Science.gov

Sample records for catalytic chemical vapour

  1. Chemical vapour transport of III-V semiconductor materials

    NASA Astrophysics Data System (ADS)

    Davis, Mervyn Howard

    Over the temperature range 770 to 1310 K, however, two bromides compete for prominence, dependent upon temperature. In both instances, it is shown that vapour transport becomes rate limited at low temperature. Further to the chemical vapour transport of indium phosphide, the dissociative sublimation of the compound has also been investigated. Raman spectroscopy has been used to identify high temperature molecular species involved in vapour transport of III-V semiconductor materials. Supplementary work has been performed on the thermochemistry of indium monobromide. The heat of formation of indium bromide crystals has been determined using a solution calormetric technique. Differential scanning calorimetry was used to measure the heat capacity and heat of fusion, of the salt. An entrainment study of the evaporation of liquid indium monobromide was undertaken to yield a value for its heat of vaporisation. Using a statistical thermodynamic approach, the heat capacity of the vapour was calculated. Collating the information, a value for the heat of formation of indium monobromide gas at 1000 K has been calculated for use in other thermodynamic calculations.

  2. Infrared hyperspectral imaging for chemical vapour detection

    NASA Astrophysics Data System (ADS)

    Ruxton, K.; Robertson, G.; Miller, W.; Malcolm, G. P. A.; Maker, G. T.; Howle, C. R.

    2012-10-01

    Active hyperspectral imaging is a valuable tool in a wide range of applications. One such area is the detection and identification of chemicals, especially toxic chemical warfare agents, through analysis of the resulting absorption spectrum. This work presents a selection of results from a prototype midwave infrared (MWIR) hyperspectral imaging instrument that has successfully been used for compound detection at a range of standoff distances. Active hyperspectral imaging utilises a broadly tunable laser source to illuminate the scene with light at a range of wavelengths. While there are a number of illumination methods, the chosen configuration illuminates the scene by raster scanning the laser beam using a pair of galvanometric mirrors. The resulting backscattered light from the scene is collected by the same mirrors and focussed onto a suitable single-point detector, where the image is constructed pixel by pixel. The imaging instrument that was developed in this work is based around an IR optical parametric oscillator (OPO) source with broad tunability, operating in the 2.6 to 3.7 μm (MWIR) and 1.5 to 1.8 μm (shortwave IR, SWIR) spectral regions. The MWIR beam was primarily used as it addressed the fundamental absorption features of the target compounds compared to the overtone and combination bands in the SWIR region, which can be less intense by more than an order of magnitude. We show that a prototype NCI instrument was able to locate hydrocarbon materials at distances up to 15 metres.

  3. Heat stress in chemical protective clothing: porosity and vapour resistance.

    PubMed

    Havenith, George; den Hartog, Emiel; Martini, Svein

    2011-05-01

    Heat strain in chemical protective clothing is an important factor in industrial and military practice. Various improvements to the clothing to alleviate strain while maintaining protection have been attempted. More recently, selectively permeable membranes have been introduced to improve protection, but questions are raised regarding their effect on heat strain. In this paper the use of selectively permeable membranes with low vapour resistance was compared to textile-based outer layers with similar ensemble vapour resistance. For textile-based outer layers, the effect of increasing air permeability was investigated. When comparing ensembles with a textile vs. a membrane outer layer that have similar heat and vapour resistances measured for the sum of fabric samples, a higher heat strain is observed in the membrane ensemble, as in actual wear, and the air permeability of the textile version improves ventilation and allows better cooling by sweat evaporation. For garments with identical thickness and static dry heat resistance, but differing levels of air permeability, a strong correlation of microclimate ventilation due to wind and movement with air permeability was observed. This was reflected in lower values of core and skin temperatures and heart rate for garments with higher air permeability. For heart rate and core temperature the two lowest and the two highest air permeabilities formed two distinct groups, but they did not differ within these groups. Based on protection requirements, it is concluded that air permeability increases can reduce heat strain levels allowing optimisation of chemical protective clothing. STATEMENT OF RELEVANCE: In this study on chemical, biological, radiological and nuclear (CBRN) protective clothing, heat strain is shown to be significantly higher with selectively permeable membranes compared to air permeable ensembles. Optimisation of CBRN personal protective equipment needs to balance sufficient protection with reduced heat

  4. Nano structured carbon nitrides prepared by chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Karuppannan, Ramesh; Prashantha, M.

    2010-08-01

    Nanostructured carbon nitride films were prepared by pyrolysis assisted chemical vapour deposition(CVD). A two zone furnace with a temperature profile having a uniform temperature over a length of 20 cm length has been designed and developed. The precursor Azabenzimidazole was taken in a quartz tube and evaporated at 400 0C. The dense vapours enter the pyrolysis zone kept at a desired temperature and deposit on the quartz substrates. The FTIR spectrum of the prepared samples shows peaks at 1272 cm-1 (C.N stretching) and 1600 cm-1 (C=N) confirms the bonding of nitrogen with carbon. Raman D and G peaks, are observed at 1360 cm-1 and 1576 cm-1 respectively. XPS core level spectra of C 1s and N 1s show the formation of π bonding between carbon and nitrogen atoms. The size of the nano crystals estimated from the SEM images and XRD is ~100 nm. In some regions of the sample a maximum of 57 atom % of nitrogen has been observed.

  5. Chemical vapour deposition synthetic diamond: materials, technology and applications

    NASA Astrophysics Data System (ADS)

    Balmer, R. S.; Brandon, J. R.; Clewes, S. L.; Dhillon, H. K.; Dodson, J. M.; Friel, I.; Inglis, P. N.; Madgwick, T. D.; Markham, M. L.; Mollart, T. P.; Perkins, N.; Scarsbrook, G. A.; Twitchen, D. J.; Whitehead, A. J.; Wilman, J. J.; Woollard, S. M.

    2009-09-01

    Substantial developments have been achieved in the synthesis of chemical vapour deposition (CVD) diamond in recent years, providing engineers and designers with access to a large range of new diamond materials. CVD diamond has a number of outstanding material properties that can enable exceptional performance in applications as diverse as medical diagnostics, water treatment, radiation detection, high power electronics, consumer audio, magnetometry and novel lasers. Often the material is synthesized in planar form; however, non-planar geometries are also possible and enable a number of key applications. This paper reviews the material properties and characteristics of single crystal and polycrystalline CVD diamond, and how these can be utilized, focusing particularly on optics, electronics and electrochemistry. It also summarizes how CVD diamond can be tailored for specific applications, on the basis of the ability to synthesize a consistent and engineered high performance product.

  6. Light-induced chemical vapour deposition painting with titanium dioxide

    NASA Astrophysics Data System (ADS)

    Halary-Wagner, E.; Bret, T.; Hoffmann, P.

    2003-03-01

    Light-induced chemical vapour deposits of titanium dioxide are obtained from titanium tetra-isopropoxide (TTIP) in an oxygen and nitrogen atmosphere with a long pulse (250 ns) 308 nm XeCl excimer laser using a mask projection set-up. The demonstrated advantages of this technique are: (i) selective area deposition, (ii) precise control of the deposited thickness and (iii) low temperature deposition, enabling to use a wide range of substrates. A revolving mask system enables, in a single reactor load, to deposit shapes of controlled heights, which overlap to build up a complex pattern. Interferential multi-coloured deposits are achieved, and the process limitations (available colours and resolution) are discussed.

  7. Chemical vapour deposition: Transition metal carbides go 2D

    DOE PAGES

    Gogotsi, Yury

    2015-08-17

    Here, the research community has been steadily expanding the family of few-atom-thick crystals beyond graphene, discovering new materials or producing known materials in a 2D state and demonstrating their unique properties1, 2. Recently, nanometre-thin 2D transition metal carbides have also joined this family3. Writing in Nature Materials, Chuan Xu and colleagues now report a significant advance in the field, showing the synthesis of large-area, high-quality, nanometre-thin crystals of molybdenum carbide that demonstrate low-temperature 2D superconductivity4. Moreover, they also show that other ultrathin carbide crystals, such as tungsten and tantalum carbides, can be grown by chemical vapour deposition with a highmore » crystallinity and very low defect concentration.« less

  8. Chemical vapour deposition: Transition metal carbides go 2D

    SciTech Connect

    Gogotsi, Yury

    2015-08-17

    Here, the research community has been steadily expanding the family of few-atom-thick crystals beyond graphene, discovering new materials or producing known materials in a 2D state and demonstrating their unique properties1, 2. Recently, nanometre-thin 2D transition metal carbides have also joined this family3. Writing in Nature Materials, Chuan Xu and colleagues now report a significant advance in the field, showing the synthesis of large-area, high-quality, nanometre-thin crystals of molybdenum carbide that demonstrate low-temperature 2D superconductivity4. Moreover, they also show that other ultrathin carbide crystals, such as tungsten and tantalum carbides, can be grown by chemical vapour deposition with a high crystallinity and very low defect concentration.

  9. Photo Initiated Chemical Vapour Deposition To Increase Polymer Hydrophobicity

    NASA Astrophysics Data System (ADS)

    Bérard, Ariane; Patience, Gregory S.; Chouinard, Gérald; Tavares, Jason R.

    2016-08-01

    Apple growers face new challenges to produce organic apples and now many cover orchards with high-density polyethylene (HDPE) nets to exclude insects, rather than spraying insecticides. However, rainwater- associated wetness favours the development of apple scabs, Venturia inaequalis, whose lesions accumulate on the leaves and fruit causing unsightly spots. Treating the nets with a superhydrophobic coating should reduce the amount of water that passes through the net. Here we treat HDPE and polyethylene terephthalate using photo-initiated chemical vapour deposition (PICVD). We placed polymer samples in a quartz tube and passed a mixture of H2 and CO through it while a UVC lamp (254 nm) illuminated the surface. After the treatment, the contact angle between water droplets and the surface increased by an average of 20°. The contact angle of samples placed 70 cm from the entrance of the tube was higher than those at 45 cm and 20 cm. The PICVD-treated HDPE achieved a contact angle of 124°. Nets spray coated with a solvent-based commercial product achieved 180° but water ingress was, surprisingly, higher than that for nets with a lower contact angle.

  10. Reducing chemical vapour infiltration time for ceramic matrix composites.

    PubMed

    Timms, L. A.; Westby, W.; Prentice, C.; Jaglin, D.; Shatwell, R. A.; Binner, J. G. P.

    2001-02-01

    Conventional routes to producing ceramic matrix composites (CMCs) require the use of high temperatures to sinter the individual ceramic particles of the matrix together. Sintering temperatures are typically much higher than the upper temperature limits of the fibres. This paper details preliminary work carried out on producing a CMC via chemical vapour infiltration (CVI), a process that involves lower processing temperatures, thus avoiding fibre degradation. The CVI process has been modified and supplemented in an attempt to reduce the CVI process time and to lower the cost of this typically expensive process. To this end microwave-enhanced CVI (MECVI) has been chosen, along with two alternative pre-infiltration steps: electrophoretic infiltration and vacuum bagging. The system under investigation is based on silicon carbide fibres within a silicon carbide matrix (SiCf/SiC). The results demonstrate that both approaches result in an enhanced initial density and a consequent significant reduction in the time required for the MECVI processing step. Dual energy X-ray absorptiometry was used as a non-destructive, density evaluation technique. Initial results indicate that the presence of the SiC powder in the pre-form changes the deposition profile during the MECVI process.

  11. Photo Initiated Chemical Vapour Deposition To Increase Polymer Hydrophobicity

    PubMed Central

    Bérard, Ariane; Patience, Gregory S.; Chouinard, Gérald; Tavares, Jason R.

    2016-01-01

    Apple growers face new challenges to produce organic apples and now many cover orchards with high-density polyethylene (HDPE) nets to exclude insects, rather than spraying insecticides. However, rainwater- associated wetness favours the development of apple scabs, Venturia inaequalis, whose lesions accumulate on the leaves and fruit causing unsightly spots. Treating the nets with a superhydrophobic coating should reduce the amount of water that passes through the net. Here we treat HDPE and polyethylene terephthalate using photo-initiated chemical vapour deposition (PICVD). We placed polymer samples in a quartz tube and passed a mixture of H2 and CO through it while a UVC lamp (254 nm) illuminated the surface. After the treatment, the contact angle between water droplets and the surface increased by an average of 20°. The contact angle of samples placed 70 cm from the entrance of the tube was higher than those at 45 cm and 20 cm. The PICVD-treated HDPE achieved a contact angle of 124°. Nets spray coated with a solvent-based commercial product achieved 180° but water ingress was, surprisingly, higher than that for nets with a lower contact angle. PMID:27531048

  12. Tungsten Deposition on Graphite using Plasma Enhanced Chemical Vapour Deposition.

    NASA Astrophysics Data System (ADS)

    Sharma, Uttam; Chauhan, Sachin S.; Sharma, Jayshree; Sanyasi, A. K.; Ghosh, J.; Choudhary, K. K.; Ghosh, S. K.

    2016-10-01

    The tokamak concept is the frontrunner for achieving controlled thermonuclear reaction on earth, an environment friendly way to solve future energy crisis. Although much progress has been made in controlling the heated fusion plasmas (temperature ∼ 150 million degrees) in tokamaks, technological issues related to plasma wall interaction topic still need focused attention. In future, reactor grade tokamak operational scenarios, the reactor wall and target plates are expected to experience a heat load of 10 MW/m2 and even more during the unfortunate events of ELM's and disruptions. Tungsten remains a suitable choice for the wall and target plates. It can withstand high temperatures, its ductile to brittle temperature is fairly low and it has low sputtering yield and low fuel retention capabilities. However, it is difficult to machine tungsten and hence usages of tungsten coated surfaces are mostly desirable. To produce tungsten coated graphite tiles for the above-mentioned purpose, a coating reactor has been designed, developed and made operational at the SVITS, Indore. Tungsten coating on graphite has been attempted and successfully carried out by using radio frequency induced plasma enhanced chemical vapour deposition (rf -PECVD) for the first time in India. Tungsten hexa-fluoride has been used as a pre-cursor gas. Energy Dispersive X-ray spectroscopy (EDS) clearly showed the presence of tungsten coating on the graphite samples. This paper presents the details of successful operation and achievement of tungsten coating in the reactor at SVITS.

  13. Controlled oxidation of iron nanoparticles in chemical vapour synthesis

    NASA Astrophysics Data System (ADS)

    Ruusunen, Jarno; Ihalainen, Mika; Koponen, Tarmo; Torvela, Tiina; Tenho, Mikko; Salonen, Jarno; Sippula, Olli; Joutsensaari, Jorma; Jokiniemi, Jorma; Lähde, Anna

    2014-02-01

    In the present study, iron oxide nanoparticles (primary particle size of 80-90 nm) with controlled oxidation state were prepared via an atmospheric pressure chemical vapour synthesis (APCVS) method. Iron pentacarbonyl [Fe(CO)5], a precursor material, was thermally decomposed to iron in the APCVS reactor. Subsequently, the iron was oxidized with controlled amount of oxygen in the reactor to produce nearly pure magnetite or haematite particles depending on the oxygen concentration. Size, morphology and crystal structure of the synthesized nanoparticles were studied with scanning mobility particle sizer (SMPS), transmission electron microscopy (TEM) and X-ray diffraction (XRD). In addition, thermodynamic equilibrium calculations and computational fluid dynamics model were used to predict the oxidation state of the iron oxides and the reaction conditions during mixing. Aggregates of crystalline particles were formed, determined as magnetite at the oxygen volumetric fraction of 0.1 % and haematite at volumetric fraction of 0.5 %, according to the XRD. The geometric mean electrical mobility diameter of the aggregates increased from 110 to 155 nm when the volumetric fraction of oxygen increased from 0.1 to 0.5 %, determined using the SMPS. The aggregates were highly sintered based on TEM analyses. As a conclusion, APCVS method can be used to produce nearly pure crystalline magnetite or haematite nanoparticles with controlled oxidation in a continuous one-stage gas-phase process.

  14. Long distance spin communication in chemical vapour deposited graphene

    PubMed Central

    Kamalakar, M. Venkata; Groenveld, Christiaan; Dankert, André; Dash, Saroj P.

    2015-01-01

    Graphene is an ideal medium for long-distance spin communication in future spintronic technologies. So far, the prospect is limited by the smaller sizes of exfoliated graphene flakes and lower spin transport properties of large-area chemical vapour-deposited (CVD) graphene. Here we demonstrate a high spintronic performance in CVD graphene on SiO2/Si substrate at room temperature. We show pure spin transport and precession over long channel lengths extending up to 16 μm with a spin lifetime of 1.2 ns and a spin diffusion length ∼6 μm at room temperature. These spin parameters are up to six times higher than previous reports and highest at room temperature for any form of pristine graphene on industrial standard SiO2/Si substrates. Our detailed investigation reinforces the observed performance in CVD graphene over wafer scale and opens up new prospects for the development of lateral spin-based memory and logic applications. PMID:25857650

  15. On The Stability Of Model Flows For Chemical Vapour Deposition

    NASA Astrophysics Data System (ADS)

    Miller, Robert

    2016-11-01

    The flow in a chemical vapour deposition (CVD) reactor is assessed. The reactor is modelled as a flow over an infinite-radius rotating disk, where the mean flow and convective instability of the disk boundary layer are measured. Temperature-dependent viscosity and enforced axial flow are used to model the steep temperature gradients present in CVD reactors and the pumping of the gas towards the disk, respectively. Increasing the temperature-dependence parameter of the fluid viscosity (ɛ) results in an overall narrowing of the fluid boundary layer. Increasing the axial flow strength parameter (Ts) accelerates the fluid both radially and axially, while also narrowing the thermal boundary layer. It is seen that when both effects are imposed, the effects of axial flow generally dominate those of the viscosity temperature dependence. A local stability analysis is performed and the linearized stability equations are solved using a Galerkin projection in terms of Chebyshev polynomials. The neutral stability curves are then plotted for a range of ɛ and Ts values. Preliminary results suggest that increasing Ts has a stabilising effect on both type I and type II stationary instabilities, while small increases in ɛ results in a significant reduction to the critical Reynolds number.

  16. Carbon Nanotubes/Nanofibers by Plasma Enhanced Chemical Vapour Deposition

    NASA Technical Reports Server (NTRS)

    Teo, K. B. K.; Hash, D. B.; Bell, M. S.; Chhowalla, M.; Cruden, B. A.; Amaratunga, G. A. J.; Meyyappan, M.; Milne, W. I.

    2005-01-01

    Plasma enhanced chemical vapour deposition (PECVD) has been recently used for the production of vertically aligned carbon nanotubedfibers (CN) directly on substrates. These structures are potentially important technologically as electron field emitters (e.g. microguns, microwave amplifiers, displays), nanoelectrodes for sensors, filter media, superhydrophobic surfaces and thermal interface materials for microelectronics. A parametric study on the growth of CN grown by glow discharge dc-PECVD is presented. In this technique, a substrate containing thin film Ni catalyst is exposed to C2H2 and NH3 gases at 700 C. Without plasma, this process is essentially thermal CVD which produces curly spaghetti-like CN as seen in Fig. 1 (a). With the plasma generated by biasing the substrate at -6OOV, we observed that the CN align vertically during growth as shown in Fig. l(b), and that the magnitude of the applied substrate bias affects the degree of alignment. The thickness of the thin film Ni catalyst was found to determine the average diameter and inversely the length of the CN. The yield and density of the CN were controlled by the use of different diffusion barrier materials under the Ni catalyst. Patterned CN growth [Fig. l(c)], with la variation in CN diameter of 4.1% and 6.3% respectively, is achieved by lithographically defining the Ni thin film prior to growth. The shape of the structures could be varied from very straight nanotube-like to conical tip-like nanofibers by increasing the ratio of C2H2 in the gas flow. Due to the plasma decomposition of C2H2, amorphous carbon (a-C) is an undesirable byproduct which could coat the substrate during CN growth. Using a combination of depth profiled Auger electron spectroscopy to study the substrate and in-situ mass spectroscopy to examine gas phase neutrals and ions, the optimal conditions for a-C free growth of CN is determined.

  17. Catalytic Functionalities of Nano Ruthenium/gamma-Al2O3 Catalysts for the Vapour Phase Hydrogenolysis of Glycerol.

    PubMed

    Kumar, Vanama Pavan; Priya, Samudrala Shanthi; Harikrishna, Yengaidas; Kumar, Ashish; Chary, Komandur V R

    2016-02-01

    A series of Ruthenium catalysts with different Ru contents supported on gamma-alumina were prepared by deposition-precipitation method. The catalysts were characterized by X-ray diffraction (XRD), trans- mission electron microscopy (TEM), temperature programmed reduction (TPR), CO-chemisorption, surface area and pore-size distribution (PSD) measurements. The catalytic activities were evaluated for the vapour phase hydrogenolysis of glycerol to propanediols. The pore size distribution (PSD) results suggest that Ru loadings considerably affect the pore volume, pore diameter and surface area. The particle size measured from CO-chemisorption and TEM analysis are well correlated to the activity results during the hydrogenolysis reaction. The catalytic properties of Ru/gamma-Al2O3 catalysts were evaluated for the first time over vapour phase hydrogenolysis of glycerol to propanediols.

  18. Functionalization of Hydrogenated Chemical Vapour Deposition-Grown Graphene by On-Surface Chemical Reactions.

    PubMed

    Drogowska, Karolina; Kovaříček, Petr; Kalbáč, Martin

    2017-03-23

    The reactivity of hydrogenated graphene when treated with oxidising agents, KMnO4 and KIO4 , as well as alkylated with benzyl bromide (BnBr) was studied. The probed reactions are strictly limited to the partly hydrogenated form of graphene in which most of the hydrogen atoms are located in activated benzylic/allylic positions. This, in turn, clearly demonstrates the presence of hydrogen attached to the graphene lattice. Attachment of the benzyl group was also unequivocally demonstrated by characteristic vibrations recorded in the surface-enhanced Raman spectra, and all reactions were shown to proceed solely on hydrogenated graphene as evidenced by the comparison with pristine chemical vapour deposition-grown graphene.

  19. Chemical vapour deposition of thermochromic vanadium dioxide thin films for energy efficient glazing

    SciTech Connect

    Warwick, Michael E.A.; Binions, Russell

    2014-06-01

    Vanadium dioxide is a thermochromic material that undergoes a semiconductor to metal transitions at a critical temperature of 68 °C. This phase change from a low temperature monoclinic structure to a higher temperature rutile structure is accompanied by a marked change in infrared reflectivity and change in resistivity. This ability to have a temperature-modulated film that can limit solar heat gain makes vanadium dioxide an ideal candidate for thermochromic energy efficient glazing. In this review we detail the current challenges to such glazing becoming a commercial reality and describe the key chemical vapour deposition technologies being employed in the latest research. - Graphical abstract: Schematic demonstration of the effect of thermochromic glazing on solar radiation (red arrow represents IR radiation, black arrow represents all other solar radiation). - Highlights: • Vanadium dioxide thin films for energy efficient glazing. • Reviews chemical vapour deposition techniques. • Latest results for thin film deposition for vanadium dioxide.

  20. Control and Characterization of Individual Grains and Grain Boundaries in Graphene Grown by Chemical Vapour Deposition

    DTIC Science & Technology

    2011-06-01

    active investigation, both experimentally25–28 and theoretically29–31. For example, exfoliated monolayer graphene flakes can show both zigzag and...crystalsmade of eithermultilayer or monolayer CVD graphene as well as transferred exfoliated graphene /graphite. Seeds made from multilayer CVD graphene ...synthesis of graphene by chemical vapour deposition and its application in hydrogen sensing. Sens. Actuat. B 150, 296–300 (2010). 21. Li, X. S., Cai, W. W

  1. Light induced chemical vapour deposition of titanium oxide thin films at room temperature

    NASA Astrophysics Data System (ADS)

    Halary, E.; Benvenuti, G.; Wagner, F.; Hoffmann, P.

    2000-02-01

    High resolution patterned deposition of titania is achieved by light induced chemical vapour deposition (LICVD), by imaging a mask onto a glass substrate. A long pulse XeCl Excimer laser (308 nm) provides, by perpendicular irradiation, the energy to convert titanium tetraisopropoxide (TTIP) vapour into titanium dioxide films, in an oxygen atmosphere, on unheated glass substrates. The amorphous titania deposits contain about 6% carbon contamination according to X-ray photoelectron spectroscopy (XPS) measurements. The deposition rate increases with increasing laser fluence until a maximum value is reached, then remains constant over a wide range, and finally decreases with further fluence increase due to titania ablation or thermal effects. The film thickness increases linearly with the number of pulses after a nucleation period. The strong influence of the laser pulse repetition rate on the growth rate and the thickness profile are reported.

  2. Chemical vapour deposition of zeolitic imidazolate framework thin films.

    PubMed

    Stassen, Ivo; Styles, Mark; Grenci, Gianluca; Gorp, Hans Van; Vanderlinden, Willem; Feyter, Steven De; Falcaro, Paolo; Vos, Dirk De; Vereecken, Philippe; Ameloot, Rob

    2016-03-01

    Integrating metal-organic frameworks (MOFs) in microelectronics has disruptive potential because of the unique properties of these microporous crystalline materials. Suitable film deposition methods are crucial to leverage MOFs in this field. Conventional solvent-based procedures, typically adapted from powder preparation routes, are incompatible with nanofabrication because of corrosion and contamination risks. We demonstrate a chemical vapour deposition process (MOF-CVD) that enables high-quality films of ZIF-8, a prototypical MOF material, with a uniform and controlled thickness, even on high-aspect-ratio features. Furthermore, we demonstrate how MOF-CVD enables previously inaccessible routes such as lift-off patterning and depositing MOF films on fragile features. The compatibility of MOF-CVD with existing infrastructure, both in research and production facilities, will greatly facilitate MOF integration in microelectronics. MOF-CVD is the first vapour-phase deposition method for any type of microporous crystalline network solid and marks a milestone in processing such materials.

  3. Concurrent growth of InSe wires and In2O3 tulip-like structures in the Au-catalytic vapour-liquid-solid process

    NASA Astrophysics Data System (ADS)

    Taurino, A.; Signore, M. A.

    2015-06-01

    In this work, the concurrent growth of InSe and In2O3 nanostructures, obtained by thermal evaporation of InSe powders on Au-covered Si substrates, has been investigated by scanning and transmission electron microscopy techniques. The vapour-solid and Au catalytic vapour-liquid-solid growth mechanisms, responsible of the simultaneous development of the two different types of nanostructures, i.e. InSe wires and In2O3 tulip-like structures respectively, are discussed in detail. The thermodynamic processes giving rise to the obtained morphologies and materials are explained.

  4. Chemical vapour deposition of thermochromic vanadium dioxide thin films for energy efficient glazing

    NASA Astrophysics Data System (ADS)

    Warwick, Michael E. A.; Binions, Russell

    2014-06-01

    Vanadium dioxide is a thermochromic material that undergoes a semiconductor to metal transitions at a critical temperature of 68 °C. This phase change from a low temperature monoclinic structure to a higher temperature rutile structure is accompanied by a marked change in infrared reflectivity and change in resistivity. This ability to have a temperature-modulated film that can limit solar heat gain makes vanadium dioxide an ideal candidate for thermochromic energy efficient glazing. In this review we detail the current challenges to such glazing becoming a commercial reality and describe the key chemical vapour deposition technologies being employed in the latest research.

  5. Amorphous hollow carbon spheres synthesized using radio frequency plasma-enhanced chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Yang, G. M.; Xu, Q.; Tian, H. W.; Wang, X.; Zheng, W. T.

    2008-10-01

    We report a method to synthesize amorphous hollow carbon spheres, with diameters ranging from 100 to 800 nm, which are dispersed among bent graphitized carbon nanotubes using radio frequency plasma-enhanced chemical vapour deposition in mixed CH4/H2 gases. The products are characterized by techniques including scanning electron microscopy, energy-dispersive x-ray spectroscopy, Raman spectroscopy and transmission electron microscopy. It is found that MgO and Ni nanoparticles together with hydrogen play important roles in the formation of the spheres. A possible formation mechanism for the carbon composites has been proposed.

  6. Graphene growth by transfer-free chemical vapour deposition on a cobalt layer

    NASA Astrophysics Data System (ADS)

    Macháč, Petr; Hejna, Ondřej; Slepička, Petr

    2017-01-01

    The contribution deals with the preparation of graphene films by a transfer-free chemical vapour deposition process utilizing a thin cobalt layer. This method allows growing graphene directly on a dielectric substrate. The process was carried out in a cold-wall reactor with methane as carbon precursor. We managed to prepare bilayer graphene. The best results were obtained for a structure with a cobalt layer with a thickness of 50 nm. The quality of prepared graphene films and of the number of graphene layers were estimated using Raman spectroscopy. with a minimal dots diameter of 180 nm and spacing of 1000 nm were successfully developed.

  7. Laser-induced chemical vapour deposition of conductive and insulating thin films

    NASA Astrophysics Data System (ADS)

    Reisse, G.; Gaensicke, F.; Ebert, R.; Illmann, U.; Johansen, H.

    1992-01-01

    Investigations concerning the laser-induced chemical vapour deposition of Mo, W, Co and TiSi 2 conductive thin film structures from Mo(CO) 6, W(CO) 6, Co 2(CO) 8, TiCl 4 and SiH 4 using a direct writing method are presented. SiO 2 thin films were deposited from SiH 4 and N 2O in a large area deposition process stimulated by an excimer laser by using a parallel beam configuration.

  8. Optimization of parameters by Taguchi method for controlling purity of carbon nanotubes in chemical vapour deposition technique.

    PubMed

    Dasgupta, K; Sen, D; Mazumder, S; Basak, C B; Joshi, J B; Banerjee, S

    2010-06-01

    The process parameters (viz. temperature of synthesis, type of catalyst, concentration of catalyst and type of catalyst-support material) for controlling purity of carbon nanotubes synthesized by catalytic chemical vapour deposition of acetylene have been optimized by analyzing the experimental results using Taguchi method. It has been observed that the catalyst-support material has the maximum (59.4%) and the temperature of synthesis has the minimum effect (2.1%) on purity of the nanotubes. At optimum condition (15% ferrocene supported on carbon black at the synthesis temperature of 700 degrees C) the purity of nanotubes was found out to be 96.2% with yield of 1900%. Thermogravimetry has been used to assess purity of nanotubes. These nantubes have been further characterized by scanning electron microscopy, transmission electron microscopy and Raman Spectroscopy. Small angle neutron scattering has been used to find out their average inner and outer diameter using an appropriate model. The nanotubes are well crystallized but with wide range of diameter varying between 20-150 nm.

  9. Single-source precursor for chemical vapour deposition of collapsed boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Tang, Chengchun; Bando, Yoshio; Shen, Guozhen; Zhi, Chunyi; Golberg, Dmitri

    2006-12-01

    Ammonium tetrafluoroborate, a cheap and commonly used chemical, was successfully utilized in this study to synthesize BN-coated MgF2 nanowires and collapsed BN nanotubes, although previous investigations have indicated that the compound cannot be used as a chemical vapour deposition (CVD) reaction precursor of amorphous or crystalline BN. Our study reveals that when MgCl2 is used as a promoter a crystalline BN phase can be obtained on a large scale. The MgCl2 also controls the product morphology, resulting in collapsed BN-coated MgF2 nanowires at the first stage of CVD. The detailed morphology of the composite nanowires also depends on the reaction temperature. Increase in temperature stimulates the nanowire formation. The MgF2 inclusions can be fully removed via a simple high-temperature evaporation procedure, forming collapsed BN nanotubes of high purity and yield.

  10. Graphene growth from reduced graphene oxide by chemical vapour deposition: seeded growth accompanied by restoration

    NASA Astrophysics Data System (ADS)

    Chang, Sung-Jin; Hyun, Moon Seop; Myung, Sung; Kang, Min-A.; Yoo, Jung Ho; Lee, Kyoung G.; Choi, Bong Gill; Cho, Youngji; Lee, Gaehang; Park, Tae Jung

    2016-03-01

    Understanding the underlying mechanisms involved in graphene growth via chemical vapour deposition (CVD) is critical for precise control of the characteristics of graphene. Despite much effort, the actual processes behind graphene synthesis still remain to be elucidated in a large number of aspects. Herein, we report the evolution of graphene properties during in-plane growth of graphene from reduced graphene oxide (RGO) on copper (Cu) via methane CVD. While graphene is laterally grown from RGO flakes on Cu foils up to a few hundred nanometres during CVD process, it shows appreciable improvement in structural quality. The monotonous enhancement of the structural quality of the graphene with increasing length of the graphene growth from RGO suggests that seeded CVD growth of graphene from RGO on Cu surface is accompanied by the restoration of graphitic structure. The finding provides insight into graphene growth and defect reconstruction useful for the production of tailored carbon nanostructures with required properties.

  11. Hot-wire chemical vapour deposition at low substrate temperatures for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Bakker, R.

    2010-09-01

    The need for large quantities of rapidly and cheaply produced electronic devices has increased rapidly over the past decades. The transistors and diodes that are used to build these devices are predominantly made of crystalline silicon. Since crystalline silicon is very expensive to produce on a large scale and cannot be directly deposited on plastic substrates, much research is being done on thin film amorphous or nanocrystalline semiconductors and insulators. Hot-wire chemical vapour deposition (HWCVD) is a novel, low cost, and convenient way to deposit these materials. The process can be controlled in such a way that specific chemical reactions take place and unwanted side reactions are minimized. It can easily be scaled up to produce large-area thin film electronics. Conventionally, plasma enhanced chemical vapour deposition (PECVD) is used to deposit semiconductors and inorganic dielectrics. Recently, HWCVD has been explored for fast deposition of such materials. An adaptation of HWCVD, initiated chemical vapour deposition (iCVD), offers the unique possibility of producing organic materials and polymers in a vacuum reactor, without the use of solvents. This technique was originally proposed at the Massachusetts institute of technology (MIT) by Prof. Karen Gleason. The iCVD process involves the creation of radicals by dissociation of a peroxide (a molecule with a ~O-O~ bond) by a heated wire in a vacuum reactor. This radical initiates a polymerization reaction of a vinyl (a molecule with a double carbon-carbon bond, ~C=C~) monomer at a substrate held at room temperature. This thesis describes a dedicated iCVD reactor for polymer deposition, installed at Utrecht University, along with a reactor with a cooled substrate holder in an existing HWCVD multi-chamber setup for low-temperature silicon nitride (SiNx) depositions. The most important features of these reactors are described and the characterization techniques are explained. This thesis contains four new

  12. Methyldichloroborane evidenced as an intermediate in the chemical vapour deposition synthesis of boron carbide.

    PubMed

    Reinisch, G; Patel, S; Chollon, G; Leyssale, J-M; Alotta, D; Bertrand, N; Vignoles, G L

    2011-09-01

    The most recent ceramic-matrix composites (CMC) considered for long-life applications as thermostructural parts in aerospace propulsion contain, among others, boron-rich phases like boron carbide. This compound is prepared by thermal Chemical Vapour Infiltration (CVI), starting from precursors like boron halides and hydrocarbons. We present a study aiming at a precise knowledge of the gas-phase composition in a hot-zone LPCVD reactor fed with BCl3, CH4 and H2, which combines experimental and theoretical approaches. This work has brought strong evidences of the presence of Methydichloroborane (MDB, BCl2CH3) in the process. It is demonstrated that this intermediate, the presence of which had never been formally proved before, appears for processing temperatures slightly lower than the deposition temperature of boron carbide. The study features quantum chemical computations, which provide several pieces of information like thermochemical and kinetic data, as well as vibration and rotation frequencies, reaction kinetics computations, and experimental gas-phase characterization of several species by FTIR, for several processing parameter sets. The main results are presented, and the place of MDB in the reaction scheme is discussed.

  13. Fluorinated carboxylic membranes deposited by plasma enhanced chemical vapour deposition for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Thery, J.; Martin, S.; Faucheux, V.; Le Van Jodin, L.; Truffier-Boutry, D.; Martinent, A.; Laurent, J.-Y.

    Among the fuel cell technologies, the polymer electrolyte membrane fuel cells (PEMFCs) are particularly promising because they are energy-efficient, clean, and fuel-flexible (i.e., can use hydrogen or methanol). The great majority of PEM fuel cells rely on a polymer electrolyte from the family of perfluorosulfonic acid membranes, nevertheless alternative materials are currently being developed, mainly to offer the alternative workout techniques which are required for the portable energy sources. Plasma polymerization represents a good solution, as it offers the possibility to deposit thin layer with an accurate and homogeneous thickness, even on 3D surfaces. In this paper, we present the results for the growth of proton conductive fluoro carboxylic membranes elaborated by plasma enhanced chemical vapour deposition. These membranes present conductivity values of the same order than the one of Nafion ®. The properties of the membrane, such as the chemical composition, the ionic conductivity, the swelling behaviour and the permeability were correlated to the plasma process parameters. The membranes were integrated in fuel cells on porous substrates and we present here the results regarding the barrier effect and the power output. Barrier effect similar to those of 40 μm Nafion ® layers was reached for 10 μm thick carboxylic membranes. Power outputs around 3 mW cm -2 were measured. We discuss the results regarding the gas barrier effect and the power outputs.

  14. Some considerations of the thermodynamics and kinetics of the chemical vapour deposition of tungsten

    NASA Astrophysics Data System (ADS)

    Hitchman, Michael L.; Jobson, Andrew D.; Kwakman, Loek F. Tz.

    1989-09-01

    The possibility of the chemical vapour deposition of tungsten for metallisation for microelectronic applications has been considered and investigated for about twenty years, but the process still remains problematical and has serious limitations. Many of the difficulties arise from a lack of a good understanding of the chemistry of the processes and on the effect of that chemistry on layer properties and characteristics. In particular, the very limited information about the thermodynamics and kinetics of the processes allows little more than an empirical approach to the control of reaction parameters or reactor design. In this paper we review the two predominant reactions of silicon and hydrogen reduction of tungsten hexafluoride and we make some observations and comments on the thermodynamics and kinetics of the two reactions. We also review the chemistry of selective deposition of tungsten. However, in order to fully exploit the chemistry of the deposition processes it is pointed out that for both basic studies and applications it is necessary to make use of high vacuum technology in order to minimise the effect of atmospheric impurities, particularly water, and reaction by-products.

  15. Epitaxial chemical vapour deposition growth of monolayer hexagonal boron nitride on a Cu(111)/sapphire substrate.

    PubMed

    Uchida, Yuki; Iwaizako, Tasuku; Mizuno, Seigi; Tsuji, Masaharu; Ago, Hiroki

    2017-03-22

    Hexagonal boron nitride (h-BN), an atomically thin insulating material, shows a large band gap, mechanical flexibility, and optical transparency. It can be stacked with other two-dimensional (2D) materials through van der Waals interactions to form layered heterostructures. These properties promise its application as an insulating layer of novel 2D electronic devices due to its atomically smooth surface with a large band gap. Herein, we demonstrated the ambient-pressure chemical vapour deposition (CVD) growth of high-quality, large-area monolayer h-BN on a Cu(111) thin film deposited on a c-plane sapphire using ammonia borane (BH3NH3) as the feedstock. Highly oriented triangular h-BN grains grow on Cu(111), which finally coalescence to cover the entire Cu surface. Low-energy electron diffraction (LEED) measurements indicated that the hexagonal lattice of the monolayer h-BN is well-oriented along the underlying Cu(111) lattice, thus implying the epitaxial growth of h-BN, which can be applied in various 2D electronic devices.

  16. Assessment of conservative weighting scheme in simulating chemical vapour deposition with trace species

    NASA Astrophysics Data System (ADS)

    Wu, J.-S.; Hsiao, W.-J.; Lian, Y.-Y.; Tseng, K.-C.

    2003-09-01

    Low-pressure or ultra-high vacuum chemical vapour deposition often involves important trace species in both gas-phase and surface reactions. The conservative weighting scheme (J. Thermophys. Heat Transfer 1996; 10(4) : 579) has been used to deal with the trace species often involved in some non-reactive physical processes, which is otherwise considered computationally impossible using the conventional DSMC method. This conservative weighting scheme (CWS) improves greatly the statistical uncertainties by decreasing the weighting factors of trace-species particles and ensures the conservation of both momentum and energy between two colliding particles with large difference of weighting factors. This CWS is further extended to treat reactive processes for gas-phase and surface reactions with trace species, which is called extended conservative weighting scheme (ECWS). A single-cell equilibrium simulation is performed for verifying both the CWS and ECWS in treating trace species. The results of using CWS show that it is most efficient and accurate for weight ratio (trace to non-trace) equal to or less than 0.01 for flows with two and three species. The results of a single-cell simulation using ECWS for gas-phase reaction and surface reactions show that only ECWS can produce acceptable results with reasonable computational time.

  17. Chemical Vapour Deposition of Graphene with Re-useable Pt and Cu substrates for Flexible Electronics

    NASA Astrophysics Data System (ADS)

    Karamat, Shumaila; Sonusen, Selda; Celik, Umit; Uysalli, Yigit; Oral, Ahmet

    2015-03-01

    Graphene has gained the attention of scientific world due to its outstanding physical properties. The future demand of flexible electronics such as solar cells, light emitting diodes, photo-detectors and touch screen technology requires more exploration of graphene properties on flexible substrates. The most interesting application of graphene is in organic light emitting diodes (OLED) where efforts are in progress to replace brittle indium tin oxide (ITO) electrode with a flexible graphene electrode because ITO raw materials are becoming increasingly expensive, and its brittle nature makes it unsuitable for flexible devices. In this work, we grow graphene on Pt and Cu substrates using chemical vapour deposition (CVD) and transferred it to a polymer material (PVA) using lamination technique. We used hydrogen bubbling method for separating graphene from Pt and Cu catalyst to reuse the substrates many times. After successful transfer of graphene on polymer samples, we checked the resistivity values of the graphene sheet which varies with growth conditions. Furthermore, Raman, atomic force microscopy (AFM), I-V and Force-displacement measurements will be presented for these samples.

  18. Characterisation of TiO 2 deposited by photo-induced chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Kaliwoh, Never; Zhang, Jun-Ying; Boyd, Ian W.

    2002-01-01

    We report the deposition of thin TiO 2 films on crystalline Si and quartz by photo-induced chemical vapour deposition (CVD) using UV excimer lamps employing a dielectric barrier discharge in krypton chloride (KrCl ∗) to provide intense narrow band radiation at λ=222 nm. The precursor used was titanium isopropoxide (TTIP). Films from around 20-510 nm in thickness with refractive indices from 2.20 to 2.54 were grown at temperatures between 50 and 350 °C. The higher refractive index values compare favourably with the value of 2.58 recorded for the bulk material. The measured deposition rate was around 50 nm/min at 350 °C. Fourier transform infrared spectroscopy (FTIR) revealed the presence of TiO 2 through the observation of a Ti-O absorption peak and the absence of OH in films deposited at 250-350 °C indicated relatively good quality films. The phase of films deposited at 200-350 °C was anatase as determined by X-ray diffraction.

  19. Electrical Conduction Mechanism in Chemical Vapour Deposition Grown Multi-Wall Carbon Nanotubes Film.

    PubMed

    Al-Hazmi, F S

    2015-07-01

    Multi-walled carbon nanotubes are interesting systems where different aspects of conduction are observed, mostly due to their low dimensionalities and small dimensions. Electrical conduction mechanism in multi wall carbon nanotubes film is studied. The studied multi-walled nanotubes are grown by a low pressure chemical vapour deposition system. To understand the conduction mechanism in these nanotubes, temperature dependence of conductivity of the multi wall nanotubes film over a temperature range of (400-200 K) is studied. On the basis of the results, one may suggest the thermally activated conduction mechanism for the temperature range (400-300 K). The low temperature data is fitted with the hopping conduction for the transport of charge carriers in the temperature range of 300-200 K. This hopping conduction mechanism is characterized by variable range hopping (VRH), which shows complete agreement with the Mott's type of VRH mechanism. Applying this model, a number of Mott's parameters such as density of states, hopping distance, hopping energy are calculated. The calculated values of all the studied parameters matches well the reported results on other multi-wall nanotubes film.

  20. The reaction-field effect on the chemical potentials of polar aprotic non-aromatic liquids 1. Vapour pressure

    NASA Astrophysics Data System (ADS)

    Rosseinsky, D. R.; Stead, K.; Mowforth, C. W.

    1998-10-01

    The reaction field for the interaction of a molecule with its identical neighbours is shown to be a major determinant of the chemical potential of many dipolar liquids. The electrostatic potential w, derived for immersion of the dipolar molecule in its own kind, and notably comprising solely static and hf permittivities, is equated with the difference between the polar-liquid chemical potential and that of an isostructural non-polar hydrocarbon. For all the 26 non-aromatic Onsager liquids for which the requisite data are available, acceptable conformity is established of the vapour pressure calculated from w with that observed, fluorocarbons excepted. If w turns out to be small, vapour pressures of (these 12) dipolars approximate quite closely to those of the isostructural non-polars, as expected. For ketones and nitroalkanes varied-temperature data are available and well reproduced via w: thus calculated vaporization enthalpies equal the observed.

  1. Gettering of interstitial iron in silicon by plasma-enhanced chemical vapour deposited silicon nitride films

    NASA Astrophysics Data System (ADS)

    Liu, A. Y.; Sun, C.; Markevich, V. P.; Peaker, A. R.; Murphy, J. D.; Macdonald, D.

    2016-11-01

    It is known that the interstitial iron concentration in silicon is reduced after annealing silicon wafers coated with plasma-enhanced chemical vapour deposited (PECVD) silicon nitride films. The underlying mechanism for the significant iron reduction has remained unclear and is investigated in this work. Secondary ion mass spectrometry (SIMS) depth profiling of iron is performed on annealed iron-contaminated single-crystalline silicon wafers passivated with PECVD silicon nitride films. SIMS measurements reveal a high concentration of iron uniformly distributed in the annealed silicon nitride films. This accumulation of iron in the silicon nitride film matches the interstitial iron loss in the silicon bulk. This finding conclusively shows that the interstitial iron is gettered by the silicon nitride films during annealing over a wide temperature range from 250 °C to 900 °C, via a segregation gettering effect. Further experimental evidence is presented to support this finding. Deep-level transient spectroscopy analysis shows that no new electrically active defects are formed in the silicon bulk after annealing iron-containing silicon with silicon nitride films, confirming that the interstitial iron loss is not due to a change in the chemical structure of iron related defects in the silicon bulk. In addition, once the annealed silicon nitride films are removed, subsequent high temperature processes do not result in any reappearance of iron. Finally, the experimentally measured iron decay kinetics are shown to agree with a model of iron diffusion to the surface gettering sites, indicating a diffusion-limited iron gettering process for temperatures below 700 °C. The gettering process is found to become reaction-limited at higher temperatures.

  2. Chemically-modified cellulose paper as a microstructured catalytic reactor.

    PubMed

    Koga, Hirotaka; Kitaoka, Takuya; Isogai, Akira

    2015-01-15

    We discuss the successful use of chemically-modified cellulose paper as a microstructured catalytic reactor for the production of useful chemicals. The chemical modification of cellulose paper was achieved using a silane-coupling technique. Amine-modified paper was directly used as a base catalyst for the Knoevenagel condensation reaction. Methacrylate-modified paper was used for the immobilization of lipase and then in nonaqueous transesterification processes. These catalytic paper materials offer high reaction efficiencies and have excellent practical properties. We suggest that the paper-specific interconnected microstructure with pulp fiber networks provides fast mixing of the reactants and efficient transport of the reactants to the catalytically-active sites. This concept is expected to be a promising route to green and sustainable chemistry.

  3. Titanium oxide thin films obtained with physical and chemical vapour deposition methods for optical biosensing purposes.

    PubMed

    Dominik, M; Leśniewski, A; Janczuk, M; Niedziółka-Jönsson, J; Hołdyński, M; Wachnicki, Ł; Godlewski, M; Bock, W J; Śmietana, M

    2017-07-15

    This work discusses an application of titanium oxide (TiOx) thin films deposited using physical (reactive magnetron sputtering, RMS) and chemical (atomic layer deposition, ALD) vapour deposition methods as a functional coating for label-free optical biosensors. The films were applied as a coating for two types of sensors based on the localised surface plasmon resonance (LSPR) of gold nanoparticles deposited on a glass plate and on a long-period grating (LPG) induced in an optical fibre. Optical and structural properties of the TiOx thin films were investigated and discussed. It has been found that deposition method has a significant influence on optical properties and composition of the films, but negligible impact on TiOx surface silanization effectiveness. A higher content of oxygen with lower Ti content in the ALD films leads to the formation of layers with higher refractive index and slightly higher extinction coefficient than for the RMS TiOx. Moreover, application of the TiOx film independently on deposition method enables not only for tuning of the spectral response of the investigated biosensors, but also in case of LSPR for enhancing the ability for biofunctionalization, i.e., TiOx film mechanically protects the nanoparticles and induces change in the biofunctionalization procedure to the one typical for oxides. TiOx coated LSPR and LPG sensors with refractive index sensitivity of close to 30 and 3400nm/RIU, respectively, were investigated. The ability for molecular recognition was evaluated with the well-known complex formation between avidin and biotin as a model system. The shift in resonance wavelength reached 3 and 13.2nm in case of LSPR and LPG sensors, respectively. Any modification in TiOx properties resulting from the biofunctionalization process can be also clearly detected.

  4. The Role of Plasma in Plasma Enhanced Chemical Vapour Deposition of Nanostructure Growth

    NASA Technical Reports Server (NTRS)

    Hash, David B.; Meyyappan, M.; Teo, Kenneth B. K.; Lacerda, Rodrigo G.; Rupesinghe, Nalin L.

    2004-01-01

    Chemical vapour deposition (CVD) has become the preferred process for high yield growth of carbon nanotubes and nanofibres because of its ability to pattern growth through lithographic positioning of transition metal catalysts on substrates. Many potential applications of nanotubes such as field emitters [1] require not only patterned growth but also vertical alignment. Some degree of ali,ment in thermal CVD processes can be obtained when carbon nanotubes are grown closely together as a result of van der Waals interactions. The ali,onment however is marginal, and the van der Waals prerequisite makes growth of freestanding nanofibres with thermal CVD unrealizable. The application of electric fields as a means of ali,onment has been shown to overcome this limitation [2-5], and highly aligned nanostructures can be grown if electric fields on the order of 0.5 V/microns are employed. Plasma enhanced CVD in various configurations including dc, rf, microwave, inductive and electron cyclotron resonance has been pursued as a means of enabling alignment in the CVD process. However, the sheath fields for the non-dc sources are in general not sufficient for a high degree of ali,pment and an additional dc bias is usually applied to the growth substrate. This begs the question as to the actual role of the plasma. It is clear that the plasma itself is not required for aligned growth as references [3] and [4] employed fields through small applied voltages (3-20 V) across very small electrode spacings (10-100 microns) and thus avoided striking a discharge.

  5. Temporal Stability of Metal-Chloride-Doped Chemical-Vapour-Deposited Graphene.

    PubMed

    Kang, Moon H; Milne, William I; Cole, Matthew T

    2016-08-18

    Graphene has proven to be a promising material for transparent flexible electronics. In this study, we report the development of a transfer and doping scheme of large-area chemical vapour deposited (CVD) graphene. A technique to transfer the as-grown material onto mechanically flexible and optically transparent polymeric substrates using an ultraviolet adhesive (UVA) is outlined, along with the temporal stability of the sheet resistance and optical transparency following chemical doping with various metal chlorides (Mx Cly The sheet resistance (RS ) and 550 nm optical transparency (%T550 ) of the transferred un-doped graphene was 3.5 kΩ sq(-1) (±0.2 kΩ sq(-1) ) and 84.1 % (±2.9 %), respectively. Doping with AuCl3 showed a notable reduction in RS by some 71.4 % (to 0.93 kΩ sq(-1) ) with a corresponding %T550 of 77.0 %. After 200 h exposure to air at standard temperature and pressure, the increase in RS was found to be negligible (ΔRS AuCl3 =0.06 kΩ sq(-1) ), indicating that, of the considered Mx Cly species, AuCl3 doping offered the highest degree of time stability under ambient conditions. There appears a tendency of increasing RS with time for the remaining metal chlorides studied. We attribute the observed temporal shift to desorption of molecular dopants. We find that desorption was most significant in RhCl3 -doped samples whereas, in contrast, after 200 h in ambient conditions, AuCl3 -doped graphene showed only marginal desorption. The results of this study demonstrate that chemical doping of UVA-transferred graphene is a promising means for enhancing large-area CVD graphene in order to realise a viable platform for next-generation optically transparent and mechanically flexible electronics.

  6. Computational design of chemically propelled catalytic nanorotors.

    PubMed

    Chen, Yanping; Shi, Yunfeng

    2013-08-14

    We designed catalytic nanorotors and investigated the rotational motion and energy conversion efficiency using reactive molecular dynamics in two dimensions. First, a two-arm nanorotor was constructed by decorating a slender beam with catalysts asymmetrically on its two long edges, while fixing the beam center as the rotational axis. Autonomous rotation was observed for the two-arm nanorotor immersing in a fuel environment. Here fuel molecules undergo exothermic combination reaction facilitated by the catalysts. It was found that the angular velocity increases with the catalyst coverage parabolically, while the rotary nanomotor efficiency stays roughly constant. These observations are consistent with a single-collision-momentum-transfer-based propulsion model. Furthermore, multi-arm nanorotors (up to eight arms) were constructed by carving radially distributed arms followed by decorating catalysts. For multi-arm nanorotors, both the angular velocity and the efficiency decrease as the number of arms increases. These behaviors contradict the aforementioned model, which are likely due to the deceleration from secondary collisions between products and the nanorotor arms. Our simulation results show that the optimal design for a nanorotor that maximizes its angular velocity and the motor efficiency is a two-arm nanorotor with nearly full coverage of catalysts.

  7. Catalytic upgrading of butyric acid towards fine chemicals and biofuels

    PubMed Central

    Sjöblom, Magnus; Matsakas, Leonidas; Christakopoulos, Paul; Rova, Ulrika

    2016-01-01

    Fermentation-based production of butyric acid is robust and efficient. Modern catalytic technologies make it possible to convert butyric acid to important fine chemicals and biofuels. Here, current chemocatalytic and biocatalytic conversion methods are reviewed with a focus on upgrading butyric acid to 1-butanol or butyl-butyrate. Supported Ruthenium- and Platinum-based catalyst and lipase exhibit important activities which can pave the way for more sustainable process concepts for the production of green fuels and chemicals. PMID:26994015

  8. Aerosol assisted chemical vapour deposition of gas sensitive SnO2 and Au-functionalised SnO2 nanorods via a non-catalysed vapour solid (VS) mechanism

    PubMed Central

    Vallejos, Stella; Selina, Soultana; Annanouch, Fatima Ezahra; Gràcia, Isabel; Llobet, Eduard; Blackman, Chris

    2016-01-01

    Tin oxide nanorods (NRs) are vapour synthesised at relatively lower temperatures than previously reported and without the need for substrate pre-treatment, via a vapour-solid mechanism enabled using an aerosol-assisted chemical vapour deposition method. Results demonstrate that the growth of SnO2 NRs is promoted by a compression of the nucleation rate parallel to the substrate and a decrease of the energy barrier for growth perpendicular to the substrate, which are controlled via the deposition conditions. This method provides both single-step formation of the SnO2 NRs and their integration with silicon micromachined platforms, but also allows for in-situ functionalization of the NRs with gold nanoparticles via co-deposition with a gold precursor. The functional properties are demonstrated for gas sensing, with microsensors using functionalised NRs demonstrating enhanced sensing properties towards H2 compared to those based on non-functionalised NRs. PMID:27334232

  9. Chemical vapour deposition of tungsten oxide thin films from single-source precursors

    NASA Astrophysics Data System (ADS)

    Cross, Warren Bradley

    This thesis describes the chemical vapour deposition (CVD) of tungsten oxide thin films on glass from a wide range of single-source precursors. Chapter 1 describes previous work that has motivated this research. Chapter 2 discusses the synthesis of conventional style candidates for single-source precursors. Reactions of WOCl4 with 3-methyl salicylic acid (MesaliH2) and 3,5-di-iso-propyl salicylic acid (di-i-PrsaliH2) yielded the ditungsten complexes [WO(Mesali)(MesaliH)2(mu-O)], 1, and [WO(di-i-Prsali)(di-i-PrsaliH)2(mu-O)], 2, and the monotungsten complex [WO(di-i-Pr sali)(di-i-PrsaliH)Cl], 3. Tungsten(VI) dioxo complexes were prepared by ligand exchange reactions of [WO2(acac)2], 4, yielding [WO2(catH)2], 5, and [WO2(malt)2], 6, (catH2 = 3,5-di-tert-butyl-catechol; maltH = maltol). Chapter 3 describes thermal analyses of the complexes 1 - 6 and tungsten hexaphenoxide, and consequently their suitability for CVD. The use of [W(OPh)6] and 2 - 6 in aerosol assisted CVD is reported in Chapter 4. Brown tungsten oxide was deposited from 2 and 3 at 600 °C; blue partially-reduced WO3-x thin films were deposited from [W(OPh)6] from 300 to 500 °C, from 4 at 600 °C and 6 at 620 °C. Sintering all of the coatings in air at 550 °C afforded yellow films of stoichiometric WO3. Raman spectroscopy and glancing angle XRD showed that coatings deposited from [W(OPh)6] at 300 °C were amorphous, whereas all the other films were the monoclinic phase gamma-tungsten oxide. Taking full advantage of the aerosol vaporisation technique led to the CVD of tungsten oxide films from polyoxometalate single-source precursors, as described in Chapter 5. The isopolyanion [nBu4N]2[W6O19], 7, afforded WO3 at 410 °C; the heteropolyanions [nBu4N]4H3[PW11O39], 8, and [nBu4N]4[PNbW11O40], 9, were used to deposit doped WO3 thin films in a highly-controlled manner at 480 °C. Thus, the unprecedented use of large, charged clusters for CVD was demonstrated. Chapter 6 describes investigations of the

  10. Recent Advances in Catalytic Conversion of Ethanol to Chemicals

    SciTech Connect

    Sun, Junming; Wang, Yong

    2014-04-30

    With increased availability and decreased cost, ethanol is potentially a promising platform molecule for the production of a variety of value-added chemicals. In this review, we provide a detailed summary of recent advances in catalytic conversion of ethanol to a wide range of chemicals and fuels. We particularly focus on catalyst advances and fundamental understanding of reaction mechanisms involved in ethanol steam reforming (ESR) to produce hydrogen, ethanol conversion to hydrocarbons ranging from light olefins to longer chain alkenes/alkanes and aromatics, and ethanol conversion to other oxygenates including 1-butanol, acetaldehyde, acetone, diethyl ether, and ethyl acetate.

  11. Guiding catalytically active particles with chemically patterned surfaces

    NASA Astrophysics Data System (ADS)

    Uspal, William; Popescu, Mihail; Dietrich, Siegfried; Tasinkevych, Mykola

    Catalytically active Janus particles in solution create gradients in the chemical composition of the solution along their surfaces, as well as along any nearby container walls. The former leads to self-phoresis, while the latter gives rise to chemi-osmosis, providing an additional contribution to self-motility. Chemi-osmosis strongly depends on the molecular interactions between the diffusing chemical species and the wall. We show analytically, using an approximate ``point-particle'' approach, that by chemically patterning a planar substrate (e.g., by adsorbing two different materials) one can direct the motion of Janus particles: the induced chemi-osmotic flows can cause particles to either ``dock'' at a chemical step between the two materials, or to follow a chemical stripe. These theoretical predictions are confirmed by full numerical calculations. Generically, docking occurs for particles which tend to move away from their catalytic caps, while stripe-following occurs in the opposite case. Our analysis reveals the physical mechanisms governing this behavior.

  12. Chemical Imaging of Catalytic Solids with Synchrotron Radiation

    SciTech Connect

    A Beale; S Jacques; B Weckhuysen

    2011-12-31

    Heterogeneous catalysis is a term normally used to describe a group of catalytic processes, yet it could equally be employed to describe the catalytic solid itself. A better understanding of the chemical and structural variation within such materials is thus a pre-requisite for the rationalising of structure-function relationships and ultimately to the design of new, more sustainable catalytic processes. The past 20 years has witnessed marked improvements in technologies required for analytical measurements at synchrotron sources, including higher photon brightness, nano-focusing, rapid, high resolution data acquisition and in the handling of large volumes of data. It is now possible to image materials using the entire synchrotron radiative profile, thus heralding a new era of in situ/operando measurements of catalytic solids. In this tutorial review we discuss the recent work in this exciting new research area and finally conclude with a future outlook on what will be possible/challenging to measure in the not-too-distant future.

  13. Hair analysis as a useful procedure for detection of vapour exposure to chemical warfare agents: simulation of sulphur mustard with methyl salicylate.

    PubMed

    Spiandore, Marie; Piram, Anne; Lacoste, Alexandre; Josse, Denis; Doumenq, Pierre

    2014-06-01

    Chemical warfare agents (CWA) are highly toxic compounds which have been produced to kill or hurt people during conflicts or terrorist attacks. Despite the fact that their use is strictly prohibited according to international convention, populations' exposure still recently occurred. Development of markers of exposure to CWA is necessary to distinguish exposed victims from unexposed ones. We present the first study of hair usage as passive sampler to assess contamination by chemicals in vapour form. This work presents more particularly the hair adsorption capacity for methyl salicylate used as a surrogate of the vesicant sulphur mustard. Chemical vapours toxicity through the respiratory route has historically been defined through Haber's law's concentration-time (Ct) product, and vapour exposure of hair to methyl salicylate was conducted with various times or doses of exposure in the range of incapacitating and lethal Ct products corresponding to sulphur mustard. Following exposure, extraction of methyl salicylate from hair was conducted by simple soaking in dichloromethane. Methyl salicylate could be detected on hair for vapour concentration corresponding to about one fifth of the sulphur mustard concentration that would kill 50% of exposed individuals (LCt50). The amount of methyl salicylate recovered from hair increased with time or dose of exposure. It showed a good correlation with the concentration-time product, suggesting that hair could be used like a passive sampler to assess vapour exposure to chemical compounds. It introduces great perspectives concerning the use of hair as a marker of exposure to CWA.

  14. Substrate patterning with NiOx nanoparticles and hot-wire chemical vapour deposition of WO3x and carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Houweling, Z. S.

    2011-10-01

    The first part of the thesis treats the formation of nickel catalyst nanoparticles. First, a patterning technique using colloids is employed to create ordered distributions of monodisperse nanoparticles. Second, nickel films are thermally dewetted, which produces mobile species that self-arrange in non-ordered distributions of polydisperse particles. Third, the mobility of the nickel species is successfully reduced by the addition of air during the dewetting and the use of a special anchoring layer. Thus, non-ordered distributions of self-arranged monodisperse nickel oxide nanoparticles (82±10 nm x 16±2 nm) are made. Studies on nickel thickness, dewetting time and dewetting temperature are conducted. With these particle templates, graphitic carbon nanotubes are synthesised using catalytic hot-wire chemical vapour deposition (HWCVD), demonstrating the high-temperature processability of the nanoparticles. The second part of this thesis treats the non-catalytic HWCVD of tungsten oxides (WO3-x). Resistively heated tungsten filaments exposed to an air flow at subatmospheric pressures, produce tungsten oxide vapour species, which are collected on substrates and are subsequently characterised. First, a complete study on the process conditions is conducted, whereby the effects of filament radiation, filament temperature, process gas pressure and substrate temperature, are investigated. The thus controlled growth of nanogranular smooth amorphous and crystalline WO3-x thin films is presented for the first time. Partially crystalline smooth hydrous WO3-x thin films consisting of 20 nm grains can be deposited at very high rates. The synthesis of ultrafine powders with particle sizes of about 7 nm and very high specific surface areas of 121.7±0.4 m2·g-1 at ultrahigh deposition rates of 36 µm·min-1, is presented. Using substrate heating to 600°C or more, while using air pressures of 3·10-5 mbar to 0.1 mbar, leads to pronounced crystal structures, from nanowires, to

  15. Modelling of infrared optical constants for polycrystalline low pressure chemical vapour deposition ZnO:B films

    NASA Astrophysics Data System (ADS)

    Prunici, P.; Hamelmann, F. U.; Beyer, W.; Kurz, H.; Stiebig, H.

    2013-03-01

    Doped zinc oxide films are of high interest in thin film solar cell technology for application as transparent conducting oxide. Rapid and detailed characterisation of ZnO thin film properties is required for quality control and optimisation of the deposited films. In the present work, a new model of dielectric functions based on the effective medium approximation (EMA) is developed and is applied for characterisation of polycrystalline boron doped zinc oxide (ZnO:B) films, deposited by low pressure chemical vapour deposition (LPCVD) technique onto glass substrates. The model takes into account that polycrystalline ZnO is considered to consist of crystal grains surrounded by depletion layers. Using this model and Fourier Transform Infrared Spectroscopy (FTIR) performed in reflection configuration over a wide mid-infrared spectral region (from 2 μm up to 25 μm), the properties of depletion layer and the bulk of the grains in ZnO can be rapidly characterised in detail, and the volume fraction of the depletion layer can be extracted. The results are in good agreement with previously presented theories of electron transport in polycrystalline materials. Using electrical measurements like conductivity and Hall techniques in addition to the optically determined parameters, predominant electron scattering mechanisms in polycrystalline films for different doping levels are identified. The measurements show the impact of the doping level on depletion layer of the crystallites. It is shown, furthermore, that under a water vapour rich environment the volume fraction of the depletion layer may increase up to 5 times and more, while the mobility of the charge carriers in the depletion layer drops drastically from about 31 cm2V-1s-1 to about 8 cm2V-1s-1. This indicates that water vapour exposure causes an increase of the potential barrier in the grain boundary depletion layer, limiting the electron transport across the grain boundaries to a classical thermionic emission

  16. Growth of ZnO Nanorods on Stainless Steel Wire Using Chemical Vapour Deposition and Their Photocatalytic Activity

    PubMed Central

    Abd Aziz, Siti Nor Qurratu Aini; Pung, Swee-Yong; Ramli, Nurul Najiah; Lockman, Zainovia

    2014-01-01

    The photodegradation efficiency of ZnO nanoparticles in removal of organic pollutants deteriorates over time as a high percentage of the nanoparticles can be drained away by water during the wastewater treatment. This problem can be solved by growing the ZnO nanorods on stainless steel wire. In this work, ZnO nanorods were successfully grown on stainless steel wire by chemical vapour deposition. The SAED analysis indicates that ZnO nanorod is a single crystal and is preferentially grown in [0001] direction. The deconvoluted O 1s peak at 531.5 eV in XPS analysis is associated with oxygen deficient, revealing that the ZnO nanorods contain many oxygen vacancies. This observation is further supported by the finding of the small Iuv/Ivis ratio, that is, ~1 in the photoluminescence analysis. The growth of ZnO nanorods on stainless steel wire was governed by vapour-solid mechanism as there were no Fe particles observed at the tips of the nanorods. The photodegradation of Rhodamine B solution by ZnO nanorods followed the first-order kinetics. PMID:24587716

  17. Catalytic conversion of cellulose to chemicals in ionic liquid.

    PubMed

    Tao, Furong; Song, Huanling; Chou, Lingjun

    2011-01-03

    A simple and effective route for the production of 5-hydroxymethyl furfural (HMF) and furfural from microcrystalline cellulose (MCC) has been developed. CoSO(4) in an ionic liquid, 1-(4-sulfonic acid) butyl-3-methylimidazolium hydrogen sulfate (IL-1), was found to be an efficient catalyst for the hydrolysis of cellulose at 150°C, which led to 84% conversion of MCC after 300min reaction time. In the presence of a catalytic amount of CoSO(4), the yields of HMF and furfural were up to 24% and 17%, respectively; a small amount of levulinic acid (LA) and reducing sugars (8% and 4%, respectively) were also generated. Dimers of furan compounds were detected as the main by-products through HPLC-MS, and with the help of mass spectrometric analysis, the components of gas products were methane, ethane, CO, CO(2,) and H(2). A mechanism for the CoSO(4)-IL-1 hydrolysis system was proposed and IL-1 was recycled for the first time, which exhibited favorable catalytic activity over five repeated runs. This catalytic system may be valuable to facilitate energy-efficient and cost-effective conversion of biomass into biofuels and platform chemicals.

  18. Sticking non-stick: Surface and Structure control of Diamond-like Carbon in Plasma Enhanced Chemical Vapour Deposition

    NASA Astrophysics Data System (ADS)

    Jones, B. J.; Nelson, N.

    2016-10-01

    This short review article explores the practical use of diamond-like carbon (DLC) produced by plasma enhanced chemical vapour deposition (PECVD). Using as an example issues relating to the DLC coating of a hand-held surgical device, we draw on previous works using atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, tensiometry and electron paramagnetic resonance. Utilising data from these techniques, we examine the surface structure, substrate-film interface and thin film microstructure, such as sp2/sp3 ratio (graphitic/diamond-like bonding ratio) and sp2 clustering. We explore the variations in parameters describing these characteristics, and relate these to the final device properties such as friction, wear resistance, and diffusion barrier integrity. The material and device characteristics are linked to the initial plasma and substrate conditions.

  19. Palm Oil as the Carbon Source for the Synthesis of Carbon Nanotubes using Floating Catalyst—Chemical Vapour Deposition Method

    NASA Astrophysics Data System (ADS)

    Zobir, S. A. M.; Suriani, A. B.; Khusaimi, Z.; Mamat, H.; Zainal, Z.; Sarijo, S. H.; Rusop, M.

    2011-03-01

    CNTs were synthesized using floating catalyst by dual-furnace thermal chemical vapour deposition method at 800-1000° C. Cooking oil made of palm oil was used as the carbon precursor. Ferrocene in the presence of 0.05 M zinc nitrate and a p-type silicon wafer was used as a catalyst precursor and a sample target, respectively. The deposition temperature was varied from 800-1000° C. Nitrogen gas was used as a gas carrier with a constant flow rate of 150 sccm/min. Field emission scanning electron micrographs show the formation of CNTs together with other carbons formed on the silicon substrate. Raman spectroscopy studies were also supported the formation of CNTs.

  20. Perfluorodecyltrichlorosilane-based seed-layer for improved chemical vapour deposition of ultrathin hafnium dioxide films on graphene

    PubMed Central

    Kitzmann, Julia; Göritz, Alexander; Fraschke, Mirko; Lukosius, Mindaugas; Wenger, Christian; Wolff, Andre; Lupina, Grzegorz

    2016-01-01

    We investigate the use of perfluorodecyltrichlorosilane-based self-assembled monolayer as seeding layer for chemical vapour deposition of HfO2 on large area CVD graphene. The deposition and evolution of the FDTS-based seed layer is investigated by X-ray photoelectron spectroscopy, Auger electron spectroscopy, and transmission electron microscopy. Crystalline quality of graphene transferred from Cu is monitored during formation of the seed layer as well as the HfO2 growth using Raman spectroscopy. We demonstrate that FDTS-based seed layer significantly improves nucleation of HfO2 layers so that graphene can be coated in a conformal way with HfO2 layers as thin as 10 nm. Proof-of-concept experiments on 200 mm wafers presented here validate applicability of the proposed approach to wafer scale graphene device fabrication. PMID:27381715

  1. Construction of conductive multilayer films of biogenic triangular gold nanoparticles and their application in chemical vapour sensing

    NASA Astrophysics Data System (ADS)

    Singh, Amit; Chaudhari, Minakshi; Sastry, Murali

    2006-05-01

    Metal nanoparticles are interesting building blocks for realizing films for a number of applications that include bio- and chemical sensing. To date, spherical metal nanoparticles have been used to generate functional electrical coatings. In this paper we demonstrate the synthesis of electrically conductive coatings using biologically prepared gold nanotriangles as the building blocks. The gold nanotriangles are prepared by the reduction of aqueous chloroaurate ions using an extract of the lemongrass plant (Cymbopogon flexuosus) which are thereafter assembled onto a variety of substrates by simple solution casting. The conductivity of the film shows a drastic fall upon mild heat treatment, leading to the formation of electrically conductive thin films of nanoparticles. We have also investigated the possibility of using the gold nanotriangle films in vapour sensing. A large fall in film resistance is observed upon exposure to polar molecules such as methanol, while little change occurs upon exposure to weakly polar molecules such as chloroform.

