Sample records for catalytic reduction process

  1. Elemental sulfur recovery process

    DOEpatents

    Flytzani-Stephanopoulos, M.; Zhicheng Hu.

    1993-09-07

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

  2. Elemental sulfur recovery process

    DOEpatents

    Flytzani-Stephanopoulos, Maria; Hu, Zhicheng

    1993-01-01

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO.sub.2 in the regenerator off gas stream to elemental sulfur in the presence of a catalyst.

  3. Microscale Synthesis of Chiral Alcohols via Asymmetric Catalytic Transfer Hydrogenation

    ERIC Educational Resources Information Center

    Peeters, Christine M.; Deliever, Rik; De Vos, Dirk

    2009-01-01

    Synthesis of pure enantiomers is a key issue in industry, especially in areas connected to life sciences. Catalytic asymmetric synthesis has emerged as a powerful and practical tool. Here we describe an experiment on racemic reduction and asymmetric reduction via a catalytic hydrogen transfer process. Acetophenone and substituted acetophenones are…

  4. Treatment of power utilities exhaust

    DOEpatents

    Koermer, Gerald [Basking Ridge, NJ

    2012-05-15

    Provided is a process for treating nitrogen oxide-containing exhaust produced by a stationary combustion source by the catalytic reduction of nitrogen oxide in the presence of a reductant comprising hydrogen, followed by ammonia selective catalytic reduction to further reduce the nitrogen oxide level in the exhaust.

  5. IN SITU DESTRUCTION OF CHLORINATED HYDROCARBON COMPOUNDS IN GROUNDWATER USING CATALYTIC REDUCTIVE REDUCTIVE DEHALOGENATION IN A REACTIVE WELL: TESTING AND OPERATIONAL EXPERIENCES. (R825421)

    EPA Science Inventory

    A groundwater treatment technology based on catalytic reductive
    dehalogenation has been developed to efficiently destroy chlorinated
    hydrocarbons in situ using a reactive well approach. The treatment process
    utilizes dissolved H2 as an electron donor, in...

  6. Selective catalytic reduction system and process for control of NO.sub.x emissions in a sulfur-containing gas stream

    DOEpatents

    Sobolevskiy, Anatoly

    2015-08-11

    An exhaust gas treatment process, apparatus, and system for reducing the concentration of NOx, CO and hydrocarbons in a gas stream, such as an exhaust stream (29), via selective catalytic reduction with ammonia is provided. The process, apparatus and system include a catalytic bed (32) having a reducing only catalyst portion (34) and a downstream reducing-plus-oxidizing portion (36). Each portion (34, 36) includes an amount of tungsten. The reducing-plus-oxidizing catalyst portion (36) advantageously includes a greater amount of tungsten than the reducing catalyst portion (36) to markedly limit ammonia salt formation.

  7. Mussel-Inspired Polydopamine Functionalized Plasmonic Nanocomposites for Single-Particle Catalysis.

    PubMed

    Wang, Jun-Gang; Hua, Xin; Li, Meng; Long, Yi-Tao

    2017-01-25

    Polydopamine functionalized plasmonic nanocomposites with well-distributed catalytically active small gold nanoislands around large gold core were fabricated without using any chemical reductant or surfactant. The optical properties, surface molecular structures, and ensemble catalytic activity of the gold nanocomposites were investigated by time-of-flight secondary ion mass spectrometry and UV-vis spectroscopy, respectively. Moreover, the considerable catalytic activity of the nanocomposites toward 4-nitrophenol reduction was real time monitored by dark-field spectroscopy techniques at the single-nanoparticle level avoiding averaging effects in bulk systems. According to the obtained plasmonic signals from individual nanocomposites, the electron charging and discharging rates for these nanocomposites during the catalytic process were calculated. Our results offer new insights into the design and synthesis of plasmonic nanocomposites for future catalytic applications as well as a further mechanistic understanding of the electron transfer during the catalytic process at the single-nanoparticle level.

  8. HYBRID SNCR-SCR TECHNOLOGIES FOR NOX CONTROL: MODELING AND EXPERIMENT

    EPA Science Inventory

    The hybrid process of homogeneous gas-phase selective non-catalytic reduction (SNCR) followed by selective catalytic reduction (SCR) of nitric oxide (NO) was investigated through experimentation and modeling. Measurements, using NO-doped flue gas from a gas-fired 29 kW test combu...

  9. Selective catalytic reduction system and process using a pre-sulfated zirconia binder

    DOEpatents

    Sobolevskiy, Anatoly; Rossin, Joseph A.

    2010-06-29

    A selective catalytic reduction (SCR) process with a palladium catalyst for reducing NOx in a gas, using hydrogen as a reducing agent is provided. The process comprises contacting the gas stream with a catalyst system, the catalyst system comprising (ZrO.sub.2)SO.sub.4, palladium, and a pre-sulfated zirconia binder. The inclusion of a pre-sulfated zirconia binder substantially increases the durability of a Pd-based SCR catalyst system. A system for implementing the disclosed process is further provided.

  10. Torrefaction reduction of coke formation on catalysts used in esterification and cracking of biofuels from pyrolysed lignocellulosic feedstocks

    DOEpatents

    Kastner, James R; Mani, Sudhagar; Hilten, Roger; Das, Keshav C

    2015-11-04

    A bio-oil production process involving torrefaction pretreatment, catalytic esterification, pyrolysis, and secondary catalytic processing significantly reduces yields of reactor char, catalyst coke, and catalyst tar relative to the best-case conditions using non-torrefied feedstock. The reduction in coke as a result of torrefaction was 28.5% relative to the respective control for slow pyrolysis bio-oil upgrading. In fast pyrolysis bio-oil processing, the greatest reduction in coke was 34.9%. Torrefaction at 275.degree. C. reduced levels of acid products including acetic acid and formic acid in the bio-oil, which reduced catalyst coking and increased catalyst effectiveness and aromatic hydrocarbon yields in the upgraded oils. The process of bio-oil generation further comprises a catalytic esterification of acids and aldehydes to generate such as ethyl levulinate from lignified biomass feedstock.

  11. Selective catalytic reduction system and process for treating NOx emissions using a palladium and rhodium or ruthenium catalyst

    DOEpatents

    Sobolevskiy, Anatoly [Orlando, FL; Rossin, Joseph A [Columbus, OH; Knapke, Michael J [Columbus, OH

    2011-07-12

    A process for the catalytic reduction of nitrogen oxides (NOx) in a gas stream (29) in the presence of H.sub.2 is provided. The process comprises contacting the gas stream with a catalyst system (38) comprising zirconia-silica washcoat particles (41), a pre-sulfated zirconia binder (44), and a catalyst combination (40) comprising palladium and at least one of rhodium, ruthenium, or a mixture of ruthenium and rhodium.

  12. Catalyst for elemental sulfur recovery process

    DOEpatents

    Flytzani-Stephanopoulos, M.; Liu, W.

    1995-01-24

    A catalytic reduction process is described for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(FO[sub 2])[sub 1[minus]n](RO)[sub n

  13. Material and system for catalytic reduction of nitrogen oxide in an exhaust stream of a combustion process

    DOEpatents

    Gardner, Timothy J.; Lott, Stephen E.; Lockwood, Steven J.; McLaughlin, Linda I.

    1998-01-01

    A catalytic material of activated hydrous metal oxide doped with platinum, palladium, or a combination of these, and optionally containing an alkali or alkaline earth metal, that is effective for NO.sub.X reduction in an oxidizing exhaust stream from a combustion process is disclosed. A device for reduction of nitrogen oxides in an exhaust stream, particularly an automotive exhaust stream, the device having a substrate coated with the activated noble-metal doped hydrous metal oxide of the invention is also provided.

  14. Green and facile synthesis of fibrous Ag/cotton composites and their catalytic properties for 4-nitrophenol reduction

    NASA Astrophysics Data System (ADS)

    Li, Ziyu; Jia, Zhigang; Ni, Tao; Li, Shengbiao

    2017-12-01

    Natural cotton, featuring abundant oxygen-containing functional groups, has been utilized as a reductant to synthesize Ag nanoparticles on its surface. Through the facile and environment-friendly reduction process, the fibrous Ag/cotton composite (FAC) was conveniently synthesized. Various characterization techniques including XRD, XPS, TEM, SEM, EDS and FT-IR had been utilized to study the material microstructure and surface properties. The resulting FAC exhibited favorable activity on the catalytic reduction of 4-nitrophenol with high reaction rate. Moreover, the fibrous Ag/cotton composites were capable to form a desirable catalytic mat for catalyzing and simultaneous product separation. Reactants passing through the mat could be catalytically transformed to product, which is of great significance for water treatment. Such catalyst (FAC) was thus expected to have the potential as a highly efficient, cost-effective and eco-friendly catalyst for industrial applications. More importantly, this newly developed synthetic methodology could serve as a general tool to design and synthesize other metal/biomass composites catalysts for a wider range of catalytic applications.

  15. Uniformity index measurement technology using thermocouples to improve performance in urea-selective catalytic reduction systems

    NASA Astrophysics Data System (ADS)

    Park, Sangki; Oh, Jungmo

    2018-05-01

    The current commonly used nitrogen oxides (NOx) emission reduction techniques employ hydrocarbons (HCs), urea solutions, and exhaust gas emissions as the reductants. Two of the primary denitrification NOx (DeNOx) catalyst systems are the HC-lean NOx trap (HC-LNT) catalyst and urea-selective catalytic reduction (urea-SCR) catalyst. The secondary injection method depends on the type of injector, injection pressure, atomization, and spraying technique. In addition, the catalyst reaction efficiency is directly affected by the distribution of injectors; hence, the uniformity index (UI) of the reductant is very important and is the basis for system optimization. The UI of the reductant is an indicator of the NOx conversion efficiency (NCE), and good UI values can reduce the need for a catalyst. Therefore, improving the UI can reduce the cost of producing a catalytic converter, which are expensive due to the high prices of the precious metals contained therein. Accordingly, measurement of the UI is an important process in the development of catalytic systems. Two of the commonly used methods for measuring the reductant UI are (i) measuring the exhaust emissions at many points located upstream/downstream of the catalytic converter and (ii) acquisition of a reductant distribution image on a section of the exhaust pipe upstream of the catalytic converter. The purpose of this study is to develop a system and measurement algorithms to measure the exothermic response distribution in the exhaust gas as the reductant passes through the catalytic converter of the SCR catalyst system using a set of thermocouples downstream of the SCR catalyst. The system is used to measure the reductant UI, which is applied in real-time to the actual SCR system, and the results are compared for various types of mixtures for various engine operating conditions and mixer types in terms of NCE.

  16. Catalytic Reduction of Hexavalent Uranium by Formic Acid; RIDUZIONE CATALITICA DELL'URANIO ESAVALENTE MEDIANTE ACIDO FORMICO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cogliati, G.; Lanz, R.; Lepscky, C.

    1963-10-01

    S>The catalytic reduction of U(VI) to U(IV) by means of formic acid has been studied, considering particularly the uranyl nltrate solutions, This process will be applied in the urania--thoria mixed fuel reprocessing plant, (PCUT). Various catalysts have been tested and the influence of formic acid concentration, temperature and catalyst concentration on the reaction rate have been determined. A possible reduction mechanism coherent with Ihe experimental data is discussed. (auth)

  17. Method and apparatus for combination catalyst for reduction of NO.sub.x in combustion products

    DOEpatents

    Socha, Richard F.; Vartuli, James C.; El-Malki, El-Mekki; Kalyanaraman, Mohan; Park, Paul W.

    2010-09-28

    A method and apparatus for catalytically processing a gas stream passing therethrough to reduce the presence of NO.sub.x therein, wherein the apparatus includes a first catalyst composed of a silver containing alumina that is adapted for catalytically processing the gas stream at a first temperature range, and a second catalyst composed of a copper containing zeolite located downstream from the first catalyst, wherein the second catalyst is adapted for catalytically processing the gas stream at a lower second temperature range relative to the first temperature range.

  18. Carbon Dioxide Reduction Systems

    NASA Technical Reports Server (NTRS)

    Burghardt, Stanley I.; Chandler, Horace W.; Taylor, T. I.; Walden, George

    1961-01-01

    The Methoxy system for regenerating oxygen from carbon dioxide was studied. Experiments indicate that the reaction between carbon dioxide and hydrogen can be carried out with ease in an efficient manner and with excellent heat conservation. A small reactor capable of handling the C02 expired by three men has been built and operated. The decomposition of methane by therma1,arc and catalytic processes was studied. Both the arc and catalytic processes gave encouraging results with over 90 percent of the methane being decomposed to carbon and hydrogen in some of the catalytic processes. Control of the carbon deposition in both the catalytic and arc processes is of great importance to prevent catalyst deactivation and short circuiting of electrical equipment. Sensitive analytical techniques have been developed for all of the components present in the reactor effluent streams.

  19. Oxygen Reduction Reaction for Generating H2 O2 through a Piezo-Catalytic Process over Bismuth Oxychloride.

    PubMed

    Shao, Dengkui; Zhang, Ling; Sun, Songmei; Wang, Wenzhong

    2018-02-09

    Oxygen reduction reaction (ORR) for generating H 2 O 2 through green pathways have gained much attention in recent years. Herein, we introduce a piezo-catalytic approach to obtain H 2 O 2 over bismuth oxychloride (BiOCl) through an ORR pathway. The piezoelectric response of BiOCl was directly characterized by piezoresponse force microscopy (PFM). The BiOCl exhibits efficient catalytic performance for generating H 2 O 2 (28 μmol h -1 ) only from O 2 and H 2 O, which is above the average level of H 2 O 2 produced by solar-to-chemical processes. A piezo-catalytic mechanism was proposed: with ultrasonic waves, an alternating electric field will be generated over BiOCl, which can drive charge carriers (electrons) to interact with O 2 and H 2 O, then to form H 2 O 2 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Nano-Structured Bio-Inorganic Hybrid Material for High Performing Oxygen Reduction Catalyst.

    PubMed

    Jiang, Rongzhong; Tran, Dat T; McClure, Joshua P; Chu, Deryn

    2015-08-26

    In this study, we demonstrate a non-Pt nanostructured bioinorganic hybrid (BIH) catalyst for catalytic oxygen reduction in alkaline media. This catalyst was synthesized through biomaterial hemin, nanostructured Ag-Co alloy, and graphene nano platelets (GNP) by heat-treatment and ultrasonically processing. This hybrid catalyst has the advantages of the combined features of these bio and inorganic materials. A 10-fold improvement in catalytic activity (at 0.8 V vs RHE) is achieved in comparison of pure Ag nanoparticles (20-40 nm). The hybrid catalyst reaches 80% activity (at 0.8 V vs RHE) of the state-of-the-art catalyst (containing 40% Pt and 60% active carbon). Comparable catalytic stability for the hybrid catalyst with the Pt catalyst is observed by chronoamperometric experiment. The hybrid catalyst catalyzes 4-electron oxygen reduction to produce water with fast kinetic rate. The rate constant obtained from the hybrid catalyst (at 0.6 V vs RHE) is 4 times higher than that of pure Ag/GNP catalyst. A catalytic model is proposed to explain the oxygen reduction reaction at the BIH catalyst.

  1. Catalytic Upgrading of Thermochemical Intermediates to Hydrocarbons: Conversion of Lignocellulosic Feedstocks to Aromatic Fuels and High Value Chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cortright, Randy; Rozmiarek, Bob; Van Straten, Matt

    The principal objective of this project was to develop a fully integrated catalytic process that efficiently converts lignocellulosic feedstocks (e.g. bagasse, corn stover, and loblolly pine) into aromatic-rich fuels and chemicals. Virent led this effort with key feedstock support from Iowa State University. Within this project, Virent leveraged knowledge of catalytic processing of sugars and biomass to investigate two liquefaction technologies (Reductive Catalytic Liquefaction (USA Patent No. 9,212,320, 2015) and Solvolysis (USA Patent No. 9,157,030, 2015) (USA Patent No. 9,157,031, 2015)) that take advantage of proprietary catalysts at temperatures less than 300°C in the presence of unique solvent molecules generatedmore » in-situ within the liquefaction processes.« less

  2. Bio-inspired nanocatalysts for the oxygen reduction reaction.

    PubMed

    Grumelli, Doris; Wurster, Benjamin; Stepanow, Sebastian; Kern, Klaus

    2013-01-01

    Electrochemical conversions at fuel cell electrodes are complex processes. In particular, the oxygen reduction reaction has substantial overpotential limiting the electrical power output efficiency. Effective and inexpensive catalytic interfaces are therefore essential for increased performance. Taking inspiration from enzymes, earth-abundant metal centres embedded in organic environments present remarkable catalytic active sites. Here we show that these enzyme-inspired centres can be effectively mimicked in two-dimensional metal-organic coordination networks self-assembled on electrode surfaces. Networks consisting of trimesic acid and bis-pyridyl-bispyrimidine coordinating to single iron and manganese atoms on Au(111) effectively catalyse the oxygen reduction and reveal distinctive catalytic activity in alkaline media. These results demonstrate the potential of surface-engineered metal-organic networks for electrocatalytic conversions. Specifically designed coordination complexes at surfaces inspired by enzyme cofactors represent a new class of nanocatalysts with promising applications in electrocatalysis.

  3. Communication: Towards catalytic nitric oxide reduction via oligomerization on boron doped graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantatore, Valentina, E-mail: valcan@chalmers.se; Panas, Itai

    We use density functional theory to describe a novel way for metal free catalytic reduction of nitric oxide NO utilizing boron doped graphene. The present study is based on the observation that boron doped graphene and O—N=N—O{sup −} act as Lewis acid-base pair allowing the graphene surface to act as a catalyst. The process implies electron assisted N=N bond formation prior to N—O dissociation. Two N{sub 2} + O{sub 2} product channels, one of which favoring N{sub 2}O formation, are envisaged as outcome of the catalytic process. Besides, we show also that the N{sub 2} + O{sub 2} formation pathwaysmore » are contrasted by a side reaction that brings to N{sub 3}O{sub 3}{sup −} formation and decomposition into N{sub 2}O + NO{sub 2}{sup −}.« less

  4. Catalytic reduction of hexavalent chromium by a novel nitrogen-functionalized magnetic ordered mesoporous carbon doped with Pd nanoparticles.

    PubMed

    Li, Sisi; Tang, Lin; Zeng, Guangming; Wang, Jiajia; Deng, Yaocheng; Wang, Jingjing; Xie, Zhihong; Zhou, Yaoyu

    2016-11-01

    Hexavalent chromium Cr(VI) is a toxic water pollutant which can cause serious influence to the health of the human and animals. Therefore, developing new methods to remove hexavalent chromium in water attracts great attention of scholars. In our research, we successfully synthesized a new type of magnetic mesoporous carbon hybrid nitrogen (Fe-NMC) loaded with catalyst Pd nanoparticles (NPs), which performed excellent catalytic reduction efficiency toward Cr(VI). The characterization of Pd/Fe-NMC composite was investigated in detail using scanning electron microscope (SEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), and nitrogen adsorption-desorption measurements. According to the experimental results, we dealt with in-depth discussion and studied on the mechanism of hexavalent chromium removed by Pd/Fe-NMC composite. Furthermore, the batch experiments were conducted to investigate the catalytic reduction ability of composite. It was found that the chromium reduction process conforms to pseudo-first-order reaction kinetics model when the concentrations of chromium and sodium formate were low. It took only 20 min for the Pd/Fe-NMC composite to reach 99.8 % reduction of Cr(VI) (50 mg/L). The results suggested that the Pd/Fe-NMC composite may exhibit significantly improved catalytic activity for the hexavalent chromium reduction at industrial wastewater.

  5. Enhanced hydrothermal stability of Cu-ZSM-5 catalyst via surface modification in the selective catalytic reduction of NO with NH3

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Shi, Juan; Liu, Jian; Wang, Daxi; Zhao, Zhen; Cheng, Kai; Li, Jianmei

    2016-07-01

    The surface of Cu-ZSM-5 catalyst was modified by chemical liquid deposition (CLD) of tetraethoxysilane (TEOS) for enhancing its hydrothermal stability in the selective catalytic reduction of NO with NH3. After hydrothermal aging at 750 °C for 13 h, the catalytic performance of Cu-ZSM-5-Aged catalyst was significantly reduced for NO reduction in the entire temperature range, while that of Cu-ZSM-5-CLD-Aged catalyst was affected very little. The characterization results indicated that an inert silica layer was deposited on the surface of Cu-ZSM-5 and formed a protective layer, which prevents the detachment of Cu2+ from ZSM-5 ion-exchange positions and the dealumination of zeolite during the hydrothermal aging process. Based on the data it is hypothesized to be the primary reason for the high hydrothermal stability of Cu-ZSM-5-CLD catalyst.

  6. High activity of g-C3N4/multiwall carbon nanotube in catalytic ozonation promotes electro-peroxone process.

    PubMed

    Guo, Zhuang; Cao, Hongbin; Wang, Yuxian; Xie, Yongbing; Xiao, Jiadong; Yang, Jin; Zhang, Yi

    2018-06-01

    Three kinds of graphitic carbon nitride materials (bulk, porous and nanosheet g-C 3 N 4 ) were composited with a multiwall carbon nanotube (MWCNT) by a hydrothermal method, and the obtained b-C 3 N 4 /CNT, p-C 3 N 4 /CNT and n-C 3 N 4 /CNT materials were used in the electrodes for electro-peroxone process. It was found that the n-C 3 N 4 /CNT composite exhibited the highest efficiency in oxalate degradation, though it performed the worst in the oxygen-reduction reaction for H 2 O 2 production. The n-C 3 N 4 /CNT composite exhibited higher activity than CNT and other composites in catalytic ozonation experiments, due to the higher pyrrolic-N content modified on the CNT surface and higher surface area. It also has higher electron transfer ability, which benefited to the electro-reduction of both O 2 and O 3 . The result confirmed that catalytic ozonation process was an important means to enhance the degradation efficiency in the electro-peroxone process, besides peroxone process and O 3 -electrolysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. pH-dependent reduction potentials and proton-coupled electron transfer mechanisms in hydrogen-producing nickel molecular electrocatalysts.

    PubMed

    Horvath, Samantha; Fernandez, Laura E; Appel, Aaron M; Hammes-Schiffer, Sharon

    2013-04-01

    The nickel-based P2(Ph)N2(Bn) electrocatalysts comprised of a nickel atom and two 1,5-dibenzyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane ligands catalyze H2 production in acetonitrile. Recent electrochemical experiments revealed a linear dependence of the Ni(II/I) reduction potential on pH with a slope of 57 mV/pH unit, implicating a proton-coupled electron transfer (PCET) process with the same number of electrons and protons transferred. The combined theoretical and experimental studies herein provide an explanation for this pH dependence in the context of the overall proposed catalytic mechanism. In the proposed mechanisms, the catalytic cycle begins with a series of intermolecular proton transfers from an acid to the pendant amine ligand and electrochemical electron transfers to the nickel center to produce the doubly protonated Ni(0) species, a precursor to H2 evolution. The calculated Ni(II/I) reduction potentials of the doubly protonated species are in excellent agreement with the experimentally observed reduction potential in the presence of strong acid, suggesting that the catalytically active species leading to the peak observed in these cyclic voltammetry (CV) experiments is doubly protonated. The Ni(I/0) reduction potential was found to be slightly more positive than the Ni(II/I) reduction potential, indicating that the Ni(I/0) reduction occurs spontaneously after the Ni(II/I) reduction, as implied by the experimental observation of a single CV peak. These results suggest that the PCET process observed in the CV experiments is a two-electron/two-proton process corresponding to an initial double protonation followed by two reductions. On the basis of the experimental and theoretical data, the complete thermodynamic scheme and the Pourbaix diagram were generated for this catalyst. The Pourbaix diagram, which identifies the most thermodynamically stable species at each reduction potential and pH value, illustrates that this catalyst undergoes different types of PCET processes for various pH ranges. These thermodynamic insights will aid in the design of more effective molecular catalysts for H2 production.

  8. Indirect electrocatalytic degradation of cyanide at nitrogen-doped carbon nanotube electrodes.

    PubMed

    Wiggins-Camacho, Jaclyn D; Stevenson, Keith J

    2011-04-15

    Nitrogen-doped carbon nanotube (N-CNT) mat electrodes exhibit high catalytic activity toward O(2) reduction, which can be exploited for the remediation of free cyanide (CN(-)). During the electrochemical O(2) reduction process, the hydroperoxide anion (HO(2)(-)) is formed and then reacts to chemically oxidize cyanide (CN(-)) to form cyanate (OCN(-)). The proposed electrochemical-chemical (EC) mechanism for CN(-) remediation at N-CNTs is supported by cyclic voltammetry and bulk electrolysis, and the formation of OCN(-) is confirmed via spectroscopic methods and electrochemical simulations. Our results indicate that by exploiting their catalytic behavior for O(2) reduction, N-CNTs can efficiently convert toxic CN(-) to the nontoxic OCN(-).

  9. In situ loading of well-dispersed silver nanoparticles on nanocrystalline magnesium oxide for real-time monitoring of catalytic reactions by surface enhanced Raman spectroscopy.

    PubMed

    Zhang, Kaige; Li, Gongke; Hu, Yuling

    2015-10-28

    The surface-enhanced Raman spectroscopy (SERS) technique is of great importance for insight into the transient reaction intermediates and mechanistic pathways involved in heterogeneously catalyzed chemical reactions under actual reaction conditions, especially in water. Herein, we demonstrate a facile method for in situ synthesis of nanocrystalline magnesium oxide-Ag(0) (nano MgO-Ag(0)) hybrid nanomaterials with dispersed Ag nanoparticles (Ag NPs) on the surface of nanocrystalline magnesium oxide (nano MgO) via Sn(2+) linkage and reduction. As a benefit from the synergy effect of nano MgO and Ag NPs, the nano MgO-Ag(0) exhibited both excellent SERS and catalytic activities for the reduction of 4-nitrothiophenol in the presence of NaBH4. The nano MgO-Ag(0) was used for real-time monitoring of the catalytic reaction process of 4-nitrothiophenol to 4-aminothiophenol in an aqueous medium by observing the SERS signals of the reactant, intermediate and final products. The intrinsic reaction kinetics and reaction mechanism of this reaction were also investigated. This SERS-based synergy technique provides a novel approach for quantitative in situ monitoring of catalytic chemical reaction processes.

  10. Selective synthesis of secondary amines by Pt nanowire catalyzed reductive amination of aldehydes and ketones with ammonia.

    PubMed

    Qi, Fenqiang; Hu, Lei; Lu, Shuanglong; Cao, Xueqin; Gu, Hongwei

    2012-10-07

    The process of the reductive amination of aldehydes or ketones in the presence of ammonia using unsupported ultra-thin Pt nanowires has been developed. This catalytic system shows high activity and selectivity under mild reaction conditions.

  11. Advanced air revitalization system modeling and testing

    NASA Technical Reports Server (NTRS)

    Dall-Baumann, Liese; Jeng, Frank; Christian, Steve; Edeer, Marybeth; Lin, Chin

    1990-01-01

    To support manned lunar and Martian exploration, an extensive evaluation of air revitalization subsystems (ARS) is being conducted. The major operations under study include carbon dioxide removal and reduction; oxygen and nitrogen production, storage, and distribution; humidity and temperature control; and trace contaminant control. A comprehensive analysis program based on a generalized block flow model was developed to facilitate the evaluation of various processes and their interaction. ASPEN PLUS was used in modelling carbon dioxide removal and reduction. Several life support test stands were developed to test new and existing technologies for their potential applicability in space. The goal was to identify processes which use compact, lightweight equipment and maximize the recovery of oxygen and water. The carbon dioxide removal test stands include solid amine/vacuum desorption (SAVD), regenerative silver oxide chemisorption, and electrochemical carbon dioxide concentration (EDC). Membrane-based carbon dioxide removal and humidity control, catalytic reduction of carbon dioxide, and catalytic oxidation of trace contaminants were also investigated.

  12. Effect of Phenolic Compounds on the Synthesis of Gold Nanoparticles and Its Catalytic Activity in the Reduction of Nitro Compounds

    PubMed Central

    Mendes, Marta; Pombeiro, Armando J. L.

    2018-01-01

    Gold nanoparticles (AuNPs) were prepared using an eco-friendly approach in a single step by reduction of HAuCl4 with polyphenols from tea extracts, which act as both reducing and capping agents. The obtained AuNPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet–visible spectroscopy (UV–vis), and X-ray photoelectron spectroscopy (XPS). They act as highly efficient catalysts in the reduction of various aromatic nitro compounds in aqueous solution. The effects of a variety of factors (e.g., reaction time, type and amount of reducing agent, shape, size, or amount of AuNPs) were studied towards the optimization of the processes. The total polyphenol content (TPC) was determined before and after the catalytic reaction and the results are discussed in terms of the tea extract percentage, the size of the AuNPs, and their catalytic activity. The reusability of the AuNP catalyst in the reduction of 4-nitrophenol was also tested. The reactions follow pseudo first-order kinetics. PMID:29748502

  13. Effect of Phenolic Compounds on the Synthesis of Gold Nanoparticles and its Catalytic Activity in the Reduction of Nitro Compounds.

    PubMed

    Alegria, Elisabete C B A; Ribeiro, Ana P C; Mendes, Marta; Ferraria, Ana M; do Rego, Ana M Botelho; Pombeiro, Armando J L

    2018-05-10

    Gold nanoparticles (AuNPs) were prepared using an eco-friendly approach in a single step by reduction of HAuCl₄ with polyphenols from tea extracts, which act as both reducing and capping agents. The obtained AuNPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet⁻visible spectroscopy (UV⁻vis), and X-ray photoelectron spectroscopy (XPS). They act as highly efficient catalysts in the reduction of various aromatic nitro compounds in aqueous solution. The effects of a variety of factors (e.g., reaction time, type and amount of reducing agent, shape, size, or amount of AuNPs) were studied towards the optimization of the processes. The total polyphenol content (TPC) was determined before and after the catalytic reaction and the results are discussed in terms of the tea extract percentage, the size of the AuNPs, and their catalytic activity. The reusability of the AuNP catalyst in the reduction of 4-nitrophenol was also tested. The reactions follow pseudo first-order kinetics.

  14. Method to monitor HC-SCR catalyst NOx reduction performance for lean exhaust applications

    DOEpatents

    Viola, Michael B [Macomb Township, MI; Schmieg, Steven J [Troy, MI; Sloane, Thompson M [Oxford, MI; Hilden, David L [Shelby Township, MI; Mulawa, Patricia A [Clinton Township, MI; Lee, Jong H [Rochester Hills, MI; Cheng, Shi-Wai S [Troy, MI

    2012-05-29

    A method for initiating a regeneration mode in selective catalytic reduction device utilizing hydrocarbons as a reductant includes monitoring a temperature within the aftertreatment system, monitoring a fuel dosing rate to the selective catalytic reduction device, monitoring an initial conversion efficiency, selecting a determined equation to estimate changes in a conversion efficiency of the selective catalytic reduction device based upon the monitored temperature and the monitored fuel dosing rate, estimating changes in the conversion efficiency based upon the determined equation and the initial conversion efficiency, and initiating a regeneration mode for the selective catalytic reduction device based upon the estimated changes in conversion efficiency.

  15. Catalysts for lean burn engine exhaust abatement

    DOEpatents

    Ott, Kevin C.; Clark, Noline C.; Paffett, Mark T.

    2006-08-01

    The present invention provides a process for catalytically reducing nitrogen oxides in an exhaust gas stream containing nitrogen oxides and a reductant material by contacting the gas stream under conditions effective to catalytically reduce the nitrogen oxides with a catalyst comprising a aluminum-silicate type material and a minor amount of a metal, the catalyst characterized as having sufficient catalytic activity so as to reduce the nitrogen oxides by at least 60 percent under temperatures within the range of from about 200.degree. C. to about 400.degree. C.

  16. Catalysts For Lean Burn Engine Exhaust Abatement

    DOEpatents

    Ott, Kevin C.; Clark, Noline C.; Paffett, Mark T.

    2004-04-06

    The present invention provides a process for catalytically reducing nitrogen oxides in an exhaust gas stream containing nitrogen oxides and a reductant material by contacting the gas stream under conditions effective to catalytically reduce the nitrogen oxides with a catalyst comprising a aluminum-silicate type material and a minor amount of a metal, the catalyst characterized as having sufficient catalytic activity so as to reduce the nitrogen oxides by at least 60 percent under temperatures within the range of from about 200.degree. C. to about 400.degree. C.

  17. Catalysts for lean burn engine exhaust abatement

    DOEpatents

    Ott, Kevin C.; Clark, Noline C.; Paffett, Mark T.

    2003-01-01

    The present invention provides a process for catalytically reducing nitrogen oxides in an exhaust gas stream containing nitrogen oxides and a reductant material by contacting the gas stream under conditions effective to catalytically reduce the nitrogen oxides with a catalyst comprising a aluminum-silicate type material and a minor amount of a metal, the catalyst characterized as having sufficient catalytic activity so as to reduce the nitrogen oxides by at least 60 percent under temperatures within the range of from about 200.degree. C. to about 400.degree. C.

  18. Efficient and Selective Electrochemical and Photoelectrochemical Reduction of 5-Hydroxymethylfurfural to 2,5-Bis(hydroxymethyl)furan using Water as the Hydrogen Source

    DOE PAGES

    Roylance, John J.; Kim, Tae Woo; Choi, Kyoung-Shin

    2016-02-17

    Reductive biomass conversion has been conventionally conducted using H 2 gas under high-temperature and-pressure conditions. Here, efficient electrochemical reduction of 5-hydroxymethylfurfural (HMF), a key intermediate for biomass conversion, to 2,5-bis(hydroxymethyl)furan (BHMF), an important monomer for industrial processes, was demonstrated using Ag catalytic electrodes. This process uses water as the hydrogen source under ambient conditions and eliminates the need to generate and consume H 2 for hydrogenation, providing a practical and efficient route for BHMF production. By systematic investigation of HMF reduction on the Ag electrode surface, BHMF production was achieved with the Faradaic efficiency and selectivity nearing 100%, and plausiblemore » reduction mechanisms were also elucidated. Furthermore, construction of a photoelectrochemical cell (PEC) composed of an n-type BiVO 4 semiconductor anode, which uses photogenerated holes for water oxidation, and a catalytic Ag cathode, which uses photoexcited electrons from BiVO 4 for the reduction of HMF to BHMF, was demonstrated to utilize solar energy to significantly decrease the external voltage necessary for HMF reduction. This shows the possibility of coupling electrochemical HMF reduction and solar energy conversion, which can provide more efficient and environmentally benign routes for reductive biomass conversion.« less

  19. A microwave assisted one-pot route synthesis of bimetallic PtPd alloy cubic nanocomposites and their catalytic reduction for 4-nitrophenol

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Gan, Wei; Fu, Xucheng; Hao, Hequn

    2017-10-01

    We herein report a simple, rapid, and eco-friendly chemical route to the one-pot synthesis of bimetallic PtPd alloy cubic nanocomposites under microwave irradiation. During this process, water was employed as an environmentally benign solvent, while dimethylformamide served as a mild reducing agent, and polyvinylpyrrolidone was used as both a dispersant and a stabilizer. The structure, morphology, and composition of the resulting alloy nanocomposites were examined by x-ray diffraction, transmission electron microscopy, and energy dispersive x-ray spectroscopy. A detailed study was then carried out into the catalytic activity of the PtPd nanocomposites with a Pt:Pd molar ratio of 50:50 in the reduction of 4-nitrophenol (4-NP) by sodium borohydride as a model reaction. Compared with pristine Pt and Pd monometallic nanoparticles (PtNPs and PdNPs), the bimetallic PtPd alloy nanocomposites exhibited enhanced catalytic activities and were readily recyclable in the reduction of 4-NP due to synergistic effects.

  20. Method and apparatus for monitoring a hydrocarbon-selective catalytic reduction device

    DOEpatents

    Schmieg, Steven J; Viola, Michael B; Cheng, Shi-Wai S; Mulawa, Patricia A; Hilden, David L; Sloane, Thompson M; Lee, Jong H

    2014-05-06

    A method for monitoring a hydrocarbon-selective catalytic reactor device of an exhaust aftertreatment system of an internal combustion engine operating lean of stoichiometry includes injecting a reductant into an exhaust gas feedstream upstream of the hydrocarbon-selective catalytic reactor device at a predetermined mass flowrate of the reductant, and determining a space velocity associated with a predetermined forward portion of the hydrocarbon-selective catalytic reactor device. When the space velocity exceeds a predetermined threshold space velocity, a temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is determined, and a threshold temperature as a function of the space velocity and the mass flowrate of the reductant is determined. If the temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is below the threshold temperature, operation of the engine is controlled to regenerate the hydrocarbon-selective catalytic reactor device.

  1. A ternary Cu2O-Cu-CuO nanocomposite: a catalyst with intriguing activity.

    PubMed

    Sasmal, Anup Kumar; Dutta, Soumen; Pal, Tarasankar

    2016-02-21

    In this work, the syntheses of Cu2O as well as Cu(0) nanoparticle catalysts are presented. Copper acetate monohydrate produced two distinctly different catalyst particles with varying concentrations of hydrazine hydrate at room temperature without using any surfactant or support. Then both of them were employed separately for 4-nitrophenol reduction in aqueous solution in the presence of sodium borohydride at room temperature. To our surprise, it was noticed that the catalytic activity of Cu2O was much higher than that of the metal Cu(0) nanoparticles. We have confirmed the reason for the exceptionally high catalytic activity of cuprous oxide nanoparticles over other noble metal nanoparticles for 4-nitrophenol reduction. A plausible mechanism has been reported. The unusual activity of Cu2O nanoparticles in the reduction reaction has been observed because of the in situ generated ternary nanocomposite, Cu2O-Cu-CuO, which rapidly relays electrons and acts as a better catalyst. In this ternary composite, highly active in situ generated Cu(0) is proved to be responsible for the hydride transfer reaction. The mechanism of 4-nitrophenol reduction has been established from supporting TEM studies. To further support our proposition, we have prepared a compositionally similar Cu2O-Cu-CuO nanocomposite using Cu2O and sodium borohydride which however displayed lower rate of reduction than that of the in situ produced ternary nanocomposite. The evolution of isolated Cu(0) nanoparticles for 4-nitrophenol reduction from Cu2O under surfactant-free condition has also been taken into consideration. The synthetic procedures of cuprous oxide as well as its catalytic activity in the reduction of 4-nitrophenol are very convenient, fast, cost-effective, and easily operable in aqueous medium and were followed spectrophotometrically. Additionally, the Cu2O-catalyzed 4-nitrophenol reduction methodology was extended further to the reduction of electronically diverse nitroarenes. This concise catalytic process in aqueous medium at room temperature revealed an unprecedented catalytic performance which would draw attention across the whole research community.

  2. Green synthesis of layered 1T-MoS2/reduced graphene oxide nanocomposite with excellent catalytic performances for 4-nitrophenol reduction

    NASA Astrophysics Data System (ADS)

    Meng, Nannan; Cheng, Jian; Zhou, Yifeng; Nie, Wangyan; Chen, Pengpeng

    2017-02-01

    A green and facile process was developed to prepare layered octahedral phase MoS2/reduced graphene oxide (1T-MoS2/RGO) nanocomposite by a Vitamin C-assisted self-assemble method, in which graphene oxide (GO) and LiMoS2 were used as starting materials. Catalytic performances of 1T-MoS2/RGO were evaluated by hydrogenation of 4-nitrophenol (4-NP). It was demonstrated that the prepared 1T-MoS2/RGO nanocomposite presented excellent catalytic performance and cycling stability for 4-NP reduction, which made it a promising noble-metal-free catalyst. Additionally, broadening work suggested some other RGO-based metal nanocomposite with well-defined porous structure could be also generated via this facile self-assembly method.

  3. Zinc-oxide-silica-silver nanocomposite: Unique one-pot synthesis and enhanced catalytic and anti-bacterial performance.

    PubMed

    Kokate, Mangesh; Garadkar, Kalyanrao; Gole, Anand

    2016-12-01

    We describe herein a unique approach to synthesize zinc oxide-silica-silver (ZnO-SiO2-Ag) nanocomposite, in a simple, one-pot process. The typical process for ZnO synthesis by alkaline precipitation of zinc salts has been tweaked to replace alkali by alkaline sodium silicate. The free acid from zinc salts helps in the synthesis of silica nanoparticles, whereas the alkalinity of sodium silicate precipitates the zinc salts. Addition of silver ions into the reaction pot prior to addition of sodium silicate, and subsequent reduction by borohydride, gives additional functionality of metallic centres for catalytic applications. The synthesis strategy is based on our recent work typically involving acid-base type of cross-reactions and demonstrates a novel strategy to synthesize nanocomposites in a one-pot approach. Each component in the composite offers a unique feature. ZnO besides displaying mild catalytic and anti-bacterial behaviour is an excellent and a cheap 3-D support for heterogeneous catalysis. Silver nanoparticles enhance the catalytic & anti-bacterial properties of ZnO. Silica is an important part of the composite; which not only "glues" the two nanoparticles thereby stabilizing the nanocomposite, but also significantly enhances the surface area of the composite; which is an attractive feature of any catalyst composite. The nanocomposite is found to show excellent catalytic performance with very high turnover frequencies (TOFs) when studied for catalytic reduction of Rhodamine B (RhB) and 4-Nitrophenol (4-NP). Additionally, the composite has been tested for its anti-bacterial properties on three different bacterial strains i.e. E. coli, B. Cereus and Bacillus firmus. The mechanism for enhancement of catalytic performance has been probed by understanding the role of silica in offering accessibility to the catalyst via its porous high surface area network. The nanocomposite has been characterized by a host of different analytical techniques. The uniqueness of our product and process stems from the novel synthesis strategy, the choice and combination of the three moieties, increased surface area offered by silica, and cost effectiveness, thereby making our product and process commercially viable and sustainable for industrial applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Semi-catalytic reduction of secondary amides to imines and aldehydes.

    PubMed

    Lee, Sun-Hwa; Nikonov, Georgii I

    2014-06-21

    Secondary amides can be reduced by silane HSiMe2Ph into imines and aldehydes by a two-stage process involving prior conversion of amides into iminoyl chlorides followed by catalytic reduction mediated by the ruthenium complex [Cp(i-Pr3P)Ru(NCCH3)2]PF6 (1). Alkyl and aryl amides bearing halogen, ketone, and ester groups were converted with moderate to good yields under mild reaction conditions to the corresponding imines and aldehydes. This procedure does not work for substrates bearing the nitro-group and fails for heteroaromatic amides. In the case of cyano substituted amides, the cyano group is reduced to imine.

  5. Investigation of the electrocatalytic oxygen reduction and evolution reactions in lithium–oxygen batteries

    DOE PAGES

    Zheng, Dong; Zhang, Xuran; Qu, Deyu; ...

    2015-04-21

    Oxygen reduction and oxygen evolution reactions were examined on graphite electrodes with different crystal orientations. The kinetics for the redox couple O 2/O 2 •- are very fast, therefore no catalyst seems necessary to assist the charge transfer process. Apparently, the main source of the overpotential for the O 2 reduction reaction is from mass diffusion. Li 2O 2 becomes soluble in non-aqueous electrolytes in the presence of the tetraethylammonium tetrafluoroborate additive. The soluble B-O 2 2- ions can be oxidized electro-catalytically. The edge orientation of graphite demonstrates superior catalytic activity for the oxidation over basal orientation. The findings revealmore » an opportunity for recharging Li-air batteries efficiently and a new strategy of developing the catalyst for oxygen evolution reaction.« less

  6. Enhanced catalytic and dopamine sensing properties of electrochemically reduced conducting polymer nanocomposite doped with pure graphene oxide.

    PubMed

    Wang, Wenting; Xu, Guiyun; Cui, Xinyan Tracy; Sheng, Ge; Luo, Xiliang

    2014-08-15

    Significantly enhanced catalytic activity of a nanocomposite composed of conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) doped with graphene oxide (GO) was achieved through a simple electrochemical reduction process. The nanocomposite (PEDOT/GO) was electrodeposited on an electrode and followed by electrochemical reduction, and the obtained reduced nanocomposite (PEDOT/RGO) modified electrode exhibited lowered electrochemical impedance and excellent electrocatalytic activity towards the oxidation of dopamine. Based on the excellent catalytic property of PEDOT/RGO, an electrochemical sensor capable of sensitive and selective detection of DA was developed. The fabricated sensor can detect DA in a wide linear range from 0.1 to 175μM, with a detection limit of 39nM, and it is free from common interferences such as uric acid and ascorbic acid. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Vapor Phase Catalytic Ammonia Reduction

    NASA Technical Reports Server (NTRS)

    Flynn, Michael T.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    This paper discusses the development of a Vapor Phase Catalytic Ammonia Reduction (VPCAR) teststand and the results of an experimental program designed to evaluate the potential of the technology as a water purification process. In the experimental program the technology is evaluated based upon product water purity, water recovery rate, and power consumption. The experimental work demonstrates that the technology produces high purity product water and attains high water recovery rates at a relatively high specific power consumption. The experimental program was conducted in 3 phases. In phase I an Igepon(TM) soap and water mixture was used to evaluate the performance of an innovative Wiped-Film Rotating-Disk evaporator and associated demister. In phase II a phenol-water solution was used to evaluate the performance of the high temperature catalytic oxidation reactor. In phase III a urine analog was used to evaluate the performance of the combined distillation/oxidation functions of the processor.

  8. Reduction of furnace temperature in ultra long carbon nanotube growth by plasmonic excitation of electron Fermi gas of catalytic nanocluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saeidi, Mohammadreza, E-mail: Saeidi.mr@gmail.com, E-mail: m.saeidi@shahed.ac.ir

    2016-06-15

    In this paper, a novel physical method is presented to reduce the temperature of the furnace and prevent loss of thermal energy in ultra long carbon nanotube (CNT) growth process by catalytic chemical vapor deposition. This method is based on the plasmonic excitation of electron Fermi gas of catalytic nanocluster sitting at tip end of CNT by ultraviolet (UV) irradiation. Physical concepts of the method are explained in detail. The results of applying the presented method consequences to an appropriate tip-growth mechanism of the ultra long CNTs show that, in the presence of plasmonic excitation, the growth rate of themore » CNT is enhanced. Demonstration of temperature reduction and simultaneous increase in CNT length by UV irradiation with the proper frequency are the most important and practical result of the paper. All results are interpreted and discussed.« less

  9. THE EFFECT OF SULFUR ON METHANE PARTIAL OXIDATION AND REFORMING PROCESSES FOR LEAN NOX TRAP CATALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parks, II, James E; Ponnusamy, Senthil

    2006-01-01

    Lean NOx trap catalysis has demonstrated the ability to reduce NOx emissions from lean natural gas reciprocating engines by >90%. The technology operates in a cyclic fashion where NOx is trapped on the catalyst during lean operation and released and reduced to N2 under rich exhaust conditions; the rich cleansing operation of the cycle is referred to as "regeneration" since the catalyst is reactivated for more NOx trapping after NOx purge. Creating the rich exhaust conditions for regeneration can be accomplished by catalytic partial oxidation of methane in the exhaust system. Furthermore, catalytic reforming of partial oxidation exhaust can enablemore » increased quantities of H2 which is an excellent reductant for lean NOx trap regeneration. It is critical to maintain clean and efficient partial oxidation and reforming processes to keep the lean NOx trap functioning properly and to reduce extra fuel consumption from the regeneration process. Although most exhaust constituents do not impede partial oxidation and reforming, some exhaust constituents may negatively affect the catalysts and result in loss of catalytic efficiency. Of particular concern are common catalyst poisons sulfur, zinc, and phosphorous. These poisons form in the exhaust through combustion of fuel and oil, and although they are present at low concentrations, they can accumulate to significant levels over the life of an engine system. In the work presented here, the effects of sulfur on the partial oxidation and reforming catalytic processes were studied to determine any durability limitations on the production of reductants for lean NOx trap catalyst regeneration.« less

  10. Biorecovery of gold as nanoparticles and its catalytic activities for p-nitrophenol degradation.

    PubMed

    Zhu, Nengwu; Cao, Yanlan; Shi, Chaohong; Wu, Pingxiao; Ma, Haiqin

    2016-04-01

    Recovery of gold from aqueous solution using simple and economical methodologies is highly desirable. In this work, recovery of gold as gold nanoparticles (AuNPs) by Shewanella haliotis with sodium lactate as electron donor was explored. The results showed that the process was affected by the concentration of biomass, sodium lactate, and initial gold ions as well as pH value. Specifically, the presence of sodium lactate determines the formation of nanoparticles, biomass, and AuCl4 (-) concentration mainly affected the size and dispersity of the products, reaction pH greatly affected the recovery efficiency, and morphology of the products in the recovery process. Under appropriate conditions (5.25 g/L biomass, 40 mM sodium lactate, 0.5 mM AuCl4 (-), and pH of 5), the recovery efficiency was almost 99 %, and the recovered AuNPs were mainly spherical with size range of 10-30 nm (~85 %). Meanwhile, Fourier transforms infrared spectroscopy and X-ray photoelectron spectroscopy demonstrated that carboxyl and amine groups might play an important role in the process. In addition, the catalytic activity of the AuNPs recovered under various conditions was testified by analyzing the reduction rate of p-nitrophenol by borohydride. The biorecovered AuNPs exhibited interesting size and shape-dependent catalytic activity, of which the spherical particle with smaller size showed the highest catalytic reduction activity with rate constant of 0.665 min(-1).

  11. Investigation of catalytic activity towards oxygen reduction reaction of Pt dispersed on boron doped graphene in acid medium.

    PubMed

    Pullamsetty, Ashok; Sundara, Ramaprabhu

    2016-10-01

    Boron doped graphene was prepared by a facile method and platinum (Pt) decoration over boron doped graphene was done in various chemical reduction methods such as sodium borohydride (NaBH4), polyol and modified polyol. X-ray diffraction analysis indicates that the synthesized catalyst particles are present in a nanocrystalline structure and transmission and scanning electron microscopy were employed to investigate the morphology and particle distribution. The electrochemical properties were investigated with the help of the rotating disk electrode (RDE) technique and cyclic voltammetry. The results show that the oxygen reduction reaction (ORR) takes place by a four-electron process. The kinetics of the ORR was evaluated using K-L and Tafel plots. The electrocatalyst obtained in modified polyol reduction method has shown the better catalytic activity compared to other two electrocatalysts. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Experimental investigation on emission reduction in neem oil biodiesel using selective catalytic reduction and catalytic converter techniques.

    PubMed

    Viswanathan, Karthickeyan

    2018-05-01

    In the present study, non-edible seed oil namely raw neem oil was converted into biodiesel using transesterification process. In the experimentation, two biodiesel blends were prepared namely B25 (25% neem oil methyl ester with 75% of diesel) and B50 (50% neem oil methyl ester with 50% diesel). Urea-based selective catalytic reduction (SCR) technique with catalytic converter (CC) was fixed in the exhaust tail pipe of the engine for the reduction of engine exhaust emissions. Initially, the engine was operated with diesel as a working fluid and followed by refilling of biodiesel blends B25 and B50 to obtain the baseline readings without SCR and CC. Then, the same procedure was repeated with SCR and CC technique for emission reduction measurement in diesel, B25 and B50 sample. The experimental results revealed that the B25 blend showed higher break thermal efficiency (BTE) and exhaust gas temperature (EGT) with lower break-specific fuel consumption (BSFC) than B50 blend at all loads. On comparing with biodiesel blends, diesel experiences increased BTE of 31.9% with reduced BSFC of 0.29 kg/kWh at full load. A notable emission reduction was noticed for all test fuels in SCR and CC setup. At full load, B25 showed lower carbon monoxide (CO) of 0.09% volume, hydrocarbon (HC) of 24 ppm, and smoke of 14 HSU and oxides of nitrogen (NOx) of 735 ppm than diesel and B50 in SCR and CC setup. On the whole, the engine with SCR and CC setup showed better performance and emission characteristics than standard engine operation.

  13. NOX REMOVAL WITH COMBINED SELECTIVE CATALYTIC REDUCTION AND SELECTIVE NONCATALYTIC REDUCTION: PILOT- SCALE TEST RESULTS

    EPA Science Inventory

    Pilot-scale tests were conducted to develop a combined nitrogen oxide (NOx) reduction technology using both selective catalytic reduction (SCR) and selective noncatalytic reduction (SNCR). A commercially available vanadium-and titatnium-based composite honeycomb catalyst and enh...

  14. A highly efficient electrocatalyst for oxygen reduction reaction: phosphorus and nitrogen co-doped hierarchically ordered porous carbon derived from an iron-functionalized polymer

    NASA Astrophysics Data System (ADS)

    Deng, Chengwei; Zhong, Hexiang; Li, Xianfeng; Yao, Lan; Zhang, Huamin

    2016-01-01

    Heteroatom-doped carbon materials have shown respectable activity for the oxygen reduction reaction (ORR) in alkaline media. However, the performances of these materials are not satisfactory for energy conversion devices, such as fuel cells. Here, we demonstrate a new type of phosphorus and nitrogen co-doped hierarchically ordered porous carbon (PNHOPC) derived from an iron-functionalized mesoporous polymer through an evaporation-induced self-assembly process that simultaneously combines the carbonization and nitrogen doping processes. The soft template and the nitrogen doping process facilitate the formation of the hierarchically ordered structure for the PNHOPC. The catalyst possesses a large surface area (1118 cm2 g-1) and a pore volume of 1.14 cm3 g-1. Notably, it exhibits excellent ORR catalytic performance, superior stability and methanol tolerance in acidic electrolytes, thus making the catalyst promising for fuel cells. The correlations between the unique pore structure and the nitrogen and phosphorus configuration of the catalysts with high catalytic activity are thoroughly investigated.Heteroatom-doped carbon materials have shown respectable activity for the oxygen reduction reaction (ORR) in alkaline media. However, the performances of these materials are not satisfactory for energy conversion devices, such as fuel cells. Here, we demonstrate a new type of phosphorus and nitrogen co-doped hierarchically ordered porous carbon (PNHOPC) derived from an iron-functionalized mesoporous polymer through an evaporation-induced self-assembly process that simultaneously combines the carbonization and nitrogen doping processes. The soft template and the nitrogen doping process facilitate the formation of the hierarchically ordered structure for the PNHOPC. The catalyst possesses a large surface area (1118 cm2 g-1) and a pore volume of 1.14 cm3 g-1. Notably, it exhibits excellent ORR catalytic performance, superior stability and methanol tolerance in acidic electrolytes, thus making the catalyst promising for fuel cells. The correlations between the unique pore structure and the nitrogen and phosphorus configuration of the catalysts with high catalytic activity are thoroughly investigated. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06749a

  15. In situ loading of gold nanoparticles on Fe3O4@SiO2 magnetic nanocomposites and their high catalytic activity.

    PubMed

    Zheng, Jinmin; Dong, Yalei; Wang, Weifeng; Ma, Yanhua; Hu, Jing; Chen, Xiaojiao; Chen, Xingguo

    2013-06-07

    In this work, a facile approach was successfully developed for in situ catalyzing Au nanoparticles loaded on Fe3O4@SiO2 magnetic nanospheres via Sn(2+) linkage and reduction. After the Fe3O4@SiO2 MNPs were first prepared via a sol-gel process, only one step was needed to synthesize the Fe3O4@SiO2-Au magnetic nanocomposites (Fe3O4@SiO2-Au MNCs), so that both the synthesis step and the reaction cost were remarkably decreased. Significantly, the as-synthesized Fe3O4@SiO2-Au MNCs showed high performance in the catalytic reduction of 4-nitrophenol to 4-aminophenol and could be reused for several cycles with convenient magnetic separability. This approach provided a useful platform based on Fe3O4@SiO2 MNPs for the fabrication of Au or other noble metal magnetic nanocatalysts, which would be very useful in various catalytic reductions.

  16. Improving gold catalysis of nitroarene reduction with surface Pd

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pretzer, Lori A.; Heck, Kimberly N.; Kim, Sean S.

    2016-04-01

    Nitroarene reduction reactions are commercialized catalytic processes that play a key role in the synthesisof many products including medicines, rubbers, dyes, and herbicides. Whereas bimetallic compositionshave been studied, a better understanding of the bimetallic structure effects may lead to improved indus-trial catalysts. In this work, the influence of surface palladium atoms supported on 3-nm Au nanoparticles(Pd-on-Au NPs) on catalytic activity for 4-nitrophenol reduction is explored. Batch reactor studies indi-cate Pd-on-Au NPs exhibit maximum catalytic activity at a Pd surface coverage of 150 sc%, with aninitial turnover frequency of ~3.7 mol-nitrophenol/mol-metalsurface/s, which was ~5.5× and ~13× moreactive than pure Au NPsmore » and Pd NPs, respectively. Pd NPs, Au NPs, and Pd-on-Au NPs below 175 sc%show compensation behavior. Three-dimensional Pd surface ensembles (with ~4–5 atoms) previouslyidentified through X-ray adsorption spectroscopy provide the active sites responsible for the catalyticmaximum. These results demonstrate the ability to adjust systematically a structural feature (i.e., Pdsurface coverage) to yield a more active material.« less

  17. From biomass to advanced bio-fuel by catalytic pyrolysis/hydro-processing: hydrodeoxygenation of bio-oil derived from biomass catalytic pyrolysis.

    PubMed

    Wang, Yuxin; He, Tao; Liu, Kaituo; Wu, Jinhu; Fang, Yunming

    2012-03-01

    Compared hydrodeoxygenation experimental studies of both model compounds and real bio-oil derived from biomass fast pyrolysis and catalytic pyrolysis was carried out over two different supported Pt catalysts. For the model compounds, the deoxygenation degree of dibenzofuran was higher than that of cresol and guaiacol over both Pt/Al(2)O(3) and the newly developed Pt supported on mesoporous zeolite (Pt/MZ-5) catalyst, and the deoxygenation degree of cresol over Pt/MZ-5 was higher than that over Pt/Al(2)O(3). The results indicated that hydrodeoxygenation become much easier upon oxygen reduction. Similar to model compounds study, the hydrodeoxygenation of the real bio-oil derived from catalytic pyrolysis was much easier than that from fast pyrolysis over both Pt catalysts, and the Pt/MZ-5 again shows much higher deoxygenation ability than Pt/Al(2)O(3). Clearly synergy between catalytic pyrolysis and bio-oil hydro-processing was found in this paper and this finding will lead an advanced biofuel production pathway in the future. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Temperature Independent Catalytic Two-Electron Reduction of Dioxygen by Ferrocenes with a Tris[2-(2-pyridyl)ethyl]amine-Copper(II) Catalyst in the Presence of Perchloric Acid

    PubMed Central

    Das, Dipanwita; Lee, Yong-Min; Ohkubo, Kei; Nam, Wonwoo; Karlin, Kenneth D.; Fukuzumi, Shunichi

    2013-01-01

    Selective two-electron plus two-proton (2e−/2H+) reduction of O2 to hydrogen peroxide by ferrocene (Fc) or 1,1′-dimethylferrocene (Me2Fc) in the presence of perchloric acid is catalyzed efficiently by a mononuclear copper(II) complex, [CuII(tepa)]2+ {tepa = tris[2-(2-pyridyl)ethyl]amine} (1) in acetone. The E1/2 value for [CuII(tepa)]2+ as measured by cyclic voltammetry is 0.07 V vs Fc/Fc+ in acetone, being significantly positive, which makes it possible to use relatively weak one-electron reductants such as Fc and Me2Fc for the overall two-electron reduction of O2. Fast electron transfer from Fc or Me2Fc to 1 affords the corresponding CuI complex, [CuI(tepa)]+ (2), which reacts at low temperature (193 K) with O2, however only in presence of HClO4 to afford the hydroperoxo complex, [CuII(tepa)(OOH)]2+ (3). The detailed kinetic study on the homogeneous catalytic system reveals the rate-determining step to be the O2-binding process in the presence of HClO4 at lower temperature as well as at room temperature. The O2-binding kinetics in the presence of HClO4 were studied, demonstrating that the rate of formation of the hydroperoxo complex (3) as well as the overall catalytic reaction remained virtually the same with changing temperature. The apparent lack of an activation energy for the catalytic two-electron reduction of O2 is shown to result from the existence of a pre-equilibrium between 2 and O2 prior to the formation of the hydroperoxo complex 3. No further reduction of [CuII(tepa)(OOH)]2+ (3) by Fc or Me2Fc occurred, and instead 3 is protonated by HClO4 to yield H2O2 accompanied by regeneration of 1, thus completing the catalytic cycle for the two-electron reduction of O2 by Fc or Me2Fc. PMID:23394287

  19. Supporting palladium metal on gold nanoparticles improves its catalysis for nitrite reduction

    NASA Astrophysics Data System (ADS)

    Qian, Huifeng; Zhao, Zhun; Velazquez, Juan C.; Pretzer, Lori A.; Heck, Kimberly N.; Wong, Michael S.

    2013-12-01

    Nitrate (NO3-) and nitrite (NO2-) anions are often found in groundwater and surface water as contaminants globally, especially in agricultural areas due to nitrate-rich fertilizer use. One popular approach to studying the removal of nitrite/nitrate from water has been their degradation to dinitrogen via Pd-based reduction catalysis. However, little progress has been made towards understanding how the catalyst structure can improve activity. Focusing on the catalytic reduction of nitrite in this study, we report that Au NPs supporting Pd metal ("Pd-on-Au NPs") show catalytic activity that varies with volcano-shape dependence on Pd surface coverage. At room temperature, in CO2-buffered water, and under H2 headspace, the NPs were maximally active at a Pd surface coverage of 80%, with a first-order rate constant (kcat = 576 L gPd-1 min-1) that was 15x and 7.5x higher than monometallic Pd NPs (~4 nm; 40 L gPd-1 min-1) and Pd/Al2O3 (1 wt% Pd; 76 L gPd-1 min-1), respectively. Accounting only for surface Pd atoms, these NPs (576 L gsurface-Pd-1 min-1) were 3.6x and 1.6x higher than monometallic Pd NPs (160 L gsurface-Pd-1 min-1) and Pd/Al2O3 (361 L gsurface-Pd-1 min-1). These NPs retained ~98% of catalytic activity at a chloride concentration of 1 mM, whereas Pd/Al2O3 lost ~50%. The Pd-on-Au nanostructure is a promising approach to improve the catalytic reduction process for nitrite and, with further development, also for nitrate anions.Nitrate (NO3-) and nitrite (NO2-) anions are often found in groundwater and surface water as contaminants globally, especially in agricultural areas due to nitrate-rich fertilizer use. One popular approach to studying the removal of nitrite/nitrate from water has been their degradation to dinitrogen via Pd-based reduction catalysis. However, little progress has been made towards understanding how the catalyst structure can improve activity. Focusing on the catalytic reduction of nitrite in this study, we report that Au NPs supporting Pd metal ("Pd-on-Au NPs") show catalytic activity that varies with volcano-shape dependence on Pd surface coverage. At room temperature, in CO2-buffered water, and under H2 headspace, the NPs were maximally active at a Pd surface coverage of 80%, with a first-order rate constant (kcat = 576 L gPd-1 min-1) that was 15x and 7.5x higher than monometallic Pd NPs (~4 nm; 40 L gPd-1 min-1) and Pd/Al2O3 (1 wt% Pd; 76 L gPd-1 min-1), respectively. Accounting only for surface Pd atoms, these NPs (576 L gsurface-Pd-1 min-1) were 3.6x and 1.6x higher than monometallic Pd NPs (160 L gsurface-Pd-1 min-1) and Pd/Al2O3 (361 L gsurface-Pd-1 min-1). These NPs retained ~98% of catalytic activity at a chloride concentration of 1 mM, whereas Pd/Al2O3 lost ~50%. The Pd-on-Au nanostructure is a promising approach to improve the catalytic reduction process for nitrite and, with further development, also for nitrate anions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr04540d

  20. A comparative evaluation on the emission characteristics of ceramic and metallic catalytic converter in internal combustion engine

    NASA Astrophysics Data System (ADS)

    Leman, A. M.; Jajuli, Afiqah; Rahman, Fakhrurrazi; Feriyanto, Dafit; Zakaria, Supaat

    2017-09-01

    Enforcement of a stricter regulation on exhaust emission by many countries has led to utilization of catalytic converter to reduce the harmful pollutant emission. Ceramic and metallic catalytic converters are the most common type of catalytic converter used. The purpose of this study is to evaluate the performance of the ceramic and metallic catalytic converter on its conversion efficiency using experimental measurement. Both catalysts were placed on a modified exhaust system equipped with a Mitshubishi 4G93 single cylinder petrol engine that was tested on an eddy current dynamometer under steady state conditions for several engine speeds. The experimental results show that the metallic catalytic converter reduced a higher percentage of CO up to 98.6% reduction emissions while ceramic catalytic converter had a better reduction efficiency of HC up to 85.4% and 87.2% reduction of NOx.

  1. INDUSTRIAL BOILER RETROFIT FOR NOX CONTROL: COMBINED SELECTIVE NONCATALYTIC REDUCTION AND SELECTIVE CATALYTIC REDUCTION

    EPA Science Inventory

    The paper describes retrofitting and testing a 590 kW (2 MBtu/hr), oil-fired, three-pass, fire-tube package boiler with a combined selective noncatalytic reduction (SNCR) and selective catalytic reduction (SCR) system. The system demonstrated 85% nitrogen oxides (NOx) reduction w...

  2. Solvent-driven reductive activation of carbon dioxide by gold anions.

    PubMed

    Knurr, Benjamin J; Weber, J Mathias

    2012-11-14

    Catalytic activation and electrochemical reduction of CO(2) for the formation of chemically usable feedstock and fuel are central goals for establishing a carbon neutral fuel cycle. The role of solvent molecules in catalytic processes is little understood, although solvent-solute interactions can strongly influence activated intermediate species. We use vibrational spectroscopy of mass-selected Au(CO(2))(n)(-) cluster ions to probe the solvation of AuCO(2)(-) as a model for a reactive intermediate in the reductive activation of a CO(2) ligand by a single-atom catalyst. For the first few solvent molecules, solvation of the complex preferentially occurs at the CO(2) moiety, enhancing reductive activation through polarization of the excess charge onto the partially reduced ligand. At higher levels of solvation, direct interaction of additional solvent molecules with the Au atom diminishes reduction. The results show how the solvation environment can enhance or diminish the effects of a catalyst, offering design criteria for single-atom catalyst engineering.

  3. In-situ XPS analysis of oxidized and reduced plasma deposited ruthenium-based thin catalytic films

    NASA Astrophysics Data System (ADS)

    Balcerzak, Jacek; Redzynia, Wiktor; Tyczkowski, Jacek

    2017-12-01

    A novel in-situ study of the surface molecular structure of catalytically active ruthenium-based films subjected to the oxidation (in oxygen) and reduction (in hydrogen) was performed in a Cat-Cell reactor combined with a XPS spectrometer. The films were produced by the plasma deposition method (PEMOCVD). It was found that the films contained ruthenium at different oxidation states: metallic (Ru0), RuO2 (Ru+4), and other RuOx (Ru+x), of which content could be changed by the oxidation or reduction, depending on the process temperature. These results allow to predict the behavior of the Ru-based catalysts in different redox environments.

  4. Selective Catalytic Synthesis Using the Combination of Carbon Dioxide and Hydrogen: Catalytic Chess at the Interface of Energy and Chemistry.

    PubMed

    Klankermayer, Jürgen; Wesselbaum, Sebastian; Beydoun, Kassem; Leitner, Walter

    2016-06-20

    The present Review highlights the challenges and opportunities when using the combination CO2 /H2 as a C1 synthon in catalytic reactions and processes. The transformations are classified according to the reduction level and the bond-forming processes, covering the value chain from high volume basic chemicals to complex molecules, including biologically active substances. Whereas some of these concepts can facilitate the transition of the energy system by harvesting renewable energy into chemical products, others provide options to reduce the environmental impact of chemical production already in today's petrochemical-based industry. Interdisciplinary fundamental research from chemists and chemical engineers can make important contributions to sustainable development at the interface of the energetic and chemical value chain. The present Review invites the reader to enjoy this exciting area of "catalytic chess" and maybe even to start playing some games in her or his laboratory. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Development of a household waste treatment subsystem, volume 1. [with water conservation features

    NASA Technical Reports Server (NTRS)

    Gresko, T. M.; Murray, R. W.

    1973-01-01

    The domestic waste treatment subsystem was developed to process the daily liquid and non-metallic solid wastes provided by a family of four people. The subsystem was designed to be connected to the sewer line of a household which contained water conservation features. The system consisted of an evaporation technique to separate liquids from solids, an incineration technique for solids reduction, and a catalytic oxidizer for eliminating noxious gases from evaporation and incineration processes. All wastes were passed through a grinder which masticated the solids and deposited them in a settling tank. The liquids were transferred through a cleanable filter into a holding tank. From here the liquids were sprayed into an evaporator and a spray chamber where evaporation occurred. The resulting vapors were processed by catalytic oxidation. Water and latent energy were recovered in a combination evaporator/condenser heat exchanger. The solids were conveyed into an incinerator and reduced to ash while the incineration gases were passed through the catalytic oxidizer along with the processed water vapor.

  6. Techno-economics of carbon preserving butanol production using a combined fermentative and catalytic approach.

    PubMed

    Nilsson, Robert; Bauer, Fredric; Mesfun, Sennai; Hulteberg, Christian; Lundgren, Joakim; Wännström, Sune; Rova, Ulrika; Berglund, Kris Arvid

    2014-06-01

    This paper presents a novel process for n-butanol production which combines a fermentation consuming carbon dioxide (succinic acid fermentation) with subsequent catalytic reduction steps to add hydrogen to form butanol. Process simulations in Aspen Plus have been the basis for the techno-economic analyses performed. The overall economy for the novel process cannot be justified, as production of succinic acid by fermentation is too costly. Though, succinic acid price is expected to drop drastically in a near future. By fully integrating the succinic acid fermentation with the catalytic conversion the need for costly recovery operations could be reduced. The hybrid process would need 22% less raw material than the butanol fermentation at a succinic acid fermentation yield of 0.7g/g substrate. Additionally, a carbon dioxide fixation of up to 13ktonnes could be achieved at a plant with an annual butanol production of 10ktonnes. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Smart Solution Chemistry to Sn-Containing Intermetallic Compounds through a Self-Disproportionation Process.

    PubMed

    Zhang, Yuelan; Li, Liping; Li, Qi; Fan, Jianming; Zheng, Jing; Li, Guangshe

    2016-09-26

    Developing new methods to synthesize intermetallics is one of the most critical issues for the discovery and application of multifunctional metal materials; however, the synthesis of Sn-containing intermetallics is challenging. In this work, we demonstrated for the first time that a self-disproportionation-induced in situ process produces cavernous Sn-Cu intermetallics (Cu3 Sn and Cu6 Sn5 ). The successful synthesis is realized by introducing inorganic metal salts (SnCl2 ⋅2 H2 O) to NaOH aqueous solution to form an intermediate product of reductant (Na2 SnO2 ) and by employing steam pressures that enhance the reduction ability. Distinct from the traditional in situ reduction, the current reduction process avoided the uncontrolled phase composition and excessive use of organic regents. An insight into the mechanism was revealed for the Sn-Cu case. Moreover, this method could be extended to other Sn-containing materials (Sn-Co, Sn-Ni). All these intermetallics were attempted in the catalytic effect on thermal decompositions of ammonium perchlorate. It is demonstrated that Cu3 Sn showed an outstanding catalytic performance. The superior property might be primarily originated from the intrinsic chemical compositions and cavernous morphology as well. We supposed that this smart solution reduction methodology reported here would provide a new recognition for the reduction reaction, and its modified strategy may be applied to the synthesis of other metals, intermetallics as well as some unknown materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Flowthrough Reductive Catalytic Fractionation of Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Eric M.; Stone, Michael L.; Katahira, Rui

    2017-11-01

    Reductive catalytic fractionation (RCF) has emerged as a leading biomass fractionation and lignin valorization strategy. Here, flowthrough reactors were used to investigate RCF of poplar. Most RCF studies to date have been conducted in batch, but a flow-based process enables the acquisition of intrinsic kinetic and mechanistic data essential to accelerate the design, optimization, and scale-up of RCF processes. Time-resolved product distributions and yields obtained from experiments with different catalyst loadings were used to identify and deconvolute events during solvolysis and hydrogenolysis. Multi-bed RCF experiments provided unique insights into catalyst deactivation, showing that leaching, sintering, and surface poisoning are causesmore » for decreased catalyst performance. The onset of catalyst deactivation resulted in higher concentrations of unsaturated lignin intermediates and increased occurrence of repolymerization reactions, producing high-molecular-weight species. Overall, this study demonstrates the concept of flowthrough RCF, which will be vital for realistic scale-up of this promising approach.« less

  9. Metallogel templated synthesis and stabilization of silver-particles and its application in catalytic reduction of nitro-arene.

