Method of fabricating a catalytic structure
Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID
2009-09-22
A precursor to a catalytic structure comprising zinc oxide and copper oxide. The zinc oxide has a sheet-like morphology or a spherical morphology and the copper oxide comprises particles of copper oxide. The copper oxide is reduced to copper, producing the catalytic structure. The catalytic structure is fabricated by a hydrothermal process. A reaction mixture comprising a zinc salt, a copper salt, a hydroxyl ion source, and a structure-directing agent is formed. The reaction mixture is heated under confined volume conditions to produce the precursor. The copper oxide in the precursor is reduced to copper. A method of hydrogenating a carbon oxide using the catalytic structure is also disclosed, as is a system that includes the catalytic structure.
Formation of alcohol conversion catalysts
Wachs, Israel E.; Cai, Yeping
2001-01-01
The method of the present invention involves a composition containing an intimate mixture of (a) metal oxide support particles and (b) a catalytically active metal oxide from Groups VA, VIA, or VIIA, its method of manufacture, and its method of use for converting alcohols to aldehydes. During the conversion process, catalytically active metal oxide from the discrete catalytic metal oxide particles migrates to the oxide support particles and forms a monolayer of catalytically active metal oxide on the oxide support particle to form a catalyst composition having a higher specific activity than the admixed particle composition.
Catalytic processes for space station waste conversion
NASA Technical Reports Server (NTRS)
Schoonover, M. W.; Madsen, R. A.
1986-01-01
Catalytic techniques for processing waste products onboard space vehicles were evaluated. The goal of the study was the conversion of waste to carbon, wash water, oxygen and nitrogen. However, the ultimate goal is conversion to plant nutrients and other materials useful in closure of an ecological life support system for extended planetary missions. The resulting process studied involves hydrolysis at 250 C and 600 psia to break down and compact cellulose material, distillation at 100 C to remove water, coking at 450 C and atmospheric pressure, and catalytic oxidation at 450 to 600 C and atmospheric pressure. Tests were conducted with a model waste to characterize the hydrolysis and coking processes. An oxidizer reactor was sized based on automotive catalytic conversion experience. Products obtained from the hydrolysis and coking steps included a solid residue, gases, water condensate streams, and a volatile coker oil. Based on the data obtained, sufficient component sizing was performed to make a preliminary comparison of the catalytic technique with oxidation for processing waste for a six-man spacecraft. Wet oxidation seems to be the preferred technique from the standpoint of both component simplicity and power consumption.
Bi, Xiaoyi; Wang, Peng; Jiang, Hong
2008-06-15
In order to develop a catalyst with high activity and stability for microwave assisted ClO2 catalytic oxidation, we prepared CuOn-La2O3/gamma-Al2O3 by impregnation-deposition method, and determined its properties using BET, XRF, XPS and chemical analysis techniques. The test results show that, better thermal ability of gamma-Al2O3 and high loading of Cu in the catalyst can be achieved by adding La2O3. The microwave assisted ClO2 catalytic oxidation process with CuOn-La2O3/gamma-Al2O3 used as catalyst was also investigated, and the results show that the catalyst has an excellent catalytic activity in treating synthetic wastewater containing 100 mg/L phenol, and 91.66% of phenol and 50.35% of total organic carbon (TOC) can be removed under the optimum process conditions. Compared with no catalyst process, CuOn-La2O3/gamma-Al2O3 can effectively degrade contaminants in short reaction time and with low oxidant dosage, extensive pH range. The comparison of phenol removal efficiency in the different process indicates that microwave irradiation and catalyst work together to oxidize phenol effectively. It can therefore be concluded from results and discussion that CuOn-La2O3/gamma-Al2O3 is a suitable catalyst in microwave assisted ClO2 catalytic oxidation process.
Process for catalytically oxidizing cycloolefins, particularly cyclohexene
Mizuno, Noritaka; Lyon, David K.; Finke, Richard G.
1993-01-01
This invention is a process for catalytically oxidizing cycloolefins, particularly cyclohexenes, to form a variety of oxygenates. The catalyst used in the process is a covalently bonded iridium-heteropolyanion species. The process uses the catalyst in conjunction with a gaseous oxygen containing gas to form 2-cyclohexen-1-ol and also 2-cyclohexen-1-one.
Yue, Yonghai; Yuchi, Datong; Guan, Pengfei; Xu, Jia; Guo, Lin; Liu, Jingyue
2016-01-01
To probe the nature of metal-catalysed processes and to design better metal-based catalysts, atomic scale understanding of catalytic processes is highly desirable. Here we use aberration-corrected environmental transmission electron microscopy to investigate the atomic scale processes of silver-based nanoparticles, which catalyse the oxidation of multi-wall carbon nanotubes. A direct semi-quantitative estimate of the oxidized carbon atoms by silver-based nanoparticles is achieved. A mechanism similar to the Mars–van Krevelen process is invoked to explain the catalytic oxidation process. Theoretical calculations, together with the experimental data, suggest that the oxygen molecules dissociate on the surface of silver nanoparticles and diffuse through the silver nanoparticles to reach the silver/carbon interfaces and subsequently oxidize the carbon. The lattice distortion caused by oxygen concentration gradient within the silver nanoparticles provides the direct evidence for oxygen diffusion. Such direct observation of atomic scale dynamics provides an important general methodology for investigations of catalytic processes. PMID:27406595
Tarabanko, Valery E; Tarabanko, Nikolay
2017-11-15
This review discusses principal patterns that govern the processes of lignins' catalytic oxidation into vanillin (3-methoxy-4-hydroxybenzaldehyde) and syringaldehyde (3,5-dimethoxy-4-hydroxybenzaldehyde). It examines the influence of lignin and oxidant nature, temperature, mass transfer, and of other factors on the yield of the aldehydes and the process selectivity. The review reveals that properly organized processes of catalytic oxidation of various lignins are only insignificantly (10-15%) inferior to oxidation by nitrobenzene in terms of yield and selectivity in vanillin and syringaldehyde. Very high consumption of oxygen (and consequentially, of alkali) in the process-over 10 mol per mol of obtained vanillin-is highlighted as an unresolved and unexplored problem: scientific literature reveals almost no studies devoted to the possibilities of decreasing the consumption of oxygen and alkali. Different hypotheses about the mechanism of lignin oxidation into the aromatic aldehydes are discussed, and the mechanism comprising the steps of single-electron oxidation of phenolate anions, and ending with retroaldol reaction of a substituted coniferyl aldehyde was pointed out as the most convincing one. The possibility and development prospects of single-stage oxidative processing of wood into the aromatic aldehydes and cellulose are analyzed.
Treatment of power utilities exhaust
Koermer, Gerald [Basking Ridge, NJ
2012-05-15
Provided is a process for treating nitrogen oxide-containing exhaust produced by a stationary combustion source by the catalytic reduction of nitrogen oxide in the presence of a reductant comprising hydrogen, followed by ammonia selective catalytic reduction to further reduce the nitrogen oxide level in the exhaust.
Vera, Elizabeth; Alcántar-Vázquez, Brenda; Duan, Yuhua; ...
2015-12-21
The potential bifunctional mechanism of sodium cobaltate (NaCoO 2) in the catalysis of CO oxidation and subsequent CO 2 chemisorption was systematically analysed. Different catalytic and gravimetric experiments were performed dynamically and isothermally at multiple temperatures. Initially, the CO oxidation process was evaluated using a catalytic reactor connected to a gas chromatograph. Once the production of CO 2 was confirmed, its chemisorption capacity with NaCoO 2 was studied gravimetrically. Catalytic and gravimetric analysis products were studied by XRD, FTIR and SEM to elucidate the double reaction mechanism. Sodium cobaltate exhibited interesting catalytic properties over a wide temperature range, although themore » NaCoO 2 crystalline structure and chemical composition changed during the CO 2 capture process. Furthermore, all the experiments were theoretically supported by first-principles density functional theory thermodynamic calculations. Finally, the calculated thermodynamic properties of the CO oxidation and CO 2 capture reactions with NaCoO 2 under different oxidation conditions were in good agreement with the experimental measurements.« less
Tarabanko, Valery E.; Tarabanko, Nikolay
2017-01-01
This review discusses principal patterns that govern the processes of lignins’ catalytic oxidation into vanillin (3-methoxy-4-hydroxybenzaldehyde) and syringaldehyde (3,5-dimethoxy-4-hydroxybenzaldehyde). It examines the influence of lignin and oxidant nature, temperature, mass transfer, and of other factors on the yield of the aldehydes and the process selectivity. The review reveals that properly organized processes of catalytic oxidation of various lignins are only insignificantly (10–15%) inferior to oxidation by nitrobenzene in terms of yield and selectivity in vanillin and syringaldehyde. Very high consumption of oxygen (and consequentially, of alkali) in the process—over 10 mol per mol of obtained vanillin—is highlighted as an unresolved and unexplored problem: scientific literature reveals almost no studies devoted to the possibilities of decreasing the consumption of oxygen and alkali. Different hypotheses about the mechanism of lignin oxidation into the aromatic aldehydes are discussed, and the mechanism comprising the steps of single-electron oxidation of phenolate anions, and ending with retroaldol reaction of a substituted coniferyl aldehyde was pointed out as the most convincing one. The possibility and development prospects of single-stage oxidative processing of wood into the aromatic aldehydes and cellulose are analyzed. PMID:29140301
Process of forming catalytic surfaces for wet oxidation reactions
NASA Technical Reports Server (NTRS)
Jagow, R. B. (Inventor)
1977-01-01
A wet oxidation process was developed for oxidizing waste materials, comprising dissolved ruthenium salt in a reactant feed stream containing the waste materials. The feed stream is introduced into a reactor, and the reactor contents are then raised to an elevated temperature to effect deposition of a catalytic surface of ruthenium black on the interior walls of the reactor. The feed stream is then maintained in the reactor for a period of time sufficient to effect at least partial oxidation of the waste materials.
Gardner, Timothy J.; Lott, Stephen E.; Lockwood, Steven J.; McLaughlin, Linda I.
1998-01-01
A catalytic material of activated hydrous metal oxide doped with platinum, palladium, or a combination of these, and optionally containing an alkali or alkaline earth metal, that is effective for NO.sub.X reduction in an oxidizing exhaust stream from a combustion process is disclosed. A device for reduction of nitrogen oxides in an exhaust stream, particularly an automotive exhaust stream, the device having a substrate coated with the activated noble-metal doped hydrous metal oxide of the invention is also provided.
Catalysts for lean burn engine exhaust abatement
Ott, Kevin C.; Clark, Noline C.; Paffett, Mark T.
2006-08-01
The present invention provides a process for catalytically reducing nitrogen oxides in an exhaust gas stream containing nitrogen oxides and a reductant material by contacting the gas stream under conditions effective to catalytically reduce the nitrogen oxides with a catalyst comprising a aluminum-silicate type material and a minor amount of a metal, the catalyst characterized as having sufficient catalytic activity so as to reduce the nitrogen oxides by at least 60 percent under temperatures within the range of from about 200.degree. C. to about 400.degree. C.
Catalysts For Lean Burn Engine Exhaust Abatement
Ott, Kevin C.; Clark, Noline C.; Paffett, Mark T.
2004-04-06
The present invention provides a process for catalytically reducing nitrogen oxides in an exhaust gas stream containing nitrogen oxides and a reductant material by contacting the gas stream under conditions effective to catalytically reduce the nitrogen oxides with a catalyst comprising a aluminum-silicate type material and a minor amount of a metal, the catalyst characterized as having sufficient catalytic activity so as to reduce the nitrogen oxides by at least 60 percent under temperatures within the range of from about 200.degree. C. to about 400.degree. C.
Catalysts for lean burn engine exhaust abatement
Ott, Kevin C.; Clark, Noline C.; Paffett, Mark T.
2003-01-01
The present invention provides a process for catalytically reducing nitrogen oxides in an exhaust gas stream containing nitrogen oxides and a reductant material by contacting the gas stream under conditions effective to catalytically reduce the nitrogen oxides with a catalyst comprising a aluminum-silicate type material and a minor amount of a metal, the catalyst characterized as having sufficient catalytic activity so as to reduce the nitrogen oxides by at least 60 percent under temperatures within the range of from about 200.degree. C. to about 400.degree. C.
CO Oxidation and Subsequent CO 2 Chemisorption on Alkaline Zirconates: Li 2 ZrO 3 and Na 2 ZrO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alcántar-Vázquez, Brenda; Duan, Yuhua; Pfeiffer, Heriberto
Here, two different alkaline zirconates (Li 2ZrO 3 and Na 2ZrO 3) were studied as possible bifunctional catalytic-captor materials for CO oxidation and the subsequent CO 2 chemisorption process. Initially, CO oxidation reactions were analyzed in a catalytic reactor coupled to a gas chromatograph, using Li 2ZrO 3 and Na 2ZrO 3, under different O 2 partial flows. We found results clearly showed that Na 2ZrO 3 possesses much better catalytic properties than Li 2ZrO 3. After the CO-O 2 oxidation catalytic analysis, CO2 chemisorption process was analyzed by thermogravimetric analysis, only for the Na 2ZrO 3 ceramic. The resultsmore » confirmed that Na 2ZrO 3 is able to work as a bifunctional material (CO oxidation and subsequent CO 2 chemisorption), although the kinetic CO 2 capture process was not the best one under the physicochemical condition used in this case. For Na 2ZrO 3, the best CO conversions were found between 445 and 580 °C (100%), while Li 2ZrO 3 only showed a 35% of efficiency between 460 and 503 °C. However, in the Na 2ZrO 3 case, at temperatures higher than 580 °C its catalytic activity gradually decreases as a result of CO 2 capture process. Finally, all these experiments were compared and supported with theoretical thermodynamic data.« less
CO Oxidation and Subsequent CO 2 Chemisorption on Alkaline Zirconates: Li 2 ZrO 3 and Na 2 ZrO 3
Alcántar-Vázquez, Brenda; Duan, Yuhua; Pfeiffer, Heriberto
2016-08-26
Here, two different alkaline zirconates (Li 2ZrO 3 and Na 2ZrO 3) were studied as possible bifunctional catalytic-captor materials for CO oxidation and the subsequent CO 2 chemisorption process. Initially, CO oxidation reactions were analyzed in a catalytic reactor coupled to a gas chromatograph, using Li 2ZrO 3 and Na 2ZrO 3, under different O 2 partial flows. We found results clearly showed that Na 2ZrO 3 possesses much better catalytic properties than Li 2ZrO 3. After the CO-O 2 oxidation catalytic analysis, CO2 chemisorption process was analyzed by thermogravimetric analysis, only for the Na 2ZrO 3 ceramic. The resultsmore » confirmed that Na 2ZrO 3 is able to work as a bifunctional material (CO oxidation and subsequent CO 2 chemisorption), although the kinetic CO 2 capture process was not the best one under the physicochemical condition used in this case. For Na 2ZrO 3, the best CO conversions were found between 445 and 580 °C (100%), while Li 2ZrO 3 only showed a 35% of efficiency between 460 and 503 °C. However, in the Na 2ZrO 3 case, at temperatures higher than 580 °C its catalytic activity gradually decreases as a result of CO 2 capture process. Finally, all these experiments were compared and supported with theoretical thermodynamic data.« less
Catalytic production of metal carbonyls from metal oxides
Sapienza, Richard S.; Slegeir, William A.; Foran, Michael T.
1984-01-01
This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150.degree.-260.degree. C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO.sub.4 and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect.
Catalytic production of metal carbonyls from metal oxides
Sapienza, R.S.; Slegeir, W.A.; Foran, M.T.
1984-01-06
This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150 to 260/sup 0/C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO/sub 4/ and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect. 3 tables.
Reactor process using metal oxide ceramic membranes
Anderson, Marc A.
1994-01-01
A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane. Also disclosed is a method regenerating a porous metal oxide ceramic membrane used in a photoelectrochemical catalytic process by periodically removing the reactants and regenerating the membrane using a variety of chemical, thermal, and electrical techniques.
Wang, Hui-Long; Dong, Jing; Jiang, Wen-Feng
2010-11-15
The chlorine dioxide (ClO(2)) oxidative degradation of 2-sec-butyl-4,6-dinitrophenol (DNBP) in aqueous solution was studied in detail using Al(2)O(3) as a heterogeneous catalyst. The operating parameters such as the ClO(2) concentration, catalyst dosage, initial DNBP concentration, reaction time and pH were evaluated. Compared with the conventional ClO(2) oxidation process without the catalyst, the ClO(2) catalytic oxidation system could significantly enhance the degradation efficiency. Under the optimal condition (DNBP concentration 39 mg L(-1), ClO(2) concentration 0.355 g L(-1), reaction time 60 min, catalyst dosage 10.7 g L(-1) and pH 4.66), degradation efficiency approached 99.1%. The catalyst was used at least 8 cycles without any appreciable loss of activity. The kinetic studies revealed that the ClO(2) catalytic oxidation degradation of DNBP followed pseudo-first-order kinetics with respect to DNBP concentration. The ClO(2) catalytic oxidation process was found to be very effective in the decolorization and COD(Cr) reduction of real wastewater from DNBP manufacturing. Thus, this study showed potential application of ClO(2) catalytic oxidation process in degradation of organic contaminants and industrial effluents. Copyright © 2010 Elsevier B.V. All rights reserved.
Flynn, M; Borchers, B
1998-01-01
This article describes the design specification of the Vapor Phase Catalytic Ammonia Removal (VPCAR) process and the relative benefits of its utilization in a Mars Transit Vehicle application. The VPCAR process is a wastewater treatment technology that combines distillation with high-temperature catalytic oxidation of volatile impurities such as ammonia and organic compounds.
Sobolevskiy, Anatoly
2015-08-11
An exhaust gas treatment process, apparatus, and system for reducing the concentration of NOx, CO and hydrocarbons in a gas stream, such as an exhaust stream (29), via selective catalytic reduction with ammonia is provided. The process, apparatus and system include a catalytic bed (32) having a reducing only catalyst portion (34) and a downstream reducing-plus-oxidizing portion (36). Each portion (34, 36) includes an amount of tungsten. The reducing-plus-oxidizing catalyst portion (36) advantageously includes a greater amount of tungsten than the reducing catalyst portion (36) to markedly limit ammonia salt formation.
NASA Astrophysics Data System (ADS)
Piotrowski, Piotr; Pawłowska, Joanna; Sadło, Jarosław Grzegorz; Bilewicz, Renata; Kaim, Andrzej
2017-05-01
C60TEMPO10 catalytic system linked to a microspherical gold support through a covalent S-Au bond was developed. The C60TEMPO10@Au composite catalyst had a particle size of 0.5-0.8 μm and was covered with the fullerenes derivative of 2.3 nm diameter bearing ten nitroxyl groups; the organic film showed up to 50 nm thickness. The catalytic composite allowed for the oxidation under mild conditions of various primary and secondary alcohols to the corresponding aldehyde and ketone analogues with efficiencies as high as 79-98%, thus giving values typical for homogeneous catalysis, while retaining at the same time all the advantages of heterogeneous catalysis, e.g., easy separation by filtration from the reaction mixture. The catalytic activity of the resulting system was studied by means of high pressure liquid chromatography. A redox mechanism was proposed for the process. In the catalytic cycle of the oxidation process, the TEMPO moiety was continuously regenerated in situ with an applied primary oxidant, for example, O2/Fe3+ system. The new intermediate composite components and the final catalyst were characterized by various spectroscopic methods and thermogravimetry.
Lin, Jin; Li, Zhi; Kan, Jian; Huang, Shijun; Su, Weiping; Li, Yadong
2017-01-01
Catalytic oxidative C–H bond functionalization reactions that proceed without requiring stoichiometric amounts of external oxidants or pre-functionalized oxidizing reagents could maximize the atom- and step-economy in chemical syntheses. However, such a transformation remains elusive. Here, we report that a photo-driven catalytic process enables decarboxylative C–H trifluoromethylation of (hetero)arenes with trifluoroacetic acid as a trifluoromethyl source in good yields in the presence of an external oxidant in far lower than stoichiometric amounts (for example, 0.2 equivalents of Na2S2O8) using Rh-modified TiO2 nanoparticles as a photocatalyst, in which H2 release is an important driving force for the reaction. Our findings not only provide an approach to accessing valuable decarboxylative C–H trifluoromethylations via activation of abundant but inert trifluoroacetic acid towards oxidative decarboxylation and trifluoromethyl radical formation, but also demonstrate that a photo-driven catalytic process is a promising way to achieve external oxidant-free C–H functionalization reactions. PMID:28165474
Lin, Jin; Li, Zhi; Kan, Jian; Huang, Shijun; Su, Weiping; Li, Yadong
2017-02-06
Catalytic oxidative C-H bond functionalization reactions that proceed without requiring stoichiometric amounts of external oxidants or pre-functionalized oxidizing reagents could maximize the atom- and step-economy in chemical syntheses. However, such a transformation remains elusive. Here, we report that a photo-driven catalytic process enables decarboxylative C-H trifluoromethylation of (hetero)arenes with trifluoroacetic acid as a trifluoromethyl source in good yields in the presence of an external oxidant in far lower than stoichiometric amounts (for example, 0.2 equivalents of Na 2 S 2 O 8 ) using Rh-modified TiO 2 nanoparticles as a photocatalyst, in which H 2 release is an important driving force for the reaction. Our findings not only provide an approach to accessing valuable decarboxylative C-H trifluoromethylations via activation of abundant but inert trifluoroacetic acid towards oxidative decarboxylation and trifluoromethyl radical formation, but also demonstrate that a photo-driven catalytic process is a promising way to achieve external oxidant-free C-H functionalization reactions.
NASA Astrophysics Data System (ADS)
Lin, Jin; Li, Zhi; Kan, Jian; Huang, Shijun; Su, Weiping; Li, Yadong
2017-02-01
Catalytic oxidative C-H bond functionalization reactions that proceed without requiring stoichiometric amounts of external oxidants or pre-functionalized oxidizing reagents could maximize the atom- and step-economy in chemical syntheses. However, such a transformation remains elusive. Here, we report that a photo-driven catalytic process enables decarboxylative C-H trifluoromethylation of (hetero)arenes with trifluoroacetic acid as a trifluoromethyl source in good yields in the presence of an external oxidant in far lower than stoichiometric amounts (for example, 0.2 equivalents of Na2S2O8) using Rh-modified TiO2 nanoparticles as a photocatalyst, in which H2 release is an important driving force for the reaction. Our findings not only provide an approach to accessing valuable decarboxylative C-H trifluoromethylations via activation of abundant but inert trifluoroacetic acid towards oxidative decarboxylation and trifluoromethyl radical formation, but also demonstrate that a photo-driven catalytic process is a promising way to achieve external oxidant-free C-H functionalization reactions.
NASA Astrophysics Data System (ADS)
Nekouei, Farzin; Nekouei, Shahram; Noorizadeh, Hossein
2018-03-01
In this study, we synthesized a new nanocomposite catalyst comprising Ag/AgCl@N-doped activated carbon (Ag/AgCl@N-AC) and demonstrated its high efficiency during the enhanced adsorptive removal and catalytic oxidation of ciprofloxacin (CIP) with peroxymonosulfate (PMS) and persulfate (PS) as oxidants in aqueous solution. The efficiency of the new nanocomposite was compared with those of both pristine AC and N-AC under the same conditions. Furthermore, the effects of oxidants on the catalytic oxidation of CIP were assessed using PMS and PS. We found that the degradation efficiency of CIP with Ag/AgCl@N-AC was higher when using PS as an oxidant, whereas the use of PMS obtained relatively better results with both AC and N-AC. The adsorption processes for AC, N-AC, and Ag/AgCl@N-AC were dominated not only by electrostatic attraction but also by π-π interactions, which had higher impacts on the adsorption processes than the specific surface area.
Reactor process using metal oxide ceramic membranes
Anderson, M.A.
1994-05-03
A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane. Also disclosed is a method regenerating a porous metal oxide ceramic membrane used in a photoelectrochemical catalytic process by periodically removing the reactants and regenerating the membrane using a variety of chemical, thermal, and electrical techniques. 2 figures.
Berry, David A; Shekhawat, Dushyant; Smith, Mark; Haynes, Daniel
2013-07-16
The disclosure relates to a method of utilizing a catalyst system for an oxidation process on a gaseous hydrocarbon stream with a mitigation of carbon accumulation. The system is comprised of a catalytically active phase deposited onto an oxygen conducting phase, with or without supplemental support. The catalytically active phase has a specified crystal structure where at least one catalytically active metal is a cation within the crystal structure and coordinated with oxygen atoms within the crystal structure. The catalyst system employs an optimum coverage ratio for a given set of oxidation conditions, based on a specified hydrocarbon conversion and a carbon deposition limit. Specific embodiments of the catalyst system are disclosed.
NASA Astrophysics Data System (ADS)
Papynov, E. K.; Palamarchuk, M. S.; Mayorov, V. Yu; Modin, E. B.; Portnyagin, A. S.; Sokol'nitskaya, T. A.; Belov, A. A.; Tananaev, I. G.; Avramenko, V. A.
2017-07-01
Molybdenum compounds are industrially demanding as heterogeneous catalysts for oxidation of various organic substances. Highly porous structure of molybdenum-containing catalysts avoids surface's colmatation and prevents blocking catalytic sites that makes these materials play a key role in processes of hydrothermal oxidation of radionuclide organic complexes. The study presents an original way of sol-gel synthesis of new macroporous molybdenum compounds using ;core-shell; colloid template (polymer latex) as poreforming agent. We have described three individual routs of template removal via thermal decomposition to obtain porous materials based on molybdenum compounds. Thermal treatment conditions (temperature, gaseous atmosphere) have been studied with respect to their influence on composition, structure and catalytic properties of synthesized molybdenum systems. The optimal way to synthesis of crystal molybdenum (VI) oxide with ordered porous structure (mean pore size 100-160 nm) has been suggested. Catalytic properties of macroporous molybdenum materials have been investigated in the process of liquid phase and hydrothermal oxidation of such organic substances thiazine and stable Co-EDTA complex. It was shown that macroporous molybdenum oxides could be applied as prospective catalysts for hydrothermal oxidation of organic radionuclide complexes during the processing of radioactive waste.
Process for forming a homogeneous oxide solid phase of catalytically active material
Perry, Dale L.; Russo, Richard E.; Mao, Xianglei
1995-01-01
A process is disclosed for forming a homogeneous oxide solid phase reaction product of catalytically active material comprising one or more alkali metals, one or more alkaline earth metals, and one or more Group VIII transition metals. The process comprises reacting together one or more alkali metal oxides and/or salts, one or more alkaline earth metal oxides and/or salts, one or more Group VIII transition metal oxides and/or salts, capable of forming a catalytically active reaction product, in the optional presence of an additional source of oxygen, using a laser beam to ablate from a target such metal compound reactants in the form of a vapor in a deposition chamber, resulting in the deposition, on a heated substrate in the chamber, of the desired oxide phase reaction product. The resulting product may be formed in variable, but reproducible, stoichiometric ratios. The homogeneous oxide solid phase product is useful as a catalyst, and can be produced in many physical forms, including thin films, particulate forms, coatings on catalyst support structures, and coatings on structures used in reaction apparatus in which the reaction product of the invention will serve as a catalyst.
Catalytic methods using molecular oxygen for treatment of PMMS and ECLSS waste streams, volume 2
NASA Technical Reports Server (NTRS)
Akse, James R.
1992-01-01
Catalytic oxidation has proven to be an effective addition to the baseline sorption, ion exchange water reclamation technology which will be used on Space Station Freedom (SSF). Low molecular weight, polar organics such as alcohols, aldehydes, ketones, amides, and thiocarbamides which are poorly removed by the baseline multifiltration (MF) technology can be oxidized to carbon dioxide at low temperature (121 C). The catalytic oxidation process by itself can reduce the Total Organic Carbon (TOC) to below 500 ppb for solutions designed to model these waste waters. Individual challenges by selected contaminants have shown only moderate selectivity towards particular organic species. The combined technology is applicable to the more complex waste water generated in the Process Materials Management System (PMMS) and Environmental Control and Life Support System (ECLSS) aboard SSF. During the phase 3 Core Module Integrated Facility (CMIF) water recovery tests at NASA MSFC, real hygiene waste water and humidity condensate were processed to meet potable specifications by the combined technology. A kinetic study of catalytic oxidation demonstrates that the Langmuir-Hinshelwood rate equation for heterogeneous catalysts accurately represent the kinetic behavior. From this relationship, activation energy and rate constants for acetone were determined.
Yuan, Songhu; Chen, Mingjie; Mao, Xuhui; Alshawabkeh, Akram N
2013-01-01
A hybrid electrolysis and Pd-catalytic oxidation process is evaluated for degradation of trichloroethylene (TCE) in groundwater. A three-electrode, one anode and two cathodes, column is employed to automatically develop a low pH condition in the Pd vicinity and a neutral effluent. Simulated groundwater containing up to 5 mM bicarbonate can be acidified to below pH 4 in the Pd vicinity using a total of 60 mA with 20 mA passing through the third electrode. By packing 2 g of Pd/Al(2)O(3) pellets in the developed acidic region, the column efficiency for TCE oxidation in simulated groundwater (5.3 mg/L TCE) increases from 44 to 59 and 68% with increasing Fe(II) concentration from 0 to 5 and 10 mg/L, respectively. Different from Pd-catalytic hydrodechlorination under reducing conditions, this hybrid electrolysis and Pd-catalytic oxidation process is advantageous in controlling the fouling caused by reduced sulfur compounds (RSCs) because the in situ generated reactive oxidizing species, i.e., O(2), H(2)O(2) and OH, can oxidize RSCs to some extent. In particular, sulfite at concentrations less than 1 mM even greatly increases TCE oxidation by the production of SO(4)(•-), a strong oxidizing radical, and more OH. Copyright © 2012 Elsevier Ltd. All rights reserved.
Catalytic Wastewater Treatment Using Pillared Clays
NASA Astrophysics Data System (ADS)
Perathoner, Siglinda; Centi, Gabriele
After introduction on the use of solid catalysts in wastewater treatment technologies, particularly advanced oxidation processes (AOPs), this review discussed the use of pillared clay (PILC) materials in three applications: (i) wet air catalytic oxidation (WACO), (ii) wet hydrogen peroxide catalytic oxidation (WHPCO) on Cu-PILC and Fe-PILC, and (iii) behavior of Ti-PILC and Fe-PILC in the photocatalytic or photo-Fenton conversion of pollutants. Literature data are critically analyzed to evidence the main direction to further investigate, in particularly with reference to the possible practical application of these technologies to treat industrial, municipal, or agro-food production wastewater.
Catalytic wet-oxidation of a mixed liquid waste: COD and AOX abatement.
Goi, D; de Leitenburg, C; Trovarelli, A; Dolcetti, G
2004-12-01
A series of catalytic wet oxidation (CWO) reactions, at temperatures of 430-500 K and in a batch bench-top pressure vessel were carried out utilizing a strong wastewater composed of landfill leachate and heavily organic halogen polluted industrial wastewater. A CeO2-SiO2 mixed oxide catalyst with large surface area to assure optimal oxidation performance was prepared. The catalytic process was examined during batch reactions controlling Chemical Oxygen Demand (COD) and Adsorbable Organic Halogen (AOX) parameters, resulting AOX abatement to achieve better effect. Color and pH were also controlled during batch tests. A simple first order-two stage reaction behavior was supposed and verified with the considered parameters. Finally an OUR test was carried out to evaluate biodegradability changes of wastewater as a result of the catalytic reaction.
Hydrogen generator, via catalytic partial oxidation of methane for fuel cells
NASA Astrophysics Data System (ADS)
Recupero, Vincenzo; Pino, Lidia; Di Leonardo, Raffaele; Lagana', Massimo; Maggio, Gaetano
It is well known that the most acknowledged process for generation of hydrogen for fuel cells is based upon the steam reforming of methane or natural gas. A valid alternative could be a process based on partial oxidation of methane, since the process is mildly exothermic and therefore not energy intensive. Consequently, great interest is expected from conversion of methane into syngas, if an autothermal, low energy intensive, compact and reliable process could be developed. This paper covers the activities, performed by the CNR Institute of Transformation and Storage of Energy (CNR-TAE), on theoretical and experimental studies for a compact hydrogen generator, via catalytic selective partial oxidation of methane, integrated with second generation fuel cells (EC-JOU2 contract). In particular, the project focuses the attention on methane partial oxidation via heterogeneous selective catalysts, in order to: demonstrate the basic catalytic selective partial oxidation of methane (CSPOM) technology in a subscale prototype, equivalent to a nominal output of 5 kWe; develop the CSPOM technology for its application in electric energy production by means of fuel cells; assess, by a balance of plant analysis, and a techno-economic evaluation, the potential benefits of the CSPOM for different categories of fuel cells.
NASA Astrophysics Data System (ADS)
Gao, Wei; Zhang, Zhiyun; Li, Jing; Ma, Yuanyuan; Qu, Yongquan
2015-07-01
Controllable surface properties of nanocerias are desired for various catalytic processes. There is a lack of efficient approaches to adjust the surface properties of ceria to date. Herein, a redox chemical etching method was developed to controllably engineer the surface properties of ceria nanorods. Ascorbic acid and hydrogen peroxide were used to perform the redox chemical etching process, resulting in a rough surface and/or pores on the surface of ceria nanorods. Increasing the etching cycles induced a steady increase of the specific surface area, oxygen vacancies and surface Ce3+ fractions. As a result, the etched nanorods delivered enhanced catalytic activity for CO oxidation, compared to the non-etched ceria nanorods. Our method provides a novel and facile approach to continuously adjust the surface properties of ceria for practical applications.Controllable surface properties of nanocerias are desired for various catalytic processes. There is a lack of efficient approaches to adjust the surface properties of ceria to date. Herein, a redox chemical etching method was developed to controllably engineer the surface properties of ceria nanorods. Ascorbic acid and hydrogen peroxide were used to perform the redox chemical etching process, resulting in a rough surface and/or pores on the surface of ceria nanorods. Increasing the etching cycles induced a steady increase of the specific surface area, oxygen vacancies and surface Ce3+ fractions. As a result, the etched nanorods delivered enhanced catalytic activity for CO oxidation, compared to the non-etched ceria nanorods. Our method provides a novel and facile approach to continuously adjust the surface properties of ceria for practical applications. Electronic supplementary information (ESI) available: Diameter distributions of as-prepared and etched samples, optical images, specific catalytic data of CO oxidation and comparison of CO oxidation. See DOI: 10.1039/c5nr01846c
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parks, II, James E; Ponnusamy, Senthil
2006-01-01
Lean NOx trap catalysis has demonstrated the ability to reduce NOx emissions from lean natural gas reciprocating engines by >90%. The technology operates in a cyclic fashion where NOx is trapped on the catalyst during lean operation and released and reduced to N2 under rich exhaust conditions; the rich cleansing operation of the cycle is referred to as "regeneration" since the catalyst is reactivated for more NOx trapping after NOx purge. Creating the rich exhaust conditions for regeneration can be accomplished by catalytic partial oxidation of methane in the exhaust system. Furthermore, catalytic reforming of partial oxidation exhaust can enablemore » increased quantities of H2 which is an excellent reductant for lean NOx trap regeneration. It is critical to maintain clean and efficient partial oxidation and reforming processes to keep the lean NOx trap functioning properly and to reduce extra fuel consumption from the regeneration process. Although most exhaust constituents do not impede partial oxidation and reforming, some exhaust constituents may negatively affect the catalysts and result in loss of catalytic efficiency. Of particular concern are common catalyst poisons sulfur, zinc, and phosphorous. These poisons form in the exhaust through combustion of fuel and oil, and although they are present at low concentrations, they can accumulate to significant levels over the life of an engine system. In the work presented here, the effects of sulfur on the partial oxidation and reforming catalytic processes were studied to determine any durability limitations on the production of reductants for lean NOx trap catalyst regeneration.« less
Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity.
Park, Jeong Young; Kim, Sun Mi; Lee, Hyosun; Nedrygailov, Ievgen I
2015-08-18
Energy dissipation at surfaces and interfaces is mediated by excitation of elementary processes, including phonons and electronic excitation, once external energy is deposited to the surface during exothermic chemical processes. Nonadiabatic electronic excitation in exothermic catalytic reactions results in the flow of energetic electrons with an energy of 1-3 eV when chemical energy is converted to electron flow on a short (femtosecond) time scale before atomic vibration adiabatically dissipates the energy (in picoseconds). These energetic electrons that are not in thermal equilibrium with the metal atoms are called "hot electrons". The detection of hot electron flow under atomic or molecular processes and understanding its role in chemical reactions have been major topics in surface chemistry. Recent studies have demonstrated electronic excitation produced during atomic or molecular processes on surfaces, and the influence of hot electrons on atomic and molecular processes. We outline research efforts aimed at identification of the intrinsic relation between the flow of hot electrons and catalytic reactions. We show various strategies for detection and use of hot electrons generated by the energy dissipation processes in surface chemical reactions and photon absorption. A Schottky barrier localized at the metal-oxide interface of either catalytic nanodiodes or hybrid nanocatalysts allows hot electrons to irreversibly transport through the interface. We show that the chemicurrent, composed of hot electrons excited by the surface reaction of CO oxidation or hydrogen oxidation, correlates well with the turnover rate measured separately by gas chromatography. Furthermore, we show that hot electron flows generated on a gold thin film by photon absorption (or internal photoemission) can be amplified by localized surface plasmon resonance. The influence of hot charge carriers on the chemistry at the metal-oxide interface are discussed for the cases of Au, Ag, and Pt nanoparticles on oxide supports and Pt-CdSe-Pt nanodumbbells. We show that the accumulation or depletion of hot electrons on metal nanoparticles, in turn, can also influence catalytic reactions. Mechanisms suggested for hot-electron-induced chemical reactions on a photoexcited plasmonic metal are discussed. We propose that the manipulation of the flow of hot electrons by changing the electrical characteristics of metal-oxide and metal-semiconductor interfaces can give rise to the intriguing capability of tuning the catalytic activity of hybrid nanocatalysts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Min, E-mail: zoumin3362765@163.com; Wang, Xin, E-mail: wangx@mail.njust.edu.cn; Jiang, Xiaohong, E-mail: jxh0668@sina.com
2014-05-01
Catalyzed thermal decomposition process of ammonium perchlorate (AP) over neodymium oxide (Nd{sub 2}O{sub 3}) was investigated. Catalytic performances of nanometer-sized Nd{sub 2}O{sub 3} and micrometer-sized Nd{sub 2}O{sub 3} were evaluated by differential scanning calorimetry (DSC). In contrast to universal concepts, catalysts in different sizes have nearly similar catalytic activities. Based on structural and morphological variation of the catalysts during the reaction, combined with mass spectrum analyses and studies of unmixed style, a new understanding of this catalytic process was proposed. We believed that the newly formed chloride neodymium oxide (NdOCl) was the real catalytic species in the overall thermal decompositionmore » of AP over Nd{sub 2}O{sub 3}. Meanwhile, it was the “self-distributed” procedure which occurred within the reaction that also worked for the improvement of overall catalytic activities. This work is of great value in understanding the roles of micrometer-sized catalysts used in heterogeneous reactions, especially the solid–solid reactions which could generate a large quantity of gaseous species. - Graphical abstract: In-situ and self-distributed reaction process in thermal decomposition of AP catalyzed by Nd{sub 2}O{sub 3}. - Highlights: • Micro- and nano-Nd{sub 2}O{sub 3} for catalytic thermal decomposition of AP. • No essential differences on their catalytic performances. • Structural and morphological variation of catalysts digs out catalytic mechanism. • This catalytic process is “in-situ and self-distributed” one.« less
Development of a household waste treatment subsystem, volume 1. [with water conservation features
NASA Technical Reports Server (NTRS)
Gresko, T. M.; Murray, R. W.
1973-01-01
The domestic waste treatment subsystem was developed to process the daily liquid and non-metallic solid wastes provided by a family of four people. The subsystem was designed to be connected to the sewer line of a household which contained water conservation features. The system consisted of an evaporation technique to separate liquids from solids, an incineration technique for solids reduction, and a catalytic oxidizer for eliminating noxious gases from evaporation and incineration processes. All wastes were passed through a grinder which masticated the solids and deposited them in a settling tank. The liquids were transferred through a cleanable filter into a holding tank. From here the liquids were sprayed into an evaporator and a spray chamber where evaporation occurred. The resulting vapors were processed by catalytic oxidation. Water and latent energy were recovered in a combination evaporator/condenser heat exchanger. The solids were conveyed into an incinerator and reduced to ash while the incineration gases were passed through the catalytic oxidizer along with the processed water vapor.
Kim, Hyeonjoo; Jeong, Kwang-Eun; Jeong, Soon-Yong; Park, Young-Kwon; Kim, Do Heui; Jeon, Jong-Ki
2011-02-01
We investigated the use of Cs-mesoporous silica catalysts to upgrade a by-product of oxidative desulfurization (ODS). Cs-mesoporous silica catalysts were characterized through N2 adsorption, XRD, CO2-temperature-programmed desorption, and XRF. Cs-mesoporous silica prepared by the direct incorporation method showed higher catalytic performance than a Cs/MCM-41 catalyst by impregnation method for the catalytic decomposition of sulfone compounds produced from ODS process.
Quesada-Peñate, I; Julcour-Lebigue, C; Jáuregui-Haza, U J; Wilhelm, A M; Delmas, H
2012-06-30
The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties. Copyright © 2012 Elsevier B.V. All rights reserved.
Investigation of the degradation mechanism of catalytic wires during oxidation of ammonia process
NASA Astrophysics Data System (ADS)
Pura, Jarosław; Wieciński, Piotr; Kwaśniak, Piotr; Zwolińska, Marta; Garbacz, Halina; Zdunek, Joanna; Laskowski, Zbigniew; Gierej, Maciej
2016-12-01
The most common catalysts for the ammonia oxidation process are 80 μm diameter platinum-rhodium wires knitted or woven into the form of a gauze. In an aggressive environment and under extreme conditions (temperature 800-900 °C, intensive gas flow, high pressure) precious elements are drained from the surface of the wires. Part of this separated material quickly decomposes on the surface in the form of characteristic "cauliflower-shape protrusions". The rest of the platinum is captured by palladium-nickel catalytic-capture gauzes located beneath. In our investigation we focused on the effects of the degradation of gauzes from one industrial catalytic system. The aim of the study was to compare the degree and the mechanism of degradation of gauzes from a different part of the reactor. The study covered PtRh7 catalytic and PdNi5 catalytic-capture gauzes. X-ray computer microtomography investigation revealed that despite strong differences in morphology, each Pt-Rh wire has a similar specific surface area. This indicates that the oxidation process and morphological changes of the wires occur in a self-regulating balance, resulting in the value of the specific surface area of the catalyst. Microtomography analysis of Pd-Ni wires revealed strong redevelopment of the wires' surface, which is related to the platinum capture phenomenon. Scanning electron microscope observations also revealed the nanostructure in the cauliflower-shape protrusions and large grains in the wires' preserved cores. The high temperature in the reactor and the long-term nature of the process do not favor the occurrence of the nanostructure in this type of material. Further and detailed analysis of this phenomena will provide a better understanding of the precious metals etching and deposition processes during oxidation.
NASA Astrophysics Data System (ADS)
Petrova, L. G.; Aleksandrov, V. A.; Malakhov, A. Yu.
2017-07-01
The effect of thin films of copper oxide deposited before nitriding on the phase composition and the kinetics of growth of diffusion layers in carbon steels is considered. The process of formation of an oxide film involves chemical reduction of pure copper on the surface of steel specimens from a salt solution and subsequent oxidation under air heating. The oxide film exerts a catalytic action in nitriding of low- and medium-carbon steels, which consists in accelerated growth of the diffusion layer, the nitride zone in the first turn. The kinetics of the nitriding process and the phase composition of the layer are controlled by the thickness of the copper oxide precursor, i.e., the deposited copper film.
Architecting Graphene Oxide Rolled-Up Micromotors: A Simple Paper-Based Manufacturing Technology.
Baptista-Pires, Luis; Orozco, Jahir; Guardia, Pablo; Merkoçi, Arben
2018-01-01
A graphene oxide rolled-up tube production process is reported using wax-printed membranes for the fabrication of on-demand engineered micromotors at different levels of oxidation, thickness, and lateral dimensions. The resultant graphene oxide rolled-up tubes can show magnetic and catalytic movement within the addition of magnetic nanoparticles or sputtered platinum in the surface of graphene-oxide-modified wax-printed membranes prior to the scrolling process. As a proof of concept, the as-prepared catalytic graphene oxide rolled-up micromotors are successfully exploited for oil removal from water. This micromotor production technology relies on an easy, operator-friendly, fast, and cost-efficient wax-printed paper-based method and may offer a myriad of hybrid devices and applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An Evaluation of the Vapor Phase Catalytic Ammonia Removal Process for Use in a Mars Transit Vehicle
NASA Technical Reports Server (NTRS)
Flynn, Michael; Borchers, Bruce
1998-01-01
An experimental program has been developed to evaluate the potential of the Vapor Phase Catalytic Ammonia Reduction (VPCAR) technology for use as a Mars Transit Vehicle water purification system. Design modifications which will be required to ensure proper operation of the VPCAR system in reduced gravity are also evaluated. The VPCAR system is an integrated wastewater treatment technology that combines a distillation process with high temperature catalytic oxidation. The distillation portion of the system utilizes a vapor compression distillation process to provide an energy efficient phase change separation. This portion of the system removes any inorganic salts and large molecular weight, organic contaminates, i.e., non-volatile, from the product water stream and concentrates these contaminates into a byproduct stream. To oxidize the volatile organic compounds and ammonia, a vapor phase, high temperature catalytic oxidizer is used. This catalytic system converts these compounds along with the aqueous product into CO2, H2O, and N2O. A secondary catalytic bed can then be used to reduce the N2O to nitrogen and oxygen (although not evaluated in this study). This paper describes the design specification of the VPCAR process, the relative benefits of its utilization in a Mars Transit Vehicle, and the design modification which will be required to ensure its proper operation in reduced gravity. In addition, the results of an experimental evaluation of the processors is presented. This evaluation presents the processors performance based upon product water purity, water recovery rates, and power.
Ren, Xiaohua; Guo, Huanhuan; Feng, Jinkui; Si, Pengchao; Zhang, Lin; Ci, Lijie
2018-01-01
3D porous N-doped reduced graphene oxide (N-rGO) aerogels were synthesized by a hydrothermal reduction of graphene oxide (GO) with urea and following freeze-drying process. N-rGO aerogels have a high BET surface of 499.70 m 2 /g and a high N doping content (5.93-7.46 at%) including three kinds of N (graphitic, pyridinic and pyrrolic). Their high catalytic performance for phenol oxidation in aqueous solution was investigated by catalytic activation of persulfate (PS). We have demonstrated that N-rGO aerogels are promising metal-free catalysts for phenol removal. Kinetics studies indicate that phenol degradation follows first-order reaction kinetics with the reaction rate constant of 0.16799 min -1 for N-rGO-A(1:30). Interestingly, the comparison of direct catalytic oxidation with adsorption-catalytic oxidation experiments indicates that adsorption plays an important role in the catalytic oxidation of phenol by decreasing the phenol degradation time. Spin density and adsorption modeling demonstrates that graphitic N in N-rGO plays the most important role for the catalytic performance by inducing high positive charge densities to adjacent carbon atoms and facilitating phenol adsorption on these carbon sites. Furthermore, the activation mechanism of persulfate (PS) on N-rGO was first investigated by DFT method and PS can be activated to generate strongly oxidative radical (SO 4 · - ) by transferring electrons to N-rGO. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Utsunomiya, K.; Nakagawa, M.; Nishiyama, K.
The authors have investigated a new chemiluminescence (CL)-based gas sensor made of aluminum oxide ({gamma}-Al{sub 2}O{sub 3}) which emits CL during the catalytic oxidation of combustible vapors in air. The CL intensity is proportional to the concentration in the wide region from 1 to 1000 ppm of ethanol, butanol and acetone in air. However, it has a tendency to saturate in concentrations above 1000 ppm. For the detection of vapors in the environmental atmosphere, improvements of the sensitivity and the linear characteristics of the sensor are necessary. Catalytic reaction processes on the sensor were studied for this purpose.
[Catalytic stability in wet air oxidation of carboxylic acids over ZnFe0.25Al1.75 O4 catalyst].
Xu, Ai-hua; Yang, Min; Du, Hong-zhang; Peng, Fu-yong; Sun, Cheng-lin
2007-07-01
Oxalic, formic and acetic acid are main intermediate products in catalytic wet air oxidation process (CWAO). The catalytic activity and stability in CWAO of the three short-chain organic acids over ZnFe0.25Al1.75O4 catalyst were studied. Oxalic acid is the only oxidizable intermediate and the largest amount of Fe leaching is 9.5 mg L(-1) at 160 degrees C during CWAO process. Formic and acetic acid have little influence on Fe leaching. Due to the strong reducible ability of oxalic acid, the amount of Fe leaching is larger in nitrogen atmosphere than that in oxygen atmosphere. Salicylic acid can be also degraded by ZnFe0.25Al1.75O4 catalyst with a high catalytic activity and stability.
Qi, Wei; Yan, Pengqiang; Su, Dang Sheng
2018-03-20
Sustainable and environmentally benign catalytic processes are vital for the future to supply the world population with clean energy and industrial products. The replacement of conventional metal or metal oxide catalysts with earth abundant and renewable nonmetallic materials has attracted considerable research interests in the field of catalysis and material science. The stable and efficient catalytic performance of nanocarbon materials was discovered at the end of last century, and these materials are considered as potential alternatives for conventional metal-based catalysts. With its rapid development in the past 20 years, the research field of carbon catalysis has been experiencing a smooth transition from the discovery of novel nanocarbon materials or related new reaction systems to the atomistic-level mechanistic understanding on the catalytic process and the subsequent rational design of the practical catalytic reaction systems. In this Account, we summarize the recent progress in the kinetic and mechanistic studies on nanocarbon catalyzed alkane oxidative dehydrogenation (ODH) reactions. The paper attempts to extract general concepts and basic regularities for carbon catalytic process directing us on the way for rational design of novel efficient metal-free catalysts. The nature of the active sites for ODH reactions has been revealed through microcalorimetric analysis, ambient pressure X-ray photoelectron spectroscopy (XPS) measurement, and in situ chemical titration strategies. The detailed kinetic analysis and in situ catalyst structure characterization suggests that carbon catalyzed ODH reactions involve the redox cycles of the ketonic carbonyl-hydroxyl pairs, and the key physicochemical parameters (activation energy, reaction order, and rate/equilibrium constants, etc.) of the carbon catalytic systems are proposed and compared with conventional transition metal oxide catalysts. The proposal of the intrinsic catalytic activity (TOF) provides the possibility for the fair comparisons of different nanocarbon catalysts and the consequent structure-function relation regularity. Surface modification and heteroatom doping are proved as the most effective strategies to adjust the catalytic property (activity and product selectivity etc.) of the nanocarbon catalysts. Nanocarbon is actually a proper candidate platform helping us to understand the classical catalytic reaction mechanism better, since there is no lattice oxygen and all the catalytic process happens on nanocarbon surface. This Account also exhibits the importance of the in situ structural characterizations for heterogeneous nanocarbon catalysis. The research strategy and methods proposed for carbon catalysts may also shed light on other complicated catalytic systems or fields concerning the applications of nonmetallic materials, such as energy storage and environment protection etc.
NASA Technical Reports Server (NTRS)
Alvin, Mary Anne (Inventor); Bachovchin, Dennis (Inventor); Smeltzer, Eugene E. (Inventor); Lippert, Thomas E. (Inventor); Bruck, Gerald J. (Inventor)
2010-01-01
A catalytic combustor (14) includes a first catalytic stage (30), a second catalytic stage (40), and an oxidation completion stage (49). The first catalytic stage receives an oxidizer (e.g., 20) and a fuel (26) and discharges a partially oxidized fuel/oxidizer mixture (36). The second catalytic stage receives the partially oxidized fuel/oxidizer mixture and further oxidizes the mixture. The second catalytic stage may include a passageway (47) for conducting a bypass portion (46) of the mixture past a catalyst (e.g., 41) disposed therein. The second catalytic stage may have an outlet temperature elevated sufficiently to complete oxidation of the mixture without using a separate ignition source. The oxidation completion stage is disposed downstream of the second catalytic stage and may recombine the bypass portion with a catalyst exposed portion (48) of the mixture and complete oxidation of the mixture. The second catalytic stage may also include a reticulated foam support (50), a honeycomb support, a tube support or a plate support.
Catalytic Ignition of Ionic Liquid Fuels by Ionic Liquids
2014-07-01
catalytically decompose hydrogen peroxide. Catalytic approach for H2O2 decomposition Distribution NOT APPROVED through STINFO process Distribution...Charts 3. DATES COVERED (From - To) July 2014- August 2014 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER In-House Catalytic Ignition of Ionic...are highly hazardous. To gain a true advantage, a more environmentally friendly oxidizer must be considered. Hydrogen peroxide might be an attractive
Nguyen, Khac Minh Huy; Largeron, Martine
2015-01-01
Aerobic oxidative C–H functionalization of primary aliphatic amines has been accomplished with a biomimetic cooperative catalytic system to furnish 1,2-disubstituted benzimidazoles that play an important role as drug discovery targets. This one-pot atom-economical multistep process, which proceeds under mild conditions, with ambient air and equimolar amounts of each coupling partner, constitutes a convenient environmentally friendly strategy to functionalize non-activated aliphatic amines that remain challenging substrates for non-enzymatic catalytic aerobic systems. PMID:26206475
Ruthenium nanoparticles supported on CeO2 for catalytic permanganate oxidation of butylparaben.
Zhang, Jing; Sun, Bo; Guan, Xiaohong; Wang, Hui; Bao, Hongliang; Huang, Yuying; Qiao, Junlian; Zhou, Gongming
2013-11-19
This study developed a heterogeneous catalytic permanganate oxidation system with ceria supported ruthenium, Ru/CeO2 (0.8‰ as Ru), as catalyst for the first time. The catalytic performance of Ru/CeO2 toward butylparaben (BP) oxidation by permanganate was strongly dependent on its dosage, pH, permanganate concentration and temperature. The presence of 1.0 g L(-1) Ru/CeO2 increased the oxidation rate of BP by permanganate at pH 4.0-8.0 by 3-96 times. The increase in Ru/CeO2 dosage led to a progressive enhancement in the oxidation rate of BP by permanganate at neutral pH. The XANES analysis revealed that (1) Ru was deposited on the surface of CeO2 as Ru(III); (2) Ru(III) was oxidized by permanganate to its higher oxidation state Ru(VI) and Ru(VII), which acted as the co-oxidants in BP oxidation; (3) Ru(VI) and Ru(VII) were reduced by BP to its initial state of Ru(III). Therefore, Ru/CeO2 acted as an electron shuttle in catalytic permanganate oxidation process. LC-MS/MS analysis implied that BP was initially attacked by permanganate or Ru(VI) and Ru(VII) at the aromatic ring, leading to the formation of various hydroxyl-substituted and ring-opening products. Ru/CeO2 could maintain its catalytic activity during the six successive runs. In conclusion, catalyzing permanganate oxidation with Ru/CeO2 is a promising technology for degrading phenolic pollutants in water treatment.
Enzymatic Catalytic Beds For Oxidation Of Alcohols
NASA Technical Reports Server (NTRS)
Jolly, Clifford D.; Schussel, Leonard J.
1993-01-01
Modules containing beds of enzymatic material catalyzing oxidation of primary alcohols and some other organic compounds developed for use in wastewater-treatment systems of future spacecraft. Designed to be placed downstream of multifiltration modules, which contain filters and sorbent beds removing most of non-alcoholic contaminants but fail to remove significant amounts of low-molecular-weight, polar, nonionic compounds like alcohols. Catalytic modules also used on Earth to oxidize primary alcohols and other compounds in wastewater streams and industrial process streams.
Synthesis and characterization of magnesium doped cerium oxide for the fuel cell application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Amit; Kumari, Monika; Kumar, Mintu
2016-05-06
Cerium oxide has attained much attentions in global nanotechnology market due to valuable application for catalytic, fuel additive, and widely as electrolyte in solid oxide fuel cell. Doped cerium oxide has large oxygen vacancies that allow for greater reactivity and faster ion transport. These properties make cerium oxide suitable material for SOFCs application. Cerium oxide electrolyte requires lower operation temperature which shows improvement in processing and the fabrication technique. In our work, we synthesized magnesium doped cerium oxide by the co-precipitation method. With the magnesium doping catalytic reactivity of CeO{sub 2} was increased. Synthesized nanoparticle were characterized by the XRDmore » and UV absorption techniques.« less
Stabilized tin-oxide-based oxidation/reduction catalysts
NASA Technical Reports Server (NTRS)
Watkins, Anthony Neal (Inventor); Oglesby, Donald M. (Inventor); Gulati, Suresh T. (Inventor); Summers, Jerry C. (Inventor); Schryer, David R. (Inventor); Davis, Patricia P. (Inventor); Leighty, Bradley D. (Inventor); Jordan, Jeffrey D. (Inventor); Schryer, Jacqueline L. (Inventor)
2008-01-01
The invention described herein involves a novel approach to the production of oxidation/reduction catalytic systems. The present invention serves to stabilize the tin oxide reducible metal-oxide coating by co-incorporating at least another metal-oxide species, such as zirconium. In one embodiment, a third metal-oxide species is incorporated, selected from the group consisting of cerium, lanthanum, hafnium, and ruthenium. The incorporation of the additional metal oxide components serves to stabilize the active tin-oxide layer in the catalytic process during high-temperature operation in a reducing environment (e.g., automobile exhaust). Moreover, the additional metal oxides are active components due to their oxygen-retention capabilities. Together, these features provide a mechanism to extend the range of operation of the tin-oxide-based catalyst system for automotive applications, while maintaining the existing advantages.
Catalytic coal liquefaction process
Garg, D.; Sunder, S.
1986-12-02
An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids. 1 fig.
Catalytic coal liquefaction process
Garg, Diwakar; Sunder, Swaminathan
1986-01-01
An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids.
Geng, Longlong; Wu, Shujie; Zou, Yongcun; Jia, Mingjun; Zhang, Wenxiang; Yan, Wenfu; Liu, Gang
2014-05-01
A series of graphite oxide (GO) materials were obtained by thermal treatment of oxidized natural graphite powder at different temperatures (from 100 to 200 °C). The microstructure evolution (i.e., layer structure and surface functional groups) of the graphite oxide during the heating process is studied by various characterization means, including XRD, N2 adsorption, TG-DTA, in situ DRIFT, XPS, Raman, TEM and Boehm titration. The characterization results show that the structures of GO materials change gradually from multilayer sheets to a transparent ultrathin 2D structure of the carbon sheets. The concentration of surface COH and HOCO groups decrease significantly upon treating temperature increasing. Benzyl alcohol oxidation with air as oxidant source was carried out to detect the catalytic behaviors of different GO materials. The activities of GO materials decrease with the increase of treating temperatures. It shows that the structure properties, including ultrathin sheets and high specific surface area, are not crucial factors affecting the catalytic activity. The type and amount of surface oxygen-containing functional groups of GO materials tightly correlates with the catalytic performance. Carboxylic groups on the surface of GO should act as oxidative sites for benzyl alcohol and the reduced form could be reoxidized by molecular oxygen. Copyright © 2014 Elsevier Inc. All rights reserved.
Ismail, Sherif; Tawfik, Ahmed
2016-01-01
Fenton process for pre-treatment of hazardous landfill leachate (HLL) was investigated. Total, particulate and soluble chemical oxygen demand (CODt, CODp and CODs) removal efficiency amounted to 67%, 47% and 64%, respectively, at pH value of 3.5, molar ratio (H2O2/Fe(2+)) of 5, H2O2 dosage of 25 ml/L and contact time of 15 min. Various treatment scenarios were attempted and focused on studying the effect of pre-catalytic oxidation process on the performance of up-flow anaerobic sludge blanket (UASB), UASB/down-flow hanging sponge (DHS) and DHS system. The results obtained indicated that pre-catalytic oxidation process improved the CODt removal efficiency in the UASB reactor by a value of 51.4%. Overall removal efficiencies of CODt, CODs and CODp were 80 ± 6%, 80 ± 7% and 78 ± 16% for UASB/DHS treating pre-catalytic oxidation effluent, respectively. The removal efficiencies of CODt, CODs and CODp were, respectively, decreased to 54 ± 2%, 49 ± 2% and 71 ± 16% for UASB/DHS system without pre-treatment. However, the results for the combined process (UASB/DHS) system is almost similar to those obtained for UASB reactor treating pre-catalytic oxidation effluent. The DHS system achieved average removal efficiencies of 52 ± 4% for CODt, 51 ± 4% for CODs and 52 ± 15% for CODp. A higher COD fractions removal was obtained when HLL was pre-treated by Fenton reagent. The combined processes provided a removal efficiency of 85 ± 1% for CODt, 85 ± 1% for CODs and 83 ± 8% for CODp. The DHS system is not only effective for organics degradation but also for ammonia oxidation. Almost complete ammonia (NH4-N) removal (92 ± 3.6%) was occurred and the nitrate production amounted to 37 ± 6 mg/L in the treated effluent. This study strongly recommends applying Fenton process followed by DHS system for treatment of HLL.
Rare isotope studies involving catalytic oxidation of CO over platinum-tin oxide
NASA Technical Reports Server (NTRS)
Upchurch, Billy T.; Wood, George M., Jr.; Hess, Robert V.; Hoyt, Ronald F.
1987-01-01
Results of studies utilizing normal and rare oxygen isotopes in the catalytic oxidation of carbon monoxide over a platinum-tin oxide catalyst substrate are presented. Chemisorption of labeled carbon monoxide on the catalyst followed by thermal desorption yielded a carbon dioxide product with an oxygen-18 composition consistent with the formation of a carbonate-like intermediate in the chemisorption process. The efficacy of a method developed for the oxygen-18 labeling of the platinum-tin oxide catalyst surface for use in closed cycle pulsed care isotope carbon dioxide lasers is demonstrated for the equivalent of 10 to the 6th power pulses at 10 pulses per second.
Removal of ammonia from urine vapor by a dual-catalyst system
NASA Technical Reports Server (NTRS)
Budininkas, P.
1977-01-01
The feasibility of removing ammonia from urine vapor by a low-temperature dual-catalyst system has been demonstrated. The process is based on the catalytic oxidation of ammonia to a mixture of nitrogen, nitrous oxide, and water, followed by a catalytic decomposition of the nitrous oxide into its elements. Potential ammonia oxidation and nitrous oxide decomposition catalysts were first screened with artificial gas mixtures, then tested with the actual urine vapor produced by boiling untreated urine. A suitable dual-catalyst bed arrangement was found that achieved the removal of ammonia and also organic carbon, and recovered water of good quality from urine vapor.
Using Iron-Manganese Co-Oxide Filter Film to Remove Ammonium from Surface Water
Zhang, Ruifeng; Huang, Tinglin; Wen, Gang; Chen, Yongpan; Cao, Xin; Zhang, Beibei
2017-01-01
An iron-manganese co-oxide filter film (MeOx) has been proven to be a good catalyst for the chemical catalytic oxidation of ammonium in groundwater. Compared with groundwater, surface water is generally used more widely and has characteristics that make ammonium removal more difficult. In this study, MeOx was used to remove ammonium from surface water. It indicated that the average ammonium removal efficiency of MeOx was greater than 90%, even though the water quality changed dramatically and the water temperature was reduced to about 6–8 °C. Then, through inactivating microorganisms, it showed that the removal capability of MeOx included both biological (accounted for about 41.05%) and chemical catalytic oxidation and chemical catalytic oxidation (accounted for about 58.95%). The investigation of the characterizations suggested that MeOx was formed by abiotic ways and the main elements on the surface of MeOx were distributed homogenously. The analysis of the catalytic oxidation process indicated that ammonia nitrogen may interact with MeOx as both ammonia molecules and ammonium ions and the active species of O2 were possibly •O and O2−. PMID:28753939
Using Iron-Manganese Co-Oxide Filter Film to Remove Ammonium from Surface Water.
Zhang, Ruifeng; Huang, Tinglin; Wen, Gang; Chen, Yongpan; Cao, Xin; Zhang, Beibei
2017-07-19
An iron-manganese co-oxide filter film (MeO x ) has been proven to be a good catalyst for the chemical catalytic oxidation of ammonium in groundwater. Compared with groundwater, surface water is generally used more widely and has characteristics that make ammonium removal more difficult. In this study, MeO x was used to remove ammonium from surface water. It indicated that the average ammonium removal efficiency of MeO x was greater than 90%, even though the water quality changed dramatically and the water temperature was reduced to about 6-8 °C. Then, through inactivating microorganisms, it showed that the removal capability of MeO x included both biological (accounted for about 41.05%) and chemical catalytic oxidation and chemical catalytic oxidation (accounted for about 58.95%). The investigation of the characterizations suggested that MeO x was formed by abiotic ways and the main elements on the surface of MeO x were distributed homogenously. The analysis of the catalytic oxidation process indicated that ammonia nitrogen may interact with MeO x as both ammonia molecules and ammonium ions and the active species of O₂ were possibly • O and O₂ - .