  2. Perfluorodecyltrichlorosilane-based seed-layer for improved chemical vapour deposition of ultrathin hafnium dioxide films on graphene

    NASA Astrophysics Data System (ADS)

    Kitzmann, Julia; Göritz, Alexander; Fraschke, Mirko; Lukosius, Mindaugas; Wenger, Christian; Wolff, Andre; Lupina, Grzegorz

    2016-07-01

    We investigate the use of perfluorodecyltrichlorosilane-based self-assembled monolayer as seeding layer for chemical vapour deposition of HfO2 on large area CVD graphene. The deposition and evolution of the FDTS-based seed layer is investigated by X-ray photoelectron spectroscopy, Auger electron spectroscopy, and transmission electron microscopy. Crystalline quality of graphene transferred from Cu is monitored during formation of the seed layer as well as the HfO2 growth using Raman spectroscopy. We demonstrate that FDTS-based seed layer significantly improves nucleation of HfO2 layers so that graphene can be coated in a conformal way with HfO2 layers as thin as 10 nm. Proof-of-concept experiments on 200 mm wafers presented here validate applicability of the proposed approach to wafer scale graphene device fabrication.

  3. Growth of large size diamond single crystals by plasma assisted chemical vapour deposition: Recent achievements and remaining challenges

    NASA Astrophysics Data System (ADS)

    Tallaire, Alexandre; Achard, Jocelyn; Silva, François; Brinza, Ovidiu; Gicquel, Alix

    2013-02-01

    Diamond is a material with outstanding properties making it particularly suited for high added-value applications such as optical windows, power electronics, radiation detection, quantum information, bio-sensing and many others. Tremendous progresses in its synthesis by microwave plasma assisted chemical vapour deposition have allowed obtaining single crystal optical-grade material with thicknesses of up to a few millimetres. However the requirements in terms of size, purity and crystalline quality are getting more and more difficult to achieve with respect to the forecasted applications, thus pushing the synthesis method to its scientific and technological limits. In this paper, after a short description of the operating principles of the growth technique, the challenges of increasing crystal dimensions both laterally and vertically, decreasing and controlling point and extended defects as well as modulating crystal conductivity by an efficient doping will be detailed before offering some insights into ways to overcome them.

  4. Electric, dielectric and optical properties of Ga2O3 grown by metal organic chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Paskaleva, A.; Spassov, D.; Terziyska, P.

    2017-01-01

    Thin film (15-130 nm) of gallium oxide were grown by the industry relevant metal organic chemical vapour deposition (MOCVD) technique on p-type Si to check the possibility for integration of newly rediscovered wide bandgap material with the Si technology. Electric, dielectric and optical properties were studied and analyzed. To perform electrical characterization, Ga2O3 films were integrated into Al/Ga2O3/p-Si metal–oxide–semiconductor (MOS) capacitors. Relative dielectric permittivity, flat-band voltage shift and effective oxide charge density were obtained from C-V measurements. Spectroscopic ellipsometry measurements reveal that Ga2O3 deposited by MOCVD is a direct bandgap material with a large optical bandgap of about 5.1 eV. Both ellipsometrical and electrical results show formation of a thick interfacial SiO2.

  5. Catalytic Deoxydehydration of Carbohydrates and Polyols to Chemicals and Fuels

    SciTech Connect

    Nicholas, Kenneth M.

    2016-01-15

    As the world's fossil fuel resources are being depleted and their costs increase, there is an urgent need to discover and develop new processes for the conversion of renewable, biomass resources into fuels and chemical feedstocks. Research and development in this area have been given high priority by both governmental agencies and industry. To increase the energy content and decrease the boiling points of biomass-derived carbohydrates and polyols to the useful liquid range it is necessary to chemically remove water (dehydrate) and, preferably, oxygen (deoxygenate/reduce). The poly-hydroxylic nature of carbohydrates is attractive for their use as functionalized chemical building blocks, but it presents a daunting challenge for their selective conversion to single product chemicals or fuels. The long term, practical objective of this project is to develop catalytic processes for the deoxydehydration (DODH) of biomass-derived carbohydrates and polyols to produce unsaturated alcohols and hydrocarbons of value as chemical feedstocks and fuels; DODH: polyol + reductant --(LMOx catalyst)--> unsaturate + oxidized reductant + H2O. Limited prior studies have established the viability of the DODH process with expensive phosphine reductants and rhenium-catalysts. Initial studies in the PI's laboratory have now demonstrated: 1) the moderately efficient conversion of glycols to olefins by the economical sulfite salts is catalyzed by MeReO3 and Z+ReO4-; 2) effective phosphine-based catalytic DODH of representative glycols to olefins by cheap LMoO2 complexes; and 3) computational studies (with K. Houk, UCLA) have identified several Mo-, W-, and V-oxo complexes that are likely to catalyze glycol DODH. Seeking practically useful DODH reactions of complex polyols and new understanding of the reactivity of polyoxo-metal species with biomass-oxygenates we will employ a two-pronged approach: 1) investigate experimentally the reactivity, both stoichiometric and catalytic, of polyoxo

  6. Catalytic Hydrogenation of Bio-Oil for Chemicals and Fuels

    SciTech Connect

    Elliott, Douglas C.

    2006-02-14

    The scope of work includes optimizing processing conditions and demonstrating catalyst lifetime for catalyst formulations that are readily scaleable to commercial operations. We use a bench-scale, continuous-flow, packed-bed, catalytic, tubular reactor, which can be operated in the range of 100-400 mL/hr., from 50-400 C and up to 20MPa (see Figure 1). With this unit we produce upgraded bio-oil from whole bio-oil or useful bio-oil fractions, specifically pyrolytic lignin. The product oils are fractionated, for example by distillation, for recovery of chemical product streams. Other products from our tests have been used in further testing in petroleum refining technology at UOP and fractionation for product recovery in our own lab. Further scale-up of the technology is envisioned and we will carry out or support process design efforts with industrial partners, such as UOP.

  7. A novel three-jet microreactor for localized metal-organic chemical vapour deposition of gallium arsenide: design and simulation

    NASA Astrophysics Data System (ADS)

    Konakov, S. A.; Krzhizhanovskaya, V. V.

    2016-08-01

    We present a novel three-jet microreactor design for localized deposition of gallium arsenide (GaAs) by low-pressure Metal-Organic Chemical Vapour Deposition (MOCVD) for semiconductor devices, microelectronics and solar cells. Our approach is advantageous compared to the standard lithography and etching technology, since it preserves the nanostructure of the deposited material, it is less time-consuming and less expensive. We designed two versions of reactor geometry with a 10-micron central microchannel for precursor supply and with two side jets of a dilutant to control the deposition area. To aid future experiments, we performed computational modeling of a simplified-geometry (twodimensional axisymmetric) microreactor, based on Navier-Stokes equations for a laminar flow of chemically reacting gas mixture of Ga(CH3)3-AsH3-H2. Simulation results show that we can achieve a high-rate deposition (over 0.3 μm/min) on a small area (less than 30 μm diameter). This technology can be used in material production for microelectronics, optoelectronics, photovoltaics, solar cells, etc.

  8. Effects of ball-milling on lithium insertion into multi-walled carbon nanotubes synthesized by thermal chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Eom, JiYong; Kim, DongYung; Kwon, HyukSang

    The effects of ball-milling on Li insertion into multi-walled carbon nanotubes (MWNTs) are presented. The MWNTs are synthesized on supported catalysts by thermal chemical vapour deposition, purified, and mechanically ball-milled by the high energy ball-milling. The purified MWNTs and the ball-milled MWNTs were electrochemically inserted with Li. Structural and chemical modifications in the ball-milled MWNTs change the insertion-extraction properties of Li ions into/from the ball-milled MWNTs. The reversible capacity (C rev) increases with increasing ball-milling time, namely, from 351 mAh g -1 (Li 0.9C 6) for the purified MWNTs to 641 mAh g -1 (Li 1.7C 6) for the ball-milled MWNTs. The undesirable irreversible capacity (C irr) decreases continuously with increase in the ball-milling time, namely, from 1012 mAh g -1 (Li 2.7C 6) for the purified MWNTs to 518 mAh g -1 (Li 1.4C 6) for the ball-milled MWNTs. The decrease in C irr of the ball-milled samples results in an increase in the coulombic efficiency from 25% for the purified samples to 50% for the ball-milled samples. In addition, the ball-milled samples maintain a more stable capacity than the purified samples during charge-discharge cycling.

  9. Well-controlled metal co-catalysts synthesised by chemical vapour impregnation for photocatalytic hydrogen production and water purification.

    PubMed

    Su, Ren; Forde, Michael M; He, Qian; Shen, Yanbin; Wang, Xueqin; Dimitratos, Nikolaos; Wendt, Stefan; Huang, Yudong; Iversen, Bo B; Kiely, Christopher J; Besenbacher, Flemming; Hutchings, Graham J

    2014-10-28

    As co-catalyst materials, metal nanoparticles (NPs) play crucial roles in heterogeneous photocatalysis. The photocatalytic performance strongly relies on the physical properties (i.e., composition, microstructure, and surface impurities) of the metal NPs. Here we report a convenient chemical vapour impregnation (CVI) approach for the deposition of monometallic-, alloyed, and core-shell structured metal co-catalysts onto the TiO2 photocatalyst. The as-synthesised metal NPs are highly dispersed on the support and show narrow size distributions, which suit photocatalysis applications. More importantly, the surfaces of the as-synthesised metal NPs are free of protecting ligands, enabling the photocatalysts to be ready to use without further treatment. The effect of the metal identity, the alloy chemical composition, and the microstructure on the photocatalytic performance has been investigated for hydrogen production and phenol decomposition. Whilst the photocatalytic H2 production performance can be greatly enhanced by using the core-shell structured co-catalyst (Pdshell-Aucore and Ptshell-Aucore), the Ptshell-Aucore modified TiO2 yields enhanced quantum efficiency but a reduced effective decomposition of phenol to CO2 compared to that of the monometallic counterparts. We consider the CVI approach provides a feasible and elegant process for the decoration of photocatalyst materials.

  10. Preparation, characterisation and optimisation of lithium battery anodes consisting of silicon synthesised using Laser assisted Chemical Vapour Pyrolysis

    NASA Astrophysics Data System (ADS)

    Veliscek, Ziga; Perse, Lidija Slemenik; Dominko, Robert; Kelder, Erik; Gaberscek, Miran

    2015-01-01

    Suitability of silicon prepared using Laser assisted Chemical Vapour Pyrolysis (LaCVP) as a potential anode material in lithium batteries is systematically investigated. Its compositional, morphological, physical-chemical and electrochemical properties are compared to a current benchmark commercial silicon. Important differences in particle size and particle composition are found which, as shown, affect critically the rheological properties of the corresponding electrode slurries. In order to overcome the rheological problems of prepared nanosilicon, we introduce and optimise a spraying method instead of using the usual casting technique for slurry application. Interestingly, the optimised electrodes show similar electrochemical performance, regardless of the particle size or composition of nanosilicon. This unexpected result is explained by the unusually high resistance of electrochemical wiring in silicon-based electrodes (about 60 Ohm per 1 mg cm-2 of active material loading). Despite that, the optimised material still shows a capacity up to 1200 mA h g-1 at a relatively high loading of 1.6 mg cm-2 and after 20 cycles. On the other hand, by decreasing the loading to below ca. 0.9 mg cm-2 the wiring problems are effectively overcome and capacities close to theoretical values can be obtained.

  11. Microstructural and conductivity changes induced by annealing of ZnO:B thin films deposited by chemical vapour deposition.

    PubMed

    David, C; Girardeau, T; Paumier, F; Eyidi, D; Lacroix, B; Papathanasiou, N; Tinkham, B P; Guérin, P; Marteau, M

    2011-08-24

    Zinc oxide (ZnO) thin films have attracted much attention in recent years due to progress in crystal growth for a large variety of technological applications including optoelectronics and transparent electrodes in solar cells. Boron (B)-doped ZnO thin films are deposited by low pressure chemical vapour deposition (LPCVD) on Si(100). These films exhibit a strong (002) texture with a pyramidal grain structure. The ZnO films were annealed after growth; the annealing temperature and the atmosphere appear to strongly impact the layer conductivity. This work will first present the modification of the physical properties (carrier concentration, mobility) extracted from the simulation of layer reflection in the infrared range. At low annealing temperatures the mobility increases slightly before decreasing drastically above a temperature close to 250 °C. The chemical and structural evolution (XPS, x-ray diffraction) of the films was also studied to identify the relationship between microstructural modifications and the variations observed in the film conductivity. An in situ XRD study during annealing has been performed under air and low pressure conditions. As observed for electrical properties, the microstructural modifications shift to higher temperatures for vacuum annealing.

  12. Detection of chemical substances in water using an oxide nanowire transistor covered with a hydrophobic nanoparticle thin film as a liquid-vapour separation filter

    NASA Astrophysics Data System (ADS)

    Lim, Taekyung; Lee, Jonghun; Ju, Sanghyun

    2016-08-01

    We have developed a method to detect the presence of small amounts of chemical substances in water, using a Al2O3 nanoparticle thin film covered with phosphonic acid (HDF-PA) self-assembled monolayer. The HDF-PA self-assembled Al2O3 nanoparticle thin film acts as a liquid-vapour separation filter, allowing the passage of chemical vapour while blocking liquids. Prevention of the liquid from contacting the SnO2 nanowire and source-drain electrodes is required in order to avoid abnormal operation. Using this characteristic, the concentration of chemical substances in water could be evaluated by measuring the current changes in the SnO2 nanowire transistor covered with the HDF-PA self-assembled Al2O3 nanoparticle thin film.

  13. Catalytic Conversion of Renewable Resources into Bulk and Fine Chemicals.

    PubMed

    de Vries, Johannes G

    2016-12-01

    Several strategies can be chosen to convert renewable resources into chemicals. In this account, I exemplify the route that starts with so-called platform chemicals; these are relatively simple chemicals that can be produced in high yield, directly from renewable resources, either via fermentation or via chemical routes. They can be converted into the existing bulk chemicals in a very efficient manner using multistep catalytic conversions. Two examples are given of the conversion of sugars into nylon intermediates. 5-Hydroxymethylfurfural (HMF) can be prepared in good yield from fructose. Two hydrogenation steps convert HMF into 1,6-hexanediol. Oppenauer oxidation converts this product into caprolactone, which in the past, has been converted into caprolactam in a large-scale industrial process by reaction with ammonia. An even more interesting platform chemical is levulinic acid (LA), which can be obtained directly from lignocellulose in good yield by treatment with dilute sulfuric acid at 200°C. Hydrogenation converts LA into gamma-valerolactone, which is ring-opened and esterified in a gas-phase process to a mixture of isomeric methyl pentenoates in excellent selectivity. In a remarkable selective palladium-catalysed isomerising methoxycarbonylation, this mixture is converted in to dimethyl adipate, which is finally hydrolysed to adipic acid. Overall selectivities of both processes are extremely high. The conversion of lignin into chemicals is a much more complicated task in view of the complex nature of lignin. It was discovered that breakage of the most prevalent β-O-4 bond in lignin occurs not only via the well-documented C3 pathway, but also via a C2 pathway, leading to the formation of highly reactive phenylacetaldehydes. These compounds went largely unnoticed as they immediately recondense on lignin. We have now found that it is possible to prevent this by converting these aldehydes in a tandem reaction, as they are formed. For this purpose, we have used

  14. Synthesis of ultrathin polymer insulating layers by initiated chemical vapour deposition for low-power soft electronics.

    PubMed

    Moon, Hanul; Seong, Hyejeong; Shin, Woo Cheol; Park, Won-Tae; Kim, Mincheol; Lee, Seungwon; Bong, Jae Hoon; Noh, Yong-Young; Cho, Byung Jin; Yoo, Seunghyup; Im, Sung Gap

    2015-06-01

    Insulating layers based on oxides and nitrides provide high capacitance, low leakage, high breakdown field and resistance to electrical stresses when used in electronic devices based on rigid substrates. However, their typically high process temperatures and brittleness make it difficult to achieve similar performance in flexible or organic electronics. Here, we show that poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane) (pV3D3) prepared via a one-step, solvent-free technique called initiated chemical vapour deposition (iCVD) is a versatile polymeric insulating layer that meets a wide range of requirements for next-generation electronic devices. Highly uniform and pure ultrathin films of pV3D3 with excellent insulating properties, a large energy gap (>8 eV), tunnelling-limited leakage characteristics and resistance to a tensile strain of up to 4% are demonstrated. The low process temperature, surface-growth character, and solvent-free nature of the iCVD process enable pV3D3 to be grown conformally on plastic substrates to yield flexible field-effect transistors as well as on a variety of channel layers, including organics, oxides, and graphene.

  15. Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation

    SciTech Connect

    Lee, Woong; Jeong, Min-Chang; Myoung, Jae-Min

    2004-08-02

    ZnO nanowires were grown on GaAs(0 0 2) substrates using metal-organic chemical vapour deposition (MOCVD) and on Si(0 0 1) substrates using thermal evaporation of source powders, respectively. It was demonstrated that well-aligned single crystalline nanowires could be grown with controlled sizes using a typical thin film deposition technique without catalysts. Arsenic doping of the ZnO nanowires grown on GaAs substrate was possible using post-growth heat-treatment, proposing a possible way of producing p-type ZnO nanowires. It was also shown that simplified process of carrier-free thermal evaporation without catalyst could be employed to grow nanowires with high yield while maintaining good crystalline and optical properties. Application potential of the nanowires as probes of atomic force microscopes (AFMs) was discussed by predicting their structural compatibility with AFM cantilevers based on continuum elasticity. It was predicted that the nanowires fabricated herein are structurally compatible with typical AFM cantilevers suggesting that they are promising candidates for high aspect ratio probes.

  16. Direct synthesis of solid and hollow carbon nanospheres over NaCl crystals using acetylene by chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Chandra Kishore, S.; Anandhakumar, S.; Sasidharan, M.

    2017-04-01

    Carbon nanospheres (CNS) with hollow and solid morphologies have been synthesised by a simple chemical vapour deposition method using acetylene as a carbon precursor. Sodium chloride (NaCl) powder as a template was used for the direct growth of CNS via facile and low-cost approach. The effect of various temperatures (500 °C, 600 °C and 700 °C) and acetylene flow rates were investigated to study the structural evolution on the carbon products. The purified CNS thus obtained was characterized by various physicochemical techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and cyclicvoltametry. The synthesised hollow nanospheres were investigated as anode materials for Li-ion batteries. After 25 cycles of repeated charge/discharge cycles, the discharge and charge capacities were found to be 574 mAh/g and 570 mAh/g, respectively which are significantly higher than the commercial graphite samples.

  17. Plasma enhanced chemical vapour deposition of silica onto Ti: Analysis of surface chemistry, morphology and functional hydroxyl groups.

    PubMed

    Szili, Endre J; Kumar, Sunil; Smart, Roger St C; Lowe, Rachel; Saiz, Eduardo; Voelcker, Nicolas H

    2008-07-15

    Previously, we have developed and characterised a procedure for the deposition of thin silica films by a plasma enhanced chemical vapour deposition (PECVD) procedure using tetraethoxysilane (TEOS) as the main precursor. We have used the silica coatings for improving the corrosion resistance of metals and for enhancing the bioactivity of biomedical metallic implants. Recently, we have been fine-tuning the PECVD method for producing high quality and reproducible PECVD-silica (PECVD-Si) coatings on metals, primarily for biomaterial applications. In order to understand the interaction of the PECVD-Si coatings with biological species (such as proteins and cells), it is important to first analyse the properties of the silica films deposited using the optimised parameters. Therefore, this current investigation was carried out to analyse the characteristic features of PECVD-Si deposited on Ti substrates (PECVD-Si-Ti). We determined that the PECVD-Si coatings on Ti were conformal to the substrate surface, strongly adhered to the underlying substrate and were resistant to delamination. The PECVD-Si surface was composed of stoichiometric SiO(2), showed a low carbon content (below 10 at.%) and was very hydrophilic (contact angle <10°). Finally, we also showed that the PECVD-Si coatings contain functional hydroxyl groups.

  18. Temperature-dependent Hall effect studies of ZnO thin films grown by metalorganic chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Roro, K. T.; Kassier, G. H.; Dangbegnon, J. K.; Sivaraya, S.; Westraadt, J. E.; Neethling, J. H.; Leitch, A. W. R.; Botha, J. R.

    2008-05-01

    The electrical properties of zinc oxide (ZnO) thin films of various thicknesses (0.3-4.4 µm) grown by metalorganic chemical vapour deposition on glass substrates have been studied by using temperature-dependent Hall-effect (TDH) measurements in the 18-300 K range. The high quality of the layers has been confirmed with x-ray diffraction, transmission electron microscopy, scanning electron microscopy and photoluminescence techniques. TDH measurements indicate the presence of a degenerate layer which significantly influences the low-temperature data. It is found that the measured mobility generally increases with increasing layer thickness, reaching a value of 120 cm2 V-1 s-1 at room temperature for the 4.4 µm thick sample. The lateral grain size of the layers is also found to increase with thickness indicating a clear correlation between the size of the surface grains and the electrical properties of corresponding films. Theoretical fits to the Hall data suggest that the bulk conduction of the layers is dominated by a weakly compensated donor with activation energy in the 33-41 meV range and concentration of the order of 1017 cm-3, as well as a total acceptor concentration of mid-1015 cm-3. Grain boundary scattering is found to be an important limiting factor of the mobility throughout the temperature range considered.

  19. Evaluation of freestanding boron-doped diamond grown by chemical vapour deposition as substrates for vertical power electronic devices

    SciTech Connect

    Issaoui, R.; Achard, J.; Tallaire, A.; Silva, F.; Gicquel, A.; Bisaro, R.; Servet, B.; Garry, G.; Barjon, J.

    2012-03-19

    In this study, 4 x 4 mm{sup 2} freestanding boron-doped diamond single crystals with thickness up to 260 {mu}m have been fabricated by plasma assisted chemical vapour deposition. The boron concentrations measured by secondary ion mass spectroscopy were 10{sup 18} to 10{sup 20} cm{sup -3} which is in a good agreement with the values calculated from Fourier transform infrared spectroscopy analysis, thus indicating that almost all incorporated boron is electrically active. The dependence of lattice parameters and crystal mosaicity on boron concentrations have also been extracted from high resolution x-ray diffraction experiments on (004) planes. The widths of x-ray rocking curves have globally shown the high quality of the material despite a substantial broadening of the peak, indicating a decrease of structural quality with increasing boron doping levels. Finally, the suitability of these crystals for the development of vertical power electronic devices has been confirmed by four-point probe measurements from which electrical resistivities as low as 0.26 {Omega} cm have been obtained.

  20. Low temperature silicon nitride by hot wire chemical vapour deposition for the use in impermeable thin film encapsulation on flexible substrates.

    PubMed

    Spee, D A; van der Werf, C H M; Rath, J K; Schropp, R E I

    2011-09-01

    High quality non porous silicon nitride layers were deposited by hot wire chemical vapour deposition at substrate temperatures lower than 110 degrees C. The layer properties were investigated using FTIR, reflection/transmission measurements and 1:6 buffered HF etching rate. A Si-H peak position of 2180 cm(-1) in the Fourier transform infrared absorption spectrum indicates a N/Si ratio around 1.2. Together with a refractive index of 1.97 at a wavelength of 632 nm and an extinction coefficient of 0.002 at 400 nm, this suggests that a transparent high density silicon nitride material has been made below 110 degrees C, which is compatible with polymer films and is expected to have a high impermeability. To confirm the compatibility with polymer films a silicon nitride layer was deposited on poly(glycidyl methacrylate) made by initiated chemical vapour deposition, resulting in a highly transparent double layer.

  1. Titania Coated Mica via Chemical Vapour Deposition, Post N-doped by Liquid Ammonia Treatment

    NASA Astrophysics Data System (ADS)

    Powell, Michael J.; Parkin, Ivan P.

    TiO2 films were successfully grown on synthetic mica powders via Chemical Vapor Deposition (CVD). The CVD rig is a cold-walled design that allows surface coverage of a powder to be successfully achieved. The TiO2 was produced by the reaction between TiCl4 and Ethyl Acetate. The powder produced could be successfully N-doped using post liquid ammonia treatment. The TiO2 powder produced could have potential applications in self-cleaning surfaces or antimicrobial paints.

  2. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition

    DOE PAGES

    Liu, Zheng; Amani, Matin; Najmaei, Sina; ...

    2014-11-18

    Monolayer molybdenum disulfide (MoS2) has attracted tremendous attention due to its promising applications in high-performance field-effect transistors, phototransistors, spintronic devices, and nonlinear optics. The enhanced photoluminescence effect in monolayer MoS2 was discovered and, as a strong tool, was employed for strain and defect analysis in MoS2. Recently, large-size monolayer MoS2 has been produced by chemical vapor deposition but has not yet been fully explored. Here we systematically characterize chemical vapor deposition grown MoS2 by PL spectroscopy and mapping, and demonstrate non-uniform strain in single-crystalline monolayer MoS2 and strain-induced band gap engineering. We also evaluate the effective strain transferred from polymermore » substrates to MoS2 by three-dimensional finite element analysis. In addition, our work demonstrates that PL mapping can be used as a non-contact approach for quick identification of grain boundaries in MoS2.« less

  3. Nanofabrication using home-made RF plasma coupled chemical vapour deposition system

    NASA Astrophysics Data System (ADS)

    Ong, Si Ci; Ilyas, Usman; Rawat, Rajdeep Singh

    2014-08-01

    Zinc oxide, ZnO, a popular semiconductor material with a wide band gap (3.37 eV) and high binding energy of the exciton (60 meV), has numerous applications such as in optoelectronics, chemical/biological sensors, and drug delivery. This project aims to (i) optimize the operating conditions for growth of ZnO nanostructures using the chemical vapor deposition (CVD) method, and (ii) investigate the effects of coupling radiofrequency (RF) plasma to the CVD method on the quality of ZnO nanostructures. First, ZnO nanowires were synthesized using a home-made reaction setup on gold-coated and non-coated Si (100) substrates at 950 °C. XRD, SEM, EDX, and PL measurements were used for characterizations and it was found that a deposition duration of 10 minutes produced the most well-defined ZnO nanowires. SEM analysis revealed that the nanowires had diameters ranging from 30-100 mm and lengths ranging from 1-4 µm. In addition, PL analysis showed strong UV emission at 380 nm, making it suitable for UV lasing. Next, RF plasma was introduced for 30 minutes. Both remote and in situ RF plasma produced less satisfactory ZnO nanostructures with poorer crystalline structure, surface morphology, and optical properties due to etching effect of energetic ions produced from plasma. However, a reduction in plasma discharge duration to 10 minutes produced thicker and shorter ZnO nanostructures. Based on experimentation conducted, it is insufficient to conclude that RF plasma cannot aid in producing well-defined ZnO nanostructures. It can be deduced that the etching effect of energetic ions outweighed the increased oxygen radical production in RF plasma nanofabrication.

  4. Catalytic Hydroprocessing of Chemical Models for Bio-oil

    SciTech Connect

    Elliott, Douglas C.; Hart, Todd R.

    2008-12-12

    Bio-oil (product liquids from fast pyrolysis of biomass) is a complex mixture of oxygenates derived from the thermal breakdown of the bio-polymers in biomass. In the case of lignocellulosic biomass, the structures of three major components, cellulose, hemicellulose and lignin, are well represented by the bio-oil components. In order to study the chemical mechanisms of catalytic hydroprocessing of bio-oil, three model compounds were chosen to represent those components. Guaiacol represents the large number of mono- and di-methoxy phenols found in bio-oil derived from softwood or hardwood, respectively. Furfural represents a major pyrolysis product group from cellulosics. Acetic acid is a major product from biomass pyrolysis, derived from the hemicellulose, which has important impacts on the further processing of the bio-oil because of the acidic character. These three compounds were processed using palladium or ruthenium catalyst over a temperature range from 150°C to 300°C. The batch reactor was sampled during each test over a period of four hours. The samples were analyzed by gas chromatography with both a mass selective detector and a flame ionization detector. The products were determined and the reaction pathways for their formation are suggested based on these results. Both temperature and catalyst metal have significant effects on the product composition.

  5. Biological properties of carbon powders synthesized using chemical vapour deposition and detonation methods.

    PubMed

    Batory, M; Batory, D; Grabarczyk, J; Kaczorowski, W; Kupcewicz, B; Mitura, K; Nasti, T H; Yusuf, N; Niedzielski, P

    2012-12-01

    Carbon powders can be synthesized using variety of CVD and detonation methods. Several interesting properties of carbon powder particles make them a very attractive material examined in many laboratories all over the world. However there is a lack of information discussing investigation of carbon powders directed to its application in pharmaceutical-cosmetic industry and medicine. Earlier investigation results proved that diamond powders present properties fighting free radicals. Presented work discusses the influence of carbon powder particles manufactured using MW/RF PACVD, RF PACVD and detonation methods onto hydro-lipid skin coat. Before the biological examinations physicochemical properties of carbon powders were determined. Grain size, shape and chemical composition of carbon powders were determined using the scanning electron microscopy. Surface functional groups were characterized by IR Fourier-transform spectroscopy and X-ray photoelectron spectroscopy. Structure and phase composition were investigated by means of the Raman spectroscopy. Results of allergy tests performed on laboratory mice proved that carbon powder particles synthesized using different methods do not cause allergy. In the following stage, the group of 20 patients applied the formula including carbon powder on their face skin. The influence of carbon powder onto hydro-lipid skin coat was determined by measurement of such parameters as: pH reaction, skin temperature, lipid fotometry and level of hydration. Additionally, macro pictures of places where the cream had been applied were registered. As the result of the investigation it was found that powders synthesized using various methods present different physicochemical properties which may individually affect the face skin parameters. The noticeable improvement of hydro-lipid skin coat kilter was observed.

  6. Effect of reaction parameters on the growth of MWCNTs using mesoporous Sb/MCM-41 by chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Atchudan, R.; Pandurangan, A.; Subramanian, K.

    2011-11-01

    Mesoporous Si-MCM-41 molecular sieve was synthesized hydrothermally and different wt.% of Sb (1.0, 2.0, 3.0, 5.0, 10.0, 15.0 and 20.0) was loaded on it by wet impregnation method. The Sb/MCM-41 materials were characterized by various physico-chemical techniques such as XRD, TGA and TEM. The TEM image showed a honeycomb structure of the host material. They were used as catalytic templates for the growth of MWCNTs by CVD method with different temperatures at 700, 800, 900 and 1000 °C using acetylene as a carbon precursor. The reaction temperature was optimized for the better formation of MWCNTs and they were purified and then characterized by XRD, SEM, HR-TEM and Raman spectroscopy techniques. The formation of MWCNTs with diameter in the range of 4-6 nm was observed from HR-TEM. The good thermal stability and high productivity of catalyst observed in this study revealed that the 2 wt.% Sb loaded MCM-41 could be a promising support for the catalytic synthesis of MWCNTs at 800 °C by CVD method.

  7. Plasma and ion beam enhanced chemical vapour deposition of diamond and diamond-like carbon

    NASA Astrophysics Data System (ADS)

    Tang, Yongji

    WC-Co cutting tools are widely used in the machining industry. The application of diamond coatings on the surfaces of the tools would prolong the cutting lifetime and improves the manufacturing efficiency. However, direct chemical vapor deposition (CVD) of diamond coatings on WC-Co suffer from severe premature adhesion failure due to interfacial graphitization induced by the binder phase Co. In this research, a combination of hydrochloric acid (HCl) and hydrogen (H2) plasma pretreatments and a novel double interlayer of carbide forming element (CFE)/Al were developed to enhance diamond nucleation and adhesion. The results showed that both the pretreatments and interlayers were effective in forming continuous and adhesive nanocrystalline diamond coatings. The method is a promising replacement of the hazardous Murakami's regent currently used in WC-Co pretreatment with a more environmental friendly approach. Apart from coatings, diamond can be fabricated into other forms of nanostructures, such as nanotips. In this work, it was demonstrated that oriented diamond nanotip arrays can be fabricated by ion beam etching of as-grown CVD diamond. The orientation of diamond nanotips can be controlled by adjusting the direction of incident ion beam. This method overcomes the limits of other techniques in producing nanotip arrays on large areas with controlled orientation. Oriented diamond nano-tip arrays have been used to produce anisotropic frictional surface, which is successfully used in ultra-precision positioning systems. Diamond-like carbon (DLC) has many properties comparable to diamond. In this thesis, the preparation of alpha-C:H thin films by end-Hall (EH) ion source and the effects of ion energy and nitrogen doping on the microstructure and mechanical properties of the as-deposited thin films were investigated. The results have demonstrated that smooth and uniform alpha-C:H and alpha-C:H:N films with large area and reasonably high hardness and Young's modulus can be

  8. Study of barrier properties and chemical resistance of recycled PET coated with amorphous carbon through a plasma enhanced chemical vapour deposition (PECVD) process.

    PubMed

    Cruz, S A; Zanin, M; Nerin, C; De Moraes, M A B

    2006-01-01

    Many studies have been carried out in order to make bottle-to-bottle recycling feasible. The problem is that residual contaminants in recycled plastic intended for food packaging could be a risk to public health. One option is to use a layer of virgin material, named functional barrier, which prevents the contaminants migration process. This paper shows the feasibility of using polyethylene terephthalate (PET) recycled for food packaging employing a functional barrier made from hydrogen amorphous carbon film deposited by Plasma Enhanced Chemical Vapour Deposition (PECVD) process. PET samples were deliberately contaminated with a series of surrogates using a FDA protocol. After that, PET samples were coated with approximately 600 and 1200 Angstrons thickness of amorphous carbon film. Then, the migration tests using as food simulants: water, 10% ethanol, 3% acetic acid, and isooctane were applied to the sample in order to check the chemical resistance of the new coated material. After the tests, the liquid extracts were analysed using a solid-phase microextraction device (SPME) coupled to GC-MS.

  9. Atmospheric pressure chemical vapour deposition of BPSG films from TEOS, 03, TMB, TMPI: Determination of a chemical mechanism

    NASA Astrophysics Data System (ADS)

    Nieto, J.-P.; Caussat, B.; Couderc, J.-P.; Orain', I.; Jeannerot, L.

    2002-06-01

    APCVD of boro-phospho silicate glass from mixtures of TEOS, TMB and TMP, has been analysed then modelled in a continuous reactor. A reduced chemical mechanism has been developed and the corresponding rate constants have been identified. The first results obtained are encouraging and suggest that the very simple gas phase chemistry selected could be precise enough to represent the main trends of this very complex deposition procedure.

  10. Effects of precursor concentration on the optical and electrical properties of SnXSY thin films prepared by plasma-enhanced chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Sanchez-Juarez, A.; Ortíz, A.

    2002-09-01

    We have carried out the electrical and optical characterization of thin films of compounds based on Sn-S bonds (SnS2, Sn2S3), prepared by plasma-enhanced chemical vapour deposition (PECVD), as a function of the relative concentration of the precursor vapours, SnCl4 and H2S, keeping all other deposition parameters constant. In all studied cases, the deposited films were formed by polycrystalline materials. The optical bandgap values of deposited materials were calculated from optical transmittance and reflectance measurements. The SnS2 compound produced under certain deposition conditions has a forbidden bandgap around 2.2 eV. This compound shows n-type electrical conductivity, whose dark value at room temperature is 2 × 10-2 (Ω cm)-1. Also, it shows the typical semiconductor dependence of its electrical conductivity on the temperature with an activation energy of about 0.15 eV. However, thin films of a mixture of SnS2 and Sn2S3 compounds were deposited with higher values of the relative concentration of source vapours than those used to obtain the SnS2 compound. The optical bandgap shows a decreasing trend as the relative concentration increases. A similar trend is observed for dark electrical conductivity. These results create the opportunity to use SnX SY compounds in thin films for building heterojunction solar cells prepared completely by PECVD.

  11. Poisoning of bubble propelled catalytic micromotors: the chemical environment matters.

    PubMed

    Zhao, Guanjia; Sanchez, Samuel; Schmidt, Oliver G; Pumera, Martin

    2013-04-07

    Self-propelled catalytic microjets have attracted considerable attention in recent years and these devices have exhibited the ability to move in complex media. The mechanism of propulsion is via the Pt catalysed decomposition of H2O2 and it is understood that the Pt surface is highly susceptible to poisoning by sulphur-containing molecules. Here, we show that important extracellular thiols as well as basic organic molecules can significantly hamper the motion of catalytic microjet engines. This is due to two different mechanisms: (i) molecules such as dimethyl sulfoxide can quench the hydroxyl radicals produced at Pt surfaces and reduce the amount of oxygen gas generated and (ii) molecules containing -SH, -SSR, and -SCH3 moieties can poison the catalytically active platinum surface, inhibiting the motion of the jet engines. It is essential that the presence of such molecules in the environment be taken into consideration for future design and operation of catalytic microjet engines. We show this effect on catalytic micromotors prepared by both rolled-up and electrodeposition approaches, demonstrating that such poisoning is universal for Pt catalyzed micromotors. We believe that our findings will contribute significantly to this field to develop alternative systems or catalysts for self-propulsion when practical applications in the real environment are considered.

  12. Poisoning of bubble propelled catalytic micromotors: the chemical environment matters

    NASA Astrophysics Data System (ADS)

    Zhao, Guanjia; Sanchez, Samuel; Schmidt, Oliver G.; Pumera, Martin

    2013-03-01

    Self-propelled catalytic microjets have attracted considerable attention in recent years and these devices have exhibited the ability to move in complex media. The mechanism of propulsion is via the Pt catalysed decomposition of H2O2 and it is understood that the Pt surface is highly susceptible to poisoning by sulphur-containing molecules. Here, we show that important extracellular thiols as well as basic organic molecules can significantly hamper the motion of catalytic microjet engines. This is due to two different mechanisms: (i) molecules such as dimethyl sulfoxide can quench the hydroxyl radicals produced at Pt surfaces and reduce the amount of oxygen gas generated and (ii) molecules containing -SH, -SSR, and -SCH3 moieties can poison the catalytically active platinum surface, inhibiting the motion of the jet engines. It is essential that the presence of such molecules in the environment be taken into consideration for future design and operation of catalytic microjet engines. We show this effect on catalytic micromotors prepared by both rolled-up and electrodeposition approaches, demonstrating that such poisoning is universal for Pt catalyzed micromotors. We believe that our findings will contribute significantly to this field to develop alternative systems or catalysts for self-propulsion when practical applications in the real environment are considered.

  13. Vapour breakthrough behaviour of carbon tetrachloride - A simulant for chemical warfare agent on ASZMT carbon: A comparative study with whetlerite carbon

    NASA Astrophysics Data System (ADS)

    Srivastava, Avanish Kumar; Shah, Dilip K.; Mahato, T. H.; Roy, A.; Yadav, S. S.; Srivas, S. K.; Singh, Beer

    2013-06-01

    ASZMT and whetlerite carbon was prepared by impregnation of active carbon with ammonical salts of Cu (II), Ag (I), Zn (II), Mo (VI), TEDA and Cu (II), Ag (I), Cr (VI), NaOH, C5H5N respectively using incipient wetness technique. Thereafter, impregnated carbon systems were characterized using scanning electron microscopy, energy dispersive X-ray, atomic absorption spectroscopy, thermogravimetry and surface characterization techniques. Impregnated carbon systems were evaluated under dynamic conditions against carbon tetrachloride (CCl4) vapour that was used as a simulant for the persistent chemical warfare agents for testing breakthrough times of filter cartridges and canisters of gas masks in the national approval test of respirators. The protective potential of ASZMT carbon was compared with the whetlerite carbon which is presently used in NBC filtration system. The effect of CCl4 concentration, test flow rate, temperature and relative humidity on the breakthrough behaviour of the impregnated carbon systems has also been studied. The study clearly indicated that the whetlerite carbon possessed breakthrough time greater than ASZMT carbon. However, ASZMT carbon provided adequate protection against CCl4 vapours and can be used as an alternative to whetlerite carbon that contain Cr(VI), which is reported to be carcinogenic and having lesser shelf life. The study indicated the breakthrough time of impregnated carbon systems were found to decrease with the increase of the CCl4 concentration and flow rate. The variation in temperature and relative humidity did not significantly affect the breakthrough behaviour of impregnated carbon systems at high vapour concentration of CCl4 whereasbreak through time of impregnated carbon systems reduced by an increase of relative humidity at low CCl4 vapour concentration.

  14. N-type crystalline silicon films free of amorphous silicon deposited on glass by HCl addition using hot wire chemical vapour deposition.

    PubMed

    Chung, Yung-Bin; Park, Hyung-Ki; Lee, Sang-Hoon; Song, Jean-Ho; Hwang, Nong-Moon

    2011-09-01

    Since n-type crystalline silicon films have the electric property much better than those of hydrogenated amorphous and microcrystalline silicon films, they can enhance the performance of advanced electronic devices such as solar cells and thin film transistors (TFTs). Since the formation of amorphous silicon is unavoidable in the low temperature deposition of microcrystalline silicon on a glass substrate at temperatures less than 550 degrees C in the plasma-enhanced chemical vapour deposition and hot wire chemical vapour deposition (HWCVD), crystalline silicon films have not been deposited directly on a glass substrate but fabricated by the post treatment of amorphous silicon films. In this work, by adding the HCl gas, amorphous silicon-free n-type crystalline silicon films could be deposited directly on a glass substrate by HWCVD. The resistivity of the n-type crystalline silicon film for the flow rate ratio of [HCl]/[SiH4] = 7.5 and [PH3]/[SiH4] = 0.042 was 5.31 x 10(-4) ohms cm, which is comparable to the resistivity 1.23 x 10(-3) ohms cm of films prepared by thermal annealing of amorphous silicon films. The absence of amorphous silicon in the film could be confirmed by high resolution transmission electron microscopy.

  15. Work function shifts of catalytic metals under hydrogen gas visualized by terahertz chemical microscopy.

    PubMed

    Kiwa, Toshihiko; Hagiwara, Takafumi; Shinomiya, Mitsuhiro; Sakai, Kenji; Tsukada, Keiji

    2012-05-21

    Terahertz chemical microscopy (TCM) was applied to visualize the distribution of the work function shift of catalytic metals under hydrogen gas. TCM measures the chemical potential on the surface of a SiO(2)/Si/sapphire sensing plate without any contact with the plate. By controlling the bias voltage between an electrode on the SiO(2)/ surface and the Si layer, the relationship between the voltage and the THz amplitude from the sensing plate can be obtained. As a demonstration, two types of structures were fabricated on the sensing plate, and the work function shifts due to catalytic reactions were visualized.

  16. Thermocamera studies of gases and vapours.

    PubMed Central

    Carlsson, P; Ljungqvist, B; Neikter, K

    1982-01-01

    Most gases and vapours with a bipolar molecular structure absorb infrared energy. If such a gas is interposed between an object emitting infrared radiation and a thermocamera the gas will absorb some of the infrared radiation and thus cast a shadow on the thermocamera picture. In this assay it is possible to visualise the gas. This method had been used to study pollution with anaesthetic gases and vapours in operating theatres. The vapours of other chemicals used in hospitals and other places of work also have been studied. The method permits the study of dispersion and flow patterns of polluting gases and vapours during work. Images PMID:7093159

  17. Studies of coupled chemical and catalytic coal conversion methods

    SciTech Connect

    Stock, L.M.; Chatterjee, K.; Cheng, C.; Ettinger, M.; Flores, F.; Jiralerspong, S.; Miyake, M.; Muntean, J.

    1991-12-01

    The objective of this research was to convert coal into a soluble substance under mild conditions. The strategy involved two steps, first to breakdown the macromolecular network of coal, and second to add hydrogen catalytically. We investigated different basic reagents that could, in priciple, break down coal's structure and alkylation strategies that might enhance its solubility. We examined O- and C-alkylation, the importance of the strength of the base, the character of the added alkyl groups and other reaction parameters. This work provided new information concerning the way in which hydrogen bonding, polarization interactions between aromatic structures and covalent bonding could be disrupted and solubility enhanced. The objective of our research was to explore new organochromium chemistry that might be feasible for the hydrogenation of coal under mild conditions.

  18. Studies of coupled chemical and catalytic coal conversion methods

    SciTech Connect

    Stock, L.M.; Chatterjee, K.; Cheng, C.; Ettinger, M.; Flores, F.; Jiralerspong, S.; Miyake, M.; Muntean, J.

    1991-12-01

    The objective of this research was to convert coal into a soluble substance under mild conditions. The strategy involved two steps, first to breakdown the macromolecular network of coal, and second to add hydrogen catalytically. We investigated different basic reagents that could, in priciple, break down coal`s structure and alkylation strategies that might enhance its solubility. We examined O- and C-alkylation, the importance of the strength of the base, the character of the added alkyl groups and other reaction parameters. This work provided new information concerning the way in which hydrogen bonding, polarization interactions between aromatic structures and covalent bonding could be disrupted and solubility enhanced. The objective of our research was to explore new organochromium chemistry that might be feasible for the hydrogenation of coal under mild conditions.

  19. Catalytic conversion of renewable biomass resources to fuels and chemicals.

    PubMed

    Serrano-Ruiz, Juan Carlos; West, Ryan M; Dumesic, James A

    2010-01-01

    Lignocellulosic biomass is renewable and cheap, and it has the potential to displace fossil fuels in the production of fuels and chemicals. Biomass-derived carboxylic acids are important compounds that can be used as platform molecules for the production of a variety of important chemicals on a large scale. Lactic acid, a prototypical biomass derivative, and levulinic acid, an important chemical feedstock produced by hydrolysis of waste cellulosic materials, can be upgraded using bifunctional catalysts (those containing metal and acid sites), which allows the integration of several transformations (e.g., oxygen removal and C-C coupling) in a single catalyst bed. This coupling between active sites is beneficial in that it reduces the complexity and cost of the biomass conversion processes. Deoxygenation of biomass derivatives is a requisite step for the production of fuels and chemicals, and strategies are proposed to minimize the consumption of hydrogen from an external source during this process.

  20. Prediction of Rate Constants for Catalytic Reactions with Chemical Accuracy.

    PubMed

    Catlow, C Richard A

    2016-08-01

    Ex machina: A computational method for predicting rate constants for reactions within microporous zeolite catalysts with chemical accuracy has recently been reported. A key feature of this method is a stepwise QM/MM approach that allows accuracy to be achieved while using realistic models with accessible computer resources.

  1. A Comparative Study of the Dispersion of Multi-Wall Carbon Nanotubes Made by Arc-Discharge and Chemical Vapour Deposition.

    PubMed

    Frømyr, Tomas-Roll; Bourgeaux-Goget, Marie; Hansen, Finn Knut

    2015-05-01

    A method has been developed to characterize the dispersion of multi-wall carbon nanotubes in water using a disc centrifuge for the detection of individual carbon nanotubes, residual aggregates, and contaminants. Carbon nanotubes produced by arc-discharge have been measured and compared with carbon nanotubes produced by chemical vapour deposition. Studies performed on both pristine (see text) arc-discharge nanotubes is rather strong and that high ultra-sound intensity is required to achieve complete dispersion of carbon nanotube bundles. The logarithm of the mode of the particle size distribution of the arc-discharge carbon nanotubes was found to be a linear function of the logarithm of the total ultrasonic energy input in the dispersion process.

  2. Al2O3 thin films by plasma-enhanced chemical vapour deposition using trimethyl-amine alane (TMAA) as the Al precursor

    NASA Astrophysics Data System (ADS)

    Chryssou, C. E.; Pitt, C. W.

    We report the low temperature (200-300 °C) deposition of uniform, amorphous Al2O3 thin films by plasma-enhanced chemical vapour deposition (PECVD) using trimethyl-amine alane (TMAA) as the Al precursor. The thin films were deposited on both Si and quartz silica (SiO2) substrates. Deposition rates were typically 60 Åmin-1 keeping the TMAA temperature constant at 45 °C. The deposited Al2O3 thin films were stoichiometric alumina with low carbon contamination (0.7-1.3 At%). The refractive index ranged from 1.54 to 1.62 depending on the deposition conditions. The deposition rate was studied as a function of both the RF power and the substrate temperature. The structure and the surface of the deposited Al2O3 thin films were studied using X-ray diffraction, atomic force microscopy (AFM) and scanning electron microscopy (SEM).

  3. Self-propulsion and interactions of catalytic particles in a chemically active medium

    NASA Astrophysics Data System (ADS)

    Banigan, Edward J.; Marko, John F.

    2016-01-01

    Enzymatic "machines," such as catalytic rods or colloids, can self-propel and interact by generating gradients of their substrates. We theoretically investigate the behaviors of such machines in a chemically active environment where their catalytic substrates are continuously synthesized and destroyed, as occurs in living cells. We show how the kinetic properties of the medium modulate self-propulsion and pairwise interactions between machines, with the latter controlled by a tunable characteristic interaction range analogous to the Debye screening length in an electrolytic solution. Finally, we discuss the effective force arising between interacting machines and possible biological applications, such as partitioning of bacterial plasmids.

  4. Liquid-phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions.

    PubMed

    Jiang, Hai-Long; Singh, Sanjay Kumar; Yan, Jun-Min; Zhang, Xin-Bo; Xu, Qiang

    2010-05-25

    There is a demand for a sufficient and sustainable energy supply. Hence, the search for applicable hydrogen storage materials is extremely important owing to the diversified merits of hydrogen energy. Lithium and sodium borohydride, ammonia borane, hydrazine, and formic acid have been extensively investigated as promising hydrogen storage materials based on their relatively high hydrogen content. Significant advances, such as hydrogen generation temperatures and reaction kinetics, have been made in the catalytic hydrolysis of aqueous lithium and sodium borohydride and ammonia borane as well as in the catalytic decomposition of hydrous hydrazine and formic acid. In this Minireview we briefly survey the research progresses in catalytic hydrogen generation from these liquid-phase chemical hydrogen storage materials.

  5. Chemicals from Lignin by Catalytic Fast Pyrolysis, from Product Control to Reaction Mechanism.

    PubMed

    Ma, Zhiqiang; Custodis, Victoria; Hemberger, Patrick; Bährle, Christian; Vogel, Frédéric; Jeschk, Gunnar; van Bokhoven, Jeroen A

    2015-01-01

    Conversion of lignin into renewable and value-added chemicals by thermal processes, especially pyrolysis, receives great attention. The products may serve as feedstock for chemicals and fuels and contribute to the development of a sustainable society. However, the application of lignin conversion is limited by the low selectivity from lignin to the desired products. The opportunities for catalysis to selectively convert lignin into useful chemicals by catalytic fast pyrolysis and our efforts to elucidate the mechanism of lignin pyrolysis are discussed. Possible research directions will be identified.

  6. Catalytic gold nanoparticle driven pH specific chemical locomotion.

    PubMed

    Dey, Krishna Kanti; Panda, Biswa Ranjan; Paul, Anumita; Basu, Saurabh; Chattopadhyay, Arun

    2010-08-15

    Gold nanoparticle (Au NP) catalyzed decomposition of alkaline hydrogen peroxide has been utilized in driving chemical locomotives in a liquid. Au NPs deposited on spherical micron sized polymer resin beads catalyzed the decomposition of H(2)O(2) in the pH range 9.1-10.8. The O(2) gas bubbles produced in the decomposition moved the beads upward with average velocities that depended on the pH of the solution. The measured average velocity of the bead increased with the increase in pH in the range 9.1-10.8. Above this pH, the self-decomposition of H(2)O(2) produced sufficient bubbles in the medium that made the motion haphazard and thus prevented a clear measurement of the velocity. The observed accelerated motion of the locomotive has been explained by considering the time-dependent growth of O(2) gas bubbles on the polymer, while taking into consideration desorption and other factors.

  7. Catalytic performance of carbon nanotubes in H2O2 decomposition: experimental and quantum chemical study.

    PubMed

    Voitko, Katerina; Tóth, Ajna; Demianenko, Evgenij; Dobos, Gábor; Berke, Barbara; Bakalinska, Olga; Grebenyuk, Anatolij; Tombácz, Etelka; Kuts, Volodymyr; Tarasenko, Yurij; Kartel, Mykola; László, Krisztina

    2015-01-01

    The catalytic performance of multi-walled carbon nanotubes (MWCNTs) with different surface chemistry was studied in the decomposition reaction of H2O2 at various values of pH and temperature. A comparative analysis of experimental and quantum chemical calculation results is given. It has been shown that both the lowest calculated activation energy (∼18.9 kJ/mol) and the highest rate constant correspond to the N-containing CNT. The calculated chemisorption energy values correlate with the operation stability of MWCNTs. Based on the proposed quantum chemical model it was found that the catalytic activity of carbon materials in electron transfer reactions is controlled by their electron donor capability.

  8. Effects of boron addition on a-Si(90)Ge(10):H films obtained by low frequency plasma enhanced chemical vapour deposition.

    PubMed

    Pérez, Arllene M; Renero, Francisco J; Zúñiga, Carlos; Torres, Alfonso; Santiago, César

    2005-06-29

    Optical, structural and electric properties of (a-(Si(90)Ge(10))(1-y)B(y):H) thin film alloys, deposited by low frequency plasma enhanced chemical vapour deposition, are presented. The chemical bonding structure has been studied by IR spectroscopy, while the composition was investigated by Raman spectroscopy. A discussion about boron doping effects, in the composition and bonding of samples, is presented. Transport of carriers has been studied by measurement of the conductivity dependence on temperature, which increases from 10(-3) to 10(1) Ω(-1) cm(-1) when the boron content varies from 0 to 50%. Similarly, the activation energy is between 0.62 and 0.19 eV when the doping increases from 0 to 83%. The optical properties have been determined from the film's optical transmission, using Swanepoel's method. It is shown that the optical gap varies from 1.3 to 0.99 eV.

  9. Evaluation of water vapour assimilation in the tropical upper troposphere and lower stratosphere by a chemical transport model

    NASA Astrophysics Data System (ADS)

    Payra, Swagata; Ricaud, Philippe; Abida, Rachid; El Amraoui, Laaziz; Attié, Jean-Luc; Rivière, Emmanuel; Carminati, Fabien; von Clarmann, Thomas

    2016-09-01

    The present analysis deals with one of the most debated aspects of the studies on the upper troposphere/lower stratosphere (UTLS), namely the budget of water vapour (H2O) at the tropical tropopause. Within the French project "Multiscale water budget in the upper troposphere and lower stratosphere in the TROpics" (TRO-pico), a global-scale analysis has been set up based on space-borne observations, models and assimilation techniques. The MOCAGE-VALENTINA assimilation tool has been used to assimilate the Aura Microwave Limb Sounder (MLS) version 3.3 H2O measurements within the 316-5 hPa range from August 2011 to March 2013 with an assimilation window of 1 h. Diagnostics based on observations minus analysis and forecast are developed to assess the quality of the assimilated H2O fields. Comparison with an independent source of H2O measurements in the UTLS based on the space-borne Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) observations and with meteorological ARPEGE analyses is also shown. Sensitivity studies of the analysed fields have been performed by (1) considering periods when no MLS measurements are available and (2) using H2O data from another MLS version (4.2). The studies have been performed within three different spaces in time and space coincidences with MLS (hereafter referred to as MLS space) and MIPAS (MIPAS space) observations and with the model (model space) outputs and at three different levels: 121 hPa (upper troposphere), 100 hPa (tropopause) and 68 hPa (lower stratosphere) in January and February 2012. In the MLS space, the analyses behave consistently with the MLS observations from the upper troposphere to the lower stratosphere. In the model space, the analyses are wetter than the reference atmosphere as represented by ARPEGE and MLS in the upper troposphere (121 hPa) and around the tropopause (100 hPa), but are consistent with MLS and MIPAS in the lower stratosphere (68 hPa). In the MIPAS space, the sensitivity and the

  10. Probing the Catalytic Mechanism of Vibrio harveyi GH20 β-N-Acetylglucosaminidase by Chemical Rescue

    PubMed Central

    Meekrathok, Piyanat; Suginta, Wipa

    2016-01-01

    Background Vibrio harveyi GH20 β-N-acetylglucosaminidase (VhGlcNAcase) is a chitinolytic enzyme responsible for the successive degradation of chitin fragments to GlcNAc monomers, activating the onset of the chitin catabolic cascade in marine Vibrios. Methods Two invariant acidic pairs (Asp303-Asp304 and Asp437-Glu438) of VhGlcNAcase were mutated using a site-directed mutagenesis strategy. The effects of these mutations were examined and the catalytic roles of these active-site residues were elucidated using a chemical rescue approach. Enhancement of the enzymic activity of the VhGlcNAcase mutants was evaluated by a colorimetric assay using pNP-GlcNAc as substrate. Results Substitution of Asp303, Asp304, Asp437 or Glu438 with Ala/Asn/Gln produced a dramatic loss of the GlcNAcase activity. However, the activity of the inactive D437A mutant was recovered in the presence of sodium formate. Our kinetic data suggest that formate ion plays a nucleophilic role by mimicking the β-COO-side chain of Asp437, thereby stabilizing the reaction intermediate during both the glycosylation and the deglycosylation steps. Conclusions Chemical rescue of the inactive D437A mutant of VhGlcNAcase by an added nucleophile helped to identify Asp437 as the catalytic nucleophile/base, and hence its acidic partner Glu438 as the catalytic proton donor/acceptor. General Significance Identification of the catalytic nucleophile of VhGlcNAcases supports the proposal of a substrate-assisted mechanism of GH20 GlcNAcases, requiring the catalytic pair Asp437-Glu438 for catalysis. The results suggest the mechanistic basis of the participation of β-N-acetylglucosaminidase in the chitin catabolic pathway of marine Vibrios. PMID:26870945

  11. Converting Light Energy to Chemical Energy: A New Catalytic Approach for Sustainable Environmental Remediation

    PubMed Central

    2016-01-01

    We report a synthetic approach to form cubic Cu2O/Pd composite structures and demonstrate their use as photocatalytic materials for tandem catalysis. Pd nanoparticles were deposited onto Cu2O cubes, and their tandem catalytic reactivity was studied via the reductive dehalogenation of polychlorinated biphenyls. The Pd content of the materials was gradually increased to examine its influence on particle morphology and catalytic performance. Materials were prepared at different Pd amounts and demonstrated a range of tandem catalytic reactivity. H2 was generated via photocatalytic proton reduction initiated by Cu2O, followed by Pd-catalyzed dehalogenation using in situ generated H2. The results indicate that material morphology and composition and substrate steric effects play important roles in controlling the overall reaction rate. Additionally, analysis of the postreacted materials revealed that a small number of the cubes had become hollow during the photodechlorination reaction. Such findings offer important insights regarding photocatalytic active sites and mechanisms, providing a pathway toward converting light-based energy to chemical energy for sustainable catalytic reactions not typically driven via light. PMID:27656687

  12. Converting Light Energy to Chemical Energy: A New Catalytic Approach for Sustainable Environmental Remediation.

    PubMed

    Nguyen, Michelle A; Zahran, Elsayed M; Wilbon, Azaan S; Besmer, Alexander V; Cendan, Vincent J; Ranson, William A; Lawrence, Randy L; Cohn, Joshua L; Bachas, Leonidas G; Knecht, Marc R

    2016-07-31

    We report a synthetic approach to form cubic Cu2O/Pd composite structures and demonstrate their use as photocatalytic materials for tandem catalysis. Pd nanoparticles were deposited onto Cu2O cubes, and their tandem catalytic reactivity was studied via the reductive dehalogenation of polychlorinated biphenyls. The Pd content of the materials was gradually increased to examine its influence on particle morphology and catalytic performance. Materials were prepared at different Pd amounts and demonstrated a range of tandem catalytic reactivity. H2 was generated via photocatalytic proton reduction initiated by Cu2O, followed by Pd-catalyzed dehalogenation using in situ generated H2. The results indicate that material morphology and composition and substrate steric effects play important roles in controlling the overall reaction rate. Additionally, analysis of the postreacted materials revealed that a small number of the cubes had become hollow during the photodechlorination reaction. Such findings offer important insights regarding photocatalytic active sites and mechanisms, providing a pathway toward converting light-based energy to chemical energy for sustainable catalytic reactions not typically driven via light.

  13. Spatially orthogonal chemical functionalization of a hierarchical pore network for catalytic cascade reactions

    NASA Astrophysics Data System (ADS)

    Parlett, Christopher M. A.; Isaacs, Mark A.; Beaumont, Simon K.; Bingham, Laura M.; Hondow, Nicole S.; Wilson, Karen; Lee, Adam F.

    2016-02-01

    The chemical functionality within porous architectures dictates their performance as heterogeneous catalysts; however, synthetic routes to control the spatial distribution of individual functions within porous solids are limited. Here we report the fabrication of spatially orthogonal bifunctional porous catalysts, through the stepwise template removal and chemical functionalization of an interconnected silica framework. Selective removal of polystyrene nanosphere templates from a lyotropic liquid crystal-templated silica sol-gel matrix, followed by extraction of the liquid crystal template, affords a hierarchical macroporous-mesoporous architecture. Decoupling of the individual template extractions allows independent functionalization of macropore and mesopore networks on the basis of chemical and/or size specificity. Spatial compartmentalization of, and directed molecular transport between, chemical functionalities affords control over the reaction sequence in catalytic cascades; herein illustrated by the Pd/Pt-catalysed oxidation of cinnamyl alcohol to cinnamic acid. We anticipate that our methodology will prompt further design of multifunctional materials comprising spatially compartmentalized functions.

  14. Rapid thermal low-pressure chemical vapour deposition of tungsten films onto InP using WF6 and H2

    NASA Astrophysics Data System (ADS)

    Katz, A.; Feingold, A.; El-Roy, A.; Pearton, S. J.; Lane, E.; Nakahara, S.; Geva, M.

    1992-11-01

    Tungsten (W) films were deposited onto InP in a cold wall, rapid thermal low-pressure chemical vapour deposition (RT-LPCVD) reactor, from a tungsten hexafluoride (WF6) gas reduced by hydrogen (H2). W films of thickness 50-450 nm were deposited in the temperature range 350-550 degrees C, pressure range 0.5-4.5 Torr at deposition rates up to 4 nm s-1 with an apparent activation energy of about 1.12 eV. The film stress varied depending upon the deposition pressure, from low compressive for deposition at 0.5 Torr to moderate tensile for deposition at about 4.5 Torr. The films were aged at temperatures as high as 300 degrees C for about 800 h and exhibited an excellent mechanical stability. Post-deposition sintering of the W films at temperatures up to 600 degrees C led to reduction of the resistivity with a minimum value of about 55 mu Omega cm as a result of heating at 500 degrees C. Conditions for both selective and blanket deposition were defined, and a dry etching process for further geometrical definitions of the films was developed, providing etch rates of 40-50 nm min-1. This report reflects the first attempt to deposit W films onto III-V semiconductor at a very high rate by means of RT-LPCVD.

  15. Surface engineering of artificial heart valve disks using nanostructured thin films deposited by chemical vapour deposition and sol-gel methods.

    PubMed

    Jackson, M J; Robinson, G M; Ali, N; Kousar, Y; Mei, S; Gracio, J; Taylor, H; Ahmed, W

    2006-01-01

    Pyrolytic carbon (PyC) is widely used in manufacturing commercial artificial heart valve disks (HVD). Although PyC is commonly used in HVD, it is not the best material for this application since its blood compatibility is not ideal for prolonged clinical use. As a result thrombosis often occurs and the patients are required to take anti-coagulation drugs on a regular basis in order to minimize the formation of thrombosis. However, anti-coagulation therapy gives rise to some detrimental side effects in patients. Therefore, it is extremely urgent that newer and more technically advanced materials with better surface and bulk properties are developed. In this paper, we report the mechanical properties of PyC-HVD, i.e. strength, wear resistance and coefficient of friction. The strength of the material was assessed using Brinell indentation tests. Furthermore, wear resistance and coefficient of friction values were obtained from pin-on-disk testing. The micro-structural properties of PyC were characterized using XRD, Raman spectroscopy and SEM analysis. Also in this paper we report the preparation of freestanding nanocrystalline diamond films (FSND) using the time-modulated chemical vapour deposition (TMCVD) process. Furthermore, the sol-gel technique was used to uniformly coat PyC-HVD with dense, nanocrystalline-titanium oxide (nc-TiO2) coatings. The as-grown nc-TiO2 coatings were characterized for microstructure using SEM and XRD analysis.

  16. Effect of organic additives in catalyst preparation on the growth of single-wall carbon nanotubes prepared by catalyst-assisted chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Shen, Lihua; Zhang, Xiaobin; Li, Yu; Yang, Xiaofang; Luo, Junhang; Xu, Guoliang

    2004-03-01

    The effect of organic additives, including citric acid, PEG (2000) and PEG (200), on the yield and quality of single-wall carbon nanotubes (SWNTs) synthesized by a Fe-Mo catalyst dispersed on an alumina matrix prepared by the sol-gel process in assisted chemical vapour deposition (CVD) has been investigated by transmission electron microscopy (TEM), thermo-gravimetric analysis (TGA) and Raman spectroscopy. Different morphologies of catalyst including big flakes, spherical particles and porous supporting materials were obtained using citric acid, PEG (2000) and PEG (200) as dispersant, respectively. SWNT yields of 10 wt%, 16 wt% and 33 wt% were obtained using citric acid, PEG (2000) and PEG (200) as the dispersants, respectively, which implies that the PEG (200) is the most effective at improving the yield of SWNTs due to the effect of additives on the specific surface area of the catalyst. The as-grown SWNTs are mostly in large bundles with diameters of 0.5-2 nm, but in some cases, isolated tubes with much larger diameters can also be found. Finally a preliminary explanation for the increased SWNT yield using PEG (200) is presented.

  17. Effect of gas flow rates on the anatase-rutile transformation temperature of nanocrystalline TiO2 synthesised by chemical vapour synthesis.

    PubMed

    Ahmad, Md Imteyaz; Bhattacharya, S S; Fasel, Claudia; Hahn, Horst

    2009-09-01

    Of the three crystallographic allotropes of nanocrystalline titania (rutile, anatase and brookite), anatase exhibits the greatest potential for a variety of applications, especially in the area of catalysis and sensors. However, with rutile being thermodynamically the most stable phase, anatase tends to transform into rutile on heating to temperatures in the range of 500 degrees C to 700 degrees C. Efforts made to stabilize the anatase phase at higher temperatures by doping with metal oxides suffer from the problems of having a large amorphous content on synthesis as well as the formation of secondary impurity phases on doping. Recent studies have suggested that the as-synthesised phase composition, crystallite size, initial surface area and processing conditions greatly influence the anatase to rutile transformation temperature. In this study nanocrystalline titania was synthesised in the anatase form bya chemical vapour synthesis (CVS) method using titanium tetra iso-propoxide (TTIP) as a precursor under varying flow rates of oxygen and helium. The anatase to rutile transformation was studied using high temperature X-ray diffraction (HTXRD) and simultaneous thermogravimetric analysis (STA), followed by transmission electron microscopy (TEM). It was demonstrated that the anatase-rutile transformation temperatures were dependent on the oxygen to helium flow rate ratio during CVS and the results are presented and discussed.

  18. Effect of oxygen plasma on field emission characteristics of single-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition system

    SciTech Connect

    Kumar, Avshish; Parveen, Shama; Husain, Samina; Ali, Javid; Zulfequar, Mohammad; Harsh; Husain, Mushahid

    2014-02-28

    Field emission properties of single wall carbon nanotubes (SWCNTs) grown on iron catalyst film by plasma enhanced chemical vapour deposition system were studied in diode configuration. The results were analysed in the framework of Fowler-Nordheim theory. The grown SWCNTs were found to be excellent field emitters, having emission current density higher than 20 mA/cm{sup 2} at a turn-on field of 1.3 V/μm. The as grown SWCNTs were further treated with Oxygen (O{sub 2}) plasma for 5 min and again field emission characteristics were measured. The O{sub 2} plasma treated SWCNTs have shown dramatic improvement in their field emission properties with emission current density of 111 mA/cm{sup 2} at a much lower turn on field of 0.8 V/μm. The as grown as well as plasma treated SWCNTs were also characterized by various techniques, such as scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy before and after O{sub 2} plasma treatment and the findings are being reported in this paper.

  19. Polyethylene Oxide Films Polymerized by Radio Frequency Plasma-Enhanced Chemical Vapour Phase Deposition and Its Adsorption Behaviour of Platelet-Rich Plasma

    NASA Astrophysics Data System (ADS)

    Hu, Wen-Juan; Xie, Fen-Yan; Chen, Qiang; Weng, Jing

    2008-10-01

    We present polyethylene oxide (PEO) functional films polymerized by rf plasma-enhanced vapour chemical deposition (rf-PECVD) on p-Si (100) surface with precursor ethylene glycol dimethyl ether (EGDME) and diluted Ar in pulsed plasma mode. The influences of discharge parameters on the film properties and compounds are investigated. The film structure is analysed by Fourier transform infrared (FTIR) spectroscopy. The water contact angle measurement and atomic force microscope (AFM) are employed to examine the surface polarity and to detect surface morphology, respectively. It is concluded that the smaller duty cycle in pulsed plasma mode contributes to the rich C-O-C (EO) group on the surfaces. As an application, the adsorption behaviour of platelet-rich plasma on plasma polymerization films performed in-vitro is explored. The shapes of attached cells are studied in detail by an optic invert microscope, which clarifies that high-density C-O-C groups on surfaces are responsible for non-fouling adsorption behaviour of the PEO films.

  20. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition

    SciTech Connect

    Liu, Zheng; Amani, Matin; Najmaei, Sina; Xu, Quan; Zou, Xiaolong; Zhou, Wu; Yu, Ting; Qiu, Caiyu; Birdwell, A. Glen; Crowne, Frank J.; Vajtai, Robert; Yakobson, Boris I.; Xia, Zhenhai; Dubey, Madan; Ajayan, Pulickel M.; Lou, Jun

    2014-11-18

    Monolayer molybdenum disulfide (MoS2) has attracted tremendous attention due to its promising applications in high-performance field-effect transistors, phototransistors, spintronic devices, and nonlinear optics. The enhanced photoluminescence effect in monolayer MoS2 was discovered and, as a strong tool, was employed for strain and defect analysis in MoS2. Recently, large-size monolayer MoS2 has been produced by chemical vapor deposition but has not yet been fully explored. Here we systematically characterize chemical vapor deposition grown MoS2 by PL spectroscopy and mapping, and demonstrate non-uniform strain in single-crystalline monolayer MoS2 and strain-induced band gap engineering. We also evaluate the effective strain transferred from polymer substrates to MoS2 by three-dimensional finite element analysis. In addition, our work demonstrates that PL mapping can be used as a non-contact approach for quick identification of grain boundaries in MoS2.

  1. Direct observation of electron emission from the grain boundaries of chemical vapour deposition diamond films by tunneling atomic force microscopy

    SciTech Connect

    Chatterjee, Vijay; Harniman, Robert; May, Paul W.; Barhai, P. K.

    2014-04-28

    The emission of electrons from diamond in vacuum occurs readily as a result of the negative electron affinity of the hydrogenated surface due to features with nanoscale dimensions, which can concentrate electric fields high enough to induce electron emission from them. Electrons can be emitted as a result of an applied electric field (field emission) with possible uses in displays or cold-cathode devices. Alternatively, electrons can be emitted simply by heating the diamond in vacuum to temperatures as low as 350 °C (thermionic emission), and this may find applications in solar energy generation or energy harvesting devices. Electron emission studies usually use doped polycrystalline diamond films deposited onto Si or metallic substrates by chemical vapor deposition, and these films have a rough, faceted morphology on the micron or nanometer scale. Electron emission is often improved by patterning the diamond surface into sharp points or needles, the idea being that the field lines concentrate at the points lowering the barrier for electron emission. However, there is little direct evidence that electrons are emitted from these sharp tips. The few reports in the literature that have studied the emission sites suggested that emission came from the grain boundaries and not the protruding regions. We now present direct observation of the emission sites over a large area of polycrystalline diamond using tunneling atomic force microscopy. We confirm that the emission current comes mostly from the grain boundaries, which is consistent with a model for emission in which the non-diamond phase is the source of electrons with a threshold that is determined by the surrounding hydrogenated diamond surface.

