) Complexes.

    PubMed

    Baillie, Rhett A; Holmes, Aaron S; Lefèvre, Guillaume P; Patrick, Brian O; Shree, Monica V; Wakeham, Russell J; Legzdins, Peter; Rosenfeld, Devon C

    2015-06-15

    Sequential treatment at low temperatures of Cp*W(NO)Cl2 in THF with 1 equiv of a binary magnesium allyl reagent, followed by an excess of LiBH4, affords three new Cp*W(NO)(H)(η(3)-allyl) complexes, namely, Cp*W(NO)(H)(η(3)-CH2CHCMe2) (1), Cp*W(NO)(H)(η(3)-CH2CHCHPh) (2), and Cp*W(NO)(H)(η(3)-CH2CHCHMe) (3). Complexes 1-3 are isolable as air-stable, analytically pure yellow solids in good to moderate yields by chromatography or fractional crystallization. In solutions, complex 1 exists as two coordination isomers in an 83:17 ratio differing with respect to the endo/exo orientation of the allyl ligand. In contrast, complexes 2 and 3 each exist as four coordination isomers, all differing by the orientation of their allyl ligands which can have either an endo or an exo orientation with the phenyl or methyl groups being either proximal or distal to the nitrosyl ligand. A DFT computational analysis using the major isomer of Cp*W(NO)(H)(η(3)-CH2CHCHMe) (3a) as the model complex has revealed that its lowest-energy thermal-decomposition pathway involves the intramolecular isomerization of 3a to the 16e η(2)-alkene complex, Cp*W(NO)(η(2)-CH2═CHCH2Me). Such η(2)-alkene complexes are isolable as their 18e PMe3 adducts when compounds 1-3 are thermolyzed in neat PMe3, the other organometallic products formed during these thermolyses being Cp*W(NO)(PMe3)2 (5) and, occasionally, Cp*W(NO)(H)(η(1)-allyl)(PMe3). All new complexes have been characterized by conventional spectroscopic and analytical methods, and the solid-state molecular structures of most of them have been established by single-crystal X-ray crystallographic analyses.

  19. Metabolism, excretion, and pharmacokinetics of S-allyl-L-cysteine in rats and dogs.

    PubMed

    Amano, Hirotaka; Kazamori, Daichi; Itoh, Kenji; Kodera, Yukihiro

    2015-05-01

    The metabolism, excretion, and pharmacokinetics of S-allyl-l-cysteine (SAC), an active key component of garlic supplements, were examined in rats and dogs. A single dose of SAC was administered orally or i.v. to rats (5 mg/kg) and dogs (2 mg/kg). SAC was well absorbed (bioavailability >90%) and its four metabolites-N-acetyl-S-allyl-l-cysteine (NAc-SAC), N-acetyl-S-allyl-l-cysteine sulfoxide (NAc-SACS), S-allyl-l-cysteine sulfoxide (SACS), and l-γ-glutamyl-S-allyl-l-cysteine-were identified in the plasma and/or urine. Renal clearance values (<0.01 l/h/kg) of SAC indicated its extensive renal reabsorption, which contributed to the long elimination half-life of SAC, especially in dogs (12 hours). The metabolism of SAC to NAc-SAC, principal metabolite of SAC, was studied in vitro and in vivo. Liver and kidney S9 fractions of rats and dogs catalyzed both N-acetylation of SAC and deacetylation of NAc-SAC. After i.v. administration of NAc-SAC, SAC appeared in the plasma and its concentration declined in parallel with that of NAc-SAC. These results suggest that the rate and extent of the formation of NAc-SAC are determined by the N-acetylation and deacetylation activities of liver and kidney. Also, NAc-SACS was detected in the plasma after i.v. administration of either NAc-SAC or SACS, suggesting that NAc-SACS could be formed via both N-acetylation of SACS and S-oxidation of NAc-SAC. In conclusion, this study demonstrated that the pharmacokinetics of SAC in rats and dogs is characterized by its high oral bioavailability, N-acetylation and S-oxidation metabolism, and extensive renal reabsorption, indicating the critical roles of liver and kidney in the elimination of SAC.