    PubMed

    Sharma, Mukesh; Sarma, Plaban Jyoti; Goswami, Manash Jyoti; Bania, Kusum K

    2017-03-15

    Metallogel of iron-carboxylates was obtained from trans-1,2-cyclohexanedicarboxylic acid in dimethylformamide (DMF) at basic condition. Spectroscopic and SEM morphology study of the iron-metallogel revealed that the iron complex with dicarboxylic acid was linked together via carboxylates and led to a supramolecular helical like architecture. The synthesized metallogel served as an excellent template for in-situ reduction of silver ion to silver particles micro to nano scale range. Variation of AgNO 3 concentration shepherd to change the morphology of the Ag-particles. AgNO 3 concentration was found to affect the shape and size of silver particles. On going from lower to higher concentration shape of silver particles changed from spherical to large agglomerated particles. Cubic shape Ag-particles were found on treatment of 0.05M AgNO 3 solution with metallogel. Cubical shape silver particles were found to be effective catalyst for nitro-arene reduction in presence of NaBH 4 . Density functional theory (DFT) calculations were performed to rationalize the role of Ag-particles in catalytic reduction of 4-nitrophenol to 4-aminophenol. Based on DFT study, we proposed that catalytic reduction occurred via Ag-hydride complex formation. Since metallogels as well as the 4-aminophenol are finding large application in pharmaceuticals industries therefore the current work can provide an alternatives path in production of 4-aminophenols. In addition to this, the synthesis of Ag-nanomaterials using metallogel as template can pave a new direction in the development of nanotechnology and might find wide applications in catalytic industrial processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. One-step fabrication of recycled Ag nanoparticles/graphene aerogel with high mechanical property for disinfection and catalytic reduction of 4-nitrophonel.

    PubMed

    Zhang, Yi; Yang, Jia-Cheng E; Fu, Ming-Lai; Yuan, Baoling; Gupta, Kiran

    2018-05-15

    Fabrication of smart composites with expected removal property and excellent recycle performance for micro-pollutants including microbes and organic contaminants without formation of second-pollutants is highly desired. In this work, Ag nanoparticles (Ag NPs) homogenously loaded on graphene aerogel (GA) as Ag NPs/GA was facilely fabricated by a one-step process and the composite was characterized in detail. The bactericidal performance of the composite towards escherichia coli (E. coli) was evaluated and the catalytic activity was probed for the reduction of 4-nitrophenol (4-NP). Results showed that the composite contains about 44.4 wt% of well-dispersed Ag NPs with diameters ranging from 10 to 100 nm. Compared with the bare Ag particles or GA, Ag NPs/GA exhibited an enhanced bactericidal performance for 8-lg of E. coli cells with 100% inactivation rate and catalytic activity for 4-NP with 96.6% degradation rate, respectively. Impressively, the 100% inactivation rates for 8-lg of E. coli remained after 7 recycles and the releasing silver was negligible compared with the loaded Ag NPs. Moreover, the used Ag NPs/GA for the catalytic reduction of 4-NP can be regenerated easily by calcination in inert atmosphere. Hence, Ag NPs/GA can be regarded as a promising and cost-efficient composite for environmental remediation.

  11. Catalytic ozonation of dimethyl phthalate and chlorination disinfection by-product precursors over Ru/AC.

    PubMed

    Wang, Jianbing; Zhou, Yunrui; Zhu, Wanpeng; He, Xuwen

    2009-07-15

    Catalytic ozonation of dimethyl phthalate (DMP) in aqueous solution (5mg/L) under various reactions was performed to examine the effect of catalyst dosage, catalyst particle size, ozone dosage, and gas flow rate on the mineralization of DMP. The mineralization of DMP can be achieved via ozonation and the presence of Ru/AC could greatly accelerate the mineralization rate of DMP in ozonation process. In the continuous experiment of the Ru/AC catalyzed ozonation of DMP, total organic carbon (TOC) removals were kept stable around 75% during 42 h reaction. No leaching of ruthenium was observed in the treated water samples. The treatment of natural water using Ru/AC+O(3), Ru/AC+O(2) and ozonation alone was studied. In the Ru/AC+O(3) process, TOC removals, the reductions of the haloacetic acid formation potentials (HAAFPs), and the reductions of the trihalomethane formation potentials (THMFPs) of 11 water samples were 22-44%, 39-61% and 50-65%, respectively. Ru/AC+O(3) process was much more effective than ozonation alone for TOC removal and the reduction of disinfection by-product formation potential (DBPFP) in the treatment of natural water. It is a promising water treatment technology.

  12. GENERIC VERIFICATION PROTOCOL FOR DETERMINATION OF EMISSIONS REDUCTIONS FROM SELECTIVE CATALYTIC REDUCTIONS CONTROL TECHNOLOGIES FOR HIGHWAY, NONROAD, AND STATIONARY USE DIESEL ENGINES

    EPA Science Inventory

    The protocol describes the Environmental Technology Verification (ETV) Program's considerations and requirements for verification of emissions reduction provided by selective catalytic reduction (SCR) technologies. The basis of the ETV will be comparison of the emissions and perf...

  13. Catalytic Organometallic Reactions of Ammonia

    PubMed Central

    Klinkenberg, Jessica L.

    2012-01-01

    Until recently, ammonia had rarely succumbed to catalytic transformations with homogeneous catalysts, and the development of such reactions that are selective for the formation of single products under mild conditions has encountered numerous challenges. However, recently developed catalysts have allowed several classes of reactions to create products with nitrogen-containing functional groups from ammonia. These reactions include hydroaminomethylation, reductive amination, alkylation, allylic substitution, hydroamination, and cross-coupling. This Minireview describes examples of these processes and the factors that control catalyst activity and selectivity. PMID:20857466

  14. SELECTIVE CATALYTIC REDUCTION MERCURY FIELD SAMPLING PROJECT

    EPA Science Inventory

    The report details an investigation on the effect of selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas conditioning on the speciation and removal of mercury at power plants. If SCR and/or SNCR systems enhance mercury conversion/capture, t...

  15. EVALUATION OF SIMULTANEOUS SO2/NOX CONTROL TECHNOLOGY

    EPA Science Inventory

    The report gives results of work concentrating on characterizing three process operational parameters of a technology that combines sorbent injection and selective non-catalytic reduction for simultaneous sulfur dioxide/nitrogen oxide (SO2/NOx) removal from coal-fired industrial ...

  16. Catalytic Destruction of a Surrogate Organic Hazardous Air Pollutant as a Potential Co-benefit for Coal-fired Selective Catalyst Reduction Systems

    EPA Science Inventory

    Catalytic destruction of benzene (C6H6), a surrogate for organic hazardous air pollutants (HAPs) produced from coal combustion, was investigated using a commercial selective catalytic reduction (SCR) catalyst for evaluating the potential co-benefit of the SCR technology for reduc...

  17. [Advanced treatment of coking wastewater with a novel heterogeneous electro-Fenton technology].

    PubMed

    Li, Hai-Tao; Li, Yu-Ping; Zhang, An-Yang; Cao, Hong-Bin; Li, Xin-Gang; Zhang, Yi

    2011-01-01

    A novel electro-catalytic reactor, with oxygen-reduction cathode (PAQ/GF), dimensionally stable anode (IrO2-RuO2 -TiO2/ Ti) and heterogeneous catalysts, is developed for advanced treatment of coking wastewater after biological process, integrating cathodic and anodic simultaneous oxidation processes. A PAQ/GF electrode was synthesized by the electro-polymerization of 2-ethyl anthraquinone on graphite felt, which was characterized with cyclic voltametry measurements; the results indicated that the PAQ/GF electrode showed high reversibility for oxidation-reduction reaction of anthraquinone and catalytic activity for O2 reduction to H2O2; 13.5 mmol/L H2O2 was obtained after electrolysis for 6 h at -0.7 V (vs. SCE) and pH 6 with a current efficiency of 50% in a membrane reactor. Fe-Cu/Y350 catalysts, prepared by impregnation method, could catalyze the production of hydroxyl radicals (*OH) from H2O2, which was confirmed both by fading reaction of crystal violet and oxidation of *OH-probe compound (p-chlorobenzoic acid); Fe-Cu/Y350 also showed high catalytic-activity for the oxidation of organics by hypochlorous sodium, because COD removal of coking wastewater reached 26% in the catalytic process while only 11% of COD removal was obtained in the absence of Fe-Cu/Y350. COD removal of coking wastewater reached 49.4% (26.0% and 23.4% in cathodic system and anodic system, respectively) in the developed electrolytic-reactor, which was higher than that of conventional cathodic-anodic-oxidation process (29.8%). At optimal reaction condition of initial COD = 192 mg/L, I = 10A x m(-2) and pH 4-5, more than 50% COD were removed after electrolysis for 1 h. The mechanism might be as follows: in cathodic system, H2O2 is generated from reduction of O2 on PAQ/GF cathode, and catalyzed by Fe-Cu/Y350 for production of *OH, which causes mineralization and degradation of organic pollutants; in anodic system, Cl2 and HClO are generated from Cl- oxidation on IrO2-RuO2-TiO2/Ti anode and the organic pollutants are oxidized by Cl2, and HClO with Fe-Cu/Y350 catalysts or by direct anodic oxidation.

  18. Construction and in vivo assembly of a catalytically proficient and hyperthermostable de novo enzyme.

    PubMed

    Watkins, Daniel W; Jenkins, Jonathan M X; Grayson, Katie J; Wood, Nicola; Steventon, Jack W; Le Vay, Kristian K; Goodwin, Matthew I; Mullen, Anna S; Bailey, Henry J; Crump, Matthew P; MacMillan, Fraser; Mulholland, Adrian J; Cameron, Gus; Sessions, Richard B; Mann, Stephen; Anderson, J L Ross

    2017-08-25

    Although catalytic mechanisms in natural enzymes are well understood, achieving the diverse palette of reaction chemistries in re-engineered native proteins has proved challenging. Wholesale modification of natural enzymes is potentially compromised by their intrinsic complexity, which often obscures the underlying principles governing biocatalytic efficiency. The maquette approach can circumvent this complexity by combining a robust de novo designed chassis with a design process that avoids atomistic mimicry of natural proteins. Here, we apply this method to the construction of a highly efficient, promiscuous, and thermostable artificial enzyme that catalyzes a diverse array of substrate oxidations coupled to the reduction of H 2 O 2 . The maquette exhibits kinetics that match and even surpass those of certain natural peroxidases, retains its activity at elevated temperature and in the presence of organic solvents, and provides a simple platform for interrogating catalytic intermediates common to natural heme-containing enzymes.Catalytic mechanisms of enzymes are well understood, but achieving diverse reaction chemistries in re-engineered proteins can be difficult. Here the authors show a highly efficient and thermostable artificial enzyme that catalyzes a diverse array of substrate oxidations coupled to the reduction of H 2 O 2 .

  19. An Evaluation of the Vapor Phase Catalytic Ammonia Removal Process for Use in a Mars Transit Vehicle

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Borchers, Bruce

    1998-01-01

    An experimental program has been developed to evaluate the potential of the Vapor Phase Catalytic Ammonia Reduction (VPCAR) technology for use as a Mars Transit Vehicle water purification system. Design modifications which will be required to ensure proper operation of the VPCAR system in reduced gravity are also evaluated. The VPCAR system is an integrated wastewater treatment technology that combines a distillation process with high temperature catalytic oxidation. The distillation portion of the system utilizes a vapor compression distillation process to provide an energy efficient phase change separation. This portion of the system removes any inorganic salts and large molecular weight, organic contaminates, i.e., non-volatile, from the product water stream and concentrates these contaminates into a byproduct stream. To oxidize the volatile organic compounds and ammonia, a vapor phase, high temperature catalytic oxidizer is used. This catalytic system converts these compounds along with the aqueous product into CO2, H2O, and N2O. A secondary catalytic bed can then be used to reduce the N2O to nitrogen and oxygen (although not evaluated in this study). This paper describes the design specification of the VPCAR process, the relative benefits of its utilization in a Mars Transit Vehicle, and the design modification which will be required to ensure its proper operation in reduced gravity. In addition, the results of an experimental evaluation of the processors is presented. This evaluation presents the processors performance based upon product water purity, water recovery rates, and power.

  20. A stereoselective, catalytic strategy for the in-flow synthesis of advanced precursors of rasagiline and tamsulosin.

    PubMed

    Brenna, Davide; Pirola, Margherita; Raimondi, Laura; Burke, Anthony J; Benaglia, Maurizio

    2017-12-01

    The diastereoselective, trichlorosilane-mediate reduction of imines, bearing different and removable chiral auxiliaries, in combination either with achiral bases or catalytic amounts of chiral Lewis bases, was investigated to afford immediate precursors of chiral APIs (Active Pharmaceutical Ingredients). The carbon-nitrogen double bond reduction was successfully performed in batch and in flow mode, in high yields and almost complete stereocontrol. By this metal-free approach, the formal synthesis of rasagiline and tamsulosin was successfully accomplished in micro(meso) flow reactors, under continuous flow conditions. The results of these explorative studies represent a new, important step towards the development of automated processes for the preparation of enantiopure biologically active compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Retraction: Gold nanoparticles immobilized on electrospun titanium dioxide nanofibers for catalytic reduction of 4-nitrophenol.

    PubMed

    Cavusoglu, Halit; Buyukbekar, Burak Zafer; Sakalak, Huseyin; Kohsakowski, Sebastian

    2017-02-13

    This study involves the preparation and catalytic properties of anatase titanium dioxide nanofibers (TiO2 NFs) supported gold nanoparticles (Au NPs) using a model reaction based on the reduction of 4-nitrophenol (NP) into 4-aminophenol (AP) by sodium borohydride (NaBH4). The fabrication of surfactant-free Au NPs was performed using pulsed laser ablation in liquid (PLAL) technique. The TiO2 NFs were fabricated by a combination of electrospinning and calcination process using a solution containing poly(vinyl pyrolidone)(PVP) and titanium isopropoxide. The adsorption efficiency of laser-generated surfactant-free Au NPs to TiO2 NF supports as a function of pH was analyzed. Our results show that the electrostatic interaction mainly controls the adsorption of the nanoparticles. Au NPs/TiO2 NFs composite exhibited good catalytic activity for the reduction of 4-NP to 4-AP. The unique combination of these materials leads to the development of highly efficient catalysts. Our heterostructured nanocatalysts possibly form an efficient path to fabricate various metal NP/metal-oxide supported catalysts. Thus the applications of PLAL-noble metal NPs can widely broaden. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Catalytic reduction of CO 2 by H 2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities

    DOE PAGES

    Porosoff, Marc D.; Yan, Binhang; Chen, Jingguang G.

    2015-10-22

    Ocean acidification and climate change are expected to be two of the most difficult scientific challenges of the 21st century. Converting CO 2 into valuable chemicals and fuels is one of the most practical routes for reducing CO 2 emissions while fossil fuels continue to dominate the energy sector. Reducing CO 2 by H 2 using heterogeneous catalysis has been studied extensively, but there are still significant challenges in developing active, selective and stable catalysts suitable for large-scale commercialization. We study the catalytic reduction of CO 2 by H 2 can lead to the formation of three types of products:more » CO through the reverse water–gas shift (RWGS) reaction, methanol via selective hydrogenation, and hydrocarbons through combination of CO 2 reduction with Fischer–Tropsch (FT) reactions. In addition, investigations into these routes reveal that the stabilization of key reaction intermediates is critically important for controlling catalytic selectivity. Furthermore, viability of these processes is contingent on the development of a CO 2-free H 2 source on a large enough scale to significantly reduce CO 2 emissions.« less

  3. An Experimental Investigation into NO sub X Control of a Gas Turbine Combustor and Augmentor Tube Incorporating a Catalytic Reduction System

    DTIC Science & Technology

    1990-03-01

    An initial experimental investigation was conducted to examine the feasibility of NOx emission control using catalytic reduction techniques in the ...current configuration impractical. Recommendations for alternative configurations are presented. The results of the investigation have proven that further study is warranted....used as a gas generator and catalytic reduction system. Four data runs were made. Three runs were completed without the catalyst installed

  4. Activation Thermodynamics and H/D Kinetic Isotope Effect of the Hox to HredH+ Transition in [FeFe] Hydrogenase.

    PubMed

    Ratzloff, Michael W; Wilker, Molly B; Mulder, David W; Lubner, Carolyn E; Hamby, Hayden; Brown, Katherine A; Dukovic, Gordana; King, Paul W

    2017-09-20

    Molecular complexes between CdSe nanocrystals and Clostridium acetobutylicum [FeFe] hydrogenase I (CaI) enabled light-driven control of electron transfer for spectroscopic detection of redox intermediates during catalytic proton reduction. Here we address the route of electron transfer from CdSe→CaI and activation thermodynamics of the initial step of proton reduction in CaI. The electron paramagnetic spectroscopy of illuminated CdSe:CaI showed how the CaI accessory FeS cluster chain (F-clusters) functions in electron transfer with CdSe. The H ox →H red H + reduction step measured by Fourier-transform infrared spectroscopy showed an enthalpy of activation of 19 kJ mol -1 and a ∼2.5-fold kinetic isotope effect. Overall, these results support electron injection from CdSe into CaI involving F-clusters, and that the H ox →H red H + step of catalytic proton reduction in CaI proceeds by a proton-dependent process.

  5. 40 CFR Table 19 to Subpart Uuu of... - Initial Compliance With Organic HAP Emission Limits for Catalytic Reforming Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... compounds (TOC) or nonmethane TOC from your process vent by 98 percent by weight using a control device or... stringent The mass emission reduction of nonmethane TOC measured by Method 25 over the period of the... mass emission reduction of TOC measured by Method 25A (or nonmethane TOC measured by Methods 25A and 18...

  6. COST OF SELECTIVE CATALYTIC REDUCTION (SCR) APPLICATION FOR NOX CONTROL ON COAL-FIRED BOILERS

    EPA Science Inventory

    The report provides a methodology for estimating budgetary costs associated with retrofit applications of selective catalytic reduction (SCR) technology on coal-fired boilers. SCR is a postcombustion nitrogen oxides (NOx) control technology capable of providing NOx reductions >90...

  7. SELECTIVE CATALYTIC REDUCTION MERCURY FIELD SAMPLING PROJECT

    EPA Science Inventory

    A lack of data still exists as to the effect of selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas conditioning on the speciation and removal of mercury (Hg) at power plants. This project investigates the impact that SCR, SNCR, and flue gas...

  8. Reformer assisted lean NO.sub.x catalyst aftertreatment system and method

    DOEpatents

    Kalyanaraman, Mohan [Media, PA; Park, Paul W [Peoria, IL; Ragle, Christie S [Havana, IL

    2010-06-29

    A method and apparatus for catalytically processing a gas stream passing therethrough to reduce the presence of NO.sub.x therein, wherein the apparatus includes a first catalyst composed of a silver-containing alumina that is adapted for catalytically processing the gas stream at a first temperature range, a second catalyst composed of a copper-containing zeolite located downstream from the first catalyst, wherein the second catalyst is adapted for catalytically processing the gas stream at a lower second temperature range relative to the first temperature range, a hydrocarbon compound for injection into the gas stream upstream of the first catalyst to provide a reductant, and a reformer for reforming a portion of the hydrocarbon compound into H.sub.2 and/or oxygenated hydrocarbon for injection into the gas stream upstream of the first catalyst. The second catalyst is adapted to facilitate the reaction of reducing NOx into N.sub.2, whereby the intermediates are produced via the first catalyst reacting with NOx and hydrocarbons.

  9. Gold-Copper Nanoparticles: Nanostructural Evolution and Bifunctional Catalytic Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Jun; Shan, Shiyao; Yang, Lefu

    2012-12-12

    Understanding of the atomic-scale structure is essential for exploiting the unique catalytic properties of any nanoalloy catalyst. This report describes novel findings of an investigation of the nanoscale alloying of gold-copper (AuCu) nanoparticles and its impact on the surface catalytic functions. Two pathways have been explored for the formation of AuCu nanoparticles of different compositons, including wet chemical synthesis from mixed Au- and Cu-precursor molecules, and nanoscale alloying via an evolution of mixed Au- and Cu-precursor nanoparticles near the nanoscale melting temperatures. For the evolution of mixed precursor nanoparticles, synchrotron x-ray based in-situ real time XRD was used to monitormore » the structural changes, revealing nanoscale alloying and reshaping towards an fcc-type nanoalloy (particle or cube) via a partial melting–resolidification mechanism. The nanoalloys supported on carbon or silica were characterized by in-situ high-energy XRD/PDFs, revealing an intriguing lattice "expanding-shrinking" phenomenon depending on whether the catalyst is thermochemically processed under oxidative or reductive atmosphere. This type of controllable structural changes is found to play an important role in determining the catalytic activity of the catalysts for carbon monoxide oxidation reaction. The tunable catalytic activities of the nanoalloys under thermochemically oxidative and reductive atmospheres are also discussed in terms of the bifunctional sites and the surface oxygenated metal species for carbon monoxide and oxygen activation.« less

  10. Refiners have several options for reducing gasoline benzene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goelzer, A.R.; Hernandez-Robinson, A.; Ram, S.

    1993-09-13

    Although the linkage between gasoline benzene content and evaporative, running, and tailpipe emission is not yet defined, the U.S. 1990 Clean Air Act Amendments mandate a benzene content of less than 1.0 vol% in reformulated gasolines. Likewise, the California Air Resources Board plans to restrict benzene to less than about 0.8 vol %. Mobil Research and Development Corp. and Badger Co. Inc. have developed several alternatives for reducing benzene levels in gasoline. Where benzene extraction is viable and maximum catalytic reformer hydrogen is needed, the companies' cumene and ethylbenzene processes are desirable. Mobil's benzene reduction process can be an alternativemore » to benzene hydrosaturation. All of these processes utilize low-value offgas from the fluid catalytic cracking (FCC) unit.« less

  11. Catalytic Deoxydehydration of Carbohydrates and Polyols to Chemicals and Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholas, Kenneth M.

    As the world's fossil fuel resources are being depleted and their costs increase, there is an urgent need to discover and develop new processes for the conversion of renewable, biomass resources into fuels and chemical feedstocks. Research and development in this area have been given high priority by both governmental agencies and industry. To increase the energy content and decrease the boiling points of biomass-derived carbohydrates and polyols to the useful liquid range it is necessary to chemically remove water (dehydrate) and, preferably, oxygen (deoxygenate/reduce). The poly-hydroxylic nature of carbohydrates is attractive for their use as functionalized chemical building blocks,more » but it presents a daunting challenge for their selective conversion to single product chemicals or fuels. The long term, practical objective of this project is to develop catalytic processes for the deoxydehydration (DODH) of biomass-derived carbohydrates and polyols to produce unsaturated alcohols and hydrocarbons of value as chemical feedstocks and fuels; DODH: polyol + reductant --(LMOx catalyst)--> unsaturate + oxidized reductant + H2O. Limited prior studies have established the viability of the DODH process with expensive phosphine reductants and rhenium-catalysts. Initial studies in the PI's laboratory have now demonstrated: 1) the moderately efficient conversion of glycols to olefins by the economical sulfite salts is catalyzed by MeReO3 and Z+ReO4-; 2) effective phosphine-based catalytic DODH of representative glycols to olefins by cheap LMoO2 complexes; and 3) computational studies (with K. Houk, UCLA) have identified several Mo-, W-, and V-oxo complexes that are likely to catalyze glycol DODH. Seeking practically useful DODH reactions of complex polyols and new understanding of the reactivity of polyoxo-metal species with biomass-oxygenates we will employ a two-pronged approach: 1) investigate experimentally the reactivity, both stoichiometric and catalytic, of polyoxo-complexes and practical reductants with representative polyols to establish structure/reactivity relationships and reaction mechanisms; and b) carry out parallel computational studies of these reactions and their mechanisms- both analytical and predictive. Our prioritized action plan is: (1) to optimize the catalytic efficiency, assess the substrate scope/selectivity, and address key mechanistic aspects of Re-catalyzed, sulfite-driven DODH reactions; (2) use the findings from (1), together with computational predictions, to discover new, effective non-precious metal catalysts for sulfite-driven DODH reactions; and 3) to initiate exploratory studies of CO- and H2-driven DODH. Successful execution of this research project will: 1) provide practical chemical processes for the conversion of biomass into useful chemicals and fuels: 2) bring fundamental new understanding of chemical reactions involving metal-oxo catalysts; and 3) provide educational and technical training of future energy scientists.« less

  12. Catalytic four-electron reduction of O2 via rate-determining proton-coupled electron transfer to a dinuclear cobalt-μ-1,2-peroxo complex.

    PubMed

    Fukuzumi, Shunichi; Mandal, Sukanta; Mase, Kentaro; Ohkubo, Kei; Park, Hyejin; Benet-Buchholz, Jordi; Nam, Wonwoo; Llobet, Antoni

    2012-06-20

    Four-electron reduction of O(2) by octamethylferrocene (Me(8)Fc) occurs efficiently with a dinuclear cobalt-μ-1,2-peroxo complex, 1, in the presence of trifluoroacetic acid in acetonitrile. Kinetic investigations of the overall catalytic reaction and each step in the catalytic cycle showed that proton-coupled electron transfer from Me(8)Fc to 1 is the rate-determining step in the catalytic cycle.

  13. COST OF SELECTIVE CATALYTIC REDUCTION (SCR) APPLICATION FOR NOX CONTROL ON COAL-FIRED BOILERS

    EPA Science Inventory

    The report provides a methodology for estimating budgetary costs associ-ated with retrofit applications of selec-tive catalytic reduction (SCR) technology on coal-fired boilers. SCR is a post-combustion nitrogen oxides (NOX) con-trol technology capable of providing NOX reductions...

  14. High-density defects on PdAg nanowire networks as catalytic hot spots for efficient dehydrogenation of formic acid and reduction of nitrate.

    PubMed

    Liu, Hu; Yu, Yongsheng; Yang, Weiwei; Lei, Wenjuan; Gao, Manyi; Guo, Shaojun

    2017-07-13

    Controlling the surface defects of nanocrystals is a new way of tuning/boosting their catalytic properties. Herein, we report networked PdAg nanowires (NWs) with high-density defects as catalytic hot spots for efficient catalytic dehydrogenation of formic acid (FA) and catalytic reduction of nitrates. The networked PdAg NWs exhibit composition-dependent catalytic activity for the dehydrogenation reaction of FA without any additive, with Pd 5 Ag 5 NWs exhibiting the highest activity. They also show good durability, reflected by the retention of their initial activity during the dehydrogenation reaction of FA even after five cycles. Their initial TOF is 419 h -1 at 60 °C in water solution, much higher than those of the most Pd-based catalysts with a support. Moreover, they can efficiently reduce nitrates to alleviate nitrate pollution in water (conversion yield >99%). This strategy opens up a new green synthetic technique to design support-free heterogeneous catalysts with high-density defects as catalytic hot spots for efficient dehydrogenation catalysis of FA to meet the requirement of fuel cell applications and catalytic reduction of nitrates in water polluted with nitrates.

  15. Enhanced catalyst activity by decorating of Au on Ag@Cu2O nanoshell

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Liu, Maomao; Zhao, Yue; Kou, Qiangwei; Wang, Yaxin; Liu, Yang; Zhang, Yongjun; Yang, Jinghai; Jung, Young Mee

    2018-03-01

    We successfully synthesized Au-decorated Ag@Cu2O heterostructures via a simple galvanic replacement method. As the Au precursor concentration increased, the density of the Au nanoparticles (NPs) on the Ag@Cu2O surface increased, which changed the catalytic activity of the Ag@Cu2O-Au structure. The combination of Au, Ag, and Cu2O exhibited excellent catalytic properties, which can further effect on the catalyst activity of the Ag@Cu2O-Au structure. In addition, the proposed Ag@Cu2O-Au nanocomposite was used to transform the organic, toxic pollutant, 4-nitrophenol (4-NP), into its nontoxic and medicinally important amino derivative via a catalytic reduction to optimize the material performance. The proposed Au-decorated Ag@Cu2O exhibited excellent catalytic activity, and the catalytic reduction time greatly decreased (5 min). Thus, three novel properties of Ag@Cu2O-Au, i.e., charge redistribution and transfer, adsorption, and catalytic reduction of organic pollutants, were ascertained for water remediation. The proposed catalytic properties have potential applications for photocatalysis and localized surface plasmon resonance (LSPR)- and peroxidase-like catalysis.

  16. Selective catalytic reduction manages ships' emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMahon, K.R.

    1994-10-01

    Ships employed by USS-Posco Industries are the first seagoing vessels that use selective catalytic reduction in marine diesel engine design, resulting in a 90 percent reduction of nitrogen oxide emissions. The vessels, which deliver semifinished steel coils, or hot bands'', to the company's terminal in the San Francisco Bay area, were commissioned for $120 million by Pohang Iron and Steel Co. Ltd., one of UPI's parent companies. Installing the catalytic reduction equipment cost $12 million. As anticipated, NOx concentrations were reduced between 90 percent and 95 percent. However, achieving high mass NOx reduction proved more difficult, because exhaust gas hadmore » to be maintained within the desired temperature range.« less

  17. Co3O4/CoP composite hollow polyhedron: A superior catalyst with dramatic efficiency and stability for the room temperature reduction of 4-nitrophenol

    NASA Astrophysics Data System (ADS)

    Liu, Xing; Li, Xiangqing; Qin, Lixia; Mu, Jin; Kang, Shi-Zhao

    2018-03-01

    In the present work, Co3O4/CoP composite hollow polyhedrons were prepared and characterized with X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and N2 adsorption-desorption isotherms. Then, the catalytic activity of the as-prepared Co3O4/CoP hollow polyhedrons was evaluated for the borohydride-assisted reduction of 4-nitrophenol at room temperature. The results indicate that the as-prepared Co3O4/CoP hollow polyhedrons are an efficient recyclable catalyst for the reduction of 4-nitrophenol. When the 4-nitrophenol initial concentration is 1.0 × 10-4 mol L-1 (100 mL), almost 100% 4-nitrophenol can be reduced within 3 min in the presence of the Co3O4/CoP hollow polyhedrons. The apparent rate constant of the 4-nitrophenol reduction is 1.61 min-1 at room temperature, and the activity factor is about 5.37 × 104 mL min-1 g-1, which is almost two times higher than that over Ag nanoparticles. Finally, the catalytic mechanism was preliminarily discussed. It is found that CoP plays an important role in the catalytic process. Here, CoP serves as active sites, which leads to efficient formation of hydrogen atoms from BH4- and fast electron transfer.

  18. Numerical analysis of ammonia homogenization for selective catalytic reduction application.

    PubMed

    Baleta, Jakov; Martinjak, Matija; Vujanović, Milan; Pachler, Klaus; Wang, Jin; Duić, Neven

    2017-12-01

    Selective catalytic reduction based on urea water solution as ammonia precursor is a promising method for the NO x abatement form exhaust gasses of mobile diesel engine units. It consists of injecting the urea-water solution in the hot flue gas stream and reaction of its products with the NO x over the catalyst surface. During this process flue gas enthalpy is used for the urea-water droplet heating and for the evaporation of water content. After water evaporates, thermolysis of urea occurs, during which ammonia, a known NO x reductant, and isocyanic acid are generated. The uniformity of the ammonia before the catalyst as well as ammonia slip to the environment are important counteracting design requirements, optimization of which is crucial for development of efficient deNO x systems. The aim of this paper is to show capabilities of the developed mathematical framework implemented in the commercial CFD code AVL FIRE ® , to simulate physical processes of all relevant phenomena occurring during the SCR process including chemical reactions taking part in the catalyst. First, mathematical models for description of SCR process are presented and afterwards, models are used on the 3D geometry of a real SCR reactor in order to predict ammonia generation, NO x reduction and resulting ammonia slip. Influence of the injection direction and droplet sizes was also investigated on the same geometry. The performed study indicates importance of droplet sizes on the SCR process and shows that counterflow injection is beneficial, especially in terms of minimizing harmful ammonia slip to environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Hollow mesoporous silica nanotubes modified with palladium nanoparticles for environmental catalytic applications.

    PubMed

    Tian, Meng; Long, Yu; Xu, Dan; Wei, Shuoyun; Dong, Zhengping

    2018-07-01

    Nowadays, chemical catalytic methods for the treatment of organic wastes are attracting more and more research attention. In the current research, novel catalysts with palladium nanoparticles (Pd NPs) supported on the hollow mesoporous silica nanotubes (h-mSiO 2 ) were synthesized for the catalytic reduction of 4-nitrophenol (4-NP) and hydrodechlorination (HDC) of 4-chlorophenol (4-CP). The key point for the fabrication of the catalysts is that a certain thickness of the silica shell was wrapped on the multiwalled carbon nanotubes (MWNTs) or Pd/MWNTs through biphase stratification approach, and then the samples were calcined to remove the MWNTs. Thereby, h-mSiO 2 and Pd@h-mSiO 2 samples were obtained. The prepared materials have excellent pore structure and exhibit high specific surface areas. The reduction of 4-NP by the Pd/h-mSiO 2 and Pd@h-mSiO 2 catalysts showed higher TOF values than many other catalysts, and the yield of HDC of 4-CP to phenol reached 100% with a low loading of Pd in water solvent. The excellent catalytic activities of the Pd/h-mSiO 2 and Pd@h-mSiO 2 catalysts should attribute to the excellent connectivity of the h-mSiO 2 which not only can increase the accessibility of the Pd active sites but also enhance the mass transfer of the reactants. It is worth mention that, there is almost no Pd NPs aggregation or losing during the reaction process, and the prepared catalysts still showed good catalytic activity and physical stability after recycling. Moreover, the catalyst shows potential for catalytic reduction of nitroarenes in a fixed bed reactor, thus could be used for continuously treat nitroarenes polluted water. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Nanobiocatalytic Degradation of Acid Orange 7

    NASA Astrophysics Data System (ADS)

    Hastings, Jason

    The catalytic properties of various metal nanoparticles have led to their use in environmental remediation applications. However, these remediation strategies are limited by their ability to deliver catalytic nanoparticles and a suitable electron donor to large treatment zones. Clostridium pasteurianum BC1 cells, loaded with bio-Pd nanoparticles, were used to effectively catalyze the reductive degradation and removal of Acid Orange 7 (AO7), a model azo compound. Hydrogen produced fermentatively by the C. pasteurianum BC1 acted as the electron donor for the process. Pd-free bacterial cultures or control experiments conducted with heat-killed cells showed limited reduction of AO7. Experiments also showed that the in situ biological production of H2 by C. pasteurianum BC1 was essential for the degradation of AO7, which suggests a novel process where the in situ microbial production of hydrogen is directly coupled to the catalytic bio-Pd mediated reduction of AO7. The differences in initial degradation rate for experiments conducted using catalyst concentrations of 1ppm Pd and 5ppm Pd and an azo dye concentration of 100ppm AO7 was 0.39 /hr and 1.94 /hr respectively, demonstrating the importance of higher concentrations of active Pd(0). The degradation of AO7 was quick as demonstrated by complete reductive degradation of 50ppm AO7 in 2 hours in experiments conducted using a catalyst concentration of 5ppm Pd. Dye degradation products were analyzed via Gas Chromatograph-Mass Spectrometer (GCMS), High Performance Liquid Chromatography (HPLC), UltraViolet-Visible spectrophotometer (UV-Vis) and Matrix-Assisted Laser Desorption/Ionization (MALDI) spectrometry. The presence of 1-amino 2-naphthol, one of the hypothesized degradation products, was confirmed using mass spectrometry.

  1. Silver metal nano-matrixes as high efficiency and versatile catalytic reactors for environmental remediation

    NASA Astrophysics Data System (ADS)

    Dumée, Ludovic F.; Yi, Zhifeng; Tardy, Blaise; Merenda, Andrea; Des Ligneris, Elise; Dagastine, Ray R.; Kong, Lingxue

    2017-03-01

    Nano-porous metallic matrixes (NMMs) offer superior surface to volume ratios as well as enhanced optical, photonic, and electronic properties to bulk metallic materials. Such behaviours are correlated to the nano-scale inter-grain metal domains that favour the presence of electronic vacancies. In this work, continuous 3D NMMs were synthesized for the first time through a simple diffusion-reduction process whereby the aerogel matrix was functionalized with (3-Mercaptopropyl)trimethoxysilane. The surface energy of the silica monolith templates was tuned to improve the homogeneity of the reduction process while thiol functionalization facilitated the formation of a high density of seeding points for metal ions to reduce. The diameter of NMMs was between 2 and 1000 nm, corresponding to a silver loading between 1.23 and 41.16 at.%. A rates of catalytic degradation kinetics of these NMMS which is three orders of magnitude higher than those of the non-functionalized silver-silica structures. Furthermore, the enhancement in mechanical stability at nanoscale which was evaluated by Atomic Force Microscopy force measurements, electronic density and chemical inertness was assessed and critically correlated to their catalytic potential. This strategy opens up new avenues for design of complex architectures of either single or multi-metal alloy NMMs with enhanced surface properties for various applications.

  2. Silver metal nano-matrixes as high efficiency and versatile catalytic reactors for environmental remediation

    PubMed Central

    Dumée, Ludovic F.; Yi, Zhifeng; Tardy, Blaise; Merenda, Andrea; des Ligneris, Elise; Dagastine, Ray R.; Kong, Lingxue

    2017-01-01

    Nano-porous metallic matrixes (NMMs) offer superior surface to volume ratios as well as enhanced optical, photonic, and electronic properties to bulk metallic materials. Such behaviours are correlated to the nano-scale inter-grain metal domains that favour the presence of electronic vacancies. In this work, continuous 3D NMMs were synthesized for the first time through a simple diffusion-reduction process whereby the aerogel matrix was functionalized with (3-Mercaptopropyl)trimethoxysilane. The surface energy of the silica monolith templates was tuned to improve the homogeneity of the reduction process while thiol functionalization facilitated the formation of a high density of seeding points for metal ions to reduce. The diameter of NMMs was between 2 and 1000 nm, corresponding to a silver loading between 1.23 and 41.16 at.%. A rates of catalytic degradation kinetics of these NMMS which is three orders of magnitude higher than those of the non-functionalized silver-silica structures. Furthermore, the enhancement in mechanical stability at nanoscale which was evaluated by Atomic Force Microscopy force measurements, electronic density and chemical inertness was assessed and critically correlated to their catalytic potential. This strategy opens up new avenues for design of complex architectures of either single or multi-metal alloy NMMs with enhanced surface properties for various applications. PMID:28332602

  3. Stabilized tin-oxide-based oxidation/reduction catalysts

    NASA Technical Reports Server (NTRS)

    Watkins, Anthony Neal (Inventor); Oglesby, Donald M. (Inventor); Gulati, Suresh T. (Inventor); Summers, Jerry C. (Inventor); Schryer, David R. (Inventor); Davis, Patricia P. (Inventor); Leighty, Bradley D. (Inventor); Jordan, Jeffrey D. (Inventor); Schryer, Jacqueline L. (Inventor)

    2008-01-01

    The invention described herein involves a novel approach to the production of oxidation/reduction catalytic systems. The present invention serves to stabilize the tin oxide reducible metal-oxide coating by co-incorporating at least another metal-oxide species, such as zirconium. In one embodiment, a third metal-oxide species is incorporated, selected from the group consisting of cerium, lanthanum, hafnium, and ruthenium. The incorporation of the additional metal oxide components serves to stabilize the active tin-oxide layer in the catalytic process during high-temperature operation in a reducing environment (e.g., automobile exhaust). Moreover, the additional metal oxides are active components due to their oxygen-retention capabilities. Together, these features provide a mechanism to extend the range of operation of the tin-oxide-based catalyst system for automotive applications, while maintaining the existing advantages.

  4. Highly active non-PGM catalysts prepared from metal organic frameworks

    DOE PAGES

    Barkholtz, Heather M.; Chong, Lina; Kaiser, Zachary B.; ...

    2015-06-11

    Finding inexpensive alternatives to platinum group metals (PGMs) is essential for reducing the cost of proton exchange membrane fuel cells (PEMFCs). Numerous materials have been investigated as potential replacements of Pt, of which the transition metal and nitrogen-doped carbon composites (TM/N x/C) prepared from iron doped zeolitic imidazolate frameworks (ZIFs) are among the most active ones in catalyzing the oxygen reduction reaction based on recent studies. In this report, we demonstrate that the catalytic activity of ZIF-based TM/N x/C composites can be substantially improved through optimization of synthesis and post-treatment processing conditions. Ultimately, oxygen reduction reaction (ORR) electrocatalytic activity mustmore » be demonstrated in membrane-electrode assemblies (MEAs) of fuel cells. The process of preparing MEAs using ZIF-based non-PGM electrocatalysts involves many additional factors which may influence the overall catalytic activity at the fuel cell level. Evaluation of parameters such as catalyst loading and perfluorosulfonic acid ionomer to catalyst ratio were optimized. Our overall efforts to optimize both the catalyst and MEA construction process have yielded impressive ORR activity when tested in a fuel cell system.« less

  5. Development of integrated, zero-G pneumatic transporter/rotating paddle incinerator/catalytic afterburner subsystem for processing human wastes on board spacecraft

    NASA Technical Reports Server (NTRS)

    Fields, S. F.; Labak, L. J.; Honegger, R. J.

    1974-01-01

    A four component system was developed which consists of a particle size reduction mechanism, a pneumatic waste transport system, a rotating-paddle incinerator, and a catalytic afterburner to be integrated into a six-man, zero-g subsystem for processing human wastes on board spacecraft. The study included the development of different concepts or functions, the establishment of operational specifications, and a critical evaluation for each of the four components. A series of laboratory tests was run, and a baseline subsystem design was established. An operational specification was also written in preparation for detailed design and testing of this baseline subsystem.

  6. Immobilized Pd-Ag bimetallic nanoparticles on polymeric nanofibers as an effective catalyst: effective loading of Ag with bimetallic functionality through Pd nucleated nanofibers.

    PubMed

    Ranjith, Kugalur Shanmugam; Celebioglu, Asli; Uyar, Tamer

    2018-06-15

    Here, we present a precise process for synthesizing Pd-Ag bimetallic nanoparticles (NPs) onto polymeric nanofibers by decorating Pd-NPs through atomic layer deposition followed by a chemical reduction process for tagging Ag nanostructures with bimetallic functionality. The results show that Pd-NPs act as a nucleation platform for tagging Ag and form Pd-Ag bimetallic NPs with a monodisperse nature with significant catalytic enhancement to the reaction rate over the bimetallic nature of the Pd-Ag ratio. A Pd-NP decorated polymeric nanofibrous web acts as an excellent platform for the encapsulation or interaction of Ag, which prevents agglomeration and promotes the interaction of Ag ions only on the surface of the Pd-NPs. We observed an effective reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride (NaBH 4 ) to access the catalytic activity of Pd-Ag bimetallic NPs on a free-standing flexible polymeric nanofibrous web as a support. The captive formation of the polymeric nanofibrous web with Pd-Ag bimetallic functionality exhibited superior and stable catalytic performance with reduction rates of 0.0719, 0.1520, and 0.0871 min -1 for different loadings of Ag on Pd decorated nanofibrous webs such as Pd/Ag(0.01), Pd/Ag(0.03), and Pd/Ag(0.05), respectively. The highly faceted Pd-Ag NPs with an immobilized nature improves the catalytic functionality by enhancing the binding energy of the 4-NP adsorbate to the surface of the NPs. With the aid of bimetallic functionality, the nanofibrous web was demonstrated as a hybrid heterogeneous photocatalyst with a 3.16-fold enhancement in the reaction rate as compared with the monometallic decorative nature of NaBH 4 as a reducing agent. The effective role of the monodisperse nature of Pd ions with an ultralow content as low as 3 wt% and the tunable ratio of Ag on the nanofibrous web induced effective catalytic activity over multiple cycles.

  7. Immobilized Pd-Ag bimetallic nanoparticles on polymeric nanofibers as an effective catalyst: effective loading of Ag with bimetallic functionality through Pd nucleated nanofibers

    NASA Astrophysics Data System (ADS)

    Shanmugam Ranjith, Kugalur; Celebioglu, Asli; Uyar, Tamer

    2018-06-01

    Here, we present a precise process for synthesizing Pd-Ag bimetallic nanoparticles (NPs) onto polymeric nanofibers by decorating Pd-NPs through atomic layer deposition followed by a chemical reduction process for tagging Ag nanostructures with bimetallic functionality. The results show that Pd-NPs act as a nucleation platform for tagging Ag and form Pd-Ag bimetallic NPs with a monodisperse nature with significant catalytic enhancement to the reaction rate over the bimetallic nature of the Pd-Ag ratio. A Pd-NP decorated polymeric nanofibrous web acts as an excellent platform for the encapsulation or interaction of Ag, which prevents agglomeration and promotes the interaction of Ag ions only on the surface of the Pd-NPs. We observed an effective reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride (NaBH4) to access the catalytic activity of Pd-Ag bimetallic NPs on a free-standing flexible polymeric nanofibrous web as a support. The captive formation of the polymeric nanofibrous web with Pd-Ag bimetallic functionality exhibited superior and stable catalytic performance with reduction rates of 0.0719, 0.1520, and 0.0871 min‑1 for different loadings of Ag on Pd decorated nanofibrous webs such as Pd/Ag(0.01), Pd/Ag(0.03), and Pd/Ag(0.05), respectively. The highly faceted Pd-Ag NPs with an immobilized nature improves the catalytic functionality by enhancing the binding energy of the 4-NP adsorbate to the surface of the NPs. With the aid of bimetallic functionality, the nanofibrous web was demonstrated as a hybrid heterogeneous photocatalyst with a 3.16-fold enhancement in the reaction rate as compared with the monometallic decorative nature of NaBH4 as a reducing agent. The effective role of the monodisperse nature of Pd ions with an ultralow content as low as 3 wt% and the tunable ratio of Ag on the nanofibrous web induced effective catalytic activity over multiple cycles.

  8. Selective catalytic two-step process for ethylene glycol from carbon monoxide

    PubMed Central

    Dong, Kaiwu; Elangovan, Saravanakumar; Sang, Rui; Spannenberg, Anke; Jackstell, Ralf; Junge, Kathrin; Li, Yuehui; Beller, Matthias

    2016-01-01

    Upgrading C1 chemicals (for example, CO, CO/H2, MeOH and CO2) with C–C bond formation is essential for the synthesis of bulk chemicals. In general, these industrially important processes (for example, Fischer Tropsch) proceed at drastic reaction conditions (>250 °C; high pressure) and suffer from low selectivity, which makes high capital investment necessary and requires additional purifications. Here, a different strategy for the preparation of ethylene glycol (EG) via initial oxidative coupling and subsequent reduction is presented. Separating coupling and reduction steps allows for a completely selective formation of EG (99%) from CO. This two-step catalytic procedure makes use of a Pd-catalysed oxycarbonylation of amines to oxamides at room temperature (RT) and subsequent Ru- or Fe-catalysed hydrogenation to EG. Notably, in the first step the required amines can be efficiently reused. The presented stepwise oxamide-mediated coupling provides the basis for a new strategy for selective upgrading of C1 chemicals. PMID:27377550

  9. Adaptive Model Predictive Control of Diesel Engine Selective Catalytic Reduction (SCR) Systems

    ERIC Educational Resources Information Center

    McKinley, Thomas L.

    2009-01-01

    Selective catalytic reduction or SCR is coming into worldwide use for diesel engine emissions reduction for on- and off-highway vehicles. These applications are characterized by broad operating range as well as rapid and unpredictable changes in operating conditions. Significant nonlinearity, input and output constraints, and stringent performance…

  10. Enhanced Catalytic Reduction of 4-Nitrophenol Driven by Fe3O4-Au Magnetic Nanocomposite Interface Engineering: From Facile Preparation to Recyclable Application

    PubMed Central

    Chen, Yue; Zhang, Yuanyuan; Kou, Qiangwei; Liu, Yang; Han, Donglai; Wang, Dandan; Sun, Yantao; Zhang, Yongjun; Wang, Yaxin; Lu, Ziyang; Chen, Lei; Yang, Jinghai; Xing, Scott Guozhong

    2018-01-01

    In this work, we report the enhanced catalytic reduction of 4-nitrophenol driven by Fe3O4-Au magnetic nanocomposite interface engineering. A facile solvothermal method is employed for Fe3O4 hollow microspheres and Fe3O4-Au magnetic nanocomposite synthesis via a seed deposition process. Complementary structural, chemical composition and valence state studies validate that the as-obtained samples are formed in a pure magnetite phase. A series of characterizations including conventional scanning/transmission electron microscopy (SEM/TEM), Mössbauer spectroscopy, magnetic testing and elemental mapping is conducted to unveil the structural and physical characteristics of the developed Fe3O4-Au magnetic nanocomposites. By adjusting the quantity of Au seeds coating on the polyethyleneimine-dithiocarbamates (PEI-DTC)-modified surfaces of Fe3O4 hollow microspheres, the correlation between the amount of Au seeds and the catalytic ability of Fe3O4-Au magnetic nanocomposites for 4-nitrophenol (4-NP) is investigated systematically. Importantly, bearing remarkable recyclable features, our developed Fe3O4-Au magnetic nanocomposites can be readily separated with a magnet. Such Fe3O4-Au magnetic nanocomposites shine the light on highly efficient catalysts for 4-NP reduction at the mass production level. PMID:29789457

  11. Activation Thermodynamics and H/D Kinetic Isotope Effect of the H ox to H red H + Transition in [FeFe] Hydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratzloff, Michael W.; Wilker, Molly B.; Mulder, David W.

    Molecular complexes between CdSe nanocrystals and Clostridium acetobutylicum [FeFe] hydrogenase I (CaI) enabled light-driven control of electron transfer for spectroscopic detection of redox intermediates during catalytic proton reduction. Here in this paper we address the route of electron transfer from CdSe→CaI and activation thermodynamics of the initial step of proton reduction in CaI. The electron paramagnetic spectroscopy of illuminated CdSe:CaI showed how the CaI accessory FeS cluster chain (F-clusters) functions in electron transfer with CdSe. The H ox→H redH + reduction step measured by Fourier-transform infrared spectroscopy showed an enthalpy of activation of 19 kJ mol -1 and a ~2.5-foldmore » kinetic isotope effect. Overall these results support electron injection from CdSe into CaI involving F-clusters, and that the H ox→H redH + step of catalytic proton reduction in CaI proceeds by a proton-dependent process.« less

  12. Activation Thermodynamics and H/D Kinetic Isotope Effect of the H ox to H red H + Transition in [FeFe] Hydrogenase

    DOE PAGES

    Ratzloff, Michael W.; Wilker, Molly B.; Mulder, David W.; ...

    2017-08-29

    Molecular complexes between CdSe nanocrystals and Clostridium acetobutylicum [FeFe] hydrogenase I (CaI) enabled light-driven control of electron transfer for spectroscopic detection of redox intermediates during catalytic proton reduction. Here in this paper we address the route of electron transfer from CdSe→CaI and activation thermodynamics of the initial step of proton reduction in CaI. The electron paramagnetic spectroscopy of illuminated CdSe:CaI showed how the CaI accessory FeS cluster chain (F-clusters) functions in electron transfer with CdSe. The H ox→H redH + reduction step measured by Fourier-transform infrared spectroscopy showed an enthalpy of activation of 19 kJ mol -1 and a ~2.5-foldmore » kinetic isotope effect. Overall these results support electron injection from CdSe into CaI involving F-clusters, and that the H ox→H redH + step of catalytic proton reduction in CaI proceeds by a proton-dependent process.« less

  13. [Ru/AC catalyzed ozonation of recalcitrant organic compounds].

    PubMed

    Wang, Jian-Bing; Hou, Shao-Pei; Zhou, Yun-Rui; Zhu, Wan-Peng; He, Xu-Wen

    2009-09-15

    Ozonation and Ru/AC catalyzed ozonation of dimethyl phthalate (DMP), phenols and disinfection by-products precursors were studied. It shows that Ru/AC catalyst can obviously enhance the mineralization of organic compounds. In the degradation of DMP, TOC removal was 28.84% by ozonation alone while it was 66.13% by catalytic ozonation. In the oxidation of 23 kinds of phenols, TOC removals were 9.57%-56.08% by ozonation alone while they were 41.81%-82.32% by catalytic ozonation. Compared to ozonation alone, Ru/AC catalyzed ozonation was more effective for the reduction of disinfection by-products formation potentials in source water. The reduction of haloacetic acids formation potentials was more obvious than thichlomethane formation potentials. After the treatment by catalytic ozonation, the haloacetic acids formation potentials decreased from 144.02 microg/L to 58.50 microg/L, which was below the standard value of EPA. However ozonation alone could not make it reach the standard. The treatments of source water by BAC, O3 + BAC, O3/AC + BAC and Ru/AC + O3 + BAC were also studied. In the four processes, TOC removal was 3.80%, 20.14%, 27.45% and 48.30% respectively, COD removal was 4.37%, 27.22%, 39.91% and 50.00% respectively, UV254 removal was 8.16%, 62.24%, 67.03% and 84.95% respectively. Ru/AC + O3 + BAC process is more effective than the other processes for the removal of TOC, COD and UV254 and no ruthenium leaching observed in the solution. It is a promising process for the treatment of micro polluted source water.

  14. Catalytic multi-stage liquefaction of coal at HTI: Bench-scale studies in coal/waste plastics coprocessing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradhan, V.R.; Lee, L.K.; Stalzer, R.H.

    1995-12-31

    The development of Catalytic Multi-Stage Liquefaction (CMSL) at HTI has focused on both bituminous and sub-bituminous coals using laboratory, bench and PDU scale operations. The crude oil equivalent cost of liquid fuels from coal has been curtailed to about $30 per barrel, thus achieving over 30% reduction in the price that was evaluated for the liquefaction technologies demonstrated in the late seventies and early eighties. Contrary to the common belief, the new generation of catalytic multistage coal liquefaction process is environmentally very benign and can produce clean, premium distillates with a very low (<10ppm) heteroatoms content. The HTI Staff hasmore » been involved over the years in process development and has made significant improvements in the CMSL processing of coals. A 24 month program (extended to September 30, 1995) to study novel concepts, using a continuous bench scale Catalytic Multi-Stage unit (30kg coal/day), has been initiated since December, 1992. This program consists of ten bench-scale operations supported by Laboratory Studies, Modelling, Process Simulation and Economic Assessments. The Catalytic Multi-Stage Liquefaction is a continuation of the second generation yields using a low/high temperature approach. This paper covers work performed between October 1994- August 1995, especially results obtained from the microautoclave support activities and the bench-scale operations for runs CMSL-08 and CMSL-09, during which, coal and the plastic components for municipal solid wastes (MSW) such as high density polyethylene (HDPE)m, polypropylene (PP), polystyrene (PS), and polythylene terphthlate (PET) were coprocessed.« less

  15. Cellulosic Biomass Sugars to Advantaged Jet Fuel – Catalytic Conversion of Corn Stover to Energy Dense, Low Freeze Point Paraffins and Naphthenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cortright, Randy

    The purpose of this project was to demonstrate the technical and commercial feasibility of producing liquid fuels, particularly jet fuel, from lignocellulosic materials, such as corn stover. This project was led by Virent, Inc. (Virent) which has developed a novel chemical catalytic process (the BioForming ® platform) capable of producing “direct replacement” liquid fuels from biomass-derived feedstocks. Virent has shown it is possible to produce an advantaged jet fuel from biomass that meets or exceeds specifications for commercial and military jet fuel through Fuel Readiness Level (FRL) 5, Process Validation. This project leveraged The National Renewable Energy Lab’s (NREL) expertisemore » in converting corn stover to sugars via dilute acid pretreatment and enzymatic hydrolysis. NREL had previously developed this deconstruction technology for the conversion of corn stover to ethanol. In this project, Virent and NREL worked together to condition the NREL generated hydrolysate for use in Virent’s catalytic process through solids removal, contaminant reduction, and concentration steps. The Idaho National Laboratory (INL) was contracted in this project for the procurement, formatting, storage and analysis of corn stover and Northwestern University developed fundamental knowledge of lignin deconstruction that can help improve overall carbon recovery of the combined technologies. Virent conducted fundamental catalytic studies to improve the performance of the catalytic process and NREL provided catalyst characterization support. A technoeconomic analysis (TEA) was conducted at each stage of the project, with results from these analyses used to inform the direction of the project.« less

  16. Frustrated Lewis pairs: from concept to catalysis.

    PubMed

    Stephan, Douglas W

    2015-02-17

    CONSPECTUS: Frustrated Lewis pair (FLP) chemistry has emerged in the past decade as a strategy that enables main-group compounds to activate small molecules. This concept is based on the notion that combinations of Lewis acids and bases that are sterically prevented from forming classical Lewis acid-base adducts have Lewis acidity and basicity available for interaction with a third molecule. This concept has been applied to stoichiometric reactivity and then extended to catalysis. This Account describes three examples of such developments: hydrogenation, hydroamination, and CO2 reduction. The most dramatic finding from FLP chemistry was the discovery that FLPs can activate H2, thus countering the long-existing dogma that metals are required for such activation. This finding of stoichiometric reactivity was subsequently evolved to employ simple main-group species as catalysts in hydrogenations. While the initial studies focused on imines, subsequent studies uncovered FLP catalysts for a variety of organic substrates, including enamines, silyl enol ethers, olefins, and alkynes. Moreover, FLP reductions of aromatic anilines and N-heterocycles have been developed, while very recent extensions have uncovered the utility of FLP catalysts for ketone reductions. FLPs have also been shown to undergo stoichiometric reactivity with terminal alkynes. Typically, either deprotonation or FLP addition reaction products are observed, depending largely on the basicity of the Lewis base. While a variety of acid/base combinations have been exploited to afford a variety of zwitterionic products, this reactivity can also be extended to catalysis. When secondary aryl amines are employed, hydroamination of alkynes can be performed catalytically, providing a facile, metal-free route to enamines. In a similar fashion, initial studies of FLPs with CO2 demonstrated their ability to capture this greenhouse gas. Again, modification of the constituents of the FLP led to the discovery of reaction systems that demonstrated stoichiometric reduction of CO2 to either methanol or CO. Further modification led to the development of catalytic systems for the reduction of CO2 by hydrosilylation and hydroboration or deoxygenation. As each of these areas of FLP chemistry has advanced from the observation of unusual stoichiometric reactions to catalytic processes, it is clear that the concept of FLPs provides a new strategy for the design and application of main-group chemistry and the development of new metal-free catalytic processes.

  17. Morphological Control of Au Dendrite Electrocatalysts for CO2 Reduction

    NASA Astrophysics Data System (ADS)

    Nesbitt, Nathan T.; Ma, Ming; Carter, Brittany E.; D'Imperio, Luke A.; Naughton, Jeffrey R.; Courtney, Dave T.; Shepard, Steve; Burns, Michael J.; Smith, Wilson A.; Naughton, Michael J.

    Au has demonstrated the highest catalytic selectivity, activity, and stability for CO2 reduction to CO of any metal, but the mechanism for this performance remains unclear. Studies of nanoparticle films have shown that higher index facets have improved performance, but the preeminent nanoparticle films, from oxide-derived Au, lack well-defined facets and morphological stability to illuminate their enabling mechanism. More recent work has shown Au needles with a sub 5 nm radius of curvature have excellent performance and stability, independent of crystal facet. The same studies, however, still show calculations expecting a facet dependance. Here we demonstrate a facile and novel dendrite fabrication process with tunable morphology. The dendrites show high catalytic selectivity, activity, and stability for CO2 reduction to CO, along with morphological stability after 18 hours of operation, allowing correlation between morphology and performance. The influence of exposed facets will be discussed. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. (DGE-1258923).

  18. Effect of support on catalytic cracking of bio-oil over Ni/silica-alumina

    NASA Astrophysics Data System (ADS)

    Sunarno, Herman, Syamsu; Rochmadi, Mulyono, Panut; Budiman, Arief

    2017-03-01

    Depletion of petroleum and environmental problem have led to look for an alternative fuel sources In many ways, biomass is a potential renewable source. Among the many forms of biomass, oil palm empty fruit bunch (EFB) is a very attractive feedstock due to its abudance, low price and non-competitiveness with the food chain. EFB can be converted bio-oil by pyrolysis process. but this product can not be used directly as a transportation fuel, so it needs upgrading bio-oil through a catalytic cracking process. The catalyst plays an important role in the catalytic cracking process. The objective of this research is to study the effect of Ni concentrations (1,3,5 and 7 wt.%) on the characteristics of the catalyst Ni / Silica-Alumina and the performance test for the catalytic cracking of bio-oil. Preparation of the catalyst Ni / Silica-Alumina was done by impregnation at 80°C for 3 hours, then done to calcination and reduction at 500°C for 2 hours. The performance test was conducted on catalytic cracking temperature of 500°C. Results show that increasing concentration of Ni from 1 to 7 %, the pore diameter of the catalyst decreased from 35.71 to 32.70 A and surface area decreased from 209.78 to 188.53 m2/gram. With the increase of Ni concentration, the yield of oil reduced from 22.5 to 11.25 %, while the heating value of oil increased from 34.4 to 36.41MJ/kg.

  19. Magnetic cobaltic nanoparticle-anchored carbon nanocomposite derived from cobalt-dipicolinic acid coordination polymer: An enhanced catalyst for environmental oxidative and reductive reactions.

    PubMed

    Wu, Chang-Hsun; Lin, Jyun-Ting; Lin, Kun-Yi Andrew

    2018-05-01

    Direct carbonization of cobalt complexes represents as a convenient approach to prepare magnetic carbon/cobalt nanocomposites (MCCNs) as heterogeneous environmental catalysts. However, most of MCCNs derived from consist of sheet-like carbon matrices with very sparse cobaltic nanoparticles (NPs), making them exhibit relatively low catalytic activities, porosity and magnetism. In this study, dipicolinic acid (DPA) is selected to prepare a 3-dimensional cobalt coordination polymer (CoDPA). MCCN derived from CoDPA can consist of a porous carbon matrix embedded with highly-dense Co 0 and Co 3 O 4 NPs. This magnetic Co 0 /Co 3 O 4 NP-anchored carbon composite (MCNC) appears as a promising heterogeneous catalyst for oxidative and reductive environmental catalytic reactions. As peroxymonosulfate (PMS) activation is selected as a model catalytic oxidative reaction, MCNC exhibits a much higher catalytic activity than Co 3 O 4 , a benchmark catalyst for PMS activation. The reductive catalytic activity of MCNC is demonstrated through 4-nitrophenol (4-NP) reduction in the presence of NaBH 4 . MCNC could rapidly react with NaBH 4 to generate H 2 for hydrogenation of 4-NP to 4-aminophenol (4-AP). In comparison with other precious metallic catalysts, MCNC also shows a relatively high catalytic activity. These results indicate that MCNC is a conveniently prepared and highly effective and stable carbon-supported cobaltic heterogeneous catalyst for versatile environmental catalytic applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Modeling of catalytically active metal complex species and intermediates in reactions of organic halides electroreduction.

    PubMed

    Lytvynenko, Anton S; Kolotilov, Sergey V; Kiskin, Mikhail A; Eremenko, Igor L; Novotortsev, Vladimir M

    2015-02-28

    The results of quantum chemical modeling of organic and metal-containing intermediates that occur in electrocatalytic dehalogenation reactions of organic chlorides are presented. Modeling of processes that take place in successive steps of the electrochemical reduction of representative C1 and C2 chlorides - CHCl3 and Freon R113 (1,1,2-trifluoro-1,2,2-trichloroethane) - was carried out by density functional theory (DFT) and second-order Møller-Plesset perturbation theory (MP2). It was found that taking solvation into account using an implicit solvent model (conductor-like screening model, COSMO) or considering explicit solvent molecules gave similar results. In addition to modeling of simple non-catalytic dehalogenation, processes with a number of complexes and their reduced forms, some of which were catalytically active, were investigated by DFT. Complexes M(L1)2 (M = Fe, Co, Ni, Cu, Zn, L1H = Schiff base from 2-pyridinecarbaldehyde and the hydrazide of 4-pyridinecarboxylic acid), Ni(L2) (H2L2 is the Schiff base from salicylaldehyde and 1,2-ethylenediamine, known as salen) and Co(L3)2Cl2, representing a fragment of a redox-active coordination polymer [Co(L3)Cl2]n (L3 is the dithioamide of 1,3-benzenedicarboxylic acid), were considered. Gradual changes in electronic structure in a series of compounds M(L1)2 were observed, and correlations between [M(L1)2](0) spin-up and spin-down LUMO energies and the relative energies of the corresponding high-spin and low-spin reduced forms, as well as the shape of the orbitals, were proposed. These results can be helpful for determination of the nature of redox-processes in similar systems by DFT. No specific covalent interactions between [M(L1)2](-) and the R113 molecule (M = Fe, Co, Ni, Zn) were found, which indicates that M(L1)2 electrocatalysts act rather like electron transfer mediators via outer-shell electron transfer. A relaxed surface scan of the adducts {M(L1)2·R113}(-) (M = Ni or Co) versus the distance between the chlorine atom leaving during reduction and the corresponding carbon atom showed an energy barrier to electron transfer (the first stage of R113 catalytic reduction), while DFT optimization of the {Ni(L2)·R113}(-) adduct showed barrier-free decomposition. The difference between the stabilities of the {Ni(L1)2·R113}(-) and {Ni(L2)·R113}(-) adducts correlates with the difference between the catalytic activities of Ni(L1)2 and Ni(L2) in the electrochemical reduction of R113.

  1. Heterogeneous electrochemical CO2 reduction using nonmetallic carbon-based catalysts: current status and future challenges

    NASA Astrophysics Data System (ADS)

    Ma, Tao; Fan, Qun; Tao, Hengcong; Han, Zishan; Jia, Mingwen; Gao, Yunnan; Ma, Wangjing; Sun, Zhenyu

    2017-11-01

    Electrochemical CO2 reduction (ECR) offers an important pathway for renewable energy storage and fuels production. It still remains a challenge in designing highly selective, energy-efficient, robust, and cost-effective electrocatalysts to facilitate this kinetically slow process. Metal-free carbon-based materials have features of low cost, good electrical conductivity, renewability, diverse structure, and tunability in surface chemistry. In particular, surface functionalization of carbon materials, for example by doping with heteroatoms, enables access to unique active site architectures for CO2 adsorption and activation, leading to interesting catalytic performances in ECR. We aim to provide a comprehensive review of this category of metal-free catalysts for ECR, providing discussions and/or comparisons among different nonmetallic catalysts, and also possible origin of catalytic activity. Fundamentals and some future challenges are also described.

  2. Methodology for the effective stabilization of tin-oxide-based oxidation/reduction catalysts

    NASA Technical Reports Server (NTRS)

    Jordan, Jeffrey D. (Inventor); Schryer, David R. (Inventor); Leighty, Bradley D. (Inventor); Watkins, Anthony N. (Inventor); Summers, Jerry C. (Inventor); Davis, Patricia P. (Inventor); Oglesby, Donald M. (Inventor); Schryer, Jacqueline L. (Inventor); Gulati, Suresh T. (Inventor)

    2011-01-01

    The invention described herein involves a novel approach to the production of oxidation/reduction catalytic systems. The present invention serves to stabilize the tin oxide reducible metal-oxide coating by co-incorporating at least another metal-oxide species, such as zirconium. In one embodiment, a third metal-oxide species is incorporated, selected from the group consisting of cerium, lanthanum, hafnium, and ruthenium. The incorporation of the additional metal oxide components serves to stabilize the active tin-oxide layer in the catalytic process during high-temperature operation in a reducing environment (e.g., automobile exhaust). Moreover, the additional metal oxides are active components due to their oxygen-retention capabilities. Together, these features provide a mechanism to extend the range of operation of the tin-oxide-based catalyst system for automotive applications, while maintaining the existing advantages.

  3. Cobalt-doped carbon xerogel with different initial pH values toward oxygen reduction

    NASA Astrophysics Data System (ADS)

    Fitri, Azim; Loh, Kee Shyuan; Puspasari, Ifa; Mohamad, Abu Bakar

    2017-12-01

    In this study, cobalt-doped carbon xerogel (Co-CX) was synthesized via sol-gel polymerization resorcinol-formaldehyde, catalyzed with cobalt nitrate, followed by drying and carbonization process under nitrogen gas flow. The effect of initial pH value (5.5, 6.5 and 7.5) and the type of carbon precursors on the morphology of Co-CX have been investigated with Field Emission-Transmission Electron Microscopy (FESEM). The catalytic activity of Co-CX for the oxygen reduction reaction (ORR) in 0.1 M KOH has been studied by using a rotating ring-disk electrode (RRDE) technique. FESEM revealed that Co doping promotes the formation of more pores. While the conditions allow obtaining xerogel with higher porosity at pH 7.5. The RRDE result display that Co-CX exhibited good catalytic activity tends to favor two electrons pathway.

  4. 40 CFR 63.1575 - What reports must I submit and when?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards for Hazardous Air Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic... standard for catalytic cracking units or from the HCl concentration standard to percent reduction for... maintenance for your catalytic cracking unit according to the requirements in paragraph (j) of this section...

  5. Synthesis of silyl iron hydride via Si-H activation and its dual catalytic application in the hydrosilylation of carbonyl compounds and dehydration of benzamides.

    PubMed

    Ren, Shishuai; Xie, Shangqing; Zheng, Tingting; Wang, Yangyang; Xu, Shilu; Xue, Benjing; Li, Xiaoyan; Sun, Hongjian; Fuhr, Olaf; Fenske, Dieter

    2018-03-28

    The hydrido silyl iron complex (o-Ph 2 PC 6 H 4 SiMe 2 )Fe(PMe 3 ) 3 H (2) was obtained via the activation of the Si-H bond of the bidentate silyl ligand o-Ph 2 P(C 6 H 4 )SiMe 2 H (1) by Fe(PMe 3 ) 4 . 2 showed good to excellent catalytic activity in both the reduction of aldehydes/ketones and the dehydration of benzamide. In addition, with complex 2 as a catalyst, α,β-unsaturated carbonyls could be selectively reduced to the corresponding α,β-unsaturated alcohols. The mechanisms of the formation of 2 and the catalytic dehydration process are proposed and partly experimentally verified.

  6. Catalytic process for control of NO.sub.x emissions using hydrogen

    DOEpatents

    Sobolevskiy, Anatoly; Rossin, Joseph A.; Knapke, Michael J.

    2010-05-18

    A selective catalytic reduction process with a palladium catalyst for reducing NOx in a gas, using hydrogen as a reducing agent. A zirconium sulfate (ZrO.sub.2)SO.sub.4 catalyst support material with about 0.01-2.0 wt. % Pd is applied to a catalytic bed positioned in a flow of exhaust gas at about 70-200.degree. C. The support material may be (ZrO.sub.2--SiO.sub.2)SO.sub.4. H.sub.2O and hydrogen may be injected into the exhaust gas upstream of the catalyst to a concentration of about 15-23 vol. % H.sub.2O and a molar ratio for H.sub.2/NO.sub.x in the range of 10-100. A hydrogen-containing fuel may be synthesized in an Integrated Gasification Combined Cycle power plant for combustion in a gas turbine to produce the exhaust gas flow. A portion of the fuel may be diverted for the hydrogen injection.