2017-01-01
Area-selective atomic layer deposition (ALD) is envisioned to play a key role in next-generation semiconductor processing and can also provide new opportunities in the field of catalysis. In this work, we developed an approach for the area-selective deposition of metal oxides on noble metals. Using O2 gas as co-reactant, area-selective ALD has been achieved by relying on the catalytic dissociation of the oxygen molecules on the noble metal surface, while no deposition takes place on inert surfaces that do not dissociate oxygen (i.e., SiO2, Al2O3, Au). The process is demonstrated for selective deposition of iron oxide and nickel oxide on platinum and iridium substrates. Characterization by in situ spectroscopic ellipsometry, transmission electron microscopy, scanning Auger electron spectroscopy, and X-ray photoelectron spectroscopy confirms a very high degree of selectivity, with a constant ALD growth rate on the catalytic metal substrates and no deposition on inert substrates, even after 300 ALD cycles. We demonstrate the area-selective ALD approach on planar and patterned substrates and use it to prepare Pt/Fe2O3 core/shell nanoparticles. Finally, the approach is proposed to be extendable beyond the materials presented here, specifically to other metal oxide ALD processes for which the precursor requires a strong oxidizing agent for growth. PMID:29503508
How low does iron go? Chasing the active species in fe-catalyzed cross-coupling reactions.
Bedford, Robin B
2015-05-19
The catalytic cross-coupling reactions of organic halides or related substrates with organometallic nucleophiles form the cornerstone of many carbon-carbon bond-forming processes. While palladium-based catalysts typically mediate such reactions, there are increasing concerns about the long-term sustainability of palladium in synthesis. This is due to the high cost of palladium, coupled with its low natural abundance, environmentally deleterious extraction (∼6 g of metal are produced per ton of ore), toxicity, and competition for its use from the automotive and consumer electronics sectors. Therefore, there is a growing interest in replacing palladium-based catalysts with those incorporating more earth-abundant elements. With its low cost, high natural abundance, and low toxicity, iron makes a particularly appealing alternative, and accordingly, the development of iron-catalyzed cross-coupling is undergoing explosive growth. However, our understanding of the mechanisms that underpin the iron-based catalytic cycles is still very much in its infancy. Mechanistic insight into catalytic reactions is not only academically important but also allows us to maximize the efficiency of processes or even to develop entirely new transformations. Key to the development of robust mechanistic models for cross-coupling is knowing the lowest oxidation state in the cycle. Once this is established, we can explore subsequent redox processes and build the catalytic manifold. Until we know with confidence what the lowest oxidation state is, any cycles proposed are largely just guesswork. To date, Fe(-II), Fe(-I), Fe(0), Fe(I), and Fe(II) have been proposed as contenders for the lowest-oxidation-state species in the cycle in iron-catalyzed cross-coupling; the aim of this Account is to pull together the various pieces of evidence in support, or otherwise, of each of these suggestions in turn. There currently exists no direct evidence that oxidation states below Fe(0) are active in the catalytic cycle. Meanwhile, the reactivity required of the lowest-oxidation-state species has been observed with model compounds in higher oxidation states, implying that there is no need to invoke such low oxidation states. While subzero-valent complexes do indeed act as effective precatalysts, it is important to recognize that this tells us that they are efficiently converted to an active catalyst but says nothing about the oxidation states of the species in the catalytic cycle. Zero-valent heterogeneous iron nanoparticles can be formed under typical catalytic conditions, but there is no evidence to suggest that homogeneous Fe(0) complexes can be produced under comparable conditions. It seems likely that the zero-valent nanoparticles act as a reservoir for soluble higher-oxidation-state species. Fe(II) complexes can certainly be formed under catalytically relevant conditions, and when bulky nucleophilic coupling partners are exploited, potential intermediates can be isolated. However, the bulky reagents act as poor proxies for most nucleophiles used in cross-coupling, as they give Fe(II) organometallic intermediates that are kinetically stabilized with respect to reductive elimination. When more realistic substrates are exploited, reduction or disproportionation to Fe(I) is widely observed, and while it still has not been conclusively proved, this oxidation state currently represents a likely candidate for the lowest one active in many iron-catalyzed cross-coupling processes.
A review of tin oxide-based catalytic systems: Preparation, characterization and catalytic behavior
NASA Technical Reports Server (NTRS)
Hoflund, Gar B.
1987-01-01
This paper reviews the important aspects of the preparation, characterization and catalytic behavior of tin oxide-based catalytic systems including doped tin oxide, mixed oxides which contain tin oxide, Pt supported on tin oxide and Pt/Sn supported on alumina. These systems have a broad range of applications and are continually increasing in importance. However, due to their complex nature, much remains to be understood concerning how they function catalytically.
Ye, Weichun; Shi, Xuezhao; Zhang, Yane; Hong, Chenghui; Wang, Chunming; Budzianowski, Wojciech M; Xue, Desheng
2016-02-10
Palladium-cobalt alloy nanoparticles were synthesized and dispersed on carbon black support, aiming to have a less expensive catalyst. Catalytic behaviors of PdCo/C catalyst for the oxidation of hydroquinone (HQ) with H2O2 in aqueous solution were evaluated using high-performance liquid chromatography (HPLC). The results revealed that PdCo/C catalyst had better catalytic activity than an equal amount of commercial Pd/C and Co/C catalysts because of the d-band hybridization between Pd and Co. The effects of pH value, solvent, and various interferents including inorganic and organic compounds on the efficiency of HQ oxidation were further investigated. Furthermore, on the basis of mixed potential theory, comprehensive electrochemical measurements such as the open-circuit potential-time (OCP-t) technique and Tafel plot were efficient to assess the catalytic activity of the catalyst, and the results obtained were consistent with those of HPLC measurements. The efficient HQ oxidation was closely associated with the catalytic activity of PdCo nanoparticles because they accelerated the electron-transfer process and facilitated the generation of OH radicals.
NASA Technical Reports Server (NTRS)
Perry, J. L.; Tomes, K. M.; Tatara, J. D.
2005-01-01
Contaminated air, whether in a crewed spacecraft cabin or terrestrial work and living spaces, is a pervasive problem affecting human health, performance, and well being. The need for highly effective, economical air quality processes spans a wide range of terrestrial and space flight applications. Typically, air quality control processes rely on absorption-based processes. Most industrial packed-bed adsorption processes use activated carbon. Once saturated, the carbon is either dumped or regenerated. In either case, the dumped carbon and concentrated waste streams constitute a hazardous waste that must be handled safely while minimizing environmental impact. Thermal catalytic oxidation processes designed to address waste handling issues are moving to the forefront of cleaner air quality control and process gas decontamination processes. Careful consideration in designing the catalyst substrate and reactor can lead to more complete contaminant destruction and poisoning resistance. Maintenance improvements leading to reduced waste handling and process downtime can also be realized. Performance of a prototype thermal catalytic reaction based on ultra-short waste channel, monolith catalyst substrate design, under a variety of process flow and contaminant loading conditions, is discussed.
Zhang, Yongqi; Ouyang, Bo; Xu, Kun; Xia, Xinhui; Zhang, Zheng; Rawat, Rajdeep Singh; Fan, Hong Jin
2018-04-01
Prereduction of transition metal oxides is a feasible and efficient strategy to enhance their catalytic activity for hydrogen evolution. Unfortunately, the prereduction via the common H 2 annealing method is unstable for nanomaterials during the hydrogen evolution process. Here, using NiMoO 4 nanowire arrays as the example, it is demonstrated that carbon plasma (C-plasma) treatment can greatly enhance both the catalytic activity and the long-term stability of transition metal oxides for hydrogen evolution. The C-plasma treatment has two functions at the same time: it induces partial surface reduction of the NiMoO 4 nanowire to form Ni 4 Mo nanoclusters, and simultaneously deposits a thin graphitic carbon shell. As a result, the C-plasma treated NiMoO 4 can maintain its array morphology, chemical composition, and catalytic activity during long-term intermittent hydrogen evolution process. This work may pave a new way for simultaneous activation and stabilization of transition metal oxide-based electrocatalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Methodology for the effective stabilization of tin-oxide-based oxidation/reduction catalysts
NASA Technical Reports Server (NTRS)
Jordan, Jeffrey D. (Inventor); Schryer, David R. (Inventor); Leighty, Bradley D. (Inventor); Watkins, Anthony N. (Inventor); Summers, Jerry C. (Inventor); Davis, Patricia P. (Inventor); Oglesby, Donald M. (Inventor); Schryer, Jacqueline L. (Inventor); Gulati, Suresh T. (Inventor)
2011-01-01
The invention described herein involves a novel approach to the production of oxidation/reduction catalytic systems. The present invention serves to stabilize the tin oxide reducible metal-oxide coating by co-incorporating at least another metal-oxide species, such as zirconium. In one embodiment, a third metal-oxide species is incorporated, selected from the group consisting of cerium, lanthanum, hafnium, and ruthenium. The incorporation of the additional metal oxide components serves to stabilize the active tin-oxide layer in the catalytic process during high-temperature operation in a reducing environment (e.g., automobile exhaust). Moreover, the additional metal oxides are active components due to their oxygen-retention capabilities. Together, these features provide a mechanism to extend the range of operation of the tin-oxide-based catalyst system for automotive applications, while maintaining the existing advantages.
Graphene oxide for acid catalyzed-reactions: Effect of drying process
NASA Astrophysics Data System (ADS)
Gong, H. P.; Hua, W. M.; Yue, Y. H.; Gao, Z.
2017-03-01
Graphene oxides (GOs) were prepared by Hummers method through various drying processes, and characterized by XRD, SEM, FTIR, XPS and N2 adsorption. Their acidities were measured using potentiometric titration and acid-base titration. The catalytic properties were investigated in the alkylation of anisole with benzyl alcohol and transesterification of triacetin with methanol. GOs are active catalysts for both reaction, whose activity is greatly affected by their drying processes. Vacuum drying GO exhibits the best performance in transesterification while freezing drying GO is most active for alkylation. The excellent catalytic behavior comes from abundant surface acid sites as well as proper surface functional groups, which can be obtained by selecting appropriate drying process.
Catalytic oxidation of dimethyl ether
Zelenay, Piotr; Wu, Gang; Johnston, Christina M.; Li, Qing
2016-05-10
A composition for oxidizing dimethyl ether includes an alloy supported on carbon, the alloy being of platinum, ruthenium, and palladium. A process for oxidizing dimethyl ether involves exposing dimethyl ether to a carbon-supported alloy of platinum, ruthenium, and palladium under conditions sufficient to electrochemically oxidize the dimethyl ether.
Oxidizing of ferulic acid with the use of polyoxometalates as catalysts
NASA Astrophysics Data System (ADS)
Povarnitsyna, T. V.; Popova, N. R.; Bogolitsyn, K. G.; Beloglazova, A. L.; Pryakhin, A. N.; Lunin, V. V.
2010-12-01
The kinetics of catalytic oxidation for ferulic acid with polyoxometalates used as catalysts was studied. The effect of pH and concentrations of the principal reacting components on the process kinetics was studied. A kinetic scheme of oxidation is proposed, and the values of a number of kinetic parameters of the process are determined.
A self-improved water-oxidation catalyst: is one site really enough?
López, Isidoro; Ertem, Mehmed Z; Maji, Somnath; Benet-Buchholz, Jordi; Keidel, Anke; Kuhlmann, Uwe; Hildebrandt, Peter; Cramer, Christopher J; Batista, Victor S; Llobet, Antoni
2014-01-03
The homogeneous catalysis of water oxidation by transition-metal complexes has experienced spectacular development over the last five years. Practical energy-conversion schemes, however, require robust catalysts with large turnover frequencies. Herein we introduce a new oxidatively rugged and powerful dinuclear water-oxidation catalyst that is generated by self-assembly from a mononuclear catalyst during the catalytic process. Our kinetic and DFT computational analysis shows that two interconnected catalytic cycles coexist while the mononuclear system is slowly and irreversibly converted into the more stable dinuclear system: an extremely robust water-oxidation catalyst that does not decompose over extended periods of time. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wen, Xin; Ma, Zhenhua; Zhang, Lei; Sha, Xiangling; He, Huibin; Zeng, Tianyou; Wang, Yusu; Chen, Jihao
2017-01-01
Selective catalytic oxidation (SCO) method is commonly used in wet denitration technology; NO after the catalytic oxidation can be removed with SO2 together by wet method. Among the SCO denitration catalysts, pyrolysis coke is favored by the advantages of low cost and high catalytic activity. In this paper, SCO method combined with pyrolysis coke catalyst was used to remove NO from flue gas. The effects of different SCO operating conditions and different pyrolysis coke catalyst made under different process conditions were studied. Besides, the specific surface area of the catalyst and functional groups were analyzed with surface area analyzer and Beohm titration. The results are: (1) The optimum operating conditions of SCO is as follows: the reaction temperature is 150°C and the oxygen content is 6%. (2) The optimum pyrolysis coke catalyst preparation processes are as follows: the pyrolysis final temperature is 750°C, and the heating rate is 44°C / min. (3) The characterization analysis can be obtained: In the denitration reaction, the basic functional groups and the phenolic hydroxyl groups of the catalyst play a major role while the specific surface area not. PMID:28793346
Zhang, Kaige; Li, Gongke; Hu, Yuling
2015-10-28
The surface-enhanced Raman spectroscopy (SERS) technique is of great importance for insight into the transient reaction intermediates and mechanistic pathways involved in heterogeneously catalyzed chemical reactions under actual reaction conditions, especially in water. Herein, we demonstrate a facile method for in situ synthesis of nanocrystalline magnesium oxide-Ag(0) (nano MgO-Ag(0)) hybrid nanomaterials with dispersed Ag nanoparticles (Ag NPs) on the surface of nanocrystalline magnesium oxide (nano MgO) via Sn(2+) linkage and reduction. As a benefit from the synergy effect of nano MgO and Ag NPs, the nano MgO-Ag(0) exhibited both excellent SERS and catalytic activities for the reduction of 4-nitrothiophenol in the presence of NaBH4. The nano MgO-Ag(0) was used for real-time monitoring of the catalytic reaction process of 4-nitrothiophenol to 4-aminothiophenol in an aqueous medium by observing the SERS signals of the reactant, intermediate and final products. The intrinsic reaction kinetics and reaction mechanism of this reaction were also investigated. This SERS-based synergy technique provides a novel approach for quantitative in situ monitoring of catalytic chemical reaction processes.
Gondal, M A; Dastageer, M A; Oloore, L E; Baig, U; Rashid, S G
2017-07-03
Ordered mesoporous indium oxide nanocrystal (m-In 2 O 3 ) was synthesized by nanocasting technique, in which highly ordered mesoporous silca (SBA-15) was used as structural matrix. X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halanda (BJH) studies were carried out on m-In 2 O 3 and the results revealed that this material has a highly ordered mesoporous surface with reduced grain size, increased surface area and surface volume compared to the non porous indium oxide. The diffuse reluctance spectrum exhibited substantially improved light absorption efficiency in m-In 2 O 3 compared to normal indium oxide, however, no considerable change in the band gap energies of these materials was observed. When m-In 2 O 3 was used as a photo-catalyst in the photo-catalytic process of converting carbon dioxide (CO 2 ) into methanol under the pulsed laser radiation of 266-nm wavelengths, an enhanced photo-catalytic activity with the quantum efficiency of 4.5% and conversion efficiency of 46.3% were observed. It was found that the methanol production yield in this chemical process is as high as 485 µlg -1 h -1 after 150 min of irradiation, which is substantially higher than the yields reported in the literature. It is quite clear from the results that the introduction of mesoporosity in indium oxide, and the consequent enhancement of positive attributes required for a photo-catalyst, transformed photo-catalytically weak indium oxide into an effective photo-catalyst for the conversion of CO 2 into methanol.
Elemental sulfur recovery process
Flytzani-Stephanopoulos, M.; Zhicheng Hu.
1993-09-07
An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.
Elemental sulfur recovery process
Flytzani-Stephanopoulos, Maria; Hu, Zhicheng
1993-01-01
An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO.sub.2 in the regenerator off gas stream to elemental sulfur in the presence of a catalyst.
Catalytic Destruction Of Toxic Organic Compounds
NASA Technical Reports Server (NTRS)
Voecks, Gerald E.
1990-01-01
Proposed process disposes of toxic organic compounds in contaminated soil or carbon beds safely and efficiently. Oxidizes toxic materials without producing such other contaminants as nitrogen oxides. Using air, fuel, catalysts, and steam, system consumes less fuel and energy than decontamination processes currently in use. Similar process regenerates carbon beds used in water-treatment plants.
Zhuang, Haifeng; Han, Hongjun; Jia, Shengyong; Hou, Baolin; Zhao, Qian
2014-08-01
Advanced treatment of biologically pretreated coal gasification wastewater (CGW) was investigated employing heterogeneous catalytic ozonation integrated with anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) process. The results indicated that catalytic ozonation with the prepared catalyst (i.e. MnOx/SBAC, sewage sludge was converted into sludge based activated carbon (SBAC) which loaded manganese oxides) significantly enhanced performance of pollutants removal by generated hydroxyl radicals. The effluent of catalytic ozonation process was more biodegradable and less toxic than that in ozonation alone. Meanwhile, ANMBBR-BAF showed efficient capacity of pollutants removal in treatment of the effluent of catalytic ozonation at a shorter reaction time, allowing the discharge limits to be met. Therefore, the integrated process with efficient, economical and sustainable advantages was suitable for advanced treatment of real biologically pretreated CGW. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Akse, James R.; Thompson, John; Scott, Bryan; Jolly, Clifford; Carter, Donald L.
1992-01-01
Catalytic oxidation was added to the baseline multifiltration technology for use on the Space Station Freedom in order to convert low-molecular weight organic waste components such as alcohols, aldehydes, ketones, amides, and thiocarbamides to CO2 at low temperature (121 C), thereby reducing the total organic carbon (TOC) to below 500 ppb. The rate of reaction for the catalytic oxidation of aqueous organics to CO2 and water depends primarily upon the catalyst, temperature, and concentration of reactants. This paper describes a kinetic study conducted to determine the impact of each of these parameters upon the reaction rate. The results indicate that a classic kinetic model, the Langmuir-Hinshelwood rate equation for heterogeneous catalysis, can accurately represent the functional dependencies of this rate.
HYBRID SNCR-SCR TECHNOLOGIES FOR NOX CONTROL: MODELING AND EXPERIMENT
The hybrid process of homogeneous gas-phase selective non-catalytic reduction (SNCR) followed by selective catalytic reduction (SCR) of nitric oxide (NO) was investigated through experimentation and modeling. Measurements, using NO-doped flue gas from a gas-fired 29 kW test combu...
NASA Astrophysics Data System (ADS)
Kim, Il Hee; Lee, Hyerim; Yu, Areum; Jeong, Jae Hwan; Lee, Youngmi; Kim, Myung Hwa; Lee, Chongmok; Dok Kim, Young
2018-04-01
NiO/NiCo2O4 nanotubes with a diameter of approximately 100 nm are synthesized using Ni and Co precursors via electro-spinning and subsequent calcination processes. The tubular structure is confirmed via transmission electron microscopy imaging, whereas the structures and elemental compositions of the nanotubes are determined using x-ray diffraction, energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. N2 adsorption isotherm data reveal that the surface of the nanotubes consists of micropores, thereby resulting in a significantly higher surface area (˜20 m2 g-1) than expected for a flat-surface structure (<15 m2 g-1). Herein, we present a study of the catalytic activity of our novel NiO/NiCo2O4 nanotubes for CO and acetaldehyde oxidation. The catalytic activity of NiO/NiCo2O4 is superior to Pt below 100 °C for CO oxidation. For acetaldehyde oxidation, the total oxidation activity of NiO/NiCo2O4 for acetaldehyde is comparable with that of Pt. Coexistence of many under-coordinated Co and Ni active sites in our structure is suggested be related to the high catalytic activity. It is suggested that our novel NiO/NiCo2O4 tubular structures with surface microporosity can be of interest for a variety of applications, including the catalytic oxidation of harmful gases.
Kim, Il Hee; Lee, Hyerim; Yu, Areum; Jeong, Jae Hwan; Lee, Youngmi; Kim, Myung Hwa; Lee, Chongmok; Kim, Young Dok
2018-04-27
NiO/NiCo 2 O 4 nanotubes with a diameter of approximately 100 nm are synthesized using Ni and Co precursors via electro-spinning and subsequent calcination processes. The tubular structure is confirmed via transmission electron microscopy imaging, whereas the structures and elemental compositions of the nanotubes are determined using x-ray diffraction, energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. N 2 adsorption isotherm data reveal that the surface of the nanotubes consists of micropores, thereby resulting in a significantly higher surface area (∼20 m 2 g -1 ) than expected for a flat-surface structure (<15 m 2 g -1 ). Herein, we present a study of the catalytic activity of our novel NiO/NiCo 2 O 4 nanotubes for CO and acetaldehyde oxidation. The catalytic activity of NiO/NiCo 2 O 4 is superior to Pt below 100 °C for CO oxidation. For acetaldehyde oxidation, the total oxidation activity of NiO/NiCo 2 O 4 for acetaldehyde is comparable with that of Pt. Coexistence of many under-coordinated Co and Ni active sites in our structure is suggested be related to the high catalytic activity. It is suggested that our novel NiO/NiCo 2 O 4 tubular structures with surface microporosity can be of interest for a variety of applications, including the catalytic oxidation of harmful gases.
Julcour Lebigue, Carine; Andriantsiferana, Caroline; N'Guessan Krou; Ayral, Catherine; Mohamed, Elham; Wilhelm, Anne-Marie; Delmas, Henri; Le Coq, Laurence; Gerente, Claire; Smith, Karl M; Pullket, Suangusa; Fowler, Geoffrey D; Graham, Nigel J D
2010-12-01
This paper describes a preliminary evaluation of the performance of carbonaceous materials prepared from sewage sludges (SBCMs) in a hybrid water treatment process based on adsorption and catalytic wet air oxidation; phenol was used as the model pollutant. Three different sewage sludges were treated by either carbonisation or steam activation, and the physico-chemical properties of the resultant carbonaceous materials (e.g. hardness, BET surface area, ash and elemental content, surface chemistry) were evaluated and compared with a commercial reference activated carbon (PICA F22). The adsorption capacity for phenol of the SBCMs was greater than suggested by their BET surface area, but less than F22; a steam activated, dewatered raw sludge (SA_DRAW) had the greatest adsorption capacity of the SBCMs in the investigated range of concentrations (<0.05 mol L(-1)). In batch oxidation tests, the SBCMs demonstrated catalytic behaviour arising from their substrate adsorptivity and metal content. Recycling of SA_DRAW in successive oxidations led to significant structural attrition and a hardened SA_DRAW was evaluated, but found to be unsatisfactory during the oxidation step. In a combined adsorption-oxidation sequence, both the PICA carbon and a selected SBCM showed deterioration in phenol adsorption after oxidative regeneration, but a steady state performance was reached after 2 or 3 cycles. Copyright © 2010 Elsevier Ltd. All rights reserved.
Removal of ammonia solutions used in catalytic wet oxidation processes.
Hung, Chang Mao; Lou, Jie Chung; Lin, Chia Hua
2003-08-01
Ammonia (NH(3)) is an important product used in the chemical industry, and is common place in industrial wastewater. Industrial wastewater containing ammonia is generally either toxic or has concentrations or temperatures such that direct biological treatment is unfeasible. This investigation used aqueous solutions containing more of ammonia for catalytic liquid-phase oxidation in a trickle-bed reactor (TBR) based on Cu/La/Ce composite catalysts, prepared by co-precipitation of Cu(NO(3))(2), La(NO(3))(2), and Ce(NO(3))(3) at 7:2:1 molar concentrations. The experimental results indicated that the ammonia conversion of the wet oxidation in the presence of the Cu/La/Ce composite catalysts was determined by the Cu/La/Ce catalyst. Minimal ammonia was removed from the solution by the wet oxidation in the absence of any catalyst, while approximately 91% ammonia removal was achieved by wet oxidation over the Cu/La/Ce catalyst at 230 degrees C with oxygen partial pressure of 2.0 MPa. Furthermore, the effluent streams were conducted at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes, and a reaction pathway was found linking the oxidizing ammonia to nitric oxide, nitrogen and water. The solution contained by-products, including nitrates and nitrites. Nitrite selectivity was minimized and ammonia removal maximized when the feed ammonia solution had a pH of around 12.0.
Dynamics of ultrathin V-oxide layers on Rh(111) in catalytic oxidation of ammonia and CO.
von Boehn, B; Preiss, A; Imbihl, R
2016-07-20
Catalytic oxidation of ammonia and CO has been studied in the 10(-4) mbar range using a catalyst prepared by depositing ultra-thin vanadium oxide layers on Rh(111) (θV ≈ 0.2 MLE). Using photoemission electron microscopy (PEEM) as a spatially resolving method, we observe that upon heating in an atmosphere of NH3 and O2 the spatial homogeneity of the VOx layer is removed at 800 K and a pattern consisting of macroscopic stripes develops; at elevated temperatures this pattern transforms into a pattern of circular VOx islands. Under reaction conditions the neighboring VOx islands become attracted by each other and coalesce. Similar processes of pattern formation and island coalescence are observed in catalytic CO oxidation. Reoxidation of the reduced VOx catalyst proceeds via surface diffusion of oxygen adsorbed onto Rh(111). A pattern consisting of macroscopic circular VOx islands can also be obtained by heating a Rh(111)/VOx catalyst in pure O2.
NASA Astrophysics Data System (ADS)
Kang, Jianxiong; Zhan, Wei; Li, Daosheng; Wang, Xiaocong; Song, Jing; Liu, Dongqi
This study investigated the feasibility of coupling a catalytic wet air oxidation (CWAO), with CuO/Al 2O 3 as catalyst, and an anaerobic/aerobic biological process to treat wastewater from Vitamin B 6 production. Results showed that the CWAO enhanced the biodegradability (BOD 5/COD) from 0.10 to 0.80. The oxidized effluents with COD of 10,000 mg l -1 was subjected to subsequent continuous anaerobic/aerobic oxidation, and 99.3% of total COD removal was achieved. The quality of the effluent obtained met the discharge standards of water pollutants for pharmaceutical industry Chemical Synthesis Products Category (GB21904-2008), and thereby it implies that the integrated CWAO and anaerobic/aerobic biological treatment may offer a promising process to treat wastewater from Vitamin B 6 production.
McCann, Scott D; Lumb, Jean-Philip; Arndtsen, Bruce A; Stahl, Shannon S
2017-04-26
A homogeneous Cu-based catalyst system consisting of [Cu(MeCN) 4 ]PF 6 , N , N '-di- tert -butylethylenediamine (DBED), and p -( N , N -dimethylamino)pyridine (DMAP) mediates efficient aerobic oxidation of alcohols. Mechanistic study of this reaction shows that the catalyst undergoes an in situ oxidative self-processing step, resulting in conversion of DBED into a nitroxyl that serves as an efficient cocatalyst for aerobic alcohol oxidation. Insights into this behavior are gained from kinetic studies, which reveal an induction period at the beginning of the reaction that correlates with the oxidative self-processing step, EPR spectroscopic analysis of the catalytic reaction mixture, which shows the buildup of the organic nitroxyl species during steady state turnover, and independent synthesis of oxygenated DBED derivatives, which are shown to serve as effective cocatalysts and eliminate the induction period in the reaction. The overall mechanism bears considerable resemblance to enzymatic reactivity. Most notable is the "oxygenase"-type self-processing step that mirrors generation of catalytic cofactors in enzymes via post-translational modification of amino acid side chains. This higher-order function within a synthetic catalyst system presents new opportunities for the discovery and development of biomimetic catalysts.
Frey, Carolin E; Wiechen, Mathias; Kurz, Philipp
2014-03-21
Layered manganese oxides from the birnessite mineral family have been identified as promising heterogeneous compounds for water-oxidation catalysis (WOC), a key reaction for the conversion of renewable energy into storable fuels. High catalytic rates were especially observed for birnessites which contain calcium as part of their structures. With the aim to systematically improve the catalytic performance of such oxide materials, we used a flexible synthetic route to prepare three series of calcium birnessites, where we varied the calcium concentrations, the ripening times of the original precipitates and the temperature of the heat treatment following the initial synthetic steps (tempering) during the preparation process. The products were carefully analysed by a number of analytical techniques and then probed for WOC activity using the Ce(4+)-system. We find that our set of twenty closely related manganese oxides shows large, but somewhat systematic alterations in catalytic rates, indicating the importance of synthesis parameters for maximum catalytic performance. The catalyst of the series for which the highest water-oxidation rate was found is a birnessite of medium calcium content (Ca : Mn ratio 0.2 : 1) that had been subjected to a tempering temperature of 400 °C. On the basis of the detailed analysis of the results, a WOC reaction scheme for birnessites is proposed to explain the observed trends in reactivity.
A new class of advanced oxidation processes (AOPs) based on sulfate radicals is being tested for the degradation of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in aqueous solution. These AOPs are based on the generation of sulfate radicals through...
Phenol wastewater remediation: advanced oxidation processes coupled to a biological treatment.
Rubalcaba, A; Suárez-Ojeda, M E; Stüber, F; Fortuny, A; Bengoa, C; Metcalfe, I; Font, J; Carrera, J; Fabregat, A
2007-01-01
Nowadays, there are increasingly stringent regulations requiring more and more treatment of industrial effluents to generate product waters which could be easily reused or disposed of to the environment without any harmful effects. Therefore, different advanced oxidation processes were investigated as suitable precursors for the biological treatment of industrial effluents containing phenol. Wet air oxidation and Fenton process were tested batch wise, while catalytic wet air oxidation and H2O2-promoted catalytic wet air oxidation processes were studied in a trickle bed reactor, the last two using over activated carbon as catalyst. Effluent characterisation was made by means of substrate conversion (using high liquid performance chromatography), chemical oxygen demand and total organic carbon. Biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) were obtained from respirometric tests using activated sludge from an urban biological wastewater treatment plant (WWTP). The main goal was to find the proper conditions in terms of biodegradability enhancement, so that these phenolic effluents could be successfully treated in an urban biological WWTP. Results show promising research ways for the development of efficient coupled processes for the treatment of wastewater containing toxic or biologically non-degradable compounds.
Combined catalysts for the combustion of fuel in gas turbines
Anoshkina, Elvira V.; Laster, Walter R.
2012-11-13
A catalytic oxidation module for a catalytic combustor of a gas turbine engine is provided. The catalytic oxidation module comprises a plurality of spaced apart catalytic elements for receiving a fuel-air mixture over a surface of the catalytic elements. The plurality of catalytic elements includes at least one primary catalytic element comprising a monometallic catalyst and secondary catalytic elements adjacent the primary catalytic element comprising a multi-component catalyst. Ignition of the monometallic catalyst of the primary catalytic element is effective to rapidly increase a temperature within the catalytic oxidation module to a degree sufficient to ignite the multi-component catalyst.
In-situ XPS analysis of oxidized and reduced plasma deposited ruthenium-based thin catalytic films
NASA Astrophysics Data System (ADS)
Balcerzak, Jacek; Redzynia, Wiktor; Tyczkowski, Jacek
2017-12-01
A novel in-situ study of the surface molecular structure of catalytically active ruthenium-based films subjected to the oxidation (in oxygen) and reduction (in hydrogen) was performed in a Cat-Cell reactor combined with a XPS spectrometer. The films were produced by the plasma deposition method (PEMOCVD). It was found that the films contained ruthenium at different oxidation states: metallic (Ru0), RuO2 (Ru+4), and other RuOx (Ru+x), of which content could be changed by the oxidation or reduction, depending on the process temperature. These results allow to predict the behavior of the Ru-based catalysts in different redox environments.
Phenolic Wastewater Treatment Alternatives.
1980-06-01
15 Potassium Permanganate ................ 19 Iron (VI) Ferrate ..................... 22 Catalytic Oxidation ..................... 22...carbon dioxide, potassium hydroxide, and manganese dioxide which were readily handled by the existing system. d. Iron (VI) Ferrate Ferrate is iron in...the following systems/processes: Granular Activated Carbon (GAC) adsorption, ozone oxidation, hydrogen peroxide oxidation, potassium permanganate
NASA Astrophysics Data System (ADS)
Filippova, Anna; Vashurin, Artur; Znoyko, Serafima; Kuzmin, Ilya; Razumov, Mikhail; Chernova, Alena; Shaposhnikov, Gennady; Koifman, Oscar
2017-12-01
Novel complexes of cobalt and copper with substituted phthalocyanines were synthesized and characterized. Their water-soluble derivatives were obtained by sulfonation under mild conditions and structurally proved. Aggregation equilibrium in water mediums was shown and influence of geometrical and electron parameters of macroheterocycle peripheral substituents on these processes was established. Catalytic activity upon liquid-phase oxidation of N,N-diethylcarbamodithiolate to thiuram E was studied. Kinetic parameters of substrate oxidation in presence of cobalt phthalocyanines were considered.
Oxidation of hydrogen halides to elemental halogens with catalytic molten salt mixtures
Rohrmann, Charles A.
1978-01-01
A process for oxidizing hydrogen halides by means of a catalytically active molten salt is disclosed. The subject hydrogen halide is contacted with a molten salt containing an oxygen compound of vanadium and alkali metal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen. The reduced vanadium which remains after this contacting is regenerated to the active higher valence state by contacting the spent molten salt with a stream of oxygen-bearing gas.
NASA Astrophysics Data System (ADS)
Meng, Nannan; Cheng, Jian; Zhou, Yifeng; Nie, Wangyan; Chen, Pengpeng
2017-02-01
A green and facile process was developed to prepare layered octahedral phase MoS2/reduced graphene oxide (1T-MoS2/RGO) nanocomposite by a Vitamin C-assisted self-assemble method, in which graphene oxide (GO) and LiMoS2 were used as starting materials. Catalytic performances of 1T-MoS2/RGO were evaluated by hydrogenation of 4-nitrophenol (4-NP). It was demonstrated that the prepared 1T-MoS2/RGO nanocomposite presented excellent catalytic performance and cycling stability for 4-NP reduction, which made it a promising noble-metal-free catalyst. Additionally, broadening work suggested some other RGO-based metal nanocomposite with well-defined porous structure could be also generated via this facile self-assembly method.
Wang, Tongyu; Reuter, Karsten
2015-11-24
We present a density-functional theory based kinetic Monte Carlo study of CO oxidation at the (111) facet of RuO 2. We compare the detailed insight into elementary processes, steady-state surface coverages, and catalytic activity to equivalent published simulation data for the frequently studied RuO 2(110) facet. Qualitative differences are identified in virtually every aspect ranging from binding energetics over lateral interactions to the interplay of elementary processes at the different active sites. Nevertheless, particularly at technologically relevant elevated temperatures, near-ambient pressures and near-stoichiometric feeds both facets exhibit almost identical catalytic activity. As a result, these findings challenge the traditional definitionmore » of structure sensitivity based on macroscopically observable turnover frequencies and prompt scrutiny of the applicability of structure sensitivity classifications developed for metals to oxide catalysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Tongyu; Reuter, Karsten, E-mail: karsten.reuter@ch.tum.de; SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory and Stanford University, 443 Via Ortega, Stanford, California 94035-4300
2015-11-28
We present a density-functional theory based kinetic Monte Carlo study of CO oxidation at the (111) facet of RuO{sub 2}. We compare the detailed insight into elementary processes, steady-state surface coverages, and catalytic activity to equivalent published simulation data for the frequently studied RuO{sub 2}(110) facet. Qualitative differences are identified in virtually every aspect ranging from binding energetics over lateral interactions to the interplay of elementary processes at the different active sites. Nevertheless, particularly at technologically relevant elevated temperatures, near-ambient pressures and near-stoichiometric feeds both facets exhibit almost identical catalytic activity. These findings challenge the traditional definition of structure sensitivitymore » based on macroscopically observable turnover frequencies and prompt scrutiny of the applicability of structure sensitivity classifications developed for metals to oxide catalysis.« less
Sobolevskiy, Anatoly [Orlando, FL; Rossin, Joseph A [Columbus, OH; Knapke, Michael J [Columbus, OH
2011-07-12
A process for the catalytic reduction of nitrogen oxides (NOx) in a gas stream (29) in the presence of H.sub.2 is provided. The process comprises contacting the gas stream with a catalyst system (38) comprising zirconia-silica washcoat particles (41), a pre-sulfated zirconia binder (44), and a catalyst combination (40) comprising palladium and at least one of rhodium, ruthenium, or a mixture of ruthenium and rhodium.
Senanayake, Sanjaya D; Stacchiola, Dario; Rodriguez, Jose A
2013-08-20
Oxides play a central role in important industrial processes, including applications such as the production of renewable energy, remediation of environmental pollutants, and the synthesis of fine chemicals. They were originally used as catalyst supports and were thought to be chemically inert, but now they are used to build catalysts tailored toward improved selectivity and activity in chemical reactions. Many studies have compared the morphological, electronic, and chemical properties of oxide materials with those of unoxidized metals. Researchers know much less about the properties of oxides at the nanoscale, which display distinct behavior from their bulk counterparts. More is known about metal nanoparticles. Inverse-model catalysts, composed of oxide nanoparticles supported on metal or oxide substrates instead of the reverse (oxides supporting metal nanoparticles), are excellent tools for systematically testing the properties of novel catalytic oxide materials. Inverse models are prepared in situ and can be studied with a variety of surface science tools (e.g. scanning tunneling microscopy, X-ray photoemission spectroscopy, ultraviolet photoemission spectroscopy, low-energy electron microscopy) and theoretical tools (e.g. density functional theory). Meanwhile, their catalytic activity can be tested simultaneously in a reactor. This approach makes it possible to identify specific functions or structures that affect catalyst performance or reaction selectivity. Insights gained from these tests help to tailor powder systems, with the primary objective of rational design (experimental and theoretical) of catalysts for specific chemical reactions. This Account describes the properties of inverse catalysts composed of CeOx nanoparticles supported on Cu(111) or CuOx/Cu(111) as determined through the methods described above. Ceria is an important material for redox chemistry because of its interchangeable oxidation states (Ce⁴⁺ and Ce³⁺). Cu(111), meanwhile, is a standard catalyst for reactions such as CO oxidation and the water-gas shift (WGS). This metal serves as an ideal replacement for other noble metals that are neither abundant nor cost effective. To prepare the inverse system we deposited nanoparticles (2-20 nm) of cerium oxide onto the Cu(111) surface. During this process, the Cu(111) surface grows an oxide layer that is characteristic of Cu₂O (Cu¹⁺). This oxide can influence the growth of ceria nanoparticles. Evidence suggests triangular-shaped CeO₂(111) grows on Cu₂O(111) surfaces while rectangular CeO₂(100) grows on Cu₄O₃(111) surfaces. We used the CeOx/Cu₂O/Cu(111) inverse system to study two catalytic processes: the WGS (CO + H₂O → CO₂ + H₂) and CO oxidation (2CO + O₂ → 2CO₂). We discovered that the addition of small amounts of ceria nanoparticles can activate the Cu(111) surface and achieve remarkable enhancement of catalytic activity in the investigated reactions. In the case of the WGS, the CeOx nanoparticle facilitated this process by acting at the interface with Cu to dissociate water. In the CO oxidation case, an enhancement in the dissociation of O₂ by the nanoparticles was a key factor. The strong interaction between CeOx nanoparticles and Cu(111) when preoxidized and reduced in CO resulted in a massive surface reconstruction of the copper substrate with the introduction of microterraces that covered 25-35% of the surface. This constitutes a new mechanism for surface reconstruction not observed before. These microterraces helped to facilitate a further enhancement of activity towards the WGS by opening an additional channel for the dissociation of water. In summary, inverse catalysts of CeOx/Cu(111) and CeO₂/Cu₂O/Cu(111) demonstrate the versatility of a model system to obtain insightful knowledge of catalytic processes. These systems will continue to offer a unique opportunity to probe key catalytic components and elucidate the relationship between structure and reactivity of novel materials and reactions in the future.
Topotactic Metal-Insulator Transition in Epitaxial SrFeO x Thin Films
Khare, Amit; Shin, Dongwon; Yoo, Tae Sup; ...
2017-07-31
Multivalent transition metal oxides provide fascinating and rich physics related to oxygen stoichiometry. In particular, the adoptability of various valence states of transition metals enables perovskite oxides to display mixed (oxygen) ionic and electronic conduction and catalytic activity useful in many practical applications, including solid-oxide fuel cells (SOFCs), rechargeable batteries, gas sensors, and memristive devices. For proper realization of the ionic conduction and catalytic activity, it is essential to understand the reversible oxidation and reduction process, which is governed by oxygen storage/release steps in oxides. Topotactic phase transformation facilitates the redox process in perovskites with specific oxygen vacancy ordering bymore » largely varying the oxygen concentration of a material without losing the lattice framework. The concentration and diffusion of oxide ions (O 2–), the valence state of the transition metal cations, and the thermodynamic structural integrity together provide fundamental understanding and ways to explicitly control the redox reaction.[6] In addition, it offers an attractive route for tuning the emergent physical properties of transition metal oxides, via strong coupling between the crystal lattice and electronic structure.« less
NASA Astrophysics Data System (ADS)
Huang, Haibao; Lu, Haoxian; Zhan, Yujie; Liu, Gaoyuan; Feng, Qiuyu; Huang, Huiling; Wu, Muyan; Ye, Xinguo
2017-01-01
Volatile organic compounds (VOCs) cause the major air pollution concern. In this study, a series of ZSM-5 supported transition metals were prepared by impregnation method. They were combined with vacuum UV (VUV) photo-oxidation in a continuous-flow packed-bed reactor and used for the degradation of benzene, a typical toxic VOCs. Compared with VUV photo-oxidation alone, the introduction of catalysts can greatly enhance benzene oxidation under the help of O3, the by-products from VUV irradiation, via ozone-assisted catalytic oxidation (OZCO). The catalytic activity of transition metals towards benzene oxidation followed the order: Mn > Co > Cu > Ni > Fe. Mn achieved the best catalytic activity due to the strongest capability for O3 catalytic decomposition and utilization. Benzene and O3 removal efficiency reached as high as 97% and 100% after 360 min, respectively. O3 was catalytically decomposed, generating highly reactive oxidants such as rad OH and rad O for benzene oxidation.
Communication: Towards catalytic nitric oxide reduction via oligomerization on boron doped graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantatore, Valentina, E-mail: valcan@chalmers.se; Panas, Itai
We use density functional theory to describe a novel way for metal free catalytic reduction of nitric oxide NO utilizing boron doped graphene. The present study is based on the observation that boron doped graphene and O—N=N—O{sup −} act as Lewis acid-base pair allowing the graphene surface to act as a catalyst. The process implies electron assisted N=N bond formation prior to N—O dissociation. Two N{sub 2} + O{sub 2} product channels, one of which favoring N{sub 2}O formation, are envisaged as outcome of the catalytic process. Besides, we show also that the N{sub 2} + O{sub 2} formation pathwaysmore » are contrasted by a side reaction that brings to N{sub 3}O{sub 3}{sup −} formation and decomposition into N{sub 2}O + NO{sub 2}{sup −}.« less
Kolar, Praveen; Kastner, James R
2010-02-01
Poultry rendering emissions contain volatile organic compounds (VOCs) that are nuisance, odorous, and smog and particulate matter precursors. Present treatment options, such as wet scrubbers, do not eliminate a significant fraction of the VOCs emitted including, 2-methylbutanal (2-MB), 3-methylbutanal, and hexanal. This research investigated the low-temperature (25-160 degrees C) catalytic oxidation of 2-MB and hexanal vapors in a differential, plug flow reactor using wood fly ash (WFA) as a catalyst and oxygen and ozone as oxidants. The oxidation rates of 2-MB and hexanal ranged between 3.0 and 3.5 x 10(-9)mol g(-1)s(-1) at 25 degrees C and the activation energies were 2.2 and 1.9 kcal mol(-1), respectively. The catalytic activity of WFA was comparable to other commercially available metal and metal oxide catalysts. We theorize that WFA catalyzed a free radical reaction in which 2-butanone and CO(2) were formed as end products of 2-MB oxidation, while CO(2), pentanal, and butanal were formed as end products of hexanal oxidation. When tested as a binary mixture at 25 and 160 degrees C, no inhibition was observed. Additionally, when ozone was tested as an oxidant at 160 degrees C, 100% removal was achieved within a 2-s reaction time. These results may be used to design catalytic oxidation processes for VOC removal at poultry rendering facilities and potentially replace energy and water intensive air pollution treatment technologies currently in use. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Beuhler, Robert J [East Moriches, NY; White, Michael G [Blue Point, NY; Hrbek, Jan [Rocky Point, NY
2006-08-15
A catalytic process for the oxidation of organic. Oxygen is loaded into a metal foil by heating the foil while in contact with an oxygen-containing fluid. After cooling the oxygen-activated foil to room temperature, oxygen diffuses through the foil and oxidizes reactants exposed to the other side of the foil.
Fang, Ruiqi; Tian, Panliang; Yang, Xianfeng
2018-01-01
The development of efficient encapsulation strategies has attracted intense interest for preparing highly active and stable heterogeneous metal catalysts. However, issues related to low loadings, costly precursors and complex synthesis processes restrict their potential applications. Herein, we report a novel and general strategy to encapsulate various ultrafine metal-oxides nanoparticles (NPs) into the mesoporous KIT-6. The synthesis is facile, which only involves self-assembly of a metal–organic framework (MOF) precursor in the silica mesopores and a subsequent calcination process to transform the MOF into metal-oxide NPs. After the controlled calcination, the metal-oxide NPs produced from MOF decomposition are exclusively confined and uniformly distributed in the mesopores of KIT-6 with high metal loadings. Benefitting from the encapsulation effects, as-synthesized Co@KIT-6 materials exhibit superior catalytic activity and recycling stability in biomass-derived HMF oxidation under mild reaction conditions. PMID:29675231
[Advanced treatment of coking wastewater with a novel heterogeneous electro-Fenton technology].
Li, Hai-Tao; Li, Yu-Ping; Zhang, An-Yang; Cao, Hong-Bin; Li, Xin-Gang; Zhang, Yi
2011-01-01
A novel electro-catalytic reactor, with oxygen-reduction cathode (PAQ/GF), dimensionally stable anode (IrO2-RuO2 -TiO2/ Ti) and heterogeneous catalysts, is developed for advanced treatment of coking wastewater after biological process, integrating cathodic and anodic simultaneous oxidation processes. A PAQ/GF electrode was synthesized by the electro-polymerization of 2-ethyl anthraquinone on graphite felt, which was characterized with cyclic voltametry measurements; the results indicated that the PAQ/GF electrode showed high reversibility for oxidation-reduction reaction of anthraquinone and catalytic activity for O2 reduction to H2O2; 13.5 mmol/L H2O2 was obtained after electrolysis for 6 h at -0.7 V (vs. SCE) and pH 6 with a current efficiency of 50% in a membrane reactor. Fe-Cu/Y350 catalysts, prepared by impregnation method, could catalyze the production of hydroxyl radicals (*OH) from H2O2, which was confirmed both by fading reaction of crystal violet and oxidation of *OH-probe compound (p-chlorobenzoic acid); Fe-Cu/Y350 also showed high catalytic-activity for the oxidation of organics by hypochlorous sodium, because COD removal of coking wastewater reached 26% in the catalytic process while only 11% of COD removal was obtained in the absence of Fe-Cu/Y350. COD removal of coking wastewater reached 49.4% (26.0% and 23.4% in cathodic system and anodic system, respectively) in the developed electrolytic-reactor, which was higher than that of conventional cathodic-anodic-oxidation process (29.8%). At optimal reaction condition of initial COD = 192 mg/L, I = 10A x m(-2) and pH 4-5, more than 50% COD were removed after electrolysis for 1 h. The mechanism might be as follows: in cathodic system, H2O2 is generated from reduction of O2 on PAQ/GF cathode, and catalyzed by Fe-Cu/Y350 for production of *OH, which causes mineralization and degradation of organic pollutants; in anodic system, Cl2 and HClO are generated from Cl- oxidation on IrO2-RuO2-TiO2/Ti anode and the organic pollutants are oxidized by Cl2, and HClO with Fe-Cu/Y350 catalysts or by direct anodic oxidation.
Kuwahara, Yasutaka; Yoshimura, Yukihiro; Haematsu, Kohei; Yamashita, Hiromi
2018-06-17
Harvesting solar light to boost commercially important organic synthesis still remains a challenge. Coupling of conventional noble metal catalysts with plasmonic oxide materials which exhibit intense plasmon absorption in the visible light region is a promising option for efficient solar energy utilization in catalysis. Herein we for the first time demonstrate that plasmonic hydrogen molybdenum bronze coupled with Pt nanoparticles (Pt/H x MoO 3-y ) shows a high catalytic performance in the deoxygenation of sulfoxides with 1 atm H 2 at room temperature, with dramatic activity enhancement under visible light irradiation relative to dark condition. The plasmonic molybdenum oxide hybrids with strong plasmon resonance peaks pinning at around 556 nm are obtained via a facile H-spillover process. Pt/H x MoO 3-y hybrid provides excellent selectivity for the deoxygenation of various sulfoxides as well as pyridine N-oxides, in which drastically improved catalytic efficiencies are obtained under the irradiation of visible light. Comprehensive analyses reveal that oxygen vacancies massively introduced via a H-spillover process are the main active sites, and reversible redox property of Mo atoms and strong plasmonic absorption play key roles in this reaction. The catalytic system works under extremely mild conditions and can boost the reaction by the assist of visible light, offering an ultimately greener protocol to produce sulfides from sulfoxides. Our findings may open up a new strategy for designing plasmon-based catalytic systems that can harness visible light efficiently.
Investigation of the Origin of Catalytic Activity in Oxide-Supported Nanoparticle Gold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Ian
Since Haruta’s discovery in 1987 of the surprising catalytic activity of supported Au nanoparticles, we have seen a very large number of experimental and theoretical efforts to explain this activity and to fully understand the nature of the behavior of the responsible active sites. In 2011, we discovered that a dual catalytic site at the perimeter of ~3nm diameter Au particles supported on TiO 2 is responsible for oxidative catalytic activity. O 2 molecules bind with Au atoms and Ti4+ ions in the TiO 2 support and the weakened O-O bond dissociates at low temperatures, proceeding to produce O atomsmore » which act as oxidizing agents for the test molecule, CO. The papers supported by DOE have built on this finding and have been concerned with two aspects of the behavior of Au/TiO 2 catalysts: (1). Mechanistic behavior of dual catalytic sites in the oxidation of organic molecules such as ethylene and acetic acid; (2). Studies of the electronic properties of the TiO 2 (110) single crystal in relation to its participation in charge transfer at the occupied dual catalytic site. A total of 20 papers have been produced through DOE support of this work. The papers combine IR spectroscopic investigations of Au/TiO 2 catalysts with surface science on the TiO 2(110) and TiO 2 nanoparticle surfaces with modern density functional modeling. The primary goals of the work were to investigate the behavior of the dual Au/Ti 4+ site for the partial oxidation of alcohols to acids, the hydrogenation of aldehydes and ketones to alcohols, and the condensation of oxygenate intermediates- all processes related to the utilization of biomass in the production of useful chemical energy sources.« less
Fuel-rich catalytic combustion: A soot-free technique for in situ hydrogen-like enrichment
NASA Technical Reports Server (NTRS)
Brabbs, T. A.; Olson, S. L.
1985-01-01
An experimental program on the catalytic oxidation of iso-octane demonstrated the feasibility of the two-stage combustion system for reducing particulate emissions. With a fuel-rich (phi = 4.8 to 7.8) catalytic combustion preburner as the first stage the combustion process was soot free at reactor outlet temperatures of 1200 K or less. Although soot was not measured directly, its absence was indicated. Reaction products collected at two positions downstream of the catalyst bed were analyzed on a gas chromatograph. Comparison of these products indicated that pyrolysis of the larger molecules continued along the drift tube and that benzene formation was a gas-phase reaction. The effective hydrogen-carbon ratio calculated from the reaction products increased by 20 to 68 percent over the range of equivalence ratios tested. The catalytic partial oxidation process also yielded a large number of smaller-containing molecules. The fraction of fuel carbon in compounds having two or fewer carbon atoms ranged from 30 percent at 1100 K to 80 percent at 1200 K.
Zhuang, Haifeng; Han, Hongjun; Hou, Baolin; Jia, Shengyong; Zhao, Qian
2014-08-01
Sewage sludge of biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl₂ as activation agent, which supported manganese and ferric oxides as catalysts (including SBAC) to improve the performance of ozonation of real biologically pretreated Lurgi coal gasification wastewater. The results indicated catalytic ozonation with the prepared catalysts significantly enhanced performance of pollutants removal and the treated wastewater was more biodegradable and less toxic than that in ozonation alone. On the basis of positive effect of higher pH and significant inhibition of radical scavengers in catalytic ozonation, it was deduced that the enhancement of catalytic activity was responsible for generating hydroxyl radicals and the possible reaction pathway was proposed. Moreover, the prepared catalysts showed superior stability and most of toxic and refractory compounds were eliminated at successive catalytic ozonation runs. Thus, the process with economical, efficient and sustainable advantages was beneficial to engineering application. Copyright © 2014 Elsevier Ltd. All rights reserved.
2017-01-01
A homogeneous Cu-based catalyst system consisting of [Cu(MeCN)4]PF6, N,N′-di-tert-butylethylenediamine (DBED), and p-(N,N-dimethylamino)pyridine (DMAP) mediates efficient aerobic oxidation of alcohols. Mechanistic study of this reaction shows that the catalyst undergoes an in situ oxidative self-processing step, resulting in conversion of DBED into a nitroxyl that serves as an efficient cocatalyst for aerobic alcohol oxidation. Insights into this behavior are gained from kinetic studies, which reveal an induction period at the beginning of the reaction that correlates with the oxidative self-processing step, EPR spectroscopic analysis of the catalytic reaction mixture, which shows the buildup of the organic nitroxyl species during steady state turnover, and independent synthesis of oxygenated DBED derivatives, which are shown to serve as effective cocatalysts and eliminate the induction period in the reaction. The overall mechanism bears considerable resemblance to enzymatic reactivity. Most notable is the “oxygenase”-type self-processing step that mirrors generation of catalytic cofactors in enzymes via post-translational modification of amino acid side chains. This higher-order function within a synthetic catalyst system presents new opportunities for the discovery and development of biomimetic catalysts. PMID:28470049
Wang, Wenting; Xu, Guiyun; Cui, Xinyan Tracy; Sheng, Ge; Luo, Xiliang
2014-08-15
Significantly enhanced catalytic activity of a nanocomposite composed of conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) doped with graphene oxide (GO) was achieved through a simple electrochemical reduction process. The nanocomposite (PEDOT/GO) was electrodeposited on an electrode and followed by electrochemical reduction, and the obtained reduced nanocomposite (PEDOT/RGO) modified electrode exhibited lowered electrochemical impedance and excellent electrocatalytic activity towards the oxidation of dopamine. Based on the excellent catalytic property of PEDOT/RGO, an electrochemical sensor capable of sensitive and selective detection of DA was developed. The fabricated sensor can detect DA in a wide linear range from 0.1 to 175μM, with a detection limit of 39nM, and it is free from common interferences such as uric acid and ascorbic acid. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhai, Chunyang; Hu, Jiayue; Sun, Mingjuan; Zhu, Mingshan
2018-02-01
Two dimensional (2D) BiOI nanoplates were synthesized and used as support for the deposition of Pt nanoparticles. Owing to broad visible light absorption (up to 660 nm), the as-obtained Pt-BiOI electrode was used as effective photoelectrocatalyst in the application of catalytic ethanol oxidation in alkaline media under visible light irradiation. Compared to dark condition, the Pt-BiOI modified electrode displayed 3 times improved catalytic activity towards ethanol oxidation under visible light irradiation. The synergistic effect of electrocatalytic and photocatalytic, and the unique of 2D structures contribute to the improvement of catalytic activity. The mechanism of enhanced photoelectrocatalytic process is proposed. The present results suggest that 2D visible-light-activated BiOI can be served as promising support for the decoration of Pt and applied in the fields of photoelectrochemical and photo-assisted fuel cell applications
Lazareva, Svetlana; Ismagilov, Zinfer; Kuznetsov, Vadim; Shikina, Nadezhda; Kerzhentsev, Mikhail
2018-02-05
Huge amounts of nuclear waste, including depleted uranium, significantly contribute to the adverse environmental situation throughout the world. An approach to the effective use of uranium oxides in catalysts for the deep oxidation of chlorine-containing hydrocarbons is suggested. Investigation of the catalytic activity of the synthesized supported uranium oxide catalysts doped with Cr, Mn and Co transition metals in the chlorobenzene oxidation showed that these catalysts are comparable with conventional commercial ones. Physicochemical properties of the catalysts were studied by X-ray diffraction, temperature-programmed reduction with hydrogen (H 2 -TPR), and Fourier transform infrared spectroscopy. The higher activity of Mn- and Co-containing uranium oxide catalysts in the H 2 -TPR and oxidation of chlorobenzene in comparison with non-uranium catalysts may be related to the formation of a new disperse phase represented by uranates. The study of chlorobenzene adsorption revealed that the surface oxygen is involved in the catalytic process.
Catalytic oxidative desulfurization of liquid hydrocarbon fuels using air
NASA Astrophysics Data System (ADS)
Sundararaman, Ramanathan
Conventional approaches to oxidative desulfurization of liquid hydrocarbons involve use of high-purity, expensive water soluble peroxide for oxidation of sulfur compounds followed by post-treatment for removal of oxidized sulfones by extraction. Both are associated with higher cost due to handling, storage of oxidants and yield loss with extraction and water separation, making the whole process more expensive. This thesis explores an oxidative desulfurization process using air as an oxidant followed by catalytic decomposition of sulfones thereby eliminating the aforementioned issues. Oxidation of sulfur compounds was realized by a two step process in which peroxides were first generated in-situ by catalytic air oxidation, followed by catalytic oxidation of S compounds using the peroxides generated in-situ completing the two step approach. By this technique it was feasible to oxidize over 90% of sulfur compounds present in real jet (520 ppmw S) and diesel (41 ppmw S) fuels. Screening of bulk and supported CuO based catalysts for peroxide generation using model aromatic compound representing diesel fuel showed that bulk CuO catalyst was more effective in producing peroxides with high yield and selectivity. Testing of three real diesel fuels obtained from different sources for air oxidation over bulk CuO catalyst showed different level of effectiveness for generating peroxides in-situ which was consistent with air oxidation of representative model aromatic compounds. Peroxides generated in-situ was then used as an oxidant to oxidize sulfur compounds present in the fuel over MoO3/SiO2 catalyst. 81% selectivity of peroxides for oxidation of sulfur compounds was observed on MoO3/SiO2 catalyst at 40 °C and under similar conditions MoO3/Al2O3 gave only 41% selectivity. This difference in selectivity might be related to the difference in the nature of active sites of MoO3 on SiO2 and Al2O 3 supports as suggested by H2-TPR and XRD analyses. Testing of supported and bulk MgO catalysts for decomposition of sulfones showed that these catalysts are effective in decomposing oxidized sulfur compounds such as dibenzothiophene sulfone and 3-methyl benzothiophene sulfone to biphenyl and isopropyl benzene respectively and SO2. Study of catalyst structure-activity relationship revealed that in the range of 40--140 nm of MgO, crystallite size plays a critical role on activity of the catalyst for sulfone decomposition. In testing other alkali oxides, it was demonstrated that CaO was effective as a reagent in decomposing oxidized sulfur compounds in a crude oil at a much lower temperature than used for MgO based catalyst. Preliminary data on potential regeneration scheme of spent CaO is also discussed.
Catalyst for elemental sulfur recovery process
Flytzani-Stephanopoulos, M.; Liu, W.
1995-01-24
A catalytic reduction process is described for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(FO[sub 2])[sub 1[minus]n](RO)[sub n
SELECTIVE OXIDATION OF ALCOHOLS - COMPARING DIFFERENT CATALYTIC PROCESSES
Oxidation of alcohols to aldehydes, ketones or carboxylic acids is one of the most desirable chemical transformations in organic synthesis as these products are important precursors and intermediates for many drugs, vitamins and fragrances. Numerous methods are available for alc...
ALCOHOL OXIDATION - A COMPARATIVE STUDY OF DIFFERENT CATALYTIC PROCESSES
Oxidation of alcohols to aldehydes, ketones or carboxylic acids is one of the most desirable chemical transformations in organic synthesis as these products are important precursors and intermediates for many drugs, vitamins and fragrances. Numerous methods are available for alco...
Catalytic process for formaldehyde oxidation
NASA Technical Reports Server (NTRS)
Kielin, Erik J. (Inventor); Brown, Kenneth G. (Inventor); D'Ambrosia, Christine M. (Inventor)
1996-01-01
Disclosed is a process for oxidizing formaldehyde to carbon dioxide and water without the addition of energy. A mixture of formaldehyde and an oxidizing agent (e.g., ambient air containing formaldehyde) is exposed to a catalyst which includes a noble metal dispersed on a metal oxide which possesses more than one oxidation state. Especially good results are obtained when the noble metal is platinum, and the metal oxide which possesses more than one oxidation state is tin oxide. A promoter (i.e., a small amount of an oxide of a transition series metal) may be used in association with the tin oxide to provide very beneficial results.
You, Nansuk; Kim, Min Ji; Jeong, Kwang-Eun; Jeong, Soon-Yong; Park, Young-Kwon; Jeon, Jong-Ki
2010-05-01
Dibenzothiophene sulfone (DBTS), one of the products of the oxidative desulfurization of heavy oil, can be removed through extraction as well as by an adsorption process. It is necessary to utilize DBTS in conjunction with catalytic cracking. An object of the present study is to provide an Mg-Al-mesoporous silica catalyst for the removal of sulfur dioxide from DBTS. The characteristics of the Mg-Al-mesoporous silica catalyst were investigated through N2 adsorption, XRD, ICP, and XRF. An Mg-Al-mesoporous silica catalyst formulated in a direct incorporation method showed higher catalytic performance compared to pure MgO during the catalytic removal of sulfur dioxide from DBTS. The higher dispersion of Mg as well as the large surface area of the Mg-Al-mesoporous silica catalyst strongly influenced the catalyst basicity in DBTS cracking.
Catalytic processes in the atmospheres of earth and Venus
NASA Technical Reports Server (NTRS)
Demore, W. B.; Yung, Y. L.
1982-01-01
Photochemical processes in planetary atmospheres are strongly influenced by catalytic effects of minor constituents. Catalytic cycles in the atmospheres of Earth and Venus are closely related. For example, chlorine oxides (ClOx) act as catalysts in the two atmospheres. On earth, they serve to convert odd oxygen (atomic oxygen and ozone) to molecular oxygen. On Venus they have a similar effect, but in addition they accelerate the reactions of atomic and molecular oxygen with carbon monoxide. The latter process occurs by a unique combination of ClOx catalysis and sulful dioxide photosensitization. The mechanism provides an explanation for the very low extent of carbon dioxide decomposition by sunlight in the Venus atmosphere.
[Catalytic performance of Ce/Zr series catalysts on soot combustion].
Zhu, Ling; Wang, Xue-Zhong; Hao, Zheng-Ping
2005-09-01
Catalytic performances of Ce/Zr series catalysts (Ce(x)Zr(1-x)O2) on soot combustion and the influence of feed gas were investigated by TG and TPO. The catalytic activity is high, and affects by the Ce/Zr ratio. The concentration of O2 affects the speed-limited step during the process of soot combustion. H2O showed no effect on the catalytic activity for soot combustion on Ce(0.5)Zr(0.5)O2. NO could promote soot combustion by presenting NO2, a more powerful oxidant than O2, and the ignition temperature of soot decreased 30 degrees C. Results of TG and TPO show that the beta species oxygen on the catalyst take part in the combustion process.
Mechanism of heterogeneous catalytic oxidation of organic compounds to carboxylic acids
NASA Astrophysics Data System (ADS)
Andrushkevich, T. V.; Chesalov, Yu A.