  20. Rhodium-catalyzed allylic substitution with an acyl anion equivalent: stereospecific construction of acyclic quaternary carbon stereogenic centers.

    PubMed

    Evans, P Andrew; Oliver, Samuel; Chae, Jungha

    2012-11-28

    A highly regio- and stereospecific rhodium-catalyzed allylic alkylation of tertiary allylic alcohol derivatives with a cyanohydrin pronucleophile is described. This direct and operationally simple protocol provides a fundamentally novel approach toward the synthesis of α-quaternary substituted ketones and circumvents many of the inherent problems associated with conventional enolate alkylation reactions. The stereospecific variant of this reaction provides the enantiomerically enriched α-quaternary substituted allylic aryl ketone, which is a particularly challenging intermediate for more conventional enolate-based strategies.

  1. Modular Synthesis of 1,2-Diamine Derivatives via Palladium-Catalyzed Aerobic Oxidative Cyclization of Allylic Sulfamides**

    PubMed Central

    McDonald, Richard I.

    2010-01-01

    Allylic sulfamides undergo efficient aerobic oxidative cyclization at room temperature, mediated by a new Pd catalyst system consisting of 5% Pd(TFA)2/10% DMSO in THF. The synthetic utility of these reactions is enhanced by several features: (1) the sulfamide substrates are accessible in multi-gram scale from the corresponding allylic and primary amines, (2) the cyclic sulfamide products are readily converted to the corresponding 1,2-diamines upon treatment with LiAlH4, and (3) substrates derived from chiral allylic amines cyclize with very high levels of diastereoselectivity. PMID:21132102

  2. Modular Synthesis of 1,2-Diamine Derivatives via Palladium-Catalyzed Aerobic Oxidative Cyclization of Allylic Sulfamides**

    PubMed Central

    McDonald, Richard I.

    2012-01-01

    Allylic sulfamides undergo efficient aerobic oxidative cyclization at room temperature, mediated by a new Pd catalyst system consisting of 5% Pd(TFA)2/10% DMSO in THF. The synthetic utility of these reactions is enhanced by several features: (1) the sulfamide substrates are accessible in multi-gram scale from the corresponding allylic and primary amines, (2) the cyclic sulfamide products are readily converted to the corresponding 1,2-diamines upon treatment with LiAlH4, and (3) substrates derived from chiral allylic amines cyclize with very high levels of diastereoselectivity. PMID:20583013

  3. The Wacker oxidation of allyl alcohol along cyclic-intermediate routes: An ab initio molecular dynamics investigation

    NASA Astrophysics Data System (ADS)

    Imandi, Venkataramana; Nair, Nisanth N.

    2016-09-01

    The absence of isotope scrambling observed by Henry and coworkers in the Wacker oxidation of deuterated allylic alcohol was used by them as support for the inner-sphere mechanism hydroxypalladation mechanism. One of the assumptions used to interpret their experimental data was that allyl alcohol oxidation takes place through non-cyclic intermediate routes as in the case of ethene. Here we verify this assumption through ab initio metadynamics simulations of the Wacker oxidation of allyl alcohol in explicit solvent. Importance of our results in interpreting the isotope scrambling experiments is discussed.

  4. Spectral intensities of Rydberg transitions in carbonyl compounds. Formaldehyde, carbonyl fluoride and phosgene

    NASA Astrophysics Data System (ADS)

    Olalla, E.; Lavín, C.; Velasco, A. M.; Martín, I.

    2002-12-01

    Absorption oscillator strengths for electronic transitions involving Rydberg series (including the continuum) of formaldehyde, carbonyl fluoride and phosgene have been calculated with the molecular-adapted quantum defect orbital (MQDO) procedure. These compounds are known to play an important role in the evolution of the interstellar medium and the Earth's upper atmosphere. The results have been analysed on the grounds of the scarce comparative data found in the literature and by compliance with continuity across the ionisation threshold. The similarities observed between the calculated intensities of analogous transitions in the isovalent molecules F 2CO and Cl 2CO have served the purpose of assessing the quality of our calculations. New data, which may aid in future experimental measurements, are supplied.