  7. One-step fabrication of large-area ultrathin MoS2 nanofilms with high catalytic activity for photovoltaic devices.

    PubMed

    Liang, Jia; Li, Jia; Zhu, Hongfei; Han, Yuxiang; Wang, Yanrong; Wang, Caixing; Jin, Zhong; Zhang, Gengmin; Liu, Jie

    2016-09-21

    Here we report a facile one-step solution-phase process to directly grow ultrathin MoS2 nanofilms on a transparent conductive glass as a novel high-performance counter electrode for dye-sensitized solar cells. After an appropriate reaction time, the entire surface of the conductive glass substrate was uniformly covered by ultrathin MoS2 nanofilms with a thickness of only several stacked layers. Electrochemical impedance spectroscopy and cyclic voltammetry reveal that the MoS2 nanofilms possess excellent catalytic activity towards tri-iodide reduction. When used in dye-sensitized solar cells, the MoS2 nanofilms show an impressive energy conversion efficiency of 8.3%, which is higher than that of a Pt-based electrode and very promising to be a desirable alternative counter electrode. Considering their ultrathin thickness, superior catalytic activity, simple preparation process and low cost, the as-prepared MoS2 nanofilms with high photovoltaic performance are expected to be widely employed in dye-sensitized solar cells.

  8. Carbon-neutral energy cycles using alcohols.

    PubMed

    Fukushima, Takashi; Kitano, Sho; Hata, Shinichi; Yamauchi, Miho

    2018-01-01

    We demonstrated carbon-neutral (CN) energy circulation using glycolic acid ( GC )/oxalic acid ( OX ) redox couple. Here, we report fundamental studies on both catalyst search for power generation process, i.e. GC oxidation, and elemental steps for fuel generation process, i.e. OX reduction, in CN cycle. The catalytic activity test on various transition metals revealed that Rh, Pd, Ir, and Pt have preferable features as a catalyst for electrochemical oxidation of GC . A carbon-supported Pt catalyst in alkaline conditions exhibited higher activity, durability, and product selectivity for electrooxidation of GC rather than those in acidic media. The kinetic study on OX reduction clearly indicated that OX reduction undergoes successive two-electron reductions to form GC . Furthermore, application of TiO 2 catalysts with large specific area for electrochemical reduction of OX facilitates the selective formation of GC .

  9. Carbon-neutral energy cycles using alcohols

    PubMed Central

    Fukushima, Takashi; Kitano, Sho; Hata, Shinichi; Yamauchi, Miho

    2018-01-01

    Abstract We demonstrated carbon-neutral (CN) energy circulation using glycolic acid (GC)/oxalic acid (OX) redox couple. Here, we report fundamental studies on both catalyst search for power generation process, i.e. GC oxidation, and elemental steps for fuel generation process, i.e. OX reduction, in CN cycle. The catalytic activity test on various transition metals revealed that Rh, Pd, Ir, and Pt have preferable features as a catalyst for electrochemical oxidation of GC. A carbon-supported Pt catalyst in alkaline conditions exhibited higher activity, durability, and product selectivity for electrooxidation of GC rather than those in acidic media. The kinetic study on OX reduction clearly indicated that OX reduction undergoes successive two-electron reductions to form GC. Furthermore, application of TiO2 catalysts with large specific area for electrochemical reduction of OX facilitates the selective formation of GC. PMID:29511392

  10. Research progress on catalytic denitrification technology in chemical industry

    NASA Astrophysics Data System (ADS)

    Jin, Yezhi

    2017-12-01

    In recent years, due to the rising emission of NOx annually, attention has been aroused widely by people on more and more severe environmental problems. This paper first discusses applying NOx removal and control technologies and relating chemical principles. Of many technologies, selective reduction reaction (SCR) is the most widely used. Catalysts, the concentration of NOx at the entrance of SCR catalytic reactor, reaction temperature, NH3/NOx mole ratio and NH3 slip rate analyzed later contributes to the removal efficiency of NOx. Finally, the processing and configuration of SCR de-NOx system are briefly introduced.

  11. Effect of surface modification on carbon nanotubes (CNTs) catalyzed nitrobenzene reduction by sulfide.

    PubMed

    Liu, Qi; Zhao, Han-Qing; Li, Lei; He, Pan-Pan; Wang, Yi-Xuan; Yang, Hou-Yun; Hu, Zhen-Hu; Mu, Yang

    2018-06-04

    Carbon nanotubes (CNTs) could be directly used as metal-free catalysts for the reduction of nitroaromatics by sulfide in water, but their catalytic ability need a further improvement. This study evaluated the feasibility of surface modification through thermal and radiation pretreatments to enhance catalytic activity of CNTs on nitrobenzene reduction by sulfide. The results show that thermal treatment could effectively improve the catalytic behaviors of CNTs for the reduction of nitrobenzene by sulfide, where the optimum annealing temperature was 400 °C. However, plasma radiation pretreatment didn't result in an obvious improvement of the CNTs catalytic activity. Moreover, the possible reasons have been explored and discussed in the study. Additionally, the impacts of various operational parameters on nitrobenzene reduction catalyzed by the CNTs after an optimized surface modification were also evaluated. It was found that the rate of nitrobenzene removal by sulfide was positively correlated with CNTs doses in a range of 0.3-300 mg L -1 ; the optimum pH was around 8.0; higher temperature and sulfide concentration facilitated the reaction; and the presence of humic acid exhibited a negative effect on nitrobenzene reduction. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction

    DOEpatents

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2010-08-03

    A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

  13. Fuel-rich catalytic combustion of Jet-A fuel-equivalence ratios 5.0 to 8.0

    NASA Technical Reports Server (NTRS)

    Brabbs, Theodore A.; Gracia-Salcedo, Carmen M.

    1989-01-01

    Fuel-rich catalytic combustion (E.R. greater than 5.0) is a unique technique for preheating a hydrocarbon fuel to temperatures much higher than those obtained by conventional heat exchangers. In addition to producing very reactive molecules, the process upgrades the structure of the fuel by the formation of hydrogen and smaller hydrocarbons and produces a cleaner burning fuel by removing some of the fuel carbon from the soot formation chain. With fuel-rich catalytic combustion as the first stage of a two stage combustion system, enhanced fuel properties can be utilized by both high speed engines, where time for ignition and complete combustion is limited, and engines where emission of thermal NO sub x is critical. Two-stage combustion (rich-lean) has been shown to be effective for NO sub x reduction in stationary burners where residence times are long enough to burn-up the soot formed in the first stage. Such residence times are not available in aircraft engines. Thus, the soot-free nature of the present process is critical for high speed engines. The successful application of fuel-rich catalytic combustion to Jet-A, a multicomponent fuel used in gas turbine combustors, is discusssed.

  14. Synergistic Enhancement of Electrocatalytic CO 2 Reduction with Gold Nanoparticles Embedded in Functional Graphene Nanoribbon Composite Electrodes

    DOE PAGES

    Rogers, Cameron; Perkins, Wade S.; Veber, Gregory; ...

    2017-02-24

    Regulating the complex environment accounting for the stability, selectivity, and activity of catalytic metal nanoparticle interfaces represents a challenge to heterogeneous catalyst design. Here in this paper, we demonstrate the intrinsic performance enhancement of a composite material composed of gold nanoparticles (AuNPs) embedded in a bottom-up synthesized graphene nanoribbon (GNR) matrix for the electrocatalytic reduction of CO 2. Electrochemical studies reveal that the structural and electronic properties of the GNR composite matrix increase the AuNP electrochemically active surface area (ECSA), lower the requisite CO 2 reduction overpotential by hundreds of millivolts (catalytic onset > -0.2 V versus reversible hydrogen electrodemore » (RHE)), increase the Faraday efficiency (>90%), markedly improve stability (catalytic performance sustained over >24 h), and increase the total catalytic output (>100-fold improvement over traditional amorphous carbon AuNP supports). The inherent structural and electronic tunability of bottom-up synthesized GNR-AuNP composites affords an unrivaled degree of control over the catalytic environment, providing a means for such profound effects as shifting the rate-determining step in the electrocatalytic reduction of CO 2 to CO, and thereby altering the electrocatalytic mechanism at the nanoparticle surface.« less

  15. A mature Bosch CO2 reduction technology. [for long-duration space missions

    NASA Technical Reports Server (NTRS)

    King, C. D.; Holmes, R. F.

    1976-01-01

    The reduction of CO2 is one of the steps in closing the oxygen loop for long-duration manned space missions. Several units utilizing the Bosch process, which catalytically reduces CO2 with hydrogen, have been built and operated during the past decade. Each contributed substantial information affecting subsequent designs. Early challenges were primarily concerned with carbon control, materials durability, and reliability of reaction initiation. These were followed by concern about power consumption, expendable weight, volume, and process rate control. Suitable materials and techniques for carbon containment and process reliability have been demonstrated. Power requirements have been reduced by almost an order of magnitude. Methods for significant reductions in expendable weight and volume have been developed. The technology is at a state of maturity directly applicable to designs for space missions.

  16. Properties of Ag nanoparticles prepared by modified Tollens' process with the use of different saccharide types

    NASA Astrophysics Data System (ADS)

    Michalcová, Alena; Machado, Larissa; Marek, Ivo; Martinec, Marek; Sluková, Marcela; Vojtěch, Dalibor

    2018-02-01

    Silver nanoparticles are well known for their catalytic and antimicrobial properties. In their production, the modified Tollens' process using saccharides as reduction agents is very popular. In this paper, the possibility of silver nanoparticles reduction by fructose, glucose, galactose, mannose, maltose, lactose and saccharose is shown. The size of successfully prepared nanoparticles was 16-70 nm depending on the saccharide type. The influence of NaOH and NH3 presence in reaction mixture on size of nanoparticles was described. Surprisingly good results were obtained using saccharose that is, however, known as non-reducing disaccharide.

  17. Mechanistic studies of the CO-oxidation reaction on catalysts for use in long-life CO2 lasers

    NASA Technical Reports Server (NTRS)

    Dawood, Talat; Richmond, John R.; Riley, Brian W.

    1990-01-01

    The catalytic recombination of carbon monoxide and oxygen was studied under conditions expected to be present in a sealed E-beam CO2 laser system. These conditions are typically a gas inlet temperature of 60 C, a substoichiometric CO/O2 ratio of ca. 2.5/1 with an oxygen feed rate of ca. 5 micromoles/s, a carrier gas comprising He, N2 and CO2 in the ratio of 3:2:1, near atmospheric pressure and a gas velocity of 4 m/s. Heterogeneous catalysts, based on precious metal supported on tin oxide, have been coated onto ceramic monoliths and tested for catalytic activity and stability after a reduction/passivation step. Two catalyst systems have been chosen. These are Pt/Pd/SnO2 and Pt/Ru/SnO2. Under the conditions described above, a characteristic decline in catalytic activity is apparent for both systems, and exit gas temperature has been recognized as a sensitive parameter by which to monitor the activity changes. A semilogarithmic plot of exit temperature as a function of time has revealed two distinct processes connected with the decline in activity: one process is associated with reduction of the oxidized precious metal (at Site A), whilst the other is related to the formation and approach to steady-state of an active site at the metal/support interface (Site B).

  18. Formation of Fe nanoparticles on water-washed coal fly ash for enhanced reduction of p-nitrophenol.

    PubMed

    Park, Jaehyeong; Bae, Sungjun

    2018-07-01

    The catalytic reduction of p-nitrophenol (p-NP) by coal fly ash (FA) washed with water was investigated in this study. A significant increase in pH (from 7.0 to 10.1) was observed in the suspension of raw fly ash (RFA), while water-washed fly ash (WFA) showed a relatively lower increase in pH (7.2), which was caused by the dissolution of Ca species during the water-washing process. Almost 33.4% of p-NP reduction was observed in the RFA suspension with NaBH 4 in 1 h, while the enhanced reduction of p-NP (87.2%) was observed in the WFA suspension. The catalytic reduction of p-NP was inhibited by addition of CaO and Ca(OH) 2 , indicating that higher amount of CaO dissolved from RFA resulted in the inhibition effect. Similar experiments using different oxides (i.e., Al 2 O 3 , SiO 2 , CaO and MgO) revealed no significant reduction of p-NP, which was comparable with Fe 2 O 3 (75.8%). Results from various surface analyses revealed that iron oxides on the surface of WFA can be reduced to elemental Fe nanoparticles, which can effectively reduce p-NP with NaBH 4 . No significant leaching of heavy metals such as Cr, Pb, and As was observed during the catalytic reduction of p-NP and in the suspension of WFA after reaction at pH 3, 5, 7, and 9 for 24 h, which can solve the toxic effect when the FA is used for environmental applications. We also observed a good reusability of WFA during the recycling test, indicating the potential use of WFA for the treatment of wastewater containing reductively degradable pollutants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Ozonation of return activated sludge for disintegration and solubilisation with synthesized titanium oxide as catalyst

    NASA Astrophysics Data System (ADS)

    Sarif, S. F. Z. Mohd; Alias, S. S.; Ridwan, F. Muhammad; Salim, K. S. Ku; Abidin, C. Z. A.; Ali, U. F. Md.

    2018-03-01

    Ozonation of activated sludge in the present of titanium dioxide (TiO2) as catalyst to enhance the production of hydroxyl radical was evaluated in comparison to the sole ozonation process. In this process, the catalytic ozontion showed improvement in increasing ozone consumption and improving activated sludge disintegration and solubilisation. The reduction of total suspended solid (TSS), volatile suspended solid (VSS) and soluble chemical oxygen demand (SCOD) solubilisation was better in the catalytic ozonation system. Initial pH 7 of activated sludge was found best to disintegrate and solubilise the sludge flocs. However upon additional of sodium hydroxide (NaOH) in pH adjustment enhanced the solubilisation of organic matter from the flocs and cells, making the initial pH 9 is the best condition for activated sludge solubilisation. Yet the initial pH 7 of activated sludge supernatant was the best condition to achieve SCOD solubilisation due to sludge floc disintegration, when it had stronger correlation between TSS reduction and SCOD solubilisation (R2=0.961). Lower amount of catalyst of 100 mgTiO2/gTSS was found to disintegrate and solubilise the activated sludge better with 30.4% TSS reduction and 25.2% SCOD solubilisation efficiency, compared to 200 mgTiO2/gTSS with 21.9% and 17.1% TSS reduction and SCOD solubilisation, respectively.

  20. EFFECT OF SELECTIVE CATALYTIC REDUCTION ON MERCURY, 2002 FIELD STUDIES UPDATE

    EPA Science Inventory

    The report documents the 2002 "Selective Catalytic Reduction Mercury Field Sampling Project." An overall evaluation of the results from both 2001 and 2002 testing is also provided. The project was sponsored by the Electric Power Research Institute (EPRI), the U.S. Department of...

  1. Preparation of Cu@Cu₂O Nanocatalysts by Reduction of HKUST-1 for Oxidation Reaction of Catechol.

    PubMed

    Jang, Seongwan; Yoon, Chohye; Lee, Jae Myung; Park, Sungkyun; Park, Kang Hyun

    2016-11-02

    HKUST-1, a copper-based metal organic framework (MOF), has been investigated as a catalyst in various reactions. However, the HKUST-1 shows low catalytic activity in the oxidation of catechol. Therefore, we synthesized Fe₃O₄@HKUST-1 by layer-by layer assembly strategy and Cu@Cu₂O by reduction of HKUST-1 for enhancement of catalytic activity. Cu@Cu₂O nanoparticles exhibited highly effective catalytic activity in oxidation of 3,5-di- tert -butylcatechol. Through this method, MOF can maintain the original core-shell structure and be used in various other reactions with enhanced catalytic activity.

  2. Low-temperature cluster catalysis.

    PubMed

    Judai, Ken; Abbet, Stéphane; Wörz, Anke S; Heiz, Ulrich; Henry, Claude R

    2004-03-10

    Free and supported metal clusters reveal unique chemical and physical properties, which vary as a function of size as each cluster possesses a characteristic electron confinement. Several previous experimental results showed that the outcome of a given chemical reaction can be controlled by tuning the cluster size. However, none of the examples indicate that clusters prepared in the gas phase and then deposited on a support material are indeed catalytically active over several reaction cycles nor that their catalytic properties remain constant during such a catalytic process. In this work we report turn-over frequencies (TOF) for Pd(n) (n = 4, 8, 30) clusters using pulsed molecular beam experiments. The obtained results illustrate that the catalytic reactivity for the NO reduction by CO (CO + NO --> 1/2N(2) + CO(2)) is indeed a function of cluster size and that the measured TOF remain constant at a given temperature. More interestingly, the temperature of maximal reactivity is at least 100 K lower than observed for palladium nanoparticles or single crystals. One reason for this surprising observation is the character of the binding sites of these small clusters: N(2) forms already at relatively low temperatures (400 and 450 K) and therefore poisoning by adsorbed nitrogen adatoms is prevented. Thus, small clusters not only open the possibility of tuning a catalytic process by changing cluster size, but also of catalyzing chemical reactions at low temperatures.

  3. Pt skin coated hollow Ag-Pt bimetallic nanoparticles with high catalytic activity for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Fu, Tao; Huang, Jianxing; Lai, Shaobo; Zhang, Size; Fang, Jun; Zhao, Jinbao

    2017-10-01

    The catalytic activity and stability of electrocatalyst is critical for the commercialization of fuel cells, and recent reports reveal the great potential of the hollow structures with Pt skin coat for developing high-powered electrocatalysts due to their highly efficient utilization of the Pt atoms. Here, we provide a novel strategy to prepare the Pt skin coated hollow Ag-Pt structure (Ag-Pt@Pt) of ∼8 nm size at room temperature. As loaded on the graphene, the Ag-Pt@Pt exhibits a remarkable mass activity of 0.864 A/mgPt (at 0.9 V, vs. reversible hydrogen electrode (RHE)) towards oxygen reduction reaction (ORR), which is 5.30 times of the commercial Pt/C catalyst, and the Ag-Pt@Pt also shows a better stability during the ORR catalytic process. The mechanism of this significant enhancement can be attributed to the higher Pt utilization and the unique Pt on Ag-Pt surface structure, which is confirmed by the density functional theory (DFT) calculations and other characterization methods. In conclusion, this original work offers a low-cost and environment-friendly method to prepare a high active electrocatalyst with cheaper price, and this work also discloses the correlation between surface structures and ORR catalytic activity for the hollow structures with Pt skin coat, which can be instructive for designing novel advanced electrocatalysts for fuel cells.

  4. Homogeneously Catalyzed Electroreduction of Carbon Dioxide-Methods, Mechanisms, and Catalysts.

    PubMed

    Francke, Robert; Schille, Benjamin; Roemelt, Michael

    2018-05-09

    The utilization of CO 2 via electrochemical reduction constitutes a promising approach toward production of value-added chemicals or fuels using intermittent renewable energy sources. For this purpose, molecular electrocatalysts are frequently studied and the recent progress both in tuning of the catalytic properties and in mechanistic understanding is truly remarkable. While in earlier years research efforts were focused on complexes with rare metal centers such as Re, Ru, and Pd, the focus has recently shifted toward earth-abundant transition metals such as Mn, Fe, Co, and Ni. By application of appropriate ligands, these metals have been rendered more than competitive for CO 2 reduction compared to the heavier homologues. In addition, the important roles of the second and outer coordination spheres in the catalytic processes have become apparent, and metal-ligand cooperativity has recently become a well-established tool for further tuning of the catalytic behavior. Surprising advances have also been made with very simple organocatalysts, although the mechanisms behind their reactivity are not yet entirely understood. Herein, the developments of the last three decades in electrocatalytic CO 2 reduction with homogeneous catalysts are reviewed. A discussion of the underlying mechanistic principles is included along with a treatment of the experimental and computational techniques for mechanistic studies and catalyst benchmarking. Important catalyst families are discussed in detail with regard to mechanistic aspects, and recent advances in the field are highlighted.

  5. Redox competition mode of scanning electrochemical microscopy (RC-SECM) for visualisation of local catalytic activity.

    PubMed

    Eckhard, Kathrin; Chen, Xingxing; Turcu, Florin; Schuhmann, Wolfgang

    2006-12-07

    In order to locally analyse catalytic activity on modified surfaces a transient redox competition mode of scanning electrochemical microscopy (SECM) has been developed. In a bi-potentiostatic experiment the SECM tip competes with the sample for the very same analyte. This leads to a current decrease at the SECM tip, if it is positioned in close proximity to an active catalyst site on the surface. Specifically, local catalytic activity of a Pt-catalyst modified sample with respect to the catalytic reduction of molecular oxygen was investigated. At higher local catalytic activity the local 02 partial pressure within the gap between accurately positioned SECM tip and sample is depleted, leading to a noticeable tip current decrease over active sites. A flexible software module has been implemented into the SECM to adapt the competition conditions by proper definition of tip and sample potentials. A potential pulse profile enables the localised electrochemically induced generation of molecular oxygen prior to the competition detection. The current decay curves are recorded over the entire duration of the applied reduction pulse. Hence, a time resolved processing of the acquired current values provides movies of the local oxygen concentration against x,y-position. The SECM redox competition mode was verified with a macroscopic Pt-disk electrode as a test sample to demonstrate the feasibility of the approach. Moreover, highly dispersed electro-deposited spots of gold and platinum on glassy carbon were visualised using the redox competition mode of SECM. Catalyst spots of different nature as well as activity inhomogeneities within one spot caused by local variations in Pt-loading were visualised successfully.

  6. MOF-74 as an Efficient Catalyst for the Low-Temperature Selective Catalytic Reduction of NOx with NH3.

    PubMed

    Jiang, Haoxi; Wang, Qianyun; Wang, Huiqin; Chen, Yifei; Zhang, Minhua

    2016-10-12

    In this work, Mn-MOF-74 with hollow spherical structure and Co-MOF-74 with petal-like shape have been prepared successfully via the hydrothermal method. The catalysts were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry-mass spectrum analysis (TG-MS), N 2 adsorption/desorption, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). It is found that MOF-74(Mn, Co) exhibits the capability for selective catalytic reduction (SCR) of NO x at low temperatures. Both experimental (temperature-programmed desorption, TPD) and computational methods have shown that Co-MOF-74 and Mn-MOF-74 owned high adsorption and activation abilities for NO and NH 3 . The catalytic activities of Mn-MOF-74 and Co-MOF-74 for low-temperature denitrification (deNO x ) in the presence of NH 3 were 99% at 220 °C and 70% at 210 °C, respectively. It is found that the coordinatively unsaturated metal sites (CUSs) in M-MOF-74 (M = Mn and Co) played important roles in SCR reaction. M-MOF-74 (M = Mn and Co), especially Mn-MOF-74, showed excellent catalytic performance for low-temperature SCR. In addition, in the reaction process, NO conversion on Mn-MOF-74 decreased with the introduction of H 2 O and SO 2 and almost recovered when gas was cut off. However, for Co-MOF-74, SO 2 almost has no effect on the catalytic activity. This work showed that MOF-74 could be used prospectively as deNO x catalyst.

  7. Hydrogen Peroxide as a Sustainable Energy Carrier: Electrocatalytic Production of Hydrogen Peroxide and the Fuel Cell.

    PubMed

    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D

    2012-11-01

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O 2 -reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal-oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O 2 , which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells.

  8. MERCURY OXIDATION PROMOTED BY A SELECTIVE CATALYTIC REDUCTION CATALYST UNDER SIMULATED POWDER RIVER BASIN COAL COMBUSTION CONDITIONS

    EPA Science Inventory

    A bench-scale reactor consisting of a natural gas burner and an electrically heated reactor housing a selective catalytic reduction (SCR) catalyst was constructed for studying elemental mercury oxidation under SCR conditions. A low sulfur Power River Basin (PRB) coal combustion ...

  9. Effect of radiant catalytic ionization on reduction of foodborne pathogens on beef

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to evaluate the effect of radiant catalytic ionization (RCI) on reduction of Shiga toxin-producing Escherichia coli (STEC) as well as antimicrobial resistant (AMR) and non-AMR Salmonella strains on inoculated beef flanks. The RCI technology utilizes a combination of U...

  10. INVESTIGATION OF SELECTIVE CATALYTIC REDUCTION IMPACT ON MERCURY SPECIATION UNDER SIMULATED NOX EMISSION CONTROL CONDITIONS

    EPA Science Inventory

    Selective catalytic reduction (SCR) technology is being increasingly applied for controlling emissions of nitrogen oxides (NOx) from coal-fired boilers. Some recent field and pilot studies suggest that the operation of SCR could affect the chemical form of mercury in the coal com...

  11. Selective hydrogenation of phenol to cyclohexanone over Pd@CN (N-doped porous carbon): Role of catalyst reduction method

    NASA Astrophysics Data System (ADS)

    Hu, Shuo; Yang, Guangxin; Jiang, Hong; Liu, Yefei; Chen, Rizhi

    2018-03-01

    Selective phenol hydrogenation is a green and sustainable technology to produce cyclohexanone. The work focused on investigating the role of catalyst reduction method in the liquid-phase phenol hydrogenation to cyclohexanone over Pd@CN (N-doped porous carbon). A series of reduction methods including flowing hydrogen reduction, in-situ reaction reduction and liquid-phase reduction were designed and performed. The results highlighted that the reduction method significantly affected the catalytic performance of Pd@CN in the liquid-phase hydrogenation of phenol to cyclohexanone, and the liquid-phase reduction with the addition of appropriate amount of phenol was highly efficient to improve the catalytic activity of Pd@CN. The influence mechanism was explored by a series of characterizations. The results of TEM, XPS and CO chemisorption confirmed that the reduction method mainly affected the size, surface composition and dispersion of Pd in the CN material. The addition of phenol during the liquid-phase reduction could inhibit the aggregation of Pd NPs and promote the reduction of Pd (2+), and then improved the catalytic activity of Pd@CN. The work would aid the development of high-performance Pd@CN catalysts for selective phenol hydrogenation.

  12. A model for the catalytic reduction of NO with CO and N desorption

    NASA Astrophysics Data System (ADS)

    Díaz, J. J.; Buendía, G. M.

    2018-02-01

    In this work we have investigated by Monte Carlo simulations the dynamical behavior of a modified Yaldram-Khan (YK) model for the catalytic reduction of NO on a surface. Our model is simulated on a square lattice and includes the individual desorption of CO molecules and N atoms, processes associated with temperature effects. When CO desorption is added, strong fluctuations appear, which are associated with the spreading of N checkerboard structures on the surface. These structures take a long time to coalesce, allowing the existence of a unsteady but long lasting reactive state. N desorption also favors the reactivity of the system, this time by diminishing the size of the N structures and impeding their coalescence. The combined desorption of CO and N produces a reactive state as well, where reactive zones among N structures can take place on the surface.

  13. Study on the treatment of 2-sec-butyl-4,6-dinitrophenol (DNBP) wastewater by ClO2 in the presence of aluminum oxide as catalyst.

    PubMed

    Wang, Hui-Long; Dong, Jing; Jiang, Wen-Feng

    2010-11-15

    The chlorine dioxide (ClO(2)) oxidative degradation of 2-sec-butyl-4,6-dinitrophenol (DNBP) in aqueous solution was studied in detail using Al(2)O(3) as a heterogeneous catalyst. The operating parameters such as the ClO(2) concentration, catalyst dosage, initial DNBP concentration, reaction time and pH were evaluated. Compared with the conventional ClO(2) oxidation process without the catalyst, the ClO(2) catalytic oxidation system could significantly enhance the degradation efficiency. Under the optimal condition (DNBP concentration 39 mg L(-1), ClO(2) concentration 0.355 g L(-1), reaction time 60 min, catalyst dosage 10.7 g L(-1) and pH 4.66), degradation efficiency approached 99.1%. The catalyst was used at least 8 cycles without any appreciable loss of activity. The kinetic studies revealed that the ClO(2) catalytic oxidation degradation of DNBP followed pseudo-first-order kinetics with respect to DNBP concentration. The ClO(2) catalytic oxidation process was found to be very effective in the decolorization and COD(Cr) reduction of real wastewater from DNBP manufacturing. Thus, this study showed potential application of ClO(2) catalytic oxidation process in degradation of organic contaminants and industrial effluents. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Pulsed discharge plasma induced Fenton-like reactions for the enhancement of the degradation of 4-chlorophenol in water.

    PubMed

    Hao, Xiaolong; Zhou, Minghua; Xin, Qing; Lei, Lecheng

    2007-02-01

    To sufficiently utilize chemically active species and enhance the degradation rate and removal efficiency of toxic and biorefractory organic pollutant para-chlorophenol (para-CP), the introductions of iron metal ions (Fe2+/Fe3+) into either pulsed discharge plasma (PDP) process or the PDP process with TiO2 photo-catalyst were tentatively performed. The experimental results showed that under the same experimental condition, the degradation rate and removal efficiency of para-CP were greatly enhanced by the introduction of iron ions (Fe2+/Fe3+) into the PDP process. Moreover, when iron ions and TiO2 were added together in the PDP process, the degradation rate and removal energy of para-CP further improved. The possible mechanism was discussed that the obvious promoting effects were attributed to ferrous ions via plasma induced Fenton-like reactions by UV light irradiation excited and hydrogen peroxide formed in pulsed electrical discharge, resulting in a larger amount of hydroxyl radicals produced from the residual hydrogen peroxide. In addition, the regeneration of ferric ions to ferrous ions facilitates the progress of plasma induced Fenton-like reactions by photo-catalytic reduction of UV light, photo-catalytic reduction on TiO2 surface and electron transfer of quinone intermediates, i.e. 1,4-hydroquinone and 1,4-benzoquinone.

  15. Theophylline-assisted, eco-friendly synthesis of PtAu nanospheres at reduced graphene oxide with enhanced catalytic activity towards Cr(VI) reduction.

    PubMed

    Hu, Ling-Ya; Chen, Li-Xian; Liu, Meng-Ting; Wang, Ai-Jun; Wu, Lan-Ju; Feng, Jiu-Ju

    2017-05-01

    Theophylline as a naturally alkaloid is commonly employed to treat asthma and chronic obstructive pulmonary disorder. Herein, a facile theophylline-assisted green approach was firstly developed for synthesis of PtAu nanospheres/reduced graphene oxide (PtAu NSs/rGO), without any surfactant, polymer, or seed involved. The obtained nanocomposites were applied for the catalytic reduction and removal of highly toxic chromium (VI) using formic acid as a model reductant at 50°C, showing the significantly enhanced catalytic activity and improved recyclability when compared with commercial Pt/C (50%) and home-made Au nanocrystals supported rGO (Au NCs/rGO). It demonstrates great potential applications of the catalyst in wastewater treatment and environmental protection. The eco-friendly route provides a new platform to fabricate other catalysts with enhanced catalytic activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Change of Cu+ species and synergistic effect of copper and cerium during reduction-oxidation treatment for preferential CO oxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Zhao, Xiaozhou; Wang, Shuang; Zeng, Shanghong; Su, Haiquan

    2018-05-01

    The CuO-CeO2@SiO2 catalyst with flower-sphere morphology was prepared by the impregnation method and then experienced the reduction-oxidation treatment at different temperatures. The multi-technique characterization shows that the reduction-oxidation treatment can remodel CuO, improve textural and surface properties and change Cu+ content and synergistic effect of copper and cerium. The importance of this work lies in the fact that the decrease of Cu+ content and synergistic effect of copper and cerium that occurs in the reduction-oxidation process results in the decrease of catalytic activity over the CuO-CeO2@SiO2 catalyst for preferential CO oxidation. The process of reaction in rich-hydrogen streams is equivalent to a reduction procedure which decreases Cu+ content and synergistic effect of copper and cerium.

  17. Porous carbon supported Fe-N-C composite as an efficient electrocatalyst for oxygen reduction reaction in alkaline and acidic media

    NASA Astrophysics Data System (ADS)

    Liu, Baichen; Huang, Binbin; Lin, Cheng; Ye, Jianshan; Ouyang, Liuzhang

    2017-07-01

    In recent years, non-precious metal electrocatalysts for oxygen reduction reaction (ORR) have attracted tremendous attention due to their high catalytic activity, long-term stability and excellent methanol tolerance. Herein, the porous carbon supported Fe-N-C catalysts for ORR were synthesized by direct pyrolysis of ferric chloride, 6-Chloropyridazin-3-amine and carbon black. Variation of pyrolysis temperature during the synthesis process leads to the difference in ORR catalytic activity. High pyrolysis temperature is beneficial to the formation of the "N-Fe" active sites and high electrical conductivity, but the excessive temperature will cause the decomposition of nitrogen-containing active sites, which are revealed by Raman, TGA and XPS. A series of synthesis and characterization experiments with/without nitrogen or iron in carbon black indicate that the coordination of iron and nitrogen plays a crucial role in achieving excellent ORR performances. Electrochemical test results show that the catalyst pyrolyzed at 800 °C (Fe-N-C-800) exhibits excellent ORR catalytic activity, better methanol tolerance and higher stability compared with commercial Pt/C catalyst in both alkaline and acidic conditions.

  18. Control of the Structure of Diffusion Layer in Carbon Steels Under Nitriding with Preliminary Deposition of Copper Oxide Catalytic Films

    NASA Astrophysics Data System (ADS)

    Petrova, L. G.; Aleksandrov, V. A.; Malakhov, A. Yu.

    2017-07-01

    The effect of thin films of copper oxide deposited before nitriding on the phase composition and the kinetics of growth of diffusion layers in carbon steels is considered. The process of formation of an oxide film involves chemical reduction of pure copper on the surface of steel specimens from a salt solution and subsequent oxidation under air heating. The oxide film exerts a catalytic action in nitriding of low- and medium-carbon steels, which consists in accelerated growth of the diffusion layer, the nitride zone in the first turn. The kinetics of the nitriding process and the phase composition of the layer are controlled by the thickness of the copper oxide precursor, i.e., the deposited copper film.

  19. Effects of a TiC substrate on the catalytic activity of Pt for NO reduction.

    PubMed

    Chu, Xingli; Fu, Zhaoming; Li, Shasha; Zhang, Xilin; Yang, Zongxian

    2016-05-11

    Density functional theory calculations are used to elucidate the catalytic properties of a Pt monolayer supported on a TiC(001) substrate (Pt/TiC) toward NO reduction. It is found that the compound system of Pt/TiC has a good stability due to the strong Pt-TiC interaction. The diverse dissociation paths (namely the direct dissociation mechanism and the dimeric mechanism) are investigated. The transition state searching calculations suggest that NO has strong diffusion ability and small activation energy for dissociation on the Pt/TiC. For NO reduction on the Pt/TiC surface, we have found that the direct dissociation mechanisms (NO + N + O → NO2 + N and NO + N + O → N2 + O + O) are easier with a smaller dissociation barrier than those on the Pt(111) surface; and the dimeric process (NO + NO → (NO)2 → N2O + O → N2 + O + O) is considered to be dominant or significant with even a lower energy barrier than that of the direct dissociation. The results show that Pt/TiC can serve as an efficient catalyst for NO reduction.

  20. Furfural reduction mechanism of a zinc-dependent alcohol dehydrogenase from Cupriavidus necator JMP134

    PubMed Central

    Kang, ChulHee; Hayes, Robert; Sanchez, Emiliano J.; Webb, Brian N.; Li, Qunrui; Hooper, Travis; Nissen, Mark S.; Xun, Luying

    2012-01-01

    Summary FurX is a tetrameric Zn-dependent alcohol dehydrogenase (ADH) from Cupriavidus necator JMP134. The enzyme rapidly reduces furfural with NADH as the reducing power. For the first time among characterized ADHs, the high-resolution structures of all reaction steps were obtained in a time-resolved manner, thereby illustrating the complete catalytic events of NADH-dependent reduction of furfural and the dynamic Zn2+ coordination among Glu66, water, substrate and product. In the fully closed conformation of the NADH complex, the catalytic turnover proved faster than observed for the partially closed conformation due to an effective proton transfer network. The domain motion triggered by NAD(H) association/dissociation appeared to facilitate dynamic interchanges in Zn2+ coordination with substrate and product molecules, ultimately increasing the enzymatic turnover rate. NAD+ dissociation appeared to be a slow process, involving multiple steps in concert with a domain opening and reconfiguration of Glu66. This agrees with the report that the cofactor is not dissociated from FurX during ethanol-dependent reduction of furfural, in which ethanol reduces NAD+ to NADH that is subsequently used for furfural reduction. PMID:22081946

  1. Usability of food industry waste oils as fuel for diesel engines.

    PubMed

    Winfried, Russ; Roland, Meyer-Pittroff; Alexander, Dobiasch; Jürgen, Lachenmaier-Kölch

    2008-02-01

    Two cogeneration units were each fitted with a prechamber (IDI) diesel engine in order to test the feasibility of using waste oils from the food industry as a fuel source, and additionally to test emissions generated by the combustion of these fuels. Esterified waste oils and animal fats as well as mustard oil were tested and compared to the more or less "common" fuels: diesel, rapeseed oil and rapeseed methyl ester. The results show that, in principle, each of these fuels is suitable for use in a prechamber diesel engine. Engine performance can be maintained at a constant level. Without catalytic conversion, the nitrogen oxides emissions were comparable. A significant reduction in NO(x) was achieved through the injection of urea. Combining a urea injection with the SCR catalytic converter reduced NO(x) emissions between 53% and 67%. The carbon monoxide emissions from waste oils are not significantly different from those of "common" fuels and can be reduced the same way as of hydrocarbon emissions, through utilization of a catalytic converter. The rate of carbon monoxide reduction by catalytic conversion was 84-86%. A lower hydrocarbon concentration was associated with fuels of agricultural origin. With the catalytic converter a reduction of 29-42% achieved. Each prechamber diesel engine exhibited its own characteristic exhaust, which was independent of fuel type. The selective catalytic reduction of the exhaust emissions can be realized without restriction using fuels of agricultural origin.

  2. Benzoisothiazolone Organo/Copper-Cocatalyzed Redox Dehydrative Construction of Amides and Peptides from Carboxylic Acids using (EtO)3P as the Reductant and O2 in Air as the Terminal Oxidant.

    PubMed

    Liebeskind, Lanny S; Gangireddy, Pavankumar; Lindale, Matthew G

    2016-06-01

    Carboxylic acids and amine/amino acid reactants can be converted to amides and peptides at neutral pH within 5-36 h at 50 °C using catalytic quantities of a redox-active benzoisothiazolone and a copper complex. These catalytic "oxidation-reduction condensation" reactions are carried out open to dry air using O2 as the terminal oxidant and a slight excess of triethyl phosphite as the reductant. Triethyl phosphate is the easily removed byproduct. These simple-to-run catalytic reactions provide practical and economical procedures for the acylative construction of C-N bonds.

  3. Tuning Product Selectivity for Aqueous CO2 Reduction with a Mn(bipyridine)-pyrene Catalyst Immobilized on a Carbon Nanotube Electrode

    PubMed Central

    2017-01-01

    The development of high-performance electrocatalytic systems for the controlled reduction of CO2 to value-added chemicals is a key goal in emerging renewable energy technologies. The lack of selective and scalable catalysts in aqueous solution currently hampers the implementation of such a process. Here, the assembly of a [MnBr(2,2′-bipyridine)(CO)3] complex anchored to a carbon nanotube electrode via a pyrene unit is reported. Immobilization of the molecular catalyst allows electrocatalytic reduction of CO2 under fully aqueous conditions with a catalytic onset overpotential of η = 360 mV, and controlled potential electrolysis generated more than 1000 turnovers at η = 550 mV. The product selectivity can be tuned by alteration of the catalyst loading on the nanotube surface. CO was observed as the main product at high catalyst loadings, whereas formate was the dominant CO2 reduction product at low catalyst loadings. Using UV–vis and surface-sensitive IR spectroelectrochemical techniques, two different intermediates were identified as responsible for the change in selectivity of the heterogenized Mn catalyst. The formation of a dimeric Mn0 species at higher surface loading was shown to preferentially lead to CO formation, whereas at lower surface loading the electrochemical generation of a monomeric Mn-hydride is suggested to greatly enhance the production of formate. These results emphasize the advantages of integrating molecular catalysts onto electrode surfaces for enhancing catalytic activity while allowing excellent control and a deeper understanding of the catalytic mechanisms. PMID:28885841

  4. PdCo nanoparticles supported on carbon fibers derived from cotton: Maximum utilization of Pd atoms for efficient reduction of nitroarenes.

    PubMed

    Yang, Jin; Wang, Wei David; Dong, Zhengping

    2018-08-15

    In the present work, a facile and environment-friendly route is illustrated for the efficient fabrication of highly dispersed PdCo nanoparticles (NPs) by modified cotton-derived carbon fibers (PdCo/CCF). Firstly, commercial cotton was impregnated with CoCl 2 , followed by pyrolysis under high calcination temperature to obtain the Co NPs modified CCF sample (Co/CCF). Secondly, Co/CCF was treated with Pd(AcO) 2 aqueous solution, wherein, through a spontaneous replacement reaction process, Pd 2+ is reduced to metallic Pd and mostly covered on the surface of the Co NPs. Thus, the PdCo/CCF catalyst was obtained avoiding the use of toxic reductants like NaBH 4 , NH 2 NH 2 and HCHO. The PdCo/CCF catalyst exhibits excellent catalytic activity and recyclability for the reduction of 4-nitrophenol and other nitroarenes compared with Pd/CCF, PdCo NPs and many other noble metals based catalysts. The reasons could be attributed to the uniformly dispersed and accessible PdCo NPs on the surface of the CCF, and the Pd atoms deposited on the Co NPs surface that makes the Pd active sites available for optimum use. The PdCo/CCF catalyst also exhibits potential application for catalytic reduction of nitroarenes in a fixed bed reactor under mild reaction conditions. Furthermore, the PdCo/CCF catalyst can be magnetically recycled and reused for at least ten cycles without either losing catalytic activity or leaching of Pd active sites, thereby confirming its superior stability. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Identifying involvement of Lys251/Asp252 pair in electron transfer and associated proton transfer at the quinone reduction site of Rhodobacter capsulatus cytochrome bc1.

    PubMed

    Kuleta, Patryk; Sarewicz, Marcin; Postila, Pekka; Róg, Tomasz; Osyczka, Artur

    2016-10-01

    Describing dynamics of proton transfers in proteins is challenging, but crucial for understanding processes which use them for biological functions. In cytochrome bc1, one of the key enzymes of respiration or photosynthesis, proton transfers engage in oxidation of quinol (QH2) and reduction of quinone (Q) taking place at two distinct catalytic sites. Here we evaluated by site-directed mutagenesis the contribution of Lys251/Asp252 pair (bacterial numbering) in electron transfers and associated with it proton uptake to the quinone reduction site (Qi site). We showed that the absence of protonable group at position 251 or 252 significantly changes the equilibrium levels of electronic reactions including the Qi-site mediated oxidation of heme bH, reverse reduction of heme bH by quinol and heme bH/Qi semiquinone equilibrium. This implicates the role of H-bonding network in binding of quinone/semiquinone and defining thermodynamic properties of Q/SQ/QH2 triad. The Lys251/Asp252 proton path is disabled only when both protonable groups are removed. With just one protonable residue from this pair, the entrance of protons to the catalytic site is sustained, albeit at lower rates, indicating that protons can travel through parallel routes, possibly involving water molecules. This shows that proton paths display engineering tolerance for change as long as all the elements available for functional cooperation secure efficient proton delivery to the catalytic site. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. A new V-doped Bi2(O,S)3 oxysulfide catalyst for highly efficient catalytic reduction of 2-nitroaniline and organic dyes.

    PubMed

    Abay, Angaw Kelemework; Kuo, Dong-Hau; Chen, Xiaoyun; Saragih, Albert Daniel

    2017-12-01

    A new type of convenient, and environmentally friendly, Vanadium (V)-doped Bi 2 (O,S) 3 oxysulfide catalyst with different V contents was successfully synthesized via a simple and facile method. The obtained V-doped Bi 2 (O,S) 3 solid solution catalysts were fully characterized by conventional methods. The catalytic performance of the samples was tested by using the reduction of 2-nitroaniline (2-NA) in aqueous solution. The reduction/decolorization of methylene blue (MB) and rhodamine B (RhB) was also chosen to evaluate the universality of catalysts. It was observed that the introduction of V can improve the catalytic performance, and 20%V-Bi 2 (O,S) 3 was found to be the optimal V doping concentration for the reduction of 2-NA, MB, and RhB dyes. For comparative purposes, a related V-free Bi 2 (O, S) 3 oxysulfide material was synthesized and tested as the catalyst. The superior activity of V-doped Bi 2 (O,S) 3 over pure Bi 2 (O,S) 3 was ascribed mainly to an increase in active sites of the material and also due to the presence of synergistic effects. The presence of V 5+ as found from XPS analysis may interact with Bi atoms and enhancing the catalytic activity of the sample. In the catalytic reduction of 2-NA, MB and RhB, the obtained V-doped Bi 2 (O,S) 3 oxysulfide catalyst exhibited excellent catalytic activity as compared with other reported catalysts. Furthermore this highly efficient, low-cost and easily reusable V-doped Bi 2 (O,S) 3 catalyst is anticipated to be of great potential in catalysis in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A General, Concise Strategy that Enables Collective Total Syntheses of over 50 Protoberberine and Five Aporhoeadane Alkaloids within Four to Eight Steps.

    PubMed

    Zhou, Shiqiang; Tong, Rongbiao

    2016-05-17

    A concise, catalytic, and general strategy that allowed efficient total syntheses of 22 natural 13-methylprotoberberines within four steps for each molecule is reported. This synthesis represents the most efficient and shortest route to date, featuring three catalytic processes: CuI-catalyzed redox-A(3) reaction, Pd-catalyzed reductive carbocyclization, and PtO2 -catalyzed hydrogenation. Importantly, this new strategy to the tetracyclic framework has also been applied to the collective concise syntheses of >30 natural protoberberines (without 13-methyl group) and five aporhoeadane alkaloids. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A redox-hydrothermal route to β-MnO 2 hollow octahedra

    NASA Astrophysics Data System (ADS)

    Zhang, Yange; Chen, Liyong; Zheng, Zhi; Yang, Fengling

    2009-07-01

    Beta-Manganese dioxides' (β-MnO 2) hollow octahedra have been prepared by a synergetic redox reaction using cuprous chloride (CuCl) and hydrochloric acid (HCl) as reductants and potassium permanganate (KMnO 4) as oxidant through a hydrothermal route. During the process, the self-generated chlorine (Cl 2) gas bubbles and HCl's etching appear to be necessary for the formation of MnO 2 hollow structure. The catalytic efficiency of the prepared β-MnO 2 hollow octahedra was high which has been demonstrated by the catalytic oxidation of methylene blue (MB) dye in the presence of hydrogen peroxide (H 2O 2) under natural light.

  9. COMPARISON OF WEST GERMAN AND U.S. FLUE GAS DESULFURIZATION AND SELECTIVE CATALYTIC REDUCTION COSTS

    EPA Science Inventory

    The report documents a comparison of the actual cost retrofitting flue gas desulfurization (FGD) and selective catalytic reduction (SCR) on Federal Republic of German (FRG) boilers to cost estimating procedures used in the U.S. to estimate the retrofit of these controls on U.S. b...

  10. Chemoselective formation of unsymmetrically substituted ethers from catalytic reductive coupling of aldehydes and ketones with alcohols in aqueous solution.

    PubMed

    Kalutharage, Nishantha; Yi, Chae S

    2015-04-03

    A well-defined cationic Ru-H complex catalyzes reductive etherification of aldehydes and ketones with alcohols. The catalytic method employs environmentally benign water as the solvent and cheaply available molecular hydrogen as the reducing agent to afford unsymmetrical ethers in a highly chemoselective manner.

  11. Selective Transformation of Various Nitrogen-Containing Exhaust Gases toward N2 over Zeolite Catalysts.

    PubMed

    Zhang, Runduo; Liu, Ning; Lei, Zhigang; Chen, Biaohua

    2016-03-23

    In this review we focus on the catalytic removal of a series of N-containing exhaust gases with various valences, including nitriles (HCN, CH3CN, and C2H3CN), ammonia (NH3), nitrous oxide (N2O), and nitric oxides (NO(x)), which can cause some serious environmental problems, such as acid rain, haze weather, global warming, and even death. The zeolite catalysts with high internal surface areas, uniform pore systems, considerable ion-exchange capabilities, and satisfactory thermal stabilities are herein addressed for the corresponding depollution processes. The sources and toxicities of these pollutants are introduced. The important physicochemical properties of zeolite catalysts, including shape selectivity, surface area, acidity, and redox ability, are described in detail. The catalytic combustion of nitriles and ammonia, the direct catalytic decomposition of N2O, and the selective catalytic reduction and direct catalytic decomposition of NO are systematically discussed, involving the catalytic behaviors as well as mechanism studies based on spectroscopic and kinetic approaches and molecular simulations. Finally, concluding remarks and perspectives are given. In the present work, emphasis is placed on the structure-performance relationship with an aim to design an ideal zeolite-based catalyst for the effective elimination of harmful N-containing compounds.

  12. Active and Recyclable Catalytic Synthesis of Indoles by Reductive Cyclization of 2-(2-Nitroaryl)acetonitriles in the Presence of Co-Rh Heterobimetallic Nanoparticles with Atmospheric Hydrogen under Mild Conditions.

    PubMed

    Choi, Isaac; Chung, Hyunho; Park, Jang Won; Chung, Young Keun

    2016-11-04

    A cobalt-rhodium heterobimetallic nanoparticle-catalyzed reductive cyclization of 2-(2-nitroaryl)acetonitriles to indoles has been achieved. The tandem reaction proceeds without any additives under the mild conditions (1 atm H 2 and 25 °C). This procedure could be scaled up to the gram scale. The catalytic system is significantly stable under these reaction conditions and could be reused more than ten times without loss of catalytic activity.

  13. Quantification of real thermal, catalytic, and hydrodeoxygenated bio-oils via comprehensive two-dimensional gas chromatography with mass spectrometry.

    PubMed

    Silva, Raquel V S; Tessarolo, Nathalia S; Pereira, Vinícius B; Ximenes, Vitor L; Mendes, Fábio L; de Almeida, Marlon B B; Azevedo, Débora A

    2017-03-01

    The elucidation of bio-oil composition is important to evaluate the processes of biomass conversion and its upgrading, and to suggest the proper use for each sample. Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS) is a widely applied analytical approach for bio-oil investigation due to the higher separation and resolution capacity from this technique. This work addresses the issue of analytical performance to assess the comprehensive characterization of real bio-oil samples via GC×GC-TOFMS. The approach was applied to the individual quantification of compounds of real thermal (PWT), catalytic process (CPO), and hydrodeoxygenation process (HDO) bio-oils. Quantification was performed with reliability using the analytical curves of oxygenated and hydrocarbon standards as well as the deuterated internal standards. The limit of quantification was set at 1ngµL -1 for major standards, except for hexanoic acid, which was set at 5ngµL -1 . The GC×GC-TOFMS method provided good precision (<10%) and excellent accuracy (recovery range of 70-130%) for the quantification of individual hydrocarbons and oxygenated compounds in real bio-oil samples. Sugars, furans, and alcohols appear as the major constituents of the PWT, CPO, and HDO samples, respectively. In order to obtain bio-oils with better quality, the catalytic pyrolysis process may be a better option than hydrogenation due to the effective reduction of oxygenated compound concentrations and the lower cost of the process, when hydrogen is not required to promote deoxygenation in the catalytic pyrolysis process. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Catalytic cracking of the top phase fraction of bio-oil into upgraded liquid oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunarno; Chemical Engineering Department, Gadjah Mada University, Jalan Grafika No. 2 Bulaksumur,Yogyakarta 55281; Rochmadi,

    The energy consumption is increasing, while oil reserves as a primary energy resource are decreasing, so that is the reason seeking alternative energy source is inevitable. Biomass especially oil palm empty fruit bunches (EFB) which is abundant in Indonesia can be processed into bio-oil by pyrolysis process. The potential for direct substitution of bio-oil for petroleum may be limited due to the high viscosity, high oxygen content, low heating value, and corrosiveness. Consequently, upgrading of the bio-oil before use is inevitable to give a wider variety of applications of its liquid product. Furthermore, upgrading process to improve the quality ofmore » bio-oil by reduction of oxygenates involves process such as catalytic cracking. The objective of this research is to study the effect of operation temperature on yield and composition of upgraded liquid oil and to determine physical properties. Bio-oil derived from EFB was upgraded through catalytic cracking using series tubular reactor under atmospheric pressure on a silica-alumina catalyst. Results show that increasing temperature from 450 to 600 °C, resulting in decreasing of upgraded liquid oil (ULO) yield, decreasing viscosity and density of ULO, but increasing in calorimetric value of ULO. The increasing temperature of cracking also will increase the concentration of gasoline and kerosene in ULO.« less

  15. Surface Structure Dependent Electrocatalytic Activity of Co3O4 Anchored on Graphene Sheets toward Oxygen Reduction Reaction

    PubMed Central

    Xiao, Junwu; Kuang, Qin; Yang, Shihe; Xiao, Fei; Wang, Shuai; Guo, Lin

    2013-01-01

    Catalytic activity is primarily a surface phenomenon, however, little is known about Co3O4 nanocrystals in terms of the relationship between the oxygen reduction reaction (ORR) catalytic activity and surface structure, especially when dispersed on a highly conducting support to improve the electrical conductivity and so to enhance the catalytic activity. Herein, we report a controllable synthesis of Co3O4 nanorods (NR), nanocubes (NC) and nano-octahedrons (OC) with the different exposed nanocrystalline surfaces ({110}, {100}, and {111}), uniformly anchored on graphene sheets, which has allowed us to investigate the effects of the surface structure on the ORR activity. Results show that the catalytically active sites for ORR should be the surface Co2+ ions, whereas the surface Co3+ ions catalyze CO oxidation, and the catalytic ability is closely related to the density of the catalytically active sites. These results underscore the importance of morphological control in the design of highly efficient ORR catalysts. PMID:23892418

  16. Prereduction of Metal Oxides via Carbon Plasma Treatment for Efficient and Stable Electrocatalytic Hydrogen Evolution.

    PubMed

    Zhang, Yongqi; Ouyang, Bo; Xu, Kun; Xia, Xinhui; Zhang, Zheng; Rawat, Rajdeep Singh; Fan, Hong Jin

    2018-04-01

    Prereduction of transition metal oxides is a feasible and efficient strategy to enhance their catalytic activity for hydrogen evolution. Unfortunately, the prereduction via the common H 2 annealing method is unstable for nanomaterials during the hydrogen evolution process. Here, using NiMoO 4 nanowire arrays as the example, it is demonstrated that carbon plasma (C-plasma) treatment can greatly enhance both the catalytic activity and the long-term stability of transition metal oxides for hydrogen evolution. The C-plasma treatment has two functions at the same time: it induces partial surface reduction of the NiMoO 4 nanowire to form Ni 4 Mo nanoclusters, and simultaneously deposits a thin graphitic carbon shell. As a result, the C-plasma treated NiMoO 4 can maintain its array morphology, chemical composition, and catalytic activity during long-term intermittent hydrogen evolution process. This work may pave a new way for simultaneous activation and stabilization of transition metal oxide-based electrocatalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Oxygen reduction reaction catalyzed by nickel complexes based on thiophosphorylated calix[4]resorcinols and immobilized in the membrane electrode assembly of fuel cells.

    PubMed

    Kadirov, M K; Knyazeva, I R; Nizameev, I R; Safiullin, R A; Matveeva, V I; Kholin, K V; Khrizanforova, V V; Ismaev, T I; Burilov, A R; Budnikova, Yu H; Sinyashin, O G

    2016-10-18

    The catalytic activity of the nickel complexes of thiophosphorylated calix[4]resorcinols for oxygen reduction in a polymer electrolyte membrane fuel cell (PEMFC) has been studied. The conformation of the macrocyclic ligand determines the morphology and catalytic properties of the resulting organometallic species.

  18. Environmental Technology Verification: Test Report of Mobile Source Selective Catalytic Reduction--Nett Technologies, Inc., BlueMAX 100 version A urea-based selective catalytic reduction technology

    EPA Science Inventory

    Nett Technologies’ BlueMAX 100 version A Urea-Based SCR System utilizes a zeolite catalyst coating on a cordierite honeycomb substrate for heavy-duty diesel nonroad engines for use with commercial ultra-low–sulfur diesel fuel. This environmental technology verification (ETV) repo...

  19. PILOT-SCALE STUDY OF THE EFFECT OF SELECTIVE CATALYTIC REDUCTION CATALYST ON MERCURY SPECIATION IN ILLINOIS AND POWDER RIVER BASIN COAL COMBUSTION FLUE GASES

    EPA Science Inventory

    A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur and chlorine) and one Po...

  20. Investigation on electrochemical behavior and its catalytic effect on oxygen reduction reaction of 3-Ferrocenyl dihydropyrazole derivative as electron relay

    NASA Astrophysics Data System (ADS)

    Zeng, Han; Huo, Wen-Shan; Zhao, Shu-Xian; Zhang, Yu-He

    2017-11-01

    Amino group surface tailored multi-wall carbon nano-tubes were covalently tethered to the gold disk electrode and Laccase molecules were covalently coupled to nano-tubes to prepare Lac-based electrode. Derivative of 3-ferrocenyl dihydropyrazole (FDPFFP) was proposed to be electron mediator for mediated oxygen reduction reaction. Investigation in electro-chemical behavior and catalytic performance to enzymatic reaction of FDPFFP indicated that it displayed quasi-reversible characteristics of electro-chemical reaction with rapid dynamics of electron shuttle and had apparent catalytic effect in oxygen reduction (onset potential for catalysis at 450 mV vs NHE). This enzymatic catalysis was restrained by the step in diffusion of substrate.

  1. Synthesis of chitosan supported palladium nanoparticles and its catalytic activity towards 2-nitrophenol reduction

    NASA Astrophysics Data System (ADS)

    Dhanavel, S.; Nivethaa, E. A. K.; Esther, G.; Narayanan, V.; Stephen, A.

    2016-05-01

    Chitosan supported Palladium nanoparticles were synthesized by a simple cost effective chemical reduction method using NaBH4. The prepared nanocomposite was characterized by X-Ray diffraction analysis, FESEM and Energy dispersive spectroscopy analysis of X-rays (EDAX). The catalytic performance of the nanocomposite was evaluated on the reduction of 2-Nitrophenol to the 2-Amino phenol with rate constant 1.08 × 10-3 S-1 by NaBH4 using Spectrophotometer.

  2. Enhanced room-temperature catalytic decomposition of formaldehyde on magnesium-aluminum hydrotalcite/boehmite supported platinum nanoparticles catalyst.

    PubMed

    Yan, Zhaoxiong; Yang, Zhihua; Xu, Zhihua; An, Liang; Xie, Fang; Liu, Jiyan

    2018-08-15

    Magnesium-aluminum hydrotalcite (Mg-Al HT)/boehmite (AlOOH) composite supported Pt catalysts were obtained via one-pot microemulsion synthesis of Mg-Al HT/AlOOH composite and NaBH 4 -reduction of Pt precursor processes. The catalytic performances of the catalysts were evaluated for formaldehyde (HCHO) removal at room temperature. The performance tests showed that the catalyst obtained by immobilizing Pt nanoparticles (NPs) on Mg-Al HT/AlOOH support with Al/Mg molar ratio equivalent to 9:1 (Pt/Al 9 Mg 1 ) displayed a superior catalytic activity and stability for HCHO removal. In order to find out the causes of its higher activity, X-ray diffraction, transmission electron microscopy, N 2 adsorption/desorption, X-ray photoelectron spectroscopy, temperature programmed desorption of CO 2 and reduction of H 2 were used to analyze the physicochemical properties of Pt/Al 9 Mg 1 and Pt/AlOOH. The remarkable catalytic performance of Pt/Al 9 Mg 1 is mainly attributed to the relatively larger amount of surface oxygen species, and more reactive oxygen species led by the interaction of Mg-Al HT and AlOOH/Pt, and relatively larger number of weak base sites caused by Mg-Al HT. The formate species are the main reaction intermediate over Pt/Al 9 Mg 1 during HCHO oxidation at room temperature, which could be further oxidized into CO 2 and H 2 O in the presence of O 2 . This study might shed some light on further improving the catalytic performance of the catalyst for indoor air purification at room temperature. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Antioxidant activity of selenenamide-based mimic as a function of the aromatic thiols nucleophilicity, a DFT-SAPE model.

    PubMed

    Kheirabadi, Ramesh; Izadyar, Mohammad

    2018-05-18

    The mechanism of action of the selenenamide 1 as a mimic of the glutathione peroxidase (GPx) was investigated by the density functional theory. The solvent-assisted proton exchange procedure was applied to model the catalytic behavior and antioxidant activity of this mimic. To have an insight into the charge transfer effect, different aromatic thiols, including electron donating substituents on the phenyl ring were considered. The catalytic behavior of the selenenamide was modeled in a four-step mechanism, described by the oxidation of the mimic, the reduction of the obtained product, selenoxide, the reduction of the selenenylsulfide and dehydration of selenenic acid. On the basis of the activation parameters, the final step of the proposed mechanism is the rate determining states of the catalytic cycle. Turnover frequency (TOF) analysis showed that the electron donating groups at the para-position of the phenyl ring of the PhSH do not affect the catalytic activity of the selenenamide in contrast to p-methyl thiophenol which indicates the highest nucleophilicity. The evaluation of the electronic contribution of the various donating groups on the phenyl ring of the aromatic thiols shows that the antioxidant activity of the selenenamide sufficiently increases in the presence of the electron-donating substitutions. Finally, the charge transfer process at the rate-determining state was investigated based on the natural bond orbital analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Synthesis of Superparamagnetic Core-Shell Structure Supported Pd Nanocatalysts for Catalytic Nitrite Reduction with Enhanced Activity, No Detection of Undesirable Product of Ammonium, and Easy Magnetic Separation Capability.

    PubMed

    Sun, Wuzhu; Yang, Weiyi; Xu, Zhengchao; Li, Qi; Shang, Jian Ku

    2016-01-27

    Superparamagnetic nanocatalysts could minimize both the external and internal mass transport limitations and neutralize OH(-) produced in the reaction more effectively to enhance the catalytic nitrite reduction efficiency with the depressed product selectivity to undesirable ammonium, while possess an easy magnetic separation capability. However, commonly used qusi-monodispersed superparamagnetic Fe3O4 nanosphere is not suitable as catalyst support for nitrite reduction because it could reduce the catalytic reaction efficiency and the product selectivity to N2, and the iron leakage could bring secondary contamination to the treated water. In this study, protective shells of SiO2, polymethylacrylic acid, and carbon were introduced to synthesize Fe3O4@SiO2/Pd, Fe3O4@PMAA/Pd, and Fe3O4@C/Pd catalysts for catalytic nitrite reduction. It was found that SiO2 shell could provide the complete protection to Fe3O4 nanosphere core among these shells. Because of its good dispersion, dense structure, and complete protection to Fe3O4, the Fe3O4@SiO2/Pd catalyst demonstrated the highest catalytic nitrite reduction activity without the detection of NH4(+) produced. Due to this unique structure, the activity of Fe3O4@SiO2/Pd catalysts for nitrite reduction was found to be independent of the Pd nanoparticle size or shape, and their product selectivity was independent of the Pd nanoparticle size, shape, and content. Furthermore, their superparamagnetic nature and high saturation magnetization allowed their easy magnetic separation from treated water, and they also demonstrated a good stability during the subsequent recycling experiment.

  5. Enhancement of activity of RuSex electrocatalyst by modification with nanostructured iridium towards more efficient reduction of oxygen

    NASA Astrophysics Data System (ADS)

    Dembinska, Beata; Kiliszek, Malgorzata; Elzanowska, Hanna; Pisarek, Marcin; Kulesza, Pawel J.

    2013-12-01

    Electrocatalytic activity of carbon (Vulcan XC-72) supported selenium-modified ruthenium, RuSex/C, nanoparticles for reduction of oxygen was enhanced through intentional decoration with iridium nanostructures (dimensions, 2-3 nm). The catalytic materials were characterized in oxygenated 0.5 mol dm-3 H2SO4 using cyclic and rotating ring disk voltammetric techniques as well as using transmission electron microscopy and scanning electron microscopy equipped with X-ray dispersive analyzer. Experiments utilizing gas diffusion electrode aimed at mimicking conditions existing in the low-temperature fuel cell. Upon application of our composite catalytic system, the reduction of oxygen proceeded at more positive potentials, and higher current densities were observed when compared to the behavior of the simple iridium-free system (RuSex/C) investigated under the analogous conditions. The enhancement effect was more pronounced than that one would expect from simple superposition of voltammetric responses for the oxygen reduction at RuSex/C and iridium nanostructures studied separately. Nanostructured iridium acted here as an example of a powerful catalyst for the reduction of H2O2 (rather than O2) and, when combined with such a moderate catalyst as ruthenium-selenium (for O2 reduction), it produced an integrated system of increased electrocatalytic activity in the oxygen reduction process. The proposed system retained its activity in the presence of methanol that could appear in a cathode compartment of alcohol fuel cell.

  6. Sulfur doped reduced graphene oxides with enhanced catalytic activity for oxygen reduction via molten salt redox-sulfidation.

    PubMed

    Gu, Yuxing; Chen, Zhigang; Tang, Juanjuan; Xiao, Wei; Mao, Xuhui; Zhu, Hua; Wang, Dihua

    2016-12-07

    A spontaneous redox reaction of reduced graphene oxide (rGO) in molten Li 2 CO 3 -Na 2 CO 3 -K 2 CO 3 with a small amount of Li 2 SO 4 at 550 °C was applied to synthesize sulfur and sulfur-cobalt doped rGOs (S-rGO/S-Co-rGO). The obtained S-rGOs and S-Co-rGOs show enhanced catalytic activity for the oxygen reduction reaction (ORR) in alkaline aqueous solutions. The onset reduction potential and the half-wave potential of S-Co-rGO are 60 and 40 mV more positive than those of the original rGO, respectively. The reduction current density of S-Co-rGO increases by nearly five times. This study provides a green and continuous molten salt doping approach for the fabrication of heteroatom-doped graphene with excellent catalytic activity for the ORR.

  7. On the nanostructuring and catalytic promotion of intermediate temperature solid oxide fuel cell (IT-SOFC) cathodes

    NASA Astrophysics Data System (ADS)

    Serra, José M.; Buchkremer, Hans-Peter

    Solid oxide fuel cells (SOFCs) are highly efficient energy converters for both stationary and mobile purposes. However, their market introduction still demands the reduction of manufacture costs and one possible way to reach this goal is the decrease of the operating temperatures, which entails the improvement of the cathode electrocatalytic properties. An ideal cathode material may have mixed ionic and electronic conductivity as well as proper catalytic properties. Nanostructuring and catalytic promotion of mixed conducting perovskites (e.g. La 0.58Sr 0.4Fe 0.8Co 0.2O 3- δ) seem to be promising approaches to overcoming cathode polarization problems and are briefly illustrated here. The preparation of nanostructured cathodes with relatively high surface area and enough thermal stability enables to improve the oxygen exchange rate and therefore the overall SOFC performance. A similar effect was obtained by catalytic promoting the perovskite surface, allowing decoupling the catalytic and ionic-transport properties in the cathode design. Noble metal incorporation may improve the reversibility of the reduction cycles involved in the oxygen reduction. Under the cathode oxidizing conditions, Pd seems to be partially dissolved in the perovskite structure and as a result very well dispersed.

  8. Isolation of the Copper Redox Steps in the Standard Selective Catalytic Reduction on Cu-SSZ-13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paolucci, Christopher; Verma, Anuj A.; Bates, Shane A.

    2014-10-27

    Operando X-ray absorption experiments and density functional theory (DFT) calculations are reported that elucidate the role of copper redox chemistry in the selective catalytic reduction (SCR) of NO over Cu-exchanged SSZ-13. Catalysts prepared to contain only isolated, exchanged CuII ions evidence both CuII and CuI ions under standard SCR conditions at 473 K. Reactant cutoff experiments show that NO and NH3 together are necessary for CuII reduction to CuI. DFT calculations show that NO-assisted NH3 dissociation is both energetically favorable and accounts for the observed CuII reduction. The calculations predict in situ generation of Brønsted sites proximal to CuI uponmore » reduction, which we quantify in separate titration experiments. Both NO and O2 are necessary for oxidation of CuI to CuII, which DFT suggests to occur by a NO2 intermediate. Reaction of Cu-bound NO2 with proximal NH4 + completes the catalytic cycle. N2 is produced in both reduction and oxidation half-cycles.« less

  9. Isolation of the Copper Redox Steps in the Standard Selective Catalytic Reduction on Cu-SSZ-13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paolucci, Christopher; Verma, Anuj A.; Bates, Shane A.

    2014-09-12

    Operando X-ray absorption experiments and density functional theory (DFT) calculations are reported that elucidate the role of copper redox chemistry in the selective catalytic reduction (SCR) of NO over Cu-exchanged SSZ-13. Catalysts prepared to contain only isolated, exchanged CuII ions evidence both CuII and CuI ions under standard SCR conditions at 473 K. Reactant cutoff experiments show that NO and NH3 together are necessary for CuII reduction to CuI. DFT calculations show that NO-assisted NH3 dissociation is both energetically favorable and accounts for the observed CuII reduction. The calculations predict in situ generation of Brønsted sites proximal to CuI uponmore » reduction, which we quantify in separate titration experiments. Both NO and O2 are necessary for oxidation of CuI to CuII, which DFT suggests to occur by a NO2 intermediate. Reaction of Cu-bound NO2 with proximal NH4 + completes the catalytic cycle. N2 is produced in both reduction and oxidation half-cycles.« less

  10. Ce(III, IV)-MOF electrocatalyst as signal-amplifying tag for sensitive electrochemical aptasensing.

    PubMed

    Yu, Hua; Han, Jing; An, Shangjie; Xie, Gang; Chen, Sanping

    2018-06-30

    Metal-organic frameworks (MOFs) as a new class of porous materials have attracted increasing attention in the field of biomimetic catalysis. This study firstly reports a mixed valence state Ce-MOF possessing intrinsic catalytic activity towards thionine (Thi), and its application in constructing an amplified electrochemical aptasensor for thrombin detection. As noticed, the novel catalytic process combines the advantages of 3D infinite extension of the Ce(III, IV)-MOF skeleton containing large amounts of catalytic sites and spontaneous recycling of the Ce(III)/Ce(IV) for electrochemical reduction of Thi, thereby presenting amplified electrochemical signals. To further improve the aptasensor performance, the high selectivity of proximity binding-induced DNA strand displacement and high efficiency of exonuclease III-assisted recycling amplification were incorporated into the assay. The aptasensor was employed to detect thrombin in complex serum samples, which shows high sensitivity, specificity, stability and reproducibility. This work offers an opportunity to develop MOF-based electrocatalyst as signal-amplifying tag for versatile bioassays and catalytic applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. One-pot facile synthesis of reusable tremella-like M1@M2@M1(OH)2 (M1 = Co, Ni, M2 = Pt/Pd, Pt, Pd and Au) three layers core-shell nanostructures as highly efficient catalysts

    NASA Astrophysics Data System (ADS)

    Liu, Yadong; Fang, Zhen; Kuai, Long; Geng, Baoyou

    2014-07-01

    In this work, a general, facile, successive and eco-friendly method for multilayer nanostructures has been established for the first time. We take full advantage of the structural and compositional character of M1@M2 (M1 = Co, Ni, M2 = Pt/Pd, Pt, Pd and Au) core-shell nanostructures to prepare a series of reusable tremella-like M1@M2@M1(OH)2 three layer core-shell or yolk-shell nanocomposites with a magnetic core, a porous noble metal shell, and an ultrathin cobalt or nickel hydroxide shell. We evaluated their catalytic performance using a model reaction based on the reduction of 4-nitrophenol. These novel M1@M2@M1(OH)2 nanomaterials with a unique internal micro environment promoted the efficiency of the catalytic reaction, prolonged the service life of the catalyst and enhanced the overall activity of the catalyst in the catalytic process. The novel three layer core-shell nanocomposites can be extended to other applications such as biomedical detection, energy conversion and storage systems.In this work, a general, facile, successive and eco-friendly method for multilayer nanostructures has been established for the first time. We take full advantage of the structural and compositional character of M1@M2 (M1 = Co, Ni, M2 = Pt/Pd, Pt, Pd and Au) core-shell nanostructures to prepare a series of reusable tremella-like M1@M2@M1(OH)2 three layer core-shell or yolk-shell nanocomposites with a magnetic core, a porous noble metal shell, and an ultrathin cobalt or nickel hydroxide shell. We evaluated their catalytic performance using a model reaction based on the reduction of 4-nitrophenol. These novel M1@M2@M1(OH)2 nanomaterials with a unique internal micro environment promoted the efficiency of the catalytic reaction, prolonged the service life of the catalyst and enhanced the overall activity of the catalyst in the catalytic process. The novel three layer core-shell nanocomposites can be extended to other applications such as biomedical detection, energy conversion and storage systems. Electronic supplementary information (ESI) available: Fig. S1-S6. See DOI: 10.1039/c4nr01470g

  12. Chemical activation of commercial CNTs with simultaneous surface deposition of manganese oxide nano flakes for the creation of CNTs-graphene supported oxygen reduction ternary composite catalysts applied in air fuel cell

    NASA Astrophysics Data System (ADS)

    Sun, Ling; Liu, Danxian

    2018-07-01

    To elevate power performance is crucial for commercally potential metal air fuel cells. Non-precious metal oxide-based oxygen reduction catalytic electrode is much desirable. Rational combination with low-dimension nanomaterials are greatly expected as the supports. Herein, carbon nanotubes (CNTs)-graphene supported manganese oxides composite catalysts (CMnCs) were obtained through activating commercial CNTs, namely, immersing them in acidic KMnO4 solution at room condition. It avoided conventional hydrothermal process and template surfactants. CMnCs-based air cathodes were made via pilot manufacture technology and equipped in fuel cells. Through characterizations, CNTs was found structurally defective and their outer walls suffered cracking into graphene nano pieces during processing, which further enhanced oxygen reduction reaction (ORR). Nano sized manganese oxide flakes were simulataneously grown on the CNTs-graphene surfaces, identified as the manganite. The areal distribution was found closely related to the additive amount of KMnO4 with regard to CNTs, somewhat influencing catalytic performance. The ORR activities of these CMnCs exceeded raw CNTs and referred manganese catalysts under identical conditions, and also the CMnCs air fuel cells were capable of outputting ∼15% more power at 100 mA/cm2. This reseach provided an inspiring pilot evidence for updating air fuel cell power from economical carbon as well as industrialization.