  2. Catalytic Reforming

    SciTech Connect

    Little, D.M.

    1985-01-01

    Don Little's Catalytic Reforming deals exclusively with reforming. With the increasing need for unleaded gasoline, the importance of this volume has escalated since it combines various related aspects of reforming technology into a single publication. For those with no practical knowledge of catalytic reforming, the chemical reactions, flow schemes and how the cat reformer fits into the overall refinery process will be of interest. Contents include: Catalytic reforming in refinery processing: How catalytic reformers work - chemical reactions; Process design; The catalyst, process variables and unit operation; Commercial processes; BTX operation; Feed preparation; naphtha hydrotreating and catalytic reforming; Index.

  3. A dilute Cu(Ni) alloy for synthesis of large-area Bernal stacked bilayer graphene using atmospheric pressure chemical vapour deposition

    SciTech Connect

    Madito, M. J.; Bello, A.; Dangbegnon, J. K.; Momodu, D. Y.; Masikhwa, T. M.; Barzegar, F.; Manyala, N.; Oliphant, C. J.; Jordaan, W. A.; Fabiane, M.

    2016-01-07

    A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupled plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.

  4. Mechanical characteristics of ultra-long horizontal nanocantilevers grown by real-time feedback control on focused-ion-beam chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Guo, Dengji; Warisawa, Shin'ichi; Ishihara, Sunao; Kometani, Reo

    2015-12-01

    Focused-ion-beam chemical vapour deposition (FIB-CVD) has been repeatedly proved to be a useful tool for the growth of three-dimensional (3D) micro- and nano-structures. The strategy of real-time feedback control on FIB-CVD was previously proposed and experimentally demonstrated to be effective for growing ultra-long horizontal nanocantilevers. To fabricate various nanoelectromechanical systems that consist of such types of nanocantilever structures, the mechanical characteristics of ultra-long horizontal nanocantilevers should be investigated. In this study, nanocantilevers with an overhang length of up to 35 μm were grown by using a 30 kV Ga+ FIB, a beam current of 0.50 pA and phenanthrene (C14H10) as the gas source to deposit a diamond-like carbon structure. The Young’s modulus of each nanocantilever was measured by bending the nanocantilever with a nanopillar whose Young’s modulus was known. The average density of each nanocantilever was calculated from the Young’s modulus and the measured resonant frequency. We found that the mechanical characteristics of each nanocantilever depended on the length of the nanocantilever if the strategy of real-time feedback control was applied in fabrication. The Young’s moduli and the averaged densities of the nanocantilevers with a length of 11 to 34 μm were found to be 86 to 254 GPa and 1950 to 5750 kg m-3, respectively. With the increase of the overhang length, the Young’s modulus and the average density were found to gradually increase.

  5. A dilute Cu(Ni) alloy for synthesis of large-area Bernal stacked bilayer graphene using atmospheric pressure chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Madito, M. J.; Bello, A.; Dangbegnon, J. K.; Oliphant, C. J.; Jordaan, W. A.; Momodu, D. Y.; Masikhwa, T. M.; Barzegar, F.; Fabiane, M.; Manyala, N.

    2016-01-01

    A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupled plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.

  6. The chemical and catalytic properties of nanocrystalline metal oxides prepared through modified sol-gel synthesis

    NASA Astrophysics Data System (ADS)

    Carnes, Corrie Leigh

    The goal of this research was to synthesize, characterize and study the chemical properties of nanocrystalline metal oxides. Nanocrystalline (NC) ZnO, CuO, NiO, Al2O3, and the binary Al2O 3/MgO and ZnO/CuO were prepared through modified sol gel methods. These NC metal oxides were studied in comparison to the commercial (CM) metal oxides. The samples were characterized by XRD, TGA, FTIR, BET, and TEM. The NC samples were all accompanied by a significant increase in surface area and decrease in crystallite size. Several chemical reactions were studied to compare the NC samples to the CM samples. One of the reactions involved a high temperature reaction between carbon tetrachloride and the oxide to form carbon dioxide and the corresponding metal chloride. A similar high temperature reaction was conducted between the metal oxide and hydrogen sulfide to form water and the corresponding metal sulfide. A room temperature gas phase adsorption was studied where SO2 was adsorbed onto the oxide. A liquid phase adsorption conducted at room temperature was the destructive adsorption of paraoxon (a toxic insecticide). In all reactions the NC samples exhibited greater activity, destroying or adsorbing a larger amount of the toxins compared to the CM samples. To better study surface area effects catalytic reactions were also studied. The catalysis of methanol was studied over the nanocrystalline ZnO, CuO, NiO, and ZnO/CuO samples in comparison to their commercial counterparts. In most cases the NC samples proved to be more active catalysts, having higher percent conversions and turnover numbers. A second catalytic reaction was also studied, this reaction was investigated to look at the support effects. The catalysis of cyclopropane to propane was studied over Pt and Co catalysts. These catalysts were supported onto NC and CM alumina by impregnation. By observing differences in the catalytic behavior, support effects have become apparent.

  7. Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution.

    PubMed

    Voiry, Damien; Yamaguchi, Hisato; Li, Junwen; Silva, Rafael; Alves, Diego C B; Fujita, Takeshi; Chen, Mingwei; Asefa, Tewodros; Shenoy, Vivek B; Eda, Goki; Chhowalla, Manish

    2013-09-01

    Efficient evolution of hydrogen through electrocatalysis at low overpotentials holds tremendous promise for clean energy. Hydrogen evolution can be easily achieved by electrolysis at large potentials that can be lowered with expensive platinum-based catalysts. Replacement of Pt with inexpensive, earth-abundant electrocatalysts would be significantly beneficial for clean and efficient hydrogen evolution. To this end, promising results have been reported using 2H (trigonal prismatic) XS₂ (where X  =  Mo or W) nanoparticles with a high concentration of metallic edges. The key challenges for XS₂ are increasing the number and catalytic activity of active sites. Here we report monolayered nanosheets of chemically exfoliated WS₂ as efficient catalysts for hydrogen evolution with very low overpotentials. Analyses indicate that the enhanced electrocatalytic activity of WS₂ is associated with the high concentration of the strained metallic 1T (octahedral) phase in the as-exfoliated nanosheets. Our results suggest that chemically exfoliated WS₂ nanosheets are interesting catalysts for hydrogen evolution.

  8. Thermal and chemical approaches for oxygen catalytic recombination evaluation on ceramic materials at high temperature

    NASA Astrophysics Data System (ADS)

    Balat, M.; Czerniak, M.; Badie, J. M.

    1997-12-01

    During the atmospheric entry phase, the physico-chemical phenomena taking place on space shuttle walls can lead to an important excess of heating and damage of the protective materials. The aim of this work is the study of the catalytic recombination of atomic oxygen under plasma conditions chosen to simulate the atmospheric reentry. To do that, we have developed an experimental set-up MESOX (Moyen d'Essai Solaire d'OXydation), which associates a solar radiation concentrator and a microwave generator to reach high temperature, low enthalpy flow and low pressure plasma with an air gas flow. The study of atomic oxygen recombination on silicon- or aluminum-based ceramic materials, at high temperature (1000-1800 K) has been done for different pressures (200-2000 Pa) by a thermal and a chemical understanding. The results give a catalycity scale of materials (thermal recombination flux, qrec, and coefficient of atomic oxygen recombination, γ). The catalycity activity is weak for the sintered SiC target with atomic oxygen recombination flux reaching 35 kW/m 2, however, for a target of sintered Al 2O 3, catalytic effect is obtained with energy fluxes between 90 to 180 kW/m 2. The recombination coefficient γ confirms the catalycity scale of these ceramic materials.

  9. Solar photo-thermal catalytic reactions to produce high value chemicals

    SciTech Connect

    Prengle, Jr, H W; Wentworth, W E

    1992-04-01

    This report presents a summary of the research work accomplished to date on the utilization of solar photo-thermal energy to convert low cost chemical feedstocks into high $-value chemical products. The rationale is that the solar IR-VIS-UV spectrum is unique, supplying endothermic reaction energy as well as VIS-UV for photochemical activation. Chemical market analysis and product price distribution focused attention on speciality chemicals with prices >$1.00/lb, and a synthesis sequence of n-paraffins to aromatics to partial oxidized products. The experimental work has demonstrated that enhanced reaction effects result from VIS-UV irradiation of catalytically active V2O5/SiO2. Experiments of the past year have been on dehydrogenation and dehydrocyclization of n-paraffins to olefins and aromatics with preference for the latter. Recent results using n-hexane produced 95% conversion with 56% benzene; it is speculated that aromatic yield should reach {approximately}70% by further optimization. Pilot- and commercial-scale reactor configurations have been examined; the odds-on-favorite being a shallow fluid-bed of catalyst with incident radiation from the top. Sequencing for maximum cost effectiveness would be day-time endothermic followed by night-time exothermic reactions to produce the products.

  10. [Studies on photo-electron-chemical catalytic degradation of the malachite green].

    PubMed

    Li, Ming-yu; Diao, Zeng-hui; Song, Lin; Wang, Xin-le; Zhang, Yuan-ming

    2010-07-01

    A novel two-compartment photo-electro-chemical catalytic reactor was designed. The TiO2/Ti thin film electrode thermally formed was used as photo-anode, and graphite as cathode and a saturated calomel electrode (SCE) as the reference electrode in the reactor. The anode compartment and cathode compartment were connected with the ionic exchange membrane in this reactor. Effects of initial pH, initial concentration of malachite green and connective modes between the anode compartment and cathode compartment on the decolorization efficiency of malachite green were investigated. The degradation dynamics of malachite green was studied. Based on the change of UV-visible light spectrum, the degradation process of malachite green was discussed. The experimental results showed that, during the time of 120 min, the decolouring ratio of the malachite green was 97.7% when initial concentration of malachite green is 30 mg x L(-1) and initial pH is 3.0. The catalytic degradation of malachite green was a pseudo-first order reaction. In the degradation process of malachite green the azo bond cleavage and the conjugated system of malachite green were attacked by hydroxyl radical. Simultaneity, the aromatic ring was oxidized. Finally, malachite green was degraded into other small molecular compounds.

  11. Review of Catalytic Hydrogen Generation in the DWPF Chemical Processing Cell, Part II

    SciTech Connect

    Koopman, David C.; Lambert, Daniel P.; Baich, Mark A.

    2005-08-01

    The Savannah River National Laboratory is in the process of investigating factors suspected of impacting catalytic hydrogen generation in the Defense Waste Processing Facility, DWPF, Chemical Process Cell, CPC. Noble metal catalyzed hydrogen generation in simulation work constrains the allowable acid addition operating window in DWPF. This constraint potentially impacts washing strategies during sludge batch preparation. It can also influence decisions related to the addition of secondary waste streams to a sludge batch. Catalytic hydrogen generation data from 2002-2005 were reviewed. The data came from process simulations of the DWPF Sludge Receipt and Adjustment Tank, SRAT, and Slurry Mix Evaporator, SME. Most of the data was from the development work for the Sludge Batch 3 process flowsheet. This included simulant and radioactive waste testing. Preliminary Sludge Batch 4 data were also reviewed. A statistical analysis of SB3 simulant hydrogen generation data was performed. One factor considered in the statistical analysis was excess acid. Excess acid was determined experimentally as the acid added beyond that required to achieve satisfactory nitrite destruction.

  12. Perovskite tungsten bronze-type crystals of Li{sub x}WO{sub 3} grown by chemical vapour transport and their characterisation

    SciTech Connect

    Ruescher, Claus H. Dey, Kalpana R.; Debnath, Tapas; Horn, Ingo; Glaum, Robert; Hussain, Altaf

    2008-01-15

    Crystals of Li{sub x}WO{sub 3} with nominal compositions, x=0.1, 0.25, 0.3, 0.35, 0.4 and 0.45 were grown by chemical vapour transport method using HgCl{sub 2} as transporting agent. A complete transport was achieved with a temperature gradient T{sub 1}/T{sub 2}=800/700 deg. C revealing bluish-black crystals of sizes up to a few 10th of a millimeter. X-ray powder diffraction and infrared (IR) absorption spectra show Perovskite tungsten bronze of cubic symmetry (PTB{sub c}) for x=0.45 and 0.4, mixed phase of PTB{sub c} and Perovskite tungsten bronze of tetragonal symmetry (PTB{sub t}) for x=0.35, 0.3 and 0.25 and of PTB{sub t} and Perovskite tungsten bronze of orthorhombic symmetry (PTB{sub o}) for x=0.1. The structure of PTB{sub t} is explained by the off centring of the W-ions along c and tilting of the WO{sub 6} octahedra around c. Crystal slices of mixed phase (i.e. PTB{sub c} and PTB{sub t}) reveal bright and dark areas on a sub-millimeter scale which are separated by sharp interfaces. Laser ablation inductively coupled plasma optical emission (LA ICP OES) analysis on small spot sizes show the separation into Li contents of x=0.18 (bright areas) and x=0.38 (dark areas) as threshold compositions of PTB{sub t} and PTB{sub c}, respectively. Polarized reflectivity using a microscope technique in the bright area of the crystals indicates strong anisotropic absorption effects with maximum between 1000 and 6000 cm{sup -1}, which are related to optical excitations of polarons. Crystals of composition x=0.4 and 0.45 appear optically homogeneous and show an effective 'free carrier-type plasma frequency' (w{sub p}) of about 12,900 and 13,700 cm{sup -1}, respectively. - Graphical abstract: Optical microscope image (reflection mode) of Li{sub x}WO{sub 3} crystals of nominal composition x=0.35. The separation into PTB{sub cubic} (dark areas) and PTB{sub tetragonal} (bright areas) were used to determine the miscibility gap and optical properties.

  13. Cylindrical dielectric barrier discharge plasma catalytic effect on chemical methods of silver nano-particle production

    NASA Astrophysics Data System (ADS)

    Bahrami, Zahra; Khani, Mohammad Reza; Shokri, Babak

    2016-11-01

    In this study, cylindrical dielectric barrier discharge plasma was used to study the catalytic effect on chemical methods of silver nano-particles for the first time. In this method, the processing time is short and the temperature of reaction is low. Also, the reactor is very simple, inexpensive, and accessible. In this work, pure AgNO3 as the precursor agent and poly vinyl pyrrolidone as the macromolecular surfactant were dissolved in ethanol as the solvent. UV-Vis and XRD were used to identify the colloidal and powder nano-particles, respectively. Optical emission spectroscopy was also used to identify the active species in plasma. Effects of gas flow rate, voltage, volume of solution, and processing time were also studied. Moreover, TEM and SEM images presented the mean diameter of nano-particle size around 10 to 20 nm. The results have been very promising.

  14. Modification of tubular ceramic membranes with carbon nanotubes using catalytic chemical vapor deposition.

    PubMed

    Tran, Duc Trung; Thieffry, Guillemette; Jacob, Matthieu; Batiot-Dupeyrat, Catherine; Teychene, Benoit

    2015-01-01

    In this study, carbon nanotubes (CNTs) were successfully grown on tubular ceramic membranes using the catalytic chemical vapor deposition (CCVD) method. CNTs were synthesized at 650°C for 3-6 h under a 120 mL min(-1) flow of C2H6 on ceramic membranes impregnated with iron salt. The synthesis procedure was beforehand optimized in terms of catalyst amount, impregnation duration and reaction temperature, using small pieces of tubular ceramic membranes. The yield, size and structure of the CNTs produced were characterized using thermogravimetric analysis and microscopic imaging techniques. Afterwards, preliminary filtration tests with alginate and phenol were performed on two modified tubular membranes. The results indicate that the addition of CNTs on the membrane material increased the permeability of ceramic membrane and its ability to reject alginate and adsorb phenol, yet decreased its fouling resistance.

  15. Pretreatment of empty palm fruit bunch for production of chemicals via catalytic pyrolysis.

    PubMed

    Misson, Mailin; Haron, Roslindawati; Kamaroddin, Mohd Fadhzir Ahmad; Amin, Nor Aishah Saidina

    2009-06-01

    The effect of chemical pretreatments using NaOH, H(2)O(2), and Ca(OH)(2) on Empty Palm Fruit Bunches (EPFB) to degrade EPFB lignin before pyrolysis was investigated. Spectrophotometer analysis proved consecutive addition of NaOH and H(2)O(2) decomposed almost 100% of EPFB lignin compared to 44% for the Ca(OH)(2), H(2)O(2) system while NaOH and Ca(OH)(2) used exclusively could not alter lignin much. Next, the pretreated EPFB was catalytically pyrolyzed. Experimental results indicated the phenolic yields over Al-MCM-41 and HZSM-5 catalysts were 90 wt% and 80 wt%, respectively compared to 67 wt% yield for the untreated sample under the same set of conditions. Meanwhile, the experiments with HY zeolite yielded 70 wt% phenols.

  16. Catalytic pyrolysis-gc/ms of spirulina: evaluation of a highly proteinaceous biomass source for production of fuels and chemicals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyrolysis of microalgae offers a pathway towards the production of compounds derived from the thermal decomposition of triglycerides, proteins as well as lignocelluloses and their combinations thereof. When catalytically induced, this could lead to the production of fuels and chemicals including aro...

  17. Dynamic Chemical and Structural Changes of Heterogeneous Catalysts Observed in Real Time: From Catalysis-Induced Fluxionality to Catalytic Cycles

    DTIC Science & Technology

    2014-11-26

    AFRL-OSR-VA-TR-2014-0321 Dynamic Chemical and Structural Changes of Heterogeneous Catalysts Robert Rioux PENNSYLVANIA STATE UNIVERSITY Final Report...Changes of Heterogeneous Catalysts Observed in Real Time: From Catalysis-Induced Fluxionality to Catalytic Cycles” (FA9550-12-1-0204) Robert M. Rioux...report The results from “Dynamic Chemical and Structural Changes of Heterogeneous Catalysts Observed in Real Time: From Catalysis-Induced

  18. Catalytic lignin valorization process for the production of aromatic chemicals and hydrogen.

    PubMed

    Zakzeski, Joseph; Jongerius, Anna L; Bruijnincx, Pieter C A; Weckhuysen, Bert M

    2012-08-01

    With dwindling reserves of fossil feedstock as a resource for chemicals production, the fraction of chemicals and energy supplied by alternative, renewable resources, such as lignin, can be expected to increase in the foreseeable future. Here, we demonstrate a catalytic process to valorize lignin (exemplified with kraft, organosolv, and sugarcane bagasse lignin) using a mixture of cheap, bio-renewable ethanol and water as solvent. Ethanol/water mixtures readily solubilize lignin under moderate temperatures and pressures with little residual solids. The molecular weight of the dissolved lignins was shown to be reduced by gel permeation chromatography and quantitative HSQC NMR methods. The use of liquid-phase reforming of the solubilized lignin over a Pt/Al(2)O(3) catalyst at 498 K and 58 bar is introduced to yield up to 17 % combined yield of monomeric aromatic oxygenates such as guaiacol and substituted guaiacols generating hydrogen as a useful by-product. Reduction of the lignin dissolved in ethanol/water using a supported transition metal catalyst at 473 K and 30 bar hydrogen yields up to 6 % of cyclic hydrocarbons and aromatics.

  19. Catalytic wet-air oxidation of a chemical plant wastewater over platinum-based catalysts.

    PubMed

    Cybulski, Andrzej; Trawczyński, Janusz

    2006-01-01

    Catalytic wet-air oxidation (CWAO) of wastewater (chemical oxygen demand [COD] = 1800 mg O2/dm3) from a fine chemicals plant was investigated in a fixed-bed reactor at T = 393-473 K under total pressure of 5.0 or 8.0 MPa. Catalysts containing 0.3% wt. of platinum deposited on two supports, mixed silica-titania (SM1) and carbon black composites (CBC) were used. The CBC-supported catalyst appeared to be more active than the SM1-supported one. A slow decrease of activity of the platinum on SM1 (Pt-SM1) during the long-term operation is attributed to recrystallization of titania and leaching of a support component, while the Pt-CBC catalyst is deteriorated, owing to combustion of the support component. The power-law-kinetic equations were used to describe the rate of COD removal at CWAO over the catalysts. The kinetic parameters of COD reduction for the wastewater were determined and compared with the kinetic parameters describing phenol oxidation over the same catalysts. Rates of COD removal for the wastewater were found higher than those for phenol oxidation over the same catalysts and under identical operating conditions.

  20. Catalytically active polymers obtained by molecular imprinting and their application in chemical reaction engineering.

    PubMed

    Brüggemann, O

    2001-08-01

    Molecular imprinting is a way of creating polymers bearing artificial receptors. It allows the fabrication of highly selective plastics by polymerizing monomers in the presence of a template. This technique primarily had been developed for the generation of biomimetic materials to be used in chromatographic separation, in extraction approaches and in sensors and assays. Beyond these applications, in the past few years molecular imprinting has become a tool for producing new kinds of catalysts. For catalytic applications, the template must be chosen, so that it is structurally comparable with the transition state (a transition state analogue, TSA) of a reaction, or with the product or substrate. The advantage of using these polymeric catalysts is obvious: the backbone withstands more aggressive conditions than a bio material could ever survive. Results are presented showing the applicability of a molecularly imprinted catalyst in different kinds of chemical reactors. It is demonstrated that the catalysts can be utilized not only in batch but also in continuously driven reactors and that their performance can be improved by means of chemical reaction engineering.

  1. Catalytic Conversion of Carbon-Containing Compounds into Valuable Chemicals and Fuels

    NASA Astrophysics Data System (ADS)

    Cheng, Zhuo

    Conversion of carbon-containing compounds, especially C1 compounds such as carbon dioxide and methane, to valuable chemicals and fuels will hopefully address concerns over decreasing supplies of fossil fuels and mitigate the eects of greenhouse gas emissions on global climate change. Many challenges, however, remain to be addressed before these technologies may be adopted on an industrial scale. Chiefly, catalysts must be developed to activate carbon-containing compounds from their thermodynamically stable ground states, using hydrogen, electrons, or heat as energy sources. We chose as model catalytic systems: 1) Metathesis of ethene and 2-butene; 2) Methane dehydrogenation and carbon dioxide hydrogenation. We developed three computational methodologies to study these processes across a range of length and time scales. First, we investigated how electronic structure affects the properties and reactivity of these catalyst systems; by computing the partial electronic density of states, electronic localization function, and excess spin density, we showed how redox supports, such as ceria, promote electron transfer reactions. We applied this to the studies of methane activation and carbon dioxide activation. Second, we developed a non-equilibrium thermodynamics approach to calculate energies of activation at nite temperatures, based on the Bronsted-Evans-Polanyi principle and the Nudged Elastic Band method. Third, we developed an approach to numerically compute heat capacities and other thermodynamic properties on extended catalytic systems that are comparable in accuracy and precision to methods that have been well-developed for gas-phase molecules. We applied these to the studies of metathesis propagation and carbon dioxide hydrogenation. We gained mechanistic, thermodynamic, and kinetic insight into the elementary steps that comprise larger reaction networks of interest to the broader catalysis community. Ultimately, these theoretical and computational predictions

  2. A liquid crystalline chirality balance for vapours

    NASA Astrophysics Data System (ADS)

    Ohzono, Takuya; Yamamoto, Takahiro; Fukuda, Jun-Ichi

    2014-04-01

    Chiral discrimination of vapours plays an important role in olfactory perception of biological systems and its realization by artificial sensors has been an intriguing challenge. Here, we report a simple method that tangibly visualizes the chirality of a diverse variety of molecules dissolved from vapours with high sensitivity, by making use of a structural change in a periodic microstructure of a nematic liquid crystal confined in open microchannels. This microstructure is accompanied by a topological line defect of a zigzag form with equal lengths of ‘zig’ and ‘zag.’ We find that a tiny amount of vapour of chiral molecules injected onto the liquid crystal induces the imbalance of ‘zig’ and ‘zag’ depending on its enantiomeric excess within a few seconds. Our liquid-crystal-based ‘chirality balance’ offers a simple, quick and versatile chirality-sensing/-screening method for gas-phase analysis (for example, for odours, environmental chemicals or drugs).

  3. A liquid crystalline chirality balance for vapours.

    PubMed

    Ohzono, Takuya; Yamamoto, Takahiro; Fukuda, Jun-ichi

    2014-04-30

    Chiral discrimination of vapours plays an important role in olfactory perception of biological systems and its realization by artificial sensors has been an intriguing challenge. Here, we report a simple method that tangibly visualizes the chirality of a diverse variety of molecules dissolved from vapours with high sensitivity, by making use of a structural change in a periodic microstructure of a nematic liquid crystal confined in open microchannels. This microstructure is accompanied by a topological line defect of a zigzag form with equal lengths of 'zig' and 'zag.' We find that a tiny amount of vapour of chiral molecules injected onto the liquid crystal induces the imbalance of 'zig' and 'zag' depending on its enantiomeric excess within a few seconds. Our liquid-crystal-based 'chirality balance' offers a simple, quick and versatile chirality-sensing/-screening method for gas-phase analysis (for example, for odours, environmental chemicals or drugs).

  4. Water vapour variability and trends in the Arctic stratosphere

    NASA Astrophysics Data System (ADS)

    Thölix, Laura; Kivi, Rigel; Backman, Leif; Karpechko, Alexey

    2014-05-01

    Water vapour in the upper troposphere-lower stratosphere (UTLS) is a radiatively and chemically important trace gas. Stratospheric water vapour also affects ozone chemistry through odd-hydrogen chemistry and formation of polar stratospheric clouds (PSC). Both transport and chemistry contribute to the extratropical lower stratospheric water vapour distribution and trends. The main sources of stratospheric water vapour are intrusion through the tropical tropopause and production from oxidation of methane. Accurate observations of UTLS water vapour are difficult to obtain due to the strong gradient in the water vapour profile over the tropopause. However, modelling the stratospheric water vapour distribution is challenging and accurate measurements are needed for model validation. Trends in Arctic water vapour will be analysed and explained in terms of contribution from different processes (transport and chemistry), using observations and chemistry transport model (CTM) simulations. Accurate water vapour soundings from Sodankylä will be used to study water vapour within the Arctic polar vortex, including process studies on formation of PSCs and dehydration. Water vapour profiles measured during the LAPBIAT atmospheric sounding campaign in Sodankylä in January 2010 indicated formation of ice clouds and dehydration. Effects on ozone chemistry will also be studied. Global middle atmospheric simulations have been performed with the FinROSE-ctm using ERA-Interim winds and temperatures. The FinROSE-ctm is a global middle atmosphere model that produces the distribution of 30 long-lived species and tracers and 14 short-lived species. The chemistry describes around 110 gas phase reactions, 37 photodissociation processes and the main heterogeneous reactions related to aerosols and polar stratospheric clouds.

  5. All electron quantum chemical calculation of the entire enzyme system confirms a collective catalytic device in the chorismate mutase reaction.

    PubMed

    Ishida, Toyokazu; Fedorov, Dmitri G; Kitaura, Kazuo

    2006-01-26

    To elucidate the catalytic power of enzymes, we analyzed the reaction profile of Claisen rearrangement of Bacillus subtilis chorismate mutase (BsCM) by all electron quantum chemical calculations using the fragment molecular orbital (FMO) method. To the best of our knowledge, this is the first report of ab initio-based quantum chemical calculations of the entire enzyme system, where we provide a detailed analysis of the catalytic factors that accomplish transition-state stabilization (TSS). FMO calculations deliver an ab initio-level estimate of the intermolecular interaction between the substrate and the amino acid residues of the enzyme. To clarify the catalytic role of Arg90, we calculated the reaction profile of the wild-type BsCM as well as Lys90 and Cit90 mutant BsCMs. Structural refinement and the reaction path determination were performed at the ab initio QM/MM level, and FMO calculations were applied to the QM/MM refined structures. Comparison between three types of reactions established two collective catalytic factors in the BsCM reaction: (1) the hydrogen bonds connecting the Glu78-Arg90-substrate cooperatively control the stability of TS relative to the ES complex and (2) the positive charge on Arg90 polarizes the substrate in the TS region to gain more electrostatic stabilization.

  6. Catalytic reactor for promoting a chemical reaction on a fluid passing therethrough

    NASA Technical Reports Server (NTRS)

    Roychoudhury, Subir (Inventor); Pfefferle, William C. (Inventor)

    2001-01-01

    A catalytic reactor with an auxiliary heating structure for raising the temperature of a fluid passing therethrough whereby the catalytic reaction is promoted. The invention is a apparatus employing multiple electrical heating elements electrically isolated from one another by insulators that are an integral part of the flow path. The invention provides step heating of a fluid as the fluid passes through the reactor.

  7. On-line chemical vapour generation of cadmium in the presence of hexacyanochromate(III) for determination by inductively coupled plasma mass spectrometry (ICP-MS)

    PubMed Central

    Yilmaz, Vedat; Rose, LaKeysha; Little, Maria D.

    2012-01-01

    A vapour generation (VG) procedure has been described for determination of Cd by ICP-MS. Volatile species of Cd were generated on-line by interacting acidic sample solution containing potassium hexacyanochromate(III), K3Cr(CN)6, with sodium borohydride (NaBH4). The hexacyanochromate(III) complex was generated on-line by reacting 0.04 mol L−1 chromium(III) nitrate and 0.16 mol L−1 potassium cyanide (KCN) solutions in water. The resulting suspension of chromium(III) hydroxide, Cr(OH)3, was fed continuously to acidic stream of sample solution in the presence of excess KCN. The experimental conditions were optimized for effective generation of volatile species of Cd. Optimum signals were obtained from reaction of sample solutions in 4% v/v HCl with 2% m/v NaBH4 solution. Presence of K3Cr(CN)6 improved the efficiency of Cd vapour generation substantially affording 15-fold higher sensitivity. This phenomenon was thought to occur through formation of reactive intermediates evolved from interaction of [Cr(CN)6]3− with NaBH4 that react with Cd(II) to increase the yield volatile Cd species. Under the optimum conditions, no significant interferences were observed from the transition metals, including Cu and Ni, up to 1.0 μg mL−1 levels. Among the hydride forming elements, Bi, Pb, Sb and Sn depressed the signals above 0.1 μg mL−1. The detection limits (3s) were 6.2 and 5.2 ng L−1 for 110Cd and 111Cd isotopes, respectively. The method was successfully applied to determination of Cd by ICP-MS in several certified reference materials, including Nearshore seawater (CASS-4), Bone ash (SRM 1400), Dogfish liver (DOLT-4) and Mussel tissue (SRM 2976). PMID:23997384

  8. Driven chemical kinetics: Optimalization of catalytic action of membrane proteins by rectangular alternating electric field

    NASA Astrophysics Data System (ADS)

    Fuliński, Andrzej

    1992-03-01

    The chemical kinetics driven by external force in the form of a train of alternating rectangular impulses is discussed. The model of the conformational transition of a membrane protein exposed to an ac electric field, proposed by R. D. Astumian and B. Robertson [J. Chem. Phys. 91, 4891 (1989)], is reconsidered. On the example of this model we show that the use of the driving field in the form of rectangular impulses has two distinct advantages over the usual sinusoidal driving. The first one is that the use of a rectangular driving field makes it possible to obtain the exact solution of the basic kinetic equation of the system. This in turn enables one to write down the simple and very good approximate solution for any form of the driving field, better than the harmonic expansion used by Astumian and Robertson. A more important advantage is the greater flexibility of the rectangular driving, which makes possible the better optimalization of the process of interest. Astumian and Robertson demonstrated that the movement of charge within the catalytic cycle provides a mechanism for the enzyme to absorb energy from an ac electric field and to use that energy to enhance the catalyzed process. In this paper we show that the use of the driving ac field in the form of alternating rectangular impulses of variable duration and amplitude (instead of the usual sinusoidal modulation) leads to further optimalization of the process. The efficiency of the energy transduction, for example, can be increased from about 25% for sinusoidal driving to about 37% for suitably chosen alternating rectangular pulses.

  9. Energy Efficient Catalytic Activation of Hydrogen peroxide for Green Chemical Processes: Final Report

    SciTech Connect

    Collins, Terrence J.; Horwitz, Colin

    2004-11-12

    A new, highly energy efficient approach for using catalytic oxidation chemistry in multiple fields of technology has been pursued. The new catalysts, called TAML® activators, catalyze the reactions of hydrogen peroxide and other oxidants for the exceptionally rapid decontamination of noninfectious simulants (B. atrophaeus) of anthrax spores, for the energy efficient decontamination of thiophosphate pesticides, for the facile, low temperature removal of color and organochlorines from pulp and paper mill effluent, for the bleaching of dyes from textile mill effluents, and for the removal of recalcitrant dibenzothiophene compounds from diesel and gasoline fuels. Highlights include the following: 1) A 7-log kill of Bacillus atrophaeus spores has been achieved unambiguously in water under ambient conditions within 15 minutes. 2) The rapid total degradation under ambient conditions of four thiophosphate pesticides and phosphonate degradation intermediates has been achieved on treatment with TAML/peroxide, opening up potential applications of the decontamination system for phosphonate structured chemical warfare agents, for inexpensive, easy to perform degradation of stored and aged pesticide stocks (especially in Africa and Asia), for remediation of polluted sites and water bodies, and for the destruction of chemical warfare agent stockpiles. 3) A mill trial conducted in a Pennsylvanian bleached kraft pulp mill has established that TAML catalyst injected into an alkaline peroxide bleach tower can significantly lower color from the effluent stream promising a new, more cost effective, energy-saving approach for color remediation adding further evidence of the value and diverse engineering capacity of the approach to other field trials conducted on effluent streams as they exit the bleach plant. 4) Dibenzothiophenes (DBTs), including 4,6-dimethyldibenzothiophene, the most recalcitrant sulfur compounds in diesel and gasoline, can be completely removed from model gasoline

  10. Plasmonic and catalytic AuPd nanowheels for the efficient conversion of light into chemical energy.

    PubMed

    Huang, Xiaoqing; Li, Yongjia; Chen, Yu; Zhou, Hailong; Duan, Xiangfeng; Huang, Yu

    2013-06-03

    Reinventing the wheel: Bimetallic AuPd nanowheels, a freestanding form of 2D AuPd nanostructures, were synthesized in a one-pot process. The well-defined and tunable surface plasmon resonance displayed by these nanowheels was exploited in a unique catalytic process in which light energy was used to drive catalytic reactions, such as the Suzuki coupling, with much higher efficiency than that of the conventional heating process.

  11. Annealing study of H2O and O3 grown Al2O3 deposited by atomic layer chemical vapour deposition on n-type 4H-SiC

    NASA Astrophysics Data System (ADS)

    Avice, Marc; Grossner, Ulrike; Nilsen, Ola; Christensen, Jens S.; Fjellvåg, Helmer; Svensson, Bengt G.

    2006-09-01

    Al2O3 has been grown by atomic layer chemical vapour deposition on HF cleaned n-type 4H-SiC using either H2O or O3 as an oxidant. After post-deposition annealing at high temperature (1000°C) in argon atmosphere for different durations (1, 2 and 3 h), bulk and interface properties of the films were studied by capacitance-voltage (CV), current-voltage (IV) and secondary ion mass spectrometry (SIMS) measurements. Electrical measurements show a decreasing shift of the flatband voltage indicating a diminution of the negative oxide charges with increasing annealing time. The SIMS measurements reveal accumulation of boron, sodium and potassium at the Al2O3/SiC interface but the accumulation decreases with annealing at 1000°C where also out diffusion of silicon into the Al2O3 film takes place.

  12. Development Of Hot Surface Polysilicon-Based Chemical Sensor And Actuator With Integrated Catalytic Micropatterns For Gas Sensing Applications

    NASA Astrophysics Data System (ADS)

    Vereshchagina, E.; Gardeniers, J. G. E.

    2009-05-01

    Over the last twenty years, we have followed a rapid expansion in the development of chemical sensors and microreactors for detection and analysis of volatile organic compounds. However, for many of the developed gas sensors poor sensitivity and selectivity, and high-power consumption remain among one of the main drawbacks. One promising approach to increase selectivity at lower power consumption is calorimetric sensing, performed in a pulsed regime and using specific catalytic materials. In this work, we study kinetics of various catalytic oxidation reactions using micromachined hot surface polysilicon-based sensor containing sensitive and selective catalysts. The sensor acts as both thermal actuator of chemical and biochemical reactions on hot-surfaces and detector of heats (enthalpies) associated with these reactions. Using novel deposition techniques we integrated selective catalysts in an array of hot plates such that they can be thermally actuated and sensed individually. This allows selective detection and analysis of dangerous gas compounds in a mixture, specifically hydrocarbons at concentrations down to low ppm level. In this contribution we compare various techniques for the local immobilization of catalytic material on hot spots of the sensor in terms of process compatibility, mechanical stress, stability and cost.

  13. Chemical Engineering of Enzymes: Altered Catalytic Activity, Predictable Selectivity and Exceptional Stability of the Semisynthetic Peroxidase Seleno-Subtilisin

    NASA Astrophysics Data System (ADS)

    Häring, Dietmar; Schreier, Peter

    The increasing demand for enzymes as highly selective, mild, and environmentally benign catalysts is often limited by the lack of an enzyme with the desired catalytic activity or substrate selectivity and by their instability in biotechnological processes. The previous answers to these problems comprised genetically engineered enzymes and several classes of enzyme mimics. Here we describe the potential of chemical enzyme engineering: native enzymes can be modified by merely chemical means and basic equipment yielding so-called semisynthetic enzymes. Thus, the high substrate selectivity of the enzymatic peptide framework is combined with the catalytic versatility of a synthetic active site. We illustrate the potential of chemically engineered enzymes with the conception of the semisynthetic peroxidase seleno-subtilisin. First, the serine endoprotease subtilisin was crystallized and cross-linked with glutaraldehyde to give cross-linked enzyme crystals which were found to be insoluble in water or organic solvents and highly stable. Second, serine 221 in the active site (Enz-OH) was chemically converted into an oxidized derivative of selenocystein (Enz-SeO2H). As a consequence, the former proteolytic enzyme gained peroxidase activity and catalyzed the selective reduction of hydroperoxides. Due to the identical binding sites of the semisynthetic peroxidase and the protease, the substrate selectivity of seleno-subtilisin was predictable in view of the well-known selectivity of subtilisin.

  14. Non-catalytic direct synthesis of graphene on Si (111) wafers by using inductively-coupled plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hwang, Sung Won; Shin, Hyunho; Lee, Bongsoo; Choi, Suk-Ho

    2016-08-01

    We employ inductively-coupled plasma chemical vapor deposition for non-catalytic growth of graphene on a Si (111) wafer or glass substrate, which is useful for practical device applications of graphene without transfer processes. At a RF power (P) of 500 W under C2H2 flow, defect-free 3 ˜ 5-layer graphene is grown on Si (111) wafers, but on glass substrate, the layer is thicker and defective, as characterized by Raman spectroscopy and electron microscopy. The graphene is produced on Si (111) for P down to 190 W whereas it is almost not formed on glass for P < 250 W, possibly resulting from the weak catalytic-reaction-like effect on glass. These results are discussed based on possible growth mechanisms.

  15. Effect of crystallization time on the physico-chemical and catalytic properties of the hierarchical porous materials

    SciTech Connect

    Xu, Ling; Ma, Yuanyuan; Ding, Wenli; Guan, Jingqi; Wu, Shujie; Kan, Qiubin

    2010-09-15

    A series of hierarchical porous materials were prepared by a dual template method. The effect of different crystallization time on the channel architecture, morphology, acid performance of the hierarchical porous materials was investigated. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, nitrogen adsorption and {sup 27}Al nuclear magnetic resonance were performed to obtain information on the physico-chemical properties of the materials. It was shown that the change in crystallization time could influence the structure/texture and surface acid properties of the hierarchical porous materials. In addition, alkylation of phenol with tert-butanol reaction was carried out to investigate the catalytic performance of the hierarchical porous materials. The results showed that the catalytic activity of the hierarchical porous materials and the selectivity to the bulkly product 2,4-di-tert-butyl-phenol decreased with processing time.

  16. Photo-catalytic activity of Zn1-xMnxS nanocrystals synthesized by wet chemical technique

    PubMed Central

    2011-01-01

    Polyvinyl pyrrolidone capped Zn1-xMnxS (0 ≤ x ≤ 0.1) nanocrystals have been synthesized using wet chemical co-precipitation method. Crystallographic and morphological characterization of the synthesized materials have been done using X-ray diffraction and transmission electron microscope. Crystallographic studies show the zinc blende crystals having average crystallite size approx. 3 nm, which is almost similar to the average particle size calculated from electron micrographs. Atomic absorption spectrometer has been used for qualitative and quantitative analysis of synthesized nanomaterials. Photo-catalytic activity has been studied using methylene blue dye as a test contaminant. Energy resolved luminescence spectra have been recorded for the detailed description of radiative and non-radiative recombination mechanisms. Photo-catalytic activity dependence on dopant concentration and luminescence quantum yield has been studied in detail. PMID:21711502

  17. Review of Catalytic Hydrogen Generation in the Defense Waste Processing Facility (DWPF) Chemical Processing Cell

    SciTech Connect

    Koopman, D. C.

    2004-12-31

    This report was prepared to fulfill the Phase I deliverable for HLW/DWPF/TTR-98-0018, Rev. 2, ''Hydrogen Generation in the DWPF Chemical Processing Cell'', 6/4/2001. The primary objective for the preliminary phase of the hydrogen generation study was to complete a review of past data on hydrogen generation and to prepare a summary of the findings. The understanding was that the focus should be on catalytic hydrogen generation, not on hydrogen generation by radiolysis. The secondary objective was to develop scope for follow-up experimental and analytical work. The majority of this report provides a summary of past hydrogen generation work with radioactive and simulated Savannah River Site (SRS) waste sludges. The report also includes some work done with Hanford waste sludges and simulants. The review extends to idealized systems containing no sludge, such as solutions of sodium formate and formic acid doped with a noble metal catalyst. This includes general information from the literature, as well as the focused study done by the University of Georgia for the SRS. The various studies had a number of points of universal agreement. For example, noble metals, such as Pd, Rh, and Ru, catalyze hydrogen generation from formic acid and formate ions, and more acid leads to more hydrogen generation. There were also some points of disagreement between different sources on a few topics such as the impact of mercury on the noble metal catalysts and the identity of the most active catalyst species. Finally, there were some issues of potential interest to SRS that apparently have not been systematically studied, e.g. the role of nitrite ion in catalyst activation and reactivity. The review includes studies covering the period from about 1924-2002, or from before the discovery of hydrogen generation during simulant sludge processing in 1988 through the Shielded Cells qualification testing for Sludge Batch 2. The review of prior studies is followed by a discussion of proposed

  18. Catalytic decomposition of diazomethane as a general method for the methylenation of chemical compounds

    NASA Astrophysics Data System (ADS)

    Tomilov, Yury V.; Dokitchev, V. A.; Dzhemilev, Usein M.; Nefedov, Oleg M.

    1993-09-01

    The principal advances and trends in the application of diazomethane as a methylenating agent in synthetic chemistry using transition and non-transition metal compounds as catalysts are surveyed and analysed. The catalytic reactions of diazomethane with olefins, acethylenes, aromatic compounds, ketones, alcohols and amines are examined. A systematic account is given of data concerning the influence of the structure of the initial substrates and of the nature of the catalyst components on the regio- and stereo-selectivity of the reactions considered. The possibilities of the catalytic conversion by diazomethane (generated in situ) of unsaturated compounds into cyclopropane derivatives are considered. The bibliography includes 284 references.

  19. Functional carbons and carbon nanohybrids for the catalytic conversion of biomass to renewable chemicals in the condensed phase

    SciTech Connect

    Matthiesen, John; Hoff, Thomas; Liu, Chi; Pueschel, Charles; Rao, Radhika; Tessonnier, Jean-Philippe

    2014-06-01

    The production of chemicals from lignocellulosic biomass provides opportunities to synthesize chemicals with new functionalities and grow a more sustainable chemical industry. However, new challenges emerge as research transitions from petrochemistry to biorenewable chemistry. Compared to petrochemisty, the selective conversion of biomass-derived carbohydrates requires most catalytic reactions to take place at low temperatures (< 300°C) and in the condensed phase to prevent reactants and products from degrading. The stability of heterogeneous catalysts in liquid water above the normal boiling point represents one of the major challenges to overcome. Herein, we review some of the latest advances in the field with an emphasis on the role of carbon materials and carbon nanohybrids in addressing this challenge.

  20. Dynamics of catalytic tubular microjet engines: Dependence on geometry and chemical environment

    NASA Astrophysics Data System (ADS)

    LiJ. X. L.; G. S. H. Contributed Equally To This Work., Jinxing; Huang, Gaoshan; Ye, Mengmeng; Li, Menglin; Liu, Ran; Mei, Yongfeng

    2011-12-01

    Strain-engineered tubular microjet engines with various geometric dimensions hold interesting autonomous motions in an aqueous fuel solution when propelled by catalytic decomposition of hydrogen peroxide to oxygen and water. The catalytically-generated oxygen bubbles expelled from microtubular cavities propel the microjet step by step in discrete increments. We focus on the dynamics of our tubular microjets in one step and build up a body deformation model to elucidate the interaction between tubular microjets and the bubbles they produce. The average microjet velocity is calculated analytically based on our model and the obtained results demonstrate that the velocity of the microjet increases linearly with the concentration of hydrogen peroxide. The geometric dimensions of the microjet, such as length and radius, also influence its dynamic characteristics significantly. A close consistency between experimental and calculated results is achieved despite a small deviation due to the existence of an approximation in the model. The results presented in this work improve our understanding regarding catalytic motions of tubular microjets and demonstrate the controllability of the microjet which may have potential applications in drug delivery and biology.Strain-engineered tubular microjet engines with various geometric dimensions hold interesting autonomous motions in an aqueous fuel solution when propelled by catalytic decomposition of hydrogen peroxide to oxygen and water. The catalytically-generated oxygen bubbles expelled from microtubular cavities propel the microjet step by step in discrete increments. We focus on the dynamics of our tubular microjets in one step and build up a body deformation model to elucidate the interaction between tubular microjets and the bubbles they produce. The average microjet velocity is calculated analytically based on our model and the obtained results demonstrate that the velocity of the microjet increases linearly with the

  1. In situ mass spectroscopic analysis of alcohol catalytic chemical vapor deposition process for single-walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Tomie, Takashi; Inoue, Shuhei; Iba, Yushi; Matsumura, Yukihiko

    2012-05-01

    In situ mass spectroscopic analysis was carried out to clarify the growth mechanism of single-walled carbon nanotube grown by alcohol catalytic chemical vapor deposition. When catalysts were used, pyrolysis could be accomplished at a temperature of 600 °C; without the use of catalysts, successful pyrolysis required a temperature of more than 800 °C. Ethylene and acetylene are important products for the synthesis of carbon nanotubes, and fusion of the metal catalyst is the cause of failure of synthesis at high temperatures. This fact indicates that the degradation and polymerization of ethanol are not the cause of the failure of synthesis.

  2. Transient and sustained elementary flux mode networks on a catalytic string-based chemical evolution model.

    PubMed

    Pereira, José A

    2014-08-01

    Theoretical models designed to test the metabolism-first hypothesis for prebiotic evolution have yield strong indications about the hypothesis validity but could sometimes use a more extensive identification between model objects and real objects towards a more meaningful interpretation of results. In an attempt to go in that direction, the string-based model SSE ("steady state evolution") was developed, where abstract molecules (strings) and catalytic interaction rules are based on some of the most important features of carbon compounds in biological chemistry. The system is open with a random inflow and outflow of strings but also with a permanent string food source. Although specific catalysis is a key aspect of the model, used to define reaction rules, the focus is on energetics rather than kinetics. Standard energy change tables were constructed and used with standard formation reactions to track energy flows through the interpretation of equilibrium constant values. Detection of metabolic networks on the reaction system was done with elementary flux mode (EFM) analysis. The combination of these model design and analysis options enabled obtaining metabolic and catalytic networks showing several central features of biological metabolism, some more clearly than in previous models: metabolic networks with stepwise synthesis, energy coupling, catalysts regulation, SN2 coupling, redox coupling, intermediate cycling, coupled inverse pathways (metabolic cycling), autocatalytic cycles and catalytic cascades. The results strongly suggest that the main biological metabolism features, including the genotype-phenotype interpretation, are caused by the principles of catalytic systems and are prior to modern genetic systems principles. It also gives further theoretical support to the thesis that the basic features of biologic metabolism are a consequence of the time evolution of a random catalyst search working on an open system with a permanent food source. The importance

  3. Carbon Dioxide Conversion to Valuable Chemical Products over Composite Catalytic Systems

    SciTech Connect

    Dagle, Robert A.; Hu, Jianli; Jones, Susanne B.; Wilcox, Wayne A.; Frye, John G.; White, J. F.; Jiang, Juyuan; Wang, Yong

    2013-05-01

    Presented is an experimental study on catalytic conversion of carbon dioxide into methanol, ethanol and acetic acid. Catalysts having different catalytic functions were synthesized and combined in different ways to enhance selectivity to desired products. The combined catalyst system possessed the following functions: methanol synthesis, Fischer-Tropsch synthesis, water-gas-shift and hydrogenation. Results showed that the methods of integrating these catalytic functions played important role in achieving desired product selectivity. It was speculated that if methanol synthesis sites were located adjacent to the C-C chain growth sites, the formation rate of C2 oxygenates would be enhanced. The advantage of using high temperature methanol catalyst PdZnAl in the combined catalyst system was demonstrated. In the presence of PdZnAl catalyst, the combined catalyst system was stable at temperature of 380oC. It was observed that, at high temperature, kinetics favored oxygenate formation. Results implied that the process can be intensified by operating at high temperature using Pd-based methanol synthesis catalyst. Steam reforming of the byproduct organics was demonstrated as a means to provide supplemental hydrogen. Preliminary process design, simulation, and economic analysis of the proposed CO2 conversion process were carried out. Economic analysis indicates how ethanol production cost was affected by the price of CO2 and hydrogen.

  4. Dynamics of catalytic tubular microjet engines: dependence on geometry and chemical environment.

    PubMed

    Li, Jinxing; Huang, Gaoshan; Ye, Mengmeng; Li, Menglin; Liu, Ran; Mei, Yongfeng

    2011-12-01

    Strain-engineered tubular microjet engines with various geometric dimensions hold interesting autonomous motions in an aqueous fuel solution when propelled by catalytic decomposition of hydrogen peroxide to oxygen and water. The catalytically-generated oxygen bubbles expelled from microtubular cavities propel the microjet step by step in discrete increments. We focus on the dynamics of our tubular microjets in one step and build up a body deformation model to elucidate the interaction between tubular microjets and the bubbles they produce. The average microjet velocity is calculated analytically based on our model and the obtained results demonstrate that the velocity of the microjet increases linearly with the concentration of hydrogen peroxide. The geometric dimensions of the microjet, such as length and radius, also influence its dynamic characteristics significantly. A close consistency between experimental and calculated results is achieved despite a small deviation due to the existence of an approximation in the model. The results presented in this work improve our understanding regarding catalytic motions of tubular microjets and demonstrate the controllability of the microjet which may have potential applications in drug delivery and biology.

  5. Impact of active phase chemical composition and dispersity on catalytic behavior in PROX reaction

    NASA Astrophysics Data System (ADS)

    Cherkezova-Zheleva, Z.; Paneva, D.; Todorova, S.; Kolev, H.; Shopska, M.; Yordanova, I.; Mitov, I.

    2014-04-01

    Iron and iron-platinum catalysts supported on activated carbon have been successfully synthesized by wet impregnation method and low-temperature treatment in inert atmosphere. The content of the supported phases corresponds to 10 wt % Fe and 0.5 wt % Pt. Four catalytic samples were synthesized: Sample A—activated carbon impregnated with Fe nitrate; Sample B—activated carbon impregnated with Pt salt; Sample C—activated carbon impregnated consequently with Fe and Pt salts; Sample D—activated carbon impregnated simultaneously with Fe and Pt salts. The as-prepared materials were characterized by Mössbauer spectroscopy, X-ray diffraction, infrared and X-ray photoelectron spectroscopy. The spectra show that the activated carbon support and the preparation procedure give rise to the synthesis of isolated metal Pt ions and ultradispersed Fe and Pt oxide species. Probably the presence of different functional groups of activated carbon gives rise to registered very high dispersion of loaded species on support. The catalytic tests were carried out in PROX reaction. A lower activity of bimetallic Pt-Fe samples was explained with the increase in surface oxygen species as a result of predomination of iron oxide on the support leading to the increase in selectivity to the H2 oxidation. Partial agglomeration of supported iron oxide phase was registered after catalytic tests.

  6. A non-chemically selective top-down approach towards the preparation of hierarchical TS-1 zeolites with improved oxidative desulfurization catalytic performance.

    PubMed

    Du, Shuting; Chen, Xiaoxin; Sun, Qiming; Wang, Ning; Jia, Mingjun; Valtchev, Valentin; Yu, Jihong

    2016-02-28

    Hierarchical TS-1 zeolites with secondary macropores have been successfully prepared by using two different fluoride-containing chemical etching post-treated routes. Hierarchical TS-1 zeolites exhibited a chemical composition similar to that of the parent material and showed remarkably enhanced catalytic activity in oxidative desulfurization reaction.

  7. Catalytic and non-catalytic pyrolysis of biomass in non-inert environments for production of deoxygenated bio-oil and chemicals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fast pyrolysis processes are among the most effective methods for liquefaction of lignocellulosic biomass. Catalytic fast pyrolysis (CFP) over HZSM-5 or other zeolites and/or utilization of reactive atmospheres such as in the non-catalytic Tail Gas Reactive Pyrolysis (TRGP) process, a recent patent...

  8. Kinetic-quantum chemical model for catalytic cycles: the Haber-Bosch process and the effect of reagent concentration.

    PubMed

    Kozuch, Sebastian; Shaik, Sason

    2008-07-03

    A combined kinetic-quantum chemical model is developed with the goal of estimating in a straightforward way the turnover frequency (TOF) of catalytic cycles, based on the state energies obtained by quantum chemical calculations. We describe how the apparent activation energy of the whole cycle, so-called energetic span (delta E), is influenced by the energy levels of two species: the TOF determining transition state (TDTS) and the TOF determining intermediate (TDI). Because these key species need not be adjoining states, we conclude that for catalysis there are no rate-determining steps, only rate determining states. In addition, we add here the influence of reactants concentrations. And, finally, the model is applied to the Haber-Bosch process of ammonia synthesis, for which we show how to calculate which catalyst will be the most effective under specific reagents conditions.

  9. Mesoporous MgO: Synthesis, physico-chemical, and catalytic properties

    NASA Astrophysics Data System (ADS)

    Maerle, A. A.; Kasyanov, I. A.; Moskovskaya, I. F.; Romanovsky, B. V.

    2016-06-01

    Mesoporous MgO was obtained via the hydrothermal synthesis using both ionogenic and non-ionogenic surfactants as structure-directing templates. The materials prepared were characterized by SEM, BET-N2, XRD, and TG-DTA techniques. MgO particles are spherical 20-μm aggregates of primary oxide particles well shaped as rectangular parallelepipeds. Magnesium oxide samples have the specific surface area of 290-400 m2/g and pore sizes of 3.3-4.1 nm. Their mesoporous structure remained unchanged after calcination up to 350°C. Catalytic activity of mesoporous MgO was studied in acetone condensation reaction.

  10. Catalytic chemical amide synthesis at room temperature: one more step toward peptide synthesis.

    PubMed

    Mohy El Dine, Tharwat; Erb, William; Berhault, Yohann; Rouden, Jacques; Blanchet, Jérôme

    2015-05-01

    An efficient method has been developed for direct amide bond synthesis between carboxylic acids and amines via (2-(thiophen-2-ylmethyl)phenyl)boronic acid as a highly active bench-stable catalyst. This catalyst was found to be very effective at room temperature for a large range of substrates with slightly higher temperatures required for challenging ones. This methodology can be applied to aliphatic, α-hydroxyl, aromatic, and heteroaromatic acids as well as primary, secondary, heterocyclic, and even functionalized amines. Notably, N-Boc-protected amino acids were successfully coupled in good yields with very little racemization. An example of catalytic dipeptide synthesis is reported.

  11. Convective stability in the presence of a catalytic chemical reaction. I.

    NASA Technical Reports Server (NTRS)

    Wankat, P. C.; Schowalter, W. R.

    1971-01-01

    A linear analysis of hydrodynamic stability has been applied to a problem in which a fluid mixture is contained between two horizontal planes. One species diffuses to the lower plane where it is destroyed by a rapid exothermic or endothermic catalytic reaction. Results show that important coupling takes place between thermal and concentration fields. This coupling gives rise to unusual stabilizing or destabilizing effects, depending upon the value of Lewis number. Several examples are discussed. It is also shown how the results can be applied to other problems involving heat and mass transfer.

  12. Quantum chemical study on the coordination environment of the catalytic zinc ion in matrix metalloproteinases.

    PubMed

    Díaz, Natalia; Suarez, Dimas; Sordo, Tomás L

    2006-11-30

    X-ray analyses of matrix metalloproteinases (MMPs) have shown that the catalytic zinc ion (Zn1) can bind to one to three water molecules in addition to three conserved histidine residues. To estimate the relative stability of the possible Zn1 coordination structures in the active site of the MMPs, we carry out computational analyses on the coordination environment of the Zn1 ion in the gelatinase A enzyme (or matrix metalloproteinase 2; MMP-2). Four-, five-, and six-coordinated complexes representative of the Zn1 site are fully characterized by means of quantum mechanical (QM) methodologies. On one hand, B3LYP/LACVP* minimizations of various cluster models of the MMP-2 active site show that the trigonal bipyramidal geometry is energetically favored in the gas phase and that continuum solvent effects stabilize preferentially the tetrahedral complexes. On the other hand, B3LYP/OPLS-AA hybrid QM/molecular mechanical calculations in the solvated catalytic domain of the MMP-2 enzyme complemented with electrostatic Poisson-Boltzmann calculations show that the mature enzyme presents most likely a Zn1 ion coordinated by three histidine residues and two water molecules, while the active site glutamic acid is negatively charged. In consonance with X-ray diffraction data, other possible Zn1 configurations, a six-coordinated structure with Zn1-water as well as four- and five-coordinated complexes with a Zn1-bound hydroxide, are predicted to be very close in energy.

  13. Trace determination and chemical speciation of selenium in environmental water samples using catalytic kinetic spectrophotometric method.

    PubMed

    Chand, Vimlesh; Prasad, Surendra

    2009-06-15

    A catalytic kinetic method is described for the determination of Se(IV), Se(VI) and total inorganic selenium in water based on the catalytic effect of Se(IV) on the reduction of bromate by hydrazine dihydrochloride in acidic media. The generated bromine decolorized methyl orange (MO) and the reaction was monitored spectrophotometrically at 507 nm as a function of time. The initial rate and fixed time methods were adopted for the determination and speciation of inorganic selenium. Under two optimum conditions, the calibration graphs are linear in the range 0-126.3 and 0-789.6 microg L(-1) of Se(IV) for the initial rate method and 0-315.8 and 0-789.6 microg L(-1) of Se(IV) for the fixed time method. The detection limits were 1.3 and 14.7 microg L(-1) for the initial rate and fixed time methods, respectively. The proposed methods were validated statistically and through recovery studies in environmental water samples. The relative standard deviation in the determination of 31.6-94.8 microg L(-1) of Se(IV) and Se(VI) was less than 6%. Analyses of standard reference materials for selenium using initial rate and fixed time methods showed that the proposed methods have good accuracy. Se(IV), Se(VI) and total inorganic selenium in environmental water samples have been successfully determined by this method after selective reduction of Se(VI) to Se(IV).

  14. The Influence of Process Conditions on the Chemical Composition of Pine Wood Catalytic Pyrolysis Oils

    DOE PAGES

    Pereira, J.; Agblevor, F. A.; Beis, S. H.

    2012-01-01

    Pine wood samples were used as model feedstock to study the properties of catalytic fast pyrolysis oils. The influence of two commercial zeolite catalysts (BASF and SudChem) and pretreatment of the pine wood with sodium hydroxide on pyrolysis products were investigated. The pyrolysis oils were first fractionated using column chromatography and characterized using GC-MS. Long chain aliphatic hydrocarbons, levoglucosan, aldehydes and ketones, guaiacols/syringols, and benzenediols were the major compounds identified in the pyrolysis oils. The catalytic pyrolysis increased the polycyclic hydrocarbons fraction. Significant decreases in phthalate derivatives using SudChem and long chain aliphatics using BASF catalyst were observed. Significant amountsmore » of aromatic heterocyclic hydrocarbons and benzene derivatives were formed, respectively, using BASF and SudChem catalysts. Guaiacyl/syringyl and benzenediols derivatives were partly suppressed by the zeolite catalysts, while the sodium hydroxide treatment enriched phenolic derivatives. Zeolite catalyst and sodium hydroxide were employed together; they showed different results for each catalyst.« less

  15. Resveratrol induces catalytic bioscavenger paraoxonase 1 expression and protects against chemical warfare nerve agent toxicity in human cell lines.

    PubMed

    Curtin, Bryan F; Seetharam, Karthik I; Dhoieam, Pilin; Gordon, Richard K; Doctor, Bhupendra P; Nambiar, Madhusoodana P

    2008-04-01

    Current advances in enzyme bioscavenger prophylactic therapy against chemical warfare nerve agent (CWNA) exposure are moving towards the identification of catalytic bioscavengers that can degrade large doses of organophosphate (OP) nerve agents without self destruction. This is a preferred method compared to therapy with the purified stoichiometric bioscavenger, butyrylcholinesterase, which binds OPs 1:1 and would thus require larger doses for treatment. Paraoxonase-1 (PON-1) is one such catalytic bioscavenger that has been shown to hydrolyze OP insecticides and contribute to detoxification in animals and humans. Here we investigated the effects of a common red wine ingredient, Resveratrol (RSV), to induce the expression of PON-1 in the human hepatic cell line HC04 and evaluated the protection against CWNA simulants. Dose-response curves showed that a concentration of 20 microM RSV was optimal in inducing PON-1 expression in HC04 cells. RSV at 20 microM increased the extracellular PON-1 activity approximately 150% without significantly affecting the cells. Higher doses of RSV were cytotoxic to the cells. Resveratrol also induced PON-1 in the human lung cell line A549. RSV pre-treatment significantly (P = 0.05) protected the hepatic cells against exposure to 2x LD(50) of soman and sarin simulants. However, lung cells were protected against soman simulant exposure but not against sarin simulant exposure following RSV treatment. In conclusion, these studies indicate that dietary inducers, such as RSV, can up-regulate PON-1, a catalytic bioscavenger, which can then hydrolyze and protect against CWNA-induced toxicity, providing a prospective new method to protect against CWNA exposure.

  16. Synthesis of high yield single helical carbon microsprings by catalytic chemical vapor deposition and an experimental investigation of their growth mechanism

    SciTech Connect

    Xie Jining; Varadan, V. K.

    2007-06-01

    A type of single helical carbon microsprings (SHCMSs) was synthesized by catalytic chemical vapor deposition. The as-prepared SHCMSs were characterized by a number of techniques such as scanning and transmission electron microscopy, x-ray powder diffraction, and x-ray photoelectron spectroscopy. Experimental results indicate that during the synthesis both morphology change and crystalline phase transformation occur for cobalt catalytic particles and certain chemical bonding form between cobalt and sulfur atoms. Based on the data from this study, a possible growth mechanism of SHCMSs was discussed.

  17. Chemical Compositional Analysis of Catalytic Hydroconversion Products of Heishan Coal Liquefaction Residue

    PubMed Central

    Wu, Yajun; Zhang, Shuangquan; Yang, Xiaoqin; Wei, Xianyong

    2017-01-01

    Liquefaction residue of Heishan bituminous coal (HLR) was subject to two hydroconversion reactions under 5 MPa initial pressure of hydrogen at 300°C for 3 h, without catalyst and with acid supported catalyst (ASC), respectively. The reaction products were analyzed with gas chromatography/mass spectrometer (GC/MS). The results show that 222 organic compounds were detected totally in the products and they can be divided into alkanes, aromatic hydrocarbons (AHCs), phenols, ketones, ethers, and other species (OSs). The yield of hydroconversion over the ASC is much higher than that without catalyst. The most abundant products are aromatic hydrocarbons in the reaction products from both catalytic and noncatalytic reactions of HLR. The yield of aromatic hydrocarbons in the reaction product from hydroconversion with the ACS is considerably higher than that from hydroconversion without a catalyst. PMID:28250770

  18. Catalytic Conversion of Biomass to Fuels and Chemicals Using Ionic Liquids

    SciTech Connect

    Liu, Wei; Zheng, Richard; Brown, Heather; Li, Joanne; Holladay, John; Cooper, Alan; Rao, Tony

    2012-04-13

    This project provides critical innovations and fundamental understandings that enable development of an economically-viable process for catalytic conversion of biomass (sugar) to 5-hydroxymethylfurfural (HMF). A low-cost ionic liquid (Cyphos 106) is discovered for fast conversion of fructose into HMF under moderate reaction conditions without any catalyst. HMF yield from fructose is almost 100% on the carbon molar basis. Adsorbent materials and adsorption process are invented and demonstrated for separation of 99% pure HMF product and recovery of the ionic liquid from the reaction mixtures. The adsorbent material appears very stable in repeated adsorption/regeneration cycles. Novel membrane-coated adsorbent particles are made and demonstrated to achieve excellent adsorption separation performances at low pressure drops. This is very important for a practical adsorption process because ionic liquids are known of high viscosity. Nearly 100% conversion (or dissolution) of cellulose in the catalytic ionic liquid into small molecules was observed. It is promising to produce HMF, sugars and other fermentable species directly from cellulose feedstock. However, several gaps were identified and could not be resolved in this project. Reaction and separation tests at larger scales are needed to minimize impacts of incidental errors on the mass balance and to show 99.9% ionic liquid recovery. The cellulose reaction tests were troubled with poor reproducibility. Further studies on cellulose conversion in ionic liquids under better controlled conditions are necessary to delineate reaction products, dissolution kinetics, effects of mass and heat transfer in the reactor on conversion, and separation of final reaction mixtures.

  19. [Chemical structure of bioethanol lignin by low-temperature alkaline catalytic hydrothermal treatment].

    PubMed

    Liu, Xiao-Huan; Zhang, Ming-Ming; Wang, Ji-Fu; Xu, Yu-Zhi; Wang, Chun-Peng; Chu, Fu-Xiang

    2013-11-01

    In order to improve the reaction activity of bioethanol lignin, we investigated the activation of bioethanol lignin by a hydrothermal treatment method. Catalytic hydrothermal treatment of bioethanol lignin was performed at 180 degrees C for 3 h in the presence of alkaline solutions (NaOH, Na2 CO3, KOH and K2 CO3), the change in bioethanol lignin structures was studied comparatively by FTIR, 1H NMR,GPC and elemental analysis. FTIR spectra showed that after alkali hydrothermal treatment, the band at 1 375 cm(-1) attributed to the phenolic hydroxyl groups increased, and the band intensity at 1 116 cm(-1) attributed to the ether bond decreased. On the other hand, the band at 1 597 and 1 511 cm(-1) attributed to aromatic skeletal vibration remained almost unchanged. 1H NMR spectra showed that after alkali hydrothermal treatment, the number of aromatic methoxyl is increased, and based on the increment of the content of phenolic hydroxyl, the catalytic activity can be ranked as follows: KOH > NaOH > K2 CO3 > Na2 CO3. Especially for KOH, the increment of the content of phenolic hydroxyl was 170%, because the ion radius of potassium cation is bigger than sodium cation, so the potassium cations more easily formed cation adducts with lignin. GPC results showed that the molecular weight of alkali hydrothermal treatment lignin decreased and the molecular distribution got wider. Elemental analysis showed that hydrothermal treatment could break the interlinkage between lignin and protein, which can reduce the protein content and increase the purity of lignin, meanwhile, the content of O and H both decreased,while C fell, indicating that the bioethanol lignin had suffered a decarbonylation reaction. This is the most benefit of the lignin as a substitute for phenol.

  20. Synthesis and characterization of carbon nanofibers by catalytic chemical vapor deposition using non-ferromagnetic metal complexes.

    PubMed

    Su, Chi-Jung; Yuan, Wei-Li; Lai, Tzu-Wei; Lei, Chien-Ming

    2014-06-01

    Carbon nanofibers (CNFs) have wide applications in energy storage devices, electrically conducting composites, selective adsorbents, and catalyst supports. Catalytic chemical vapor deposition was carried out in this work to synthesize CNFs at mild temperatures of 700 and 800 degrees C. Non-ferromagnetic metal complexes of La, Nb, and Ti, spread on porous NaX-type zeolite support, were tested as new catalyst. CNFs ranging from 30 to 200 nm in diameter were obtained. Images of transmission electron microscopy showed encapsulated transition-metal nanoparticles by CNFs. X-ray diffraction patterns revealed the crystalline structures of La (FCC), Nb (BCC), and Ti (HCP) formed over zeolite. Magnetic hysteresis loops showed superconductivity from the CNF-encapsulated Nb at 2 K. Raman spectra showed that all the samples possessed graphitic and amorphous carbon structures. Based on the SEM images and Raman spectra, the three metals all catalyzed the synthesis of CNFs.

  1. Preliminary chemical analysis and biological testing of materials from the HRI catalytic two-stage liquefaction (CTSL) process. [Aliphatic hydrocarbons

    SciTech Connect

    Later, D.W.; Wilson, B.W.

    1985-01-01

    Coal-derived materials from experimental runs of Hydrocarbon Research Incorporated's (HRI) catalytic two-stage liquefaction (CTSL) process were chemically characterized and screened for microbial mutagenicity. This process differs from two-stage coal liquefaction processes in that catalyst is used in both stages. Samples from both the first and second stages were class-fractionated by alumina adsorption chromatography. The fractions were analyzed by capillary column gas chromatography; gas chromatography/mass spectrometry; direct probe, low voltage mass spectrometry; and proton nuclear magnetic resonance spectrometry. Mutagenicity assays were performed with the crude and class fractions in Salmonella typhimurium, TA98. Preliminary results of chemical analyses indicate that >80% CTSL materials from both process stages were aliphatic hydrocarbon and polynuclear aromatic hydrocarbon (PAH) compounds. Furthermore, the gross and specific chemical composition of process materials from the first stage were very similar to those of the second stage. In general, the unfractionated materials were only slightly active in the TA98 mutagenicity assay. Like other coal liquefaction materials investigated in this laboratory, the nitrogen-containing polycyclic aromatic compound (N-PAC) class fractions were responsible for the bulk of the mutagenic activity of the crudes. Finally, it was shown that this activity correlated with the presence of amino-PAH. 20 figures, 9 tables.

  2. Annealing effects on capacitance-voltage characteristics of a-Si/SiN(x) multilayer prepared using hot-wire chemical vapour deposition.

    PubMed

    Panchal, A K; Rai, D K; Solanki, C S

    2011-04-01

    Post-deposition annealing of a-Si/SiN(x) multilayer films at different temperature shows varying shift in high frequency (1 MHz) capacitance-voltage (HFCV) characteristics. Various a-Si/SiN(x) multilayer films were deposited using hot wire chemical vapor deposition (HWCVD) and annealed in the temperature range of 800 to 900 degrees C to precipitate Si quantum dots (Si-QD) in a-Si layers. HFCV measurements of the as-deposited and annealed films in metal-insulator-semiconductor (MIS) structures show hysterisis in C-V curves. The hysteresis in the as-deposited films and annealed films is attributed to charge trapping in Si-dangling bonds in a-Si layer and in Si-QD respectively. The charge trapping density in Si-QD increases with temperature while the interface defects density (D(it)) remains constant.