2018-06-01
The results of studies on the mechanism of heterogeneous catalytic oxidation of organic compounds of different chemical structure to carboxylic acids are analyzed and generalized. The concept developed by Academician G.K.Boreskov, according to which the direction of the reaction is governed by the structure and bond energy of surface intermediates, was confirmed taking the title processes as examples. Quantitative criteria of the bond energies of surface compounds of oxidizable reactants, reaction products and oxygen that determine the selective course of the reaction are presented. The bibliography includes 195 references.
Process of making porous ceramic materials with controlled porosity
Anderson, Marc A.; Ku, Qunyin
1993-01-01
A method of making metal oxide ceramic material is disclosed by which the porosity of the resulting material can be selectively controlled by manipulating the sol used to make the material. The method can be used to make a variety of metal oxide ceramic bodies, including membranes, but also pellets, plugs or other bodies. It has also been found that viscous sol materials can readily be shaped by extrusion into shapes typical of catalytic or adsorbent bodies used in industry, to facilitate the application of such materials for catalytic and adsorbent applications.
NASA Astrophysics Data System (ADS)
Mohanapriya, S.; Renuka devi, R.; Raj, V.
2018-02-01
Mesoporous Nickel has been prepared by electrodeposition using non-ionic surfactant based liquid crystalline template under optimized processing conditions. Physico-chemical properties of mesoporous nickel is systematically characterized through XRD, SEM and AFM analyses. Comparison of electrocatalytic activity of mesoporous nickel with smooth nickel was interrogated using cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) analyses. Distinctly enhanced electrocatalytic activity with improved surface poisoning resistance related to mesoporous nickel electrode towards methanol oxidation stems from unique mesoporous morphology. This mesoporous morphology with high surface to volume ratio is highly beneficial to promote active catalytic centers to offer readily accessible Pt catalytic sites for MOR, through facilitating mass and electron transports.
Shi, Jingjing; Cao, Hongxia; Wang, Ruiyu
2017-01-01
CeO2–MOx (M = Cu, Co, Ni) composite yolk–shell nanospheres with uniform size were fabricated by a general wet-chemical approach. It involved a non-equilibrium heat-treatment of Ce coordination polymer colloidal spheres (Ce-CPCSs) with a proper heating rate to produce CeO2 yolk–shell nanospheres, followed by a solvothermal treatment of as-synthesized CeO2 with M(CH3COO)2 in ethanol solution. During the solvothermal process, highly dispersed MOx species were decorated on the surface of CeO2 yolk–shell nanospheres to form CeO2–MOx composites. As a CO oxidation catalyst, the CeO2–MOx composite yolk–shell nanospheres showed strikingly higher catalytic activity than naked CeO2 due to the strong synergistic interaction at the interface sites between MOx and CeO2. Cycling tests demonstrate the good cycle stability of these yolk–shell nanospheres. The initial concentration of M(CH3COO)2·xH2O in the synthesis process played a significant role in catalytic performance for CO oxidation. Impressively, complete CO conversion as reached at a relatively low temperature of 145 °C over the CeO2–CuOx-2 sample. Furthermore, the CeO2–CuOx catalyst is more active than the CeO2–CoOx and CeO2–NiO catalysts, indicating that the catalytic activity is correlates with the metal oxide. Additionally, this versatile synthesis approach can be expected to create other ceria-based composite oxide systems with various structures for a broad range of technical applications. PMID:29234577
Sun, Tonghua; Shen, Yafei; Jia, Jinping
2014-02-18
This paper proposes a novel self-developed JTS-01 desulfurizer and JZC-80 alkaline adsorbent for H2S removal and gas cleaning of the COREX coal gas in small-scale and commercial desulfurizing devices. JTS-01 desulfurizer was loaded with metal oxide (i.e., ferric oxides) catalysts on the surface of activated carbons (AC), and the catalyst capacity was improved dramatically by means of ultrasonically assisted impregnation. Consequently, the sulfur saturation capacity and sulfur capacity breakthrough increased by 30.3% and 27.9%, respectively. The whole desulfurizing process combined selective adsorption with catalytic oxidation. Moreover, JZC-80 adsorbent can effectively remove impurities such as HCl, HF, HCN, and ash in the COREX coal gas, stabilizing the system pressure drop. The JTS-01 desulfurizer and JZC-80 adsorbent have been successfully applied for the COREX coal gas cleaning in the commercial plant at Baosteel, Shanghai. The sulfur capacity of JTS-01 desulfurizer can reach more than 50% in industrial applications. Compared with the conventional dry desulfurization process, the modified AC desulfurizers have more merit, especially in terms of the JTS-01 desulfurizer with higher sulfur capacity and low pressure drop. Thus, this sorption enhanced catalytic desulfurization has promising prospects for H2S removal and other gas cleaning.
NASA Astrophysics Data System (ADS)
Du, Jinpeng; Qu, Zhenping; Dong, Cui; Song, Lixin; Qin, Yuan; Huang, Na
2018-03-01
Mn-Ce oxides catalysts were synthesized by a novel method combining redox-precipitation and hydrothermal approach. The results indicate that the ratio between manganese and cerium plays a crucial role in the formation of catalysts, and the textual properties as well as catalytic activity are remarked affected. Mn0.6Ce0.4O2 possesses a predominant catalytic activity in the oxidation of toluene, over 70% of toluene is converted at 200 °C, and the complete conversion temperature is 210 °C. The formation of Mn-Ce solid solution markedly improves the surface area as well as pore volume of Mn-Ce oxide catalyst, and Mn0.6Ce0.4O2 possesses the largest surface area of 298.5 m2/g. The abundant Ce3+ and Mn3+ on Mn0.6Ce0.4O2 catalyst facilitate the formation of oxygen vacancies, and improve the transfer of oxygen in the catalysts. Meanwhile, it is found that cerium in Mn-Ce oxide plays a key role in the adsorption of toluene, while manganese is proved to be crucial in the oxidation of toluene, the cooperation between manganese and cerium improves the catalytic reaction process. In addition, the reaction process is investigated by in situ DRIFT measurement, and it is found that the adsorbed toluene could be oxidized to benzyl alcohol as temperature rises around 80-120 °C that can be further be oxidized to benzoic acid. Then benzoic acid could be decomposed to formate and/or carbonate species as temperature rises to form CO2 and H2O. In addition, the formed by-product phenol could be further oxidized into CO2 and H2O when the temperature is high enough.
Casado-Sánchez, Antonio; Gómez-Ballesteros, Rocío; Tato, Francisco; Soriano, Francisco J; Pascual-Coca, Gustavo; Cabrera, Silvia; Alemán, José
2016-07-12
A new catalytic system for the photooxidation of sulfides based on Pt(ii) complexes is presented. The catalyst is capable of oxidizing a large number of sulfides containing aryl, alkyl, allyl, benzyl, as well as more complex structures such as heterocycles and methionine amino acid, with complete chemoselectivity. In addition, the first sulfur oxidation in a continuous flow process has been developed.
Jeong, Hyun-Mook; Jeong, Seong-Yong; Kim, Jae-Hyeok; Kim, Bo-Young; Kim, Jun-Sik; Abdel-Hady, Faissal; Wazzan, Abdulaziz A; Al-Turaif, Hamad Ali; Jang, Ho Won; Lee, Jong-Heun
2017-11-29
Co 3 O 4 sensors with a nanoscale TiO 2 or SnO 2 catalytic overlayer were prepared by screen-printing of Co 3 O 4 yolk-shell spheres and subsequent e-beam evaporation of TiO 2 and SnO 2 . The Co 3 O 4 sensors with 5 nm thick TiO 2 and SnO 2 overlayers showed high responses (resistance ratios) to 5 ppm xylene (14.5 and 28.8) and toluene (11.7 and 16.2) at 250 °C with negligible responses to interference gases such as ethanol, HCHO, CO, and benzene. In contrast, the pure Co 3 O 4 sensor did not show remarkable selectivity toward any specific gas. The response and selectivity to methylbenzenes and ethanol could be systematically controlled by selecting the catalytic overlayer material, varying the overlayer thickness, and tuning the sensing temperature. The significant enhancement of the selectivity for xylene and toluene was attributed to the reforming of less reactive methylbenzenes into more reactive and smaller species and oxidative filtering of other interference gases, including ubiquitous ethanol. The concurrent control of the gas reforming and oxidative filtering processes using a nanoscale overlayer of catalytic oxides provides a new, general, and powerful tool for designing highly selective and sensitive oxide semiconductor gas sensors.
Zhang, Jing; Sun, Bo; Huang, Yuying; Guan, Xiaohong
2015-12-01
This study developed a heterogeneous catalytic permanganate oxidation system with three molecular sieves, i.e., nanosized ZSM-5 (ZSM-5A), microsized ZSM-5 (ZSM-5B) and MCM-41, supported ruthenium nanoparticles as catalyst, denoted as Ru/ZSM-5A, Ru/ZSM-5B and Ru/MCM-41, respectively. The presence of 0.5gL(-1) Ru/ZSM-5A, Ru/ZSM-5B and Ru/MCM-41 increased the oxidation rate of sulfamethoxazole (SMX) by permanganate at pH 7.0 by 27-1144 times. The catalytic performance of Ru catalysts toward SMX oxidation by permanganate was strongly dependent on Ru loading on the catalysts. The X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses confirmed that Ru catalyst acted as an electron shuttle in catalytic permanganate oxidation process. Ru(III) deposited on the surface of catalysts was oxidized by permanganate to its higher oxidation state Ru(VII), which could work as a co-oxidant with permanganate to decompose SMX and was then reduced to its initial tri-valence. During the successive runs, Ru/ZSM-5A could not maintain its catalytic activity due to the deposition of MnO2, which was the reductive product of permanganate, onto the surface of Ru/ZSM-5A. Thus, the regeneration of partially deactivated Ru catalysts by reductant NH2OH⋅HCl or ascorbic acid was proposed. Ru/ZSM-5A regenerated by NH2OH⋅HCl displayed comparable catalytic ability to its virgin counterpart, while ascorbic acid could not completely remove the deposited MnO2. A trace amount of leaching of Ru into the reaction solution was also observed, which would be ameliorated by improving the preparation conditions in the future study. Copyright © 2015 Elsevier Ltd. All rights reserved.
Self-Propelled Micromotors for Cleaning Polluted Water
2013-01-01
We describe the use of catalytically self-propelled microjets (dubbed micromotors) for degrading organic pollutants in water via the Fenton oxidation process. The tubular micromotors are composed of rolled-up functional nanomembranes consisting of Fe/Pt bilayers. The micromotors contain double functionality within their architecture, i.e., the inner Pt for the self-propulsion and the outer Fe for the in situ generation of ferrous ions boosting the remediation of contaminated water.The degradation of organic pollutants takes place in the presence of hydrogen peroxide, which acts as a reagent for the Fenton reaction and as main fuel to propel the micromotors. Factors influencing the efficiency of the Fenton oxidation process, including thickness of the Fe layer, pH, and concentration of hydrogen peroxide, are investigated. The ability of these catalytically self-propelled micromotors to improve intermixing in liquids results in the removal of organic pollutants ca. 12 times faster than when the Fenton oxidation process is carried out without catalytically active micromotors. The enhanced reaction–diffusion provided by micromotors has been theoretically modeled. The synergy between the internal and external functionalities of the micromotors, without the need of further functionalization, results into an enhanced degradation of nonbiodegradable and dangerous organic pollutants at small-scale environments and holds considerable promise for the remediation of contaminated water. PMID:24180623
HIgh Temperature Photocatalysis over Semiconductors
NASA Astrophysics Data System (ADS)
Westrich, Thomas A.
Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a temperature-dependent quantum efficiency term, and is directly driven by bulk photocatalyst crystal parameters: maximum phonon energy and the number of phonons allowed per unit cell. This analysis extends to multiple photocatalysts and can explain experimental observations of photocatalytic oxidation rates with varied reactant concentrations. Lastly, this dissertation applies this knowledge to a thermo-catalytic reaction (CO-oxidation) using a Au/TiO 2 catalyst. The combined photo/thereto-catalytic reaction showed a 10-25% increase in CO conversion during a temperature programmed reaction experiment.
Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis.
Smith, Rodney D L; Prévot, Mathieu S; Fagan, Randal D; Zhang, Zhipan; Sedach, Pavel A; Siu, Man Kit Jack; Trudel, Simon; Berlinguette, Curtis P
2013-04-05
Large-scale electrolysis of water for hydrogen generation requires better catalysts to lower the kinetic barriers associated with the oxygen evolution reaction (OER). Although most OER catalysts are based on crystalline mixed-metal oxides, high activities can also be achieved with amorphous phases. Methods for producing amorphous materials, however, are not typically amenable to mixed-metal compositions. We demonstrate that a low-temperature process, photochemical metal-organic deposition, can produce amorphous (mixed) metal oxide films for OER catalysis. The films contain a homogeneous distribution of metals with compositions that can be accurately controlled. The catalytic properties of amorphous iron oxide prepared with this technique are superior to those of hematite, whereas the catalytic properties of a-Fe(100-y-z)Co(y)Ni(z)O(x) are comparable to those of noble metal oxide catalysts currently used in commercial electrolyzers.
Schilling, Mauro; Böhler, Michael; Luber, Sandra
2018-05-21
In order to rationally design water oxidation catalysts (WOCs), an in-depth understanding of the reaction mechanism is essential. In this study we showcase the complexity of catalytic water oxidation, by elucidating how modifications of the pentapyridyl (Py5) ligand-framework influence the thermodynamics and kinetics of the process. In the reaction mechanism the pyridine-water exchange was identified as a key reaction which appears to determine the reactivity of the Py5-WOCs. Exploring the capabilities of in silico design we show which modifications of the ligand framework appear promising when attempting to improve the catalytic performance of WOCs derived from Py5.
Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles
Wang, Yanggang; Mei, Donghai; Glezakou, Vassiliki Alexandra; ...
2015-03-04
Ab initio Molecular Dynamics simulations and static Density Functional Theory calculations have been performed to investigate the reaction mechanism of CO oxidation on Au/CeO 2 catalyst. It is found that under reaction condition CO adsorption significantly labializes the surface atoms of the Au cluster and leads to the formation of isolated Au+-CO species that resides on the support in the vicinity of the Au particle. In this context, we identified a dynamic single-atom catalytic mechanism at the interfacial area for CO oxidation on Au/CeO 2 catalyst, which is a lower energy pathway than that of CO oxidation at the interfacemore » with the metal particle. This results from the ability of the single atom site to strongly couple with the redox properties of the support in a synergistic manner thereby lowering the barrier for redox reactions. We find that the single Au+ ion, which only exists under reaction conditions, breaks away from the Au cluster to catalyze CO oxidation and returns to the Au cluster after the catalytic cycle is completed. Generally, our study highlights the importance of the dynamic creation of active sites under reaction conditions and their essential role in a catalytic process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Yunqian; Lim, Byungkwon; Yang, Yong
2010-10-25
Platinum is a key catalyst that is invaluable in many important industrial processes such as CO oxidation in catalytic converters, oxidation and reduction reactions in fuel cells, nitric acid production, and petroleum cracking.[1] Many of these applications utilize Pt nanoparticles supported on oxides or porous carbon.[2] However, in practical applications that involve high temperatures (typically higher than 3008C), the Pt nanoparticles tend to lose their specific surface area and thus catalytic activity during operation because of sintering. Recent studies have shown that a porous oxide shell can act as a physical barrier to prevent sintering of unsupported metal nanoparticles and,more » at the same time, provide channels for chemical species to reach the surface of the nanoparticles, thus allowing the catalytic reaction to occur. This concept has been demonstrated in several systems, including Pt@SiO2,[3] Pt@CoO,[4] Pt/CeO2@SiO2,[5] Pd@SiO2,[6] Au@SiO2,[7] Au@SnO2 [8] and Au@ZrO2 [9] core– shell nanostructures. Despite these results, a sinter-resistant system has not been realized in supported Pt nanoparticle catalysts.« less
PHOTOOXIDATION OF HYDROCARBONS TO PARTIAL OXYGENATES IN AN AQUEOUS ENVIRONMENT [EXHIBIT, POSTER
The USEPA is researching the use of alternative oxidation technologies (AOT's) as a catalytic process for the selective oxidation of hydrocarbon substrates. One AOT currently under investigation is the use of photocatalysis employed with a laminar thin-film falling reactor. Thi...
NASA Astrophysics Data System (ADS)
Lan, Shuai; Wang, Xiaoming; Xiang, Quanjun; Yin, Hui; Tan, Wenfeng; Qiu, Guohong; Liu, Fan; Zhang, Jing; Feng, Xionghan
2017-08-01
Oxidation of Mn(II) is an important process that controls the mobility and bioavailability of Mn, as well as the formation of Mn (oxyhydr)oxides in natural systems. It was found that the surfaces of minerals, such as iron (oxyhydr)oxides, can accelerate Mn(II) oxidation to a certain degree, but the underlying mechanism has not been clearly understood. This study explores the reaction pathways and mechanisms of Mn(II) oxidation on ferrihydrite surfaces at neutral pH, commonly found in natural environments, by comparisons with montmorillonite, amorphous Al(OH)3, goethite, and magnetite using macroscopic experiments and spectroscopic analyses. Results show that when Mn(II) concentrations are below 4 mM, macroscopic Mn(II) adsorption on the three iron (oxyhydr)oxide surfaces conforms well to the Langmuir equation, with ferrihydrite showing the highest adsorption capacity. With Mn(II) concentrations ranging within 6-24 mM, the adsorbed Mn(II) is mainly oxidized into manganite (γ-MnOOH) and/or feitknechtite (β-MnOOH) by dissolved O2, and Mn(II) removal on a unit mass basis in the presence of magnetite is the highest compared with ferrihydrite and goethite. Ferrihydrite, a semiconductor material, shows stronger catalytic ability for Mn(II) oxidation on the same surface area than insulator minerals (i.e., montmorillonite and amorphous Al(OH)3). Additionally, the products of Mn(II) oxidation in the presence of semiconductor iron (oxyhydr)oxides (i.e., ferrihydrite, goethite, or magnetite) at the same Fe/Mn molar ratio include both manganite and a small amount of Mn(IV) minerals, and the Mn average oxidation states (Mn AOSs) of these products follow the order: magnetite > goethite > ferrihydrite. Magnetite and goethite, with relatively smaller SSAs and lower band gap energies, exhibit greater catalysis for Mn(II) oxidation than ferrihydrite at the same Fe/Mn ratio, which goes against the conventional interfacial effect and is related to the electrochemical properties. Thus, the Mn(II) catalytic oxidation by O2 on ferrihydrite surfaces should include an electrochemical pathway, i.e., electron transfer (ET) in the Mn(II)-Conduction Band (CB)Ferrihydrite-O2 complexes, in addition to the conventional two interfacial catalytic pathways, i.e., ET in the Mn(II)-Fe(II, III)-O2 complexes and direct ET in the Mn(II)-O2 complexes. These results reveal new implications for understanding the processes and mechanisms of Mn(II) oxidation on iron (oxyhydr)oxide surfaces and the abiotic formation of Mn (oxyhydr)oxides in surface environments.
Oxidation of hydrogen halides to elemental halogens
Rohrmann, Charles A.; Fullam, Harold T.
1985-01-01
A process for oxidizing hydrogen halides having substantially no sulfur impurities by means of a catalytically active molten salt is disclosed. A mixture of the subject hydrogen halide and an oxygen bearing gas is contacted with a molten salt containing an oxidizing catalyst and alkali metal normal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen and substantially free of sulfur oxide gases.
Madhuvilakku, Rajesh; Piraman, Shakkthivel
2013-12-01
Biodiesel is a promising alternating environmentally benign fuel to mineral diesel. For the development of easier transesterification process, stable and active heterogeneous mixed metal oxide of TiO2-ZnO and ZnO nanocatalysts were synthesized and exploited for the palm oil transesterification process. The synthesized catalysts were characterized by XRD, FT-IR, and FE-SEM studies for their structural and morphological characteristics. It was found that TiO2-ZnO nanocatalyst exhibits good catalytic activity and the catalytic performance was greatly depends on (i) catalyst concentration (ii) methanol to oil molar ratio (iii) reaction temperature and (iv) reaction time. A highest 98% of conversion was obtained at the optimum reaction parameters with 200 mg of catalyst loading and the biodiesel was analyzed by TLC and (1)H NMR techniques. The TiO2-ZnO nanocatalyst shows good catalytic performance over the ZnO catalyst, which could be a potential candidate for the large-scale biodiesel production from palm oil at the reduced temperature and time. Copyright © 2013. Published by Elsevier Ltd.
Catalytic conversion of light alkanes, Phase 3. Topical report, January 1990--December 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The mission of this work is to devise a new catalyst which can be used in the first simple, economic process to convert the light alkanes in natural gas to an alcohol-rich oxygenated product which can either be used as an environmentally friendly, high-performance liquid fuel, or a precursor to a liquid hydrocarbon transportation fuel. The authors have entered the proof-of-concept stage for converting isobutane to tert butyl alcohol in a practical process and are preparing to enter proof-of-concept of a propane to isopropyl alcohol process in the near future. Methane and ethane are more refractory and thus more difficultmore » to oxidize than the C{sub 3} and C{sub 4} hydrocarbons. Nonetheless, advances made in this area indicate that further research progress could achieve the goal of their direct conversion to alcohols. Progress in Phase 3 catalytic vapor phase methane and ethane oxidation over metals in regular oxidic lattices are the subject of this topical report.« less
Wachs, Israel E.; Cai, Yeping
2002-01-01
Preparing an aldehyde from an alcohol by contacting the alcohol in the presence of oxygen with a catalyst prepared by contacting an intimate mixture containing metal oxide support particles and particles of a catalytically active metal oxide from Groups VA, VIA, or VIIA, with a gaseous stream containing an alcohol to cause metal oxide from the discrete catalytically active metal oxide particles to migrate to the metal oxide support particles and to form a monolayer of catalytically active metal oxide on said metal oxide support particles.
NASA Astrophysics Data System (ADS)
Ooi, M. D. Johan; Aziz, A. Abdul
2017-05-01
Surfactant removal from the surface of platinum nanoparticles prepared by solution based method is a prerequisite process to accomplish a high catalytic activity for electrochemical reactions. Here, we report a possible approach of combining acid acetic with thermal treatment for improving catalytic performance of formic acid oxidation. This strategy involves conversion of amine to amide in acetic acid followed by surfactant removal via subsequent thermal treatment at 85 °C. This combined activation technique produced monodisperse nanoparticle with the size of 3 to 5 nm with enhanced formic acid oxidation activity, particularly in perchloric acid solution. Pt treated in 1 h of acetic acid and heat treatment of 9 h shows high electrochemical surface area value (27.6 m2/g) compares to Pt without activation (16.6 m2/g). The treated samples also exhibit high current stability of 0.3 mA/cm2 compares to the as-prepared mA/cm2). Shorter duration of acid wash and longer duration of heating process result in high electrocatalytic activity. This work demonstrates a possible technique in improving catalytic activity of platinum nanoparticles synthesized using methylamine as surfactant.
Catalytic conversion of hydrocarbons to hydrogen and high-value carbon
Shah, Naresh; Panjala, Devadas; Huffman, Gerald P.
2005-04-05
The present invention provides novel catalysts for accomplishing catalytic decomposition of undiluted light hydrocarbons to a hydrogen product, and methods for preparing such catalysts. In one aspect, a method is provided for preparing a catalyst by admixing an aqueous solution of an iron salt, at least one additional catalyst metal salt, and a suitable oxide substrate support, and precipitating metal oxyhydroxides onto the substrate support. An incipient wetness method, comprising addition of aqueous solutions of metal salts to a dry oxide substrate support, extruding the resulting paste to pellet form, and calcining the pellets in air is also discloses. In yet another aspect, a process is provided for producing hydrogen from an undiluted light hydrocarbon reactant, comprising contacting the hydrocarbon reactant with a catalyst as described above in a reactor, and recovering a substantially carbon monoxide-free hydrogen product stream. In still yet another aspect, a process is provided for catalytic decomposition of an undiluted light hydrocarbon reactant to obtain hydrogen and a valuable multi-walled carbon nanotube coproduct.
Modeling Primary Atomization Processes
1999-02-01
consumable , catalytic igniter has shown to provide reliable, reproducible ignition in hydrogen peroxide/polyethylene hybrid engines. Currently, a...verified in a hybrid rocket using hydrogen peroxide as oxidizer and polyethylene as fuel. The engine made use of a unique Consumable Catalytic Bed (CCB...interest to the liquid and hybrid rocket engine community. TECHNOLOGY TRANSFER Performer Customer Result Application 1 S. D. Heister Purdue University
Stable, Ultra-Low Residence Time Partial Oxidation
Schmidt, Lanny D.; Hickman, Daniel A.
1997-07-15
A process for the catalytic partial oxidation of methane in gas phase at very short residence time (800,000 to 12,000,000 hr.sup.-1) by contacting a gas stream containing methane and oxygen with a metal supported catalyst, such as platinum deposited on a ceramic monolith.
Identifying the active site in nitrogen-doped graphene for the VO2+/VO2(+) redox reaction.
Jin, Jutao; Fu, Xiaogang; Liu, Qiao; Liu, Yanru; Wei, Zhiyang; Niu, Kexing; Zhang, Junyan
2013-06-25
Nitrogen-doped graphene sheets (NGS), synthesized by annealing graphite oxide (GO) with urea at 700-1050 °C, were studied as positive electrodes in a vanadium redox flow battery. The NGS, in particular annealed at 900 °C, exhibited excellent catalytic performance in terms of electron transfer (ET) resistance (4.74 ± 0.51 and 7.27 ± 0.42 Ω for the anodic process and cathodic process, respectively) and reversibility (ΔE = 100 mV, Ipa/Ipc = 1.38 at a scan rate of 50 mV s(-1)). Detailed research confirms that not the nitrogen doping level but the nitrogen type in the graphene sheets determines the catalytic activity. Among four types of nitrogen species doped into the graphene lattice including pyridinic-N, pyrrolic-N, quaternary nitrogen, and oxidic-N, quaternary nitrogen is verified as a catalytic active center for the [VO](2+)/[VO2](+) couple reaction. A mechanism is proposed to explain the electrocatalytic performance of NGS for the [VO](2+)/[VO2](+) couple reaction. The possible formation of a N-V transitional bonding state, which facilitates the ET between the outer electrode and reactant ions, is a key step for its high catalytic activity.
Catalytic oxidation of volatile organic compounds (VOCs) - A review
NASA Astrophysics Data System (ADS)
Kamal, Muhammad Shahzad; Razzak, Shaikh A.; Hossain, Mohammad M.
2016-09-01
Emission of volatile organic compounds (VOCs) is one of the major contributors to air pollution. The main sources of VOCs are petroleum refineries, fuel combustions, chemical industries, decomposition in the biosphere and biomass, pharmaceutical plants, automobile industries, textile manufacturers, solvents processes, cleaning products, printing presses, insulating materials, office supplies, printers etc. The most common VOCs are halogenated compounds, aldehydes, alcohols, ketones, aromatic compounds, and ethers. High concentrations of these VOCs can cause irritations, nausea, dizziness, and headaches. Some VOCs are also carcinogenic for both humans and animals. Therefore, it is crucial to minimize the emission of VOCs. Among the available technologies, the catalytic oxidation of VOCs is the most popular because of its versatility of handling a range of organic emissions under mild operating conditions. Due to that fact, there are numerous research initiatives focused on developing advanced technologies for the catalytic destruction of VOCs. This review discusses recent developments in catalytic systems for the destruction of VOCs. Review also describes various VOCs and their sources of emission, mechanisms of catalytic destruction, the causes of catalyst deactivation, and catalyst regeneration methods.
2016-01-01
Conspectus The development of efficient catalytic systems for direct aromatic C–H bond functionalization is a long-desired goal of chemists, because these protocols provide environmental friendly and waste-reducing alternatives to classical methodologies for C–C and C–heteroatom bond formation. A key challenge for these transformations is the reoxidation of the in situ generated metal hydride or low-valent metal complexes of the primary catalytic bond forming cycle. To complete the catalytic cycle and to regenerate the C–H activation catalyst, (super)stoichiometric amounts of Cu(II) or Ag(I) salts have often been applied. Recently, “greener” approaches have been developed by applying molecular oxygen in combination with Cu(II) salts, internal oxidants that are cleaved during the reaction, or solvents or additives enabling the metal hydride reoxidation. All these approaches improved the environmental friendliness but have not overcome the obstacles associated with the overall limited functional group and substrate tolerance. Hence, catalytic processes that do not feature the unfavorable aspects described above and provide products in a streamlined as well as economically and ecologically advantageous manner would be desirable. In this context, we decided to examine visible light photoredox catalysis as a new alternative to conventionally applied regeneration/oxidation procedures. This Account summarizes our recent advances in this expanding area and will highlight the new concept of merging distinct redox catalytic processes for C–H functionalizations through the application of visible light photoredox catalysis. Photoredox catalysis can be considered as catalytic electron-donating or -accepting processes, making use of visible-light absorbing homogeneous and heterogeneous metal-based catalysts, as well as organic dye sensitizers or polymers. As a consequence, photoredox catalysis is, in principle, an ideal tool for the recycling of any given metal catalyst via a coupled electron transfer (ET) process. Here we describe our first successful endeavors to address the above challenges by combining visible light photoredox catalysis with different ruthenium, rhodium, or palladium catalyzed C–H activations. Since only small amounts of the oxidant are generated and are immediately consumed in these transformations, side reactions of substrates or products can be avoided. Thus, usually oxidant-sensible substrates can be used, which makes these methods highly suitable for complex molecular structure syntheses. Moreover, mechanistic studies shed light on new reaction pathways, intermediates, and in situ generated species. The successful development of our dual catalysis concept, consisting of combined visible light photoredox catalysis and metal catalyzed C–H functionalization, provides many new opportunities for further explorations in the field of C–H functionalization. PMID:27556812
NO.sub.x sensor and process for detecting NO.sub.x
Dalla Betta, Ralph A.; Sheridan, David R.; Reed, Daniel L.
1994-01-01
This invention is a process for detecting low levels of nitrogen oxides (NO.sub.x) in a flowing gas stream (typically an exhaust gas stream) and a catalytic NO.sub.x sensor which may be used in that process.
Wet air oxidation and catalytic wet air oxidation for dyes degradation.
Ovejero, Gabriel; Sotelo, José Luis; Rodríguez, Araceli; Vallet, Ana; García, Juan
2011-11-01
Textile industry produces wastewater which contributes to water pollution since it utilizes a lot of chemicals. Preliminary studies show that the wastewater from textile industries contains grease, wax, surfactant, and dyes. The objective of this study was to determine the treatment efficiency of the nickel catalysts supported on hydrotalcites in three-dye model compounds and two types of wastewater. Hydrotalcites were employed to prepare supported nickel catalysts by wetness impregnation technique. Metal loadings from 1 to 10 wt% were tested. Catalysts were characterized by several techniques. They were tested in a catalytic wet air oxidation of three dyes and two wastewaters with different origins. It could be observed that the higher the metal content, the lower the BET area, possibly due to sintering of Ni and the consequent blocking of the pores by the metal. In addition, metallic dispersion was also higher when the metal content was lower. Dye conversion was more than 95% for every catalyst showing no differences with the nickel content. A high degree of dye conversion was achieved. Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) processes have been proved to be extremely efficient in TOC removal for wastewaters. The CWAO process can be used to remove dyes from wastewater. Three different dyes were tested showing satisfactory results in all of them. TOC degradation and dye removal in the presence of the catalyst were effective. Also, the HTNi catalyst is very active for organic matter and toxicity removal in wastewaters.
NASA Astrophysics Data System (ADS)
Sauvet, A.-L.; Fouletier, J.
The recent trend in solid oxide fuel cell concerns the use of natural gas as fuel. Steam reforming of methane is a well-established process for producing hydrogen directly at the anode side. In order to develop new anode materials, the catalytic activities of several oxides for the steam reforming of methane were characterized by gas chromatography. We studied the catalytic activity as a function of steam/carbon ratios r. The methane and the steam content were varied between 5 and 30% and between 1.5 and 3.5%, respectively, corresponding to r-values between 0.07 and 0.7. Catalyst (ruthenium and vanadium)-doped lanthanum chromites substituted with strontium, gadolinium-doped ceria (Ce 0.9Gd 0.1O 2) referred as to CeGdO 2, praseodymium oxide, molybdenum oxide and copper oxide were tested. The working temperature was fixed at 850°C, except for 5% ruthenium-doped La 1- xSr xCrO 3 where the temperature was varied between 700 and 850°C. Two types of behavior were observed as a function of the activity of the catalyst. The higher steam reforming efficiency was observed with 5% of ruthenium above 750°C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Juan-Li; Gao, Shuang; Liu, Chun-Ling
2014-11-15
Graphical abstract: The ordered mesoporous carbon–niobium oxide composites have been synthesized by a multi-component co-assembly method associated with a carbonization process. - Highlights: • Ordered mesoporous carbon–niobium oxide composites were synthesized. • The content of Nb{sub 2}O{sub 5} in the composites could be tuned from 38 to 75%. • Niobium species were highly dispersed in amorphous carbon framework walls. • The composites exhibited good catalytic performance in the dehydration of fructose. - Abstract: Ordered mesoporous carbon–niobium oxide composites have been synthesized by a multi-component co-assembly method associated with a carbonization process using phenolic resol as carbon source, niobium chloride asmore » precursor and amphiphilic triblock copolymer Pluronic F127 as template. The resulting materials were characterized using a combination of techniques including differential scanning calorimetry–thermogravimetric analysis, N{sub 2} physical adsorption, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. The results show that with increasing the content of Nb{sub 2}O{sub 5} from 38 to 75% the specific surface area decreases from 306.4 to 124.5 m{sup 2} g{sup −1}, while the ordered mesoporous structure is remained. Niobium species is well dispersed in the amorphous carbon framework. The mesoporous carbon–niobium oxide composites exhibit high catalytic activity in the dehydration of fructose to 5-hydroxymethylfurfural. A 100% conversion of fructose and a 76.5% selectivity of 5-hydroxymethylfurfural were obtained over the carbon–niobium oxide composite containing 75% Nb{sub 2}O{sub 5} under the investigated reaction conditions.« less
Kim, Seong Hee; Lee, Sang Woo; Lee, Gye Min; Lee, Byung-Tae; Yun, Seong-Taek; Kim, Soon-Oh
2016-01-01
A photo-oxidation process using UV-LEDs and TiO2 was studied for removal of cyanide contained in mine wastewater and leachates. This study focused on monitoring of a TiO2-catalyzed LED photo-oxidation process, particularly emphasizing the effects of TiO2 form and light source on the efficiency of cyanide removal. The generation of hydroxyl radicals was also examined during the process to evaluate the mechanism of the photo-catalytic process. The apparent removal efficiency of UV-LEDs was lower than that achieved using a UV-lamp, but cyanide removal in response to irradiation as well as consumption of electrical energy was observed to be higher for UV-LEDs than for UV-lamps. The Degussa P25 TiO2 showed the highest performance of the TiO2 photo-catalysts tested. The experimental results indicate that hydroxyl radicals oxidize cyanide to OCN(-), NO2(-), NO3(-), HCO3(-), and CO3(2-), which have lower toxicity than cyanide. In addition, the overall efficacy of the process appeared to be significantly affected by diverse operational parameters, such as the mixing ratio of anatase and rutile, the type of gas injected, and the number of UV-LEDs used. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Honegger, R. J.; Remus, G. A.; Kurg, E. K.
1971-01-01
The development of a functional model water reclamation system is discussed. The system produces potable water by distillation from the urine and respiration-perspiration condensate at the normal rate generated by four men. Basic processes employed are vacuum distillation, vapor filtration, vapor phase catalytic oxidation, and condensation. The system is designed to use four 75-watt isotope heaters for distillation thermal input, and one 45-watt isotope for the catalytic oxidation unit. The system is capable of collecting and storing urine, and provides for stabilizing the urine by chemical pretreatment. The functional model system is designed for operation in a weightless condition with liquid-vapor phase separators for the evaporator still, and centrifugal separators for urine collection and vapor condensation. The system provides for storing and dispensing reclaimed potable water. The system operates in a batch mode for 40 days, with urine residues accumulating in the evaporator. The evaporator still and residue are removed to storage and replaced with a fresh still for the next 40-day period.
NASA Astrophysics Data System (ADS)
Hajimammadov, Rashad; Csendes, Zita; Ojakoski, Juha-Matti; Lorite, Gabriela Simone; Mohl, Melinda; Kordas, Krisztian
2017-09-01
Electrical transport properties of individual nanowires (both in axial and transversal directions) and their random networks suggest rapid oxidation when Cu is exposed to ambient conditions. The oxidation process is elucidated by thorough XRD, XPS and Raman analyzes conducted for a period of 30 days. Based on the obtained experimental data, we may conclude that first, cuprous oxide and copper hydroxide form that finally transform to cupric oxide. In electrical applications, oxidation of copper is not a true problem as long as thin films or bulk metal is concerned. However, as highlighted in our work, this is not the case for nanowires, since the oxidized surface plays quite important role in the contact formation and also in the conduction of percolated nanowire networks. On the other hand, by taking advantage of the mixed surface oxide states present on the nanowires along with their large specific surface area, we tested and found excellent catalytic activity of the oxidized nanowires in phenol oxidation, which suggests further applications of these materials in catalysis.
Development studies of a novel wet oxidation process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, T.W.; Dhooge, P.M.
1995-10-01
Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. Incineration and similar combustive processes do not appear to be viable options for treatment of these waste streams due to various considerations. The objective of this project is to develop a novel catalytic wet oxidation process for the treatment of multi-component wastes. The DETOX process uses a unique combination of metal catalysts to increase the rate of oxidation of organic materials.
Electrolytic trapping of iodine from process gas streams
Horner, Donald E.; Mailen, James C.; Posey, Franz A.
1977-01-25
A method for removing molecular, inorganic, and organic forms of iodine from process gas streams comprises the electrolytic oxidation of iodine in the presence of cobalt-III ions. The gas stream is passed through the anode compartment of a partitioned electrolytic cell having a nitric acid anolyte containing a catalytic amount of cobalt to cause the oxidation of effluent iodine species to aqueous soluble species.
Trinh, Quang Hung; Lee, Sang Baek; Mok, Young Sun
2015-03-21
Dynamic adsorption of ethylene on 13X zeolite-supported Ag and Ag-M(x)O(y) (M: Co, Cu, Mn, and Fe), and plasma-catalytic oxidation of the adsorbed ethylene were investigated. The experimental results showed that the incorporation of Ag into zeolite afforded a marked enhancement in the adsorptivity for ethylene. The addition of transition metal oxides was found to have a positive influence on the ethylene adsorption, except Fe(x)O(y). The presence of the additional metal oxides, however, appeared to somewhat interrupt the diffusion of ozone into the zeolite micro-pores, leading to a decrease in the plasma-catalytic oxidation efficiency of the ethylene adsorbed there. Among the second additional metal oxides, Fe(x)O(y) was able to reduce the emission of ozone during the plasma-catalytic oxidation stage while keeping a high effectiveness for the oxidative removal of the adsorbed ethylene. The periodical treatment consisting of adsorption followed by plasma-catalytic oxidation may be a promising energy-efficient ethylene abatement method. Copyright © 2014 Elsevier B.V. All rights reserved.
Iodide-catalyzed synthesis of N-nitrosamines via C-N cleavage of nitromethane.
Zhang, Jie; Jiang, Jiewen; Li, Yuling; Wan, Xiaobing
2013-11-15
An iodide-catalyzed process to synthesize N-nitrosamines has been developed using TBHP as the oxidant. The mild catalytic system succeeded in cleaving the carbon-nitrogen bond in nitromethane. This methodology uses commercially available, inexpensive catalysts and oxidants and has a wide substrate scope and operational simplicity.
VANADIA CATALYZED VAPOR PHASE OXIDATION OF METHANOL IN THE PRESENCE OF OZONE
Catalytic oxidation of methanol was carried out in the presence of ozone using vanadia based catalysts. The process can be used to selectively convert alcohols to aldehydes or ketones. It can also be used to control emissions of volatile organic compounds from Kraft mill and ot...
Fe-Based Nano-Materials in Catalysis
Konstantopoulos, Christos
2018-01-01
The role of iron in view of its further utilization in chemical processes is presented, based on current knowledge of its properties. The addition of iron to a catalyst provides redox functionality, enhancing its resistance to carbon deposition. FeOx species can be formed in the presence of an oxidizing agent, such as CO2, H2O or O2, during reaction, which can further react via a redox mechanism with the carbon deposits. This can be exploited in the synthesis of active and stable catalysts for several processes, such as syngas and chemicals production, catalytic oxidation in exhaust converters, etc. Iron is considered an important promoter or co-catalyst, due to its high availability and low toxicity that can enhance the overall catalytic performance. However, its operation is more subtle and diverse than first sight reveals. Hence, iron and its oxides start to become a hot topic for more scientists and their findings are most promising. The scope of this article is to provide a review on iron/iron-oxide containing catalytic systems, including experimental and theoretical evidence, highlighting their properties mainly in view of syngas production, chemical looping, methane decomposition for carbon nanotubes production and propane dehydrogenation, over the last decade. The main focus goes to Fe-containing nano-alloys and specifically to the Fe–Ni nano-alloy, which is a very versatile material. PMID:29772842
Autothermal reforming catalyst having perovskite structure
Krumpel, Michael [Naperville, IL; Liu, Di-Jia [Naperville, IL
2009-03-24
The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.
Aher, Ashish; Papp, Joseph; Colburn, Andrew; Wan, Hongyi; Hatakeyama, Evan; Prakash, Prakhar; Weaver, Ben; Bhattacharyya, Dibakar
2017-11-01
Oil industries generate large amounts of produced water containing organic contaminants, such as naphthenic acids (NA) and very high concentrations of inorganic salts. Recovery of potable water from produced water can be highly energy intensive is some cases due to its high salt concentration, and safe discharge is more suitable. Here, we explored catalytic properties of iron oxide (Fe x O y nanoparticles) functionalized membranes in oxidizing NA from water containing high concentrations of total dissolved solids (TDS) using persulfate as an oxidizing agent. Catalytic decomposition of persulfate by Fe x O y functionalized membranes followed pseudo-first order kinetics with an apparent activation energy of 18 Kcal/mol. Fe x O y functionalized membranes were capable of lowering the NA concentrations to less than discharge limits of 10 ppm at 40 °C. Oxidation state of iron during reaction was quantified. Membrane performance was investigated for extended period of time. A coupled process of advanced oxidation catalyzed by membrane and nanofiltration was also evaluated. Commercially available nanofiltration membranes were found capable of retaining NA from water containing high concentrations of dissolved salts. Commercial NF membranes, Dow NF270 (Dow), and NF8 (Nanostone) had NA rejection of 79% and 82%, respectively. Retentate for the nanofiltration was further treated with advanced oxidation catalyzed by Fe x O y functionalized membrane for removal of NA.
Gold-Copper Nanoparticles: Nanostructural Evolution and Bifunctional Catalytic Sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Jun; Shan, Shiyao; Yang, Lefu
2012-12-12
Understanding of the atomic-scale structure is essential for exploiting the unique catalytic properties of any nanoalloy catalyst. This report describes novel findings of an investigation of the nanoscale alloying of gold-copper (AuCu) nanoparticles and its impact on the surface catalytic functions. Two pathways have been explored for the formation of AuCu nanoparticles of different compositons, including wet chemical synthesis from mixed Au- and Cu-precursor molecules, and nanoscale alloying via an evolution of mixed Au- and Cu-precursor nanoparticles near the nanoscale melting temperatures. For the evolution of mixed precursor nanoparticles, synchrotron x-ray based in-situ real time XRD was used to monitormore » the structural changes, revealing nanoscale alloying and reshaping towards an fcc-type nanoalloy (particle or cube) via a partial melting–resolidification mechanism. The nanoalloys supported on carbon or silica were characterized by in-situ high-energy XRD/PDFs, revealing an intriguing lattice "expanding-shrinking" phenomenon depending on whether the catalyst is thermochemically processed under oxidative or reductive atmosphere. This type of controllable structural changes is found to play an important role in determining the catalytic activity of the catalysts for carbon monoxide oxidation reaction. The tunable catalytic activities of the nanoalloys under thermochemically oxidative and reductive atmospheres are also discussed in terms of the bifunctional sites and the surface oxygenated metal species for carbon monoxide and oxygen activation.« less
NASA Astrophysics Data System (ADS)
Jabłońska, Magdalena; Nocuń, Marek; Gołąbek, Kinga; Palkovits, Regina
2017-11-01
The selective oxidation of ammonia into nitrogen and water vapour (NH3-SCO) was studied over Cu-Mg(Zn)-Al-(Zr) mixed metal oxides, obtained by coprecipitation and their subsequent calcination. The effect of acid-base properties of Cu-Mg-Al-Ox on catalytic activity was investigated by changing the Mg/Al molar ratio. Other Cu-containing oxides were prepared by rehydration of calcined Mg-Al hydrotalcite-like compounds or thermal decomposition of metal nitrate precursors. XRD, BET, NH3-TPD, H2-TPR, XPS, FTIR with adsorption of pyridine and CO as well as TEM techniques were used for catalysts characterization. The results of catalytic tests revealed a crucial role of easily reducible highly dispersed copper oxide species to obtain enhanced activity and N2 selectivity in NH3-SCO. The selective catalytic reduction of NO by NH3 (NH3-SCR) and in situ DRIFT of NH3 sorption indicated that NH3-SCO proceeds according to the internal selective catalytic reduction mechanism (i-SCR).
NASA Astrophysics Data System (ADS)
Oh, Hyerim; Kim, Il Hee; Lee, Nam-Suk; Dok Kim, Young; Kim, Myung Hwa
2017-08-01
Hybrid cerium dioxide (CeO2)-cobalt oxide (Co3O4) composite nanotubes were successfully prepared by a combination of electrospinning and thermal annealing using CeO2 and Co3O4 precursors for the first time. Electrospun CeO2-Co3O4 composite nanotubes represent relatively porous surface texture with small dimensions between 80 and 150 nm in the outer diameter. The microscopic investigations indicate that the nanoparticle like crystalline structures of CeO2 and Co3O4 are homogenously distributed and continuously connected to form the shape of nanotube in the length of a few micrometers during thermal annealing. It is expected that the different evaporation behaviors of solvents and matrix polymer between the core and the shell in as-spun nanofibers in the course of thermal annealing could be reasonably responsible for the formation of well-defined CeO2/Co3O4 hybrid nanotubes. Additionally, the general catalytic activities of electrospun CeO2/Co3O4 hybrid nanotubes toward the oxidation of carbon monoxide (CO) were carefully examined by a continuous flow system, resulting in favorable catalytic activity as well as catalytic stability for CO oxidation between 150 °C and 200 °C without the deactivation of the catalyst with time stems from accumulation of reaction intermediates such as carbonate species.
Gas phase heterogeneous catalytic oxidation of alkanes to aliphatic ketones and/or other oxygenates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Manhua; Wang, Xiang; Yeom, Younghoon
A catalyst, its method of preparation and its use for producing aliphatic ketones by subjecting alkanes C.sub.3 to C.sub.9 to a gas phase catalytic oxidation in the presence of air or oxygen, and, optionally, steam and/or one or more diluting gases. The catalyst comprises a catalytically active mixed metal oxide phase and a suitable support material onto and/or into which the active catalytic phase id dispersed.
Gas phase heterogeneous catalytic oxidation of alkanes to aliphatic ketones and/or other oxygenates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Manhua; Wang, Xiang; Yeom, Younghoon
A catalyst, its method of preparation and its use for producing aliphatic ketones by subjecting alkanes C.sub.3 to C.sub.9 to a gas phase catalytic oxidation in the presence of air or oxygen, and, optionally, steam and/or one or more diluting gases. The catalyst comprises a catalytically active mixed metal oxide phase and a suitable support material onto and/or into which the active catalytic phase is dispersed.
Hung, Chang-Mao; Lin, Wei-Bang; Ho, Ching-Lin; Shen, Yun-Hwei; Hsia, Shao-Yi
2010-08-01
This work adopted aqueous solutions of ammonia for use in catalytic liquid-phase reduction in a trickle-bed reactor with a platinum-rhodium bimetallic catalyst, prepared by the co-precipitation of chloroplatinic acid (H2PtCl6) and rhodium nitrate [Rh(NO3)3]. The experimental results demonstrated that a minimal amount of ammonia was removed from the solution by wet oxidation in the absence of any catalyst, while approximately 97.0% of the ammonia was removed by wet oxidation over the platinum-rhodium bimetallic catalyst at 230 degrees C with an oxygen partial pressure of 2.0 MPa. The oxidation of ammonia has been studied as a function of pH, and the main reaction products were determined. A synergistic effect is manifest in the platinum-rhodium bimetallic structure, in which the material has the greatest capacity to reduce ammonia. The reaction pathway linked the oxidizing ammonia to nitric oxide, nitrogen, and water.
NASA Astrophysics Data System (ADS)
Shadrina, O. A.; Dashinamzhilova, E. Ts; Khankhasaeva, S. Ts
2017-11-01
The iron-containing materials with an iron content of 40 mg/g and 52.5 mg/g, a specific surface area of 107 m2/g and 96 m2/g are developed on the basis of natural layered aluminosilicate (montmorillonite) and polyhydroxo complexes of iron. It is shown that the materials exhibit high catalytic activity in the photo-oxidation of dye “Methyl Green”. The influence of physicochemical parameters (loading of the catalyst, a ratio of initial concentrations [H2O2]/[MG] on the efficiency of the dye photo-oxidation was established. The optimum conditions, which made it possible to achieve high mineralization and 100 % the dye oxidation efficiency were determined: the catalyst loading equal to 1.0 g/l and the ratio of [H2O2] and [MG] equal to stoichiometric ratio (55 mol/mol). The decrease of the total organic carbon content after photo-oxidation reaction was 56.5%. The average value of the quantum yield of the dye photo-oxidation was to 0.30 mol/Einstein. The results of the conducted research show that the developed iron-containing materials are the promising catalysts for photo-Fenton processes of oxidative degradation of organic compounds. The materials are of interest for use in wastewater treatment processes from toxic organic pollutants.
Photocatalytic oxidation of organic compounds on Mars
NASA Technical Reports Server (NTRS)
Chun, S. F. S.; Pang, K. D.; Cutts, J. A.; Ajello, J. M.
1978-01-01
Ultraviolet-stimulated catalytic oxidation is proposed as a mechanism for the destruction of organic compounds on Mars. The process involves the presence of gaseous oxygen, UV radiation, and a catalyst (titanium dioxide), and all three of these have been found to be present in the Martian environment. Therefore it seems plausible that UV-stimulated oxidation of organics is responsible for degrading organic molecules into inorganic end products.
Lin, Kun-Yi Andrew; Chang, Hsuan-Ang; Chen, Ru-Chieh
2015-07-01
Metal Organic Frameworks (MOFs) represents one of the most interesting and versatile materials nowadays. As interests to explore MOFs' functionality and potential continue to grow, using MOFs as a platform/template to develop other functional materials has received a great attention recently. Among these MOF-derived materials, MOF-derived carbonaceous materials are particularly attractive owing to its simple preparation and dual characteristics from carbon and metals. Herein, we propose to prepare a cobalt-based magnetic carbonaceous nanocomposite (MCN) by one-step carbonization of the cobalt-containing MOF, ZIF-67. Because of cobalt oxide (i.e., Co3O4) in MCN, MCN not only exhibits magnetic controllability but also catalytic activity to activate Oxone. To investigate and optimize this MCN-activated Oxone process, the decolorization of a cationic dye, Rhodamine B (Rh.B) in water is selected as a model reaction. This MCN-activated Oxone process was found to be the most effective when the ratio of Oxone/MCN was 5/1. While the high temperatures significantly improved the decolorization efficiency, the high initial pH was unfavorable for the Rh.B decolorization by this catalytic Oxone process. UV irradiation and ultrasonication were both found to enhance this MCN-activated Oxone process. The recyclability test revealed that MCN can be continuously used with constant and effective catalytic activity. These features enable MCN to be a promising and interesting catalyst for the wet chemical oxidation such as the Oxone oxidation process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fuel processing requirements and techniques for fuel cell propulsion power
NASA Astrophysics Data System (ADS)
Kumar, R.; Ahmed, S.; Yu, M.
Fuels for fuel cells in transportation systems are likely to be methanol, natural gas, hydrogen, propane, or ethanol. Fuels other than hydrogen will need to be reformed to hydrogen on-board the vehicle. The fuel reformer must meet stringent requirements for weight and volume, product quality, and transient operation. It must be compact and lightweight, must produce low levels of CO and other byproducts, and must have rapid start-up and good dynamic response. Catalytic steam reforming, catalytic or noncatalytic partial oxidation reforming, or some combination of these processes may be used. This paper discusses salient features of the different kinds of reformers and describes the catalysts and processes being examined for the oxidation reforming of methanol and the steam reforming of ethanol. Effective catalysts and reaction conditions for the former have been identified; promising catalysts and reaction conditions for the latter are being investigated.
CATALYZED OXIDATION OF URANIUM IN CARBONATE SOLUTIONS
Clifford, W.E.
1962-05-29
A process is given wherein carbonate solutions are employed to leach uranium from ores and the like containing lower valent uranium species by utilizing catalytic amounts of copper in the presence of ammonia therein and simultaneously supplying an oxidizing agent thereto. The catalysis accelerates rate of dissolution and increases recovery of uranium from the ore. (AEC)
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mercaptan/Ethanol + Hydrogen sulfide Methanol/H.P. Synthesis from natural gas via synthetic gas Oxo Alcohols... + Ammonia n-Propyl alcohol/Hydrogenation of propionaldehyde, Oxo process SAN resin/Suspension polymerization... methanol Acetaldehyde/Oxidation of ethylene with cupric chloride catalyst Acetic acid/Catalytic oxidation...
Method and apparatus for a catalytic firebox reactor
Smith, Lance L.; Etemad, Shahrokh; Ulkarim, Hasan; Castaldi, Marco J.; Pfefferle, William C.
2001-01-01
A catalytic firebox reactor employing an exothermic catalytic reaction channel and multiple cooling conduits for creating a partially reacted fuel/oxidant mixture. An oxidation catalyst is deposited on the walls forming the boundary between the multiple cooling conduits and the exothermic catalytic reaction channel, on the side of the walls facing the exothermic catalytic reaction channel. This configuration allows the oxidation catalyst to be backside cooled by any fluid passing through the cooling conduits. The heat of reaction is added to both the fluid in the exothermic catalytic reaction channel and the fluid passing through the cooling conduits. After discharge of the fluids from the exothermic catalytic reaction channel, the fluids mix to create a single combined flow. A further innovation in the reactor incorporates geometric changes in the exothermic catalytic reaction channel to provide streamwise variation of the velocity of the fluids in the reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramasamy, Karthikeyan K.; Gray, Michel J.; Job, Heather M.
2016-04-10
tA highly versatile ethanol conversion process to selectively generate high value compounds is pre-sented here. By changing the reaction temperature, ethanol can be selectively converted to >C2alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3cata-lyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensationor the acetone formation is the path taken in changing the product composition. This article containsthe catalytic activity comparison between the mono-functional and physical mixture counterpart to thehydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.
A redox-hydrothermal route to β-MnO 2 hollow octahedra
NASA Astrophysics Data System (ADS)
Zhang, Yange; Chen, Liyong; Zheng, Zhi; Yang, Fengling
2009-07-01
Beta-Manganese dioxides' (β-MnO 2) hollow octahedra have been prepared by a synergetic redox reaction using cuprous chloride (CuCl) and hydrochloric acid (HCl) as reductants and potassium permanganate (KMnO 4) as oxidant through a hydrothermal route. During the process, the self-generated chlorine (Cl 2) gas bubbles and HCl's etching appear to be necessary for the formation of MnO 2 hollow structure. The catalytic efficiency of the prepared β-MnO 2 hollow octahedra was high which has been demonstrated by the catalytic oxidation of methylene blue (MB) dye in the presence of hydrogen peroxide (H 2O 2) under natural light.
Ramasamy, Karthikeyan K.; Gray, Michel; Job, Heather; ...
2016-02-03
Here, a highly versatile ethanol conversion process to selectively generate high value compounds is presented here. By changing the reaction temperature, ethanol can be selectively converted to >C 2 alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al 2O 3 catalyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensation or the acetone formation is the path taken in changing the product composition. This article contains the catalytic activity comparison between the mono-functional and physical mixture counterpart to the hydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.
Zhang, Runduo; Liu, Ning; Lei, Zhigang; Chen, Biaohua
2016-03-23
In this review we focus on the catalytic removal of a series of N-containing exhaust gases with various valences, including nitriles (HCN, CH3CN, and C2H3CN), ammonia (NH3), nitrous oxide (N2O), and nitric oxides (NO(x)), which can cause some serious environmental problems, such as acid rain, haze weather, global warming, and even death. The zeolite catalysts with high internal surface areas, uniform pore systems, considerable ion-exchange capabilities, and satisfactory thermal stabilities are herein addressed for the corresponding depollution processes. The sources and toxicities of these pollutants are introduced. The important physicochemical properties of zeolite catalysts, including shape selectivity, surface area, acidity, and redox ability, are described in detail. The catalytic combustion of nitriles and ammonia, the direct catalytic decomposition of N2O, and the selective catalytic reduction and direct catalytic decomposition of NO are systematically discussed, involving the catalytic behaviors as well as mechanism studies based on spectroscopic and kinetic approaches and molecular simulations. Finally, concluding remarks and perspectives are given. In the present work, emphasis is placed on the structure-performance relationship with an aim to design an ideal zeolite-based catalyst for the effective elimination of harmful N-containing compounds.
NASA Astrophysics Data System (ADS)
Garces Trujillo, Hector Fabian
This thesis contains two parts: 1) synthesis and characterization of porous metal oxides that include zinc oxide and a porous mixed-valent manganese oxide with an amorphous structure (AMO) 2) the desulfurization studies for the removal of sulfur compounds. Zinc oxide with different nano-scale morphologies may result in various porosities with different adsorption capabilities. A tunable shape microwave synthesis of ZnO nano-spheres in a co-solvent mixture is presented. The ZnO nano-sphere material is investigated as a desulfurizing sorbent in a fixed bed reactor in the temperature range 200 to 400 °C and compared with ZnO nanorods and platelet-like morphologies. Fresh and sulfided materials were characterized by X-ray diffraction (XRD), BET specific surface area, pore volume, scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (SEM/EDX), Raman spectroscopy, and thermogravimetric analysis (TGA). The tunable shape microwave synthesis of ZnO presents a high sulfur sorption capacity at temperatures as low as 200 °C which accounts for a three and four fold enhancement over the other preparations presented in this work, and reached 76 % of the theoretical sulfur capacity (TSC) at 300 °C. Another ZnO material with a bimodal micro- and mesopore size distribution investigated as a desulfurizing sorbent presents a sorption capacity that reaches 87% of the theoretical value for desulfurization at 400 °C at breakthrough time. A deactivation model that considers the activity of the solid reactant was used to fit the experimental data. Good agreement between the experimental breakthrough curves and the model predictions are obtained. Manganese oxides are a type of metal oxide materials commonly used in catalytic applications. Little is known about the adsorption capabilities for the removal of sulfur compounds. One of these manganese oxides; amorphous manganese oxide (AMO) is highly promising material for low temperature sorption processes. Amorphous manganese oxide (AMO) has been used in catalytic processes such as for the catalytic oxidation of benzyl alcohol, the preferential oxidation of CO, and for the capture of formate species. This chapter explores the possibility of using AMO in sorption processes for the removal of two contaminants; H 2S and COS in the temperature range 200 - 400 °C.
Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution
NASA Astrophysics Data System (ADS)
Neagu, Dragos; Oh, Tae-Sik; Miller, David N.; Ménard, Hervé; Bukhari, Syed M.; Gamble, Stephen R.; Gorte, Raymond J.; Vohs, John M.; Irvine, John T. S.
2015-09-01
Metal particles supported on oxide surfaces are used as catalysts for a wide variety of processes in the chemical and energy conversion industries. For catalytic applications, metal particles are generally formed on an oxide support by physical or chemical deposition, or less commonly by exsolution from it. Although fundamentally different, both methods might be assumed to produce morphologically and functionally similar particles. Here we show that unlike nickel particles deposited on perovskite oxides, exsolved analogues are socketed into the parent perovskite, leading to enhanced stability and a significant decrease in the propensity for hydrocarbon coking, indicative of a stronger metal-oxide interface. In addition, we reveal key surface effects and defect interactions critical for future design of exsolution-based perovskite materials for catalytic and other functionalities. This study provides a new dimension for tailoring particle-substrate interactions in the context of increasing interest for emergent interfacial phenomena.
Study of removal of ammonia from urine vapor by dual catalyst
NASA Technical Reports Server (NTRS)
Budininkas, P.
1976-01-01
The feasibility of ammonia removal from urine vapor by a low temperature dual-catalyst system was investigated. The process is based on the initial catalytic oxidation of ammonia present in urine vapor to nitrogen and nitrous oxide, followed by a catalytic decomposition of the nitrous oxide formed into its elements. The most active catalysts for the oxidation of ammonia and for the decomposition of N2O, identified in screening tests, were then combined into dual catalyst systems and tested to establish their overall efficiencies for the removal of ammonia from artificial gas mixtures. Dual catalyst systems capable of ammonia removal from the artificial gas mixtures were then tested with the actual urine vapor produced by boiling untreated urine. A suitable dual catalyst bed arrangement was found that achieved the removal of ammonia and organic carbon, and recovered water of good quality from urine vapor.
NASA Astrophysics Data System (ADS)
Turakulova, A. O.; Kharlanov, A. N.; Levanov, A. V.; Isaikina, O. Ya.; Lunin, V. V.
2017-01-01
Ce0.46Zr0.54O2 solid solution prepared using a cellulose template was employed as a carrier for vanadium catalysts of the oxidative dehydrogenation of propane. The properties of VO x /Ce0.46Zr0.54O2 catalyst (5 wt % vanadium) are compared with the properties of the neat support. The carrier and catalyst are studied by means of BET, SEM, DTA, XRD, and Raman spectroscopy. It is shown that the CeVO4 phase responsible for the ODH process is formed upon interaction between vanadate ions and cerium ions on the surface of the solid solution. The catalytic properties of the catalyst and the support are studied in the propane oxidation reaction at temperatures of 450 and 500°C with pulse feeding of the reagent. It is found that the complete oxidation of propane occurs on the support with formation of CO2 and H2O. Three products (propene, CO2, and H2O) form in the presence of the vanadium catalyst. It is suggested that there are two types of catalytic centers on the catalyst's surface. It is concluded that the centers responsible for the complete oxidation of propane are concentrated mainly on the carrier, while the centers responsible for propane ODH are on the CeVO4.
Yang, Haiquan; Liu, Long; Shin, Hyun-dong; Li, Jianghua; Du, Guocheng; Chen, Jian
2013-01-01
High oxidative stability and catalytic efficiency are required for the alkaline α-amylases to keep the enzymatic performance under the harsh conditions in detergent industries. In this work, we attempted to significantly improve both the oxidative stability and catalytic efficiency of an alkaline α-amylase from Alkalimonas amylolytica by engineering the five oxidation-prone methionine residues around the catalytic domain via a systematic approach. Specifically, based on the tertiary structure analysis, five methionines (Met 145, Met 214, Met 229, Met 247 and Met 317) were individually substituted with oxidation-resistant threonine, isoleucine and alaline, respectively. Among the created 15 mutants, 7 mutants M145A, M145I, M214A, M229A, M229T, M247T and M317I showed significantly enhanced oxidative stability or catalytic efficiency. In previous work, we found that the replacement of M247 with leucine could significantly improve the oxidative stability. Thus, these 8 positive mutants (M145A, M145I, M214A, M229A, M229T, M247T, M247L and M317I) were used to conduct the second round of combinational mutations. Among the constructed 85 mutants (25 two-point mutants, 36 three-point mutants, 16 four-point mutants and 8 five-point mutants), the mutant M145I-214A-229T-247T-317I showed a 5.4-fold increase in oxidative stability and a 3.0-fold increase in catalytic efficiency. Interestingly, the specific activity, alkaline stability and thermal stability of this mutant were also increased. The increase of salt bridge and hydrogen bonds around the catalytic domain contributed to the significantly improved catalytic efficiency and stability, as revealed by the three-dimensional structure model of wild-type alkaline α-amylase and its mutant M145I-214A-229T-247T-317I. With the significantly improved oxidative stability and catalytic efficiency, the mutant M145I-214A-229T-247T-317I has a great potential as a detergent additive, and this structure-guided systems engineering strategy may be useful for the protein engineering of the other microbial enzymes to fulfill industrial requirements.