  13. Thermo-Responsive Amphiphilic Block Copolymers Stablilized Gold Nanoparticles: Synthesis and High Catalytic Properties.

    PubMed

    Lü, Jianhua; Yang, Yu; Gao, Junfang; Duan, Haichao; Lü, Changli

    2018-06-19

    A series of novel well-defined 8-hydroxyquinoline (HQ)-containing thermo-responsive amphiphilic diblock copolymers poly(styrene-co-5-(2-methacryloylethyloxy- methyl)-8-quinolinol)-b-poly(N-isopropylacrylamide) P(St-co-MQ)-b-PNIPAm (P1,2), P(NIPAm- co-MQ)-b-PSt (P3,4) and triblock copolymer poly(N-isopropylacrylamide)-b-poly(methyl- methacrylate-co-5-(2-methacryloylethyloxymethyl)-8-quinolinol)-b-polystyrene PNIPAm-b- P(MMA-co-MQ)-b-PSt (P5) were prepared by reversible addition fragmentation chain transfer (RAFT) polymerization, and their self-assembly behaviors were studied. The block copolymers P1-P5 stabilized gold nanoparticles (Au@P1-Au@P5) with small size and narrow distribution were obtained through in situ reduction of gold precursors in aqueous solution of polymer micelles with HQ as the coordination groups. The resulting Au@P nanohybrids possessed excellent catalytic activities for the reduction of nitrophenols using NaBH4. The size, morphology and surface chemistry of Au NPs could be controlled by adjusting the structure of block polymers with HQ in different block positions, which plays an important role in the catalytic properties. It was found that longer chain length of hydrophilic or hydrophobic segments of block copolymers were beneficial to elevate the catalytic activity of Au NPs for the reduction of nitrophenols, and the spherical nanoparticles (Au@P5) stabilized with triblock copolymer exhibit higher catalytic performance. Surprisingly, the gold nanowires (Au@P4) produced with P4 have a highest catalytic activity due to large abundance of grain boundaries. Excellent thermo-responsive behaviors for catalytic reaction make the as-prepared Au@P hybrids become an environmentally responsive nano-catalytic materials.

  14. Photocatalytic CO 2 Reduction by Trigonal-Bipyramidal Cobalt(II) Polypyridyl Complexes: The Nature of Cobalt(I) and Cobalt(0) Complexes upon Their Reactions with CO 2, CO, or Proton

    DOE PAGES

    Shimoda, Tomoe; Morishima, Takeshi; Kodama, Koichi; ...

    2018-04-26

    Trigonal-bipyramidal Co(II) complexes are used for photochemical carbon dioxide (CO 2) reduction with Ru(bpy) 3 2+ as a photosensitizer, tri-p-tolylamine (TTA) as a reversible quencher, and triethylamine (TEA) as a sacrificial electron donor to produce carbon monoxide and dihydrogen. Here, the CO 2 reduction is slow because of the large structural changes, spin flipping in the cobalt catalytic intermediates, and an uphill reaction for reduction to catalytically active Co(0) by the photoproduced [Ru(bpy) 3] +.

  15. Photocatalytic CO 2 Reduction by Trigonal-Bipyramidal Cobalt(II) Polypyridyl Complexes: The Nature of Cobalt(I) and Cobalt(0) Complexes upon Their Reactions with CO 2, CO, or Proton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimoda, Tomoe; Morishima, Takeshi; Kodama, Koichi

    Trigonal-bipyramidal Co(II) complexes are used for photochemical carbon dioxide (CO 2) reduction with Ru(bpy) 3 2+ as a photosensitizer, tri-p-tolylamine (TTA) as a reversible quencher, and triethylamine (TEA) as a sacrificial electron donor to produce carbon monoxide and dihydrogen. Here, the CO 2 reduction is slow because of the large structural changes, spin flipping in the cobalt catalytic intermediates, and an uphill reaction for reduction to catalytically active Co(0) by the photoproduced [Ru(bpy) 3] +.

  16. Direct synthesis of bimetallic PtCo mesoporous nanospheres as efficient bifunctional electrocatalysts for both oxygen reduction reaction and methanol oxidation reaction

    NASA Astrophysics Data System (ADS)

    Wang, Hongjing; Yu, Hongjie; Li, Yinghao; Yin, Shuli; Xue, Hairong; Li, Xiaonian; Xu, You; Wang, Liang

    2018-04-01

    The engineering of electrocatalysts with high performance for cathodic and/or anodic catalytic reactions is of great urgency for the development of direct methanol fuel cells. Pt-based bimetallic alloys have recently received considerable attention in the field of fuel cells because of their superior catalytic performance towards both fuel molecule electro-oxidation and oxygen reduction. In this work, bimetallic PtCo mesoporous nanospheres (PtCo MNs) with uniform size and morphology have been prepared by a one-step method with a high yield. The as-made PtCo MNs show superior catalytic activities for both oxygen reduction reaction and methanol oxidation reaction relative to Pt MNs and commercial Pt/C catalyst, attributed to their mesoporous structure and bimetallic composition.

  17. Catalytic reduction of pralidoxime in pharmaceuticals by macrocyclic Ni(II) compounds derived from orthophthalaldehyde.

    PubMed

    Reddy, P Muralidhar; Prasad, Adapa V S S; Rohini, Rondla; Ravinder, Vadde

    2008-08-01

    Efficient catalytic method for the reduction of pralidoxime to its amine derivative by macrocyclic Ni(II) compounds has been developed. Ten macrocyclic Schiff base Ni(II) compounds were synthesized via non-template synthesis by treating the corresponding macrocycles with nickel chloride in 1:1 ratio. The resulting compounds were characterized by elemental, IR, (1)H NMR, (13)C NMR, mass, electronic spectra, conductance, magnetic, thermal studies and their structures have been proposed. These compounds were used as catalysts for the reduction of pralidoxime to its amino derivative. The reduced pralidoxime was also characterized by spectral analysis and catalytic cycle has been established. The reduced product was determined spectrophotometrically by treating with ninhydrin reagent and the percent yields were found to be in the range of 75.12-82.36%.

  18. Promotion effect of H2 on ethanol oxidation and NOx reduction with ethanol over Ag/Al2O3 catalyst.

    PubMed

    Yu, Yunbo; Li, Yi; Zhang, Xiuli; Deng, Hua; He, Hong; Li, Yuyang

    2015-01-06

    The catalytic partial oxidation of ethanol and selective catalytic reduction of NOx with ethanol (ethanol-SCR) over Ag/Al2O3 were studied using synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry (PIMS). The intermediates were identified by PIMS and their photoionization efficiency (PIE) spectra. The results indicate that H2 promotes the partial oxidation of ethanol to acetaldehyde over Ag/Al2O3, while the simultaneously occurring processes of dehydration and dehydrogenation were inhibited. H2 addition favors the formation of ammonia during ethanol-SCR over Ag/Al2O3, the occurrence of which creates an effective pathway for NOx reduction by direct reaction with NH3. Simultaneously, the enhancement of the formation of ammonia benefits its reaction with surface enolic species, resulting in producing -NCO species again, leading to enhancement of ethanol-SCR over Ag/Al2O3 by H2. Using VUV-PIMS, the reactive vinyloxy radical was observed in the gas phase during the NOx reduction by ethanol for the first time, particularly in the presence of H2. Identification of such a reaction occurring in the gas phase may be crucial for understanding the reaction pathway of HC-SCR over Ag/Al2O3.

  19. Effect of preparation procedures on catalytic activity and selectivity of copper-based mixed oxides in selective catalytic oxidation of ammonia into nitrogen and water vapour

    NASA Astrophysics Data System (ADS)

    Jabłońska, Magdalena; Nocuń, Marek; Gołąbek, Kinga; Palkovits, Regina

    2017-11-01

    The selective oxidation of ammonia into nitrogen and water vapour (NH3-SCO) was studied over Cu-Mg(Zn)-Al-(Zr) mixed metal oxides, obtained by coprecipitation and their subsequent calcination. The effect of acid-base properties of Cu-Mg-Al-Ox on catalytic activity was investigated by changing the Mg/Al molar ratio. Other Cu-containing oxides were prepared by rehydration of calcined Mg-Al hydrotalcite-like compounds or thermal decomposition of metal nitrate precursors. XRD, BET, NH3-TPD, H2-TPR, XPS, FTIR with adsorption of pyridine and CO as well as TEM techniques were used for catalysts characterization. The results of catalytic tests revealed a crucial role of easily reducible highly dispersed copper oxide species to obtain enhanced activity and N2 selectivity in NH3-SCO. The selective catalytic reduction of NO by NH3 (NH3-SCR) and in situ DRIFT of NH3 sorption indicated that NH3-SCO proceeds according to the internal selective catalytic reduction mechanism (i-SCR).

  20. Structure-based Engineering of a Plant-Fungal Hybrid Peroxidase for Enhanced Temperature and pH Tolerance.

    PubMed

    Kohler, Amanda C; Simmons, Blake A; Sale, Kenneth L

    2018-04-28

    In an age of ever-increasing biotechnological and industrial demand for new and specialized biocatalysts, rational protein engineering offers a direct approach to enzyme design and innovation. Heme peroxidases, as indispensable oxidative biocatalysts, provide a relatively mild alternative to the traditional harsh, and often toxic, chemical catalysts, and subsequently, have found widespread application throughout industry. However, the potential for these enzymes is far greater than their present use, as processes are currently restricted to the more stable, but less catalytically powerful, subset of peroxidases. Here we describe the structure-guided, rational engineering of a plant-fungal hybrid peroxidase built to overcome the application barrier of these high-reduction potential peroxidases. This engineered enzyme has the catalytic versatility and oxidative ability of a high-reduction potential versatile peroxidase, with enhanced temperature and pH tolerance similar to that of a highly stable plant peroxidase. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Homogeneous Reduction of Carbon Dioxide with Hydrogen.

    PubMed

    Dong, Kaiwu; Razzaq, Rauf; Hu, Yuya; Ding, Kuiling

    2017-04-01

    Carbon dioxide (CO 2 ), a key greenhouse gas produced from both anthropogenic and natural sources, has been recently considered to be an important C1 building-block for the synthesis of many industrial fuels and chemicals. Catalytic hydrogenation of CO 2 using a homogeneous system is regarded as an efficient process for CO 2 valorization. This approach leads to the direct products including formic acid (HCOOH), carbon monoxide (CO), methanol (MeOH), and methane (CH 4 ). The hydrogenation of CO 2 to CO followed by alkene carbonylation provides value-added compounds, which also avoids the tedious separation and transportation of toxic CO. Moreover, the reduction of CO 2 with H 2 in the presence of amines is of significance to attain fine chemicals through catalytic formylation and methylation reactions. The synthesis of higher alcohols and dialkoxymethane from CO 2 and H 2 has been demonstrated recently, which opens access to new molecular structures using CO 2 as an important C1 source.

  2. A thermoresponsive nanorattle containing two different catalysts for controllable one-pot tandem catalysis

    NASA Astrophysics Data System (ADS)

    Niu, Chengrong; Hu, Jie; Li, Yinfeng; Leng, Jinghang; Li, Songjun

    2018-03-01

    In the present work, a thermoresponsive nanorattle with a Ag nanoparticle (NP) core (one catalyst in the nanorattle), and a poly(N-isopropylacrylamide) shell was developed. An imidazole group was grafted on the polymer shell by copolymerization as the other catalyst. Owing to the catalytic activities of the imidazole group and Ag NP with regards to hydrolysis and reduction, respectively, this nanorattle exhibited tandem-reaction catalytic abilities. In addition, because of the shrinkage of the poly(N-isopropylacrylamide) shell at high temperatures, the tandem reaction could be controlled to stop at the first reaction step. That is to say, only the hydrolysis reaction was catalyzed by the imidazole group being grafted on the surface of the shell. The reduction step in the tandem reaction catalyzed by the Ag particle, however, was switched off by the shrinkage of the poly(N-isopropylacrylamide) shell. This protocol opens up an opportunity to develop controllable catalysts for complicated chemical processes.

  3. A new approach for crystallization of copper(ii) oxide hollow nanostructures with superior catalytic and magnetic response

    NASA Astrophysics Data System (ADS)

    Singh, Inderjeet; Landfester, Katharina; Chandra, Amreesh; Muñoz-Espí, Rafael

    2015-11-01

    We report the synthesis of copper(ii) oxide hollow nanostructures at ambient pressure and close to room temperature by applying the soft templating effect provided by the confinement of droplets in miniemulsion systems. Particle growth can be explained by considering a mechanism that involves both diffusion and reaction control. The catalytic reduction of p-nitrophenol in aqueous media is used as a model reaction to prove the catalytic activity of the materials: the synthesized hollow structures show nearly 100 times higher rate constants than solid CuO microspheres. The kinetic behavior and the order of the reduction reaction change due to the increase of the surface area of the hollow structures. The synthesis also leads to modification of physical properties such as magnetism.We report the synthesis of copper(ii) oxide hollow nanostructures at ambient pressure and close to room temperature by applying the soft templating effect provided by the confinement of droplets in miniemulsion systems. Particle growth can be explained by considering a mechanism that involves both diffusion and reaction control. The catalytic reduction of p-nitrophenol in aqueous media is used as a model reaction to prove the catalytic activity of the materials: the synthesized hollow structures show nearly 100 times higher rate constants than solid CuO microspheres. The kinetic behavior and the order of the reduction reaction change due to the increase of the surface area of the hollow structures. The synthesis also leads to modification of physical properties such as magnetism. Electronic supplementary information (ESI) available: Associated structural and morphological analysis, XPS characterization, BET surface area, catalytic measurements, recycle tests of the catalyst, and magnetic characterizations. See DOI: 10.1039/c5nr05579b

  4. Biomass Catalytic Pyrolysis on Ni/ZSM-5: Effects of Nickel Pretreatment and Loading

    DOE PAGES

    Yung, Matthew M.; Starace, Anne K.; Mukarakate, Calvin; ...

    2016-04-25

    Here in this work, Ni/ZSM-5 catalysts with varied nickel loadings were evaluated for their ability to produce aromatic hydrocarbons by upgrading of pine pyrolysis vapors. The effect of catalyst pretreatment by hydrogen reduction was also investigated. Results indicate that the addition of nickel increases the yield of aromatic hydrocarbons while simultaneously increasing the conversion of oxygenates, relative to ZSM-5, and these effects are more pronounced with increasing nickel loading. Additionally, while initial activity differences were observed between the oxidized and reduced forms of nickel on ZSM-5 (i.e., NiO/ZSM-5 versus Ni/ZSM-5), the activity of both catalysts converges with increasing time onmore » stream. These reaction results coupled with characterization of pristine and spent catalysts suggest that the catalysts reach similar active states during catalytic pyrolysis, regardless of pretreatment, as NiO undergoes in situ reduction to Ni by biomass pyrolysis vapors. This reduction of NiO to Ni was confirmed by reaction results and characterization by NH 3 temperature-programmed desorption, temperature-programmed reduction, and X-ray diffraction. This finding is significant in that the ability to reduce or eliminate the need for a pre-reaction H 2 reduction of Ni-modified zeolite catalysts could reduce process complexity and operating costs in a biorefinery-based vapor-phase upgrading process to produce biomass-derived fuels and chemicals. The ability to monitor catalyst activity in real time with a molecular beam mass spectrometer used to measure uncondensed, hot pyrolysis vapors allows for an improved understanding of the mechanism for improved activity with Ni addition to ZSM-5, which is attributed to the ability to prevent deactivation by deposition of coke and capping of zeolite micropores.« less

  5. Energy industry

    NASA Astrophysics Data System (ADS)

    Staszak, Katarzyna; Wieszczycka, Karolina

    2018-04-01

    The potential sources of metals from energy industries are discussed. The discussion is organized based on two main metal-contains wastes from power plants: ashes, slags from combustion process and spent catalysts from selective catalytic NOx reduction process with ammonia, known as SCR. The compositions, methods of metals recovery, based mainly on leaching process, and their further application are presented. Solid coal combustion wastes are sources of various compounds such as silica, alumina, iron oxide, and calcium. In the case of the spent SCR catalysts mainly two metals are considered: vanadium and tungsten - basic components of industrial ones.

  6. Selective catalytic reduction system and process for treating NOx emissions using a zinc or titanium promoted palladium-zirconium catalyst

    DOEpatents

    Sobolevskiy, Anatoly [Orlando, FL; Rossin, Joseph A [Columbus, OH; Knapke, Michael J [Columbus, OH

    2011-08-02

    A process and system (18) for reducing NO.sub.x in a gas using hydrogen as a reducing agent is provided. The process comprises contacting the gas stream (29) with a catalyst system (38) comprising sulfated zirconia washcoat particles (41), palladium, a pre-sulfated zirconia binder (44), and a promoter (45) comprising at least one of titanium, zinc, or a mixture thereof. The presence of zinc or titanium increases the resistance of the catalyst system to a sulfur and water-containing gas stream.

  7. Environmental Technology Verification Test Report of Mobile Source Selective Catalytic Reduction, Johnson Matthey SCCRT, Version 1, Selective Catalytic Reduction Technology with a Catalyzed Continuously Regenerating Trap

    EPA Science Inventory

    The Johnson Matthey SCCRT, v.1 technology is a urea-based SCR system combined with a CCRT filter designed for on-highway light, medium, and heavy heavy-duty diesel, urban and non-urban, bus exhaust gas recirculation (EGR)-or non-EGR-equipped engines for use with commercial ultra-...

  8. Ultrafine cobalt nanoparticles supported on reduced graphene oxide: Efficient catalyst for fast reduction of hexavalent chromium at room temperature

    NASA Astrophysics Data System (ADS)

    Xu, Tingting; Xue, Jinjuan; Zhang, Xiaolei; He, Guangyu; Chen, Haiqun

    2017-04-01

    A novel composite ultrafine cobalt nanoparticles-reduced graphene oxide (Co-RGO) was firstly synthesized through a modified one-step solvothermal method with Co(OH)2 as the precursor. The prepared low-cost Co-RGO composite exhibited excellent catalytic activity for the reduction of highly toxic Cr(VI) to nontoxic Cr(III) at room temperature when formic acid (HCOOH) was employed as the reductant, and its catalytic performance was even comparable with that of noble metal-based catalysts in the same reduction reaction. Moreover, Co-RGO composite could be readily recovered under an external magnetic field and efficiently participated in recycled reaction for Cr(VI) reduction.

  9. Linear and crosslinked Polyurethanes based catalysts for reduction of methylene blue.

    PubMed

    Sultan, Misbah; Javeed, Asma; Uroos, Maliha; Imran, Muhammad; Jubeen, Farhat; Nouren, Shazia; Saleem, Nazish; Bibi, Ismat; Masood, Rashid; Ahmed, Waqas

    2018-02-15

    The large amount of synthetic dyes in effluents is a serious concern to be addressed. The chemical reduction is one of the potential way to resolve this problem. In this study, linear and crosslinked polyurethanes i.e. LPUR & CLPUR were synthesized from toluene diisocyanate (TDI), polyethylene glycol (PEG;1000g/mole) and tetraethylenepentamine (TEPA). The structure and morphology of synthesized materials were examined by FTIR, SEM and BET. The CLPUR was found stable in aqueous system with 0.80g/cm 3 density and 16.4998m 2 g -1 surface area. These materials were applied for the reduction of methylene blue in presence of NaBH 4 . Both, polymers catalyzed the process and showed 100% reduction in 16 and 28mins., respectively, while, the reduction rate was significantly low in absence of these materials, even after 120mins. Furthermore, negligible adsorption was observed with only 7% removal of dye. The best reduction rates were observed at low concentration of dye, increasing concentration of NaBH 4 and with more dosage of polymeric catalyst. The kinetic study of process followed zero order kinetics. It was hence concluded that both synthesized polymers played a catalytic role in reduction process. However, stability in aqueous system and better efficiency in reduction process endorsed CLPUR as an optimal choice for further studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Oscillations and patterns in a model of simultaneous CO and C2H2 oxidation and NO(x) reduction in a cross-flow reactor.

    PubMed

    Hadač, Otto; Kohout, Martin; Havlica, Jaromír; Schreiber, Igor

    2015-03-07

    A model describing simultaneous catalytic oxidation of CO and C2H2 and reduction of NOx in a cross-flow tubular reactor is explored with the aim of relating spatiotemporal patterns to specific pathways in the mechanism. For that purpose, a detailed mechanism proposed for three-way catalytic converters is split into two subsystems, (i) simultaneous oxidation of CO and C2H2, and (ii) oxidation of CO combined with NOx reduction. The ability of these two subsystems to display mechanism-specific dynamical effects is studied initially by neglecting transport phenomena and applying stoichiometric network and bifurcation analyses. We obtain inlet temperature - inlet oxygen concentration bifurcation diagrams, where each region possessing specific dynamics - oscillatory, bistable and excitable - is associated with a dominant reaction pathway. Next, the spatiotemporal behaviour due to reaction kinetics combined with transport processes is studied. The observed spatiotemporal patterns include phase waves, travelling fronts, pulse waves and spatiotemporal chaos. Although these types of pattern occur generally when the kinetic scheme possesses autocatalysis, we find that some of their properties depend on the underlying dominant reaction pathway. The relation of patterns to specific reaction pathways is discussed.

  11. Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation.

    PubMed

    Wang, Ai-Qin; Chang, Chun-Ming; Mou, Chung-Yuan

    2005-10-13

    We report a novel Au-Ag alloy catalyst supported on mesoporous aluminosilicate Au-Ag@MCM prepared by a one-pot synthesis procedure, which is very active for low-temperature CO oxidation. The activity was highly dependent on the hydrogen pretreatment conditions. Reduction at 550-650 degrees C led to high activity at room temperature, whereas as-synthesized or calcined samples did not show any activity at the same temperature. Using various characterization techniques, such as XRD, UV-vis, XPS, and EXAFS, we elucidated the structure and surface composition change during calcination and the reduction process. The XRD patterns show that particle size increased only during the calcination process on those Ag-containing samples. XPS and EXAFS data demonstrate that calcination led to complete phase segregation of the Au-Ag alloy and the catalyst surface is greatly enriched with AgBr after the calcination process. However, subsequent reduction treatment removed Br- completely and the Au-Ag alloy was formed again. The surface composition of the reduced Au-Ag@MCM (nominal Au/Ag = 3/1) was more enriched with Ag, with the surface Au/Ag ratio being 0.75. ESR spectra show that superoxides are formed on the surface of the catalyst and its intensity change correlates well with the trend of catalytic activity. A DFT calculation shows that CO and O2 coadsorption on neighboring sites on the Au-Ag alloy was stronger than that on either Au or Ag. The strong synergism in the coadsorption of CO and O2 on the Au-Ag nanoparticle can thus explain the observed synergetic effect in catalysis.

  12. Chitosan based polymer matrix with silver nanoparticles decorated multiwalled carbon nanotubes for catalytic reduction of 4-nitrophenol.

    PubMed

    Alshehri, Saad M; Almuqati, Turki; Almuqati, Naif; Al-Farraj, Eida; Alhokbany, Norah; Ahamad, Tansir

    2016-10-20

    A novel catalyst for the reduction of 4-nitrophenol (4-NP) was prepared using carboxyl group-functionalized multiwalled carbon nanotubes (MWCNTs), polymer matrix, and silver nanoparticles (AgNPs). The AgNPs were prepared by the reduction of silver nitrate by trisodium citrate in the MWCNTs-polymer nanocomposite; the size of the synthesized AgNPs was found to be 3nm (average diameter). The synthesized nanocomposites were characterized using several analytical techniques. Ag@MWCNTs-polymer composite in the presence of sodium borohydride (NaBH4) in aqueous solution is an effective catalyst for the reduction of 4-NP. The apparent kinetics of reduction has a pseudo-first-order kinetics, and the rate constant and catalytic activity parameter were found to be respectively 7.88×10(-3)s(-1)and 11.64s(-1)g(-1). The MWCNTs-polymer nanocomposite renders stability to AgNPs against the environment and the reaction medium, which means that the Ag@MWCNTs-polymer composite can be re-used for many catalytic cycles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Catalytic activity of Ru-Sn/Al2O3 in reduction reaction of pollutant 4-Nitrophenol

    NASA Astrophysics Data System (ADS)

    Rini, A. S.; Radiman, S.; Yarmo, M. A.

    2018-03-01

    Ru-Sn/Al2O3 bimetallic nanocatalysts have been synthesized by using conventional and microwave impregnation methods. Structure and morphology of the samples were characterized using XRD, XPS, and TEM. XRD and XPS measurement have confirmed the presence of Ru and Sn in the samples. According to TEM results, the morphology of the catalyst strongly depends on the preparation route and stabilizing agent (i.e. PVP). The sample with PVP (polyvinylpyrrolidone) has better nanoparticles distribution over the support. A sample prepared by conventional method has an agglomeration of nanoparticles on the support. Catalytic activities of both samples were examined in the reduction reaction of pollutant, i.e. 4-nitrophenol. Catalytic examination showed that reaction rate of 4-nitrophenol reduction by using microwave-assisted sample has improved 3.5 times faster than conventional impregnation sample.

  14. Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appel, Aaron M.; Bercaw, John E.; Bocarsly, Andrew B.

    2013-08-14

    Our central premise is that catalytic scientists can learn by studying how these important metabolic processes occur in nature. Complementarily, biochemists can learn by studying how catalytic scientists view these same chemical transformations promoted by synthetic catalysts. From these studies, hypotheses can be developed and tested through manipulation of enzyme structure and by synthesizing simple molecular catalysts to incorporate different structural features of the enzymes. It is hoped that these studies will lead to new and useful concepts in catalyst design for fuel production and utilization. This paper describes the results of a workshop held to explore these concepts inmore » regard to the development of new and more efficient catalytic processes for the conversion of CO2 to a variety of carbon-based fuels. The organization of this overview/review is as follows: 1) The first section briefly explores how interactions between the catalysis and biological communities have been fruitful in developing new catalysts for the reduction of protons to hydrogen, the simplest fuel generation reaction. 2) The second section assesses the state of the art in both biological and chemical reduction of CO2 by two electrons to form either carbon monoxide (CO) or formate (HCOO-). It also attempts to identify common principles between biological and synthetic catalysts and productive areas for future research. 3) The third section explores both biological and chemical processes that result in the reduction of CO2 beyond the level of CO and formate, again seeking to identify common principles and productive areas of future research. 4) The fourth section explores the formation of carbon-carbon bonds in biological and chemical systems in the same vein as the other sections. 5) A fifth section addresses the role of non-redox reactions of CO2 in biological systems and their role in carbon metabolism, with a parallel discussion of chemical systems. 6) In section 6, the topics of electrode modification, photochemical systems, and tandem catalysis are briefly discussed. These areas may be important for developing practical systems for CO2 reduction, and they share the common theme of coupling chemical reactions. 7) Section 7 describes some of the crosscutting activities that are critical for advancing the science underpinning catalyst development. 8) The last section attempts to summarize common issues in biological and chemical catalysis and to identify challenges that must be addressed to achieve practical catalysts that are suitable for the reduction of CO2 to fuels.« less

  15. Ultra-fast catalytic reduction of dyes by ionic liquid recoverable and reusable mefenamic acid derived gold nanoparticles.

    PubMed

    Hassan, Syeda Sara; Sirajuddin; Solangi, Amber Rehana; Agheem, Mohammad Hassan; Junejo, Yasmeen; Kalwar, Nazar Hussain; Tagar, Zulfiqar Ali

    2011-06-15

    We synthesized mefenamic acid (MA) derived gold nanoparticles (MA-AuNps) in aqueous solution (MA-Au sol). Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) of the sol at 1, 5, 15 and 60 min showed changes in size and shape of formed AuNps. Fourier Transform Infrared (FTIR) Spectroscopy revealed the interaction between AuNps and MA. Each Au sol exhibited exceptional catalytic activity for the reduction of Methylene Blue (MB), Rose Bengal (RB) and Eosin B (EB) dye individually as well as collectively. However, complete reduction of dye(s) was accomplished by Au sol of 5 min in just 15s. The catalytic performance of Ma-Au sol was far superior to that adsorbed on glass. AuNps were recovered with the help of water insoluble room temperature ionic liquid and reused with enhanced catalytic potential. This finding is a novel, rapid and highly economical alternative for environmental safety against pollution by dyes and extendable for control of other reducible contaminants as well. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. How low does iron go? Chasing the active species in fe-catalyzed cross-coupling reactions.

    PubMed

    Bedford, Robin B

    2015-05-19

    The catalytic cross-coupling reactions of organic halides or related substrates with organometallic nucleophiles form the cornerstone of many carbon-carbon bond-forming processes. While palladium-based catalysts typically mediate such reactions, there are increasing concerns about the long-term sustainability of palladium in synthesis. This is due to the high cost of palladium, coupled with its low natural abundance, environmentally deleterious extraction (∼6 g of metal are produced per ton of ore), toxicity, and competition for its use from the automotive and consumer electronics sectors. Therefore, there is a growing interest in replacing palladium-based catalysts with those incorporating more earth-abundant elements. With its low cost, high natural abundance, and low toxicity, iron makes a particularly appealing alternative, and accordingly, the development of iron-catalyzed cross-coupling is undergoing explosive growth. However, our understanding of the mechanisms that underpin the iron-based catalytic cycles is still very much in its infancy. Mechanistic insight into catalytic reactions is not only academically important but also allows us to maximize the efficiency of processes or even to develop entirely new transformations. Key to the development of robust mechanistic models for cross-coupling is knowing the lowest oxidation state in the cycle. Once this is established, we can explore subsequent redox processes and build the catalytic manifold. Until we know with confidence what the lowest oxidation state is, any cycles proposed are largely just guesswork. To date, Fe(-II), Fe(-I), Fe(0), Fe(I), and Fe(II) have been proposed as contenders for the lowest-oxidation-state species in the cycle in iron-catalyzed cross-coupling; the aim of this Account is to pull together the various pieces of evidence in support, or otherwise, of each of these suggestions in turn. There currently exists no direct evidence that oxidation states below Fe(0) are active in the catalytic cycle. Meanwhile, the reactivity required of the lowest-oxidation-state species has been observed with model compounds in higher oxidation states, implying that there is no need to invoke such low oxidation states. While subzero-valent complexes do indeed act as effective precatalysts, it is important to recognize that this tells us that they are efficiently converted to an active catalyst but says nothing about the oxidation states of the species in the catalytic cycle. Zero-valent heterogeneous iron nanoparticles can be formed under typical catalytic conditions, but there is no evidence to suggest that homogeneous Fe(0) complexes can be produced under comparable conditions. It seems likely that the zero-valent nanoparticles act as a reservoir for soluble higher-oxidation-state species. Fe(II) complexes can certainly be formed under catalytically relevant conditions, and when bulky nucleophilic coupling partners are exploited, potential intermediates can be isolated. However, the bulky reagents act as poor proxies for most nucleophiles used in cross-coupling, as they give Fe(II) organometallic intermediates that are kinetically stabilized with respect to reductive elimination. When more realistic substrates are exploited, reduction or disproportionation to Fe(I) is widely observed, and while it still has not been conclusively proved, this oxidation state currently represents a likely candidate for the lowest one active in many iron-catalyzed cross-coupling processes.

  17. Experimental study on removals of SO2 and NO(x) using adsorption of activated carbon/microwave desorption.

    PubMed

    Ma, Shuang-Chen; Yao, Juan-Juan; Gao, Li; Ma, Xiao-Ying; Zhao, Yi

    2012-09-01

    Experimental studies on desulfurization and denitrification were carried out using activated carbon irradiated by microwave. The influences of the concentrations of nitric oxide (NO) and sulfur dioxide (SO2), the flue gas coexisting compositions, on adsorption properties of activated carbon and efficiencies of desulfurization and denitrification were investigated. The results show that adsorption capacity and removal efficiency of NO decrease with the increasing of SO2 concentrations in flue gas; adsorption capacity of NO increases slightly first and drops to 12.79 mg/g, and desulfurization efficiency descends with the increasing SO2 concentrations. Adsorption capacity of SO2 declines with the increasing of O2 content in flue gas, but adsorption capacity of NO increases, and removal efficiencies of NO and SO2 could be larger than 99%. Adsorption capacity of NO declines with the increase of moisture in the flue gas, but adsorption capacity of SO2 increases and removal efficiencies of NO and SO2 would be relatively stable. Adsorption capacities of both NO and SO2 decrease with the increasing of CO2 content; efficiencies of desulfurization and denitrification augment at the beginning stage, then start to fall when CO2 content exceeds 12.4%. The mechanisms of this process are also discussed. The prominent SO2 and NOx treatment techniques in power plants are wet flue gas desulfurization (FGD) and the catalytic decomposition method like selective catalytic reduction (SCR) or nonselective catalytic reduction (NSCR). However, these processes would have some difficulties in commercial application due to their high investment, requirement of expensive catalysts and large-scale equipment, and so on. A simple SO2 and NOx reduction utilizing decomposition by microwave energy method can be used. The pollutants control of flue gas in the power plants by the method of microwave-induced decomposition using adsorption of activated carbon/microwave desorption can meet the requirements of environmental protection, which will be stricter in the future.

  18. Noncovalent immobilization of electrocatalysts on carbon electrodes for fuel production.

    PubMed

    Blakemore, James D; Gupta, Ayush; Warren, Jeffrey J; Brunschwig, Bruce S; Gray, Harry B

    2013-12-11

    We show that molecular catalysts for fuel-forming reactions can be immobilized on graphitic carbon electrode surfaces via noncovalent interactions. A pyrene-appended bipyridine ligand (P) serves as the linker between each complex and the surface. Immobilization of a rhodium proton-reduction catalyst, [Cp*Rh(P)Cl]Cl (1), and a rhenium CO2-reduction catalyst, Re(P)(CO)3Cl (2), afford electrocatalytically active assemblies. X-ray photoelectron spectroscopy and electrochemistry confirm catalyst immobilization. Reduction of 1 in the presence of p-toluenesulfonic acid results in catalytic H2 production, while reduction of 2 in the presence of CO2 results in catalytic CO production.

  19. Sustainable resource recovery and energy conversion processes using microbial electrochemical technologies

    NASA Astrophysics Data System (ADS)

    Yates, Matthew D.

    Microbial Electrochemical Technologies (METs) are emerging technological platforms for the conversion of waste into usable products. METs utilize naturally occurring bacteria, called exoelectrogens, capable of transferring electrons to insoluble terminal electron acceptors. Electron transfer processes in the exoelectrogen Geobacter sulfurreducens were exploited here to develop sustainable processes for synthesis of industrially and socially relevant end products. The first process examined was the removal of soluble metals from solution to form catalytic nanoparticles and nanoporous structures. The second process examined was the biocatalytic conversion of electrons into hydrogen gas using electrons supplied directly to an electrode. Nanoparticle formation is desirable because materials on the nanoscale possess different physical, optical, electronic, and mechanical properties compared to bulk materials. In the first process, soluble palladium was used to form catalytic palladium nanoparticles using extracellular electron transfer (EET) processes of G. sulfurreducens, typically the dominant member of mixedculture METs. Geobacter cells reduced the palladium extracellularly using naturally produced pili, which provided extracellular adsorption and reduction sites to help delay the diffusion of soluble metals into the cell. The extracellular reduction prevented cell inactivation due to formation of intracellular particles, and therefore the cells could be reused in multiple palladium reduction cycles. A G. sulfurreducens biofilm was next investigated as a biotemplate for the formation of a nanoporous catalytic palladium structure. G. sulfurreducens biofilms have a dense network of pili and extracellular cytochromes capable of high rates of electron transfer directly to an electrode surface. These pili and cytochromes provide a dense number of reduction sites for nanoparticle formation without the need for any synthetic components. The cells within the biofilm also can act as natural agents for preventing agglomeration of nanoparticles, and subsequent decrease of active surface area, on the electrode surface. The cell template was carbonized and removed via thermal treatments, leaving a catalytically active mesoporous palladium structure. The biotemplated mesoporous structure had a high surface area composed of nanoparticles, and a high pore volume and surface area. The biotemplated porous structure also exhibited an increased catalytic activity compared to an electroplated palladium electrode and an electrode coated with synthetically produced palladium nanoparticles attached to the surface with a Nafion binder. The biotemplated mesoporous structure was found to be an alternative process to form a porous structure directly on an electrode using only materials and processes that naturally occur in G. sulfurreducens biofilms. Biotemplated catalytic structures are an alternative method to form a porous structure with high catalytic activity without using any synthetic compounds. However, their uses in large scale processes require that the catalyst layer be durable. The electrochemical and mechanical stability of biotemplated mesoporous structures was tested on different support materials (polished graphite, carbon paper, carbon cloth, and stainless steel) subjected to electrochemical and/or mechanical stress. Carbon paper was found to withstand the most electrochemical and mechanical stress of the four different support materials tested. Polished graphite was able to withstand electrochemical stress, but deteriorated under a combination of electrochemical and mechanical stress. Different readily available and inexpensive polymers (polyaniline and polydimethylsiloxane) were also tested against a widely used polymer (NafionRTM) to stabilize the palladium catalyst on the polished graphite surface. The polyaniline was the most effective binder because it enhanced the catalytic activity and could be electropolymerized around the catalyst, giving the greatest amount of control over the thickness of the polymer layer. The second process studied used exoelectrogenic bacteria in METs for the conversion of electrons to hydrogen via water electrolysis in a biocathodic system. Naturally occurring biocatalytic cell material on the cathode surface was used to lower the cathode overpotential. Different cell cultures ( G. sulfurreducens, Methanosarcina barkeri, and Escherichia coli) were tested for their effect on hydrogen formation using electrons supplied to an insoluble electrode. The mode of hydrogen production was investigated by monitoring hydrogen production over three to five months using G. sulfurreducens biofilms (pregrown under anodic conditions with acetate) that were: (1) not supplied with an organic carbon source for cell growth and maintenance, (2) killed with ethanol, or (3) supplied with lactate, an organic carbon source and electron donor for G. sulfurreducens. Hydrogen was produced at a rate 10--20 times higher over five months in reactors that were either not given organic carbon or killed with ethanol, compared to reactors with lactate added. The methanogen, M. barkeri, was also tested as a biocatalyst because it is able to grow autotrophically. However, M. barkeri cells did not grow in the reactor with the electrode potential poised, based on the lack of evidence for methane production. Despite the lack of cell activity, the rate of hydrogen production with M. barkeri was similar to the rate observed in killed G. sulfurreducens reactors. The addition of E. coli, a non-exoelectrogenic bacteria, resulted in an initial elevated hydrogen gas production, but hydrogen production rates similar to background levels after three months. No cells were detected on the electrode surfaces after five months using scanning electron microscopy and unique metals, such as iron, nickel, cobalt, and zinc, were detected on the electrode surfaces exposed to cells. The identifiable peptides extracted from the electrodes were found to be derived primarily from metalloproteins produced by G. sulfurreducens and M. barkeri cells. These findings show that hydrogen can be produced in a biocathodic system by abiotic cell material attached to a graphite electrode surface and that it does not require electron uptake by living cells.

  20. H/D exchange mass spectrometry and statistical coupling analysis reveal a role for allostery in a ferredoxin-dependent bifurcating transhydrogenase catalytic cycle.

    PubMed

    Berry, Luke; Poudel, Saroj; Tokmina-Lukaszewska, Monika; Colman, Daniel R; Nguyen, Diep M N; Schut, Gerrit J; Adams, Michael W W; Peters, John W; Boyd, Eric S; Bothner, Brian

    2018-01-01

    Recent investigations into ferredoxin-dependent transhydrogenases, a class of enzymes responsible for electron transport, have highlighted the biological importance of flavin-based electron bifurcation (FBEB). FBEB generates biomolecules with very low reduction potential by coupling the oxidation of an electron donor with intermediate potential to the reduction of high and low potential molecules. Bifurcating systems can generate biomolecules with very low reduction potentials, such as reduced ferredoxin (Fd), from species such as NADPH. Metabolic systems that use bifurcation are more efficient and confer a competitive advantage for the organisms that harbor them. Structural models are now available for two NADH-dependent ferredoxin-NADP + oxidoreductase (Nfn) complexes. These models, together with spectroscopic studies, have provided considerable insight into the catalytic process of FBEB. However, much about the mechanism and regulation of these multi-subunit proteins remains unclear. Using hydrogen/deuterium exchange mass spectrometry (HDX-MS) and statistical coupling analysis (SCA), we identified specific pathways of communication within the model FBEB system, Nfn from Pyrococus furiosus, under conditions at each step of the catalytic cycle. HDX-MS revealed evidence for allosteric coupling across protein subunits upon nucleotide and ferredoxin binding. SCA uncovered a network of co-evolving residues that can provide connectivity across the complex. Together, the HDX-MS and SCA data show that protein allostery occurs across the ensemble of iron‑sulfur cofactors and ligand binding sites using specific pathways that connect domains allowing them to function as dynamically coordinated units. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Synthesis and catalytic performance of SiO2@Ni and hollow Ni microspheres

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Liu, Yanhua; Shi, Xueting; Yu, Zhengyang; Feng, Libang

    2016-11-01

    Nickel (Ni) catalyst has been widely used in catalytic reducing reactions such as catalytic hydrogenation of organic compounds and catalytic reduction of organic dyes. However, the catalytic efficiency of pure Ni is low. In order to improve the catalytic performance, Ni nanoparticle-loaded microspheres can be developed. In this study, we have prepared Ni nanoparticle-loaded microspheres (SiO2@Ni) and hollow Ni microspheres using two-step method. SiO2@Ni microspheres with raspberry-like morphology and core-shell structure are synthesized successfully using SiO2 microsphere as a template and Ni2+ ions are adsorbed onto SiO2 surfaces via electrostatic interaction and then reduced and deposited on surfaces of SiO2 microspheres. Next, the SiO2 cores are removed by NaOH etching and the hollow Ni microspheres are prepared. The NaOH etching time does no have much influence on the crystal structure, shape, and surface morphology of SiO2@Ni; however, it can change the phase composition evidently. The hollow Ni microspheres are obtained when the NaOH etching time reaches 10 h and above. The as-synthesized SiO2@Ni microspheres exhibit much higher catalytic performance than the hollow Ni microspheres and pure Ni nanoparticles in the catalytic reduction of methylene blue. Meanwhile, the SiO2@Ni catalyst has high stability and hence it can be recycled for reuse.

  2. Reduction of nitrogen oxides with catalytic acid resistant aluminosilicate molecular sieves and ammonia

    DOEpatents

    Pence, Dallas T.; Thomas, Thomas R.

    1980-01-01

    Noxious nitrogen oxides in a waste gas stream such as the stack gas from a fossil-fuel-fired power generation plant or other industrial plant off-gas stream is catalytically reduced to elemental nitrogen and/or innocuous nitrogen oxides employing ammonia as reductant in the presence of a zeolite catalyst in the hydrogen or sodium form having pore openings of about 3 to 10 A.

  3. Chemiluminescence analyzer of NOx as a high-throughput screening tool in selective catalytic reduction of NO

    PubMed Central

    Oh, Kwang Seok; Woo, Seong Ihl

    2011-01-01

    A chemiluminescence-based analyzer of NOx gas species has been applied for high-throughput screening of a library of catalytic materials. The applicability of the commercial NOx analyzer as a rapid screening tool was evaluated using selective catalytic reduction of NO gas. A library of 60 binary alloys composed of Pt and Co, Zr, La, Ce, Fe or W on Al2O3 substrate was tested for the efficiency of NOx removal using a home-built 64-channel parallel and sequential tubular reactor. The NOx concentrations measured by the NOx analyzer agreed well with the results obtained using micro gas chromatography for a reference catalyst consisting of 1 wt% Pt on γ-Al2O3. Most alloys showed high efficiency at 275 °C, which is typical of Pt-based catalysts for selective catalytic reduction of NO. The screening with NOx analyzer allowed to select Pt-Ce(X) (X=1–3) and Pt–Fe(2) as the optimal catalysts for NOx removal: 73% NOx conversion was achieved with the Pt–Fe(2) alloy, which was much better than the results for the reference catalyst and the other library alloys. This study demonstrates a sequential high-throughput method of practical evaluation of catalysts for the selective reduction of NO. PMID:27877438

  4. Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis

    PubMed Central

    van der Bij, Hendrik E.

    2015-01-01

    Phosphorus and microporous aluminosilicates, better known as zeolites, have a unique but poorly understood relationship. For example, phosphatation of the industrially important zeolite H-ZSM-5 is a well-known, relatively inexpensive and seemingly straightforward post-synthetic modification applied by the chemical industry not only to alter its hydrothermal stability and acidity, but also to increase its selectivity towards light olefins in hydrocarbon catalysis. On the other hand, phosphorus poisoning of zeolite-based catalysts, which are used for removing nitrogen oxides from exhaust fuels, poses a problem for their use in diesel engine catalysts. Despite the wide impact of phosphorus–zeolite chemistry, the exact physicochemical processes that take place require a more profound understanding. This review article provides the reader with a comprehensive and state-of-the-art overview of the academic literature, from the first reports in the late 1970s until the most recent studies. In the first part an in-depth analysis is undertaken, which will reveal universal physicochemical and structural effects of phosphorus–zeolite chemistry on the framework structure, accessibility, and strength of acid sites. The second part discusses the hydrothermal stability of zeolites and clarifies the promotional role that phosphorus plays. The third part of the review paper links the structural and physicochemical effects of phosphorus on zeolite materials with their catalytic performance in a variety of catalytic processes, including alkylation of aromatics, catalytic cracking, methanol-to-hydrocarbon processing, dehydration of bioalcohol, and ammonia selective catalytic reduction (SCR) of NOx. Based on these insights, we discuss potential applications and important directions for further research. PMID:26051875

  5. Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis.

    PubMed

    van der Bij, Hendrik E; Weckhuysen, Bert M

    2015-10-21

    Phosphorus and microporous aluminosilicates, better known as zeolites, have a unique but poorly understood relationship. For example, phosphatation of the industrially important zeolite H-ZSM-5 is a well-known, relatively inexpensive and seemingly straightforward post-synthetic modification applied by the chemical industry not only to alter its hydrothermal stability and acidity, but also to increase its selectivity towards light olefins in hydrocarbon catalysis. On the other hand, phosphorus poisoning of zeolite-based catalysts, which are used for removing nitrogen oxides from exhaust fuels, poses a problem for their use in diesel engine catalysts. Despite the wide impact of phosphorus-zeolite chemistry, the exact physicochemical processes that take place require a more profound understanding. This review article provides the reader with a comprehensive and state-of-the-art overview of the academic literature, from the first reports in the late 1970s until the most recent studies. In the first part an in-depth analysis is undertaken, which will reveal universal physicochemical and structural effects of phosphorus-zeolite chemistry on the framework structure, accessibility, and strength of acid sites. The second part discusses the hydrothermal stability of zeolites and clarifies the promotional role that phosphorus plays. The third part of the review paper links the structural and physicochemical effects of phosphorus on zeolite materials with their catalytic performance in a variety of catalytic processes, including alkylation of aromatics, catalytic cracking, methanol-to-hydrocarbon processing, dehydration of bioalcohol, and ammonia selective catalytic reduction (SCR) of NOx. Based on these insights, we discuss potential applications and important directions for further research.

  6. Role of heteroatoms in S, N-codoped nanoporous carbons in CO2 (photo)electrochemical reduction.

    PubMed

    Bandosz, Teresa; Li, Wanlu

    2018-06-19

    Thiourea-modified wood-based activated carbons were evaluated as catalysts for CO2 electrochemical reduction reaction (CO2ERR). The materials obtained at 950oC showed a long stability. The results indicated that thiophenic sulfur provides catalytic activity for CO formation. However, it was not as active for CH4 formation as was pyridinic-N. Tafel plots suggested that the nanoporous structure enhanced the kinetics for CO2 reduction. The electric conductivity limited the activity for CO2ERR in the materials modified at 600, 800 and 900oC. The effect of visible light on CO2ERR was also investigated in this study. Upon irradiation, photocurrent was generated, and a current density increased during CO2 reduction process. Combined with a band-gap alignment, the results indicate that thiophenic-S in the carbon matrix contributed to sample's photoactivity in visible light. These species enhance the overall reduction process promoting both hydrogen evolution reaction and CO2 reduction to CO. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Reduction of CO2 to low carbon alcohols on CuO FCs/Fe2O3 NTs catalyst with photoelectric dual catalytic interfaces

    NASA Astrophysics Data System (ADS)

    Li, Peiqiang; Wang, Huying; Xu, Jinfeng; Jing, Hua; Zhang, Jun; Han, Haixiang; Lu, Fusui

    2013-11-01

    In this paper, the CuO FCs/Fe2O3 NTs catalyst was obtained after Fe2O3 nanotubes (Fe2O3 NTs) were decorated with CuO flower clusters (CuO FCs) by the pulse electrochemical deposition method. The in situ vertically aligned Fe2O3 NTs were prepared on the ferrous substrate by a potentiostatic anodization method. The SEM result showed the volcano-like Fe2O3 NTs were arranged in order and the CuO FCs constituted of flaky CuO distributed on the Fe2O3 NTs surface uniformly. After CuO FCs were loaded on Fe2O3 NTs, the absorption of visible light was enhanced noticeably, and its band gap narrowed to 1.78 eV from 2.03 eV. The conduction band and valence band locating at -0.73 eV and 1.05 eV, respectively were further obtained. In the PEC reduction of CO2 process, methanol and ethanol were two major products identified by chromatography. Their contents reached 1.00 mmol L-1 cm-2 and 107.38 μmol L-1 cm-2 after 6 h, respectively. This high-efficiency catalyst with photoelectric dual catalytic interfaces has a great guidance and reference significance for CO2 reduction to liquid carbon fuels.In this paper, the CuO FCs/Fe2O3 NTs catalyst was obtained after Fe2O3 nanotubes (Fe2O3 NTs) were decorated with CuO flower clusters (CuO FCs) by the pulse electrochemical deposition method. The in situ vertically aligned Fe2O3 NTs were prepared on the ferrous substrate by a potentiostatic anodization method. The SEM result showed the volcano-like Fe2O3 NTs were arranged in order and the CuO FCs constituted of flaky CuO distributed on the Fe2O3 NTs surface uniformly. After CuO FCs were loaded on Fe2O3 NTs, the absorption of visible light was enhanced noticeably, and its band gap narrowed to 1.78 eV from 2.03 eV. The conduction band and valence band locating at -0.73 eV and 1.05 eV, respectively were further obtained. In the PEC reduction of CO2 process, methanol and ethanol were two major products identified by chromatography. Their contents reached 1.00 mmol L-1 cm-2 and 107.38 μmol L-1 cm-2 after 6 h, respectively. This high-efficiency catalyst with photoelectric dual catalytic interfaces has a great guidance and reference significance for CO2 reduction to liquid carbon fuels. Electronic supplementary information (ESI) available: Reduction of CO2 to low carbon alcohols on CuO FCs/Fe2O3 NTs catalyst with photoelectric dual catalytic interfaces. See DOI: 10.1039/c3nr03352j

  8. Catalyst for elemental sulfur recovery process

    DOEpatents

    Flytzani-Stephanopoulos, Maria; Liu, Wei

    1995-01-01

    A catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(OF.sub.2).sub.1-n (RO.sub.1)n].sub.1-k M.sub.k, [(FO.sub.2).sub.1-n (RO.sub.1.5).sub.n ].sub.1-k M.sub.k, or [Ln.sub.x Zr.sub.1-x O.sub.2-0.5x ].sub.1-k M.sub.k wherein FO.sub.2 is a fluorite-type oxide; RO represents an alkaline earth oxide; RO.sub.1.5 is a Group IIIB or rare earth oxide; Ln is a rare earth element having an atomic number from 57 to 65 or mixtures thereof; M is a transition metal or a mixture of transition metals; n is a number having a value from 0.0 to 0.35; k is a number having a value from 0.0 to about 0.5; and x is a number having a value from about 0.45 to about 0.55.

  9. H2S adsorption and decomposition on the gradually reduced α-Fe2O3(001) surface: A DFT study

    NASA Astrophysics Data System (ADS)

    Lin, Changfeng; Qin, Wu; Dong, Changqing

    2016-11-01

    Reduction of iron based desulfurizer occurs during hot gas desulfurization process, which will affect the interaction between H2S and the desulfurizer surface. In this work, a detailed adsorption behavior and dissociation mechanism of H2S on the perfect and reduced α-Fe2O3(001) surfaces, as well as the correlation between the interaction characteristic and reduction degree of iron oxide, have been studied by using periodic density functional theory (DFT) calculations. Results demonstrate that H2S firstly chemisorbs on surface at relatively higher oxidation state (reduction degree χ < 33%), then dissociative adsorption occurs and becomes the main adsorption type after χ > 33%. Reduction of iron oxide benefits the H2S adsorption. Further, dissociation processes of H2S via molecular and dissociative adsorption were investigated. Results show that after reduction of Fe2O3 into the oxidation state around FeO and Fe, the reduced surface exhibits very strong catalytic capacity for H2S decomposition into S species. Meanwhile, the overall dissociation process on all surfaces is exothermic. These results provide a fundamental understanding of reduction effect of iron oxide on the interaction mechanism between H2S and desulfurizer surface, and indicate that rational control of reduction degree of desulfurizer is essential for optimizing the hot gas desulfurization process.

  10. Pulsed Plasma Processing of Diesel Engine Exhaust Final Report CRADA No. TC-0336-92-1-C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merritt, Bernard T.; Broering, Louis

    The goal was to develop an exhaust-gas treatment process for the reduction of NO x and hydrocarbon from diesel engines. The project began believing that direct chemical reduction on NO x was possible through the use of non-thermal plasmas. The original CRADA began in 1993 and was scheduled to finish in 1996. It had as its goals three metrics: 1) remove two grams/brake-horse-power-hour of NOx, 2) have no more than five percent energy penalty, and 3) cost no more than ten percent of the engine cost. These goals were all aimed at heavy-duty diesel trucks. This CRADA had its Defensemore » Program funding eliminated by DOE prior to completion in 1995. Prior to loss of funding from DOE, LLNL discovered that due to the large oxygen content in diesel exhaust, direct chemical reduction was not possible. In understanding why, a breakthrough was achieved that combined the use of a non-thermal plasma and a catalyst. This process was named Plasma Assisted Catalytic Reduction (P ACR). Because of this breakthrough, the CRADA became a funds-in only CRADA, once DOE DP funding ended. As a result, the funding decreased from about 1M dollars per year to about $400k per year. Subsequently, progress slowed as well. The CRADA was amended several times to reflect the funds-in nature. At each amendment, the deliverables were modified; the goals remained the same but the focus changed from heavy-duty to lightduty to SUVs. The diesel-engine NO x problem is similar to the furnace and boiler NO x emission problem with the added constraint that ammonia-like additives are impractical for a mobile source. Lean-burning gasoline engines are an additional area of application because the standard three-way catalyst is rendered ineffective by the presence of oxygen. In the P ACR process an electrical discharge is used to create a non-thermal plasma that contains oxidative radicals O and OH. These oxidative radicals convert NO to NO 2. Selective catalytic reduction using a readily available catalyst then converts the NO 2 to harmless gases, N 2 and 0 2.« less

  11. Templated assembly of BiFeO3 nanocrystals into 3D mesoporous networks for catalytic applications

    NASA Astrophysics Data System (ADS)

    Papadas, I. T.; Subrahmanyam, K. S.; Kanatzidis, M. G.; Armatas, G. S.

    2015-03-01

    The self-assembly of uniform nanocrystals into large porous architectures is currently of immense interest for nanochemistry and nanotechnology. These materials combine the respective advantages of discrete nanoparticles and mesoporous structures. In this article, we demonstrate a facile nanoparticle templating process to synthesize a three-dimensional mesoporous BiFeO3 material. This approach involves the polymer-assisted aggregating assembly of 3-aminopropanoic acid-stabilized bismuth ferrite (BiFeO3) nanocrystals followed by thermal decomposition of the surfactant. The resulting material consists of a network of tightly connected BiFeO3 nanoparticles (~6-7 nm in diameter) and has a moderately high surface area (62 m2 g-1) and uniform pores (ca. 6.3 nm). As a result of the unique mesostructure, the porous assemblies of BiFeO3 nanoparticles show an excellent catalytic activity and chemical stability for the reduction of p-nitrophenol to p-aminophenol with NaBH4.The self-assembly of uniform nanocrystals into large porous architectures is currently of immense interest for nanochemistry and nanotechnology. These materials combine the respective advantages of discrete nanoparticles and mesoporous structures. In this article, we demonstrate a facile nanoparticle templating process to synthesize a three-dimensional mesoporous BiFeO3 material. This approach involves the polymer-assisted aggregating assembly of 3-aminopropanoic acid-stabilized bismuth ferrite (BiFeO3) nanocrystals followed by thermal decomposition of the surfactant. The resulting material consists of a network of tightly connected BiFeO3 nanoparticles (~6-7 nm in diameter) and has a moderately high surface area (62 m2 g-1) and uniform pores (ca. 6.3 nm). As a result of the unique mesostructure, the porous assemblies of BiFeO3 nanoparticles show an excellent catalytic activity and chemical stability for the reduction of p-nitrophenol to p-aminophenol with NaBH4. Electronic supplementary information (ESI) available: IR spectra and TG profiles of as-made BiFeO3 NPs and MBFA samples, TEM images of 3-APA-capped BiFeO3 NPs, EDS spectrum of MBFAs, N2 adsorption-desorption isotherms of randomly aggregated BiFeO3 NPs and catalytic data for 4-NP reduction by MBFAs and other nanostructured catalysts. See DOI: 10.1039/c5nr00185d

  12. Facile synthesis of highly active PdAu nanowire networks as self-supported electrocatalyst for ethanol electrooxidation.

    PubMed

    Hong, Wei; Wang, Jin; Wang, Erkang

    2014-06-25

    In recent years, direct ethanol fuel cells (DEFCs) are attracting increasing attention owing to their wide applications. However, a significant challenge in the development of DEFC technology is the urgent need for highly active anode catalysts for the ethanol oxidation reaction. In this work, a facile and reproducible method for the high-yield synthesis of PdAu nanowire networks is demonstrated. The whole synthetic process is very simple, just mixing Na2PdCl4, HAuCl4, and KBr in an aqueous solution and using polyvinylpyrrolidone as a protective reagent while sodium borohydride as a reductant. The whole synthetic process can be simply performed at room temperature and completed in 30 min, which can greatly simplify the synthetic process and lower the preparation cost. Electrochemical catalytic measurement results prove that the as-prepared catalysts exhibit dramatically enhanced electrocatalytic activity for ethanol electrooxidation in alkaline solution. The facile synthetic process and excellent catalytic performance of the as-prepared catalysts demonstrate that they can be used as a promising catalyst for DEFCs.

  13. It's a Clean Machine

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Under an SBIR (Small Business Innovative Research) from Lewis Research Center, Precision Combustion, Inc. (PCI) developed the Advanced Technology Catalytic Combustor. The research proved the viability of efficient, cost-effective catalytic reduction of gas turbine nitrogen oxide emissions along with fuel efficiency. PCI has signed agreements with Westinghouse, other gas turbine manufacturers, including Capstone Turbine Corporation to develop a catalytic combustor for their hybrid electric vehicle.

  14. Synergic mechanism of adsorption and metal-free catalysis for phenol degradation by N-doped graphene aerogel.

    PubMed

    Ren, Xiaohua; Guo, Huanhuan; Feng, Jinkui; Si, Pengchao; Zhang, Lin; Ci, Lijie

    2018-01-01

    3D porous N-doped reduced graphene oxide (N-rGO) aerogels were synthesized by a hydrothermal reduction of graphene oxide (GO) with urea and following freeze-drying process. N-rGO aerogels have a high BET surface of 499.70 m 2 /g and a high N doping content (5.93-7.46 at%) including three kinds of N (graphitic, pyridinic and pyrrolic). Their high catalytic performance for phenol oxidation in aqueous solution was investigated by catalytic activation of persulfate (PS). We have demonstrated that N-rGO aerogels are promising metal-free catalysts for phenol removal. Kinetics studies indicate that phenol degradation follows first-order reaction kinetics with the reaction rate constant of 0.16799 min -1 for N-rGO-A(1:30). Interestingly, the comparison of direct catalytic oxidation with adsorption-catalytic oxidation experiments indicates that adsorption plays an important role in the catalytic oxidation of phenol by decreasing the phenol degradation time. Spin density and adsorption modeling demonstrates that graphitic N in N-rGO plays the most important role for the catalytic performance by inducing high positive charge densities to adjacent carbon atoms and facilitating phenol adsorption on these carbon sites. Furthermore, the activation mechanism of persulfate (PS) on N-rGO was first investigated by DFT method and PS can be activated to generate strongly oxidative radical (SO 4 · - ) by transferring electrons to N-rGO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Ni-Catalyzed Carbon-Carbon Bond-Forming Reductive Amination.

    PubMed

    Heinz, Christoph; Lutz, J Patrick; Simmons, Eric M; Miller, Michael M; Ewing, William R; Doyle, Abigail G

    2018-02-14

    This report describes a three-component, Ni-catalyzed reductive coupling that enables the convergent synthesis of tertiary benzhydryl amines, which are challenging to access by traditional reductive amination methodologies. The reaction makes use of iminium ions generated in situ from the condensation of secondary N-trimethylsilyl amines with benzaldehydes, and these species undergo reaction with several distinct classes of organic electrophiles. The synthetic value of this process is demonstrated by a single-step synthesis of antimigraine drug flunarizine (Sibelium) and high yielding derivatization of paroxetine (Paxil) and metoprolol (Lopressor). Mechanistic investigations support a sequential oxidative addition mechanism rather than a pathway proceeding via α-amino radical formation. Accordingly, application of catalytic conditions to an intramolecular reductive coupling is demonstrated for the synthesis of endo- and exocyclic benzhydryl amines.

  16. Solvothermal synthesis of N-doped graphene supported PtCo nanodendrites with highly catalytic activity for 4-nitrophenol reduction

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Fang; Zhu, Xiao-Yan; Feng, Jiu-Ju; Wang, Ai-Jun

    2018-01-01

    A simple solvothermal method was developed to prepare N-doped reduced graphene oxide supported homogeneous PtCo nanodendrites (PtCo NDs/N-rGO), where ethylene glycol (EG) served as the reducing agent and the solvent, and linagliptin as the structure-directing and stabilizing agent for PtCo NDs and dopant for rGO, respectively. Controlled researches showed that the dosage of linagliptin and the ratios of the two metal precursors were important in the current synthesis. The PtCo NDs/N-rGO nanocomposite exhibited higher catalytic activity towards the reduction of 4-nitrophnol (4-NP) in contrast with the referenced Pt1Co3 NCs/N-rGO, Pt3Co1 NCs/N-rGO and commercial Pt/C catalysts. More importantly, the constructed catalyst exhibited the superior stability without sacrificing the catalytic activity, showing great prospect for the reduction of 4-NP in practice.

  17. Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suchomel, Petr; Kvitek, Libor; Prucek, Robert

    The controlled preparation of Au nanoparticles (NPs) in the size range of 6 to 22 nm is explored in this study. The Au NPs were prepared by the reduction of tetrachloroauric acid using maltose in the presence of nonionic surfactant Tween 80 at various concentrations to control the size of the resulting Au NPs. With increasing concentration of Tween 80 a decrease in the size of produced Au NPs was observed, along with a significant decrease in their size distribution. The size-dependent catalytic activity of the synthesized Au NPs was tested in the reduction of 4-nitrophenol with sodium borohydride, resultingmore » in increasing catalytic activity with decreasing size of the prepared nanoparticles. Eley-Rideal catalytic mechanism emerges as the more probable, in contrary to the Langmuir-Hinshelwood mechanism reported for other noble metal nanocatalysts.« less

  18. Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity

    DOE PAGES

    Suchomel, Petr; Kvitek, Libor; Prucek, Robert; ...

    2018-03-15

    The controlled preparation of Au nanoparticles (NPs) in the size range of 6 to 22 nm is explored in this study. The Au NPs were prepared by the reduction of tetrachloroauric acid using maltose in the presence of nonionic surfactant Tween 80 at various concentrations to control the size of the resulting Au NPs. With increasing concentration of Tween 80 a decrease in the size of produced Au NPs was observed, along with a significant decrease in their size distribution. The size-dependent catalytic activity of the synthesized Au NPs was tested in the reduction of 4-nitrophenol with sodium borohydride, resultingmore » in increasing catalytic activity with decreasing size of the prepared nanoparticles. Eley-Rideal catalytic mechanism emerges as the more probable, in contrary to the Langmuir-Hinshelwood mechanism reported for other noble metal nanocatalysts.« less

  19. Preparation of High Purity Crystalline Silicon by Electro-Catalytic Reduction of Sodium Hexafluorosilicate with Sodium below 180°C

    PubMed Central

    Chen, Yuan; Liu, Yang; Wang, Xin; Li, Kai; Chen, Pu

    2014-01-01

    The growing field of silicon solar cells requires a substantial reduction in the cost of semiconductor grade silicon, which has been mainly produced by the rod-based Siemens method. Because silicon can react with almost all of the elements and form a number of alloys at high temperatures, it is highly desired to obtain high purity crystalline silicon at relatively low temperatures through low cost process. Here we report a fast, complete and inexpensive reduction method for converting sodium hexafluorosilicate into silicon at a relatively low reaction temperature (∼200°C). This temperature could be further decreased to less than 180°C in combination with an electrochemical approach. The residue sodium fluoride is dissolved away by pure water and hydrochloric acid solution in later purifying processes below 15°C. High purity silicon in particle form can be obtained. The relative simplicity of this method might lead to a low cost process in producing high purity silicon. PMID:25153509

  20. Electrochemical evidence that pyranopterin redox chemistry controls the catalysis of YedY, a mononuclear Mo enzyme

    PubMed Central

    Adamson, Hope; Simonov, Alexandr N.; Kierzek, Michelina; Rothery, Richard A.; Weiner, Joel H.; Bond, Alan M.

    2015-01-01

    A long-standing contradiction in the field of mononuclear Mo enzyme research is that small-molecule chemistry on active-site mimic compounds predicts ligand participation in the electron transfer reactions, but biochemical measurements only suggest metal-centered catalytic electron transfer. With the simultaneous measurement of substrate turnover and reversible electron transfer that is provided by Fourier-transformed alternating-current voltammetry, we show that Escherichia coli YedY is a mononuclear Mo enzyme that reconciles this conflict. In YedY, addition of three protons and three electrons to the well-characterized “as-isolated” Mo(V) oxidation state is needed to initiate the catalytic reduction of either dimethyl sulfoxide or trimethylamine N-oxide. Based on comparison with earlier studies and our UV-vis redox titration data, we assign the reversible one-proton and one-electron reduction process centered around +174 mV vs. standard hydrogen electrode at pH 7 to a Mo(V)-to-Mo(IV) conversion but ascribe the two-proton and two-electron transition occurring at negative potential to the organic pyranopterin ligand system. We predict that a dihydro-to-tetrahydro transition is needed to generate the catalytically active state of the enzyme. This is a previously unidentified mechanism, suggested by the structural simplicity of YedY, a protein in which Mo is the only metal site. PMID:26561582

  1. Nickel-based xerogel catalysts: Synthesis via fast sol-gel method and application in catalytic hydrogenation of p-nitrophenol to p-aminophenol

    NASA Astrophysics Data System (ADS)

    Feng, Jin; Wang, Qiang; Fan, Dongliang; Ma, Lirong; Jiang, Deli; Xie, Jimin; Zhu, Jianjun

    2016-09-01

    In order to investigate the roles of three-dimensional network structure and calcium on Ni catalysts, the Ni, Ni-Al2O3, Ni-Ca-Al2O3 xerogel catalysts were successfully synthesized via the fast sol-gel process and chemical reduction method. The crystal structure of three different catalysts was observed with X-ray powder diffraction (XRD). Transmission electron microscopy (TEM), scanning electron microscopy (SEM) and nitrogen adsorption-desorption were employed to investigate the role of network structure of xerogel catalysts and the size distribution of Ni nanoparticles. The catalyst composition was determined by inductively coupled plasma-optical emission spectrometry (ICP-OES) measurement and energy-dispersive X-ray spectroscopy (EDS). Temperature-programmed reduction (TPR) experiments were carried out to investigate the reducibility of nickel species and the interaction between nickel species and alumina. The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over the prepared nickel-based xerogel catalysts. The conversion of p-nitrophenol was monitored by UV spectrophotometry and high performance liquid chromatography (HPLC). The results show that the catalysts are highly selective for the conversion of p-nitrophenol to p-aminophenol and the order of catalytic activities of the catalysts is Ni < Ni-Al2O3 < Ni-Ca-Al2O3. The catalysts were recycled and were used to evaluate the reutilization.

  2. Green synthesis of gold nanoparticles using aspartame and their catalytic activity for p-nitrophenol reduction

    NASA Astrophysics Data System (ADS)

    Wu, Shufen; Yan, Songjing; Qi, Wei; Huang, Renliang; Cui, Jing; Su, Rongxin; He, Zhimin

    2015-05-01

    We demonstrated a facile and environmental-friendly approach to form gold nanoparticles through the reduction of HAuCl4 by aspartame. The single-crystalline structure was illustrated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The energy-dispersive X-ray spectroscopy (EDS) and Fourier transform infrared (FTIR) results indicated that aspartame played a pivotal role in the reduction and stabilization of the gold crystals. The crystals were stabilized through the successive hydrogen-bonding network constructed between the water and aspartame molecules. Additionally, gold nanoparticles synthesized through aspartame were shown to have good catalytic activity for the reduction of p-nitrophenol to p-aminophenol in the presence of NaBH4.

  3. Nitric-glycolic flowsheet testing for maximum hydrogen generation rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, C. J.; Newell, J. D.; Williams, M. S.

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site is developing for implementation a flowsheet with a new reductant to replace formic acid. Glycolic acid has been tested over the past several years and found to effectively replace the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the chemical generation of hydrogen and ammonia, allows purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective adjustment of the SRAT/SME rheology, and is favorablemore » with respect to melter flammability. The objective of this work was to perform DWPF Chemical Process Cell (CPC) testing at conditions that would bound the catalytic hydrogen production for the nitric-glycolic flowsheet.« less

  4. Catalyzing the oxidation of sulfamethoxazole by permanganate using molecular sieves supported ruthenium nanoparticles.