  3. Investigation of chemical vapour deposition MoS2 field effect transistors on SiO2 and ZrO2 substrates.

    PubMed

    Liu, Xi; Chai, Yang; Liu, Zhaojun

    2017-04-21

    With the development of portable electronics, higher performance transistors are required to reduce the form factor and improve the performance of the devices. The key issue relies on developing transistors with outstanding electrical properties and low energy consumption at small scale. Here we demonstrate chemical vapor deposition (CVD) grown MoS2 transistors with a high on/off ratio using ZrO2 as a gate dielectric. Using 10 nm thick ZrO2, the transistor has an on/off ratio of 10(8), a sub-threshold swing of 0.1 V/dec, and a mobility of 64.66 cm(2) V(-1) s(-1). Compared to the MoS2 devices grown on 300 nm SiO2, the electrical performance demonstrates an all round improvement, which indicates the high crystalline quality of MoS2/ZrO2. Owing to the high-k ZrO2 dielectrics, the MoS2 transistor has a high on/off ratio, a low operating voltage, and good channel modulation capability which ensures that MoS2 is a good candidate for low power electronics.

  4. Chemical vapour deposition of graphene on Nk(111) and Co(0001) and intercalation with Au to study Dirac Cone Formation and Rashba splitting

    SciTech Connect

    Sanchez-Barriga, J.; Vescovo, E.; Varykhalov, A.; Scholz, M.R.; Rader, O.; Marchenko, D.; Rybkin, A.

    2010-01-01

    We show in detail monitoring by photoelectron spectroscopy how graphene can be grown by chemical vapor deposition on the transition-metal surfaces Ni(111) and Co(0001) and intercalated by a monoatomic layer of Au. For both systems, a linear E(k) dispersion of massless Dirac fermions appears in the graphene {pi}-band in the vicinity of the Fermi energy. In order to study ferromagnetism and spin-orbit effects by spin- and angle-resolved photoelectron spectroscopy, the sample must be magnetized in remanence. To this end, a W(110) substrate is prepared, its cleanliness verified by photoemission from W(110) surface states and surface core levels, and epitaxial Ni(111) and Co(0001) thin films are grown on top. Spin-resolved photoemission from the {pi}-band shows that the ferromagnetic polarization of graphene/Ni(111) and graphene/Co(0001) is negligible and that graphene on Ni(111) is after intercalation of Au spin-orbit split by the Rashba effect.

  5. Investigation of chemical vapour deposition MoS2 field effect transistors on SiO2 and ZrO2 substrates

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Chai, Yang; Liu, Zhaojun

    2017-04-01

    With the development of portable electronics, higher performance transistors are required to reduce the form factor and improve the performance of the devices. The key issue relies on developing transistors with outstanding electrical properties and low energy consumption at small scale. Here we demonstrate chemical vapor deposition (CVD) grown MoS2 transistors with a high on/off ratio using ZrO2 as a gate dielectric. Using 10 nm thick ZrO2, the transistor has an on/off ratio of 108, a sub-threshold swing of 0.1 V/dec, and a mobility of 64.66 cm2 V‑1 s‑1. Compared to the MoS2 devices grown on 300 nm SiO2, the electrical performance demonstrates an all round improvement, which indicates the high crystalline quality of MoS2/ZrO2. Owing to the high-k ZrO2 dielectrics, the MoS2 transistor has a high on/off ratio, a low operating voltage, and good channel modulation capability which ensures that MoS2 is a good candidate for low power electronics.

  6. CHEMICAL SENSING BASED ON CATALYTIC NANOMOTORS: MOTION-BASED DETECTION OF TRACE SILVER

    PubMed Central

    Kagan, Daniel; Calvo-Marzal, Percy; Balasubramanian, Shankar; Sattayasamitsathit, Sirilak; Manesh, Kalayil Manian; Flechsig, Gerd-Uwe; Wang, Joseph

    2009-01-01

    A motion-based chemical sensing involving fuel-driven nanomotors is demonstrated. The new protocol relies on the use of an optical microscope for tracking changes in the speed of nanowire motors in the presence of the target analyte. Selective and sensitive measurements of trace silver ions are illustrated based on the dramatic and specific acceleration of bimetal nanowire motors in the presence of silver. Such nanomotor-based measurements would lead to a wide range of novel and powerful chemical and biological sensing protocols. PMID:19670862

  7. Resonant and nonresonant vibrational excitation of ammonia molecules in the growth of gallium nitride using laser-assisted metal organic chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Golgir, Hossein Rabiee; Zhou, Yun Shen; Li, Dawei; Keramatnejad, Kamran; Xiong, Wei; Wang, Mengmeng; Jiang, Li Jia; Huang, Xi; Jiang, Lan; Silvain, Jean Francois; Lu, Yong Feng

    2016-09-01

    The influence of exciting ammonia (NH3) molecular vibration in the growth of gallium nitride (GaN) was investigated by using an infrared laser-assisted metal organic chemical vapor deposition method. A wavelength tunable CO2 laser was used to selectively excite the individual vibrational modes. Resonantly exciting the NH-wagging mode (v2) of NH3 molecules at 9.219 μm led to a GaN growth rate of 84 μm/h, which is much higher than the reported results. The difference between the resonantly excited and conventional thermally populated vibrational states was studied via resonant and nonresonant vibrational excitations of NH3 molecules. Resonant excitation of various vibrational modes was achieved at 9.219, 10.35, and 10.719 μm, respectively. Nonresonant excitation was conducted at 9.201 and 10.591 μm, similar to conventional thermal heating. Compared to nonresonant excitation, resonant excitation noticeably promotes the GaN growth rate and crystalline quality. The full width at half maximum value of the XRD rocking curves of the GaN (0002) and GaN (10-12) diffraction peaks decreased at resonant depositions and reached its minimum value of 45 and 53 arcmin, respectively, at the laser wavelength of 9.219 μm. According to the optical emission spectroscopic studies, resonantly exciting the NH3 v2 mode leads to NH3 decomposition at room temperature, reduces the formation of the TMGa:NH3 adduct, promotes the supply of active species in GaN formation, and, therefore, results in the increased GaN growth rate.

  8. Quantum chemical modelling of ethene epoxidation with hydrogen peroxide: role of catalytic sites.

    PubMed

    Lundin, Angelica; Panas, Itai; Ahlberg, Elisabet

    2007-12-07

    Ethene epoxidation with hydrogen peroxide was studied on hydroxylated binuclear metal sites, using DFT calculations at the B3LYP/6-311+G(d,p) level of theory. A decrease of the activation enthalpy of approximately 100 kJ mol(-1) was observed compared to the gas phase reaction between hydrogen peroxide and ethene. It was previously shown that micro-solvation with water reduces the activation enthalpy by approximately 77 kJ mol(-1) and only the additional 24 kJ mol(-1) can be attributed to the binuclear site. Three different metal centres were tested, Ti(iv), Si(iv) and Ge(iv), in order to investigate any specific role of the metal centre on the activation enthalpy. The results clearly show that the activation enthalpy is independent on the nature of the metal centre. This emphasises the role of the hydrogen bonded network provided by the hydroxylated metal sites, on the stabilisation of the transitions state. In ref. 1 (A. Lundin, I. Panas and E. Ahlberg, J. Phys. Chem. A, 2007, 111, 9080) it was demonstrated that, at the transition state and upon micro-solvation, the hydrogen peroxide entity becomes polarized within the hydrogen bonding network, forming a negatively-charged fragment distant from the ethene molecule and a positively-charged fragment directly involved in the oxygen insertion step. The same mechanism was found to hold also for the reaction at the binuclear catalytic site, since the required hydrogen bonding is effectively provided by the hydroxylated metal centres. This mechanism is compared to the two-step pathway which employs a metal peroxide intermediate. Both reaction channels were found to be plausible in confined environments.

  9. Experimental and theoretical rationalization of the growth mechanism of silicon quantum dots in non-stoichiometric SiN x : role of chlorine in plasma enhanced chemical vapour deposition.

    PubMed

    Mon-Pérez, E; Salazar, J; Ramos, E; Salazar, J Santoyo; Suárez, A López; Dutt, A; Santana, G; Monroy, B Marel

    2016-11-11

    Silicon quantum dots (Si-QDs) embedded in an insulator matrix are important from a technological and application point of view. Thus, being able to synthesize them in situ during the matrix growth process is technologically advantageous. The use of SiH2Cl2 as the silicon precursor in the plasma enhanced chemical vapour deposition (PECVD) process allows us to obtain Si-QDs without post-thermal annealing. Foremost in this work, is a theoretical rationalization of the mechanism responsible for Si-QD generation in a film including an analysis of the energy released by the extraction of HCl and the insertion of silylene species into the terminal surface bonds. From the results obtained using density functional theory (DFT), we propose an explanation of the mechanism responsible for the formation of Si-QDs in non-stoichiometric SiN x starting from chlorinated precursors in a PECVD system. Micrograph images obtained through transmission electron microscopy confirmed the presence of Si-QDs, even in nitrogen-rich (N-rich) samples. The film stoichiometry was controlled by varying the growth parameters, in particular the NH3/SiH2Cl2 ratio and hydrogen dilution. Experimental and theoretical results together show that using a PECVD system, along with chlorinated precursors it is possible to obtain Si-QDs at a low substrate temperature without annealing treatment. The optical property studies carried out in the present work highlight the prospects of these thin films for down shifting and as an antireflection coating in silicon solar cells.

  10. Experimental and theoretical rationalization of the growth mechanism of silicon quantum dots in non-stoichiometric SiN x : role of chlorine in plasma enhanced chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Mon-Pérez, E.; Salazar, J.; Ramos, E.; Santoyo Salazar, J.; López Suárez, A.; Dutt, A.; Santana, G.; Marel Monroy, B.

    2016-11-01

    Silicon quantum dots (Si-QDs) embedded in an insulator matrix are important from a technological and application point of view. Thus, being able to synthesize them in situ during the matrix growth process is technologically advantageous. The use of SiH2Cl2 as the silicon precursor in the plasma enhanced chemical vapour deposition (PECVD) process allows us to obtain Si-QDs without post-thermal annealing. Foremost in this work, is a theoretical rationalization of the mechanism responsible for Si-QD generation in a film including an analysis of the energy released by the extraction of HCl and the insertion of silylene species into the terminal surface bonds. From the results obtained using density functional theory (DFT), we propose an explanation of the mechanism responsible for the formation of Si-QDs in non-stoichiometric SiN x starting from chlorinated precursors in a PECVD system. Micrograph images obtained through transmission electron microscopy confirmed the presence of Si-QDs, even in nitrogen-rich (N-rich) samples. The film stoichiometry was controlled by varying the growth parameters, in particular the NH3/SiH2Cl2 ratio and hydrogen dilution. Experimental and theoretical results together show that using a PECVD system, along with chlorinated precursors it is possible to obtain Si-QDs at a low substrate temperature without annealing treatment. The optical property studies carried out in the present work highlight the prospects of these thin films for down shifting and as an antireflection coating in silicon solar cells.

  11. Chemically Accelerated Carbon Mineralization: Chemical and Biological Catalytic Enhancement of Weathering of Silicate Minerals as Novel Carbon Capture and Storage

    SciTech Connect

    2010-07-01

    IMPACCT Project: Columbia University is developing a process to pull CO2 out of the exhaust gas of coal-fired power plants and turn it into a solid that can be easily and safely transported, stored above ground, or integrated into value-added products (e.g. paper filler, plastic filler, construction materials, etc.). In nature, the reaction of CO2 with various minerals over long periods of time will yield a solid carbonate—this process is known as carbon mineralization. The use of carbon mineralization as a CO2 capture and storage method is limited by the speeds at which these minerals can be dissolved and CO2 can be hydrated. To facilitate this, Columbia University is using a unique process and a combination of chemical catalysts which increase the mineral dissolution rate, and the enzymatic catalyst carbonic anhydrase which speeds up the hydration of CO2.

  12. Photoelectrochemical power, chemical energy and catalytic activity for organic evolution on natural pyrite interfaces.

    PubMed

    Tributsch, H; Fiechter, S; Jokisch, D; Rojas-Chapana, J; Ellmer, K

    2003-04-01

    Natural pyrite (FeS2) has frequently been discussed as a material involved in CO2 fixation in presence of H2S and as a possible catalyst for the origin of life. A straightforward chemical fixation of carbon dioxide as proposed by Wächtershauser could not be verified from thermo-chemical equilibrium calculations by minimizing Gibb's Free Energy in the system C, O, H, S, Fe and appears unlikely due to the experimentally encountered large overpotentials involved in CO2 fixation. However, the hypothesis, by W. R. Edwards, that pyrite in shallow coastal waters may have been involved, can be sustained. In this case, daily available photoelectrochemical power from FeS2/Fe2+/3+ interfaces could have made the difference in combination with electrochemical processes, such as hydrogen insertion, and the solubilization of pyrite by the amino acid cysteine to yield dissolved chemical energy. Periodical changes in energy supply could also have entrained primitive self-organization processes for organic-biological evolution. Natural samples from thirteen ore deposits have been investigated photoelectrochemically. Efficient light-induced current generation has been found with several of these samples so that photoelectrochemical processes generated by pyrite have to be considered as naturally occurring phenomena, which could have been even more pronounced in oxygen deficient environments. Pyrite from the Murgul mine in Turkey of suboceanic volcanic origin was closer examined as a model system to understand the morphology and chemistry of pyrite photoactivity.

  13. Niobium(V) saponite clay for the catalytic oxidative abatement of chemical warfare agents.

    PubMed

    Carniato, Fabio; Bisio, Chiara; Psaro, Rinaldo; Marchese, Leonardo; Guidotti, Matteo

    2014-09-15

    A Nb(V)-containing saponite clay was designed to selectively transform toxic organosulfur chemical warfare agents (CWAs) under extremely mild conditions into nontoxic products with reduced environmental impact. Thanks to the insertion of Nb(V) sites within the saponite framework, a bifunctional catalyst with strong oxidizing and acid properties was obtained. Remarkable activity and high selectivity were observed for the oxidative abatement of (2-chloroethyl)ethyl sulfide (CEES), a simulant of sulfur mustard, at room temperature with aqueous hydrogen peroxide. This performance was significantly better compared to a conventional commercial decontamination powder.

  14. Vapour Intrusion into Buildings - A Literature Review

    EPA Science Inventory

    This chapter provides a review of recent research on vapour intrusion of volatile organic compounds (VOCs) into buildings. The chapter builds on a report from Tillman and Weaver (2005) which reviewed the literature on vapour intrusion through 2005. Firstly, the term ‘vapour intru...

  15. Hydrodeoxygenation processes: advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels.

    PubMed

    De, Sudipta; Saha, Basudeb; Luque, Rafael

    2015-02-01

    Lignocellulosic biomass provides an attractive source of renewable carbon that can be sustainably converted into chemicals and fuels. Hydrodeoxygenation (HDO) processes have recently received considerable attention to upgrade biomass-derived feedstocks into liquid transportation fuels. The selection and design of HDO catalysts plays an important role to determine the success of the process. This review has been aimed to emphasize recent developments on HDO catalysts in effective transformations of biomass-derived platform molecules into hydrocarbon fuels with reduced oxygen content and improved H/C ratios. Liquid hydrocarbon fuels can be obtained by combining oxygen removal processes (e.g. dehydration, hydrogenation, hydrogenolysis, decarbonylation etc.) as well as by increasing the molecular weight via C-C coupling reactions (e.g. aldol condensation, ketonization, oligomerization, hydroxyalkylation etc.). Fundamentals and mechanistic aspects of the use of HDO catalysts in deoxygenation reactions will also be discussed.

  16. A review of catalytic microwave pyrolysis of lignocellulosic biomass for value-added fuel and chemicals.

    PubMed

    Morgan, Hervan Marion; Bu, Quan; Liang, Jianghui; Liu, Yujing; Mao, Hanping; Shi, Aiping; Lei, Hanwu; Ruan, Roger

    2017-04-01

    Lignocellulosic biomass is an abundant renewable resource and can be efficiently converted into bio-energy by a bio-refinery. From the various techniques available for biomass thermo-chemical conversion; microwave assisted pyrolysis (MAP) seems to be the very promising. The principles of microwave technology were reviewed and the parameters for the efficient production of bio-oil using microwave technology were summarized. Microwave technology by itself cannot efficiently produce high quality bio-oil products, catalysts are used to improve the reaction conditions and selectivity for valued products during MAP. The catalysts used to optimize MAP are revised in the development of this article. The origins for bio-oils that are phenol rich or hydrocarbon rich are reviewed and their experimental results were summarized. The kinetics of MAP is discussed briefly in the development of the article. Future prospects and scientific development of MAP are also considered in the development of this article.

  17. An Analytical Framework for Studying Small-Number Effects in Catalytic Reaction Networks: A Probability Generating Function Approach to Chemical Master Equations.

    PubMed

    Nakagawa, Masaki; Togashi, Yuichi

    2016-01-01

    Cell activities primarily depend on chemical reactions, especially those mediated by enzymes, and this has led to these activities being modeled as catalytic reaction networks. Although deterministic ordinary differential equations of concentrations (rate equations) have been widely used for modeling purposes in the field of systems biology, it has been pointed out that these catalytic reaction networks may behave in a way that is qualitatively different from such deterministic representation when the number of molecules for certain chemical species in the system is small. Apart from this, representing these phenomena by simple binary (on/off) systems that omit the quantities would also not be feasible. As recent experiments have revealed the existence of rare chemical species in cells, the importance of being able to model potential small-number phenomena is being recognized. However, most preceding studies were based on numerical simulations, and theoretical frameworks to analyze these phenomena have not been sufficiently developed. Motivated by the small-number issue, this work aimed to develop an analytical framework for the chemical master equation describing the distributional behavior of catalytic reaction networks. For simplicity, we considered networks consisting of two-body catalytic reactions. We used the probability generating function method to obtain the steady-state solutions of the chemical master equation without specifying the parameters. We obtained the time evolution equations of the first- and second-order moments of concentrations, and the steady-state analytical solution of the chemical master equation under certain conditions. These results led to the rank conservation law, the connecting state to the winner-takes-all state, and analysis of 2-molecules M-species systems. A possible interpretation of the theoretical conclusion for actual biochemical pathways is also discussed.

  18. An Analytical Framework for Studying Small-Number Effects in Catalytic Reaction Networks: A Probability Generating Function Approach to Chemical Master Equations

    PubMed Central

    Nakagawa, Masaki; Togashi, Yuichi

    2016-01-01

    Cell activities primarily depend on chemical reactions, especially those mediated by enzymes, and this has led to these activities being modeled as catalytic reaction networks. Although deterministic ordinary differential equations of concentrations (rate equations) have been widely used for modeling purposes in the field of systems biology, it has been pointed out that these catalytic reaction networks may behave in a way that is qualitatively different from such deterministic representation when the number of molecules for certain chemical species in the system is small. Apart from this, representing these phenomena by simple binary (on/off) systems that omit the quantities would also not be feasible. As recent experiments have revealed the existence of rare chemical species in cells, the importance of being able to model potential small-number phenomena is being recognized. However, most preceding studies were based on numerical simulations, and theoretical frameworks to analyze these phenomena have not been sufficiently developed. Motivated by the small-number issue, this work aimed to develop an analytical framework for the chemical master equation describing the distributional behavior of catalytic reaction networks. For simplicity, we considered networks consisting of two-body catalytic reactions. We used the probability generating function method to obtain the steady-state solutions of the chemical master equation without specifying the parameters. We obtained the time evolution equations of the first- and second-order moments of concentrations, and the steady-state analytical solution of the chemical master equation under certain conditions. These results led to the rank conservation law, the connecting state to the winner-takes-all state, and analysis of 2-molecules M-species systems. A possible interpretation of the theoretical conclusion for actual biochemical pathways is also discussed. PMID:27047384

  19. Conversion of KCl into KBH4 by Mechano-Chemical Reaction and its Catalytic Decomposition

    NASA Astrophysics Data System (ADS)

    Bilen, Murat; Gürü, Metin; Çakanyildirim, Çetin

    2017-02-01

    Production of KBH4, in the presence of KCl, B2O3 and MgH2 by means of a mechanical reaction and a dehydrogenation kinetic, constitute the main parts of this study. Operating time and reactant ratio are considered as two parameters for the mechanical reaction to obtain the maximum yield. The production process was carried out in a ball milling reactor, and the product residue was purified with ethylene diamine (EDA) and subsequently characterized by Fourier Transform Infrared Spectroscopy (FT-IR) and x-ray Diffraction (XRD) analyses. Optimum time for mechano-chemical treatment and reactant ratio (MgH2/KCl) were obtained as 1000 min and 1.0, respectively. Synthesized and commercial KBH4 were compared by hydrolysis tests in the presence of Co1-xNix/Al2O3 heterogeneous catalyst. Hydrogen generation rates, activation energy and order of the KBH4 decomposition reaction were obtained as 1578 {mL}_{{{{H}}2 }} min^{ - 1} {g}_{{catalyst}}^{ - 1} , 39.2 kJ mol-1 and zero order, respectively.

  20. Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production.

    PubMed

    Ma, Ruoshui; Xu, Yan; Zhang, Xiao

    2015-01-01

    Transforming plant biomass to biofuel is one of the few solutions that can truly sustain mankind's long-term needs for liquid transportation fuel with minimized environmental impact. However, despite decades of effort, commercial development of biomass-to-biofuel conversion processes is still not an economically viable proposition. Identifying value-added co-products along with the production of biofuel provides a key solution to overcoming this economic barrier. Lignin is the second most abundant component next to cellulose in almost all plant biomass; the emerging biomass refinery industry will inevitably generate an enormous amount of lignin. Development of selective biorefinery lignin-to-bioproducts conversion processes will play a pivotal role in significantly improving the economic feasibility and sustainability of biofuel production from renewable biomass. The urgency and importance of this endeavor has been increasingly recognized in the last few years. This paper reviews state-of-the-art oxidative lignin depolymerization chemistries employed in the papermaking process and oxidative catalysts that can be applied to biorefinery lignin to produce platform chemicals including phenolic compounds, dicarboxylic acids, and quinones in high selectivity and yield. The potential synergies of integrating new catalysts with commercial delignification chemistries are discussed. We hope the information will build on the existing body of knowledge to provide new insights towards developing practical and commercially viable lignin conversion technologies, enabling sustainable biofuel production from lignocellulosic biomass to be competitive with fossil fuel.

  1. Selective catalytic reduction of NO by NH3 on Cu-faujasite catalysts: an experimental and quantum chemical approach.

    PubMed

    Delahay, Gérard; Villagomez, Enrique Ayala; Ducere, Jean-Marie; Berthomieu, Dorothée; Goursot, Annick; Coq, Bernard

    2002-08-16

    The selective catalytic reduction (SCR) of NO by NH3 in the presence of O2 on Cu-faujasite (Cu-FAU) has been studied. Substitution of some Cu2+ with H+ and Na+ cations, compensating for the negative charge of the zeolite framework, forms the various CuHNa-FAU studied. The amount of Cu was held constant and the proportion of H+ and Na+ varied in the sample. The substitution of Na+ for H+ increases sharply the SCR rate by lowering the temperature of reaction by about 150 K. It is proposed that the rate increase mainly comes from an unhindered migration of Cu from hidden to active sites and a modification of the redox properties of Cu species. The former was demonstrated by diffuse reflectance IR spectroscopy of adsorbed CO. The change in redox properties was demonstrated by a faster oxidation of Cu+ to Cu2+ (rate-determining step). Quantum chemical calculations on model clusters of CuHNa-FAU indicate that the faster rate of oxidation can be explained by a higher lability of protons in the absence of Na, which can be then removed from the catalyst more easily to yield H2O during the oxidation process.

  2. The rational of catalytic activity of herpes simplex virus thymidine kinase. a combined biochemical and quantum chemical study.

    PubMed

    Sulpizi, M; Schelling, P; Folkers, G; Carloni, P; Scapozza, L

    2001-06-15

    Most antiherpes therapies exploit the large substrate acceptance of herpes simplex virus type 1 thymidine kinase (TK(HSV1)) relative to the human isoenzyme. The enzyme selectively phosphorylates nucleoside analogs that can either inhibit viral DNA polymerase or cause toxic effects when incorporated into viral DNA. To relate structural properties of TK(HSV1) ligands to their chemical reactivity we have carried out ab initio quantum chemistry calculations within the density functional theory framework in combination with biochemical studies. Calculations have focused on a set of ligands carrying a representative set of the large spectrum of sugar-mimicking moieties and for which structural information of the TK(HSV1)-ligand complex is available. The k(cat) values of these ligands have been measured under the same experimental conditions using an UV spectrophotometric assay. The calculations point to the crucial role of electric dipole moment of ligands and its interaction with the negatively charged residue Glu(225). A striking correlation is found between the energetics associated with this interaction and the k(cat) values measured under homogeneous conditions. This finding uncovers a fundamental aspect of the mechanism governing substrate diversity and catalytic turnover and thus represents a significant step toward the rational design of novel and powerful prodrugs for antiviral and TK(HSV1)-linked suicide gene therapies.

  3. Electron Transport in Water Vapour

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Satoru; Satoh, Kohki; Itoh, Hidenori

    2015-09-01

    Sets of electron collision cross sections for water vapour previously reported are examined by comparing calculated electron swarm parameters with measured parameters. Further, reliable cross section set of water vapour is estimated by the electron swarm method using Monte Carlo simulation to ensure the accuracy of the swarm parameter calculation. The values of an electron drift velocity, a longitudinal diffusion coefficient, and an effective ionisation coefficient calculated from Yousfi and Benabdessadok's set and those calculated from Itikawa and Mason's set do not necessarily agree with measured data. A new cross section set of water vapour, which consists of three kinds of rotational excitation, two kinds of vibrational excitation, three kinds of electron attachment, twenty-six kinds of electronic excitation, and six kinds of ionisation cross sections, and an elastic collision cross section, is estimated, and an anisotropic electron scattering for elastic and rotational excitation collision is considered. The swarm parameters calculated from the estimated cross section set is in good agreement with measured data in a wide range of reduced electric field.

  4. An in vitro and in vivo Evaluation of the Efficacy of Recombinant Human Liver Prolidase as a Catalytic Bioscavenger of Chemical Warfare Nerve Agents

    DTIC Science & Technology

    2015-01-01

    3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE An in vitro and in vivo evaluation of the efficacy of recombinant human liver prolidase 5a...butyrylcholinesterase, catalytic bioscavenger, chemical warfare nerve agents, human liver prolidase, in vivo delivery 16. SECURITY CLASSIFICATION OF: 17...Healthcare USA, Inc. DOI: 10.3109/01480545.2014.900071 RESEARCH ARTICLE An in vitro and in vivo evaluation of the efficacy of recombinant human liver

  5. The application of Cu/SiO2 catalytic system in chemical mechanical planarization based on the stability of SiO2 sol

    NASA Astrophysics Data System (ADS)

    Yan, Li; Yuling, Liu; Aochen, Wang; Zhixin, Yang; Mingbin, Sun; Chuan, Cheng; Yufeng, Zhang; Nannan, Zhang

    2014-06-01

    There is a lot of hydroxyl on the surface of nano SiO2 sol used as an abrasive in the chemical mechanical planarization (CMP) process, and the chemical reaction activity of the hydroxyl is very strong due to the nano effect. In addition to providing a mechanical polishing effect, SiO2 sol is also directly involved in the chemical reaction. The stability of SiO2 sol was characterized through particle size distribution, zeta potential, viscosity, surface charge and other parameters in order to ensure that the chemical reaction rate in the CMP process, and the surface state of the copper film after CMP was not affected by the SiO2 sol. Polarization curves and corrosion potential of different concentrations of SiO2 sol showed that trace SiO2 sol can effectively weaken the passivation film thickness. In other words, SiO2 sol accelerated the decomposition rate of passive film. It was confirmed that the SiO2 sol as reactant had been involved in the CMP process of copper film as reactant by the effect of trace SiO2 sol on the removal rate of copper film in the CMP process under different conditions. In the CMP process, a small amount of SiO2 sol can drastically alter the chemical reaction rate of the copper film, therefore, the possibility that Cu/SiO2 as a catalytic system catalytically accelerated the chemical reaction in the CMP process was proposed. According to the van't Hoff isotherm formula and the characteristics of a catalyst which only changes the chemical reaction rate with out changing the total reaction standard Gibbs free energy, factors affecting the Cu/SiO2 catalytic reaction were derived from the decomposition rate of Cu (OH)2 and the pH value of the system, and then it was concluded that the CuSiO3 as intermediates of Cu/SiO2 catalytic reaction accelerated the chemical reaction rate in the CMP process. It was confirmed that the Cu/SiO2 catalytic system generated the intermediate of the catalytic reaction (CuSiO3) in the CMP process through the removal

  6. Chemical and toxicological evaluation of an emerging pollutant (enrofloxacin) by catalytic wet air oxidation and ozonation in aqueous solution.

    PubMed

    Li, Yan; Zhang, Feifang; Liang, Xinmiao; Yediler, Ayfer

    2013-01-01

    This study evaluates the degradation efficiency of enrofloxacin (ENR) by catalytic wet air oxidation (CWAO) and ozonation. Results obtained by CWAO experiments show that 99.5% degradation, 37.0% chemical oxidation demand (COD) removal and 51.0% total organic carbon (TOC) conversion were obtained when 100 mol% FeCl(3) and 25 mol% NaNO(2) at 150 °C under 0.5 MPa oxygen pressure after 120 min are used. The degradation products are identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), gas chromatography-mass spectrometry (GC-MS) and ion chromatography (IC). The oxidation end products, F(-), NO(3)(-) and NH(4)(+) were determined by IC. The BOD(5)/COD ratio as a measure of the biodegradability of the parent compound increased from 0.01 to 0.12 after 120 min of reaction time, indicating an improved biodegradability of the parent compound. The inhibition of bioluminescence of the marine bacteria V. fischeri decreased from 43% to 12% demonstrating a loss in toxicity of ENR during CWAO. Ozonation of 0.2 mM ENR was carried out with an ozone concentration of 7.3 g m(-3) at pH 7. ENR decomposition with a degradation rate of 87% was obtained corresponding to the reaction time. Moderate changes in COD (18%) and TOC (17%) removal has been observed. The bioluminescence inhibition increased from 8% to 50%, due to the generation of toxic degradation products during ozonation. In comparison to the widely use of well developed method of ozonation CWAO exhibits better performance in terms of COD, TOC removals and generates less toxic products.

  7. Condensation of water vapour on moss-dominated biological soil crust, NW China

    NASA Astrophysics Data System (ADS)

    Wang, Xin-Ping; Pan, Yan-Xia; Hu, Rui; Zhang, Ya-Feng; Zhang, Hao

    2014-03-01

    Characteristics of water vapour condensation, including the onset, duration, and amount of water vapour condensation on moss-dominated biological soil crust (BSC) and dune sand were studied under simulated conditions with varying air temperature and relative humidity. The simulations were performed in a plant growth chamber using an electronic balance recording the weight of condensation. There was a positive linear correlation between the water vapour condensation and relative humidity while the mean temperature was negatively linearly related to amounts of water vapour condensation for both soil surfaces. The amount of water vapour condensation on BSC and dune sand can be described by the difference between air temperature and dew point with an exponential function, indicating that when the difference of air temperature and dew point exceeds a value of 35.3◦C, there will be zero water vapour condensed on BSC. In contrast, when the difference of air temperature and dew point exceeds a value of 20.4◦C, the water vapour condensation will be zero for dune sand. In general, when the air is fully saturated with water and the dew point is equal to the current air temperature, the water vapour condensed on BSC attained its maximum value of 0.398 mm, whereas it was 0.058 mm for dune sand. In comparison, water vapour condensed on BSC was at a relatively high temperature and low relative humidity, while we did not detect water vapour condensation on the dune sand under the similar conditions. Physical and chemical analyses of the samples pointed to a greater porosity, high content of fine particles, and high salinity for BSC compared to the dune sand. These results highlight that soil physicochemical properties are the likely factors influencing the mechanism of water vapour condensation under specific meteorological conditions, as onset was earlier and the duration was longer for water vapour condensation on BSC in comparison with that of dune sand. This contributed to

  8. Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies

    PubMed Central

    Potyrailo, Radislav A.; Bonam, Ravi K.; Hartley, John G.; Starkey, Timothy A.; Vukusic, Peter; Vasudev, Milana; Bunning, Timothy; Naik, Rajesh R.; Tang, Zhexiong; Palacios, Manuel A.; Larsen, Michael; Le Tarte, Laurie A.; Grande, James C.; Zhong, Sheng; Deng, Tao

    2015-01-01

    Combining vapour sensors into arrays is an accepted compromise to mitigate poor selectivity of conventional sensors. Here we show individual nanofabricated sensors that not only selectively detect separate vapours in pristine conditions but also quantify these vapours in mixtures, and when blended with a variable moisture background. Our sensor design is inspired by the iridescent nanostructure and gradient surface chemistry of Morpho butterflies and involves physical and chemical design criteria. The physical design involves optical interference and diffraction on the fabricated periodic nanostructures and uses optical loss in the nanostructure to enhance the spectral diversity of reflectance. The chemical design uses spatially controlled nanostructure functionalization. Thus, while quantitation of analytes in the presence of variable backgrounds is challenging for most sensor arrays, we achieve this goal using individual multivariable sensors. These colorimetric sensors can be tuned for numerous vapour sensing scenarios in confined areas or as individual nodes for distributed monitoring. PMID:26324320

  9. Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies

    NASA Astrophysics Data System (ADS)

    Potyrailo, Radislav A.; Bonam, Ravi K.; Hartley, John G.; Starkey, Timothy A.; Vukusic, Peter; Vasudev, Milana; Bunning, Timothy; Naik, Rajesh R.; Tang, Zhexiong; Palacios, Manuel A.; Larsen, Michael; Le Tarte, Laurie A.; Grande, James C.; Zhong, Sheng; Deng, Tao

    2015-09-01

    Combining vapour sensors into arrays is an accepted compromise to mitigate poor selectivity of conventional sensors. Here we show individual nanofabricated sensors that not only selectively detect separate vapours in pristine conditions but also quantify these vapours in mixtures, and when blended with a variable moisture background. Our sensor design is inspired by the iridescent nanostructure and gradient surface chemistry of Morpho butterflies and involves physical and chemical design criteria. The physical design involves optical interference and diffraction on the fabricated periodic nanostructures and uses optical loss in the nanostructure to enhance the spectral diversity of reflectance. The chemical design uses spatially controlled nanostructure functionalization. Thus, while quantitation of analytes in the presence of variable backgrounds is challenging for most sensor arrays, we achieve this goal using individual multivariable sensors. These colorimetric sensors can be tuned for numerous vapour sensing scenarios in confined areas or as individual nodes for distributed monitoring.

  10. Isothermal vapour flow in extremely dry soils

    NASA Astrophysics Data System (ADS)

    Todman, L. C.; Ireson, A. M.; Butler, A. P.; Templeton, M. R.

    2012-04-01

    In dry soils hydraulic connectivity within the liquid water phase decreases and vapour flow becomes a significant transport mechanism for water. The temperature or solute concentration of the liquid phase affects the vapour pressure of the surrounding air, thus temperature or solute gradients can drive vapour flows. However, in extremely dry soils where water is retained by adsorptive forces rather than capillarity, vapour flows can also occur. In such soils tiny changes in water content significantly affect the equilibrium vapour pressure in the soil, and hence small differences in water content can initiate vapour pressure gradients. In many field conditions this effect may be negligible compared to vapour flows driven by other factors. However, flows of this type are particularly significant in a new type of subsurface irrigation system which uses pervaporation, via a polymer tubing, as the mechanism for water supply. In this system, water enters the soil in vapour phase. Experiments were performed in laboratory conditions using marine sand that had previously been oven dried and cooled. This dry sand was used to represent the desert conditions in which this irrigation system is intended for use. Experimental results show that isothermal vapour flows can significantly affect the performance of such irrigation systems due to the rapid transport of water through the soil via the vapour phase. When the irrigation pipe was buried at a depth of 10cm a vapour flow from the soil surface was observed in less than 2 hours. These flows therefore affect the loss of mass into the atmosphere and thus must be considered when evaluating the availability of water for the irrigated crop. The experiments also provide a rare opportunity to observe isothermal vapour flows initiating from a subsurface source. Such experiments allow the significance of these flows to be quantified and potentially applied to other areas of arid zone hydrology.

  11. Catalytic reactor

    SciTech Connect

    Aaron, Timothy Mark; Shah, Minish Mahendra; Jibb, Richard John

    2009-03-10

    A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

  12. Novel Dextranase Catalyzing Cycloisomaltooligosaccharide Formation and Identification of Catalytic Amino Acids and Their Functions Using Chemical Rescue Approach*

    PubMed Central

    Kim, Young-Min; Kiso, Yoshiaki; Muraki, Tomoe; Kang, Min-Sun; Nakai, Hiroyuki; Saburi, Wataru; Lang, Weeranuch; Kang, Hee-Kwon; Okuyama, Masayuki; Mori, Haruhide; Suzuki, Ryuichiro; Funane, Kazumi; Suzuki, Nobuhiro; Momma, Mitsuru; Fujimoto, Zui; Oguma, Tetsuya; Kobayashi, Mikihiko; Kim, Doman; Kimura, Atsuo

    2012-01-01

    A novel endodextranase from Paenibacillus sp. (Paenibacillus sp. dextranase; PsDex) was found to mainly produce isomaltotetraose and small amounts of cycloisomaltooligosaccharides (CIs) with a degree of polymerization of 7–14 from dextran. The 1,696-amino acid sequence belonging to the glycosyl hydrolase family 66 (GH-66) has a long insertion (632 residues; Thr451–Val1082), a portion of which shares identity (35% at Ala39–Ser1304 of PsDex) with Pro32–Ala755 of CI glucanotransferase (CITase), a GH-66 enzyme that catalyzes the formation of CIs from dextran. This homologous sequence (Val837–Met932 for PsDex and Tyr404–Tyr492 for CITase), similar to carbohydrate-binding module 35, was not found in other endodextranases (Dexs) devoid of CITase activity. These results support the classification of GH-66 enzymes into three types: (i) Dex showing only dextranolytic activity, (ii) Dex catalyzing hydrolysis with low cyclization activity, and (iii) CITase showing CI-forming activity with low dextranolytic activity. The fact that a C-terminal truncated enzyme (having Ala39–Ser1304) has 50% wild-type PsDex activity indicates that the C-terminal 392 residues are not involved in hydrolysis. GH-66 enzymes possess four conserved acidic residues (Asp189, Asp340, Glu412, and Asp1254 of PsDex) of catalytic candidates. Their amide mutants decreased activity (11,500 to 140,000 times), and D1254N had 36% activity. A chemical rescue approach was applied to D189A, D340G, and E412Q using α-isomaltotetraosyl fluoride with NaN3. D340G or E412Q formed a β- or α-isomaltotetraosyl azide, respectively, strongly indicating Asp340 and Glu412 as a nucleophile and acid/base catalyst, respectively. Interestingly, D189A synthesized small sized dextran from α-isomaltotetraosyl fluoride in the presence of NaN3. PMID:22461618

  13. Drastic reduction in the surface recombination velocity of crystalline silicon passivated with catalytic chemical vapor deposited SiN{sub x} films by introducing phosphorous catalytic-doped layer

    SciTech Connect

    Thi, Trinh Cham Koyama, Koichi; Ohdaira, Keisuke; Matsumura, Hideki

    2014-07-28

    We improve the passivation property of n-type crystalline silicon (c-Si) surface passivated with a catalytic chemical vapor deposited (Cat-CVD) Si nitride (SiN{sub x}) film by inserting a phosphorous (P)-doped layer formed by exposing c-Si surface to P radicals generated by the catalytic cracking of PH{sub 3} molecules (Cat-doping). An extremely low surface recombination velocity (SRV) of 2 cm/s can be achieved for 2.5 Ω cm n-type (100) floating-zone Si wafers passivated with SiN{sub x}/P Cat-doped layers, both prepared in Cat-CVD systems. Compared with the case of only SiN{sub x} passivated layers, SRV decreases from 5 cm/s to 2 cm/s. The decrease in SRV is the result of field effect created by activated P atoms (donors) in a shallow P Cat-doped layer. Annealing process plays an important role in improving the passivation quality of SiN{sub x} films. The outstanding results obtained imply that SiN{sub x}/P Cat-doped layers can be used as promising passivation layers in high-efficiency n-type c-Si solar cells.

  14. CATALYTIC OXIDATION OF DIMETHYL SULFIDE WITH OZONE: EFFECT OF PROMOTER AND PHYSICO-CHEMICAL PROPERTIES OF METAL OXIDE CATALYSTS

    EPA Science Inventory

    This study reports improved catalytic activities and stabilities for the oxidation of dimethyl sulfide (DMS), a major pollutant of pulp and paper mills. Ozone was used as an oxidant and Cu, Mo, V, Cr and Mn metal oxides, and mixed metal oxides support on y-alumina as catalysts ov...

  15. CATALYTIC OXIDATION OF DIMETHYL SULFIDE WITH OZONE: EFFECTS OF PROMOTER AND PHYSICO-CHEMICAL PROPERTIES OF METAL OXIDE CATALYSTS

    EPA Science Inventory

    This study reports improved catalytic activities and stabilities for the oxidation of dimethyl sulfide (DMS), a major pollutant of pulp and paper mills. Ozone was used as an oxidant and activities of Cu, Mo, Cr and Mn oxides, and mixed metal oxides supported on -alumina, were tes...

  16. Water vapour in the UT/LS

    NASA Astrophysics Data System (ADS)

    Schiller, C.

    2003-04-01

    The water vapour abundance increased at all levels in the stratosphere during the last decades. Though the observed increase cannot be explained quantitatively, the water vapour distribution and underlying processes seem to be sufficiently understood in the overworld. In the lowermost stratosphere and in the tropical tropopause layer, however, the complex transport and temperature patterns on different scales result in a high variability and strong gradients of the water vapour distribution. The long-term increase of water vapour seems to be apparent also in the lowermost stratosphere, but its significance is decreasing towards the tropopause. In this presentation, measurements of water vapour in the extratropical UT/LS from several airborne campaigns are discussed and compared to distribution patterns obtained from satellite data sets. A mixing layer with H2O mixing ratios up to 100 ppmv is found above the tropopause, frequently resulting in saturation of these air masses. A seasonal cycle of the water content with a late spring and summer maximum is apparent in the LS. The role of jet streams moistening the lowermost stratosphere will be discussed. In a second part, water vapour distributions in the tropics as the stratospheric source region are presented. As an example, measurements over the Indian ocean are discussed where temperatures and water vapour mixing ratios as low as in the classical 'fountain' region over Micronesia occurred. Frequently, ongoing dehydration was observed in the TTL up to the tropopause, independent on deep convection cells.

  17. Physical properties of vapour grown indium monotelluride platelets

    NASA Astrophysics Data System (ADS)

    Kunjomana, A. G.; Chandrasekharan, K. A.; Teena, M.

    2015-02-01

    Indium monotelluride (InTe) crystals were grown from vapour phase under different temperature gradients by employing physical vapour deposition (PVD) method. The morphology of these crystals such as whiskers, needles, platelets etc., strongly depends on the temperature distribution in the horizontal dual zone furnace. InTe platelets were deposited by setting the temperature of the charge (TC) and growth (TS) zones at 1073 K and 773 K (ΔT=300 K), respectively, for different growth periods (24 h, 48 h, 72 h and 96 h). The surface growth features have been analyzed by scanning electron microscopes, which indicate layer growth mechanism for all the crystals. Various crystals grown under ΔT=200 K and 300 K (retaining TS invariant) were examined by X-ray diffraction and elemental analysis. InTe samples exhibited consistent lattice parameters, density and atomic percentage, establishing stoichiometry and chemical homogeneity. The results obtained for Seebeck coefficient, electrical conductivity, power factor, dislocation density and microhardness are found to be reproducible as well. The vapour deposited InTe platelets are mechanically stable and possess high value of TEP, which ensure their practical application in thermoelectric power generation.

  18. Defect termination on crystalline silicon surfaces by hydrogen for improvement in the passivation quality of catalytic chemical vapor-deposited SiNx and SiNx/P catalytic-doped layers

    NASA Astrophysics Data System (ADS)

    Cham Thi, Trinh; Koyama, Koichi; Ohdaira, Keisuke; Matsumura, Hideki

    2016-02-01

    We investigate the role of hydrogen (H) in the improvement in the passivation quality of silicon nitride (SiNx) prepared by catalytic chemical vapor deposition (Cat-CVD) and Cat-CVD SiNx/phosphorus (P) Cat-doped layers on crystalline silicon (c-Si) by annealing. Both structures show promising passivation capabilities for c-Si with extremely low surface recombination velocity (SRV) on n-type c-Si. Defect termination by H is evaluated on the basis of defect density (Nd) determined by electron spin resonance (ESR) spectroscopy and interface state density (Dit) calculated by the Terman method. The two parameters are found to be drastically decreased by annealing after SiNx deposition. The calculated average Dit at midgap (Dit-average) is 2.2 × 1011 eV-1 cm-2 for the SiNx/P Cat-doped c-Si sample with a SRV of 2 cm/s, which is equivalent to 3.1 × 1011 eV-1 cm-2 for the SiNx/c-Si sample with a SRV of 5 cm/s after annealing. The results indicate that H atoms play a critical role in the reduction in Dit for SiNx/c-Si and SiNx/P Cat-doped c-Si, resulting in a drastic reduction in SRV by annealing.

  19. Effect of heat treatment on the physico-chemical properties and catalytic activity of manganese nodules leached residue towards decomposition of hydrogen peroxide.

    PubMed

    Parida, K M; Dash, S S; Mallik, S; Das, J

    2005-10-15

    The effect of calcination temperature on the physico-chemical characterization of manganese nodule leached residue (MNLR) and water-washed manganese nodule leached residue (WMNLR) has been investigated on the basis of chemical analysis, XRD, TG-DTA, FTIR, surface hydroxyl groups, surface oxygen, reducing and oxidizing sites, surface area. XRD and IR confirm the presence of amorphous iron oxyhydroxides, delta-MnO2, which are converted to alpha-Fe2O3 and gamma-Mn2O3 phases above 400 degrees C of calcination, respectively. A solid solution of Fe2O3 and Mn2O3 is formed above 700 degrees C. The surface area, surface hydroxyl group, surface oxygen, reducing and oxidizing sites increase with the increase in calcination temperature up to 400 degrees C and then decrease with further rise in calcination temperature up to 700 degrees C. The catalytic activity of the sample towards H2O2 decomposition shows the similar trend as surface properties. A suitable Mn(3+)Mn4+ couple favours H2O2 decomposition reaction. The activity has been correlated with various physico-chemical properties.

  20. Catalytic distillation process

    DOEpatents

    Smith, L.A. Jr.

    1982-06-22

    A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  1. Catalytic distillation process

    DOEpatents

    Smith, Jr., Lawrence A.

    1982-01-01

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  2. Catalytic hydrothermal upgrading of crude bio-oils produced from different thermo-chemical conversion routes of microalgae.

    PubMed

    Duan, Peigao; Wang, Bing; Xu, Yuping

    2015-06-01

    This study presents experimental results that compare the use of hydrothermal liquefaction (HTL), alcoholysis (Al), pyrolysis (Py) and hydropyrolysis (HPy) for the production of bio-oil from a microalga (Chlorella pyrenoidosa) and the catalytic hydrothermal upgrading of crude bio-oils produced by these four conversion routes. The yields and compositions of bio-oil, solid residue, and gases were evaluated and compared. HTL resulted in a bio-oil that has a higher energy density and superior fuel properties, such as thermal and storage stabilities, compared with the other three conversion routes. The N in crude bio-oils produced from Py and HPy is more easily removed than that in the bio-oils produced from HTL and Al. The upgraded bio-oils contain reduced amounts of certain O-containing and N-containing compounds and significantly increased saturated hydrocarbon contents. All of the upgraded bio-oils have a larger fraction boiling below 350°C than their corresponding crude bio-oils.

  3. Physico-Chemical Condition Optimization during Biosynthesis lead to development of Improved and Catalytically Efficient Gold Nano Particles

    PubMed Central

    Kumari, Madhuree; Mishra, Aradhana; Pandey, Shipra; Singh, Satyendra Pratap; Chaudhry, Vasvi; Mudiam, Mohana Krishna Reddy; Shukla, Shatrunajay; Kakkar, Poonam; Nautiyal, Chandra Shekhar

    2016-01-01

    Biosynthesis of nanoparticles has gained great attention in making the process cost-effective and eco-friendly, but there are limited reports which describe the interdependency of physical parameters for tailoring the dimension and geometry of nanoparticles during biological synthesis. In the present study, gold nanoparticles (GNPs) of various shapes and sizes were obtained by modulating different physical parameters using Trichoderma viride filtrate. The particles were characterized on the basis of visual observation, dynamic light scattering, UV-visible spectroscopy, transmission electron microscopy, fourier transform infrared spectroscopy, and X ray diffraction. While the size varied from 2–500 nm, the shapes obtained were nanospheres, nanotriangles, nanopentagons, nanohexagons, and nanosheets. Changing the parameters such as pH, temperature, time, substrate, and culture filtrate concentration influenced the size and geometry of nanoparticles. Catalytic activity of the biosynthesized GNP was evaluated by UV-visible spectroscopy and confirmed by gas chromatography-mass spectrometric analysis for the conversion of 4-nitrophenol into 4-aminophenol which was strongly influenced by their structure and dimension. Common practices for biodegradation are traditional, expensive, require large amount of raw material, and time taking. Controlling shapes and sizes of nanoparticles could revolutionize the process of biodegradation that can remove all the hurdles in current scenario. PMID:27273371

  4. An Investigation of Tertiary Students' Understanding of Evaporation, Condensation and Vapour Pressure

    ERIC Educational Resources Information Center

    Gopal, Hemant; Kleinsmidt, Jacques; Case, Jennifer; Musonge, Paul

    2004-01-01

    Based on a purposive sample of 15 second-year chemical engineering students, this study investigates students' conceptions of evaporation, condensation and vapour pressure. During individual interviews the students were questioned on three tasks that had been designed around these topics. Qualitative analysis of student responses showed a range of…

  5. An Investigation of Tertiary Students' Understanding of Evaporation, Condensation and Vapour Pressure. Research Report

    ERIC Educational Resources Information Center

    Gopal, Hemant; Kleinsmidt, Jacques; Case, Jennifer; Musonge, Paul

    2004-01-01

    Based on a purposive sample of 15 second-year chemical engineering students, this study investigates students' conceptions of evaporation, condensation and vapour pressure. During individual interviews the students were questioned on three tasks that had been designed around these topics. Qualitative analysis of student responses showed a range of…

  6. Modelling vapour transport in Surtseyan bombs

    NASA Astrophysics Data System (ADS)

    McGuinness, Mark J.; Greenbank, Emma; Schipper, C. Ian

    2016-05-01

    We address questions that arise if a slurry containing liquid water is enclosed in a ball of hot viscous vesicular magma ejected as a bomb in the context of a Surtseyan eruption. We derive a mathematical model for transient changes in temperature and pressure due to flashing of liquid water to vapour inside the bomb. The magnitude of the transient pressure changes that are typically generated are calculated together with their dependence on material properties. A single criterion to determine whether the bomb will fragment as a result of the pressure changes is derived. Timescales for ejection of water vapour from a bomb that remains intact are also revealed.

  7. Simulation of Discharge Production in a Water Vapour Layer on an Electrode

    NASA Astrophysics Data System (ADS)

    Karim, Mohammad; Evans, Benjamin; Asimakoulas, Leonidas; Stalder, Kenneth; Field, Thomas; Graham, Bill; Murakami, Tomoyuki

    2016-09-01

    Electrical discharges in water are receiving increasing attention because of chemical, environmental and biomedical applications.The work to be presented focuses on plasmas created directly in high conductivity water, saline solution. Here the plasma is produced at low voltage ( 200V) and is clearly associated with an initial vapour layer on the electrode surface that isolates the electrode from the liquid. In a previous paper a finite element multi-physics program, incorporating all relevant electrical and thermal properties of the solution was shown to reproduce the experimentally observed pre-plasma vapour layer behaviour. The results of a simulation of the plasma production in vapour layers of the same size and shape as predicted in will be presented, At present inert gas fills the ``vapour layer''. However this produces spatial distributions of the electron parameters that are consistent with the electric fields predicted in the original simulations. The water plasma simulation recently developed by Murakami is currently being included. It is anticipated that results of the coupled codes, showing the temporal and 2-D spatial development of the vapour and plasma, will be presented.

  8. Capillary microextraction: A new method for sampling methamphetamine vapour.

    PubMed

    Nair, M V; Miskelly, G M

    2016-11-01

    Clandestine laboratories pose a serious health risk to first responders, investigators, decontamination companies, and the public who may be inadvertently exposed to methamphetamine and other chemicals used in its manufacture. Therefore there is an urgent need for reliable methods to detect and measure methamphetamine at such sites. The most common method for determining methamphetamine contamination at former clandestine laboratory sites is selected surface wipe sampling, followed by analysis with gas chromatography-mass spectrometry (GC-MS). We are investigating the use of sampling for methamphetamine vapour to complement such wipe sampling. In this study, we report the use of capillary microextraction (CME) devices for sampling airborne methamphetamine, and compare their sampling efficiency with a previously reported dynamic SPME method. The CME devices consisted of PDMS-coated glass filter strips inside a glass tube. The devices were used to dynamically sample methamphetamine vapour in the range of 0.42-4.2μgm(-3), generated by a custom-built vapour dosing system, for 1-15min, and methamphetamine was analysed using a GC-MS fitted with a ChromatoProbe thermal desorption unit. The devices showed good reproducibility (RSD<15%), and a curvilinear pre-equilibrium relationship between sampling times and peak area, which can be utilised for calibration. Under identical sampling conditions, the CME devices were approximately 30 times more sensitive than the dynamic SPME method. The CME devices could be stored for up to 3days after sampling prior to analysis. Consecutive sampling of methamphetamine and its isotopic substitute, d-9 methamphetamine showed no competitive displacement. This suggests that CME devices, pre-loaded with an internal standard, could be a feasible method for sampling airborne methamphetamine at former clandestine laboratories.

  9. Systemic toxicity from subchronic dermal exposure, chemical characterization, and dermal penetration of catalytically cracked clarified slurry oil.

    PubMed

    Cruzan, G; Low, L K; Cox, G E; Meeks, J R; Mackerer, C R; Craig, P H; Singer, E J; Mehlman, M A

    1986-12-01

    Clarified slurry oil (CSO), the heavy residual fraction from the fluidized catalytic cracker, was applied to the shaven backs of groups of 10 male and 10 female Sprague-Dawley rats 5 days/week for 13 weeks at doses of 8, 30, 125, or 500 mg/kg/day, and to another group for 2 weeks at doses of 2000 mg/kg/day. The rats were fitted with cardboard Elizabethan collars to minimize the ingestion of the test material, which was applied undiluted and remained uncovered on the skin. A similar group of rats served as controls; they were treated in the same manner except that no CSO was applied to their skin. There was a dose-related mortality and depression of body weight gain in the rats treated with CSO at doses of 30 mg/kg/day or greater; none of the rats dosed at 2000 mg/kg/day survived more than 2 weeks. The primary target organs of CSO toxicity were the liver, thymus, and bone marrow. The effects on the liver included increased weight (250% at 500 mg/kg/day), cholangiolitis, diffuse liver cell degeneration and hypertrophy, necrosis, fibrosis, decreased serum glucose, increased levels of alkaline phosphatase, aspartate aminotransferase, alanine amino transferase, bilirubin, and triglycerides. The thymus was found to be small and upon microscopic examination to be atrophic or hypoplastic. Erythroid hypoplasia was found in the bone marrow of some of the rats dosed at 30 mg/kg/day and increased in severity with increasing dose. The erythroid hypoplasia was accompanied by a dose-related anemia. Even in the rats dosed at 8 mg/kg/day, very slight abnormalities in the bile ducts were observed upon microscopic examination of the liver. Chromatographic separation and analyses demonstrated that CSO contains about 58% 3- to 5-ring polycyclic aromatic hydrocarbons (PAHs) and approximately 8-10% carbazole derivatives. In vitro and in vivo skin penetration studies demonstrated that the carbazole materials penetrate through the skin to a considerable extent (about 44%); less penetration

  10. Saturated Vapour Pressure and Refrigeration - Part I

    ERIC Educational Resources Information Center

    Bunker, C. A.

    1973-01-01

    The first part of a two-part article describes an experimental approach that can be used in teaching the concept of saturated vapour pressure. This leads to a discussion of refrigeration cycles in the second part of the article. (JR)

  11. OT1_dneufeld_2: The puzzle of water vapour in carbon-rich stars

    NASA Astrophysics Data System (ADS)

    Neufeld, D.

    2010-07-01

    Using the HIFI instrument, we will address the puzzling - but widespread - appearance of water vapour in carbon-rich stars. Following up on detections of water in ALL SIX carbon-rich AGB stars observed to date in a pilot study performed in the HIFISTARS Key Program, we will target additional water transitions in four stars already observed or expected to show the most luminous water emissions. The target stars are CIT6, IRAC 15194-5155, V Cygni, and S Cep, and the additional transitions are the 4(22)-3(31) and 3(12) - 2(21) transitions at 916 GHz and 1153 GHz. Combined with spectra already obtained for the low-lying water transitions, and interpreted in the context of water excitation models, the proposed observations will place strong constraints upon the location of the emitting water. We will therefore be able to distinguish between various hypotheses that have been proposed for the origin of the observed water: the vaporization of orbiting comets or dwarf planets; catalytic formation on dust grains; or chemical processes initiated by the photodissociation of CO. In addition, we will carry out deep integrations to observe the lowest 1(11) - 0(00) transition of para-water at 1113 GHz in two carbon-rich AGB stars: IRAS+40540 and V Hya; here, ortho-water has been securely detected but existing observations of the 1113 GHz para-water line yield weak detections that lack the signal-to-noise ratio needed to constrain the ortho-to-para ratio.

  12. Water Vapour Abundance and Distribution in the Lower Venusian Atmosphere

    NASA Astrophysics Data System (ADS)

    Chamberlain, S.; Bailey, J.

    2012-04-01

    We present ground-based observations and modelling studies of water vapour abundance and distribution in the Venusian lower atmosphere through analysis of absorption band depths within the 1.18 μm window. The lower atmosphere of Venus is difficult to study by both in situ and remote instruments. This is due to the planet wide cloud cover that obscures visual wavelengths and surface pressures approaching 100 times that of the Earth. In 1984 ground based observations resulted in the discovery of atmospheric windows on the Venusian nightside (Allen and Crawford, 1984). Here, near infrared radiation originating at the surface and lower atmosphere, pass relatively unimpeded through the Venus clouds. This discovery enabled remote studies of the Venusian subcloud region. Determining the abundance and distribution of water vapour is key to understanding the development, maintenance and links between major radiative and dynamical features of the Venus atmosphere. Water vapour in the lower atmosphere plays an important role in heat transfer and is pertinent to the runaway greenhouse effect and dynamical superrotation observed on Venus. Detailed studies of water vapour abundance and distribution throughout the lower atmosphere of Venus are therefore needed in order to develop accurate chemical, radiative and dynamical models. Ground-based spatially resolved near infrared spectroscopic observations of the Venusian nightside have been obtained from Siding Spring Observatory at each inferior conjunction since 2002. Observations have been made using the IRIS2 instrument on the Anglo-Australian Telescope and CASPIR on the 2.3m ANU telescope. The model VSTAR (Bailey and Kedziora-Chudczer 2012) is used to simulate the observed Venus spectra as seen through the Earth's atmosphere and best fit water vapour abundances are found for approximately 300 locations across the Venus nightside disk. Recent improvements in ground-based near-infrared instruments allow a substantial improvement

  13. Ultrasound promoted catalytic liquid-phase dehydrogenation of isopropanol for Isopropanol-Acetone-Hydrogen chemical heat pump.

    PubMed

    Xu, Min; Xin, Fang; Li, Xunfeng; Huai, Xiulan; Liu, Hui

    2015-03-01

    The apparent kinetic of the ultrasound assisted liquid-phase dehydrogenation of isopropanol over Raney nickel catalyst was determined in the temperature range of 346-353 K. Comparison of the effects of ultrasound and mechanical agitation on the isopropanol dehydrogenation was investigated. The ultrasound assisted dehydrogenation rate was significantly improved when relatively high power density was used. Moreover, the Isopropanol-Acetone-Hydrogen chemical heat pump (IAH-CHP) with ultrasound irradiation, in which the endothermic reaction is exposure to ultrasound, was proposed. A mathematical model was established to evaluate its energy performance in term of the coefficient of performance (COP) and the exergy efficiency, into which the apparent kinetic obtained in this work was incorporated. The operating performances between IAH-CHP with ultrasound and mechanical agitation were compared. The results indicated that the superiority of the IAH-CHP system with ultrasound was present even if more than 50% of the power of the ultrasound equipment was lost.

  14. Catalytic synthesis of high-value chemicals from coal-derived liquids. Conversion of phenanthrene derivatives into anthracene derivatives

    SciTech Connect

    Song, C.; Lai, W.C.

    1998-12-31

    It is known that phenanthrene and its derivatives are abundant in coal-derived liquids from coal carbonization, pyrolysis, and liquefaction; however, they have found little use in industry. On the other hand, anthracene and its derivatives are more useful materials for industrial applications. Thus, it is highly desirable to convert phenanthrene derivatives to anthracene derivatives. The authors have found that some chemically modified mordenites and Y-zeolites can selectively promote the transformation of sym-octahydrophenanthrene (sym-OHP) into sym-octahydroanthracene (sym-OHA) at lower temperatures. In this work, the effects of zeolite catalysts and reaction conditions on the ring-shift isomerization of sym-OHP into sym-OHA were studied through experiments at 200--300 C under an initial pressure of 0.79 MPa N{sub 2} or H{sub 2}. They also explored the simultaneous hydrogenation-ring-shift isomerization of phenanthrene using zeolite-supported metal catalysts.

  15. Novel process and catalytic materials for converting CO2 and H2 containing mixtures to liquid fuels and chemicals.

    PubMed

    Meiri, Nora; Dinburg, Yakov; Amoyal, Meital; Koukouliev, Viatcheslav; Nehemya, Roxana Vidruk; Landau, Miron V; Herskowitz, Moti

    2015-01-01

    Carbon dioxide and water are renewable and the most abundant feedstocks for the production of chemicals and fungible fuels. However, the current technologies for production of hydrogen from water are not competitive. Therefore, reacting carbon dioxide with hydrogen is not economically viable in the near future. Other alternatives include natural gas, biogas or biomass for the production of carbon dioxide, hydrogen and carbon monoxide mixtures that react to yield chemicals and fungible fuels. The latter process requires a high performance catalyst that enhances the reverse water-gas-shift (RWGS) reaction and Fischer-Tropsch synthesis (FTS) to higher hydrocarbons combined with an optimal reactor system. Important aspects of a novel catalyst, based on a Fe spinel and three-reactor system developed for this purpose published in our recent paper and patent, were investigated in this study. Potassium was found to be a key promoter that improves the reaction rates of the RWGS and FTS and increases the selectivity of higher hydrocarbons while producing mostly olefins. It changed the texture of the catalyst, stabilized the Fe-Al-O spinel, thus preventing decomposition into Fe3O4 and Al2O3. Potassium also increased the content of Fe5C2 while shifting Fe in the oxide and carbide phases to a more reduced state. In addition, it increased the relative exposure of carbide iron on the catalysts surface, the CO2 adsorption and the adsorption strength. A detailed kinetic model of the RWGS, FTS and methanation reactions was developed for the Fe spinel catalyst based on extensive experimental data measured over a range of operating conditions. Significant oligomerization activity of the catalyst was found. Testing the pelletized catalyst with CO2, CO and H2 mixtures over a range of operating conditions demonstrated its high productivity to higher hydrocarbons. The composition of the liquid (C5+) was found to be a function of the potassium content and the composition of the feedstock.

  16. Simulation of the isotopic composition of stratospheric water vapour - Part 2: Investigation of HDO / H2O variations

    NASA Astrophysics Data System (ADS)

    Eichinger, R.; Jöckel, P.; Lossow, S.

    2015-06-01

    Studying the isotopic composition of water vapour in the lower stratosphere can reveal the driving mechanisms of changes in the stratospheric water vapour budget and therefore help to explain the trends and variations of stratospheric water vapour during recent decades. We equipped a global chemistry climate model with a description of the water isotopologue HDO, comprising its physical and chemical fractionation effects throughout the hydrological cycle. We use this model to improve our understanding of the processes which determine the patterns in the stratospheric water isotope composition and in the water vapour budget itself. The link between the water vapour budget and its isotopic composition in the tropical stratosphere is presented through their correlation in a simulated 21-year time series. The two quantities depend on the same processes; however, they are influenced with different strengths. A sensitivity experiment shows that fractionation effects during the oxidation of methane have a damping effect on the stratospheric tape recorder signal in the water isotope ratio. Moreover, the chemically produced high water isotope ratios overshadow the tape recorder in the upper stratosphere. Investigating the origin of the boreal-summer signal of isotopically enriched water vapour reveals that in-mixing of old stratospheric air from the extratropics and the intrusion of tropospheric water vapour into the stratosphere complement each other in order to create the stratospheric isotope ratio tape recorder signal. For this, the effect of ice lofting in monsoon systems is shown to play a crucial role. Furthermore, we describe a possible pathway of isotopically enriched water vapour through the tropopause into the tropical stratosphere.

  17. Simulation of the isotopic composition of stratospheric water vapour - Part 2: Investigation of HDO/H2O variations

    NASA Astrophysics Data System (ADS)

    Eichinger, R.; Jöckel, P.; Lossow, S.

    2014-11-01

    Studying the isotopic composition of water vapour in the lower stratosphere can reveal the driving mechanisms of changes in the stratospheric water vapour budget and therefore help to explain the trends and variations of stratospheric water vapour during the recent decades. We equipped a global chemistry climate model with a description of the water isotopologue HDO, comprising its physical and chemical fractionation effects throughout the hydrological cycle. We use this model to improve our understanding of the processes, which determine the patterns in the stratospheric water isotope composition and in the water vapour budget, itself. The link between the water vapour budget and its isotopic composition in the tropical stratosphere is presented through their correlation in a simulated 21 year time series. The two quantities depend on the same processes, however, are influenced with different strengths. A sensitivity experiment shows that fractionation effects during the oxidation of methane has a damping effect on the stratospheric tape recorder signal in the water isotope ratio. Moreover, the chemically produced high water isotope ratios overshadow the tape recorder in the upper stratosphere. Investigating the origin of the boreal summer tape recorder signal in the lower stratosphere reveals isotopically enriched water vapour crossing the tropopause over the subtropical Western Pacific. A correlation analysis confirms this link, which identifies the Asian Summer Monsoon as the major contributor for the intrusion of isotopically enriched water vapour into the stratosphere during boreal summer. Furthermore, convective ice lofting is shown to have a substantial impact on the isotope ratios of water vapour in the upper troposphere and lower stratosphere.

  18. Catalytic membranes beckon

    SciTech Connect

    Caruana, C.M.

    1994-11-01

    Chemical engineers here and abroad are finding that the marriage of catalysts and membranes holds promise for faster and more specific reactions, although commercialization of this technology is several years away. Catalytic membrane reactors (CMRs) combine a heterogeneous catalyst and a permselective membrane. Reactions performed by CMRs provide higher yields--sometimes as much as 50% higher--because of better reaction selectivity--as opposed to separation selectivity. CMRs also can work at very high temperatures, using ceramic materials that would not be possible with organic membranes. Although the use of CMRs is not widespread presently, the development of new membranes--particularly porous ceramic and zeolite membranes--will increase the potential to improve yields of many catalytic processes. The paper discusses ongoing studies, metal and advanced materials for membranes, the need for continued research, hydrogen recovery from coal-derived gases, catalytic oxidation of sulfides, CMRs for water purification, and oxidative coupling of methane.

  19. Correlating the chemical composition and size of various metal oxide substrates with the catalytic activity and stability of as-deposited Pt nanoparticles for the methanol oxidation reaction

    DOE PAGES

    Megan E. Scofield; Wong, Stanislaus S.; Koenigsmann, Christopher; ...

    2015-12-09

    The performance of electrode materials in conventional direct alcohol fuel cells (DAFC) is constrained by (i) the low activity of the catalyst materials relative to their overall cost, (ii) the poisoning of the active sites due to the presence of partially oxidized carbon species (such as but not limited to CO, formate, and acetate) produced during small molecule oxidation, and (iii) the lack of catalytic stability and durability on the underlying commercial carbon support. Therefore, as a viable alternative, we have synthesized various metal oxide and perovskite materials of different sizes and chemical compositions as supports for Pt nanoparticles (NPs).more » Our results including unique mechanistic studies demonstrate that the SrRuO3 substrate with immobilized Pt NPs at its surface evinces the best methanol oxidation performance as compared with all of the other substrate materials tested herein, including commercial carbon itself. In addition, data from electron energy loss spectroscopy (EELS) and X-ray photoelectron spectroscopy (XPS) confirmed the presence of electron transfer from bound Pt NPs to surface Ru species within the SrRuO3 substrate itself, thereby suggesting that favorable metal support interactions are responsible for the increased methanol oxidation reaction (MOR) activity of Pt species with respect to the underlying SrRuO3 composite catalyst material.« less

  20. Correlating the chemical composition and size of various metal oxide substrates with the catalytic activity and stability of as-deposited Pt nanoparticles for the methanol oxidation reaction

    SciTech Connect

    Megan E. Scofield; Wong, Stanislaus S.; Koenigsmann, Christopher; Bobb-Semple, Dara; Tao, Jing; Tong, Xiao; Wang, Lei; Lewis, Crystal S.; Vuklmirovic, Miomir; Zhu, Yimei; Adzic, Radoslav R.

    2015-12-09

    The performance of electrode materials in conventional direct alcohol fuel cells (DAFC) is constrained by (i) the low activity of the catalyst materials relative to their overall cost, (ii) the poisoning of the active sites due to the presence of partially oxidized carbon species (such as but not limited to CO, formate, and acetate) produced during small molecule oxidation, and (iii) the lack of catalytic stability and durability on the underlying commercial carbon support. Therefore, as a viable alternative, we have synthesized various metal oxide and perovskite materials of different sizes and chemical compositions as supports for Pt nanoparticles (NPs). Our results including unique mechanistic studies demonstrate that the SrRuO3 substrate with immobilized Pt NPs at its surface evinces the best methanol oxidation performance as compared with all of the other substrate materials tested herein, including commercial carbon itself. In addition, data from electron energy loss spectroscopy (EELS) and X-ray photoelectron spectroscopy (XPS) confirmed the presence of electron transfer from bound Pt NPs to surface Ru species within the SrRuO3 substrate itself, thereby suggesting that favorable metal support interactions are responsible for the increased methanol oxidation reaction (MOR) activity of Pt species with respect to the underlying SrRuO3 composite catalyst material.

  1. Effects of N{sub 2}O gas addition on the properties of ZnO films grown by catalytic reaction-assisted chemical vapor deposition

    SciTech Connect

    Yasui, Kanji Morioka, Makoto; Kanauchi, Shingo; Ohashi, Yuki; Kato, Takahiro; Tamayama, Yasuhiro

    2015-11-15

    The influence of N{sub 2}O gas addition on the properties of zinc oxide (ZnO) films grown on a-plane (11–20) sapphire (a-Al{sub 2}O{sub 3}) substrates was investigated, using a chemical vapor deposition method based on the reaction between dimethylzinc and high-temperature H{sub 2}O produced by a catalytic H{sub 2}-O{sub 2} reaction on platinum (Pt) nanoparticles. The addition of N{sub 2}O was found to increase the size of the crystalline facets and to improve the crystal orientation along the c-axis. The electron mobility at 290 K was also increased to 234 cm{sup 2}/Vs following the addition of N{sub 2}O gas at a pressure of 3.2 × 10{sup −3 }Pa. In addition, the minimum full width at half maximum of the most intense photoluminescence peak derived from neutral donor bound excitons at 10 K decreased to 0.6 meV by the addition of N{sub 2}O gas at a pressure of 3.1 × 10{sup −2 }Pa.