Kokate, Mangesh; Garadkar, Kalyanrao; Gole, Anand
2016-12-01
We describe herein a unique approach to synthesize zinc oxide-silica-silver (ZnO-SiO2-Ag) nanocomposite, in a simple, one-pot process. The typical process for ZnO synthesis by alkaline precipitation of zinc salts has been tweaked to replace alkali by alkaline sodium silicate. The free acid from zinc salts helps in the synthesis of silica nanoparticles, whereas the alkalinity of sodium silicate precipitates the zinc salts. Addition of silver ions into the reaction pot prior to addition of sodium silicate, and subsequent reduction by borohydride, gives additional functionality of metallic centres for catalytic applications. The synthesis strategy is based on our recent work typically involving acid-base type of cross-reactions and demonstrates a novel strategy to synthesize nanocomposites in a one-pot approach. Each component in the composite offers a unique feature. ZnO besides displaying mild catalytic and anti-bacterial behaviour is an excellent and a cheap 3-D support for heterogeneous catalysis. Silver nanoparticles enhance the catalytic & anti-bacterial properties of ZnO. Silica is an important part of the composite; which not only "glues" the two nanoparticles thereby stabilizing the nanocomposite, but also significantly enhances the surface area of the composite; which is an attractive feature of any catalyst composite. The nanocomposite is found to show excellent catalytic performance with very high turnover frequencies (TOFs) when studied for catalytic reduction of Rhodamine B (RhB) and 4-Nitrophenol (4-NP). Additionally, the composite has been tested for its anti-bacterial properties on three different bacterial strains i.e. E. coli, B. Cereus and Bacillus firmus. The mechanism for enhancement of catalytic performance has been probed by understanding the role of silica in offering accessibility to the catalyst via its porous high surface area network. The nanocomposite has been characterized by a host of different analytical techniques. The uniqueness of our product and process stems from the novel synthesis strategy, the choice and combination of the three moieties, increased surface area offered by silica, and cost effectiveness, thereby making our product and process commercially viable and sustainable for industrial applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Catalytic distillation water recovery subsystem
NASA Technical Reports Server (NTRS)
Budininkas, P.; Rasouli, F.
1985-01-01
An integrated engineering breadboard subsystem for the recovery of potable water from untreated urine based on the vapor phase catalytic ammonia removal was designed, fabricated and tested. Unlike other evaporative methods, this process catalytically oxidizes ammonia and volatile hydrocarbons vaporizing with water to innocuous products; therefore, no pretreatment of urine is required. Since the subsystem is fabricated from commercially available components, its volume, weight and power requirements are not optimized; however, it is suitable for zero-g operation. The testing program consists of parametric tests, one month of daily tests and a continuous test of 168 hours duration. The recovered water is clear, odorless, low in ammonia and organic carbon, and requires only an adjustment of its pH to meet potable water standards. The obtained data indicate that the vapor phase catalytic ammonia removal process, if further developed, would also be competitive with other water recovery systems in weight, volume and power requirements.
Process of making supported catalyst
Schwarz, James A.; Subramanian, Somasundaram
1992-01-01
Oxide supported metal catalysts have an additional metal present in intimate association with the metal catalyst to enhance catalytic activity. In a preferred mode, iridium or another Group VIII metal catalyst is supported on a titania, alumina, tungsten oxide, silica, or composite oxide support. Aluminum ions are readsorbed onto the support and catalyst, and reduced during calcination. The aluminum can be added as aluminum nitrate to the iridium impregnate solution, e.g. chloroiridic acid.
Hung, Chang-Mao
2009-04-15
Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H(2)PtCl(6), Pd(NO(3))(3) and Rh(NO(3))(3). Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes.
Duan, Qiannan; Lee, Jianchao; Chen, Han; Zheng, Yunyun
2017-12-01
A novel magnetically separable magnetic activated carbon supporting-copper (MCAC) catalyst for catalytic wet peroxide oxidation (CWPO) was prepared by chemical impregnation. The prepared samples were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) method, and scanning electron microscopy (SEM) equipped with energy dispersive spectrometry (EDS). The catalytic performance of the catalysts was evaluated by direct violet (D-BL) degradation in CWPO experiments. The influence of preparative and operational parameters (dipping conditions, calcination temperature, catalyst loading H 2 O 2 dosage, pH, reaction temperature, additive salt ions and initial D-BL concentration) on degradation performance of CWPO process was investigated. The resulting MCAC catalyst showed higher reusability in direct violet oxidation than the magnetic activated carbon (MAC). Besides, dynamic tests also showed the maximal degradation rate reached 90.16% and its general decoloring ability of MCAC was 34 mg g -1 for aqueous D-BL.
Nguyen, Khac Minh Huy; Largeron, Martine
2015-09-01
Aerobic oxidative CH functionalization of primary aliphatic amines has been accomplished with a biomimetic cooperative catalytic system to furnish 1,2-disubstituted benzimidazoles that play an important role as drug discovery targets. This one-pot atom-economical multistep process, which proceeds under mild conditions, with ambient air and equimolar amounts of each coupling partner, constitutes a convenient environmentally friendly strategy to functionalize non-activated aliphatic amines that remain challenging substrates for non-enzymatic catalytic aerobic systems. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of Creative Commons Attribution NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Method of producing pyrolysis gases from carbon-containing materials
Mudge, Lyle K.; Brown, Michael D.; Wilcox, Wayne A.; Baker, Eddie G.
1989-01-01
A gasification process of improved efficiency is disclosed. A dual bed reactor system is used in which carbon-containing feedstock materials are first treated in a gasification reactor to form pyrolysis gases. The pyrolysis gases are then directed into a catalytic reactor for the destruction of residual tars/oils in the gases. Temperatures are maintained within the catalytic reactor at a level sufficient to crack the tars/oils in the gases, while avoiding thermal breakdown of the catalysts. In order to minimize problems associated with the deposition of carbon-containing materials on the catalysts during cracking, a gaseous oxidizing agent preferably consisting of air, oxygen, steam, and/or mixtures thereof is introduced into the catalytic reactor at a high flow rate in a direction perpendicular to the longitudinal axis of the reactor. This oxidizes any carbon deposits on the catalysts, which would normally cause catalyst deactivation.
Vapor Phase Catalytic Ammonia Reduction
NASA Technical Reports Server (NTRS)
Flynn, Michael T.; Harper, Lynn D. (Technical Monitor)
1994-01-01
This paper discusses the development of a Vapor Phase Catalytic Ammonia Reduction (VPCAR) teststand and the results of an experimental program designed to evaluate the potential of the technology as a water purification process. In the experimental program the technology is evaluated based upon product water purity, water recovery rate, and power consumption. The experimental work demonstrates that the technology produces high purity product water and attains high water recovery rates at a relatively high specific power consumption. The experimental program was conducted in 3 phases. In phase I an Igepon(TM) soap and water mixture was used to evaluate the performance of an innovative Wiped-Film Rotating-Disk evaporator and associated demister. In phase II a phenol-water solution was used to evaluate the performance of the high temperature catalytic oxidation reactor. In phase III a urine analog was used to evaluate the performance of the combined distillation/oxidation functions of the processor.
Catalytic properties of mesoporous Al–La–Mn oxides prepared via spray pyrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Goun; Jung, Kyeong Youl; Lee, Choul-Ho
Highlights: • Al–La–Mn oxides were prepared using spray pyrolysis. • Al–La–Mn oxides exhibit large and uniform pore sizes. • Mesoporous Al–La–Mn oxides were compared with those prepared by conventional precipitation. • Mesoporous Al–La–Mn oxides show superior activity in decomposition of hydrogen peroxide. - Abstract: Mesoporous Al–La–Mn oxides are prepared via spray pyrolysis and are applied to the catalytic decomposition of hydrogen peroxide. The characteristics of the mesoporous Al–La–Mn oxides are examined using N{sub 2} adsorption, X-ray diffraction, and X-ray fluorescence measurements. The surface area and pore size of the Al–La–Mn oxides prepared via spray pyrolysis are larger than those ofmore » the Al–La–Mn oxides prepared using a precipitation method. The catalytic performance of the materials during the decomposition of hydrogen peroxide is examined in a pulse-injection reactor. It is confirmed that the mesoporous Al–La–Mn oxides prepared via spray pyrolysis exhibit higher catalytic activity and stability in the decomposition of hydrogen peroxide than Al–La–Mn oxides prepared using a conventional precipitation method.« less
Meng, Xu; Wang, Yanmin; Wang, Yuanguang; Chen, Baohua; Jing, Zhenqiang; Chen, Gexin; Zhao, Peiqing
2017-07-07
In the presence of manganese oxide octahedral molecular sieve (OMS-2) supported copper hydroxide Cu(OH) x /OMS-2, aerobic synthesis of benzoxazoles from catechols and amines via domino oxidation/cyclization at room temperature is achieved. This heterogeneous benzoxazoles synthesis initiated by the efficient oxidation of catechols over Cu(OH) x /OMS-2 tolerates a variety of substrates, especially amines containing sensitive groups (hydroxyl, cyano, amino, vinyl, ethynyl, ester, and even acetyl groups) and heterocycles, which affords functionalized benzoxazoles in good to excellent yields by employing low catalyst loading (2 mol % Cu). The characterization and plausible catalytic mechanism of Cu(OH) x /OMS-2 are described. The notable features of our catalytic protocol such as the use of air as the benign oxidant and EtOH as the solvent, mild conditions, ease of product separation, being scalable up to the gram level, and superior reusability of catalyst (up to 10 cycles) make it more practical and environmentally friendly for organic synthesis.
This study reports improved catalytic activities and stabilities for the oxidation of dimethyl sulfide (DMS), a major pollutant of pulp and paper mills. Ozone was used as an oxidant and activities of Cu, Mo, Cr and Mn oxides, and mixed metal oxides supported on -alumina, were tes...
This study reports improved catalytic activities and stabilities for the oxidation of dimethyl sulfide (DMS), a major pollutant of pulp and paper mills. Ozone was used as an oxidant and Cu, Mo, V, Cr and Mn metal oxides, and mixed metal oxides support on y-alumina as catalysts ov...
Wang, Sibo; Ren, Zheng; Song, Wenqiao; ...
2015-04-24
Here, a hydrothermal strategy combined with colloidal deposition synthesis was successfully used to grow ZnO/perovskite (LaBO 3, B=Mn, Co, Ni) core-shell nanorod arrays within three dimensional (3-D) honeycomb cordierite substrates. A facile sonication assisted colloidal wash coating process is able to coat a uniformly dispersed perovskite nanoparticles onto the large scale ZnO nanorod arrays rooted on the channel surfaces of the 3D cordierite substrate achieved by hydrothermal synthesis. Compared to traditional wash-coated perovskite catalysts, an enhanced catalytic performance was observed for propane oxidation with 25°C lower light-off temperature than wash-coated perovskite catalyst of similar LaMnO 3 loading (4.3mg). Temperature programmedmore » reduction and desorption under H 2 and O 2 atmosphere, respectively, were used to study the reducibility and oxygen activity of these core-shell nanorod arrays based monolithic catalysts, revealing a catalytic activity sequence of LaCoO 3>LaMnO 3>La 2NiO 4 at the initial stage of catalytic reaction. The good dispersion and size control in La-based perovskite nanoparticles and their interfaces to ZnO nanorod arrays support may contribute to the enhancement of catalytic performance. Lastly, this work may provide a new type of Pt-group metals (PGM) free catalysts with improved catalytic performance for hydrocarbon oxidations at low temperatures.« less
Wu, Qiyuan; Yan, Binhang; Cen, Jiajie; ...
2018-02-05
Here, the size and morphology of metal nanoparticles (NPs) often play a critical role in defining the catalytic performance of supported metal nanocatalysts. However, common synthetic methods struggle to produce metal NPs of appropriate size and morphological control. Thus, facile synthetic methods that offer controlled catalytic functions are highly desired. Here we have identified a new pathway to synthesize supported Rh nanocatalysts with finely tuned spatial dimensions and controlled morphology using a doping-segregation method. We have analyzed their structure evolutions during both the segregation process and catalytic reaction using a variety of in situ spectroscopic and microscopic techniques. A correlationmore » between the catalytic functional sites and activity in CO 2 hydrogenation over supported Rh nanocatalysts is then established. This study demonstrates a facile strategy to design and synthesize nanocatalysts with desired catalytic functions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Qiyuan; Yan, Binhang; Cen, Jiajie
Here, the size and morphology of metal nanoparticles (NPs) often play a critical role in defining the catalytic performance of supported metal nanocatalysts. However, common synthetic methods struggle to produce metal NPs of appropriate size and morphological control. Thus, facile synthetic methods that offer controlled catalytic functions are highly desired. Here we have identified a new pathway to synthesize supported Rh nanocatalysts with finely tuned spatial dimensions and controlled morphology using a doping-segregation method. We have analyzed their structure evolutions during both the segregation process and catalytic reaction using a variety of in situ spectroscopic and microscopic techniques. A correlationmore » between the catalytic functional sites and activity in CO 2 hydrogenation over supported Rh nanocatalysts is then established. This study demonstrates a facile strategy to design and synthesize nanocatalysts with desired catalytic functions.« less
Sun, Pengfei; Wang, Wanglong; Weng, Xiaole; Dai, Xiaoxia; Wu, Zhongbiao
2018-06-05
Industrial combustion of chloroaromatics is likely to generate unintentional biphenyls (PCBs), polychlorinated dibenzo- p-dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs). This process involves a surface-mediated reaction and can be accelerated in the presence of a catalyst. In the past decade, the effect of surface nature of applied catalysts on the conversion of chloroaromatics to PCBs/PCDD/PCDF has been well explored. However, studies on how the flue gas interferent components affect such a conversion process remain insufficient. In this article, a critical flue gas interferent component, alkali potassium, was investigated to reveal its effect on the chloroaromatics oxidation at a typical solid acid-base catalyst, Mn x Ce 1- x O 2 /HZSM-5. The loading of alkali potassium was found to improve the Lewis acidity of the catalyst (by increasing the amounts of surface Mn 4+ after calcination), which thus promoted the CO 2 selectivity for catalytic chlorobenzene (CB) oxidation. The KOH with a high hydrophilicity has favored the adsorption/activation of H 2 O molecules that provided sufficient hydroxyl groups and possibly induced a hydrolysis process to promote the formation of HCl. The K ion also served as a potential sink for chorine ions immobilization (via forming KCl). Both of these inhibited the formation of phenyl polychloride byproducts, thereby blocking the conversion of CB to chlorophenol and then PCDDs/PCDFs, and potentially ensuring a durable operation and less secondary pollution for the catalytic chloroaromatics combustion in industry.
Oxidation reactions of solid carbonaceous and resinous substances in supercritical water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koda, S.
Recent kinetic studies, particularly those by means of shadowgraphy and X-ray radiography, for supercritical water oxidation of solid carbonaceous and resinous substances have revealed the importance of the O{sub 2} mass transfer process over the intrinsic surface reaction at higher temperatures. The mass transfer processes, internal and external one, should be incorporated in designing SCWO processes for solid substances and related processes such as catalytic SCWO. Some model calculation efforts of late are briefly described. Finally, fundamental information required for future development is itemed.
Procedures for making gaseous industrial waste safe
NASA Astrophysics Data System (ADS)
Matros, Yu Sh; Noskov, Aleksandr S.
1990-10-01
The application of various methods (adsorption, absorption, thermal afterburning, catalytic purification, and others) for the removal of sulphur and nitrogen oxides, toxic organic compounds, hydrogen sulphide, and carbon monoxide from industrial waste gases is described. Much attention is devoted to the catalytic procedure for making the gases safe using an energy collecting non-stationary method (reversible process). The advantages and limitations of various gas purification methods are considered. The bibliography includes 279 references.
Yao, Yunjin; Zhang, Jie; Wu, Guodong; Wang, Shaobin; Hu, Yi; Su, Cong; Xu, Tongwen
2017-03-01
Novel iron encapsulated in nitrogen-doped carbon nanotubes (CNTs) supported on porous carbon (Fe@N-C) 3D structured materials for degrading organic pollutants were fabricated from a renewable, low-cost biomass, melamine, and iron salt as the precursors. SEM and TEM micrographs show that iron encapsulated bamboo shaped CNTs are vertically standing on carbon sheets, and thus, a 3D hybrid was formed. The catalytic activities of the prepared samples were thoroughly evaluated by activation of peroxymonosulfate for catalytic oxidation of Orange II solutions. The influences of some reaction conditions (pH, temperature, and concentrations of reactants, peroxymonosulfate, and dye) were extensively evaluated. It was revealed that the adsorption could enrich the pollutant which was then rapidly degraded by the catalytically generated radicals, accelerating the continuous adsorption of residual pollutant. Remarkable carbon structure, introduction of CNTs, and N/Fe doping result in promoted adsorption capability and catalytic performances. Due to the simple synthetic process and cheap carbon precursor, Fe@N-C 3D hybrid can be easily scaled up and promote the development of Fenton-like catalysts.
Staehle, Robert; Tong, Lianpeng; Wang, Lei; Duan, Lele; Fischer, Andreas; Ahlquist, Mårten S G; Sun, Licheng; Rau, Sven
2014-02-03
A new water oxidation catalyst [Ru(III)(bda)(mmi)(OH2)](CF3SO3) (2, H2bda = 2,2'-bipyridine-6,6'-dicarboxylic acid; mmi = 1,3-dimethylimidazolium-2-ylidene) containing an axial N-heterocyclic carbene ligand and one aqua ligand was synthesized and fully characterized. The kinetics of catalytic water oxidation by 2 were measured using stopped-flow technique, and key intermediates in the catalytic cycle were probed by density functional theory calculations. While analogous Ru-bda water oxidation catalysts [Ru(bda)L2] (L = pyridyl ligands) are supposed to catalyze water oxidation through a bimolecular coupling pathway, our study points out that 2, surprisingly, undergoes a single-site water nucleophilic attack (acid-base) pathway. The diversion of catalytic mechanisms is mainly ascribed to the different ligand environments, from nonaqua ligands to an aqua ligand. Findings in this work provide some critical proof for our previous hypothesis about how alternation of ancillary ligands of water oxidation catalysts influences their catalytic efficiency.
The catalytic oxidation of malachite green by the microwave-Fenton processes.
Zheng, Huaili; Zhang, Huiqin; Sun, Xiaonan; Zhang, Peng; Tshukudu, Tiroyaone; Zhu, Guocheng
2010-01-01
Catalytic oxidation of malachite green using the microwave-Fenton process was investigated. 0% of malachite green de-colorization using the microwave process and 23.5% of malachite green de-colorization using the Fenton process were observed within 5 minutes. In contrast 95.4% of malachite green de-colorization using the microwave-Fenton was observed in 5 minutes. During the microwave-Fenton process, the optimum operating conditions for malachite green de-colorization were found to be 3.40 of initial pH, 0.08 mmol/L of Fe2+ concentration and 12.5 mmol/L of H2O2 concentration. Confirmatory tests were carried out under the optimum conditions and the COD removal rate of 82.0% and the de-colorization rate of 99.0% were observed in 5 minutes. The apparent kinetics equation of -dC/dt=0.0337 [malachite green]0.9860[Fe2+)]0.8234[H2O2]0.1663 for malachite green de-colorization was calculated, which implied that malachite green was the dominant factor in determining the removal efficiency of malachite green based on microwave-Fenton process.
Brady, M. P.; Keiser, J. R.; Leonard, D. N.; ...
2017-01-31
Co-processing of bio-oils with conventional petroleum-based feedstocks is an attractive initial option to make use of renewable biomass as a fuel source while leveraging existing refinery infrastructures. But, bio-oils and their processing intermediates have high concentrations of organic oxygenates, which, among their other negative qualities, can result in increased corrosion issues. A range of stainless steel alloys (409, 410, 304L, 316L, 317L, and 201) was exposed at the base of the riser in a fluid catalytic cracking pilot plant while co-processing vacuum gas oil with pine-derived pyrolysis bio-oils that had been catalytically hydrodeoxygenated to ~ 2 to 28% oxygen. Wemore » studied the processing using a catalyst temperature of 704 °C, a reaction exit temperature of 520 °C, and total co-processing run times of 57–75 h. External oxide scaling 5–30 μm thick and internal attack 1–5 μm deep were observed in these short-duration exposures. The greatest extent of internal attack was observed for co-processing with the least stabilized bio-oil, and more so for types 409, 410, 304L, 316L, 317L stainless steel than for type 201. Finally, the internal attack involved porous Cr-rich oxide formation, associated with local Ni-metal enrichment and S-rich nanoparticles, primarily containing Cr or Mn. Implications for alloy selection and corrosion are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady, M. P.; Keiser, J. R.; Leonard, D. N.
Co-processing of bio-oils with conventional petroleum-based feedstocks is an attractive initial option to make use of renewable biomass as a fuel source while leveraging existing refinery infrastructures. But, bio-oils and their processing intermediates have high concentrations of organic oxygenates, which, among their other negative qualities, can result in increased corrosion issues. A range of stainless steel alloys (409, 410, 304L, 316L, 317L, and 201) was exposed at the base of the riser in a fluid catalytic cracking pilot plant while co-processing vacuum gas oil with pine-derived pyrolysis bio-oils that had been catalytically hydrodeoxygenated to ~ 2 to 28% oxygen. Wemore » studied the processing using a catalyst temperature of 704 °C, a reaction exit temperature of 520 °C, and total co-processing run times of 57–75 h. External oxide scaling 5–30 μm thick and internal attack 1–5 μm deep were observed in these short-duration exposures. The greatest extent of internal attack was observed for co-processing with the least stabilized bio-oil, and more so for types 409, 410, 304L, 316L, 317L stainless steel than for type 201. Finally, the internal attack involved porous Cr-rich oxide formation, associated with local Ni-metal enrichment and S-rich nanoparticles, primarily containing Cr or Mn. Implications for alloy selection and corrosion are discussed.« less
Oxidative Tritium Decontamination System
Gentile, Charles A. , Guttadora, Gregory L. , Parker, John J.
2006-02-07
The Oxidative Tritium Decontamination System, OTDS, provides a method and apparatus for reduction of tritium surface contamination on various items. The OTDS employs ozone gas as oxidizing agent to convert elemental tritium to tritium oxide. Tritium oxide vapor and excess ozone gas is purged from the OTDS, for discharge to atmosphere or transport to further process. An effluent stream is subjected to a catalytic process for the decomposition of excess ozone to diatomic oxygen. One of two configurations of the OTDS is employed: dynamic apparatus equipped with agitation mechanism and large volumetric capacity for decontamination of light items, or static apparatus equipped with pressurization and evacuation capability for decontamination of heavier, delicate, and/or valuable items.
NASA Astrophysics Data System (ADS)
Li, Nan; Wang, Ying; Wu, Chenren; Lu, Wangyang; Pei, Kemei; Chen, Wenxing
2018-03-01
Enzymes have always been a source of inspiration for the design and improvement of catalysts. Many examples are occurring in heme/non-heme metalloenzymes with the generation of active high-valent metal-oxo intermediates that are controlled by the surrounding amino acids/protein and axial residue ligands, facilitating the efficient oxidation of substrates in biochemical processes. Here, the high-valent cobalt-oxo species have been formed during the heterolysis of H2O2 activated by the bioinspired catalyst, axially coordinated cobalt phthalocyanine (CoPc) on pyridine-functionalized multi-walled carbon nanotubes (MWCNTs-Py), characterized by ultraviolet-visible and X-ray photoelectron spectroscopy. Formation process of the active cobalt-oxo species has been further confirmed by electrospray ionization mass spectrometry analysis and the results from the density functional theory (B3LYP/6-311G) calculations. Such high-valent cobalt-oxo species exhibit high reactivity and enough persistence for the oxidation of the target substrate, C.I. Acid Red 1. The oxidation products are nearly biodegradable small molecules identified by ultra-performance liquid chromatography/high-definition mass spectrometry. This strategy provides a foundation on developing efficient and persistent catalytic system, in particular oxidation processes based on the complex catalysts with N4 macrocycle structures.
Barroo, Cedric; Janvelyan, Nare; Zugic, Branko; ...
2016-07-25
To improve the understanding of catalytic processes, the surface structure and composition of the active materials need to be determined before and after reaction. Morphological changes may occur under reaction conditions and can dramatically influence the reactivity and/or selectivity of a catalyst. Goldbased catalysts with different architectures are currently being developed for selective oxidation reactions at low temperatures. Specifically, nanoporous Au (npAu) with a composition of Au 97-Ag 3 is obtained by dealloying a Ag 70-Au 30 bulk alloy. Recent studies highlight the efficiency of npAu catalysts for methanol oxidation using ozone to activate the catalysts before methanol oxidation. Inmore » this paper, we studied the morphological and compositional changes occurring at the surface of Au-based catalysts in certain conditions.« less
Weinberger, Christian; Roggenbuck, Jan; Hanss, Jan; Tiemann, Michael
2015-01-01
A variety of metal nitrates were filled into the pores of an ordered mesoporous CMK-3 carbon matrix by solution-based impregnation. Thermal conversion of the metal nitrates into the respective metal oxides, and subsequent removal of the carbon matrix by thermal combustion, provides a versatile means to prepare mesoporous metal oxides (so-called nanocasting). This study aims to monitor the thermally induced processes by thermogravimetric analysis (TGA), coupled with mass ion detection (MS). The highly dispersed metal nitrates in the pores of the carbon matrix tend to react to the respective metal oxides at lower temperature than reported in the literature for pure, i.e., carbon-free, metal nitrates. The subsequent thermal combustion of the CMK-3 carbon matrix also occurs at lower temperature, which is explained by a catalytic effect of the metal oxides present in the pores. This catalytic effect is particularly strong for oxides of redox active metals, such as transition group VII and VIII metals (Mn, Fe, Co, Ni), Cu, and Ce. PMID:28347073
About complex refractive index of black Si
NASA Astrophysics Data System (ADS)
Pinčík, Emil; Brunner, Robert; Kobayashi, Hikaru; Mikula, Milan
2017-12-01
The paper deals with the complex refractive index in the IR light region of two types of samples (i) as prepared black silicon, and (ii) thermally oxidized black silicon (BSi) nano-crystalline specimens produced both by the surface structure chemical transfer method using catalytic Ag evaporated spots (as prepared sample) and by the catalytic Pt catalytic mesh (thermally oxidized sample). We present, compare, and discuss the values of the IR complex refractive index obtained by calculation using the Kramers-Krönig transformation. Results indicate that small differences between optical properties of as prepared black Si and thermally oxidized BSi are given by: (i) - oxidation procedure, (ii) - thickness of the formed black Si layer, mainly, not by utilization of different catalytic metals, and by iii) the different thickness. Contamination of the surface by different catalytic metals contributes almost equally to the calculated values of the corresponding complex refractive index.
Wi, Rinbok; Imran, Muhammad; Lee, Kyoung G; Yoon, Sun Hong; Cho, Bong Gyoo; Kim, Do Hyun
2011-07-01
Zinc oxide (ZnO) and cerium oxide (CeO2) nanoparticles were deposited on the surface of preformed silica spheres with diameters ranging from 60 to 750 nm. Ultrasonic irradiation was employed to promote the deposition of the metal oxide nanoparticles on the surface of silica. Silica-supported zinc oxide or cerium oxide was used as a catalyst in the glycolysis of polyethylene terephthalate, one of the key processes in the depolymerization of polyethylene terephthalate. The effect of the support size on the catalytic activity was studied in terms of monomer yield, and the monomer concentration was analyzed via high-performance liquid chromatography (HPLC). The morphologies and surface properties of the catalysts were characterized using a scanning electron microscope, a transmission electron microscope, and a BET surface area analyzer, while the monomer was characterized via HPLC and nuclear-magnetic-resonance spectroscopy. Both the zinc oxide and cerium oxide deposited on a smaller support showed better distribution and less aggregation. The high specific surface area of the smaller support catalysts provided a large number of active sites. The highest monomer yield was obtained with a catalyst of 60-nm silica support.
Partial oxidation of alkanes by dioxiranes formed in situ at low temperature.
Yacob, Sara; Caulfield, Michael J; Barckholtz, Timothy A
2018-01-13
Partial oxidation catalysts capable of efficiently operating at low temperatures may limit the over-oxidation of alkane substrates and thereby improve selectivity. This work focuses on examining alkane oxidation using completely metal-free organocatalysts, dioxiranes. The dioxiranes employed here are synthesized by oxidation of a ketone using a terminal oxidant, such as hydrogen peroxide. Our work generates the dioxirane in situ , so that the process can be catalytic with respect to the ketone. To date, we have demonstrated selective partial oxidation of adamantane using ketone catalysts resulting in yields upwards of 60% towards 1-adamantanol with greater than 99% selectivity. Furthermore, we have demonstrated that changing the electrophilic character of the ketone R groups to contain more electron-donating ligands facilitates the dioxirane ring formation and improves overall oxidation yields. Isotopic labelling studies using H 2 18 O 2 show the preferential incorporation of an 18 O label into the parent ketone, providing evidence for a dioxirane intermediate formed in situ The isotopic labelling studies, along with solvent effect studies, suggest the formation of peracetic acid as a reactive intermediate.This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'. © 2017 The Author(s).
Dual effects of water vapor on ceria-supported gold clusters.
Li, Zhimin; Li, Weili; Abroshan, Hadi; Ge, Qingjie; Li, Gao; Jin, Rongchao
2018-04-05
Atomically precise nanocatalysts are currently being intensely pursued in catalysis research. Such nanocatalysts can serve as model catalysts for gaining fundamental insights into catalytic processes. In this work we report a discovery that water vapor provokes the mild removal of surface long-chain ligands on 25-atom Au25(SC12H25)18 nanoclusters in a controlled manner. Using the resultant Au25(SC12H25)18-x/CeO2 catalyst and CO oxidation as a probe reaction, we found that the catalytic activity of cluster/CeO2 is enhanced from nearly zero conversion of CO (in the absence of water) to 96.2% (in the presence of 2.3 vol% H2O) at the same temperature (100 °C). The cluster catalysts exhibit high stability during the CO oxidation process under moisture conditions (up to 20 vol% water vapor). Water vapor plays a dual role in gold cluster-catalyzed CO oxidation. FT-IR and XPS analyses in combination with density functional theory (DFT) simulations suggest that the "-SC12H25" ligands are easier to be removed under a water vapor atmosphere, thus generating highly active sites. Moreover, the O22- peroxide species constitutes the active oxygen species in CO oxidation, evidenced by Raman spectroscopy analysis and isotope experiments on the CeO2 and cluster/CeO2. The results also indicate the perimeter sites of the interface of Au25(SC12H25)18-x/CeO2 to be active sites for catalytic CO oxidation. The controlled exposure of active sites under mild conditions is of critical importance for the utilization of clusters in catalysis.
Mechanistic studies of the CO-oxidation reaction on catalysts for use in long-life CO2 lasers
NASA Technical Reports Server (NTRS)
Dawood, Talat; Richmond, John R.; Riley, Brian W.
1990-01-01
The catalytic recombination of carbon monoxide and oxygen was studied under conditions expected to be present in a sealed E-beam CO2 laser system. These conditions are typically a gas inlet temperature of 60 C, a substoichiometric CO/O2 ratio of ca. 2.5/1 with an oxygen feed rate of ca. 5 micromoles/s, a carrier gas comprising He, N2 and CO2 in the ratio of 3:2:1, near atmospheric pressure and a gas velocity of 4 m/s. Heterogeneous catalysts, based on precious metal supported on tin oxide, have been coated onto ceramic monoliths and tested for catalytic activity and stability after a reduction/passivation step. Two catalyst systems have been chosen. These are Pt/Pd/SnO2 and Pt/Ru/SnO2. Under the conditions described above, a characteristic decline in catalytic activity is apparent for both systems, and exit gas temperature has been recognized as a sensitive parameter by which to monitor the activity changes. A semilogarithmic plot of exit temperature as a function of time has revealed two distinct processes connected with the decline in activity: one process is associated with reduction of the oxidized precious metal (at Site A), whilst the other is related to the formation and approach to steady-state of an active site at the metal/support interface (Site B).
Metal-Free Oxidation of Primary Amines to Nitriles through Coupled Catalytic Cycles.
Lambert, Kyle M; Bobbitt, James M; Eldirany, Sherif A; Kissane, Liam E; Sheridan, Rose K; Stempel, Zachary D; Sternberg, Francis H; Bailey, William F
2016-04-04
Synergism among several intertwined catalytic cycles allows for selective, room temperature oxidation of primary amines to the corresponding nitriles in 85-98% isolated yield. This metal-free, scalable, operationally simple method employs a catalytic quantity of 4-acetamido-TEMPO (ACT; TEMPO=2,2,6,6-tetramethylpiperidine N-oxide) radical and the inexpensive, environmentally benign triple salt oxone as the terminal oxidant under mild conditions. Simple filtration of the reaction mixture through silica gel affords pure nitrile products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wu, Jin; Ma, Luming; Chen, Yunlu; Cheng, Yunqin; Liu, Yan; Zha, Xiaosong
2016-04-01
Catalytic ozonation of organic pollutants from actual bio-treated dyeing and finishing wastewater (BDFW) with iron shavings was investigated. Catalytic ozonation effectively removed organic pollutants at initial pH values of 7.18-7.52, and the chemical oxygen demand (COD) level decreased from 142 to 70 mg·L(-1) with a discharge limitation of 80 mg·L(-1). A total of 100% and 42% of the proteins and polysaccharides, respectively, were removed with a decrease in their contribution to the soluble COD from 76% to 41%. Among the 218 organic species detected by liquid chromatography-mass spectrometry, 58, 77, 79 and 4 species were completely removed, partially removed, increased and newly generated, respectively. Species including textile auxiliaries and dye intermediates were detected by gas chromatography-mass spectrometry. The inhibitory effect decreased from 51% to 33%, suggesting a reduction in the acute toxicity. The enhanced effect was due to hydroxyl radical (OH) oxidation, co-precipitation and oxidation by other oxidants. The proteins were removed by OH oxidation (6%), by direct ozonation, co-precipitation and oxidation by other oxidants (94%). The corresponding values for polysaccharides were 21% and 21%, respectively. In addition, the iron shavings behaved well in successive runs. These results indicated that the process was favorable for engineering applications for removal of organic pollutants from BDFW. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Choi, Sukwon
Sulfur in transportation fuels remains a leading source of SOx emissions from vehicle engines and is a major source of air pollution. The very low levels of sulfur globally mandated for transportation fuels in the near future cannot be achieved by current practices of hydrodesulfurization (HDS) for sulfur removal, which operate under severe conditions (high T, P) and use valuable H2. Novel vapor-phase catalytic oxidesulfurization (ODS) processes of selectively oxidizing various organosulfur compounds (carbonyl sulfide, carbon disulfide, methanethiol, dimethyl sulfide (DMS), dimethyl disulfide (DMDS), thiophene, 2,5-dimenthylthiophene) typically found in various industrial streams (e.g., petroleum refining, pulp and paper) into valuable chemical intermediates (H 2CO, CO, H2, maleic anhydride and concentrated SO2) has been extensively studied. This research has primarily focused on establishing the fundamental kinetics and mechanisms of these selective oxidation reactions over well-defined supported metal oxide catalysts. The selective oxidation reactions of COS + O2 → CO + SO2; 2CS2 + 5O2 → 2CO + 4SO2; CH3SH + 2O 2 → H2CO + SO2 + H2O; C4 H4S + 3O2 → C4H2O 3 + H2O + SO2; were studied. Raman spectroscopy revealed that the supported metal oxide phases were 100% dispersed on the oxide substrate. All the catalysts were highly active and selective for the oxidesulfurization of carbonyl sulfide, carbon disulfide, methanethiol, and thiophene between 290--330°C, 230--270°C, 350--400°C, and 250--400°C, respectively and did not deactivate. The TOFs (turnover frequency, normalized activity per active catalytic site) for all ODS reactions over supported vanadia catalysts, only containing molecularly dispersed surface vanadia species, varied within one order of magnitude and revealed the V-O-Support bridging bond was involved in the critical rate-determining kinetic steps. The surface reaction mechanism for each reaction was revealed by in situ IR (infrared) and temperature programmed surface reaction-mass spectroscopy (TPSR-MS). The systematic investigation of vapor-phase oxidesulfurization (ODS) reactions of organosulfur compounds over catalytic supported metal oxides revealed the facile S-O exchange mechanisms allow for the efficient removal of sulfur while producing value-added chemicals and represents the discovery of a new series of catalytic reactions.
NASA Astrophysics Data System (ADS)
Li, Gang; Li, Kezheng; Liu, Aijuan; Yang, Ping; Du, Yukou; Zhu, Mingshan
2017-03-01
Considering the potential use of manganese oxide based nanocomposite in catalytic ozonation of water contaminant, we report unique three-dimensional (3D) nanoarchitectures composed of β-MnO2 and reduced graphene oxide (RGO) for catalytic ozonation of dichloroacetic acid (DCAA) from drinking water. The catalytic results show that the 3D β-MnO2/RGO nanocomposites (FMOG) can be used as efficient and stable ozonation catalysts to eliminate DCAA from water. The probable mechanism of catalytic ozonation was also proposed by detecting intermediates using gas chromatography-mass spectrometry. This result likely paves a facile avenue and initiates new opportunities for the exploration of heterogeneous catalysts for the removal of disinfection by-products from drinking water.
In situ synthesis and catalytic application of reduced graphene oxide supported cobalt nanowires
NASA Astrophysics Data System (ADS)
Xu, Zhiqiang; Long, Qin; Deng, Yi; Liao, Li
2018-05-01
Controlled synthesis of magnetic nanocomposite with outstanding catalytic performances is a promising strategy in catalyst industry. We proposed a novel concept for fabrication of reduced graphene oxide-supported cobalt nanowires (RGO/Co-NWs) nanocomposite as high-efficient magnetic catalyst. Unlike the majority of experiments necessitating harsh synthesis conditions such as high-pressure, high-temperature and expensive template, here the RGO/Co-NWs were successfully prepared in aqueous solution under mild conditions with the assistance of external magnetic field. The synthetic process was facile and external magnetic force was adopted to induce the unidirectional self-assembly of cobalt crystals on graphene oxide to form RGO/Co-NWs. The possible formation mechanism laid on the fact that the dipole magnetic moments of the nanoparticles were aligned along the magnetic induction lines with the external magnetic field direction resulting in the formation of nanowires elongating in the direction of the magnetization axis. Simultaneously, a series of controlled reactions were conducted to illuminate the effect of graphene oxide, external magnetic field and PVP on the morphology and size of RGO/Co-NWs in the present approach. More importantly, the nanocomposite exhibited a high catalytic performance towards ammonia borane. Hence the novel nanocomposite holds a great potential for technological applications such as catalyst industry.
Catalytic Role of Manganese Oxides in Prebiotic Nucleobases Synthesis from Formamide.
Bhushan, Brij; Nayak, Arunima; Kamaluddin
2016-06-01
Origin of life processes might have begun with the formation of important biomonomers, such as amino acids and nucleotides, from simple molecules present in the prebiotic environment and their subsequent condensation to biopolymers. While studying the prebiotic synthesis of naturally occurring purine and pyrimidine derivatives from formamide, the manganese oxides demonstrated not only good binding for formamide but demonstrated novel catalytic activity. A novel one pot manganese oxide catalyzed synthesis of pyrimidine nucleobases like thymine is reported along with the formation of other nucleobases like purine, 9-(hydroxyacetyl) purine, cytosine, 4(3 H)-pyrimidinone and adenine in acceptable amounts. The work reported is significant in the sense that the synthesis of thymine has exhibited difficulties especially under one pot conditions and also such has been reported only under the catalytic activity of TiO2. The lower oxides of manganese were reported to show higher potential as catalysts and their existence were favored by the reducing atmospheric conditions prevalent on early Earth; thereby confirming the hypothesis that mineral having metals in reduced form might have been more active during the course of chemical evolution. Our results further confirm the role of formamide as a probable precursor for the formation of purine and pyrimidine bases during the course of chemical evolution and origin of life.
Facile synthesis of PdSx/C porous nanospheres and their applications for ethanol oxidation reaction
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Zhang, Fuhua; Ma, Xuemei; Zheng, Yiqun; Hou, Shifeng
2016-12-01
We report a facile approach for the synthesis of carbon-supported palladium polysulphide porous nanospheres (PdSx/C) and their applications for ethanol oxidation reaction. Typical synthesis started with generation of palladium/poly (3,4-ethylenedioxythiophene)(Pd/PEDOT) nanospheres, followed by a calcination process at an optimized temperature to form PdSx/C, with an average size of 2.47 ± 0.60 and 50 nm of PdSx nanoparticles and carbon porous nanospheres, respectively. Various techniques, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electrochemical techniques were performed to characterize their morphologies, compositions and structures. In contrary to most Pd-based electrochemical catalysts that could be easily poised with trace sulfur during the catalytic oxidation process, the as-prepared PdSx/C porous nanospheres exhibited high electrocatalytic activities and stabilities for the electrochemical catalytic oxidation of ethanol in alkaline medium. In particular, the forward peak current intensity achieved 162.1 mA mg-1 and still maintained at 46.7 mA mg-1 even after 1000 cycles. This current work not only offers a novel type of fuel-cell catalyst for ethanol oxidation reaction, but also provides a possible route for solving the sulfur-poisoning problem in catalysis.
NASA Astrophysics Data System (ADS)
Liu, Gen; Pan, Zhanchang; Li, Wuyi; Yu, Ke; Xia, Guowei; Zhao, Qixiang; Shi, Shikun; Hu, Guanghui; Xiao, Chumin; Wei, Zhigang
2017-07-01
Titanium nickel nitride (TiNiN) decorated three-dimensional (3D) carbon nanotubes-reduced graphene oxide (CNT-rGO), a fancy 3D platinum (Pt)-based catalyst hybrid support, is prepared by a solvothermal process followed by a nitriding process, which is tested as anodic catalyst support for the methanol oxidation reaction (MOR). The structure, morphology and composition of the synthesized TiNiN/CNT-rGO exhibits a uniform particle dispersion with high purity and interpenetrating 3D network structure. Notably, Pt/TiNiN/CNT-rGO catalyst exhibits significantly improved catalytic activity and durability for methanol oxidation in comparison with Pt/CNT-rGO and conventional Pt/C (JM). The outstanding electrochemical performance was attributed to structure and properties. That is, the 3D CNT-rGO provided a fast transport network for charge-transfer and mass-transfer as well as TiNiN NPs with good synergistic effect and the strong electronic coupling between different domains in TiNiN/CNT-rGO, thus the catalytic activity of the novel catalyst is greatly improved. These results evidences 3D TiNiN/CNT-rGO as a promising catalyst support for a wide range of applications in fuel cells.
Li, Zhanyong; Peters, Aaron W.; Bernales, Varinia; ...
2016-11-30
Here, Zr-based metal–organic frameworks (MOFs) have been shown to be excellent catalyst supports in heterogeneous catalysis due to their exceptional stability. Additionally, their crystalline nature affords the opportunity for molecular level characterization of both the support and the catalytically active site, facilitating mechanistic investigations of the catalytic process. We describe herein the installation of Co(II) ions to the Zr 6 nodes of the mesoporous MOF, NU-1000, via two distinct routes, namely, solvothermal deposition in a MOF (SIM) and atomic layer deposition in a MOF (AIM), denoted as Co-SIM+NU-1000 and Co-AIM+NU-1000, respectively. The location of the deposited Co species in themore » two materials is determined via difference envelope density (DED) analysis. Upon activation in a flow of O 2 at 230 °C, both materials catalyze the oxidative dehydrogenation (ODH) of propane to propene under mild conditions. Catalytic activity as well as propene selectivity of these two catalysts, however, is different under the same experimental conditions due to differences in the Co species generated in these two materials upon activation as observed by in situ X-ray absorption spectroscopy. A potential reaction mechanism for the propane ODH process catalyzed by Co-SIM+NU-1000 is proposed, yielding a low activation energy barrier which is in accord with the observed catalytic activity at low temperature.« less
Advanced air revitalization system modeling and testing
NASA Technical Reports Server (NTRS)
Dall-Baumann, Liese; Jeng, Frank; Christian, Steve; Edeer, Marybeth; Lin, Chin
1990-01-01
To support manned lunar and Martian exploration, an extensive evaluation of air revitalization subsystems (ARS) is being conducted. The major operations under study include carbon dioxide removal and reduction; oxygen and nitrogen production, storage, and distribution; humidity and temperature control; and trace contaminant control. A comprehensive analysis program based on a generalized block flow model was developed to facilitate the evaluation of various processes and their interaction. ASPEN PLUS was used in modelling carbon dioxide removal and reduction. Several life support test stands were developed to test new and existing technologies for their potential applicability in space. The goal was to identify processes which use compact, lightweight equipment and maximize the recovery of oxygen and water. The carbon dioxide removal test stands include solid amine/vacuum desorption (SAVD), regenerative silver oxide chemisorption, and electrochemical carbon dioxide concentration (EDC). Membrane-based carbon dioxide removal and humidity control, catalytic reduction of carbon dioxide, and catalytic oxidation of trace contaminants were also investigated.
Zhang, Shule; Zhong, Qin; Shen, Yuge; Zhu, Li; Ding, Jie
2015-06-15
This study aimed at investigating the reason of high catalytic activity for CeO2-WO3/TiO2 catalyst from the aspects of WO3 interaction with other species and the NO oxidation process. Analysis by X-ray diffractometry, photoluminescence spectra, diffuse reflectance UV-visible, X-ray photoelectron spectroscopy, density functional theory calculations, electron paramagnetic resonance spectroscopy, temperature-programmed-desorption of NO and in situ diffuse reflectance infrared transform spectroscopy showed that WO3 could interact with CeO2 to improve the electron gaining capability of CeO2 species. In addition, WO3 species acted as electron donating groups to transfer the electrons to CeO2 species. The two aspects enhanced the formation of reduced CeO2 species to improve the formation of superoxide ions. Furthermore, the Ce species were the active sites for the NO adsorption and the superoxide ions over the catalyst needed oxidizing the adsorbed NO to improve the NO oxidation. This process was responsible for the high catalytic activity of CeO2-WO3/TiO2 catalyst. Copyright © 2015 Elsevier Inc. All rights reserved.
He, Fei; Niu, Na; Qu, Fengyu; Wei, Shuquan; Chen, Yujin; Gai, Shili; Gao, Peng; Wang, Yan; Yang, Piaoping
2013-09-21
The reduced graphene oxide (rGO) supported cobalt nanocrystals have been synthesized through an in situ crystal growth method using Co(acac)2 under solvothermal conditions by using DMF as the solvent. By carefully controlling the reaction temperature, the phase transition of the cobalt nanocrystals from the cubic phase to the hexagonal phase has been achieved. Moreover, the microscopic structure and morphology as well as the reduction process of the composite have been investigated in detail. It is found that oxygen-containing functional groups on the graphene oxide (GO) can greatly influence the formation process of the Co nanocrystals by binding the Co(2+) cations dissociated from the Co(acac)2 in the initial reaction solution at 220 °C, leading to the 3D reticular structure of the composite. Furthermore, this is the first attempt to use a Co/rGO composite as the catalyst in the F-T CO2 hydrogenation process. The catalysis testing results reveal that the as-synthesized 3D structured composite exhibits ideal catalytic activity and good stability, which may greatly extend the scope of applications for this kind of graphene-based metal hybrid material.
Zhang, Hua; Wang, Chen; Sun, Han-Lei; Fu, Gang; Chen, Shu; Zhang, Yue-Jiao; Chen, Bing-Hui; Anema, Jason R.; Yang, Zhi-Lin; Li, Jian-Feng; Tian, Zhong-Qun
2017-01-01
Surface molecular information acquired in situ from a catalytic process can greatly promote the rational design of highly efficient catalysts by revealing structure-activity relationships and reaction mechanisms. Raman spectroscopy can provide this rich structural information, but normal Raman is not sensitive enough to detect trace active species adsorbed on the surface of catalysts. Here we develop a general method for in situ monitoring of heterogeneous catalytic processes through shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) satellite nanocomposites (Au-core silica-shell nanocatalyst-satellite structures), which are stable and have extremely high surface Raman sensitivity. By combining operando SHINERS with density functional theory calculations, we identify the working mechanisms for CO oxidation over PtFe and Pd nanocatalysts, which are typical low- and high-temperature catalysts, respectively. Active species, such as surface oxides, superoxide/peroxide species and Pd–C/Pt–C bonds are directly observed during the reactions. We demonstrate that in situ SHINERS can provide a deep understanding of the fundamental concepts of catalysis. PMID:28537269
2016-01-01
The direct catalytic conversion of methane to liquid oxygenated compounds, such as methanol or dimethyl ether, at low temperature using molecular oxygen is a grand challenge in C–H activation that has never been met with synthetic, heterogeneous catalysts. We report the first demonstration of direct, catalytic oxidation of methane into methanol with molecular oxygen over copper-exchanged zeolites at low reaction temperatures (483–498 K). Reaction kinetics studies show sustained catalytic activity and high selectivity for a variety of commercially available zeolite topologies under mild conditions (e.g., 483 K and atmospheric pressure). Transient and steady state measurements with isotopically labeled molecules confirm catalytic turnover. The catalytic rates and apparent activation energies are affected by the zeolite topology, with caged-based zeolites (e.g., Cu-SSZ-13) showing the highest rates. Although the reaction rates are low, the discovery of catalytic sites in copper-exchanged zeolites will accelerate the development of strategies to directly oxidize methane into methanol under mild conditions. PMID:27413787
Liu, Peng; Song, Ke; Zhang, Dongju; Liu, Chengbu
2012-05-01
The detailed mechanisms of catalytic CO oxidation over Au(2)(-) and AuAg(-) dimers, which represent the simplest models for monometal Au and bimetallic Au-Ag nanoparticles, have been studied by performing density functional theory calculations. It is found that both Au(2)(-) and AuAg(-) dimers catalyze the reaction according to the similar mono-center Eley-Rideal mechanism. The catalytic reaction is of the multi-channel and multi-step characteristic, which can proceed along four possible pathways via two or three elementary steps. In AuAg(-), the Au site is more active than the Ag site, and the calculated energy barrier values for the rate-determining step of the Au-site catalytic reaction are remarkably smaller than those for both the Ag-site catalytic reaction and the Au(2)(-) catalytic reaction. The better catalytic activity of bimetallic AuAg(-) dimer is attributed to the synergistic effect between Au and Ag atom. The present results provide valuable information for understanding the higher catalytic activity of Au-Ag nanoparticles and nanoalloys for low-temperature CO oxidation than either pure metallic catalyst.
Composites based on PET and red mud residues as catalyst for organic removal from water.
Bento, Natálya I; Santos, Patrícia S C; de Souza, Talita E; Oliveira, Luiz C A; Castro, Cínthia S
2016-08-15
In this study, we obtained a composite based on carbon/iron oxide from red mud and PET (poly(ethylene terephthalate)) wastes by mechanical mixture (10, 15 and 20wt.% of PET powder/red mud) followed by a controlled thermal treatment at 400°C under air. XRD analyses revealed that the α-Fe2O3 is the main phase formed from red mud. TPR analyses showed that the iron oxide present in the composites undergoes reduction at lower temperature to form Fe(2+) species present in Fe3O4, indicating that the iron oxide in the composite can exhibit greater reactivity in the catalytic processes compared to the original red mud. In fact, catalytic tests showed that the composites presented higher capacity to remove methylene blue dye (MB), presenting about 90% of removal after 24h of reaction. The MB removal was also monitored by mass spectrometer with ionization via electrospray (ESI-MS), which demonstrated the occurrence of the oxidation process, showing the formation of MB oxidation products. The stability of the composites was confirmed after four reuse cycles. The results seem to indicate that PET carbon deposited over the iron oxide from red mud promotes adsorption of the contaminant allowing its contact with the iron atoms and their consequent reaction. Copyright © 2016 Elsevier B.V. All rights reserved.
Kruid, Jan; Fogel, Ronen; Limson, Janice Leigh
2017-05-01
Identifying the most efficient oxidation process to achieve maximum removal of a target pollutant compound forms the subject of much research. There exists a need to develop rapid screening tools to support research in this area. In this work we report on the development of a quantitative assay as a means for identifying catalysts capable of decolourising methylene blue through the generation of oxidising species from hydrogen peroxide. Here, a previously described methylene blue test strip method was repurposed as a quantitative, aqueous-based spectrophotometric assay. From amongst a selection of metal salts and metallophthalocyanine complexes, monitoring of the decolourisation of the cationic dye methylene blue (via Fenton-like and non-Fenton oxidation reactions) by the assay identified the following to be suitable oxidation catalysts: CuSO 4 (a Fenton-like catalyst), iron(II)phthalocyanine (a non-Fenton oxidation catalyst), as well as manganese(II) phthalocyanine. The applicability of the method was examined for the removal of bisphenol A (BPA), as measured by HPLC, during parallel oxidation experiments. The order of catalytic activity was identified as FePc > MnPc > CuSO 4 for both BPA and MB. The quantitative MB decolourisation assay may offer a rapid method for screening a wide range of potential catalysts for oxidation processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chuklina, S. G.; Maslenkova, S. A.; Pylinina, A. I.; Podzorova, L. I.; Ilyicheva, A. A.
2017-02-01
In the present study, we investigated the effect of preparation method, phase composition and calcination temperature of the (Ce-TZP) - Al2O3 mixed oxides on their structural features and catalytic performance in ethanol conversion. Ceria-zirconia-alumina mixed oxides with different (Ce+Zr)/Al atomic ratios were prepared via sol-gel method. Catalytic activity and selectivity were investigated for ethanol conversion to acetaldehyde, ethylene and diethyl ether.
Coupling catalytic hydrolysis and oxidation of HCN over HZSM-5 modified by metal (Fe,Cu) oxides
NASA Astrophysics Data System (ADS)
Hu, Yanan; Liu, Jiangping; Cheng, Jinhuan; Wang, Langlang; Tao, Lei; Wang, Qi; Wang, Xueqian; Ning, Ping
2018-01-01
In this work, a series of metal oxides (Fe,Cu) modified HZSM-5 catalysts were synthesized by incipient-wetness impregnation method and then characterized by XRD, N2 adsorption-desorption, H2-TPR, NH3-TPD, UV-vis, FT-IR and XPS measurements. The catalytic hydrolysis and oxidation behaviors toward HCN were investigated. The results indicated that the Fe-Cu/HZSM-5 catalysts exhibited more excellent performence on coupling catalytic hydrolysis and oxidation of HCN than HZSM-5, Fe/HZSM-5, Cu/HZSM-5, and both nearly 100% HCN conversion and 80% N2 selectivity were obtained at about 250 °C. The improved catalytic performance could be ascribed to the creation of highly dispersed iron and copper composites on the surface of the HZSM-5 support, the excellent redox and regulated acid properties of the active ingredients. Moreover, the highly N2 selectivity could be attributed to the good interaction between the Fe and Cu nanocomposites which was facilitated to the NH3-SCR (selective catalytic reduction of NO by NH3) reaction.
NASA Astrophysics Data System (ADS)
Mohamed Subarkhan, M.; Ramesh, R.
2015-03-01
A new series of binuclear ruthenium(III) thiosemicarbazone complexes of general formula [(EPh3)2(X)2Ru-L-Ru(X)2(EPh3)2] (where E = P or As; X = Cl or Br; L = NS chelating bis(thiosemicarbazone ligands) has been synthesized and characterized by analytical and spectral (FT-IR, UV-Vis and EPR). IR spectra show that the thiosemicarbazones behave as monoanionic bidentate ligands coordinating through the azomethine nitrogen and thiolate sulphur. The electronic spectra of the complexes indicate that the presence of d-d and intense LMCT transitions in the visible region. The complexes are paramagnetic (low spin d5) in nature and all the complexes show rhombic distortion around the ruthenium ion with three different 'g' values (gx ≠ gy ≠ gz) at 77 K. All the complexes are redox active and exhibit an irreversible metal centered redox processes (RuIII-RuIII/RuIV-RuIV; RuIII-RuIII/RuII-RuII) within the potential range of 0.38-0.86 V and -0.39 to -0.66 V respectively, versus Ag/AgCl. Further, the catalytic efficiency of one of the complexes [Ru2Cl2(AsPh3)4(L1)] (4) has been investigated in the case of oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N-methylmorpholine-N-oxide(NMO) as co-oxidant. The formation of high valent RuVdbnd O species is proposed as catalytic intermediate for the catalytic cycle.
Capodaglio, Andrea G; Bojanowska-Czajka, Anna; Trojanowicz, Marek
2018-04-18
Carbamazepine and diclofenac are two examples of drugs with widespread geographical and environmental media proliferation that are poorly removed by traditional wastewater treatment processes. Advanced oxidation processes (AOPs) have been proposed as alternative methods to remove these compounds in solution. AOPs are based on a wide class of powerful technologies, including UV radiation, ozone, hydrogen peroxide, Fenton process, catalytic wet peroxide oxidation, heterogeneous photocatalysis, electrochemical oxidation and their combinations, sonolysis, and microwaves applicable to both water and wastewater. Moreover, processes rely on the production of oxidizing radicals (•OH and others) in a solution to decompose present pollutants. Water radiolysis-based processes, which are an alternative to the former, involve the use of concentrated energy (beams of accelerated electrons or γ-rays) to split water molecules, generating strong oxidants and reductants (radicals) at the same time. In this paper, the degradation of carbamazepine and diclofenac by means of all these processes is discussed and compared. Energy and byproduct generation issues are also addressed.
Largeron, Martine; Fleury, Maurice-Bernard
2015-02-23
The direct oxidative cross-coupling of primary amines is a challenging transformation as homocoupling is usually preferred. We report herein the chemoselective preparation of cross-coupled imines through the synergistic combination of low loadings of Cu(II) metal-catalyst and o-iminoquinone organocatalyst under ambient conditions. This homogeneous cooperative catalytic system has been inspired by the reaction of copper amine oxidases, a family of metalloenzymes with quinone organic cofactors that mediate the selective oxidation of primary amines to aldehydes. After optimization, the desired cross-coupled imines are obtained in high yields with broad substrate scope through a transamination process that leads to the homocoupled imine intermediate, followed by dynamic transimination. The ability to carry out the reactions at room temperature and with ambient air, rather than molecular oxygen as the oxidant, and equimolar amounts of each coupling partner is particularly attractive from an environmentally viewpoint. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Preparation of Cu@Cu₂O Nanocatalysts by Reduction of HKUST-1 for Oxidation Reaction of Catechol.
Jang, Seongwan; Yoon, Chohye; Lee, Jae Myung; Park, Sungkyun; Park, Kang Hyun
2016-11-02
HKUST-1, a copper-based metal organic framework (MOF), has been investigated as a catalyst in various reactions. However, the HKUST-1 shows low catalytic activity in the oxidation of catechol. Therefore, we synthesized Fe₃O₄@HKUST-1 by layer-by layer assembly strategy and Cu@Cu₂O by reduction of HKUST-1 for enhancement of catalytic activity. Cu@Cu₂O nanoparticles exhibited highly effective catalytic activity in oxidation of 3,5-di- tert -butylcatechol. Through this method, MOF can maintain the original core-shell structure and be used in various other reactions with enhanced catalytic activity.
Performance Assessment of the Exploration Water Recovery System
NASA Technical Reports Server (NTRS)
Carter. D. Layne; Tabb, David; Perry, Jay
2008-01-01
A new water recovery system architecture designed to fulfill the National Aeronautics and Space Administration s (NASA) Space Exploration Policy has been tested at the Marshall Space Flight Center (MSFC). This water recovery system architecture evolved from the current state-of-the-art system developed for the International Space Station (ISS). Through novel integration of proven technologies for air and water purification, this system promises to elevate existing system optimization. The novel aspect of the system is twofold. First, volatile organic compounds (VOC) are removed from the cabin air via catalytic oxidation in the vapor phase, prior to their absorption into the aqueous phase. Second, vapor compression distillation (VCD) technology processes the condensate and hygiene waste streams in addition to the urine waste stream. Oxidation kinetics dictate that removing VOCs from the vapor phase is more efficient. Treating the various waste streams by VCD reduces the load on the expendable ion exchange and adsorption media which follows, as well as the aqueous-phase catalytic oxidation process further downstream. This paper documents the results of testing this new architecture.
Kaplan, Renata; Erjavec, Boštjan; Senila, Marin; Pintar, Albin
2014-10-01
Catalytic wet air oxidation (CWAO) is classified as an advanced oxidation process, which proved to be highly efficient for the removal of emerging organic pollutant bisphenol A (BPA) from water. In this study, BPA was successfully removed in a batch-recycle trickle-bed reactor over bare titanate nanotube-based catalysts at very short space time of 0.6 min gCAT g(-1). The as-prepared titanate nanotubes, which underwent heat treatment at 600 °C, showed high activity for the removal of aqueous BPA. Liquid-phase recycling (5- or 10-fold recycle) enabled complete BPA conversion already at 200 °C, together with high conversion of total organic carbon (TOC), i.e., 73 and 98 %, respectively. The catalyst was chemically stable in the given range of operating conditions for 189 h on stream.
Cao, Yan; Gao, Zhengyang; Zhu, Jiashun; Wang, Quanhai; Huang, Yaji; Chiu, Chengchung; Parker, Bruce; Chu, Paul; Pant, Wei-Ping
2008-01-01
This paper presents a comparison of impacts of halogen species on the elemental mercury (Hg(0)) oxidation in a real coal-derived flue gas atmosphere. It is reported there is a higher percentage of Hg(0) in the flue gas when burning sub-bituminous coal (herein Powder River Basin (PRB) coal) and lignite, even with the use of selective catalytic reduction (SCR). The higher Hg(0)concentration in the flue gas makes it difficult to use the wet-FGD process for the mercury emission control in coal-fired utility boilers. Investigation of enhanced Hg(0) oxidation by addition of hydrogen halogens (HF, HCl, HBr, and HI) was conducted in a slipstream reactor with and without SCR catalysts when burning PRB coal. Two commercial SCR catalysts were evaluated. SCR catalyst no. 1 showed higher efficiencies of both NO reduction and Hg(0) oxidation than those of SCR catalyst no. 2. NH3 addition seemed to inhibit the Hg(0) oxidation, which indicated competitive processes between NH3 reduction and Hg(0) oxidation on the surface of SCR catalysts. The hydrogen halogens, in the order of impact on Hg(0) oxidation, were HBr, HI, and HCl or HF. Addition of HBr at approximately 3 ppm could achieve 80% Hg(0) oxidation. Addition of HI at approximately 5 ppm could achieve 40% Hg(0) oxidation. In comparison to the empty reactor, 40% Hg(0) oxidation could be achieved when HCl addition was up to 300 ppm. The enhanced Hg(0) oxidation by addition of HBr and HI seemed not to be correlated to the catalytic effects by both evaluated SCR catalysts. The effectiveness of conversion of hydrogen halogens to halogen molecules or interhalogens seemed to be attributed to their impacts on Hg(0) oxidation.
Enhancement of Catalytic Activity of Reduced Graphene Oxide Via Transition Metal Doping Strategy
NASA Astrophysics Data System (ADS)
Lee, Hangil; Hong, Jung A.
2017-06-01
To compare the catalytic oxidation activities of reduced graphene oxide (rGO) and rGO samples doped with five different transition metals (TM-rGO), we determine their effects on the oxidation of L-cysteine (Cys) in aqueous solution by performing electrochemistry (EC) measurements and on the photocatalytic oxidation of Cys by using high-resolution photoemission spectroscopy (HRPES) under UV illumination. Our results show that Cr-, Fe-, and Co-doped rGO with 3+ charge states (stable oxide forms: Cr3+, Fe3+, and Co3+) exhibit enhanced catalytic activities that are due to the charge states of the doped metal ions as we compare them with Cr-, Fe-, and Co-doped rGO with 2+ charge states.
EVALUATION OF SIMULTANEOUS SO2/NOX CONTROL TECHNOLOGY
The report gives results of work concentrating on characterizing three process operational parameters of a technology that combines sorbent injection and selective non-catalytic reduction for simultaneous sulfur dioxide/nitrogen oxide (SO2/NOx) removal from coal-fired industrial ...
NASA Astrophysics Data System (ADS)
Kong, Wenpeng; Li, Jing; Chen, Yao; Ren, Yuqing; Guo, Yonghua; Niu, Shengli; Yang, Yanzhao
2018-04-01
Constructing non-precious hybrid metal oxides with specific morphology as cost-effective and highly efficient catalysts is a promising way for the automotive exhaust purification. In this work, we report a facile strategy for the fabrication of a unique hollow Co-Ni layered double oxides (HLDO) nanocages by using zeolitic imidazole frameworks (ZIFs) as template. The synthesis of intermediate core-shell and hollow Co-Ni layered double hydroxides (HLDH) nanoflakes as well as the corresponding Co-Ni oxides products were successfully controlled, and the formation process was also explained. Among ZIF-67-derived oxides, HLDO exhibits excellent catalytic activities (complete conversion of CO into CO2 at 118 °C) and long-term stability for CO oxidation. The remarkable catalytic activities of HLDO can be attributed to high surface area (258 m2 g-1) inherited from the HLDH, which could provide more active sites for CO oxidation. In addition, active oxygen species indicated by the O 1 s XPS spectrum and improved synergistic effect between NiO and Co3O4 reflected by H2-TPR, further explain the enhanced performance of the HLDO catalysts. The presented strategy for controlled design and synthesis of hollow multicomponent metal oxides will provide prospects in developing highly effective catalysts.