    PubMed

    Zhang, Jing; Sun, Bo; Huang, Yuying; Guan, Xiaohong

    2015-12-01

    This study developed a heterogeneous catalytic permanganate oxidation system with three molecular sieves, i.e., nanosized ZSM-5 (ZSM-5A), microsized ZSM-5 (ZSM-5B) and MCM-41, supported ruthenium nanoparticles as catalyst, denoted as Ru/ZSM-5A, Ru/ZSM-5B and Ru/MCM-41, respectively. The presence of 0.5gL(-1) Ru/ZSM-5A, Ru/ZSM-5B and Ru/MCM-41 increased the oxidation rate of sulfamethoxazole (SMX) by permanganate at pH 7.0 by 27-1144 times. The catalytic performance of Ru catalysts toward SMX oxidation by permanganate was strongly dependent on Ru loading on the catalysts. The X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses confirmed that Ru catalyst acted as an electron shuttle in catalytic permanganate oxidation process. Ru(III) deposited on the surface of catalysts was oxidized by permanganate to its higher oxidation state Ru(VII), which could work as a co-oxidant with permanganate to decompose SMX and was then reduced to its initial tri-valence. During the successive runs, Ru/ZSM-5A could not maintain its catalytic activity due to the deposition of MnO2, which was the reductive product of permanganate, onto the surface of Ru/ZSM-5A. Thus, the regeneration of partially deactivated Ru catalysts by reductant NH2OH⋅HCl or ascorbic acid was proposed. Ru/ZSM-5A regenerated by NH2OH⋅HCl displayed comparable catalytic ability to its virgin counterpart, while ascorbic acid could not completely remove the deposited MnO2. A trace amount of leaching of Ru into the reaction solution was also observed, which would be ameliorated by improving the preparation conditions in the future study. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Multifunctional Au-Fe3O4@MOF core-shell nanocomposite catalysts with controllable reactivity and magnetic recyclability

    NASA Astrophysics Data System (ADS)

    Ke, Fei; Wang, Luhuan; Zhu, Junfa

    2014-12-01

    The recovery and reuse of expensive catalysts are important in both heterogeneous and homogeneous catalysis due to economic and environmental reasons. This work reports a novel multifunctional magnetic core-shell gold catalyst which can be easily prepared and shows remarkable catalytic properties in the reduction of 4-nitrophenol. The novel Au-Fe3O4@metal-organic framework (MOF) catalyst consists of a superparamagnetic Au-Fe3O4 core and a porous MOF shell with controllable thickness. Small Au nanoparticles (NPs) of 3-5 nm are mainly sandwiched between the Fe3O4 core and the porous MOF shell. Catalytic studies show that the core-shell structured Au-Fe3O4@MOF catalyst has a much higher catalytic activity than other reported Au-based catalysts toward the reduction of 4-nitrophenol. Moreover, this catalyst can be easily recycled due to the presence of the superparamagnetic core. Therefore, compared to conventional catalysts used in the reduction of 4-nitrophenol, this porous MOF-based magnetic catalyst is green, cheap and promising for industrial applications.The recovery and reuse of expensive catalysts are important in both heterogeneous and homogeneous catalysis due to economic and environmental reasons. This work reports a novel multifunctional magnetic core-shell gold catalyst which can be easily prepared and shows remarkable catalytic properties in the reduction of 4-nitrophenol. The novel Au-Fe3O4@metal-organic framework (MOF) catalyst consists of a superparamagnetic Au-Fe3O4 core and a porous MOF shell with controllable thickness. Small Au nanoparticles (NPs) of 3-5 nm are mainly sandwiched between the Fe3O4 core and the porous MOF shell. Catalytic studies show that the core-shell structured Au-Fe3O4@MOF catalyst has a much higher catalytic activity than other reported Au-based catalysts toward the reduction of 4-nitrophenol. Moreover, this catalyst can be easily recycled due to the presence of the superparamagnetic core. Therefore, compared to conventional catalysts used in the reduction of 4-nitrophenol, this porous MOF-based magnetic catalyst is green, cheap and promising for industrial applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05421k

  6. Polyelectrolyte induced formation of silver nanoparticles in copolymer hydrogel and their application as catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yongqiang; Huang, Guanbo, E-mail: gbhuang2007@hotmail.com; Pan, Zeng

    2015-10-15

    Highlights: • A simple route for the in situ preparation of Ag nanoparticles has been developed. • The Ag loaded hydrogel showed catalytic activity for reduction of 4-nitrophenol. • The catalyst can be recovered by simple separation and showed good recyclability. - Abstract: A simple route for the in situ preparation of catalytically active Ag nanoparticles (NPs) in hydrogel networks has been developed. The electronegativity of the amide and carboxyl groups on the poly(acrylamide-co-acryl acid) chains caused strong binding of the Ag{sup +} ions which made the ions distribute uniformly inside the hydrogels. When the Ag{sup +} loaded hydrogels weremore » immersed in NaBH{sub 4} solution, the Ag{sup +} ions on the polymer networks were reduced to Ag NPs. The resultant hydrogel showed good catalytic activity for the reduction of a common organic pollutant, 4-nitrophenol, with sodium borohydride. A kinetic study of the catalytic reaction was carried out and a possible reason for the decline of the catalytic performance with reuse is proposed.« less

  7. Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal.

    PubMed

    Cao, Yan; Gao, Zhengyang; Zhu, Jiashun; Wang, Quanhai; Huang, Yaji; Chiu, Chengchung; Parker, Bruce; Chu, Paul; Pant, Wei-Ping

    2008-01-01

    This paper presents a comparison of impacts of halogen species on the elemental mercury (Hg(0)) oxidation in a real coal-derived flue gas atmosphere. It is reported there is a higher percentage of Hg(0) in the flue gas when burning sub-bituminous coal (herein Powder River Basin (PRB) coal) and lignite, even with the use of selective catalytic reduction (SCR). The higher Hg(0)concentration in the flue gas makes it difficult to use the wet-FGD process for the mercury emission control in coal-fired utility boilers. Investigation of enhanced Hg(0) oxidation by addition of hydrogen halogens (HF, HCl, HBr, and HI) was conducted in a slipstream reactor with and without SCR catalysts when burning PRB coal. Two commercial SCR catalysts were evaluated. SCR catalyst no. 1 showed higher efficiencies of both NO reduction and Hg(0) oxidation than those of SCR catalyst no. 2. NH3 addition seemed to inhibit the Hg(0) oxidation, which indicated competitive processes between NH3 reduction and Hg(0) oxidation on the surface of SCR catalysts. The hydrogen halogens, in the order of impact on Hg(0) oxidation, were HBr, HI, and HCl or HF. Addition of HBr at approximately 3 ppm could achieve 80% Hg(0) oxidation. Addition of HI at approximately 5 ppm could achieve 40% Hg(0) oxidation. In comparison to the empty reactor, 40% Hg(0) oxidation could be achieved when HCl addition was up to 300 ppm. The enhanced Hg(0) oxidation by addition of HBr and HI seemed not to be correlated to the catalytic effects by both evaluated SCR catalysts. The effectiveness of conversion of hydrogen halogens to halogen molecules or interhalogens seemed to be attributed to their impacts on Hg(0) oxidation.

  8. Exploiting basic principles to control the selectivity of the vapor phase catalytic oxidative cross-coupling of primary alcohols over nanoporous gold catalysts

    DOE PAGES

    Wang, Lu-Cun; Stowers, Kara J.; Zugic, Branko; ...

    2015-05-20

    It is important to achieve high selectivity for high volume chemical synthesis in order to lower energy consumption through reduction in waste. Here, we report the selective synthesis of methyl esters—methyl acetate and methyl butyrate—through catalytic O 2-assisted cross-coupling of methanol with ethanol or 1-butanol using activated, support-free nanoporous gold (npAu). Both well-controlled studies on ingots in UHV and experiments under ambient pressure catalytic conditions on both ingots and microspherical hollow shell catalysts reveal guiding principles for controlling selectivity. Under UHV conditions, the ester products of the cross-coupling of methanol with both ethanol and 1-butanol evolve near room temperature inmore » temperature-programmed reaction studies, indicating that the reactions occur facilely. Furthermore, under steady-state catalytic operation, high stable activity was observed for cross-coupling in flowing gaseous reactant mixtures at atmospheric pressure and 423 K with negligible combustion. Optimum selectivity for cross-coupling is obtained in methanol-rich mixtures due to a combination of two factors: (1) the relative coverage of the respective alkoxys and (2) the relative facility of their β-H elimination. The relative coverage of the alkoxys is governed by van der Waal’s interactions between the alkyl groups and the surface; here, we demonstrate the importance of these weak interactions in a steady-state catalytic process.« less

  9. Synthesis and characterization of metal nanoparticles templated chitosan-SiO2 catalyst for the reduction of nitrophenols and dyes.

    PubMed

    Ali, Fayaz; Khan, Sher Bahadar; Kamal, Tahseen; Alamry, Khalid A; Bakhsh, Esraa M; Asiri, Abdullah M; Sobahi, Tariq R A

    2018-07-15

    Different metal nanoparticles (MNPs) templated on chitosan-silica (CH-SiO 2 ) nanocomposite fiber were prepared via simple and fast method of the metal ions uptake by fiber and their subseqent reduction using strong reducing agent. The performance difference of CH-SiO 2 templated with Cu, Co, Ag and Ni nanoparticles for both reduction of 4-nitroaniline (4-NA) and decolorization of congo red (CR) was investigated. The Cu nanoparticles loaded CH-SiO 2 (Cu/CH-SiO 2 ), showed high catalytic efficiencies in the reduction of 4-NA and CR, as compared to other loaded MNP fibers. The apparent rate constants of 6.17 × 10 -3  s -1 and 1.68 × 10 -2  s -1 and turnover frequencies (TOF) of 4.693 h -1 and 3.965 h -1 were observed for the reduction of 4-NA and CR, respectively. In addition, the catalytic activity of Cu/CH-SiO 2 catalyst was also examined and found efficient in the reduction of nitrophenols (2-NP, 3-NP and 4-NP), and other dyes. Thus, Cu/CH-SiO 2 with excellent catalytic activity can also be employed for other applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Highly stable CuO incorporated TiO(2) catalyst for photo-catalytic hydrogen production from H(2)O.

    PubMed

    Bandara, J; Udawatta, C P K; Rajapakse, C S K

    2005-11-01

    A CuO incorporated TiO(2) catalyst was found to be an active photo-catalyst for the reduction of H(2)O under sacrificial conditions. The catalytic activity originates from the photogeneration of excited electrons in the conduction bands of both TiO(2) and CuO resulting in a build-up of excess electrons in the conduction band of CuO. Consequently, the accumulation of excess electrons in CuO causes a negative shift in the Fermi level of CuO. The efficient inter-particle charge transfer leads to a higher catalytic activity and the formation of highly reduced states of TiO(2)/CuO, which are stable even under oxygen saturated condition. Negative shift in the Fermi level of CuO of the catalyst TiO(2)/CuO gains the required over-voltage necessary for efficient water reduction reaction. The function of CuO is to help the charge separation and to act as a water reduction site. The amount of CuO and crystalline structure were found to be crucial for the catalytic activity and the optimum CuO loading was ca. approximately 5-10%(w/w).

  11. Fabrication of Pd and Pt Nanotubes and Their Catalytic Study on p-Nitrophenol Reduction

    NASA Astrophysics Data System (ADS)

    Wang, Yinan; Wang, Jiankang; Chen, JingYi

    2018-03-01

    Pd and Pt nanotubes were fabricated using self-assembled DC8,9PC lipid tubules under mild conditions at room temperature. Scan electron microscope (SEM) show the hollow and open-ended structures of prepared Pd and Pt nanotubes. The Pd and Pt nanotubes demonstrate both high catalytic activity toward p-nitrophenol reduction and excellent stability. This work has indicated the application potentials of lipid tubules in fabricating hollow metal nanomaterials.

  12. Organic, Organometallic and Bioorganic Catalysts for Electrochemical Reduction of CO2

    PubMed Central

    Schlager, Stefanie; Portenkirchner, Engelbert; Sariciftci, Niyazi Serdar

    2017-01-01

    Abstract A broad review of homogeneous and heterogeneous catalytic approaches toward CO2 reduction using organic, organometallic, and bioorganic systems is provided. Electrochemical, bioelectrochemical and photoelectrochemical approaches are discussed in terms of their faradaic efficiencies, overpotentials and reaction mechanisms. Organometallic complexes as well as semiconductors and their homogeneous and heterogeneous catalytic activities are compared to enzymes. In both cases, their immobilization on electrodes is discussed and compared to homogeneous catalysts in solution. PMID:28383174

  13. A novel synthesis of magnetic and photoluminescent graphene quantum dots/MFe2O4 (M = Ni, Co) nanocomposites for catalytic application

    NASA Astrophysics Data System (ADS)

    Naghshbandi, Zhwan; Arsalani, Nasser; Zakerhamidi, Mohammad Sadegh; Geckeler, Kurt E.

    2018-06-01

    In recent year, the research is focused on the nanostructured catalyst with increase physiochemical properties. Herein, Different magnetic nanocomposites of graphene quantum dots (GQD) and MFe2O4 (M = Ni, Co) with intrinsic photoluminescent and ferromagnetic properties were synthesized by a convenient co-precipitation method. The structure, morphology, and properties of these nanocomposites as well as the catalytic activity of the nanocomposites for the reduction of p-nitrophenol were investigated. The catalytic activity was found to be in the order of NiFe2O4/GQD > CoFe2O4/GQD > NiFe2O4 > CoFe2O4. The sample NiFe2O4/GQD exhibited the best catalytic activity with an apparent rate constant of 3.56 min-1 and a reduction completion time to p-aminophenol of 60 s. The catalysts can be reused by a magnetic field and display good stability, which can be recycled for six successive experiment with a conversion percentage of more than 95%. These results demonstrate that the nanocomposite NiFe2O4/GQD is an efficient catalyst for the reduction of p-nitrophenol compound. Also, the new nanocomposites have shown a significant reduction in the direct and indirect energy bandgaps when compared to pure GQD and the corresponding magnetic metal oxides.

  14. Coal liquefaction process

    DOEpatents

    Wright, Charles H.

    1986-01-01

    A process for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range.

  15. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOEpatents

    Harkness, J.B.L.; Gorski, A.J.; Daniels, E.J.

    1993-05-18

    A process is described for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is [dis]associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  16. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOEpatents

    Harkness, John B. L.; Gorski, Anthony J.; Daniels, Edward J.

    1993-01-01

    A process for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  17. Removal of amino groups from anilines through diazonium salt-based reactions.

    PubMed

    He, Linman; Qiu, Guanyinsheng; Gao, Yueqiu; Wu, Jie

    2014-09-28

    This minireview describes the applications of in situ generated diazonium salts from anilines in organic synthesis. In situ generation of diazonium salts from anilines represents an efficient and practical pathway, leading to a series of useful structures. In these transformations, the amino group of aniline formally acts as a leaving group. Two distinctive kinds of mechanisms, including transition metal (especially palladium)-catalyzed oxidative addition-reductive elimination and a radical process, are involved in the removal of amino groups from anilines, and both catalytic processes are described in this minireview.

  18. Progress in catalytic ignition fabrication and modeling : fabrication part 1.

    DOT National Transportation Integrated Search

    2012-06-01

    Previous engine testing with Catalytic Plasma Torch (CPT) technology at the University of Idaho has shown promising results in : the reduction of NOx and CO emissions. Because this technology is not yet well characterized, past research has indicated...

  19. Non-Transition-Metal Catalytic System for N 2 Reduction to NH 3: A Density Functional Theory Study of Al-Doped Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Yong-Hui; Hu, Shuangli; Sheng, Xiaolan

    The prevalent catalysts for natural and artificial N 2 fixation are known to hinge upon transition-metal (TM) elements. In this paper, we demonstrate by density functional theory that Al-doped graphene is a potential non-TM catalyst to convert N 2 to NH 3 in the presence of relatively mild proton/electron sources. In the integrated structure of the catalyst, the Al atom serves as a binding site and catalytic center while the graphene framework serves as an electron buffer during the successive proton/electron additions to N 2 and its various downstream N xH y intermediates. The initial hydrogenation of N 2 canmore » readily take place via an internal H-transfer process with the assistance of a Li + ion as an additive. Finally, in view of the recurrence of H transfer in the first step of N 2 reduction observed in biological nitrogenases and other synthetic catalysts, this finding highlights the significance of heteroatom-assisted H transfer in the design of synthetic catalysts for N 2 fixation.« less

  20. Non-Transition-Metal Catalytic System for N 2 Reduction to NH 3: A Density Functional Theory Study of Al-Doped Graphene

    DOE PAGES

    Tian, Yong-Hui; Hu, Shuangli; Sheng, Xiaolan; ...

    2018-01-16

    The prevalent catalysts for natural and artificial N 2 fixation are known to hinge upon transition-metal (TM) elements. In this paper, we demonstrate by density functional theory that Al-doped graphene is a potential non-TM catalyst to convert N 2 to NH 3 in the presence of relatively mild proton/electron sources. In the integrated structure of the catalyst, the Al atom serves as a binding site and catalytic center while the graphene framework serves as an electron buffer during the successive proton/electron additions to N 2 and its various downstream N xH y intermediates. The initial hydrogenation of N 2 canmore » readily take place via an internal H-transfer process with the assistance of a Li + ion as an additive. Finally, in view of the recurrence of H transfer in the first step of N 2 reduction observed in biological nitrogenases and other synthetic catalysts, this finding highlights the significance of heteroatom-assisted H transfer in the design of synthetic catalysts for N 2 fixation.« less

  1. Methanol synthesis on ZnO(0001{sup ¯}). IV. Reaction mechanisms and electronic structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frenzel, Johannes, E-mail: johannes.frenzel@theochem.rub.de; Marx, Dominik

    2014-09-28

    Methanol synthesis from CO and H{sub 2} over ZnO, which requires high temperatures and high pressures giving rise to a complex interplay of physical and chemical processes over this heterogeneous catalyst surface, is investigated using ab initio simulations. The redox properties of the surrounding gas phase are known to directly impact on the catalyst properties and thus, set the overall catalytic reactivity of this easily reducible oxide material. In Paper III of our series [J. Kiss, J. Frenzel, N. N. Nair, B. Meyer, and D. Marx, J. Chem. Phys. 134, 064710 (2011)] we have qualitatively shown that for the partiallymore » hydroxylated and defective ZnO(0001{sup ¯}) surface there exists an intricate network of surface chemical reactions. In the present study, we employ advanced molecular dynamics techniques to resolve in detail this reaction network in terms of elementary steps on the defective surface, which is in stepwise equilibrium with the gas phase. The two individual reduction steps were investigated by ab initio metadynamics sampling of free energy landscapes in three-dimensional reaction subspaces. By also sampling adsorption and desorption processes and thus molecular species that are in the gas phase but close to the surface, our approach successfully generated several alternative pathways of methanol synthesis. The obtained results suggest an Eley-Rideal mechanism for both reduction steps, thus involving “near-surface” molecules from the gas phase, to give methanol preferentially over a strongly reduced catalyst surface, while important side reactions are of Langmuir-Hinshelwood type. Catalyst re-reduction by H{sub 2} stemming from the gas phase is a crucial process after each reduction step in order to maintain the catalyst's activity toward methanol formation and to close the catalytic cycle in some reaction channels. Furthermore, the role of oxygen vacancies, side reactions, and spectator species is investigated and mechanistic details are discussed based on extensive electronic structure analysis.« less

  2. Pt-Doped NiFe₂O₄ Spinel as a Highly Efficient Catalyst for H₂ Selective Catalytic Reduction of NO at Room Temperature.

    PubMed

    Sun, Wei; Qiao, Kai; Liu, Ji-Yuan; Cao, Li-Mei; Gong, Xue-Qing; Yang, Ji

    2016-04-11

    H2 selective catalytic reduction (H2-SCR) has been proposed as a promising technology for controlling NOx emission because hydrogen is clean and does not emit greenhouse gases. We demonstrate that Pt doped into a nickel ferrite spinel structure can afford a high catalytic activity of H2-SCR. A superior NO conversion of 96% can be achieved by employing a novel NiFe1.95Pt0.05O4 spinel-type catalyst at 60 °C. This novel catalyst is different from traditional H2-SCR catalysts, which focus on the role of metallic Pt species and neglect the effect of oxidized Pt states in the reduction of NO. The obtained Raman and XPS spectra indicate that Pt in the spinel lattice has different valence states with Pt(2+) occupying the tetrahedral sites and Pt(4+) residing in the octahedral ones. These oxidation states of Pt enhance the back-donation process, and the lack of filling electrons of the 5d band causes Pt to more readily hybridize with the 5σ orbital of the NO molecule, especially for octahedral Pt(4+), which enhances the NO chemisorption on the Pt sites. We also performed DFT calculations to confirm the enhancement of adsorption of NO onto Pt sites when doped into the Ni-Fe spinel structure. The prepared Pt/Ni-Fe catalysts indicate that increasing the dispersity of Pt on the surfaces of the individual Ni-Fe spinel-type catalysts can efficiently promote the H2-SCR activity. Our demonstration provides new insight into designing advanced catalysts for H2-SCR.

  3. Ce-Sn binary oxide catalyst for the selective catalytic reduction of NOx by NH3

    NASA Astrophysics Data System (ADS)

    Liu, Zhiming; Feng, Xu; Zhou, Zizheng; Feng, Yongjun; Li, Junhua

    2018-01-01

    Ce-Sn binary oxide catalysts prepared by the hydrothermal method have been investigated for the selective catalytic reduction (SCR) of NOx with NH3. Compared with pure CeO2 and SnO2, Ce-Sn binary oxide catalyst showed significantly higher NH3-SCR activity. Moreover, Ce-Sn catalyst showed high resistance against H2O and SO2. The high catalytic performance of Ce-Sn binary oxide is attributed to the synergetic effect between Ce and Sn species, which not only enhances the redox property of the catalyst but also increases the Lewis acidity, thus promoting the adsorption and activation of NH3 species, which contributes to improving the NH3-SCR performance.

  4. Green synthesis of Pd/CuO nanoparticles by Theobroma cacao L. seeds extract and their catalytic performance for the reduction of 4-nitrophenol and phosphine-free Heck coupling reaction under aerobic conditions.

    PubMed

    Nasrollahzadeh, Mahmoud; Sajadi, S Mohammad; Rostami-Vartooni, Akbar; Bagherzadeh, Mojtaba

    2015-06-15

    We report the green synthesis of palladium/CuO nanoparticles (Pd/CuO NPs) using Theobroma cacao L. seeds extract and their catalytic activity for the reduction of 4-nitrophenol and Heck coupling reaction under aerobic conditions. The catalyst was characterized using the powder XRD, TEM, EDS, UV-vis and FT-IR. This method has the advantages of high yields, elimination of surfactant, ligand and homogeneous catalysts, simple methodology and easy work up. The catalyst can be recovered from the reaction mixture and reused several times without any significant loss of catalytic activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Preparation of zeolite supported TiO{sub 2}, ZnO and ZrO{sub 2} and the study on their catalytic activity in NO{sub x} reduction and 1-pentanol dehydration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fatimah, Is

    Preparation of zeolite supported TiO{sub 2}, ZnO and ZrO{sub 2} and their catalytic activity was studied. Activated natural zeolite from Indonesia was utilized for the preparation and catalytic activity test on NO{sub x} reduction by NH{sub 3} and also 1-pentanol dehydration were examined. Physicochemical characterization of materials was studied by x-ray diffraction (XRD) measurement, scanning electron microscope, solid acidity determination and also gas sorption analysis. The results confirmed that the preparation gives some improvements on physicochemical characters suitable for catalysis mechanism in those reactions. Solid acidity and specific surface area contributed significantly to the activity.

  6. A universal approach to the synthesis of nanodendrites of noble metals.

    PubMed

    Feng, Yan; Ma, Xiaohong; Han, Lin; Peng, Zhijian; Yang, Jun

    2014-06-07

    Nanomaterials usually exhibit structure-dependent catalytic activity, selectivity, and stability. Herein, we report a universal approach for the synthesis of noble metal nanoparticles with a dendritic structure, which is based on the reduction of metal acetylacetonate precursors in oleylamine at a temperature of 160 °C. In this strategy, the metal acetylacetonate precursors are reduced into metal atoms by oleylamine and grow into metal nanoparticles, while oleylamine is simultaneously converted into oleylamide to protect the nanoparticles. The competition between particle aggregation and oleylamide passivation is essential to the formation of a large number of particle aggregates, which eventually grow into nanodendrites via Ostwald ripening process. In particular, in comparison with commercial PtRu/C catalysts, the alloy PtRuOs nanodendrites exhibited superior catalytic activity toward methanol oxidation.

  7. I.C. Engine emission reduction by copper oxide catalytic converter

    NASA Astrophysics Data System (ADS)

    Venkatesan, S. P.; Shubham Uday, Desai; Karan Hemant, Borana; Rajarshi Kushwanth Goud, Kagita; Lakshmana Kumar, G.; Pavan Kumar, K.

    2017-05-01

    The toxic gases emitted from diesel engines are more than petrol engines. Predicting the use of diesel engines, even more in future, this system is developed and can be used to minimize the harmful gases. Toxic gases include NOX, CO, HC and Smoke which are harmful to the atmosphere as well as to the human beings. The main aim of this work is to fabricate system, where the level of intensity of toxic gases is controlled through chemical reaction to more agreeable level. This system acts itself as an exhaust system; hence there is no needs to fit separate the silencer. The whole assembly is fitted in the exhaust pipe from engine. In this work, catalytic converter with copper oxide as a catalyst, by replacing noble catalysts such as platinum, palladium and rhodium is fabricated and fitted in the engine exhaust. With and without catalytic converter, the experimentations are carried out at different loads such as 0%, 25%, 50%, 75%, and 100% of maximum rated load. From the experimental results it is found that the maximum reduction is 32%, 61% and 21% for HC, NOx and CO respectively at 100% of maximum rated load when compared to that of without catalytic converter. This catalytic converter system is cash effective and more economical than the existing catalytic converter.

  8. Pt nanocatalysts supported on reduced graphene oxide for selective conversion of cellulose or cellobiose to sorbitol.

    PubMed

    Wang, Ding; Niu, Wenqi; Tan, Minghui; Wu, Mingbo; Zheng, Xuejun; Li, Yanpeng; Tsubaki, Noritatsu

    2014-05-01

    Pt nanocatalysts loaded on reduced graphene oxide (Pt/RGO) were prepared by means of a convenient microwave-assisted reduction approach with ethylene glycol as reductant. The conversion of cellulose or cellobiose into sorbitol was used as an application reaction to investigate their catalytic performance. Various metal nanocatalysts loaded on RGO were compared and RGO-supported Pt exhibited the highest catalytic activity with 91.5 % of sorbitol yield from cellobiose. The catalytic performances of Pt nanocatalysts supported on different carbon materials or on silica support were also compared. The results showed that RGO was the best catalyst support, and the yield of sorbitol was as high as 91.5 % from cellobiose and 58.9 % from cellulose, respectively. The improvement of catalytic activity was attributed to the appropriate Pt particle size and hydrogen spillover effect of Pt/RGO catalyst. Interestingly, the size and dispersion of supported Pt particles could be easily regulated by convenient adjustment of the microwave heating temperature. The catalytic performance was found to initially increase and then decrease with increasing particle size. The optimum Pt particle size was 3.6 nm. These findings may offer useful guidelines for designing novel catalysts with beneficial catalytic performance for biomass conversion. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Oxygen reduction reaction properties of nitrogen-incorporated nanographenes synthesized using in-liquid plasma from mixture of ethanol and iron phthalocyanine

    NASA Astrophysics Data System (ADS)

    Amano, Tomoki; Kondo, Hiroki; Takeda, Keigo; Ishikawa, Kenji; Hiramatsu, Mineo; Sekine, Makoto; Hori, Masaru

    2018-04-01

    Nanographenes were synthesized using in-liquid plasma from a mixture of iron phthalocyanine and ethanol. In a previous study, micrometer-scale flakes with nitrogen incorporation were obtained. A nonprecious metal catalytic activity was observed with 3.13 electrons in an oxygen reduction reaction under an acidic solute condition. Large-surface-area, high-graphene-crystallinity, and iron-carbon-bonding sites were found owing to a high catalytic activity in Fe-N/nanographene.

  10. Effect of plasma-induced surface charging on catalytic processes: application to CO2 activation

    NASA Astrophysics Data System (ADS)

    Bal, Kristof M.; Huygh, Stijn; Bogaerts, Annemie; Neyts, Erik C.

    2018-02-01

    Understanding the nature and effect of the multitude of plasma-surface interactions in plasma catalysis is a crucial requirement for further process development and improvement. A particularly intriguing and rather unique property of a plasma-catalytic setup is the ability of the plasma to modify the electronic structure, and hence chemical properties, of the catalyst through charging, i.e. the absorption of excess electrons. In this work, we develop a quantum chemical model based on density functional theory to study excess negative surface charges in a heterogeneous catalyst exposed to a plasma. This method is specifically applied to investigate plasma-catalytic CO2 activation on supported M/Al2O3 (M = Ti, Ni, Cu) single atom catalysts. We find that (1) the presence of a negative surface charge dramatically improves the reductive power of the catalyst, strongly promoting the splitting of CO2 to CO and oxygen, and (2) the relative activity of the investigated transition metals is also changed upon charging, suggesting that controlled surface charging is a powerful additional parameter to tune catalyst activity and selectivity. These results strongly point to plasma-induced surface charging of the catalyst as an important factor contributing to the plasma-catalyst synergistic effects frequently reported for plasma catalysis.

  11. Combustor concepts for aircraft gas turbine low-power emissions reduction

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.; Gleason, C. C.; Dodds, W. J.

    1978-01-01

    Several combustor concepts were designed and tested to demonstrate significant reductions in aircraft engine idle pollutant emissions. Each concept used a different approach for pollutant reductions: the hot wall combustor employs a thermal barrier coating and impingement cooled liners; the recuperative cooling combustor preheats the air before entering the combustion chamber; and the catalytic converter combustor is composed of a conventional primary zone followed by a catalytic bed for pollutant cleanup. The designs are discussed in detail and test results are presented for a range of aircraft engine idle conditions. The results indicate that ultralow levels of unburned hydrocarbons and carbon monoxide emissions can be achieved.

  12. Intramolecular allyl transfer reaction from allyl ether to aldehyde groups: experimental and theoretical studies.

    PubMed

    Franco, Delphine; Wenger, Karine; Antonczak, Serge; Cabrol-Bass, Daniel; Duñach, Elisabet; Rocamora, Mercè; Gomez, Montserrat; Muller, Guillermo

    2002-02-02

    The intramolecular transfer of the allyl group of functionalized allyl aryl ethers to an aldehyde group in the presence of Ni0 complexes was studied from chemical, electrochemical and theoretical points of view. The chemical reaction involves the addition of Ni0 to the allyl ether followed by stoichiometric allylation. The electrochemical process is catalytic in nickel and involves the reduction of intermediate eta3-allylnickel(II) complexes.

  13. Improved Processes to Remove Naphthenic Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aihua Zhang; Qisheng Ma; Kangshi Wang

    2005-12-09

    In the past three years, we followed the work plan as we suggested in the proposal and made every efforts to fulfill the project objectives. Based on our large amount of creative and productive work, including both of experimental and theoretic aspects, we received important technical breakthrough on naphthenic acid removal process and obtained deep insight on catalytic decarboxylation chemistry. In detail, we established an integrated methodology to serve for all of the experimental and theoretical work. Our experimental investigation results in discovery of four type effective catalysts to the reaction of decarboxylation of model carboxylic acid compounds. The adsorptionmore » experiment revealed the effectiveness of several solid materials to naphthenic acid adsorption and acidity reduction of crude oil, which can be either natural minerals or synthesized materials. The test with crude oil also received promising results, which can be potentially developed into a practical process for oil industry. The theoretical work predicted several possible catalytic decarboxylation mechanisms that would govern the decarboxylation pathways depending on the type of catalysts being used. The calculation for reaction activation energy was in good agreement with our experimental measurements.« less

  14. Retropinacol/Cross-pinacol Coupling Reactions - A Catalytic Access to 1,2-Unsymmetrical Diols

    PubMed Central

    Scheffler, Ulf; Mahrwald, Rainer

    2014-01-01

    Unsymmetrical 1,2-diols are hardly accessible by reductive pinacol coupling processes. A successful execution of such a transformation is bound to a clear recognition and strict differentiation of two similar carbonyl compounds (aldehydes → secondary 1,2-diols or ketones → tertiary 1,2-diols). This fine-tuning is still a challenge and an unsolved problem for an organic chemist. There exist several reports on successful execution of this transformation but they cannot be generalized. Herein we describe a catalytic direct pinacol coupling process which proceeds via a retropinacol/cross-pinacol coupling sequence. Thus, unsymmetrical substituted 1,2-diols can be accessed with almost quantitative yields by means of an operationally simple performance under very mild conditions. Artificial techniques, such as syringe-pump techniques or delayed additions of reactants are not necessary. The procedure we describe provides a very rapid access to cross-pinacol products (1,2-diols, vicinal diols). A further extension of this new process, e.g. an enantioselective performance could provide a very useful tool for the synthesis of unsymmetrical chiral 1,2-diols. PMID:24747370

  15. Facile one-pot synthesis of cellulose nanocrystal-supported hollow CuFe2O4 nanoparticles as efficient catalyst for 4-nitrophenol reduction

    NASA Astrophysics Data System (ADS)

    Zhang, Sufeng; Zhao, Dongyan; Hou, Chen; Liang, Chen; Li, Hao

    2018-06-01

    A facile and efficient one-pot method for the synthesis of well-dispersed hollow CuFe2O4 nanoparticles (H-CuFe2O4 NPs) in the presence of cellulose nanocrystals (CNC) as the support was described. Based on the one-pot solvothermal condition control, magnetic H-CuFe2O4 NPs were in-situ grown on the CNC surface uniformly. TEM images indicated good dispersity of H-CuFe2O4 NPs with uniform size of 300 nm. The catalytic activity of H-CuFe2O4/CNC was tested in the catalytic reduction of 4-nitrophenol (4-NP) in aqueous solution. Compared with most CNC-based ferrite catalysts, H-CuFe2O4/CNC catalyst exhibited an excellent catalytic activity toward the reduction of 4-NP. The catalytic performance of H-CuFe2O4/CNC catalyst was remarkably enhanced with the rate constant of 3.24 s-1 g-1, which was higher than H-CuFe2O4 NPs (0.50 s-1 g-1). The high catalytic activity was attributed to the introduction of CNC and the special hollow mesostructure of H-CuFe2O4 NPs. In addition, the H-CuFe2O4/CNC catalyst promised good conversion efficiency without significant decrease even after 10 cycles, confirming relatively high stability. Because of its environmental sustainability and magnetic separability, H-CuFe2O4/CNC catalyst was shown to indicate that the ferrite nanoparticles supported on CNC were acted as a promising catalyst and exhibited potential applications in numerous ferrite based catalytic reactions.

  16. High-throughput continuous flow synthesis of nickel nanoparticles for the catalytic hydrodeoxygenation of guaiacol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Emily J.; Habas, Susan E.; Wang, Lu

    2016-11-07

    The translation of batch chemistries to high-throughput continuous flow methods dresses scaling, automation, and reproducibility concerns associated with the implementation of colloidally prepared nanoparticle (NP) catalysts for industrial catalytic processes. Nickel NPs were synthesized by the high-temperature amine reduction of a Ni2+ precursor using a continuous millifluidic (mF) flow method, achieving yields greater than 60%. The resulting Ni NP catalysts were compared against catalysts prepared in a batch reaction under conditions analogous to the continuous flow conditions with respect to total reaction volume, time, and temperature and by traditional incipient wetness (IW) impregnation for the hydrodeoxygenation (HDO) of guaiacol undermore » ex situ catalytic fast pyrolysis conditions. Compared to the IW method, the colloidally prepared NPs displayed increased morphological control and narrowed size distributions, and the NPs prepared by both methods showed similar size, shape, and crystallinity. The Ni NP catalyst synthesized by the continuous flow method exhibited similar H-adsorption site densities, site-time yields, and selectivities towards deoxygenated products as compared to the analogous batch reaction, and outperformed the IW catalyst with respect to higher selectivity to lower oxygen content products and a 6.9-fold slower deactivation rate. These results demonstrate the utility of synthesizing colloidal Ni NP catalysts using continuous flow methods while maintaining the catalytic properties displayed by the batch equivalent. Finally, this methodology can be extended to other catalytically relevant base metals for the high-throughput synthesis of metal NPs for the catalytic production of biofuels.« less

  17. A Review of Microwave-Assisted Reactions for Biodiesel Production

    PubMed Central

    Nomanbhay, Saifuddin; Ong, Mei Yin

    2017-01-01

    The conversion of biomass into chemicals and biofuels is an active research area as trends move to replace fossil fuels with renewable resources due to society’s increased concern towards sustainability. In this context, microwave processing has emerged as a tool in organic synthesis and plays an important role in developing a more sustainable world. Integration of processing methods with microwave irradiation has resulted in a great reduction in the time required for many processes, while the reaction efficiencies have been increased markedly. Microwave processing produces a higher yield with a cleaner profile in comparison to other methods. The microwave processing is reported to be a better heating method than the conventional methods due to its unique thermal and non-thermal effects. This paper provides an insight into the theoretical aspects of microwave irradiation practices and highlights the importance of microwave processing. The potential of the microwave technology to accomplish superior outcomes over the conventional methods in biodiesel production is presented. A green process for biodiesel production using a non-catalytic method is still new and very costly because of the supercritical condition requirement. Hence, non-catalytic biodiesel conversion under ambient pressure using microwave technology must be developed, as the energy utilization for microwave-based biodiesel synthesis is reported to be lower and cost-effective. PMID:28952536

  18. A Review of Microwave-Assisted Reactions for Biodiesel Production.

    PubMed

    Nomanbhay, Saifuddin; Ong, Mei Yin

    2017-06-15

    The conversion of biomass into chemicals and biofuels is an active research area as trends move to replace fossil fuels with renewable resources due to society's increased concern towards sustainability. In this context, microwave processing has emerged as a tool in organic synthesis and plays an important role in developing a more sustainable world. Integration of processing methods with microwave irradiation has resulted in a great reduction in the time required for many processes, while the reaction efficiencies have been increased markedly. Microwave processing produces a higher yield with a cleaner profile in comparison to other methods. The microwave processing is reported to be a better heating method than the conventional methods due to its unique thermal and non-thermal effects. This paper provides an insight into the theoretical aspects of microwave irradiation practices and highlights the importance of microwave processing. The potential of the microwave technology to accomplish superior outcomes over the conventional methods in biodiesel production is presented. A green process for biodiesel production using a non-catalytic method is still new and very costly because of the supercritical condition requirement. Hence, non-catalytic biodiesel conversion under ambient pressure using microwave technology must be developed, as the energy utilization for microwave-based biodiesel synthesis is reported to be lower and cost-effective.

  19. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases

    PubMed Central

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-01-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay. PMID:23907148

  20. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases.

    PubMed

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-01-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay.

  1. Thin layer chitosan-coated cellulose filter paper as substrate for immobilization of catalytic cobalt nanoparticles.

    PubMed

    Kamal, Tahseen; Khan, Sher Bahadar; Haider, Sajjad; Alghamdi, Yousef Gamaan; Asiri, Abdullah M

    2017-11-01

    A facile approach utilizing synthesis of cobalt nanoparticles in green polymers of chitosan (CS) coating layer on high surface area cellulose microfibers of filter paper (CFP) is described for the catalytic reduction of nitrophenol and an organic dye using NaBH 4 . Simple steps of CFP coating with 1wt% CS aqueous solution followed by Co 2+ ions adsorption from 0.2M CoCl 2 aqueous solution were carried out to prepare pre-catalytic strips. The Co 2+ loaded pre-catalytic strips of CS-CFP were treated with 0.19M NaBH 4 aqueous solution to convert the ions into nanoparticles. Successful Co nanoparticles formation was assessed by various characterization techniques of FESEM, EDX and XRD analyzes. TGA analyses were carried out on CFP, CS-CFP, and Co-CS-CFP for the determination of the amount of Co particles formed on the CS-FP, and to track their thermal properties. Furthermore, we demonstrated that the Co-CS-CFP showed an excellent catalytic activity and reusability in the reduction reactions a nitroaromatic compound of 2,6-dintirophenol (2,6-DNP) and brilliant cresyl blue (BCB) dye by NaBH 4 . The Co-CS-CFP catalyzed the reduction reactions of 2,6-DNP and BCB by NaBH 4 with psuedo-first order rate constants of 0.0451 and 0.1987min -1 , respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Determination of pharmaceutical compounds in hospital wastewater and their elimination by advanced oxidation processes.

    PubMed

    Souza, Fernanda S; Da Silva, Vanessa V; Rosin, Catiusa K; Hainzenreder, Luana; Arenzon, Alexandre; Pizzolato, Tania; Jank, Louise; Féris, Liliana A

    2018-02-23

    This study investigates the mineralization efficiency, i.e. removal of total organic carbon (TOC) in hospital wastewater by direct ozonation, ozonation with UV radiation (O 3 /UV), homogeneous catalytic ozonation (O 3 /Fe 2+ ) and homogeneous photocatalytic ozonation (O 3 /Fe 2+ /UV). The influence of pH and reaction time was evaluated. For the best process, toxicity and degradation efficiency of the selected pharmaceutical compounds (PhCs) were determined. The results showed that the PhCs detected in the hospital wastewater were completely degraded when the mineralization efficiency reached 54.7% for O 3 /UV with 120 minutes of reaction time using a rate of 1.57 g O 3 h -1 . This process also achieved a higher chemical oxygen demand removal efficiency (64.05%), an increased aromaticity reduction efficiency (81%) and a toxicity reduction.

  3. High Temperature Modification of SNCR Technology and its Impact on NOx Removal Process

    NASA Astrophysics Data System (ADS)

    Blejchař, Tomáš; Konvička, Jaroslav; von der Heide, Bernd; Malý, Rostislav; Maier, Miloš

    2018-06-01

    SNCR (Selective non-catalytic reduction) Technology is currently being used to reach the emission limit for nitrogen oxides at fossil fuel fired power plant and/or heating plant and optimum temperature for SNCR process is in range 850 - 1050°C. Modified SNCR technology is able to reach reduction 60% of nitrogen oxides at temperature up to 1250°C. So the technology can also be installed where the flue gas temperature is too high in combustion chamber. Modified SNCR was tested using generally known SNCR chemistry implemented in CFD (Computation fluid dynamics) code. CFD model was focused on detail simulation of reagent injection and influence of flue gas temperature. Than CFD simulation was compared with operating data of boiler where the modified SNCR technology is installed. By comparing the experiment results with the model, the effect on nitrous oxides removal process and temperature of flue gas at the injection region.

  4. Evidence of CuI/CuII Redox Process by X-ray Absorption and EPR Spectroscopy: Direct Synthesis of Dihydrofurans from b-Ketocarbonyl Derivatives and Olefins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Hong; Liao, Zhixiong; Zhang, Guanghui

    Abstract: The CuI/CuII and CuI/CuIII catalytic cycles have been subject to intense debate in the field of copper-catalyzed oxidative coupling reactions. A mechanistic study on the CuI/CuII redox process, by X-ray absorption (XAS) and electron paramagnetic resonance (EPR) spectroscopies, has elucidated the reduction mechanism of CuII to CuI by 1,3-diketone and detailed investigation revealed that the halide ion is important for the reduction process. The oxidative nature of the thereby-formed CuI has also been studied by XAS and EPR spectroscopy. This mechanistic information is applicable to the copper-catalyzed oxidative cyclization of b-ketocarbonyl derivatives to dihydrofurans. This protocol provides an idealmore » route to highly substituted dihydrofuran rings from easily available 1,3-dicarbonyls and olefins. Copper« less

  5. Effect of oxidation and catalytic reduction of trace organic contaminants on their activated carbon adsorption.

    PubMed

    Schoutteten, Klaas V K M; Hennebel, Tom; Dheere, Ellen; Bertelkamp, Cheryl; De Ridder, David J; Maes, Synthia; Chys, Michael; Van Hulle, Stijn W H; Vanden Bussche, Julie; Vanhaecke, Lynn; Verliefde, Arne R D

    2016-12-01

    The combination of ozonation and activated carbon (AC) adsorption is an established technology for removal of trace organic contaminants (TrOCs). In contrast to oxidation, reduction of TrOCs has recently gained attention as well, however less attention has gone to the combination of reduction with AC adsorption. In addition, no literature has compared the removal behavior of reduction vs. ozonation by-products by AC. In this study, the effect of pre-ozonation vs pre-catalytic reduction on the AC adsorption efficiency of five TrOCs and their by-products was compared. All compounds were susceptible to oxidation and reduction, however the catalytic reductive treatment proved to be a slower reaction than ozonation. New oxidation products were identified for dinoseb and new reduction products were identified for carbamazepine, bromoxynil and dinoseb. In terms of compatibility with AC adsorption, the influence of the oxidative and reductive pretreatments proved to be compound dependent. Oxidation products of bromoxynil and diatrizoic acid adsorbed better than their parent TrOCs, but oxidation products of atrazine, carbamazepine and dinoseb showed a decreased adsorption. The reductive pre-treatment showed an enhanced AC adsorption for dinoseb and a major enhancement for diatrizoic acid. For atrazine and bromoxynil, no clear influence on adsorption was noted, while for carbamazepine, the reductive pretreatment resulted in a decreased AC affinity. It may thus be concluded that when targeting mixtures of TrOCs, a trade-off will undoubtedly have to be made towards overall reactivity and removal of the different constituents, since no single treatment proves to be superior to the other. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Low-temperature growth of nitrogen-doped carbon nanofibers by acetonitrile catalytic CVD using Ni-based catalysts

    NASA Astrophysics Data System (ADS)

    Iwasaki, Tomohiro; Makino, Yuri; Fukukawa, Makoto; Nakamura, Hideya; Watano, Satoru

    2016-11-01

    To synthesize nitrogen-doped carbon nanofibers (N-CNFs) at high growth rates and low temperatures less than 673 K, nickel species (metallic nickel and nickel oxide) supported on alumina particles were used as the catalysts for an acetonitrile catalytic chemical vapor deposition (CVD) process. The nickel:alumina mass ratio in the catalysts was fixed at 0.05:1. The catalyst precursors were prepared from various nickel salts (nitrate, chloride, sulfate, acetate, and lactate) and then calcined at 1073 K for 1 h in oxidative (air), reductive (hydrogen-containing argon), or inert (pure argon) atmospheres to activate the nickel-based catalysts. The effects of precursors and calcination atmosphere on the catalyst activity at low temperatures were studied. We found that the catalysts derived from nickel nitrate had relatively small crystallite sizes of nickel species and provided N-CNFs at high growth rates of 57 ± 4 g-CNF/g-Ni/h at 673 K in the CVD process using 10 vol% hydrogen-containing argon as the carrier gas of acetonitrile vapor, which were approximately 4 times larger than that of a conventional CVD process. The obtained results reveal that nitrate ions in the catalyst precursor and hydrogen in the carrier gas can contribute effectively to the activation of catalysts in low-temperature CVD. The fiber diameter and nitrogen content of N-CNFs synthesized at high growth rates were several tens of nanometers and 3.5 ± 0.3 at.%, respectively. Our catalysts and CVD process may lead to cost reductions in the production of N-CNFs.

  7. Effect of urea deproteinization on catalytic hydrogenation of natural rubber latex

    NASA Astrophysics Data System (ADS)

    Cifriadi, A.; Chalid, M.; Puspitasari, S.

    2017-07-01

    Natural rubber is unsaturated biopolymer which has low resistance to heat, oxygen, and ozone. Chemical modification of natural rubber by catalytic hydrogenation can improve its oxidative property. In this study, the catalytic hydrogenation of natural rubber was investigated in latex phase after reduction of protein content with urea. Hydrogenation of deproteinized natural rubber latex was performed by using diimide which generated insitu from hydrazine hydrate/hydrogen peroxide and catalyst (boric acid, cupric sulfate and cupric acetate) at 70°C for 5 h. The hydrogenation system was stabilized with sodium dodecyl sulphate. The hydrogenation of deproteinized natural rubber (HDPNR) was confirmed by FTIR analysis. The result indicated that cupric sulphate was extremely active catalyst which was showed by the elimination of C=C transmittance bands at 1660 cm-1 on HDPNR spectra and highest degree of hydrogenation. Furthermore, urea deproteinization increased possibility of side reactions during catalytic hydrogenation as seen on the reduction of gel content compared to undeproteinized natural rubber.

  8. A Sinter-Resistant Catalytic System Based on Platinum Nanoparticles Supported on TiO2 Nanofibers and Covered by Porous Silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Yunqian; Lim, Byungkwon; Yang, Yong

    2010-10-25

    Platinum is a key catalyst that is invaluable in many important industrial processes such as CO oxidation in catalytic converters, oxidation and reduction reactions in fuel cells, nitric acid production, and petroleum cracking.[1] Many of these applications utilize Pt nanoparticles supported on oxides or porous carbon.[2] However, in practical applications that involve high temperatures (typically higher than 3008C), the Pt nanoparticles tend to lose their specific surface area and thus catalytic activity during operation because of sintering. Recent studies have shown that a porous oxide shell can act as a physical barrier to prevent sintering of unsupported metal nanoparticles and,more » at the same time, provide channels for chemical species to reach the surface of the nanoparticles, thus allowing the catalytic reaction to occur. This concept has been demonstrated in several systems, including Pt@SiO2,[3] Pt@CoO,[4] Pt/CeO2@SiO2,[5] Pd@SiO2,[6] Au@SiO2,[7] Au@SnO2 [8] and Au@ZrO2 [9] core– shell nanostructures. Despite these results, a sinter-resistant system has not been realized in supported Pt nanoparticle catalysts.« less

  9. Proton-coupled electron-transfer reduction of dioxygen catalyzed by a saddle-distorted cobalt phthalocyanine.

    PubMed

    Honda, Tatsuhiko; Kojima, Takahiko; Fukuzumi, Shunichi

    2012-03-07

    Proton-coupled electron-transfer reduction of dioxygen (O(2)) to afford hydrogen peroxide (H(2)O(2)) was investigated by using ferrocene derivatives as reductants and saddle-distorted (α-octaphenylphthalocyaninato)cobalt(II) (Co(II)(Ph(8)Pc)) as a catalyst under acidic conditions. The selective two-electron reduction of O(2) by dimethylferrocene (Me(2)Fc) and decamethylferrocene (Me(10)Fc) occurs to yield H(2)O(2) and the corresponding ferrocenium ions (Me(2)Fc(+) and Me(10)Fc(+), respectively). Mechanisms of the catalytic reduction of O(2) are discussed on the basis of detailed kinetics studies on the overall catalytic reactions as well as on each redox reaction in the catalytic cycle. The active species to react with O(2) in the catalytic reaction is switched from Co(II)(Ph(8)Pc) to protonated Co(I)(Ph(8)PcH), depending on the reducing ability of ferrocene derivatives employed. The protonation of Co(II)(Ph(8)Pc) inhibits the direct reduction of O(2); however, the proton-coupled electron transfer from Me(10)Fc to Co(II)(Ph(8)Pc) and the protonated [Co(II)(Ph(8)PcH)](+) occurs to produce Co(I)(Ph(8)PcH) and [Co(I)(Ph(8)PcH(2))](+), respectively, which react immediately with O(2). The rate-determining step is a proton-coupled electron-transfer reduction of O(2) by Co(II)(Ph(8)Pc) in the Co(II)(Ph(8)Pc)-catalyzed cycle with Me(2)Fc, whereas it is changed to the electron-transfer reduction of [Co(II)(Ph(8)PcH)](+) by Me(10)Fc in the Co(I)(Ph(8)PcH)-catalyzed cycle with Me(10)Fc. A single crystal of monoprotonated [Co(III)(Ph(8)Pc)](+), [Co(III)Cl(2)(Ph(8)PcH)], produced by the proton-coupled electron-transfer reduction of O(2) by Co(II)(Ph(8)Pc) with HCl, was obtained, and the crystal structure was determined in comparison with that of Co(II)(Ph(8)Pc). © 2012 American Chemical Society

  10. Ni0 encapsulated in N-doped carbon nanotubes for catalytic reduction of highly toxic hexavalent chromium

    NASA Astrophysics Data System (ADS)

    Yao, Yunjin; Zhang, Jie; Chen, Hao; Yu, Maojing; Gao, Mengxue; Hu, Yi; Wang, Shaobin

    2018-05-01

    N-doped carbon nanotubes encapsulating Ni0 nanoparticles (Ni@N-C) were fabricated via thermal reduction of dicyandiamide and NiCl2·6H2O, and used to remove CrVI in polluted water. The resultant products present an excellent catalytic activity for CrVI reduction using formic acid under relatively mild conditions. The CrVI reduction efficiency of Ni@N-C was significantly affected by the preparation conditions including the mass of nickel salt and synthesis temperatures. The impacts of several reaction parameters, such as initial concentrations of CrVI and formic acid, solution pH and temperatures, as well as inorganic anions in solution on CrVI reduction efficiency were also evaluated in view of scalable industrial applications. Owing to the synergistic effects amongst tubes-coated Ni0, doped nitrogen, oxygen containing groups, and the configuration of carbon nanotubes, Ni@N-C catalysts exhibit excellent catalytic activity and recyclable capability for CrVI reduction. Carbon shell can efficiently protect inner Ni0 core and N species from corrosion and subsequent leaching, while Ni0 endows the Ni@N-C catalysts with ferromagnetism, so that the composites can be easily separated via a permanent magnet. This study opens up an avenue for design of N-doped carbon nanotubes encapsulating Ni0 nanoparticles with high CrVI removal efficiency and magnetic recyclability as low-cost catalysts for industrial applications.

  11. Green Synthesis and Catalytic Activity of Gold Nanoparticles Synthesized by Artemisia capillaris Water Extract

    NASA Astrophysics Data System (ADS)

    Lim, Soo Hyeon; Ahn, Eun-Young; Park, Youmie

    2016-10-01

    Gold nanoparticles were synthesized using a water extract of Artemisia capillaris (AC-AuNPs) under different extract concentrations, and their catalytic activity was evaluated in a 4-nitrophenol reduction reaction in the presence of sodium borohydride. The AC-AuNPs showed violet or wine colors with characteristic surface plasmon resonance bands at 534 543 nm that were dependent on the extract concentration. Spherical nanoparticles with an average size of 16.88 ± 5.47 29.93 ± 9.80 nm were observed by transmission electron microscopy. A blue shift in the maximum surface plasmon resonance was observed with increasing extract concentration. The face-centered cubic structure of AC-AuNPs was confirmed by high-resolution X-ray diffraction analysis. Based on phytochemical screening and Fourier transform infrared spectra, flavonoids, phenolic compounds, and amino acids present in the extract contributed to the reduction of Au ions to AC-AuNPs. The average size of the AC-AuNPs decreased as the extract concentration during the synthesis was increased. Higher 4-nitrophenol reduction reaction rate constants were observed for smaller sizes. The extract in the AC-AuNPs was removed by centrifugation to investigate the effect of the extract in the reduction reaction. Interestingly, the removal of extracts greatly enhanced their catalytic activity by up to 50.4 %. The proposed experimental method, which uses simple centrifugation, can be applied to other metallic nanoparticles that are green synthesized with plant extracts to enhance their catalytic activity.

  12. Effect of calcination temperature on formaldehyde oxidation performance of Pt/TiO2 nanofiber composite at room temperature

    NASA Astrophysics Data System (ADS)

    Xu, Feiyan; Le, Yao; Cheng, Bei; Jiang, Chuanjia

    2017-12-01

    Catalytic oxidation at room temperature over well-designed catalysts is an environmentally friendly method for the abatement of indoor formaldehyde (HCHO) pollution. Herein, nanocomposites of platinum (Pt) and titanium dioxide (TiO2) nanofibers with various phase compositions were prepared by calcining the electrospun TiO2 precursors at different temperatures and subsequently depositing Pt nanoparticles (NPs) on the TiO2 through a NaBH4-reduction process. The phase compositions and structures of Pt/TiO2 can be easily controlled by varying the calcination temperature. The Pt/TiO2 nanocomposites showed a phase-dependent activity towards the catalytic HCHO oxidation. Pt/TiO2 containing pure rutile phase showed enhanced activity with a turnover frequency (TOF) of 16.6 min-1 (for a calcination temperature of 800 °C) as compared to those containing the anatase phase or mixed phases. Density functional theory calculation shows that TiO2 nanofibers with pure rutile phase have stronger adsorption ability to Pt atoms than anatase phase, which favors the reduction of Pt over rutile phase TiO2, leading to higher contents of metallic Pt in the nanocomposite. In addition, the Pt/TiO2 with rutile phase possesses more abundant oxygen vacancies, which is conducive to the activation of adsorbed oxygen. Consequently, the Pt/rutile-TiO2 nanocomposite exhibited better catalytic activity towards HCHO oxidation at room temperature.

  13. Catalytic reduction of 4-nitrophenol using gold nanoparticles biosynthesized by cell-free extracts of Aspergillus sp. WL-Au.

    PubMed

    Shen, Wenli; Qu, Yuanyuan; Pei, Xiaofang; Li, Shuzhen; You, Shengnan; Wang, Jingwei; Zhang, Zhaojing; Zhou, Jiti

    2017-01-05

    A facile one-pot eco-friendly process for synthesis of gold nanoparticles (AuNPs) with high catalytic activity was achieved using cell-free extracts of Aspergillus sp. WL-Au as reducing, capping and stabilizing agents. The surface plasmon resonance band of UV-vis spectrum at 532nm confirmed the presence of AuNPs. Transmission electron microscopy images showed that quite uniform spherical AuNPs were synthesized and the average size of nanoparticles increased from 4nm to 29nm with reaction time. X-ray diffraction analysis verified the formation of nano-crystalline gold particles. Fourier transform infrared spectra showed the presence of functional groups on the surface of biosynthesized AuNPs, such as OH, NH, CO, CH, COH and COC groups, which increased the stability of AuNPs. The biogenic AuNPs could serve as a highly efficient catalyst for 4-nitrophenol reduction. The reaction rate constant was linearly correlated with the concentration of AuNPs, which increased from 0.59min -1 to 1.51min -1 with the amount of AuNPs increasing form 1.46×10 -6 to 17.47×10 -6 mmol. Moreover, the as-synthesized AuNPs exhibited a remarkable normalized catalytic activity (4.04×10 5 min -1 mol -1 ), which was much higher than that observed for AuNPs synthesized by other biological and conventional chemical methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Metallization of DNA hydrogel: application of soft matter host for preparation and nesting of catalytic nanoparticles

    NASA Astrophysics Data System (ADS)

    Zinchenko, Anatoly; Che, Yuxin; Taniguchi, Shota; Lopatina, Larisa I.; G. Sergeyev, Vladimir; Murata, Shizuaki

    2016-07-01

    Nanoparticles (NPs) of Au, Ag, Pt, Pd, Cu and Ni of 2-3 nm average-size and narrow-size distributions were synthesized in DNA cross-linked hydrogels by reducing corresponding metal precursors by sodium borohydride. DNA hydrogel plays a role of a universal reactor in which the reduction of metal precursor results in the formation of 2-3 nm ultrafine metal NPs regardless of metal used. Hydrogels metallized with various metals showed catalytic activity in the reduction of nitroaromatic compounds, and the catalytic activity of metallized hydrogels changed as follows: Pd > Ag ≈ Au ≈ Cu > Ni > Pt. DNA hydrogel-based "soft catalysts" elaborated in this study are promising for green organic synthesis in aqueous media as well as for biomedical in vivo applications.

  15. The role of uranium-arene bonding in H2O reduction catalysis

    NASA Astrophysics Data System (ADS)

    Halter, Dominik P.; Heinemann, Frank W.; Maron, Laurent; Meyer, Karsten

    2018-03-01

    The reactivity of uranium compounds towards small molecules typically occurs through stoichiometric rather than catalytic processes. Examples of uranium catalysts reacting with water are particularly scarce, because stable uranyl groups form that preclude the recovery of the uranium compound. Recently, however, an arene-anchored, electron-rich uranium complex has been shown to facilitate the electrocatalytic formation of H2 from H2O. Here, we present the precise role of uranium-arene δ bonding in intermediates of the catalytic cycle, as well as details of the atypical two-electron oxidative addition of H2O to the trivalent uranium catalyst. Both aspects were explored by synthesizing mid- and high-valent uranium-oxo intermediates and by performing comparative studies with a structurally related complex that cannot engage in δ bonding. The redox activity of the arene anchor and a covalent δ-bonding interaction with the uranium ion during H2 formation were supported by density functional theory analysis. Detailed insight into this catalytic system may inspire the design of ligands for new uranium catalysts.

  16. The Difference Se Makes: A Bio-Inspired Dppf-Supported Nickel Selenolate Complex Boosts Dihydrogen Evolution with High Oxygen Tolerance.

    PubMed

    Pan, Zhong-Hua; Tao, Yun-Wen; He, Quan-Feng; Wu, Qiao-Yu; Cheng, Li-Ping; Wei, Zhan-Hua; Wu, Ji-Huai; Lin, Jin-Qing; Sun, Di; Zhang, Qi-Chun; Tian, Dan; Luo, Geng-Geng

    2018-06-12

    Inspired by the metal active sites of [NiFeSe]-hydrogenases, a dppf-supported nickel(II) selenolate complex (dppf=1,1'-bis(diphenylphosphino)ferrocene) shows high catalytic activity for electrochemical proton reduction with a remarkable enzyme-like H 2 evolution turnover frequency (TOF) of 7838 s -1 under an Ar atmosphere, which markedly surpasses the activity of a dppf-supported nickel(II) thiolate analogue with a low TOF of 600 s -1 . A combined study of electrochemical experiments and DFT calculations shed light on the catalytic process, suggesting that selenium atom as a bio-inspired proton relay plays a key role in proton exchange and enhancing catalytic activity of H 2 production. For the first time, this type of Ni selenolate-containing electrocatalyst displays a high degree of O 2 and H 2 tolerance. Our results should encourage the development of the design of highly efficient oxygen-tolerant Ni selenolate molecular catalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A study on the indirect urea dosing method in the Selective Catalytic Reduction system

    NASA Astrophysics Data System (ADS)

    Brzeżański, M.; Sala, R.

    2016-09-01

    This article presents the results of studies on concept solution of dosing urea in a gas phase in a selective catalytic reduction system. The idea of the concept was to heat-up and evaporate the water urea solution before introducing it into the exhaust gas stream. The aim was to enhance the processes of urea converting into ammonia, what is the target reductant for nitrogen oxides treatment. The study was conducted on a medium-duty Euro 5 diesel engine with exhaust line consisting of DOC catalyst, DPF filter and an SCR system with a changeable setup allowing to dose the urea in liquid phase (regular solution) and to dose it in a gas phase (concept solution). The main criteria was to assess the effect of physical state of urea dosed on the NOx conversion ratio in the SCR catalyst. In order to compare both urea dosing methods a special test procedure was developed which consisted of six test steps covering a wide temperature range of exhaust gas generated at steady state engine operation condition. Tests were conducted for different urea dosing quantities defined by the a equivalence ratio. Based on the obtained results, a remarkable improvement in NOx reduction was found for gas urea application in comparison to the standard liquid urea dosing. Measured results indicate a high potential to increase an efficiency of the SCR catalyst by using a gas phase urea and provide the basis for further scientific research on this type of concept.

  18. Nitrogen oxides from waste incineration: control by selective non-catalytic reduction.

    PubMed

    Zandaryaa, S; Gavasci, R; Lombardi, F; Fiore, A

    2001-01-01

    An experimental study of the selective non-catalytic reduction (SNCR) process was carried out to determine the efficiency of NOx removal and NH3 mass balance, the NOx reducing reagent used. Experimental tests were conducted on a full-scale SNCR system installed in a hospital waste incineration plant. Anhydrous NH3 was injected at the boiler entrance for NOx removal. Ammonia was analyzed after each flue-gas treatment unit in order to establish its mass balance and NH3 slip in the stack gas was monitored as well. The effective fraction of NH3 for the thermal NOx reduction was calculated from measured values of injected and residual NH3. Results show that a NOx reduction efficiency in the range of 46.7-76.7% is possible at a NH3/NO molar ratio of 0.9-1.5. The fraction of NH3 used in NOx removal was found to decrease with rising NH3/NO molar ratio. The NH3 slip in the stack gas was very low, below permitted limits, even at the higher NH3 dosages used. No direct correlation was found between the NH3/NO molar ratio and the NH3 slip in the stack gas since the major part of the residual NH3 was converted into ammonium salts in the dry scrubbing reactor and subsequently collected in the fabric filter. Moreover, another fraction of NH3 was dissolved in the scrubbing liquor.

  19. NADPH: Protochlorophyllide Oxidoreductase-Structure, Catalytic Function, and Role in Prolamellar Body Formation and Morphogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timko, Michael P

    2013-02-01

    The biosynthesis of chlorophyll is a critical biochemical step in the development of photosynthetic vascular plants and green algae. From photosynthetic bacteria (cyanobacteria) to algae, non-vascular plants, gymnosperms and vascular plants, mechanisms have evolved for protochlorophyllide reduction a key step in chlorophyll synthesis. Protochlorophyllide reduction is carried out by both a light-dependent (POR) and light-independent (LIPOR) mechanisms. NADPH: protochlorophyllide oxidoreductase (EC 1.3.1.33, abbreviated POR) catalyzes the light-dependent reduction of protochlorophyllide (PChlide) to chlorophyllide (Chlide). In contrast, a light-independent protochlorophyllide reductase (LIPOR) involves three plastid gene products (chlL, chlN, and chlB) and several nuclear factors. Our work focused on characterization ofmore » both the POR and LIPOR catalyzed processes.« less

  20. ZnO/perovskite core–shell nanorod array based monolithic catalysts with enhanced propane oxidation and material utilization efficiency at low temperature

    DOE PAGES

    Wang, Sibo; Ren, Zheng; Song, Wenqiao; ...

    2015-04-24

    Here, a hydrothermal strategy combined with colloidal deposition synthesis was successfully used to grow ZnO/perovskite (LaBO 3, B=Mn, Co, Ni) core-shell nanorod arrays within three dimensional (3-D) honeycomb cordierite substrates. A facile sonication assisted colloidal wash coating process is able to coat a uniformly dispersed perovskite nanoparticles onto the large scale ZnO nanorod arrays rooted on the channel surfaces of the 3D cordierite substrate achieved by hydrothermal synthesis. Compared to traditional wash-coated perovskite catalysts, an enhanced catalytic performance was observed for propane oxidation with 25°C lower light-off temperature than wash-coated perovskite catalyst of similar LaMnO 3 loading (4.3mg). Temperature programmedmore » reduction and desorption under H 2 and O 2 atmosphere, respectively, were used to study the reducibility and oxygen activity of these core-shell nanorod arrays based monolithic catalysts, revealing a catalytic activity sequence of LaCoO 3>LaMnO 3>La 2NiO 4 at the initial stage of catalytic reaction. The good dispersion and size control in La-based perovskite nanoparticles and their interfaces to ZnO nanorod arrays support may contribute to the enhancement of catalytic performance. Lastly, this work may provide a new type of Pt-group metals (PGM) free catalysts with improved catalytic performance for hydrocarbon oxidations at low temperatures.« less

  1. A Rare Terminal Dinitrogen Complex of Chromium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mock, Michael T.; Chen, Shentan; Rousseau, Roger J.

    The reduction of dinitrogen to ammonia from N2 and H2 is currently carried out by the Haber-Bosch process, an energy intensive process that requires high pressures and high temperatures and accounts for the production of millions of tons of ammonia per year. The development of a catalytic, energy-efficient process for N2 reduction is of great interest and remains a formidable challenge. In this communication, we are reporting the preparation, characterization and computational electronic structure analysis of a rare 'Chatt-type' ((P-P)2M(N2)2, P-P = diphosphine ligand) complex of chromium, cis-[Cr(N2)2(PPh2NBn2)2] and its reactivity with CO. This complex is supported by the diphosphinemore » ligand PPh2NBn2, containing non-coordinating pendant amine bases, to serve as proton relays. Future studies for this complex are aimed at answering fundamental questions regarding the role of proton relays in the second coordination sphere in their ability to facilitate proton movement from an external acid to metal-bound dinitrogen ligands in the challenging multi-proton/electron reduction of N2 to ammonia.« less

  2. Synergetic Effects of Alcohol/Water Mixing on the Catalytic Reductive Fractionation of Poplar Wood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renders, Tom; Van den Bosch, Sander; Vangeel, Thijs

    One of the foremost challenges in lignocellulose conversion encompasses the integration of effective lignin valorization in current carbohydrate-oriented biorefinery schemes. Catalytic reductive fractionation (CRF) of lignocellulose offers a technology to simultaneously produce lignin-derived platform chemicals and a carbohydrate-enriched pulp via the combined action of lignin solvolysis and metal-catalyzed hydrogenolysis. Herein, the solvent (composition) plays a crucial role. In this contribution, we study the influence of alcohol/water mixtures by processing poplar sawdust in varying MeOH/water and EtOH/water blends. The results show particular effects that strongly depend on the applied water concentration. Low water concentrations enhance the removal of lignin from themore » biomass, while the majority of the carbohydrates are left untouched (scenario A). Contrarily, high water concentrations favor the solubilization of both hemicellulose and lignin, resulting in a more pure cellulosic residue (scenario B). For both scenarios, an evaluation was made to determine the most optimal solvent composition, based on two earlier introduced empirical efficiency descriptors (denoted LFDE and LFFE). According to these measures, 30 (A) and 70 vol % water (B) showed to be the optimal balance for both MeOH/water and EtOH/water mixtures. This successful implementation of alcohol/water mixtures allows operation under milder processing conditions in comparison to pure alcohol solvents, which is advantageous from an industrial point of view.« less

  3. One-step gas-solid reaction synthesis of W@WS2 nanorattles and their novel catalytic activity.

    PubMed

    Wen, Yan; Zhang, Haijun; Zhang, Shaowei

    2014-11-07

    W@WS2 nanorattles were synthesised by heating a mixture of WO3 nanoparticles and S at a relatively low temperature between 750 and 950 °C in H2/Ar. In addition to the temperature, the competition between the H2 reduction and the S sulphidation sub-reactions dominated the reaction mechanisms and the morphologies of final products. Based on this, several types of nanostructures, including WS2 nanoflakes, inorganic fullerene-like nanoparticles and W@WS2 nanorattles (with desirable core size and shell thickness), could be selectively prepared by simply tailoring the processing parameters. Moreover, it was found for the first time that as-prepared W@WS2 nanorattles exhibited excellent catalytic activities which were close to or even better than their much more costive Au-based counterparts.

  4. One-step gas-solid reaction synthesis of W@WS2 nanorattles and their novel catalytic activity

    NASA Astrophysics Data System (ADS)

    Wen, Yan; Zhang, Haijun; Zhang, Shaowei

    2014-10-01

    W@WS2 nanorattles were synthesised by heating a mixture of WO3 nanoparticles and S at a relatively low temperature between 750 and 950 °C in H2/Ar. In addition to the temperature, the competition between the H2 reduction and the S sulphidation sub-reactions dominated the reaction mechanisms and the morphologies of final products. Based on this, several types of nanostructures, including WS2 nanoflakes, inorganic fullerene-like nanoparticles and W@WS2 nanorattles (with desirable core size and shell thickness), could be selectively prepared by simply tailoring the processing parameters. Moreover, it was found for the first time that as-prepared W@WS2 nanorattles exhibited excellent catalytic activities which were close to or even better than their much more costive Au-based counterparts.

  5. Study of Electrocatalytic Properties of Metal–Organic Framework PCN-223 for the Oxygen Reduction Reaction

    DOE PAGES

    Usov, Pavel M.; Huffman, Brittany; Epley, Charity C.; ...