  2. Contributions of Organic Vapours to Atmospheric Nanoparticle Growth

    NASA Astrophysics Data System (ADS)

    Wang, L.; Xu, W.; Khalizov, A. F.; Zhang, R.

    2010-12-01

    Atmospheric aerosol particles alter radiative balance of the earth-atmosphere system, impact the regional and global climate, and pose negative effects on human health. Aerosol nucleation events have been frequently observed under various tropospheric conditions and account for a major fraction of the total aerosol population. Although a number of studies suggest that organics are involved in both new particle formation and their subsequent growth, the fundamental chemical processes responsible for organic vapours’ contribution remain poorly understood. This work will focus on laboratory studies on the role of various organic vapours in sulphuric acid nanoparticles growth. Sulfuric acid nanoparticles of 4-20 nm diameter size are generated from homogeneous binary nucleation of H2SO4 and H2O vapors in a laminar flow reactor. The growth factor of H2SO4 nanoparticles exposed to organics including methyglyoxal, ethanol, 1-butanol, 1-heptanol, 1-decanol, and cis-pinonic acid is measured using a nano-tandem differential mobility analyzer (nano-TDMA). Also studied is the potential synergistic effect in the presence of two or more organic vapours to which sulphuric acid nanoparticles are exposed. The chemical compositions of H2SO4 particles exposed to the organics are analyzed by a thermal desorption-ion drift-chemical ionization mass spectrometer (TD-ID-CIMS), and the spectroscopic evolution of functional groups in H2SO4 particles of ~40 nm diameter size, deposited on ZnSe crystal and subsequently exposed to organics, is studied using attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FT-IR). The combined techniques are used to elucidate the key factors in controlling atmospheric nanoparticle growth.

  3. EDITORIAL Metal vapour in atmospheric-pressure arcs Metal vapour in atmospheric-pressure arcs

    NASA Astrophysics Data System (ADS)

    Murphy, Anthony B.

    2010-11-01

    Metal vapour has a significant, and in some cases dominant, influence in many applications of atmospheric-pressure plasmas, including arc welding, circuit interruption and mineral processing. While the influence of metal vapour has long been recognized, it is only recently that diagnostic and computational tools have been sufficiently well-developed to allow this influence to be more thoroughly examined and understood. Some unexpected findings have resulted: for example, that the presence of metal vapour in gas-metal arc welding leads to local minima in the temperature and current density in the centre of the arc. It has become clear that the presence of metal vapour, as well as having intrinsic scientific interest, plays an important role in determining the values of critical parameters in industrial applications, such as the weld penetration in arc welding and the extinction time in circuit breakers. In gas-tungsten arc welding, metal vapour concentrations are formed by evaporation of the weld pool, and are relatively low, typically at most a few per cent. Moreover, the convective flow of the plasma near the weld pool tends to direct the metal vapour plume radially outwards. In gas-metal arc welding, in contrast, metal vapour concentrations can reach over 50%. In this case, the metal vapour is produced mainly by evaporation of the wire electrode, and the strong downwards convective flow below the electrode concentrates the metal vapour in the central region of the arc. The very different metal concentrations and distributions in the two welding processes mean that the metal vapour has markedly different influences on the arc. In gas-tungsten arc welding, the current density distribution is broadened near the weld pool by the influence of the metal vapour on the electrical conductivity of the plasma, and the arc voltage is decreased. In contrast, in gas-metal arc welding, the arc centre is cooled by increased radiative emission and the arc voltage is increased. In

  4. Material design of plasma-enhanced chemical vapour deposition SiCH films for low-k cap layers in the further scaling of ultra-large-scale integrated devices-Cu interconnects.

    PubMed

    Shimizu, Hideharu; Nagano, Shuji; Uedono, Akira; Tajima, Nobuo; Momose, Takeshi; Shimogaki, Yukihiro

    2013-10-01

    Cap layers for Cu interconnects in ultra-large-scale integrated devices (ULSIs), with a low dielectric constant (k-value) and strong barrier properties against Cu and moisture diffusion, are required for the future further scaling of ULSIs. There is a trade-off, however, between reducing the k-value and maintaining strong barrier properties. Using quantum mechanical simulations and other theoretical computations, we have designed ideal dielectrics: SiCH films with Si-C2H4-Si networks. Such films were estimated to have low porosity and low k; thus they are the key to realizing a cap layer with a low k and strong barrier properties against diffusion. For fabricating these ideal SiCH films, we designed four novel precursors: isobutyl trimethylsilane, diisobutyl dimethylsilane, 1, 1-divinylsilacyclopentane and 5-silaspiro [4,4] noname, based on quantum chemical calculations, because such fabrication is difficult by controlling only the process conditions in plasma-enhanced chemical vapor deposition (PECVD) using conventional precursors. We demonstrated that SiCH films prepared using these newly designed precursors had large amounts of Si-C2H4-Si networks and strong barrier properties. The pore structure of these films was then analyzed by positron annihilation spectroscopy, revealing that these SiCH films actually had low porosity, as we designed. These results validate our material and precursor design concepts for developing a PECVD process capable of fabricating a low-k cap layer.

  5. Textile damage caused by vapour cloud explosions.

    PubMed

    Was-Gubala, J; Krauss, W

    2004-01-01

    The aim of the project was to investigate the damage to garments caused by particular vapour cloud explosions. The authors would like to be able to provide investigators with specific information on how to link clothes to a specific type of crime: a particular case study was the inspiration for the examinations. Experiments were carried out in the fire reconstruction chamber of the laboratory using a selection of 26 clothes and 15 household garments differing in colour, fibre composition and textile construction.

  6. Metal Vapour Lasers: Physics, Engineering and Applications

    NASA Astrophysics Data System (ADS)

    Little, Christopher E.

    1999-03-01

    Metal Vapour Lasers Christopher E. Little University of St Andrews, St Andrews, Scotland Since the first successful demonstration of a metal vapour laser (MVL) in 1962, this class of laser has become widely used in a broad range of fields including precision materials processing, isotope separation and medicine. The MVLs that are used today have a range of impressive characteristics that are not readily available using other technologies. In particular, the combination of high average output powers, pulse recurrence frequencies and beam quality available from green/yellow Cu vapour lasers (CVLs) and Cu bromide lasers, coupled with the high-quality, multiwatt ultraviolet (265-289 nm) radiation that can be produced using simple nonlinear optical techniques, means that Cu lasers will continue to be important for many years. Metal Vapour Lasers covers all the most commercially important and scientifically interesting pulsed and continuous wave (CW) gas-discharge MVLs, and includes device histories, operating characteristics, engineering, kinetics, commercial exploitation and applications. Short descriptions of gas discharges and excitation techniques make this volume self-consistent. A comprehensive bibliography is also provided. The greater part of this book is devoted to CVLs and their variants, including new sealed-off, high-power 'kinetically enhanced' CVLs and Cu bromide lasers. However, many other self-terminating MVLs are also discussed, including the red AuVL, green/infrared MnVL and infrared BaVL. Pulsed, high-gain, high average power lasers in the UV/violet (373.7, 430.5 nm) spectral regions are represented by Sr¯+ and Ca¯+ discharge-afterglow recombination lasers. The most commercially successful of the MVLs - the CW, UV/blue cataphoretic He-Cd¯+ ion laser - is described. Hollow cathode lasers are represented in two guises: 'white light' (blue/green/red) He-Cd¯+ ion lasers and UV/infrared Ne/He-Cu¯+ ion lasers. This unique volume is an

  7. Variability of water vapour in the Arctic stratosphere

    NASA Astrophysics Data System (ADS)

    Thölix, L.; Backman, L.; Kivi, R.; Karpechko, A.

    2015-08-01

    This study evaluates the stratospheric water vapour distribution and variability in the Arctic. A FinROSE chemistry climate model simulation covering years 1990-2013 is compared to observations (satellite and frostpoint hygrometer soundings) and the sources of stratospheric water vapour are studied. According to observations and the simulations the water vapour concentration in the Arctic stratosphere started to increase after year 2006, but around 2011 the concentration started to decrease. Model calculations suggest that the increase in water vapour during 2006-2011 (at 56 hPa) is mostly explained by transport related processes, while the photochemically produced water vapour plays a relatively smaller role. The water vapour trend in the stratosphere may have contributed to increased ICE PSC occurrence. The increase of water vapour in the precense of the low winter temperatures in the Arctic stratosphere led to more frequent occurrence of ICE PSCs in the Arctic vortex. The polar vortex was unusually cold in early 2010 and allowed large scale formation of the polar stratospheric clouds. The cold pool in the stratosphere over the Northern polar latitudes was large and stable and a large scale persistent dehydration was observed. Polar stratospheric ice clouds and dehydration were observed at Sodankylä with accurate water vapour soundings in January and February 2010 during the LAPBIAT atmospheric sounding campaign. The observed changes in water vapour were reproduced by the model. Both the observed and simulated decrease of the water vapour in the dehydration layer was up to 1.5 ppm.

  8. [Qualitative Determination of Organic Vapour Using Violet and Visible Spectrum].

    PubMed

    Jiang, Bo; Hu, Wen-zhong; Liu, Chang-jian; Zheng, Wei; Qi, Xiao-hui; Jiang, Ai-li; Wang, Yan-ying

    2015-12-01

    Vapours of organic matters were determined qualitatively employed with ultraviolet-visible absorption spectroscopy. Vapours of organic matters were detected using ultraviolet-visible spectrophotometer employing polyethylene film as medium, the ultraviolet and visible absorption spectra of vegetable oil vapours of soybean oil, sunflower seed oil, peanut oil, rapeseed oil, sesame oil, cotton seed oil, tung tree seed oil, and organic compound vapours of acetone, ethyl acetate, 95% ethanol, glacial acetic acid were obtained. Experimental results showed that spectra of the vegetable oil vapour and the organic compound vapour could be obtained commendably, since ultra violet and visible spectrum of polyethylene film could be deducted by spectrograph zero setting. Different kinds of vegetable oils could been distinguished commendably in the spectra since the λ(max), λ(min), number of absorption peak, position, inflection point in the ultra violet and visible spectra obtained from the vapours of the vegetable oils were all inconsistent, and the vapours of organic compounds were also determined perfectly. The method had a good reproducibility, the ultraviolet and visible absorption spectra of the vapours of sunflower seed oil in 10 times determination were absolutely the same. The experimental result indicated that polyethylene film as a kind of medium could be used for qualitative analysis of ultraviolet and visible absorption spectroscopy. The method for determination of the vapours of the vegetable oils and organic compounds had the peculiarities of fast speed analysis, well reproducibility, accuracy and reliability and low cost, and so on. Ultraviolet and visible absorption spectrum of organic vapour could provide feature information of material vapour and structural information of organic compound, and provide a novel test method for identifying vapour of compound and organic matter.

  9. Low-temperature selective catalytic reduction of NO with NH3 over nanoflaky MnOx on carbon nanotubes in situ prepared via a chemical bath deposition route

    NASA Astrophysics Data System (ADS)

    Fang, Cheng; Zhang, Dengsong; Cai, Sixiang; Zhang, Lei; Huang, Lei; Li, Hongrui; Maitarad, Phornphimon; Shi, Liyi; Gao, Ruihua; Zhang, Jianping

    2013-09-01

    Nanoflaky MnOx on carbon nanotubes (nf-MnOx@CNTs) was in situ synthesized by a facile chemical bath deposition route for low-temperature selective catalytic reduction (SCR) of NO with NH3. This catalyst was mainly characterized by the techniques of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N2 adsorption-desorption analysis, X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR) and NH3 temperature-programmed desorption (NH3-TPD). The SEM, TEM, XRD results and N2 adsorption-desorption analysis indicated that the CNTs were surrounded by nanoflaky MnOx and the obtained catalyst exhibited a large surface area as well. Compared with the MnOx/CNT and MnOx/TiO2 catalysts prepared by an impregnation method, the nf-MnOx@CNTs presented better NH3-SCR activity at low temperature and a more extensive operating temperature window. The XPS results showed that a higher atomic concentration of Mn4+ and more chemisorbed oxygen species existed on the surface of CNTs for nf-MnOx@CNTs. The H2-TPR and NH3-TPD results demonstrated that the nf-MnOx@CNTs possessed stronger reducing ability, more acid sites and stronger acid strength than the other two catalysts. Based on the above mentioned favourable properties, the nf-MnOx@CNT catalyst has an excellent performance in the low-temperature SCR of NO to N2 with NH3. In addition, the nf-MnOx@CNT catalyst also presented favourable stability and H2O resistance.Nanoflaky MnOx on carbon nanotubes (nf-MnOx@CNTs) was in situ synthesized by a facile chemical bath deposition route for low-temperature selective catalytic reduction (SCR) of NO with NH3. This catalyst was mainly characterized by the techniques of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N2 adsorption-desorption analysis, X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR) and NH3 temperature

  10. Formation and Yield of Multi-Walled Carbon Nanotubes Synthesized via Chemical Vapour Deposition Routes Using Different Metal-Based Catalysts of FeCoNiAl, CoNiAl and FeNiAl-LDH

    PubMed Central

    Hussein, Mohd Zobir; Mohamad Jaafar, Adila; Hj. Yahaya, Asmah; Masarudin, Mas Jaffri; Zainal, Zulkarnain

    2014-01-01

    Multi-walled carbon nanotubes (MWCNTs) were prepared via chemical vapor deposition (CVD) using a series of different catalysts, derived from FeCoNiAl, CoNiAl and FeNiAl layered double hydroxides (LDHs). Catalyst-active particles were obtained by calcination of LDHs at 800 °C for 5 h. Nitrogen and hexane were used as the carrier gas and carbon source respectively, for preparation of MWCNTs using CVD methods at 800 °C. MWCNTs were allowed to grow for 30 min on the catalyst spread on an alumina boat in a quartz tube. The materials were subsequently characterized through X-ray diffraction, Fourier transform infrared spectroscopy, surface area analysis, field emission scanning electron microscopy and transmission electron microscopy. It was determined that size and yield of MWCNTs varied depending on the type of LDH catalyst precursor that is used during synthesis. MWCNTs obtained using CoNiAl-LDH as the catalyst precursor showed smaller diameter and higher yield compared to FeCoNiAl and FeNiAl LDHs. PMID:25380526

  11. Low-temperature selective catalytic reduction of NO with NH₃ over nanoflaky MnOx on carbon nanotubes in situ prepared via a chemical bath deposition route.

    PubMed

    Fang, Cheng; Zhang, Dengsong; Cai, Sixiang; Zhang, Lei; Huang, Lei; Li, Hongrui; Maitarad, Phornphimon; Shi, Liyi; Gao, Ruihua; Zhang, Jianping

    2013-10-07

    Nanoflaky MnO(x) on carbon nanotubes (nf-MnO(x)@CNTs) was in situ synthesized by a facile chemical bath deposition route for low-temperature selective catalytic reduction (SCR) of NO with NH₃. This catalyst was mainly characterized by the techniques of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N₂ adsorption-desorption analysis, X-ray photoelectron spectroscopy (XPS), H₂ temperature-programmed reduction (H₂-TPR) and NH₃ temperature-programmed desorption (NH₃-TPD). The SEM, TEM, XRD results and N₂ adsorption-desorption analysis indicated that the CNTs were surrounded by nanoflaky MnO(x) and the obtained catalyst exhibited a large surface area as well. Compared with the MnO(x)/CNT and MnO(x)/TiO₂ catalysts prepared by an impregnation method, the nf-MnO(x)@CNTs presented better NH₃-SCR activity at low temperature and a more extensive operating temperature window. The XPS results showed that a higher atomic concentration of Mn(4+) and more chemisorbed oxygen species existed on the surface of CNTs for nf-MnO(x)@CNTs. The H₂-TPR and NH₃-TPD results demonstrated that the nf-MnO(x)@CNTs possessed stronger reducing ability, more acid sites and stronger acid strength than the other two catalysts. Based on the above mentioned favourable properties, the nf-MnO(x)@CNT catalyst has an excellent performance in the low-temperature SCR of NO to N₂ with NH₃. In addition, the nf-MnO(x)@CNT catalyst also presented favourable stability and H₂O resistance.

  12. Role of the chemically non-innocent ligand in the catalytic formation of hydrogen and carbon dioxide from methanol and water with the metal as the spectator.

    PubMed

    Li, Haixia; Hall, Michael B

    2015-09-30

    The catalytic mechanism for the production of H2 and CO2 from CH3OH and H2O by [K(dme)2][Ru(H) (trop2dad)] (K(dme)2.1_exp) was investigated by density functional theory (DFT) calculations. Since the reaction occurs under mild conditions and at reasonable rates, it could be considered an ideal way to use methanol to store hydrogen. The predicted mechanism begins with the dehydrogenation of methanol to formaldehyde through a new ligand-ligand bifunctional mechanism, where two hydrogen atoms of CH3OH eliminate to the ligand's N and C atoms, a mechanism that is more favorable than the previously known mechanisms, β-H elimination, or the metal-ligand bifunctional. The key initiator of this first step is formed by migration of the hydride in 1 from the ruthenium to the meta-carbon atom, which generates 1″ with a frustrated Lewis pair in the ring between N and C. Hydroxide, formed when 1″ cleaves H2O, reacts rapidly with CH2O to give H2C(OH)O(-), which subsequently donates a hydride to 6 to generate HCOOH and 5. HCOOH then protonates 5 to give formate and a neutral complex, 4, with a fully hydrogenated ligand. The hydride of formate transfers to 6, releasing CO2. The fully hydrogenated complex, 4, is first deprotonated by OH(-) to form 5, which then releases hydrogen to regenerate the catalyst, 1″. In this mechanism, which explains the experimental observations, the whole reaction occurs on the chemically non-innocent ligand with the ruthenium atom appearing as a spectator.

  13. Understanding vapour plume structure in indoor environments for the detection of explosives

    NASA Astrophysics Data System (ADS)

    Foat, Tim

    2015-11-01

    Dogs remain the most effective method for the detection of explosives in many situations yet the spatially, temporally and chemically varying signature that they sense cannot easily be quantified. Vapour plumes can be highly unsteady and intermittent and the problem is further complicated in indoor spaces where turbulent, transitional and laminar regions may exist and where there may be no dominant flow direction. Intermittent plumes can have peak concentrations that are considerably higher than the time averaged values. As dogs can sample the air at 5 Hz it is possible that these unsteady fluctuations play a key part in their detection process. A low Reynolds number (Re less than 5000 at the inlet) benchmark test case for indoor airflow has been studied using large-eddy simulation computational fluid dynamics. Fixed concentration vapour sources have been included on the floor of the room and the resulting vapour dispersion has been modelled. Sources with different surface areas have been included and their instantaneous and mean concentration profiles compared. The results from this study will provide insight into canine detection of vapour in indoor environments.

  14. Variability of water vapour in the Arctic stratosphere

    NASA Astrophysics Data System (ADS)

    Thölix, Laura; Backman, Leif; Kivi, Rigel; Karpechko, Alexey Yu.

    2016-04-01

    This study evaluates the stratospheric water vapour distribution and variability in the Arctic. A FinROSE chemistry transport model simulation covering the years 1990-2014 is compared to observations (satellite and frost point hygrometer soundings), and the sources of stratospheric water vapour are studied. In the simulations, the Arctic water vapour shows decadal variability with a magnitude of 0.8 ppm. Both observations and the simulations show an increase in the water vapour concentration in the Arctic stratosphere after the year 2006, but around 2012 the concentration started to decrease. Model calculations suggest that this increase in water vapour is mostly explained by transport-related processes, while the photochemically produced water vapour plays a relatively smaller role. The increase in water vapour in the presence of the low winter temperatures in the Arctic stratosphere led to more frequent occurrence of ice polar stratospheric clouds (PSCs) in the Arctic vortex. We perform a case study of ice PSC formation focusing on January 2010 when the polar vortex was unusually cold and allowed large-scale formation of PSCs. At the same time a large-scale persistent dehydration was observed. Ice PSCs and dehydration observed at Sodankylä with accurate water vapour soundings in January and February 2010 during the LAPBIAT (Lapland Atmosphere-Biosphere facility) atmospheric measurement campaign were well reproduced by the model. In particular, both the observed and simulated decrease in water vapour in the dehydration layer was up to 1.5 ppm.

  15. Kinetics of photoplasma of dense barium vapour

    SciTech Connect

    Kosarev, N I

    2015-03-31

    Barium vapour ionisation under laser photoexcitation of the resonance line at a wavelength of λ = 553.5 nm is studied numerically. Seed electrons, arising due to the associative ionisation of atoms, gain energy in superelastic collisions and lead to electron avalanche ionisation of the medium. The influence of radiative transfer in a cylindrical gas volume on the excitation kinetics of barium atoms, absorption dynamics of laser radiation and oscillation of ionisation-brightening wave under competition between ionising and quenching collisions of electrons with excited atoms is studied. (interaction of laser radiation with matter)

  16. Vapour growth and characterization of beta indium sesquitelluride crystals

    NASA Astrophysics Data System (ADS)

    Reshmi, P. M.; Kunjomana, A. G.; Chandrasekharan, K. A.; Teena, M.

    2014-05-01

    Physical Vapour Deposition (PVD) provides stoichiometric crystals of different morphology, depending upon the materials, geometry of ampoules, temperature profiles, growth parameters and kinetics of crystallization. The crystal forms such as needles, platelets and spherulites of beta indium sesquitelluride (β-In2Te3) were produced by controlling the temperature of source and growth zones. The X-Ray Diffraction (XRD) and chemical analysis of the spherulitic crystals confirmed zinc blende structure with beta phase. Their resistivity (135.16 Ω cm) at room temperature (300 K) was determined by van der Pauw method. The temperature dependence of DC conductivity was investigated using the conventional two-probe technique. The variation of dielectric constant (ε1) and dielectric loss (tan δ) with temperature has been studied for different frequencies (1 kHz-1 MHz). The AC conductivity, σac(ω) was found to vary with angular frequency as ωs, where s is the frequency exponent. The values of s lie very close to unity and show a slight decrease with increase in temperature, which indicate a Correlated Barrier Hopping (CBH) between centres forming Intimate Valence Alternation Pairs (IVAP). The activation energy for conduction ranges from 0.187 eV to 0.095 eV. The microhardness of β-In2Te3 spherulites is found to be 353.5 kg/mm2, which is higher than that of other semiconducting chalcogenides. The results thus obtained on crystals grown from vapour phase open up ample possibilities for radiation detector applications.

  17. A conservative vapour intrusion screening model of oxygen-limited hydrocarbon vapour biodegradation accounting for building footprint size

    NASA Astrophysics Data System (ADS)

    Knight, John H.; Davis, Gregory B.

    2013-12-01

    Petroleum hydrocarbon vapours pose a reduced risk to indoor air due to biodegradation processes where oxygen is available in the subsurface or below built structures. However, no previous assessment has been available to show the effects of a building footprint (slab size) on oxygen-limited hydrocarbon vapour biodegradation and the potential for oxygen to be present beneath the entire sub-slab region of a building. Here we provide a new, conservative and conceptually simple vapour screening model which links oxygen and hydrocarbon vapour transport and biodegradation in the vicinity and beneath an impervious slab. This defines when vapour risk is insignificant, or conversely when there is potential for vapour to contact the sub-slab of a building. The solution involves complex mathematics to determine the position of an unknown boundary interface between oxygen diffusing in from the ground surface and vapours diffusing upwards from a subsurface vapour source, but the mathematics reduces to a simple relationship between the vapour source concentration and the ratio of the half slab width and depth to the vapour source. Data from known field investigations are shown to be consistent with the model predictions. Examples of 'acceptable' slab sizes for vapour source depths and strengths are given. The predictions are conservative as an estimator of when petroleum hydrocarbon vapours might come in contact with a slab-on-ground building since additional sources of oxygen due to advective flow or diffusion through the slab are ignored. As such the model can be used for screening sites for further investigation.

  18. A conservative vapour intrusion screening model of oxygen-limited hydrocarbon vapour biodegradation accounting for building footprint size.

    PubMed

    Knight, John H; Davis, Gregory B

    2013-12-01

    Petroleum hydrocarbon vapours pose a reduced risk to indoor air due to biodegradation processes where oxygen is available in the subsurface or below built structures. However, no previous assessment has been available to show the effects of a building footprint (slab size) on oxygen-limited hydrocarbon vapour biodegradation and the potential for oxygen to be present beneath the entire sub-slab region of a building. Here we provide a new, conservative and conceptually simple vapour screening model which links oxygen and hydrocarbon vapour transport and biodegradation in the vicinity and beneath an impervious slab. This defines when vapour risk is insignificant, or conversely when there is potential for vapour to contact the sub-slab of a building. The solution involves complex mathematics to determine the position of an unknown boundary interface between oxygen diffusing in from the ground surface and vapours diffusing upwards from a subsurface vapour source, but the mathematics reduces to a simple relationship between the vapour source concentration and the ratio of the half slab width and depth to the vapour source. Data from known field investigations are shown to be consistent with the model predictions. Examples of 'acceptable' slab sizes for vapour source depths and strengths are given. The predictions are conservative as an estimator of when petroleum hydrocarbon vapours might come in contact with a slab-on-ground building since additional sources of oxygen due to advective flow or diffusion through the slab are ignored. As such the model can be used for screening sites for further investigation.

  19. Properties of meso-Erythritol; phase state, accommodation coefficient and saturation vapour pressure

    NASA Astrophysics Data System (ADS)

    Emanuelsson, Eva; Tschiskale, Morten; Bilde, Merete

    2016-04-01

    Introduction Saturation vapour pressure and the associated temperature dependence (enthalpy ΔH), are key parameters for improving predictive atmospheric models. Generally, the atmospheric aerosol community lack experimentally determined values of these properties for relevant organic aerosol compounds (Bilde et al., 2015). In this work we have studied the organic aerosol component meso-Erythritol. Methods Sub-micron airborne particles of meso-Erythritol were generated by nebulization from aqueous solution, dried, and a mono disperse fraction of the aerosol was selected using a differential mobility analyser. The particles were then allowed to evaporate in the ARAGORN (AaRhus Atmospheric Gas phase OR Nano particle) flow tube. It is a temperature controlled 3.5 m long stainless steel tube with an internal diameter of 0.026 m (Bilde et al., 2003, Zardini et al., 2010). Changes in particle size as function of evaporation time were determined using a scanning mobility particle sizer system. Physical properties like air flow, temperature, humidity and pressure were controlled and monitored on several places in the setup. The saturation vapour pressures were then inferred from the experimental results in the MATLAB® program AU_VaPCaP (Aarhus University_Vapour Pressure Calculation Program). Results Following evaporation, meso-Erythriol under some conditions showed a bimodal particle size distribution indicating the formation of particles of two different phase states. The issue of physical phase state, along with critical assumptions e.g. the accommodation coefficient in the calculations of saturation vapour pressures of atmospheric relevant compounds, will be discussed. Saturation vapour pressures from the organic compound meso-Erythritol will be presented at temperatures between 278 and 308 K, and results will be discussed in the context of atmospheric chemistry. References Bilde, M. et al., (2015), Chemical Reviews, 115 (10), 4115-4156. Bilde, M. et. al., (2003

  20. Chemical and Biological Catalytic Enhancement of Weathering of Silicate Minerals and industrial wastes as a Novel Carbon Capture and Storage Technology

    NASA Astrophysics Data System (ADS)

    Park, A. H. A.

    2014-12-01

    Increasing concentration of CO2 in the atmosphere is attributed to rising consumption of fossil fuels around the world. The development of solutions to reduce CO2 emissions to the atmosphere is one of the most urgent needs of today's society. One of the most stable and long-term solutions for storing CO2 is via carbon mineralization, where minerals containing metal oxides of Ca or Mg are reacted with CO2 to produce thermodynamically stable Ca- and Mg-carbonates that are insoluble in water. Carbon mineralization can be carried out in-situ or ex-situ. In the case of in-situ mineralization, the degree of carbonation is thought to be limited by both mineral dissolution and carbonate precipitation reaction kinetics, and must be well understood to predict the ultimate fate of CO2 within geological reservoirs. While the kinetics of in-situ mineral trapping via carbonation is naturally slow, it can be enhanced at high temperature and high partial pressure of CO2. The addition of weak organic acids produced from food waste has also been shown to enhance mineral weathering kinetics. In the case of the ex-situ carbon mineralization, the role of these ligand-bearing organic acids can be further amplified for silicate mineral dissolution. Unfortunately, high mineral dissolution rates often lead to the formation of a silica-rich passivation layer on the surface of silicate minerals. Thus, the use of novel solvent mixture that allows chemically catalyzed removal of this passivation layer during enhanced Mg-leaching surface reaction has been proposed and demonstrated. Furthermore, an engineered biological catalyst, carbonic anhydrase, has been developed and evaluated to accelerate the hydration of CO2, which is another potentially rate-limiting step of the carbonation reaction. The development of these novel catalytic reaction schemes has significantly improved the overall efficiency and sustainability of in-situ and ex-situ mineral carbonation technologies and allowed direct

  1. Comparative stability and catalytic and chemical properties of the sulfate-activating enzymes from Penicillium chrysogenum (mesophile) and Penicillium duponti (thermophile).

    PubMed

    Renosto, F; Schultz, T; Re, E; Mazer, J; Chandler, C J; Barron, A; Segel, I H

    1985-11-01

    ATP sulfurylases from Penicillium chrysogenum (a mesophile) and from Penicillium duponti (a thermophile) had a native molecular weight of about 440,000 and a subunit molecular weight of about 69,000. (The P. duponti subunit appeared to be a little smaller than the P. chrysogenum subunit.) The P. duponti enzyme was about 100 times more heat stable than the P. chrysogenum enzyme; k inact (the first-order rate constant for inactivation) at 65 degrees C = 3.3 X 10(-4) s-1 for P. duponti and 3.0 X 10(-2) s-1 for P. chrysogenum. The P. duponti enzyme was also more stable to low pH and urea at 30 degrees C. Rabbit serum antibodies to each enzyme showed heterologous cross-reaction. Amino acid analyses disclosed no major compositional differences between the two enzymes. The analogous Km and Ki values of the forward and reverse reactions were also essentially identical at 30 degrees C. At 30 degrees C, the physiologically important adenosine 5'-phosphosulfate (APS) synthesis activity of the P. duponti enzyme was 4 U mg of protein-1, which is about half that of the P. chrysogenum enzyme. The molybdolysis and ATP synthesis activities of the P. duponti enzyme at 30 degrees C were similar to those of the P. chrysogenum enzyme. At 50 degrees C, the APS synthesis activity of the P. duponti enzyme was 12 to 19 U mg of protein-1, which was higher than that of the P. chrysogenum enzyme at 30 degrees C (8 +/- 1 U mg of protein-1). Treatment of the P. chrysogenum enzyme with 5,5'-dithiobis(2-nitrobenzoate) (DTNB) at 30 degrees C under nondenaturing conditions modified one free sulfhydryl group per subunit. Vmax was not significantly altered, but the catalytic activity at low magnesium-ATP or SO4(2-) (or MoO4(2-)) was markedly reduced. Chemical modification with tetranitromethane had the same results on the kinetics. The native P. duponti enzyme was relatively unreactive toward DTNB or tetranitromethane at 30 degrees C and pH 8.0 or pH 9.0, but at 50 degrees C and pH 8.0, DTNB rapidly

  2. High performance vapour-cell frequency standards

    NASA Astrophysics Data System (ADS)

    Gharavipour, M.; Affolderbach, C.; Kang, S.; Bandi, T.; Gruet, F.; Pellaton, M.; Mileti, G.

    2016-06-01

    We report our investigations on a compact high-performance rubidium (Rb) vapour-cell clock based on microwave-optical double-resonance (DR). These studies are done in both DR continuous-wave (CW) and Ramsey schemes using the same Physics Package (PP), with the same Rb vapour cell and a magnetron-type cavity with only 45 cm3 external volume. In the CW-DR scheme, we demonstrate a DR signal with a contrast of 26% and a linewidth of 334 Hz; in Ramsey-DR mode Ramsey signals with higher contrast up to 35% and a linewidth of 160 Hz have been demonstrated. Short-term stabilities of 1.4×10-13 τ-1/2 and 2.4×10-13 τ-1/2 are measured for CW-DR and Ramsey-DR schemes, respectively. In the Ramsey-DR operation, thanks to the separation of light and microwave interactions in time, the light-shift effect has been suppressed which allows improving the long-term clock stability as compared to CW-DR operation. Implementations in miniature atomic clocks are considered.

  3. Is there a solar signal in lower stratospheric water vapour?

    NASA Astrophysics Data System (ADS)

    Schieferdecker, Tobias; Lossow, Stefan; Stiller, Gabriele; von Clarmann, Thomas

    2016-04-01

    A merged time series of stratospheric water vapour built from the Halogen Occultation Instrument (HALOE) and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) data between 60 deg S and 60 deg N and 15 to 30 km, and covering the years 1992 to 2012, was analysed by multivariate linear regression, including an 11-year solar cycle proxy. Lower stratospheric water vapour was found to reveal a phase-shifted anti-correlation with the solar cycle, with lowest water vapour after solar maximum. The phase shift is composed of an inherent constant time lag of about 2 years and a second component following the stratospheric age of air. The amplitudes of the water vapour response are largest close to the tropical tropopause (up to 0.35 ppmv) and decrease with altitude and latitude. Including the solar cycle proxy in the regression results in linear trends of water vapour being negative over the full altitude/latitude range, while without the solar proxy, positive water vapour trends in the lower stratosphere were found. We conclude from these results that a solar signal seems to be generated at the tropical tropopause which is most likely imprinted on the stratospheric water vapour abundances and transported to higher altitudes and latitudes via the Brewer-Dobson circulation. Hence it is concluded that the tropical tropopause temperature at the final dehydration point of air may also be governed to some degree by the solar cycle. The negative water vapour trends obtained when considering the solar cycle impact on water vapour abundances can possibly solve the "water vapour conundrum" of increasing stratospheric water vapour abundances despite constant or even decreasing tropopause temperatures.

  4. Is there a solar signal in lower stratospheric water vapour?

    NASA Astrophysics Data System (ADS)

    Schieferdecker, T.; Lossow, S.; Stiller, G. P.; von Clarmann, T.

    2015-09-01

    A merged time series of stratospheric water vapour built from the Halogen Occultation Instrument (HALOE) and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) data between 60° S and 60° N and 15 to 30 km and covering the years 1992 to 2012 was analysed by multivariate linear regression, including an 11-year solar cycle proxy. Lower stratospheric water vapour was found to reveal a phase-shifted anti-correlation with the solar cycle, with lowest water vapour after solar maximum. The phase shift is composed of an inherent constant time lag of about 2 years and a second component following the stratospheric age of air. The amplitudes of the water vapour response are largest close to the tropical tropopause (up to 0.35 ppmv) and decrease with altitude and latitude. Including the solar cycle proxy in the regression results in linear trends of water vapour being negative over the full altitude/latitude range, while without the solar proxy, positive water vapour trends in the lower stratosphere were found. We conclude from these results that a solar signal seems to be generated at the tropical tropopause which is most likely imprinted on the stratospheric water vapour abundances and transported to higher altitudes and latitudes via the Brewer-Dobson circulation. Hence it is concluded that the tropical tropopause temperature at the final dehydration point of air may also be governed to some degree by the solar cycle. The negative water vapour trends obtained when considering the solar cycle impact on water vapour abundances can possibly solve the "water vapour conundrum" of increasing stratospheric water vapour abundances despite constant or even decreasing tropopause temperatures.

  5. Transport mechanisms through PE-CVD coatings: influence of temperature, coating properties and defects on permeation of water vapour

    NASA Astrophysics Data System (ADS)

    Kirchheim, Dennis; Jaritz, Montgomery; Mitschker, Felix; Gebhard, Maximilian; Brochhagen, Markus; Hopmann, Christian; Böke, Marc; Devi, Anjana; Awakowicz, Peter; Dahlmann, Rainer

    2017-03-01

    Gas transport mechanisms through plastics are usually described by the temperature-dependent Arrhenius-model and compositions of several plastic layers are represented by the CLT. When it comes to thin films such as plasma-enhanced chemical vapour deposition (PE-CVD) or plasma-enhanced atomic layer deposition (PE-ALD) coatings on substrates of polymeric material, a universal model is lacking. While existing models describe diffusion through defects, these models presume that permeation does not occur by other means of transport mechanisms. This paper correlates the existing transport models with data from water vapour transmission experiments.

  6. The interaction of an atmospheric pressure plasma jet using argon or argon plus hydrogen peroxide vapour addition with bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Deng, San-Xi; Cheng, Cheng; Ni, Guo-Hua; Meng, Yue-Dong; Chen, Hua

    2010-10-01

    This paper reports that an atmospheric pressure dielectric barrier discharge plasma jet, which uses argon or argon + hydrogen peroxide vapour as the working gas, is designed to sterilize the bacillus subtilis. Compared with the pure argon plasma, the bacterial inactivation efficacy has a significant improvement when hydrogen peroxide vapour is added into the plasma jet. In order to determine which factors play the main role in inactivation, several methods are used, such as determination of optical emission spectra, high temperature dry air treatment, protein leakage quantification, and scanning electron microscope. These results indicate that the possible inactivation mechanisms are the synergistic actions of chemically active species and charged species.

  7. Atmospheric pressure chemical vapour deposition of vanadium oxides

    NASA Astrophysics Data System (ADS)

    Manning, Troy Darrell

    The APCVD of vanadium(IV) oxide thin films from halide precursors was investigated. It was found that the phase of vanadium oxide obtained could be controlled by the reactor temperature and precursor ratio. For vanadium(IV) chloride and water, reactor temperatures > 550 °C and an excess of water over VCI4 was required to produce VO2 thin films. For vanadium(V) oxytrichloride and water, reactor temperatures > 550 °C and an excess of water over VOCI3 also produced VO2 but required low total gas flow rates (< 1 L min 1) for complete coverage of the substrate. Vanadium(IV) oxide thin films doped with metal ions (W, Cr, Nb, Ti, Mo or Sn) were also prepared by the APCVD process in order to reduce the thermochromic transition temperature (TC) from 68 °C for the undoped material to < 30 °C. The most successful dopant was tungsten, introduced into the VOCl3, and water system as WCI6, which lowered T to 5 °C for a 3 atom% tungsten doped thin film. Tungsten (VI) ethoxide was introduced into the VCI4 and water system and reduced TC, of VO2, to 42 °C for a 1 atom% tungsten doped thin film. Chromium, introduced as CrCO2Cl2, formed a chromium vanadium oxide that did not display any thermochromic properties. Niobium, introduced as NbCl5 into the VOCl3 system, reduced TC of VO2, but the amount of niobium introduced could not be easily controlled. Molybdenum, introduced as MoCI5, also reduced TC of VO2, but the form of the molybdenum appeared to be different from that required for complete control of TC, Titanium, introduced as TiCl4, produced phase segregated films of VO2 and TiO2, with interesting multifunctional properties and a reduced TC. Tin, introduced as SnCl4, also formed a phase segregated material of VO2, and SnO2, with a slightly reduced TC.

  8. Prevalence of Bimolecular Routes in the Activation of Diatomic Molecules with Strong Chemical Bonds (O2, NO, CO, N2) on Catalytic Surfaces.

    PubMed

    Hibbitts, David; Iglesia, Enrique

    2015-05-19

    Dissociation of the strong bonds in O2, NO, CO, and N2 often involves large activation barriers on low-index planes of metal particles used as catalysts. These kinetic hurdles reflect the noble nature of some metals (O2 activation on Au), the high coverages of co-reactants (O2 activation during CO oxidation on Pt), or the strength of the chemical bonds (NO on Pt, CO and N2 on Ru). High barriers for direct dissociations from density functional theory (DFT) have led to a consensus that "defects", consisting of low-coordination exposed atoms, are required to cleave such bonds, as calculated by theory and experiments for model surfaces at low coverages. Such sites, however, bind intermediates strongly, rendering them unreactive at the high coverages prevalent during catalysis. Such site requirements are also at odds with turnover rates that often depend weakly on cluster size or are actually higher on larger clusters, even though defects, such as corners and edges, are most abundant on small clusters. This Account illustrates how these apparent inconsistencies are resolved through activations of strong bonds assisted by co-adsorbates on crowded low-index surfaces. Catalytic oxidations occur on Au clusters at low temperatures in spite of large activation barriers for O2 dissociation on Au(111) surfaces, leading to proposals that O2 activation requires low-coordination Au atoms or Au-support interfaces. When H2O is present, however, O2 dissociation proceeds with low barriers on Au(111) because chemisorbed peroxides (*OOH* and *HOOH*) form and weaken O-O bonds before cleavage, thus allowing activation on low-index planes. DFT-derived O2 dissociation barriers are much lower on bare Pt surfaces, but such surfaces are nearly saturated with CO* during CO oxidation. A dearth of vacant sites causes O2* to react with CO* to form *OOCO* intermediates that undergo O-O cleavage. NO-H2 reactions occur on Pt clusters saturated with NO* and H*; direct NO* dissociation requires vacant

  9. Mechanisms and Kinetics of Catalytic Reactions

    DTIC Science & Technology

    1990-08-01

    CHEMICAL RESEARCH, r- DEVELOPMENT 5 N ENGINEERING CRDE-R-084 "" CENTER CENER(GC-TR-1728-008) ’ 04 N MECHANISMS AND KINETICS OF CATALYTIC REACTIONS Q...and Kinetics of Catalytic Reactions &AUTHOR(S) Garlick, Stephanie M. 7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) . PERFORMING ORGANIZATION...Tables........................87 vi MECHANISMS AND KINETICS OF CATALYTIC REACTIONS 1. INTRODUCTION The hydrolysis of phosphate esters in microemulsion

  10. Catalytic reforming

    SciTech Connect

    Aldag, A.W. Jr.

    1986-01-28

    This patent describes a process for the catalytic reforming of a feedstock which contains at least one reformable organic compound. The process consists of contacting the feedstock under suitable reforming conditions with a catalyst composition selected from the group consisting of a catalyst. The catalyst essentially consists of zinc oxide and a spinel structure alumina. Another catalyst consists essentially of a physical mixture of zinc titanate and a spinel structure alumina in the presence of sufficient added hydrogen to substantially prevent the formation of coke. Insufficient zinc is present in the catalyst composition for the formation of a bulk zinc aluminate.

  11. Age and structure of a model vapour-deposited glass

    PubMed Central

    Reid, Daniel R.; Lyubimov, Ivan; Ediger, M. D.; de Pablo, Juan J.

    2016-01-01

    Glass films prepared by a process of physical vapour deposition have been shown to have thermodynamic and kinetic stability comparable to those of ordinary glasses aged for thousands of years. A central question in the study of vapour-deposited glasses, particularly in light of new knowledge regarding anisotropy in these materials, is whether the ultra-stable glassy films formed by vapour deposition are ever equivalent to those obtained by liquid cooling. Here we present a computational study of vapour deposition for a two-dimensional glass forming liquid using a methodology, which closely mimics experiment. We find that for the model considered here, structures that arise in vapour-deposited materials are statistically identical to those observed in ordinary glasses, provided the two are compared at the same inherent structure energy. We also find that newly deposited hot molecules produce cascades of hot particles that propagate far into the film, possibly influencing the relaxation of the material. PMID:27762262

  12. Catalytic reaction in confined flow channel

    DOEpatents

    Van Hassel, Bart A.

    2016-03-29

    A chemical reactor comprises a flow channel, a source, and a destination. The flow channel is configured to house at least one catalytic reaction converting at least a portion of a first nanofluid entering the channel into a second nanofluid exiting the channel. The flow channel includes at least one turbulating flow channel element disposed axially along at least a portion of the flow channel. A plurality of catalytic nanoparticles is dispersed in the first nanofluid and configured to catalytically react the at least one first chemical reactant into the at least one second chemical reaction product in the flow channel.

  13. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces.

    PubMed

    Vakarelski, Ivan U; Patankar, Neelesh A; Marston, Jeremy O; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2012-09-13

    In 1756, Leidenfrost observed that water drops skittered on a sufficiently hot skillet, owing to levitation by an evaporative vapour film. Such films are stable only when the hot surface is above a critical temperature, and are a central phenomenon in boiling. In this so-called Leidenfrost regime, the low thermal conductivity of the vapour layer inhibits heat transfer between the hot surface and the liquid. When the temperature of the cooling surface drops below the critical temperature, the vapour film collapses and the system enters a nucleate-boiling regime, which can result in vapour explosions that are particularly detrimental in certain contexts, such as in nuclear power plants. The presence of these vapour films can also reduce liquid-solid drag. Here we show how vapour film collapse can be completely suppressed at textured superhydrophobic surfaces. At a smooth hydrophobic surface, the vapour film still collapses on cooling, albeit at a reduced critical temperature, and the system switches explosively to nucleate boiling. In contrast, at textured, superhydrophobic surfaces, the vapour layer gradually relaxes until the surface is completely cooled, without exhibiting a nucleate-boiling phase. This result demonstrates that topological texture on superhydrophobic materials is critical in stabilizing the vapour layer and thus in controlling--by heat transfer--the liquid-gas phase transition at hot surfaces. This concept can potentially be applied to control other phase transitions, such as ice or frost formation, and to the design of low-drag surfaces at which the vapour phase is stabilized in the grooves of textures without heating.

  14. A solar signal in lower stratospheric water vapour?

    NASA Astrophysics Data System (ADS)

    Schieferdecker, T.; Lossow, S.; Stiller, G. P.; von Clarmann, T.

    2015-04-01

    A merged time series of stratospheric water vapour built from HALOE and MIPAS data between 60° S and 60° N and 15 to 30 km and covering the years 1992 to 2012 was analyzed by multivariate linear regression including an 11 year solar cycle proxy. Lower stratospheric water vapour was found to reveal a phase-shifted anti-correlation with the solar cycle, with lowest water vapour after solar maximum. The phase shift is composed of an inherent constant time lag of about 2 years and a second component following the stratospheric age of air. The amplitudes of the water vapour response are largest close to the tropical tropopause (up to 0.35 ppmv) and decrease with altitude and latitude. Including the solar cycle proxy in the regression results in linear trends of water vapour being negative over the full altitude/latitude range, while without the solar proxy positive water wapour trends in the lowermost stratosphere were found. We conclude from these results that a solar signal generated at the tropical tropopause is imprinted on the stratospheric water vapour abundances and transported to higher altitudes and latitudes via the Brewer-Dobson circulation. Hence it is concluded that the tropical tropopause temperature at the final dehydration point of air is also governed to some degree by the solar cycle. The negative water vapour trends obtained when considering the solar cycle impact on water vapour abundances can solve the water vapour conundrum of increasing stratospheric water vapour abundances at constant or even decreasing tropopause temperatures.

  15. Localisation of an Unknown Number of Land Mines Using a Network of Vapour Detectors

    PubMed Central

    Chhadé, Hiba Haj; Abdallah, Fahed; Mougharbel, Imad; Gning, Amadou; Julier, Simon; Mihaylova, Lyudmila

    2014-01-01

    We consider the problem of localising an unknown number of land mines using concentration information provided by a wireless sensor network. A number of vapour sensors/detectors, deployed in the region of interest, are able to detect the concentration of the explosive vapours, emanating from buried land mines. The collected data is communicated to a fusion centre. Using a model for the transport of the explosive chemicals in the air, we determine the unknown number of sources using a Principal Component Analysis (PCA)-based technique. We also formulate the inverse problem of determining the positions and emission rates of the land mines using concentration measurements provided by the wireless sensor network. We present a solution for this problem based on a probabilistic Bayesian technique using a Markov chain Monte Carlo sampling scheme, and we compare it to the least squares optimisation approach. Experiments conducted on simulated data show the effectiveness of the proposed approach. PMID:25384008

  16. Novel Catalytic Membrane Reactors

    SciTech Connect

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  17. The ignitability of petrol vapours and potential for vapour phase explosion by use of TASER® law enforcement electronic control device.

    PubMed

    Clarke, C; Andrews, S P

    2014-12-01

    An experimental study was made of the potential of the TASER-X26™ law enforcement electronic control device to ignite petrol vapours if used by an officer to incapacitate a person soaked in petrol, or within a flammable atmosphere containing petrol vapour. Bench scale tests have shown that a wooden mannequin with pig skin covering the chest was a suitable representation of a human target. Full scale tests using the mannequin have shown that the arc from a TASER-X26™ is capable of igniting petrol/air vapours on a petrol-soaked person. Further tests in a 1/5 scale and a full scale compartment have shown that if a TASER is used within a compartment, a petrol vapour explosion (deflagration) may be achieved. It is evident from this research that if used in a flammable vapour rich environment, the device could prove fatal not only to the target but the TASER® operator as well.

  18. Carbon Cloth Supports Catalytic Electrodes

    NASA Technical Reports Server (NTRS)

    Lu, W. T. P.; Ammon, R. L.

    1983-01-01

    Carbon cloth is starting material for promising new catalytic electrodes. Carbon-cloth electrodes are more efficient than sintered-carbon configuration previously used. Are also chemically stable and require less catalyst--an important economic advantage when catalyst is metal such as platinum.

  19. Catalytic microrotor driven by geometrical asymmetry.

    PubMed

    Yang, Mingcheng; Ripoll, Marisol; Chen, Ke

    2015-02-07

    An asymmetric gear with homogeneous surface properties is, here, presented as a prototype to fabricate catalytic microrotors. The driving torque arises from the diffusiophoretic effect induced by the concentration gradients generated by catalytic chemical reactions at the gear surface. This torque produces a spontaneous and unidirectional rotation of the asymmetric gear. By means of mesoscopic simulations, we prove and characterize this scenario. The gear rotational velocity is determined by the gear-solvent interactions, the gear geometry, the solvent viscosity, and the catalytic reaction ratio. Our work presents a simple way to design self-propelled microrotors, alternative to existing catalytic bi-component, or thermophoretic ones.

  20. Catalytic microrotor driven by geometrical asymmetry

    NASA Astrophysics Data System (ADS)

    Yang, Mingcheng; Ripoll, Marisol; Chen, Ke

    2015-02-01

    An asymmetric gear with homogeneous surface properties is, here, presented as a prototype to fabricate catalytic microrotors. The driving torque arises from the diffusiophoretic effect induced by the concentration gradients generated by catalytic chemical reactions at the gear surface. This torque produces a spontaneous and unidirectional rotation of the asymmetric gear. By means of mesoscopic simulations, we prove and characterize this scenario. The gear rotational velocity is determined by the gear-solvent interactions, the gear geometry, the solvent viscosity, and the catalytic reaction ratio. Our work presents a simple way to design self-propelled microrotors, alternative to existing catalytic bi-component, or thermophoretic ones.

  1. Differential transition-state stabilization in enzyme catalysis: quantum chemical analysis of interactions in the chorismate mutase reaction and prediction of the optimal catalytic field.

    PubMed

    Szefczyk, Borys; Mulholland, Adrian J; Ranaghan, Kara E; Sokalski, W Andrzej

    2004-12-15

    Chorismate mutase is a key model system in the development of theories of enzyme catalysis. To analyze the physical nature of catalytic interactions within the enzyme active site and to estimate the stabilization of the transition state (TS) relative to the substrate (differential transition state stabilization, DTSS), we have carried out nonempirical variation-perturbation analysis of the electrostatic, exchange, delocalization, and correlation interactions of the enzyme-bound substrate and transition-state structures derived from ab initio QM/MM modeling of Bacillus subtilis chorismate mutase. Significant TS stabilization by approximately -23 kcal/mol [MP2/6-31G(d)] relative to the bound substrate is in agreement with that of previous QM/MM modeling and contrasts with suggestions that catalysis by this enzyme arises purely from conformational selection effects. The most important contributions to DTSS come from the residues, Arg90, Arg7, Glu78, a crystallographic water molecule, Arg116, and Arg63, and are dominated by electrostatic effects. Analysis of the differential electrostatic potential of the TS and substrate allows calculation of the catalytic field, predicting the optimal location of charged groups to achieve maximal DTSS. Comparison with the active site of the enzyme from those of several species shows that the positions of charged active site residues correspond closely to the optimal catalytic field, showing that the enzyme has evolved specifically to stabilize the TS relative to the substrate.

  2. Catalytic Science Center Opens at Delaware

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1978

    1978-01-01

    Described is a catalytic science center designed to incorporate academic and industrial concerns. The center combines educational and research opportunities for undergraduate and graduate students, as well as for the chemical professional. (MA)

  3. [CO2-gas exchange of mosses following water vapour uptake].

    PubMed

    Lange, O L

    1969-03-01

    The CO2-gas exchange of dry mosses which were exposed to air of high water vapour content has been followed. Some moss species behave as do lichens and aerophilic green algae: they are able to take up enough water vapour to make a rather high photosynthetic activity possible. Other species lack this ability. They need liquid water for reactivation of photosynthesis, as do poikilohydric ferns and phanerogams. In this respect too the mosses are located between the real thallophytes and the cormophytes. From this point of view they are useful objects for studying the relationships between water vapour reactivation, morphological organisation and ecological capability.

  4. Suitability assessment of a continuous process combining thermo-mechano-chemical and bio-catalytic action in a single pilot-scale twin-screw extruder for six different biomass sources.

    PubMed

    Vandenbossche, Virginie; Brault, Julien; Hernandez-Melendez, Oscar; Evon, Philippe; Barzana, Eduardo; Vilarem, Gérard; Rigal, Luc

    2016-07-01

    A process has been validated for the deconstruction of lignocellulose on a pilot scale installation using six types of biomass selected for their sustainability, accessibility, worldwide availability, and differences of chemical composition and physical structure. The process combines thermo-mechano-chemical and bio-catalytic action in a single twin-screw extruder. Three treatment phases were sequentially performed: an alkaline pretreatment, a neutralization step coupled with an extraction-separation phase and a bioextrusion treatment. Alkaline pretreatment destructured the wall polymers after just a few minutes and allowed the initial extraction of 18-54% of the hemicelluloses and 9-41% of the lignin. The bioextrusion step induced the start of enzymatic hydrolysis and increased the proportion of soluble organic matter. Extension of saccharification for 24h at high consistency (20%) and without the addition of new enzyme resulted in the production of 39-84% of the potential glucose.

  5. Use of hydrogen peroxide vapour & plasma irradiation in combination for quick decontamination of closed chambers

    PubMed Central

    Mourya, Devendra T.; Shahani, Hamish C.; Yadav, Pragya D.; Barde, Pradip V.

    2016-01-01

    Background & objectives: Various conventional methods such as gaseous, vapour and misting systems, fogging, manual spray and wipe techniques employing a number of chemical agents are used for decontamination of enclosed spaces. Among all these methods, use of aerosolized formaldehyde is the most preferred method due to cost-effectiveness and practical aspects. However, being extremely corrosive in nature generating very irritating fumes and difficulty in maintaining a high level of gas concentration, many laboratories prefer the vaporization of hydrogen peroxide (H2O2) as an alternative. We present here the results of using H2O2 vapour in combination with plasma irradiation for quick decontamination of closed chambers. Methods: The present study describes a decontamination method, using plasma irradiation in combination with H2O2 (5%). Effect of plasma irradiation and H2O2 on the viability of bacterial spores (Bacillus subtilis), Chikungunya and Kyasanur Forest Disease viruses was assessed. Results: Data suggest that with the combination of H2O2 vapour and plasma irradiation, within short time (three minutes), decontamination of surfaces and space volume could be achieved. Although it showed damage of spores present on the strips, it did not show any penetration power. Interpretation & conclusions: The results were encouraging, and this method was found to be efficient for achieving surface sterilization in a short time. This application may be useful in laboratories and industries particularly, those working on clean facility concept following good laboratory and manufacturing practices. PMID:27934804

  6. Pt3Ti nanoparticles: fine dispersion on SiO2 supports, enhanced catalytic CO oxidation, and chemical stability at elevated temperatures.

    PubMed

    Saravanan, Govindachetty; Abe, Hideki; Xu, Ya; Sekido, Nobuaki; Hirata, Hirohito; Matsumoto, Shin-ichi; Yoshikawa, Hideki; Yamabe-Mitarai, Yoko

    2010-07-06

    A platinum-based intermetallic phase with an early d-metal, Pt(3)Ti, has been synthesized in the form of nanoparticles (NPs) dispersed on silica (SiO(2)) supports. The organometallic Pt and Ti precursors, Pt(1,5-cyclooctadiene)Cl(2) and TiCl(4)(tetrahydrofuran)(2), were mixed with SiO(2) and reduced by sodium naphthalide in tetrahydrofuran. Stoichiometric Pt(3)Ti NPs with an average particle size of 2.5 nm were formed on SiO(2) (particle size: 20-200 nm) with an atomically disordered FCC-type structure (Fm3m; a = 0.39 nm). A high dispersivity of Pt(3)Ti NPs was achieved by adding excessive amounts of SiO(2) relative to the Pt precursor. A 50-fold excess of SiO(2) resulted in finely dispersed, SiO(2)-supported Pt(3)Ti NPs that contained 0.5 wt % Pt. The SiO(2)-supported Pt(3)Ti NPs showed a lower onset temperature of catalysis by 75 degrees C toward the oxidation reaction of CO than did SiO(2)-supported pure Pt NPs with the same particle size and Pt fraction, 0.5 wt %. The SiO(2)-supported Pt(3)Ti NPs also showed higher CO conversion than SiO(2)-supported pure Pt NPs even containing a 2-fold higher weight fraction of Pt. The SiO(2)-supported Pt(3)Ti NPs retained their stoichiometric composition after catalytic oxidation of CO at elevated temperatures, 325 degrees C. Pt(3)Ti NPs show promise as a catalytic center of purification catalysts for automobile exhaust due to their high catalytic activity toward CO oxidation with a low content of precious metals.

  7. Stand-off detection of alcohol vapours in moving cars

    NASA Astrophysics Data System (ADS)

    Kopczyński, Krzysztof; Kubicki, Jan; Młyńczak, Jaroslaw; Mierczyk, Jadwiga; Hackiewicz, Klaudia

    2016-12-01

    In this article we present the research on optoelectronic system for stand-off detection of alcohol vapours in moving cars. The idea of using commercially available cascade lasers was presented. Special attention was paid to the optical characteristics of the car windowpanes. It was shown that using 3.45 μm and 3.59 μm wavelengths the alcohol vapours inside a car can be successfully detected even for cars with different windows

  8. Decomposition of O,S-dimethyl methylphosphonothiolate by ammonia on magnesium oxide: a theoretical study of catalytic detoxification of a chemical warfare agent.

    PubMed

    Sahu, Chandan; Ghosh, Deepanwita; Sen, Kaushik; Das, Abhijit K

    2015-08-21

    The adsorption of a model nerve agent, O,S-dimethyl methylphosphonothiolate (DMPT), on the hydroxylated and unhydroxylated nano-crystalline magnesium oxide surface followed by the nucleophilic attack of ammonia (NH3) is investigated at the M06-2X/6-311++G(d,p) level of theory using the representative cluster models. The geometries of DMPT and NH3 are fully optimized, while the geometry of the oxide fragment is kept frozen. The main insight of this study is the incorporation of the Eley-Rideal mechanism for the first time in the detoxification process, where one of the reactant molecules (DMPT) is adsorbed and the other one (NH3) reacts with it directly impinging from the gas phase. There are two possible pathways of nucleophilic detoxification, either concerted or stepwise. The nature of the first transition state of nucleophilic attack in both pathways is the vital step for degradation. Our calculated results predict that the reaction of DMPT with NH3 gives rise to both P-S and P-O bond cleavage completely. Also, the P-S cleavage is found to be the favorable one over P-O bond breaking. The exploration of the overall reaction mechanism has established the catalytic activity of nano-crystalline MgO in nucleophilic DMPT degradation, as in all cases the activation barriers have reduced compared to the previously reported aminolysis of DMPT in the gas phase. Interestingly, the hydroxylated model has better catalytic performance than the unhydroxylated one.

  9. Raney nickel catalytic device

    DOEpatents

    O'Hare, Stephen A.

    1978-01-01

    A catalytic device for use in a conventional coal gasification process which includes a tubular substrate having secured to its inside surface by expansion a catalytic material. The catalytic device is made by inserting a tubular catalytic element, such as a tubular element of a nickel-aluminum alloy, into a tubular substrate and heat-treating the resulting composite to cause the tubular catalytic element to irreversibly expand against the inside surface of the substrate.

  10. Examination of surface phenomena of V₂O₅ loaded on new nanostructured TiO₂ prepared by chemical vapor condensation for enhanced NH₃-based selective catalytic reduction (SCR) at low temperatures.

    PubMed

    Cha, Woojoon; Yun, Seong-Taek; Jurng, Jongsoo

    2014-09-07

    In this article, we describe the investigation and surface characterization of a chemical vapor condensation (CVC)-TiO2 support material used in a V2O5/TiO2 catalyst for enhanced selective catalytic reduction (SCR) activity and confirm the mechanism of surface reactions. On the basis of previous studies and comparison with a commercial TiO2 catalyst, we examine four fundamental questions: first, the reason for increased surface V(4+) ion concentrations; second, the origin of the increase in surface acid sites; third, a basis for synergistic influences on improvements in SCR activity; and fourth, a reason for improved catalytic activity at low reaction temperatures. In this study, we have cited the result of SCR with NH3 activity for removing NOx and analyzed data using the reported result and data from previous studies on V2O5/CVC-TiO2 for the SCR catalyst. In order to determine the properties of suitable CVC-TiO2 surfaces for efficient SCR catalysis at low temperatures, CVC-TiO2 specimens were prepared and characterized using techniques such as XRD, BET, HR-TEM, XPS, FT-IR, NH3-TPD, photoluminescence (PL) spectroscopy, H2-TPR, and cyclic voltammetry. The results obtained for the CVC-TiO2 materials were also compared with those of commercial TiO2.

  11. Catalytic performances of HZSM-5, NaY and MCM-41 in two-stage catalytic pyrolysis of pinewood

    NASA Astrophysics Data System (ADS)

    Wang, Y. M.; Wang, J.

    2016-08-01

    Experiments were carried out in an atmospheric two-stage fixed bed reactor to investigate the catalytic cracking of pinewood pyrolysis vapour over three single catalysts, HZSM-5, NaY and MCM-41. The pinewood was pyrolyzed in the first stage reactor at a heating rate of 10 °C min-1 from room temperature to 700 °C, and the resultant vapour was cracked through the second reactor at a temperature of 500, 600 or 700 °C with and without catalyst. Both the gases and liquid compounds were thoroughly determined. It was found that all three catalysts had significant catalytic effects on the vapour cracking especially in the range of 500-600 °C. However, three catalysts showed dissimilarity to each other with respect to the distributions of products. Among three catalysts, HZSM-5 displayed the highest selectivity for the formation of olefins and light aromatics, with the least deposit of coke, though NaY showed the strongest capability of deoxygenation. The HZSM-5 cracking at 600 °C was preferred to balance the yield and quality of bio-products. MCM-41 behaved as a worse catalyst in the deoxygenation, and its resultant liquid product contained more heavy aromatics.

  12. A new approach to the water vapour feedback

    NASA Astrophysics Data System (ADS)

    Ingram, W.

    2012-12-01

    Climate sensitivity is often said to be doubled by water vapour feedback. From simple physical arguments, confirmed by GCMs, and consistent with the limited observational evidence, we expect the distribution of RH to change little under climate change. This implies a substantial positive feedback on climate change - but why about a doubling? And why is this value so robust even to major modelling errors and approximations? And why do GCMs never give a run-away water vapour greenhouse effect, plausible though extrapolation can make it seem? Considering the "paradox" of Simpson (1928) leads to a simple model that explains all these. The "partly-Simpsonian" model for the water vapour feedback on climate change implies a very simple constraint - that the component of OLR radiated by water vapour does not change as climate changes, while that radiated by everything else (surface, clouds, CO2, etc.) increases following Planck's Law. This does not predict the actual non-cloud LW response λCSLW of GCMs quantitatively accurately, but gives the general size. It also explains why a run-away water vapour greenhouse effect is not possible in Earth-like conditions: the partly-Simpsonian water vapour feedback can do no more than cancel part of the basic Planck's-Law negative feedback - less than 100% as long as some OLR is not from water vapour. The robustness of the GCMs' water vapour feedbacks, even if they simulate the water vapour distribution very badly, also follows: the fraction of emission by water vapour is both innately computationally robust (even large errors in water vapour amounts can only affect those limited parts of the spectrum of intermediate optical depth: most of the spectrum will be effectively opaque or effectively transparent at any given location), and closely related to the surface downward LW flux, which is verifiable and tunable. In addition, the partly-Simpsonian model provides a physical explanation for the long-known fact that LW radiances or OLR

  13. New H2SO4 and HSO3 vapour measurements in the stratosphere - Evidence for a volcanic influence

    NASA Astrophysics Data System (ADS)

    Arnold, F.; Buehrke, T.

    1983-01-01

    In situ measurements of stratospheric H2SO4 and HSO3 vapour concentrations using passive chemical ionization mass spectrometry were made in 1982 before and after the dramatic eruptions of the Mexican volcano El Chichon. Substantial increases of the total concentration of these gases over previously measured values were observed, particularly around 25 km altitude where most of the eruption cloud material was deposited. Implications for stratospheric SO2-oxidation and nucleation processes are discussed.

  14. RESEARCH NOTE WCA repulsive and attractive contributions to the thermodynamic properties at the vapour-liquid equilibrium

    NASA Astrophysics Data System (ADS)

    Cuadros, F.; Mulero, A.; Faundez, C. A.

    The Lennard-Jones attractive and repulsive contributions of intermolecular forces (as separated in the Weeks-Chandler-Andersen (WCA) theory) to the pressure and chemical potential of coexisting vapour and liquid phases are obtained by using an equation of state recently proposed by us. Some comments are given about the computer simulation results obtained by Plackov and Sadus (1997, Fluid Phase Equilib., 134, 77) using the McQuarrie-Katz separation of the intermolecular potential.

  15. Catalytic cracking of hydrocarbons

    SciTech Connect

    Absil, R.P.L.; Bowes, E.; Green, G.J.; Marler, D.O.; Shihabi, D.S.; Socha, R.F.

    1992-02-04

    This patent describes an improvement in a catalytic cracking process in which a hydrocarbon feed is cracked in a cracking zone in the absence of added hydrogen and in the presence of a circulating inventory of solid acidic cracking a catalyst which acquires a deposit of coke that contains chemically bound nitrogen while the cracking catalyst is in the cracking zone, the coke catalyst being circulated to t regeneration zone to convert the coke catalyst to a regenerated catalyst with the formation of a flue gas comprising nitrogen oxides: the improvement comprises incorporating into the circulating catalyst inventory an amount of additive particles comprising a synthetic porous crystalline material containing copper metal or cations, to reduce the content of nitrogen oxides in the flue gas.

  16. Catalytic activation of OKO zeolite with intersecting pores of 10- and 12-membered rings using atomic layer deposition of aluminium.

    PubMed

    Verheyen, E; Pulinthanathu Sree, S; Thomas, K; Dendooven, J; De Prins, M; Vanbutsele, G; Breynaert, E; Gilson, J-P; Kirschhock, C E A; Detavernier, C; Martens, J A

    2014-05-07

    Tetrahedral framework aluminium was introduced in all-silica zeolite -COK-14 using Atomic Layer Deposition (ALD) involving alternating exposure to trimethylaluminium and water vapour. The modification causes permanent conversion of the originally interrupted framework of -COK-14 to a fully connected OKO type framework, and generates catalytic activity in the acid catalysed hydrocarbon conversion reaction.

  17. Nanofluidic transport governed by the liquid/vapour interface.

    PubMed

    Lee, Jongho; Laoui, Tahar; Karnik, Rohit

    2014-04-01

    Liquid/vapour interfaces govern the behaviour of a wide range of systems but remain poorly understood, leaving ample margin for the exploitation of intriguing functionalities for applications. Here, we systematically investigate the role of liquid/vapour interfaces in the transport of water across apposing liquid menisci in osmosis membranes comprising short hydrophobic nanopores that separate two fluid reservoirs. We show experimentally that mass transport is limited by molecular reflection from the liquid/vapour interface below a certain length scale, which depends on the transmission probability of water molecules across the nanopores and on the condensation probability of a water molecule incident on the liquid surface. This fundamental yet elusive condensation property of water is measured under near-equilibrium conditions and found to decrease from 0.36 ± 0.21 at 30 °C to 0.18 ± 0.09 at 60 °C. These findings define the regime in which liquid/vapour interfaces govern nanofluidic transport and have implications for understanding mass transport in nanofluidic devices, droplets and bubbles, biological components and porous media involving liquid/vapour interfaces.

  18. Vapour phase hydrogenation of phenol over rhodium on SBA-15 and SBA-16.

    PubMed

    Giraldo, Liliana; Bastidas-Barranco, Marlon; Moreno-Piraján, Juan Carlos

    2014-12-10

    In the present work, mesoporous SBA-15 and SBA-16 were synthesised using classical methods, and their physicochemical properties were investigated by X-ray diffraction (XRD), FTIR, TEM and N2 adsorption-desorption. Rhodium (Rh, 1 wt %) was loaded on the mesoporous SBA-15 and SBA-16 by an impregnation method. The Rh surface coverage, dispersion and crystallite size were determined by room temperature H2 chemisorption on reduced samples. The catalytic activity of Rh supported on mesoporous SBA-15 and SBA-16 was evaluated for the first time in the hydrogenation of phenol in vapour phase in a temperature range between 130 and 270 °C at atmospheric pressure. The reaction over Rh/SBA-15 at 180 °C produced cyclohexanone as the major product (about 60%) along with lower amounts of cyclohexanol (about 35%) and cyclohexane (about 15%). The influences of temperature, H2/phenol ratio, contact time and the nature of the solvent on the catalytic performance were systematically investigated. The Rh/SBA-16 system offered lower phenol conversion compared to Rh/SBA-15, but both have a very high selectivity for cyclohexanone (above 60%).

  19. Evolution of the Structure and Chemical State of Pd Nanoparticles During the in Situ Catalytic Reduction of NO with H2

    SciTech Connect

    K Paredis; L Ono; F Behafarid; Z Zhang; J Yang; A Frenkel; B Roldan Cuenya

    2011-12-31

    An in-depth understanding of the fundamental structure of catalysts during operation is indispensable for tailoring future efficient and selective catalysts. We report the evolution of the structure and oxidation state of ZrO{sub 2}-supported Pd nanocatalysts (5 nm) during the in situ reduction of NO with H{sub 2} using X-ray absorption fine-structure spectroscopy and X-ray photoelectron spectroscopy. Prior to the onset of the reaction ({le}120 C), a NO-induced redispersion of our initial metallic Pd nanoparticles over the ZrO{sub 2} support was observed, and Pd{sup {delta}+} species were detected. This process parallels the high production of N{sub 2}O observed at the onset of the reaction (>120 C), while at higher temperatures ({ge}150 C) the selectivity shifts mainly toward N{sub 2} ({approx}80%). Concomitant with the onset of N{sub 2} production, the Pd atoms aggregate again into large (6.5 nm) metallic Pd nanoparticles, which were found to constitute the active phase for the H{sub 2}-reduction of NO. Throughout the entire reaction cycle, the formation and stabilization of PdO{sub x} was not detected. Our results highlight the importance of in situ reactivity studies to unravel the microscopic processes governing catalytic reactivity.