  5. Clinical features of schizophrenia with enhanced carbonyl stress.

    PubMed

    Miyashita, Mitsuhiro; Arai, Makoto; Kobori, Akiko; Ichikawa, Tomoe; Toriumi, Kazuya; Niizato, Kazuhiro; Oshima, Kenichi; Okazaki, Yuji; Yoshikawa, Takeo; Amano, Naoji; Miyata, Toshio; Itokawa, Masanari

    2014-09-01

    Accumulating evidence suggests that advanced glycation end products, generated as a consequence of facilitated carbonyl stress, are implicated in the development of a variety of diseases. These diseases include neurodegenerative illnesses, such as Alzheimer disease. Pyridoxamine is one of the 3 forms of vitamin B6, and it acts by combating carbonyl stress and inhibiting the formation of AGEs. Depletion of pyridoxamine due to enhanced carbonyl stress eventually leads to a decrease in the other forms of vitamin B6, namely pyridoxal and pyridoxine. We previously reported that higher levels of plasma pentosidine, a well-known biomarker for advanced glycation end products, and decreased serum pyridoxal levels were found in a subpopulation of schizophrenic patients. However, there is as yet no clinical characterization of this subset of schizophrenia. In this study, we found that these patients shared many clinical features with treatment-resistant schizophrenia. These include a higher proportion of inpatients, low educational status, longer durations of hospitalization, and higher doses of antipsychotic medication, compared with patients without carbonyl stress. Interestingly, psychopathological symptoms showed a tendency towards negative association with serum vitamin B6 levels. Our results support the idea that treatment regimes reducing carbonyl stress, such as supplementation of pyridoxamine, could provide novel therapeutic benefits for this subgroup of patients.

  6. New methodology for removing carbonyl compounds from sweet wines.

    PubMed

    Blasi, Mélanie; Barbe, Jean-Christophe; Maillard, Bernard; Dubourdieu, Denis; Deleuze, Hervé

    2007-12-12

    Sweet white wines from botrytized grapes present high SO2 levels because of their high sulfur dioxide binding power. The objective of this work was to develop a new method for reducing this binding power by partially eliminating the carbonyl compounds naturally present in these wines that are responsible for this phenomenon. A selective liquid-solid removal technique was developed. Phenylsulfonylhydrazine was selected as the best candidate for removing carbonyl compounds. Its reactivity in the presence or absence of sulfur dioxide was verified in model media containing acetaldehyde, pyruvic acid, and 2-oxoglutaric acid, some of the main carbonyl compounds responsible for the SO2 binding power of sweet wines. The scavenging function was grafted on porous polymer supports, and its efficiency was evaluated in model wines. Dependent upon the supports used, different quantities of carbonyl compounds (over 90% in some cases) were removed in a few days. The presence of sulfur dioxide delayed removal without changing its quality. The results obtained showed that the method removed carbonyl compounds efficiently and was applicable to wines at any stage in winemaking.

  7. Emissions of carbonyl compounds from various cookstoves in China

    SciTech Connect

    Zhang, J. . Environmental and Occupational Health Sciences Inst. East-West Center, Honolulu, HI ); Smith, K.R. Univ. of California, Berkeley, CA . Center for Occupational and Environmental Health)

    1999-07-15

    This paper presents a new database of carbonyl emission factors for commonly used cookstoves in China. The emission factors, reported both on a fuel-mass basis (mg/kg) and on a defined cooking-task basis (mg/task), were determined using a carbon balance approach for 22 types of fuel/stove combinations. These include various stoves using different species of crop residues and wood, kerosene, and several types of coals and gases. The results show that all the tested cookstoves produced formaldehyde and acetaldehyde and that the vast majority of the biomass stoves produced additional carbonyl compounds such as acetone, acrolein, propionaldehyde, crotonaldehyde, 2-butanone, isobutyraldehyde, butyraldehyde, isovaleraldehyde, valeraldehyde, hexaldehyde, benzaldehyde, o-tolualdehyde, m,p-tolualdehyde, and 2,4-dimethylbenzaldehyde. Carbonyls other than formaldehyde and acetaldehyde, however, were rarely generated by burning coal, coal gas, and natural gas. Kerosene and LPG stoves generated more carbonyl compounds than coal, coal gas, and natural gas stoves, but less than biomass stoves. Indoor levels of carbonyl compounds for typical village houses during cooking hours, estimated using a mass balance model and the measured emission factors, can be high enough to cause acute health effects documented for formaldehyde exposure, depending upon house parameters and individuals' susceptibility.