    2017-03-27

    Here, a highly robust metal–organic framework (MOF) constructed from Zr 6 oxo clusters and Fe(III) porphyrin linkers, PCN-223-Fe was investigated as a heterogeneous catalyst for oxygen reduction reaction (ORR). Films of the framework were grown on a conductive FTO substrate and showed a high catalytic current upon application of cathodic potentials and achieved high H 2O/H 2O 2 selectivity. In addition, the effect of the proton source on the catalytic performance was also investigated.

  6. Coal liquefaction process

    DOEpatents

    Wright, C.H.

    1986-02-11

    A process is described for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range. 1 fig.

  7. Carbon-Coated Core-Shell Fe-Cu Nanoparticles as Highly Active and Durable Electrocatalysts for a Zn-Air Battery.

    PubMed

    Nam, Gyutae; Park, Joohyuk; Choi, Min; Oh, Pilgun; Park, Suhyeon; Kim, Min Gyu; Park, Noejung; Cho, Jaephil; Lee, Jang-Soo

    2015-06-23

    Understanding the interaction between a catalyst and oxygen has been a key step in designing better electrocatalysts for the oxygen reduction reaction (ORR) as well as applying them in metal-air batteries and fuel cells. Alloying has been studied to finely tune the catalysts' electronic structures to afford proper binding affinities for oxygen. Herein, we synthesized a noble-metal-free and nanosized transition metal CuFe alloy encapsulated with a graphitic carbon shell as a highly efficient and durable electrocatalyst for the ORR in alkaline solution. Theoretical models and experimental results demonstrated that the CuFe alloy has a more moderate binding strength for oxygen molecules as well as the final product, OH(-), thus facilitating the oxygen reduction process. Furthermore, the nitrogen-doped graphitic carbon-coated layer, formed catalytically under the influence of iron, affords enhanced charge transfer during the oxygen reduction process and superior durability. These benefits were successfully confirmed by realizing the catalyst application in a mechanically rechargeable Zn-air battery.

  8. Photoreduction of Graphene Oxide and Photochemical Synthesis of Graphene-Metal Nanoparticle Hybrids by Ketyl Radicals.

    PubMed

    Mangadlao, Joey Dacula; Cao, Pengfei; Choi, Diana; Advincula, Rigoberto C

    2017-07-26

    The photoreduction of graphene oxide (GO) using ketyl radicals is demonstrated for the first time. The use of photochemical reduction through ketyl radicals generated by I-2959 or (1-[4-(2-hydroxyethoxy)phenyl]-2-hydroxy-2-methyl-1-propan-1-one) is interesting because it affords spatial and temporal control of the reduction process. Graphene-metal nanoparticle hybrids of Ag, Au, and Pd were also photochemically fabricated in a one-pot procedure. Comprehensive spectroscopic and imaging techniques were carried out to fully characterize the materials. The nanoparticle hybrids showed promising action for the catalytic degradation of model environmental pollutants, namely, 4-nitrophenol, Rose Bengal, and Methyl Orange. The process described can be extended to polymer nanocomposites that can be photopatterned and could be potentially extended to fabricating plastic electronic devices.

  9. Reduced graphene oxide supported gold nanoparticles for electrocatalytic reduction of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Saquib, Mohammad; Halder, Aditi

    2018-02-01

    Electrochemical reduction of carbon dioxide is one of the methods which have the capability to recycle CO2 into valuable products for energy and industrial applications. This research article describes about a new electrocatalyst "reduced graphene oxide supported gold nanoparticles" for selective electrochemical conversion of carbon dioxide to carbon monoxide. The main aim for conversion of CO2 to CO lies in the fact that the latter is an important component of syn gas (a mixture of hydrogen and carbon monoxide), which is then converted into liquid fuel via well-known industrial process called Fischer-Tropsch process. In this work, we have synthesized different composites of the gold nanoparticles supported on defective reduced graphene oxide to evaluate the catalytic activity of reduced graphene oxide (RGO)-supported gold nanoparticles and the role of defective RGO support towards the electrochemical reduction of CO2. Electrochemical and impedance measurements demonstrate that higher concentration of gold nanoparticles on the graphene support led to remarkable decrease in the onset potential of 240 mV and increase in the current density for CO2 reduction. Lower impedance and Tafel slope values also clearly support our findings for the better performance of RGOAu than bare Au for CO2 reduction.

  10. Function of the evolutionarily conserved plant methionine-S-sulfoxide reductase without the catalytic residue.

    PubMed

    Le, Dung Tien; Nguyen, Kim-Lien; Chu, Ha Duc; Vu, Nam Tuan; Pham, Thu Thi Ly; Tran, Lam-Son Phan

    2018-05-28

    In plants, two types of methionine sulfoxide reductase (MSR) exist, namely methionine-S-sulfoxide reductase (MSRA) and methionine-R-sulfoxide reductase (MSRB). These enzymes catalyze the reduction of methionine sulfoxides (MetO) back to methionine (Met) by a catalytic cysteine (Cys) and one or two resolving Cys residues. Interestingly, a group of MSRA encoded by plant genomes does not have a catalytic residue. We asked that if this group of MSRA did not have any function (as fitness), why it was not lost during the evolutionary process. To challenge this question, we analyzed the gene family encoding MSRA in soybean (GmMSRAs). We found seven genes encoding GmMSRAs, which included three segmental duplicated pairs. Among them, a pair of duplicated genes, namely GmMSRA1 and GmMSRA6, was without a catalytic Cys residue. Pseudogenes were ruled out as their transcripts were detected in various tissues and their Ka/Ks ratio indicated a negative selection pressure. In vivo analysis in Δ3MSR yeast strain indicated that the GmMSRA6 did not have activity toward MetO, contrasting to GmMSRA3 which had catalytic Cys and had activity. When exposed to H 2 O 2 -induced oxidative stress, GmMSRA6 did not confer any protection to the Δ3MSR yeast strain. Overexpression of GmMSRA6 in Arabidopsis thaliana did not alter the plant's phenotype under physiological conditions. However, the transgenic plants exhibited slightly higher sensitivity toward salinity-induced stress. Taken together, this data suggested that the plant MSRAs without the catalytic Cys are not enzymatically active and their existence may be explained by a role in regulating plant MSR activity via dominant-negative substrate competition mechanism.

  11. Lewis Acid-Induced Change from Four- to Two-Electron Reduction of Dioxygen Catalyzed by Copper Complexes Using Scandium Triflate

    PubMed Central

    Kakuda, Saya; Rolle, Clarence; Ohkubo, Kei; Siegler, Maxime A.; Karlin, Kenneth D.; Fukuzumi, Shunichi

    2015-01-01

    Mononuclear copper complexes, [(tmpa)CuII(CH3CN)](ClO4)2 (1, tmpa = tris(2-pyridylmethyl)amine) and [(BzQ)CuII(H2O)2](ClO4)2 (2, BzQ = bis(2-quinolinylmethyl)benzylamine)], act as efficient catalysts for the selective two-electron reduction of O2 by ferrocene derivatives in the presence of scandium triflate (Sc(OTf)3), in acetone, whereas 1 catalyzes the four-electron reduction of O2 by the same reductant in the presence of Brønsted acids such as triflic acid. Following formation of the peroxo-bridged dicopper(II) complex [(tmpa)CuII(O2)CuII(tmpa)]2+, the two-electron reduced product of O2 with Sc3+ is observed to be scandium peroxide ([Sc3+(O22−)]+). In the presence of three equiv of hexamethylphosphoric triamide (HMPA), [Sc3+(O22−)]+ was oxidized by [Fe(bpy)3]3+ (bpy = 2,2′-bipyridine) to the known superoxide species [(HMPA)3Sc3+(O2•−)]2+ as detected by EPR spectroscopy. A kinetic study revealed that the rate-determining step of the catalytic cycle for the two-electron reduction of O2 with 1 is electron transfer from Fc* to 1 to give a cuprous complex which is highly reactive toward O2, whereas the rate-determining step with 2 is changed to the reaction of the cuprous complex with O2 following electron transfer from ferrocene derivatives to 2. The explanation for the change in catalytic O2-reaction stoichiometry from four-electron with Brønsted acids to two-electron reduction in the presence of Sc3+ and also for the change in the rate-determining step is clarified based on a kinetics interrogation of the overall catalytic cycle as well as each step of the catalytic cycle with study of the observed effects of Sc3+ on copper-oxygen intermediates. PMID:25659416

  12. [Performance Study of Bromochloracetonitrile Degradation in Drinking Water by Fe/Cu Catalytic Reduction].

    PubMed

    Ding, Chun-sheng; Ma, Hai-long; Fu, Yang-ping; Zhao, Shi-du; Li, Dong-bing

    2015-06-01

    The paper used the method of iron copper catalyst reduction to degrade low concentrations of bromochloracetonitrile (BCAN) to lighten the damage to human being, which is a kind of disinfection by-products (DBPs) produced during the chlorination process of drinking water. The removal efficiency of BCAN and its influencing factors were investigated. The mechanism of degradation and kinetics were also explored. The results indicated that iron copper had a greater degradation ability towards BCAN, and the degradation rate of iron copper (mass ratio of 10:1) was 1.5 times that of the zero-valent iron. The removal of BCAN increased obviously with the increase of Fe/Cu dosage. When the initial concentration was set at 20 microg x L(-1), after a reaction time of 150 min, removal of BCAN was improved from 51.1% to 89.5% with the increase of iron copper (mass ratio of 10:1) dosage from 5 g x L(-1) to 10 g x L(-1). The temperature also had great impact on BCAN removal and the removal increased with the increase of temperature. However, BCAN removal did not change a lot with the variation of the initial concentration of BCAN when it was at a low level. The BCAN degradation by iron copper catalytic-reduction followed the first-order kinetics model.

  13. Selective catalytic reduction of nitrogen oxides over a modified silicoaluminophosphate commercial zeolite.

    PubMed

    Petitto, Carolina; Delahay, Gérard

    2018-03-01

    Nitrogen oxides (NO x : NO, NO 2 ) are a concern due to their adverse health effects. Diesel engine transport sector is the major emitter of NO x . The regulations have been strengthened and to comply with them, one of the two methods commonly used is the selective catalytic reduction of NO x by NH 3 (NH 3 -SCR), NH 3 being supplied by the in-situ hydrolysis of urea. Efficiency and durability of the catalyst for this process are highly required. Durability is evaluated by hydrothermal treatment of the catalysts at temperature above 800°C. In this study, very active catalysts for the NH 3 -SCR of NO x were prepared by using a silicoaluminophosphate commercial zeolite as copper host structure. Characterizations by X-ray diffraction (XRD), scanning electron microscopy (SEM) and temperature programmed desorption of ammonia (NH 3 -TPD) showed that this commercial zeolite was hydrothermally stable up to 850°C and, was able to retain some structural properties up to 950°C. After hydrothermal treatment at 850°C, the NO x reduction efficiency into NH 3 -SCR depends on the copper content. The catalyst with a copper content of 1.25wt.% was the most active. The difference in activity was much more important when using NO than the fast NO/NO 2 reaction mixture. Copyright © 2017. Published by Elsevier B.V.

  14. Biomimetic synthesis of silver nanoparticles using the fish scales of Labeo rohita and their application as catalysts for the reduction of aromatic nitro compounds

    NASA Astrophysics Data System (ADS)

    Sinha, Tanur; Ahmaruzzaman, M.; Sil, A. K.; Bhattacharjee, Archita

    2014-10-01

    In this article, a cleaner, greener, cheaper and environment friendly method for the generation of self assembled silver nanoparticles (Ag NPs) applying a simple irradiation technique using the aqueous extract of the fish scales (which is considered as a waste material) of Labeo rohita is described. Gelatin is considered as the major ingredient responsible for the reduction as well as stabilisation of the self assembled Ag NPs. The size and morphology of the individual Ag NPs can be tuned by controlling the various reaction parameters, such as temperature, concentration, and pH. Studies showed that on increasing concentration and pH Ag NPs size decreases, while on increasing temperature, Ag NPs size increases. The present process does not need any external reducing agent, like sodium borohydride or hydrazine or others and gelatin itself can play a dual role: a ‘reducing agent' and ‘stabilisation agent' for the formation of gelatin-Ag NPs colloidal dispersion. The synthesized Ag NPs were characterised by Ultraviolet-Visible spectroscopy (UV-Vis), Transmission electron microscopy (TEM) and Selected area electron diffraction (SAED) analyses. The synthesized Ag NPs was used to study the catalytic reduction of various aromatic nitro compounds in aqueous and three different micellar media. The hydrophobic and electrostatic interaction between the micelle and the substrate is responsible for the catalytic activity of the nanoparticles in micelle.

  15. DEMONSTRATION OF POTENTIAL FOR SELECTIVE CATALYTIC REDUCTION AND DIESEL PARTICULATE FILTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGILL,R; KHAIR, M; SHARP, C

    2003-08-24

    This project addresses the potential for Selective Catalytic Reduction (SCR) devices (using urea as reductant) together with Diesel Particulate Filters (DPF) and low-pressure loop exhaust gas recirculation (EGR) to achieve future stringent emissions standards for heavy-duty engines powering Class 8 vehicles. Two emission control systems consisting of the three technologies (EGR, SCR, and DPF) were calibrated on a Caterpillar C-12 heavy-duty diesel engine. Results of these calibrations showed good promise in meeting the 2010 heavy-duty emission standards as set forth by the Environmental Protection Agency (EPA). These two emission control systems were developed to evaluate a series of fuels thatmore » have similar formulations except for their sulfur content. Additionally, one fuel, code-named BP15, was also evaluated. This fuel was prepared by processing straight-run distillate stocks through a commercial, single stage hydrotreater employing high activity catalyst at maximum severity. An additional goal of this program is to provide data for an on-going EPA technology review that evaluates progress toward meeting 2007/2010 emission standards. These emissions levels were to be achieved not only on the transient test cycles but in other modes of operation such as the steady-state Euro-III style emission test known as the OICA (Organisation Internationale des Compagnies d'Automobiles) or the ESC (European Stationary Cycle). Additionally, hydrocarbon and carbon monoxide emissions standards are to be met.« less

  16. Catalytic destruction of groundwater contaminants in reactive extraction wells

    DOEpatents

    McNab, Jr., Walt W.; Reinhard, Martin

    2002-01-01

    A system for remediating groundwater contaminated with halogenated solvents, certain metals and other inorganic species based on catalytic reduction reactions within reactive well bores. The groundwater treatment uses dissolved hydrogen as a reducing agent in the presence of a metal catalyst, such a palladium, to reduce halogenated solvents (as well as other substituted organic compounds) to harmless species (e.g., ethane or methane) and immobilize certain metals to low valence states. The reactive wells function by removing water from a contaminated water-bearing zone, treating contaminants with a well bore using catalytic reduction, and then reinjecting the treated effluent into an adjacent water-bearing zone. This system offers the advantages of a compact design with a minimal surface footprint (surface facilities) and the destruction of a broad suite of contaminants without generating secondary waste streams.

  17. A thermodynamic evaluation of the potential for cryptic formation of incidental Au-Fe alloy catalysts during flexible cell experimental studies of abiotic alkanogenesis during serpentinization

    NASA Astrophysics Data System (ADS)

    Lazar, C.

    2017-12-01

    The formation of abiotic alkanes via CO2 reduction during serpentinization is an important process in astrobiology and geochemistry. Aqueous alkane concentrations in natural settings are often non-equilibrated, thus motivating many experimental studies of CO2 reduction kinetics. A well-established result of such studies is the strong catalytic effect of metallic Feo on the conversion rate of CO2 to alkanes. Because alkanogenetic serpentinization experiments often feature Fe-bearing minerals contained in gold vessels, incidental metallic Feo may precipitate during an experiment as Au-Fe alloy. Such alloy may be catalytic, potentially leading to artificially rapid alkanogenesis and an overestimation of the catalytic strength of nominally nonmetallic Fe-bearing minerals, even if isotopically labeled 13C is used. To evaluate this potential for Au-Fe alloying, a thermodynamic analysis of the effect of oxygen fugacity on Au-Fe mixing has been performed at metamorphic grades relevant to experimental alkanogenesis. The results show that even relatively oxidized metal-free mineral assemblages such as the quartz-fayalite-magnetite buffer (QFM) can stably coexist with an Au-Fe alloy containing a few hundred ppm Fe. Given the strong catalytic effect of metallic Fe, any hydrocarbons generated during a hypothetical experiment containing, for example, the QFM assemblage might be catalyzed by trace Fe in an Au-Fe alloy, not by a QFM mineral. The effect is stronger for assemblages more reducing than QFM, which are notably common in serpentinites. This is a source of experimental uncertainty in reusable flexible gold cell apparatus that cannot be assessed by traditional blank experiments, which only demonstrate the effectiveness of post-run acid-cleaning procedures. A more effective approach would be the chemical analysis of a small, recoverable gold chip embedded into the experimental materials. By assuming that the experimental materials interact identically with the Au chip and with the Au vessel wall, it would be possible to explicitly evaluate whether catalytic Au-Fe alloy formed in situ in a given experiment.

  18. Development of sustainable Palladium-based catalysts for removal of persistent contaminants from drinking water

    NASA Astrophysics Data System (ADS)

    Shuai, Danmeng

    Pd-based catalytic reduction has emerged as an advanced treatment technology for drinking water decontamination, and a suite of persistent contaminants including oxyanions, N-nitrosoamines, and halogenated compounds are amenable to catalytic reduction. The primary goal of this study is to develop novel Pd-based catalysts with enhanced performance (i.e., activity, selectivity, and sustainability) to remove contaminants from drinking water. The effects of water quality (i.e., co-contaminants in water matrix), catalyst support, and catalyst metal were explored, and they provide insights for preparing catalysts with faster kinetics, higher selectivity, and extended lifetime. Azo dyes are wide-spread contaminants, and they are potentially co-exisiting with target contaminants amenable for catalytic removal. The probe azo dye methyl orange (MO) enhanced catalytic reduction kinetics of a suite of oxyanions (i.e., nitrate, nitrite, bromate, chlorate, and perchlorate) and diatrizoate significantly but not N-nitrosodimethylamine (NDMA) with a variety of Pd-based catalysts. Nitrate was selected as a probe contaminant, and several different azo dyes (i.e., (methyl orange, methyl red, fast yellow AB, metanil yellow, acid orange 7, congo red, eriochrome black T, acid red 27, acid yellow 11, and acid yellow 17) were evaluated for their ability to enhance reduction. A hydrogen atom shuttling mechanism was proposed and a kinetic model was proposed based on Bronsted-Evans-Polanyi (BEP) theory, and they suggest sorbed azo dyes and reduced hydrazo dyes shuttle hydrogen atoms to oxyanions or diatrizoate to enhance their reduction kinetics. Next, vapor-grown carbon nanofiber (CNF) supports were used to explore the effects of Pd nanoparticle size and interior versus exterior loading on nitrite reduction activity and selectivity (i.e., dinitrogen over ammonia production). In order to evaluate the amount of interior versus exterior loading of Pd nanoparticles, a fast and accurate geometric model was developed based on two-dimensional transmission electron microscopy (2D TEM). Results from my method agree adequately with 3D scanning transmission electron microscopy (3D TEM), which is recognized as a convincing method to evaluate interior versus exterior loading. By using Pd CNF catalysts for nitrite reduction, results show that both activity and selectivity are not significantly impacted by Pd interior versus exterior loading. Turnover frequencies (TOFs) among all CNF catalysts are consistent, suggesting faster kinetics are achieved on catalysts with smaller Pd nanoparticles, and suggesting nitrite reduction is neither sensitive to Pd location on CNFs nor Pd structure. However selectivity to dinitrogen is more favorable on larger Pd nanoparticles. Therefore, an optimum Pd nanoparticle size on CNFs balances high reduction kinetics and selectivity to dinitrogen. CNF Pd catalysts perform better than conventional activated or alumina supported Pd catalysts in term of kinetics and selectivity for nitrite reduction, and they maintain consistent activity during multiple reduction cycles. Lastly, the structure-sensitivity of catalytic activity and selectivity for contaminant nitrite, NDMA, and diatrizoate removal were investigated on shape- and size-controlled Pd nanoparticles. Results show that TOFs for nitrite, NDMA, and diatrizoate are dependent on coordination numbers of surface Pd sites at low contaminant concentration, but TOFs for nitrite at high concentration are consistent. Selectivity to ammonia for nitrite reduction decreases with increasing surface Pd sites, i.e., decreasing Pd nanoparticle size irrespective of nitrite concentration, but NDMA reduction is neither shape- nor size-specific, and it exclusively proceeds to ammonia and dimethylamine. Diatrizoate reduction selectivity is also likely to be nonspecific to shape and size, and a series of deiodinated intermediates, 3,5-diacetamidobenzoic acid, and iodide are the produced. Hence, this study suggests that contaminant reduction kinetics and selectivity are Pd shape and size dependent, and the dependence varies by contaminant type and concentration. In summary, Pd-based catalysts can be tailored for enhanced activity, selectivity, and longevity, and catalytic treatment holds the promise for advanced drinking water treatment.

  19. High Performance Electrocatalytic Reaction of Hydrogen and Oxygen on Ruthenium Nanoclusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Ruquan; Liu, Yuanyue; Peng, Zhiwei

    2017-01-18

    The development of catalytic materials for the hydrogen oxidation, hydrogen evolution, oxygen reduction or oxygen evolution reactions with high reaction rates and low overpotentials are key goals for the development of renewable energy. We report here Ru(0) nanoclusters supported on nitrogen-doped graphene as high-performance multifunctional catalysts for the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR), showing activities similar to that of commercial Pt/C in alkaline solution. For HER performance in alkaline media, sample Ru/NG-750 reaches 10 mA cm-2 at an overpotential of 8 mV with a Tafel slope of 30 mV dec-1. The high HER performance in alkalinemore » solution is advantageous because most catalysts for ORR and oxygen evolution reaction (OER) also prefer alkaline solution environment whereas degrade in acidic electrolytes. For ORR performance, Ru/NG effectively catalyzes the conversion of O2 into OH- via a 4e process at a current density comparable to that of Pt/C. The unusual catalytic activities of Ru(0) nanoclusters reported here are important discoveries for the advancement of renewable energy conversion reactions.« less

  20. Concept for Recycling Waste Biomass from the Sugar Industry for Chemical and Biotechnological Purposes.

    PubMed

    Modelska, Magdalena; Berlowska, Joanna; Kregiel, Dorota; Cieciura, Weronika; Antolak, Hubert; Tomaszewska, Jolanta; Binczarski, Michał; Szubiakiewicz, Elzbieta; Witonska, Izabela A

    2017-09-13

    The objective of this study was to develop a method for the thermally-assisted acidic hydrolysis of waste biomass from the sugar industry (sugar beet pulp and leaves) for chemical and biotechnological purposes. The distillates, containing furfural, can be catalytically reduced directly into furfurayl alcohol or tetrahydrofurfuryl alcohol. The sugars present in the hydrolysates can be converted by lactic bacteria into lactic acid, which, by catalytic reduction, leads to propylene glycol. The sugars may also be utilized by microorganisms in the process of cell proliferation, and the biomass obtained used as a protein supplement in animal feed. Our study also considered the effects of the mode and length of preservation (fresh, ensilage, and drying) on the yields of furfural and monosaccharides. The yield of furfural in the distillates was measured using gas chromatography with flame ionization detector (GC-FID). The content of monosaccharides in the hydrolysates was measured spectrophotometrically using enzymatic kits. Biomass preserved under all tested conditions produced high yields of furfural, comparable to those for fresh material. Long-term storage of ensiled waste biomass did not result in loss of furfural productivity. However, there were significant reductions in the amounts of monosaccharides in the hydrolysates.

  1. Catalytic behavior of a palladium doped binder free paper based cobalt electrode in electroreduction of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Zhang, Dongming; Ye, Ke; Cao, Dianxue; Yin, Jinling; Cheng, Kui; Wang, Bin; Xu, Yang; Wang, Guiling

    2015-01-01

    A piece of flexible and conductive A4 paper is prepared by coating a layer of graphite with a normal 8B pencil. Then, Co nano-plates and Pd are assembled by a simple electrodeposition and chemical-reduction methods on the surface of the electrified paper, respectively. The as-prepared paper substrate/graphite-Co film-Pd (PG-CoPd) electrode is characterized by scanning electron microscopy equipped with energy dispersive X-ray spectrometer, transmission electron microscope and X-ray diffractometer. The catalytic activity of the PG-CoPd electrode for H2O2 electroreduction is investigated by means of cyclic voltammetry and chronoamperometry. The preparation process of the PG-CoPd electrode does not use any binder and it exhibits a three dimensional (3D) nano structure, high stability and good electric conductivity. The mass of the Pd in PG-CoPd is about 0.0535 mg cm-2 and the reduction current density reaches to -4.30 A cm-2 mg-1 in 1 mol dm-3 NaOH and 1.4 mol dm-3 H2O2 at -0.5 V, which is higher than our previous reports of Au/Pd modified Co electrode.

  2. Cobalt ion-coordinated self-assembly synthesis of nitrogen-doped ordered mesoporous carbon nanosheets for efficiently catalyzing oxygen reduction.

    PubMed

    Wang, Haitao; Wang, Wei; Asif, Muhammad; Yu, Yang; Wang, Zhengyun; Wang, Junlei; Liu, Hongfang; Xiao, Junwu

    2017-10-19

    The design and synthesis of a promising porous carbon-based electrocatalyst with an ordered and uninterrupted porous structure for oxygen reduction reaction (ORR) is still a significant challenge. Herein, an efficient catalyst based on cobalt-embedded nitrogen-doped ordered mesoporous carbon nanosheets (Co/N-OMCNS) is successfully prepared through a two-step procedure (cobalt ion-coordinated self-assembly and carbonization process) using 3-aminophenol as a nitrogen source, cobalt acetate as a cobalt source and Pluronic F127 as a mesoporous template. This work indicates that the formation of a two dimensional nanosheet structure is directly related to the extent of the cobalt ion coordination interaction. Moreover, the critical roles of pyrolysis temperature in nitrogen doping and ORR catalytic activity are also investigated. Benefiting from the high surface area and graphitic degree, high contents of graphitic N and pyridinic N, ordered interconnected mesoporous carbon framework, as well as synergetic interaction between the cobalt nanoparticles and protective nitrogen doped graphitic carbon layer, the resultant optimal catalyst Co/N-OMCNS-800 (pyrolyzed at 800 °C) exhibits comparable ORR catalytic activity to Pt/C, superior tolerance to methanol crossover and stability.

  3. Correlating the Integral Sensing Properties of Zeolites with Molecular Processes by Combining Broadband Impedance and DRIFT Spectroscopy—A New Approach for Bridging the Scales

    PubMed Central

    Chen, Peirong; Schönebaum, Simon; Simons, Thomas; Rauch, Dieter; Dietrich, Markus; Moos, Ralf; Simon, Ulrich

    2015-01-01

    Zeolites have been found to be promising sensor materials for a variety of gas molecules such as NH3, NOx, hydrocarbons, etc. The sensing effect results from the interaction of the adsorbed gas molecules with mobile cations, which are non-covalently bound to the zeolite lattice. The mobility of the cations can be accessed by electrical low-frequency (LF; mHz to MHz) and high-frequency (HF; GHz) impedance measurements. Recent developments allow in situ monitoring of catalytic reactions on proton-conducting zeolites used as catalysts. The combination of such in situ impedance measurements with diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), which was applied to monitor the selective catalytic reduction of nitrogen oxides (DeNOx-SCR), not only improves our understanding of the sensing properties of zeolite catalysts from integral electric signal to molecular processes, but also bridges the length scales being studied, from centimeters to nanometers. In this work, recent developments of zeolite-based, impedimetric sensors for automotive exhaust gases, in particular NH3, are summarized. The electrical response to NH3 obtained from LF impedance measurements will be compared with that from HF impedance measurements, and correlated with the infrared spectroscopic characteristics obtained from the DRIFTS studies of molecules involved in the catalytic conversion. The future perspectives, which arise from the combination of these methods, will be discussed. PMID:26580627

  4. Highly active Pd-In/mesoporous alumina catalyst for nitrate reduction.

    PubMed

    Gao, Zhenwei; Zhang, Yonggang; Li, Deyi; Werth, Charles J; Zhang, Yalei; Zhou, Xuefei

    2015-04-09

    The catalytic reduction of nitrate is a promising technology for groundwater purification because it transforms nitrate into nitrogen and water. Recent studies have mainly focused on new catalysts with higher activities for the reduction of nitrate. Consequently, metal nanoparticles supported on mesoporous metal oxides have become a major research direction. However, the complex surface chemistry and porous structures of mesoporous metal oxides lead to a non-uniform distribution of metal nanoparticles, thereby resulting in a low catalytic efficiency. In this paper, a method for synthesizing the sustainable nitrate reduction catalyst Pd-In/Al2O3 with a dimensional structure is introduced. The TEM results indicated that Pd and In nanoparticles could efficiently disperse into the mesopores of the alumina. At room temperature in CO2-buffered water and under continuous H2 as the electron donor, the synthesized material (4.9 wt% Pd) was the most active at a Pd-In ratio of 4, with a first-order rate constant (k(obs) = 0.241 L min(-1) g(cata)(-1)) that was 1.3× higher than that of conventional Pd-In/Al2O3 (5 wt% Pd; 0.19 L min(-1) g(cata)(-1)). The Pd-In/mesoporous alumina is a promising catalyst for improving the catalytic reduction of nitrate. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Synthesis and Catalytic Evaluation of Dendrimer-Encapsulated Cu Nanoparticles: An Undergraduate Experiment Exploring Catalytic Nanomaterials

    ERIC Educational Resources Information Center

    Feng, Z. Vivian; Lyon, Jennifer L.; Croley, J. Sawyer; Crooks, Richard M.; Vanden Bout, David A.; Stevenson, Keith J.

    2009-01-01

    Copper nanoparticles were synthesized using generation 4 hydroxyl-terminated (G4-OH) poly(amidoamine) (PAMAM) dendrimers as templates. The synthesis is conducted by coordinating copper ions with the interior amines of the dendrimer, followed by chemical reduction to form dendrimer-encapsulated copper nanoparticles (Cu-DEN). The catalytic…

  6. Porous Carbon-Hosted Atomically Dispersed Iron-Nitrogen Moiety as Enhanced Electrocatalysts for Oxygen Reduction Reaction in a Wide Range of pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Shaofang; Zhu, Chengzhou; Su, Dong

    As one of the alternatives to replace precious metal catalysts, transition-metal–nitrogen–carbon (M–N–C) electrocatalysts have attracted great research interest due to their low cost and good catalytic activities. Despite nanostructured M–N–C catalysts can achieve good electrochemical perfor-mances, they are vulnerable to aggregation and insufficient catalytic sites upon continuous catalytic reaction. In this work, metal–organic frameworks derived porous single-atom electrocatalysts (SAEs) were successfully prepared by simple pyrolysis procedure without any further posttreatment. Combining the X-ray absorption near-edge spectroscopy and electrochemical measure-ments, the SAEs have been identified with superior oxygen reduction reaction (ORR) activity and stability compared with Pt/C catalysts in alkaline condition.more » More impressively, the SAEs also show excellent ORR electrocatalytic perfor-mance in both acid and neutral media. This study of nonprecious catalysts provides new insights on nanoengineering catalytically active sites and porous structures for nonprecious metal ORR catalysis in a wide range of pH.« less

  7. Recent developments of nano-structured materials as the catalysts for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Kang, SungYeon; Kim, HuiJung; Chung, Yong-Ho

    2018-04-01

    Developments of high efficient materials for electrocatalyst are significant topics of numerous researches since a few decades. Recent global interests related with energy conversion and storage lead to the expansion of efforts to find cost-effective catalysts that can substitute conventional catalytic materials. Especially, in the field of fuel cell, novel materials for oxygen reduction reaction (ORR) have been noticed to overcome disadvantages of conventional platinum-based catalysts. Various approaching methods have been attempted to achieve low cost and high electrochemical activity comparable with Pt-based catalysts, including reducing Pt consumption by the formation of hybrid materials, Pt-based alloys, and not-Pt metal or carbon based materials. To enhance catalytic performance and stability, numerous methods such as structural modifications and complex formations with other functional materials are proposed, and they are basically based on well-defined and well-ordered catalytic active sites by exquisite control at nanoscale. In this review, we highlight the development of nano-structured catalytic materials for ORR based on recent findings, and discuss about an outlook for the direction of future researches.

  8. Porous Carbon-Hosted Atomically Dispersed Iron–Nitrogen Moiety as Enhanced Electrocatalysts for Oxygen Reduction Reaction in a Wide Range of pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Shaofang; Zhu, Chengzhou; Su, Dong

    2018-02-01

    As one of the alternatives to replace precious metal catalysts, transition-metal–nitrogen–carbon (M–N–C) electrocatalysts have attracted great research interest due to their low cost and good catalytic activities. Despite nanostructured M–N–C catalysts can achieve good electrochemical perfor-mances, they are vulnerable to aggregation and insufficient catalytic sites upon continuous catalytic reaction. In this work, metal–organic frameworks derived porous single-atom electrocatalysts (SAEs) were successfully prepared by simple pyrolysis procedure without any further posttreatment. Combining the X-ray absorption near-edge spectroscopy and electrochemical measure-ments, the SAEs have been identified with superior oxygen reduction reaction (ORR) activity and stability compared with Pt/C catalysts in alkaline condition.more » More impressively, the SAEs also show excellent ORR electrocatalytic perfor-mance in both acid and neutral media. This study of nonprecious catalysts provides new insights on nanoengineering catalytically active sites and porous structures for nonprecious metal ORR catalysis in a wide range of pH.« less

  9. Engineering New Catalysts for In-Process Elimination of Tars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felix, Larry G.

    2012-09-30

    The key objective of this project was to develop a new and more efficient methodology for engineering and economically producing optimized robust catalysts for the reduction or elimination of tars in biomass gasification. Whereas current catalyst technology typically disposes thin layers of catalytically-active material onto rigid supports via wet chemistry-based methods, this project investigated novel thermal methods for directly incorporating catalytically active materials onto robust supports as well as novel approaches for incorporating catalytically active materials on and/or within an otherwise inert refractory support material which is then subsequently formed and processed to create a catalytically-active material on all exposedmore » surfaces. Specifically, the focus of this engineered catalyst development was on materials which were derived from, or otherwise related to, olivine-like minerals, due to the inherent attrition resistance and moderate catalytic properties exhibited by natural olivine when used in a fluidized bed biomass gasifier. Task 1 of this project successfully demonstrated the direct thermal impregnation of catalytically-active materials onto an olivine substrate, with the production of a Ni-olivine catalyst. Nickel and nickel oxide were thermally impregnated onto an olivine substrate and when reduced were shown to demonstrate improved catalytic activity over the baseline olivine material and equal the tar-decomposing performance of Ni-olivine catalysts prepared by conventional wet impregnation. Task 2 involved coordination with our subcontracted project partners to further develop and characterize catalyst formulations and to optimize activity and production methods. Within this task, several significant new materials were developed. NexTech Materials developed a sintered ceramic nickel-magnesium-silicate catalyst that demonstrated superb catalytic activity and high resistance to deactivation by H2S. Alfred University developed both supported and integrated (bulk) catalysts via a glass-ceramic processing route which were shown to exhibit excellent catalytic activity and superior resistance to attrition deactivation. With the discovery of these active, robust, glass-based catalysts, and with the permission of the project officer, the investigation of waste-based materials as originally proposed for Task 3 and pilot-scale testing proposed in Task 5 were deferred indefinitely in favor of further investigation of the glass-ceramic based catalyst materials. This choice was justified in part because during FY 2006 and through FY 2007, funding restrictions imposed by congressional budget choices significantly reduced funding for DOE biomass-related projects. Funding for this project was limited to what had been authorized which slowed the pace of project work at GTI so that our project partners could continue in their work. Thereafter, project work was allowed to resume and with restored funding, the project continued and concentrated on the development and testing of glass-ceramic catalysts in bulk or supported formats. Work concluded with a final development devoted to increasing the surface area of glass-ceramic catalysts in the form of microspheres. Following that development, project reporting was completed and the project was concluded.« less

  10. Investigation of catalytic reduction and filter techniques for simultaneous measurements of NO, NO2, and HNO3 in the stratosphere

    NASA Technical Reports Server (NTRS)

    Wendt, J.; Fabian, Peter; Flentje, G.; Kourtidis, K.

    1994-01-01

    A concept for measuring stratospheric NOy-species is presented which utilizes the catalytic reduction of NO2 and HNO3 over heated metal catalysts and the chemisorption of HNO3 on Nylon. Using the Max Planck Institute for Aeronomy (MPAE) chemiluminescent balloon-borne sonde, stratospheric NO and NO2 profiles have been measured since 1983. NO is detected by chemiluminescence produced in reaction with O3 while NO2 needs first to be converted to NO over a heated stainless steel catalyst. To improve this technique for simultaneously measuring HNO3, the catalytic reduction of NO2 and HNO3 over several metal catalysts and the chemisorption of NO2 and HNO3 on Nylon have been investigated in laboratory tests. The results of these tests under simulated stratospheric conditions are presented in detail in this paper. They demonstrate that the simultaneous measurement of NO, NO2 and HNO3 is indeed possible with the combination of stainless steel or Au as a catalyst and a nylon filter.

  11. Gold Decorated Graphene for Rapid Dye Reduction and Efficient Electro Catalytic Oxidation of Ethanol

    NASA Astrophysics Data System (ADS)

    Siddhardha, R. S.; Kumar v, Lakshman; Kaniyoor, A.; Podila, R.; Kumar, V. S.; Venkataramaniah, K.; Ramaprabhu, S.; Rao, A.; Ramamurthy, S. S.; Clemson University Team; Sri Sathya Sai Institute of Higher Learning Team; IITMadras Team

    2013-03-01

    A well known disadvantage in fabrication of metal-graphene composite is the use of surfactants that strongly adsorb on the surface and reduce the performance of the catalyst. Here, we demonstrate a novel one pot synthesis of gold nanoparticles (AuNPs) by laser ablation of gold strip and simultaneous decoration of these on functionalized graphene derivatives. Not only the impregnation of AuNPs was linker free, but also the synthesis by itself was surfactant free. This resulted in in-situ decoration of pristine AuNPs on functionalized graphene derivatives. These materials were well characterized and tested for catalytic applications pertaining to dye reduction and electrooxidation. The catalytic reduction rates are 1.4 x 102 and 9.4x102 times faster for Rhodamine B and Methylene Blue dyes respectively, compared to earlier reports. The enhanced rate involves synergistic interplay of electronic relay between AuNPs and the dye, also charge transfer between the graphene system and dye. In addition, the onset potential for ethanol oxidation was found to be more negative ~ 100 mV, an indication of its promising application in direct ethanol fuel cells.

  12. Catalytic and non-catalytic pyrolysis of biomass in non-inert environments for production of deoxygenated bio-oil and chemicals

    USDA-ARS?s Scientific Manuscript database

    Fast pyrolysis processes are among the most effective methods for liquefaction of lignocellulosic biomass. Catalytic fast pyrolysis (CFP) over HZSM-5 or other zeolites and/or utilization of reactive atmospheres such as in the non-catalytic Tail Gas Reactive Pyrolysis (TRGP) process, a recent patent...

  13. Water-Gas Shift and Methane Reactivity on Reducible Perovskite-Type Oxides

    PubMed Central

    2015-01-01

    Comparative (electro)catalytic, structural, and spectroscopic studies in hydrogen electro-oxidation, the (inverse) water-gas shift reaction, and methane conversion on two representative mixed ionic–electronic conducting perovskite-type materials La0.6Sr0.4FeO3−δ (LSF) and SrTi0.7Fe0.3O3−δ (STF) were performed with the aim of eventually correlating (electro)catalytic activity and associated structural changes and to highlight intrinsic reactivity characteristics as a function of the reduction state. Starting from a strongly prereduced (vacancy-rich) initial state, only (inverse) water-gas shift activity has been observed on both materials beyond ca. 450 °C but no catalytic methane reforming or methane decomposition reactivity up to 600 °C. In contrast, when starting from the fully oxidized state, total methane oxidation to CO2 was observed on both materials. The catalytic performance of both perovskite-type oxides is thus strongly dependent on the degree/depth of reduction, on the associated reactivity of the remaining lattice oxygen, and on the reduction-induced oxygen vacancies. The latter are clearly more reactive toward water on LSF, and this higher reactivity is linked to the superior electrocatalytic performance of LSF in hydrogen oxidation. Combined electron microscopy, X-ray diffraction, and Raman measurements in turn also revealed altered surface and bulk structures and reactivities. PMID:26045733

  14. Effects of the state of Co species in Co/Al2O3 catalysts on the catalytic performance of propane dehydrogenation

    NASA Astrophysics Data System (ADS)

    Li, Xiuyi; Wang, Pengzhao; Wang, Haoren; Li, Chunyi

    2018-05-01

    In this paper, the Co/Al2O3 catalyst was prepared by incipient wetness impregnation method, and different post treatment methods were used to promote its dehydrogenation properties. Interestingly, we found that Co/Al2O3 catalysts with different post treatment protocols exhibited totally different catalytic behaviors in propane dehydrogenation. Fresh catalyst showed an induction period and was highly active for pyrolysis and coking at 10-30 min of reaction. The pre-reduction led to complete pyrolysis and coking at the beginning of reaction. However, the re-oxidation treatment gave a high selectivity (∼93.0%) to propylene at the whole process. XRD, H2-TPR, XPS, TEM and hydrogen chemisorption investigations showed that the post treatment has a great impact on the state of cobalt species and the performance of propane dehydrogenation over Co/Al2O3 catalysts. Specifically, the poorly dispersed metal Co led to pyrolysis and coking, while highly dispersed metal Co were responsible for the dehydrogenation of propane. The large Co3O4 particles (DFresh = 33.68 nm) result in the large metal Co grains (DPre-reduced = 24.90 nm) after the reduction or reaction process. While during the re-oxidization process, the surface metal Co was re-oxidized in a mild environment and got re-dispersion (DRe-oxidized = 6.07 nm). And the surface cobalt oxides layer is more readily to be reduced to metal Co during the reaction thus leading to the shortened induction period.

  15. Catalytic cracking process

    DOEpatents

    Lokhandwala, Kaaeid A.; Baker, Richard W.

    2001-01-01

    Processes and apparatus for providing improved catalytic cracking, specifically improved recovery of olefins, LPG or hydrogen from catalytic crackers. The improvement is achieved by passing part of the wet gas stream across membranes selective in favor of light hydrocarbons over hydrogen.

  16. New insight into the promoting role of process on the CeO₂-WO₃/TiO₂ catalyst for NO reduction with NH₃ at low-temperature.

    PubMed

    Zhang, Shule; Zhong, Qin; Shen, Yuge; Zhu, Li; Ding, Jie

    2015-06-15

    This study aimed at investigating the reason of high catalytic activity for CeO2-WO3/TiO2 catalyst from the aspects of WO3 interaction with other species and the NO oxidation process. Analysis by X-ray diffractometry, photoluminescence spectra, diffuse reflectance UV-visible, X-ray photoelectron spectroscopy, density functional theory calculations, electron paramagnetic resonance spectroscopy, temperature-programmed-desorption of NO and in situ diffuse reflectance infrared transform spectroscopy showed that WO3 could interact with CeO2 to improve the electron gaining capability of CeO2 species. In addition, WO3 species acted as electron donating groups to transfer the electrons to CeO2 species. The two aspects enhanced the formation of reduced CeO2 species to improve the formation of superoxide ions. Furthermore, the Ce species were the active sites for the NO adsorption and the superoxide ions over the catalyst needed oxidizing the adsorbed NO to improve the NO oxidation. This process was responsible for the high catalytic activity of CeO2-WO3/TiO2 catalyst. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Synthesis of three-dimensional reduced graphene oxide layer supported cobalt nanocrystals and their high catalytic activity in F-T CO2 hydrogenation.

    PubMed

    He, Fei; Niu, Na; Qu, Fengyu; Wei, Shuquan; Chen, Yujin; Gai, Shili; Gao, Peng; Wang, Yan; Yang, Piaoping

    2013-09-21

    The reduced graphene oxide (rGO) supported cobalt nanocrystals have been synthesized through an in situ crystal growth method using Co(acac)2 under solvothermal conditions by using DMF as the solvent. By carefully controlling the reaction temperature, the phase transition of the cobalt nanocrystals from the cubic phase to the hexagonal phase has been achieved. Moreover, the microscopic structure and morphology as well as the reduction process of the composite have been investigated in detail. It is found that oxygen-containing functional groups on the graphene oxide (GO) can greatly influence the formation process of the Co nanocrystals by binding the Co(2+) cations dissociated from the Co(acac)2 in the initial reaction solution at 220 °C, leading to the 3D reticular structure of the composite. Furthermore, this is the first attempt to use a Co/rGO composite as the catalyst in the F-T CO2 hydrogenation process. The catalysis testing results reveal that the as-synthesized 3D structured composite exhibits ideal catalytic activity and good stability, which may greatly extend the scope of applications for this kind of graphene-based metal hybrid material.

  18. Mechanism of catalytic gasification of coal char. Quarterly technical report No. 5, October 1 to December 31, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, B. J.; Sancier, K. M.; Sheridan, D. R.

    1982-02-26

    The purpose of this study is to determine the mechanisms involved in the catalytic reactions of coal char and to identify the specific reaction steps and the parameters that control the catalytic process. The mode of action of the catalyst can be viewed in two ways. In one view, the catalyst participates in a reduction/oxidation cycle. The initial reaction between the carbon and the catalyst reduces the KOH to potassium accompanied by the gaseous reactant (H/sub 2/O or CO/sub 2/), producing further gaseous products (CO and H/sub 2/) and regenerating the initial state of the catalyst. In an alternative view,more » the catalyst initially forms an alkali metal addition compound with the carbon network of the char. The carbon-carbon bonds are altered by the formation of the metal-carbon linkage, possibly by electron transfer from the alkali metal atom to the carbon structure. As a result, the carbon structure is more readily attacked by the gaseous reactant (CO or H/sub 2/O) to produce the products of gasification. The following areas were investigated to provide experimental evidence for these catalytic modes of action: chemical kinetic measurements; thermodynamic measurements; free radicals in reacting carbon; electrical conductivity measurements. A detailed discussion on the catalyst-carbon interaction and on the reaction intermediate is provided.« less

  19. Ag nanoparticles loading of polypyrrole-coated superwetting mesh for on-demand separation of oil-water mixtures and catalytic reduction of aromatic dyes.

    PubMed

    Yihan, Sun; Mingming, Liu; Guo, Zhiguang

    2018-05-19

    Herein, a catalytic mesh with unique wettability, high oil-water separation efficiency and excellent catalytic performance towards aromatic dyes was fabricated. Polypyrrole (PPy) was firstly pre-coated on pristine stainless-steel mesh (SSM) surface via cyclic voltammetry approach. Subsequently, a simple electrodeposition process was performed to prepare and anchor Ag nanoparticles (AgNPs) onto the PPy-coated SSM surface. The PPy-coated mesh with anchored AgNPs was denoted as PPy/AgNPs-coated SSM. The obtained PPy/AgNPs-coated SSM exhibited dual superlyophobic properties and were able to achieve on-demand separation to deal with various of light oil (ρ oil  < ρ water ) and heavy oil (ρ oil  > ρ water )-water mixtures. Importantly, benefitting from AgNPs on mesh surface, the obtained PPy/AgNPs-coated SSM exhibits exceptional catalytic activity. As proof-of-concept three typical aromatic dye molecules (methylene blue, rhodamine B and Congo red) can be effectivity degraded. Additionally, the degradation of aromatic dyes and oil-water separation were achieved simultaneously when the PPy/AgNPs-coated SSM was converted to water-removing mode. Therefore, the present work is of great significance to the development of novel oil-water filtration membranes and can open a new avenue towards the practicability of metal nanoparticle catalysts in wastewater treatment. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Catalytic mechanism in cyclic voltammetry at disc electrodes: an analytical solution.

    PubMed

    Molina, Angela; González, Joaquín; Laborda, Eduardo; Wang, Yijun; Compton, Richard G

    2011-08-28

    The theory of cyclic voltammetry at disc electrodes and microelectrodes is developed for a system where the electroactive reactant is regenerated in solution using a catalyst. This catalytic process is of wide importance, not least in chemical sensing, and it can be characterized by the resulting peak current which is always larger than that of a simple electrochemical reaction; in contrast the reverse peak is always relatively diminished in size. From the theoretical point of view, the problem involves a complex physical situation with two-dimensional mass transport and non-uniform surface gradients. Because of this complexity, hitherto the treatment of this problem has been tackled mainly by means of numerical methods and so no analytical expression was available for the transient response of the catalytic mechanism in cyclic voltammetry when disc electrodes, the most popular practical geometry, are used. In this work, this gap is filled by presenting an analytical solution for the application of any sequence of potential pulses and, in particular, for cyclic voltammetry. The induction principle is applied to demonstrate mathematically that the superposition principle applies whatever the geometry of the electrode, which enabled us to obtain an analytical equation valid whatever the electrode size and the kinetics of the catalytic reaction. The theoretical results obtained are applied to the experimental study of the electrocatalytic Fenton reaction, determining the rate constant of the reduction of hydrogen peroxide by iron(II).

  1. Nitrate reduction over a Pd-Cu/MWCNT catalyst: application to a polluted groundwater.

    PubMed

    Soares, Olivia Salomé G P; Orfão, José J M; Gallegos-Suarez, Esteban; Castillejos, Eva; Rodríguez-Ramos, Inmaculada; Pereira, Manuel Fernando R

    2012-01-01

    The influence of the presence of inorganic and organic matter during the catalytic reduction of nitrate in a local groundwater over a Pd-Cu catalyst supported on carbon nanotubes was investigated. It was observed that the catalyst performance was affected by the groundwater composition. The nitrate conversion attained was higher in the experiment using only deionized water as solvent than in the case of simulated or real groundwater. With exception of sulphate ions, all the other solutes evaluated (chloride and phosphate ions and natural organic matter) had a negative influence on the catalytic activity and selectivity to nitrogen.

  2. System and method for controlling an engine based on ammonia storage in multiple selective catalytic reduction catalysts

    DOEpatents

    Sun, MIn; Perry, Kevin L.

    2015-11-20

    A system according to the principles of the present disclosure includes a storage estimation module and an air/fuel ratio control module. The storage estimation module estimates a first amount of ammonia stored in a first selective catalytic reduction (SCR) catalyst and estimates a second amount of ammonia stored in a second SCR catalyst. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the first amount, the second amount, and a temperature of a substrate disposed in the second SCR catalyst.

  3. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2.

    PubMed

    Ju, Wen; Bagger, Alexander; Hao, Guang-Ping; Varela, Ana Sofia; Sinev, Ilya; Bon, Volodymyr; Roldan Cuenya, Beatriz; Kaskel, Stefan; Rossmeisl, Jan; Strasser, Peter

    2017-10-16

    Direct electrochemical reduction of CO 2 to fuels and chemicals using renewable electricity has attracted significant attention partly due to the fundamental challenges related to reactivity and selectivity, and partly due to its importance for industrial CO 2 -consuming gas diffusion cathodes. Here, we present advances in the understanding of trends in the CO 2 to CO electrocatalysis of metal- and nitrogen-doped porous carbons containing catalytically active M-N x moieties (M = Mn, Fe, Co, Ni, Cu). We investigate their intrinsic catalytic reactivity, CO turnover frequencies, CO faradaic efficiencies and demonstrate that Fe-N-C and especially Ni-N-C catalysts rival Au- and Ag-based catalysts. We model the catalytically active M-N x moieties using density functional theory and correlate the theoretical binding energies with the experiments to give reactivity-selectivity descriptors. This gives an atomic-scale mechanistic understanding of potential-dependent CO and hydrocarbon selectivity from the M-N x moieties and it provides predictive guidelines for the rational design of selective carbon-based CO 2 reduction catalysts.Inexpensive and selective electrocatalysts for CO 2 reduction hold promise for sustainable fuel production. Here, the authors report N-coordinated, non-noble metal-doped porous carbons as efficient and selective electrocatalysts for CO 2 to CO conversion.

  4. Uranium oxide catalysts: environmental applications for treatment of chlorinated organic waste from nuclear industry.

    PubMed

    Lazareva, Svetlana; Ismagilov, Zinfer; Kuznetsov, Vadim; Shikina, Nadezhda; Kerzhentsev, Mikhail

    2018-02-05

    Huge amounts of nuclear waste, including depleted uranium, significantly contribute to the adverse environmental situation throughout the world. An approach to the effective use of uranium oxides in catalysts for the deep oxidation of chlorine-containing hydrocarbons is suggested. Investigation of the catalytic activity of the synthesized supported uranium oxide catalysts doped with Cr, Mn and Co transition metals in the chlorobenzene oxidation showed that these catalysts are comparable with conventional commercial ones. Physicochemical properties of the catalysts were studied by X-ray diffraction, temperature-programmed reduction with hydrogen (H 2 -TPR), and Fourier transform infrared spectroscopy. The higher activity of Mn- and Co-containing uranium oxide catalysts in the H 2 -TPR and oxidation of chlorobenzene in comparison with non-uranium catalysts may be related to the formation of a new disperse phase represented by uranates. The study of chlorobenzene adsorption revealed that the surface oxygen is involved in the catalytic process.

  5. In situ generation of highly dispersed metal nanoparticles on two-dimensional layered SiO2 by topotactic structure conversion and their superior catalytic activity

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Jia, Da-Shuang; Zhou, Yue; Hao, Jiang; Liang, Yu; Cui, Zhi-Min; Song, Wei-Guo

    2018-03-01

    Metal nanoparticles such as Ag, Cu and Fe are effective catalysts for many reactions, whereas a facile method to prepare metal nanoparticles with high uniformed dispersion is still desirable. Herein, the topotactic structure conversion of layered silicate, RUB-15, was utilized to support metal nanoparticles. Through simple ion-exchange and following calcination step, metal nanoparticles were generated in situ inside the interlayer space of layered silica, and the topotactic structure conversion process assured nano-sized and highly uniformed dispersion of metal nanoparticles. The obtained Ag/SiO2 composite showed superior catalytic activity for the reduction of 4-nitrophenol (4-NP) and methylene blue (MB), with a rate constant as high as 0.0607 s-1 and 0.0778 s-1. The simple and universal synthesis method as well as high activity of the product composite endow the strategy good application prospect.

  6. Conformational Flexibility of Metazoan Fatty Acid Synthase Enables Catalysis

    PubMed Central

    Brignole, Edward J.; Smith, Stuart; Asturias, Francisco J.

    2008-01-01

    The metazoan cytosolic fatty acid synthase (FAS) contains all of the enzymes required for de novo fatty acid biosynthesis covalently linked around two reaction chambers. While the 3D architecture of FAS has been mostly defined, it is unclear how reaction intermediates can transfer between distant catalytic domains. Using single-particle electron microscopy we have identified a near continuum of conformations consistent with remarkable flexibility of FAS. The distribution of conformations was influenced by the presence of substrates and altered by different catalytic mutations suggesting a direct correlation between conformation and specific enzymatic activities. 3D reconstructions were interpreted by docking high-resolution structures of individual domains and illustrate that the substrate loading and condensation domains dramatically swing and swivel to access substrates within either reaction chamber. Concomitant rearrangement of the β-carbon processing domains synchronizes acyl-chain reduction in one chamber with acyl-chain elongation in the other. PMID:19151726

  7. Tandem Nitrogen Functionalization of Porous Carbon: Toward Immobilizing Highly Active Palladium Nanoclusters for Dehydrogenation of Formic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhangpeng; Yang, Xinchun; Tsumori, Nobuko

    2017-03-10

    Highly dispersed palladium nanoclusters (Pd NCs) immobilized by a nitrogen (N)-functionalized porous carbon support (N-MSC-30) are synthesized by a wet chemical reduction method, wherein the N-MSC-30 prepared by a tandem low temperature heat-treatment approach proved to be a distinct support for stabilizing the Pd NCs. The prepared Pd/N-MSC-30 shows extremely high catalytic activity and recyclability for the dehydrogenation of formic acid (FA), affording the highest turnover frequency (TOF = 8414 h -1) at 333 K, which is much higher than that of the Pd catalyst supported on the N-MSC-30 prepared via a one-step process. This tandem heat treatment strategy providesmore » a facile and effective synthetic methodology to immobilize ultrafine metal NPs on N-functionalized carbon materials, which have tremendous application prospects in various catalytic fields.« less

  8. Direct catalytic hydrothermal liquefaction of spirulina to biofuels with hydrogen

    NASA Astrophysics Data System (ADS)

    Zeng, Qin; Liao, Hansheng; Zhou, Shiqin; Li, Qiuping; Wang, Lu; Yu, Zhihao; Jing, Li

    2018-01-01

    We report herein on acquiring biofuels from direct catalytic hydrothermal liquefaction of spirulina. The component of bio-oil from direct catalytic hydrothermal liquefaction was similar to that from two independent processes (including liquefaction and upgrading of biocrude). However, one step process has higher carbon recovery, due to the less loss of carbons. It was demonstrated that the yield and HHV of bio-oil from direct catalytic algae with hydrothermal condition is higher than that from two independent processes.

  9. Green Adeptness in the Synthesis and Stabilization of Copper Nanoparticles: Catalytic, Antibacterial, Cytotoxicity, and Antioxidant Activities

    NASA Astrophysics Data System (ADS)

    Din, Muhammad Imran; Arshad, Farhan; Hussain, Zaib; Mukhtar, Maria

    2017-12-01

    Copper nanoparticles (CuNPs) are of great interest due to their extraordinary properties such as high surface-to-volume ratio, high yield strength, ductility, hardness, flexibility, and rigidity. CuNPs show catalytic, antibacterial, antioxidant, and antifungal activities along with cytotoxicity and anticancer properties in many different applications. Many physical and chemical methods have been used to synthesize nanoparticles including laser ablation, microwave-assisted process, sol-gel, co-precipitation, pulsed wire discharge, vacuum vapor deposition, high-energy irradiation, lithography, mechanical milling, photochemical reduction, electrochemistry, electrospray synthesis, hydrothermal reaction, microemulsion, and chemical reduction. Phytosynthesis of nanoparticles has been suggested as a valuable alternative to physical and chemical methods due to low cytotoxicity, economic prospects, environment-friendly, enhanced biocompatibility, and high antioxidant and antimicrobial activities. The review explains characterization techniques, their main role, limitations, and sensitivity used in the preparation of CuNPs. An overview of techniques used in the synthesis of CuNPs, synthesis procedure, reaction parameters which affect the properties of synthesized CuNPs, and a screening analysis which is used to identify phytochemicals in different plants is presented from the recent published literature which has been reviewed and summarized. Hypothetical mechanisms of reduction of the copper ion by quercetin, stabilization of copper nanoparticles by santin, antimicrobial activity, and reduction of 4-nitrophenol with diagrammatic illustrations are given. The main purpose of this review was to summarize the data of plants used for the synthesis of CuNPs and open a new pathway for researchers to investigate those plants which have not been used in the past.

  10. Ligand-controlled Fe mobilization catalyzed by adsorbed Fe(II) on Fe(hydr)oxides

    NASA Astrophysics Data System (ADS)

    Kang, Kyounglim; Biswakarma, Jagannath; Borowski, Susan C.; Hug, Stephan J.; Hering, Janet G.; Schenkeveld, Walter D. C.; Kraemer, Stephan M.

    2017-04-01

    Dissolution of Fe(hydr)oxides is a key process in biological iron acquisition. Due to the low solubility of iron oxides in environments with a circumneutral pH, organisms may exude organic compounds catalyzing iron mobilization by reductive and ligand controlled dissolution mechanisms. Recently, we have shown synergistic effects between reductive dissolution and ligand-controlled dissolution that may operate in biological iron acquisition. The synergistic effects were observed in Fe mobilization from single goethite suspensions as well as in suspensions containing calcareous soil[1],[2]. However, how the redox reaction accelerates Fe(hydr)oxide dissolution by ligands is not studied intensively. In our study, we hypothesized that electron transfer to structural Fe(III) labilizes the Fe(hydr)oxide structure, and that this can accelerate ligand controlled dissolution. Systematical batch dissolution experiments were carried out under anoxic conditions at environmentally relevant pH values in which various Fe(hydr)oxides (goethite, hematite, lepidocrocite) interacted with two different types of ligand (desferrioxamine B (DFOB) and N,N'-Di(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid monohydrochloride (HBED)). Electron transfer to the structure was induced by adsorbing Fe(II) to the mineral surface at various Fe(II) concentrations. Our results show a distinct catalytic effect of adsorbed Fe(II) on ligand controlled dissolution, even at submicromolar Fe(II) concentrations. We observed the effect for a range of iron oxides, but it was strongest in lepidocrocite, most likely due to anisotropy in conductivity leading to higher near-surface concentration of reduced iron. Our results demonstrate that the catalytic effect of reductive processes on ligand controlled dissolution require a very low degree of reduction making this an efficient process for biological iron acquisition and a potentially important effect in natural iron cycling. References 1. Wang, Z. M.; Schenkeveld, W. D. C.; Kraemer, S. M.; Giammar, D. E. Environ. Sci. Technol. 2015, 49, (12), 7236-7244. 2. Schenkeveld, W. D. C.; Wang, Z. M.; Giammar, D. E.; Kraemer, S. M. Environ. Sci. Technol. 2016, 50, (12), 6381-6388.

  11. Biopolymer coated gold nanocrystals prepared using the green chemistry approach and their shape-dependent catalytic and surface-enhanced Raman scattering properties.

    PubMed

    Chou, Chih-Wei; Hsieh, Hui-Hsuan; Hseu, You-Cheng; Chen, Ko-Shao; Wang, Gou-Jen; Chang, Hsien-Chang; Pan, Yong-Li; Wei, Yi-Syuan; Chang, Ko Hsin; Harn, Yeu-Wei

    2013-07-21

    This study deals with the preparation of multi-shaped nanoscale gold crystals under synthetically simple, green, and efficient conditions using a seed-mediated growth approach in the presence of hyaluronic acid (HA). These highly biocompatible multi-shaped gold nanocrystals were examined to evaluate their catalytic and surface enhanced Raman scattering (SERS) properties. The results show that the size and shape of the nanocrystals are mainly correlated to the amount of seed, seed size, HA concentration, and reaction temperature. Gold seeds accelerate the reduction of the gold precursor to form gold nanocrystals using HA. The HA serves as a reducing agent and a growth template for the reduction of Au(III) and nanocrystal stabilization. The multi-shaped gold nanocrystals showed superior catalytic properties and higher SERS performance. The simple, green approach efficiently controls the nanocrystals and creates many opportunities for future applications.

  12. One-pot synthesis of hierarchical FeZSM-5 zeolites from natural aluminosilicates for selective catalytic reduction of NO by NH3

    PubMed Central

    Yue, Yuanyuan; Liu, Haiyan; Yuan, Pei; Yu, Chengzhong; Bao, Xiaojun

    2015-01-01

    Iron-modified ZSM-5 zeolites (FeZSM-5s) have been considered to be a promising catalyst system to reduce nitrogen oxide emissions, one of the most important global environmental issues, but their synthesis faces enormous economic and environmental challenges. Herein we report a cheap and green strategy to fabricate hierarchical FeZSM-5 zeolites from natural aluminosilicate minerals via a nanoscale depolymerization-reorganization method. Our strategy is featured by neither using any aluminum-, silicon-, or iron-containing inorganic chemical nor involving any mesoscale template and any post-synthetic modification. Compared with the conventional FeZSM-5 synthesized from inorganic chemicals with the similar Fe content, the resulting hierarchical FeZSM-5 with highly-dispersed iron species showed superior catalytic activity in the selective catalytic reduction of NO by NH3. PMID:25791958

  13. Co@Co3O4 nanoparticle embedded nitrogen-doped carbon architectures as efficient bicatalysts for oxygen reduction and evolution reactions

    NASA Astrophysics Data System (ADS)

    Qi, Chunling; Zhang, Li; Xu, Guancheng; Sun, Zhipeng; Zhao, Aihua; Jia, Dianzeng

    2018-01-01

    The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play crucial roles in efficient energy conversion and storage solutions. Here, Co@Co3O4 nanoparticle embedded nitrogen-doped carbon architectures (denoted as Co@Co3O4/NCs) are prepared via a simple two-step and in situ approach by carbonization and subsequent oxidation of Co-MOF containing high contents of carbon and nitrogen. When evaluated as electrocatalyst towards both ORR and OER in a KOH electrolyte solution, the as-fabricated Co@Co3O4/NC-2 exhibits similar ORR catalytic activity to the commercial Pt/C catalyst, but superior stability and good methanol tolerance. Furthermore, the as-fabricated catalysts also show promising catalytic activity for OER. The effective catalytic activities originate from the synergistic effects between well wrapped Co@Co3O4 nanoparticles and nitrogen doped carbon structures.

  14. Additive Manufacturing of Catalytically Active Living Materials.

    PubMed

    Saha, Abhijit; Johnston, Trevor G; Shafranek, Ryan T; Goodman, Cassandra J; Zalatan, Jesse G; Storti, Duane W; Ganter, Mark A; Nelson, Alshakim

    2018-04-25

    Living materials, which are composites of living cells residing in a polymeric matrix, are designed to utilize the innate functionalities of the cells to address a broad range of applications such as fermentation and biosensing. Herein, we demonstrate the additive manufacturing of catalytically active living materials (AMCALM) for continuous fermentation. A multi-stimuli-responsive yeast-laden hydrogel ink, based on F127-dimethacrylate, was developed and printed using a direct-write 3D printer. The reversible stimuli-responsive behaviors of the polymer hydrogel inks to temperature and pressure are critical, as they enabled the facile incorporation of yeast cells and subsequent fabrication of 3D lattice constructs. Subsequent photo-cross-linking of the printed polymer hydrogel afforded a robust elastic material. These yeast-laden living materials were metabolically active in the fermentation of glucose into ethanol for 2 weeks in a continuous batch process without significant reduction in efficiency (∼90% yield of ethanol). This cell immobilization platform may potentially be applicable toward other genetically modified yeast strains to produce other high-value chemicals in a continuous biofermentation process.

  15. Topotactic Metal-Insulator Transition in Epitaxial SrFeO x Thin Films

    DOE PAGES

    Khare, Amit; Shin, Dongwon; Yoo, Tae Sup; ...

    2017-07-31

    Multivalent transition metal oxides provide fascinating and rich physics related to oxygen stoichiometry. In particular, the adoptability of various valence states of transition metals enables perovskite oxides to display mixed (oxygen) ionic and electronic conduction and catalytic activity useful in many practical applications, including solid-oxide fuel cells (SOFCs), rechargeable batteries, gas sensors, and memristive devices. For proper realization of the ionic conduction and catalytic activity, it is essential to understand the reversible oxidation and reduction process, which is governed by oxygen storage/release steps in oxides. Topotactic phase transformation facilitates the redox process in perovskites with specific oxygen vacancy ordering bymore » largely varying the oxygen concentration of a material without losing the lattice framework. The concentration and diffusion of oxide ions (O 2–), the valence state of the transition metal cations, and the thermodynamic structural integrity together provide fundamental understanding and ways to explicitly control the redox reaction.[6] In addition, it offers an attractive route for tuning the emergent physical properties of transition metal oxides, via strong coupling between the crystal lattice and electronic structure.« less

  16. Solid state green synthesis and catalytic activity of CuO nanorods in thermal decomposition of potassium periodate

    NASA Astrophysics Data System (ADS)

    Patel, Vinay Kumar; Bhattacharya, Shantanu

    2017-09-01

    The present study reports a facile solid state green synthesis process using the leaf extracts of Hibiscus rosa-sinensis to synthesize CuO nanorods with average diameters of 15-20 nm and lengths up to 100 nm. The as-synthesized CuO nanorods were characterized by x-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and selected area electron diffraction. The formation mechanism of CuO nanorods has been explained by involving the individual role of amide I (amino groups) and carboxylate groups under excess hydroxyl ions released from NaOH. The catalytic activity of CuO nanorods in thermal decomposition of potassium periodate microparticles (µ-KIO4) microparticles was studied by thermo gravimetric analysis measurement. The original size (~100 µm) of commercially procured potassium periodate was reduced to microscale length scale to about one-tenth by PEG200 assisted emulsion process. The CuO nanorods prepared by solid state green route were found to catalyze the thermal decomposition of µ-KIO4 with a reduction of 18 °C in the final thermal decomposition temperature of potassium periodate.

  17. ZIF-67 incorporated with carbon derived from pomelo peels: A highly efficient bifunctional catalyst for oxygen reduction/evolution reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hao; Yin, Feng-Xiang; Chen, Biao-Hua

    Developing carbon catalyst materials using natural, abundant and renewable resources as precursors plays an increasingly important role in clean energy generation and environmental protection. In this work, N-doped pomelo-peel-derived carbon (NPC) materials were prepared using a widely available food waste-pomelo peels and melamine. The synthetic NPC exhibits well-defined porosities and a highly doped-N content (e.g. 6.38 at% for NPC-2), therefore affords excellent oxygen reduction reaction (ORR) catalytic activities in alkaline electrolytes. NPC was further integrated with ZIF-67 to form ZIF-67@NPC hybrids through solvothermal reactions. The hybrid catalysts show substantially enhanced ORR catalytic activities comparable to that of commercial 20 wamore » Pt/C. Furthermore, the catalysts also exhibit excellent oxygen evolution reaction (OER) catalytic activities. Among all prepared ZIF-67@NPC hybrids, the optimal composition with ZIF-67 to NPC ratio of 2:1 exhibits the best ORR and OER bifunctional catalytic performance and the smallest Delta E (E-OER@10 mA cm(-2)-E-ORR@-1 mA cm(-2)) value of 0.79 V. The catalyst also demonstrated desirable 4-electron transfer pathways and superior catalytic stabilities. The Co-N-4 in ZIF-67, electrochemical active surface area, and the strong interactions between ZIF-67 and NPC are attributed as the main contributors to the bifunctional catalytic activities. These factors act synergistically, resulting in substantially enhanced bifunctional catalytic activities and stabilities; consequently, this hybrid catalyst is among the best of the reported bifunctional electrocatalysts and is promising for use in metal-air batteries and fuel cells. (C) 2016 Elsevier B.V. All rights reserved.« less

  18. Electron transfer of Pseudomonas aeruginosa CP1 in electrochemical reduction of nitric oxide.

    PubMed

    Zhou, Shaofeng; Huang, Shaobin; He, Jiaxin; Li, Han; Zhang, Yongqing

    2016-10-01

    This study reports catalytic electro-chemical reduction of nitric oxide (NO) enhanced by Pseudomonas aeruginosa strain CP1. The current generated in the presence of bacteria was 4.36times that in the absence of the bacteria. The strain was able to catalyze electro-chemical reduction of NO via indirect electron transfer with an electrode, revealed by a series of cyclic voltammetry experiments. Soluble electron shuttles secreted into solution by live bacteria were responsible for the catalytic effects. The enhancement of NO reduction was also confirmed by detection of nitrous oxide; the level of this intermediate was 46.4% higher in the presence of bacteria than in controls, illustrated that the electron transfer pathway did not directly reduce nitric oxide to N2. The findings of this study may offer a new model for bioelectrochemical research in the field of NO removal by biocatalysts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarty, Jon; Berry, Brian; Lundberg, Kare

    This final report describes a 2000-2003 program for the development of components and processes to enhance the commercialization of ultra-low emissions catalytic combustion in industrial gas turbines. The range of project tasks includes: development of more durable, lower-cost catalysts and catalytic combustor components; development and design of a catalytic pre-burner and a catalytic pilot burner for gas turbines, and on-site fuel conversion processing for utilization of liquid fuel.