  20. Adsorption of n-alkane vapours at the water surface.

    PubMed

    Biscay, Frédéric; Ghoufi, Aziz; Malfreyt, Patrice

    2011-06-21

    Monte Carlo simulations are reported here to predict the surface tension of the liquid-vapour interface of water upon adsorption of alkane vapours (methane to hexane). A decrease of the surface tension has been established from n-pentane. A correlation has been evidenced between the decrease of the surface tension and the absence of specific arrangement at the water surface for n-pentane and n-hexane. The thermodynamic stability of the adsorption layer and the absence of film for longer alkanes have been checked through the calculation of a potential of mean force. This complements the work recently published [Ghoufi et al., Phys. Chem. Chem. Phys., 2010, 12, 5203] concerning the adsorption of methane at the water surface. The decrease of the surface tension has been interpreted in terms of the degree of hydrogen bonding of water molecules at the liquid-vapour interface upon adsorption.

  1. Vapour-liquid equilibrium in the krypton-xenon system

    NASA Astrophysics Data System (ADS)

    Calado, Jorge C. G.; Chang, Elaine; Streett, William B.

    1983-01-01

    Isothermal vapour-liquid data were measured for the krypton-xenon system at ten temperatures between 165 and 270 K and pressures to 6.7 MPa, using a vapour recirculating technique. The mixture critical line has been located in ( P, T, x) space. Barker's method of data reduction has been used to test the thermodynamic consistency of isotherms below the critical temperature of krypton (209.4 K) and the excess Gibbs energy was evaluated, at the same temperatures, as a function of composition. The results of the experiments have been compared with predictions of the Peng-Robinson equation of state. With interaction parameter calculated by fitting the isotherm of 200.64 K, this equation predicts the liquid and vapour phase compositions to within about a few mole per cent over most of the experimental range.

  2. CO2-fluxing collapses metal mobility in magmatic vapour

    DOE PAGES

    van Hinsberg, V. J.; Berlo, K.; Migdisov, A. A.; ...

    2016-05-18

    Magmatic systems host many types of ore deposits, including world-class deposits of copper and gold. Magmas are commonly an important source of metals and ore-forming fluids in these systems. In many magmatic-hydrothermal systems, low-density aqueous fluids, or vapours, are significant metal carriers. Such vapours are water-dominated shallowly, but fluxing of CO2-rich vapour exsolved from deeper magma is now recognised as ubiquitous during open-system magma degassing. Furthermore, we show that such CO2-fluxing leads to a sharp drop in element solubility, up to a factor of 10,000 for Cu, and thereby provides a highly efficient, but as yet unrecognised mechanism for metalmore » deposition.« less

  3. A Mechanical System for Dispensing Known Amounts of Insecticidal Vapours*

    PubMed Central

    Jensen, J. A.; Pearce, G. W.; Quarterman, K. D.

    1961-01-01

    The requirements for a self-contained semi-automatic insecticidal vapour dispenser for use in the disinsection of aircraft are presented. A prototype device meeting these requirements is described and data on its performance, using DDVP (O,O-dimethyl-2,2-dichlorovinyl phosphate) as the insecticide, are given. In this system a miniature air compressor forces air through a membrane impregnated with DDVP, and the vapour-laden air exits into the cabin through a tubular distribution system equipped with orifices. The vapour output is governed by the volume and the temperature of the air passing through the membrane, and the system is adaptable to all types of aircraft at present in use or projected for the near future. The system can also be adapted for use in the disinsection of other closed or semi-closed spaces. PMID:13789905

  4. Intercomparison of TCCON and MUSICA Water Vapour Products

    NASA Astrophysics Data System (ADS)

    Weaver, D.; Strong, K.; Deutscher, N. M.; Schneider, M.; Blumenstock, T.; Robinson, J.; Notholt, J.; Sherlock, V.; Griffith, D. W. T.; Barthlott, S.; García, O. E.; Smale, D.; Palm, M.; Jones, N. B.; Hase, F.; Kivi, R.; Ramos, Y. G.; Yoshimura, K.; Sepúlveda, E.; Gómez-Peláez, Á. J.; Gisi, M.; Kohlhepp, R.; Warneke, T.; Dohe, S.; Wiegele, A.; Christner, E.; Lejeune, B.; Demoulin, P.

    2014-12-01

    We present an intercomparison between the water vapour products from the Total Carbon Column Observing Network (TCCON) and the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA), two datasets from ground-based Fourier Transform InfraRed (FTIR) spectrometers with good global representation. Where possible, comparisons to radiosondes are also included. The near-infrared TCCON measurements are optimized to provide precise monitoring of greenhouse gases for carbon cycle studies; however, TCCON's retrievals also produce water vapour products. The mid-infrared MUSICA products result from retrievals optimized to give precise and accurate information about H2O, HDO, and δD. The MUSICA water vapour products have been validated by extensive intercomparisons with H2O and δD in-situ measurements made from ground, radiosonde, and aircraft (Schneider et al. 2012, 2014), as well as by intercomparisons with satellite-based H2O and δD remote sensing measurements (Wiegele et al., 2014). This dataset provides a valuable reference point for other measurements of water vapour. This study is motivated by the limited intercomparisons performed for TCCON water vapour products and limited characterisation of their uncertainties. We compare MUSICA and TCCON products to assess the potential for TCCON measurements to contribute to studies of the water cycle, water vapour's role in climate and use as a tracer for atmospheric dynamics, and to evaluate the performance of climate models. The TCCON and MUSICA products result from measurements taken using the same FTIR instruments, enabling a comparison with constant instrumentation. The retrieval techniques differ, however, in their method and a priori information. We assess the impact of these differences and characterize the comparability of the TCCON and MUSICA datasets.

  5. Main problems in the theory of modeling of catalytic processes

    SciTech Connect

    Pisarenko, V.N.

    1994-09-01

    This paper formulates the main problems in the theory of modeling of catalytic processes yet to be solved and describes the stages of modeling. Fundamental problems of model construction for the physico-chemical phenomena and processes taking place in a catalytic reactor are considered. New methods for determining the mechanism of a catalytic reaction and selecting a kinetic model for it are analyzed. The use of the results of specially controlled experiments for the construction of models of a catalyst grain and a catalytic reactor is discussed. Algorithms are presented for determining the muliplicity of stationary states in the operation of a catalyst grain and a catalytic reactor.

  6. Geometric tuning of self-propulsion for Janus catalytic particles

    NASA Astrophysics Data System (ADS)

    Michelin, Sébastien; Lauga, Eric

    2017-02-01

    Catalytic swimmers have attracted much attention as alternatives to biological systems for examining collective microscopic dynamics and the response to physico-chemical signals. Yet, understanding and predicting even the most fundamental characteristics of their individual propulsion still raises important challenges. While chemical asymmetry is widely recognized as the cornerstone of catalytic propulsion, different experimental studies have reported that particles with identical chemical properties may propel in opposite directions. Here, we show that, beyond its chemical properties, the detailed shape of a catalytic swimmer plays an essential role in determining its direction of motion, demonstrating the compatibility of the classical theoretical framework with experimental observations.

  7. Geometric tuning of self-propulsion for Janus catalytic particles

    PubMed Central

    Michelin, Sébastien; Lauga, Eric

    2017-01-01

    Catalytic swimmers have attracted much attention as alternatives to biological systems for examining collective microscopic dynamics and the response to physico-chemical signals. Yet, understanding and predicting even the most fundamental characteristics of their individual propulsion still raises important challenges. While chemical asymmetry is widely recognized as the cornerstone of catalytic propulsion, different experimental studies have reported that particles with identical chemical properties may propel in opposite directions. Here, we show that, beyond its chemical properties, the detailed shape of a catalytic swimmer plays an essential role in determining its direction of motion, demonstrating the compatibility of the classical theoretical framework with experimental observations. PMID:28205563

  8. High temperature catalytic membrane reactors

    SciTech Connect

    Not Available

    1990-03-01

    Current state-of-the-art inorganic oxide membranes offer the potential of being modified to yield catalytic properties. The resulting modules may be configured to simultaneously induce catalytic reactions with product concentration and separation in a single processing step. Processes utilizing such catalytically active membrane reactors have the potential for dramatically increasing yield reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity. Examples of commercial interest include hydrogenation, dehydrogenation, partial and selective oxidation, hydrations, hydrocarbon cracking, olefin metathesis, hydroformylation, and olefin polymerization. A large portion of the most significant reactions fall into the category of high temperature, gas phase chemical and petrochemical processes. Microporous oxide membranes are well suited for these applications. A program is proposed to investigate selected model reactions of commercial interest (i.e. dehydrogenation of ethylbenzene to styrene and dehydrogenation of butane to butadiene) using a high temperature catalytic membrane reactor. Membranes will be developed, reaction dynamics characterized, and production processes developed, culminating in laboratory-scale demonstration of technical and economic feasibility. As a result, the anticipated increased yield per reactor pass economic incentives are envisioned. First, a large decrease in the temperature required to obtain high yield should be possible because of the reduced driving force requirement. Significantly higher conversion per pass implies a reduced recycle ratio, as well as reduced reactor size. Both factors result in reduced capital costs, as well as savings in cost of reactants and energy.

  9. Catalytically enhanced packed tower scrubbing

    SciTech Connect

    Stitt, E.H.; Taylor, F.J.; Kelly, K.

    1996-12-31

    An enhanced wet scrubbing process for the treatment of gas streams containing odours and low level VOC`s is presented. It comprises essentially a single scrubbing column and a fixed bed catalytic reactor through which the dilute alkaline bleach scrubbing liquor is recirculated. The process has significant cost advantages over conventional chemical scrubbing technology, and copes well with peaks in odour levels. Traditional bleach scrubbing, and the improvements in process chemistry and the flowsheet afforded by inclusion of the catalyst, are discussed. The catalyst enables many of the well known problems associated with bleach scrubbing to be overcome, and facilitates odour removal efficiencies of greater than 99% in a single column. Pilot plant data from trials on sewage treatment works are presented. These show clearly the ability of the catalytically enhanced process to achieve sulphide and odour removals in excess of 99% in the single column. Case studies of some of the existing commercial installations are given, indicating the wide range of applications, industries and scale of the installed units. Comparative data are presented, measured on a commercial unit for the conventional operation of a bleach scrubber, and with the retrofitted catalyst in use. These data show clearly the benefits of the catalytic process in terms of removal efficiencies; and hence by inference also in equipment size and costs. The catalytic process is also shown to achieve very high removal efficiencies of organo-sulphides in a single column. 8 refs., 3 figs., 10 tabs.

  10. ECUT: Energy Conversion and utilization Technologies program biocatalysis research activity. Generation of chemical intermediates by catalytic oxidative decarboxylation of dilute organic acids

    NASA Technical Reports Server (NTRS)

    Distefano, S.; Gupta, A.; Ingham, J. D.

    1983-01-01

    A rhodium-based catalyst was prepared and preliminary experiments were completed where the catalyst appeared to decarboxylate dilute acids at concentrations of 1 to 10 vol%. Electron spin resonance spectroscoy was used to characterize the catalyst as a first step leading toward modeling and optimization of rhodium catalysts. Also, a hybrid chemical/biological process for the production of hydrocarbons has been assessed. These types of catalysts could greatly increase energy efficiency of this process.

  11. Switchable catalytic DNA catenanes.

    PubMed

    Hu, Lianzhe; Lu, Chun-Hua; Willner, Itamar

    2015-03-11

    Two-ring interlocked DNA catenanes are synthesized and characterized. The supramolecular catenanes show switchable cyclic catalytic properties. In one system, the catenane structure is switched between a hemin/G-quadruplex catalytic structure and a catalytically inactive state. In the second catenane structure the catenane is switched between a catalytically active Mg(2+)-dependent DNAzyme-containing catenane and an inactive catenane state. In the third system, the interlocked catenane structure is switched between two distinct catalytic structures that include the Mg(2+)- and the Zn(2+)-dependent DNAzymes.

  12. Global distributions of water vapour isotopologues retrieved from IMG/ADEOS data

    NASA Astrophysics Data System (ADS)

    Herbin, H.; Hurtmans, D.; Turquety, S.; Wespes, C.; Barret, B.; Hadji-Lazaro, J.; Clerbaux, C.; Coheur, P.-F.

    2007-07-01

    The isotopologic composition of water vapour in the atmosphere provides valuable information on many climate, chemical and dynamical processes. The accurate measurements of the water isotopologues by remote-sensing techniques remains a challenge, due to the large spatial and temporal variations. Simultaneous profile retrievals of the main water isotopologues (i.e. H216O, H218O and HDO) and their ratios are presented here for the first time, along their retrieved global distributions. The results are obtained by exploiting the high resolution infrared spectra recorded by the Interferometric Monitor for Greenhouse gases (IMG) instrument, which has operated in the nadir geometry onboard the ADEOS satellite between 1996 and 1997. The retrievals are performed on cloud-free radiances, measured during ten days of April 1997, considering two atmospheric windows (1205-1228 cm-1; 2004-2032 cm-1) and using a line-by-line radiative transfer model and an inversion procedure based on the Optimal Estimation Method (OEM). Characterizations in terms of vertical sensitivity and error budget are provided. We show that a relatively high vertical resolution is achieved for H216O (~4-5 km), and that the retrieved profiles are in fair agreement with local sonde measurements, at different latitudes. The retrieved global distributions of H216O, H218O, HDO and their ratios are presented and found to be consistent with previous experimental studies and models. The Ocean-Continent difference, the latitudinal and vertical dependence of the water vapour amount and the isotopologic depletion are notably well reproduced. Others trends, possibly related to small-scale variations in the vertical profiles are also discussed. Despite the difficulties encountered for computing accurately the isotopologic ratios, our results demonstrate the ability of infrared nadir sounding for monitoring atmospheric isotopologic water vapour distributions on a global scale.

  13. The boiling liquid expanding vapour explosion (BLEVE): mechanism, consequence assessment, management.

    PubMed

    Abbasi, Tasneem; Abbasi, S A

    2007-03-22

    Among the most devastating of accidents likely in chemical process industry is the boiling liquid expanding vapour explosion (BLEVE). It is accompanied by highly destructive blast waves and missiles. In most situations there is also a fireball or a toxic gas cloud. The damaging effect of BLEVEs is reflected in the fact that the 80-odd major BLEVEs that have occurred between 1940 and 2005 have claimed over a 1000 lives and have injured over 10,000 persons besides harming property worth billions of dollars. Release of toxic chemicals like chlorine and phosgene from BLEVEs have damaged large chunks of areas surrounding the BLEVE site. This paper presents an overview of the mechanism, the causes, the consequences, and the preventive strategies associated with BLEVEs.

  14. Turkish Undergraduates' Misconceptions of Evaporation, Evaporation Rate, and Vapour Pressure

    ERIC Educational Resources Information Center

    Canpolat, Nurtac

    2006-01-01

    This study focused on students' misconceptions related to evaporation, evaporation rate, and vapour pressure. Open-ended diagnostic questions were used with 107 undergraduates in the Primary Science Teacher Training Department in a state university in Turkey. In addition, 14 students from that sample were interviewed to clarify their written…

  15. Energy losses through entrance condensation in small vapour engines

    SciTech Connect

    Bom, G.J. )

    1993-03-01

    The effects of entrance condensation were studied in a small piston type vapour engine as could be used for low power thermodynamic solar waterpumping (50-1000 W output). Indicative relations have been established between the magnitude of energy losses caused by this phenomenon and engine design features. 2 refs., 5 figs.

  16. Distillation with Vapour Compression. An Undergraduate Experimental Facility.

    ERIC Educational Resources Information Center

    Pritchard, Colin

    1986-01-01

    Discusses the need to design distillation columns that are more energy efficient. Describes a "design and build" project completed by two college students aimed at demonstrating the principles of vapour compression distillation in a more energy efficient way. General design specifications are given, along with suggestions for teaching…

  17. No sodium in the vapour plumes of Enceladus.

    PubMed

    Schneider, Nicholas M; Burger, Matthew H; Schaller, Emily L; Brown, Michael E; Johnson, Robert E; Kargel, Jeffrey S; Dougherty, Michele K; Achilleos, Nicholas A

    2009-06-25

    The discovery of water vapour and ice particles erupting from Saturn's moon Enceladus fuelled speculation that an internal ocean was the source. Alternatively, the source might be ice warmed, melted or crushed by tectonic motions. Sodium chloride (that is, salt) is expected to be present in a long-lived ocean in contact with a rocky core. Here we report a ground-based spectroscopic search for atomic sodium near Enceladus that places an upper limit on the mixing ratio in the vapour plumes orders of magnitude below the expected ocean salinity. The low sodium content of escaping vapour, together with the small fraction of salt-bearing particles, argues against a situation in which a near-surface geyser is fuelled by a salty ocean through cracks in the crust. The lack of observable sodium in the vapour is consistent with a wide variety of alternative eruption sources, including a deep ocean, a freshwater reservoir, or ice. The existing data may be insufficient to distinguish between these hypotheses.

  18. No sodium in the vapour plumes of Enceladus

    NASA Astrophysics Data System (ADS)

    Schneider, Nicholas M.; Burger, Matthew H.; Schaller, Emily L.; Brown, Michael E.; Johnson, Robert E.; Kargel, Jeffrey S.; Dougherty, Michele K.; Achilleos, Nicholas A.

    2009-06-01

    The discovery of water vapour and ice particles erupting from Saturn's moon Enceladus fuelled speculation that an internal ocean was the source. Alternatively, the source might be ice warmed, melted or crushed by tectonic motions. Sodium chloride (that is, salt) is expected to be present in a long-lived ocean in contact with a rocky core. Here we report a ground-based spectroscopic search for atomic sodium near Enceladus that places an upper limit on the mixing ratio in the vapour plumes orders of magnitude below the expected ocean salinity. The low sodium content of escaping vapour, together with the small fraction of salt-bearing particles, argues against a situation in which a near-surface geyser is fuelled by a salty ocean through cracks in the crust. The lack of observable sodium in the vapour is consistent with a wide variety of alternative eruption sources, including a deep ocean, a freshwater reservoir, or ice. The existing data may be insufficient to distinguish between these hypotheses.

  19. THE INTERACTION OF VAPOUR PHASE ORGANIC COMPOUNDS WITH INDOOR SINKS

    EPA Science Inventory

    The interaction of indoor air pollutants with interior surfaces (i.e., sinks) is a well known, but poorly understood, phenomenon. Studies have shown that re-emissions of adsorbed organic vapours can contribute to elevated concentrations of organics in indoor environments. Researc...

  20. Impact of major volcanic eruptions on stratospheric water vapour

    NASA Astrophysics Data System (ADS)

    Löffler, M.; Brinkop, S.; Jöckel, P.

    2015-12-01

    Volcanic eruptions can have significant impact on the earth's weather and climate system. Besides the subsequent tropospheric changes also the stratosphere is influenced by large eruptions. Here changes in stratospheric water vapour after the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991 are investigated with chemistry-climate model simulations. This study is based on two simulations with specified dynamics of the EMAC model, performed within the Earth System Chemistry integrated Modelling (ESCiMo) project, of which only one includes the volcanic forcing through prescribed aerosol optical properties. The results show a significant increase in stratospheric water vapour after the eruptions, resulting from increased heating rates and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as important sources for the additional water vapour in the stratosphere. Additionally, volcanic influences on the tropospheric water vapour and ENSO are evident.

  1. Impact of major volcanic eruptions on stratospheric water vapour

    NASA Astrophysics Data System (ADS)

    Löffler, Michael; Brinkop, Sabine; Jöckel, Patrick

    2016-05-01

    Volcanic eruptions can have a significant impact on the Earth's weather and climate system. Besides the subsequent tropospheric changes, the stratosphere is also influenced by large eruptions. Here changes in stratospheric water vapour after the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991 are investigated with chemistry-climate model simulations. This study is based on two simulations with specified dynamics of the European Centre for Medium-Range Weather Forecasts Hamburg - Modular Earth Submodel System (ECHAM/MESSy) Atmospheric Chemistry (EMAC) model, performed within the Earth System Chemistry integrated Modelling (ESCiMo) project, of which only one includes the long-wave volcanic forcing through prescribed aerosol optical properties. The results show a significant increase in stratospheric water vapour induced by the eruptions, resulting from increased heating rates and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as sources for the additional water vapour in the stratosphere. Additionally, volcanic influences on tropospheric water vapour and El Niño-Southern Oscillation (ENSO) are evident, if the long-wave forcing is strong enough. Our results are corroborated by additional sensitivity simulations of the Mount Pinatubo period with reduced nudging and reduced volcanic aerosol extinction.

  2. Thermodynamics of catalytic nanoparticle morphology

    NASA Astrophysics Data System (ADS)

    Zwolak, Michael; Sharma, Renu; Lin, Pin Ann

    Metallic nanoparticles are an important class of industrial catalysts. The variability of their properties and the environment in which they act, from their chemical nature & surface modification to their dispersion and support, allows their performance to be optimized for many chemical processes useful in, e.g., energy applications and other areas. Their large surface area to volume ratio, as well as varying sizes and faceting, in particular, makes them an efficient source for catalytically active sites. These characteristics of nanoparticles - i.e., their morphology - can often display intriguing behavior as a catalytic process progresses. We develop a thermodynamic model of nanoparticle morphology, one that captures the competition of surface energy with other interactions, to predict structural changes during catalytic processes. Comparing the model to environmental transmission electron microscope images of nickel nanoparticles during carbon nanotube (and other product) growth demonstrates that nickel deformation in response to the nanotube growth is due to a favorable interaction with carbon. Moreover, this deformation is halted due to insufficient volume of the particles. We will discuss the factors that influence morphology and also how the model can be used to extract interaction strengths from experimental observations.

  3. Influence of catalytic gold and silver metal nanoparticles on structural, optical, and vibrational properties of silicon nanowires synthesized by metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Dawood, M. K.; Tripathy, S.; Dolmanan, S. B.; Ng, T. H.; Tan, H.; Lam, J.

    2012-10-01

    We report on the structural and vibrational characterization of silicon (Si) nanowire arrays synthesized by metal-assisted chemical etching (MACE) of Si deposited with metal nanoparticles. Gold (Au) and silver (Ag) metal nanoparticles were synthesized by glancing angle deposition, and MACE was performed in a mixture of H2O2 and HF solution. We studied the structural differences between Au and Ag-etched Si nanowires. The morphology of the synthesized nanowires was characterized by scanning electron microscopy and transmission electron microscopy. The optical and vibrational properties of the Si nanostructures were studied by photoluminescence and Raman spectroscopy using three different excitation sources (UV, visible, and near-infrared) and are correlated to their microstructures. The structural differences between Au-etched and Ag-etched nanowires are due to the higher degree of hole injection by the Au nanoparticle and diffusion into the Si nanowires, causing enhanced Si etching by HF on the nanowire surface. Au-etched nanowires were observed to be mesoporous throughout the nanowire while Ag-etched nanowires consisted of a thin porous layer around the crystalline core. In addition, the surface-enhanced resonant Raman scattering observed is attributed to the presence of the sunken metal nanoparticles. Such Si nanostructures may be useful for a wide range of applications such as photovoltaic and biological and chemical sensing.

  4. Water vapour is a pre-oviposition attractant for the malaria vector Anopheles gambiae sensu stricto

    PubMed Central

    2013-01-01

    Background To date no semiochemicals affecting the pre-oviposition behaviour of the malaria vector Anopheles gambiae sensu lato have been described. Water vapour must be the major chemical signal emanating from a potential larval habitat, and although one might expect that gravid An. gambiae s.l. detect and respond to water vapour in their search for an aquatic habitat, this has never been experimentally confirmed for this species. This study aimed to investigate the role of relative humidity or water vapour as a general cue for inducing gravid An. gambiae sensu stricto to make orientated movements towards the source. Methods Three experiments were carried out with insectary-reared An. gambiae s.s. One with unfed females and two with gravid females during their peak oviposition time in the early evening. First, unfed females and gravid females were tested separately in still air where a humidity difference was established between opposite ends of a WHO bioassay tube and mosquitoes released individually in the centre of the tube. Movement of mosquitoes to either low or high humidity was recorded. Additionally, gravid mosquitoes were released into a larger air-flow olfactometer and responses measured towards collection chambers that contained cups filled with water or empty cups. Results Unfed females equally dispersed in the small bioassay tubes to areas of high and low humidity (mean 50% (95% confidence interval (CI) 38-62%). In contrast, gravid females were 2.4 times (95% CI 1.3-4.7) more likely to move towards high humidity than unfed females. The results were even more pronounced in the airflow olfactometer. Gravid females were 10.6 times (95% CI 5.4-20.8) more likely to enter the chamber with water than a dry chamber. Conclusions Water vapour is a strong pre-oviposition attractant to gravid An. gambiae s.s. in still and moving air and is likely to be a general cue used by mosquitoes for locating aquatic habitats. PMID:24120083

  5. New ammonium surfactant-stabilized rhodium(0) colloidal suspensions: influence of novel counter-anions on physico-chemical and catalytic properties.

    PubMed

    Bilé, Elodie Guyonnet; Sassine, Rita; Denicourt-Nowicki, Audrey; Launay, Franck; Roucoux, Alain

    2011-06-28

    Novel anionic species, such as hydrogen carbonate (HCO(3)(−)), fluoride (F(−)), triflate (CF(3)SO(3)(−)), tetrafluoroborate (BF(4)(−)) and chloride (Cl(−)) were investigated as new partners of water soluble N,N-dimethyl-N-cetyl-N-(2-hydroxyethyl) ammonium salts, used as a protective agent of rhodium colloids. The effect of the surfactant polar head on the micellar behavior, size and morphology of the nanospecies was studied by adapted physico-chemical experiments (surface tension measurements, dynamic light scattering, thermogravimetric and TEM analyses) and discussed in terms of strong or weak stabilization of the growing nanoparticles surface. Finally, the influence of the nanoenvironment generated by the surfactant with various counter-anions was evaluated via the hydrogenation of aromatics.

  6. Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour

    NASA Astrophysics Data System (ADS)

    Wang, Shenghao; Jiang, Yan; Juarez-Perez, Emilio J.; Ono, Luis K.; Qi, Yabing

    2017-01-01

    Efficiencies of organic-inorganic lead halide perovskite solar cells (PSCs) have significantly increased in recent years, but instability issues impede their further development and application. Previous studies reported that volatile species (for example, iodine, I2) were generated when perovskites were subjected to moisture, oxygen, light illumination, applied electric field, and thermal stress (all of which are relevant to the operation of PSCs in practical applications). Here we show that I2 vapour causes severe degradation of MAPbI3 (MA: CH3NH3+) perovskite, due to chemical chain reactions. Furthermore, I2 vapour could also induce degradation of other iodide-based perovskites, such as FAPbI3 (FA: HC(NH2)2+) and FA0.8Cs0.2PbI3. The results reveal a universal degradation factor for iodide-based perovskite by I2. As the release of I2 is nearly inevitable during practical applications, this work suggests that MAPbI3 may not be suitable for long-term stable solar cells and it is imperative to develop other types of perovskite material to achieve stable PSCs.

  7. Water Vapour, Ozone and Cirrus In The Tropical Lower Stratosphere Observed By Uars

    NASA Astrophysics Data System (ADS)

    Clark, H. L.; Harwood, R. S.; Pumphrey, H. C.

    The Upper Atmosphere Research Satellite (UARS) was launched on 19th September 1991 to make measurements of a variety of atmospheric constituents. The Microwave Limb Sounder (MLS), an instrument on UARS, is sensitive to water vapour and ozone in the lower stratosphere and made coincident, daily measurements of the two species in the tropical region until April 1993. The Cryogenic Limb Array Etalon Spectrom- eter (CLAES), another of the instruments on UARS has a similar spatial and tempo- ral coverage to that of MLS and can be used to indicate the presence of cirrus. We use measurements of water vapour and ozone and data from the European Centre for Medium Range Weather Forecasts to investigate the transport of air in the regions of cirrus formation and describe the chemical and physical environment in which they are found. Ozone mixing ratios have a tendency to be lower in such regions suggesting that the air has entered the stratosphere relatively recently. The importance of cirrus in dehydrating the lower stratosphere and the consequences of cirrus formation within the context of stratosphere-troposphere exchange are discussed.

  8. Chemical modification of Penicillium 1,2-alpha-D-mannosidase by water-soluble carbodi-imide: identification of a catalytically important aspartic acid residue.

    PubMed Central

    Yoshida, T; Maeda, K; Kobayashi, M; Ichishima, E

    1994-01-01

    1,2-alpha-D-Mannosidase from Penicillium citrinum was inactivated by chemical modification with 1-ethyl-3-(3-dimethylamino-propyl)carbodi-imide (EDC). Most of the activity was lost after modification in the absence of a nucleophile, glycine ethyl ester. 1-Deoxymannojirimycin (dMM), a competitive inhibitor of the enzyme, showed partial protection against the inactivation. After the modification by EDC without the presence of a nucleophile, proteolytic digests of the enzyme were analysed by reversed-phase h.p.l.c. and a unique peptide was shown to decrease when dMM was present during the modification. The peptide was absent from the digests of unmodified enzyme. The amino acid sequence of the peptide (A; Ile-Gly-Pro) was identical in part with that of the adjacent peptide (B; Ile-Gly-Pro-Asp-Ser-Trp-Gly-Trp-Asp-Pro-Lys). When cholecystokinin tetrapeptide (Trp-Met-Asp-Phe-NH2) was modified by EDC alone, the modified peptide could be separated from unmodified peptide by reversed-phase h.p.i.c., and Edman degradation was stopped before the modified aspartic acid residue. This suggested that, in the enzyme, peptide A was derived from peptide B by the modification. Consequently, Asp-4 in peptide B was assumed to be masked by dMM during the modification, and to be involved in the interaction of the enzyme with its substrate. PMID:7945271

  9. Rich catalytic injection

    DOEpatents

    Veninger, Albert

    2008-12-30

    A gas turbine engine includes a compressor, a rich catalytic injector, a combustor, and a turbine. The rich catalytic injector includes a rich catalytic device, a mixing zone, and an injection assembly. The injection assembly provides an interface between the mixing zone and the combustor. The injection assembly can inject diffusion fuel into the combustor, provides flame aerodynamic stabilization in the combustor, and may include an ignition device.

  10. Analysis of petrol and diesel vapour and vehicle engine exhaust gases using selected ion flow tube mass spectrometry.

    PubMed

    Smith, David; Cheng, Ping; Spanel, Patrik

    2002-01-01

    We have used selected ion flow tube mass spectrometry (SIFT-MS) to analyse the vapours emitted by petrol and diesel fuels and the exhaust gases from petrol (spark ignition) and diesel (compression ignition) engine vehicles fitted with catalytic converters. Only those components of these media that have significant vapour pressures at ambient temperatures were analysed and thus particulates were obviously not detected. These media have been analysed using the full scope of SIFT-MS, i.e., with the three available precursor ions H3O+, NO+ and O2+. The combination of the H3O+ and NO+ analyses is seen to be essential to distinguish between different product ions at the same mass-to-charge ratio (m/z) especially in identifying aldehydes in the exhaust gases. The O2+ precursor ions are used to detect and quantify the large amount of nitric oxide present in the exhaust gases from both engine types. The petrol and diesel vapours consist almost exclusively of aliphatic alkanes, alkenes and alkynes (and dienes) and aromatic hydrocarbons. Some of these compounds appear in the exhaust gases together with several aldehydes, viz. formaldehyde, acetaldehyde, pentanal, pentenal (acrolein), butenal, and also methanol and ethanol. Acetone, nitric oxide and ammonia are also present, acetone and nitric oxide being much more abundant in the diesel exhaust gas than in the petrol exhaust gas. These data were obtained from samples collected into pre-evacuated stainless steel vessels. Trapping of the volatile compounds from the gas samples is not required and analysis was completed a few minutes later. All the above compounds are detected simultaneously, which demonstrates the value of SIFT-MS in this area of research.

  11. Chemical-physical properties of spinel CoMn2O4 nano-powders and catalytic activity in the 2-propanol and toluene combustion: Effect of the preparation method.

    PubMed

    Hosseini, Seyed Ali; Salari, Dariush; Niaei, Aligholi; Deganello, Francesca; Pantaleo, Giuseppe; Hojati, Pejman

    2011-01-01

    Spinel-type CoMn(2)O(4)nano-powders are prepared using sol-gel auto combustion (SGC) and co-precipitation (CP) methods and their catalytic activities are evaluated in combustion of 2-propanol and toluene. The chemical-physical properties of the oxides are characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), N(2)-adsorption-desorption, temperature programmed reduction (TPR) and scanning electron microscopy (SEM). After calcination at 700°C, CoMn(2)O(4)-SGC shows higher amounts of the normal-type spinel phase and is more crystalline than CoMn(2)O(4)-CP. Higher calcination temperatures (850°C) do not affect very much the weight percentage of the normal-type spinel phase; although the crystal size slightly increased. The TPR analysis evidences a large number of Mn(3+) cations in CoMn(2)O(4)-SGC compared to CoMn(2)O(4)-CP. This difference, together with the higher surface area, could justify the higher activity of CoMn(2)O(4)-SGC in both the investigated reactions.

  12. Two stage catalytic combustor

    NASA Technical Reports Server (NTRS)

    Alvin, Mary Anne (Inventor); Bachovchin, Dennis (Inventor); Smeltzer, Eugene E. (Inventor); Lippert, Thomas E. (Inventor); Bruck, Gerald J. (Inventor)

    2010-01-01

    A catalytic combustor (14) includes a first catalytic stage (30), a second catalytic stage (40), and an oxidation completion stage (49). The first catalytic stage receives an oxidizer (e.g., 20) and a fuel (26) and discharges a partially oxidized fuel/oxidizer mixture (36). The second catalytic stage receives the partially oxidized fuel/oxidizer mixture and further oxidizes the mixture. The second catalytic stage may include a passageway (47) for conducting a bypass portion (46) of the mixture past a catalyst (e.g., 41) disposed therein. The second catalytic stage may have an outlet temperature elevated sufficiently to complete oxidation of the mixture without using a separate ignition source. The oxidation completion stage is disposed downstream of the second catalytic stage and may recombine the bypass portion with a catalyst exposed portion (48) of the mixture and complete oxidation of the mixture. The second catalytic stage may also include a reticulated foam support (50), a honeycomb support, a tube support or a plate support.

  13. Role of chemical composition in the enhanced catalytic activity of Pt-based alloyed ultrathin nanowires for the hydrogen oxidation reaction under alkaline conditions

    SciTech Connect

    Megan E. Scofield; Wong, Stanislaus S.; Zhou, Yuchen; Yue, Shiyu; Wang, Lei; Su, Dong; Tong, Xiao; Vukmirovic, Miomir B.; Adzic, Radoslav R.

    2016-05-11

    With the increased interest in the development of hydrogen fuel cells as a plausible alternative to internal combustion engines, recent work has focused on creating alkaline fuel cells (AFC), which employ an alkaline environment. Working in alkaline as opposed to acidic media yields a number of tangible benefits, including (i) the ability to use cheaper and plentiful precious-metal-free catalysts, due to their increased stability, (ii) a reduction in the amount of degradation and corrosion of Pt-based catalysts, and (iii) a longer operational lifetime for the overall fuel cell configuration. However, in the absence of Pt, no catalyst has achieved activities similar to those of Pt. Herein, we have synthesized a number of crystalline ultrathin PtM alloy nanowires (NWs) (M = Fe, Co, Ru, Cu, Au) in order to replace a portion of the costly Pt metal without compromising on activity while simultaneously adding in metals known to exhibit favorable synergistic ligand and strain effects with respect to the host lattice. In fact, our experiments confirm theoretical insights about a clear and correlative dependence between measured activity and chemical composition. We have conclusively demonstrated that our as-synthesized alloy NW catalysts yield improved hydrogen oxidation reaction (HOR) activities as compared with a commercial Pt standard as well as with our as-synthesized Pt NWs. The Pt7Ru3 NW system, in particular, quantitatively achieved an exchange current density of 0.493 mA/cm2, which is higher than the corresponding data for Pt NWs alone. In addition, the HOR activities follow the same expected trend as their calculated hydrogen binding energy (HBE) values, thereby confirming the critical importance and correlation of HBE with the observed activities.

  14. Role of chemical composition in the enhanced catalytic activity of Pt-based alloyed ultrathin nanowires for the hydrogen oxidation reaction under alkaline conditions

    DOE PAGES

    Megan E. Scofield; Wong, Stanislaus S.; Zhou, Yuchen; ...

    2016-05-11

    With the increased interest in the development of hydrogen fuel cells as a plausible alternative to internal combustion engines, recent work has focused on creating alkaline fuel cells (AFC), which employ an alkaline environment. Working in alkaline as opposed to acidic media yields a number of tangible benefits, including (i) the ability to use cheaper and plentiful precious-metal-free catalysts, due to their increased stability, (ii) a reduction in the amount of degradation and corrosion of Pt-based catalysts, and (iii) a longer operational lifetime for the overall fuel cell configuration. However, in the absence of Pt, no catalyst has achieved activitiesmore » similar to those of Pt. Herein, we have synthesized a number of crystalline ultrathin PtM alloy nanowires (NWs) (M = Fe, Co, Ru, Cu, Au) in order to replace a portion of the costly Pt metal without compromising on activity while simultaneously adding in metals known to exhibit favorable synergistic ligand and strain effects with respect to the host lattice. In fact, our experiments confirm theoretical insights about a clear and correlative dependence between measured activity and chemical composition. We have conclusively demonstrated that our as-synthesized alloy NW catalysts yield improved hydrogen oxidation reaction (HOR) activities as compared with a commercial Pt standard as well as with our as-synthesized Pt NWs. The Pt7Ru3 NW system, in particular, quantitatively achieved an exchange current density of 0.493 mA/cm2, which is higher than the corresponding data for Pt NWs alone. In addition, the HOR activities follow the same expected trend as their calculated hydrogen binding energy (HBE) values, thereby confirming the critical importance and correlation of HBE with the observed activities.« less

  15. A new test method for measuring the water vapour permeability of fabrics

    NASA Astrophysics Data System (ADS)

    Huang, Jianhua; Qian, Xiaoming

    2007-09-01

    The water vapour permeability of textile fabrics is a critical determinant of wearer comfort. Existing test methods are either time consuming or require large amounts of material. A new test apparatus was developed for characterizing the water vapour permeability of fabrics. An aluminium cylinder covered with waterproof and vapour permeable PTFE laminate is used for generating water vapour source on one side of the sample. A dry nitrogen sweep gas stream is used to carry water vapour away. The calculation of the rate of water vapour transmission across the fabric is based on the measurement of the relative humidity of the outgoing nitrogen stream. This new measuring apparatus offers a short test time and calls for a small sample size. The comparison measurements show that the test results correlated well with those obtained from ISO 11092 and ASTM E96. Therefore, this test method provides a new technique to accurately and precisely characterize the water vapour transport properties of fabrics.

  16. Catalytic Membrane Sensors

    SciTech Connect

    Boyle, T.J.; Brinker, C.J.; Gardner, T.J.; Hughes, R.C.; Sault, A.G.

    1998-12-01

    The proposed "catalytic membrane sensor" (CMS) was developed to generate a device which would selectively identify a specific reagent in a complex mixture of gases. This was to be accomplished by modifying an existing Hz sensor with a series of thin films. Through selectively sieving the desired component from a complex mixture and identifying it by decomposing it into Hz (and other by-products), a Hz sensor could then be used to detect the presence of the select component. The proposed "sandwich-type" modifications involved the deposition of a catalyst layered between two size selective sol-gel layers on a Pd/Ni resistive Hz sensor. The role of the catalyst was to convert organic materials to Hz and organic by-products. The role of the membraneo was to impart both chemical specificity by molecukir sieving of the analyte and converted product streams, as well as controlling access to the underlying Pd/Ni sensor. Ultimately, an array of these CMS elements encompassing different catalysts and membranes were to be developed which would enable improved selectivity and specificity from a compiex mixture of organic gases via pattern recognition methodologies. We have successfully generated a CMS device by a series of spin-coat deposited methods; however, it was determined that the high temperature required to activate the catalyst, destroys the sensor.

  17. Removal of vapour phase PCDD/Fs in electric arc furnace steelmaking emissions by sorption using plastics.

    PubMed

    Ooi, Tze Chean; Ewan, Bruce C R; Cliffe, Keith R; Anderson, David R; Fisher, Raymond; Thompson, Dennis

    2008-08-01

    Plastics are potentially suitable for the removal of vapour phase PCDD/Fs in emissions from the electric arc furnace (EAF) steelmaking process. Three different commercial plastics, i.e. polypropylene BE170MO (Borealis A/S, Denmark), polypropylene in the form of 5 mm spheres (The Precision Plastic Ball Co. Ltd., UK) and polyethylene LD605BA (ExxonMobil Chemical, Belgium), have been studied using a novel experimental apparatus for the removal of vapour phase PCDD/Fs. Polypropylene BE170MO was identified to be the most suitable product amongst the three plastics in terms of PCDD/F sorption and potential industrial application. The optimum temperature for PCDD/F sorption on polypropylene BE170MO was below 90 degrees C for a removal efficiency of >99% at an average vapour phase PCDD/F concentration of 3.5 ng I-TEQ/Nm(3). At 130 degrees C, 53% of the PCDD/Fs trapped on polypropylene BE170MO were desorbed.

  18. Air sampling and determination of vapours and aerosols of bitumen and polycyclic aromatic hydrocarbons in the Human Bitumen Study.

    PubMed

    Breuer, Dietmar; Hahn, Jens-Uwe; Höber, Dieter; Emmel, Christoph; Musanke, Uwe; Rühl, Reinhold; Spickenheuer, Anne; Raulf-Heimsoth, Monika; Bramer, Rainer; Seidel, Albrecht; Schilling, Bernd; Heinze, Evelyn; Kendzia, Benjamin; Marczynski, Boleslaw; Welge, Peter; Angerer, Jürgen; Brüning, Thomas; Pesch, Beate

    2011-06-01

    The chemical complexity of emissions from bitumen applications is a challenge in the assessment of exposure. Personal sampling of vapours and aerosols of bitumen was organized in 320 bitumen-exposed workers and 69 non-exposed construction workers during 2001-2008. Area sampling was conducted at 44 construction sites. Area and personal sampling of vapours and aerosols of bitumen showed similar concentrations between 5 and 10 mg/m(3), while area sampling yielded higher concentrations above the former occupational exposure limit (OEL) of 10 mg/m(3). The median concentration of personal bitumen exposure was 3.46 mg/m(3) (inter-quartile range 1.80-5.90 mg/m(3)). Only few workers were exposed above the former OEL. The specificity of the method measuring C-H stretch vibration is limited. This accounts for a median background level of 0.20 mg/m³ in non-exposed workers which is likely due to ubiquitous aliphatic hydrocarbons. Further, area measurements of polycyclic aromatic hydrocarbons (PAHs) were taken at 25 construction sites. U.S. EPA PAHs were determined with GC/MS, with the result of a median concentration of 2.47 μg/m(3) at 15 mastic asphalt worksites associated with vapours and aerosols of bitumen, with a Spearman correlation coefficient of 0.45 (95% CI -0.13 to 0.78). PAH exposure at mastic-asphalt works was higher than at reference worksites (median 0.21 μg/m(3)), but about one order of magnitude lower compared to coke-oven works. For a comparison of concentrations of vapours and aerosols of bitumen and PAHs in asphalt works, differences in sampling and analytical methods must to be taken into account.

  19. Temperature distribution in a mixture surrounding a growing vapour bubble

    NASA Astrophysics Data System (ADS)

    Mohammadein, S. A.; Gouda, Sh. A.

    2006-03-01

    The paper presents temperature distribution of superheated liquid during the growth of spherical vapour bubble between two-phase temperatures. The heat equation is resolved by the modification of similarity parameter method of Screven [Chem Engng Sci 10:1-13(1959)] between two finite boundaries. Under these conditions, the growth of vapour bubble and temperature are obtained analytically in an implicit form which are different than that obtained before. The growth rate is obtained as a generalized formula compared with Plesset amd Zwick and Scriven et al. theories [J Appl Phys 25:493-500(1954);Chem Engng Sci 10:1-13(1959)]. The growth and temperature field affected by the initial superheating and thermal diffusivity.

  20. A sustainable catalytic pyrrole synthesis

    NASA Astrophysics Data System (ADS)

    Michlik, Stefan; Kempe, Rhett

    2013-02-01

    The pyrrole heterocycle is a prominent chemical motif and is found widely in natural products, drugs, catalysts and advanced materials. Here we introduce a sustainable iridium-catalysed pyrrole synthesis in which secondary alcohols and amino alcohols are deoxygenated and linked selectively via the formation of C-N and C-C bonds. Two equivalents of hydrogen gas are eliminated in the course of the reaction, and alcohols based entirely on renewable resources can be used as starting materials. The catalytic synthesis protocol tolerates a large variety of functional groups, which includes olefins, chlorides, bromides, organometallic moieties, amines and hydroxyl groups. We have developed a catalyst that operates efficiently under mild conditions.

  1. Molecular catalytic coal liquid conversion

    SciTech Connect

    Stock, L.M.; Yang, Shiyong

    1995-12-31

    This research, which is relevant to the development of new catalytic systems for the improvement of the quality of coal liquids by the addition of dihydrogen, is divided into two tasks. Task 1 centers on the activation of dihydrogen by molecular basic reagents such as hydroxide ion to convert it into a reactive adduct (OH{center_dot}H{sub 2}){sup {minus}} that can reduce organic molecules. Such species should be robust withstanding severe conditions and chemical poisons. Task 2 is focused on an entirely different approach that exploits molecular catalysts, derived from organometallic compounds that are capable of reducing monocyclic aromatic compounds under very mild conditions. Accomplishments and conclusions are discussed.

  2. Catalytic membranes for fuel cells

    SciTech Connect

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2011-04-19

    A fuel cell of the present invention comprises a cathode and an anode, one or both of the anode and the cathode including a catalyst comprising a bundle of longitudinally aligned graphitic carbon nanotubes including a catalytically active transition metal incorporated longitudinally and atomically distributed throughout the graphitic carbon walls of said nanotubes. The nanotubes also include nitrogen atoms and/or ions chemically bonded to the graphitic carbon and to the transition metal. Preferably, the transition metal comprises at least one metal selected from the group consisting of Fe, Co, Ni, Mn, and Cr.

  3. Troposphere-stratosphere exchange - constraints from water vapour

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Fueglistaler, S.; Haynes, P. H.

    2009-04-01

    Troposphere-to-stratosphere transport involves both cross-isentropic transport across the tropical tropopause to the stratospheric 'overworld' and quasi-horizontal transport into the lowermost stratosphere. The distribution of stratospheric water vapour is sensitively dependent on the detailed temperature history of air parcels entering the stratosphere, which can be used to constrain troposphere-stratosphere exchange pathways. We carry out trajectory calculations for the years 2001 and 2005-2008 with winds and diabatic heating rates from the ECMWF 40-year reanalysis project (ERA-40) and the new interim reanalysis project (ERA-Interim). Trajectories are either kinematic, where the vertical velocity is calculated from mass continuity, or diabatic, where diabatic heating rates are used to drive cross-isentropic motion. Water vapour is estimated using a simple dehydration model, and results are compared with measurements from HALOE and the Microwave Limb Sounder (MLS) on board the AURA satellite. In general diabatic trajectories yield spatial and temporal variations in water vapour that are in better agreement with observations, but for the ERA-Interim dataset the differences between kinematic and diabatic trajectories are small. Diabatic trajectories, which give the best estimate in seasonal variation of water vapour, show a consistent dry bias for the stratospheric overworld of 0.5 ppmv compared to previously published ERA-40 trajectory results and observations. The results suggest that trajectories calculated using ERA-40 winds show excessive vertical dispersion which overestimates troposphere-to-stratosphere exchange, an effect also seen in the lowermost stratosphere. The new results suggest that moistening processes in addition to the instantaneous dehydration to large-scale saturation mixing ratio could contribute up to 0.5 ppmv to stratospheric H2O.

  4. Transversely diode-pumped alkali metal vapour laser

    SciTech Connect

    Parkhomenko, A I; Shalagin, A M

    2015-09-30

    We have studied theoretically the operation of a transversely diode-pumped alkali metal vapour laser. For the case of high-intensity laser radiation, we have obtained an analytical solution to a complex system of differential equations describing the laser. This solution allows one to exhaustively determine all the energy characteristics of the laser and to find optimal parameters of the working medium and pump radiation (temperature, buffer gas pressure, and intensity and width of the pump spectrum). (lasers)

  5. Infrared Laser Optoacoustic Detection Of Gases And Vapours

    NASA Astrophysics Data System (ADS)

    Johnson, S. A.; Cummins, P. G.; Bone, S. A.; Davies, P. B.

    1988-10-01

    Mid-infrared laser optoacoustic spectroscopy has been used to detect a variety of gases and vapours. Performance was calibrated using the signal from a known concentration of ethene, and then the method applied to the perfume alcohol geraniol. Detection limits were found to be 1 ppb for ethene and 70 ppb for geraniol on their strongest absorption lines for a few seconds measurement time.

  6. Catalytic distillation structure

    DOEpatents

    Smith, Jr., Lawrence A.

    1984-01-01

    Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

  7. Land cover change and water vapour flows: learning from Australia.

    PubMed Central

    Gordon, Line; Dunlop, Michael; Foran, Barney

    2003-01-01

    Australia is faced with large-scale dryland salinization problems, largely as a consequence of the clearing of native vegetation for cropland and grassland. We estimate the change in continental water vapour flow (evapotranspiration) of Australia during the past 200 years. During this period there has been a substantial decrease in woody vegetation and a corresponding increase in croplands and grasslands. The shift in land use has caused a ca. 10% decrease in water vapour flows from the continent. This reduction corresponds to an annual freshwater flow of almost 340 km(3). The society-induced alteration of freshwater flows is estimated at more than 15 times the volume of run-off freshwater that is diverted and actively managed in the Australian society. These substantial water vapour flow alterations were previously not addressed in water management but are now causing serious impacts on the Australian society and local economies. Global and continental freshwater assessments and policy often neglects the interplay between freshwater flows and landscape dynamics. Freshwater issues on both regional and global levels must be rethought and the interplay between terrestrial ecosystems and freshwater better incorporated in freshwater and ecosystem management. PMID:14728792

  8. Nonequilibrium study of the intrinsic free-energy profile across a liquid-vapour interface

    SciTech Connect

    Braga, Carlos Muscatello, Jordan Lau, Gabriel Müller, Erich A. Jackson, George

    2016-01-28

    We calculate an atomistically detailed free-energy profile across a heterogeneous system using a nonequilibrium approach. The path-integral formulation of Crooks fluctuation theorem is used in conjunction with the intrinsic sampling method to calculate the free-energy profile for the liquid-vapour interface of the Lennard-Jones fluid. Free-energy barriers are found corresponding to the atomic layering in the liquid phase as well as a barrier associated with the presence of an adsorbed layer as revealed by the intrinsic density profile. Our findings are in agreement with profiles calculated using Widom’s potential distribution theorem applied to both the average and the intrinsic profiles as well as the literature values for the excess chemical potential.

  9. Nonequilibrium study of the intrinsic free-energy profile across a liquid-vapour interface

    NASA Astrophysics Data System (ADS)

    Braga, Carlos; Muscatello, Jordan; Lau, Gabriel; Müller, Erich A.; Jackson, George

    2016-01-01

    We calculate an atomistically detailed free-energy profile across a heterogeneous system using a nonequilibrium approach. The path-integral formulation of Crooks fluctuation theorem is used in conjunction with the intrinsic sampling method to calculate the free-energy profile for the liquid-vapour interface of the Lennard-Jones fluid. Free-energy barriers are found corresponding to the atomic layering in the liquid phase as well as a barrier associated with the presence of an adsorbed layer as revealed by the intrinsic density profile. Our findings are in agreement with profiles calculated using Widom's potential distribution theorem applied to both the average and the intrinsic profiles as well as the literature values for the excess chemical potential.

  10. Structure and properties of molecular and ionic clusters in vapour over caesium fluoride

    NASA Astrophysics Data System (ADS)

    Mwanga, Stanley F.; Pogrebnaya, Tatiana P.; Pogrebnoi, Alexander M.

    2015-06-01

    The properties of neutral molecules Cs2F2, Cs3F3, and Cs4F4, and positive and negative cluster ions Cs2F+, CsF2-, Cs3F2+, Cs2F3-, Cs4F3+, and Cs5F4+ were studied by several of quantum chemical methods implementing density function theory and Möller-Plesset perturbation theory of second and fourth orders. For all species, the equilibrium geometrical structure and vibrational spectra were determined. Different isomers have been revealed for the trimer neutral molecule Cs3F3; pentaatomic, both positive and negative, Cs3F2+, Cs2F3-; and heptaatomic Cs4F3+ ions. The most abundant isomers in the saturated vapour were determined. Enthalpies of dissociation reactions and enthalpies of formation of the species were obtained.

  11. Engineering Metallic Nanoparticles for Enhancing and Probing Catalytic Reactions.

    PubMed

    Collins, Gillian; Holmes, Justin D

    2016-07-01

    Recent developments in tailoring the structural and chemical properties of colloidal metal nanoparticles (NPs) have led to significant enhancements in catalyst performance. Controllable colloidal synthesis has also allowed tailor-made NPs to serve as mechanistic probes for catalytic processes. The innovative use of colloidal NPs to gain fundamental insights into catalytic function will be highlighted across a variety of catalytic and electrocatalytic applications. The engineering of future heterogenous catalysts is also moving beyond size, shape and composition considerations. Advancements in understanding structure-property relationships have enabled incorporation of complex features such as tuning surface strain to influence the behavior of catalytic NPs. Exploiting plasmonic properties and altering colloidal surface chemistry through functionalization are also emerging as important areas for rational design of catalytic NPs. This news article will highlight the key developments and challenges to the future design of catalytic NPs.

  12. A method for highly efficient catalytic immobilisation of glucose oxidase on the surface of silica.

    PubMed

    Sim, Yong-Kyun; Park, Jung-Woo; Kim, Bo-Hyeong; Jun, Chul-Ho

    2013-12-11

    A simple, mild and convenient method has been developed for catalytic immobilisation of glucose oxidase (GOx), chemically modified to contain pendant methallylsilyl groups, on an untreated silica surface.

  13. Influence of water and water vapour on the characteristics of KI treated HgI 2 detectors

    NASA Astrophysics Data System (ADS)

    Ponpon, J. P.; Amann, M.; Sieskind, M.

    After being cleaned using a potassium iodide solution in water followed by a water rinse, the surface of mercuric iodide is covered by a chemical complex identified as being KHgI 3·H 2O. This compound can adsorb large quantities of water and its electrical properties are strongly sensitive to water and water vapour. The consequences on the manufacturing and storing conditions (especially the relative humidity), of mercuric iodide-based devices are therefore of great concern. They are illustrated by the study of the electrical and spectrometric properties of HgI 2 nuclear radiation detectors.

  14. Controlled synthesis of porous platinum nanostructures for catalytic applications.

    PubMed

    Cao, Yanqin; Zhang, Junwei; Yang, Yong; Huang, Zhengren; Long, Nguyen Viet; Nogami, Masayuki

    2014-02-01

    Porous platinum, that has outstanding catalytic and electrical properties and superior resistant characteristics to corrosion, has been widely applied in chemical, petrochemical, pharmaceutical, electronic, and automotive industries. As the catalytic activity and selectivity depend on the size, shape and structure of nanomaterials, the strategies for controlling these factors of platinum nanomaterials to get excellent catalytic properties are discussed. Here, recent advances in the design and preparation of various porous platinum nanostructures are reviewed, including wet-chemical synthesis, electro-deposition, galvanic replacement reaction and de-alloying technology. The applications of various platinum nanostructures are also discussed, especially in fuel cells.

  15. A Study of a QCM Sensor Based on TiO2 Nanostructures for the Detection of NO2 and Explosives Vapours in Air

    PubMed Central

    Procek, Marcin; Stolarczyk, Agnieszka; Pustelny, Tadeusz; Maciak, Erwin

    2015-01-01

    The paper deals with investigations concerning the construction of sensors based on a quartz crystal microbalance (QCM) containing a TiO2 nanostructures sensor layer. A chemical method of synthesizing these nanostructures is presented. The prepared prototype of the QCM sensing system, as well as the results of tests for detecting low NO2 concentrations in an atmosphere of synthetic air have been described. The constructed NO2 sensors operate at room temperature, which is a great advantage, because resistance sensors based on wide gap semiconductors often require much higher operation temperatures, sometimes as high as 500 °C. The sensors constructed by the authors can be used, among other applications, in medical and chemical diagnostics, and also for the purpose of detecting explosive vapours. Reactions of the sensor to nitroglycerine vapours are presented as an example of its application. The influence of humidity on the operation of the sensor was studied. PMID:25912352

  16. Evolution of catalytic function

    NASA Technical Reports Server (NTRS)

    Joyce, G. F.

    1993-01-01

    An RNA-based evolution system was constructed in the laboratory and used to develop RNA enzymes with novel catalytic function. By controlling the nature of the catalytic task that the molecules must perform in order to survive, it is possible to direct the evolving population toward the expression of some desired catalytic behavior. More recently, this system has been coupled to an in vitro translation procedure, raising the possibility of evolving protein enzymes in the laboratory to produce novel proteins with desired catalytic properties. The aim of this line of research is to reduce darwinian evolution, the fundamental process of biology, to a laboratory procedure that can be made to operate in the service of organic synthesis.

  17. Catalytic distillation structure

    DOEpatents

    Smith, L.A. Jr.

    1984-04-17

    Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

  18. The seasonal cycle of water vapour on Mars from assimilation of Thermal Emission Spectrometer data

    NASA Astrophysics Data System (ADS)

    Steele, Liam J.; Lewis, Stephen R.; Patel, Manish R.; Montmessin, Franck; Forget, François; Smith, Michael D.

    2014-07-01

    We present for the first time an assimilation of Thermal Emission Spectrometer (TES) water vapour column data into a Mars global climate model (MGCM). We discuss the seasonal cycle of water vapour, the processes responsible for the observed water vapour distribution, and the cross-hemispheric water transport. The assimilation scheme is shown to be robust in producing consistent reanalyses, and the global water vapour column error is reduced to around 2-4 pr μm depending on season. Wave activity is shown to play an important role in the water vapour distribution, with topographically steered flows around the Hellas and Argyre basins acting to increase transport in these regions in all seasons. At high northern latitudes, zonal wavenumber 1 and 2 stationary waves during northern summer are responsible for spreading the sublimed water vapour away from the pole. Transport by the zonal wavenumber 2 waves occurs primarily to the west of Tharsis and Arabia Terra and, combined with the effects of western boundary currents, this leads to peak water vapour column abundances here as observed by numerous spacecraft. A net transport of water to the northern hemisphere over the course of one Mars year is calculated, primarily because of the large northwards flux of water vapour which occurs during the local dust storm around LS=240-260°. Finally, outlying frost deposits that surround the north polar cap are shown to be important in creating the peak water vapour column abundances observed during northern summer.

  19. The Seasonal Cycle of Water Vapour on Mars from Assimilation of Thermal Emission Spectrometer Data

    NASA Technical Reports Server (NTRS)

    Steele, Liam J.; Lewis, Stephen R.; Patel, Manish R.; Montmessin, Franck; Forget, Francois; Smith, Michael D.

    2014-01-01

    We present for the first time an assimilation of Thermal Emission Spectrometer (TES) water vapour column data into a Mars global climate model (MGCM). We discuss the seasonal cycle of water vapour, the processes responsible for the observed water vapour distribution, and the cross-hemispheric water transport. The assimilation scheme is shown to be robust in producing consistent reanalyses, and the global water vapour column error is reduced to around 2-4 pr micron depending on season. Wave activity is shown to play an important role in the water vapour distribution, with topographically steered flows around the Hellas and Argyre basins acting to increase transport in these regions in all seasons. At high northern latitudes, zonal wavenumber 1 and 2 stationary waves during northern summer are responsible for spreading the sublimed water vapour away from the pole. Transport by the zonal wavenumber 2 waves occurs primarily to the west of Tharsis and Arabia Terra and, combined with the effects of western boundary currents, this leads to peak water vapour column abundances here as observed by numerous spacecraft. A net transport of water to the northern hemisphere over the course of one Mars year is calculated, primarily because of the large northwards flux of water vapour which occurs during the local dust storm around L(sub S) = 240-260deg. Finally, outlying frost deposits that surround the north polar cap are shown to be important in creating the peak water vapour column abundances observed during northern summer.

  20. Clean catalytic combustor program

    NASA Technical Reports Server (NTRS)

    Ekstedt, E. E.; Lyon, T. F.; Sabla, P. E.; Dodds, W. J.

    1983-01-01

    A combustor program was conducted to evolve and to identify the technology needed for, and to establish the credibility of, using combustors with catalytic reactors in modern high-pressure-ratio aircraft turbine engines. Two selected catalytic combustor concepts were designed, fabricated, and evaluated. The combustors were sized for use in the NASA/General Electric Energy Efficient Engine (E3). One of the combustor designs was a basic parallel-staged double-annular combustor. The second design was also a parallel-staged combustor but employed reverse flow cannular catalytic reactors. Subcomponent tests of fuel injection systems and of catalytic reactors for use in the combustion system were also conducted. Very low-level pollutant emissions and excellent combustor performance were achieved. However, it was obvious from these tests that extensive development of fuel/air preparation systems and considerable advancement in the steady-state operating temperature capability of catalytic reactor materials will be required prior to the consideration of catalytic combustion systems for use in high-pressure-ratio aircraft turbine engines.

  1. Plasma formation in water vapour layers in high conductivity liquids

    NASA Astrophysics Data System (ADS)

    Kelsey, C. P.; Schaper, L.; Stalder, K. R.; Graham, W. G.

    2011-10-01

    The vapour layer development stage of relatively low voltage plasmas in conducting solutions has already been well explored. The nature of the discharges formed within the vapour layer however is still largely unexplored. Here we examine the nature of such discharges through a combination of fast imaging and spatially, temporally resolved spectroscopy and electrical characterisation. The experimental setup used is a pin-to-plate discharge configuration with a -350V, 200 μs pulse applied at a repetition rate of 2Hz. A lens, followed by beam splitter allows beams to one Andor ICCD camera to capture images of the plasma emission with a second camera at the exit of a high resolution spectrometer. Through synchronization of the camera images at specified times after plasma ignition (as determined from current-voltage characteristics) they can be correlated with the spectra features. Initial measurements reveal two apparently different plasma formations. Stark broadening of the hydrogen Balmer beta line indicate electron densities of 3 to 5 ×1020 m-3 for plasmas produced early in the voltage pulse and an order of magnitude less for the later plasmas. The vapour layer development stage of relatively low voltage plasmas in conducting solutions has already been well explored. The nature of the discharges formed within the vapour layer however is still largely unexplored. Here we examine the nature of such discharges through a combination of fast imaging and spatially, temporally resolved spectroscopy and electrical characterisation. The experimental setup used is a pin-to-plate discharge configuration with a -350V, 200 μs pulse applied at a repetition rate of 2Hz. A lens, followed by beam splitter allows beams to one Andor ICCD camera to capture images of the plasma emission with a second camera at the exit of a high resolution spectrometer. Through synchronization of the camera images at specified times after plasma ignition (as determined from current

  2. The uptake of elemental iodine vapour by bean leaves

    NASA Astrophysics Data System (ADS)

    Garland, J. A.; Cox, L. C.

    Deposition of iodine vapour to leaves of phaseolus vulgaris was measured over a range of conditions of humidity, temperature and illumination. Transpiration measurements were used to deduce stomatal opening. The results showed that stomatal resistance controlled iodine absorption at relative humidities below 40 per cent, but that the rate of absorption of iodine increased by an order of magnitude when the relative humidity was raised to 80 per cent, presumably due to cuticular absorption. After exposure to iodine at high humidity, a substantial fraction of the iodine could be washed from the leaves. In Britain, cuticular uptake would probably dominate stomatal uptake of iodine on most occasions.

  3. Combined Dial Sounding of Ozone, Water Vapour and Aerosol

    NASA Astrophysics Data System (ADS)

    Trickl, Thomas; Vogelmann, Hannes

    2016-06-01

    Routine high-quality lidar measurements of ozone, water vapour and aerosol at Garmisch-Partenkirchen since 2007 have made possible more comprehensive atmospheric studies and lead to a growing insight concerning the most frequently occurring long-range transport pathways. In this contribution we present as examples results on stratospheric layers travelling in the free troposphere for extended periods of time without eroding. In particular, we present a case of an intrusion layer that subsided over as many as fifteen days and survived the interference by strong Canadian fires. These results impose a challenge on atmospheric modelling that grossly overestimates free-tropospheric mixing.

  4. Subpicotesla atomic magnetometry with a microfabricated vapour cell

    NASA Astrophysics Data System (ADS)

    Shah, Vishal; Knappe, Svenja; Schwindt, Peter D. D.; Kitching, John

    2007-11-01

    Highly sensitive magnetometers capable of measuring magnetic fields below 1 pT have an impact on areas as diverse as geophysical surveying, the detection of unexploded ordinance, space science, nuclear magnetic resonance, health care and perimeter and remote monitoring. Recently, it has been shown that laboratory optical magnetometers, based on the precession of the spins of alkali atoms in the vapour phase, could achieve sensitivities in the femtotesla range, comparable to, or even exceeding, those of superconducting quantum interference devices. We demonstrate here an atomic magnetometer based on a millimetre-scale microfabricated alkali vapour cell with sensitivity below 70 fT Hz-1/2. Additionally, we use a simplified optical configuration that requires only a single low-power laser. This result suggests that millimetre-scale, low-power femtotesla magnetometers are feasible, and we support this proposition with a simple sensitivity scaling analysis. Such an instrument would greatly expand the range of applications in which atomic magnetometers could be used.

  5. Detecting vapour bubbles in simulations of metastable water

    SciTech Connect

    González, Miguel A.; Abascal, Jose L. F.; Valeriani, Chantal E-mail: cvaleriani@quim.ucm.es; Menzl, Georg; Geiger, Philipp; Dellago, Christoph E-mail: cvaleriani@quim.ucm.es; Aragones, Juan L.; Caupin, Frederic

    2014-11-14

    The investigation of cavitation in metastable liquids with molecular simulations requires an appropriate definition of the volume of the vapour bubble forming within the metastable liquid phase. Commonly used approaches for bubble detection exhibit two significant flaws: first, when applied to water they often identify the voids within the hydrogen bond network as bubbles thus masking the signature of emerging bubbles and, second, they lack thermodynamic consistency. Here, we present two grid-based methods, the M-method and the V-method, to detect bubbles in metastable water specifically designed to address these shortcomings. The M-method incorporates information about neighbouring grid cells to distinguish between liquid- and vapour-like cells, which allows for a very sensitive detection of small bubbles and high spatial resolution of the detected bubbles. The V-method is calibrated such that its estimates for the bubble volume correspond to the average change in system volume and are thus thermodynamically consistent. Both methods are computationally inexpensive such that they can be used in molecular dynamics and Monte Carlo simulations of cavitation. We illustrate them by computing the free energy barrier and the size of the critical bubble for cavitation in water at negative pressure.

  6. Charge Transport in Polyaniline and Vapour Induced Structural Changes

    NASA Astrophysics Data System (ADS)

    Minto, C. D. G.; Vaughan, A. S.

    1996-03-01

    Camphor sulphonic acid protonation renders polyaniline soluble in both m-cresol and chloroform. Films cast from these solvents exhibit vastly differing transport properties. m-cresol cast films are metallic or lie on the metal/insulator transition, whereas those cast from chloroform are insulators. Similarly pellets of pressed doped polyaniline powder exhibit insulating characteristics. We present an investigation of such effects in polyaniline obtained from both insulating conditions (films and powders). We find that m-cresol -- vapour treatment of these materials causes a rapid increase both in the conductivity and the type of conduction, changing from an insulator to a material approaching the metal/insulator transition. Chloroform films actually take on characteristics of those cast from m-cresol, including a positive temperature coefficient of resistivity. Both starting materials exhibit similar X-ray scattering patterns, after exposure to vapour, the pattern becomes more similar to that which is found in m-cresol cast films. Conformational changes resulting from a strong polymer--interaction are discussed as the motivation for the improvements in transport properties.

  7. Detecting vapour bubbles in simulations of metastable water

    NASA Astrophysics Data System (ADS)

    González, Miguel A.; Menzl, Georg; Aragones, Juan L.; Geiger, Philipp; Caupin, Frederic; Abascal, Jose L. F.; Dellago, Christoph; Valeriani, Chantal

    2014-11-01

    The investigation of cavitation in metastable liquids with molecular simulations requires an appropriate definition of the volume of the vapour bubble forming within the metastable liquid phase. Commonly used approaches for bubble detection exhibit two significant flaws: first, when applied to water they often identify the voids within the hydrogen bond network as bubbles thus masking the signature of emerging bubbles and, second, they lack thermodynamic consistency. Here, we present two grid-based methods, the M-method and the V-method, to detect bubbles in metastable water specifically designed to address these shortcomings. The M-method incorporates information about neighbouring grid cells to distinguish between liquid- and vapour-like cells, which allows for a very sensitive detection of small bubbles and high spatial resolution of the detected bubbles. The V-method is calibrated such that its estimates for the bubble volume correspond to the average change in system volume and are thus thermodynamically consistent. Both methods are computationally inexpensive such that they can be used in molecular dynamics and Monte Carlo simulations of cavitation. We illustrate them by computing the free energy barrier and the size of the critical bubble for cavitation in water at negative pressure.

  8. Antimicrobial action of essential oil vapours and negative air ions against Pseudomonas fluorescens.

    PubMed

    Tyagi, A K; Malik, A

    2010-10-15

    The aim of this study was to investigate the antibacterial activity of essential oil (in liquid as well as in vapour phase) and negative air ions (NAI) against Pseudomonas fluorescens. The combined effect of NAI with essential oil vapour was also investigated to determine kill time and morphological changes in bacterial cells. The MIC of Cymbopogon citratus (0.567 mg/ml), Mentha arvensis (0.567 mg/ml), Mentha piperita (1.125 mg/ml) and Eucalyptus globulus (2.25 mg/ml) was studied via the agar dilution method. To estimate the antibacterial activity of essential oils in the vapour phase, agar plates inoculated with P. fluorescens were incubated with various concentrations of each essential oil vapour and zone of inhibition was recorded. Further, in order to assess the kill time, P. fluorescens inoculated agar plates were exposed to selected bactericidal essential oil vapour and NAI, separately, in an air-tight chamber. A continuous decrease in bacterial count was observed over time. A significant enhancement in the bactericidal action was observed by exposure to the combination of essential oil vapour and NAI as compared to their individual action. Scanning electron microscopy was used to study the alteration in morphology of P. fluorescens cells after exposure to C. citratus oil vapour, NAI, and combination of C. citratus oil vapour and NAI. Maximum morphological deformation was found due to the combined effect of C. citratus oil vapour and NAI. This study demonstrates that the use of essential oils in the vapour phase is more advantageous than the liquid phase. Further the antibacterial effect of the essential oil vapours can be significantly enhanced by the addition of NAI. The work described here offers a novel and efficient approach for control of bacterial contamination that could be applied for food stabilization practices.

  9. Performance characterization of a hydrogen catalytic heater.

    SciTech Connect

    Johnson, Terry Alan; Kanouff, Michael P.

    2010-04-01

    This report describes the performance of a high efficiency, compact heater that uses the catalytic oxidation of hydrogen to provide heat to the GM Hydrogen Storage Demonstration System. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to a circulating heat transfer fluid. The fluid then transfers the heat to one or more of the four hydrogen storage modules that make up the Demonstration System to drive off the chemically bound hydrogen. The heater consists of three main parts: (1) the reactor, (2) the gas heat recuperator, and (3) oil and gas flow distribution manifolds. The reactor and recuperator are integrated, compact, finned-plate heat exchangers to maximize heat transfer efficiency and minimize mass and volume. Detailed, three-dimensional, multi-physics computational models were used to design and optimize the system. At full power the heater was able to catalytically combust a 10% hydrogen/air mixture flowing at over 80 cubic feet per minute and transfer 30 kW of heat to a 30 gallon per minute flow of oil over a temperature range from 100 C to 220 C. The total efficiency of the catalytic heater, defined as the heat transferred to the oil divided by the inlet hydrogen chemical energy, was characterized and methods for improvement were investigated.