  8. Atmospheric photooxidation of alkylbenzenes—I. Carbonyl product analyses

    NASA Astrophysics Data System (ADS)

    Yu, Jianzhen; Jeffries, Harvey E.; Sexton, Kenneth G.

    Six alkylbenzenes—toluene, p-xylene, m-xylene, o-xylene, 1,3,5-trimethylbenzene and 1,2,4-trimethylbenzene—were selected to investigate the carbonyl products resulting from OH-initiated oxidation of aromatic compounds. Experiments were conducted in both indoor and outdoor smog chambers under simulated atmospheric conditions. Both batch samples and 30 min interval samples were taken in the outdoor smog chamber experiments using 1 ppmV alkylbenzene, 0.67 ppm NO x and sunlight as the light source. A wide variety of carbonyl products were detected and identified using gas chromatography/mass spectrometric (GC/MS) detection by their O-(2,3,4,5,6-pentafluorobenzyl)-hydroxylamine (PFBHA) derivatives. Among the observed carbonyl products are aromatic aldehydes, quinones, di-unsaturated 1,6-dicarbonyls, unsaturated 1,4-dicarbonyls, saturated dicarbonyls, hydroxy dicarbonyls, glycolaldehyde, hydroxy acetone, and possibly triones and epoxy carbonyls. Quantification was achieved using 13C 3-acetone as a gas-phase internal standard. The numerous carbonyl products detected in itself partially explain previous difficulties in balancing the reacted carbon. They also provide additional insight into the oxidation mechanism for aromatic compounds, which will be discussed in this paper.

  9. Catalytic distillation structure

    DOEpatents

    Smith, Jr., Lawrence A.

    1984-01-01

    Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

  10. The magnesium-ene cyclization stereochemically directed by an allylic oxyanionic group and its application to a highly stereoselective synthesis of (+/-)-matatabiether. Allylmagnesium compounds by reductive magnesiation of allyl phenyl sulfides.

    PubMed

    Cheng, D; Zhu, S; Yu, Z; Cohen, T

    2001-01-10

    The first example of a magnesium-ene cyclization stereochemically directed by an allylic oxyanionic group is demonstrated by a highly stereoselective synthesis of the bicyclic terpene matatabiether 10. The synthetic method is particularly valuable, not only because of the stereochemical control and the utility of the versatile hydroxyl group introduced into the product, but also because the precursor of the allylmagnesium is an allyl phenyl sulfide, which is more stable and more easily prepared in a connective fashion than the usual allyl halide precursor. Since the presence of lithium ions encourages undesirable proton transfer to the cyclized organometallic and is detrimental to the stereochemical control, the conversion of the allylic thioether to the allylmagnesium utilizes a lithium-free method involving direct reductive magnesiation in the presence of the magnesium-anthracene complex.

  11. Cationization of organometallo carbonyl compounds by fast ion bombardment

    NASA Astrophysics Data System (ADS)

    Siuzdak, Gary; Wendeborn, Sebastian V.; Nicolaou, K. C.

    1992-01-01

    Organodicobalt, organochromium, and organomolybdenum carbonyl complexes have been studied using fast ion bombardment mass spectrometry. It has been found that the addition of cesium iodide to the liquid matrix, m-NBA, can significantly enhance the ability to observed the precursor ions of these organometallics through charge localization. In most cases the [M + Cs]+ ions were more abundant than the radical cations M-, the protonated molecules [M + H]+, or the sodium cationized molecules [M + Na]+ which were either unobservable or less intense than those treated with the cesium iodide salt solution. The decomposition of the compounds took place primarily through the successive loss of carbonyls from the radical cation with some carbonyl loss observed through the protonated and cationized species. The FAB matrix ions produced when cesium iodide was added to m-NBA also allowed for internal calibration.