  20. Highly reusability surface loaded metal particles magnetic catalyst microspheres (MCM-MPs) for treatment of dye-contaminated water

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Zhang, Kun; Yin, Xiaoshuang; Yang, Wenzhong; Zhu, Hongjun

    2016-04-01

    The metal-deposited magnetic catalyst microspheres (MCM-MPs) were successfully synthesized by one facile, high yield and controllable approach. Here, the bare magnetic microspheres were firstly synthesized according to the solvothermal method. Then silica shell were coated on the surface of the magnetic microspheres via sol-gel method, and subsequently with surface modifying with amino in the purpose to form SiO2-NH2 shell. Thus, metal particles were easily adsorbed into the SiO2-NH2 shell and in-situ reduced by NaBH4 solution. All the obtained products (MCM-Cu, MCM-Ag, MCM-Pd) which were monodisperse and constitutionally stable were exhibited high magnetization and excellent catalytic activity towards dyes solution reduction. The catalytic rate ratio of MCM-Pd: MCM-Cu: MCM-Ag could be 10:3:1. Besides, some special coordination compound Cu2(OH)3Br had been generated in the in-situ reduced process of MCM-Cu, which produced superior cyclical stability (>20 times) than that of MCM-Ag and MCM-Pd. In all, those highly reusability and great catalytic efficiency of MCM-MPs show promising and great potential for treatment of dye-contaminated water.

  1. Nonisothermal bioreactors in the treatment of vegetation waters from olive oil: laccase versus syringic acid as bioremediation model.

    PubMed

    Attanasio, Angelina; Diano, Nadia; Grano, Valentina; Sicuranza, Stefano; Rossi, Sergio; Bencivenga, Umberto; Fraconte, Luigi; Di Martino, Silvana; Canciglia, Paolo; Mita, Damiano Gustavo

    2005-01-01

    Laccase from Trametes versicolor was immobilized by diazotization on a nylon membrane grafted with glycidil methacrylate, using phenylenediamine as spacer and coupling agent. The behavior of these enzyme derivatives was studied under isothermal and nonisothermal conditions by using syringic acid as substrate, in view of the employment of these membranes in processes of detoxification of vegetation waters from olive oil mills. The pH and temperature dependence of catalytic activity under isothermal conditions has shown that these membranes can be usefully employed under extreme pH and temperatures. When employed under nonisothermal conditions, the membranes exhibited an increase of catalytic activity linearly proportional to the applied transmembrane temperature difference. Percentage activity increases ranging from 62% to 18% were found in the range of syringic acid concentration from 0.02 to 0.8 mM, when a difference of 1 degrees C was applied across the catalytic membrane. Because the percentage activity increase is strictly related to the reduction of the production times, the technology of nonisothermal bioreactors has been demonstrated to be an useful tool also in the treatment of vegetation waters from olive oil mills.

  2. Demographic transition and the dynamics of measles in six provinces in China: A modeling study

    PubMed Central

    Su, Qiru; An, Zhijie; Ma, Fubao; Xie, Shuyun; Xu, Aiqiang; Zhang, Yanyang; Ding, Zhengrong; Li, Hui; Wang, Huaqing; Luo, Huiming; Wang, Ning; Li, Li; Ferrari, Matthew J.

    2017-01-01

    Background Industrialization and demographic transition generate nonstationary dynamics in human populations that can affect the transmission and persistence of infectious diseases. Decades of increasing vaccination and development have led to dramatic declines in the global burden of measles, but the virus remains persistent in much of the world. Here we show that a combination of demographic transition, as a result of declining birth rates, and reduced measles prevalence, due to improved vaccination, has shifted the age distribution of susceptibility to measles throughout China. Methods and findings We fit a novel time-varying catalytic model to three decades of age-specific measles case reporting in six provinces in China to quantify the change in the age-specific force of infection for measles virus over time. We further quantified the impact of supplemental vaccination campaigns on the reduction of susceptible individuals. The force of infection of measles has declined dramatically (90%–97% reduction in transmission rate) in three industrialized eastern provinces during the last decade, driving a concomitant increase in both the relative proportion and absolute number of adult cases, while three central and western provinces exhibited dynamics consistent with endemic persistence (24%–73% reduction in transmission rate). The reduction in susceptible individuals due to supplemental vaccination campaigns is frequently below the nominal campaign coverage, likely because campaigns necessarily vaccinate those who may already be immune. The impact of these campaigns has significantly improved over time: campaigns prior to 2005 were estimated to have achieved less than 50% reductions in the proportion susceptible in the target age classes, but campaigns from 2005 onwards reduced the susceptible proportion by 32%–87%. A limitation of this study is that it relies on case surveillance, and thus inference may be biased by age-specific variation in measles reporting. Conclusions The age distribution of measles cases changes in response to both demographic and vaccination processes. Combining both processes in a novel catalytic model, we illustrate that age-specific incidence patterns reveal regional differences in the progress to measles elimination and the impact of vaccination controls in China. The shift in the age distribution of measles susceptibility in response to demographic and vaccination processes emphasizes the importance of progressive control strategies and measures to evaluate program success that anticipate and react to this transition in observed incidence. PMID:28376084

  3. Multifunctional nanocomposites of Fe3O4-graphene-Au for repeated use in simultaneous adsorption, in situ SERS detection and catalytic reduction of 4-nitrophenol in water

    NASA Astrophysics Data System (ADS)

    Chen, Fenghua; Wang, Yongwei; Chen, Qingtao; Han, Lifeng; Chen, Zhijun; Fang, Shaoming

    2014-12-01

    This work is directed towards the synthesis of a ternary nanocomposite of Fe3O4-graphene-Au, i.e. Fe3O4 nanoparticles (˜300 nm in size) and Au nanoparticles (˜50 nm in size) loaded on the carbon basal planes of reduced graphene oxide, aimed for repeated use in simultaneous adsorption, in situ SERS detection and catalytic reduction of 4-nitrophenol (4-NP) in water, and also for recovering the useful reduction product of 4-aminophenol (4-AP). The results indicate that the amount of 4-NP and 4-AP absorbed to the prepared Fe3O4-graphene-Au nanocomposite can reach 170 mg g-1 and 447 mg g-1, respectively. The reduction reaction of 4-NP to 4-AP by NaBH4 with the Fe3O4-graphene-Au nanocomposite as a catalyst follows first-order kinetics with a rate constant (k) of about 0.4964 min-1, remarkably superior to the 0.1199 min-1 for the reduction reaction with the bare Au nanoparticles under the same conditions. In addition, in situ SERS can also be carried out to detect 4-NP and to monitor the reduction reaction with Fe3O4-graphene-Au as the substrate. Recycling of the composite can be achieved by simply applying an external magnetic field and the results demonstrate that it can be reused at least eight times with almost unaffected catalytic efficiency.

  4. Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery.

    PubMed

    Chew, Thiam Leng; Bhatia, Subhash

    2008-11-01

    In Malaysia, there has been interest in the utilization of palm oil and oil palm biomass for the production of environmental friendly biofuels. A biorefinery based on palm oil and oil palm biomass for the production of biofuels has been proposed. The catalytic technology plays major role in the different processing stages in a biorefinery for the production of liquid as well as gaseous biofuels. There are number of challenges to find suitable catalytic technology to be used in a typical biorefinery. These challenges include (1) economic barriers, (2) catalysts that facilitate highly selective conversion of substrate to desired products and (3) the issues related to design, operation and control of catalytic reactor. Therefore, the catalytic technology is one of the critical factors that control the successful operation of biorefinery. There are number of catalytic processes in a biorefinery which convert the renewable feedstocks into the desired biofuels. These include biodiesel production from palm oil, catalytic cracking of palm oil for the production of biofuels, the production of hydrogen as well as syngas from biomass gasification, Fischer-Tropsch synthesis (FTS) for the conversion of syngas into liquid fuels and upgrading of liquid/gas fuels obtained from liquefaction/pyrolysis of biomass. The selection of catalysts for these processes is essential in determining the product distribution (olefins, paraffins and oxygenated products). The integration of catalytic technology with compatible separation processes is a key challenge for biorefinery operation from the economic point of view. This paper focuses on different types of catalysts and their role in the catalytic processes for the production of biofuels in a typical palm oil and oil palm biomass-based biorefinery.

  5. Interrogating heterobimetallic co-catalytic responses for the electrocatalytic reduction of CO2 using supramolecular assembly.

    PubMed

    Machan, Charles W; Kubiak, Clifford P

    2016-10-12

    The use of hydrogen-bonding interactions to direct the non-covalent assembly of a heterobimetallic supramolecular system with Re and Mn bipyridine-based electrocatalysts is reported. Under catalytic conditions, the formation of hydrogen bonds generates a catalyst system which passes ∼10% more current than the individual current responses of the respective Re and Mn complexes for the reduction of CO 2 to CO and H 2 O. Infrared spectroelectrochemical studies indicate that the Re and Mn metal centers interact during the reduction mechanism, even forming heterobimetallic bonds under reducing conditions in the absence of substrate. These findings demonstrate that non-covalent assembly is a powerful method for generating new co-catalyst systems with greater reactivity and efficiency for transformations of interest.

  6. Catalytic two-electron reduction of dioxygen by ferrocene derivatives with manganese(V) corroles.

    PubMed

    Jung, Jieun; Liu, Shuo; Ohkubo, Kei; Abu-Omar, Mahdi M; Fukuzumi, Shunichi

    2015-05-04

    Electron transfer from octamethylferrocene (Me8Fc) to the manganese(V) imidocorrole complex (tpfc)Mn(V)(NAr) [tpfc = 5,10,15-tris(pentafluorophenyl)corrole; Ar = 2,6-Cl2C6H3] proceeds efficiently to give an octamethylferrocenium ion (Me8Fc(+)) and [(tpfc)Mn(IV)(NAr)](-) in acetonitrile (MeCN) at 298 K. Upon the addition of trifluoroacetic acid (TFA), further reduction of [(tpfc)Mn(IV)(NAr)](-) by Me8Fc gives (tpfc)Mn(III) and ArNH2 in deaerated MeCN. TFA also results in hydrolysis of (tpfc)Mn(V)(NAr) with residual water to produce a protonated manganese(V) oxocorrole complex ([(tpfc)Mn(V)(OH)](+)) in deaerated MeCN. [(tpfc)Mn(V)(OH)](+) is rapidly reduced by 2 equiv of Me8Fc in the presence of TFA to give (tpfc)Mn(III) in deaerated MeCN. In the presence of dioxygen (O2), (tpfc)Mn(III) catalyzes the two-electron reduction of O2 by Me8Fc with TFA in MeCN to produce H2O2 and Me8Fc(+). The rate of formation of Me8Fc(+) in the catalytic reduction of O2 follows zeroth-order kinetics with respect to the concentrations of Me8Fc and TFA, whereas the rate increases linearly with increasing concentrations of (tpfc)Mn(V)(NAr) and O2. These kinetic dependencies are consistent with the rate-determining step being electron transfer from (tpfc)Mn(III) to O2, followed by further proton-coupled electron transfer from Me8Fc to produce H2O2 and [(tpfc)Mn(IV)](+). Rapid electron transfer from Me8Fc to [(tpfc)Mn(IV)](+) regenerates (tpfc)Mn(III), completing the catalytic cycle. Thus, catalytic two-electron reduction of O2 by Me8Fc with (tpfc)Mn(V)(NAr) as a catalyst precursor proceeds via a Mn(III)/Mn(IV) redox cycle.

  7. Integrated NO{sub x} control at New England Power, Salem Harbor Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frish, M.B.; Johnson, S.A.; Comer, J.P.

    Selective non-catalytic reduction (SNCR) is a viable technology for reducing NO{sub x} emissions from coal-fired boilers, especially those older units where large capital expenditures for alternative technologies may not be justified. However, NO{sub x} reduction efficiency of the SNCR process is maximized when the proper amount of reagent is injected at the proper temperature and dispersed rapidly enough to avoid ammonia slip. Early NEP experience at Salem Harbor station indicated that NO{sub x} reductions of 60% were achievable with SNCR. However, less NO{sub x} reductions were tolerated to avoid NH{sub 3} slip and subsequent flyash contamination and visible stack plumemore » resulting from excess ammonia. Preliminary tests by PSI Environmental showed that ammonia slip could be monitored in real time using their patented SpectraScan{trademark}-NH{sub 3} instrument, and that furnace exit temperature could be continuously monitored and controlled using GasTemp{trademark} another PSI Environmental product. Based on this information, detailed tests were planned to show integrated control over the SNCR process. A goal of the project was to achieve lower NO{sub x} with less reagent! This paper describes the status of the project.« less

  8. New Directions for the Photocatalytic Reduction of CO2: Supramolecular, scCO2 or Biphasic Ionic Liquid-scCO2 Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grills, D.C.; Fujita, E.

    2010-09-02

    There is an urgent need for the discovery of carbon-neutral sources of energy to avoid the consequences of global warming caused by ever-increasing atmospheric CO{sub 2} levels. An attractive possibility is to use CO{sub 2} captured from industrial emissions as a feedstock for the production of useful fuels and precursors such as carbon monoxide and methanol. An active field of research to achieve this goal is the development of catalysts capable of harnessing solar energy for use in artificial photosynthetic processes for CO{sub 2} reduction. Transition-metal complexes are excellent candidates, and it has already been shown that they can bemore » used to reduce CO{sub 2} with high quantum efficiency. However, they generally suffer from poor visible light absorption, short catalyst lifetimes, and poor reaction rates. In this Perspective, the field of photocatalytic CO{sub 2} reduction is introduced, and recent developments that seek to improve the efficiency of such catalytic processes are highlighted, especially CO{sub 2} reduction with supramolecules and molecular systems in supercritical CO{sub 2} (scCO{sub 2}) or biphasic ionic liquid-scCO{sub 2} mixtures.« less

  9. Dissolution of Pt during Oxygen Reduction Reaction Produces Pt Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Je Hyun; Brocenschi, Ricardo F.; Kisslinger, Kim

    The loss of Pt during the oxygen reduction reaction (ORR) affects the performance and economic viability of fuel cells and sensors. Our group previously observed the dissolution of Pt nanoelectrodes at moderately negative potentials during the ORR. Here we report a more detailed study of this process and identify its product. The nanoporous Pt surface formed during the ORR was visualized by AFM and high-resolution SEM, which also showed ~5 nm sized Pt particles on the glass surface surrounding the electrode. Furthermore, the release of these nanoparticles into the solution was confirmed by monitoring their catalytically amplified collisions with amore » Hg-coated microelectrode used as the tip in the scanning electrochemical microscope (SECM).« less

  10. Dissolution of Pt during Oxygen Reduction Reaction Produces Pt Nanoparticles

    DOE PAGES

    Bae, Je Hyun; Brocenschi, Ricardo F.; Kisslinger, Kim; ...

    2017-11-15

    The loss of Pt during the oxygen reduction reaction (ORR) affects the performance and economic viability of fuel cells and sensors. Our group previously observed the dissolution of Pt nanoelectrodes at moderately negative potentials during the ORR. Here we report a more detailed study of this process and identify its product. The nanoporous Pt surface formed during the ORR was visualized by AFM and high-resolution SEM, which also showed ~5 nm sized Pt particles on the glass surface surrounding the electrode. Furthermore, the release of these nanoparticles into the solution was confirmed by monitoring their catalytically amplified collisions with amore » Hg-coated microelectrode used as the tip in the scanning electrochemical microscope (SECM).« less

  11. Ag/α-Fe2O3 hollow microspheres: Preparation and application for hydrogen peroxide detection

    NASA Astrophysics Data System (ADS)

    Kang, Xinyuan; Wu, Zhiping; Liao, Fang; Zhang, Tingting; Guo, Tingting

    2015-09-01

    In this paper, we demonstrated a simple approach for preparing α-Fe2O3 hollow spheres by mixing ferric nitrate aqueous and glucose in 180 °C. The glucose was found to act as a soft template in the process of α-Fe2O3 hollow spheres formation. Ag/α-Fe2O3 hollow nanocomposite was obtained under UV irradiation without additional reducing agents or initiators. Synthesized Ag/α-Fe2O3 hollow composites exhibited remarkable catalytic performance toward H2O2 reduction. The electrocatalytic activity mechanism of Ag/α-Fe2O3/GCE were discussed toward the reduction of H2O2 in this paper.

  12. Flexible nitrogen-doped graphene/carbon nanotube/Co3O4 paper and its oxygen reduction activity

    NASA Astrophysics Data System (ADS)

    Li, Shan-Shan; Cong, Huai-Ping; Wang, Ping; Yu, Shu-Hong

    2014-06-01

    Due to the demand of an efficient, inexpensive and scalable synthesis of oxygen reduction reaction (ORR) catalyst for practical application in fuel cell, we demonstrate a facile strategy to fabricate the flexible nitrogen-doped graphene/carbon nanotube/Co3O4 (NG/CNT/Co3O4) paper catalyst. In the hydrothermal process, the in situ formation of Co3O4 nanoparticles, reduction of GO and doping of nitrogen species occur simultaneously in the assembled paper in ammonia solution. Because of the synergistic effects of three active components and the spacing effect of CNTs and Co3O4 nanoparticles on avoiding the re-aggregation of assembled graphene nanosheets, the free-standing NG/CNT/Co3O4 paper exhibits an enhanced ORR catalytic performance with stable durability and strong methanol-tolerant capability, indicating promising potential as ORR electrocatalyst in practical applications.Due to the demand of an efficient, inexpensive and scalable synthesis of oxygen reduction reaction (ORR) catalyst for practical application in fuel cell, we demonstrate a facile strategy to fabricate the flexible nitrogen-doped graphene/carbon nanotube/Co3O4 (NG/CNT/Co3O4) paper catalyst. In the hydrothermal process, the in situ formation of Co3O4 nanoparticles, reduction of GO and doping of nitrogen species occur simultaneously in the assembled paper in ammonia solution. Because of the synergistic effects of three active components and the spacing effect of CNTs and Co3O4 nanoparticles on avoiding the re-aggregation of assembled graphene nanosheets, the free-standing NG/CNT/Co3O4 paper exhibits an enhanced ORR catalytic performance with stable durability and strong methanol-tolerant capability, indicating promising potential as ORR electrocatalyst in practical applications. Electronic supplementary information (ESI) available: XRD patterns, elemental mapping images, DSC-TGA curves and XPS spectrum of NG/CNT/Co3O4 paper; SEM images and XPS spectra of NG/Co3O4 paper; RDE curves and corresponding K-L plots of different catalysts. See DOI: 10.1039/c4nr02101k

  13. Green synthesis of Pd nanoparticles at Apricot kernel shell substrate using Salvia hydrangea extract: Catalytic activity for reduction of organic dyes.

    PubMed

    Khodadadi, Bahar; Bordbar, Maryam; Nasrollahzadeh, Mahmoud

    2017-03-15

    For the first time the extract of the plant of Salvia hydrangea was used to green synthesis of Pd nanoparticles (NPs) supported on Apricot kernel shell as an environmentally benign support. The Pd NPs/Apricot kernel shell as an effective catalyst was prepared through reduction of Pd 2+ ions using Salvia hydrangea extract as the reducing and capping agent and Pd NPs immobilization on Apricot kernel shell surface in the absence of any stabilizer or surfactant. According to FT-IR analysis, the hydroxyl groups of phenolics in Salvia hydrangea extract as bioreductant agents are directly responsible for the reduction of Pd 2+ ions and formation of Pd NPs. The as-prepared catalyst was characterized by Fourier transform infrared (FT-IR) and UV-Vis spectroscopy, field emission scanning electron microscopy (FESEM) equipped with an energy dispersive X-ray spectroscopy (EDS), Elemental mapping, X-ray diffraction analysis (XRD) and transmittance electron microscopy (TEM). The synthesized catalyst was used in the reduction of 4-nitrophenol (4-NP), Methyl Orange (MO), Methylene Blue (MB), Rhodamine B (RhB), and Congo Red (CR) at room temperature. The Pd NPs/Apricot kernel shell showed excellent catalytic activity in the reduction of these organic dyes. In addition, it was found that Pd NPs/Apricot kernel shell can be recovered and reused several times without significant loss of catalytic activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. GREEN AND SUSTAINABLE REMEDIATION BEST MANAGEMENT PRACTICES

    DTIC Science & Technology

    2016-09-07

    adoption. The technologies covered include air sparging, biosparging, soil vapor extraction (SVE), enhanced reductive dechlorination (ERD), in situ...RPM Remedial Project Manager SCR selective catalytic reduction SEE steam enhanced extraction SVE soil vapor extraction TCE trichloroethene...further promote their adoption. The technologies covered include air sparging, biosparging, soil vapor extraction (SVE), enhanced reductive

  15. Exclusive Ni-N4 Sites Realize Near-Unity CO Selectivity for Electrochemical CO2 Reduction.

    PubMed

    Li, Xiaogang; Bi, Wentuan; Chen, Minglong; Sun, Yuexiang; Ju, Huanxin; Yan, Wensheng; Zhu, Junfa; Wu, Xiaojun; Chu, Wangsheng; Wu, Changzheng; Xie, Yi

    2017-10-25

    Electrochemical reduction of carbon dioxide (CO 2 ) to value-added carbon products is a promising approach to reduce CO 2 levels and mitigate the energy crisis. However, poor product selectivity is still a major obstacle to the development of CO 2 reduction. Here we demonstrate exclusive Ni-N 4 sites through a topo-chemical transformation strategy, bringing unprecedentedly high activity and selectivity for CO 2 reduction. Topo-chemical transformation by carbon layer coating successfully ensures preservation of the Ni-N 4 structure to a maximum extent and avoids the agglomeration of Ni atoms to particles, providing abundant active sites for the catalytic reaction. The Ni-N 4 structure exhibits excellent activity for electrochemical reduction of CO 2 with particularly high selectivity, achieving high faradaic efficiency over 90% for CO in the potential range from -0.5 to -0.9 V and gives a maximum faradaic efficiency of 99% at -0.81 V with a current density of 28.6 mA cm -2 . We anticipate exclusive catalytic sites will shed new light on the design of high-efficiency electrocatalysts for CO 2 reduction.

  16. Synergistic integration of ion-exchange and catalytic reduction for complete decomposition of perchlorate in waste water.

    PubMed

    Kim, You-Na; Choi, Minkee

    2014-07-01

    Ion-exchange has been frequently used for the treatment of perchlorate (ClO4(-)), but disposal or regeneration of the spent resins has been the major hurdle for field application. Here we demonstrate a synergistic integration of ion-exchange and catalytic decomposition by using Pd-supported ion-exchange resin as an adsorption/catalysis bifunctional material. The ion-exchange capability of the resin did not change after generation of the Pd clusters via mild ethanol reduction, and thus showed very high ion-exchange selectivity and capacity toward ClO4(-). After the resin was saturated with ClO4(-) in an adsorption mode, it was possible to fully decompose the adsorbed ClO4(-) into nontoxic Cl(-) by the catalytic function of the Pd catalysts under H2 atmosphere. It was demonstrated that prewetting the ion-exchange resin with ethanol significantly accelerate the decomposition of ClO4(-) due to the weaker association of ClO4(-) with the ion-exchange sites of the resin, which allows more facile access of ClO4(-) to the catalytically active Pd-resin interface. In the presence of ethanol, >90% of the adsorbed ClO4(-) could be decomposed within 24 h at 10 bar H2 and 373 K. The ClO4(-) adsorption-catalytic decomposition cycle could be repeated up to five times without loss of ClO4(-) adsorption capacity and selectivity.

  17. In-situ and self-distributed: A new understanding on catalyzed thermal decomposition process of ammonium perchlorate over Nd{sub 2}O{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Min, E-mail: zoumin3362765@163.com; Wang, Xin, E-mail: wangx@mail.njust.edu.cn; Jiang, Xiaohong, E-mail: jxh0668@sina.com

    2014-05-01

    Catalyzed thermal decomposition process of ammonium perchlorate (AP) over neodymium oxide (Nd{sub 2}O{sub 3}) was investigated. Catalytic performances of nanometer-sized Nd{sub 2}O{sub 3} and micrometer-sized Nd{sub 2}O{sub 3} were evaluated by differential scanning calorimetry (DSC). In contrast to universal concepts, catalysts in different sizes have nearly similar catalytic activities. Based on structural and morphological variation of the catalysts during the reaction, combined with mass spectrum analyses and studies of unmixed style, a new understanding of this catalytic process was proposed. We believed that the newly formed chloride neodymium oxide (NdOCl) was the real catalytic species in the overall thermal decompositionmore » of AP over Nd{sub 2}O{sub 3}. Meanwhile, it was the “self-distributed” procedure which occurred within the reaction that also worked for the improvement of overall catalytic activities. This work is of great value in understanding the roles of micrometer-sized catalysts used in heterogeneous reactions, especially the solid–solid reactions which could generate a large quantity of gaseous species. - Graphical abstract: In-situ and self-distributed reaction process in thermal decomposition of AP catalyzed by Nd{sub 2}O{sub 3}. - Highlights: • Micro- and nano-Nd{sub 2}O{sub 3} for catalytic thermal decomposition of AP. • No essential differences on their catalytic performances. • Structural and morphological variation of catalysts digs out catalytic mechanism. • This catalytic process is “in-situ and self-distributed” one.« less

  18. Uranium-mediated electrocatalytic dihydrogen production from water.

    PubMed

    Halter, Dominik P; Heinemann, Frank W; Bachmann, Julien; Meyer, Karsten

    2016-02-18

    Depleted uranium is a mildly radioactive waste product that is stockpiled worldwide. The chemical reactivity of uranium complexes is well documented, including the stoichiometric activation of small molecules of biological and industrial interest such as H2O, CO2, CO, or N2 (refs 1 - 11), but catalytic transformations with actinides remain underexplored in comparison to transition-metal catalysis. For reduction of water to H2, complexes of low-valent uranium show the highest potential, but are known to react violently and uncontrollably forming stable bridging oxo or uranyl species. As a result, only a few oxidations of uranium with water have been reported so far; all stoichiometric. Catalytic H2 production, however, requires the reductive recovery of the catalyst via a challenging cleavage of the uranium-bound oxygen-containing ligand. Here we report the electrocatalytic water reduction observed with a trisaryloxide U(III) complex [(((Ad,Me)ArO)3mes)U] (refs 18 and 19)--the first homogeneous uranium catalyst for H2 production from H2O. The catalytic cycle involves rare terminal U(IV)-OH and U(V)=O complexes, which have been isolated, characterized, and proven to be integral parts of the catalytic mechanism. The recognition of uranium compounds as potentially useful catalysts suggests new applications for such light actinides. The development of uranium-based catalysts provides new perspectives on nuclear waste management strategies, by suggesting that mildly radioactive depleted uranium--an abundant waste product of the nuclear power industry--could be a valuable resource.

  19. An evaluation of the vapor phase catalytic ammonia removal process for use in a Mars transit vehicle.

    PubMed

    Flynn, M; Borchers, B

    1998-01-01

    This article describes the design specification of the Vapor Phase Catalytic Ammonia Removal (VPCAR) process and the relative benefits of its utilization in a Mars Transit Vehicle application. The VPCAR process is a wastewater treatment technology that combines distillation with high-temperature catalytic oxidation of volatile impurities such as ammonia and organic compounds.

  20. 40 CFR Table 27 to Subpart Uuu of... - Continuous Compliance With Inorganic HAP Emission Limits for Catalytic Reforming Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... oxygen. Maintaining a 92 percent HCl emission reduction or an HCl concentration no more than 30 ppmv (dry basis), corrected to 3 percent oxygen. 2. Each existing cyclic or continuous catalytic reforming unit...), corrected to 3 percent oxygen Maintaining a 97 percent HCl control efficiency or an HCl concentration no...

  1. 40 CFR Table 27 to Subpart Uuu of... - Continuous Compliance With Inorganic HAP Emission Limits for Catalytic Reforming Units

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... oxygen. Maintaining a 92 percent HCl emission reduction or an HCl concentration no more than 30 ppmv (dry basis), corrected to 3 percent oxygen. 2. Each existing cyclic or continuous catalytic reforming unit...), corrected to 3 percent oxygen Maintaining a 97 percent HCl control efficiency or an HCl concentration no...

  2. Impact of oxidation on protein therapeutics: Conformational dynamics of intact and oxidized acid-β-glucocerebrosidase at near-physiological pH

    PubMed Central

    Bobst, Cedric E; Thomas, John J; Salinas, Paul A; Savickas, Philip; Kaltashov, Igor A

    2010-01-01

    The solution dynamics of an enzyme acid-β-glucocerebrosidase (GCase) probed at a physiologically relevant (lysosomal) pH by hydrogen/deuterium exchange mass spectrometry (HDX-MS) reveals very uneven distribution of backbone amide protection across the polypeptide chain. Highly mobile segments are observed even within the catalytic cavity alongside highly protective segments, highlighting the importance of the balance between conformational stability and flexibility for enzymatic activity. Forced oxidation of GCase that resulted in a 40–60% reduction in in vitro biological activity affects the stability of some key structural elements within the catalytic site. These changes in dynamics occur on a longer time scale that is irrelevant for catalysis, effectively ruling out loss of structure in the catalytic site as a major factor contributing to the reduction of the catalytic activity. Oxidation also leads to noticeable destabilization of conformation in remote protein segments on a much larger scale, which is likely to increase the aggregation propensity of GCase and affect its bioavailability. Therefore, it appears that oxidation exerts its negative impact on the biological activity of GCase indirectly, primarily through accelerated aggregation and impaired trafficking. PMID:20945356

  3. Destruction of problematic airborne contaminants by hydrogen reduction using a Catalytically Active, Regenerable Sorbent (CARS)

    NASA Technical Reports Server (NTRS)

    Thompson, John O.; Akse, James R.

    1993-01-01

    Thermally regenerable sorbent beds were demonstrated to be a highly efficient means for removal of toxic airborne trace organic contaminants aboard spacecraft. The utilization of the intrinsic weight savings available through this technology was not realized since many of the contaminants desorbed during thermal regeneration are poisons to the catalytic oxidizer or form highly toxic oxidation by-products in the Trace Contaminant Control System (TCCS). Included in this class of compounds are nitrogen, sulfur, silicon, and halogen containing organics. The catalytic reduction of these problematic contaminants using hydrogen at low temperatures (200-300 C) offers an attractive route for their destruction since the by-products of such reactions, hydrocarbons and inorganic gases, are easily removed by existing technology. In addition, the catalytic oxidizer can be operated more efficiently due to the absence of potential poisons, and any posttreatment beds can be reduced in size. The incorporation of the catalyst within the sorbent bed further improves the system's efficiency. The demonstration of this technology provides the basis for an efficient regenerable TCCS for future NASA missions and can be used in more conventional settings to efficiently remove environmental pollutants.

  4. Identification of organic compounds in landfill leachate treated by advanced oxidation processes.

    PubMed

    Scandelai, Ana Paula Jambers; Sloboda Rigobello, Eliane; Oliveira, Beatriz Lopes Corso de; Tavares, Célia Regina Granhen

    2017-11-27

    Landfill leachates are considered to be complex effluents of a variable composition containing many biorecalcitrant and highly toxic compounds. Considering the shortage of studies concerning the treatment of landfill leachates using ozone, as well as its combination with catalysts, the aim of this paper was to identify the organic compounds in this effluent treated with advanced oxidation processes (AOPs) of ozonation (O 3 ), and heterogeneous catalytic ozonation with TiO 2 (O 3 /TiO 2 ) and with ZnO (O 3 /ZnO). In addition, this study sought to assess the efficiency of the removal of the organic matter present in the leachate. For the pre- and post-AOPs, the leachate was characterized through physicochemical parameters and identification of organic compounds using gas chromatography coupled to the mass spectrometry (GC-MS). The three processes studied (O 3 , O 3 /TiO 2 , and O 3 /ZnO) presented color removal, turbidity, BOD above 95%, and lower COD removals (19%, 24%, and 33%, respectively). All AOPs studied promoted a similar reduction of organic compounds from leachate, some of which with toxic and carcinogenic potential, such as p-cresol, bisphenol A, atrazine, and hexazinone. In addition, upon the removal of organic matter and organic compounds, the heterogeneous catalytic ozonation processes proved more efficient than the process carried out only with ozone.

  5. Effective reduction of p-nitrophenol by silver nanoparticle loaded on magnetic Fe3O4/ATO nano-composite

    NASA Astrophysics Data System (ADS)

    Karki, Hem Prakash; Ojha, Devi Prashad; Joshi, Mahesh Kumar; Kim, Han Joo

    2018-03-01

    A silver loaded hematite (Fe3O4) and antimony doped tin oxide (ATO) magnetic nano-composite (Ag-Fe3O4/ATO) was successfully synthesized by in situ one pot green and facile hydrothermal process. The formation of nano-composite, its structure, morphology, and stability were characterized by field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HRTEM), electron diffraction spectroscopy (EDS), elemental mapping by high resolution scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infra-red spectroscopy (FTIR). UV-vis spectroscopy was used to monitor the catalytic reduction of p-nitrophenol (PNP) into p-aminophenol (PAP) in presence of Ag-Fe3O4/ATO nano-composite with excess of sodium borohydride (NaBH4). The pseudo-first order kinetic equation could describe the reduction of p-nitrophenol with excess of NaBH4. For the first time, ATO surface was used for hydrothermal growth of silver and iron oxide magnetic nanoparticles. The in situ growth of these nanoparticles provided an effective bonding of components of the nano-composite over the surface of ATO nanoparticles. This nano-composite exhibited easy synthesis, high stability, cost effective and rapid separation using external magnet. The excellent catalytic and anti-bacterial activity of as-synthesized silver nano-composite makes it potential nano-catalyst for waste water treatment as well as biomedical application.

  6. Synthesis of three-dimensional reduced graphene oxide layer supported cobalt nanocrystals and their high catalytic activity in F-T CO2 hydrogenation

    NASA Astrophysics Data System (ADS)

    He, Fei; Niu, Na; Qu, Fengyu; Wei, Shuquan; Chen, Yujin; Gai, Shili; Gao, Peng; Wang, Yan; Yang, Piaoping

    2013-08-01

    The reduced graphene oxide (rGO) supported cobalt nanocrystals have been synthesized through an in situ crystal growth method using Co(acac)2 under solvothermal conditions by using DMF as the solvent. By carefully controlling the reaction temperature, the phase transition of the cobalt nanocrystals from the cubic phase to the hexagonal phase has been achieved. Moreover, the microscopic structure and morphology as well as the reduction process of the composite have been investigated in detail. It is found that oxygen-containing functional groups on the graphene oxide (GO) can greatly influence the formation process of the Co nanocrystals by binding the Co2+ cations dissociated from the Co(acac)2 in the initial reaction solution at 220 °C, leading to the 3D reticular structure of the composite. Furthermore, this is the first attempt to use a Co/rGO composite as the catalyst in the F-T CO2 hydrogenation process. The catalysis testing results reveal that the as-synthesized 3D structured composite exhibits ideal catalytic activity and good stability, which may greatly extend the scope of applications for this kind of graphene-based metal hybrid material.The reduced graphene oxide (rGO) supported cobalt nanocrystals have been synthesized through an in situ crystal growth method using Co(acac)2 under solvothermal conditions by using DMF as the solvent. By carefully controlling the reaction temperature, the phase transition of the cobalt nanocrystals from the cubic phase to the hexagonal phase has been achieved. Moreover, the microscopic structure and morphology as well as the reduction process of the composite have been investigated in detail. It is found that oxygen-containing functional groups on the graphene oxide (GO) can greatly influence the formation process of the Co nanocrystals by binding the Co2+ cations dissociated from the Co(acac)2 in the initial reaction solution at 220 °C, leading to the 3D reticular structure of the composite. Furthermore, this is the first attempt to use a Co/rGO composite as the catalyst in the F-T CO2 hydrogenation process. The catalysis testing results reveal that the as-synthesized 3D structured composite exhibits ideal catalytic activity and good stability, which may greatly extend the scope of applications for this kind of graphene-based metal hybrid material. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03038e

  7. Sustainable Ammonia Synthesis – Exploring the scientific challenges associated with discovering alternative, sustainable processes for ammonia production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nørskov, Jens; Chen, Jingguang; Miranda, Raul

    Ammonia (NH 3) is essential to all life on our planet. Until about 100 years ago, NH 3 produced by reduction of dinitrogen (N 2) in air came almost exclusively from bacteria containing the enzyme nitrogenase.. DOE convened a roundtable of experts on February 18, 2016. Participants in the Roundtable discussions concluded that the scientific basis for sustainable processes for ammonia synthesis is currently lacking, and it needs to be enhanced substantially before it can form the foundation for alternative processes. The Roundtable Panel identified an overarching grand challenge and several additional scientific grand challenges and research opportunities: -Discovery ofmore » active, selective, scalable, long-lived catalysts for sustainable ammonia synthesis. -Development of relatively low pressure (<10 atm) and relatively low temperature (<200 C) thermal processes. -Integration of knowledge from nature (enzyme catalysis), molecular/homogeneous and heterogeneous catalysis. -Development of electrochemical and photochemical routes for N 2 reduction based on proton and electron transfer -Development of biochemical routes to N 2 reduction -Development of chemical looping (solar thermochemical) approaches -Identification of descriptors of catalytic activity using a combination of theory and experiments -Characterization of surface adsorbates and catalyst structures (chemical, physical and electronic) under conditions relevant to ammonia synthesis.« less

  8. Effect of selective catalytic reduction (SCR) on fine particle emission from two coal-fired power plants in China

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Jiang, Jingkun; Ma, Zizhen; Wang, Shuxiao; Duan, Lei

    2015-11-01

    Nitrogen oxides (NOx) emission abatement of coal-fired power plants (CFPPs) requires large-scaled installation of selective catalytic reduction (SCR), which would reduce secondary fine particulate matter (PM2.5) (by reducing nitrate aerosol) in the atmosphere. However, our field measurement of two CFPPs equipped with SCR indicates a significant increase of SO42- and NH4+ emission in primary PM2.5, due to catalytic enhancement of SO2 oxidation to SO3 and introducing of NH3 as reducing agent. The subsequent formation of (NH4)2SO4 or NH4HSO4 aerosol is commonly concentrated in sub-micrometer particulate matter (PM1) with a bimodal pattern. The measurement at the inlet of stack also showed doubled primary PM2.5 emission by SCR operation. This effect should therefore be considered when updating emission inventory of CFPPs. By rough estimation, the enhanced primary PM2.5 emission from CFPPs by SCR operation would offset 12% of the ambient PM2.5 concentration reduction in cities as the benefit of national NOx emission abatement, which should draw attention of policy-makers for air pollution control.

  9. Data and Summaries for Catalytic Destruction of a Surrogate Organic Hazardous Air Pollutant as a Potential Co-benefit for Coal-Fired Selective Catalytic Reduction Systems

    EPA Pesticide Factsheets

    Table 1 summarizes and explanis the Operating Conditions of the SCR Reactor used in the Benzene-Destruction.Table 2 summarizes and explains the Experimental Design and Test Results.Table 3 summarizes and explains the Estimates for Individual Effects and Cross Effects Obtained from the Linear Regression Models for Destruction of C6H6 and Reduction of NO.Fig. 1 shows the Down-flow SCR reactor system in detail.Fig. 2 shows the graphical summary of the Effect of the inlet C6H6 concentration to the SCR reactor on the destruction of C6H6.Fig.3 shows the summary of Carbon mass balance for C6H6 destruction promoted by the V2O5-WO3/TiO2 catalyst.This dataset is associated with the following publication:Lee , C., Y. Zhao, S. Lu, and W.R. Stevens. Catalytic Destruction of a Surrogate Organic Hazardous Air Polutant as a Potential Co-benefit for Coal-fired Selective Catalyst Reduction Systems. AMERICAN CHEMICAL SOCIETY. American Chemical Society, Washington, DC, USA, 30(3): 2240-2247, (2016).

  10. Selective autocatalytic reduction of NO from sintering flue gas by the hot sintered ore in the presence of NH3.

    PubMed

    Chen, Wangsheng; Luo, Jing; Qin, Linbo; Han, Jun

    2015-12-01

    In this paper, the selective autocatalytic reduction of NO by NH3 combined with multi-metal oxides in the hot sintered ore was studied, and the catalytic activity of the hot sintered ore was investigated as a function of temperature, NH3/NO ratio, O2 content, H2O and SO2. The experimental results indicated that the hot sintered ore, when combined with NH3, had a maximum denitration efficiency of 37.67% at 450 °C, 3000 h(-1) gas hourly space velocity (GHSV) and a NH3/NO ratio of 0.4/1. Additionally, it was found that O2 played an important role in removing NOx. However, high O2 content had a negative effect on NO reduction. H2O was found to promote the denitration efficiency in the absence of SO2, while SO2 inhibited the catalytic activity of the sintered ore. In the presence of H2O and SO2, the catalytic activity of the sintered ore was dramatically suppressed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Amorphous nickel boride membrane on a platinum-nickel alloy surface for enhanced oxygen reduction reaction.

    PubMed

    He, Daping; Zhang, Libo; He, Dongsheng; Zhou, Gang; Lin, Yue; Deng, Zhaoxiang; Hong, Xun; Wu, Yuen; Chen, Chen; Li, Yadong

    2016-08-09

    The low activity of the oxygen reduction reaction in polymer electrolyte membrane fuel cells is a major barrier for electrocatalysis, and hence needs to be optimized. Tuning the surface electronic structure of platinum-based bimetallic alloys, a promising oxygen reduction reaction catalyst, plays a key role in controlling its interaction with reactants, and thus affects the efficiency. Here we report that a dealloying process can be utilized to experimentally fabricate the interface between dealloyed platinum-nickel alloy and amorphous nickel boride membrane. The coating membrane works as an electron acceptor to tune the surface electronic structure of the platinum-nickel catalyst, and this composite catalyst composed of crystalline platinum-nickel covered by amorphous nickel boride achieves a 27-times enhancement in mass activity relative to commercial platinum/carbon at 0.9 V for the oxygen reduction reaction performance. Moreover, this interactional effect between a crystalline surface and amorphous membrane can be readily generalized to facilitate the 3-times higher catalytic activity of commercial platinum/carbon.

  12. Detailed surface reaction mechanism in a three-way catalyst.

    PubMed

    Chatterjee, D; Deutschmann, O; Warnatz, J

    2001-01-01

    Monolithic three-way catalysts are applied to reduce the emission of combustion engines. The design of such a catalytic converter is a complex process involving the optimization of different physical and chemical parameters (in the simplest case, e.g., length, cell densities or metal coverage of the catalyst). Numerical simulation can be used as an effective tool for the investigation of the catalytic properties of a catalytic converter and for the prediction of the performance of the catalyst. To attain this goal, a two-dimensional flow-field description is coupled with a detailed surface reaction model (gas-phase reactions can be neglected in three-way catalysts). This surface reaction mechanism (with C3H6 taken as representative of unburnt hydrocarbons) was developed using sub-mechanisms recently developed for hydrogen, carbon monoxide and methane oxidation, literature values for C3H6 oxidation, and estimates for the remaining unknown reactions. Results of the simulation of a monolithic single channel are used to validate the surface reaction mechanism. The performance of the catalyst was simulated under lean, nearly stoichiometric and rich conditions. For these characteristic conditions, the oxidation of propene and carbon monoxide and the reduction of NO on a typical Pt/Rh coated three-way catalyst were simulated as a function of temperature. The numerically predicted conversion data are compared with experimentally measured data. The simulation further reveals the coupling between chemical reactions and transport processes within the monolithic channel.

  13. Adjusting the catalytic properties of cobalt ferrite nanoparticles by pulsed laser fragmentation in water with defined energy dose.

    PubMed

    Waag, Friedrich; Gökce, Bilal; Kalapu, Chakrapani; Bendt, Georg; Salamon, Soma; Landers, Joachim; Hagemann, Ulrich; Heidelmann, Markus; Schulz, Stephan; Wende, Heiko; Hartmann, Nils; Behrens, Malte; Barcikowski, Stephan

    2017-10-13

    Highly active, structurally disordered CoFe 2 O 4 /CoO electrocatalysts are synthesized by pulsed laser fragmentation in liquid (PLFL) of a commercial CoFe 2 O 4 powder dispersed in water. A partial transformation of the CoFe 2 O 4 educt to CoO is observed and proposed to be a thermal decomposition process induced by the picosecond pulsed laser irradiation. The overpotential in the OER in aqueous alkaline media at 10 mA cm -2 is reduced by 23% compared to the educt down to 0.32 V with a Tafel slope of 71 mV dec -1 . Importantly, the catalytic activity is systematically adjustable by the number of PLFL treatment cycles. The occurrence of thermal melting and decomposition during one PLFL cycle is verified by modelling the laser beam energy distribution within the irradiated colloid volume and comparing the by single particles absorbed part to threshold energies. Thermal decomposition leads to a massive reduction in particle size and crystal transformations towards crystalline CoO and amorphous CoFe 2 O 4 . Subsequently, thermal melting forms multi-phase spherical and network-like particles. Additionally, Fe-based layered double hydroxides at higher process cycle repetitions emerge as a byproduct. The results show that PLFL is a promising method that allows modification of the structural order in oxides and thus access to catalytically interesting materials.

  14. Real-Time Monitoring of Heterogeneous Catalysis with Mass Spectrometry

    ERIC Educational Resources Information Center

    Young, Mark A.

    2009-01-01

    Heterogeneous, gas-solid processes constitute an important class of catalytic reactions that play a key role in a variety of applications, such as industrial processing and environmental controls. Heterogeneous catalytic chemistry can be demonstrated in a simple heated flow reactor containing a fragment of the catalytic converter from a vehicular…

  15. Molecular Catalysis of the Electrochemical and Photochemical Reduction of CO2 with Earth-Abundant Metal Complexes. Selective Production of CO vs HCOOH by Switching of the Metal Center.

    PubMed

    Chen, Lingjing; Guo, Zhenguo; Wei, Xi-Guang; Gallenkamp, Charlotte; Bonin, Julien; Anxolabéhère-Mallart, Elodie; Lau, Kai-Chung; Lau, Tai-Chu; Robert, Marc

    2015-09-02

    Molecular catalysis of carbon dioxide reduction using earth-abundant metal complexes as catalysts is a key challenge related to the production of useful products--the "solar fuels"--in which solar energy would be stored. A direct approach using sunlight energy as well as an indirect approach where sunlight is first converted into electricity could be used. A Co(II) complex and a Fe(III) complex, both bearing the same pentadentate N5 ligand (2,13-dimethyl-3,6,9,12,18-pentaazabicyclo[12.3.1]octadeca-1(18),2,12,14,16-pentaene), were synthesized, and their catalytic activity toward CO2 reduction was investigated. Carbon monoxide was formed with the cobalt complex, while formic acid was obtained with the iron-based catalyst, thus showing that the catalysis product can be switched by changing the metal center. Selective CO2 reduction occurs under electrochemical conditions as well as photochemical conditions when using a photosensitizer under visible light excitation (λ > 460 nm, solvent acetonitrile) with the Co catalyst. In the case of the Fe catalyst, selective HCOOH production occurs at low overpotential. Sustained catalytic activity over long periods of time and high turnover numbers were observed in both cases. A catalytic mechanism is suggested on the basis of experimental results and preliminary quantum chemistry calculations.

  16. Water recovery by catalytic treatment of urine vapor

    NASA Technical Reports Server (NTRS)

    Budininkas, P.; Quattrone, P. D.; Leban, M. I.

    1980-01-01

    The objective of this investigation was to demonstrate the feasibility of water recovery on a man-rated scale by the catalytic processing of untreated urine vapor. For this purpose, two catalytic systems, one capable of processing an air stream containing low urine vapor concentrations and another to process streams with high urine vapor concentrations, were designed, constructed, and tested to establish the quality of the recovered water.

  17. Cocatalysts in Semiconductor-based Photocatalytic CO2 Reduction: Achievements, Challenges, and Opportunities.

    PubMed

    Ran, Jingrun; Jaroniec, Mietek; Qiao, Shi-Zhang

    2018-02-01

    Ever-increasing fossil-fuel combustion along with massive CO 2 emissions has aroused a global energy crisis and climate change. Photocatalytic CO 2 reduction represents a promising strategy for clean, cost-effective, and environmentally friendly conversion of CO 2 into hydrocarbon fuels by utilizing solar energy. This strategy combines the reductive half-reaction of CO 2 conversion with an oxidative half reaction, e.g., H 2 O oxidation, to create a carbon-neutral cycle, presenting a viable solution to global energy and environmental problems. There are three pivotal processes in photocatalytic CO 2 conversion: (i) solar-light absorption, (ii) charge separation/migration, and (iii) catalytic CO 2 reduction and H 2 O oxidation. While significant progress is made in optimizing the first two processes, much less research is conducted toward enhancing the efficiency of the third step, which requires the presence of cocatalysts. In general, cocatalysts play four important roles: (i) boosting charge separation/transfer, (ii) improving the activity and selectivity of CO 2 reduction, (iii) enhancing the stability of photocatalysts, and (iv) suppressing side or back reactions. Herein, for the first time, all the developed CO 2 -reduction cocatalysts for semiconductor-based photocatalytic CO 2 conversion are summarized, and their functions and mechanisms are discussed. Finally, perspectives in this emerging area are provided. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Palladium(II)-Catalyzed Annulation between ortho-Alkenylphenols and Allenes. Key Role of the Metal Geometry in Determining the Reaction Outcome.

    PubMed

    Casanova, Noelia; Del Rio, Karina P; García-Fandiño, Rebeca; Mascareñas, José L; Gulías, Moisés

    2016-05-06

    2-Alkenylphenols react with allenes, upon treatment with catalytic amounts of Pd(II) and Cu(II), to give benzoxepine products in high yields and with very good regio- and diastereoselectivities. This contrasts with the results obtained with Rh catalysts, which provided chromene-like products through a pathway involving a β-hydrogen elimination step. Computational studies suggest that the square planar geometry of the palladium is critical to favor the reductive elimination process required for the formation of the oxepine products.

  19. Highly efficient and durable TiN nanofiber electrocatalyst supports.

    PubMed

    Kim, Hyun; Cho, Min Kyung; Kwon, Jeong An; Jeong, Yeon Hun; Lee, Kyung Jin; Kim, Na Young; Kim, Min Jung; Yoo, Sung Jong; Jang, Jong Hyun; Kim, Hyoung-Juhn; Nam, Suk Woo; Lim, Dong-Hee; Cho, EunAe; Lee, Kwan-Young; Kim, Jin Young

    2015-11-28

    To date, carbon-based materials including various carbon nanostructured materials have been extensively used as an electrocatalyst support for proton exchange membrane fuel cell (PEMFC) applications due to their practical nature. However, carbon dissolution or corrosion caused by high electrode potential in the presence of O2 and/or water has been identified as one of the main failure modes for the device operation. Here, we report the first TiN nanofiber (TNF)-based nonwoven structured materials to be constructed via electrospinning and subsequent two-step thermal treatment processes as a support for the PEMFC catalyst. Pt catalyst nanoparticles (NPs) deposited on the TNFs (Pt/TNFs) were electrochemically characterized with respect to oxygen reduction reaction (ORR) activity and durability in an acidic medium. From the electrochemical tests, the TNF-supported Pt catalyst was better and more stable in terms of its catalytic performance compared to a commercially available carbon-supported Pt catalyst. For example, the initial oxygen reduction performance was comparable for both cases, while the Pt/TNF showed much higher durability from an accelerated degradation test (ADT) configuration. It is understood that the improved catalytic roles of TNFs on the supported Pt NPs for ORR are due to the high electrical conductivity arising from the extended connectivity, high inertness to the electrochemical environment and strong catalyst-support interactions.

  20. Effects of cobalt precursor on pyrolyzed carbon-supported cobalt-polypyrrole as electrocatalyst toward oxygen reduction reaction

    PubMed Central

    2013-01-01

    A series of non-precious metal electrocatalysts, namely pyrolyzed carbon-supported cobalt-polypyrrole, Co-PPy-TsOH/C, are synthesized with various cobalt precursors, including cobalt acetate, cobalt nitrate, cobalt oxalate, and cobalt chloride. The catalytic performance towards oxygen reduction reaction (ORR) is comparatively investigated with electrochemical techniques of cyclic voltammogram, rotating disk electrode and rotating ring-disk electrode. The results are analyzed and discussed employing physiochemical techniques of X-ray diffraction, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, inductively coupled plasma, elemental analysis, and extended X-ray absorption fine structure. It shows that the cobalt precursor plays an essential role on the synthesis process as well as microstructure and performance of the Co-PPy-TsOH/C catalysts towards ORR. Among the studied Co-PPy-TsOH/C catalysts, that prepared with cobalt acetate exhibits the best ORR performance. The crystallite/particle size of cobalt and its distribution as well as the graphitization degree of carbon in the catalyst greatly affects the catalytic performance of Co-PPy-TsOH/C towards ORR. Metallic cobalt is the main component in the active site in Co-PPy-TsOH/C for catalyzing ORR, but some other elements such as nitrogen are probably involved, too. PMID:24229351

  1. Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO 2

    DOE PAGES

    Wang, Congjun; Ranasingha, Oshadha; Natesakhawat, Sittichai; ...

    2013-01-01

    Plasmonic excitation of Au nanoparticles attached to the surface of ZnO catalysts using low power 532 nm laser illumination leads to significant heating of the catalyst and the conversion of CO 2 and H 2 reactants to CH 4 and CO products. Temperature-calibrated Raman spectra of ZnO phonons show that intensity-dependent plasmonic excitation can controllably heat Au–ZnO from 30 to ~600 °C and simultaneously tune the CH 4 : CO product ratio. The laser induced heating and resulting CH 4 : CO product distribution agrees well with predictions from thermodynamic models and temperature-programmed reaction experiments indicating that the reaction ismore » a thermally driven process resulting from the plasmonic heating of the Au-ZnO. The apparent quantum yield for CO 2 conversion under continuous wave (cw) 532 nm laser illumination is 0.030%. The Au-ZnO catalysts are robust and remain active after repeated laser exposure and cycling. The light intensity required to initiate CO 2 reduction is low ( ~2.5 x 10 5 W m -2) and achievable with solar concentrators. Our results illustrate the viability of plasmonic heating approaches for CO 2 utilization and other practical thermal catalytic applications.« less

  2. Catalytic Palladium Film Deposited by Scalable Low-Temperature Aqueous Combustion.

    PubMed

    Voskanyan, Albert A; Li, Chi-Ying Vanessa; Chan, Kwong-Yu

    2017-09-27

    This article describes a novel method for depositing a dense, high quality palladium thin film via a one-step aqueous combustion process which can be easily scaled up. Film deposition of Pd from aqueous solutions by conventional chemical or electrochemical methods is inhibited by hydrogen embrittlement, thus resulting in a brittle palladium film. The method outlined in this work allows a direct aqueous solution deposition of a mirror-bright, durable Pd film on substrates including glass and glassy carbon. This simple procedure has many advantages including a very high deposition rate (>10 cm 2 min -1 ) and a relatively low deposition temperature (250 °C), which makes it suitable for large-scale industrial applications. Although preparation of various high-quality oxide films has been successfully accomplished via solution combustion synthesis (SCS) before, this article presents the first report on direct SCS production of a metallic film. The mechanism of Pd film formation is discussed with the identification of a complex formed between palladium nitrate and glycine at low temperature. The catalytic properties and stability of films are successfully tested in alcohol electrooxidation and electrochemical oxygen reduction reaction. It was observed that combustion deposited Pd film on a glassy carbon electrode showed excellent catalytic activity in ethanol oxidation without using any binder or additive. We also report for the first time the concept of a reusable "catalytic flask" as illustrated by the Suzuki-Miyaura cross-coupling reaction. The Pd film uniformly covers the inner walls of the flask and eliminates the catalyst separation step. We believe the innovative concept of a reusable catalytic flask is very promising and has the required features to become a commercial product in the future.

  3. Perfluoropolyalkylether decomposition on catalytic aluminas

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo

    1994-01-01

    The decomposition of Fomblin Z25, a commercial perfluoropolyalkylether liquid lubricant, was studied using the Penn State Micro-oxidation Test, and a thermal gravimetric/differential scanning calorimetry unit. The micro-oxidation test was conducted using 440C stainless steel and pure iron metal catalyst specimens, whereas the thermal gravimetric/differential scanning calorimetry tests were conducted using catalytic alumina pellets. Analysis of the thermal data, high pressure liquid chromatography data, and x-ray photoelectron spectroscopy data support evidence that there are two different decomposition mechanisms for Fomblin Z25, and that reductive sites on the catalytic surfaces are responsible for the decomposition of Fomblin Z25.

  4. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of heterogeneous catalytic ozonation and biological process.

    PubMed

    Zhuang, Haifeng; Han, Hongjun; Jia, Shengyong; Hou, Baolin; Zhao, Qian

    2014-08-01

    Advanced treatment of biologically pretreated coal gasification wastewater (CGW) was investigated employing heterogeneous catalytic ozonation integrated with anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) process. The results indicated that catalytic ozonation with the prepared catalyst (i.e. MnOx/SBAC, sewage sludge was converted into sludge based activated carbon (SBAC) which loaded manganese oxides) significantly enhanced performance of pollutants removal by generated hydroxyl radicals. The effluent of catalytic ozonation process was more biodegradable and less toxic than that in ozonation alone. Meanwhile, ANMBBR-BAF showed efficient capacity of pollutants removal in treatment of the effluent of catalytic ozonation at a shorter reaction time, allowing the discharge limits to be met. Therefore, the integrated process with efficient, economical and sustainable advantages was suitable for advanced treatment of real biologically pretreated CGW. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Catalytic transfer hydrogenation with terdentate CNN ruthenium complexes: the influence of the base.

    PubMed

    Baratta, Walter; Siega, Katia; Rigo, Pierluigi

    2007-01-01

    The catalytic activity of the terdentate complex [RuCl(CNN)(dppb)] (A) [dppb=Ph(2)P(CH(2))(4)PPh(2); HCNN=6-(4'-methylphenyl)-2-pyridylmethylamine] in the transfer hydrogenation of acetophenone (S) with 2-propanol has been found to be dependent on the base concentration. The limit rate has been observed when NaOiPr is used in high excess (A/base molar ratio > 10). The amino-isopropoxide species [Ru(OiPr)(CNN)(dppb)] (B), which forms by reaction of A with sodium isopropoxide via displacement of the chloride, is catalytically active. The rate of conversion of acetophenone obeys second-order kinetics v=k[S][B] with the rate constants in the range 218+/-8 (40 degrees C) to 3000+/-70 M(-1) s(-1) (80 degrees C). The activation parameters, evaluated from the Eyring equation are DeltaH(++)=14.0+/-0.2 kcal mol(-1) and DeltaS(++)=-3.2 +/-0.5 eu. In a pre-equilibrium reaction with 2-propanol complex B gives the cationic species [Ru(CNN)(dppb)(HOiPr)](+)[OiPr](-) (C) with K approximately 2x10(-5) M. The hydride species [RuH(CNN)(dppb)] (H), which forms from B via beta-hydrogen elimination process, catalyzes the reduction of S and, importantly, its activity increases by addition of base. The catalytic behavior of the hydride H has been compared to that of the system A/NaOiPr (1:1 molar ratio) and indicates that the two systems are equivalent.

  6. Hierarchical Mesoporous/Macroporous Perovskite La0.5Sr0.5CoO3-x Nanotubes: A Bifunctional Catalyst with Enhanced Activity and Cycle Stability for Rechargeable Lithium Oxygen Batteries.

    PubMed

    Liu, Guoxue; Chen, Hongbin; Xia, Lu; Wang, Suqing; Ding, Liang-Xin; Li, Dongdong; Xiao, Kang; Dai, Sheng; Wang, Haihui

    2015-10-14

    Perovskites show excellent specific catalytic activity toward both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline solutions; however, small surface areas of the perovskites synthesized by traditional sol-gel methods lead to low utilization of catalytic sites, which gives rise to poor Li-O2 batteries performance and restricts their application. Herein, a hierarchical mesporous/macroporous perovskite La0.5Sr0.5CoO3-x (HPN-LSC) nanotube is developed to promote its application in Li-O2 batteries. The HPN-LSC nanotubes were synthesized via electrospinning technique followed by postannealing. The as-prepared HPN-LSC catalyst exhibits outstanding intrinsic ORR and OER catalytic activity. The HPN-LSC/KB electrode displays excellent performance toward both discharge and charge processes for Li-O2 batteries, which enhances the reversibility, the round-trip efficiency, and the capacity of resultant batteries. The synergy of high catalytic activity and hierarchical mesoporous/macroporous nanotubular structure results in the Li-O2 batteries with good rate capability and excellent cycle stability of sustaining 50 cycles at a current density of 0.1 mA cm(-2) with an upper-limit capacity of 500 mAh g(-1). The results will benefit for the future development of high-performance Li-O2 batteries using hierarchical mesoporous/macroporous nanostructured perovskite-type catalysts.

  7. Zirconium and silver co-doped TiO2 nanoparticles as visible light catalyst for reduction of 4-nitrophenol, degradation of methyl orange and methylene blue

    NASA Astrophysics Data System (ADS)

    Naraginti, Saraschandra; Stephen, Finian Bernard; Radhakrishnan, Adhithya; Sivakumar, A.

    2015-01-01

    Catalytic activity of Zr and Ag co-doped TiO2 nanoparticles on the reduction of 4-nitrophenol, degradation of methylene blue and methyl orange was studied using sodium borohydride as reducing agent. The nanoparticles were characterized using X-ray diffraction, energy dispersive X-ray, high resolution transmission electron microscopy, selected area electron diffraction and UV-Vis spectroscopy. The rate of the reduction/degradation was found to increase with increasing amount of the photocatalyst which could be attributed to higher dispersity and small size of the nanoparticles. The catalytic activity of Zr and Ag co-doped TiO2 nanoparticles showed no significant difference even after recycling the catalyst four times indicating a promising potential for industrial application of the prepared photocatalyst.

  8. Abroma augusta Linn bark extract-mediated green synthesis of gold nanoparticles and its application in catalytic reduction

    NASA Astrophysics Data System (ADS)

    Das, Subhajit; Bag, Braja Gopal; Basu, Ranadhir

    2015-10-01

    The bark extract of Abroma augusta Linn is rich in medicinally important phytochemicals including antioxidants and polyphenols. First one step green synthesis of gold nanoparticles (AuNPs) has been described utilizing the bark extract of Abroma augusta L. and chloroauric acid under very mild reaction conditions. The phytochemicals present in the bark extract acted both as a reducing as well as a stabilizing agent, and no additional stabilizing and capping agents were needed. Detailed characterizations of the stabilized AuNPs were carried out by surface plasmon resonance spectroscopy, high resolution transmission electron microscopy, and X-ray diffraction studies. The catalytic activity of the freshly synthesized gold nanoparticles has been demonstrated for the sodium borohydride reduction of 4-nitrophenol to 4-aminophenol, and the kinetics of the reduction reaction have been studied spectrophotometrically.

  9. Visualizing the Cu/Cu2(O) Interface Transition in Nanoparticles with Environmental Scanning Transmission Electron Microscopy.

    PubMed

    LaGrow, Alec P; Ward, Michael R; Lloyd, David C; Gai, Pratibha L; Boyes, Edward D

    2017-01-11

    Understanding the oxidation and reduction mechanisms of catalytically active transition metal nanoparticles is important to improve their application in a variety of chemical processes. In nanocatalysis the nanoparticles can undergo oxidation or reduction in situ, and thus the redox species are not what are observed before and after reactions. We have used the novel environmental scanning transmission electron microscope (ESTEM) with 0.1 nm resolution in systematic studies of complex dynamic oxidation and reduction mechanisms of copper nanoparticles. The oxidation of copper has previously been reported to be dependent on its crystallography and its interaction with the substrate. By following the dynamic oxidation process in situ in real time with high-angle annular dark-field imaging in the ESTEM, we use conditions ideal to track the oxidation front as it progresses across a copper nanoparticle by following the changes in the atomic number (Z) contrast with time. The oxidation occurs via the nucleation of the oxide phase (Cu 2 O) from one area of the nanoparticle which then progresses unidirectionally across the particle, with the Cu-to-Cu 2 O interface having a relationship of Cu{111}//Cu 2 O{111}. The oxidation kinetics are related to the temperature and oxygen pressure. When the process is reversed in hydrogen, the reduction process is observed to be similar to the oxidation, with the same crystallographic relationship between the two phases. The dynamic observations provide unique insights into redox mechanisms which are important to understanding and controlling the oxidation and reduction of copper-based nanoparticles.

  10. Efficient reductive amination process for enantioselective synthesis of L-phosphinothricin applying engineered glutamate dehydrogenase.

    PubMed

    Yin, Xinjian; Wu, Jianping; Yang, Lirong

    2018-05-01

    The objective of this study was to identify and exploit a robust biocatalyst that can be applied in reductive amination for enantioselective synthesis of the competitive herbicide L-phosphinothricin. Applying a genome mining-based library construction strategy, eight NADPH-specific glutamate dehydrogenases (GluDHs) were identified for reductively aminating 2-oxo-4-[(hydroxy)(methyl)phosphinoyl]butyric acid (PPO) to L-phosphinothricin. Among them, the glutamate dehydrogenase cloned from Pseudomonas putida (PpGluDH) exhibited relatively high catalytic activity and favorable soluble expression. This enzyme was purified to homogeneity for further characterization. The specific activity of PpGluDH was 296.1 U/g-protein, which is significantly higher than the reported value for a GluDH. To the best of our knowledge, there has not been any report on protein engineering of GluDH for PPO-oriented activity. Taking full advantage of the available information and the diverse characteristics of the enzymes in the enzyme library, PpGluDH was engineered by site-directed mutation based on multiple sequence alignment. The mutant I170M, which had 2.1-fold enhanced activity, was successfully produced. When the I170M mutant was applied in the batch production of L-phosphinothricin, it showed markedly improved catalytic efficiency compared with the wild type enzyme. The conversion reached 99% (0.1 M PPO) with an L-phosphinothricin productivity of 1.35 g/h·L, which far surpassed the previously reported level. These results show that PpGluDH I170M is a promising biocatalyst for highly enantioselective synthesis of L-phosphinothricin by reductive amination.

  11. Comparative characterization of novel ene-reductases from cyanobacteria.

    PubMed

    Fu, Yilei; Castiglione, Kathrin; Weuster-Botz, Dirk

    2013-05-01

    The growing importance of biocatalysis in the syntheses of enantiopure molecules results from the benefits of enzymes regarding selectivity and specificity of the reaction and ecological issues of the process. Ene-reductases (ERs) from the old yellow enzyme family have received much attention in the last years. These flavo-enzymes catalyze the trans-specific reduction of activated C=C bonds, which is an important reaction in asymmetric synthesis, because up to two stereogenic centers can be created in one reaction. However, limitations of ERs described in the literature such as their moderate catalytic activity and their strong preference for NADPH promote the search for novel ERs with improved properties. In this study, we characterized nine novel ERs from cyanobacterial strains belonging to different taxonomic orders and habitats. ERs were identified with activities towards a broad spectrum of alkenes. The reduction of maleimide was catalyzed with activities of up to 35.5 U mg(-1) using NADPH. Ketoisophorone and (R)-carvone, which were converted to the highly valuable compounds (R)-levodione and (2R,5R)-dihydrocarvone, were reduced with reaction rates of up to 2.2 U mg(-1) with NADPH. In contrast to other homologous ERs from the literature, NADH was accepted at moderate to high rates as well: Enzyme activities of up to 16.7 U mg(-1) were obtained for maleimide and up to 1.3 U mg(-1) for ketoisophorone and (R)-carvone. Additionally, excellent stereoselectivities were achieved in the reduction of (R)-carvone (97-99% de). In particular, AnabaenaER3 from Anabaena variabilis ATCC 29413 and AcaryoER1 from Acaryochloris marina MBIC 11017 were identified as useful biocatalysts. Therefore, novel ERs from cyanobacteria with high catalytic efficiency were added to the toolbox for the asymmetric reduction of alkenes. Copyright © 2012 Wiley Periodicals, Inc.

  12. Synthesis of novel palladium(0) nanocatalysts by microorganisms from heavy-metal-influenced high-alpine sites for dehalogenation of polychlorinated dioxins.

    PubMed

    Schlüter, Michael; Hentzel, Thomas; Suarez, Christian; Koch, Mandy; Lorenz, Wilhelm G; Böhm, Leonard; Düring, Rolf-Alexander; Koinig, Karin A; Bunge, Michael

    2014-12-01

    In a search for new aqueous-phase systems for catalyzing reactions of environmental and industrial importance, we prepared novel biogenerated palladium (Pd) nanocatalysts using a "green" approach based on microorganisms isolated from high-alpine sites naturally impacted by heavy metals. Bacteria and fungi were enriched and isolated from serpentinite-influenced ponds (Totalp region, Parsenn, near Davos, Graubünden, Switzerland). Effects on growth dynamics were monitored using an automated assay in 96-well microtiter plates, which allowed for simultaneous cultivation and on-line analysis of Pd(II)- and Ni(II)-mediated growth inhibition. Microorganisms from Totalp ponds tolerated up to 3mM Pd(II) and bacterial isolates were selected for cultivation and reductive synthesis of Pd(0) nanocatalysts at microbial interfaces. During reduction of Pd(II) with formate as the electron donor, Pd(0) nanoparticles were formed and deposited in the cell envelope. The Pd(0) catalysts produced in the presence of Pd(II)-tolerant Alpine Pseudomonas species were catalytically active in the reductive dehalogenation of model polychlorinated dioxin congeners. This is the first report which shows that Pd(0) synthesized in the presence of microorganisms catalyzes the reductive dechlorination of polychlorinated dibenzo-p-dioxins (PCDDs). Because the "bioPd(0)" catalyzed the dechlorination reactions preferably via non-lateral chlorinated intermediates, such a pathway could potentially detoxify PCDDs via a "safe route". It remains to be determined whether the microbial formation of catalytically active metal catalysts (e.g., Zn, Ni, Fe) occurs in situ and whether processes involving such catalysts can alter the fate and transport of persistent organic pollutants (POPs) in Alpine habitats. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Formation of palladium(0) nanoparticles at microbial surfaces.

    PubMed

    Bunge, Michael; Søbjerg, Lina S; Rotaru, Amelia-Elena; Gauthier, Delphine; Lindhardt, Anders T; Hause, Gerd; Finster, Kai; Kingshott, Peter; Skrydstrup, Troels; Meyer, Rikke L

    2010-10-01

    The increasing demand and limited natural resources for industrially important platinum-group metal (PGM) catalysts render the recovery from secondary sources such as industrial waste economically interesting. In the process of palladium (Pd) recovery, microorganisms have revealed a strong potential. Hitherto, bacteria with the property of dissimilatory metal reduction have been in focus, although the biochemical reactions linking enzymatic Pd(II) reduction and Pd(0) deposition have not yet been identified. In this study we investigated Pd(II) reduction with formate as the electron donor in the presence of Gram-negative bacteria with no documented capacity for reducing metals for energy production: Cupriavidus necator, Pseudomonas putida, and Paracoccus denitrificans. Only large and close-packed Pd(0) aggregates were formed in cell-free buffer solutions. Pd(II) reduction in the presence of bacteria resulted in smaller, well-suspended Pd(0) particles that were associated with the cells (called "bioPd(0)" in the following). Nanosize Pd(0) particles (3-30 nm) were only observed in the presence of bacteria, and particles in this size range were located in the periplasmic space. Pd(0) nanoparticles were still deposited on autoclaved cells of C. necator that had no hydrogenase activity, suggesting a hydrogenase-independent formation mechanism. The catalytic properties of Pd(0) and bioPd(0) were determined by the amount of hydrogen released in a reaction with hypophosphite. Generally, bioPd(0) demonstrated a lower level of activity than the Pd(0) control, possibly due to the inaccessibility of the Pd(0) fraction embedded in the cell envelope. Our results demonstrate the suitability of bacterial cells for the recovery of Pd(0), and formation and immobilization of Pd(0) nanoparticles inside the cell envelope. However, procedures to make periplasmic Pd(0) catalytically accessible need to be developed for future nanobiotechnological applications.