  10. Catalytic nanoporous membranes

    DOEpatents

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  11. Transient catalytic combustor model

    NASA Technical Reports Server (NTRS)

    Tien, J. S.

    1981-01-01

    A quasi-steady gas phase and thermally thin substrate model is used to analyze the transient behavior of catalytic monolith combustors in fuel lean operation. The combustor response delay is due to the substrate thermal inertia. Fast response is favored by thin substrate, short catalytic bed length, high combustor inlet and final temperatures, and small gas channel diameters. The calculated gas and substrate temperature time history at different axial positions provides an understanding of how the catalytic combustor responds to an upstream condition change. The computed results also suggest that the gas residence times in the catalytic bed in the after bed space are correlatable with the nondimensional combustor response time. The model also performs steady state combustion calculations; and the computed steady state emission characteristics show agreement with available experimental data in the range of parameters covered. A catalytic combustor design for automotive gas turbine engine which has reasonably fast response ( 1 second) and can satisfy the emission goals in an acceptable total combustor length is possible.

  12. Transient catalytic combustor model

    NASA Astrophysics Data System (ADS)

    Tien, J. S.

    1981-05-01

    A quasi-steady gas phase and thermally thin substrate model is used to analyze the transient behavior of catalytic monolith combustors in fuel lean operation. The combustor response delay is due to the substrate thermal inertia. Fast response is favored by thin substrate, short catalytic bed length, high combustor inlet and final temperatures, and small gas channel diameters. The calculated gas and substrate temperature time history at different axial positions provides an understanding of how the catalytic combustor responds to an upstream condition change. The computed results also suggest that the gas residence times in the catalytic bed in the after bed space are correlatable with the nondimensional combustor response time. The model also performs steady state combustion calculations; and the computed steady state emission characteristics show agreement with available experimental data in the range of parameters covered. A catalytic combustor design for automotive gas turbine engine which has reasonably fast response ( 1 second) and can satisfy the emission goals in an acceptable total combustor length is possible.

  13. The millennium water vapour drop in the stratosphere in chemistry-climate model simulations

    NASA Astrophysics Data System (ADS)

    Brinkop, Sabine; Dameris, Martin; Joeckel, Patrick; Garny, Hella; Lossow, Stefan; Stiller, Gabriele

    2015-04-01

    This study investigates the millennium water vapour drop, the abrupt and severe water vapour decline in the stratosphere beginning in year 2000, by means of various simulations using the Chemistry-Climate Model (CCM) EMAC. Since the beginning 1980s, balloon borne stratospheric water vapour measurements and corresponding satellite measurements starting in the early 1990s indicated a long-term steady increase of water vapour concentrations. However, the multi-year data sets also show significant fluctuations on different time scales. In the year 2000, an extraordinary sudden drop of stratospheric water vapour concentration has been observed followed by persistent low values for several years. Solomon et al. (2010) showed that this drop slowed down the rate of increase in global surface temperature over the following decade by about 25%. So far, the stratospheric water vapour variations observed by satellite from 1992 to 2012 are not reproduced by CCM simulations forced by observed changes in sea surface temperatures, greenhouse gases and ozone-depleting substances (Gettelman et al., 2010, Randel and Jensen, 2013). However, the CCM EMAC is able to reproduce the signature and pattern of the water vapour disturbances in agreement with those derived from observations. In this paper we present results of a hierarchy of simulations with the CCM EMAC, demonstrating that it is possible to retrace the observed water vapour fluctuations in the stratosphere (incl. the millennium drop), if suitable inner and outer boundary conditions are applied.

  14. Liquid-vapour equilibrium in the restricted primitive model for ionic liquids

    NASA Astrophysics Data System (ADS)

    Gillan, M. J.

    We study the thermodynamic equilibrium between liquid and vapour for the restricted primitive model (charged hard spheres of equal diameters) of a two component ionic liquid. We point out that physical clustering of ions will have a crucial effect on this equilibrium. The calculations presented are based on the representation of the vapour as a mixture of clusters of different types, the interactions between clusters being neglected. The relative proportions of the different types are governed by the law of mass action. We show that neglect of interactions yields a lower bound to the true vapour pressure. The internal free energies of the clusters in the vapour are obtained from a combination of analytic and Monte Carlo calculations and the thermodynamic properties of the liquid phase are derived from Larsen's published Monte Carlo results. We present numerical results for the densities of different cluster types in the vapour phase, for the overall liquid and vapour densities and for the vapour pressure. A comparison with the predictions of the mean spherical approximation and of Larsen's empirical equation show that these yield vapour pressures which are far below our lower bound and are therefore erroneous. We point out that Larsen's equation implies a weak subsidiary critical point on the liquid branch of the coexistence curve, an effect which we suggest is spurious. Finally, we discuss the relation between our work and that of Stell, Wu and Larsen.

  15. Spatial homogeneity criteria for active media of cataphoresis repetitively pulsed metal vapour lasers

    SciTech Connect

    Chebotarev, Gennady D; Prutsakov, Oleg O; Latush, Evgeny L

    2005-07-31

    The formation of the transverse distribution of the metal vapour concentration in repetitively pulsed lasers is analysed. The criterion for the homogeneity of this distribution is found. The optimal conditions for excitation of the active media of cataphoresis repetitively pulsed metal vapour lasers are determined under which a high degree of both longitudinal and transverse homogeneity is achieved. (active media)

  16. The recovery of VOC from vapours and condensates by membrane processes

    SciTech Connect

    Chmiel, H.; Mavrov, V.; Faehnrich, A.

    1995-12-31

    Membrane separation processes, applied individually or combined with other separation processes, have proven to be particularly suitable for integration into production processes. This paper provides examples which focus on the recovery of volatile organic components from exhaust air, vapours and condensates by membrane processes. The processes described are vapour permeation combined with adsorption, nanofiltration, and reverse osmosis.

  17. The injection of water into and extraction of vapour from bounded geothermal reservoirs

    SciTech Connect

    Fitzgerald, Shaun D.; Woods, Andrew W.

    1993-01-28

    When liquid is injected into a geothermal reservoir, a fraction of the liquid may vaporise if the reservoir is sufficiently hot. The vapour forms at an approximately planar liquid-vapour interface and diffuses towards the far boundary of the reservoir. If vapour is extracted from the far boundary, then once the new vapour has diffused across the reservoir, the rate of production of vapour at the liquid-vapour interface approximately balances the rate of extraction. We find that if the pressure at the injection pump and extraction well is fixed, then the fraction of the liquid which vaporises and the rate of extraction of vapour from the reservoir increase with time. However, the rate at which liquid is pumped into the reservoir inay initially decrease but subsequently increases with time, if a sufficient fraction of the liquid vaporises. If the mass flux of liquid injected into the reservoir is fixed, then again both the fraction of the liquid which vaporises and the mass flux of vapour which may be extracted increase with time. In this case, the pressure at the injection pump may increase but subsequently decreases with time, again if a sufficient fraction of the liquid vaporises.

  18. Catalytic hydrotreating process

    DOEpatents

    Karr, Jr., Clarence; McCaskill, Kenneth B.

    1978-01-01

    Carbonaceous liquids boiling above about 300.degree. C such as tars, petroleum residuals, shale oils and coal-derived liquids are catalytically hydrotreated by introducing the carbonaceous liquid into a reaction zone at a temperature in the range of 300.degree. to 450.degree. C and a pressure in the range of 300 to 4000 psig for effecting contact between the carbonaceous liquid and a catalytic transition metal sulfide in the reaction zone as a layer on a hydrogen permeable transition metal substrate and then introducing hydrogen into the reaction zone by diffusing the hydrogen through the substrate to effect the hydrogenation of the carbonaceous liquid in the presence of the catalytic sulfide layer.

  19. Steam reformer with catalytic combustor

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor)

    1990-01-01

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  20. Steam reformer with catalytic combustor

    DOEpatents

    Voecks, Gerald E.

    1990-03-20

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  1. Equations for vapour pressure versus temperature: derivation and use of the Antoine equation on a hand-held programmable calculator.

    PubMed

    Rodgers, R C; Hill, G E

    1978-05-01

    The Antoine equation is a semi-empirical equation which expresses vapour pressure as a function of temperature. A new, rapid and highly accurate method for obtaining its three constants from experimental data is presented and applied to ethanol, water and 14 anaesthetic substances. Alternative vapour pressure equations are discussed and references for original temperature--vapour pressure data are summarized. A series of equations utilizing vapour pressure is detailed: these formulas are of use in both the practice and teaching of anaesthesia.

  2. Hierarchically arranged helical fibre actuators driven by solvents and vapours.

    PubMed

    Chen, Peining; Xu, Yifan; He, Sisi; Sun, Xuemei; Pan, Shaowu; Deng, Jue; Chen, Daoyong; Peng, Huisheng

    2015-12-01

    Mechanical responsiveness in many plants is produced by helical organizations of cellulose microfibrils. However, simple mimicry of these naturally occurring helical structures does not produce artificial materials with the desired tunable actuations. Here, we show that actuating fibres that respond to solvent and vapour stimuli can be created through the hierarchical and helical assembly of aligned carbon nanotubes. Primary fibres consisting of helical assemblies of multiwalled carbon nanotubes are twisted together to form the helical actuating fibres. The nanoscale gaps between the nanotubes and micrometre-scale gaps among the primary fibres contribute to the rapid response and large actuation stroke of the actuating fibres. The compact coils allow the actuating fibre to rotate reversibly. We show that these fibres, which are lightweight, flexible and strong, are suitable for a variety of applications such as energy-harvesting generators, deformable sensing springs and smart textiles.

  3. Transport properties of polymer-vapour grown carbon fibre composites

    NASA Astrophysics Data System (ADS)

    Gordeyev, S. A.; Macedo, F. J.; Ferreira, J. A.; van Hattum, F. W. J.; Bernardo, C. A.

    2000-04-01

    DC electrical resistivity and thermal conductivity of polypropylene (PP) filled with vapour grown carbon fibre (VGCF) was studied. This was done for a wide range of fibre content and compared to systems produced under the same conditions in which a conventional carbon fibre was used as filler. The composites studied exhibit characteristic percolating behaviour. Because of the low degree of graphite perfection in the VGCF used in this work, the fraction of VGCF required to achieve percolation was higher than expected. Non-linear I- V characteristics and time dependent electrical resistivity effects are only observed in PP filled with VGCF. Several mechanisms must be called upon to explain the observed electrical behaviour of the PP/VGCF composite. The thermal conductivity of the composites is in agreement with the effective medium theories.

  4. Water Vapour In The Atmosphere Of An Extrasolar Planet

    NASA Astrophysics Data System (ADS)

    Tinetti, Giovanna; Liang, M.; Beaulieu, J.; Yung, Y. L.; Carey, S.; Ribas, I.; Tennyson, J.; Barber, B.; Allard, N.; Ballester, G.; Sing, D.; Selsis, F.

    2007-10-01

    Water is predicted to be among the most abundant (if not the most abundant) molecular species after hydrogen in the atmospheres of close-in extrasolar giant planets (`hot Jupiters'). Several attempts have been made to detect water on such planets, but have either failed to find compelling evidence for it or led to claims that should be taken with caution. Here we report an analysis of recent observations of the hot Jupiter HD 189733b taken during the transit, when the planet passed in front of its parent star. We find that absorption by water vapour is the most likely cause of the wavelength-dependent variations in the effective radius of the planet at the infrared wavelengths 3.6, 5.8 and 8 microns. The larger effective radius observed at visible wavelengths may arise from either stellar variability or the presence of clouds/hazes.

  5. Radiative forcing due to trends in stratospheric water vapour

    NASA Astrophysics Data System (ADS)

    Smith, Claire A.; Haigh, Joanna D.; Toumi, Ralf

    Trends derived from the latest version of Halogen Occultation Experiment (HALOE) data are used in a two-dimensional atmospheric model to estimate their radiative effects over the last decade. The results show a stratospheric cooling in regions of H2O increase, of magnitude similar to that due to stratospheric ozone loss indicating a significant additional cause of observed stratospheric temperature decreases. Radiative forcings are derived and it is found that global average radiative forcing due to stratospheric water vapour changes probably lies in the range 0.12 to 0.20 Wm-2 decade-1. This could have more than compensated for the negative radiative forcing due to decadal ozone loss.

  6. Developmental effects of exposing Drosophila embryos to ether vapour.

    PubMed

    Bownes, M; Seiler, M

    1977-01-01

    Drosophila embryos at precise developmental stages were exposed to ether vapour. The defects in the resulting embryos and adults were observed. Ether disrupted embroygenesis in specific ways, causing defects primarily at the anterior of the embryo and disorganizing the arrangement of the segments. Adults showed deficiencies and duplications of many imaginal disc and histoblast derivatives. Phenocopies of the bithorax mutation which transforms metathorax to mesothorax were observed. They were first induced at the syncytial blastoderm stage, had their peak of production at the cellular blastoderm, and were no longer observed after the anterior and posterior midgut were partially invaginated. It was observed that not only are the halter/wing transformations confined to the anterior compartment, but also leg 3 to leg 2 transformations only occurred in the anterior leg compartment.

  7. Troposphere-stratosphere exchange - constraints from water vapour

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Du, J.; Fueglistaler, S.; Haynes, P. H.

    2008-12-01

    Transport into the stratospheric 'overworld' is thought to occur predominantly across the tropical tropopause, whereas transport into the lowermost stratosphere may also occur through quasi-horizontal transport on isentropic levels between 300 and 380K potential temperature. The distribution of stratospheric water vapour is sensitively dependent upon the detailed temperature history of air parcel trajectories, and combined with a Lagrangian study can be used as a tracer for quantifying the relative importance of cross-isentropic mass flux and quasi-isentropic mass flux into the stratosphere. Here we combine measurements from the Microwave Limb Sounder on board of AURA satellite, with trajectory calculations to diagnose the pathways of troposphere-stratosphere exchange. Trajectories are calculated using winds and diabatic heating rates from the new interim reanalysis currently carried out at the European Centre for Medium-range Weather Forecast.

  8. Hierarchically arranged helical fibre actuators driven by solvents and vapours

    NASA Astrophysics Data System (ADS)

    Chen, Peining; Xu, Yifan; He, Sisi; Sun, Xuemei; Pan, Shaowu; Deng, Jue; Chen, Daoyong; Peng, Huisheng

    2015-12-01

    Mechanical responsiveness in many plants is produced by helical organizations of cellulose microfibrils. However, simple mimicry of these naturally occurring helical structures does not produce artificial materials with the desired tunable actuations. Here, we show that actuating fibres that respond to solvent and vapour stimuli can be created through the hierarchical and helical assembly of aligned carbon nanotubes. Primary fibres consisting of helical assemblies of multiwalled carbon nanotubes are twisted together to form the helical actuating fibres. The nanoscale gaps between the nanotubes and micrometre-scale gaps among the primary fibres contribute to the rapid response and large actuation stroke of the actuating fibres. The compact coils allow the actuating fibre to rotate reversibly. We show that these fibres, which are lightweight, flexible and strong, are suitable for a variety of applications such as energy-harvesting generators, deformable sensing springs and smart textiles.

  9. Impedimetric detection of alcohol vapours using nanostructured zinc ferrite.

    PubMed

    Kannan, Padmanathan Karthick; Saraswathi, Ramiah

    2014-11-01

    A comparative study on the sensing characteristics of nanostructured zinc ferrite to three primary alcohols viz. methanol, ethanol and propanol has been carried out. The zinc ferrite has been prepared by a combustion method and characterized by XRD, FTIR, AFM and SEM. Impedance studies in the alcohol concentration range varying from 100 to 1000 ppm show definite variations in response to both the nature of the alcohol and its concentration. The nanostructured zinc ferrite shows the highest sensor response to methanol and least to propanol. Equivalent circuit modelling and calibration have been made for all the three alcohol sensors. The material shows a better selectivity to the alcohols compared to formaldehyde, ammonia and acetone vapours.

  10. Physico-Chemical Property and Catalytic Activity of a CeO2-Doped MnO(x)-TiO2 Catalyst with SO2 Resistance for Low-Temperature NH3-SCR of NO(x).

    PubMed

    Shin, Byeongkil; Chun, Ho Hwan; Cha, Jin-Sun; Shin, Min-Chul; Lee, Heesoo

    2016-05-01

    The effects of CeO2 addition on the catalytic activity and the SO2 resistance of CeO2-doped MnO(x)-TiO2 catalysts were investigated for the low-temperature selective catalytic reduction (SCR) with NH3 of NO(x) emissions in marine applications. The most active catalyst was obtained from 30 wt% CeO2-MnO(x)-TiO2 catalyst in the whole temperature range of 100-300 degrees C at a low gas hourly space velocity (GHSV) of 10,000 h(-)1, and its de-NO(x) efficiency was higher than 90% over 250 degrees C. The enhanced catalytic activity may contribute to the dispersion state and catalytic acidity on the catalyst surface, and the highly dispersed Mn and Ce on the nano-scaled TiO2 catalyst affects the increase of Lewis and Brønsted acid sites. A CeO2-rich additive on MnO(x)-TiO2 could provide stronger catalytic acid sites, associated with NH3 adsorption and the SCR performance. As the results of sulfur resistance in flue gas that contains SO2, the de-NO(x) efficiency of MnO(x)-TiO2 decreased by 15% over 200 degrees C, whereas that of 30 wt% ceria-doped catalyst increased by 14-21% over 150 degrees C. The high SO2 resistance of CeO2-MnO(x)-TiO2 catalysts that resulted from the addition of ceria suppressed the formation of Mn sulfate species, which led to deactivation on the surface of nano-catalyst.

  11. Arctic warming induced by atmospheric transport of water vapour

    NASA Astrophysics Data System (ADS)

    Grand Graversen, Rune

    2015-04-01

    The atmospheric northward energy transport plays a crucial role for the Arctic climate; the transport brings to the Arctic an amount of energy comparable to that provided directly by the sun. During recent decades warming of the Arctic surface air has been more than twice as large as the warming averaged over the Northern Hemisphere. This is known as Arctic amplification. Climate models predict that Arctic amplification will continue during the 21st century. The models also show that the atmospheric energy transport to the Arctic will remain almost unchanged or will even decrease in the future. This has led to the conclusion that atmospheric energy transport does not contribute but rather opposes Arctic amplification. Here we show that the atmospheric energy transport will indeed contribute to Arctic amplification even while decreasing. A split of the transport into latent and dry-static components reveals that a change of the latent transport compared to a change of the dry-static has a much larger effect on the Arctic climate. This is because the latent transport brings not only energy, but also water vapour into the Arctic. This water vapour enhances the local greenhouse effect, both in itself and through the formation of clouds. An increase of the latent transport at the Arctic boundary therefore causes Arctic warming, both directly due to latent heat release, and indirectly due to an enhancement of the local greenhouse effect. Climate models tend to agree that the latent energy transport will increase on the expense of the dry-static transport in future simulations. Our results imply that the Arctic cooling caused by the reduction of the dry-static transport is more than compensated for by the warming induced by the latent transport.

  12. Catalytic efficiency of designed catalytic proteins

    PubMed Central

    Korendovych, Ivan V; DeGrado, William F

    2014-01-01

    The de novo design of catalysts that mimic the affinity and specificity of natural enzymes remains one of the Holy Grails of chemistry. Despite decades of concerted effort we are still unable to design catalysts as efficient as enzymes. Here we critically evaluate approaches to (re)design of novel catalytic function in proteins using two test cases: Kemp elimination and ester hydrolysis. We show that the degree of success thus far has been modest when the rate enhancements seen for the designed proteins are compared with the rate enhancements by small molecule catalysts in solvents with properties similar to the active site. Nevertheless, there are reasons for optimism: the design methods are ever improving and the resulting catalyst can be efficiently improved using directed evolution. PMID:25048695

  13. Catalytic coal liquefaction process

    DOEpatents

    Garg, D.; Sunder, S.

    1986-12-02

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids. 1 fig.

  14. Catalytic coal liquefaction process

    DOEpatents

    Garg, Diwakar; Sunder, Swaminathan

    1986-01-01

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids.

  15. On the connection between stratospheric water vapour changes and widespread severe denitrification in the Arctic

    NASA Astrophysics Data System (ADS)

    Khosrawi, Farahnaz; Urban, Jo; Lossow, Stefan; Stiller, Gabi; Murtagh, Donal

    2013-04-01

    Water vapour is one of the most important greenhouse gases and plays a key role in the chemistry of the upper troposphere and lower stratosphere (UT/LS). Any changes in atmospheric water vapour bring important implications for the global climate. Long-term ground-based and satellite measurements indicate an increase of stratospheric water vapour abundance by an average of 1 ppmv during the last 30 years (1980-2010). Increases in stratospheric water vapour cool the stratosphere but warm the troposphere. Both the cooling of the stratosphere and the increase in water vapour enhance the potential for the formation of polar stratospheric clouds. More than a decade ago it already was suggested that a cooling of stratospheric temperatures by 1 K or an increase of 1 ppmv of stratospheric water vapor could promote denitrification, the permanent removal of nitrogen species from the stratosphere by solid polar stratospheric cloud particles. In fact, during the two recent Arctic winter 2009/2010 and 2010/2011 the strongest denitrification in the recent decade was measured by Odin/SMR. In the latter winter denitrification lead also to severe ozone depletion with similar extensions as the Antarctic "ozone hole". In this study, the correlation between observed water vapour trends and the recent temperature evolution in the Arctic together with trace gas measurements and PSC observations are considered to investigate a possible connection between the increase in stratospheric water vapour and polar stratospheric cloud formation/denitrification.

  16. Evaluation of Trichloroethylene vapour fluxes using measurements at the soil-air interface and in the atmosphere close to the soil surface

    NASA Astrophysics Data System (ADS)

    Cotel, Solenn; Nagel, Vincent; Schäfer, Gerhard; Marzougui, Salsabil; Razakarisoa, Olivier; Millet, Maurice

    2013-04-01

    Industrialization during the 19th and 20th century led to the use of chemical products such as chlorinated solvents, e.g., trichloroethylene (TCE). At locations where volatile organic compounds were accidentally spilled on the soil during transport or leaked from their storage places, they could have migrated vertically through the unsaturated zone towards the underlying groundwater. As a result of their high volatility a large vapour plume is consequently formed. Understanding when, at which concentrations and how long, these pollutants will be present in soil, groundwater, atmosphere or indoor air, still remains a challenge up to date. This study was conducted as part of a broader experiment of TCE multiphase mass transfer in a large (25m×12m×3m) well-instrumented artificial basin. TCE was injected as liquid phase in the vadose zone and experiments were conducted during several months. Firstly, TCE vapour fluxes were experimentally determined in two different ways: (a) direct measurements at the soil-air interface using a flux chamber and (b) evaluations based on measurements of TCE concentrations in the air above the soil surface using a modular experimental flume (5m×1m×1m) with a fixed air flow. Secondly, numerical simulations were conducted to analyse the differences between these two types of fluxes. Several positions of the flume on the soil surface were tested. Based on the TCE concentrations measured in the air, vapour fluxes were determined with the aerodynamic method using the modified Thornthwaite-Holzmann equation. It assumes that the concentrations and velocities are temporally and spatially constant in horizontal planes and requires data on the gradients of concentration, horizontal wind velocity and temperature. TCE vapour fluxes measured at the soil-air interface decrease with distance from the source zone. However, this decrease was either high, at the first stage of experiment (120μg/(m2s) near the source zone compared to 1,1μg/(m2s) 2m

  17. Halogen Chemistry on Catalytic Surfaces.

    PubMed

    Moser, Maximilian; Pérez-Ramírez, Javier

    2016-01-01

    Halogens are key building blocks for the manufacture of high-value products such as chemicals, plastics, and pharmaceuticals. The catalytic oxidation of HCl and HBr is an attractive route to recover chlorine and bromine in order to ensure the sustainability of the production processes. Very few materials withstand the high corrosiveness and the strong exothermicity of the reactions and among them RuO2 and CeO2-based catalysts have been successfully applied in HCl oxidation. The search for efficient systems for HBr oxidation was initiated by extrapolating the results of HCl oxidation based on the chemical similarity of these reactions. Interestingly, despite its inactivity in HCl oxidation, TiO2 was found to be an outstanding HBr oxidation catalyst, which highlighted that the latter reaction is more complex than previously assumed. Herein, we discuss the results of recent comparative studies of HCl and HBr oxidation on both rutile-type (RuO2, IrO2, and TiO2) and ceria-based catalysts using a combination of advanced experimental and theoretical methods to provide deeper molecular-level understanding of the reactions. This knowledge aids the design of the next-generation catalysts for halogen recycling.

  18. Catalytic, hollow, refractory spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1987-01-01

    Improved, heterogeneous, refractory catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitable formed of a shell (12) of refractory such as alumina having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be itself catalytic or a catalytically active material coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  19. Catalytic thermal barrier coatings

    DOEpatents

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  20. Investigations of vapour-phase deposited transition metal dichalcogenide films for future electronic applications

    NASA Astrophysics Data System (ADS)

    Gatensby, Riley; Hallam, Toby; Lee, Kangho; McEvoy, Niall; Duesberg, Georg S.

    2016-11-01

    Two-dimensional (2D) transitional metal dichalcogenides (TMDs) are of major interest to the research and electrical engineering community. A number of TMDs are semiconducting and have a wide range of bandgaps, they can exhibit n- or p-type behaviour, and the electronic structure changes with the number of layers. These exceptional properties hold much promise for a host of electrical applications including low- or high power field-effect transistors, sensors and diodes. Moreover, the unique optical properties of TMDs make them attractive for optoelectronic applications such as light-emitting diodes, photodiodes, and photovoltaic cells. A prerequisite for all of these applications is a synthesis route which is well controlled, scalable, reproducible and compatible with semiconductor industry process flows. Thermally assisted conversion (TAC), a variant of chemical vapour deposition, shows much promise for meeting these requirements. Herein we review the current progress and challenges of research on 2D semiconducting materials for electronics with a special focus on TAC produced TMD thin films.

  1. Catalytic reforming catalyst

    SciTech Connect

    Buss, W.C.; Kluksdahl, H.E.

    1980-12-09

    An improved catalyst, having a reduced fouling rate when used in a catalytic reforming process, said catalyst comprising platinum disposed on an alumina support wherein the alumina support is obtained by removing water from aluminum hydroxide produced as a by-product from a ziegler higher alcohol synthesis reaction, and wherein the alumina is calcined at a temperature of 1100-1400/sup 0/F so as to have a surface area of 165 to 215 square meters per gram.

  2. Catalytic nanoporous membranes

    DOEpatents

    Pellin, Michael J.; Hryn, John N.; Elam, Jeffrey W.

    2009-12-01

    A nanoporous catalytic membrane which displays several unique features including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity.

  3. Quenched catalytic cracking process

    SciTech Connect

    Krambeck, F.J.; Penick, J.E.; Schipper, P.H.

    1990-12-18

    This paper describes improvement in a fluidized catalytic cracking process wherein a fluidizable catalyst cracking catalyst and a hydrocarbon feed are charged to a reactor riser at catalytic riser cracking conditions to form catalytically cracked vapor product and spent catalyst which are discharged into a reactor vessel having a volume via a riser reactor outlet equipped with a separation means to produce a catalyst lean phase. It comprises: a majority of the cracked product, and a catalyst rich phase comprising a majority of the spend catalyst. The the catalyst rich phase is discharged into a dense bed of catalyst maintained below the riser outlet and the catalyst lean phase is discharged into the vessel for a time, and at a temperature, which cause unselective thermal cracking of the cracked product in the reactor volume before product is withdrawn from the vessel via a vessel outlet. The improvement comprises: addition, after riser cracking is completed, and after separation of cracked products from catalyst, of a quenching stream into the vessel above the dense bed of catalyst, via a quench stream addition point which allows the quench stream to contact at least a majority of the volume of the vessel above the dense bed.

  4. Assessment of chronic neuropsychological effects of mercury vapour poisoning in chloral-alkali plant workers.

    PubMed

    Pranjić, Nurka; Sinanović, Osman; Karamehić, Jasenko; Jakubović, Rusid

    2002-12-01

    A prospective case study was conducted in the Department of Occupational Medicine, Tuzla. The purpose of this study was to indicate negative effects from occupational exposure to mercury on behavioural and mental health, memory and psychomotor function that was tested in 46 chloral-alkali plant workers (mean age was 38. 8+/- 5. 7 years; mean age of occupational history 16. 5+/- 6. 0 years). Data on toxicological monitoring on atomic absorption spectrometer, and data on mental health were collected, psychiatric and other subjective symptoms, and behavioural, psychomotor and memory function tested. The data were compared to control group, 32 healthy non exposed workers. The study was designed to assess blood and urine mercury levels and length of occupational exposure and investigate its relationships to effects on the mental health. The mean air mercury levels were 0.23 mg/m3, the mean blood mercury concentrations was 3. 6 mg/ dl and the mean urine mercury concentrations were 151.7 +/- 180.4 mg/l. In 25 (53%) workers exposed to mercury vapour was identified Depression-Hypochondrias Syndrome (p trend < 0. 001) with higher scores for scales: Hysteria (p trend <0. 001), Schizoid and Psychoastenia (MMPI). All psychological parameters were in highly significantly correlations with mercury levels and length of occupational exposure. Pathological parameters were possible general identified if the concentration of blood mercury levels are >2. 9 mg/ dl, or urine mercury levels > 87 mg/l workers exposed to mercury vapour knew that toxic effects in body resulted in loosing some of intellectual abilities, and that people who handle chemicals had an increased health risk (ESW questionnaire). The occupational mercury exposed workers had introvert behaviour (EPQ). Aggressiveness was found in 71.7% workers. The cognitive disturbances: short-term memory loss, difficult to concentrate on tasks which require attention and thinking, were significantly differed compared to those of

  5. Vapor-Driven Propulsion of Catalytic Micromotors

    NASA Astrophysics Data System (ADS)

    Dong, Renfeng; Li, Jinxing; Rozen, Isaac; Ezhilan, Barath; Xu, Tailin; Christianson, Caleb; Gao, Wei; Saintillan, David; Ren, Biye; Wang, Joseph

    2015-08-01

    Chemically-powered micromotors offer exciting opportunities in diverse fields, including therapeutic delivery, environmental remediation, and nanoscale manufacturing. However, these nanovehicles require direct addition of high concentration of chemical fuel to the motor solution for their propulsion. We report the efficient vapor-powered propulsion of catalytic micromotors without direct addition of fuel to the micromotor solution. Diffusion of hydrazine vapor from the surrounding atmosphere into the sample solution is instead used to trigger rapid movement of iridium-gold Janus microsphere motors. Such operation creates a new type of remotely-triggered and powered catalytic micro/nanomotors that are responsive to their surrounding environment. This new propulsion mechanism is accompanied by unique phenomena, such as the distinct off-on response to the presence of fuel in the surrounding atmosphere, and spatio-temporal dependence of the motor speed borne out of the concentration gradient evolution within the motor solution. The relationship between the motor speed and the variables affecting the fuel concentration distribution is examined using a theoretical model for hydrazine transport, which is in turn used to explain the observed phenomena. The vapor-powered catalytic micro/nanomotors offer new opportunities in gas sensing, threat detection, and environmental monitoring, and open the door for a new class of environmentally-triggered micromotors.

  6. A revolution in micropower : the catalytic nanodiode.

    SciTech Connect

    Cross, Karen Charlene; Heller, Edwin J.; Figiel, Jeffrey James; Coker, Eric Nicholas; Creighton, James Randall; Koleske, Daniel David; Bogart, Katherine Huderle Andersen; Coltrin, Michael Elliott; Pawlowski, Roger Patrick; Baucom, Kevin C.

    2010-11-01

    Our ability to field useful, nano-enabled microsystems that capitalize on recent advances in sensor technology is severely limited by the energy density of available power sources. The catalytic nanodiode (reported by Somorjai's group at Berkeley in 2005) was potentially an alternative revolutionary source of micropower. Their first reports claimed that a sizable fraction of the chemical energy may be harvested via hot electrons (a 'chemicurrent') that are created by the catalytic chemical reaction. We fabricated and tested Pt/GaN nanodiodes, which eventually produced currents up to several microamps. Our best reaction yields (electrons/CO{sub 2}) were on the order of 10{sup -3}; well below the 75% values first reported by Somorjai (we note they have also been unable to reproduce their early results). Over the course of this Project we have determined that the whole concept of 'chemicurrent', in fact, may be an illusion. Our results conclusively demonstrate that the current measured from our nanodiodes is derived from a thermoelectric voltage; we have found no credible evidence for true chemicurrent. Unfortunately this means that the catalytic nanodiode has no future as a micropower source.

  7. Vapor-Driven Propulsion of Catalytic Micromotors

    PubMed Central

    Dong, Renfeng; Li, Jinxing; Rozen, Isaac; Ezhilan, Barath; Xu, Tailin; Christianson, Caleb; Gao, Wei; Saintillan, David; Ren, Biye; Wang, Joseph

    2015-01-01

    Chemically-powered micromotors offer exciting opportunities in diverse fields, including therapeutic delivery, environmental remediation, and nanoscale manufacturing. However, these nanovehicles require direct addition of high concentration of chemical fuel to the motor solution for their propulsion. We report the efficient vapor-powered propulsion of catalytic micromotors without direct addition of fuel to the micromotor solution. Diffusion of hydrazine vapor from the surrounding atmosphere into the sample solution is instead used to trigger rapid movement of iridium-gold Janus microsphere motors. Such operation creates a new type of remotely-triggered and powered catalytic micro/nanomotors that are responsive to their surrounding environment. This new propulsion mechanism is accompanied by unique phenomena, such as the distinct off-on response to the presence of fuel in the surrounding atmosphere, and spatio-temporal dependence of the motor speed borne out of the concentration gradient evolution within the motor solution. The relationship between the motor speed and the variables affecting the fuel concentration distribution is examined using a theoretical model for hydrazine transport, which is in turn used to explain the observed phenomena. The vapor-powered catalytic micro/nanomotors offer new opportunities in gas sensing, threat detection, and environmental monitoring, and open the door for a new class of environmentally-triggered micromotors. PMID:26285032

  8. Influence of collisional rate coefficients on water vapour excitation

    NASA Astrophysics Data System (ADS)

    Daniel, F.; Goicoechea, J. R.; Cernicharo, J.; Dubernet, M.-L.; Faure, A.

    2012-11-01

    Context. Water is a key molecule in many astrophysical studies that deal with star or planet forming regions, evolved stars, and galaxies. Its high dipole moment makes this molecule subthermally populated under the typical conditions of most astrophysical objects. This motivated calculation of various sets of collisional rate coefficients (CRC) for H2O (with He or H2), which are needed to model its rotational excitation and line emission. Aims: The most accurate set of CRC are the quantum rates that involve H2. However, they have been published only recently, and less accurate CRC (quantum with He or quantum classical trajectory (QCT) with H2) were used in many studies before that. This work aims to underline the impact that the new available set of CRC have on interpretations of water vapour observations. Methods: We performed accurate non-local, non-LTE radiative transfer calculations using different sets of CRC to predict the line intensities from transitions that involve the lowest energy levels of H2O (E < 900 K). The results obtained from the different CRC sets were then compared using line intensity ratio statistics. Results: For the whole range of physical conditions considered in this work, we find that the intensities based on the quantum and QCT CRC are in good agreement. However, at relatively low H2 volume density (n(H2) < 107 cm-3) and low water abundance (χ(H2O) < 10-6), which corresponds to physical conditions relevant when describing most molecular clouds, we find differences in the predicted line intensities of up to a factor of ~3 for the bulk of the lines. Most of the recent studies interpreting early Herschel Space Observatory spectra have used the QCT CRC. Our results show that, although the global conclusions from those studies will not be drastically changed, each case has to be considered individually, since depending on the physical conditions, the use of the QCT CRC may lead to a mis-estimate of the water vapour abundance of up to a

  9. Water Vapour Mixing Ratio Measurements in Potenza in the Frame of the International Network for the Detection of Atmospheric Composition Change - NDACC

    NASA Astrophysics Data System (ADS)

    De Rosa, Benedetto; Di Girolamo, Paolo; Summa, Donato; Stelitano, Dario; Mancini, Ignazio

    2016-06-01

    In November 2012 the University of BASILicata Raman Lidar system (BASIL) was approved to enter the International Network for the Detection of Atmospheric Composition Change (NDACC). This network includes more than 70 high-quality, remote-sensing research stations for observing and understanding the physical and chemical state of the upper troposphere and stratosphere and for assessing the impact of stratosphere changes on the underlying troposphere and on global climate. As part of this network, more than thirty groundbased Lidars deployed worldwide are routinely operated to monitor atmospheric ozone, temperature, aerosols, water vapour, and polar stratospheric clouds. In the frame of NDACC, BASIL performs measurements on a routine basis each Thursday, typically from local noon to midnight, covering a large portion of the daily cycle. Measurements from BASIL are included in the NDACC database both in terms of water vapour mixing ratio and temperature. This paper illustrates some measurement examples from BASIL, with a specific focus on water vapour measurements, with the goal to try and characterize the system performances.

  10. Water vapour correction of the daily 1 km AVHRR global land dataset: Part I validation and use of the Water Vapour input field

    USGS Publications Warehouse

    DeFelice, Thomas P.; Lloyd, D.; Meyer, D.J.; Baltzer, T. T.; Piraina, P.

    2003-01-01

    An atmospheric correction algorithm developed for the 1 km Advanced Very High Resolution Radiometer (AVHRR) global land dataset was modified to include a near real-time total column water vapour data input field to account for the natural variability of atmospheric water vapour. The real-time data input field used for this study is the Television and Infrared Observational Satellite (TIROS) Operational Vertical Sounder (TOVS) Pathfinder A global total column water vapour dataset. It was validated prior to its use in the AVHRR atmospheric correction process using two North American AVHRR scenes, namely 13 June and 28 November 1996. The validation results are consistent with those reported by others and entail a comparison between TOVS, radiosonde, experimental sounding, microwave radiometer, and data from a hand-held sunphotometer. The use of this data layer as input to the AVHRR atmospheric correction process is discussed.

  11. Evolution of catalytic RNA in the laboratory

    NASA Technical Reports Server (NTRS)

    Joyce, Gerald F.

    1992-01-01

    We are interested in the biochemistry of existing RNA enzymes and in the development of RNA enzymes with novel catalytic function. The focal point of our research program has been the design and operation of a laboratory system for the controlled evolution of catalytic RNA. This system serves as working model of RNA-based life and can be used to explore the catalytic potential of RNA. Evolution requires the integration of three chemical processes: amplification, mutation, and selection. Amplification results in additional copies of the genetic material. Mutation operates at the level of genotype to introduce variability, this variability in turn being expressed as a range of phenotypes. Selection operates at the level of phenotype to reduce variability by excluding those individuals that do not conform to the prevailing fitness criteria. These three processes must be linked so that only the selected individuals are amplified, subject to mutational error, to produce a progeny distribution of mutant individuals. We devised techniques for the amplification, mutation, and selection of catalytic RNA, all of which can be performed rapidly in vitro within a single reaction vessel. We integrated these techniques in such a way that they can be performed iteratively and routinely. This allowed us to conduct evolution experiments in response to artificially-imposed selection constraints. Our objective was to develop novel RNA enzymes by altering the selection constraints in a controlled manner. In this way we were able to expand the catalytic repertoire of RNA. Our long-range objective is to develop an RNA enzyme with RNA replicase activity. If such an enzyme had the ability to produce additional copies of itself, then RNA evolution would operate autonomously and the origin of life will have been realized in the laboratory.

  12. Hydrogen and Carbon Vapour Pressure Isotope Effects in Liquid Fluoroform Studied by Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Oi, Takao; Mitome, Ryota; Yanase, Satoshi

    2017-03-01

    H/D and 12C/13C vapour pressure isotope effects (VPIEs) in liquid fluoroform (CHF3) were studied at the MPW1PW91/6-31 ++ G(d) level of theory. The CHF3 monomer and CHF3 molecules surrounded by other CHF3 molecules in every direction in CHF3 clusters were used as model molecules of vapour and liquid CHF3. Although experimental results in which the vapour pressure of liquid 12CHF3 is higher than that of liquid 12CDF3 and the vapour pressure of liquid 13CHF3 is higher than that of liquid 12CHF3 between 125 and 212 K were qualitatively reproduced, the present calculations overestimated the H/D VPIE and underestimated the 12C/13C VPIE. Temperature-dependent intermolecular interactions between hydrogen and fluorine atoms of neighbouring molecules were required to explain the temperature dependences of both H/D and 12C/13C VPIEs.

  13. Alcohol vapours sensor based on thin polyaniline salt film and quartz crystal microbalance.

    PubMed

    Ayad, Mohamad M; Torad, Nagy L

    2009-06-15

    A sensor based on the quartz crystal microbalance (QCM) technique was developed for detection of a number of primary aliphatic alcohols such as ethanol, methanol, 1-propanol, and 2-propanol vapours. Detection was based on a sensitive and a thin film of polyaniline, emeraldine salt (ES), coated the QCM electrode. The frequency shifts (Delta f) of the QCM were increased due to the vapour absorption into the ES film. The values of Delta f were found to be linearly correlated with the concentrations of alcohols vapour in mg L(-1). The changes in frequency are due to the hydrophilic character of the ES and the electrostatic interaction as well as the type of the alcohol. The sensor shows a good reproducibility and reversibility. The diffusion and diffusion coefficient (D) of different alcohols vapour were determined. It was found that the sensor follows Fickian kinetics.

  14. Organic Vapour Sensing Properties of Area-Ordered and Size-Controlled Silicon Nanopillar

    PubMed Central

    Li, Wei; Feng, Zhilin; Dai, Enwen; Xu, Jie; Bai, Gang

    2016-01-01

    Here, a silicon nanopillar array (Si-NPA) was fabricated. It was studied as a room-temperature organic vapour sensor, and the ethanol and acetone gas sensing properties were detected with I-V curves. I-V curves show that these Si-NPA gas sensors are sensitive to ethanol and acetone organic vapours. The turn-on threshold voltage is about 0.5 V and the operating voltage is 3 V. With 1% ethanol gas vapour, the response time is 5 s, and the recovery time is 15 s. Furthermore, an evaluation of the gas sensor stability for Si-NPA was performed. The gas stability results are acceptable for practical detections. These excellent sensing characteristics can mainly be attributed to the change of the overall dielectric constant of Si-NPA caused by the physisorption of gas molecules on the pillars, and the filling of the gas vapour in the voids. PMID:27834846

  15. Calibration of the Purple Crow Lidar vibrational Raman water-vapour mixing ratio and temperature measurements

    NASA Astrophysics Data System (ADS)

    Argall, P. S.; Sica, R. J.; Bryant, C. R.; Algara-Siller, M.; Schijns, H.

    2007-02-01

    Purple Crow Lidar (PCL) measurements of the vibrational Raman-shifted backscatter from water vapour and nitrogen molecules allows height profiles of the water-vapour mixing ratio to be measured from 500 m up into the lower stratosphere. In addition, the Raman nitrogen measurements allow the determination of temperature profiles from about 10 to 40 km altitude. However, external calibration of these measurements is necessary to compensate for instrumental effects, uncertainties in our knowledge of the relevant molecular cross sections, and atmospheric transmission. A comparison of the PCL-derived water-vapour concentration and temperature profiles with routine radiosonde measurements from Detroit and Buffalo on 37 and 141 nights, respectively, was undertaken to provide this calibration. The calibration is then applied to the measurements and monthly mean-temperature and water-vapour profiles are determined.

  16. Catalytic pyrolysis of palm kernel shell waste in a fluidized bed.

    PubMed

    Kim, Sung Won; Koo, Bon Seok; Lee, Dong Hyun

    2014-09-01

    The catalytic pyrolysis of palm kernel shell was investigated in a fluidized bed with zsm-5 and equilibrium FCC (Ecat) catalysts. Catalytic pyrolysis oil yields were remarkably reduced and gas yields were increased due to the higher catalytic reaction of primary volatiles compared to non-catalytic pyrolysis. Char yields were affected by temperature and the pore structure of the catalysts. The pyrolysis oil was characterized by lower H/C and O/C molar ratios due to aromatization and deoxygenation of volatiles by the catalysts. The catalytic pyrolysis oils contained more oxygen and nitrogen and less sulfur than petroleum oils. The oils had a high concentration of nitriles, with a carbon number distribution similar to fatty acids. The catalytic pyrolysis oils featured high nitriles yield with Ecat and high aromatics yield in the light fraction with zsm-5, due to characteristics of the catalyst. The catalytic pyrolysis oils showed potentials as feedstocks for bio-diesel and chemicals.

  17. On the vapour trail of an atmospheric imprint in insects

    PubMed Central

    Ellwood, M. D. Farnon; Northfield, Roger G. W.; Mejia-Chang, Monica; Griffiths, Howard

    2011-01-01

    Terrestrial arthropods, at constant risk from desiccation, are highly sensitive to atmospheric temperature and humidity. A physiological marker of these abiotic conditions could highlight phenotypic adaptations, indicate niche partitioning, and predict responses to climate change for a group representing three-quarters of the Earth's animal species. We show that the 18O composition of insect haemolymph is such a measure, providing a dynamic and quantitatively predictable signal for respiratory gas exchange and inputs from atmospheric humidity. Using American cockroaches (Periplaneta americana) under defined experimental conditions, we show that insects respiring at low humidity demonstrate the expected enrichment in the 18O composition of haemolymph because of evaporation. At high humidity, however, diffusional influx of atmospheric water vapour into the animal forces haemolymph to become depleted in 18O. Additionally, using cockroaches sampled from natural habitats, we show that the haemolymph 18O signature is transferred to the organic material of the insect's exoskeleton. Insect cuticle, therefore, exhibits the mean atmospheric conditions surrounding the animals prior to moulting. This discovery will help to define the climatic tolerances of species and their habitat preferences, and offers a means of quantifying the balance between niche partitioning and ‘neutral’ processes in shaping complex tropical forest communities. PMID:21325310

  18. Pressure effects on water vapour lines: beyond the Voigt profile.

    PubMed

    Ngo, N H; Tran, H; Gamache, R R; Hartmann, J M

    2012-06-13

    A short overview of recent results on the effects of pressure (collisions) regarding the shape of isolated infrared lines of water vapour is presented. The first part of this study considers the basic collisional quantities, which are the pressure-broadening and -shifting coefficients, central parameters of the Lorentzian (and Voigt) profile and thus of any sophisticated line-shape model. Through comparisons of measured values with semi-classical calculations, the influences of the molecular states (both rotational and vibrational) involved and of the temperature are analysed. This shows the relatively unusual behaviour of H(2)O broadening, with evidence of a significant vibrational dependence and the fact that the broadening coefficient (in cm(-1) atm(-1)) of some lines increases with temperature. In the second part of this study, line shapes beyond the Voigt model are considered, thus now taking 'velocity effects' into account. These include both the influence of collisionally induced velocity changes that lead to the so-called Dicke narrowing and the influence of the dependence of collisional parameters on the speed of the radiating molecule. Experimental evidence of deviations from the Voigt shape is presented and analysed. The interest of classical molecular dynamics simulations, to model velocity changes, together with semi-classical calculations of the speed-dependent collisional parameters for line-shape predictions from 'first principles', are discussed.

  19. Water vapour in the atmosphere of a transiting extrasolar planet

    NASA Astrophysics Data System (ADS)

    Tinetti, Giovanna; Vidal-Madjar, Alfred; Liang, Mao-Chang; Beaulieu, Jean-Philippe; Yung, Yuk; Carey, Sean; Barber, Robert J.; Tennyson, Jonathan; Ribas, Ignasi; Allard, Nicole; Ballester, Gilda E.; Sing, David K.; Selsis, Franck

    2007-07-01

    Water is predicted to be among the most abundant (if not the most abundant) molecular species after hydrogen in the atmospheres of close-in extrasolar giant planets (`hot Jupiters'). Several attempts have been made to detect water on such planets, but have either failed to find compelling evidence for it or led to claims that should be taken with caution. Here we report an analysis of recent observations of the hot Jupiter HD 189733b (ref. 6) taken during the transit, when the planet passed in front of its parent star. We find that absorption by water vapour is the most likely cause of the wavelength-dependent variations in the effective radius of the planet at the infrared wavelengths 3.6μm, 5.8μm (both ref. 7) and 8μm (ref. 8). The larger effective radius observed at visible wavelengths may arise from either stellar variability or the presence of clouds/hazes. We explain the report of a non-detection of water on HD 189733b (ref. 4) as being a consequence of the nearly isothermal vertical profile of the planet's atmosphere.

  20. Efficient planar heterojunction perovskite solar cells by vapour deposition.

    PubMed

    Liu, Mingzhen; Johnston, Michael B; Snaith, Henry J

    2013-09-19

    Many different photovoltaic technologies are being developed for large-scale solar energy conversion. The wafer-based first-generation photovoltaic devices have been followed by thin-film solid semiconductor absorber layers sandwiched between two charge-selective contacts and nanostructured (or mesostructured) solar cells that rely on a distributed heterojunction to generate charge and to transport positive and negative charges in spatially separated phases. Although many materials have been used in nanostructured devices, the goal of attaining high-efficiency thin-film solar cells in such a way has yet to be achieved. Organometal halide perovskites have recently emerged as a promising material for high-efficiency nanostructured devices. Here we show that nanostructuring is not necessary to achieve high efficiencies with this material: a simple planar heterojunction solar cell incorporating vapour-deposited perovskite as the absorbing layer can have solar-to-electrical power conversion efficiencies of over 15 per cent (as measured under simulated full sunlight). This demonstrates that perovskite absorbers can function at the highest efficiencies in simplified device architectures, without the need for complex nanostructures.

  1. Water vapour in the atmosphere of a transiting extrasolar planet.

    PubMed

    Tinetti, Giovanna; Vidal-Madjar, Alfred; Liang, Mao-Chang; Beaulieu, Jean-Philippe; Yung, Yuk; Carey, Sean; Barber, Robert J; Tennyson, Jonathan; Ribas, Ignasi; Allard, Nicole; Ballester, Gilda E; Sing, David K; Selsis, Franck

    2007-07-12

    Water is predicted to be among the most abundant (if not the most abundant) molecular species after hydrogen in the atmospheres of close-in extrasolar giant planets ('hot Jupiters'). Several attempts have been made to detect water on such planets, but have either failed to find compelling evidence for it or led to claims that should be taken with caution. Here we report an analysis of recent observations of the hot Jupiter HD 189733b (ref. 6) taken during the transit, when the planet passed in front of its parent star. We find that absorption by water vapour is the most likely cause of the wavelength-dependent variations in the effective radius of the planet at the infrared wavelengths 3.6 mum, 5.8 mum (both ref. 7) and 8 mum (ref. 8). The larger effective radius observed at visible wavelengths may arise from either stellar variability or the presence of clouds/hazes. We explain the report of a non-detection of water on HD 189733b (ref. 4) as being a consequence of the nearly isothermal vertical profile of the planet's atmosphere.

  2. Ground-based near-infrared observations of water vapour in the Venus troposphere

    NASA Astrophysics Data System (ADS)

    Chamberlain, Sarah; Bailey, Jeremy; Crisp, David; Meadows, Vikki

    2013-01-01

    We present a study of water vapour in the Venus troposphere obtained by modelling specific water vapour absorption bands within the 1.18 μm window. We compare the results with the normal technique of obtaining the abundance by matching the peak of the 1.18 μm window. Ground-based infrared imaging spectroscopy of the night side of Venus was obtained with the Anglo-Australian Telescope and IRIS2 instrument with a spectral resolving power of R ˜ 2400. The spectra have been fitted with modelled spectra simulated using the radiative transfer model VSTAR. We find a best fit abundance of 31 ppmv (-6 +9 ppmv), which is in agreement with recent results by Bézard et al. (Bézard, B., Fedorova, A., Bertaux, J.-L., Rodin, A., Korablev, O. [2011]. Icarus, 216, 173-183) using VEX/SPICAV (R ˜ 1700) and contrary to prior results by Bézard et al. (Bézard, B., de Bergh, C., Crisp, D., Maillard, J.P. [1990]. Nature, 345, 508-511) of 44 ppmv (±9 ppmv) using VEX/VIRTIS-M (R ˜ 200) data analyses. Comparison studies are made between water vapour abundances determined from the peak of the 1.18 μm window and abundances determined from different water vapour absorption features within the near infrared window. We find that water vapour abundances determined over the peak of the 1. 18 μm window results in plots with less scatter than those of the individual water vapour features and that analyses conducted over some individual water vapour features are more sensitive to variation in water vapour than those over the peak of the 1. 18 μm window. No evidence for horizontal spatial variations across the night side of the disk are found within the limits of our data with the exception of a possible small decrease in water vapour from the equator to the north pole. We present spectral ratios that show water vapour absorption from within the lowest 4 km of the Venus atmosphere only, and discuss the possible existence of a decreasing water vapour concentration towards the surface.

  3. Comparison of tanker drivers' occupational exposures before and after the installation of a vapour recovery system.

    PubMed

    Saarinen, L; Hakkola, M; Kangas, J

    2000-12-01

    The purpose of this study was to compare tanker drivers' occupational exposure level before and after the installation of vapour recovery facilities at 14 service stations. Road tanker drivers are exposed when handling volatile petrol liquid in bulk in the distribution chain. The drivers' exposure was studied during the unloading operation as the bulk petrol flowed into underground storage tanks, displacing vapours in the tank space and causing emission to the environment and the drivers' work area. The exposures were measured again when the dual point Stage I vapour recovery systems were installed for recycling vapours. Short-term measurements were carried out in the drivers' breathing zones by drawing polluted air through a charcoal tube during unloading. The samples were analysed in the laboratory by gas chromatography for C3-C11 aliphatic hydrocarbons, tert-butyl methyl ether (MTBE), tert-amyl methyl ether (MTAE), benzene, toluene and xylene. The road tanker loads delivered consisted of oxygenated and reformulated petrol (E95 and E98 brands), which contained on average 13% oxygenates. Before the installation of the vapour recovery system, the geometric mean (GM) concentration of aliphatic hydrocarbons was 65 mg m-3 (range 6-645 mg m-3) in the drivers' breathing zones. After the installation at the same service stations, the corresponding exposure level was 8.3 mg m-3 (range < 1-79 mg m-3). The GM of the MTBE concentrations was 8.6 mg m-3 (range 1-67 mg m-3) without vapour recovery and 1.5 mg m-3 (range < 0.1-10 mg m-3) with vapour recovery. The differences between the aliphatic hydrocarbons and the MTBE exposure levels during the unloading of the road tankers without and with vapour recovery were statistically significant (p < 0.05).

  4. Vapour transport of rare earth elements (REE) in volcanic gas: Evidence from encrustations at Oldoinyo Lengai

    NASA Astrophysics Data System (ADS)

    Gilbert, C. D.; Williams-Jones, A. E.

    2008-10-01

    Fumarolic encrustations and natrocarbonatite lava from the active crater of Oldoinyo Lengai volcano, Tanzania, were sampled and analysed. Two types of encrustation were distinguished on the basis of their REE content, enriched (~ 2800-5600 × [REE chondrite]) and depleted (~ 100-200 × [REE chondrite]) relative to natrocarbonatite (1700-1900 × [REE chondrite]. REE-enriched encrustations line the walls of actively degassing fumaroles, whereas REE-depleted encrustations occur mainly along cracks in and as crusts on cooling natrocarbonatite lava flows; one of the low REE encrustation samples was a stalactite from the wall of a possible fumarole. The encrustations are interpreted to have different origins, the former precipitating from volcanic gas and the latter from meteoric/ground water converted to steam by the heat of the overlying lava flow(s). REE-profiles of encrustations and natrocarbonatite are parallel, suggesting that there was no preferential mobilization of specific REE by either volcanic vapour or meteoric water vapour. The elevated REE-content of the first group of encrustations suggests that direct REE-transport from natrocarbonatite to volcanic vapour is possible. The REE trends observed in samples precipitating directly from the volcanic vapour cannot be explained by dry volatility based on the available data as there is no evidence in the encrustation compositions of the greatly enhanced volatility predicted for Yb and Eu. The observed extreme REE-fractionation with steep La/Sm slopes parallel to those of the natrocarbonatite reflects solvation and complexation reactions in the vapour phase that did not discriminate amongst the different REE or similar transport of REE in both the natrocarbonatite magma and its exsolving vapour. The low concentrations of REE in the encrustations produced by meteoric vapour suggest that the temperature was too low or that this vapour did not contain the ligands necessary to permit significant mobilization of the REE.

  5. Mesoscale modelling of water vapour in the tropical UTLS: two case studies from the HIBISCUS campaign

    NASA Astrophysics Data System (ADS)

    Marécal, V.; Durry, G.; Longo, K.; Freitas, S.; Rivière, E. D.; Pirre, M.

    2006-08-01

    In this study, we evaluate the ability of the BRAMS mesoscale model compared to ECMWF global analysis to simulate the observed vertical variations of water vapour in the tropical upper troposphere and lower stratosphere (UTLS). The observations are balloon-borne measurements of water vapour mixing ratio and temperature from micro-SDLA (Tunable Diode Laser Spectrometer) instrument. Data from two balloon flights performed during the 2004 HIBISCUS field campaign are used to compare with the mesoscale simulations and to ECMWF analysis. The mesoscale model performs significantly better than ECMWF analysis for water vapour in the upper troposphere and similarly or slightly worse for temperature. The improvement provided by the mesoscale model for water vapour comes mainly from (i) the enhanced vertical resolution in the UTLS (250 m for BRAMS and ~1 km for ECMWF model) and (ii) the more detailed microphysical parameterization providing ice supersaturations as in the observations. The ECMWF vertical resolution (~1 km) is too coarse to capture the observed fine scale vertical variations of water vapour in the UTLS. In near saturated or supersaturated layers, the mesoscale model relative humidity with respect to ice saturation is close to observations provided that the temperature profile is realistic. For temperature, ECMWF analysis gives good results partly thanks to data assimilation. The analysis of the mesoscale model results showed that in undersaturated layers, the water vapour profile depends mainly on the dynamics. In saturated/supersaturated layers, microphysical processes play an important role and have to be taken into account on top of the dynamical processes to understand the water vapour profiles. In the lower stratosphere, the ECMWF model and the BRAMS model give very similar water vapour profiles that are significantly dryer than micro-SDLA measurements. This similarity comes from the fact that BRAMS is initialised using ECMWF analysis and that no mesoscale

  6. The Effect of Cesium Vapour on the Bulk Conductivity of Plasma - Sprayed Spinel

    DTIC Science & Technology

    2007-11-02

    1995 P. Agnew TOPAZ International Program 901 University Blvd. Albuquerque, NM 87106 USA. 1999021 9 0 4 7 DISTRIBUTION STATEMENT A: Approved for Public...these experiments. References ə> P. Agnew and J.L. Ing, "Surface electrical conductivity of single crystal spinel in cesium vapour", TOPAZ ...International Program report, April 1995. ɚ> P. Agnew and J.L. Ing, "The effect of cesium vapour on the bulk conductivity of plasma- sprayed alumina", TOPAZ

  7. Photocatalytic property of titanium dioxide thin films deposited by radio frequency magnetron sputtering in argon and water vapour plasma

    NASA Astrophysics Data System (ADS)

    Sirghi, L.; Hatanaka, Y.; Sakaguchi, K.

    2015-10-01

    The present work is investigating the photocatalytic activity of TiO2 thin films deposited by radiofrequency magnetron sputtering of a pure TiO2 target in Ar and Ar/H2O (pressure ratio 40/3) plasmas. Optical absorption, structure, surface morphology and chemical structure of the deposited films were comparatively studied. The films were amorphous and included a large amount of hydroxyl groups (about 5% of oxygen atoms were bounded to hydrogen) irrespective of the intentional content of water in the deposition chamber. Incorporation of hydroxyl groups in the film deposited in pure Ar plasma is explained as contamination of the working gas with water molecules desorbed by plasma from the deposition chamber walls. However, intentional input of water vapour into the discharge chamber decreased the deposition speed and roughness of the deposited films. The good photocatalytic activity of the deposited films could be attributed hydroxyl groups in their structures.

  8. Investigation of the coupled effects of temperature and partial pressure on catalytic growth of carbon nanotubes using a modified growth rate model

    NASA Astrophysics Data System (ADS)

    Zainal, M. T.; Mohd Yasin, M. F.; Wahid, M. A.

    2016-10-01

    An accurate modelling of catalytic growth of carbon nanotubes (CNTs) is needed to model the physics of carbon adsorption and diffusion into the catalyst surface along with the catalyst deactivation. The model should be able to provide a physical response towards the change of temperature and partial pressure. Though the effects of temperature and partial pressure on the growth rate has been studied individually, the coupled effects of the two parameters has yet to be emphasized. A modified growth rate model that unified the terms from previously developed models successfully captured the essential physics during the growth and provided physical response towards the change of temperature and partial pressure. The model validation was done against a chemical vapour deposition (CVD) experiment that employed acetylene and cobalt as the carbon source and the catalyst respectively where the modified model managed to predict the CNT terminal length more accurately compared to the standard model with 5% maximum error. A comprehensive parametric study on the effects of temperature and partial pressure on the growth rate and terminal length successfully reveals the minimum partial pressure of 5 Torr for a given operating condition below which the growth rate is significantly low regardless of any increase of temperature. Three regions of growth in the partial pressure-temperature domain are identified based on the magnitude of terminal length. The model can serve as a guideline for the determination and optimisation of the baseline operating conditions in future experiments on catalytic growth of CNT, with emphasis on the CVD and flame synthesis techniques.

  9. Observations and recent evolution of stratospheric water vapour isotopologues derived from satellite measurements

    NASA Astrophysics Data System (ADS)

    Urban, Joachim; Jones, Ashley; Lossow, Stefan; Murtagh, Donal

    Water vapour, a strong greenhouse gas and source gas of the HOx family, plays an essential role for dynamics and chemistry of the middle atmosphere. Global measurements of isotopologues of water vapour have been made by the Odin Sub-Millimetre Radiometer (SMR) during nearly nine years since 2001. The long-term evolution of stratospheric water vapour has been studied by extending the historical satellite time-series from SAGE and HALOE, available until 2005, to present day by using data from Odin and other more recently launched satellites (Envisat, ACE). The recent evolution and variability of the water vapour isotopologues H2O-17, H2O-18, and HDO, as well as related trace gases and temperature has also been analysed and results of this study will be presented. Comparison and combination of various stratospheric water vapour time-series moreover provides a critical test of the quality of the different new satellite water vapour data sets. Odin is a Swedish-led satellite project funded jointly by Sweden (SNSB), Canada (CSA), Fin-land (TEKES), and France (CNES), with support by the 3rd party mission programme of the European Space Agency (ESA).

  10. Catalytic reforming process

    SciTech Connect

    Absil, R.P.; Huss, A. Jr.; McHale, W.D.; Partridge, R.D.

    1989-06-13

    This patent describes a catalytic reforming process which comprises contacting a naphtha range feed with a low acidity extrudate comprising an intermediate and/or a large pore acidic zeolite bound with a low acidity refractory oxide under reforming conditions to provide a reaction product of increased aromatic content, the extrudate having been prepared with at least an extrusion-facilitating amount of a low acidity refractory oxide in colloidal form and containing at least one metal species selected from the platinum group metals.

  11. Introducing VESPA-22: a ground-based microwave spectrometer for measuring middle atmospheric water vapour at polar latitudes

    NASA Astrophysics Data System (ADS)

    Bertagnolio, P. P.; Muscari, G.; Fiorucci, I.; Mari, M.

    2012-04-01

    We present the latest updates on the project VESPA-22 (water Vapour Emission Spectrometer for Polar Atmospheres at 22 GHz), a ground-based microwave instrument developed for long-term observations of water vapour in the polar stratosphere and mesosphere (SMWV). The short- and long-term change in water vapour concentration from the lower stratosphere to the mesosphere is one of the main areas of interest for atmospheric composition studies in the current decade. In fact, SMWV influences the temperature of the stratosphere by radiative processes, the concentration of several chemical species (also through the production of OH) and the formation of aerosols. Recent studies showed that in the last 30 years mid-latitude SMWV has been changing for mechanisms not yet fully understood. Model studies indicate that these changes could have had a significant impact (25-30%) on the tropospheric radiative forcing and surface temperature trends observed since 1980. Moreover, at polar regions, changes in SMWV strongly affect the formation rate of polar stratospheric clouds, both directly (how much is available for uptake on PSC particles) and indirectly (impact on stratospheric temperature). This is especially critical in the Arctic stratosphere where temperatures are not as cold they are over Antarctica and, for the purpose of denitrification and ozone depletion processes, an increase in SMWV of 1 ppmv is modelled to be equivalent to a 1 K decrease in temperature. In the past decade, satellite-based instruments have provided accurate and global measurements of SMWV, but a similar coverage is not expected in this decade. Conversely, the ground-based microwave spectrometers currently active provide both the long-time series necessary for decadal scale monitoring and the high time resolution (a few hours) needed to understand fast dynamical processes. Today, none of these sustained SMWV measurements are being carried out at polar regions. Our observation technique is based on the

  12. The millennium water vapour drop in chemistry-climate model simulations

    NASA Astrophysics Data System (ADS)

    Brinkop, Sabine; Dameris, Martin; Jöckel, Patrick; Garny, Hella; Lossow, Stefan; Stiller, Gabriele

    2016-07-01

    This study investigates the abrupt and severe water vapour decline in the stratosphere beginning in the year 2000 (the "millennium water vapour drop") and other similarly strong stratospheric water vapour reductions by means of various simulations with the state-of-the-art Chemistry-Climate Model (CCM) EMAC (ECHAM/MESSy Atmospheric Chemistry Model). The model simulations differ with respect to the prescribed sea surface temperatures (SSTs) and whether nudging is applied or not. The CCM EMAC is able to most closely reproduce the signature and pattern of the water vapour drop in agreement with those derived from satellite observations if the model is nudged. Model results confirm that this extraordinary water vapour decline is particularly obvious in the tropical lower stratosphere and is related to a large decrease in cold point temperature. The drop signal propagates under dilution to the higher stratosphere and to the poles via the Brewer-Dobson circulation (BDC). We found that the driving forces for this significant decline in water vapour mixing ratios are tropical sea surface temperature (SST) changes due to a coincidence with a preceding strong El Niño-Southern Oscillation event (1997/1998) followed by a strong La Niña event (1999/2000) and supported by the change of the westerly to the easterly phase of the equatorial stratospheric quasi-biennial oscillation (QBO) in 2000. Correct (observed) SSTs are important for triggering the strong decline in water vapour. There are indications that, at least partly, SSTs contribute to the long period of low water vapour values from 2001 to 2006. For this period, the specific dynamical state of the atmosphere (overall atmospheric large-scale wind and temperature distribution) is important as well, as it causes the observed persistent low cold point temperatures. These are induced by a period of increased upwelling, which, however, has no corresponding pronounced signature in SSTs anomalies in the tropics. Our free

  13. GPS tomographic experiment on water vapour dynamics in the troposphere over Lisbon

    NASA Astrophysics Data System (ADS)

    Benevides, Pedro; Catalao, Joao; Miranda, Pedro

    2015-04-01

    Quantification of the water vapour variability on the atmosphere remains a difficult task, affecting the weather prediction. Coarse water vapour resolution measurements in space and time affect the numerical weather prediction solution models causing artifacts in the prediction of severe weather phenomena. The GNSS atmospheric processing has been developed in the past years providing integrated water vapour estimates comparable with the meteorological sensor measurements, with studies registering 1 to 2 kg/m2 bias, but lack a vertical determination of the atmospheric processes. The GNSS tomography in the troposphere is one of the most promising techniques for sensing the three-dimensional water vapour state of the atmosphere. The determination of the integrated water vapour profile by means of the widely accepted GNSS meteorology techniques, allows the reconstruction of several slant path delay rays in the satellite line of view, providing an opportunity to sense the troposphere at tree-dimensions plus time. The tomographic system can estimate an image solution of the water vapour but impositions have to be introduced to the system of equations inversion because of the non-optimal GNSS observation geometry. Application of this technique on atmospheric processes like large convective precipitation or mesoscale water vapour circulation have been able to describe its local dynamic vertical variation. A 3D tomographic experiment was developed over an area of 60x60 km2 around Lisbon (Portugal). The GNSS network available composed by 9 receivers was used for an experiment of densification of the permanent network using 8 temporarily installed GPS receivers (totalling 17 stations). This study was performed during several weeks in July 2013, where a radiosonde campaign was also held in order to validate the tomographic inversion solution. 2D integrated water vapour maps directly obtained from the GNSS processing were also evaluated and local coastal breeze circulation

  14. Catalytic Chemistry on Oxide Nanostructures

    SciTech Connect

    Asthagiri, Aravind; Dixon, David A.; Dohnalek, Zdenek; Kay, Bruce D.; Rodriquez, Jose A.; Rousseau, Roger J.; Stacchiola, Dario; Weaver, Jason F.

    2016-05-29

    Metal oxides represent one of the most important and widely employed materials in catalysis. Extreme variability of their chemistry provides a unique opportunity to tune their properties and to utilize them for the design of highly active and selective catalysts. For bulk oxides, this can be achieved by varying their stoichiometry, phase, exposed surface facets, defect, dopant densities and numerous other ways. Further, distinct properties from those of bulk oxides can be attained by restricting the oxide dimensionality and preparing them in the form of ultrathin films and nanoclusters as discussed throughout this book. In this chapter we focus on demonstrating such unique catalytic properties brought by the oxide nanoscaling. In the highlighted studies planar models are carefully designed to achieve minimal dispersion of structural motifs and to attain detailed mechanistic understanding of targeted chemical transformations. Detailed level of morphological and structural characterization necessary to achieve this goal is accomplished by employing both high-resolution imaging via scanning probe methods and ensemble-averaged surface sensitive spectroscopic methods. Three prototypical examples illustrating different properties of nanoscaled oxides in different classes of reactions are selected.

  15. Catalytic properties of composite amorphous carbon-platinum layers in fuel cells

    SciTech Connect

    Nechitailov, A. A. Zvonareva, T. K.; Remenyuk, A. D.; Tolmachev, V. A.; Goryachev, D. N.; El'tsina, O. S.; Belyakov, L. V.; Sreseli, O. M.

    2008-10-15

    Catalytic properties of composite amorphous carbon-platinum layers produced by magnetron cosputtering have been studied. The layers were characterized by electron microscopy, IR spectroscopy, ellipsometry, gravimetry, and spectrophotometric chemical analysis. The catalytic activity of the layers was studied in an air-hydrogen fuel cell by measuring its load and power characteristics.

  16. Nanoscale mapping of catalytic activity using tip-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Stephanidis, B.; Zenobi, R.; Wain, A. J.; Roy, D.

    2015-04-01

    Chemical mapping of a photocatalytic reaction with nanoscale spatial resolution is demonstrated for the first time using tip-enhanced Raman spectroscopy (TERS). An ultrathin alumina film applied to the Ag-coated TERS tip blocks catalytic interference whilst maintaining near-field electromagnetic enhancement, thus enabling spectroscopic imaging of catalytic activity on nanostructured Ag surfaces.