  12. Phosphine-functionalized NHC Ni(ii) and Ni(0) complexes: synthesis, characterization and catalytic properties.

    PubMed

    Rull, S G; Rama, R J; Álvarez, E; Fructos, M R; Belderrain, T R; Nicasio, M C

    2017-06-13

    Two families of nickel complexes bearing chelating diphenylphosphine-functionalized NHC ligands [Ni(II)(ArNHCPPh2)(allyl)]Cl 1a (Ar = Mes); 1b, (Ar = 2,6-iPr2-C6H3) and [Ni(0)(ArNHCPPh2)(alkene)] 2a (Ar = 2,6-iPr2-C6H3, alkene = styrene); 2b (Ar = 2,6-iPr2-C6H3, alkene = diethyl fumarate) have been prepared and fully characterized. VT-NMR experiments in solution reveal that the allyl derivatives 1a-b are stereochemically nonrigid. The solid-state structure of the Ni(0) derivative 2b is also reported. These complexes display interesting catalytic properties in various cross-coupling reactions. The precatalyst [Ni(0)(ArNHCPPh2)(styrene)] 2a was found to be the most active system. The bulkiness of the N-substituent on the imidazole ring and the low oxidation state of the metal center in 2a accounted for its enhanced catalytic performance. This system catalyzed effectively the coupling of (hetero)aryl chlorides with a range of nucleophiles including Grignard reagents, boronic acids, secondary amines and indoles.

  13. Tunability of the Adsorbate Binding on Bimetallic Alloy Nanoparticles for the Optimization of Catalytic Hydrogenation.

    PubMed

    Luo, Long; Duan, Zhiyao; Li, Hao; Kim, Joohoon; Henkelman, Graeme; Crooks, Richard M

    2017-04-07

    In this paper, we show that PtAu and PdAu random alloy dendrimer-encapsulated nanoparticles with an average size of ∼1.6 nm have different catalytic activity trends for allyl alcohol hydrogenation. Specifically, PtAu nanoparticles exhibit a linear increase in activity with increasing Pt content, whereas PdAu dendrimer-encapsulated nanoparticles show a maximum activity at a Pd content of ∼60%. Both experimental and theoretical results suggest that this contrasting behavior is caused by differences in the strength of H binding on the PtAu and PdAu alloy surfaces. The results have significant implications for predicting the catalytic performance of bimetallic nanoparticles on the basis of density functional theory calculations.

  14. Vinyl dihydropyrans and dihydrooxazines: cyclizations of catalytic ruthenium carbenes derived from alkynals and alkynones.

    PubMed

    Cambeiro, Fermín; López, Susana; Varela, Jesús A; Saá, Carlos

    2014-06-02

    A novel synthesis of 2-vinyldihydropyrans and dihydro-1,4-oxazines (morpholine derivatives) from alkynals and alkynones has been developed. The cyclizations require a mild generation of catalytic ruthenium carbenes from terminal alkynes and (trimethylsilyl)diazomethane followed by trapping with carbonyl nucleophiles. Mechanistic aspects of the new cyclizations are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. From the tunneling dimer to the onset of microsolvation: Infrared spectroscopy of allyl radical water aggregates in helium nanodroplets.

    PubMed

    Leicht, Daniel; Kaufmann, Matin; Pal, Nitish; Schwaab, Gerhard; Havenith, Martina

    2017-03-21

    The infrared spectrum of allyl:water clusters embedded in helium nanodroplets was recorded. Allyl radicals were produced by flash vacuum pyrolysis and trapped in helium droplets. Deuterated water was added to the doped droplets, and the infrared spectrum of the radical water aggregates was recorded in the frequency range 2570-2820 cm(-1). Several absorption bands are observed and assigned to 1:1 and 1:2 allyl:D2O clusters, based on pressure dependent measurements and accompanying quantum chemical calculations. The analysis of the 1:1 cluster spectrum revealed a tunneling splitting as well as a combination band. For the 1:2 cluster, we observe a water dimer-like motif that is bound by one π-hydrogen bond to the allyl radical.