Hydrogen peroxide catalytic decomposition
NASA Technical Reports Server (NTRS)
Parrish, Clyde F. (Inventor)
2010-01-01
Nitric oxide in a gaseous stream is converted to nitrogen dioxide using oxidizing species generated through the use of concentrated hydrogen peroxide fed as a monopropellant into a catalyzed thruster assembly. The hydrogen peroxide is preferably stored at stable concentration levels, i.e., approximately 50%-70% by volume, and may be increased in concentration in a continuous process preceding decomposition in the thruster assembly. The exhaust of the thruster assembly, rich in hydroxyl and/or hydroperoxy radicals, may be fed into a stream containing oxidizable components, such as nitric oxide, to facilitate their oxidation.
NASA Astrophysics Data System (ADS)
Hosseini, Farnaz; Safaei, Elham; Mohebbi, Sajjad
2017-07-01
This study has focused on catalytic and photocatalytic oxidation of aromatic alcohols using WO3 nanorod and a series of Pt/WO3 nanocomposite Pt nanoparticles was loaded on WO3 nanorod with several mass ratios 0.1, 0.2, and 0.3 via a photoreduction process (PRP) and characterized by TEM, FE-SEM imaging, EDAX, XRD, DRS, ICP, and XPS. WO3 nanorods were obtained monodispersed with average 40-nm diameter and square cross section without significant size change by the loading of platinum nanoparticles on it. Progress of oxidation reaction was monitored by GC and the yield of aerobic photocatalytic oxidation of alcohols reached up to 98% for Pt/WO3 and 69% for WO3 while, no oxidation was detected in the absence of light. The highest photocatalytic performance was obtained for mass ratio 0.2 with the selectivity >99%. So, this nanocomposite has potentials to be used as high-performance heterogeneous catalyst and photocatalyst under visible light irradiation with advantages of high activity, high selectivity, and reusability.
Enabling Catalytic Strategies for Biomass Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waymouth, Robert
This research program employed a mix of fundamental investigations of catalytic reactivity with targeted approaches for the catalytic synthesis of monomers and renewable polymers. We investigated the mechanisms of selective aerobic oxidation of polyols and carbohydrates with Pd catalysts with a special focus on the role of hydrogen peroxide and peroxy intermediates in an effort to increase catalyst lifetime. We also extended our studies on the selective oxidation of sugars to ketoses and the oxidative lactonization of 1,5-diols to generate new families of lactone monomers.
Tamanaha, Esta; Guan, Shengxi; Marks, Katherine; Saleh, Lana
2016-08-03
The ten-eleven translocation (TET) proteins catalyze oxidation of 5-methylcytosine ((5m)C) residues in nucleic acids to 5-hydroxymethylcytosine ((5hm)C), 5-formylcytosine ((5f)C), and 5-carboxycytosine ((5ca)C). These nucleotide bases have been implicated as intermediates on the path to active demethylation, but recent reports have suggested that they might have specific regulatory roles in their own right. In this study, we present kinetic evidence showing that the catalytic domains (CDs) of TET2 and TET1 from mouse and their homologue from Naegleria gruberi, the full-length protein NgTET1, are distributive in both chemical and physical senses, as they carry out successive oxidations of a single (5m)C and multiple (5m)C residues along a polymethylated DNA substrate. We present data showing that the enzyme neither retains (5hm)C/(5f)C intermediates of preceding oxidations nor slides along a DNA substrate (without releasing it) to process an adjacent (5m)C residue. These findings contradict a recent report by Crawford et al. ( J. Am. Chem. Soc. 2016 , 138 , 730 ) claiming that oxidation of (5m)C by CD of mouse TET2 is chemically processive (iterative). We further elaborate that this distributive mechanism is maintained for TETs in two evolutionarily distant homologues and posit that this mode of function allows the introduction of (5m)C forms as epigenetic markers along the DNA.
Watkins, Daniel W; Jenkins, Jonathan M X; Grayson, Katie J; Wood, Nicola; Steventon, Jack W; Le Vay, Kristian K; Goodwin, Matthew I; Mullen, Anna S; Bailey, Henry J; Crump, Matthew P; MacMillan, Fraser; Mulholland, Adrian J; Cameron, Gus; Sessions, Richard B; Mann, Stephen; Anderson, J L Ross
2017-08-25
Although catalytic mechanisms in natural enzymes are well understood, achieving the diverse palette of reaction chemistries in re-engineered native proteins has proved challenging. Wholesale modification of natural enzymes is potentially compromised by their intrinsic complexity, which often obscures the underlying principles governing biocatalytic efficiency. The maquette approach can circumvent this complexity by combining a robust de novo designed chassis with a design process that avoids atomistic mimicry of natural proteins. Here, we apply this method to the construction of a highly efficient, promiscuous, and thermostable artificial enzyme that catalyzes a diverse array of substrate oxidations coupled to the reduction of H 2 O 2 . The maquette exhibits kinetics that match and even surpass those of certain natural peroxidases, retains its activity at elevated temperature and in the presence of organic solvents, and provides a simple platform for interrogating catalytic intermediates common to natural heme-containing enzymes.Catalytic mechanisms of enzymes are well understood, but achieving diverse reaction chemistries in re-engineered proteins can be difficult. Here the authors show a highly efficient and thermostable artificial enzyme that catalyzes a diverse array of substrate oxidations coupled to the reduction of H 2 O 2 .
Stable carbonous catalyst particles and method for making and utilizing same
Ganguli, Partha S.; Comolli, Alfred G.
2005-06-14
Stable carbonous catalyst particles composed of an inorganic catalytic metal/metal oxide powder and a carbonaceous binder material are formed having a basic inner substantially uniform-porous carbon coating of the catalytic powder, and may include an outer porous carbon coating layer. Suitable inorganic catalytic powders include zinc-chromite (ZnO/Cr.sub.2 03) and suitable carbonaceous liquid binders having molecular weight of 200-700 include partially polymerized furfuryl alcohol, which are mixed together, shaped and carbonized and partially oxidized at elevated temperature. Such stable carbonous catalyst particles such as 0.020-0.100 inch (0.51-2.54 mm) diameter extrudates, have total carbon content of 2-25 wt. % and improved crush strength of 1.0-5 1b/mn, 50-300 m.sup.2 /g surface area, and can be advantageously utilized in fixed bed or ebullated/fluidized bed reactor operations. This invention also includes method steps for making the stable carbonous catalyst particles having improved particle strength and catalytic activity, and processes for utilizing the active stable carbonous carbon-coated catalysts such as for syn-gas reactions in ebullated/fluidized bed reactors for producing alcohol products and Fischer-Tropsch synthesis liquid products.
Ceramic membranes with mixed conductivity and their application
NASA Astrophysics Data System (ADS)
Kozhevnikov, V. L.; Leonidov, I. A.; Patrakeev, M. V.
2013-08-01
Data on the catalytic reactors with ceramic membranes possessing mixed oxygen ion and electronic conductivity that make it possible to integrate the processes of oxygen separation and oxidation are analyzed and generalized. The development of this approach is of interest for the design of energy efficient and environmentally friendly processes for processing natural gas and other raw materials. The general issues concerning the primary processing of light alkanes in reactors with oxygen separating membranes are expounded and general demands to the membrane materials are discussed. Particular attention is paid to the process of oxidative conversion of methane to synthesis gas. The bibliography includes 110 references.
Monitoring by Control Technique - Catalytic Oxidizer
Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about catalytic oxidizer control techniques used to reduce pollutant emissions.
Catalyst for elemental sulfur recovery process
Flytzani-Stephanopoulos, Maria; Liu, Wei
1995-01-01
A catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(OF.sub.2).sub.1-n (RO.sub.1)n].sub.1-k M.sub.k, [(FO.sub.2).sub.1-n (RO.sub.1.5).sub.n ].sub.1-k M.sub.k, or [Ln.sub.x Zr.sub.1-x O.sub.2-0.5x ].sub.1-k M.sub.k wherein FO.sub.2 is a fluorite-type oxide; RO represents an alkaline earth oxide; RO.sub.1.5 is a Group IIIB or rare earth oxide; Ln is a rare earth element having an atomic number from 57 to 65 or mixtures thereof; M is a transition metal or a mixture of transition metals; n is a number having a value from 0.0 to 0.35; k is a number having a value from 0.0 to about 0.5; and x is a number having a value from about 0.45 to about 0.55.
Walsh, Katie; Sneddon, Helen F; Moody, Christopher J
2014-10-03
Visible light has a dramatic effect on the oxidation of benzylic and allylic alcohols, including those deactivated by electron-withdrawing groups, and β-O-4 lignin models, using catalytic amounts of the organo-oxidant 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. Sodium nitrite or tert-butyl nitrite is used as cocatalyst, and oxygen is employed as the terminal oxidant.
Determination of a kinetic region in catalytic oxidation of carbon monoxide
NASA Technical Reports Server (NTRS)
Sultanov, M. Y.; Sadykhova, K. A.
1981-01-01
The catalytic activity of cupric oxide activated with ceric oxide in a braod interval of volumetric velocities was investigated. It was determined that for practical catalysts used in the diffuse region, dilution of the active substance by an inert diluent increases the effectiveness of the catalysts.
Shahbazy, Mohammad; Kompany-Zareh, Mohsen; Najafpour, Mohammad Mahdi
2015-11-01
Water oxidation is among the most important reactions in artificial photosynthesis, and nano-sized layered manganese-calcium oxides are efficient catalysts toward this reaction. Herein, a quantitative structure-activity relationship (QSAR) model was constructed to predict the catalytic activities of twenty manganese-calcium oxides toward water oxidation using multiple linear regression (MLR) and genetic algorithm (GA) for multivariate calibration and feature selection, respectively. Although there are eight controlled parameters during synthesizing of the desired catalysts including ripening time, temperature, manganese content, calcium content, potassium content, the ratio of calcium:manganese, the average manganese oxidation state and the surface of catalyst, by using GA only three of them (potassium content, the ratio of calcium:manganese and the average manganese oxidation state) were selected as the most effective parameters on catalytic activities of these compounds. The model's accuracy criteria such as R(2)test and Q(2)test in order to predict catalytic rate for external test set experiments; were equal to 0.941 and 0.906, respectively. Therefore, model reveals acceptable capability to anticipate the catalytic activity. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hieu Do Thi, Minh; Thinh Tran, Quoc; Nguyen, Tri; Van Nguyen Thi, Thuy; Huynh, Ky Phuong Ha
2018-06-01
In this study a series of the CuO-doped materials containing zeolite with varying CuO contents were synthesized from red mud (RM) and rice husk ash (RHA). The rice husk ash/red mud with the molar ratio of , and being 1.8, 2.5 and 60, respectively, were maintained during the synthetic process of materials. The characteristic structure samples were analyzed by x-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM), Brunauer–Emmett–Teller (BET) surface area and H2 temperature program reduction (H2-TPR). The catalytic activity of samples was evaluated in CO oxidation reaction in a microflow reactor at temperature range 200 °C–350 °C. The obtained results showed that all synthetic samples there exist the A-type zeolites with the average crystal size of 15–20 nm, the specific surface area of , and pore volume of . The material synthesized from RM and RHA with the zeolite structure (ZRM, undoped CuO) could also oxidize CO completely at 350 °C, and its activity was increase significantly when doped with CuO. CuO-doped materials with the zeolite structure exhibited excellent catalytic activity in CO oxidation. The ZRM sample loading 5 wt% CuO with particle nanosize about 10–30 nm was the best one for CO oxidation with complete conversion temperature at 275 °C.
NASA Astrophysics Data System (ADS)
Mao, Bao-Hua; Liu, Chang-Hai; Gao, Xu; Chang, Rui; Liu, Zhi; Wang, Sui-Dong
2013-10-01
The room-temperature ionic liquid assisted sputtering method is utilized to achieve the Pd-nanoparticle (NP)-graphene hybrid. The supported Pd NPs possess uniformly small sizes of 1-2 nm, which create huge surface area with ultralow Pd consumption and high NP stability. The Pd-NP-graphene hybrid is in situ characterized by the ambient pressure X-ray photoelectron spectroscopy using synchrotron radiation, and the results demonstrate high catalytic activity of the hybrid for CO oxidation. The catalytic behavior is reproducible for several catalytic cycles. The present simple and clean approach is promising to produce metal-NP-based high-efficiency catalysts for CO oxidation.
Photolytic AND Catalytic Destruction of Organic Waste Water Pollutants
NASA Astrophysics Data System (ADS)
Torosyan, V. F.; Torosyan, E. S.; Kryuchkova, S. O.; Gromov, V. E.
2017-01-01
The system: water supply source - potable and industrial water - wastewater - sewage treatment - water supply source is necessary for water supply and efficient utilization of water resources. Up-to-date technologies of waste water biological treatment require for special microorganisms, which are technologically complex and expensive but unable to solve all the problems. Application of photolytic and catalytically-oxidizing destruction is quite promising. However, the most reagents are strong oxidizers in catalytic oxidation of organic substances and can initiate toxic substance generation. Methodic and scientific approaches to assess bread making industry influence on the environment have been developed in this paper in order to support forecasting and taking technological decisions concerning reduction of this influence. Destructive methods have been tested: ultra violet irradiation and catalytic oxidation for extraction of organic compounds from waste water by natural reagents.
NASA Astrophysics Data System (ADS)
Kimi, Melody; Jaidie, Mohd Muazmil Hadi; Pang, Suh Cem
2018-01-01
A series of bimetallic copper-nickel (CuNix, x = 0.1, 0.2, 0.5 and 1) nanoparticles supported on activated carbon (AC) were prepared by deposition-precipitation method for the oxidation of benzyl alcohol to benzaldehyde using hydrogen peroxide as oxidising agent. Analyses by means of X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) confirmed that Cu and Ni was successfully added on the surface of activated carbon. CuNi1/AC showed the best catalytic activity for the oxidation of benzyl alcohols to the corresponding aldehyde within a short reaction period at 80 °C. The catalytic performance is significantly enhanced by the addition of equal amount of Ni as compared to the monometallic counterpart. This result indicates the synergistic effect between Ni and Cu particles in the catalytic oxidation reaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Franklin
Two main categories of heterogeneous catalysts are metal and metal oxide which catalyze 80% chemical reactions at solid-gas and solid-liquid interfaces. Metal oxide catalysts are much more complicated than metal catalysts. The reason is that the cations of the metal atoms could exhibit a few different oxidation states on surface of the same catalyst particle such as Co 3O 4 or change of their oxidation states under different reactive environments. For a metal catalyst, there is only one oxidation state typically. In addition, surface of a metal oxide can be terminated with multiple surface functionalities including O atoms with differentmore » binding configurations and OH group. For metal, only metal atoms are exposed typically. Obviously, the complication of surface chemistry and structure of a metal oxide makes studies of surface of an oxide catalyst very challenging. Due to the complication of surface of a meal oxide, the electronic and geometric structures of surface of a metal oxide and the exposed species have received enormous attention since oxide catalysts catalyze at least 1/3 chemical reactions in chemical and energy industries. Understanding of catalytic reactions on early transition metal oxide-based catalysts is fundamentally intriguing and of great practical interest in energy- and environment-related catalysis. Exploration of surface chemistry of oxide-based catalysts at molecular level during catalysis has remained challenging though it is critical in deeply understanding catalysis on oxide-based catalysts and developing oxide-based catalysts with high activity and selectivity. Thus, the overall objective of this project is to explore surface chemistry and structure of early transition metal oxide-based catalysts through in-situ characterization of surface of catalysts, measurements of catalytic performances, and then build an intrinsic correlation of surface chemistry and structure with their catalytic performances in a few important catalytic reactions, and essentially fundamentally understand catalytic mechanism. Furthermore, this correlation will guide the design of catalysts with high activity and selectivity.« less
Catalytic wet-oxidation of human wastes produced in space: the effects of temperature elevation.
Takeda, N; Takahashi, Y
1992-01-01
The filtrate of non-catalytical wet-oxidation sewage sludge was wet-oxidized again at 290 degrees C and 300 degrees C with a Ru-Rh catalyst. At each temperature, repeated batch tests were carried out. Both oxidation and denitrification efficiency of organic matter in the raw material were studied. In the 16 times batch tests at 300 degrees C, high and stable oxidation occurred. 98.0% of organic carbon in the raw material was oxidized and 98.3% of organic nitrogen was denitrified. At 290 degrees C, though high and stable denitrification occurred, oxidation did not occur highly and stably. A catalytic wet-oxidation system studied at 300 degrees C will be useful as a waste management system for a human life support system, where almost all food is resupplied from the earth. This system can prevent organic waste accumulation in the life support system.
Preparation of PdCu Alloy Nanocatalysts for Nitrate Hydrogenation and Carbon Monoxide Oxidation
Cai, Fan; Yang, Lefu; Shan, Shiyao; ...
2016-06-30
Alloying Pd with Cu is important for catalytic reactions such as denitrification reaction and CO oxidation reaction, but understanding of the catalyst preparation and its correlation with the catalyst’s activity and selectivity remains elusive. Herein, we report the results of investigations of the preparation of PdCu alloy nanocatalysts using different methods and the catalytic properties of the catalysts in catalytic denitrification reaction and CO oxidation reaction. PdCu alloy nanocatalysts were prepared by conventional dry impregnation method and ligand-capping based wet chemical synthesis method, and subsequent thermochemical activation as well. The alloying characteristics depend on the bimetallic composition. PdCu/Al 2O 3more » with a Pd/Cu ratio of 50:50 was shown to exhibit an optimized hydrogenation activity for the catalytic denitrification reaction. The catalytic activity of the PdCu catalysts was shown to be highly dependent on the support, as evidenced by the observation of an enhanced catalytic activity for CO oxidation reaction using TiO 2 and CeO 2 supports with high oxygen storage capacity. Lastly, we discussed the implications of the results to the refinement of the preparation of the alloy nanocatalysts.« less
Materials and methods for the separation of oxygen from air
MacKay, Richard; Schwartz, Michael; Sammells, Anthony F.
2003-07-15
Metal oxides particularly useful for the manufacture of catalytic membranes for gas-phase oxygen separation processes having the formula: O.sub.5+z where: x and x' are greater than 0; y and y' are greater than 0; x+x' is equal to 2; y+y' is less than or equal to 2; z is a number that makes the metal oxide charge neutral; A is an element selected from the lanthanide elements; A' is an element selected from Be, Mg, Ca, Sr, Ba and Ra; A" is an element selected from the f block lanthanides, Be, Mg, Ca, Sr, Ba and Ra; B is an element selected from the group consisting of Al, Ga, In or mixtures thereof and B" is Co or Mg, with the exception that when B" is Mg, A' and A" are not Mg. The metal oxides are useful for preparation of dense membranes which may be formed from dense thin films of the mixed metal oxide on a porous metal oxide element. The invention also provides methods and catalytic reactors for oxygen separation and oxygen enrichment of oxygen deficient gases which employ mixed conducting metal oxides of the above formula.
Detailed surface reaction mechanism in a three-way catalyst.
Chatterjee, D; Deutschmann, O; Warnatz, J
2001-01-01
Monolithic three-way catalysts are applied to reduce the emission of combustion engines. The design of such a catalytic converter is a complex process involving the optimization of different physical and chemical parameters (in the simplest case, e.g., length, cell densities or metal coverage of the catalyst). Numerical simulation can be used as an effective tool for the investigation of the catalytic properties of a catalytic converter and for the prediction of the performance of the catalyst. To attain this goal, a two-dimensional flow-field description is coupled with a detailed surface reaction model (gas-phase reactions can be neglected in three-way catalysts). This surface reaction mechanism (with C3H6 taken as representative of unburnt hydrocarbons) was developed using sub-mechanisms recently developed for hydrogen, carbon monoxide and methane oxidation, literature values for C3H6 oxidation, and estimates for the remaining unknown reactions. Results of the simulation of a monolithic single channel are used to validate the surface reaction mechanism. The performance of the catalyst was simulated under lean, nearly stoichiometric and rich conditions. For these characteristic conditions, the oxidation of propene and carbon monoxide and the reduction of NO on a typical Pt/Rh coated three-way catalyst were simulated as a function of temperature. The numerically predicted conversion data are compared with experimentally measured data. The simulation further reveals the coupling between chemical reactions and transport processes within the monolithic channel.
Ultra-small particles of iron oxide as peroxidase for immunohistochemical detection
NASA Astrophysics Data System (ADS)
Wu, Yihang; Song, Mengjie; Xin, Zhuang; Zhang, Xiaoqing; Zhang, Yu; Wang, Chunyu; Li, Suyi; Gu, Ning
2011-06-01
Dimercaptosuccinic acid (DMSA) modified ultra-small particles of iron oxide (USPIO) were synthesized through a two-step process. The first step: oleic acid (OA) capped Fe3O4 (OA-USPIO) were synthesized by a novel oxidation coprecipitation method in H2O/DMSO mixing system, where DMSO acts as an oxidant simultaneously. The second step: OA was replaced by DMSA to obtain water-soluble nanoparticles. The as-synthesized nanoparticles were characterized by TEM, FTIR, TGA, VSM, DLS, EDS and UV-vis. Hydrodynamic sizes and Peroxidase-like catalytic activity of the nanoparticles were investigated. The hydrodynamic sizes of the nanoparticles (around 24.4 nm) were well suited to developing stable nanoprobes for bio-detection. The kinetic studies were performed to quantitatively evaluate the catalytic ability of the peroxidase-like nanoparticles. The calculated kinetic parameters indicated that the DMSA-USPIO possesses high catalytic activity. Based on the high activity, immunohistochemical experiments were established: using low-cost nanoparticles as the enzyme instead of expensive HRP, Nimotuzumab was conjugated onto the surface of the nanoparticles to construct a kind of ultra-small nanoprobe which was employed to detect epidermal growth factor receptor (EGFR) over-expressed on the membrane of esophageal cancer cell. The proper sizes of the probes and the result of membranous immunohistochemical staining suggest that the probes can be served as a useful diagnostic reagent for bio-detection.
Perovskite-type catalytic materials for environmental applications.
Labhasetwar, Nitin; Saravanan, Govindachetty; Kumar Megarajan, Suresh; Manwar, Nilesh; Khobragade, Rohini; Doggali, Pradeep; Grasset, Fabien
2015-06-01
Perovskites are mixed-metal oxides that are attracting much scientific and application interest owing to their low price, adaptability, and thermal stability, which often depend on bulk and surface characteristics. These materials have been extensively explored for their catalytic, electrical, magnetic, and optical properties. They are promising candidates for the photocatalytic splitting of water and have also been extensively studied for environmental catalysis applications. Oxygen and cation non-stoichiometry can be tailored in a large number of perovskite compositions to achieve the desired catalytic activity, including multifunctional catalytic properties. Despite the extensive uses, the commercial success for this class of perovskite-based catalytic materials has not been achieved for vehicle exhaust emission control or for many other environmental applications. With recent advances in synthesis techniques, including the preparation of supported perovskites, and increasing understanding of promoted substitute perovskite-type materials, there is a growing interest in applied studies of perovskite-type catalytic materials. We have studied a number of perovskites based on Co, Mn, Ru, and Fe and their substituted compositions for their catalytic activity in terms of diesel soot oxidation, three-way catalysis, N 2 O decomposition, low-temperature CO oxidation, oxidation of volatile organic compounds, etc. The enhanced catalytic activity of these materials is attributed mainly to their altered redox properties, the promotional effect of co-ions, and the increased exposure of catalytically active transition metals in certain preparations. The recent lowering of sulfur content in fuel and concerns over the cost and availability of precious metals are responsible for renewed interest in perovskite-type catalysts for environmental applications.
Perovskite-type catalytic materials for environmental applications
Labhasetwar, Nitin; Saravanan, Govindachetty; Kumar Megarajan, Suresh; Manwar, Nilesh; Khobragade, Rohini; Doggali, Pradeep; Grasset, Fabien
2015-01-01
Perovskites are mixed-metal oxides that are attracting much scientific and application interest owing to their low price, adaptability, and thermal stability, which often depend on bulk and surface characteristics. These materials have been extensively explored for their catalytic, electrical, magnetic, and optical properties. They are promising candidates for the photocatalytic splitting of water and have also been extensively studied for environmental catalysis applications. Oxygen and cation non-stoichiometry can be tailored in a large number of perovskite compositions to achieve the desired catalytic activity, including multifunctional catalytic properties. Despite the extensive uses, the commercial success for this class of perovskite-based catalytic materials has not been achieved for vehicle exhaust emission control or for many other environmental applications. With recent advances in synthesis techniques, including the preparation of supported perovskites, and increasing understanding of promoted substitute perovskite-type materials, there is a growing interest in applied studies of perovskite-type catalytic materials. We have studied a number of perovskites based on Co, Mn, Ru, and Fe and their substituted compositions for their catalytic activity in terms of diesel soot oxidation, three-way catalysis, N2O decomposition, low-temperature CO oxidation, oxidation of volatile organic compounds, etc. The enhanced catalytic activity of these materials is attributed mainly to their altered redox properties, the promotional effect of co-ions, and the increased exposure of catalytically active transition metals in certain preparations. The recent lowering of sulfur content in fuel and concerns over the cost and availability of precious metals are responsible for renewed interest in perovskite-type catalysts for environmental applications. PMID:27877813
Xue, Teng; Lin, Zhaoyang; Chiu, Chin-Yi; ...
2017-01-06
Metallic nanoparticles are emerging as an exciting class of heterogeneous catalysts with the potential advantages of exceptional activity, stability, recyclability, and easier separation than homogeneous catalysts. The traditional colloid nanoparticle syntheses usually involve strong surface binding ligands that could passivate the surface active sites and result in poor catalytic activity. The subsequent removal of surface ligands could reactivate the surface but often leads to metal ion leaching and/or severe Ostwald ripening with diminished catalytic activity or poor stability. Molecular ligand engineering represents a powerful strategy for the design of homogeneous molecular catalysts but is insufficiently explored for nanoparticle catalysts tomore » date. We report a systematic investigation on molecular ligand modulation of palladium (Pd) nanoparticle catalysts. Our studies show that β-functional groups of butyric acid ligand on Pd nanoparticles can significantly modulate the catalytic reaction process to modify the catalytic activity and stability for important aerobic reactions. With a β-hydroxybutyric acid ligand, the Pd nanoparticle catalysts exhibit exceptional catalytic activity and stability with an unsaturated turnover number (TON) >3000 for dehydrogenative oxidation of cyclohexenone to phenol, greatly exceeding that of homogeneous Pd(II) catalysts (TON, ~30). This study presents a systematic investigation of molecular ligand modulation of nanoparticle catalysts and could open up a new pathway toward the design and construction of highly efficient and robust heterogeneous catalysts through molecular ligand engineering.« less
Solvent-free catalytic dehydrative etherification of benzyl alcohol over graphene oxide
NASA Astrophysics Data System (ADS)
Yu, Huiyou; Wang, Xinde; Zhu, Yuanshuai; Zhuang, Guilin; Zhong, Xing; Wang, Jian-guo
2013-09-01
Graphene oxide (GO), prepared from oxidation of graphite powders using a modified Hummers method, exhibits a promising catalytic activity and a high selectivity for the solvent-free catalytic dehydrative etherification of benzyl alcohol (BA). A maximum yield (85.4%) of dibenzyl ether (DE) was achieved at 150 °C for 24 h when the BA/GO ration was 20 ml/g under solvent-free condition. This discovery provided a new insight into the development of GO as a carbocatalysts for a variety of applications in carbocatalysis.
A catalytic stripper (CS) is a device used to remove the semi-volatile, typically organic carbon, fraction by passing raw or diluted exhaust over an oxidation catalyst heated to 300˚C. The oxidation catalyst used in this study is a commercially available diesel oxidation ca...
Takahashi, Masaki; Koizumi, Hiromu; Chun, Wang-Jae; Kori, Makoto; Imaoka, Takane; Yamamoto, Kimihisa
2017-01-01
The catalytic activity of alloy nanoparticles depends on the particle size and composition ratio of different metals. Alloy nanoparticles composed of Pd, Pt, and Au are widely used as catalysts for oxidation reactions. The catalytic activities of Pt and Au nanoparticles in oxidation reactions are known to increase as the particle size decreases and to increase on the metal-metal interface of alloy nanoparticles. Therefore, multimetallic nanoclusters (MNCs) around 1 nm in diameter have potential as catalysts for oxidation reactions. However, there have been few reports describing the preparation of uniform alloy nanoclusters. We report the synthesis of finely controlled MNCs (around 1 nm) using a macromolecular template with coordination sites arranged in a gradient of basicity. We reveal that Cu-Pt-Au MNCs supported on graphitized mesoporous carbon show catalytic activity that is 24 times greater than that of a commercially available Pt catalyst for aerobic oxidation of hydrocarbons. In addition, solvent-free aerobic oxidation of hydrocarbons to ketones at room temperature, using small amounts of a radical initiator, was achieved as a heterogeneous catalytic reaction for the first time. PMID:28782020
1989-05-01
of Fe(acac)3 exhibits oxidation features common to acac- and its complexes. Table VIH (b) summarizes the EI/ 2 values for the oxidations of a number of...Data supplied by Dr. Pablo Cofr6 of the Universidad Cat6lica de Chile . 141. Chin, D.-H.; Chiericato, G., Jr.; Nanni, E. J., Jr.; Sawyer, D. T. 1. Am
Wang, Xin; Xue, Jianyue; Wang, Xinyun; Liu, Xiaoheng
2017-01-01
TiO2-SiO2 composites were synthesized using cetyl trimethyl ammonium bromide (CTAB) as the structure directing template. Self-assembly hexadecyltrimethyl- ammonium bromide TiO2-SiO2/(CTAB) were soaked into silver nitrate (AgNO3) aqueous solution. The Ag-TiO2-SiO2(Ag-TS) composite were prepared via a precipitation of AgBr in soaking process and its decomposition at calcination stage. Structural characterization of the materials was carried out by various techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption and ultraviolet visible spectroscopy (UV-Vis). Characterization results revealed that Ag particles were incorporated into hierarchical TiO2-SiO2 without significantly affecting the structures of the supports. Further heating-treatment at 723 K was more favorable for enhancing the stability of the Ag-TS composite. The cyclohexene oxide was the major product in the epoxidation using H2O2 as the oxidant over the Ag-TS catalysts. Besides, the optimum catalytic activity and stability of Ag-TS catalysts were obtained under operational conditions of calcined at 723 K for 2 h, reaction time of 120 min, reaction temperature of 353 K, catalyst amount of 80 mg, aqueous H2O2 (30 wt.%) as oxidant and chloroform as solvent. High catalytic activity with conversion rate up to 99.2% of cyclohexene oxide could be obtainable in water-bathing. The catalyst was found to be stable and could be reused three times without significant loss of catalytic activity under the optimized reaction conditions. PMID:28493879
Catalytic oxidative dehydrogenation process
Schmidt, Lanny D.; Huff, Marylin
2002-01-01
A process for the production of a mono-olefin from a gaseous paraffinic hydrocarbon having at least two carbon atoms or mixtures thereof comprising reacting said hydrocarbons and molecular oxygen in the presence of a platinum catalyst. The catalyst consist essentially of platinum supported on alumina or zirconia monolith, preferably zirconia and more preferably in the absence of palladium, rhodium and gold.
NASA Technical Reports Server (NTRS)
Flynn, Michael
2000-01-01
This poster provides an assessment of the technical readiness of the Vapor Phase Catalytic Ammonia Removal Process (VPCAR). The VPCAR technology is a fully regenerative water recycling technology designed specifically for applications such as a near term Mars exploration mission. The VPCAR technology is a highly integrated distillation/catalytic oxidation based water processor. It is designed to accept a combined wastewater stream (urine, condensate, and hygiene) and produces potable water in a single process step which requires -no regularly scheduled re-supply or maintenance for a 3 year mission. The technology is designed to be modular and to fit into a volume comparable to a single International Space Station Rack (when sized for a crew of 6). This poster provides a description of the VPCAR technology and a summary of the current performance of the technology. Also provided are the results of two separate NASA sponsored system trade studies which investigated the potential payback of further development of the VPCAR technology.
HOMOGENEOUS CATALYTIC OXIDATION OF HYDROCARBONS IN ALTERNATIVE SOLVENTS
Homogeneous Catalytic Oxidations of Hydrocarbons in Alternative Solvent Systems
Michael A. Gonzalez* and Thomas M. Becker, Sustainable Technology Division, Office of Research and Development; United States Environmental Protection Agency, 26 West Martin Luther King Drive, ...
CATALYTIC OXIDATION OF GROUNDWATER STRIPPING EMISSIONS
The paper reviews the applicability of catalytic oxidation to control ground-water air stripping gaseous effluents, with special attention to system designs and case histories. The variety of contaminants and catalyst poisons encountered in stripping operations are also reviewed....
NASA Astrophysics Data System (ADS)
Jeon, Byungwook; Kim, Ansoon; Lee, Young-Ahn; Seo, Hyungtak; Kim, Yu Kwon
2017-11-01
CO oxidation over Pd/WO3 films prepared on a glass substrate has been examined at the substrate temperature of 150 - 250 °C and pressures less than 1 Torr with a stoichiometric mixture of CO and O2. Under the given reaction condition, the chemical states of the Pd/WO3 film gradually change into the most catalytically active form with the highest saturation reaction rate regardless of the initial oxidation states. The measured CO oxidation rate over the Pd/WO3 is strongly dependent on the chemical states of Pd and W. Either metallic Pd or fully oxidized PdO phase is not as catalytically active as the active form with mixed metallic Pd and thin PdO layers supported on WO3 with partially reduced W5+ state which is spontaneously obtained during the catalytic reaction cycles. Our results indicate that the facile oxygen transfer between Pd and WO3 layers not only facilitate the spontaneous changes into the active form, but also act as a promotional role in CO oxidation over the Pd layer.
Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles
Wang, Yang-Gang; Mei, Donghai; Glezakou, Vassiliki-Alexandra; Li, Jun; Rousseau, Roger
2015-01-01
Catalysis by gold supported on reducible oxides has been extensively studied, yet issues such as the nature of the catalytic site and the role of the reducible support remain fiercely debated topics. Here we present ab initio molecular dynamics simulations of an unprecedented dynamic single-atom catalytic mechanism for the oxidation of carbon monoxide by ceria-supported gold clusters. The reported dynamic single-atom catalytic mechanism results from the ability of the gold cation to strongly couple with the redox properties of the ceria in a synergistic manner, thereby lowering the energy of redox reactions. The gold cation can break away from the gold nanoparticle to catalyse carbon monoxide oxidation, adjacent to the metal/oxide interface and subsequently reintegrate back into the nanoparticle after the reaction is completed. Our study highlights the importance of the dynamic creation of active sites under reaction conditions and their essential role in catalysis. PMID:25735407
Simultaneous removal of nitrogen oxides and sulfur oxides from combustion gases
Clay, David T.; Lynn, Scott
1976-10-19
A process for the simultaneous removal of sulfur oxides and nitrogen oxides from power plant stack gases comprising contacting the stack gases with a supported iron oxide catalyst/absorbent in the presence of sufficient reducing agent selected from the group consisting of carbon monoxide, hydrogen, and mixtures thereof, to provide a net reducing atmosphere in the SO.sub.x /NO.sub.x removal zone. The sulfur oxides are removed by absorption substantially as iron sulfide, and nitrogen oxides are removed by catalytic reduction to nitrogen and ammonia. The spent iron oxide catalyst/absorbent is regenerated by oxidation and is recycled to the contacting zone. Sulfur dioxide is also produced during regeneration and can be utilized in the production of sulfuric acid and/or sulfur.
Study of the dynamics of the MoO2-Mo2C system for catalytic partial oxidation reactions
NASA Astrophysics Data System (ADS)
Cuba Torres, Christian Martin
On a global scale, the energy demand is largely supplied by the combustion of non-renewable fossil fuels. However, their rapid depletion coupled with environmental and sustainability concerns are the main drivers to seek for alternative energetic strategies. To this end, the sustainable generation of hydrogen from renewable resources such as biodiesel would represent an attractive alternative solution to fossil fuels. Furthermore, hydrogen's lower environmental impact and greater independence from foreign control make it a strong contender for solving this global problem. Among a wide variety of methods for hydrogen production, the catalytic partial oxidation offers numerous advantages for compact and mobile fuel processing systems. For this reaction, the present work explores the versatility of the Mo--O--C catalytic system under different synthesis methods and reforming conditions using methyl oleate as a surrogate biodiesel. MoO2 exhibits good catalytic activity and exhibits high coke-resistance even under reforming conditions where long-chain oxygenated compounds are prone to form coke. Moreover, the lattice oxygen present in MoO2 promotes the Mars-Van Krevelen mechanism. Also, it is introduced a novel beta-Mo2C synthesis by the in-situ formation method that does not utilize external H2 inputs. Herein, the MoO 2/Mo2C system maintains high catalytic activity for partial oxidation while the lattice oxygen serves as a carbon buffer for preventing coke formation. This unique feature allows for longer operation reforming times despite slightly lower catalytic activity compared to the catalysts prepared by the traditional temperature-programmed reaction method. Moreover, it is demonstrated by a pulse reaction technique that during the phase transformation of MoO2 to beta-Mo2C, the formation of Mo metal as an intermediate is not responsible for the sintering of the material wrongly assumed by the temperature-programmed method.
Zheng, Dong; Zhang, Xuran; Qu, Deyu; ...
2015-04-21
Oxygen reduction and oxygen evolution reactions were examined on graphite electrodes with different crystal orientations. The kinetics for the redox couple O 2/O 2 •- are very fast, therefore no catalyst seems necessary to assist the charge transfer process. Apparently, the main source of the overpotential for the O 2 reduction reaction is from mass diffusion. Li 2O 2 becomes soluble in non-aqueous electrolytes in the presence of the tetraethylammonium tetrafluoroborate additive. The soluble B-O 2 2- ions can be oxidized electro-catalytically. The edge orientation of graphite demonstrates superior catalytic activity for the oxidation over basal orientation. The findings revealmore » an opportunity for recharging Li-air batteries efficiently and a new strategy of developing the catalyst for oxygen evolution reaction.« less
Puértolas, B; Navlani-García, M; García, T; Navarro, M V; Lozano-Castelló, D; Cazorla-Amorós, D
2014-08-30
A key target to reduce current hydrocarbon emissions from vehicular exhaust is to improve their abatement under cold-start conditions. Herein, we demonstrate the potential of factorial analysis to design a highly efficient catalytic trap. The impact of the synthesis conditions on the preparation of copper-loaded ZSM-5 is clearly revealed by XRD, N2 sorption, FTIR, NH3-TPD, SEM and TEM. A high concentration of copper nitrate precursor in the synthesis improves the removal of hydrocarbons, providing both strong adsorption sites for hydrocarbon retention at low temperature and copper oxide nanoparticles for full hydrocarbon catalytic combustion at high temperature. The use of copper acetate precursor leads to a more homogeneous dispersion of copper oxide nanoparticles also providing enough catalytic sites for the total oxidation of hydrocarbons released from the adsorption sites, although lower copper loadings are achieved. Thus, synthesis conditions leading to high copper loadings jointly with highly dispersed copper oxide nanoparticles would result in an exceptional catalytic trap able to reach superior hydrocarbon abatement under highly demanding operational conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
Maitra, Urmimala; Naidu, B S; Govindaraj, A; Rao, C N R
2013-07-16
Prompted by the early results on the catalytic activity of LiMn2O4 and related oxides in the photochemical oxidation of water, our detailed study of several manganese oxides has shown that trivalency of Mn is an important factor in determining the catalytic activity. Thus, Mn2O3, LaMnO3, and MgMn2O4 are found to be very good catalysts with turnover frequencies of 5 × 10(-4) s(-1), 4.8 × 10(-4) s(-1), and 0.8 × 10(-4) s(-1), respectively. Among the cobalt oxides, Li2Co2O4 and LaCoO3--especially the latter--exhibit excellent catalytic activity, with the turnover frequencies being 9 × 10(-4) s(-1) and 1.4 × 10(-3) s(-1), respectively. The common feature among the catalytic Mn and Co oxides is not only that Mn and Co are in the trivalent state, but Co(3+) in the Co oxides is in the intermediate t2g(5)e(g)(1) state whereas Mn(3+) is in the t2g(3e(g)(1) state. The presence of the e(g)(1) electron in these Mn and Co oxides is considered to play a crucial role in the photocatalytic properties of the oxides.
Maitra, Urmimala; Naidu, B. S.; Govindaraj, A.; Rao, C. N. R.
2013-01-01
Prompted by the early results on the catalytic activity of LiMn2O4 and related oxides in the photochemical oxidation of water, our detailed study of several manganese oxides has shown that trivalency of Mn is an important factor in determining the catalytic activity. Thus, Mn2O3, LaMnO3, and MgMn2O4 are found to be very good catalysts with turnover frequencies of 5 × 10−4 s−1, 4.8 × 10−4 s−1, and 0.8 ×10−4 s−1, respectively. Among the cobalt oxides, Li2Co2O4 and LaCoO3—especially the latter—exhibit excellent catalytic activity, with the turnover frequencies being 9 × 10−4 s−1 and 1.4 × 10−3 s−1, respectively. The common feature among the catalytic Mn and Co oxides is not only that Mn and Co are in the trivalent state, but Co3+ in the Co oxides is in the intermediate t2g5eg1 state whereas Mn3+ is in the t2g3eg1 state. The presence of the eg1 electron in these Mn and Co oxides is considered to play a crucial role in the photocatalytic properties of the oxides. PMID:23818589
Euker, C.A. Jr.; Wesselhoft, R.D.; Dunkleman, J.J.; Aquino, D.C.; Gouker, T.R.
1981-09-14
Coal or similar carbonaceous solids impregnated with gasification catalyst constituents are oxidized by contact with a gas containing between 2 vol % and 21 vol % oxygen at a temperature between 50 and 250/sup 0/C in an oxidation zone and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.
Xu, Yin; Li, Xiaoyi; Sun, Dezhi
2014-09-01
Catalytic mechanism of cationic red GTL at wide pH using the Mo-Zn-Al-O nanocatalyst under room conditions was investigated. The experimental results indicate that initial pH significantly affected the removal of cationic red GTL, the removal of COD, the pH value and residual oxygen in the reaction. In the range of pH value from 4 to 10, decolorization of cationic red GTL was almost above 90%. COD removal efficiency was enhanced with the decrease of pH in CWAO process and 79% of the COD was removed at pH 4.0, whereas only 57% COD removal was observed at pH 10.0. The terminal pH was in the range of 5.0-6.0 and the highest terminal concentrations of aqueous oxygen with 5.5 mg/L were observed at pH = 4.0. The radical inhibition experiments also carried out and the generation of *OH and 1O2 in catalytic wet air oxidation process were detected. It was found that the degradation of cationic red GTL occurs mainly via oxidation by 1O2 radical generated by Mo-Zn-Al-O nanocatalyst under acid conditions and *OH radical under alkaline conditions.
Ultrasound-assisted advanced oxidation processes for water decontamination.
Ince, Nilsun H
2018-01-01
The study reflects a part of my experience in sonochemistry and ultrasound-assisted advanced oxidation processes (AOPs) acquired during the last fifteen years with my research team. The data discussed were selected from studies with azo dyes, endocrine disrupting compounds and analgesic/anti-inflammatory pharmaceuticals, which are all classified as "hazardous" or "emerging" contaminants. The research focused on their treatability by ultrasound (US) and AOPs with emphasis on the mineralization of organic carbon. Some of the highlights as pointed out in the manuscript are: i) ultrasound is capable of partially or completely oxidizing the above contaminant groups if the operating conditions are properly selected and optimized, but incapable of mineralizing them; ii) the mechanism of degradation in homogeneous solutions is OH-mediated oxidation in the bulk solution or at the bubble-liquid interface, depending on the molecular properties of the contaminant, the applied frequency and pH; iii) US-assisted AOPs such as ozonation, UV/peroxide, Fenton and UV/Fenton are substantially more effective than ultrasound alone, particularly for the mineralization process; iv) catalytic processes involving TiO 2 , alumina and zero-valent iron and assisted by ultrasound are promising options not only for the destruction of the parent compounds, but also for the mineralization of their oxidation byproducts. The degradation reactions in heterogeneous solutions take place mostly at the catalyst surface despite the high-water solubility of the compounds; v) sonolytic modification of the above catalysts to reduce their particle size (to nano-levels) or to decorate the surface with metallic nanoparticles increases the catalytic activity under sonolysis, photolysis and both, and improves the stability of the catalyst. Copyright © 2017 Elsevier B.V. All rights reserved.
Catalytic biofilms on structured packing for the production of glycolic acid.
Li, Xuan Zhong; Hauer, Bernhard; Rosche, Bettina
2013-02-01
While structured packing modules are known to be efficient for surface wetting and gas-liquid exchange in abiotic surface catalysis, this model study explores structured packing as a growth surface for catalytic biofilms. Microbial biofilms have been proposed as self-immobilized and self-regenerating catalysts for the production of chemicals. A concern is that the complex and dynamic nature of biofilms may cause fluctuations in their catalytic performance over time or may affect process reproducibility. An aerated continuous trickle-bed biofilm reactor system was designed with a 3 L structured packing, liquid recycling and pH control. Pseudomonas diminuta established a biofilm on the stainless steel structured packing with a specific surface area of 500 m2 m-3 and catalyzed the oxidation of ethylene glycol to glycolic acid for over two months of continuous operation. A steady-state productivity of up to 1.6 gl-1h-1 was achieved at a dilution rate of 0.33 h-1. Process reproducibility between three independent runs was excellent, despite process interruptions and activity variations in cultures grown from biofilm effluent cells. The results demonstrate the robustness of a catalytic biofilm on structured packing, despite its dynamic nature. Implementation is recommended for whole-cell processes that require efficient gas-liquid exchange, catalyst retention for continuous operation, or improved catalyst stability.
Wang, Qiu-lin; Huang, Qun-xing; Wu, Hui-fan; Lu, Sheng-yong; Wu, Hai-long; Li, Xiao-dong; Yan, Jian-hua
2016-02-01
Gaseous 1,2-dichlorobenzene (1,2-DCBz) was catalytically decomposed in a fixed-bed catalytic reactor using composite copper-based titanium oxide (CuOx/TiO2) catalysts with different copper ratios. Carbon nanotubes (CNTs) were introduced to produce novel CuOx/TiO2-CNTs catalysts by the sol-gel method. The catalytic performances of CuOx/TiO2 and CuOx/TiO2-CNTs on 1,2-DCBz oxidative destruction under different temperatures (150-350 °C) were experimentally examined and the correlation between catalyst structure and catalytic activity was characterized and the role of oxygen in catalytic reaction was discussed. Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) generation during 1,2-DCBz catalytic oxidation by CuOx/TiO2-CNTs composite catalyst was also examined. Results indicate that the 1,2-DCBz destruction/removal efficiencies of CuOx (4 wt%)/TiO2 catalyst at 150 °C and 350 °C with a GHSV of 3400 h(-1) are 59% and 94% respectively and low-temperature (150 °C) catalytic activity of CuOx/TiO2 on 1,2-DCBz oxidation can be improved from 59 to 77% when CNTs are introduced. Furthermore, oxygen either in catalyst or from reaction atmosphere is indispensible in reaction. The former is offered to activate and oxidize the 1,2-DCBz adsorbed on catalyst, thus can be generally consumed during reaction and the oxygen content in catalyst is observed lost from 39.9 to 35.0 wt% after reacting under inert atmosphere; the latter may replenish the vacancy in catalyst created by the consumed oxygen thus extends the catalyst life and raises the destruction/removal efficiency. The introduction of CNTs also increases the Cu(2+)/Cu(+) ratio, chemisorbed oxygen concentration and surface lattice oxygen binding energy which are closely related with catalytic activity. PCDD/Fs is confirmed to be formed when 1,2-DCBz catalytically oxidized by CuOx/TiO2-CNTs composite catalyst with sufficient oxygen (21%), proper temperature (350 °C) and high concentration of 1,2-DCBz feed (120 ppm). Copyright © 2015 Elsevier Ltd. All rights reserved.
Roy, Mouni; Basak, Somjyoti; Naskar, Milan Kanti
2016-02-21
A simple soft bi-templating process was used for the synthesis of mesoporous manganese oxide nanostructures using KMnO4 as a precursor and polyethylene glycol and cetyltrimethylammonium bromide as templates in the presence of benzaldehyde as an organic additive in alkaline media, followed by calcination at 400 °C. X-ray diffraction and Raman spectroscopic analysis of the calcined products confirmed the existence of stoichiometric (MnO2 and Mn5O8) and non-stoichiometric mixed phases (MnO2 + Mn5O8) of Mn oxides obtained by tuning the concentration of the additive and the synthesis time. The surface properties of the prepared Mn oxides were determined by X-ray photoelectron spectroscopy. The mesoporosity of the samples was confirmed by N2 adsorption-desorption. Different synthetic conditions resulted in the formation of different morphologies of the Mn oxides (α-MnO2, Mn5O8, and α-MnO2 + Mn5O8), such as nanoparticles, nanorods, and nanowires. The synthesized mesoporous Mn oxide nanostructures were used for the catalytic oxidation of the harmful air pollutant carbon monoxide. The Mn5O8 nanoparticles with the highest Brunauer-Emmett-Teller surface area and the non-stoichiometric manganese oxide (α-MnO2 + Mn5O8) nanorods with a higher Mn(3+) concentration had the best catalytic efficiency.
Copper slag as a catalyst for mercury oxidation in coal combustion flue gas.
Li, Hailong; Zhang, Weilin; Wang, Jun; Yang, Zequn; Li, Liqing; Shih, Kaimin
2018-04-01
Copper slag is a byproduct of the pyrometallurgical smelting of copper concentrate. It was used in this study to catalyze elemental mercury (Hg 0 ) oxidation in simulated coal combustion flue gas. The copper slag exhibited excellent catalytic performance in Hg 0 oxidation at temperatures between 200 °C and 300 °C. At the most optimal temperature of 250 °C, a Hg 0 oxidation efficiency of 93.8% was achieved under simulated coal combustion flue gas with both a high Hg 0 concentration and a high gas hourly space velocity of 128,000 h -1 . Hydrogen chloride (HCl) was the flue gas component responsible for Hg 0 oxidation over the copper slag. The transition metal oxides, including iron oxides and copper oxide in the copper slag, exhibited significant catalytic activities in the surface-mediated oxidation of Hg 0 in the presence of HCl. It is proposed that the Hg 0 oxidation over the copper slag followed the Langmuir-Hinshelwood mechanism whereby reactive chlorine species that originated from HCl reacted with the physically adsorbed Hg 0 to form oxidized mercury. This study demonstrated the possibility of reusing copper slag as a catalyst for Hg 0 oxidation and revealed the mechanisms involved in the process and the key factors in the performance. This knowledge has fundamental importance in simultaneously reducing industrial waste and controlling mercury emissions from coal-fired power plants. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Xiuyi; Wang, Pengzhao; Wang, Haoren; Li, Chunyi
2018-05-01
In this paper, the Co/Al2O3 catalyst was prepared by incipient wetness impregnation method, and different post treatment methods were used to promote its dehydrogenation properties. Interestingly, we found that Co/Al2O3 catalysts with different post treatment protocols exhibited totally different catalytic behaviors in propane dehydrogenation. Fresh catalyst showed an induction period and was highly active for pyrolysis and coking at 10-30 min of reaction. The pre-reduction led to complete pyrolysis and coking at the beginning of reaction. However, the re-oxidation treatment gave a high selectivity (∼93.0%) to propylene at the whole process. XRD, H2-TPR, XPS, TEM and hydrogen chemisorption investigations showed that the post treatment has a great impact on the state of cobalt species and the performance of propane dehydrogenation over Co/Al2O3 catalysts. Specifically, the poorly dispersed metal Co led to pyrolysis and coking, while highly dispersed metal Co were responsible for the dehydrogenation of propane. The large Co3O4 particles (DFresh = 33.68 nm) result in the large metal Co grains (DPre-reduced = 24.90 nm) after the reduction or reaction process. While during the re-oxidization process, the surface metal Co was re-oxidized in a mild environment and got re-dispersion (DRe-oxidized = 6.07 nm). And the surface cobalt oxides layer is more readily to be reduced to metal Co during the reaction thus leading to the shortened induction period.
Rodriguez, José A.; Liu, Ping; Graciani, Jesús; ...
2016-06-21
Inverse oxide/metal catalysts have shown to be excellent systems for studying the role of the oxide and oxide–metal interface in catalytic reactions. These systems can have special structural and catalytic properties due to strong oxide–metal interactions difficult to attain when depositing a metal on a regular oxide support. Oxide phases that are not seen or are metastable in a bulk oxide can become stable in an oxide/metal system opening the possibility for new chemical properties. Using these systems, it has been possible to explore fundamental properties of the metal–oxide interface (composition, structure, electronic state), which determine catalytic performance in themore » oxidation of CO, the water–gas shift and the hydrogenation of CO 2 to methanol. Recently, there has been a significant advance in the preparation of oxide/metal catalysts for technical or industrial applications. In conclusion, one goal is to identify methods able to control in a precise way the size of the deposited oxide particles and their structure on the metal substrate.« less
NASA Astrophysics Data System (ADS)
Liu, Bing; Tian, Lihong; Wang, Ran; Yang, Jinfeng; Guan, Rong; Chen, Xiaobo
2017-11-01
Though α-Fe2O3 has attracted much attention in photocatalytic or Fenton-catalytic degradation of organic contaminants, its performance is still unsatisfactory due to fast recombination of electrons and holes in photocatalytic process and the difficult conversion of Fe(II) and Fe(III) in Fenton reaction. Herein, a pyrrolic N-doped graphene oxide/Fe2O3 mesocrystal (NG-Fe2O3) nanocomposite with good distribution is synthesized by a simple solvothermal method and adjusting the oxygen-containing groups on graphene oxide. The morphology of NG-Fe2O3 contributes to a relatively large BET surface area and an intimate contact between NG and Fe2O3. These two important factors along with the excellent electro-conductivity of pyrrolic-N doped GO result in the efficient separation of electron-hole pairs and fast conversion of Fe(II)and Fe(III) in photo-Fenton synergistic reaction. Thus, a remarkably improved photo-Fenton catalytic activity of NG-Fe2O3 is obtained. The degrading rate on methyl blue increases by 1.5 times and the conversion rate of glyphosate increases by 2.3 times under visible light irradiation, compared to pristine α-Fe2O3 mesocrystals.
Ren, Zheng; Guo, Yanbing; Gao, Pu-Xian
2015-03-20
Monolithic catalysts, also known as structured catalysts, represent an important catalyst configuration widely used in automotive, chemical, and energy industries. However, several issues associated with washcoat based monolithic catalyst preparation are ever present, such as compromised materials utilization efficiency due to a less-than-ideal wash coating process, difficulty in precise and optimum microstructure control and lack of structure-property correlation. Here, in this mini-review, we introduce the concept of nano-array catalyst, a new type of monolithic catalyst featuring high catalyst utilization efficiency, good thermal/mechanical robustness, and catalytic performance tunability. A comprehensive overview is presented with detailed discussion of the strategies for nano-arraymore » catalyst preparation and rational catalytic activity adjustment enabled by the well-defined nano-array geometry. Specifically their scalable fabrication processes are reviewed in conjunction with discussion of their various catalytic oxidation reaction performances at low temperature. Finally, we hope this review will serve as a timely and useful research guide for rational design and utilization of the new type of monolithic catalysts.« less
Lin, Xiangfeng; Fang, Jian; Chen, Menglin; Huang, Zhi; Su, Chengyuan
2016-08-01
An efficient adsorbent/catalyst Co and Fe-catalysts loaded on sepiolite (Co-Fe/sepiolite) was successfully prepared for high temperature gas flow catalytic reaction by a simple impregnation method. The impact of preparation conditions (such as pH value of impregnation solution, impregnation time, calcination temperature, and time) on catalytic activity was studied. We found that the catalytic activity of Co-Fe/sepiolite was strongly influenced by all the investigated parameters. The regeneration efficiency (RE) was used to evaluate the catalytic activity. The RE is more noticeable at pH 5.0 of impregnation solution, impregnation time 18 h, calcination temperature 650 °C, and calcination time 3 h. This Co-Fe/sepiolite has great adsorption capacity in absorbing dye. It is used for an adsorbent to adsorb dye from wastewater solution under dynamic adsorption and saturated with dye, then regenerated with high temperature gas flow for adsorption/oxidation cycles. The Co-Fe/sepiolite acts as a catalyst to degrade the dye during regeneration under high temperature gas flow. Hence, the Co-Fe/sepiolite is not only an adsorbent but also a catalyst. The Co-Fe/sepiolite is more stable than sepiolite when applied in the treatment of plant's wastewater. The Co-Fe/sepiolite can be reused in adsorption-regeneration cycle. The results indicate the usability of the proposed combined process, dye adsorption on Co-Fe/sepiolite followed by the catalytic oxidation in high temperature gas flow.
Cryopumping of hydrogen in vacuum chambers is aided by catalytic oxidation of hydrogen
NASA Technical Reports Server (NTRS)
Childs, J. H.; Grobman, J.; Rayle, W.
1964-01-01
Vacuum test facilities are required for high speed cryopumping of gaseous hydrogen at low pressures. One method involves the catalytic oxidation of hydrogen and condensation of the resulting water on a liquid nitrogen-cooled surface.
Method and apparatus for controlling accidental releases of tritium
Galloway, T.R.
1980-04-01
An improvement is described in a tritium control system based on a catalytic oxidation reactor wherein accidental releases of tritium into room air are controlled by flooding the catalytic oxidation reactor with hydrogen when the tritium concentration in the room air exceeds a specified limit. The sudden flooding with hydrogen heats the catalyst to a high temperature within seconds, thereby greatly increasing the catalytic oxidation rate of tritium to tritiated water vapor. Thus, the catalyst is heated only when needed. In addition to the heating effect, the hydrogen flow also swamps the tritium and further reduces the tritium release. 1 fig.
Method and apparatus for controlling accidental releases of tritium
Galloway, Terry R. [Berkeley, CA
1980-04-01
An improvement in a tritium control system based on a catalytic oxidation reactor wherein accidental releases of tritium into room air are controlled by flooding the catalytic oxidation reactor with hydrogen when the tritium concentration in the room air exceeds a specified limit. The sudden flooding with hydrogen heats the catalyst to a high temperature within seconds, thereby greatly increasing the catalytic oxidation rate of tritium to tritiated water vapor. Thus, the catalyst is heated only when needed. In addition to the heating effect, the hydrogen flow also swamps the tritium and further reduces the tritium release.
Catalytic oxidation of VOCs over Mn/TiO2/activated carbon under 185 nm VUV irradiation.
Shu, Yajie; Xu, Yin; Huang, Haibao; Ji, Jian; Liang, Shimin; Wu, Muyan; Leung, Dennis Y C
2018-06-04
Volatile organic compounds (VOCs) are regarded as the major contributors to air pollution, and should be strictly regulated. Photocatalytic oxidation (PCO) is of great interest for the removal of VOCs owing to its strong oxidation capability. However, its application is greatly limited by catalytic deactivation. Vacuum Ultraviolet (VUV) irradiation provides a novel way to improve the photocatalytic activity while much O 3 will be generated which may cause secondary pollution. In this study, a multi-functional catalyst of Mn/TiO 2 /activated carbon (AC) was developed to eliminate and utilize O 3 , as well as enhance catalytic oxidation of VOC degradation via ozone-assisted catalytic oxidation (OZCO). The results indicate that Mn modified TiO 2 /AC (i.e. 0.1%Mn/20%TiO 2 /AC) achieved a toluene removal efficiency of nearly 86% with 100% elimination rate of O 3 . With the help of Mn/TiO 2 /AC catalyst, O 3 was catalytically decomposed and transformed into active species of O ( 1 D) and OH, thus enhancing toluene removal. The combination of VUV irradiation with multi-functional catalyst provides a novel and efficient way for the degradation of VOCs. Copyright © 2018 Elsevier Ltd. All rights reserved.
The Role of Low-coordinate Oxygen on Co3O4(110) in Catalytic Oxidation of CO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Deen; Dai, Sheng
2011-01-01
A complete catalytic cycle for carbon monoxide (CO) oxidation to carbon dioxide (CO{sub 2}) by molecular oxygen on the Co{sub 3}O{sub 4}(110) surface was obtained by density functional theory plus the on-site Coulomb repulsion (DFT + U). Previously observed high activity of Co{sub 3}O{sub 4} to catalytically oxidize CO at very low temperatures is explained by a unique twofold-coordinate oxygen site on Co{sub 3}O{sub 4}(110). The CO molecule extracts this oxygen with a computed barrier of 27 kJ/mol. The extraction leads to CO{sub 2} formation and an oxygen vacancy on Co{sub 3}O{sub 4}(110). Then, the O{sub 2} molecule dissociates withoutmore » a barrier between two neighboring oxygen vacancies (which are shown to have high surface mobility), thereby replenishing the twofold-coordinate oxygen sites on the surface and enabling the catalytic cycle. In contrast, extracting the threefold-coordinate oxygen site on Co{sub 3}O{sub 4}(110) has a higher barrier. Our work furnishes a molecular-level mechanism of Co{sub 3}O{sub 4}'s catalytic power, which may help understand previous experimental results and oxidation catalysis by transition metal oxides.« less
Chen, Yunnen; Wu, Ye; Liu, Chen; Guo, Lin; Nie, Jinxia; Chen, Yu; Qiu, Tingsheng
2018-04-01
As one of the most important water pollutants, ammonia nitrogen emissions have increased year by year, which has attracted people's attention. Catalytic ozonation technology, which involves production of ·OH radical with strong oxidation ability, is widely used in the treatment of organic-containing wastewater. In this work, MgO-Co 3 O 4 composite metal oxide catalysts prepared with different fabrication conditions have been systematically evaluated and compared in the catalytic ozonation of ammonia (50mg/L) in water. In terms of high catalytic activity in ammonia decomposition and high selectivity for gaseous nitrogen, the catalyst with MgO-Co 3 O 4 molar ratio 8:2, calcined at 500°C for 3hr, was the best one among the catalysts we tested, with an ammonia nitrogen removal rate of 85.2% and gaseous nitrogen selectivity of 44.8%. In addition, the reaction mechanism of ozonation oxidative decomposition of ammonia nitrogen in water with the metal oxide catalysts was discussed. Moreover, the effect of coexisting anions on the degradation of ammonia was studied, finding that SO 4 2- and HCO 3 - could inhibit the catalytic activity while CO 3 2- and Br - could promote it. The presence of coexisting cations had very little effect on the catalytic ozonation of ammonia nitrogen. After five successive reuses, the catalyst remained stable in the catalytic ozonation of ammonia. Copyright © 2017. Published by Elsevier B.V.
Liu, YuPing; Guo, Si-Xuan; Ding, Liang; Ohlin, C André; Bond, Alan M; Zhang, Jie
2015-08-05
A method has been developed for the efficient electrodeposition of cobalt and nickel nanostructures with the assistance of the Lindqvist ion [Nb6O19](8-). Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma optical emission spectrometry, and a range of electrochemical techniques have been used to characterize the morphology, composition, catalytic water oxidation activity and stability of the films in alkaline solution. SEM images show that films consisting of nanoparticles with diameters of ca. 30 to 40 nm are formed after 40-50 potential cycles of deposition. Nb and Co/Ni are detected in the films by EDX. ICP-MS results show an elemental ratio of 1:1 for Co:Nb and 1:3 for Ni:Nb, respectively. Raman spectra reveal the presence of both [Nb6O19](8-) and Co(OH)2/Ni(OH)2. The films exhibit excellent stability and efficiency for electrocatalytic water oxidation in alkaline solution. Turnover frequencies of 12.9 and 13.2 s(-1) were determined by rotating ring disk electrode voltammetry at an overpotential of 480 mV for Co and Ni films, respectively. Fourier transformed large amplitude alternating current (FTAC) voltammetry reveals an additional underlying oxidation process for Co under catalytic turnover conditions, which indicates that a Co(IV) species is involved in the efficient catalytic water oxidation reactions. FTAC voltammetric data also suggest that the Ni films undergoes a clear phase transformation upon aging in aqueous 1 M NaOH and the electrogenerated higher oxidation state Ni from β-NiOOH is the more active form of the catalyst.