  17. Catalytic ammonia decomposition over industrial-waste-supported Ru catalysts

    SciTech Connect

    Pei Fang Ng; Li Li; Shaobin Wang; Zhonghua Zhu; Gaoqing Lu; Zifeng Yan

    2007-05-15

    Industrial solid wastes (fly ash and red mud, a by-product of the aluminium industry) have been employed as supports for preparation of Ru-based catalysts. Physical and chemical treatments on red mud were conducted and these modified supports were also used for preparation of Ru-based catalysts. Those Ru catalysts were characterized by various techniques such as N2 adsorption, H{sub 2} adsorption, XRD, XPS, and temperature-programmed reduction (TPR), and were then tested for catalytic ammonia decomposition to hydrogen. It was found that red-mud-supported Ru catalyst exhibits higher ammonia conversion and hydrogen production than fly-ash-supported catalyst. Heat and chemical treatments of the red mud greatly improve the catalytic activity. Moreover, a combination of acid and heat treatments produces the highest catalytic conversion of ammonia. 35 refs., 4 figs., 4 tabs.

  18. Recyclable nanostructured catalytic systems in modern environmentally friendly organic synthesis.

    PubMed

    Beletskaya, Irina; Tyurin, Vladimir

    2010-07-08

    Modern chemical synthesis makes heavy use of different types of catalytic systems: homogeneous, heterogeneous and nano-sized. The latter--nano-sized catalysts--have given rise in the 21st century to a rapidly developing area of research encompassing several prospects and opportunities for new technologies. Catalytic reactions ensure high regio- and stereoselectivity of chemical transformations, as well as better yields and milder reaction conditions. In recent years several novel catalytic systems were developed for selective formation of carbon-heteroatom and carbon-carbon bonds. This review presents the achievements of our team in our studies on various types of catalysts containing metal nanoparticles: palladium-containing diblock copolymer micelles; soluble palladium-containing polymers; metallides on a support; polymeric metal salts and oxides; and, in addition, metal-free organic catalysts based on soluble polymers acting as nanoreactors. Representative examples are given and discussed in light of possible applications to solve important problems in modern organic synthesis.

  19. Catalytic enantioselective synthesis of quaternary carbon stereocentres.

    PubMed

    Quasdorf, Kyle W; Overman, Larry E

    2014-12-11

    Quaternary carbon stereocentres-carbon atoms to which four distinct carbon substituents are attached-are common features of molecules found in nature. However, before recent advances in chemical catalysis, there were few methods of constructing single stereoisomers of this important structural motif. Here we discuss the many catalytic enantioselective reactions developed during the past decade for the synthesis of single stereoisomers of such organic molecules. This progress now makes it possible to incorporate quaternary stereocentres selectively in many organic molecules that are useful in medicine, agriculture and potentially other areas such as flavouring, fragrances and materials.

  20. Catalytic Enantioselective Synthesis of Quaternary Carbon Stereocenters

    PubMed Central

    Quasdorf, Kyle W.; Overman, Larry E.

    2015-01-01

    Preface Quaternary carbon stereocenters–carbon atoms to which four distinct carbon substituents are attached–are common features of molecules found in nature. However, prior to recent advances in chemical catalysis, there were few methods available for constructing single stereoisomers of this important structural motif. Here we discuss the many catalytic enantioselective reactions developed during the past decade for synthesizing organic molecules containing such carbon atoms. This progress now makes it possible to selectively incorporate quaternary stereocenters in many high-value organic molecules for use in medicine, agriculture, and other areas. PMID:25503231

  1. Catalytic enantioselective synthesis of quaternary carbon stereocentres

    NASA Astrophysics Data System (ADS)

    Quasdorf, Kyle W.; Overman, Larry E.

    2014-12-01

    Quaternary carbon stereocentres--carbon atoms to which four distinct carbon substituents are attached--are common features of molecules found in nature. However, before recent advances in chemical catalysis, there were few methods of constructing single stereoisomers of this important structural motif. Here we discuss the many catalytic enantioselective reactions developed during the past decade for the synthesis of single stereoisomers of such organic molecules. This progress now makes it possible to incorporate quaternary stereocentres selectively in many organic molecules that are useful in medicine, agriculture and potentially other areas such as flavouring, fragrances and materials.

  2. Continuous measurements of isotopic composition of water vapour on the East Antarctic Plateau

    NASA Astrophysics Data System (ADS)

    Casado, Mathieu; Landais, Amaelle; Masson-Delmotte, Valérie; Genthon, Christophe; Kerstel, Erik; Kassi, Samir; Arnaud, Laurent; Picard, Ghislain; Prie, Frederic; Cattani, Olivier; Steen-Larsen, Hans-Christian; Vignon, Etienne; Cermak, Peter

    2016-07-01

    Water stable isotopes in central Antarctic ice cores are critical to quantify past temperature changes. Accurate temperature reconstructions require one to understand the processes controlling surface snow isotopic composition. Isotopic fractionation processes occurring in the atmosphere and controlling snowfall isotopic composition are well understood theoretically and implemented in atmospheric models. However, post-deposition processes are poorly documented and understood. To quantitatively interpret the isotopic composition of water archived in ice cores, it is thus essential to study the continuum between surface water vapour, precipitation, surface snow and buried snow. Here, we target the isotopic composition of water vapour at Concordia Station, where the oldest EPICA Dome C ice cores have been retrieved. While snowfall and surface snow sampling is routinely performed, accurate measurements of surface water vapour are challenging in such cold and dry conditions. New developments in infrared spectroscopy enable now the measurement of isotopic composition in water vapour traces. Two infrared spectrometers have been deployed at Concordia, allowing continuous, in situ measurements for 1 month in December 2014-January 2015. Comparison of the results from infrared spectroscopy with laboratory measurements of discrete samples trapped using cryogenic sampling validates the relevance of the method to measure isotopic composition in dry conditions. We observe very large diurnal cycles in isotopic composition well correlated with temperature diurnal cycles. Identification of different behaviours of isotopic composition in the water vapour associated with turbulent or stratified regime indicates a strong impact of meteorological processes in local vapour/snow interaction. Even if the vapour isotopic composition seems to be, at least part of the time, at equilibrium with the local snow, the slope of δD against δ18O prevents us from identifying a unique origin leading

  3. Linking chemical electron-proton transfer to proton pumping in cytochrome c oxidase: broken-symmetry DFT exploration of intermediates along the catalytic reaction pathway of the iron-copper dinuclear complex.

    PubMed

    Noodleman, Louis; Han Du, Wen-Ge; Fee, James A; Götz, Andreas W; Walker, Ross C

    2014-07-07

    After a summary of the problem of coupling electron and proton transfer to proton pumping in cytochrome c oxidase, we present the results of our earlier and recent density functional theory calculations for the dinuclear Fe-a3-CuB reaction center in this enzyme. A specific catalytic reaction wheel diagram is constructed from the calculations, based on the structures and relative energies of the intermediate states of the reaction cycle. A larger family of tautomers/protonation states is generated compared to our earlier work, and a new lowest-energy pathway is proposed. The entire reaction cycle is calculated for the new smaller model (about 185-190 atoms), and two selected arcs of the wheel are chosen for calculations using a larger model (about 205 atoms). We compare the structural and redox energetics and protonation calculations with available experimental data. The reaction cycle map that we have built is positioned for further improvement and testing against experiment.

  4. Assessment of the Persistence of Vapour Evolved from Neat CH contamination on Prairie Terrain (Record of FPP-81-1)

    DTIC Science & Technology

    1983-01-01

    EVOLVED FROM NEAT CH CONTAMINATION 0, N PRAIRIE TERRAIN (U) (Record of FPP 31-1) Reproduced From Best Available COPY by BTI ~ EWE COP To be...Analysis The vapour samplers from the bubblers and the ground contamination samples were analyzed by gas chromatography and vapour dosages calculated...The total methoxycycloheptatriene fraction was analyzed for, and the vapour dosages and percent recovery are based on this analysis. Stain sizes on

  5. Strain and Structure Heterogeneity in MoS2 Atomic Layers Grown by Chemical Vapour Deposition

    DTIC Science & Technology

    2014-11-18

    laser excitation focused through a 100 objective lens. This resulted in a spot size...heterogeneity, GBs are one of the most 3,200 Laser Tensile strain MoS2 PDMS 3,000 = 0 = 0% = 1.5% = 1.5% = 2.3% = 2.3% = 3.4% = 3.4% = 4.8...ns ity ( a. u. ) E ne ry s hi ft (m eV ) In te ns ity ( a. u. ) 2,600 2,400 0 –5 –10 –20 0 1 2 3 4 Tensile strain (%)Energy (eV) 1.75 1.80

  6. Metal-organic chemical vapour deposition of polycrystalline tetragonal indium sulphide (InS) thin films

    NASA Technical Reports Server (NTRS)

    Macinnes, Andrew N.; Cleaver, William M.; Barron, Andrew R.; Power, Michael B.; Hepp, Aloysius F.

    1992-01-01

    The dimeric indium thiolate /(t Bu)2In(mu-S sup t Bu)/2 has been used as a single-source precursor for the MOCVD of InS thin films. The dimeric In2S2 core is proposed to account for the formation of the nonequilibrium high-pressure tetragonal phase in the deposited films. Analysis of the deposited films has been obtained by TEM, with associated energy-dispersive X-ray analysis and X-ray photoelectron spectroscopy.

  7. Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene

    NASA Astrophysics Data System (ADS)

    Zhou, Hailong; Yu, Woo Jong; Liu, Lixin; Cheng, Rui; Chen, Yu; Huang, Xiaoqing; Liu, Yuan; Wang, Yang; Huang, Yu; Duan, Xiangfeng

    2013-06-01

    The growth of large-domain single crystalline graphene with the controllable number of layers is of central importance for large-scale integration of graphene devices. Here we report a new pathway to greatly reduce the graphene nucleation density from ~106 to 4 nuclei cm-2, enabling the growth of giant single crystals of monolayer graphene with a lateral size up to 5 mm and Bernal-stacked bilayer graphene with the lateral size up to 300 μm, both the largest reported to date. The formation of the giant graphene single crystals eliminates the grain boundary scattering to ensure excellent device-to-device uniformity and remarkable electronic properties with the expected quantum Hall effect and the highest carrier mobility up to 16,000 cm2 V-1 s-1. The availability of the ultra large graphene single crystals can allow for high-yield fabrication of integrated graphene devices, paving a pathway to scalable electronic and photonic devices based on graphene materials.

  8. The role of carbon precursor on carbon nanotube chirality in floating catalyst chemical vapour deposition.

    PubMed

    Barnard, J S; Paukner, C; Koziol, K K

    2016-10-06

    We have studied the influence of different carbon precursors (methane, ethanol and toluene) on the type, diameter and chiral angle distributions of carbon nanotubes (CNTs) grown with the floating catalyst technique in a horizontal gas-flow reactor. Using electron diffraction to study their atomic structures, we found that ethanol and toluene precursors gave high single-wall CNT yields (92% and 89% respectively), with narrow diameter distributions: 1.1 nm to 1.7 nm (ethanol); 1.3 nm to 2.1 nm (toluene), with a propensity for armchair-type chiral angles. In contrast, methane-grown CNTs gave high double-wall CNT yields (75%) with broader diameter populations: 1.2 to 4.6 nm (inner CNT) and 2.2 to 5.3 nm (outer CNT) with a more uniform spread of chiral angles, but weakly peaked around 15 to 20 degrees. These observations agree with known growth models. However, double-wall CNTs grown with toluene showed an unusually narrow interlayer spacing of 0.286 ± 0.003 nm with suggestions of large, 20° to 25°, differences between inner and outer CNT chiral angles. Methane gave a large interlayer spacing (0.385 ± 0.002 nm) with suggestions of small 5° to 10° inter-tube chirality correlations.

  9. Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene.

    PubMed

    Zhou, Hailong; Yu, Woo Jong; Liu, Lixin; Cheng, Rui; Chen, Yu; Huang, Xiaoqing; Liu, Yuan; Wang, Yang; Huang, Yu; Duan, Xiangfeng

    2013-01-01

    The growth of large-domain single crystalline graphene with the controllable number of layers is of central importance for large-scale integration of graphene devices. Here we report a new pathway to greatly reduce the graphene nucleation density from ~10(6) to 4 nuclei cm(-2), enabling the growth of giant single crystals of monolayer graphene with a lateral size up to 5 mm and Bernal-stacked bilayer graphene with the lateral size up to 300 μm, both the largest reported to date. The formation of the giant graphene single crystals eliminates the grain boundary scattering to ensure excellent device-to-device uniformity and remarkable electronic properties with the expected quantum Hall effect and the highest carrier mobility up to 16,000 cm(2) V(-1) s(-1). The availability of the ultra large graphene single crystals can allow for high-yield fabrication of integrated graphene devices, paving a pathway to scalable electronic and photonic devices based on graphene materials.

  10. Ultraviolet absorption measurements of CF2 in the parallel plate pyrolytic chemical vapour deposition process

    NASA Astrophysics Data System (ADS)

    Cruden, Brett A.; Gleason, Karen K.; Sawin, Herbert H.

    2002-03-01

    Polytetrafluoroethylene films have been deposited for use as low dielectric constant materials. Deposition is performed through pyrolysis of hexafluoropropylene oxide (HFPO) to produce CF2, which can then polymerize and deposit as a thin film. The variation of CF2 concentration as a function of reactor conditions has been characterized by ultraviolet absorption spectroscopy. CF2 concentration is observed to go through a maximum with respect to both pressure and pyrolysis temperature when it is present in large amounts (~1014 cm-3). A one-dimensional model including known kinetic reactions for HFPO decomposition and CF2 recombination and multi-component diffusive transport has been applied to the parallel plate system. The result is seen to overestimate the measured concentration and does not capture the maxima observed versus pressure and temperature. An additional mechanism of particle formation, by CF2 insertion into (CF2)n oligomers, has been introduced to produce a kinetic model that explains the CF2 concentration measurements.

  11. Chemical vapour deposition of nitrogen-doped titanium dioxide thin films.

    PubMed

    Alexandrov, S E; Baryshnikova, M V; Filatov, L A; Shahmin, A L; Andreeva, V D

    2011-09-01

    Nitrogen-doped titanium dioxide is often considered as a promising nanomaterial for photocatalytic applications. Here we report the first results of a study of APCVD of N-doped TiO2 thin films prepared with the use of ammonia as a source of nitrogen and titanium tetraisopropoxide (TTIP) as a source of Ti and O atoms. The obtained films were analyzed with X-ray diffraction, infrared spectroscopy, atomic force microscopy, X-ray photoelectron spectroscopy, UV-Vis spectroscopy, and ellipsometry. It was found that the film growth rate in the TTIP-NH3-Ar reaction system varied insignificantly with substrate temperature in the range of 450,..., 750 degrees C and did not exceed 4.4 nm/min. Yellow and orange layers with nitrogen content of about 7.6% were formed at the deposition temperature higher than 600 degrees C. The results of the structure analysis of the deposited films showed that addition of ammonia led to stabilization of the amorphous phase in the films. The effect of ammonia on optical and photocatalytic properties was also considered.

  12. Binding of Vapour-Phase Mercury (Hg0) on Chemically Treated Bauxite Residues (Red Mud)

    EPA Science Inventory

    In this study, Hg capture using red mud, seawater-neutralized red mud, and acid-treated red mud is evaluated and compared to other, more conventional sorbent materials. Red mud (also known as bauxite residue) is a by-product of extracting alumina from ground bauxite ore by treati...

  13. Computational studies of elementary steps relating to boron doping during diamond chemical vapour deposition.

    PubMed

    Cheesman, Andrew; Harvey, Jeremy N; Ashfold, Michael N R

    2005-03-21

    Density functional theory-based electronic structure computations on small models of the diamond {100} surface have enabled prediction of the energetics and activation parameters of a number of plausible mechanistic steps for boron incorporation into, and boron loss from, the growing diamond surface. Initial proving calculations for the carbon-only case show, as in previous work, that the rate-limiting step for diamond growth involves opening of a five-membered ring species, and subsequent closure to form six-membered rings as in bulk diamond. The five-membered ring intermediate arises following 2 x 1 reconstruction of the {100} surface, or at steps on the {111} surface. Diamond growth arises as a result of successful competition between the ring-opening step and a two-carbon loss step, both of which involve significant activation barriers. In the boron case, we find that BH(x) (x = 0-3) species can all bind to radical sites on the diamond {100} surface to form stable adducts. Interconversion between the surface bound BH, species is facile at the H and H2 number densities and temperatures typical for diamond CVD conditions. B incorporation can occur by a ring expansion mechanism, as in the all-carbon case, and by direct insertion of surface bound BH (and B) species into the C-C bond on the diamond {100} surface. BH(x) loss processes identified include release of surface bound BH3 and/or CH2BH species into the gas phase. Both B incorporation into, and B loss from, the diamond {100} surface are deduced to be significantly less energy demanding than the corresponding carbon addition and loss processes.

  14. Catalytic hollow spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1986-01-01

    The improved, heterogeneous catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitably formed of a shell (12) of metal such as aluminum having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be, itself, catalytic or the catalyst can be coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  15. Catalytic hollow spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1989-01-01

    The improved, heterogeneous catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitably formed of a shell (12) of metal such as aluminum having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be, itself, catalytic or the catalyst can be coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  16. Bifunctional catalytic electrode

    NASA Technical Reports Server (NTRS)

    Cisar, Alan (Inventor); Murphy, Oliver J. (Inventor); Clarke, Eric (Inventor)

    2005-01-01

    The present invention relates to an oxygen electrode for a unitized regenerative hydrogen-oxygen fuel cell and the unitized regenerative fuel cell having the oxygen electrode. The oxygen electrode contains components electrocatalytically active for the evolution of oxygen from water and the reduction of oxygen to water, and has a structure that supports the flow of both water and gases between the catalytically active surface and a flow field or electrode chamber for bulk flow of the fluids. The electrode has an electrocatalyst layer and a diffusion backing layer interspersed with hydrophilic and hydrophobic regions. The diffusion backing layer consists of a metal core having gas diffusion structures bonded to the metal core.

  17. Structure and thermodynamic properties of positive and negative cluster ions in saturated vapour over barium dichloride

    NASA Astrophysics Data System (ADS)

    Pogrebnoi, Alexander M.; Pogrebnaya, Tatiana P.; Kudin, Lev S.; Tuyizere, Sarathiel

    2013-11-01

    Geometrical structure, vibration spectra, and enthalpies of dissociation have been investigated for the ions BaCl3-, Ba2Cl3+, Ba3Cl5+, and Ba4Cl7+ which were detected earlier in the saturated vapour over BaCl2. Quantum chemical methods of density functional theory, the second and the fourth order Møller-Plesset perturbation theory have been applied. The effective core potential with cc-pVTZ basis set for barium atom and two full-electron basis sets including the diffuse and polarised basis functions for chlorine atom were used. The effect of the basis set size and the computation method on the results was analysed. According to the results, all the ions possess the compact shaped structure. The equilibrium geometrical structures were found as follows: the planar D3h for BaCl3-, triple bridged bipyramidal D3h for Ba2Cl3+, hexabridged D3h for Ba3Cl5+, and septuple bridged C2v for Ba4Cl7+. For positive ions, the different isomeric structures were considered, but no isomers for these ions have been found. The geometrical parameters and vibration frequencies were utilised for computing of thermodynamic functions of the ions, and then the thermodynamic functions were used for the treatment of the experimental mass spectrometric data. The enthalpies of formation ΔfH°(0 K) of the ions were determined (in kJ/mol): -994 ± 6 (BaCl3-), -481 ± 10 (Ba2Cl3+), -1276 ± 14 (Ba3Cl5+), -2048 ± 35 (Ba4Cl7+).

  18. Sensitivity of polar stratospheric cloud formation to changes in water vapour and temperature

    NASA Astrophysics Data System (ADS)

    Khosrawi, F.; Urban, J.; Lossow, S.; Stiller, G.; Weigel, K.; Braesicke, P.; Pitts, M. C.; Rozanov, A.; Burrows, J. P.; Murtagh, D.

    2016-01-01

    More than a decade ago it was suggested that a cooling of stratospheric temperatures by 1 K or an increase of 1 ppmv of stratospheric water vapour could promote denitrification, the permanent removal of nitrogen species from the stratosphere by solid polar stratospheric cloud (PSC) particles. In fact, during the two Arctic winters 2009/10 and 2010/11 the strongest denitrification in the recent decade was observed. Sensitivity studies along air parcel trajectories are performed to test how a future stratospheric water vapour (H2O) increase of 1 ppmv or a temperature decrease of 1 K would affect PSC formation. We perform our study based on measurements made during the Arctic winter 2010/11. Air parcel trajectories were calculated 6 days backward in time based on PSCs detected by CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder satellite observations). The sensitivity study was performed on single trajectories as well as on a trajectory ensemble. The sensitivity study shows a clear prolongation of the potential for PSC formation and PSC existence when the temperature in the stratosphere is decreased by 1 K and water vapour is increased by 1 ppmv. Based on 15 years of satellite measurements (2000-2014) from UARS/HALOE, Envisat/MIPAS, Odin/SMR, Aura/MLS, Envisat/SCIAMACHY and SCISAT/ACE-FTS it is further investigated if there is a decrease in temperature and/or increase of water vapour (H2O) observed in the polar regions similar to that observed at midlatitudes and in the tropics. Performing linear regression analyses we derive from the Envisat/MIPAS (2002-2012) and Aura/MLS (2004-2014) observations predominantly positive changes in the potential temperature range 350 to 1000 K. The linear changes in water vapour derived from Envisat/MIPAS observations are largely insignificant, while those from Aura/MLS are mostly significant. For the temperature neither of the two instruments indicate any significant changes. Given the strong inter-annual variation observed in

  19. Tomographic retrieval of water vapour and temperature around polar mesospheric clouds using Odin-SMR

    NASA Astrophysics Data System (ADS)

    Christensen, O. M.; Eriksson, P.; Urban, J.; Murtagh, D.; Hultgren, K.; Gumbel, J.

    2015-05-01

    A special observation mode of the Odin satellite provides the first simultaneous measurements of water vapour, temperature and polar mesospheric cloud (PMC) brightness over a large geographical area while still resolving both horizontal and vertical structures in the clouds and background atmosphere. The observation mode was activated during June, July and August of 2010 and 2011, and for latitudes between 50 and 82° N. This paper focuses on the water vapour and temperature measurements carried out with Odin's sub-millimetre radiometer (SMR). The tomographic retrieval approach used provides water vapour and temperature between 75 and 90 km with a vertical resolution of about 2.5 km and a horizontal resolution of about 200 km. The precision of the measurements is estimated to 0.2 ppmv for water vapour and 2 K for temperature. Due to limited information about the pressure at the measured altitudes, the results have large uncertainties (> 3 ppmv) in the retrieved water vapour. These errors, however, influence mainly the mean atmosphere retrieved for each orbit, and variations around this mean are still reliably captured by the measurements. SMR measurements are performed using two different mixer chains, denoted as frequency mode 19 and 13. Systematic differences between the two frontends have been noted. A first comparison with the Solar Occultation For Ice Experiment instrument (SOFIE) on-board the Aeronomy of Ice in the Mesosphere (AIM) satellite and the Fourier Transform Spectrometer of the Atmospheric Chemistry Experiment (ACE-FTS) on-board SCISAT indicates that the measurements using the frequency mode 19 have a significant low bias in both temperature (> 15 K) and water vapour (> 0.5 ppmv), while the measurements using frequency mode 13 agree with the other instruments considering estimated errors. PMC brightness data is provided by OSIRIS, Odin's other sensor. Combined SMR and OSIRIS data for some example orbits is considered. For these orbits, effects of

  20. Efficacy of scalp hair decontamination following exposure to vapours of sulphur mustard simulants 2-chloroethyl ethyl sulphide and methyl salicylate.

    PubMed

    Spiandore, Marie; Piram, Anne; Lacoste, Alexandre; Prevost, Philippe; Maloni, Pascal; Torre, Franck; Asia, Laurence; Josse, Denis; Doumenq, Pierre

    2017-04-01

    Chemical warfare agents are an actual threat and victims' decontamination is a main concern when mass exposure occurs. Skin decontamination with current protocols has been widely documented, as well as surface decontamination. However, considering hair ability to trap chemicals in vapour phase, we investigated hair decontamination after exposure to sulphur mustard simulants methyl salicylate and 2-chloroethyl ethyl sulphide. Four decontamination protocols were tested on hair, combining showering and emergency decontamination (use of Fuller's earth or Reactive Skin Decontamination Lotion RSDL(®)). Both simulants were recovered from hair after treatment, but contents were significantly reduced (42-85% content allowance). Showering alone was the least efficient protocol. Concerning 2-chloroethyl ethyl sulphide, protocols did not display significant differences in decontamination efficacy. For MeS, use of emergency decontaminants significantly increased showering efficacy (10-20% rise), underlining their usefulness before thorough decontamination. Our results highlighted the need to extensively decontaminate hair after chemical exposure. Residual amounts after decontamination are challenging, as their release from hair could lead to health issues.

  1. Catalytic activities of zeolite compounds for decomposing aqueous ozone.

    PubMed

    Kusuda, Ai; Kitayama, Mikito; Ohta, Yoshio

    2013-12-01

    The advanced oxidation process (AOP), chemical oxidation using aqueous ozone in the presence of appropriate catalysts to generate highly reactive oxygen species, offers an attractive option for removing poorly biodegradable pollutants. Using the commercial zeolite powders with various Si/Al ratios and crystal structures, their catalytic activities for decomposing aqueous ozone were evaluated by continuously flowing ozone to water containing the zeolite powders. The hydrophilic zeolites (low Si/Al ratio) with alkali cations in the crystal structures were found to possess high catalytic activity for decomposing aqueous ozone. The hydrophobic zeolite compounds (high Si/Al ratio) were found to absorb ozone very well, but to have no catalytic activity for decomposing aqueous ozone. Their catalytic activities were also evaluated by using the fixed bed column method. When alkali cations were removed by acid rinsing or substituted by alkali-earth cations, the catalytic activities was significantly deteriorated. These results suggest that the metal cations on the crystal surface of the hydrophilic zeolite would play a key role for catalytic activity for decomposing aqueous ozone.

  2. Ionisation Mechanisms in AN Optically Pumped Mercury Vapour.

    NASA Astrophysics Data System (ADS)

    Counsell, G. F.

    Available from UMI in association with The British Library. Requires signed TDF. A plasma formed in a mercury vapour by optical pumping at visible and U.V. wavelengths from a high current mercury discharge, has been investigated with a view to gaining an understanding of the ionisation processes giving rise to the plasma. These were believed to generate both atomic and molecular ions. The results of this work have applications in the fields of fluorescent lighting and the mercury-nitrogen laser. The plasma was studied with a variety of diagnostic tools. Electron number densities and temperatures were determined using Langmuir probes operating in the orbital motion limited regime. Populations of the 6^3 P triplet states, believed to be the only significantly populated excited states in the plasma, were determined using absorption spectroscopy. Lastly, a quadrupole mass spectrometer, coupled to the plasma with an electrostatic ion transport system, was used to investigate the flux of atomic and molecular ions to a body at floating potential in the plasma. The Langmuir probe and absorption spectroscopy results were included into a model describing ion motions in the plasma, based around the ion fluid equations and including source terms for the generation of atomic and molecular ions, both by electron impact and by binary collisions of atoms in the 6^3P triplet states. Where possible, ionisation rats in the model were calculated using published cross-sections. However, for the heavy body collisional processes in particular, many of these are unknown. Consequently, an attempt was made to determine these cross-sections by generating results from the model that could be compared to experimental measurements of the atomic and molecular ion fluxes to the mass spectrometer. A number of computational experiments were carried out, varying the cross-sections until a good fit to the experimental measurements was achieved. Using this technique it was possible to estimate cross

  3. Water vapour and greenhouse trapping: The role of far infrared absorption

    NASA Astrophysics Data System (ADS)

    Sinha, Ashok; Harries, John E.

    Few observations have been made of atmospheric absorption across the far infra-red. Yet water vapour absorption in this spectral region may significantly effect climate. The impact of far infra-red absorption is assessed by calculating the spectral variation of the total and water vapour greenhouse effects, for the sub-arctic winter (SAW) and tropical (TRP) standard atmospheres. Although the calculated efficiency of greenhouse trapping peaks outside of the far infra-red, the low strength there of the Planck function causes relatively small absolute forcings, except in the carbon dioxide and ozone bands. The sensitivity of the normalised greenhouse effect to water vapour concentration is largest in the far infra-red for the SAW atmosphere, and in the window region for the TRP. The sensitivity differs most between the two atmospheres in the far infra-red. Maximum water vapour greenhouse trapping arises in the far infra-red, over the middle/upper troposphere; in the SAW case the contribution from the water vapour continuum is virtually eliminated. Improved spectral observations and simulations at far infra-red wavelengths thus appear necessary to better understand the contemporary greenhouse effect, and to validate models of climate change.

  4. A preliminary zonal mean climatology of water vapour in the stratosphere and mesosphere

    NASA Astrophysics Data System (ADS)

    Pumphrey, Hugh C.; Rind, D.; Russell, J. M.; Harries, J. E.

    The Microwave Limb Sounder on the UARS satellite measures water vapour concentration in the stratosphere and mesosphere. Water vapour profiles are retrieved from radiance measurements using a version of the optimal estimation algorithm. This requires an a priori profile which is obtained from a climatology. The MLS retrieval currently uses the standard UARS pre-launch climatology, which contains water vapour based on a 2-D model constrained to LIMS data in the stratosphere. This climatology has several defects which affect the ability of MLS to retrieve water vapour. This paper presents a new climatology constructed from the HALOE (HALogen Occultation Experiment) and SAGE II (Stratospheric Aerosol and Gas Experiment) data, which have become available recently. The new climatology is more realistic in several ways, particularly in the mesosphere and near the tropopause. It is proving to be an improvement as an a priori for MLS retrievals and might also have other uses. The paper will present the climatology, show how it was constructed, and compare it to the UARS pre-launch climatology and to various other data. As it stands, this climatology is not suitable for a reference atmosphere, but it is an improvement on CIRA part III in some way simply because it contains more accurate data and shows a number of new features. Suggestions are made for constructing an improved reference climatology for middle atmosphere water vapour.

  5. Catalytic and reactive polypeptides and methods for their preparation and use

    DOEpatents

    Schultz, Peter

    1993-01-01

    Catalytic and reactive polypeptides include a binding site specific for a reactant or reactive intermediate involved in a chemical reaction of interest. The polypeptides further include at least one active functionality proximate the bi.

  6. Novel Catalytic Membrane Reactors

    SciTech Connect

    2009-02-01

    This factsheet describes a research project that will focus on the development and application of nonporous high gas flux perfluoro membranes with high temperature rating and excellent chemical resistance.

  7. Learning the Fundamentals of Kinetics and Reaction Engineering with the Catalytic Oxidation of Methane

    ERIC Educational Resources Information Center

    Cybulskis, Viktor J.; Smeltz, Andrew D.; Zvinevich, Yury; Gounder, Rajamani; Delgass, W. Nicholas; Ribeiro, Fabio H.

    2016-01-01

    Understanding catalytic chemistry, collecting and interpreting kinetic data, and operating chemical reactors are critical skills for chemical engineers. This laboratory experiment provides students with a hands-on supplement to a course in chemical kinetics and reaction engineering. The oxidation of methane with a palladium catalyst supported on…

  8. Catalytic Microtube Rocket Igniter

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Deans, Matthew C.

    2011-01-01

    Devices that generate both high energy and high temperature are required to ignite reliably the propellant mixtures in combustion chambers like those present in rockets and other combustion systems. This catalytic microtube rocket igniter generates these conditions with a small, catalysis-based torch. While traditional spark plug systems can require anywhere from 50 W to multiple kW of power in different applications, this system has demonstrated ignition at less than 25 W. Reactants are fed to the igniter from the same tanks that feed the reactants to the rest of the rocket or combustion system. While this specific igniter was originally designed for liquid methane and liquid oxygen rockets, it can be easily operated with gaseous propellants or modified for hydrogen use in commercial combustion devices. For the present cryogenic propellant rocket case, the main propellant tanks liquid oxygen and liquid methane, respectively are regulated and split into different systems for the individual stages of the rocket and igniter. As the catalyst requires a gas phase for reaction, either the stored boil-off of the tanks can be used directly or one stream each of fuel and oxidizer can go through a heat exchanger/vaporizer that turns the liquid propellants into a gaseous form. For commercial applications, where the reactants are stored as gases, the system is simplified. The resulting gas-phase streams of fuel and oxidizer are then further divided for the individual components of the igniter. One stream each of the fuel and oxidizer is introduced to a mixing bottle/apparatus where they are mixed to a fuel-rich composition with an O/F mass-based mixture ratio of under 1.0. This premixed flow then feeds into the catalytic microtube device. The total flow is on the order of 0.01 g/s. The microtube device is composed of a pair of sub-millimeter diameter platinum tubes connected only at the outlet so that the two outlet flows are parallel to each other. The tubes are each

  9. Kinetic model of water vapour adsorption by gluten-free starch

    NASA Astrophysics Data System (ADS)

    Ocieczek, Aneta; Kostek, Robert; Ruszkowska, Millena

    2015-01-01

    This study evaluated the kinetics of water vapour adsorption on the surface of starch molecules derived from wheat. The aim of the study was to determine an equation that would allow estimation of water content in tested material in any timepoint of the adsorption process aimed at settling a balance with the environment. An adsorption isotherm of water vapour on starch granules was drawn. The parameters of the Guggenheim, Anderson, and De Boer equation were determined by characterizing the tested product and adsorption process. The equation of kinetics of water vapour adsorption on the surface of starch was determined based on the Guggenheim, Anderson, and De Boer model describing the state of equilibrium and on the model of a first-order linear inert element describing the changes in water content over time.

  10. Water vapour mixing ratio profiles over Hornsund, Arctic. Intercomparison of lidar and AIRS results

    NASA Astrophysics Data System (ADS)

    Bloch, Magdalena; Karasiński, Grzegorz

    2014-04-01

    Since October 2009, a ground-based Raman lidar system has been deployed to perform a regular, night-time, vertical sounding of a water vapour content in the lower and middle troposphere above Polish Polar Station at Hornsund (77.00°N, 15.55°E, 10 m a.s.l.) in the Arctic. The water vapour mixing ratio profiles were obtained for the atmosphere up to 6 km altitude, based on analysis of inelastic Raman backscattering signals from nitrogen molecules (at 387 nm) and water vapour particles (at 407 nm), calibrated with the data from a local Vaisala's automatic meteorological station. The results obtained for winter seasons in the years 2009-2012 are in a good general agreement with the results obtained from the atmospheric infrared sounder (AIRS) on the Aqua satellite.

  11. Low-pressure water vapour plasma treatment of surfaces for biomolecules decontamination

    NASA Astrophysics Data System (ADS)

    Fumagalli, F.; Kylián, O.; Amato, L.; Hanuš, J.; Rossi, F.

    2012-04-01

    Decontamination treatments of surfaces are performed on bacterial spores, albumin and brain homogenate used as models of biological contaminations in a low-pressure, inductively coupled plasma reactor operated with water-vapour-based gas mixtures. It is shown that removal of contamination can be achieved using pure H2O or Ar/H2O mixtures at low temperatures with removal rates comparable to oxygen-based mixtures. Particle fluxes (Ar+ ions, O and H atomic radicals and OH molecular radicals) from water vapour discharge are measured by optical emission spectroscopy and Langmuir probe under several operating conditions. Analysis of particle fluxes and removal rates measurements illustrates the role of ion bombardment associated with O radicals, governing the removal rates of organic matter. Auxiliary role of hydroxyl radicals is discussed on the basis of experimental data. The advantages of a water vapour plasma process are discussed for practical applications in medical devices decontamination.

  12. CO2-fluxing collapses metal mobility in magmatic vapour

    SciTech Connect

    van Hinsberg, V. J.; Berlo, K.; Migdisov, A. A.; Williams-Jones, A. E.

    2016-05-18

    Magmatic systems host many types of ore deposits, including world-class deposits of copper and gold. Magmas are commonly an important source of metals and ore-forming fluids in these systems. In many magmatic-hydrothermal systems, low-density aqueous fluids, or vapours, are significant metal carriers. Such vapours are water-dominated shallowly, but fluxing of CO2-rich vapour exsolved from deeper magma is now recognised as ubiquitous during open-system magma degassing. Furthermore, we show that such CO2-fluxing leads to a sharp drop in element solubility, up to a factor of 10,000 for Cu, and thereby provides a highly efficient, but as yet unrecognised mechanism for metal deposition.

  13. Distribution of tritium in water vapour and precipitation around Wolsung nuclear power plant.

    PubMed

    Chae, Jung-Seok; Lee, Sang-Kuk; Kim, Yongjae; Lee, Jung-Min; Cho, Heung-Joon; Cho, Yong-Woo; Yun, Ju-Yong

    2011-07-01

    The distribution of tritium in water vapour and precipitation with discharge of tritiated water vapour and meteorological factors was studied around the Wolsung nuclear power plant (NPP) site during the period 2004-2008. The tritium concentrations in atmospheric water vapour and precipitation had a temporal variation with relatively high values in the early summer. Spatial distribution of tritium concentrations was affected by various factors such as distance from the NPP site, wind direction, tritium discharge into the atmosphere and atmospheric dispersion factor. The annual mean concentrations of atmospheric HTO and precipitation were correlated with the amount of gaseous tritium released from the Wolsung NPP. The tritium concentrations in precipitation decrease exponentially with an increase of the distance from the Wolsung NPP site.

  14. Linking Chemical Electron–Proton Transfer to Proton Pumping in Cytochrome c Oxidase: Broken-Symmetry DFT Exploration of Intermediates along the Catalytic Reaction Pathway of the Iron–Copper Dinuclear Complex

    PubMed Central

    2015-01-01

    After a summary of the problem of coupling electron and proton transfer to proton pumping in cytochrome c oxidase, we present the results of our earlier and recent density functional theory calculations for the dinuclear Fe-a3–CuB reaction center in this enzyme. A specific catalytic reaction wheel diagram is constructed from the calculations, based on the structures and relative energies of the intermediate states of the reaction cycle. A larger family of tautomers/protonation states is generated compared to our earlier work, and a new lowest-energy pathway is proposed. The entire reaction cycle is calculated for the new smaller model (about 185–190 atoms), and two selected arcs of the wheel are chosen for calculations using a larger model (about 205 atoms). We compare the structural and redox energetics and protonation calculations with available experimental data. The reaction cycle map that we have built is positioned for further improvement and testing against experiment. PMID:24960612

  15. Vapours of US and EU Market Leader Electronic Cigarette Brands and Liquids Are Cytotoxic for Human Vascular Endothelial Cells.

    PubMed

    Putzhammer, Raphaela; Doppler, Christian; Jakschitz, Thomas; Heinz, Katharina; Förste, Juliane; Danzl, Katarina; Messner, Barbara; Bernhard, David

    2016-01-01

    The present study was conducted to provide toxicological data on e-cigarette vapours of different e-cigarette brands and liquids from systems viewed as leaders in the e-cigarette market and to compare e-cigarette vapour toxicity to the toxicity of conventional strong high-nicotine cigarette smoke. Using an adapted version of a previously constructed cigarette smoke constituent sampling device, we collected the hydrophilic fraction of e-cigarette vapour and exposed human umbilical vein endothelial cells (HUVECs) to the mixture of compounds present in the vapour of 4 different single-use e-cigarettes, 6 different liquid vapours produced by the same refillable e-cigarette, and one e-cigarette with an exchangeable liquid cartridge. After incubation of cells with various concentrations and for various periods of time we analysed cell death induction, proliferation rates, the occurrence of intra-cellular reactive oxygen species, cell morphology, and we also measured e-cigarette heating coil temperatures. Overall, conventional cigarette smoke extract showed the most severe impact on endothelial cells. However, some e-cigarette vapour extracts showed high cytotoxicity, inhibition of cell proliferation, and alterations in cell morphology, which were comparable to conventional high-nicotine cigarettes. The vapours generated from different liquids using the same e-cigarette show substantial differences, pointing to the liquids as an important source for toxicity. E-cigarette vapour-mediated induction of oxidative stress was significant in one out of the 11 analysed vapours. There is a high variability in the acute cytotoxicity of e-cigarette vapours depending on the liquid and on the e-cigarettes used. Some products showed toxic effects close to a conventional high-nicotine cigarette. Liquid nicotine, menthol content, and the formation of acute intracellular reactive oxygen species do not seem to be the central elements in e-cigarette vapour toxicity.

  16. Vapours of US and EU Market Leader Electronic Cigarette Brands and Liquids Are Cytotoxic for Human Vascular Endothelial Cells

    PubMed Central

    Putzhammer, Raphaela; Doppler, Christian; Jakschitz, Thomas; Heinz, Katharina; Förste, Juliane; Danzl, Katarina; Messner, Barbara; Bernhard, David

    2016-01-01

    The present study was conducted to provide toxicological data on e-cigarette vapours of different e-cigarette brands and liquids from systems viewed as leaders in the e-cigarette market and to compare e-cigarette vapour toxicity to the toxicity of conventional strong high-nicotine cigarette smoke. Using an adapted version of a previously constructed cigarette smoke constituent sampling device, we collected the hydrophilic fraction of e-cigarette vapour and exposed human umbilical vein endothelial cells (HUVECs) to the mixture of compounds present in the vapour of 4 different single-use e-cigarettes, 6 different liquid vapours produced by the same refillable e-cigarette, and one e-cigarette with an exchangeable liquid cartridge. After incubation of cells with various concentrations and for various periods of time we analysed cell death induction, proliferation rates, the occurrence of intra-cellular reactive oxygen species, cell morphology, and we also measured e-cigarette heating coil temperatures. Overall, conventional cigarette smoke extract showed the most severe impact on endothelial cells. However, some e-cigarette vapour extracts showed high cytotoxicity, inhibition of cell proliferation, and alterations in cell morphology, which were comparable to conventional high-nicotine cigarettes. The vapours generated from different liquids using the same e-cigarette show substantial differences, pointing to the liquids as an important source for toxicity. E-cigarette vapour-mediated induction of oxidative stress was significant in one out of the 11 analysed vapours. There is a high variability in the acute cytotoxicity of e-cigarette vapours depending on the liquid and on the e-cigarettes used. Some products showed toxic effects close to a conventional high-nicotine cigarette. Liquid nicotine, menthol content, and the formation of acute intracellular reactive oxygen species do not seem to be the central elements in e-cigarette vapour toxicity. PMID:27351725

  17. Vapour and Liquid-Phase Artemisia annua Essential Oil Activities against Several Clinical Strains of Candida.

    PubMed

    Santomauro, Francesca; Donato, Rosa; Sacco, Cristiana; Pini, Gabriella; Flamini, Guido; Bilia, Anna Rita

    2016-07-01

    Candida spp. are often the cause of infection in immune-compromised individuals. They are characterized by a strong resistance to antimicrobial drugs and disinfectants. The activity of Artemisia annua essential oil against Candida spp. was determined by vapour contact and microdilution assay. The oil was characterized by the presence of oxygenated monoterpenes (more than 75 % of the constituents), mainly represented by the irregular monoterpene artemisia ketone (ca. 22 %), and the widespread monoterpenes 1,8 cineole (ca. 19 %) and camphor (ca. 17 %). Other representative constituents were artemisia alcohol (5.9 %), α-pinene (5.7 %), and pinocarvone (3.0 %). Thujone, a typical toxic constituent of the Artemisia species, was not detected. The results are reported as minimum inhibitory concentration, minimum fungicidal concentration, and diameter of inhibition zone obtained by the vapour diffusion assay. We tested 10 clinical Candida strains, coming from both clinical samples and international collections. The results show that the antifungal activity of A. annua is influenced by the type of method adopted. The inhibitory action of the essential oil was, in fact, higher in the vapour than in the liquid phase. Our results show an average minimum inhibitory concentration in the liquid phase of 11.88 µL/mL, while in the vapour phase, the growth of all Candida strains tested at a concentration of 2.13 µL/cm(3) was inhibited. A strain of Candida glabrata was found to be less susceptible to the liquid medium than the vapour assay (50 µL/mL vs. 0.64 µL/cm(3), respectively). Candida albicans and Candida dubliniensis were the most susceptible to the vapour test, while Candida parapsilosis was the most resistant.

  18. Development of an alkali chloride vapour-generating apparatus for calibration of ultraviolet absorption measurements

    NASA Astrophysics Data System (ADS)

    Leffler, T.; Brackmann, C.; Berg, M.; Aldén, M.; Li, Z. S.

    2017-02-01

    A novel design of alkali chloride vapour-generating cell has been developed, which can serve as a calibration cell for quantitative ultraviolet absorption concentration measurements and meticulous spectral investigations of alkali compounds. The calibration cell was designed to provide alkali vapour of well-controlled concentrations and temperatures, and consisted of a sealed quartz cell measuring 0.4 m in length with a temperature-controlled reservoir containing solid alkali salt. The cell was placed in a furnace and the alkali vapours generated from the reservoir have direct access to the measuring chamber. Investigations of potassium chloride (KCl) were made on sublimated vapour at temperatures 650, 700, 750, 780, and 800 °C while the reservoir temperature was kept 50 °C lower to avoid condensation. The cell provides stable KCl vapour pressures, and the furnace provides a homogenous temperature profile along the cell. KCl vapour pressures are well characterised and conform the base for determination of the KCl concentration in the cell. The alkali chloride levels matched the concentration range of the absorption setup and indicated a previously employed calibration method to overestimate KCl concentrations. The KCl absorption cross sections for wavelengths λ =197.6 nm and λ =246.2 nm were calculated to be 3.4 × 10-17 and 2.9 × 10-17 cm2/molecule, respectively. The absorption cross section spectra did not show any structural differences with increasing temperature, which could indicate influence of dimers or significant changes of the population in the KCl vibrational states. The KCl absorption cross sections thus did not show any temperature dependence in the temperature region of 700-800 °C. Moreover, the applicability of the calibration cell for measurement of other alkali chlorides and hydroxides is discussed.

  19. Different physiological and behavioural effects of e-cigarette vapour and cigarette smoke in mice.

    PubMed

    Ponzoni, L; Moretti, M; Sala, M; Fasoli, F; Mucchietto, V; Lucini, V; Cannazza, G; Gallesi, G; Castellana, C N; Clementi, F; Zoli, M; Gotti, C; Braida, D

    2015-10-01

    Nicotine is the primary addictive substance in tobacco smoke and electronic cigarette (e-cig) vapour. Methodological limitations have made it difficult to compare the role of the nicotine and non-nicotine constituents of tobacco smoke. The aim of this study was to compare the effects of traditional cigarette smoke and e-cig vapour containing the same amount of nicotine in male BALB/c mice exposed to the smoke of 21 cigarettes or e-cig vapour containing 16.8 mg of nicotine delivered by means of a mechanical ventilator for three 30-min sessions/day for seven weeks. One hour after the last session, half of the animals were sacrificed for neurochemical analysis, and the others underwent mecamylamine-precipitated or spontaneous withdrawal for the purposes of behavioural analysis. Chronic intermittent non-contingent, second-hand exposure to cigarette smoke or e-cig vapour led to similar brain cotinine and nicotine levels, similar urine cotinine levels and the similar up-regulation of α4β2 nicotinic acetylcholine receptors in different brain areas, but had different effects on body weight, food intake, and the signs of mecamylamine-precipitated and spontaneous withdrawal episodic memory and emotional responses. The findings of this study demonstrate for the first time that e-cig vapour induces addiction-related neurochemical, physiological and behavioural alterations. The fact that inhaled cigarette smoke and e-cig vapour have partially different dependence-related effects indicates that compounds other than nicotine contribute to tobacco dependence.

  20. Proposal for a revised reference concentration (RfC) for mercury vapour in adults.

    PubMed

    Beate, Lettmeier; Stephan, Boese-O'Reilly; Gustav, Drasch

    2010-08-01

    Worldwide, approximately 30-50 millions of people are living in small scale gold mining areas and are primarily burdened by mercury vapour. In the frame of our study, 306 mercury (Hg) vapour burdened adults, working and/ or living in two small scale gold mining areas in Zimbabwe and Tanzania and 58 volunteers from near-by unburdened communities were medically investigated. In addition, blood, urine and hair samples from each participant were analyzed for mercury. Altogether, 26 anamnestic and 24 clinical signs and symptoms, which may be caused by Hg vapour, were evaluated. Multivariate analysis was performed to investigate the influence of the mercury concentration in the bio-monitors on the evaluated anamnestic and clinical signs and symptoms taking into account age, gender, health status, alcohol consumption, use of pesticides and gasoline sniffing. Out of the resulting correlations between concentration and effect, ROC-curves were calculated to determine best estimates of the cut-off-values in the bio monitors. For the parameters ataxia of gait and sadness cut-off-values of 4.7 and 3.6 microg Hg/g crea in urine were calculated. These values were converted to a rounded LOAEL of 3.5 microg Hg vapour/m(3) air. In analogy to the US EPA Report (U.S. Environmental Protection Agency 1997) and the European Position Paper (Pirrone et al. 2001), uncertainty factors of 30 and 50 were applied, resulting in a proposed reference concentration (RfC) in ambient air of 0.1 microg Hg vapour/m(3) and 0.07 microg Hg vapour/m(3), respectively.

  1. Upper tropospheric water vapour variability at high latitudes - Part 1: Influence of the annular modes

    NASA Astrophysics Data System (ADS)

    Sioris, C. E.; Zou, J.; Plummer, D. A.; Boone, C. D.; McElroy, C. T.; Sheese, P. E.; Moeini, O.; Bernath, P. F.

    2015-08-01

    Seasonal and monthly zonal medians of water vapour in the upper troposphere and lower stratosphere (UTLS) are calculated for both Atmospheric Chemistry Experiment (ACE) instruments for the northern and southern high-latitude regions (60-90 and 60-90° S). Chosen for the purpose of observing high-latitude processes, the ACE orbit provides sampling of both regions in eight of 12 months of the year, with coverage in all seasons. The ACE water vapour sensors, namely MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) and the Fourier Transform Spectrometer (ACE-FTS) are currently the only satellite instruments that can probe from the lower stratosphere down to the mid-troposphere to study the vertical profile of the response of UTLS water vapour to the annular modes. The Arctic oscillation (AO), also known as the northern annular mode (NAM), explains 64 % (r = -0.80) of the monthly variability in water vapour at northern high-latitudes observed by ACE-MAESTRO between 5 and 7 km using only winter months (January to March 2004-2013). Using a seasonal timestep and all seasons, 45 % of the variability is explained by the AO at 6.5 ± 0.5 km, similar to the 46 % value obtained for southern high latitudes at 7.5 ± 0.5 km explained by the Antarctic oscillation or southern annular mode (SAM). A large negative AO event in March 2013 produced the largest relative water vapour anomaly at 5.5 km (+70 %) over the ACE record. A similarly large event in the 2010 boreal winter, which was the largest negative AO event in the record (1950-2015), led to > 50 % increases in water vapour observed by MAESTRO and ACE-FTS at 7.5 km.

  2. Upper tropospheric water vapour variability at high latitudes - Part 1: Influence of the annular modes

    NASA Astrophysics Data System (ADS)

    Sioris, Christopher E.; Zou, Jason; Plummer, David A.; Boone, Chris D.; McElroy, C. Thomas; Sheese, Patrick E.; Moeini, Omid; Bernath, Peter F.

    2016-03-01

    Seasonal and monthly zonal medians of water vapour in the upper troposphere and lower stratosphere (UTLS) are calculated for both Atmospheric Chemistry Experiment (ACE) instruments for the northern and southern high-latitude regions (60-90° N and 60-90° S). Chosen for the purpose of observing high-latitude processes, the ACE orbit provides sampling of both regions in 8 of 12 months of the year, with coverage in all seasons. The ACE water vapour sensors, namely MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) and the Fourier Transform Spectrometer (ACE-FTS) are currently the only satellite instruments that can probe from the lower stratosphere down to the mid-troposphere to study the vertical profile of the response of UTLS water vapour to the annular modes. The Arctic oscillation (AO), also known as the northern annular mode (NAM), explains 64 % (r = -0.80) of the monthly variability in water vapour at northern high latitudes observed by ACE-MAESTRO between 5 and 7 km using only winter months (January to March, 2004-2013). Using a seasonal time step and all seasons, 45 % of the variability is explained by the AO at 6.5 ± 0.5 km, similar to the 46 % value obtained for southern high latitudes at 7.5 ± 0.5 km explained by the Antarctic oscillation or southern annular mode (SAM). A large negative AO event in March 2013 produced the largest relative water vapour anomaly at 5.5 km (+70 %) over the ACE record. A similarly large event in the 2010 boreal winter, which was the largest negative AO event in the record (1950-2015), led to > 50 % increases in water vapour observed by MAESTRO and ACE-FTS at 7.5 km.

  3. Fabrication of liquid crystal based sensor for detection of hydrazine vapours

    NASA Astrophysics Data System (ADS)

    Nandi, Rajib; Singh, Sachin Kumar; Singh, Hemant Kumar; Singh, Bachcha; Singh, Ranjan K.

    2014-10-01

    A novel liquid crystal (LC) based sensor to detect trace level amount of hydrazine vapour has been developed. The LC 4‧-pentyl-4-biphenylcarbonitrile (5CB) doped with 0.5 wt% 4-decyloxy benzaldehyde (DBA) shows dark to bright optical texture upon exposure of hydrazine vapours as revealed by polarizing optical microscopy under crossed polarizers. The hydrazine interacts with the doped DBA and form diimine compound which disrupt the orientation of aligned 5CB. The interaction between DBA and hydrazine has been also studied by Raman spectroscopy.

  4. Application of copper vapour lasers for controlling activity of uranium isotopes

    SciTech Connect

    Barmina, E V; Sukhov, I A; Lepekhin, N M; Priseko, Yu S; Filippov, V G; Simakin, Aleksandr V; Shafeev, Georgii A

    2013-06-30

    Beryllium nanoparticles are generated upon ablation of a beryllium target in water by a copper vapour laser. The average size of single crystalline nanoparticles is 12 nm. Ablation of a beryllium target in aqueous solutions of uranyl chloride leads to a significant (up to 50 %) decrease in the gamma activity of radionuclides of the uranium-238 and uranium-235 series. Data on the recovery of the gamma activity of these nuclides to new steady-state values after laser irradiation are obtained. The possibility of application of copper vapour lasers for radioactive waste deactivation is discussed. (laser applications and other topics in quantum electronics)

  5. Coal tar creosote abuse by vapour inhalation presenting with renal impairment and neurotoxicity: a case report.

    PubMed

    Hiemstra, Thomas F; Bellamy, Christopher Oc; Hughes, Jeremy H

    2007-09-24

    A 56 year old aromatherapist presented with advanced renal failure following chronic coal tar creosote vapour inhalation, and a chronic tubulo-interstitial nephritis was identified on renal biopsy. Following dialysis dependence occult inhalation continued, resulting in seizures, ataxia, cognitive impairment and marked generalised cerebral atrophy. We describe for the first time a case of creosote abuse by chronic vapour inhalation, resulting in significant morbidity. Use of the polycyclic aromatic hydrocarbon-containing wood preservative coal tar creosote is restricted by many countries due to concerns over environmental contamination and carcinogenicity. This case demonstrates additional toxicities not previously reported with coal tar creosote, and emphasizes the health risks of polycyclic aromatic hydrocarbon exposure.

  6. A novel experimental setup to study the nucleation of atmospheric vapours on small nanoparticles

    NASA Astrophysics Data System (ADS)

    Nachbar, M.; Duft, D.; Leisner, T.

    2015-10-01

    We present a novel supersaturation chamber which allows us to expose nanoscale particles to supersaturated vapors in the wide range of temperatures occurring in planetary atmospheres. This chamber, the molecular flow ice cell (MICE), is integrated in the vacuum setup TRAPS and enables us to study adsorption, nucleation and growth processes of condensable vapours as for instance water vapour and carbon dioxide. We will present the experimental setup with focus on MICE. The general function principal of MICE and its limitations will be highlighted and we will elaborate that this new device is able to study adsorption, ice nucleation and growth processes exemplified with CO2 nucleation experiments in the mesosphere of Mars.

  7. Catalytic gasification of biomass

    NASA Astrophysics Data System (ADS)

    Robertus, R. J.; Mudge, L. K.; Sealock, L. J., Jr.; Mitchell, D. H.; Weber, S. L.

    1981-12-01

    Methane and methanol synthesis gas can be produced by steam gasification of biomass in the presence of appropriate catalysts. This concept is to use catalysts in a fluidized bed reactor which is heated indirectly. The objective is to determine the technical and economic feasibility of the concept. Technically the concept has been demonstrated on a 50 lb per hr scale. Potential advantages over conventional processes include: no oxygen plant is needed, little tar is produced so gas and water treatment are simplified, and yields and efficiencies are greater than obtained by conventional gasification. Economic studies for a plant processing 2000 T/per day dry wood show that the cost of methanol from wood by catalytic gasification is competitive with the current price of methanol. Similar studies show the cost of methane from wood is competitive with projected future costs of synthetic natural gas. When the plant capacity is decreased to 200 T per day dry wood, neither product is very attractive in today's market.

  8. Complementary structure sensitive and insensitive catalytic relationships.

    PubMed

    Van Santen, Rutger A

    2009-01-20

    The burgeoning field of nanoscience has stimulated an intense interest in properties that depend on particle size. For transition metal particles, one important property that depends on size is catalytic reactivity, in which bonds are broken or formed on the surface of the particles. Decreased particle size may increase, decrease, or have no effect on the reaction rates of a given catalytic system. This Account formulates a molecular theory of the structure sensitivity of catalytic reactions based on the computed activation energies of corresponding elementary reaction steps on transition metal surfaces. Recent progress in computational catalysis, surface science, and nanochemistry has significantly improved our theoretical understanding of particle-dependent reactivity changes in heterogeneous catalytic systems. Reactions that involve the cleavage or formation of molecular pi-bonds, as in CO or N(2), must be distinguished from reactions that involve the activation of sigma-bonds, such as CH bonds in methane. The activation of molecular pi-bonds requires a reaction center with a unique configuration of several metal atoms and step-edge sites, which can physically not be present on transition metal particles less than 2 nm. This is called class I surface sensitivity, and the rate of reaction will sharply decrease when particle size decreases below a critical size. The activation of sigma chemical bonds, in which the activation proceeds at a single metal atom, displays a markedly different size relationship. In this case, the dependence of reaction rate on coordinative unsaturation of reactive surface atoms is large in the forward direction of the reaction, but the activation energy of the reverse recombination reaction will not change. Dissociative adsorption with cleavage of a CH bond is strongly affected by the presence of surface atoms at the particle edges. This is class II surface sensitivity, and the rate will increase with decreasing particle size. Reverse

  9. Time-dependent calculations of molten pool formation and thermal plasma with metal vapour in gas tungsten arc welding

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Yamamoto, K.; Tashiro, S.; Nakata, K.; Yamamoto, E.; Yamazaki, K.; Suzuki, K.; Murphy, A. B.; Lowke, J. J.

    2010-11-01

    A gas tungsten arc (GTA) was modelled taking into account the contamination of the plasma by metal vapour from the molten anode. The whole region of GTA atmosphere including the tungsten cathode, the arc plasma and the anode was treated using a unified numerical model. A viscosity approximation was used to express the diffusion coefficient in terms of viscosity of the shielding gas and metal vapour. The transient two-dimensional distributions of temperature, velocity of plasma flow and iron vapour concentration were predicted, together with the molten pool as a function of time for a 150 A arc current at atmospheric pressure, both for helium and argon gases. It was shown that the thermal plasma in the GTA was influenced by iron vapour from the molten pool surface and that the concentration of iron vapour in the plasma was dependent on the temperature of the molten pool. GTA on high sulfur stainless steel was calculated to discuss the differences between a low sulfur and a high sulfur stainless steel anode. Helium was selected as the shielding gas because a helium GTA produces more metal vapour than an argon GTA. In the GTA on a high sulfur stainless steel anode, iron vapour and current path were constricted. Radiative emission density in the GTA on high sulfur stainless steel was also concentrated in the centre area of the arc plasma together with the iron vapour although the temperature distributions were almost the same as that in the case of a low sulfur stainless steel anode.

  10. Catalytic reforming of naphtha fractions

    SciTech Connect

    Bishop, K.C.; Vorhis, F.H.

    1980-09-16

    Production of motor gasoline and a btx-enriched reformate by fractionating a naphtha feedstock into a mid-boiling btxprecursor fraction, a relatively high-boiling fraction and a relatively low-boiling fraction; catalytically reforming the btxprecursor fraction in a first reforming zone; combining the relatively high-boiling and low-boiling fractions and catalytically reforming the combined fractions in a second reforming zone.

  11. Catalytic and reactive polypeptides and methods for their preparation and use

    DOEpatents

    Schultz, Peter

    1994-01-01

    Catalytic and reactive polypeptides include a binding site specific for a reactant or reactive intermediate involved in a chemical reaction of interest. The polypeptides further include at least one active functionality proximate the binding site, where the active functionality is capable of catalyzing or chemically participating in the chemical reaction in such a way that the reaction rate is enhanced. Methods for preparing the catalytic peptides include chemical synthesis, site-directed mutagenesis of antibody and enzyme genes, covalent attachment of the functionalities through particular amino acid side chains, and the like.

  12. Leidenfrost vapour layer moderation of the drag crisis and trajectories of superhydrophobic and hydrophilic spheres falling in water.

    PubMed

    Vakarelski, Ivan U; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2014-08-21

    We investigate the dynamic effects of a Leidenfrost vapour layer sustained on the surface of heated steel spheres during free fall in water. We find that a stable vapour layer sustained on the textured superhydrophobic surface of spheres falling through 95 °C water can reduce the hydrodynamic drag by up to 75% and stabilize the sphere trajectory for the Reynolds number between 10(4) and 10(6), spanning the drag crisis in the absence of the vapour layer. For hydrophilic spheres under the same conditions, the transition to drag reduction and trajectory stability occurs abruptly at a temperature different from the static Leidenfrost point. The observed drag reduction effects are attributed to the disruption of the viscous boundary layer by the vapour layer whose thickness depends on the water temperature. Both the drag reduction and the trajectory stabilization effects are expected to have significant implications for development of sustainable vapour layer based technologies.

  13. The ESA-ANISAP Study: Retrieval Of Tropospheric Water Vapour Fields By Using Co-Rotating LEO Satellites

    NASA Astrophysics Data System (ADS)

    Argenti, F.; Facheris, L.; Cuccoli, F.; Lapini, A.

    2013-12-01

    This paper presents a preliminary study for the estimation of 2-D maps of atmospheric water vapour content from integrated water vapour measurements carried out by a constellation of co-rotating low earth orbit satellites. The proposed method uses the normalised differential spectral attenuation (NDSA) approachable to achieve integrated water vapour content information from attenuations measurements over microwave links among the satellites - and tomographic techniques to solve the inverse problem of atmospheric water vapour field reconstruction. This study is undertaken as a task of the on-going research developed under the ESA-ANISAP project. Some simulation results demonstrating the feasibility of the reconstruction of 2-D maps of atmospheric water vapour content are presented.

  14. Catalytically Increased Prebiotic Peptide Formation: Ditryptophan, Dilysine, and Diserine

    NASA Astrophysics Data System (ADS)

    Plankensteiner, Kristof; Reiner, Hannes; Rode, Bernd M.

    2005-10-01

    “Mutual” amino acid catalysis of glycine on the formation of ditryptophan, dilysine, and diserine in the prebiotically relevant Salt-Induced Peptide Formation (SIPF) Reaction was investigated varying the starting concentration and chirality of the educt amino acid, and analyzing the increase of yield resulting from this catalytic effect. Our results show the possibility of an amplified diverse pool of peptides being available for chemical evolution of larger peptides and proteins using also these more complicated amino acids for the evolution of more complex functions in future biochemical cycles and thus for the emergence of life. Catalytic effects are especially high in the case of serine, the most basic amino acid of the three, but are also significant for the other two examples investigated in the present work. Besides that, especially for serine, but also in the case of tryptophan, differences in catalytic yield increase according to the chiral form of the amino acid used could be observed.

  15. Thermal and catalytic slow pyrolysis of Calophyllum inophyllum fruit shell.

    PubMed

    Alagu, R M; Sundaram, E Ganapathy; Natarajan, E

    2015-10-01

    Pyrolysis of Calophyllum inophyllum shell was performed in a fixed bed pyrolyser to produce pyrolytic oil. Both thermal (without catalysts) and catalytic pyrolysis process were conducted to investigate the effect of catalysts on pyrolysis yield and pyrolysis oil characteristics. The yield of pyrolytic oil through thermal pyrolysis was maximum (41% wt) at 425 °C for particle size of 1.18 mm and heating rate of 40 °C/min. In catalytic pyrolysis the pyrolytic oil yield was maximum (45% wt) with both zeolite and kaolin catalysts followed by Al2O3 catalyst (44% wt). The functional groups and chemical components present in the pyrolytic oil are identified by Fourier Transform Infrared Spectroscopy (FT-IR) and Gas Chromatography-Mass Spectrometry (GC-MS) techniques. This study found that C. inophyllum shell is a potential new green energy source and that the catalytic pyrolysis process using zeolite catalyst improves the calorific value and acidity of the pyrolytic oil.

  16. Catalytic efficiency of enzymes: a theoretical analysis.

    PubMed

    Hammes-Schiffer, Sharon

    2013-03-26

    This brief review analyzes the underlying physical principles of enzyme catalysis, with an emphasis on the role of equilibrium enzyme motions and conformational sampling. The concepts are developed in the context of three representative systems, namely, dihydrofolate reductase, ketosteroid isomerase, and soybean lipoxygenase. All of these reactions involve hydrogen transfer, but many of the concepts discussed are more generally applicable. The factors that are analyzed in this review include hydrogen tunneling, proton donor-acceptor motion, hydrogen bonding, pKa shifting, electrostatics, preorganization, reorganization, and conformational motions. The rate constant for the chemical step is determined primarily by the free energy barrier, which is related to the probability of sampling configurations conducive to the chemical reaction. According to this perspective, stochastic thermal motions lead to equilibrium conformational changes in the enzyme and ligands that result in configurations favorable for the breaking and forming of chemical bonds. For proton, hydride, and proton-coupled electron transfer reactions, typically the donor and acceptor become closer to facilitate the transfer. The impact of mutations on the catalytic rate constants can be explained in terms of the factors enumerated above. In particular, distal mutations can alter the conformational motions of the enzyme and therefore the probability of sampling configurations conducive to the chemical reaction. Methods such as vibrational Stark spectroscopy, in which environmentally sensitive probes are introduced site-specifically into the enzyme, provide further insight into these aspects of enzyme catalysis through a combination of experiments and theoretical calculations.

  17. GPS sensing of precipitable water vapour during the March 2010 Melbourne storm

    NASA Astrophysics Data System (ADS)

    Choy, S.; Wang, C.; Zhang, K.; Kuleshov, Y.

    2013-11-01

    The March 2010 Melbourne storm is used as a case study to examine the potential of using Global Positioning System (GPS) observations for studying the precipitable water vapour (PWV) field. The Victorian statewide GPS infrastructure network, i.e. GPSnet, was used in this study. GPSnet is currently the only statewide and densest GPS infrastructure network in Australia, which provides an excellent opportunity to examine the distribution of water vapour as the severe weather system passed over the state. Data from 15 GPSnet stations were processed over a one-week period, i.e. a few days prior to and after the storm passage, during which the course of the storm extended from the west to the southeast corner of the state. In addition, data from two radiosonde sites of the Australian Bureau of Meteorology Upper Air Network were used to compare and validate the GPS derived PWV measurements. The findings demonstrate that there is strong spatial and temporal correlation between variations of the ground-based GPS-PWV estimates and the passage of the storm over the state. This is encouraging as the ground-based GPS water vapour sensing technique can be considered as a supplemental meteorological sensor in studying severe weather events. The advantage of using ground-based GPS-PWV technique is that it is capable of providing continuous observation of the storm passage with high temporal resolution. The spatial resolution of the distribution of water vapour is dependent on the geographical location and density of the GPS stations.

  18. On the relationship between atmospheric water vapour transport and extra-tropical cyclones development

    NASA Astrophysics Data System (ADS)

    Ferreira, Juan A.; Liberato, Margarida L. R.; Ramos, Alexandre M.

    2016-08-01

    In this study we seek to investigate the role of atmospheric water vapour on the intensification of extra-tropical cyclones over the North Atlantic Ocean and more specifically to investigate the linkage between atmospheric rivers' conditions leading to the explosive development of extra-tropical cyclones. Several WRF-ARW simulations for three recent extra-tropical storms that had major negative socio-economic impacts in the Iberian Peninsula and south-western Europe (Klaus, 2009; Gong, 2013 and Stephanie, 2014) are performed in which the water vapour content of the initial and boundary conditions are tuned. Analyses of the vertically integrated vapour transport show the dependence of the storms' development on atmospheric water vapour. In addition, results also show changes in the shape of the jet stream resulting in a reduction of the upper wind divergence, which in turn affects the intensification of the extra-tropical cyclones studied. This study suggests that atmospheric rivers tend to favour the conditions for explosive extra-tropical storms' development in the three case studies, as simulations performed without the existence of atmospheric rivers produce shallow mid-latitude cyclones, that is, cyclones that are not so intense as those on the reference simulations.

  19. Evaluation of the biological efficacy of hydrogen peroxide vapour decontamination in wards of an Australian hospital.

    PubMed

    Chan, H-T; White, P; Sheorey, H; Cocks, J; Waters, M-J

    2011-10-01

    This study assessed the efficacy of a 'dry' hydrogen peroxide vapour decontamination in an Australian hospital via a two-armed study. The in vivo arm examined the baseline bacterial counts in high-touch zones within wards and evaluated the efficacy of cleaning with a neutral detergent followed by either hydrogen peroxide vapour decontamination, or a manual terminal clean with bleach or Det-Sol 500. The in vitro arm examined the efficacy of hydrogen peroxide vapour decontamination on a variety of different surfaces commonly found in the wards of an Australian hospital, deliberately seeded with a known concentration of vancomycin-resistant enterococci (VRE). All bacterial counts were evaluated by a protocol of contact plate method. In the in vivo arm, 33.3% of the high-touch areas assessed had aerobic bacterial count below the detection limit (i.e. no bacteria recoverable) post hydrogen peroxide decontamination, and in all circumstances the highest microbial density was ≤3 cfu/cm(2), while in the in vitro arm there was at least a reduction in bacterial load by a factor of 10 at all surfaces investigated. These results showed that dry hydrogen peroxide vapour room decontamination is highly effective on a range of surfaces, although the cleanliness data obtained by these methods cannot be easily compared among the different surfaces as recovery of organisms is affected by the nature of the surface.

  20. The vapour of imidazolium-based ionic liquids: a mass spectrometry study.

    PubMed

    Deyko, A; Lovelock, K R J; Licence, P; Jones, R G

    2011-10-06

    Eight common dialkylimidazolium-based ionic liquids have been successfully evaporated in ultra-high vacuum and their vapours analysed by line of sight mass spectrometry using electron ionisation. The ionic liquids investigated were 1-alkyl-3-methylimidazolium bis[(trifluoromethane)sulfonyl]imide, [C(n)C(1)Im][Tf(2)N] (where n = 2, 4, 6, 8), 1-alkyl-3-methylimidazolium tetrafluoroborate, [C(n)C(1)Im][BF(4)] (where n = 4, 8), 1-butyl-3-methylimidazolium octylsulfate, [C(4)C(1)Im][C(8)OSO(3)] and 1-butyl-3-methylimidazolium tetrachloroferrate, [C(4)C(1)Im][FeCl(4)]. All ionic liquids studied here evaporated as neutral ion pairs; no evidence of decomposition products in the vapour phase were observed. Key fragment cations of the ionised vapour of the ionic liquids are identified. The appearance energies, E(app), of the parent cation were measured and used to estimate the ionisation energies, E(i), for the vapour phase neutral ion pairs. Measured ionisation energies ranged from 10.5 eV to 13.0 eV. Using both the identity and E(app) values, the fragmentation pathways for a number of fragment cations are postulated. It will be shown that the enthalpy of vaporisation, Δ(vap)H, can successfully be measured using more than one fragment cation, although caution is required as many fragment cations can also be formed by ionisation of decomposition products.