  16. Nickel-catalyzed enantioselective alkylative coupling of alkynes and aldehydes: synthesis of chiral allylic alcohols with tetrasubstituted olefins.

    PubMed

    Yang, Yun; Zhu, Shou-Fei; Zhou, Chang-Yue; Zhou, Qi-Lin

    2008-10-29

    A highly efficient nickel-catalyzed asymmetric alkylative coupling of alkynes, aldehydes, and dimethylzinc has been realized by using bulky spirobiindane phosphoramidite ligands, affording allylic alcohols with a tetrasubstituted olefin functionality in high yields, high regioselectivities, and excellent enantioselectivities.

  17. From the tunneling dimer to the onset of microsolvation: Infrared spectroscopy of allyl radical water aggregates in helium nanodroplets

    NASA Astrophysics Data System (ADS)

    Leicht, Daniel; Kaufmann, Matin; Pal, Nitish; Schwaab, Gerhard; Havenith, Martina

    2017-03-01

    The infrared spectrum of allyl:water clusters embedded in helium nanodroplets was recorded. Allyl radicals were produced by flash vacuum pyrolysis and trapped in helium droplets. Deuterated water was added to the doped droplets, and the infrared spectrum of the radical water aggregates was recorded in the frequency range 2570-2820 cm-1. Several absorption bands are observed and assigned to 1:1 and 1:2 allyl:D2O clusters, based on pressure dependent measurements and accompanying quantum chemical calculations. The analysis of the 1:1 cluster spectrum revealed a tunneling splitting as well as a combination band. For the 1:2 cluster, we observe a water dimer-like motif that is bound by one π-hydrogen bond to the allyl radical.

  18. Dynamics of tungsten and cobalt carbonyls on silica surfaces

    NASA Astrophysics Data System (ADS)

    Muthukumar, Kaliappan; Valenti, Roser; Jeschke, Harald O.

    2013-03-01

    Metal carbonyl species adsorbed on a substrate are the starting point for the electron beam induced deposition of metallic nanostructures. We employ first principles molecular dynamics simulations to investigate the dynamics of tungsten hexa- and pentacarbonyl as well as cobalt octacarbonyl precursor molecules on fully and partially hydroxylated silica substrates. We find that physisorbed carbonyls are quite mobile on a silica surface saturated with hydroxy groups, moving around half an Angstrom per picosecond. In contrast, chemisorbed ions like [W(CO)5]- or [Co(CO)4]- are more stable at room temperature. We determine the vibrational spectra which can provide signatures for experimentally distinguishing the form in which precursors cover a substrate.

  19. Magnetorheological Fluids with Carbonyl and Water Atomized Iron Powders

    NASA Astrophysics Data System (ADS)

    Bombard, Antonio J. F.; Teodoro, João Victor R.

    Our aim in this work was to propose the use of a ternary blend of two carbonyl iron powder CIP, mixed with water atomized iron powder (WAIP), to reduce the off-state viscosity, without prejudice of MRF performance in terms of yield stress and torque output. The idea of mix water atomized iron powder with carbonyl iron powder is not new. The US Pat. # 5,900,184 by Weiss et al. (1999) describes that a binary blend, half-to-half, can reduces the viscosity of MRF in the absence of magnetic field, and increase the torque output under field.

  20. Diastereo- and enantioselective iridium-catalyzed allylation of cyclic ketone enolates: synergetic effect of ligands and barium enolates.

    PubMed

    Chen, Wenyong; Chen, Ming; Hartwig, John F

    2014-11-12

    We report asymmetric allylic alkylation of barium enolates of cyclic ketones catalyzed by a metallacyclic iridium complex containing a phosphoramidite ligand derived from (R)-1-(2-naphthyl)ethylamine. The reaction products contain adjacent quaternary and tertiary stereocenters. This process demonstrates that unstabilized cyclic ketone enolates can undergo diastereo- and enantioselective Ir-catalyzed allylic substitution reactions with the proper choice of enolate countercation. The products of these reactions can be conveniently transformed to various useful polycarbocyclic structures.