Cheng, Ya; Li, Ye; Huang, Tinglin; Sun, Yuankui; Shi, Xinxin; Shao, Yuezong
2018-03-01
As an efficient method for ammonium (NH 4 + ) removal, contact catalytic oxidation technology has drawn much attention recently, due to its good low temperature resistance and short start-up period. Two identical filters were employed to compare the process for ammonium removal during the start-up period for ammonium removal in groundwater (Filter-N) and surface water (Filter-S) treatment. Two types of source water (groundwater and surface water) were used as the feed waters for the filtration trials. Although the same initiating method was used, Filter-N exhibited much better ammonium removal performance than Filter-S. The differences in catalytic activity among these two filters were probed using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and compositional analysis. XRD results indicated that different manganese oxide species were formed in Filter-N and Filter-S. Furthermore, the Mn3p XPS spectra taken on the surface of the filter films revealed that the average manganese valence of the inactive manganese oxide film collected from Filter-S (FS-MnO x ) was higher than in the film collected from Filter-N (FN-MnO x ). Mn(IV) was identified as the predominant oxidation state in FS-MnO x and Mn(III) was identified as the predominant oxidation state in FN-MnO x . The results of compositional analyses suggested that polyaluminum ferric chloride (PAFC) used during the surface water treatment was an important factor in the mineralogy and reactivity of MnO x . This study provides the theoretical basis for promoting the wide application of the technology and has great practical significance. Copyright © 2017. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Tabatabaie-Raissi, Ali (Inventor); Muradov, Nazim Z. (Inventor); Smith, Franklyn (Inventor)
2012-01-01
A novel process and apparatus is disclosed for sustainable, continuous production of hydrogen and carbon by catalytic dissociation or decomposition of hydrocarbons at elevated temperatures using in-situ generated carbon particles. Carbon particles are produced by decomposition of carbonaceous materials in response to an energy input. The energy input can be provided by at least one of a non-oxidative and oxidative means. The non-oxidative means of the energy input includes a high temperature source, or different types of plasma, such as, thermal, non-thermal, microwave, corona discharge, glow discharge, dielectric barrier discharge, or radiation sources, such as, electron beam, gamma, ultraviolet (UV). The oxidative means of the energy input includes oxygen, air, ozone, nitrous oxide (NO.sub.2) and other oxidizing agents. The method, apparatus and process of the present invention is applicable to any gaseous or liquid hydrocarbon fuel and it produces no or significantly less CO.sub.2 emissions compared to conventional processes.
Water oxidation by size selected Co 27 clusters supported on Fe 2O 3
Pellin, Michael J.; Riha, Shannon C.; Tyo, Eric C.; ...
2016-09-22
The complexity of the water oxidation reaction makes understanding the role of individual catalytic sites critical to improving the process. Here, size-selected 27-atom cobalt clusters (Co 27) deposited on hematite (Fe 2O 3) anodes were tested for water oxidation activity. The uniformity of these anodes allows measurement of the activity of catalytic sites of well-defined nuclearity and known density. Grazing incidence X-ray absorption near-edge spectroscopy (GIXANES) characterization of the anodes before and after electrochemical cycling demonstrates that these Co 27 clusters are stable to dissolution even in the harsh water oxidation electrochemical environment. They are also stable under illumination atmore » the equivalent of 0.4suns irradiation. The clusters show turnover rates for water oxidation that are comparable or higher than those reported for Pd- and Co-based materials or for hematite. The support for the Co 27 clusters is Fe 2O 3 grown by atomic layer deposition on a Si chip. We have chosen to deposit a Fe2O3 layer that is only a few unit cells thick (2nm), to remove complications related to exciton diffusion. We find that the electrocatalytic and the photoelectrocatalytic activity of the Co 27/Fe 2O 3 material is significantly improved when the samples are annealed (with the clusters already deposited). Lastly, given that the support is thin and that the cluster deposition density is equivalent to approximately 5% of an atomic monolayer, we suggest that annealing may significantly improve the exciton diffusion from the support to the catalytic moiety.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihaela Grigore; Richard Sakurovs; David French
Gasification of coke contributes to its degradation in the blast furnace. In this study, the effect of gasification on the inherent catalytic minerals in cokes and their reciprocal influence on gasification are investigated. The catalytic mineral phases identified in the cokes used in this study were metallic iron, iron sulfides, and iron oxides. Metallic iron and pyrrhotite were rapidly oxidized during gasification to iron oxide. The catalysts had a strong influence on the apparent rates at the initial stages of reaction. As gasification proceeds, their effect on the reaction rate diminishes as a result of reducing the surface contact betweenmore » catalyst and carbon matrix because of carbon consumption around the catalyst particles; with extended burnout the reactivity of the coke becomes increasingly dependent on surface area. The reaction rate in the initial stages was also influenced by the particle size of the catalytic minerals; for a given catalytic iron level, the cokes whose catalytic minerals were more finely dispersed had a higher apparent reaction rate than cokes containing larger catalytic particles. Iron, sodium, and potassium in the amorphous phase did not appear to affect the reaction rate. 40 refs., 16 figs., 6 tabs.« less
Catalytic nanoporous membranes
Pellin, Michael J; Hryn, John N; Elam, Jeffrey W
2013-08-27
A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.
Process for decomposing lignin in biomass
Rector, Kirk Davin; Lucas, Marcel; Wagner, Gregory Lawrence; Kimball, David Bryan; Hanson, Susan Kloek
2014-10-28
A mild inexpensive process for treating lignocellulosic biomass involves oxidative delignification of wood using an aqueous solution prepared by dissolving a catalytic amount of manganese (III) acetate into water and adding hydrogen peroxide. Within 4 days and without agitation, the solution was used to convert poplar wood sections into a fine powder-like delignified, cellulose rich materials that included individual wood cells.
Thermodynamic analysis of tar reforming through auto-thermal reforming process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nurhadi, N., E-mail: nurhadi@tekmira.esdm.go.id; Diniyati, Dahlia; Efendi, M. Ade Andriansyah
2015-12-29
Fixed bed gasification is a simple and suitable technology for small scale power generation. One of the disadvantages of this technology is producing tar. So far, tar is not utilized yet and being waste that should be treated into a more useful product. This paper presents a thermodynamic analysis of tar conversion into gas producer through non-catalytic auto-thermal reforming technology. Tar was converted into components, C, H, O, N and S, and then reacted with oxidant such as mixture of air or pure oxygen. Thus, this reaction occurred auto-thermally and reached chemical equilibrium. The sensitivity analysis resulted that the mostmore » promising process performance occurred at flow rate of air was reached 43% of stoichiometry while temperature of process is 1100°C, the addition of pure oxygen is 40% and preheating of oxidant flow is 250°C. The yield of the most promising process performance between 11.15-11.17 kmol/h and cold gas efficiency was between 73.8-73.9%.The results of this study indicated that thermodynamically the conversion of tar into producer gas through non-catalytic auto-thermal reformingis more promising.« less
Fathima, Nishtar Nishad; Aravindhan, Rathinam; Rao, Jonnalagadda Raghava; Nair, Balachandran Unni
2008-01-01
Catalytic wet hydrogen peroxide oxidation of an anionic dye has been explored in this study. Copper(II) complex of NN'-ethylene bis(salicylidene-aminato) (salenH2) has been encapsulated in super cages of zeolite-Y by flexible ligand method. The catalyst has been characterized by Fourier transforms infra red spectroscopy, X-ray powder diffractograms, Thermo-gravimetric and differential thermal analysis and nitrogen adsorption studies. The effects of various parameters such as pH, catalyst and hydrogen peroxide concentration on the oxidation of dye were studied. The results indicate that complete removal of color has been obtained after a period of less than 1h at 60 degrees C, 0.175M H2O2 and 0.3g l(-1) catalyst. More than 95% dye removal has been achieved using this catalyst for commercial effluent. These studies indicate that copper salen complex encapsulated in zeolite framework is a potential heterogeneous catalyst for removal of color from wastewaters.
Zetterberg, Johan; Blomberg, Sara; Gustafson, Johan; Evertsson, Jonas; Zhou, Jianfeng; Adams, Emma C.; Carlsson, Per-Anders; Aldén, Marcus; Lundgren, Edvin
2015-01-01
Visualizing and measuring the gas distribution in close proximity to a working catalyst is crucial for understanding how the catalytic activity depends on the structure of the catalyst. However, existing methods are not able to fully determine the gas distribution during a catalytic process. Here we report on how the distribution of a gas during a catalytic reaction can be imaged in situ with high spatial (400 μm) and temporal (15 μs) resolution using infrared planar laser-induced fluorescence. The technique is demonstrated by monitoring, in real-time, the distribution of carbon dioxide during catalytic oxidation of carbon monoxide above powder catalysts. Furthermore, we demonstrate the versatility and potential of the technique in catalysis research by providing a proof-of-principle demonstration of how the activity of several catalysts can be measured simultaneously, either in the same reactor chamber, or in parallel, in different reactor tubes. PMID:25953006
NASA Astrophysics Data System (ADS)
Zhang, Hao; Zhao, Xiaozhou; Wang, Shuang; Zeng, Shanghong; Su, Haiquan
2018-05-01
The CuO-CeO2@SiO2 catalyst with flower-sphere morphology was prepared by the impregnation method and then experienced the reduction-oxidation treatment at different temperatures. The multi-technique characterization shows that the reduction-oxidation treatment can remodel CuO, improve textural and surface properties and change Cu+ content and synergistic effect of copper and cerium. The importance of this work lies in the fact that the decrease of Cu+ content and synergistic effect of copper and cerium that occurs in the reduction-oxidation process results in the decrease of catalytic activity over the CuO-CeO2@SiO2 catalyst for preferential CO oxidation. The process of reaction in rich-hydrogen streams is equivalent to a reduction procedure which decreases Cu+ content and synergistic effect of copper and cerium.
NASA Astrophysics Data System (ADS)
Churilov, G. N.; Nikolaev, N. S.; Cherepakhin, A. V.; Dudnik, A. I.; Tomashevich, E. V.; Trenikhin, M. V.; Bulina, N. G.
2018-02-01
We have reported on the comparative characteristics of thermal oxidation of a carbon condensate prepared by high-frequency arc evaporation of graphite rods and a rod with a hollow center filled with nickel powder. In the latter case, along with different forms of nanodisperse carbon, nickel particles with nickel core-carbon shell structures are formed. It has been found that the processes of the thermal oxidation of carbon condensates with and without nickel differ significantly. Nickel particles with the carbon shell exhibit catalytic properties with respect to the oxidation of nanosized carbon structures. A noticeable difference between the temperatures of the end of the oxidation process for various carbon nanoparticles and nickel particles with the carbon shell has been established. The study is aimed at investigations of the effect of nickel nanoparticles on the dynamics of carbon condensate oxidation upon heating in the argon-oxygen flow.
NASA Astrophysics Data System (ADS)
Wang, Juan; Hao, Panpan; Shi, Ruina; Yang, Leilei; Liu, Shusen; Zhao, Jinxian; Ren, Jun; Li, Zhong
2017-08-01
A facile way was developed to fabricate yolk-shell composites with tunable Cu cores encapsulated within hollow carbon spheres (Cu@C) with an average diameter about 210 nm and cavity size about 80 nm. During pyrolysis, the confined nanospace of hollow cavity ensures that the nucleation-and-growth process of Cu nanocrystals take place exclusively inside the cavities. The size of Cu cores can be easily tuned from 30 to 55 nm by varying the copper salt concentration. By deliberately creating shell porosity through KOH chemical activation, at an optimized KOH/HCS mass ratio of 1/4, the catalytic performance for the oxidative carbonylation of methanol to dimethyl carbonate (DMC) of the activated sample is enhanced remarkably with TOF up to 8.6 h-1 at methanol conversion of 17.1%. The activated yolk-shell catalyst shows promising catalytic properties involving the reusability with slight loss of catalytic activity and negligible leaching of activated components even after seven recycles, which is beneficial to the implementation of clean production for the eco-friendly chemical DMC thoroughly.
Shin, Yeonwoo; Kim, Sang Tae; Kim, Kuntae; Kim, Mi Young; Oh, Saeroonter; Jeong, Jae Kyeong
2017-09-07
High-mobility indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) are achieved through low-temperature crystallization enabled via a reaction with a transition metal catalytic layer. For conventional amorphous IGZO TFTs, the active layer crystallizes at thermal annealing temperatures of 600 °C or higher, which is not suitable for displays using a glass substrate. The crystallization temperature is reduced when in contact with a Ta layer, where partial crystallization at the IGZO back-channel occurs with annealing at 300 °C, while complete crystallization of the active layer occurs at 400 °C. The field-effect mobility is significantly boosted to 54.0 cm 2 /V·s for the IGZO device with a metal-induced polycrystalline channel formed at 300 °C compared to 18.1 cm 2 /V·s for an amorphous IGZO TFT without a catalytic layer. This work proposes a facile and effective route to enhance device performance by crystallizing the IGZO layer with standard annealing temperatures, without the introduction of expensive laser irradiation processes.
Design and functionalization of photocatalytic systems within mesoporous silica.
Qian, Xufang; Fuku, Kojirou; Kuwahara, Yasutaka; Kamegawa, Takashi; Mori, Kohsuke; Yamashita, Hiromi
2014-06-01
In the past decades, various photocatalysts such as TiO2, transition-metal-oxide moieties within cavities and frameworks, or metal complexes have attracted considerable attention in light-excited catalytic processes. Owing to high surface areas, transparency to UV and visible light as well as easily modified surfaces, mesoporous silica-based materials have been widely used as excellent hosts for designing efficient photocatalytic systems under the background of environmental remediation and solar-energy utilization. This Minireview mainly focuses on the surface-chemistry engineering of TiO2/mesoporous silica photocatalytic systems and fabrication of binary oxides and nanocatalysts in mesoporous single-site-photocatalyst frameworks. Recently, metallic nanostructures with localized surface plasmon resonance (LSPR) have been widely studied in catalytic applications harvesting light irradiation. Accordingly, silver and gold nanostructures confined in mesoporous silica and their corresponding catalytic activity enhanced by the LSPR effect will be introduced. In addition, the integration of metal complexes within mesoporous silica materials for the construction of functional inorganic-organic supramolecular photocatalysts will be briefly described. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Roy Chowdhury, Sankhanilay; Witte, Peter T; Blank, Dave H A; Alsters, Paul L; Ten Elshof, Johan E
2006-04-03
The recovery of homogeneous polyoxometallate (POM) oxidation catalysts from aqueous and non-aqueous media by a nanofiltration process using mesoporous gamma-alumina membranes is reported. The recovery of Q(12)[WZn(3)(ZnW(9)O(34))(2)] (Q=[MeN(n-C(8)H(17))(3)](+)) from toluene-based media was quantitative within experimental error, while up to 97 % of Na(12)[WZn(3)(ZnW(9)O(34))(2)] could be recovered from water. The toluene-soluble POM catalyst was used repeatedly in the conversion of cyclooctene to cyclooctene oxide and separated from the product mixture after each reaction. The catalytic activity increased steadily with the number of times that the catalyst had been recycled, which was attributed to partial removal of the excess QCl that is known to have a negative influence on the catalytic activity. Differences in the permeability of the membrane for different liquid media can be attributed to viscosity differences and/or capillary condensation effects. The influence of membrane pore radius on permeability and recovery is discussed.
Choi, Seeyoung; Love, Paul E
2018-01-05
Oxidative inactivation of cysteine-dependent Protein Tyrosine Phosphatases (PTPs) by cellular reactive oxygen species (ROS) plays a critical role in regulating signal transduction in multiple cell types. The phosphatase activity of most PTPs depends upon a 'signature' cysteine residue within the catalytic domain that is maintained in the de-protonated state at physiological pH rendering it susceptible to ROS-mediated oxidation. Direct and indirect techniques for detection of PTP oxidation have been developed (Karisch and Neel, 2013). To detect catalytically active PTPs, cell lysates are treated with iodoacetyl-polyethylene glycol-biotin (IAP-biotin), which irreversibly binds to reduced (S - ) cysteine thiols. Irreversible oxidation of SHP-1 after treatment of cells with pervanadate or H 2 O 2 is detected with antibodies specific for the sulfonic acid (SO 3 H) form of the conserved active site cysteine of PTPs. In this protocol, we describe a method for the detection of the reduced (S - ; active) or irreversibly oxidized (SO 3 H; inactive) form of the hematopoietic PTP SHP-1 in thymocytes, although this method is applicable to any cysteine-dependent PTP in any cell type.
Wang, Yu-Hsiang; Chen, Kuan-Chung
2014-09-10
The effects of synthetic goethite (α-FeOOH) used as the catalyst in catalytic ozonation for the degradation of disinfection by-product (DBP) precursors are investigated. A biofiltration column applied following the catalytic ozonation process is used to evaluate the efficiency of removing DBP precursors via biotreatment. Ozone can rapidly react with aromatic compounds and oxidize organic compounds, resulting in a decrease in the fluorescence intensity of dissolved organic matter (DOM). In addition, catalytic ozonation can break down large organic molecules, which causes a blue shift in the emission-excitation matrix spectra. Water treated with catalytic ozonation is composed of low-molecular structures, including soluble microbial products (SMPs) and other aromatic proteins (APs). The DOM in SMPs and APs is removed by subsequent biofiltration. Catalytic ozonation has a higher removal efficiency for dissolved organic carbon and higher ultraviolet absorbance at 254 nm compared to those of ozonation without a catalyst. The use of catalytic ozonation and subsequent biofiltration leads to a lower DBP formation potential during chlorination compared to that obtained using ozonation and catalytic ozonation alone. Regarding DBP species during chlorination, the bromine incorporation factor (BIF) of trihalomethanes and haloacetic acids increases with increasing catalyst dosage in catalytic ozonation. Moreover, the highest BIF is obtained for catalytic ozonation and subsequent biofiltration.
Wang, Yu-Hsiang; Chen, Kuan-Chung
2014-01-01
The effects of synthetic goethite (α-FeOOH) used as the catalyst in catalytic ozonation for the degradation of disinfection by-product (DBP) precursors are investigated. A biofiltration column applied following the catalytic ozonation process is used to evaluate the efficiency of removing DBP precursors via biotreatment. Ozone can rapidly react with aromatic compounds and oxidize organic compounds, resulting in a decrease in the fluorescence intensity of dissolved organic matter (DOM). In addition, catalytic ozonation can break down large organic molecules, which causes a blue shift in the emission-excitation matrix spectra. Water treated with catalytic ozonation is composed of low-molecular structures, including soluble microbial products (SMPs) and other aromatic proteins (APs). The DOM in SMPs and APs is removed by subsequent biofiltration. Catalytic ozonation has a higher removal efficiency for dissolved organic carbon and higher ultraviolet absorbance at 254 nm compared to those of ozonation without a catalyst. The use of catalytic ozonation and subsequent biofiltration leads to a lower DBP formation potential during chlorination compared to that obtained using ozonation and catalytic ozonation alone. Regarding DBP species during chlorination, the bromine incorporation factor (BIF) of trihalomethanes and haloacetic acids increases with increasing catalyst dosage in catalytic ozonation. Moreover, the highest BIF is obtained for catalytic ozonation and subsequent biofiltration. PMID:25211774
Lashina, Elena A; Kaichev, Vasily V; Saraev, Andrey A; Vinokurov, Zakhar S; Chumakova, Nataliya A; Chumakov, Gennadii A; Bukhtiyarov, Valerii I
2017-09-21
The self-sustained kinetic oscillations in the oxidation of CH 4 over Ni foil have been studied at atmospheric pressure using an X-ray diffraction technique and mass spectrometry. It has been shown that the regular oscillations appear under oxygen-deficient conditions; CO, CO 2 , H 2 , and H 2 O are detected as the products. According to in situ X-ray diffraction measurements, nickel periodically oxidizes to NiO initiating the reaction-rate oscillations. To describe the oscillations, we have proposed a five-stage mechanism of the partial oxidation of methane over Ni and a corresponding three-variable kinetic model. The mechanism considers catalytic methane decomposition, dissociative adsorption of oxygen, transformation of chemisorbed oxygen to surface nickel oxide, and reaction of adsorbed carbon and oxygen species to form CO. Analysis of the kinetic model indicates that the competition of two processes, i.e., the oxidation and the carbonization of the catalyst surface, is the driving force of the self-sustained oscillations in the oxidation of methane. We have compared this mechanism with the detailed 18-stage mechanism described previously by Lashina et al. (Kinetics and Catalysis 2012, 53, 374-383). It has been shown that both kinetic mechanisms coupled with a continuous stirred-tank reactor model describe well the oscillatory behavior in the oxidation of methane under non-isothermal conditions.
Oxidation of diesel soot on binary oxide CuCr(Co)-based monoliths.
Soloviev, Sergiy O; Kapran, Andriy Y; Kurylets, Yaroslava P
2015-02-01
Binary oxide systems (CuCr2O4, CuCo2O4), deposited onto cordierite monoliths of honeycomb structure with a second support (finely dispersed Al2O3), were prepared as filters for catalytic combustion of diesel soot using internal combustion engine's gas exhausts (O2, NOx, H2O, CO2) and O3 as oxidizing agents. It is shown that the second support increases soot capacity of aforementioned filters, and causes dispersion of the particles of spinel phases as active components enhancing thereby catalyst activity and selectivity of soot combustion to CO2. Oxidants used can be arranged with reference to decreasing their activity in a following series: O3≫NO2>H2O>NO>O2>CO2. Ozone proved to be the most efficient oxidizing agent: the diesel soot combustion by O3 occurs intensively (in the presence of copper chromite based catalyst) even at closing to ambient temperatures. Results obtained give a basis for the conclusion that using a catalytic coating on soot filters in the form of aforementioned binary oxide systems and ozone as the initiator of the oxidation processes is a promising approach in solving the problem of comprehensive purification of automotive exhaust gases at relatively low temperatures, known as the "cold start" problem. Copyright © 2014. Published by Elsevier B.V.
CATALYTIC OXIDATION OF AIR POLLUTANTS FROM PULP AND PAPER INDUSTRY USING OZONE
Major pollutants from pulp and paper mills include volatile organic compounds (VOCs) such as methanol and total reduced sulfur compounds (TRS) such as dimethyl sulfide. The conventional treatment technologies including incineration or catalytic thermal oxidation are energy intens...
NOVEL NANOPARTICULATE CATALYSTS FOR IMPROVED VOC TREATMENT DEVICES - PHASE I
Catalytic oxidation of VOCs is increasingly used for treatment of large-volume emissions at relatively dilute VOC levels. The best performing catalytic oxidation devices for attainment of very high VOC destruction levels employ precious metal catalysts, the costs of which a...
Autothermal hydrogen storage and delivery systems
Pez, Guido Peter [Allentown, PA; Cooper, Alan Charles [Macungie, PA; Scott, Aaron Raymond [Allentown, PA
2011-08-23
Processes are provided for the storage and release of hydrogen by means of dehydrogenation of hydrogen carrier compositions where at least part of the heat of dehydrogenation is provided by a hydrogen-reversible selective oxidation of the carrier. Autothermal generation of hydrogen is achieved wherein sufficient heat is provided to sustain the at least partial endothermic dehydrogenation of the carrier at reaction temperature. The at least partially dehydrogenated and at least partially selectively oxidized liquid carrier is regenerated in a catalytic hydrogenation process where apart from an incidental employment of process heat, gaseous hydrogen is the primary source of reversibly contained hydrogen and the necessary reaction energy.
Robinson, David M; Go, Yong Bok; Mui, Michelle; Gardner, Graeme; Zhang, Zhijuan; Mastrogiovanni, Daniel; Garfunkel, Eric; Li, Jing; Greenblatt, Martha; Dismukes, G Charles
2013-03-06
Manganese oxides occur naturally as minerals in at least 30 different crystal structures, providing a rigorous test system to explore the significance of atomic positions on the catalytic efficiency of water oxidation. In this study, we chose to systematically compare eight synthetic oxide structures containing Mn(III) and Mn(IV) only, with particular emphasis on the five known structural polymorphs of MnO2. We have adapted literature synthesis methods to obtain pure polymorphs and validated their homogeneity and crystallinity by powder X-ray diffraction and both transmission and scanning electron microscopies. Measurement of water oxidation rate by oxygen evolution in aqueous solution was conducted with dispersed nanoparticulate manganese oxides and a standard ruthenium dye photo-oxidant system. No Ru was absorbed on the catalyst surface as observed by XPS and EDX. The post reaction atomic structure was completely preserved with no amorphization, as observed by HRTEM. Catalytic activities, normalized to surface area (BET), decrease in the series Mn2O3 > Mn3O4 ≫ λ-MnO2, where the latter is derived from spinel LiMn2O4 following partial Li(+) removal. No catalytic activity is observed from LiMn2O4 and four of the MnO2 polymorphs, in contrast to some literature reports with polydispersed manganese oxides and electro-deposited films. Catalytic activity within the eight examined Mn oxides was found exclusively for (distorted) cubic phases, Mn2O3 (bixbyite), Mn3O4 (hausmannite), and λ-MnO2 (spinel), all containing Mn(III) possessing longer Mn-O bonds between edge-sharing MnO6 octahedra. Electronically degenerate Mn(III) has antibonding electronic configuration e(g)(1) which imparts lattice distortions due to the Jahn-Teller effect that are hypothesized to contribute to structural flexibility important for catalytic turnover in water oxidation at the surface.
Ce-Sn binary oxide catalyst for the selective catalytic reduction of NOx by NH3
NASA Astrophysics Data System (ADS)
Liu, Zhiming; Feng, Xu; Zhou, Zizheng; Feng, Yongjun; Li, Junhua
2018-01-01
Ce-Sn binary oxide catalysts prepared by the hydrothermal method have been investigated for the selective catalytic reduction (SCR) of NOx with NH3. Compared with pure CeO2 and SnO2, Ce-Sn binary oxide catalyst showed significantly higher NH3-SCR activity. Moreover, Ce-Sn catalyst showed high resistance against H2O and SO2. The high catalytic performance of Ce-Sn binary oxide is attributed to the synergetic effect between Ce and Sn species, which not only enhances the redox property of the catalyst but also increases the Lewis acidity, thus promoting the adsorption and activation of NH3 species, which contributes to improving the NH3-SCR performance.
NASA Astrophysics Data System (ADS)
Xu, Feiyan; Le, Yao; Cheng, Bei; Jiang, Chuanjia
2017-12-01
Catalytic oxidation at room temperature over well-designed catalysts is an environmentally friendly method for the abatement of indoor formaldehyde (HCHO) pollution. Herein, nanocomposites of platinum (Pt) and titanium dioxide (TiO2) nanofibers with various phase compositions were prepared by calcining the electrospun TiO2 precursors at different temperatures and subsequently depositing Pt nanoparticles (NPs) on the TiO2 through a NaBH4-reduction process. The phase compositions and structures of Pt/TiO2 can be easily controlled by varying the calcination temperature. The Pt/TiO2 nanocomposites showed a phase-dependent activity towards the catalytic HCHO oxidation. Pt/TiO2 containing pure rutile phase showed enhanced activity with a turnover frequency (TOF) of 16.6 min-1 (for a calcination temperature of 800 °C) as compared to those containing the anatase phase or mixed phases. Density functional theory calculation shows that TiO2 nanofibers with pure rutile phase have stronger adsorption ability to Pt atoms than anatase phase, which favors the reduction of Pt over rutile phase TiO2, leading to higher contents of metallic Pt in the nanocomposite. In addition, the Pt/TiO2 with rutile phase possesses more abundant oxygen vacancies, which is conducive to the activation of adsorbed oxygen. Consequently, the Pt/rutile-TiO2 nanocomposite exhibited better catalytic activity towards HCHO oxidation at room temperature.
NASA Astrophysics Data System (ADS)
Finch, Kenneth
2013-01-01
Pyrolysis oil, or bio-oil, is one of the most promising methods to upgrade a variety of biomass to transportation fuels. Moving toward a more "green" catalytic process requires heterogeneous catalysis over homogeneous catalysis to avoid extraction solvent waste. Nanoscale catalysts are showing great promise due to their high surface area and unusual surfaces. Base catalyzed condensation reactions occur much quicker than acid catalyzed condensation reactions. However, MgO is slightly soluble in water and is susceptible to degradation by acidic environments, similar to those found in fast-pyrolysis oil. Magnesium oxide (111) has a highly active Lewis base surface, which can catalyze Claisen-Schmidt condensation reactions in the organic phase. It has been shown previously that carbon coating a catalyst, such as a metal oxide, provides integrity while leaving the catalytic activity intact. Here, carbon-coated MgO(111) will be discussed with regards to synthesis, characterization and application to bio-oil upgrading through model compounds. Raman spectroscopy and HR-TEM are used to characterize the thickness and carbon-bonding environment of the carbon coating. Propanal self-condensation reactions have been conducted in the aqueous phase with varying amounts of acetic acid present. Quantitative analysis by gas chromatography was completed to determine the catalytic activity of CC-MgO(111). ICP-OES analysis has been conducted to measure the magnesium concentration in the product solution and give insight into the leaching of the catalyst into the reaction solution.
NASA Astrophysics Data System (ADS)
He, Fei; Niu, Na; Qu, Fengyu; Wei, Shuquan; Chen, Yujin; Gai, Shili; Gao, Peng; Wang, Yan; Yang, Piaoping
2013-08-01
The reduced graphene oxide (rGO) supported cobalt nanocrystals have been synthesized through an in situ crystal growth method using Co(acac)2 under solvothermal conditions by using DMF as the solvent. By carefully controlling the reaction temperature, the phase transition of the cobalt nanocrystals from the cubic phase to the hexagonal phase has been achieved. Moreover, the microscopic structure and morphology as well as the reduction process of the composite have been investigated in detail. It is found that oxygen-containing functional groups on the graphene oxide (GO) can greatly influence the formation process of the Co nanocrystals by binding the Co2+ cations dissociated from the Co(acac)2 in the initial reaction solution at 220 °C, leading to the 3D reticular structure of the composite. Furthermore, this is the first attempt to use a Co/rGO composite as the catalyst in the F-T CO2 hydrogenation process. The catalysis testing results reveal that the as-synthesized 3D structured composite exhibits ideal catalytic activity and good stability, which may greatly extend the scope of applications for this kind of graphene-based metal hybrid material.The reduced graphene oxide (rGO) supported cobalt nanocrystals have been synthesized through an in situ crystal growth method using Co(acac)2 under solvothermal conditions by using DMF as the solvent. By carefully controlling the reaction temperature, the phase transition of the cobalt nanocrystals from the cubic phase to the hexagonal phase has been achieved. Moreover, the microscopic structure and morphology as well as the reduction process of the composite have been investigated in detail. It is found that oxygen-containing functional groups on the graphene oxide (GO) can greatly influence the formation process of the Co nanocrystals by binding the Co2+ cations dissociated from the Co(acac)2 in the initial reaction solution at 220 °C, leading to the 3D reticular structure of the composite. Furthermore, this is the first attempt to use a Co/rGO composite as the catalyst in the F-T CO2 hydrogenation process. The catalysis testing results reveal that the as-synthesized 3D structured composite exhibits ideal catalytic activity and good stability, which may greatly extend the scope of applications for this kind of graphene-based metal hybrid material. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03038e
[Catalytic combustion of soot on combined oxide catalysts].
He, Xu-wen; Yu, Jun-jie; Kang, Shou-fang; Hao, Zheng-ping; Hu, Chun
2005-01-01
Combined oxide catalysts are prepared for catalytic combustion of soot and regeneration from diesel emissions. Thermo-gravimetric analysis(TGA) and temperature programmed oxidation(TPO)are used to evaluate the activity of catalysts under the influence of composition,atomic ration, H2O, calcinations temperature and mass ration between catalysts and soot. Results show that Cu-Mo-O had high activity among double metal oxide catalysts. Among multicomponent metal oxide catalysts, Cu-K-Mo-O had high activity when atomic ratio Cu: K: Mo = 1:1:2 and mass ration between catalysts and soot equals 5: 1. Under this condition, soot ignition temperature of Cu-K-Mo-O catalyst was 327 degrees C. H2O addition and calcinations temperature had little influence on it,which is one kind of compatible catalyst for soot control and catalytic regeneration from diesel emissions.
NASA Astrophysics Data System (ADS)
Hejral, U.; Franz, D.; Volkov, S.; Francoual, S.; Strempfer, J.; Stierle, A.
2018-03-01
Pt-Rh alloy nanoparticles on oxide supports are widely employed in heterogeneous catalysis with applications ranging from automotive exhaust control to energy conversion. To improve catalyst performance, an atomic-scale correlation of the nanoparticle surface structure with its catalytic activity under industrially relevant operando conditions is essential. Here, we present x-ray diffraction data sensitive to the nanoparticle surface structure combined with in situ mass spectrometry during near ambient pressure CO oxidation. We identify the formation of ultrathin surface oxides by detecting x-ray diffraction signals from particular nanoparticle facets and correlate their evolution with the sample's enhanced catalytic activity. Our approach opens the door for an in-depth characterization of well-defined, oxide-supported nanoparticle based catalysts under operando conditions with unprecedented atomic-scale resolution.
NASA Astrophysics Data System (ADS)
Zhang, Yongli; Zhou, Yanbo; Peng, Chao; Shi, Junjun; Wang, Qingyu; He, Lingfeng; Shi, Liang
2018-04-01
By successive impregnation method, the Ce-modified Cu-O/γ-Al2O3 catalyst was prepared and characterized using nitrogen adsorption-desorption, scanning electron microscopy energy dispersive X-ray analysis (SEM-EDS), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman, and H2-Temperature programming reduction (H2-TPR). In catalytic wet-air oxidation (CWAO) process for the printing and dyeing wastewater (PDW), the effects of Ce addition on performance, mechanism and kinetics of the catalyst were investigated. The Ce addition increases the Brunauer-Emmett-Teller (BET) surface area and pore volume of the catalyst and makes the active components uniformly distributed on the catalyst surface. Formation of a stable CuAl2O4 solid solution by anchoring Cu onto the γ-Al2O3 crystal lattice leads to a significant decrease in metal leaching of the Ce-modified catalyst. The proportion of lattice oxygen in the catalyst substantially increases and the apparent activation energy of Cu-O/γ-Al2O3 catalyst decreases owing to Ce addition. Therefore, the catalytic activity and stability of the Ce-modified catalyst are considerably improved. The scavengers experiments identify the active species existed in the CWAO reaction system, with the order of reactivity: h+ > O2•- > H2O2 > HO•. This novel Cu-Ce-O/γ-Al2O3 catalyst has great potential in applications for treatment of concentrated organic wastewater due to its superior catalytic activity and improved stability.
Zhang, Xiaodong; Li, Hongxin; Lv, Xutian; Xu, Jingcheng; Wang, Yuxin; He, Chi; Liu, Ning; Yang, Yiqiong; Wang, Yin
2018-06-21
A comprehensive study was carried out on amorphous metal-organic frameworks Mn-MIL-100 as efficient catalysts for CO oxidation. This study focused on explaining the crystalline-amorphous-crystalline transformations during thermolysis of Mn-MIL-100 and studying the structure changes during the CO oxidation reaction. A possible formation mechanism of amorphous Mn-MIL-100 was proposed. Amorphous Mn-MIL-100 obtained by calcination at 250 °C (a-Mn-250) showed a smaller specific surface area (4 m 2 g -1 ) but high catalytic activity. Furthermore, the structure of amorphous Mn-MIL-100 was labile during the reaction. When a-Mn-250 was treated with reaction atmosphere at high temperature (giving used-a-Mn-250-S), the amorphous catalysts transformed into Mn 2 O 3 . Meanwhile, the BET surface area (164 m 2 g -1 ) and catalytic performance both sharply increased. In addition, used-a-Mn-250-S catalyst transformed from Mn 2 O 3 into Mn 3 O 4 , and this resulted in a slight decrease of catalytic activity in the presence of 1 vol % water vapor in the feed stream. A schematic mechanism of the structure changes during the reaction process was proposed. The success of the synthesis relies on the increase in BET surface area by using CO as retreatment atmosphere, and the enhanced catalytic activity was attributed to the unique structure, a large quantity of surface active oxygen species, oxygen vacancies, and good low-temperature reduction behavior. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Carreira, Cíntia; Pauleta, Sofia R; Moura, Isabel
2017-12-01
The reduction of the potent greenhouse gas nitrous oxide requires a catalyst to overcome the large activation energy barrier of this reaction. Its biological decomposition to the inert dinitrogen can be accomplished by denitrifiers through nitrous oxide reductase, the enzyme that catalyzes the last step of the denitrification, a pathway of the biogeochemical nitrogen cycle. Nitrous oxide reductase is a multicopper enzyme containing a mixed valence CuA center that can accept electrons from small electron shuttle proteins, triggering electron flow to the catalytic sulfide-bridged tetranuclear copper "CuZ center". This enzyme has been isolated with its catalytic center in two forms, CuZ*(4Cu1S) and CuZ(4Cu2S), proven to be spectroscopic and structurally different. In the last decades, it has been a challenge to characterize the properties of this complex enzyme, due to the different oxidation states observed for each of its centers and the heterogeneity of its preparations. The substrate binding site in those two "CuZ center" forms and which is the active form of the enzyme is still a matter of debate. However, in the last years the application of different spectroscopies, together with theoretical calculations have been useful in answering these questions and in identifying intermediate species of the catalytic cycle. An overview of the spectroscopic, kinetics and structural properties of the two forms of the catalytic "CuZ center" is given here, together with the current knowledge on nitrous oxide reduction mechanism by nitrous oxide reductase and its intermediate species. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Weidong; Pan, Feng; Li, Jinjun; Wang, Zhen; Ding, Wei; Qin, Yi; Wu, Feng
2018-06-01
Silica-supported highly dispersed cobalt oxides prepared by adsorption are likely to be poorly reducible Co-phyllosilicates or CoO species. Here we report the synthesis of silica-supported monodispersed spinel nano-Co3O4 catalysts by inner-sphere complexation using CoIII ammine hydroxo complexes as precursors. The precursors were facilely prepared by stirring ammoniacal CoII solutions exposed to air. The cobalt loadings (up to 188 mg/g) and particle sizes (3-10 nm) were tailored by successive complexation-calcination cycles. Such catalysts showed significantly superior reducibility and catalytic activity in complete propane oxidation in comparison to supported Co-phyllosilicates and CoO. A further development of this synthesis process may provide a variety of cobalt-based catalysts for important catalytic applications.
NASA Technical Reports Server (NTRS)
Poziomek, Edward J.
1990-01-01
Results from research on catalytic recombination of CO-O2 for stable closed-cycle operation of CO2 lasers hold much promise for a variety of technology transfer. Expansion of CO2 laser remote sensing applications toward chemical detection and pollution monitoring would certainly be expected. However, the catalysts themselves may be especially effective in low-temperature oxidation of a number of chemicals in addition to CO. It is therefore of interest to compare the CO-O2 catalysts with chemical systems designed for chemical sensing, air purification and process catalysis. Success in understanding the catalytic mechanisms of the recombination of CO-O2 could help to shed light on how catalyst systems operate. New directions in low-temperature oxidation catalysts, coatings for chemical sensors and sorbents for air purification could well emerge.
Neimann, Karine; Neumann, Ronny; Rabion, Alain; Buchanan, Robert M.; Fish, Richard H.
1999-07-26
The biomimetic, methane monooxygenase enzyme (MMO) precatalyst, [Fe(2)O(eta(1)-H(2)O)(eta(1)-OAc)(TPA)(2)](3+) (TPA = tris[(2-pyridyl)methyl]amine), 1, formed in situ at pH 4.2 from [Fe(2)O(&mgr;-OAc)(TPA)(2)](3+), 2, was embedded in an amorphous silicate surface modified by a combination of hydrophilic poly(ethylene oxide) and hydrophobic poly(propylene oxide). The resulting catalytic assembly was found to be a biomimetic model for the MMO active site within a hydrophobic macroenvironment, allowing alkane functionalization with tert-butyl hydroperoxide (TBHP)/O(2) in an aqueous reaction medium (pH 4.2). For example, cyclohexane was oxidized to a mixture of cyclohexanone, cyclohexanol, and cyclohexyl-tert-butyl peroxide, in a ratio of approximately 3:1:2. The balance between poly(ethylene oxide) and poly(propylene oxide), tethered on the silica surface, was crucial for maximizing the catalytic activity. The silica-based catalytic assembly showed reactivity somewhat higher in comparison to an aqueous micelle system utilizing the surfactant, cetyltrimethylammonium hydrogen sulfate at its critical micelle concentration, in which functionalization of cyclohexane with TBHP/O(2) in the presence of 1 was also studied at pH 4.2 and was found to provide similar products: cyclohexanol, cyclohexanone, and cyclohexyl-tert-butyl peroxide, in a ratio of approximately 2:3:1. Moreover, the mechanism for both the silica-based catalytic assembly and the aqueous micelle system was found to occur via the Haber-Weiss process, in which redox chemistry between 1 and TBHP provides both the t-BuO(*)() and t-BuOO(*)()( )()radicals. The t-BuO(*)()( )()radical initiates the C-H functionalization reaction to form the carbon radical, followed by O(2) trapping, to provide cyclohexyl hydroperoxide, which produces the cyclohexanol and cyclohexanone in the presence of 1, whereas the coupling product emanates from t-BuOO(*)() and cyclohexyl radicals. A discussion concerning both approaches for alkane functionalization in water will be presented.
González-Flores, Diego; Zaharieva, Ivelina; Heidkamp, Jonathan; Chernev, Petko; Martínez-Moreno, Elías; Pasquini, Chiara; Mohammadi, Mohammad Reza; Klingan, Katharina; Gernet, Ulrich; Fischer, Anna; Dau, Holger
2016-02-19
Water-oxidizing calcium-manganese oxides, which mimic the inorganic core of the biological catalyst, were synthesized and structurally characterized by X-ray absorption spectroscopy at the manganese and calcium K edges. The amorphous, birnesite-type oxides are obtained through a simple protocol that involves electrodeposition followed by active-site creation through annealing at moderate temperatures. Calcium ions are inessential, but tune the electrocatalytic properties. For increasing calcium/manganese molar ratios, both Tafel slopes and exchange current densities decrease gradually, resulting in optimal catalytic performance at calcium/manganese molar ratios of close to 10 %. Tracking UV/Vis absorption changes during electrochemical operation suggests that inactive oxides reach their highest, all-Mn(IV) oxidation state at comparably low electrode potentials. The ability to undergo redox transitions and the presence of a minor fraction of Mn(III) ions at catalytic potentials is identified as a prerequisite for catalytic activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Tsoncheva, Tanya; Roggenbuck, Jan; Paneva, Daniela; Dimitrov, Momtchil; Mitov, Ivan; Fröba, Michael
2010-11-01
Mesoporous ceria and SBA-15 silica were modified with iron and chromium oxide nanoparticles and characterized by XRD, N2-physisorption, FTIR, UV-vis, Moessbauer spectroscopy and TPR-TG in hydrogen. Their catalytic behaviour in methanol decomposition to CO and hydrogen was also studied. Stabilization of mono- and bi-chromate species, FeOx patches or isolated iron ions as well as Fe2O3 and Cr2O3 nanoparticles in different ratio depending on the nature of the porous matrix was observed. The simultaneous presence of iron and chromium oxides lead to change in their dispersion, providing easier reducibility, higher catalytic activity and stability of the obtained materials in comparison with the corresponding mono-component ones. The "intimate contact" at the interface of both loaded metal oxide nanoparticles and the support was discussed with respect to explain the differences in the state of the active ingredient and its specific catalytic behaviour.
Ferrari, Alessandro R; Lee, Misun; Fraaije, Marco W
2015-06-01
Chitooligosaccharide oxidase from Fusarium graminearum (ChitO) oxidizes N-acetyl-D-glucosamine (GlcNAc) and its oligomers with high efficiency at the C1-hydroxyl moiety while it shows poor or no activity with other carbohydrates. By sequence and structural comparison with other known carbohydrate oxidases (glucooligosaccharide oxidase from Acremonium strictum and lactose oxidase from Microdochium nivale) eleven mutants were designed to redirect the catalytic scope of ChitO for improved oxidation of lactose, cellobiose and maltose. The catalytic properties of the most interesting mutants were further improved by combining single mutations. This has resulted in the creation of a set of ChitO variants that display totally different substrate tolerances. One ChitO variant shows a dramatic improvement in catalytic efficiency towards oxidation of glucose, cellobiose, lactose, and maltose. We also describe a ChitO variant with the highest catalytic efficiency in GlcNAc oxidation so far reported in the literature. © 2015 Wiley Periodicals, Inc.
2011-01-01
In this article, PtAg alloy nanoislands/graphene hybrid composites were prepared based on the self-organization of Au@PtAg nanorods on graphene sheets. Graphite oxides (GO) were prepared and separated to individual sheets using Hummer's method. Graphene nano-sheets were prepared by chemical reduction with hydrazine. The prepared PtAg alloy nanomaterial and the hybrid composites with graphene were characterized by SEM, TEM, and zeta potential measurements. It is confirmed that the prepared Au@PtAg alloy nanorods/graphene hybrid composites own good catalytic function for methanol electro-oxidation by cyclic voltammograms measurements, and exhibited higher catalytic activity and more stability than pure Au@Pt nanorods and Au@AgPt alloy nanorods. In conclusion, the prepared PtAg alloy nanoislands/graphene hybrid composites own high stability and catalytic activity in methanol electro-oxidation, so that it is one kind of high-performance catalyst, and has great potential in applications such as methanol fuel cells in near future. PMID:21982417
Multi-fuel reformers for fuel cells used in transportation. Phase 1: Multi-fuel reformers
NASA Astrophysics Data System (ADS)
1994-05-01
DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.
NASA Astrophysics Data System (ADS)
Atribak, Idriss; Guillén-Hurtado, Noelia; Bueno-López, Agustín; García-García, Avelina
2010-10-01
Commercial and home-made Ce-Zr catalysts prepared by co-precipitation were characterised by XRD, Raman spectroscopy, N 2 adsorption at -196 °C and XPS, and were tested for NO oxidation to NO 2. Among the different physico-chemical properties characterised, the surface composition seems to be the most relevant one in order to explain the NO oxidation capacity of these Ce-Zr catalysts. As a general trend, Ce-Zr catalysts with a cerium-rich surface, that is, high XPS-measured Ce/Zr atomic surface ratios, are more active than those with a Zr-enriched surface. The decrease in catalytic activity of the Ce-Zr mixed oxided upon calcinations at 800 °C with regard to 500 °C is mainly attributed to the decrease in Ce/Zr surface ratio, that is, to the surface segregation of Zr. The phase composition (cubic or t'' for Ce-rich compositions) seems not to be a direct effect on the catalytic activity for NO oxidation in the range of compositions tested. However, the formation of a proper solid solution prevents important surface segregation of Zr upon calcinations at high temperature. The effect of the BET surface area in the catalytic activity for NO oxidation of Ce-Zr mixed oxides is minor in comparison with the effect of the Ce/Zr surface ratio.
Kinetic and catalytic analysis of mesoporous Co3O4 on the oxidation of morin
NASA Astrophysics Data System (ADS)
Xaba, Morena. S.; Meijboom, Reinout
2017-11-01
Herein we report on the synthesis, characterization and catalytic evaluation of mesoporous cobalt oxides on the oxidation of morin. These mesoporous cobalt oxides were synthesized using an inverse surfactant micelle method, they are connected, well-defined with intra-particle voids. These materials were calcined to different final heating temperatures of 150, 250, 350, 450 and 550 °C, and each mesoporous cobalt oxide catalyst showed unique physical properties and catalytic behavior. Morin oxidation was used as a model reaction in the presence of hydrogen peroxide to evaluate the kinetic and catalytic activity of calcined mesoporous cobalt oxides. The adsorption-desorption equilibrium rate constants of morin and hydrogen peroxide were found to be inversely proportional to the crystallite size of the mesoporous cobalt oxide, and the characteristic path length in which the mass transfer takes place was found to be directly proportional to the crystallite size. The materials were characterized using powder X-Ray Diffraction (p-XRD), N2-sorption isotherms (BET), hydrogen temperature programmed reduction (H2-TPR) and High Resolution-Transmission Electron Microscopy (HR-TEM). UV-vis spectrophotometry was used to monitor the time-resolved absorbance of morin at λmax = 410 nm. The surface reaction in this system is described in terms of the well-established Langmuir-Hinshelwood model. The thermodynamic parameters, EA, ΔH#, ΔS# and ΔG# were calculated and catalyst recycling and reusability is demonstrated.
Xu, Peng; Han, Hongjun; Zhuang, Haifeng; Hou, Baolin; Jia, Shengyong; Xu, Chunyan; Wang, Dexin
2015-04-01
Laboratorial scale experiments were conducted in order to investigate a novel system integrating heterogeneous Fenton oxidation (HFO) with anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) process on advanced treatment of biologically pretreated coal gasification wastewater (CGW). The results indicated that HFO with the prepared catalyst (FeOx/SBAC, sewage sludge based activated carbon (SBAC) which loaded Fe oxides) played a key role in eliminating COD and COLOR as well as in improving the biodegradability of raw wastewater. The surface reaction and hydroxyl radicals (OH) oxidation were the mechanisms for FeOx/SBAC catalytic reaction. Compared with ANMBBR-BAF process, the integrated system was more effective in abating COD, BOD5, total phenols (TPs), total nitrogen (TN) and COLOR and could shorten the retention time. Therefore, the integrated system was a promising technology for engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Alternative oxidation technologies for organic mixed waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borduin, L.C.; Fewell, T.
1998-07-01
The Mixed Waste Focus Area (MWFA) is currently supporting the development and demonstration of several alternative oxidation technology (AOT) processes for treatment of combustible mixed low-level wastes. AOTs have been defined as technologies that destroy organic material without using open-flame reactions. AOTs include both thermal and nonthermal processes that oxidize organic wastes but operate under significantly different physical and chemical conditions than incinerators. Nonthermal processes currently being studied include Delphi DETOX and acid digestion at the Savannah River Site (SRS), and direct chemical oxidation at Lawrence Livermore National Laboratory (LLNL). All three technologies are at advanced stages of development ormore » are entering the demonstration phase. Nonflame thermal processes include catalytic chemical oxidation, which is being developed and deployed at Lawrence Berkeley National Laboratory (LBNL), and steam reforming, a commercial process being supported by the Department of Energy (DOE). Although testing is complete on some AOT technologies, most require additional support to complete some or all of the identified development objectives. Brief descriptions, status, and planned paths forward for each of the technologies are presented.« less
Low-Energy, Low-Cost Production of Ethylene by Low- Temperature Oxidative Coupling of Methane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radaelli, Guido; Chachra, Gaurav; Jonnavittula, Divya
In this project, we develop a catalytic process technology for distributed small-scale production of ethylene by oxidative coupling of methane at low temperatures using an advanced catalyst. The Low Temperature Oxidative Coupling of Methane (LT-OCM) catalyst system is enabled by a novel chemical catalyst and process pioneered by Siluria, at private expense, over the last six years. Herein, we develop the LT-OCM catalyst system for distributed small-scale production of ethylene by identifying and addressing necessary process schemes, unit operations and process parameters that limit the economic viability and mass penetration of this technology to manufacture ethylene at small-scales. The outputmore » of this program is process concepts for small-scale LT-OCM catalyst based ethylene production, lab-scale verification of the novel unit operations adopted in the proposed concept, and an analysis to validate the feasibility of the proposed concepts.« less
NASA Astrophysics Data System (ADS)
Sun, Ling; Liu, Danxian
2018-07-01
To elevate power performance is crucial for commercally potential metal air fuel cells. Non-precious metal oxide-based oxygen reduction catalytic electrode is much desirable. Rational combination with low-dimension nanomaterials are greatly expected as the supports. Herein, carbon nanotubes (CNTs)-graphene supported manganese oxides composite catalysts (CMnCs) were obtained through activating commercial CNTs, namely, immersing them in acidic KMnO4 solution at room condition. It avoided conventional hydrothermal process and template surfactants. CMnCs-based air cathodes were made via pilot manufacture technology and equipped in fuel cells. Through characterizations, CNTs was found structurally defective and their outer walls suffered cracking into graphene nano pieces during processing, which further enhanced oxygen reduction reaction (ORR). Nano sized manganese oxide flakes were simulataneously grown on the CNTs-graphene surfaces, identified as the manganite. The areal distribution was found closely related to the additive amount of KMnO4 with regard to CNTs, somewhat influencing catalytic performance. The ORR activities of these CMnCs exceeded raw CNTs and referred manganese catalysts under identical conditions, and also the CMnCs air fuel cells were capable of outputting ∼15% more power at 100 mA/cm2. This reseach provided an inspiring pilot evidence for updating air fuel cell power from economical carbon as well as industrialization.
Process for light-driven hydrocarbon oxidation at ambient temperatures
Shelnutt, John A.
1990-01-01
A photochemical reaction for the oxidation of hydrocarbons uses molecular oxygen as the oxidant. A reductive photoredox cycle that uses a tin(IV)- or antimony(V)-porphyrin photosensitizer generates the reducing equivalents required to activate oxygen. This artificial photosynthesis system drives a catalytic cycle, which mimics the cytochrome P.sub.450 reaction, to oxidize hydrocarbons. An iron(III)- or manganese(III)-porphyrin is used as the hydrocarbon-oxidation catalyst. Methylviologen can be used as a redox relay molecule to provide for electron-transfer from the reduced photosensitizer to the Fe or Mn porphyrin. The system is long-lived and may be used in photo-initiated spectroscopic studies of the reaction to determine reaction rates and intermediates.
Method For Selective Catalytic Reduction Of Nitrogen Oxides
Mowery-Evans, Deborah L.; Gardner, Timothy J.; McLaughlin, Linda I.
2005-02-15
A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.
Method for selective catalytic reduction of nitrogen oxides
Mowery-Evans, Deborah L [Broomfield, CO; Gardner, Timothy J [Albuquerque, NM; McLaughlin, Linda I [Albuquerque, NM
2005-02-15
A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.
Water oxidation catalysed by manganese compounds: from complexes to 'biomimetic rocks'.
Wiechen, Mathias; Berends, Hans-Martin; Kurz, Philipp
2012-01-07
One of the most fundamental processes of the natural photosynthetic reaction sequence is the light-driven oxidation of water to molecular oxygen. In vivo, this reaction takes place in the large protein ensemble Photosystem II, where a μ-oxido-Mn(4)Ca- cluster, the oxygen-evolving-complex (OEC), has been identified as the catalytic site for the four-electron/four-proton redox reaction of water oxidation. This Perspective presents recent progress for three strategies which have been followed to prepare functional synthetic analogues of the OEC: (1) the synthesis of dinuclear manganese complexes designed to act as water-oxidation catalysts in homogeneous solution, (2) heterogeneous catalysts in the form of clay hybrids of such Mn(2)-complexes and (3) the preparation of manganese oxide particles of different compositions and morphologies. We discuss the key observations from the studies of such synthetic manganese systems in order to shed light upon the catalytic mechanism of natural water oxidation. Additionally, it is shown how research in this field has recently been motivated more and more by the prospect of finding efficient, robust and affordable catalysts for light-driven water oxidation, a key reaction of artificial photosynthesis. As manganese is an abundant and non-toxic element, manganese compounds are very promising candidates for the extraction of reduction equivalents from water. These electrons could consecutively be fed into the synthesis of "solar fuels" such as hydrogen or methanol.
Catalysis using hydrous metal oxide ion exchanges
Dosch, Robert G.; Stephens, Howard P.; Stohl, Frances V.
1985-01-01
In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.
Catalysis using hydrous metal oxide ion exchangers
Dosch, R.G.; Stephens, H.P.; Stohl, F.V.
1983-07-21
In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.
Cau, Camille; Guari, Yannick; Chave, Tony; Larionova, Joulia; Nikitenko, Sergey I
2014-07-01
Porous (Ce0.5Zr0.5)O2 solid solutions were prepared by thermolysis (T=285 °C) or sonolysis (20 kHz, I=32 W cm(-2), Pac=0.46 W mL(-1), T=200 °C) of Ce(III) and Zr(IV) acetylacetonates in oleylamine or hexadecylamine under argon followed by heat treatment of the precipitates obtained in air at 450 °C. Transmission Electron Microscopy images of the samples show nanoparticles of ca. 4-6 nm for the two synthetic approaches. The powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray and μ-Raman spectroscopy of solids obtained after heat treatment indicate the formation of (Ce0.5Zr0.5)O2 solid solutions with a metastable tetragonal crystal structure for the two synthetic routes. The specific surface area of the samples varies between 78 and 149 m(2) g(-1) depending on synthesis conditions. The use of Barrett-Joyner-Halenda and t-plot methods reveal the formation of mixed oxides with a hybrid morphology that combines mesoporosity and microporosity regardless of the method of preparation. Platinum nanoparticles were deposited on the surface of the mixed oxides by sonochemical reduction of Pt(IV). It was found that the materials prepared by sonochemistry exhibit better resistance to dissolution during the deposition process of platinum. X-ray photoelectron spectroscopy analysis shows the presence of Pt(0) and Pt(II) on the surface of mixed oxides. Porous (Ce0.5Zr0.5)O2 mixed oxides loaded with 1.5%wt. platinum exhibit high activity in catalytic wet air oxidation of formic acid at 40 °C. Copyright © 2014 Elsevier B.V. All rights reserved.
Catalytic oxidation of Hg(0) by MnOx-CeO2/γ-Al2O3 catalyst at low temperatures.
Wang, Pengying; Su, Sheng; Xiang, Jun; You, Huawei; Cao, Fan; Sun, Lushi; Hu, Song; Zhang, Yun
2014-04-01
MnOx-CeO2/γ-Al2O3 (MnCe) selective catalytic reduction (SCR) catalysts prepared by sol-gel method were employed for low-temperature Hg(0) oxidation on a fixed-bed experimental setup. BET, XRD and XPS were used to characterize the catalysts. MnCe catalysts exhibited high Hg(0) oxidation activity at low temperatures (100-250 °C) under the simulated flue gas (O2, CO2, NO, SO2, HCl, H2O and balanced with N2). Only a small decrease in mercury oxidation was observed in the presence of 1200 ppm SO2, which proved that the addition of Ce helped resist SO2 poisoning. An enhancing effect of NO was observed due to the formation of multi-activity NOx species. The presence of HCl alone had excellent Hg(0) oxidation ability, while 10 ppm HCl plus 5% O2 further increased Hg(0) oxidation efficiency to 100%. Hg(0) oxidation on the MnCe catalyst surface followed the Langmiur-Hinshelwood mechanism, where reactions took place between the adsorbed active species and adsorbed Hg(0) to form Hg(2+). NH3 competed with Hg(0) for active sites on the catalyst surface, hence inhibiting Hg(0) oxidation. This study shows the feasibility of a single-step process integrating low-temperature SCR and Hg(0) oxidation from the coal combustion flue gas. Copyright © 2013 Elsevier Ltd. All rights reserved.
Electro-catalytic oxidation device for removing carbon from a fuel reformate
Liu, Di-Jia [Naperville, IL
2010-02-23
An electro-catalytic oxidation device (ECOD) for the removal of contaminates, preferably carbonaceous materials, from an influent comprising an ECOD anode, an ECOD cathode, and an ECOD electrolyte. The ECOD anode is at a temperature whereby the contaminate collects on the surface of the ECOD anode as a buildup. The ECOD anode is electrically connected to the ECOD cathode, which consumes the buildup producing electricity and carbon dioxide. The ECOD anode is porous and chemically active to the electro-catalytic oxidation of the contaminate. The ECOD cathode is exposed to oxygen, and made of a material which promotes the electro-chemical reduction of oxygen to oxidized ions. The ECOD electrolyte is non-permeable to gas, electrically insulating and a conductor to oxidized. The ECOD anode is connected to the fuel reformer and the fuel cell. The ECOD electrolyte is between and in ionic contact with the ECOD anode and the ECOD cathode.
NASA Astrophysics Data System (ADS)
Taft, Michael J., Sr.
Alcohol conversion to hydrogen, via steam reforming, is an alternative energy process that is promising for the future of clean energy economies. With advancements in fuel cell technologies, on-board hydrogen reforming could leverage already existing automotive designs and fuel infrastructure. The design of catalytic materials with tunable properties requires a level of insight that has yet to be achieved experimentally. The central objective of this project is to develop a working model of metal-oxide surface mediated copper clusters, since such catalytic beds have a wide-range of applications. More specifically, we investigate the catalytic framework of this process with theoretical models of the active metal (Cu) and metaloxide support (TiO2). We employ a Density Functional Theory (DFT)-Generalized Gradient Approximation (GGA) approach for the quantum level electronic structure calculations of Cu, TiO2 and CH3OH. Additionally, we have generated anatase (A(001), A(101)) and rutile (R(100), R(110)) surface morphologies and 7atom copper cluster complexes with those planes. To examine the possible influence of TiO2 on the adsorption properties of our active metal, Cu7, we have carried out adsorption studies with CH3OH. Our final data and observations predict that the Cu7 cluster adopts a symmetric pentagonal bipyramidal geometry with D5h symmetry. We find that the anatase morphology has a greater overall stability than rutile. The adsorption strength of the Cu7 cluster has been predicted in this study to be according to the following order: A(001) > A(101)> R(110). Indeed, the R(100) surface appears to be an unfavorable surface for metal cluster binding. Our data indicates that copper cluster stabilization on the metal-oxide surface depends on the nature of the crystal face. Again, we studied the adsorption properties of methanol on nascent Cu7 cluster, Cu7-TiO 2 complex and on pure TiO2-surface in A(001) polymorphic form. The calculations revealed that methanol adsorbs more efficiently on TiO2-bound copper clusters than either the copper cluster alone or the surface of TiO2. Additionally, we find that the metal-oxide support plays a significant role in stabilizing the catalytic reactions of CH3OH adsorption. Here, we have shown that TiO2 clearly enhances the catalytic properties of copper clusters.
Effect of radiant catalytic ionization on lean color and lipid oxidation of beef
USDA-ARS?s Scientific Manuscript database
Objectives: The radiant catalytic ionization (RCI) technology utilizes a combination of UV light and low-level oxidizers such as ozone, hydroxyl radicals, and hydrogen peroxide to cause antimicrobial action. There is a potential to use this technology as an antimicrobial intervention against foodbor...
A bench-scale reactor consisting of a natural gas burner and an electrically heated reactor housing a selective catalytic reduction (SCR) catalyst was constructed for studying elemental mercury oxidation under SCR conditions. A low sulfur Power River Basin (PRB) coal combustion ...
A kinetic model of municipal sludge degradation during non-catalytic wet oxidation.
Prince-Pike, Arrian; Wilson, David I; Baroutian, Saeid; Andrews, John; Gapes, Daniel J
2015-12-15
Wet oxidation is a successful process for the treatment of municipal sludge. In addition, the resulting effluent from wet oxidation is a useful carbon source for subsequent biological nutrient removal processes in wastewater treatment. Owing to limitations with current kinetic models, this study produced a kinetic model which predicts the concentrations of key intermediate components during wet oxidation. The model was regressed from lab-scale experiments and then subsequently validated using data from a wet oxidation pilot plant. The model was shown to be accurate in predicting the concentrations of each component, and produced good results when applied to a plant 500 times larger in size. A statistical study was undertaken to investigate the validity of the regressed model parameters. Finally the usefulness of the model was demonstrated by suggesting optimum operating conditions such that volatile fatty acids were maximised. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE-GO-14154-1 OHIO FINAL report Velocys 30Sept08
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terry J. Mazanec
2008-09-30
The overall goal of the OHIO project was to develop a commercially viable high intensity process to produce ethylene by controlled catalytic reaction of ethane with oxygen in a microchannel reactor. Microchannel technology provides a breakthrough solution to the challenges identified in earlier development work on catalytic ethane oxidation. Heat and mass transfer limitations at the catalyst surface create destructively high temperatures that are responsible for increased production of waste products (CO, CO2, and CH4). The OHIO project focused on microscale energy and mass transfer management, designed to alleviate these transport limitations, thereby improving catalyst selectivity and saving energy-rich feedstock.more » The OHIO project evaluated ethane oxidation in small scale microchannel laboratory reactors including catalyst test units, and full commercial length single- and multi-channel reactors. Small scale catalyst and single channel results met target values for ethylene yields, demonstrating that the microchannel concept improves mass and heat transport compared to conventional reactors and results in improved ethylene yield. Earlier economic sensitivity studies of ethane oxidation processes suggested that only modest improvements were necessary to provide a system that provides significant feedstock, energy, and capital benefits compared to conventional steam ethane cracking. The key benefit derived from the OHIO process is energy savings. Ethylene production consumes more energy than any other U.S. chemical process.1 The OHIO process offers improved feedstock utilization and substantial energy savings due to a novel reaction pathway and the unique abilities of microchannel process technology to control the reaction temperature and other critical process parameters. Based on projected economic benefits of the process, the potential energy savings could reach 150 trillion Btu/yr by the year 2020, which is the equivalent of over 25 million barrels of oil.« less
Dutta, B.; Sharma, Vinit K.; Sassu, N.; ...
2017-09-01
We disclose a novel, heterogeneous catalytic approach for selective coupling of C1 of N-aryltetrahydroisoquinolines with C3 of indoles in the presence of mesoporous manganese oxides. Our work involves a detailed mechanistic investigation of the reaction on the catalyst surface, backed by DFT computational studies, to understand the superior catalytic activity of manganese oxides.
Li, Fusheng; Li, Lin; Tong, Lianpeng; Daniel, Quentin; Göthelid, Mats; Sun, Licheng
2014-11-21
Electrochemically driven water oxidation has been performed using a molecular water oxidation catalyst immobilized on hybrid carbon nanotubes and nano-material electrodes. A high turnover frequency (TOF) of 7.6 s(-1) together with a high catalytic current density of 2.2 mA cm(-2) was successfully obtained at an overpotential of 480 mV after 1 h of bulk electrolysis.
Pence, Dallas T.; Thomas, Thomas R.
1980-01-01
Noxious nitrogen oxides in a waste gas stream such as the stack gas from a fossil-fuel-fired power generation plant or other industrial plant off-gas stream is catalytically reduced to elemental nitrogen and/or innocuous nitrogen oxides employing ammonia as reductant in the presence of a zeolite catalyst in the hydrogen or sodium form having pore openings of about 3 to 10 A.
Silver nanocluster catalytic microreactors for water purification
NASA Astrophysics Data System (ADS)
Da Silva, B.; Habibi, M.; Ognier, S.; Schelcher, G.; Mostafavi-Amjad, J.; Khalesifard, H. R. M.; Tatoulian, M.; Bonn, D.
2016-07-01
A new method for the elaboration of a novel type of catalytic microsystem with a high specific area catalyst is developed. A silver nanocluster catalytic microreactor was elaborated by doping a soda-lime glass with a silver salt. By applying a high power laser beam to the glass, silver nanoclusters are obtained at one of the surfaces which were characterized by BET measurements and AFM. A microfluidic chip was obtained by sealing the silver coated glass with a NOA 81 microchannel. The catalytic activity of the silver nanoclusters was then tested for the efficiency of water purification by using catalytic ozonation to oxidize an organic pollutant. The silver nanoclusters were found to be very stable in the microreactor and efficiently oxidized the pollutant, in spite of the very short residence times in the microchannel. This opens the way to study catalytic reactions in microchannels without the need of introducing the catalyst as a powder or manufacturing complex packed bed microreactors.
A comparative investigation of SO2 oxidative transfer over CuO with a CeO2 surface
NASA Astrophysics Data System (ADS)
Liu, Yifeng; Shen, Benxian; Pi, Zhipeng; Chen, Hua; Zhao, Jigang
2017-04-01
To further improve the catalytic desulfurization function of the Mg-Al spinel sulfur transfer agent in a fluid catalytic cracking (FCC) unit, the reaction paths of SO2 oxidation by O2 over the metal oxide surface of CuO (111) and CeO2 (111) were investigated. In reference to the fact that SO2 reacting with O2 over CuO was a Mars-van Krevelen cycle, a similar reaction law for SO2 oxidation over CeO2 was also verified by characterization methods (e.g., IR, XPS). Meanwhile, the molecular simulation results indicated that the rate-control step of SO2 oxidation over CeO2 (111) and CuO (111) was a SO3 desorption step. The lower energy barrier in the rate-control step corresponded to better catalytic performance; hence, it could explain the reason that CeO2 had a better sulfur oxidization transfer performance than CuO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Toshiba Display Services, a television picture-tube manufacturer in Horseheads, NY, recently was able to meet stringent state regulations to reduce emissions from two of its film applications lines by installing a regenerative catalytic oxidation system. Toshiba officials initially evaluated several technologies to control volatile organic compounds. After deciding that oxidation was the best technology for its facility, the company invited a number of suppliers to submit proposals. Because all of the oxidation technologies considered by Toshiba had the capability to achieve the destruction and removal efficiency requirement, the company combined the second and third decision elements and conducted an in-depthmore » comparison of the initial capital and ongoing operating costs for each proposal. Officials narrowed the field to two systems--the lowest-cost regenerative thermal oxidation system on the market and a regenerative catalytic oxidation system. The company selected St. Louis, Mo.-based Monsanto Enviro-Chem Systems Inc., to install its DynaCycle{reg_sign} regenerative catalytic oxidation system, marking the first Dyna-Cycle installation in a US television picture-tube facility.« less
Bobst, Cedric E; Thomas, John J; Salinas, Paul A; Savickas, Philip; Kaltashov, Igor A
2010-01-01
The solution dynamics of an enzyme acid-β-glucocerebrosidase (GCase) probed at a physiologically relevant (lysosomal) pH by hydrogen/deuterium exchange mass spectrometry (HDX-MS) reveals very uneven distribution of backbone amide protection across the polypeptide chain. Highly mobile segments are observed even within the catalytic cavity alongside highly protective segments, highlighting the importance of the balance between conformational stability and flexibility for enzymatic activity. Forced oxidation of GCase that resulted in a 40–60% reduction in in vitro biological activity affects the stability of some key structural elements within the catalytic site. These changes in dynamics occur on a longer time scale that is irrelevant for catalysis, effectively ruling out loss of structure in the catalytic site as a major factor contributing to the reduction of the catalytic activity. Oxidation also leads to noticeable destabilization of conformation in remote protein segments on a much larger scale, which is likely to increase the aggregation propensity of GCase and affect its bioavailability. Therefore, it appears that oxidation exerts its negative impact on the biological activity of GCase indirectly, primarily through accelerated aggregation and impaired trafficking. PMID:20945356
An empirical study on the preparation of the modified coke and its catalytic oxidation properties
NASA Astrophysics Data System (ADS)
Liu, Hao; Jiang, Wenqiang
2017-05-01
T As a methyl acrylic ester fungicide, pyraclostrobin has the advantages of high activity, wide sterilization spectrum and high safety level comparing with the traditional fungicide. Due to less toxicity and side effects on human and environment, the use of pyraclostrobin and its mixture in agriculture is increasing. The heavy use of pyraclostrobin will inevitably cause pollution to the biological and abiotic environment. Therefore, it is of great significance to do the research on the degradation of pyraclostrobin. In this study, coke, as matrix, was modified by chemical modification. The modified coke was used as the catalyst and the pyraclostrobin was used as the degradation object. The degradation experiment of pyraclostrobin was carried out by using catalytic oxidation. The catalytic oxidation performance of modified coke was studied. The result showed that in the catalytic oxidation system of using modified coke as catalyst and H2O2 as oxidant, the best reaction condition is as following: The modified coke which is modified by using 70% concentration nitric acid is used as catalyst; The dosage of the catalyst is10g; The dosage of H2O2 is 0.6ml; The reaction time is 6 hours.
Low temperature catalytic oxidative aging of LDPE films in response to heat excitation.
Luo, Xuegang; Zhang, Sizhao; Ding, Feng; Lin, Xiaoyan
2015-09-14
The waste treatment of polymer materials is often conducted using the photocatalytic technique; however, complete decomposition is frequently inhibited owing to several shortcomings such as low quantum yield and the requirement of ultraviolet irradiation. Herein, we report a strategy to implement moderate management of polymeric films via thermocatalytic oxidative route, which is responsive to heat stimulus. Diverse LDPE-matrix films together with as-prepared thermal catalysts (TCs) or initiators were synthesized to further investigate heat-dependent-catalytic degradation effects. After artificial ageing, structural textures of the as-synthesized films could be chemically deteriorated, followed by a huge increase in surface roughness values, and appreciable loss was also found in the average molecular weights and mechanical parameters. We found an emergent phenomenon in which crystallization closely resembled two-dimensional (2D) growth, which displayed rod-like or disc-type crystal shapes. New chemical groups generated on film surfaces were monitored, and led to a higher limiting oxygen index because of strong catalytic oxidation, thus demonstrating the success of catalytic oxidative ageing by heat actuation. The underlying mechanism responsible for thermocatalytic oxidative pattern is also discussed. Accordingly, these findings may have important implications for better understanding the development of polymeric-matrix waste disposal.
Effect of pretreatment on pd/Al2O3 catalyst for catalytic oxidation of o-xylene at low temperature.
Huang, Shaoyong; Zhang, Changbin; He, Hong
2013-06-01
The effect of pretreatment on Pd/Al2O3 catalysts for the catalytic oxidation of o-xylene at low temperature was studied by changing the pretreatment and testing conditions. The fresh and pretreated Pd/Al2O3 catalysts were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The results showed that the pretreatment dramatically changed the Pd/PdO ratio and then significantly affected the Pd/Al2O3 activity; while the pretreatment had not much influence on Pd particle size. The Pd/Al2O3 pre-reduced at 300 degrees C/400 degrees C, which has fully reduced Pd species, showed the highest activity; while the fresh Pd/Al2O3, which has fully oxidized Pd species, presented the worst performance, indicating the Pd chemical state plays an important role in the catalytic activity for the o-xylene oxidation. It is concluded that metallic Pd is the active species on the Pd/Al2O3 catalyst for the catalytic oxidation of o-xylene at low temperature.
Zou, Xiao-Ling
2017-10-01
A combined process of coagulation-catalytic ozonation-anaerobic sequencing batch reactor (ASBR)-SBR was developed at lab scale for treating a real sodium dithionite wastewater with an initial chemical oxygen demand (COD) of 21,760-22,450 mg/L. Catalytic ozonation with the prepared cerium oxide (CeO 2 )/granular activated carbon catalyst significantly enhances wastewater biodegradability and reduces wastewater microtoxicity. The results show that, under the optimum conditions, the removal efficiencies of COD and suspended solids are averagely 99.3% and 95.6%, respectively, and the quality of final effluent can meet the national discharge standard of China. The coagulation and ASBR processes remove a considerable proportion of organic matter, while the SBR plays an important role in post-polish of final effluent. The ecotoxicity of the wastewater is greatly reduced after undergoing the hybrid treatment. This work demonstrates that the hybrid system has the potential to be applied for the advanced treatment of high-strength industrial wastewater.
Mariana Balu, Alina; Pineda, Antonio; Yoshida, Kenta; Manuel Campelo, Juan; Gai, Pratibha L; Luque, Rafael; Angel Romero, Antonio
2010-11-07
A synergetic Fe-Al effect in Fe(2)O(3) nanoparticles supported on mesoporous aluminosilicates compared to pure siliceous silicates has been demonstrated, for the first time, by a remarkably superior catalytic activity of the former in the microwave-assisted selective oxidation of benzyl alcohol to benzaldehyde. This significant finding, that also deeply influences the acidity of the materials (increasing total and particularly Lewis acidity), can have important consequences in the improved efficiency of these systems in related oxidations as well as in acid catalysed processes.
NASA Astrophysics Data System (ADS)
Cherkezova-Zheleva, Z.; Mitov, I.
2010-03-01
The aim of the study is to obtain the exact state of iron oxide catalyst active phase in reaction conditions, as well as the correlation between the active phase and catalytic properties of iron-containing catalysts. In situ Mössbauer spectroscopy is the major investigation technique. It is established that the change of reaction conditions (temperature and gas reaction mixture) lead to redistribution of the relative weight of spectra components and influence mainly tetrahedrally and octahedrally coordinated cations in Fe3O4 phase. It was concluded, that the active sites of the catalyst in studied reaction are probably pairs of Fe3++Fe2+-(Fe2.5+) ions, i.e. the mixed valance iron ions. The obtained catalytic activity can be explained with combination of the natural thermo-activated and catalytically induced electron exchange and better synchronizing of oxidation and reduction steps of the catalytic reaction.
Lee, Hyosun; Lim, Juhyung; Lee, Changhwan; Back, Seoin; An, Kwangjin; Shin, Jae Won; Ryoo, Ryong; Jung, Yousung; Park, Jeong Young
2018-06-08
Despite numerous studies, the origin of the enhanced catalytic performance of bimetallic nanoparticles (NPs) remains elusive because of the ever-changing surface structures, compositions, and oxidation states of NPs under reaction conditions. An effective strategy for obtaining critical clues for the phenomenon is real-time quantitative detection of hot electrons induced by a chemical reaction on the catalysts. Here, we investigate hot electrons excited on PtCo bimetallic NPs during H 2 oxidation by measuring the chemicurrent on a catalytic nanodiode while changing the Pt composition of the NPs. We reveal that the presence of a CoO/Pt interface enables efficient transport of electrons and higher catalytic activity for PtCo NPs. These results are consistent with theoretical calculations suggesting that lower activation energy and higher exothermicity are required for the reaction at the CoO/Pt interface.
1974-01-01
gas now supplies one third of our 9 national energy needs and its use is the fastest growing of all fossil fuels , conversion of coal to...the possibilities of profiling oxidation states and to gain further insight into the mechanism of the bombarding process . (2) Application of ESCA to...the surface sites—which will be measured using x-ray photoelectron spectroscopy. This technique has general applicability to a large atttibM of
Pretreatment of Platinum/Tin Oxide-Catalyst
NASA Technical Reports Server (NTRS)
Hess, Robert V.; Paulin, Patricia A.; Miller, Irvin M.; Schryer, David R.; Sidney, Barry D.; Wood, George M.; Upchurch, Billy T.; Brown, Kenneth G.
1987-01-01
Addition of CO to He pretreatment doubles catalytic activity. In sealed, high-energy, pulsed CO2 laser, CO and O2 form as decomposition products of CO2 in laser discharge zone. Products must be recombined, because oxygen concentration of more than few tenths of percent causes rapid deterioration of power, ending in unstable operation. Promising low-temperature catalyst for combining CO and O2 is platinum on tin oxide. New development increases activity of catalyst so less needed for recombination process.
Water oxidation by a nickel-glycine catalyst.
Wang, Dong; Ghirlanda, Giovanna; Allen, James P
2014-07-23
The utilization of solar energy requires an efficient means for its storage as chemical energy. In bioinspired artificial photosynthesis, light energy can be used to drive water oxidation, but catalysts that produce molecular oxygen from water are needed to avoid excessive driving potentials. In this paper, we demonstrate the utility of a novel complex utilizing earth-abundant Ni in combination with glycine as an efficient catalyst with a modest overpotential of 0.475 ± 0.005 V at a current density of 1 mA/cm(2) at pH 11. Catalysis requires the presence of the amine moiety with the glycine most likely coordinating the Ni in a 4:1 molar ratio. The production of molecular oxygen at a high potential is verified by measurement of the change in oxygen concentration, yielding a Faradaic efficiency of 60 ± 5%. The catalytic species is most likely a heterogeneous Ni-hydroxide formed by electrochemical oxidation. This Ni species can achieve a current density of 4 mA/cm(2) that persists for at least 10 h. Based upon the observed pH dependence of the current amplitude and oxidation/reduction peaks, the catalytic mechanism is an electron-proton coupled process.
Hadač, Otto; Kohout, Martin; Havlica, Jaromír; Schreiber, Igor
2015-03-07
A model describing simultaneous catalytic oxidation of CO and C2H2 and reduction of NOx in a cross-flow tubular reactor is explored with the aim of relating spatiotemporal patterns to specific pathways in the mechanism. For that purpose, a detailed mechanism proposed for three-way catalytic converters is split into two subsystems, (i) simultaneous oxidation of CO and C2H2, and (ii) oxidation of CO combined with NOx reduction. The ability of these two subsystems to display mechanism-specific dynamical effects is studied initially by neglecting transport phenomena and applying stoichiometric network and bifurcation analyses. We obtain inlet temperature - inlet oxygen concentration bifurcation diagrams, where each region possessing specific dynamics - oscillatory, bistable and excitable - is associated with a dominant reaction pathway. Next, the spatiotemporal behaviour due to reaction kinetics combined with transport processes is studied. The observed spatiotemporal patterns include phase waves, travelling fronts, pulse waves and spatiotemporal chaos. Although these types of pattern occur generally when the kinetic scheme possesses autocatalysis, we find that some of their properties depend on the underlying dominant reaction pathway. The relation of patterns to specific reaction pathways is discussed.
The surface chemistry of cerium oxide
Mullins, David R.
2015-01-29
Our review covers the structure of, and chemical reactions on, well-defined cerium oxide surfaces. Ceria, or mixed oxides containing ceria, are critical components in automotive three-way catalysts due to their well-known oxygen storage capacity. Ceria is also emerging as an important material in a number of other catalytic processes, particularly those involving organic oxygenates and the water–gas shift reaction. Ceria's acid–base properties, and thus its catalytic behavior, are closely related to its surface structure where different oxygen anion and cerium cation environments are present on the low-index structural faces. The actual structure of these various faces has been the focusmore » of a number of theoretical and experimental investigations. Ceria is also easily reducible from CeO 2 to CeO 2-X. The presence of oxygen vacancies on the surface often dramatically alters the adsorption and subsequent reactions of various adsorbates, either on a clean surface or on metal particles supported on the surface. We conducted surface science studies on the surfaces of thin-films rather than on the surfaces of bulk single crystal oxides. The growth, characterization and properties of these thin-films are also examined.« less
Effect of Process Parameters on Catalytic Incineration of Solvent Emissions
Ojala, Satu; Lassi, Ulla; Perämäki, Paavo; Keiski, Riitta L.
2008-01-01
Catalytic oxidation is a feasible and affordable technology for solvent emission abatement. However, finding optimal operation conditions is important, since they are strongly dependent on the application area of VOC incineration. This paper presents the results of the laboratory experiments concerning four most central parameters, that is, effects of concentration, gas hourly space velocity (GHSV), temperature, and moisture on the oxidation of n-butyl acetate. Both fresh and industrially aged commercial Pt/Al2O3 catalysts were tested to determine optimal process conditions and the significance order and level of selected parameters. The effects of these parameters were evaluated by computer-aided statistical experimental design. According to the results, GHSV was the most dominant parameter in the oxidation of n-butyl acetate. Decreasing GHSV and increasing temperature increased the conversion of n-butyl acetate. The interaction effect of GHSV and temperature was more significant than the effect of concentration. Both of these affected the reaction by increasing the conversion of n-butyl acetate. Moisture had only a minor decreasing effect on the conversion, but it also decreased slightly the formation of by products. Ageing did not change the significance order of the above-mentioned parameters, however, the effects of individual parameters increased slightly as a function of ageing. PMID:18584032
Spatially coupled catalytic ignition of CO oxidation on Pt: mesoscopic versus nano-scale
Spiel, C.; Vogel, D.; Schlögl, R.; Rupprechter, G.; Suchorski, Y.
2015-01-01
Spatial coupling during catalytic ignition of CO oxidation on μm-sized Pt(hkl) domains of a polycrystalline Pt foil has been studied in situ by PEEM (photoemission electron microscopy) in the 10−5 mbar pressure range. The same reaction has been examined under similar conditions by FIM (field ion microscopy) on nm-sized Pt(hkl) facets of a Pt nanotip. Proper orthogonal decomposition (POD) of the digitized FIM images has been employed to analyze spatiotemporal dynamics of catalytic ignition. The results show the essential role of the sample size and of the morphology of the domain (facet) boundary in the spatial coupling in CO oxidation. PMID:26021411
Liebeskind, Lanny S; Gangireddy, Pavankumar; Lindale, Matthew G
2016-06-01
Carboxylic acids and amine/amino acid reactants can be converted to amides and peptides at neutral pH within 5-36 h at 50 °C using catalytic quantities of a redox-active benzoisothiazolone and a copper complex. These catalytic "oxidation-reduction condensation" reactions are carried out open to dry air using O2 as the terminal oxidant and a slight excess of triethyl phosphite as the reductant. Triethyl phosphate is the easily removed byproduct. These simple-to-run catalytic reactions provide practical and economical procedures for the acylative construction of C-N bonds.
Li, Xiukai; Ko, Jogie; Zhang, Yugen
2018-02-09
Maleic anhydride (MAnh) and its acids are critical intermediates in chemical industry. The synthesis of maleic anhydride from renewable furfural is one of the most sought after processes in the field of sustainable chemistry. In this study, a plate vanadium phosphorus oxide (VPO) catalyst synthesized by a hydrothermal method with glucose as a green reducing agent catalyzes furfural oxidation to MAnh in the gas phase. The plate catalyst-denoted as VPO HT -has a preferentially exposed (200) crystal plane and exhibited dramatically enhanced activity, selectivity and stability as compared to conventional VPO catalysts and other state-of-the-art catalytic systems. At 360 °C reaction temperature with air as an oxidant, about 90 % yield of MAnh was obtained at 10 vol % of furfural in the feed, a furfural concentration value that is much higher than those (<2 vol %) reported for other catalytic systems. The catalyst showed good long-term stability and there was no decrease in activity or selectivity for MAnh during the time-on-stream of 25 h. The high efficiency and catalyst stability indicate the great potential of this system for the synthesis of maleic anhydride from renewable furfural. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tang, Xuemei; Huang, Lulu; Zhang, Wenyang; Jiang, Ruowei; Zhong, Hongying
2015-01-01
Understanding of the dynamic process of laser-induced ultrafast electron tunneling is still very limited. It has been thought that the photo-catalytic reaction of adsorbents on the surface is either dependent on the number of resultant electron-hole pairs where excess energy is lost to the lattice through coupling with phonon modes, or dependent on irradiation photon wavelength. We used UV (355 nm) laser pulses to excite electrons from the valence band to the conduction band of titanium dioxide (TiO2), zinc oxide (ZnO) and bismuth cobalt zinc oxide (Bi2O3)0.07(CoO)0.03(ZnO)0.9 semiconductor nanoparticles with different photo catalytic properties. Photoelectrons are extracted, accelerated in a static electric field and eventually captured by charge deficient atoms of adsorbed organic molecules. A time-of-flight mass spectrometer was used to detect negative molecules and fragment ions generated by un-paired electron directed bond cleavages. We show that the probability of electron tunneling is determined by the strength of the static electric field and intrinsic electron mobility of semiconductors. Photo-catalytic dissociation or polymerization reactions of adsorbents are highly dependent on the kinetic energy of tunneling electrons as well as the strength of laser influx. By using this approach, photo-activities of phytohormones have been investigated. PMID:25749635
NASA Astrophysics Data System (ADS)
Tang, Xuemei; Huang, Lulu; Zhang, Wenyang; Jiang, Ruowei; Zhong, Hongying
2015-03-01
Understanding of the dynamic process of laser-induced ultrafast electron tunneling is still very limited. It has been thought that the photo-catalytic reaction of adsorbents on the surface is either dependent on the number of resultant electron-hole pairs where excess energy is lost to the lattice through coupling with phonon modes, or dependent on irradiation photon wavelength. We used UV (355 nm) laser pulses to excite electrons from the valence band to the conduction band of titanium dioxide (TiO2), zinc oxide (ZnO) and bismuth cobalt zinc oxide (Bi2O3)0.07(CoO)0.03(ZnO)0.9 semiconductor nanoparticles with different photo catalytic properties. Photoelectrons are extracted, accelerated in a static electric field and eventually captured by charge deficient atoms of adsorbed organic molecules. A time-of-flight mass spectrometer was used to detect negative molecules and fragment ions generated by un-paired electron directed bond cleavages. We show that the probability of electron tunneling is determined by the strength of the static electric field and intrinsic electron mobility of semiconductors. Photo-catalytic dissociation or polymerization reactions of adsorbents are highly dependent on the kinetic energy of tunneling electrons as well as the strength of laser influx. By using this approach, photo-activities of phytohormones have been investigated.
NASA Astrophysics Data System (ADS)
Dang-Long, T.; Quang-Tuyen, T.; Shiratori, Y.
2016-06-01
Being produced from organic matters of wastes (bio-wastes) through a fermentation process, biogas mainly composed of CH4 and CO2 and can be considered as a secondary energy carrier derived from solar energy. To generate electricity from biogas through the electrochemical process in fuel cells is a state-of-the-art technology possessing higher energy conversion efficiency without harmful emissions compared to combustion process in heat engines. Getting benefits from high operating temperature such as direct internal reforming ability and activation of electrochemical reactions to increase overall system efficiency, solid oxide fuel cell (SOFC) system operated with biogas becomes a promising candidate for distributed power generator for rural applications leading to reductions of environmental issues caused by greenhouse effects and bio-wastes. CO2 reforming of CH4 and electrochemical oxidation of the produced syngas (H2-CO mixture) are two main reaction processes within porous anode material of SOFC. Here catalytic and electrochemical behavior of Ni-ScSZ (scandia stabilized-zirconia) anode in the feed of CH4-CO2 mixtures as simulated-biogas at 800 °C were evaluated. The results showed that CO2 had strong influences on both reaction processes. The increase in CO2 partial pressure resulted in the decrease in anode overvoltage, although open-circuit voltage was dropped. Besides that, the simulation result based on a power-law model for equimolar CH4-CO2 mixture revealed that coking hazard could be suppressed along the fuel flow channel in both open-circuit and closed-circuit conditions.
Ebrahimi, Kourosh Honarmand; Bill, Eckhard; Hagedoorn, Peter-Leon; Hagen, Wilfred R
2016-11-15
Ferritin is a nanocage protein made of 24 subunits. Its major role is to manage intracellular concentrations of free Fe(ii) and Fe(iii) ions, which is pivotal for iron homeostasis across all domains of life. This function of the protein is regulated by a conserved di-iron catalytic center and has been the subject of extensive studies over the past 50 years. Yet, it has not been fully understood how Fe(ii) is oxidized in the di-iron catalytic center and it is not known why eukaryotic and microbial ferritins oxidize Fe(ii) with different kinetics. In an attempt to obtain a new insight into the mechanism of Fe(ii) oxidation and understand the origin of the observed differences in the catalysis of Fe(ii) oxidation among ferritins we studied and compared the mechanism of Fe(ii) oxidation in the eukaryotic human H-type ferritin (HuHF) and the archaeal ferritin from Pyrococcus furiosus (PfFtn). The results show that the spectroscopic characteristics of the intermediate of Fe(ii) oxidation and the Fe(iii)-products are the same in these two ferritins supporting the proposal of unity in the mechanism of Fe(ii) oxidation among eukaryotic and microbial ferritins. Moreover, we observed that a site in the di-iron catalytic center controls the distribution of Fe(ii) among subunits of HuHF and PfFtn differently. This observation explains the reported differences between HuHF and PfFtn in the kinetics of Fe(ii) oxidation and the amount of O 2 consumed per Fe(ii) oxidized. These results provide a fresh understanding of the mechanism of Fe(ii) oxidation by ferritins.
Dahlan, Irvan; Lee, Keat Teong; Kamaruddin, Azlina Harun; Mohamed, Abdul Rahman
2009-07-30
In this work, the removal of SO(2) and NO from simulated flue gas from combustion process was investigated in a fixed-bed reactor using rice husk ash (RHA)/CaO-based sorbent. Various metal precursors were used in order to select the best metal impregnated over RHA/CaO sorbents. The results showed that RHA/CaO sorbents impregnated with CeO(2) had the highest sorption capacity among other impregnated metal oxides for the simultaneous removal of SO(2) and NO. Infrared spectroscopic results indicated the formation of both sulfate (SO(4)(2-)) and nitrate (NO(3)(-)) species due to the catalytic role played by CeO(2). Apart from that, the catalytic activity of the RHA/CaO/CeO(2) sorbent was found to be closely related to its physical properties (specific surface area, total pore volume and average pore diameter).
Alternative control technology document for bakery oven emissions. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanford, C.W.
The document was produced in response to a request by the baking industry for Federal guidance to assist in providing a more uniform information base for State decision-making with regard to control of bakery oven emissions. The information in the document pertains to bakeries that produce yeast-leavened bread, rolls, buns, and similar products but not crackers, sweet goods, or baked foodstuffs that are not yeast leavened. Information on the baking processes, equipment, operating parameters, potential emissions from baking, and potential emission control options are presented. Catalytic and regenerative oxidation are identified as the most appropriate existing control technologies applicable tomore » VOC emissions from bakery ovens. Cost analyses for catalytic and regenerative oxidation are included. A predictive formula for use in estimating oven emissions has been derived from source tests done in junction with the development of the document. Its use and applicability are described.« less
The thermal stability and catalytic application of manganese oxide-zirconium oxide powders
NASA Astrophysics Data System (ADS)
Zhao, Qiang
MnOx-ZrO2 mixed oxide is an active catalyst for combustion, oxidation, and oxygen storage applications. MnOx-ZrO 2 mixture also has large reversible adsorption capability for NO x, which makes it a promising candidate for NOx abatement in automobile emission control. However, MnOx-ZrO 2 mixed oxide has not been used extensively because the processing and the thermal stability of resulting powders have not been studied systematically. It is critical to have thermally stable catalytic material because the application temperature can reach as high as 1000°C during service. In this study, we focused on improving the thermal stability of oxide powders, such as MnO x, ZrO2, and MnOx-ZrO2, by controlling the processing methods and parameters. For pure MnOx made from the precipitation method using Mn(NO3)2 aqueous solution and ammonium hydroxide, we found that lower concentration of Mn(NO3) 2 solution and larger amount of ammonium hydroxide resulted in higher surface area powders. For pure ZrO2, we found curing hydrous zirconia in the mother liquid produced ZrO2 powders with larger pore volume and pore size. The specific surface area was also significantly enhanced by curing for the synthesized powders before calcination or after low temperature calcinations, and this improvement could be preserved to high temperatures if SiO2 was doped in ZrO2. A Monte Carlo simulation model examining the effect of primary particle packing on the specific surface area was used to explain the curing result. MnOx-ZrO2 mixtures had higher surface area than the single component oxide at 500 and 700°C because composite powders sintered less. The sintering behavior of composite powders at 900°C was opposite to that at 500°C and the specific surface area of MnOx-ZrO2 decreased drastically at 900°C. Curing ZrO2 first or using La dopant could significantly enhance the specific surface area of MnOx-ZrO2 at 900°C. Through the tests of the redox property and NO storage capability we found a close relationship between the enhanced thermal stability and better catalytic performance.
VAPOR PHASE OXIDATION OF DIMETHYL SULFIDE WITH OZONE OVER V2O5/TIO2 CATALYST
Removal of volatile and odorous compounds emissions from the pulp and paper industry usually creates secondary pollution for scrubbing and adsorption processes or sulfur poising for catalytic incineration. Product studies performed in a flow reactor packed with 10 % V2O5/TiO2 cat...
Two Decades of Laccases: Advancing Sustainability in the Chemical Industry
Cannatelli, Mark D.; Ragauskas, Arthur J.
2016-08-05
Given the current state of environmental affairs and that our future on this planet as we know it is in jeopardy, research and development into greener and more sustainable technologies within the chemical and forest products industries is at its peak. The need for environmentally benign practices is propelling new green processes, given the global scale of these industries. These challenges are also impacting academic research and our reagents of interest are laccases. Furthermore, these enzymes are employed in a variety of biotechnological applications due to their native function as catalytic oxidants. They are about as green as it getsmore » when it comes to chemical processes, requiring O 2 as their only co-substrate and producing H 2O as the sole by-product. The following account will review our twenty year journey on the use of these enzymes within our research group, from their initial use in biobleaching of kraft pulps and for fiber modification within the pulp and paper industry, to their current application as green catalytic oxidants in the field of synthetic organic chemistry.« less
Efficient catalytic cycloalkane oxidation employing a "helmet" phthalocyaninato iron(III) complex.
Brown, Elizabeth S; Robinson, Jerome R; McCoy, Aaron M; McGaff, Robert W
2011-06-14
We have examined the catalytic activity of an iron(III) complex bearing the 14,28-[1,3-diiminoisoindolinato]phthalocyaninato (diiPc) ligand in oxidation reactions with three substrates (cyclohexane, cyclooctane, and indan). This modified metallophthalocyaninato complex serves as an efficient and selective catalyst for the oxidation of cyclohexane and cyclooctane, and to a far lesser extent indan. In the oxidations of cyclohexane and cyclooctane, in which hydrogen peroxide is employed as the oxidant under inert atmosphere, we have observed turnover numbers of 100.9 and 122.2 for cyclohexanol and cyclooctanol, respectively. The catalyst shows strong selectivity for alcohol (vs. ketone) formation, with alcohol to ketone (A/K) ratios of 6.7 and 21.0 for the cyclohexane and cyclooctane oxidations, respectively. Overall yields (alcohol + ketone) were 73% for cyclohexane and 92% for cyclooctane, based upon the total hydrogen peroxide added. In the catalytic oxidation of indan under similar conditions, the TON for 1-indanol was 10.1, with a yield of 12% based upon hydrogen peroxide. No 1-indanone was observed in the product mixture.
ERIC Educational Resources Information Center
Cybulskis, Viktor J.; Smeltz, Andrew D.; Zvinevich, Yury; Gounder, Rajamani; Delgass, W. Nicholas; Ribeiro, Fabio H.
2016-01-01
Understanding catalytic chemistry, collecting and interpreting kinetic data, and operating chemical reactors are critical skills for chemical engineers. This laboratory experiment provides students with a hands-on supplement to a course in chemical kinetics and reaction engineering. The oxidation of methane with a palladium catalyst supported on…
Petkov, Valeri; Maswadeh, Yazan; Lu, Aolin; Shan, Shiyao; Kareem, Haval; Zhao, Yinguang; Luo, Jin; Zhong, Chuan-Jian; Beyer, Kevin; Chapman, Karena
2018-04-04
We present results from combined in situ infrared spectroscopy and total X-ray scattering studies on the evolution of catalytically active sites in exemplary binary and ternary Pt-based nanoalloys during a sequence of CO oxidation-reactivation-CO oxidation reactions. We find that when within a particular compositional range, the fresh nanoalloys may exhibit high catalytic activity for low-temperature CO oxidation. Using surface-specific atomic pair distribution functions (PDFs) extracted from the in situ total X-ray scattering data, we find that, regardless of their chemical composition and initial catalytic activity, the fresh nanoalloys suffer a significant surface structural disorder during CO oxidation. Upon reactivation in oxygen atmosphere, the surface of used nanoalloy catalysts both partially oxidizes and orders. Remarkably, it largely retains its structural state when the nanoalloys are reused as CO oxidation catalysts. The seemingly inverse structural changes of studied nanoalloy catalysts occurring under CO oxidation and reactivation conditions affect the active sites on their surface significantly. In particular, through different mechanisms, both appear to reduce the CO binding strength to the nanoalloy's surface and thus increase the catalytic stability of the nanoalloys. The findings provide clues for further optimization of nanoalloy catalysts for the oxidation of carbonaceous species through optimizing their composition, activation, and reactivation. Besides, the findings demonstrate the usefulness of combined in situ infrared spectroscopy and total X-ray scattering coupled to surface-specific atomic PDF analysis to the ongoing effort to produce advanced catalysts for environmentally and technologically important applications.
Electron microscopy study of gold nanoparticles deposited on transition metal oxides.
Akita, Tomoki; Kohyama, Masanori; Haruta, Masatake
2013-08-20
Many researchers have investigated the catalytic performance of gold nanoparticles (GNPs) supported on metal oxides for various catalytic reactions of industrial importance. These studies have consistently shown that the catalytic activity and selectivity depend on the size of GNPs, the kind of metal oxide supports, and the gold/metal oxide interface structure. Although researchers have proposed several structural models for the catalytically active sites and have identified the specific electronic structures of GNPs induced by the quantum effect, recent experimental and theoretical studies indicate that the perimeter around GNPs in contact with the metal oxide supports acts as an active site in many reactions. Thus, it is of immense importance to investigate the detailed structures of the perimeters and the contact interfaces of gold/metal oxide systems by using electron microscopy at an atomic scale. This Account describes our investigation, at the atomic scale using electron microscopy, of GNPs deposited on metal oxides. In particular, high-resolution transmission electron microscopy (HRTEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) are valuable tools to observe local atomic structures, as has been successfully demonstrated for various nanoparticles, surfaces, and material interfaces. TEM can be applied to real powder catalysts as received without making special specimens, in contrast to what is typically necessary to observe bulk materials. For precise structure analyses at an atomic scale, model catalysts prepared by using well-defined single-crystalline substrates are also adopted for TEM observations. Moreover, aberration-corrected TEM, which has high spatial resolution under 0.1 nm, is a promising tool to observe the interface structure between GNPs and metal oxide supports including oxygen atoms at the interfaces. The oxygen atoms in particular play an important role in the behavior of gold/metal oxide interfaces, because they may participate in catalytic reaction steps. Detailed information about the interfacial structures between GNPs and metal oxides provides valuable structure models for theoretical calculations which can elucidate the local electronic structure effective for activating a reactant molecule. Based on our observations with HRTEM and HAADF-STEM, we report the detailed structure of gold/metal oxide interfaces.
Tang, Shoufeng; Yuan, Deling; Zhang, Qi; Liu, Yameng; Zhang, Qi; Liu, Zhengquan; Huang, Haiming
2016-09-01
A Fe-Mn bi-metallic oxide supported on granular activated carbon (Fe-Mn GAC) has been fabricated by an impregnation-desiccation method and tested in the catalytic ozonation of methyl orange (MO) degradation and mineralization. X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy characterizations revealed that Fe-Mn oxides were successfully loaded and uniformly distributed on the GAC, and nitrogen adsorption isotherms showed that the supported GAC retained a large surface area and a high pore volume compared with the pristine GAC. The catalytic activity was systematically assessed by monitoring the MO removal efficiencies at different operational parameters, such as catalyst dosage, initial solution pH, and ozone flow rate. The Fe-Mn GAC exhibited better catalytic activity relative to ozone alone and GAC alone, improving the TOC removal by 24.5 and 11.5 % and COD removal by 13.6 and 7.3 %, respectively. The reusability of the hybrid was examined over five consecutive cyclic treatments. The Fe-Mn GAC catalytic activity was only a slight loss in the cycles, showing good stability. The addition of Na2CO3 as hydroxyl radicals (•OH) scavengers proved that the catalytic ozonation mechanism was the enhanced generation of •OH by the Fe-Mn GAC. The above results render the Fe-Mn GAC an industrially promising candidate for catalytic ozonation of dye contaminant removal.
Ashikawa, Yuji; Fujimoto, Zui; Usami, Yusuke; Inoue, Kengo; Noguchi, Haruko; Yamane, Hisakazu; Nojiri, Hideaki
2012-06-24
Dihydroxylation of tandemly linked aromatic carbons in a cis-configuration, catalyzed by multicomponent oxygenase systems known as Rieske nonheme iron oxygenase systems (ROs), often constitute the initial step of aerobic degradation pathways for various aromatic compounds. Because such RO reactions inherently govern whether downstream degradation processes occur, novel oxygenation mechanisms involving oxygenase components of ROs (RO-Os) is of great interest. Despite substantial progress in structural and physicochemical analyses, no consensus exists on the chemical steps in the catalytic cycles of ROs. Thus, determining whether conformational changes at the active site of RO-O occur by substrate and/or oxygen binding is important. Carbazole 1,9a-dioxygenase (CARDO), a RO member consists of catalytic terminal oxygenase (CARDO-O), ferredoxin (CARDO-F), and ferredoxin reductase. We have succeeded in determining the crystal structures of oxidized CARDO-O, oxidized CARDO-F, and both oxidized and reduced forms of the CARDO-O: CARDO-F binary complex. In the present study, we determined the crystal structures of the reduced carbazole (CAR)-bound, dioxygen-bound, and both CAR- and dioxygen-bound CARDO-O: CARDO-F binary complex structures at 1.95, 1.85, and 2.00 Å resolution. These structures revealed the conformational changes that occur in the catalytic cycle. Structural comparison between complex structures in each step of the catalytic mechanism provides several implications, such as the order of substrate and dioxygen bindings, the iron-dioxygen species likely being Fe(III)-(hydro)peroxo, and the creation of room for dioxygen binding and the promotion of dioxygen binding in desirable fashion by preceding substrate binding. The RO catalytic mechanism is proposed as follows: When the Rieske cluster is reduced, substrate binding induces several conformational changes (e.g., movements of the nonheme iron and the ligand residue) that create room for oxygen binding. Dioxygen bound in a side-on fashion onto nonheme iron is activated by reduction to the peroxo state [Fe(III)-(hydro)peroxo]. This state may react directly with the bound substrate, or O-O bond cleavage may occur to generate Fe(V)-oxo-hydroxo species prior to the reaction. After producing a cis-dihydrodiol, the product is released by reducing the nonheme iron. This proposed scheme describes the catalytic cycle of ROs and provides important information for a better understanding of the mechanism.
NASA Astrophysics Data System (ADS)
Crock, Christopher A.
Halogenated organics are categorized as primary pollutants by the Environmental Protection Agency. Trichloroethylene (TCE), which had broad industrial use in the past, shows persistence in the environment because of its chemical stability. The large scale use and poor control of TCE resulted in its prolonged release into the environment before the carcinogenic risk associated with TCE was fully understood. TCE pollution stemmed from industrial effluents and improper disposal of solvent waste. Membrane reactors are promising technology for treating TCE polluted groundwater because of the high throughput, relatively low cost of membrane fabrication and facile retrofitting of existing membrane based water treatment facilities with catalytic membrane reactors. Compared to catalytic fluidized or fixed bed reactors, catalytic membrane reactors feature minimal diffusional limitation. Additionally, embedding catalyst within the membrane avoids the need for catalyst recovery and can prevent aggregation of catalytic nanoparticles. In this work, Pd/xGnP, Pd-Au/xGnP, and commercial Pd/Al2O3 nanoparticles were employed in batch and flow-through membrane reactors to catalyze the dehalogenation of TCE in the presence of dissolved H2. Bimetallic Pd-Au/xGnP catalysts were shown to be more active than monometallic Pd/xGnP or commercial Pd/Al 2O3 catalysts. In addition to synthesizing nanocomposite membranes for high-throughput TCE dehalogenation, the membrane based dehalogenation process was designed to minimize the detrimental impact of common catalyst poisons (S2-, HS-, and H2S -) by concurrent oxidation of sulfide species to gypsum in the presence of Ca2+ and removal of gypsum through membrane filtration. The engineered membrane dehalogenation process demonstrated that bimetallic Pd-Au/xGnP catalysts resisted deactivation by residual sulfide species after oxidation, and showed complete removal of gypsum during membrane filtration.
Ma, Jie; Yang, Mingxuan; Yu, Fei; Chen, Junhong
2015-04-15
We report a facile solid method to synthesize efficient carbon-based Fenton-like catalyst (CNTs/FeS) using as-prepared carbon nanotubes (APCNTs), which makes full use of the iron nanoparticles in APCNTs without needless purification. Furthermore, the CNTs/FeS was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric (TG) and other analysis techniques, and then the CNTs/FeS was used as a Fenton-like catalyst for removing ciprofloxacin from aqueous solution. Response Surface Methodology (RSM) was applied to find the effect of the reaction parameter and the optimum operating condition. Results shows the catalytic reaction had better suitability than previous studies in a wide range of pH values (pH 3-8) and the Fenton-like catalyst CNTs/FeS exhibits good catalytic activity for removing of antibiotic, which be attributed to the synergistic effect of adsorption-advanced oxidation and significantly improves efficiency of advanced oxidation. More importantly, the CNTs/FeS catalyst exhibit good regeneration performance and retains a high catalytic capacity (>75%) even after four reaction cycles. The catalytic mechanism were also studied further, the removal mechanism of ciprofloxacin by a CNTs/FeS heterogeneous Fenton-like process primarily involves three removal pathways occurring simultaneously: (a) adsorption removal by CNTs, (b) Fenton-like degradation catalyzed by FeS, (c) catalytic degradation by CNTs catalyst. And these actions also have synergistic effects for ciprofloxacin removal. Copyright © 2014 Elsevier Inc. All rights reserved.
Li, Shunfang; Zhao, Xingju; Shi, Jinlei; Jia, Yu; Guo, Zhengxiao; Cho, Jun-Hyung; Gao, Yanfei; Zhang, Zhenyu
2016-09-28
Exploration of the catalytic activity of low-dimensional transition metal (TM) or noble metal catalysts is a vital subject of modern materials science because of their instrumental role in numerous industrial applications. Recent experimental advances have demonstrated the utilization of single atoms on different substrates as effective catalysts, which exhibit amazing catalytic properties such as more efficient catalytic performance and higher selectivity in chemical reactions as compared to their nanostructured counterparts; however, the underlying microscopic mechanisms operative in these single atom catalysts still remain elusive. Based on first-principles calculations, herein, we present a comparative study of the key kinetic rate processes involved in CO oxidation using a monomer or dimer of two representative TMs (Pd and Ni) on defective TiO2(110) substrates (TMn@TiO2(110), n = 1, 2) to elucidate the underlying mechanism of single-atom catalysis. We reveal that the O2 activation rates of the single atom TM catalysts deposited on TiO2(110) are governed cooperatively by the classic spin-selection rule and the well-known frontier orbital theory (or generalized d-band picture) that emphasizes the energy gap between the frontier orbitals of the TM catalysts and O2 molecule. We further illuminate that the subsequent CO oxidation reactions proceed via the Langmuir-Hinshelwood mechanism with contrasting reaction barriers for the Pd monomer and dimer catalysts. These findings not only provide an explanation for existing observations of distinctly different catalytic activities of Pd@TiO2(110) and Pd2@TiO2(110) [Kaden et al., Science, 2009, 326, 826-829] but also shed new insights into future utilization and optimization of single-atom catalysis.
NASA Technical Reports Server (NTRS)
Perry, J. L.; Tomes, K. M.; Roychoudhury, S.; Tatara, J. D.
2005-01-01
Contaminated air and process gases, whether in a crewed spacecraft cabin atmosphere, the working volume of a microgravity science or ground-based laboratory experiment facility, or the exhaust from an automobile, are pervasive problems that ultimately effect human health, performance, and well-being. The need for highly-effective, economical decontamination processes spans a wide range of terrestrial and space flight applications. Adsorption processes are used widely for process gas decontamination. Most industrial packed bed adsorption processes use activated carbon because it is cheap and highly effective. Once saturated, however, the adsorbent is a concentrated source of contaminants. Industrial applications either dump or regenerate the activated carbon. Regeneration may be accomplished in-situ or at an off-site location. In either case, concentrated contaminated waste streams must be handled appropriately to minimize environmental impact. As economic and regulatory forces drive toward minimizing waste and environmental impact, thermal catalytic oxidation is becoming more attractive. Through novel reactor and catalyst design, more complete contaminant destruction and greater resistance to poisoning can achieved leading to less waste handling, process down-time, and maintenance. Performance of a prototype thermal catalytic reactor, based on ultra-short channel monolith (USCM) catalyst substrate design, under a variety of process flow and contaminant loading conditions is discussed. The experimental results are evaluated against present and future air quality control and process gas purification processes used on board crewed spacecraft.
Alcohols as alkylating agents in heteroarene C-H functionalization
NASA Astrophysics Data System (ADS)
Jin, Jian; MacMillan, David W. C.
2015-09-01
Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage. One of the core principles underlying DNA biosynthesis is the radical-mediated elimination of H2O to deoxygenate ribonucleotides, an example of `spin-centre shift', during which an alcohol C-O bond is cleaved, resulting in a carbon-centred radical intermediate. Although spin-centre shift is a well-understood biochemical process, it is underused by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylation reactions using alcohols as radical precursors. Because conventional radical-based alkylation methods require the use of stoichiometric oxidants, increased temperatures or peroxides, a mild protocol using simple and abundant alkylating agents would have considerable use in the synthesis of diversely functionalized pharmacophores. Here we describe the development of a dual catalytic alkylation of heteroarenes, using alcohols as mild alkylating reagents. This method represents the first, to our knowledge, broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer catalysis. The value of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone.
Alcohols as alkylating agents in heteroarene C-H functionalization.
Jin, Jian; MacMillan, David W C
2015-09-03
Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage. One of the core principles underlying DNA biosynthesis is the radical-mediated elimination of H2O to deoxygenate ribonucleotides, an example of 'spin-centre shift', during which an alcohol C-O bond is cleaved, resulting in a carbon-centred radical intermediate. Although spin-centre shift is a well-understood biochemical process, it is underused by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylation reactions using alcohols as radical precursors. Because conventional radical-based alkylation methods require the use of stoichiometric oxidants, increased temperatures or peroxides, a mild protocol using simple and abundant alkylating agents would have considerable use in the synthesis of diversely functionalized pharmacophores. Here we describe the development of a dual catalytic alkylation of heteroarenes, using alcohols as mild alkylating reagents. This method represents the first, to our knowledge, broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer catalysis. The value of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone.
Graciani, J.; Stacchiola, D.; Yang, F.; ...
2015-09-09
Nanostructured RuO x/TiO 2(110) catalysts have a remarkable catalytic activity for CO oxidation at temperatures in the range of 350–375 K. Furthermore, the RuO 2(110) surface has no activity. The state-of-the-art DFT calculations indicate that the main reasons for such an impressive improvement in the catalytic activity are: (i) a decrease of the diffusion barrier of adsorbed O atoms by around 40%, from 1.07 eV in RuO 2(110) to 0.66 eV in RuO x/TiO 2(110), which explains the shift of the activity to lower temperatures and (ii) a lowering of the barrier by 20% for the association of adsorbed COmore » and O species to give CO 2 (the main barrier for the CO oxidation reaction) passing from around 0.7 eV in RuO 2(110) to 0.55 eV in RuO x/TiO 2(110). We show that the catalytic properties of ruthenia are strongly modified when supported as nanostructures on titania, attaining higher activity at temperatures 100 K lower than that needed for pure ruthenia. As in other systems consisting of ceria nanostructures supported on titania, nanostructured ruthenia shows strongly modified properties compared to the pure oxide, consolidating the fact that the nanostructuring of oxides is a main way to attain higher catalytic activity at lower temperatures.« less
Klungland, Arne; Robertson, Adam B
2017-06-01
Recent reports suggest that the Tet enzyme family catalytically oxidize 5-methylcytosine in mammalian cells. The oxidation of 5-methylcytosine can result in three chemically distinct species - 5-hydroxymethylcytsine, 5-formylcytosine, and 5-carboxycytosine. While the base excision repair machinery processes 5-formylcytosine and 5-carboxycytosine rapidly, 5-hydroxymethylcytosine is stable under physiological conditions. As a stable modification 5-hydroxymethylcytosine has a broad range of functions, from stem cell pluriopotency to tumorigenesis. The subsequent oxidation products, 5-formylcytosine and 5-carboxycytosine, are suggested to be involved in an active DNA demethylation pathway. This review provides an overview of the biochemistry and biology of 5-methylcytosine oxidation products. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bitterwolf, Thomas E.
2014-12-09
Successful catalytic dehydrogenation of aminoborane, H 3NBH 3, prompted questions as to the potential role of N-H oxidative addition in the mechanisms of these processes. N-H oxidative addition reactions are rare, and in all cases appear to involve initial dative bonding to the metal by the amine lone pairs followed by transfer of a proton to the basic metal. Aminoborane and its trimethylborane derivative block this mechanism and, in principle, should permit authentic N-H oxidative attrition to occur. Extensive experimental work failed to confirm this hypothesis. In all cases either B-H complexation or oxidative addition of solvent C-H bonds dominatemore » the chemistry.« less
Catalytic dehydration of ethanol using transition metal oxide catalysts.
Zaki, T
2005-04-15
The aim of this work is to study catalytic ethanol dehydration using different prepared catalysts, which include Fe(2)O(3), Mn(2)O(3), and calcined physical mixtures of both ferric and manganese oxides with alumina and/or silica gel. The physicochemical properties of these catalysts were investigated via X-ray powder diffraction (XRD), acidity measurement, and nitrogen adsorption-desorption at -196 degrees C. The catalytic activities of such catalysts were tested through conversion of ethanol at 200-500 degrees C using a catalytic flow system operated under atmospheric pressure. The results obtained indicated that the dehydration reaction on the catalyst relies on surface acidity, whereas the ethylene production selectivity depends on the catalyst chemical constituents.
Liu, Dong; Li, Wenjia; Li, Libo; Ling, Hao; You, Tianyan
2018-06-08
A novel hairy-shaped Ni nanowire embedded nitrogen and sulfur dual-doped carbon nanofibers (Ni/N,S-CNFs) with superior electrocatalytic properties for urea oxidation reaction (UOR) was reported. The Ni/N,S-CNFs was prepared by electrospinning and carbonization process, using melamine-trithiocyanuric acid (MTCA) aggregates as both the N and S element sources. Noteworthy, MTCA also favored the formation of Ni nanowire via vapor liquid-solid mechanism, while Ni nanoparticles loaded CNFs (Ni/CNFs) was obtained without MTCA. For UOR tests, a high peak current intensity of 37.0 mA mg -1 was obtained on Ni/N,S-CNFs at 0.42 V (vs. SCE), 2-times higher of that on Ni/CNFs. Besides, the catalytic stability of Ni/N,S-CNFs was also improved. The enhanced catalytic properties of Ni/N,S-CNFs for UOR were ascribed to its unique Ni nanowires structure as well as the N, S dual-doping. Our work reveals that the property improvement of metal-based catalysts could be achieved by the heteroatom doping to fine the metal nanostructure. Copyright © 2018. Published by Elsevier Inc.
Degradation pathway of malachite green in a novel dual-tank photoelectrochemical catalytic reactor.
Diao, Zenghui; Li, Mingyu; Zeng, Fanyin; Song, Lin; Qiu, Rongliang
2013-09-15
A novel dual-tank photoelectrochemical catalytic reactor was designed to investigate the degradation pathway of malachite green. A thermally formed TiO₂/Ti thin film electrode was used as photoanode, graphite was used as cathode, and a saturated calomel electrode was employed as the reference electrode in the reactor. In the reactor, the anode and cathode tanks were connected by a cation exchange membrane. Results showed that the decolorization ratio of malachite green in the anode and cathode was 98.5 and 96.5% after 120 min, respectively. Malachite green in the two anode and cathode tanks was oxidized, achieving the bipolar double effect. Malachite green in both the anode and cathode tanks exhibited similar catalytic degradation pathways. The double bond of the malachite green molecule was attacked by strong oxidative hydroxyl radicals, after which the organic compound was degraded by the two pathways into 4,4-bis(dimethylamino) benzophenone, 4-(dimethylamino) benzophenone, 4-(dimethylamino) phenol, and other intermediate products. Eventually, malachite green was degraded into oxalic acid as a small molecular organic acid, which was degraded by processes such as demethylation, deamination, nitration, substitution, addition, and other reactions. Copyright © 2013 Elsevier B.V. All rights reserved.
Catalytic conversion of light alkanes. Final report, January 1, 1990--October 31, 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
During the course of the first three years of the Cooperative Agreement (Phase I-III), we uncovered a family of metal perhaloporphyrin complexes which had unprecedented activity for the selective air-oxidation of fight alkanes to alcohols. The reactivity of fight hydrocarbon substrates with air or oxygen was in the order: isobutane>propane>ethane>methane, in accord with their homolytic bond dissociation energies. Isobutane was so reactive that the proof-of concept stage of a process for producing tert-butyl alcohol from isobutane was begun (Phase V). It was proposed that as more active catalytic systems were developed (Phases IV, VI), propane, then ethane and finally methanemore » oxidations will move into this stage (Phases VII through IX). As of this writing, however, the program has been terminated during the later stages of Phases V and VI so that further work is not anticipated. We made excellent progress during 1994 in generating a class of less costly new materials which have the potential for high catalytic activity. New routes were developed for replacing costly perfluorophenyl groups in the meso-position of metalloporphyrin catalysts with far less expensive and lower molecular weight perfluoromethyl groups.« less
Processing and synthesis of multi-metallic nano oxide ceramics via liquid-feed flame spray pyrolysis
NASA Astrophysics Data System (ADS)
Azurdia, Jose Antonio
The liquid-feed flame spray pyrolysis (LF-FSP) process aerosolizes metal-carboxylate precursors dissolved in alcohol with oxygen and combusts them at >1500°C. The products are quenched rapidly (˜10s msec) to < 400°C. By selecting the appropriate precursor mixtures, the compositions of the resulting oxide nanopowders can be tailored easily, which lends itself to combinatorial studies of systems facilitating material property optimization. The resulting nanopowders typically consist of single crystal particles with average particle sizes (APS) < 35 nm, specific surface areas (SSA) of 20-60 m2/g and spherical morphology. LF-FSP provides access to novel single phase nanopowders, known phases at compositions outside their published phase diagrams, intimate mixing at nanometer length scales in multi metallic oxide nanopowders, and control of stoichiometry to ppm levels. The materials produced may exhibit unusual properties including structural, catalytic, and photonic ones and lower sintering temperatures. Prior studies used LF-FSP to produce MgAl2O4 spinel for applications in transparent armor and IR radomes. In these studies, a stable spinel structure with a (MgO)0.1(Al2O3)0.9 composition well outside the known phase field was observed. The work reported here extends this observation to two other spinel systems: Al2O3-NiO, Al2O3-CoOx; followed by three series of transition metal binary oxides, NiO-CoO, NiO-MoO3, NiO-CuO. The impetus to study spinels derives both from the fact that a number of them are known transparent ceramics, but also others offer high SSAs coupled with unusual phases that suggest potentially novel catalytic materials. Because LF-FSP provides access to any composition, comprehensive studies of the entire tie-lines were conducted rather than just compositions of value for catalytic applications. Initial efforts established baseline properties for the nano aluminate spinels, then three binary transition metal oxide sets (Ni-Co, Ni-Mo and Ni-Cu) known for their catalytic properties. These materials then serve as baseline studies for ternary systems, such as Al:(Ni-Co)O, or Al(Ni-Cu)O likely to offer superior catalytic properties because of the relatively high SSA Al2O3. The final chapter returns to photonic materials, in the MgO-Y2O 3 system targeting transparent ceramics through select compositions along the tie-line. The work presented here builds on the MgAl2O 4 spinel material and continues to develop the processing techniques required to achieve transparent nano-grained ceramic materials. Thus the overall goal of this dissertation was to systematically produce novel nano-oxide materials and characterized their material properties. The first chapters focus on solid solutions at low Ni or Co amounts that form phase pure spinels outside the expected composition range, at 21-22 mol % NiO and CoO. Additionally, (NiO)0.22(Al2O3) 0.78 was found to be very stable, as it did not convert to alpha-Al 2O3 plus cubic-NiO on heating to 1200°C for 10 h. The last chapter is a preliminary step toward identifying optimal Y 2O3-MgO powders that can be transparent ceramics. Ball milling led to much higher adsorption of surface species. Preliminary sintering studies of the this system showed that vacuum has the largest effect on lowering the temperature of maximum shrinkage rate by ≤ 80°C.
NASA Astrophysics Data System (ADS)
Al-Alawi, Reem A.; Laxman, Karthik; Dastgir, Sarim; Dutta, Joydeep
2016-07-01
For supported heterogeneous catalysis, the interface between a metal nanoparticle and the support plays an important role. In this work the dependency of the catalytic efficiency on the bonding chemistry of platinum nanoparticles supported on zinc oxide (ZnO) nanorods is studied. Platinum nanoparticles were deposited on ZnO nanorods (ZnO NR) using thermal and photochemical processes and the effects on the size, distribution, density and chemical state of the metal nanoparticles upon the catalytic activities are presented. The obtained results indicate that the bonding at Pt-ZnO interface depends on the deposition scheme which can be utilized to modulate the surface chemistry and thus the activity of the supported catalysts. Additionally, uniform distribution of metal on the catalyst support was observed to be more important than the loading density. It is also found that oxidized platinum Pt(IV) (platinum hydroxide) provided a more suitable surface for enhancing the transfer hydrogenation reaction of cyclohexanone with isopropanol compared to zero valent platinum. Photochemically synthesized ZnO supported nanocatalysts were efficient and potentially viable for upscaling to industrial applications.
Catalytic conversion of methane to methanol using Cu-zeolites.
Alayon, Evalyn Mae C; Nachtegaal, Maarten; Ranocchiari, Marco; van Bokhoven, Jeroen A
2012-01-01
The conversion of methane to value-added liquid chemicals is a promising answer to the imminent demand for fuels and chemical synthesis materials in the advent of a dwindling petroleum supply. Current technology requires high energy input for the synthesis gas production, and is characterized by low overall selectivity, which calls for alternative reaction routes. The limitation to achieve high selectivity is the high C-H bond strength of methane. High-temperature reaction systems favor gas-phase radical reactions and total oxidation. This suggests that the catalysts for methane activation should be active at low temperatures. The enzymatic-inspired metal-exchanged zeolite systems apparently fulfill this need, however, methanol yield is low and a catalytic process cannot yet be established. Homogeneous and heterogeneous catalytic systems have been described which stabilize the intermediate formed after the first C-H activation. The understanding of the reaction mechanism and the determination of the active metal sites are important for formulating strategies for the upgrade of methane conversion catalytic technologies.
Wickham, David [Boulder, CO; Cook, Ronald [Lakewood, CO
2008-10-28
The present invention provides metal-exchanged hexaaluminate catalysts that exhibit good catalytic activity and/or stability at high temperatures for extended periods with retention of activity as combustion catalysts, and more generally as oxidation catalysts, that make them eminently suitable for use in methane combustion, particularly for use in natural gas fired gas turbines. The hexaaluminate catalysts of this invention are of particular interest for methane combustion processes for minimization of the generation of undesired levels (less than about 10 ppm) of NOx species. Metal exchanged hexaaluminate oxidation catalysts are also useful for oxidation of volatile organic compounds (VOC), particularly hydrocarbons. Metal exchanged hexaaluminate oxidation catalysts are further useful for partial oxidation, particularly at high temperatures, of reduced species, particularly hydrocarbons (alkanes and alkenes).
NASA Astrophysics Data System (ADS)
Wang, Qi
Transition metal oxides (TMOs) constitute a large group of materials that exhibit a wide range of optical, electrical, electrochemical, dielectric and catalytic properties, and thus making them highly regarded as promising materials for a variety of applications in next generation electronic, optoelectronic, catalytic, photonic, energy storage and energy conversion devices. Some of the unique properties of TMOs are their strong electron-electron correlations that exists between the valence electrons of narrow d- or f-shells and their ability to exist in variety of oxidation states. This gives TMOs an enormous range of fascinating electronic and other physical properties. Many of these remarkable properties of TMOs arises from the complex surface charge transfer processes at the oxide surface/electrochemical redox species interface and non-stoichiometry due to the presence of lattice vacancies that may cause significant perturbation to the electronic structure of the material. Stoichiometry, oxidation state of the metal center and lattice vacancy defects all play important roles in affecting the physical properties, electronic structures, device behavior and other functional properties of TMOs. However, the underlying relationships between them is not clearly known. For instance, the exchange of electrons between adsorbates and defects can lead to the passivation of existing defect states or formation of new defects, both of which affect defect equilibria, and consequently, functional properties. In depth understanding of the role of lattice defects on the electrical, catalytic and optical properties of TMOs is central to further expansion of the technological applications of TMO based devices. The focus of this work is to elucidate the interactions of vacancy defects with various electrochemical adsorbates in TMOs. The ability to directly probe the interactions of vacancy defects with gas and liquid phase species under in-operando conditions is highly desirable to obtain a mechanistic understanding of the charge transfer process. We have developed a spectroscopic technique for studying vacancy defects in TMOs using near-infrared photoluminescence (NIR-PL) spectroscopy and showed that this technique is uniquely suited for studying defect-adsorbate interactions. In this work, a series of studies were carried out to elucidate the underlying structure-defect-property correlations of TMOs and their role in catalyzing electrical and electrochemical properties. In the first study, we report a new type of electrical phase transition in p-type, non-stoichiometric nickel oxide involving a semiconductor-to-insulator-to-metal transition along with the complete change of conductivity from p- to n-type at room temperature induced by electrochemical Li+ intercalation. Direct observation of vacancy-ion interactions using in-situ NIR-PL show that the transition is a result of passivation of native nickel (cationic) vacancy defects and subsequent formation of oxygen (anionic) vacancy defects driven by Li+ insertion into the lattice. X-ray photoemission spectroscopy studies performed to examine the changes in the oxidation states of nickel due to defect interactions support the above conclusions. In the second study, main effects of oxygen vacancy defects on the electronic and optical properties of V2O5 nanowires were studied using in-situ Raman, photoluminescence, absorption, and photoemission spectroscopy. We show that both thermal reduction and electrochemical reduction via Li+ insertion results in the creation of oxygen vacancy defects in the crystal that leads to band filling and an increase in the optical band gap of V2O5 from 1.95 eV to 2.45 eV, an effect known as the Burstein-Moss effect. In the third study, we report a new type of semiconductor-adsorbed water interaction in metal oxides known as "electrochemical surface transfer doping," a phenomenon that has been previously been observed on hydrogen-terminated diamond, carbon nanotube, gallium nitride and zinc oxide. Most TMOs at room temperature are known to be strongly hydrated. We show that an adsorbed water film present on the surface of TMOs facilitates the dissolution of gaseous species and promotes charge transfers at the adsorbed-water/oxide interfaces. Further, we show the role of vacancy defects in enhancing catalytic processes by directly monitoring the charge transfer process between gaseous species and vacancy defects in non-stoichiometric p-type nickel oxide and n-type tungsten oxide using in-situ NIR-PL, electrical resistance, and X-ray photoelectron spectroscopy. We find the importance of adsorbed water and vacancy defects in affecting catalytic, electronic, electrical, and optical changes such as insulator-to-metal transitions and radiative emissions during electrochemical reactions. In addition, we demonstrate that electrochemical surface transfer doping exists in another system, specifically, in gallium nitride, and the presence of this adsorbed water film present on the surface of GaN induces electron transfer from GaN that leads to the formation of an electron depletion region on the surface.
Schwartz, Michael; White, James H.; Sammells, Anthony F.
2005-09-27
This invention relates to gas-impermeable, solid state materials fabricated into membranes for use in catalytic membrane reactors. This invention particularly relates to solid state oxygen anion- and electron-mediating membranes for use in catalytic membrane reactors for promoting partial or full oxidation of different chemical species, for decomposition of oxygen-containing species, and for separation of oxygen from other gases. Solid state materials for use in the membranes of this invention include mixed metal oxide compounds having the brownmillerite crystal structure.
Schwartz, Michael; White, James H.; Sammels, Anthony F.
2000-01-01
This invention relates to gas-impermeable, solid state materials fabricated into membranes for use in catalytic membrane reactors. This invention particularly relates to solid state oxygen anion- and electron-mediating membranes for use in catalytic membrane reactors for promoting partial or full oxidation of different chemical species, for decomposition of oxygen-containing species, and for separation of oxygen from other gases. Solid state materials for use in the membranes of this invention include mixed metal oxide compounds having the brownmillerite crystal structure.
Catalytic oxidation for treatment of ECLSS and PMMS waste streams
NASA Technical Reports Server (NTRS)
Akse, James R.; Jolly, Clifford D.
1991-01-01
It is shown that catalytic oxidation is an effective technique for the removal of trace organic contaminants in a multifiltration potable processor's effluent. Essential elements of this technology are devices that deliver oxygen to the influent, and remove gaseous reaction byproducts from the effluent, via hollow-tube, gas-permeable membranes. Iodine, which poisons existing catalysis, is removed by a small deiodination bed prior to catalytic reactor entrance. The catalyst used is a mixture of Pt and Ru deposited on carbon, operating at 125-160 C and 39-90 psi pressures.
Ren, Miao; Liu, Haiyang; Qu, Jiao; Zhang, Yanan; Ma, Ying; Yuan, Xing
2018-03-07
The graphene (GR)/TiO 2 membrane was prepared by the sol-gel method and coated on the indium tin oxide (ITO) conductive glass, which showed high and stable photo(-electro)-catalytic activities to rhodamine B (Rh-B) in water. Characterization results showed that the GR was dispersed and wrapped in the needle-like TiO 2 . With GR/TiO 2 membrane and simulated sunlight irradiation, the removal efficiency of Rh-B (10 mg l -1 and pH at 5.4) arrived at 87.6% within 300 min. However, the higher removal efficiency for Rh-B reached to 97.8% by the photo-electro-catalytic degradation with the applied voltage 4 v for 30 min. The ·OH that generated in the photo-catalytic degradation process were responsible for Rh-B decomposition. The ·O 2 - played the significant role in the photo-electro-catalytic degradation of Rh-B. Furthermore, the decarboxylation was also occurred in the photo-electro-catalytic degradation for the Rh-B in water except for the deethylation and hydroxylation in the photo-catalytic degradation. In addition, the toxicities of the intermediates were calculated using the ECOSAR program and the EPIWIN software. The results indicated that the toxicities of intermediates from photo-electro-catalytic degradation for the Rh-B were higher than photo-catalytic degradation, due to the generation of decarboxylate.
Direct Visualization of Catalytically Active Sites at the FeO–Pt(111) Interface
Kudernatsch, Wilhelmine; Peng, Guowen; Zeuthen, Helene; ...
2015-05-31
Within the area of surface science, one of the “holy grails” is to directly visualize a chemical reaction at the atomic scale. Whereas this goal has been reached by high-resolution scanning tunneling microscopy (STM) in a number of cases for reactions occurring at flat surfaces, such a direct view is often inhibited for reaction occurring at steps and interfaces. Here we have studied the CO oxidation reaction at the interface between ultrathin FeO islands and a Pt(111) support by in situ STM and density functional theory (DFT) calculations. Time-lapsed STM imaging on this inverse model catalyst in O 2 andmore » CO environments revealed catalytic activity occurring at the FeO–Pt(111) interface and directly showed that the Fe-edges host the catalytically most active sites for the CO oxidation reaction. This is an important result since previous evidence for the catalytic activity of the FeO–Pt(111) interface is essentially based on averaging techniques in conjunction with DFT calculations. As a result, the presented STM results are in accord with DFT+U calculations, in which we compare possible CO oxidation pathways on oxidized Fe-edges and O-edges. We found that the CO oxidation reaction is more favorable on the oxidized Fe-edges, both thermodynamically and kinetically.« less
Water-Gas Shift and Methane Reactivity on Reducible Perovskite-Type Oxides
2015-01-01
Comparative (electro)catalytic, structural, and spectroscopic studies in hydrogen electro-oxidation, the (inverse) water-gas shift reaction, and methane conversion on two representative mixed ionic–electronic conducting perovskite-type materials La0.6Sr0.4FeO3−δ (LSF) and SrTi0.7Fe0.3O3−δ (STF) were performed with the aim of eventually correlating (electro)catalytic activity and associated structural changes and to highlight intrinsic reactivity characteristics as a function of the reduction state. Starting from a strongly prereduced (vacancy-rich) initial state, only (inverse) water-gas shift activity has been observed on both materials beyond ca. 450 °C but no catalytic methane reforming or methane decomposition reactivity up to 600 °C. In contrast, when starting from the fully oxidized state, total methane oxidation to CO2 was observed on both materials. The catalytic performance of both perovskite-type oxides is thus strongly dependent on the degree/depth of reduction, on the associated reactivity of the remaining lattice oxygen, and on the reduction-induced oxygen vacancies. The latter are clearly more reactive toward water on LSF, and this higher reactivity is linked to the superior electrocatalytic performance of LSF in hydrogen oxidation. Combined electron microscopy, X-ray diffraction, and Raman measurements in turn also revealed altered surface and bulk structures and reactivities. PMID:26045733
NASA Astrophysics Data System (ADS)
Lesbani, Aldes; Novri Meilyana, Sarah; Karim, Nofi; Hidayati, Nurlisa; Said, Muhammad; Mohadi, Risfidian; Miksusanti
2018-01-01
Supported polyoxometalatate H4[γ-H2SiV2W10O40]·nH2O with metal oxide i.e. silica, titanium, and tantalum was successfully synthesized via wet impregnation method to form H4[γ-H2SiV2W10O40]·nH2O-Si, H4[γ-H2SiV2W10O40]·nH2O-Ti, and H4[γ-H2SiV2W10O40]·nH2O-Ta. Characterization was performed using FTIR spectroscopy, X-Ray analyses, and morphology analyses using SEM. All compounds were used as the catalyst for desulfurization of dibenzothiophene (DBT). Silica and titanium supported polyoxometalate H4[γ-H2SiV2W10O40]·nH2O better than tantalum due to retaining crystallinity after impregnation process. On the other hand, compound H H4[γ-H2SiV2W10O40]·nH2O-Ta showed high catalytic activity than other supported metal oxides for desulfurization of DBT. Optimization desulfurization process resulted in 99% conversion of DBT under a mild condition at 70 °C, 0.1 g catalyst, and reaction for 3 hours. Regeneration studies showed catalyst H4[γ-H2SiV2W10O40]·nH2O-Ti was remaining catalytic activity for desulfurization of DBT.
Kinetic and catalytic analysis of mesoporous metal oxides on the oxidation of Rhodamine B
NASA Astrophysics Data System (ADS)
Xaba, Morena S.; Noh, Ji-Hyang; Mokgadi, Keabetswe; Meijboom, Reinout
2018-05-01
In this study, we demonstrate the synthesis and catalytic activity of different mesoporous transition metal oxides, silica (SiO2), copper oxide (CuO), chromium oxide (Cr2O3), iron oxide (Fe2O3) cobalt oxide (Co3O4), cerium oxide (CeO2) and nickel oxide (NiO), on the oxidation of a pollutant dye, Rhodamine B (RhB). These metal oxides were synthesized by inverse micelle formation method and characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), adsorption-desorption isotherms (BET) and H2-temperature programmed reduction (TPR). UV-vis spectrophotometry was used to monitor the time-resolved absorbance of RhB at λmax = 554 nm. Mesoporous copper oxide was calcined at different final heating temperatures of 250, 350, 450 and 550 °C, and each mesoporous copper oxide catalyst showed unique physical properties and catalytic behavior. Mesoporous CuO-550 with the smallest characteristic path length δ, proved to be the catalyst of choice for the oxidation of RhB in aqueous media. We observed that the oxidation of RhB in aqueous media is dependent on the crystallite size and characteristic path length of the mesoporous metal oxide. The Langmuir-Hinshelwood model was used to fit the experimental data and to prove that the reaction occurs on the surface of the mesoporous CuO. The thermodynamic parameters, EA, ΔH#, ΔS# and ΔG# were calculated and catalyst recycling and reusability were demonstrated.
Du, Shuting; Li, Fen; Sun, Qiming; Wang, Ning; Jia, Mingjun; Yu, Jihong
2016-02-25
Hierarchical TS-1 zeolites with uniform intracrystalline mesopores have been successfully synthesized through the hydrothermal method by using the green and cheap surfactant Triton X-100 as the mesoporous template. The resultant materials exhibit remarkably enhanced catalytic activity in oxidative desulfurization reactions compared to the conventional TS-1 zeolite.
40 CFR Table 1 to Subpart Sssss of... - Emission Limits
Code of Federal Regulations, 2012 CFR
2012-07-01
... that are controlled with a thermal or catalytic oxidizer a. The 3-hour block average THC concentration... the outlet of the control device; or b. The 3-hour block average THC mass emissions rate must be... than a thermal or catalytic oxidizer a. The 3-hour block average THC concentration must not exceed 20...
40 CFR Table 1 to Subpart Sssss of... - Emission Limits
Code of Federal Regulations, 2013 CFR
2013-07-01
... that are controlled with a thermal or catalytic oxidizer a. The 3-hour block average THC concentration... the outlet of the control device; or b. The 3-hour block average THC mass emissions rate must be... than a thermal or catalytic oxidizer a. The 3-hour block average THC concentration must not exceed 20...
40 CFR Table 1 to Subpart Sssss of... - Emission Limits
Code of Federal Regulations, 2014 CFR
2014-07-01
... that are controlled with a thermal or catalytic oxidizer a. The 3-hour block average THC concentration... the outlet of the control device; or b. The 3-hour block average THC mass emissions rate must be... than a thermal or catalytic oxidizer a. The 3-hour block average THC concentration must not exceed 20...
40 CFR Table 1 to Subpart Sssss of... - Emission Limits
Code of Federal Regulations, 2011 CFR
2011-07-01
... that are controlled with a thermal or catalytic oxidizer a. The 3-hour block average THC concentration... the outlet of the control device; or b. The 3-hour block average THC mass emissions rate must be... than a thermal or catalytic oxidizer a. The 3-hour block average THC concentration must not exceed 20...
40 CFR Table 1 to Subpart Sssss of... - Emission Limits
Code of Federal Regulations, 2010 CFR
2010-07-01
... that are controlled with a thermal or catalytic oxidizer a. The 3-hour block average THC concentration... the outlet of the control device; or b. The 3-hour block average THC mass emissions rate must be... than a thermal or catalytic oxidizer a. The 3-hour block average THC concentration must not exceed 20...
Xiao, Jie; Khan, Munirah; Singh, Archana; Suljoti, Edlira; Spiccia, Leone; Aziz, Emad F
2015-03-01
Changes in the local electronic structure of the Mn 3d orbitals of a Mn catalyst derived from a dinuclear Mn(III) complex during the water oxidation cycle were investigated ex situ by X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) analyses. Detailed information about the Mn 3d orbitals, especially the local HOMO-LUMO gap on Mn sites revealed by RIXS analyses, indicated that the enhancement in catalytic activity (water oxidation) originated from the narrowing of the local HOMO-LUMO gap when electrical voltage and visible light illumination were applied simultaneously to the Mn catalytic system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Anti-site defected MoS2 sheet for catalytic application
NASA Astrophysics Data System (ADS)
Sharma, Archana; Husain, Mushahid; Khan, Mohd. Shahid
2018-04-01
To prevent harmful and poisonous CO gas molecules, catalysts are needed for converting them into benign substances. Density functional theory (DFT) calculations have been used to investigate CO oxidation on the surface of MoS2 monolayer with Mo atom embedded at S-vacancy site (anti-site defect). The stronger interaction between Mo metal with O2 molecule as compared with CO molecule suggests high catalytic activity. The complete oxidation of CO is studied in a two-step procedure using Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms with a low overall energy barrier of 0.35 eV. Creation of anti-site defect makes the surface of MoS2 nanosheet catalytically active for the CO oxidation to take place.
Modeling of carbon monoxide oxidation kinetics over NASA carbon dioxide laser catalysts
NASA Technical Reports Server (NTRS)
Herz, Richard K.
1989-01-01
The recombination of CO and O2 formed by the dissociation of CO2 in a sealed CO2 laser discharge zone is examined. Conventional base-metal-oxide catalysts and conventional noble-metal catalysts are not effective in recombining the low O2/CO ratio at the low temperatures used by the lasers. The use of Pt/SnO2 as the noble-metal reducible-oxide (NMRO), or other related materials from Group VIIIA and IB and SnO2 interact synergistically to produce a catalytic activity that is substantially higher than either componet separately. The Pt/SnO2 and Pd/SnO2 were reported to have significant reaction rates at temperatures as low as -27 C, conditions under which conventional catalysts are inactive. The gas temperature range of lasers is 0 + or - 40 C. There are three general ways in which the NMRO composite materials can interact synergistically: one component altering the properties of another component; the two components each providing independent catalytic functions in a complex reaction mechanism; and the formation of catalytic sites through the combination of two components at the atomic level. All three of these interactions may be important in low temperature CO oxidation over NMRO catalysts. The effect of the noble metal on the oxide is discussed first, followed by the effect of the oxide on the noble metal, the interaction of the noble metal and oxide to form catalytic sites, and the possible ways in which the CO oxidation reaction is catalyzed by the NMRO materials.
Mitchell, Lorna J; Moody, Christopher J
2014-11-21
Alcohols are converted into to their corresponding carbonyl compounds using catalytic amounts of 1,4-hydroquinone with a copper nanoparticle electron transfer mediator with oxygen as the terminal oxidant in acetone as solvent under visible light irradiation. These conditions employing biorenewable hydroquinone as reagent were developed from initial experiments using stoichiometric amounts of 1,4-benzoquinone as oxidant. A range of benzylic and aliphatic primary and secondary alcohols are oxidized, affording the corresponding aldehydes or ketones in moderate to excellent yields. The methodology is also applicable to the oxidative degradation of lignin model compounds that undergo C-C bond cleavage to give simple aromatic compounds.
The mystery of gold's chemical activity: local bonding, morphology and reactivity of atomic oxygen.
Baker, Thomas A; Liu, Xiaoying; Friend, Cynthia M
2011-01-07
Recently, gold has been intensely studied as a catalyst for key synthetic reactions. Gold is an attractive catalyst because, surprisingly, it is highly active and very selective for partial oxidation processes suggesting promise for energy-efficient "green" chemistry. The underlying origin of the high activity of Au is a controversial subject since metallic gold is commonly thought to be inert. Herein, we establish that one origin of the high activity for gold catalysis is the extremely reactive nature of atomic oxygen bound in 3-fold coordination sites on metallic gold. This is the predominant form of O at low concentrations on the surface, which is a strong indication that it is most relevant to catalytic conditions. Atomic oxygen bound to metallic Au in 3-fold sites has high activity for CO oxidation, oxidation of olefins, and oxidative transformations of alcohols and amines. Among the factors identified as important in Au-O interaction are the morphology of the surface, the local binding site of oxygen, and the degree of order of the oxygen overlayer. In this Perspective, we present an overview of both theory and experiments that identify the reactive forms of O and their associated charge density distributions and bond strengths. We also analyze and model the release of Au atoms induced by O binding to the surface. This rough surface also has the potential for O(2) dissociation, which is a critical step if Au is to be activated catalytically. We further show the strong parallels between product distributions and reactivity for O-covered Au at low pressure (ultrahigh vacuum) and for nanoporous Au catalysts operating at atmospheric pressure as evidence that atomic O is the active species under working catalytic conditions when metallic Au is present. We briefly discuss the possible contributions of oxidants that may contain intact O-O bonds and of the Au-metal oxide support interface in Au catalysis. Finally, the challenges and future directions for fully understanding the activity of gold are considered.
Lyu, Cong; Yang, Xuejiao; Zhang, Shengyu; Zhang, Qihui; Su, Xiaosi
2017-12-29
A promising and easily prepared catalytic filler media, manganese-oxide-coated zeolite (MOCZ), for the removal of Mn (II) contamination in groundwater was studied. The optimal condition for MOCZ preparation was given as follows: acid activation of zeolite with 5% HCl mass percent for 12 h, then soaking of acid-activated zeolite with 7% KMnO 4 mass percent for 8 h, and finally calcination at 300°C for 5 h. Acid activation significantly enlarged the specific surface area of the zeolite (>79 m 2 g -1 ), subsequently enhancing the coating of manganese oxides onto the surface of the zeolite. This was further supported by the manganese-to-zeolite ratio (γ Mn ) and Energy dispersive analysis-mapping. The γ Mn was over 12.26 mg Mn g -1 zeolite, representing more active sites for the adsorption and catalytic-oxidation of Mn (II). As such, great performance of Mn (II) removal by MOCZ was obtained in the filter experiment. An estimated 98-100% removal efficiency of Mn (II) was achieved in a greatly short startup time (only 2 h). During the filtration process, newborn flocculent manganese oxides with a mixed-valence of manganese (Mn (II) and Mn (IV)) were generated on the MOCZ surface, further facilitating the adsorption and catalytic-oxidation of Mn (II). The filter with MOCZ as adsorbent had a great performance on the Mn (II) removal in a wide range of hydraulic retention time (HRT) (4-40 min), particularly in a short HRT. Besides, the filter prolonged the filtration period (60 days), which would significantly reduce the frequency of backwash. Thus, it could be concluded that MOCZ prepared in this study showed a good performance in terms of Mn (II) removal in waterworks, especially small waterworks in the villages/towns.
NASA Astrophysics Data System (ADS)
Li, Wenge; Hu, Yanjie; Jiang, Hao; Jiang, Yi; Wang, Yang; Huang, Su; Biswas, Pratim; Li, Chunzhong
2018-06-01
Constructing a porous architecture is a considerable strategy to enhance the catalytic activity of metal oxides catalysts for CO oxidation. In this work, we have developed porous sponge-like Fe2O3 microspheres by employing a facile aerosol spray pyrolysis. The NaNO3 salt in the spray solution plays a crucial role as a fluxing sacrifice template in the formation of the sponge-like structure, in which a high surface area of 216.2 m2 g-1 and an average pore size of 4 nm are obtained. This novel Fe2O3 catalyst exhibits an improved catalytic activity compared to usual iron oxides catalysts. Nearly 50% CO conversion at a relatively low temperature of 200 °C and 100% CO conversion at 300 °C at a space velocity of 60 000 ml h-1 g-1 are achieved. Furthermore, it displays an outstanding catalytic stability without distinct decay for 1000 min in a continuous stream at 300 °C. In addition to the effect of plentiful adsorption sites for the gas reactant, the promoted catalytic performance is also attributed to the function of abundant OH groups rooted in the large surface of the sponge-like structure, which induces faster reaction rate of CO oxidation via a bicarbonate route.
Sanjeeva Gandhi, M; Mok, Young Sun
2014-12-01
In order to explore the effects of the shape of ZnO nanomaterials on the plasma-catalytic decomposition of butane and the distribution of byproducts, three types of ZnO nanomaterials (nanoparticles (NPs), nanorods (NRs) and nanowires (NWs)) were prepared and coated on multi-channel porous alumina ceramic membrane. The structures and morphologies of the nanomaterials were confirmed by X-ray diffraction method and scanning electron microscopy. The observed catalytic activity of ZnO in the oxidative decomposition of butane was strongly shape-dependent. It was found that the ZnO NWs exhibited higher catalytic activity than the other nanomaterials and could completely oxidize butane into carbon oxides (COx). When using the bare or ZnO NPs-coated ceramic membrane, several unwanted partial oxidation and decomposition products like acetaldehyde, acetylene, methane and propane were identified during the decomposition of butane. When the ZnO NWs- or ZnO NRs-coated membrane was used, however, the formation of such unwanted byproducts except methane was completely avoided, and full conversion into COx was achieved. Better carbon balance and COx selectivity were obtained with the ZnO NWs and NRs than with the NPs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wang, Xiao-Hui; Bo, Long-Li; Liu, Hai-Nan; Zhang, Hao; Sun, Jian-Yu; Yang, Li; Cai, Li-Dong
2013-06-01
Molecular sieve loaded catalyst was prepared by impregnation method, microwave-absorbing material silicon carbide and the catalyst were investigated for catalytic oxidation of toluene by microwave irradiation. Research work examined effects of silicon carbide and molecular sieve loading Cu-V catalyst's mixture ratio as well as mixed approach changes on degradation of toluene, and characteristics of catalyst were measured through scanning electron microscope, specific surface area test and X-ray diffraction analysis. The result showed that the fixed bed reactor had advantages of both thermal storage property and low-temperature catalytic oxidation when 20% silicon carbide was filled at the bottom of the reactor, and this could effectively improve the utilization of microwave energy as well as catalytic oxidation efficiency of toluene. Under microwave power of 75 W and 47 W, complete-combustion temperatures of molecular sieve loaded Cu-V catalyst and Cu-V-Ce catalyst to toluene were 325 degrees C and 160 degrees C, respectively. Characteristics of the catalysts showed that mixture of rare-earth element Ce increased the dispersion of active components in the surface of catalyst, micropore structure of catalyst effectively guaranteed high adsorption capacity for toluene, while amorphous phase of Cu and V oxides increased the activity of catalyst greatly.
Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marker, Terry L.; Felix, Larry G.; Linck, Martin B.
A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H.sub.2, CH.sub.4, CO, CO.sub.2, ammonia and hydrogen sulfide.
Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors
Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J
2014-10-14
A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H.sub.2, CH.sub.4, CO, CO.sub.2, ammonia and hydrogen sulfide.
Method for removing sulfur oxide from waste gases and recovering elemental sulfur
Moore, Raymond H.
1977-01-01
A continuous catalytic fused salt extraction process is described for removing sulfur oxides from gaseous streams. The gaseous stream is contacted with a molten potassium sulfate salt mixture having a dissolved catalyst to oxidize sulfur dioxide to sulfur trioxide and molten potassium normal sulfate to solvate the sulfur trioxide to remove the sulfur trioxide from the gaseous stream. A portion of the sulfur trioxide loaded salt mixture is then dissociated to produce sulfur trioxide gas and thereby regenerate potassium normal sulfate. The evolved sulfur trioxide is reacted with hydrogen sulfide as in a Claus reactor to produce elemental sulfur. The process may be advantageously used to clean waste stack gas from industrial plants, such as copper smelters, where a supply of hydrogen sulfide is readily available.
Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium
NASA Astrophysics Data System (ADS)
Abdel Rahim, M. A.; Abdel Hameed, R. M.; Khalil, M. W.
The use of Ni as a catalyst for the electro-oxidation of methanol in alkaline medium was studied by cyclic voltammetry. It was found that only Ni dispersed on graphite shows a catalytic activity towards methanol oxidation but massive Ni does not. Ni was dispersed on graphite by the electro-deposition from acidic NiSO 4 solution using potentiostatic and galvanostatic techniques. The catalytic activity of the C/Ni electrodes towards methanol oxidation was found to vary with the amount of electro-deposited Ni. The dependence of the oxidation current on methanol concentration and scan rate was discussed. It was concluded from the electro-chemical measurements and SEM analysis that methanol oxidation starts as Ni-oxide is formed on the electrode surface.
Phan, Duong T; Maeder, Marcel; Burns, Robert C; Puxty, Graeme
2014-04-15
To reduce CO2 emission into the atmosphere, particularly from coal-fired power stations, post combustion capture (PCC) using amine-based solvents to chemically absorb CO2 has been extensively developed. From an infrastructure viewpoint, the faster the absorption of CO2, the smaller the absorber required. The use of catalysts for this process has been broadly studied. In this manuscript, a study of the catalytic efficiencies of inorganic oxoanions such as arsenite, arsenate, phosphite, phosphate, and borate is described. The kinetics of the accelerated CO2 absorption at 25 °C was investigated using stopped-flow spectrophotometry. The catalytic rate constants of these anions for the reaction of CO2 with H2O were determined to be 137.7(3), 30.3(7), 69(2), 32.7(9), and 13.66(7) M(-1)s(-1), respectively. A new mechanism for the catalytic reaction of oxoanions with CO2 has also been proposed. The applicability of these catalysts to PCC was further studied by simulation of the absorption process under PCC conditions using their experimental catalytic rate constants. Arsenite and phosphite were confirmed to be the best catalysts for CO2 capture. However, considering the toxicological effect of arsenic and the oxidative instability of phosphite, phosphate would be the most promising inorganic catalyst for PCC process from the series of inorganic oxoanions studied.
Kladova, Olga A; Krasnoperov, Lev N; Kuznetsov, Nikita A; Fedorova, Olga S
2018-03-30
Endonuclease III (Endo III or Nth) is one of the key enzymes responsible for initiating the base excision repair of oxidized or reduced pyrimidine bases in DNA. In this study, a thermodynamic analysis of structural rearrangements of the specific and nonspecific DNA-duplexes during their interaction with Endo III is performed based on stopped-flow kinetic data. 1,3-diaza-2-oxophenoxazine (tC O ), a fluorescent analog of the natural nucleobase cytosine, is used to record multistep DNA binding and lesion recognition within a temperature range (5-37 °C). Standard Gibbs energy, enthalpy, and entropy of the specific steps are derived from kinetic data using Van't Hoff plots. The data suggest that enthalpy-driven exothermic 5,6-dihydrouracil (DHU) recognition and desolvation-accompanied entropy-driven adjustment of the enzyme-substrate complex into a catalytically active state play equally important parts in the overall process. The roles of catalytically significant amino acids Lys120 and Asp138 in the DNA lesion recognition and catalysis are identified. Lys120 participates not only in the catalytic steps but also in the processes of local duplex distortion, whereas substitution Asp138Ala leads to a complete loss of the ability of Endo III to distort a DNA double chain during enzyme-DNA complex formation.
Gas phase oxidation downstream of a catalytic combustor
NASA Technical Reports Server (NTRS)
Tien, J. S.; Anderson, D. N.
1979-01-01
Effect of the length available for gas-phase reactions downstream of the catalytic reactor on the emission of CO and unburned hydrocarbons was investigated. A premixed, prevaporized propane/air feed to a 12/cm/diameter catalytic/reactor test section was used. The catalytic reactor was made of four 2.5 cm long monolithic catalyst elements. Four water cooled gas sampling probes were located at positions between 0 and 22 cm downstream of the catalytic reactor. Measurements of unburned hydrocarbon, CO, and CO2 were made. Tests were performed with an inlet air temperature of 800 K, a reference velocity of 10 m/s, pressures of 3 and 600,000 Pa, and fuel air equivalence ratios of 0.14 to 0.24. For very lean mixtures, hydrocarbon emissions were high and CO continued to be formed downstream of the catalytic reactor. At the highest equivalence ratios tested, hydrocarbon levels were much lower and CO was oxidized to CO2 in the gas phase downstream. To achieve acceptable emissions, a downstream region several times longer than the catalytic reactor could be required.
NASA Astrophysics Data System (ADS)
Wang, Fenggong; Tsyshevsky, Roman; Zverev, Anton; Mitrofanov, Anatoly; Kuklja, Maija
Organic-inorganic interfaces provide both intrigues and opportunities for designing systems that possess properties and functionalities inaccessible by each individual component. In particular, mixing with a photocatalyst may significantly affect the adsorption, decomposition, and photoresponse of organic molecules. Here, we choose the formulation of TiO2 and trinitrotoluene (TNT), a highly catalytic oxide and a prominent explosive, as a prototypical example to explore the interaction at the interface on the photosensitivity of energetic materials. We show that, whether or not a catalytic oxide additive can help molecular decompositions under light illumination depends largely on the band alignment between the oxide surface and the energetic molecule. Furthermore, an oxygen vacancy can lead to the electron density transfer from the surface to the energetic molecules, causing an enhancement of the bonding between molecules and surface and a reduction of the molecular decomposition activation barriers.
NASA Astrophysics Data System (ADS)
Kumar, Gaurav; Tibbitts, Luke; Newell, Jaclyn; Panthi, Basu; Mukhopadhyay, Ahana; Rioux, Robert M.; Pursell, Christopher J.; Janik, Michael; Chandler, Bert D.
2018-03-01
Supported metal catalysts, which are composed of metal nanoparticles dispersed on metal oxides or other high-surface-area materials, are ubiquitous in industrially catalysed reactions. Identifying and characterizing the catalytic active sites on these materials still remains a substantial challenge, even though it is required to guide rational design of practical heterogeneous catalysts. Metal-support interactions have an enormous impact on the chemistry of the catalytic active site and can determine the optimum support for a reaction; however, few direct probes of these interactions are available. Here we show how benzyl alcohol oxidation Hammett studies can be used to characterize differences in the catalytic activity of Au nanoparticles hosted on various metal-oxide supports. We combine reactivity analysis with density functional theory calculations to demonstrate that the slope of experimental Hammett plots is affected by electron donation from the underlying oxide support to the Au particles.
Performance of ethanol electro-oxidation on Ni-Cu alloy nanowires through composition modulation.
Tian, Xi-Ke; Zhao, Xiao-Yu; Zhang, Li-de; Yang, Chao; Pi, Zhen-Bang; Zhang, Su-Xin
2008-05-28
To reduce the cost of the catalyst for direct ethanol fuel cells and improve its catalytic activity, highly ordered Ni-Cu alloy nanowire arrays have been fabricated successfully by differential pulse current electro-deposition into the pores of a porous anodic alumina membrane (AAMs). The energy dispersion spectrum, scanning and transmission electron microscopy were utilized to characterize the composition and morphology of the Ni-Cu alloy nanowire arrays. The results reveal that the nanowires in the array are uniform, well isolated and parallel to each other. The catalytic activity of the nanowire electrode arrays for ethanol oxidation was tested and the binary alloy nanowire array possesses good catalytic activity for the electro-oxidation of ethanol. The performance of ethanol electro-oxidation was controlled by varying the Cu content in the Ni-Cu alloy and the Ni-Cu alloy nanowire electrode shows much better stability than the pure Ni one.
Favaro, Marco; Drisdell, Walter S.; Marcus, Matthew A.; ...
2016-12-27
The oxygen evolution reaction (OER) is a critical component of industrial processes such as electrowinning of metals and the chlor-alkali process. It also plays a central role in the development of a renewable energy field for generation a solar fuels by providing both the protons and electrons needed to generate fuels such as H 2 or reduced hydrocarbons from CO 2. To improve these processes, it is necessary to expand the fundamental understanding of catalytically active species at low overpotential, which will further the development of electrocatalysts with high activity and durability. In this context, performing experimental investigations of themore » electrocatalysts under realistic working regimes (i.e., under operando conditions) is of crucial importance. In this paper, we study a highly active quinary transition-metal-oxide-based OER electrocatalyst by means of operando ambient-pressure X-ray photoelectron spectroscopy and X-ray absorption spectroscopy performed at the solid/liquid interface. We observe that the catalyst undergoes a clear chemical-structural evolution as a function of the applied potential with Ni, Fe, and Co oxyhydroxides comprising the active catalytic species. Finally, while CeO 2 is redox inactive under catalytic conditions, its influence on the redox processes of the transition metals boosts the catalytic activity at low overpotentials, introducing an important design principle for the optimization of electrocatalysts and tailoring of high-performance materials.« less
Integrated process and dual-function catalyst for olefin epoxidation
Zhou, Bing; Rueter, Michael
2003-01-01
The invention discloses a dual-functional catalyst composition and an integrated process for production of olefin epoxides including propylene oxide by catalytic reaction of hydrogen peroxide from hydrogen and oxygen with olefin feeds such as propylene. The epoxides and hydrogen peroxide are preferably produced simultaneously in situ. The dual-functional catalyst comprises noble metal crystallites with dimensions on the nanometer scale (on the order of <1 nm to 10 nm), specially dispersed on titanium silicalite substrate particles. The dual functional catalyst catalyzes both the direct reaction of hydrogen and oxygen to generate hydrogen peroxide intermediate on the noble metal catalyst surface and the reaction of the hydrogen peroxide intermediate with the propylene feed to generate propylene oxide product. Combining both these functions in a single catalyst provides a very efficient integrated process operable below the flammability limits of hydrogen and highly selective for the production of hydrogen peroxide to produce olefin oxides such as propylene oxide without formation of undesired co-products.
Water depollution using metal-organic frameworks-catalyzed advanced oxidation processes: A review.
Sharma, Virender K; Feng, Mingbao
2017-09-28
This paper presents a review on the environmental applications of metal-organic frameworks (MOFs), which are inorganic-organic hybrid highly porous crystalline materials, prepared from metal ion/clusters and multidentate organic ligands. The emphases are made on the enhancement of the performance of advanced oxidation processes (AOPs) (photocatalysis, Fenton reaction methods, and sulfate radical (SO 4 - )-mediated oxidations) using MOFs materials. MOFs act as adsorption and light absorbers, leading to superior performance of photocatalytic processes. More recent examples of photocatalytic degradation of dyes are presented. Additionally, it is commonly shown that Fe-based MOFs exhibited excellent catalytic performance on the Fenton-based and SO 4 •- -mediated oxidations of organic pollutants (e.g., dyes, phenol and pharmaceuticals). The significantly enhanced generation of reactive species such as OH and/or SO 4 - by both homogeneous and heterogeneous catalysis was proposed as the possible mechanism for water depollution. Based on the existing literature, the challenge and future perspectives in MOF-based AOPs are addressed. Copyright © 2017 Elsevier B.V. All rights reserved.
Computational and Physical Analysis of Catalytic Compounds
NASA Astrophysics Data System (ADS)
Wu, Richard; Sohn, Jung Jae; Kyung, Richard
2015-03-01
Nanoparticles exhibit unique physical and chemical properties depending on their geometrical properties. For this reason, synthesis of nanoparticles with controlled shape and size is important to use their unique properties. Catalyst supports are usually made of high-surface-area porous oxides or carbon nanomaterials. These support materials stabilize metal catalysts against sintering at high reaction temperatures. Many studies have demonstrated large enhancements of catalytic behavior due to the role of the oxide-metal interface. In this paper, the catalyzing ability of supported nano metal oxides, such as silicon oxide and titanium oxide compounds as catalysts have been analyzed using computational chemistry method. Computational programs such as Gamess and Chemcraft has been used in an effort to compute the efficiencies of catalytic compounds, and bonding energy changes during the optimization convergence. The result illustrates how the metal oxides stabilize and the steps that it takes. The graph of the energy computation step(N) versus energy(kcal/mol) curve shows that the energy of the titania converges faster at the 7th iteration calculation, whereas the silica converges at the 9th iteration calculation.
Identification of organic compounds in landfill leachate treated by advanced oxidation processes.
Scandelai, Ana Paula Jambers; Sloboda Rigobello, Eliane; Oliveira, Beatriz Lopes Corso de; Tavares, Célia Regina Granhen
2017-11-27
Landfill leachates are considered to be complex effluents of a variable composition containing many biorecalcitrant and highly toxic compounds. Considering the shortage of studies concerning the treatment of landfill leachates using ozone, as well as its combination with catalysts, the aim of this paper was to identify the organic compounds in this effluent treated with advanced oxidation processes (AOPs) of ozonation (O 3 ), and heterogeneous catalytic ozonation with TiO 2 (O 3 /TiO 2 ) and with ZnO (O 3 /ZnO). In addition, this study sought to assess the efficiency of the removal of the organic matter present in the leachate. For the pre- and post-AOPs, the leachate was characterized through physicochemical parameters and identification of organic compounds using gas chromatography coupled to the mass spectrometry (GC-MS). The three processes studied (O 3 , O 3 /TiO 2 , and O 3 /ZnO) presented color removal, turbidity, BOD above 95%, and lower COD removals (19%, 24%, and 33%, respectively). All AOPs studied promoted a similar reduction of organic compounds from leachate, some of which with toxic and carcinogenic potential, such as p-cresol, bisphenol A, atrazine, and hexazinone. In addition, upon the removal of organic matter and organic compounds, the heterogeneous catalytic ozonation processes proved more efficient than the process carried out only with ozone.
Advanced catalytic combustors for low pollutant emissions, phase 1
NASA Technical Reports Server (NTRS)
Dodds, W. J.
1979-01-01
The feasibility of employing the known attractive and distinguishing features of catalytic combustion technology to reduce nitric oxide emissions from gas turbine engines during subsonic, stratospheric cruise operation was investigated. Six conceptual combustor designs employing catalytic combustion were defined and evaluated for their potential to meet specific emissions and performance goals. Based on these evaluations, two parallel-staged, fixed-geometry designs were identified as the most promising concepts. Additional design studies were conducted to produce detailed preliminary designs of these two combustors. Results indicate that cruise nitric oxide emissions can be reduced by an order of magnitude relative to current technology levels by the use of catalytic combustion. Also, these combustors have the potential for operating over the EPA landing-takeoff cycle and at cruise with a low pressure drop, high combustion efficiency and with a very low overall level of emission pollutants. The use of catalytic combustion, however, requires advanced technology generation in order to obtain the time-temperature catalytic reactor performance and durability required for practical aircraft engine combustors.
Complex Wall Boundary Conditions for Modeling Combustion in Catalytic Channels
NASA Astrophysics Data System (ADS)
Zhu, Huayang; Jackson, Gregory
2000-11-01
Monolith catalytic reactors for exothermic oxidation are being used in automobile exhaust clean-up and ultra-low emissions combustion systems. The reactors present a unique coupling between mass, heat, and momentum transport in a channel flow configuration. The use of porous catalytic coatings along the channel wall presents a complex boundary condition when modeled with the two-dimensional channel flow. This current work presents a 2-D transient model for predicting the performance of catalytic combustion systems for methane oxidation on Pd catalysts. The model solves the 2-D compressible transport equations for momentum, species, and energy, which are solved with a porous washcoat model for the wall boundary conditions. A time-splitting algorithm is used to separate the stiff chemical reactions from the convective/diffusive equations for the channel flow. A detailed surface chemistry mechanism is incorporated for the catalytic wall model and is used to predict transient ignition and steady-state conversion of CH4-air flows in the catalytic reactor.
NASA Astrophysics Data System (ADS)
Liu, Lu; Zheng, Chenghang; Wu, Shenghao; Gao, Xiang; Ni, Mingjiang; Cen, Kefa
2017-09-01
Non-thermal plasma with different O2 concentration in discharge atmosphere was applied to synthesize manganese and cerium mixed-oxides catalysts, which were compared in NO oxidation activity. Discharge atmosphere displayed a crucial influence on the performance of the catalysts prepared by plasma. Relatively low O2 concentration in discharge atmosphere allows synthesizing manganese-cerium oxides catalysts in a moderate environment and therefore is favorable for better physicochemical properties which lead to superior catalytic behavior. The best catalyst was obtained by treatment with 10% O2/N2 plasma and presented over 80% NO conversion in the temperature range of 275-325 °C, whereas catalyst prepared in pure O2 discharge atmosphere had the same activity with a catalyst prepared by calcinations. A correlation between the surface properties of the plasma prepared catalysts and its catalytic activity in NO oxidation is proposed. The amount of the surface adsorbed oxygen has an obvious linear correlation with the amount of Ce3+, the H2 consumption at low temperatures and the catalytic performance. The superior catalytic performance is mainly attributed to the stronger interaction between manganese oxides and ceria, and the formation of poorly crystallized Mn-O-Ce phase in the catalyst which resulted from the slow decomposition of nitrates and organics during plasma treatment. Catalysts prepared in relatively low O2 concentration have large specific surface area and is abundant in Ce3+ species and active oxygen species. The study suggests that plasma treatment with proper discharge gas components is a promising method to prepare effective manganese- cerium oxides catalyst for NO oxidation.
Formation of N3(-) during interaction of NO with reduced ceria.
Mihaylov, Mihail Y; Ivanova, Elena Z; Aleksandrov, Hristiyan A; St Petkov, Petko; Vayssilov, Georgi N; Hadjiivanov, Konstantin I
2015-04-04
We show that the first stages of interaction between NO and reduced ceria comprise the formation of azides, N3(-), with simultaneous oxidation of Ce(3+) to Ce(4+). This finding imposes revision on some current views of catalytic NO conversion and may contribute to design of new deNOx materials and processes.
Synthesis and Catalytic Performance of Gold Intercalated in the Walls of Mesoporous Silica.
Ji, Yazhou; Caskey, Christopher; Richards, Ryan M
2015-07-09
As a promising catalytically active nano reactor, gold nanoparticles intercalated in mesoporous silica (GMS) were successfully synthesized and properties of the materials were investigated. We used a one pot sol-gel approach to intercalate gold nano particles in the walls of mesoporous silica. To start with the synthesis, P123 was used as template to form micelles. Then TESPTS was used as a surface modification agent to intercalate gold nano particles. Following this process, TEOS was added in as a silica source which underwent a polymerization process in acid environment. After hydrothermal processing and calcination, the final product was acquired. Several techniques were utilized to characterize the porosity, morphology and structure of the gold intercalated mesoporous silica. The results showed a stable structure of mesoporous silica after gold intercalation. Through the oxidation of benzyl alcohol as a benchmark reaction, the GMS materials showed high selectivity and recyclability.
Synthesis and Catalytic Performance of Gold Intercalated in the Walls of Mesoporous Silica
Ji, Yazhou; Caskey, Christopher; Richards, Ryan M.
2015-01-01
As a promising catalytically active nano reactor, gold nanoparticles intercalated in mesoporous silica (GMS) were successfully synthesized and properties of the materials were investigated. We used a one pot sol-gel approach to intercalate gold nano particles in the walls of mesoporous silica. To start with the synthesis, P123 was used as template to form micelles. Then TESPTS was used as a surface modification agent to intercalate gold nano particles. Following this process, TEOS was added in as a silica source which underwent a polymerization process in acid environment. After hydrothermal processing and calcination, the final product was acquired. Several techniques were utilized to characterize the porosity, morphology and structure of the gold intercalated mesoporous silica. The results showed a stable structure of mesoporous silica after gold intercalation. Through the oxidation of benzyl alcohol as a benchmark reaction, the GMS materials showed high selectivity and recyclability. PMID:26274058
High Temperature Modification of SNCR Technology and its Impact on NOx Removal Process
NASA Astrophysics Data System (ADS)
Blejchař, Tomáš; Konvička, Jaroslav; von der Heide, Bernd; Malý, Rostislav; Maier, Miloš
2018-06-01
SNCR (Selective non-catalytic reduction) Technology is currently being used to reach the emission limit for nitrogen oxides at fossil fuel fired power plant and/or heating plant and optimum temperature for SNCR process is in range 850 - 1050°C. Modified SNCR technology is able to reach reduction 60% of nitrogen oxides at temperature up to 1250°C. So the technology can also be installed where the flue gas temperature is too high in combustion chamber. Modified SNCR was tested using generally known SNCR chemistry implemented in CFD (Computation fluid dynamics) code. CFD model was focused on detail simulation of reagent injection and influence of flue gas temperature. Than CFD simulation was compared with operating data of boiler where the modified SNCR technology is installed. By comparing the experiment results with the model, the effect on nitrous oxides removal process and temperature of flue gas at the injection region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Hong; Liao, Zhixiong; Zhang, Guanghui
Abstract: The CuI/CuII and CuI/CuIII catalytic cycles have been subject to intense debate in the field of copper-catalyzed oxidative coupling reactions. A mechanistic study on the CuI/CuII redox process, by X-ray absorption (XAS) and electron paramagnetic resonance (EPR) spectroscopies, has elucidated the reduction mechanism of CuII to CuI by 1,3-diketone and detailed investigation revealed that the halide ion is important for the reduction process. The oxidative nature of the thereby-formed CuI has also been studied by XAS and EPR spectroscopy. This mechanistic information is applicable to the copper-catalyzed oxidative cyclization of b-ketocarbonyl derivatives to dihydrofurans. This protocol provides an idealmore » route to highly substituted dihydrofuran rings from easily available 1,3-dicarbonyls and olefins. Copper« less
Wu, Chang-Hsun; Lin, Jyun-Ting; Lin, Kun-Yi Andrew
2018-05-01
Direct carbonization of cobalt complexes represents as a convenient approach to prepare magnetic carbon/cobalt nanocomposites (MCCNs) as heterogeneous environmental catalysts. However, most of MCCNs derived from consist of sheet-like carbon matrices with very sparse cobaltic nanoparticles (NPs), making them exhibit relatively low catalytic activities, porosity and magnetism. In this study, dipicolinic acid (DPA) is selected to prepare a 3-dimensional cobalt coordination polymer (CoDPA). MCCN derived from CoDPA can consist of a porous carbon matrix embedded with highly-dense Co 0 and Co 3 O 4 NPs. This magnetic Co 0 /Co 3 O 4 NP-anchored carbon composite (MCNC) appears as a promising heterogeneous catalyst for oxidative and reductive environmental catalytic reactions. As peroxymonosulfate (PMS) activation is selected as a model catalytic oxidative reaction, MCNC exhibits a much higher catalytic activity than Co 3 O 4 , a benchmark catalyst for PMS activation. The reductive catalytic activity of MCNC is demonstrated through 4-nitrophenol (4-NP) reduction in the presence of NaBH 4 . MCNC could rapidly react with NaBH 4 to generate H 2 for hydrogenation of 4-NP to 4-aminophenol (4-AP). In comparison with other precious metallic catalysts, MCNC also shows a relatively high catalytic activity. These results indicate that MCNC is a conveniently prepared and highly effective and stable carbon-supported cobaltic heterogeneous catalyst for versatile environmental catalytic applications. Copyright © 2018 Elsevier Inc. All rights reserved.
Catalytic nanoporous membranes
Pellin, Michael J [Naperville, IL; Hryn, John N [Naperville, IL; Elam, Jeffrey W [Elmhurst, IL
2009-12-01
A nanoporous catalytic membrane which displays several unique features including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity.
Batakliev, Todor; Georgiev, Vladimir; Anachkov, Metody; Rakovsky, Slavcho
2014-01-01
Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers). Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates. PMID:26109880
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-04-01
Brief details are given of processes including: BGC-Lurgi slagging gasification, COGAS, Exxon catalytic coal gasification, FW-Stoic 2-stage, GI two stage, HYGAS, Koppers-Totzek, Lurgi pressure gasification, Saarberg-Otto, Shell, Texaco, U-Gas, W-D.IGI, Wellman-Galusha, Westinghouse, and Winkler coal gasification processes; the Rectisol process; the Catacarb and the Benfield processes for removing CO/SUB/2, H/SUB/2s and COS from gases produced by the partial oxidation of coal; the selectamine DD, Selexol solvent, and Sulfinol gas cleaning processes; the sulphur-tolerant shift (SSK) process; and the Super-meth process for the production of high-Btu gas from synthesis gas.
Rossmassler, R.; Ciebiera, L.; Tulipano, F.J.; Vinson, S.; Walters, R.T.
1995-11-07
A containment and waste package system for processing and shipping tritium oxide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within the outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen and oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB. 1 fig.
Yu, Xuehua; Zhao, Zhen; Wei, Yuechang; Liu, Jian
2017-01-01
A series of novel oxide catalysts, which contain three-dimensionally ordered macroporous (3DOM) and microporous structure, were firstly designed and successfully synthesized by simple method. In the as-prepared catalysts, 3DOM SiO2 is used as support and microporous K-OMS-2 oxide nanoparticles are supported on the wall of SiO2. 3DOM K-OMS-2/SiO2 oxide catalysts were firstly used in soot particle oxidation reaction and they show very high catalytic activities. The high activities of K-OMS-2/SiO2 oxide catalysts can be assigned to three possible reasons: macroporous effect of 3DOM structure for improving contact between soot and catalyst, microporous effect of K-OMS-2 for adsorption of small gas molecules and interaction of K and Mn for activation of gas molecules. The catalytic activities of catalysts are comparable to or even higher than noble metal catalyst in the medium and high temperature range. For example, the T50 of K-OMS-2/SiO2-50, 328 °C, is much lower than those of Pt/Al2O3 and 3DOM Au/LaFeO3, 464 and 356 °C,respectively. Moreover, catalysts exhibited high catalytic stability. It is attributed to that the K+ ions are introduced into the microporous structure of OMS-2 and stabilized in the catalytic reaction. Meanwhile, the K+ ions play an important role in templating and stabilizing the tunneled framework of OMS-2. PMID:28443610
NASA Astrophysics Data System (ADS)
Merati, Zohreh; Basiri Parsa, Jalal
2018-03-01
Catalyst supports play important role in governing overall catalyst activity and durability. In this study metal oxides (SnO2, Sb and Nb doped SnO2) were electrochemically deposited on titanium substrate (Ti) as a new support material for Pt catalyst in order to electro-oxidation of methanol. Afterward platinum nanoparticles were deposited on metal oxide film via electro reduction of platinum salt in an acidic solution. The surface morphology of modified electrodes were evaluated by field-emission scanning electron microscopy (FESEM) and energy dispersive X-ray analysis (EDX) techniques. The electro-catalytic activities of prepared electrodes for methanol oxidation reaction (MOR) and oxidation of carbon monoxide (CO) absorbed on Pt was considered with cyclic voltammetry. The results showed high catalytic activity for Pt/Nb-SnO2/Ti electrode. The electrochemical surface area (ECSA) of a platinum electro-catalyst was determined by hydrogen adsorption. Pt/Nb-SnO2/Ti electrode has highest ECSA compared to other electrode resulting in high activity toward methanol electro-oxidation and CO stripping experiments. The doping of SnO2 with Sb and Nb improved ECSA and MOR activity, which act as electronic donors to increase electronic conductivity.
NASA Astrophysics Data System (ADS)
Serra, José M.; Buchkremer, Hans-Peter
Solid oxide fuel cells (SOFCs) are highly efficient energy converters for both stationary and mobile purposes. However, their market introduction still demands the reduction of manufacture costs and one possible way to reach this goal is the decrease of the operating temperatures, which entails the improvement of the cathode electrocatalytic properties. An ideal cathode material may have mixed ionic and electronic conductivity as well as proper catalytic properties. Nanostructuring and catalytic promotion of mixed conducting perovskites (e.g. La 0.58Sr 0.4Fe 0.8Co 0.2O 3- δ) seem to be promising approaches to overcoming cathode polarization problems and are briefly illustrated here. The preparation of nanostructured cathodes with relatively high surface area and enough thermal stability enables to improve the oxygen exchange rate and therefore the overall SOFC performance. A similar effect was obtained by catalytic promoting the perovskite surface, allowing decoupling the catalytic and ionic-transport properties in the cathode design. Noble metal incorporation may improve the reversibility of the reduction cycles involved in the oxygen reduction. Under the cathode oxidizing conditions, Pd seems to be partially dissolved in the perovskite structure and as a result very well dispersed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Na; Li, Siwen; Wang, Jinyi
2015-05-15
M{sub 2}(PcAN){sub 2} (M=Fe, Co, Ni, Cu, Zn and Mn) anchored onto W-HZSM-5 (M{sub 2}(PcAN){sub 2}–W-HZSM-5) or the M{sub 2}(PcTN){sub 2} doping W-HZSM-5 (M{sub 2}(PcTN){sub 2}/W-HZSM-5) were prepared and their catalytic performances were tested for oxidative desulfurization in the presence of oxygen. Thiophene (T), benzothiophene (BT), and dibenzothiophene (DBT) were considered as sulfur compounds. Among zeolite-based catalysts, the Cu{sub 2}(PcAN){sub 2}–W-HZSM-5 and Cu{sub 2}(PcTN){sub 2}/W-HZSM-5 showed superior desulfurization performance and the activity of selectivity followed the order: T>BT>DBT. The effects of phthalocyanine concentration were studied by UV–Vis and calcination temperature was obtained by TG-DSC for Cu{sub 2}(PcTN){sub 2}/W-HZSM-5. Catalysts weremore » characterized by EA, IR, XRD, SEM, TEM, ICP, and N{sub 2} adsorption. Reaction time, temperature and the amount of catalyst were investigated as the important parameters for optimization of the reaction. Furthermore, a possible process of oxidative desulfurization and the reaction products were proposed. - Graphical abstract: The ODS reaction schematic shows the reaction mechanism of ultra-deep desulfurization. The sulfur compounds are oxidized to their corresponding sulfoxides or sulfones through the use of oxygen and catalysts. The reaction process of ultra-deep desulfurization. - Highlights: • A kind of novel catalyst for deep desulfurization was synthesized. • Cu{sub 2}(PcAN){sub 2}–W-HZSM-5 exhibits excellent catalytic performance for desulfurization. • The reaction conditions that affect desulfurization efficiency are investigated. • The reaction process of model sulfur compounds is proposed.« less
ERIC Educational Resources Information Center
Lang, Patrick T.; Harned, Andrew M.; Wissinger, Jane E.
2011-01-01
A new green oxidation procedure was developed for the undergraduate organic teaching laboratories using Oxone and a catalytic quantity of sodium chloride for the conversion of borneol to camphor. This simple 1 h, room temperature reaction afforded high quality and yield of product, was environmentally friendly, and produced negligible quantities…
Du, Shuting; Chen, Xiaoxin; Sun, Qiming; Wang, Ning; Jia, Mingjun; Valtchev, Valentin; Yu, Jihong
2016-02-28
Hierarchical TS-1 zeolites with secondary macropores have been successfully prepared by using two different fluoride-containing chemical etching post-treated routes. Hierarchical TS-1 zeolites exhibited a chemical composition similar to that of the parent material and showed remarkably enhanced catalytic activity in oxidative desulfurization reaction.
NASA Technical Reports Server (NTRS)
Olcott, T. M.
1972-01-01
A general methodology was developed for spacecraft contaminant control system design. Elements considered for contaminant control were catalytic oxidation with isotope or electrical heat and pre- and post-sorbers, charcoal with regeneration and non-regeneration, and reactive constituents. A technique is described for sizing a charcoal bed for a multiple contaminant load.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Stefanie; Sommer, Anja; Distel, Luitpold V.R.
Highlights: Black-Right-Pointing-Pointer Ultrasmall citrate-coated SPIONs with {gamma}Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4} structure were prepared. Black-Right-Pointing-Pointer SPIONs uptaken by MCF-7 cells increase the ROS production for about 240%. Black-Right-Pointing-Pointer The SPION induced ROS production is due to released iron ions and catalytically active surfaces. Black-Right-Pointing-Pointer Released iron ions and SPION surfaces initiate the Fenton and Haber-Weiss reaction. Black-Right-Pointing-Pointer X-ray irradiation of internalized SPIONs leads to an increase of catalytically active surfaces. -- Abstract: Internalization of citrate-coated and uncoated superparamagnetic iron oxide nanoparticles by human breast cancer (MCF-7) cells was verified by transmission electron microscopy imaging. Cytotoxicity studies employing metabolicmore » and trypan blue assays manifested their excellent biocompatibility. The production of reactive oxygen species in iron oxide nanoparticle loaded MCF-7 cells was explained to originate from both, the release of iron ions and their catalytically active surfaces. Both initiate the Fenton and Haber-Weiss reaction. Additional oxidative stress caused by X-ray irradiation of MCF-7 cells was attributed to the increase of catalytically active iron oxide nanoparticle surfaces.« less
Direct Single-Enzyme Biomineralization of Catalytically Active Ceria and Ceria–Zirconia Nanocrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curran, Christopher D.; Lu, Li; Jia, Yue
Biomineralization is an intriguing approach to the synthesis of functional inorganic materials for energy applications whereby biological systems are engineered to mineralize inorganic materials and control their structure over multiple length scales under mild reaction conditions. Herein we demonstrate a single-enzyme-mediated biomineralization route to synthesize crystalline, catalytically active, quantum-confined ceria (CeO2–x) and ceria–zirconia (Ce1–yZryO2–x) nanocrystals for application as environmental catalysts. In contrast to typical anthropogenic synthesis routes, the crystalline oxide nanoparticles are formed at room temperature from an otherwise inert aqueous solution without the addition of a precipitant or additional reactant. An engineered form of silicatein, rCeSi, as a singlemore » enzyme not only catalyzes the direct biomineralization of the nanocrystalline oxides but also serves as a templating agent to control their morphological structure. The biomineralized nanocrystals of less than 3 nm in diameter are catalytically active toward carbon monoxide oxidation following an oxidative annealing step to remove carbonaceous residue. The introduction of zirconia into the nanocrystals leads to an increase in Ce(III) concentration, associated catalytic activity, and the thermal stability of the nanocrystals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dang-Long, T., E-mail: 3TE14098G@kyushu-u.ac.jp; Quang-Tuyen, T., E-mail: tran.tuyen.quang.314@m.kyushu-u.ac.jp; Shiratori, Y., E-mail: shiratori.yusuke.500@m.kyushu-u.ac.jp
2016-06-03
Being produced from organic matters of wastes (bio-wastes) through a fermentation process, biogas mainly composed of CH{sub 4} and CO{sub 2} and can be considered as a secondary energy carrier derived from solar energy. To generate electricity from biogas through the electrochemical process in fuel cells is a state-of-the-art technology possessing higher energy conversion efficiency without harmful emissions compared to combustion process in heat engines. Getting benefits from high operating temperature such as direct internal reforming ability and activation of electrochemical reactions to increase overall system efficiency, solid oxide fuel cell (SOFC) system operated with biogas becomes a promising candidatemore » for distributed power generator for rural applications leading to reductions of environmental issues caused by greenhouse effects and bio-wastes. CO{sub 2} reforming of CH{sub 4} and electrochemical oxidation of the produced syngas (H{sub 2}–CO mixture) are two main reaction processes within porous anode material of SOFC. Here catalytic and electrochemical behavior of Ni-ScSZ (scandia stabilized-zirconia) anode in the feed of CH{sub 4}–CO{sub 2} mixtures as simulated-biogas at 800 °C were evaluated. The results showed that CO{sub 2} had strong influences on both reaction processes. The increase in CO{sub 2} partial pressure resulted in the decrease in anode overvoltage, although open-circuit voltage was dropped. Besides that, the simulation result based on a power-law model for equimolar CH{sub 4}−CO{sub 2} mixture revealed that coking hazard could be suppressed along the fuel flow channel in both open-circuit and closed-circuit conditions.« less
Perfluoropolyalkylether decomposition on catalytic aluminas
NASA Technical Reports Server (NTRS)
Morales, Wilfredo
1994-01-01
The decomposition of Fomblin Z25, a commercial perfluoropolyalkylether liquid lubricant, was studied using the Penn State Micro-oxidation Test, and a thermal gravimetric/differential scanning calorimetry unit. The micro-oxidation test was conducted using 440C stainless steel and pure iron metal catalyst specimens, whereas the thermal gravimetric/differential scanning calorimetry tests were conducted using catalytic alumina pellets. Analysis of the thermal data, high pressure liquid chromatography data, and x-ray photoelectron spectroscopy data support evidence that there are two different decomposition mechanisms for Fomblin Z25, and that reductive sites on the catalytic surfaces are responsible for the decomposition of Fomblin Z25.
Lee, Si Woo; Hong, Jong Wook; Lee, Hyunhwa; Wi, Dae Han; Kim, Sun Mi; Han, Sang Woo; Park, Jeong Young
2018-06-14
The intrinsic correlation between an enhancement of catalytic activity and the flow of hot electrons generated at metal-oxide interfaces suggests an intriguing way to control catalytic reactions and is a significant subject in heterogeneous catalysis. Here, we show surface plasmon-induced catalytic enhancement by the peculiar nanocatalyst design of hexoctahedral (HOH) Au nanocrystals (NCs) with Cu2O clusters. We found that this inverse catalyst comprising a reactive oxide for the catalytic portion and a metal as the source of electrons by localized surface plasmon resonance (localized SPR) exhibits a change in catalytic activity by direct hot electron transfer or plasmon-induced resonance energy transfer (PIRET) when exposed to light. We prepared two types of inverse catalysts, Cu2O at the vertex sites of HOH Au NCs (Cu2O/Au vertex site) and a HOH Au NC-Cu2O core-shell structure (HOH Au@Cu2O), to test the structural effect on surface plasmons. Under broadband light illumination, the Cu2O/Au vertex site catalyst showed 30-90% higher catalytic activity and the HOH Au@Cu2O catalyst showed 10-30% higher catalytic activity than when in the dark. Embedding thin SiO2 layers between the HOH Au NCs and the Cu2O verified that the dominant mechanism for the catalytic enhancement is direct hot electron transfer from the HOH Au to the Cu2O. Finite-difference time domain calculations show that a much stronger electric field was formed on the vertex sites after growing the Cu2O on the HOH Au NCs. These results imply that the catalytic activity is enhanced when hot electrons, created from photon absorption on the HOH Au metal and amplified by the presence of surface plasmons, are transferred to the reactive Cu2O.
Patty, K; Sadeghi, S M; Nejat, A; Mao, C-B
2014-04-18
We demonstrate that an ultra-thin layer of aluminum oxide can significantly enhance the emission efficiency of colloidal quantum dots on a Si substrate. For an ensemble of single quantum dots, our results show that this super brightening process can increase the fluorescence of CdSe quantum dots, forming well-resolved spectra, while in the absence of this layer the emission remains mostly at the noise level. We demonstrate that this process can be further enhanced with irradiation of the quantum dots, suggesting a significant photo-induced fluorescence enhancement via considerable suppression of non-radiative decay channels of the quantum dots. We study the impact of the Al oxide thickness on Si and interdot interactions, and discuss the results in terms of photo-induced catalytic properties of the Al oxide and the effects of such an oxide on the Coulomb blockade responsible for suppression of photo-ionization of the quantum dots.
NASA Astrophysics Data System (ADS)
Wang, Hongjing; Yu, Hongjie; Li, Yinghao; Yin, Shuli; Xue, Hairong; Li, Xiaonian; Xu, You; Wang, Liang
2018-04-01
The engineering of electrocatalysts with high performance for cathodic and/or anodic catalytic reactions is of great urgency for the development of direct methanol fuel cells. Pt-based bimetallic alloys have recently received considerable attention in the field of fuel cells because of their superior catalytic performance towards both fuel molecule electro-oxidation and oxygen reduction. In this work, bimetallic PtCo mesoporous nanospheres (PtCo MNs) with uniform size and morphology have been prepared by a one-step method with a high yield. The as-made PtCo MNs show superior catalytic activities for both oxygen reduction reaction and methanol oxidation reaction relative to Pt MNs and commercial Pt/C catalyst, attributed to their mesoporous structure and bimetallic composition.
[Kinetics of catalytic wet air oxidation of phenol in trickle bed reactor].
Li, Guang-ming; Zhao, Jian-fu; Wang, Hua; Zhao, Xiu-hua; Zhou, Yang-yuan
2004-05-01
By using a trickle bed reactor which was designed by the authors, the catalytic wet air oxidation reaction of phenol on CuO/gamma-Al2O3 catalyst was studied. The results showed that in mild operation conditions (at temperature of 180 degrees C, pressure of 3 MPa, liquid feed rate of 1.668 L x h(-1) and oxygen feed rate of 160 L x h(-1)), the removal of phenol can be over 90%. The curve of phenol conversion is similar to "S" like autocatalytic reaction, and is accordance with chain reaction of free radical. The kinetic model of pseudo homogenous reactor fits the catalytic wet air oxidation reaction of phenol. The effects of initial concentration of phenol, liquid feed rate and temperature for reaction also were investigated.