  14. Serial crystallography captures enzyme catalysis in copper nitrite reductase at atomic resolution from one crystal.

    PubMed

    Horrell, Sam; Antonyuk, Svetlana V; Eady, Robert R; Hasnain, S Samar; Hough, Michael A; Strange, Richard W

    2016-07-01

    Relating individual protein crystal structures to an enzyme mechanism remains a major and challenging goal for structural biology. Serial crystallography using multiple crystals has recently been reported in both synchrotron-radiation and X-ray free-electron laser experiments. In this work, serial crystallography was used to obtain multiple structures serially from one crystal (MSOX) to study in crystallo enzyme catalysis. Rapid, shutterless X-ray detector technology on a synchrotron MX beamline was exploited to perform low-dose serial crystallography on a single copper nitrite reductase crystal, which survived long enough for 45 consecutive 100 K X-ray structures to be collected at 1.07-1.62 Å resolution, all sampled from the same crystal volume. This serial crystallography approach revealed the gradual conversion of the substrate bound at the catalytic type 2 Cu centre from nitrite to nitric oxide, following reduction of the type 1 Cu electron-transfer centre by X-ray-generated solvated electrons. Significant, well defined structural rearrangements in the active site are evident in the series as the enzyme moves through its catalytic cycle, namely nitrite reduction, which is a vital step in the global denitrification process. It is proposed that such a serial crystallography approach is widely applicable for studying any redox or electron-driven enzyme reactions from a single protein crystal. It can provide a 'catalytic reaction movie' highlighting the structural changes that occur during enzyme catalysis. The anticipated developments in the automation of data analysis and modelling are likely to allow seamless and near-real-time analysis of such data on-site at some of the powerful synchrotron crystallographic beamlines.

  15. Rotation of Subunits During Catalysis by Escherichia coli F_1-ATPase

    NASA Astrophysics Data System (ADS)

    Duncan, Thomas M.; Bulygin, Vladimir V.; Zhou, Yuantai; Hutcheon, Marcus L.; Cross, Richard L.

    1995-11-01

    During oxidative and photo-phosphorylation, F_0F_1-ATP synthases couple the movement of protons down an electrochemical gradient to the synthesis of ATP. One proposed mechanistic feature that has remained speculative is that this coupling process requires the rotation of subunits within F_0F_1. Guided by a recent, high-resolution structure for bovine F_1 [Abrahams, J. P., Leslie, A. G., Lutter, R. & Walker, J. E. (1994) Nature (London) 370, 621-628], we have developed a critical test for rotation of the central γ subunit relative to the three catalytic β subunits in soluble F_1 from Escherichia coli. In the bovine F_1 structure, a specific point of contact between the γ subunit and one of the three catalytic β subunits includes positioning of the homolog of E. coli γ-subunit C87 (γC87) close to the β-subunit 380DELSEED386 sequence. A βD380C mutation allowed us to induce formation of a specific disulfide bond between β and γC87 in soluble E. coli F_1. Formation of the crosslink inactivated βD380C-F_1, and reduction restored full activity. Using a dissociation/reassembly approach with crosslinked βD380C-F_1, we incorporated radiolabeled β subunits into the two noncrosslinked β-subunit positions of F_1. After reduction of the initial nonradio-active β-γ crosslink, only exposure to conditions for catalytic turnover results in similar reactivities of unlabeled and radiolabeled β subunits with γC87 upon reoxidation. The results demonstrate that γ subunit rotates relative to the β subunits during catalysis.

  16. Characterization of Co and Fe-MCM-56 catalysts for NH3-SCR and N2O decomposition: An in situ FTIR study

    NASA Astrophysics Data System (ADS)

    Grzybek, Justyna; Gil, Barbara; Roth, Wieslaw J.; Skoczek, Monika; Kowalczyk, Andrzej; Chmielarz, Lucjan

    2018-05-01

    Two-step preparation of iron and cobalt-containing MCM-56 zeolites has been undertaken to evaluate the influence of their physicochemical properties in the selective catalytic reduction (NH3-SCR or DeNOx) of NO using NH3 as a reductant. Zeolites were prepared by the selective leaching of the framework cations by concentrated HNO3 solution and NH4F/HF mixture and consecutively, introduction of Co and Fe heteroatoms, in quantities below 1 wt%. Further calcination allowed to obtain highly dispersed active species. Their evaluation and speciation was realized by adsorption of pyridine and NO, followed by FTIR spectroscopy. Both Fe-MCM-56 zeolites showed excellent activities (maximum NO conversion 92%) with high selectivity to dinitrogen (above 99%) in the high temperature NH3-SCR process. High catalytic activity of Fe-MCM-56 zeolites was assigned to the formation of stable nitrates, delivering NO to react with NH3 at higher temperatures and suppressing the direct NO oxidation. It was found that more nitrates was formed in Fe-MCM-56 (HNO3) than in Fe-MCM-56 (HF/NH4F) and that could compensate for the lower Fe loading, resulting in very similar catalytic activity of both catalysts. At the same time both Co-and Fe-MCM-56 zeolites were moderately active in direct N2O decomposition, with maximum N2O conversion not higher than 80% and activity window starting at 500 °C. This phenomenon was expected since both types of catalysts contained well dispersed active centers, not beneficial for this reaction.

  17. Characterization of Co and Fe-MCM-56 catalysts for NH3-SCR and N2O decomposition: An in situ FTIR study.

    PubMed

    Grzybek, Justyna; Gil, Barbara; Roth, Wieslaw J; Skoczek, Monika; Kowalczyk, Andrzej; Chmielarz, Lucjan

    2018-05-05

    Two-step preparation of iron and cobalt-containing MCM-56 zeolites has been undertaken to evaluate the influence of their physicochemical properties in the selective catalytic reduction (NH 3 -SCR or DeNOx) of NO using NH 3 as a reductant. Zeolites were prepared by the selective leaching of the framework cations by concentrated HNO 3 solution and NH 4 F/HF mixture and consecutively, introduction of Co and Fe heteroatoms, in quantities below 1wt%. Further calcination allowed to obtain highly dispersed active species. Their evaluation and speciation was realized by adsorption of pyridine and NO, followed by FTIR spectroscopy. Both Fe-MCM-56 zeolites showed excellent activities (maximum NO conversion 92%) with high selectivity to dinitrogen (above 99%) in the high temperature NH 3 -SCR process. High catalytic activity of Fe-MCM-56 zeolites was assigned to the formation of stable nitrates, delivering NO to react with NH 3 at higher temperatures and suppressing the direct NO oxidation. It was found that more nitrates was formed in Fe-MCM-56 (HNO 3 ) than in Fe-MCM-56 (HF/NH 4 F) and that could compensate for the lower Fe loading, resulting in very similar catalytic activity of both catalysts. At the same time both Co-and Fe-MCM-56 zeolites were moderately active in direct N 2 O decomposition, with maximum N 2 O conversion not higher than 80% and activity window starting at 500°C. This phenomenon was expected since both types of catalysts contained well dispersed active centers, not beneficial for this reaction. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Bioinspired Electrocatalysis of Oxygen Reduction Reaction in Fuel Cells Using Molecular Catalysts.

    PubMed

    Zion, Noam; Friedman, Ariel; Levy, Naomi; Elbaz, Lior

    2018-04-23

    One of the most important chemical reactions for renewable energy technologies such as fuel cells and metal-air batteries today is oxygen reduction. Due to the relatively sluggish reaction kinetics, catalysts are necessary to generate high power output. The most common catalyst for this reaction is platinum, but its scarcity and derived high price have raised the search for abundant nonprecious metal catalysts. Inspired from enzymatic processes which are known to catalyze oxygen reduction reaction efficiently, employing transition metal complexes as their catalytic centers, many are working on the development of bioinspired and biomimetic catalysts of this class. This research news article gives a glimpse of the recent progress on the development of bioinspired molecular catalyst for oxygen reduction, highlighting the importance of the molecular structure of the catalysts, from advancements in porphyrins and phthalocyanines to the most recent work on corroles, and 3D networks such as metal-organic frameworks and polymeric networks, all with nonpyrolyzed, well-defined molecular catalysts for oxygen reduction reaction. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Catalytic asymmetric nitro-Mannich reactions with a Yb/K heterobimetallic catalyst.

    PubMed

    Nitabaru, Tatsuya; Kumagai, Naoya; Shibasaki, Masakatsu

    2010-03-04

    A catalytic asymmetric nitro-Mannich (aza-Henry) reaction with rare earth metal/alkali metal heterobimetallic catalysts is described. A Yb/K heterobimetallic catalyst assembled by an amide-based ligand promoted the asymmetric nitro-Mannich reaction to afford enantioenriched anti-b-nitroamines in up to 86% ee. Facile reduction of the nitro functionality allowed for efficient access to optically active 1,2-diamines.

  20. Chemical catalysis of nitrate reduction by iron (II)

    NASA Astrophysics Data System (ADS)

    Ottley, C. J.; Davison, W.; Edmunds, W. M.

    1997-05-01

    Experiments have been conducted to investigate the chemical reduction of nitrate under conditions relevant to the often low organic carbon environment of groundwaters. At pH 8 and 20 ± 2°C, in the presence of Cu(II), NO 3- was chemically reduced by Fe(II) to NH 4+ with an average stoichiometric liberation of 8 protons. The rate of the reaction systematically increased with pH in the range pH 7-8.5. The half-life for nitrate reduction, t 1/2, was inversely related to the total molar copper concentration, [Cu T], by the equation log t 1/2 = -1.35 log [Cu T] -2.616, for all measured values of t 1/2 from 23 min to 15 days. At the Cu(II) concentrations used of 7 × 10 -6 -10 -3 M, Cu was present mainly as a solid phase, either adsorbed to the surfaces of precipitated iron oxides or as a saturated solid. It is this solid phase copper rather than CU 2+ in solution which is catalytically active. Neither magnetite, which was formed as a product of the reaction, nor freshly prepared lepidocrocite catalysed the reaction, but goethite did. Although traces of oxygen accelerated the reaction, at higher partial pressures (>0.01 atm) the reduction of nitrate was inhibited, probably due to competition between NO 3- and O 2 for Fe(II). Appreciable catalytic effects were also observed for solid phase forms of Ag(I), Cd(H), Ni(H), Hg(II), and Pb(II). Mn(II) enhanced the rate slightly, and there was evidence for slow abiotic reduction in the absence of any added metal catalysts. These results suggest that the chemical reduction of nitrate at catalytic concentrations and temperatures appropriate to groundwater conditions is feasible on a timescale of months to years.

  1. Novel Attrition-Resistant Fischer Tropsch Catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weast, Logan, E.; Staats, William, R.

    2009-05-01

    There is a strong national interest in the Fischer-Tropsch synthesis process because it offers the possibility of making liquid hydrocarbon fuels from reformed natural gas or coal and biomass gasification products. This project explored a new approach that had been developed to produce active, attrition-resistant Fischer-Tropsch catalysts that are based on glass-ceramic materials and technology. This novel approach represented a promising solution to the problem of reducing or eliminating catalyst attrition and maximizing catalytic activity, thus reducing costs. The technical objective of the Phase I work was to demonstrate that glass-ceramic based catalytic materials for Fischer-Tropsch synthesis have resistance tomore » catalytic deactivation and reduction of particle size superior to traditional supported Fischer-Tropsch catalyst materials. Additionally, these novel glass-ceramic-based materials were expected to exhibit catalytic activity similar to the traditional materials. If successfully developed, the attrition-resistant Fischer-Tropsch catalyst materials would be expected to result in significant technical, economic, and social benefits for both producers and public consumers of Fischer-Tropsch products such as liquid fuels from coal or biomass gasification. This program demonstrated the anticipated high attrition resistance of the glass-ceramic materials. However, the observed catalytic activity of the materials was not sufficient to justify further development at this time. Additional testing documented that a lack of pore volume in the glass-ceramic materials limited the amount of surface area available for catalysis and consequently limited catalytic activity. However, previous work on glass-ceramic catalysts to promote other reactions demonstrated that commercial levels of activity can be achieved, at least for those reactions. Therefore, we recommend that glass-ceramic materials be considered again as potential Fischer-Tropsch catalysts if it can be demonstrated that materials with adequate pore volume can be produced. During the attrition resistance tests, it was learned that the glass-ceramic materials are very abrasive. Attention should be paid in any further developmental efforts to the potential for these hard, abrasive materials to damage reactors.« less

  2. Raney nickel catalytic device

    DOEpatents

    O'Hare, Stephen A.

    1978-01-01

    A catalytic device for use in a conventional coal gasification process which includes a tubular substrate having secured to its inside surface by expansion a catalytic material. The catalytic device is made by inserting a tubular catalytic element, such as a tubular element of a nickel-aluminum alloy, into a tubular substrate and heat-treating the resulting composite to cause the tubular catalytic element to irreversibly expand against the inside surface of the substrate.

  3. Catalytic amino acid production from biomass-derived intermediates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Weiping; Wang, Yunzhu; Zhang, Sui

    Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived a-hydroxyl acids into a-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supportedmore » on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH 3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components.« less

  4. Catalytic amino acid production from biomass-derived intermediates

    PubMed Central

    Deng, Weiping; Zhang, Sui; Gupta, Krishna M.; Hülsey, Max J.; Asakura, Hiroyuki; Liu, Lingmei; Han, Yu; Karp, Eric M.; Jiang, Jianwen; Tanaka, Tsunehiro; Wang, Ye

    2018-01-01

    Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived α-hydroxyl acids into α-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supported on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components. PMID:29712826

  5. Catalytic amino acid production from biomass-derived intermediates

    DOE PAGES

    Deng, Weiping; Wang, Yunzhu; Zhang, Sui; ...

    2018-04-30

    Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived a-hydroxyl acids into a-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supportedmore » on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH 3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components.« less

  6. Gold nanoparticles stabilized by poly(4-vinylpyridine) grafted cellulose nanocrystals as efficient and recyclable catalysts.

    PubMed

    Zhang, Zhen; Sèbe, Gilles; Wang, Xiaosong; Tam, Kam C

    2018-02-15

    pH-responsive poly(4-vinylpyridine) (P4VP) grafted cellulose nanocrystals (P4VP-g-CNC) were prepared by Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP) and subsequently used to stabilize gold nanoparticles (Au NPs) as efficient and recyclable nanocatalysts for the reduction of 4-nitrophenol (4NP). The presence of P4VP brushes on the CNC surface controlled the growth of Au NPs yielding smaller averaged diameter compared to Au NPs deposited directly on pristine CNC. The catalytic performances of pristine Au NPs, Au@CNC and Au@P4VP-g-CNC were compared by measuring the turnover frequency (TOF) for the catalytic reduction of 4NP. Compared to pristine Au NPs, the catalytic activity of Au@CNC and Au@P4VP-g-CNC were 10 and 24 times better. Moreover, the Au@P4VP-g-CNC material could be recovered via flocculation at pH>5, and the recycled nanocatalyst remained highly active. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A Perspective on the Selective Catalytic Reduction (SCR) of NO with NH 3 by Supported V 2O 5 –WO 3/TiO 2 Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Jun-Kun; Wachs, Israel E.

    We report the selective catalytic reduction (SCR) of NO x with NH 3 to harmless N 2 and H 2O plays a crucial role in reducing highly undesirable NO x acid gas emissions from large utility boilers, industrial boilers, municipal waste plants, and incinerators. The supported V 2O 5 –WO 3/TiO 2 catalysts have become the most widely used industrial catalysts for these SCR applications since introduction of this technology in the early 1970s. Lastly, this Perspective examines the current fundamental understanding and recent advances of the supported V 2O 5 –WO 3/TiO 2 catalyst system: (i) catalyst synthesis, (ii)more » molecular structures of titaniasupported vanadium and tungsten oxide species, (iii) surface acidity, (iv) catalytic active sites, (v) surface reaction intermediates, (vi) reaction mechanism, (vii) ratedetermining- step, and (viii) reaction kinetics.« less

  8. Significant advantages of sulfur-doped graphene in neutral media as electrocatalyst for oxygen reduction comparing with Pt/C

    NASA Astrophysics Data System (ADS)

    Shi, Xinxin; Zhang, Jiaona; Huang, Tinglin

    2018-02-01

    Sulfur-doped graphene (SDG) has been found to be an efficient electrocatalyst for oxygen reduction reaction. However, previous studies on the catalytic activity of SDG have been mainly confined to O2-saturated alkaline media which is a typical alkaline fuel cell environment. Air-cathode microbial fuel cells (ACMFCs), as a novel energy conversion and wastewater treatment technology, use the oxygen from air as cathodic reactant in neutral media with low concentration of O2. Thus, it is meaningful to explore the catalytic performance of SDG in such ACMFC environment. The result showed that in ACMFC environment, the peak current density of SDG in CV test was surprisingly 4.5 times higher than that of Pt/C, indicating a much stronger catalytic activity of SDG. Moreover, SDG exhibited a stronger tolerance against the crossover of glucose (a typical anodic fuel in ACMFC) and better stability than Pt/C in neutral media.

  9. Triblock copolymer-mediated synthesis of catalytically active gold nanostructures

    NASA Astrophysics Data System (ADS)

    Santos, Douglas C.; de Souza, Viviane C.; Vasconcelos, Diego A.; Andrade, George R. S.; Gimenez, Iara F.; Teixeira, Zaine

    2018-04-01

    The design of nanostructures based on poly(ethylene oxide)-poly(propylene)-poly(ethylene oxide) (PEO-PPO-PEO) and metal nanoparticles is becoming an important research topic due to their multiple functionalities in different fields, including nanomedicine and catalysis. In this work, water-soluble gold nanoparticles have been prepared through a green aqueous synthesis method using Pluronic F127 as both reducing and stabilizing agents. The size dependence (varying from 2 to 70 nm) and stability of gold nanoparticles were systematically studied by varying some parameters of synthesis, which were the polymer concentration, temperature, and exposure to UV-A light, being monitored by UV-Vis spectroscopy and TEM. Also, an elaborated study regarding to the kinetic of formation (nucleation and growth) was presented. Finally, the as-prepared Pluronic-capped gold nanoparticles have shown excellent catalytic activity towards the reduction of 4-nitrophenol to 4-aminophenol with sodium borohydride, in which a higher catalytic performance was exhibited when compared with gold nanoparticles prepared by classical reduction method using sodium citrate. [Figure not available: see fulltext.

  10. Achillea millefolium L. extract mediated green synthesis of waste peach kernel shell supported silver nanoparticles: Application of the nanoparticles for catalytic reduction of a variety of dyes in water.

    PubMed

    Khodadadi, Bahar; Bordbar, Maryam; Nasrollahzadeh, Mahmoud

    2017-05-01

    In this paper, silver nanoparticles (Ag NPs) are synthesized using Achillea millefolium L. extract as reducing and stabilizing agents and peach kernel shell as an environmentally benign support. FT-IR spectroscopy, UV-Vis spectroscopy, X-ray Diffraction (XRD), Field emission scanning electron microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), Thermo gravimetric-differential thermal analysis (TG-DTA) and Transmission Electron Microscopy (TEM) were used to characterize peach kernel shell, Ag NPs, and Ag NPs/peach kernel shell. The catalytic activity of the Ag NPs/peach kernel shell was investigated for the reduction of 4-nitrophenol (4-NP), Methyl Orange (MO), and Methylene Blue (MB) at room temperature. Ag NPs/peach kernel shell was found to be a highly active catalyst. In addition, Ag NPs/peach kernel shell can be recovered and reused several times with no significant loss of its catalytic activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. A Perspective on the Selective Catalytic Reduction (SCR) of NO with NH 3 by Supported V 2O 5 –WO 3/TiO 2 Catalysts

    DOE PAGES

    Lai, Jun-Kun; Wachs, Israel E.

    2018-06-04

    We report the selective catalytic reduction (SCR) of NO x with NH 3 to harmless N 2 and H 2O plays a crucial role in reducing highly undesirable NO x acid gas emissions from large utility boilers, industrial boilers, municipal waste plants, and incinerators. The supported V 2O 5 –WO 3/TiO 2 catalysts have become the most widely used industrial catalysts for these SCR applications since introduction of this technology in the early 1970s. Lastly, this Perspective examines the current fundamental understanding and recent advances of the supported V 2O 5 –WO 3/TiO 2 catalyst system: (i) catalyst synthesis, (ii)more » molecular structures of titaniasupported vanadium and tungsten oxide species, (iii) surface acidity, (iv) catalytic active sites, (v) surface reaction intermediates, (vi) reaction mechanism, (vii) ratedetermining- step, and (viii) reaction kinetics.« less

  12. Applications of Neutron Scattering in the Chemical Industry: Proton Dynamics of Highly Dispersed Materials, Characterization of Fuel Cell Catalysts, and Catalysts from Large-Scale Chemical Processes

    NASA Astrophysics Data System (ADS)

    Albers, Peter W.; Parker, Stewart F.

    The attractiveness of neutron scattering techniques for the detailed characterization of materials of high degrees of dispersity and structural complexity as encountered in the chemical industry is discussed. Neutron scattering picks up where other analytical methods leave off because of the physico-chemical properties of finely divided products and materials whose absorption behavior toward electromagnetic radiation and electrical conductivity causes serious problems. This is demonstrated by presenting typical applications from large-scale production technology and industrial catalysis. These include the determination of the proton-related surface chemistry of advanced materials that are used as reinforcing fillers in the manufacture of tires, where interrelations between surface chemistry, rheological properties, improved safety, and significant reduction of fuel consumption are the focus of recent developments. Neutron scattering allows surface science studies of the dissociative adsorption of hydrogen on nanodispersed, supported precious metal particles of fuel cell catalysts under in situ loading at realistic gas pressures of about 1 bar. Insight into the occupation of catalytically relevant surface sites provides valuable information about the catalyst in the working state and supplies essential scientific input for tailoring better catalysts by technologists. The impact of deactivation phenomena on industrial catalysts by coke deposition, chemical transformation of carbonaceous deposits, and other processes in catalytic hydrogenation processes that result in significant shortening of the time of useful operation in large-scale plants can often be traced back in detail to surface or bulk properties of catalysts or materials of catalytic relevance. A better understanding of avoidable or unavoidable aspects of catalyst deactivation phenomena under certain in-process conditions and the development of effective means for reducing deactivation leads to more energy-efficient and, therefore, environmentally friendly processes and helps to save valuable resources. Even small or gradual improvements in all these fields are of considerable economic impact.

  13. Air Stripping Designs and Reactive Water Purification Processes for the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Boul, Peter J.; Lange, Kevin; Conger, Bruce; Anderson, Molly

    2010-01-01

    Air stripping designs are considered to reduce the presence of volatile organic compounds in the purified water. Components of the wastewater streams are ranked by Henry's Law Constant and the suitability of air stripping in the purification of wastewater in terms of component removal is evaluated. Distillation processes are modeled in tandem with air stripping to demonstrate the potential effectiveness and utility of these methods in recycling wastewater on the Moon. Scaling factors for distillation and air stripping columns are presented to account for the difference in the lunar gravitation environment. Commercially available distillation and air stripping units which are considered suitable for Exploration Life Support are presented. The advantages to the various designs are summarized with respect to water purity levels, power consumption, and processing rates. An evaluation of reactive distillation and air stripping is presented with regards to the reduction of volatile organic compounds in the contaminated water and air. Among the methods presented, an architecture is presented for the evaluation of the simultaneous oxidation of organics in air and water. These and other designs are presented in light of potential improvements in power consumptions and air and water purities for architectures which include catalytic activity integrated into the water processor. In particular, catalytic oxidation of organics may be useful as a tool to remove contaminants that more traditional distillation and/or air stripping columns may not remove. A review of the current leading edge at the commercial level and at the research frontier in catalytically active materials is presented. Themes and directions from the engineering developments in catalyst design are presented conceptually in light of developments in the nanoscale chemistry of a variety of catalyst materials.

  14. EVALUATION AND MITIGATION OF VISIBLE ACIDIC AEROSOL PLUMES FROM COAL FIRED POWER BOILERS

    EPA Science Inventory

    The formation of sulfur trioxide during the combustion of coal can increase significantly following the installation and operation of selective catalytic reduction systems for reduction of nitrogen oxides. This can in turn lead to adverse environmental impacts, including visible...

  15. Oxidative Tritium Decontamination System

    DOEpatents

    Gentile, Charles A. , Guttadora, Gregory L. , Parker, John J.

    2006-02-07

    The Oxidative Tritium Decontamination System, OTDS, provides a method and apparatus for reduction of tritium surface contamination on various items. The OTDS employs ozone gas as oxidizing agent to convert elemental tritium to tritium oxide. Tritium oxide vapor and excess ozone gas is purged from the OTDS, for discharge to atmosphere or transport to further process. An effluent stream is subjected to a catalytic process for the decomposition of excess ozone to diatomic oxygen. One of two configurations of the OTDS is employed: dynamic apparatus equipped with agitation mechanism and large volumetric capacity for decontamination of light items, or static apparatus equipped with pressurization and evacuation capability for decontamination of heavier, delicate, and/or valuable items.

  16. The active site architecture in peroxiredoxins: a case study on Mycobacterium tuberculosis AhpE.

    PubMed

    Pedre, Brandán; van Bergen, Laura A H; Palló, Anna; Rosado, Leonardo A; Dufe, Veronica Tamu; Molle, Inge Van; Wahni, Khadija; Erdogan, Huriye; Alonso, Mercedes; Proft, Frank De; Messens, Joris

    2016-08-11

    Peroxiredoxins catalyze the reduction of peroxides, a process of vital importance to survive oxidative stress. A nucleophilic cysteine, also known as the peroxidatic cysteine, is responsible for this catalytic process. We used the Mycobacterium tuberculosis alkyl hydroperoxide reductase E (MtAhpE) as a model to investigate the effect of the chemical environment on the specificity of the reaction. Using an integrative structural (R116A - PDB ; F37H - PDB ), kinetic and computational approach, we explain the mutational effects of key residues in its environment. This study shows that the active site residues are specifically oriented to create an environment which selectively favours a reaction with peroxides.

  17. A novel magnetic Fe@Au core-shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds.

    PubMed

    Gupta, Vinod Kumar; Atar, Necip; Yola, Mehmet Lütfi; Üstündağ, Zafer; Uzun, Lokman

    2014-01-01

    In this study, a novel catalyst based on Fe@Au bimetallic nanoparticles involved graphene oxide was prepared and characterized by transmission electron microscope (TEM), and x-ray photoelectron spectroscopy (XPS). The nanomaterial was used in catalytic reductions of 4-nitrophenol and 2-nitrophenol in the presence of sodium borohydride. The experimental parameters such as temperature, the dosage of catalyst and the concentration of sodium borohydride were studied. The rates of catalytic reduction of the nitrophenol compounds have been found as the sequence: 4-nitrophenol>2-nitrophenol. The kinetic and thermodynamic parameters of nitrophenol compounds were determined. Activation energies were found as 2.33 kcal mol(-1) and 3.16 kcal mol(-1) for 4-nitrophenol and 2-nitrophenol, respectively. The nanomaterial was separated from the product by using a magnet and recycled after the reduction of nitrophenol compounds. The recyclable of the nanocatalyst is economically significant in industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Splitting of the O–O bond at the heme-copper catalytic site of respiratory oxidases

    PubMed Central

    Poiana, Federica; von Ballmoos, Christoph; Gonska, Nathalie; Blomberg, Margareta R. A.; Ädelroth, Pia; Brzezinski, Peter

    2017-01-01

    Heme-copper oxidases catalyze the four-electron reduction of O2 to H2O at a catalytic site that is composed of a heme group, a copper ion (CuB), and a tyrosine residue. Results from earlier experimental studies have shown that the O–O bond is cleaved simultaneously with electron transfer from a low-spin heme (heme a/b), forming a ferryl state (PR; Fe4+=O2−, CuB2+–OH−). We show that with the Thermus thermophilus ba3 oxidase, at low temperature (10°C, pH 7), electron transfer from the low-spin heme b to the catalytic site is faster by a factor of ~10 (τ ≅ 11 μs) than the formation of the PR ferryl (τ ≅110 μs), which indicates that O2 is reduced before the splitting of the O–O bond. Application of density functional theory indicates that the electron acceptor at the catalytic site is a high-energy peroxy state [Fe3+–O−–O−(H+)], which is formed before the PR ferryl. The rates of heme b oxidation and PR ferryl formation were more similar at pH 10, indicating that the formation of the high-energy peroxy state involves proton transfer within the catalytic site, consistent with theory. The combined experimental and theoretical data suggest a general mechanism for O2 reduction by heme-copper oxidases. PMID:28630929

  19. Uranium-mediated electrocatalytic dihydrogen production from water

    NASA Astrophysics Data System (ADS)

    Halter, Dominik P.; Heinemann, Frank W.; Bachmann, Julien; Meyer, Karsten

    2016-02-01

    Depleted uranium is a mildly radioactive waste product that is stockpiled worldwide. The chemical reactivity of uranium complexes is well documented, including the stoichiometric activation of small molecules of biological and industrial interest such as H2O, CO2, CO, or N2 (refs 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), but catalytic transformations with actinides remain underexplored in comparison to transition-metal catalysis. For reduction of water to H2, complexes of low-valent uranium show the highest potential, but are known to react violently and uncontrollably forming stable bridging oxo or uranyl species. As a result, only a few oxidations of uranium with water have been reported so far; all stoichiometric. Catalytic H2 production, however, requires the reductive recovery of the catalyst via a challenging cleavage of the uranium-bound oxygen-containing ligand. Here we report the electrocatalytic water reduction observed with a trisaryloxide U(III) complex [((Ad,MeArO)3mes)U] (refs 18 and 19)—the first homogeneous uranium catalyst for H2 production from H2O. The catalytic cycle involves rare terminal U(IV)-OH and U(V)=O complexes, which have been isolated, characterized, and proven to be integral parts of the catalytic mechanism. The recognition of uranium compounds as potentially useful catalysts suggests new applications for such light actinides. The development of uranium-based catalysts provides new perspectives on nuclear waste management strategies, by suggesting that mildly radioactive depleted uranium—an abundant waste product of the nuclear power industry—could be a valuable resource.

  20. A bio-inspired N-doped porous carbon electrocatalyst with hierarchical superstructure for efficient oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Miao, Yue-E.; Yan, Jiajie; Ouyang, Yue; Lu, Hengyi; Lai, Feili; Wu, Yue; Liu, Tianxi

    2018-06-01

    The bio-inspired hierarchical "grape cluster" superstructure provides an effective integration of one-dimensional carbon nanofibers (CNF) with isolated carbonaceous nanoparticles into three-dimensional (3D) conductive frameworks for efficient electron and mass transfer. Herein, a 3D N-doped porous carbon electrocatalyst consisting of carbon nanofibers with grape-like N-doped hollow carbon particles (CNF@NC) has been prepared through a simple electrospinning strategy combined with in-situ growth and carbonization processes. Such a bio-inspired hierarchically organized conductive network largely facilitates both the mass diffusion and electron transfer during the oxygen reduction reactions (ORR). Therefore, the metal-free CNF@NC catalyst demonstrates superior catalytic activity with an absolute four-electron transfer mechanism, strong methanol tolerance and good long-term stability towards ORR in alkaline media.

  1. The photochemical alkylation and reduction of heteroarenes.

    PubMed

    McCallum, T; Pitre, S P; Morin, M; Scaiano, J C; Barriault, L

    2017-11-01

    The functionalization of heteroarenes has been integral to the structural diversification of medicinally active molecules such as quinolines, pyridines, and phenanthridines. Electron-deficient heteroarenes are electronically compatible to react with relatively nucleophilic free radicals such as hydroxyalkyl. However, the radical functionalization of such heteroarenes has been marked by the use of transition-metal catalyzed processes that require initiators and stoichiometric oxidants. Herein, we describe the photochemical alkylation of quinolines, pyridines and phenanthridines, where through direct excitation of the protonated heterocycle, alcohols and ethers, such as methanol and THF, can serve as alkylating agents. We also report the discovery of a photochemical reduction of these heteroarenes using only iPrOH and HCl. Mechanistic studies to elucidate the underlying mechanism of these transformations, and preliminary results on catalytic methylations are also reported.

  2. Catalytic enantioselective addition of Grignard reagents to aromatic silyl ketimines

    NASA Astrophysics Data System (ADS)

    Rong, Jiawei; Collados, Juan F.; Ortiz, Pablo; Jumde, Ravindra P.; Otten, Edwin; Harutyunyan, Syuzanna R.

    2016-12-01

    α-Chiral amines are of significant importance in medicinal chemistry, asymmetric synthesis and material science, but methods for their efficient synthesis are scarce. In particular, the synthesis of α-chiral amines with the challenging tetrasubstituted carbon stereocentre is a long-standing problem and catalytic asymmetric additions of organometallic reagents to ketimines that would give direct access to these molecules are underdeveloped. Here we report a highly enantioselective catalytic synthesis of N-sulfonyl protected α-chiral silyl amines via the addition of inexpensive, easy to handle and readily available Grignard reagents to silyl ketimines. The key to this success was our ability to suppress any unselective background addition reactions and side reduction pathway, through the identification of an inexpensive, chiral Cu-complex as the catalytically active structure.

  3. Enantioselective total synthesis of (-)-strychnine using the catalytic asymmetric Michael reaction and tandem cyclization.

    PubMed

    Ohshima, Takashi; Xu, Youjun; Takita, Ryo; Shimizu, Satoshi; Zhong, Dafang; Shibasaki, Masakatsu

    2002-12-11

    The enantioselective total synthesis of (-)-strychnine was accomplished through the use of the highly practical catalytic asymmetric Michael reaction (0.1 mol % of (R)-ALB, more than kilogram scale, without chromatography, 91% yield and >99% ee) as well as a tandem cyclization that simultaneously constructed B- and D-rings (>77% yield). Moreover, newly developed reaction conditions for thionium ion cyclization, NaBH3CN reduction of the imine moiety in the presence of Lewis acid to prevent ring opening reaction, and chemoselective reduction of the thioether (desulfurization) in the presence of exocyclic olefin were pivotal to complete the synthesis. The described chemistry paves the way for the synthesis of more advanced Strychnos alkaloids.

  4. Glucomannan-mediated facile synthesis of gold nanoparticles for catalytic reduction of 4-nitrophenol

    PubMed Central

    2014-01-01

    A facile one-pot approach for synthesis of gold nanoparticles with narrow size distribution and good stability was presented by reducing chloroauric acid with a polysaccharide, konjac glucomannan (KGM) in alkaline solution, which is green and economically viable. Here, KGM served both as reducing agent and stabilizer. The effects of KGM on the formation and stabilization of as-synthesized gold nanoparticles were studied systematically by a combination of UV-visible (UV-vis) absorption spectroscopy, transmission electron microscopy, X-ray diffraction, dynamic light scattering, and Fourier transform infrared spectroscopy. Furthermore, the gold nanoparticles exhibited a notable catalytic activity toward the reduction of 4-nitrophenol to 4-aminophenol. PMID:25177220

  5. In situ spectroscopic characterization of Ni 1-xZn x/ZnO catalysts and their selectivity for acetylene semihydrogenation in excess ethylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spanjers, Charles S.; Sim, Richard S.; Sturgis, Nicholas P.

    2015-10-30

    The structures of ZnO-supported Ni catalysts were explored with in situ X-ray absorption spectroscopy, temperature-programmed reduction, X-ray diffraction, high-resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy, and electron energy loss spectroscopy. Calcination of nickel nitrate on a nanoparticulate ZnO support at 450 °C results in the formation of Zn-doped NiO (ca. N₀̣̣₈₅ Zn₀̣̣₁₅O) nanoparticles with the rock salt crystal structure. Subsequent in situ reduction monitored by X-ray absorption near-edge structure (XANES) at the Ni K edge reveals a direct transformation of the Zn-doped NiO nanoparticles to a face-centered cubic alloy, Ni 1-xZn x, at ~400 °C with x increasingmore » with increasing temperature. Both in situ XANES and ex situ HRTEM provide evidence for intermetallic β₁-NiZn formation at ~550 °C. In comparison to a Ni/SiO₂ catalyst, Ni/ZnO necessitates a higher temperature for the reduction of Ni II to Ni⁰, which highlights the strong interaction between Ni and the ZnO support. The catalytic activity for acetylene removal from an ethylene feed stream is decreased by a factor of 20 on Ni/ZnO in comparison to Ni/SiO₂. The decrease in catalytic activity of Ni/ZnO is accompanied by a reduced absolute selectivity to ethylene. H–D exchange measurements demonstrate a reduced ability of Ni/ZnO to dissociate hydrogen in comparison to Ni/SiO₂.These results of the catalytic experiments suggest that the catalytic properties are controlled, in part, by the zinc oxide support and stress the importance of reporting absolute ethylene selectivity for the catalytic semihydrogenation of acetylene in excess ethylene.« less

  6. Development of Inorganic Nanomaterials as Photocatalysts for the Water Splitting Reaction

    NASA Astrophysics Data System (ADS)

    Frame, Fredrick Andrew

    The photochemical water splitting reaction is of great interest for converting solar energy into usable fuels. This dissertation focuses on the development of inorganic nanoparticle catalysts for solar energy driven conversion of water into hydrogen and oxygen. The results from these selected studies have allowed greater insight into nanoparticle chemistry and the role of nanoparticles in photochemical conversion of water in to hydrogen and oxygen. Chapter 2 shows that CdSe nanoribbons have photocatalytic activity for hydrogen production from water in the presence of Na2S/Na2SO 3 as sacrificial electron donors in both UV and visible light. Quantum confinement of this material leads to an extended bandgap of 2.7 eV and enables the photocatalytic activity of this material. We report on the photocatalytic H2 evolution, and its dependence on platinum co-catalysts, the concentration of the electron donor, and the wavelength of incident radiation. Transient absorption measurements reveal decay of the excited state on multiple timescales, and an increase of lifetimes of trapped electrons due to the sacrificial electron donors. In chapter 3, we explore the catalytic activity of citrate-capped CdSe quantum dots. We show that the process is indeed catalytic for these dots in aqueous 0.1 M Na2S:Na2SO3, but not in pure water. Furthermore, optical spectroscopy was used to report electronic transitions in the dots and electron microscopy was used to obtain morphology of the catalyst. Interestingly, an increasing catalytic rate is noted for undialyzed catalyst. Dynamic light scattering experiments show an increased hydrodynamic radius in the case of undialyzed CdSe dots in donor solution. In chapter 4 we show that CdSe:MoS2 nanoparticle composites with improved catalytic activity can be assembled from CdSe and MoS2 nanoparticle building units. We report on the photocatalytic H 2 evolution, quantum efficiency using LED irriadiation, and its dependence on the co-catalyst loading. Furthermore, optical spectroscopy, cyclic voltammetry, and electron microscopy were used to obtain morphology, optical properties, and electronic structure of the catalysts. In chapter 5, illumination with visible light (lambda > 400 nm) photoconverts a red V2O5 gel in aqueous methanol solution into a green VO2 gel. The presence of V(4+) in the green VO2 gel is supported by Electron Energy Loss Spectra. High-resolution electron micrographs, powder X-ray diffraction, and selective area electron diffraction (SAED) data show that the crystalline structure of the V2O5 gel is retained upon reduction. After attachment of colloidal Pt nanoparticles, H2 evolution proceeds catalytically on the VO2 gel. The Pt nanoparticles reduce the H2 evolution overpotential. However, the activity of the new photocatalyst remains limited by the VO2 conduction band edge just below the proton reduction potential. Chapter 6 studies the ability of IrO2 to evolve oxygen from aqueous solutions under UV irradiation. We show that visible illumination (lambda > 400 nm) of iridium dioxide (IrO2) nanocrystals capped in succinic acid in aqueous sodium persulfate solution leads to catalytic oxygen evolution. While the majority of catalytic hydrogen evolution comes from UV light, the process can still be driven with visible light. Morphology, optical properties, surface photovoltage measurements, and oxygen evolution rates are discussed.

  7. Polymer-supported CuPd nanoalloy as a synergistic catalyst for electrocatalytic reduction of carbon dioxide to methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Sheng; Kang, Peng; Bakir, Mohammed

    2015-12-14

    Developing sustainable energy strategies based on CO2 reduction is an increasingly important issue given the world’s continued reliance on hydrocarbon fuels and the rise in CO2 concentrations in the atmosphere. An important option is electrochemical or photoelectrochemical CO2 reduction to carbon fuels. We describe here an electrodeposition strategy for preparing highly dispersed, ultrafine metal nanoparticle catalysts on an electroactive polymeric film including nanoalloys of Cu and Pd. Compared with nanoCu catalysts, which are state-of-the-art catalysts for CO2 reduction to hydrocarbons, the bimetallic CuPd nanoalloy catalyst exhibits a greater than twofold enhancement in Faradaic efficiency for CO2 reduction to methane. Themore » origin of the enhancement is suggested to arise from a synergistic reactivity interplay between Pd–H sites and Cu–CO sites during electrochemical CO2 reduction. The polymer substrate also appears to provide a basis for the local concentration of CO2 resulting in the enhancement of catalytic current densities by threefold. The procedure for preparation of the nanoalloy catalyst is straightforward and appears to be generally applicable to the preparation of catalytic electrodes for incorporation into electrolysis devices.« less

  8. Polymer-supported CuPd nanoalloy as a synergistic catalyst for electrocatalytic reduction of carbon dioxide to methane

    PubMed Central

    Zhang, Sheng; Kang, Peng; Bakir, Mohammed; Lapides, Alexander M.; Dares, Christopher J.; Meyer, Thomas J.

    2015-01-01

    Developing sustainable energy strategies based on CO2 reduction is an increasingly important issue given the world’s continued reliance on hydrocarbon fuels and the rise in CO2 concentrations in the atmosphere. An important option is electrochemical or photoelectrochemical CO2 reduction to carbon fuels. We describe here an electrodeposition strategy for preparing highly dispersed, ultrafine metal nanoparticle catalysts on an electroactive polymeric film including nanoalloys of Cu and Pd. Compared with nanoCu catalysts, which are state-of-the-art catalysts for CO2 reduction to hydrocarbons, the bimetallic CuPd nanoalloy catalyst exhibits a greater than twofold enhancement in Faradaic efficiency for CO2 reduction to methane. The origin of the enhancement is suggested to arise from a synergistic reactivity interplay between Pd–H sites and Cu–CO sites during electrochemical CO2 reduction. The polymer substrate also appears to provide a basis for the local concentration of CO2 resulting in the enhancement of catalytic current densities by threefold. The procedure for preparation of the nanoalloy catalyst is straightforward and appears to be generally applicable to the preparation of catalytic electrodes for incorporation into electrolysis devices. PMID:26668386

  9. Renewable hydrocarbons for jet fuels from biomass and plastics via microwave-induced pyrolysis and hydrogenation processes

    NASA Astrophysics Data System (ADS)

    Zhang, Xuesong

    This dissertation aims to enhance the production of aromatic hydrocarbons in the catalytic microwave-induced pyrolysis, and maximize the production of renewable cycloalkanes for jet fuels in the hydrogenation process. In the process, ZSM-5 catalyst as the highly efficient catalyst was employed for catalyzing the pyrolytic volatiles from thermal decomposition of cellulose (a model compound of lignocellulosic biomass). A central composite experiment design (CCD) was used to optimize the product yields as a function of independent factors (e.g. catalytic temperature and catalyst to feed mass ratio). The low-density polyethylene (a mode compound of waste plastics) was then carried out in the catalytic microwave-induced pyrolysis in the presence of ZSM-5 catalyst. Thereafter, the catalytic microwave-induced co-pyrolysis of cellulose with low-density polyethylene (LDPE) was conducted over ZSM-5 catalyst. The results showed that the production of aromatic hydrocarbons was significantly enhanced and the coke formation was also considerably reduced comparing with the catalytic microwave pyrolysis of cellulose or LDPE alone. Moreover, practical lignocellulosic biomass (Douglas fir sawdust pellets) was converted into aromatics-enriched bio-oil by catalytic microwave pyrolysis. The bio-oil was subsequently hydrogenated by using the Raney Ni catalyst. A liquid-liquid extraction step was implemented to recover the liquid organics and remove the water content. Over 20% carbon yield of liquid product regarding lignocellulosic biomass was obtained. Up to 90% selectivity in the liquid product belongs to jet fuel range cycloalkanes. As the integrated processes was developed, catalytic microwave pyrolysis of cellulose with LDPE was conducted to improve aromatic production. After the liquid-liquid extraction by the optimal solvent (n-heptane), over 40% carbon yield of hydrogenated organics based on cellulose and LDPE were achieved in the hydrogenation process. As such, real lignocellulosic biomass with LDPE were transformed into aromatics via co-feed catalytic microwave pyrolysis. It was also found that close to 40% carbon yield of hydrogenated organics were garnered. Based on these outcomes, the reaction kinetics regarding non-catalytic co-pyrolysis and catalytic co-pyrolysis of biomass with plastics were also presented. In addition, the techno-economic analysis of the catalytically integrated processes from lignocellulosic biomass to renewable cycloalkanes for jet fuels was evaluated in the dissertation as well.

  10. Electronic states of carbon alloy catalysts and nitrogen substituent effects on catalytic activity

    NASA Astrophysics Data System (ADS)

    Hata, Tomoyuki; Ushiyama, Hiroshi; Yamashita, Koichi

    2013-03-01

    In recent years, Carbon Alloy Catalysts (CACs) are attracting attention as a candidate for non-platinum-based cathode catalysts in fuel cells. Oxygen reduction reactions at the cathode are divided into two elementary processes, electron transfer and oxygen adsorption. The electron transfer reaction is the rate-determining, and by comparison of energy levels, catalytic activity can be evaluated quantitatively. On the other hand, to begin with, adsorption mechanism is obscure. The purpose of this study is to understand the effect of nitrogen substitution and oxygen adsorption mechanism, by first-principle electronic structure calculations for nitrogen substituted models. To reproduce the elementary processes of oxygen adsorption, we assumed that the initial structures are formed based on the Pauling model, a CACs model and nitrogen substituted CACs models in which various points are replaced with nitrogen. When we try to focus only on the DOS peaks of oxygen, in some substituted model that has high adsorption activity, a characteristic partial occupancy state was found. We conclude that this state will affect the adsorption activity, and discuss on why partially occupied states appear with simplification by using an orbital correlation diagram.

  11. Intermetallic nickel silicide nanocatalyst—A non-noble metal–based general hydrogenation catalyst

    PubMed Central

    Pohl, Marga-Martina; Agapova, Anastasiya

    2018-01-01

    Hydrogenation reactions are essential processes in the chemical industry, giving access to a variety of valuable compounds including fine chemicals, agrochemicals, and pharmachemicals. On an industrial scale, hydrogenations are typically performed with precious metal catalysts or with base metal catalysts, such as Raney nickel, which requires special handling due to its pyrophoric nature. We report a stable and highly active intermetallic nickel silicide catalyst that can be used for hydrogenations of a wide range of unsaturated compounds. The catalyst is prepared via a straightforward procedure using SiO2 as the silicon atom source. The process involves thermal reduction of Si–O bonds in the presence of Ni nanoparticles at temperatures below 1000°C. The presence of silicon as a secondary component in the nickel metal lattice plays the key role in its properties and is of crucial importance for improved catalytic activity. This novel catalyst allows for efficient reduction of nitroarenes, carbonyls, nitriles, N-containing heterocycles, and unsaturated carbon–carbon bonds. Moreover, the reported catalyst can be used for oxidation reactions in the presence of molecular oxygen and is capable of promoting acceptorless dehydrogenation of unsaturated N-containing heterocycles, opening avenues for H2 storage in organic compounds. The generality of the nickel silicide catalyst is demonstrated in the hydrogenation of over a hundred of structurally diverse unsaturated compounds. The wide application scope and high catalytic activity of this novel catalyst make it a nice alternative to known general hydrogenation catalysts, such as Raney nickel and noble metal–based catalysts. PMID:29888329

  12. Intermetallic nickel silicide nanocatalyst-A non-noble metal-based general hydrogenation catalyst.

    PubMed

    Ryabchuk, Pavel; Agostini, Giovanni; Pohl, Marga-Martina; Lund, Henrik; Agapova, Anastasiya; Junge, Henrik; Junge, Kathrin; Beller, Matthias

    2018-06-01

    Hydrogenation reactions are essential processes in the chemical industry, giving access to a variety of valuable compounds including fine chemicals, agrochemicals, and pharmachemicals. On an industrial scale, hydrogenations are typically performed with precious metal catalysts or with base metal catalysts, such as Raney nickel, which requires special handling due to its pyrophoric nature. We report a stable and highly active intermetallic nickel silicide catalyst that can be used for hydrogenations of a wide range of unsaturated compounds. The catalyst is prepared via a straightforward procedure using SiO 2 as the silicon atom source. The process involves thermal reduction of Si-O bonds in the presence of Ni nanoparticles at temperatures below 1000°C. The presence of silicon as a secondary component in the nickel metal lattice plays the key role in its properties and is of crucial importance for improved catalytic activity. This novel catalyst allows for efficient reduction of nitroarenes, carbonyls, nitriles, N-containing heterocycles, and unsaturated carbon-carbon bonds. Moreover, the reported catalyst can be used for oxidation reactions in the presence of molecular oxygen and is capable of promoting acceptorless dehydrogenation of unsaturated N-containing heterocycles, opening avenues for H 2 storage in organic compounds. The generality of the nickel silicide catalyst is demonstrated in the hydrogenation of over a hundred of structurally diverse unsaturated compounds. The wide application scope and high catalytic activity of this novel catalyst make it a nice alternative to known general hydrogenation catalysts, such as Raney nickel and noble metal-based catalysts.

  13. Producing Hydrogen by Plasma Pyrolysis of Methane

    NASA Technical Reports Server (NTRS)

    Atwater, James; Akse, James; Wheeler, Richard

    2010-01-01

    Plasma pyrolysis of methane has been investigated for utility as a process for producing hydrogen. This process was conceived as a means of recovering hydrogen from methane produced as a byproduct of operation of a life-support system aboard a spacecraft. On Earth, this process, when fully developed, could be a means of producing hydrogen (for use as a fuel) from methane in natural gas. The most closely related prior competing process - catalytic pyrolysis of methane - has several disadvantages: a) The reactor used in the process is highly susceptible to fouling and deactivation of the catalyst by carbon deposits, necessitating frequent regeneration or replacement of the catalyst. b) The reactor is highly susceptible to plugging by deposition of carbon within fixed beds, with consequent channeling of flow, high pressure drops, and severe limitations on mass transfer, all contributing to reductions in reactor efficiency. c) Reaction rates are intrinsically low. d) The energy demand of the process is high.

  14. In situ assembly of well-dispersed Ni nanoparticles on silica nanotubes and excellent catalytic activity in 4-nitrophenol reduction

    NASA Astrophysics Data System (ADS)

    Zhang, Shenghuan; Gai, Shili; He, Fei; Ding, Shujiang; Li, Lei; Yang, Piaoping

    2014-09-01

    The easy aggregation nature of ferromagnetic nanoparticles (NPs) prepared by conventional routes usually leads to a large particle size and low loading, which greatly limits their applications to the reduction of 4-nitrophenol (4-NP). Herein, we developed a novel in situ thermal decomposition and reduction strategy to prepare Ni nanoparticles/silica nanotubes (Ni/SNTs), which can markedly prevent the aggregation and growth of Ni NPs, resulting in an ultra-small particle size (about 6 nm), good dispersion and especially high loading of Ni NPs. It was found that Ni/SNTs, which have a high specific surface area (416 m2 g-1), exhibit ultra-high catalytic activity in the 4-NP reduction (complete reduction of 4-NP within only 60 s at room temperature), which is superior to most noble metal (Au, Pt, and Pd) supported catalysts. Ni/SNTs still showed high activity even after re-use for several cycles, suggesting good stability. In particular, the magnetic property of Ni/SNTs makes it easy to recycle for reuse.The easy aggregation nature of ferromagnetic nanoparticles (NPs) prepared by conventional routes usually leads to a large particle size and low loading, which greatly limits their applications to the reduction of 4-nitrophenol (4-NP). Herein, we developed a novel in situ thermal decomposition and reduction strategy to prepare Ni nanoparticles/silica nanotubes (Ni/SNTs), which can markedly prevent the aggregation and growth of Ni NPs, resulting in an ultra-small particle size (about 6 nm), good dispersion and especially high loading of Ni NPs. It was found that Ni/SNTs, which have a high specific surface area (416 m2 g-1), exhibit ultra-high catalytic activity in the 4-NP reduction (complete reduction of 4-NP within only 60 s at room temperature), which is superior to most noble metal (Au, Pt, and Pd) supported catalysts. Ni/SNTs still showed high activity even after re-use for several cycles, suggesting good stability. In particular, the magnetic property of Ni/SNTs makes it easy to recycle for reuse. Electronic supplementary information (ESI) available: XRD pattern and TEM image of SNTs after calcination, XRD pattern and EDS of NiSNTs, SEM images of a single SNT, NiSNTs and Ni/SNTs, enlarged HRTEM of Ni/SNTs, XRD pattern of NiO/SNTs, UV-vis spectra of the catalytic reduction of 4-NP to 4-AP over Ni/SNTs with different loading amounts, Ni/SNTs synthesized by wet impregnation and Ni/CNTs, TEM images of Ni/SNTs synthesized by wet impregnation and Ni/CNTs. See DOI: 10.1039/c4nr02096k

  15. EVALUATION OF MERCURY SPECIATION AT POWER PLANTS USING SCR AND SNCR NOX CONTROL TECHNOLOGIES

    EPA Science Inventory

    The paper describes the impact that selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas-conditioning systems have on total mercury emissions and on the speciation of mercury. If SCR and/or SNCR systems enhance mercury conversion/capture, the...

  16. EVALUATION OF MERCURY SPECIATION AT POWER PLANTS USING SCR AND SNCR CONTROL TECHNOLOGIES

    EPA Science Inventory

    The paper describes the impact that selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas-conditioning systems have on total mercury emissions and on the speciation of mercury. If SCR and/or SNCR systems enhance mercury conversion/capture, the...

  17. Efficient selective catalytic reduction of NO by novel carbon-doped metal catalysts made from electroplating sludge.

    PubMed

    Zhang, Jia; Zhang, Jingyi; Xu, Yunfeng; Su, Huimin; Li, Xiaoman; Zhou, Ji Zhi; Qian, Guangren; Li, Li; Xu, Zhi Ping

    2014-10-07

    Electroplating sludges, once regarded as industrial wastes, are precious resources of various transition metals. This research has thus investigated the recycling of an electroplating sludge as a novel carbon-doped metal (Fe, Ni, Mg, Cu, and Zn) catalyst, which was different from a traditional carbon-supported metal catalyst, for effective NO selective catalytic reduction (SCR). This catalyst removed >99.7% NO at a temperature as low as 300 °C. It also removed NO steadily (>99%) with a maximum specific accumulative reduced amount (MSARA) of 3.4 mmol/g. Gas species analyses showed that NO removal was accompanied by evolving N2 and CO2. Moreover, in a wide temperature window, the sludge catalyst showed a higher CO2 selectivity (>99%) than an activated carbon-supported metal catalyst. Structure characterizations revealed that carbon-doped metal was transformed to metal oxide in the sludge catalyst after the catalytic test, with most carbon (2.33 wt %) being consumed. These observations suggest that NO removal over the sludge catalyst is a typical SCR where metals/metal oxides act as the catalytic center and carbon as the reducing reagent. Therefore, our report probably provides an opportunity for high value-added utilizations of heavy-metal wastes in mitigating atmospheric pollutions.

  18. Theoretical predictions for hexagonal BN based nanomaterials as electrocatalysts for the oxygen reduction reaction.

    PubMed

    Lyalin, Andrey; Nakayama, Akira; Uosaki, Kohei; Taketsugu, Tetsuya

    2013-02-28

    The catalytic activity for the oxygen reduction reaction (ORR) of both the pristine and defect-possessing hexagonal boron nitride (h-BN) monolayer and H-terminated nanoribbon have been studied theoretically using density functional theory. It is demonstrated that an inert h-BN monolayer can be functionalized and become catalytically active by nitrogen doping. It is shown that the energetics of adsorption of O(2), O, OH, OOH, and H(2)O on N atom impurities in the h-BN monolayer (N(B)@h-BN) is quite similar to that known for a Pt(111) surface. The specific mechanism of destructive and cooperative adsorption of ORR intermediates on the surface point defects is discussed. It is demonstrated that accounting for entropy and zero-point energy (ZPE) corrections results in destabilization of the ORR intermediates adsorbed on N(B)@h-BN, while solvent effects lead to their stabilization. Therefore, entropy, ZPE and solvent effects partly cancel each other and have to be taken into account simultaneously. Analysis of the free energy changes along the ORR pathway allows us to suggest that a N-doped h-BN monolayer can demonstrate catalytic properties for the ORR under the condition that electron transport to the catalytically active center is provided.

  19. Treatment of ammonia by catalytic wet oxidation process over platinum-rhodium bimetallic catalyst in a trickle-bed reactor: effect of pH.

    PubMed

    Hung, Chang-Mao; Lin, Wei-Bang; Ho, Ching-Lin; Shen, Yun-Hwei; Hsia, Shao-Yi

    2010-08-01

    This work adopted aqueous solutions of ammonia for use in catalytic liquid-phase reduction in a trickle-bed reactor with a platinum-rhodium bimetallic catalyst, prepared by the co-precipitation of chloroplatinic acid (H2PtCl6) and rhodium nitrate [Rh(NO3)3]. The experimental results demonstrated that a minimal amount of ammonia was removed from the solution by wet oxidation in the absence of any catalyst, while approximately 97.0% of the ammonia was removed by wet oxidation over the platinum-rhodium bimetallic catalyst at 230 degrees C with an oxygen partial pressure of 2.0 MPa. The oxidation of ammonia has been studied as a function of pH, and the main reaction products were determined. A synergistic effect is manifest in the platinum-rhodium bimetallic structure, in which the material has the greatest capacity to reduce ammonia. The reaction pathway linked the oxidizing ammonia to nitric oxide, nitrogen, and water.

  20. More accurate depiction of adsorption energy on transition metals using work function as one additional descriptor.

    PubMed

    Shen, Xiaochen; Pan, Yanbo; Liu, Bin; Yang, Jinlong; Zeng, Jie; Peng, Zhenmeng

    2017-05-24

    The reaction mechanism and properties of a catalytic process are primarily determined by the interactions between reacting species and catalysts. However, the interactions are often challenging to be experimentally measured, especially for unstable intermediates. Therefore, it is of significant importance to establish an exact relationship between chemical-catalyst interactions and catalyst parameters, which will allow calculation of these interactions and thus advance their mechanistic understanding. Herein we report the description of adsorption energy on transition metals by considering both ionic bonding and covalent bonding contributions and introduce the work function as one additional responsible parameter. We find that the adsorption energy can be more accurately described using a two-dimensional (2D) polynomial model, which shows a significant improvement compared with the current adsorption energy-d-band center linear correlation. We also demonstrate the utilization of this new 2D polynomial model to calculate oxygen binding energy of different transition metals to help understand their catalytic properties in oxygen reduction reactions.

  1. Comparative study of the anchorage and the catalytic properties of nanoporous TiO2 films modified with ruthenium (II) and rhenium (I) carbonyl complexes

    NASA Astrophysics Data System (ADS)

    Oyarzún, Diego P.; Chardon-Noblat, Sylvie; Linarez Pérez, Omar E.; López Teijelo, Manuel; Zúñiga, César; Zarate, Ximena; Shott, Eduardo; Carreño, Alexander; Arratia-Perez, Ramiro

    2018-02-01

    In this article we study the anchoring of cis-[Ru(bpyC4pyr)(CO)2(CH3CN)2]2+, cis-[Ru(bpy)2(CO)2]2+ and cis-[Ru(bpyac)(CO)2Cl2], onto nanoporous TiO2 employing electropolymerization, electrostatic interaction and chemical bonding. Also, the [Re(bpyac)(CO)3Cl] rhenium(I) complex for chemical anchorage was analyzed. The characterization of TiO2/Ru(II) and TiO2/Re(I) nanocomposite films was performed by field emission scanning electron microscopy (FESEM), electron dispersive X-ray spectroscopy (EDS) and Raman spectroscopy. In addition, for the more stable nanocomposites obtained, the catalytic properties (solar energy conversion and CO2 reduction) were evaluated. The efficiency improvement in redox process derived from the (photo)electrochemical evidence indicates that modified nanoporous TiO2 structures enhance the rate of charge transfer reactions.

  2. Biomimetic synthesis of silver nanoparticles and evaluation of their catalytic activity towards degradation of methyl orange

    NASA Astrophysics Data System (ADS)

    Manjari Mishra, Pravat; Bihari Pani, Khirod

    2017-11-01

    This paper described the significant effect of process variables like reductant concentrations, substrate concentration, reaction pH and reaction temperature on the size, morphology and yield of the silver nanoparticles (AgNPs) synthesized using aqueous leaf extract of a medicinal plant Momordica charantia (Bitter guard). By means of UV-vis spectroscopy, XRD analysis, TEM analysis and Fluorescence analysis, it is observed that the reaction solution containing 10-3 M of AgNO3 of pH 5.3  +  10 ml of aqueous leaf extract at normal room temperature, was optimum for synthesis of stable, polydisperse, predominantly spherical AgNPs with average size of 12.15 nm. FT-IR and TEM studies confirmed the stability of AgNPs was due to the capping of phytoconstituents present in the leaf extract. The aqueous solution of leaf extract containing AgNPs showed remarkable catalytic activity towards degradation of methyl orange (MO) in aqueous medium.

  3. Palladium-catalyzed C-H functionalization of acyldiazomethane and tandem cross-coupling reactions.

    PubMed

    Ye, Fei; Qu, Shuanglin; Zhou, Lei; Peng, Cheng; Wang, Chengpeng; Cheng, Jiajia; Hossain, Mohammad Lokman; Liu, Yizhou; Zhang, Yan; Wang, Zhi-Xiang; Wang, Jianbo

    2015-04-08

    Palladium-catalyzed C-H functionalization of acyldiazomethanes with aryl iodides has been developed. This reaction is featured by the retention of the diazo functionality in the transformation, thus constituting a novel method for the introduction of diazo functionality to organic molecules. Consistent with the experimental results, the density functional theory (DFT) calculation indicates that the formation of Pd-carbene species in the catalytic cycle through dinitrogen extrusion from the palladium ethyl diazoacetate (Pd-EDA) complex is less favorable. The reaction instead proceeds through Ag2CO3 assisted deprotonation and subsequently reductive elimination to afford the products with diazo functionality remained. This C-H functionalization transformation can be further combined with the recently evolved palladium-catalyzed cross-coupling reaction of diazo compounds with aryl iodides to develop a tandem coupling process for the synthesis of α,α-diaryl esters. DFT calculation supports the involvement of Pd-carbene as reactive intermediate in the catalytic cycle, which goes through facile carbene migratory insertion with a low energy barrier (3.8 kcal/mol).

  4. Platinum-Modulated Cobalt Nanocatalysts for Low-Temperature Aqueous-Phase Fischer Tropsch Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hang; Zhou, Wu; Liu, JinXun

    2013-01-01

    Fischer Tropsch synthesis (FTS) is an important catalytic process for liquid fuel generation, which converts coal/shale gas/biomass-derived syngas (a mixture of CO and H2) to oil. While FTS is thermodynamically favored at low temperature, it is desirable to develop a new catalytic system that could allow working at a relatively low reaction temperature. In this article, we present a one-step hydrogenation reduction route for the synthesis of Pt Co nanoparticles (NPs) which were found to be excellent catalysts for aqueous-phase FTS at 433 K. Coupling with atomic-resolution scanning transmission electron microscopy (STEM) and theoretical calculations, the outstanding activity is rationalizedmore » by the formation of Co overlayer structures on Pt NPs or Pt Co alloy NPs. The improved energetics and kinetics from the change of the transition states imposed by the lattice mismatch between the two metals are concluded to be the key factors responsible for the dramatically improved FTS performance.« less

  5. Eco-friendly green synthesis of silver nanoparticles using salmalia malabarica: synthesis, characterization, antimicrobial, and catalytic activity studies

    NASA Astrophysics Data System (ADS)

    Murali Krishna, I.; Bhagavanth Reddy, G.; Veerabhadram, G.; Madhusudhan, A.

    2016-06-01

    An economically viable and "green" process has been developed for the synthesis of silver nanoparticles (AgNPs) with an average size of 7 nm using non-toxic and renewable salmalia malabarica gum (SMG) as reducing and capping agent without using any chemical reducing agent. The effect of various parameters such as concentration of SMG and silver nitrate and reaction time for the synthesis of AgNPs was studied. The synthesized AgNPs are systematically characterized by UV/Vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction and Transmission electron microscopy. The resultant SMG-capped AgNPs are highly stable and had significant antibacterial action on both Escherichia coli ( E. coli) and Staphylococcus aureus ( S. aureus). The catalytic action of the SMG-capped AgNPs to initiate the reduction of 4-nitrophenol (4-NP) in the presence of NaBH4 has also been reported. The kinetics of the reaction was found to be of pseudo-first-order with respect to the 4-NP.

  6. Pt-Pd Bimetal Popcorn Nanocrystals: Enhancing the Catalytic Performance by Combination Effect of Stable Multipetals Nanostructure and Highly Accessible Active Sites.

    PubMed

    Ma, Yanxia; Yin, Lisi; Cao, Guojian; Huang, Qingli; He, Maoshuai; Wei, Wenxian; Zhao, Hong; Zhang, Dongen; Wang, Mingyan; Yang, Tao

    2018-04-01

    Exploration of highly efficient electrocatalysts is significantly urgent for the extensive adoption of the fuel cells. Because of their high activity and super stability, Pt-Pd bimetal nanocrystals have been widely recognized as one class of promising electrocatalysts for oxygen reduction. This article presents the synthesis of popcorn-shaped Pt-Pd bimetal nanoparticles with a wide composition range through a facile hydrothermal strategy. The hollow-centered nanoparticles are surrounded by several petals and concave surfaces. By exploring the oxygen reduction reaction on the carbon supported Pt-Pd popcorns in perchloric acid solution, it is found that compared with the commercial Pt/C catalyst the present catalysts display superior catalytic performances in aspects of catalytic activity and stability. More importantly, the Pt-Pd popcorns display minor performance degradations through prolonged potential cycling. The enhanced performances can be mainly attributed to the unique popcorn structure of the Pt-Pd components, which allows the appearance and long existence of the high active sites with more accessibility. The present work highlights the key roles of accessible high active sites in the oxygen reduction reaction, which will ultimately guide the design of highly durable Pt-Pd catalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Highly recyclable and ultra-rapid catalytic reduction of organic pollutants on Ag-Cu@ZnO bimetal nanocomposite synthesized via green technology

    NASA Astrophysics Data System (ADS)

    Gangarapu, Manjari; Sarangapany, Saran; Suja, Devipriya P.; Arava, Vijaya Bhaskara Rao

    2018-04-01

    In this study, synthesis of Ag-Cu alloy bimetal nanoparticles anchored on high surface and porous ZnO using a facile, greener and low-cost aqeous bark extract of Aglaia roxburghiana for highly active, ultra-rapid and stable catalyst is performed. The nanocomposite was scrupulously characterized using UV-Vis spectrophotometer, X-ray diffraction, Raman spectrophotometer, high-resolution transmission electron microscope, selected area (electron) diffraction, scanning electron microscope with energy dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. The catalytic activity of the green synthesized Ag-Cu bimetal nanocomposite was evaluated in the reduction of 4-nitrophenol (4-NP), methylene blue (MB) and rhodamine B (Rh B) dyes. The different types of dye exhibited very high and effective catalytic activity within few seconds. The theoretical investigations reveal that the unique synergistic effect of Ag-Cu nanoparticles and immobilization over ZnO assists in the reduction of 4-NP, MB and Rh B. Loading and leaching of metal nanoparticles were obtained using inductively coupled plasma atomic emission spectroscopy. Moreover, the stable and efficient recyclability of nanocomposite by centrifugation after completion of the reaction was demonstrated. The results lead to the design different possible bimetal on ZnO with boosting and an effective catalyst for the environmental applications.

  8. Imaging Catalytic Activation of CO 2 on Cu 2O (110): A First-Principles Study

    DOE PAGES

    Li, Liang; Zhang, Rui; Vinson, John; ...

    2018-03-05

    Balancing global energy needs against increasing greenhouse gas emissions requires new methods for efficient CO 2 reduction. While photoreduction of CO 2 is a viable approach for fuel generation, the rational design of photocatalysts hinges on precise characterization of the surface catalytic reactions. Cu 2O is a promising next-generation photocatalyst, but the atomic-scale description of the interaction between CO 2 and the Cu 2O surface is largely unknown, and detailed experimental measurements are lacking. In this study, density-functional-theory (DFT) calculations have been performed to identify the Cu 2O (110) surface stoichiometry that favors CO 2 reduction. To facilitate interpretation ofmore » scanning tunneling microscopy (STM) and X-ray absorption near-edge structures (XANES) measurements, which are useful for characterizing catalytic reactions, we present simulations based on DFT-derived surface morphologies with various adsorbate types. STM and XANES simulations were performed using the Tersoff Hamann approximation and Bethe-Salpeter equation (BSE) approach, respectively. The results provide guidance for observation of CO 2 reduction reaction on, and rational surface engineering of, Cu 2O (110). In conclusion, they also demonstrate the effectiveness of computational image and spectroscopy modeling as a predictive tool for surface catalysis characterization.« less

  9. Imaging Catalytic Activation of CO 2 on Cu 2O (110): A First-Principles Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Liang; Zhang, Rui; Vinson, John

    Balancing global energy needs against increasing greenhouse gas emissions requires new methods for efficient CO 2 reduction. While photoreduction of CO 2 is a viable approach for fuel generation, the rational design of photocatalysts hinges on precise characterization of the surface catalytic reactions. Cu 2O is a promising next-generation photocatalyst, but the atomic-scale description of the interaction between CO 2 and the Cu 2O surface is largely unknown, and detailed experimental measurements are lacking. In this study, density-functional-theory (DFT) calculations have been performed to identify the Cu 2O (110) surface stoichiometry that favors CO 2 reduction. To facilitate interpretation ofmore » scanning tunneling microscopy (STM) and X-ray absorption near-edge structures (XANES) measurements, which are useful for characterizing catalytic reactions, we present simulations based on DFT-derived surface morphologies with various adsorbate types. STM and XANES simulations were performed using the Tersoff Hamann approximation and Bethe-Salpeter equation (BSE) approach, respectively. The results provide guidance for observation of CO 2 reduction reaction on, and rational surface engineering of, Cu 2O (110). In conclusion, they also demonstrate the effectiveness of computational image and spectroscopy modeling as a predictive tool for surface catalysis characterization.« less

  10. Catalytically and biologically active silver nanoparticles synthesized using essential oil

    NASA Astrophysics Data System (ADS)

    Vilas, Vidya; Philip, Daizy; Mathew, Joseph

    2014-11-01

    There are numerous reports on phytosynthesis of silver nanoparticles and various phytochemicals are involved in the reduction and stabilization. Pure explicit phytosynthetic protocol for catalytically and biologically active silver nanoparticles is of importance as it is an environmentally benign green method. This paper reports the use of essential oil of Myristica fragrans enriched in terpenes and phenyl propenes in the reduction and stabilization. FTIR spectra of the essential oil and the synthesized biogenic silver nanoparticles are in accordance with the GC-MS spectral analysis reports. Nanosilver is initially characterized by an intense SPR band around 420 nm, followed by XRD and TEM analysis revealing the formation of 12-26 nm sized, highly pure, crystalline silver nanoparticles. Excellent catalytic and bioactive potential of the silver nanoparticles is due to the surface modification. The chemocatalytic potential of nanosilver is exhibited by the rapid reduction of the organic pollutant, para nitro phenol and by the degradation of the thiazine dye, methylene blue. Significant antibacterial activity of the silver colloid against Gram positive, Staphylococcus aureus (inhibition zone - 12 mm) and Gram negative, Escherichia coli (inhibition zone - 14 mm) is demonstrated by Agar-well diffusion method. Strong antioxidant activity of the biogenic silver nanoparticles is depicted through NO scavenging, hydrogen peroxide scavenging, reducing power, DPPH and total antioxidant activity assays.

  11. Fe-porphyrin-based metal–organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO 2

    DOE PAGES

    Hod, Idan; Sampson, Matthew D.; Deria, Pravas; ...

    2015-09-18

    Realization of heterogeneous electrochemical CO 2-to-fuel conversion via molecular catalysis under high-flux conditions requires the assembly of large quantities of reactant-accessible catalysts on conductive surfaces. As a proof of principle, we demonstrate that electrophoretic deposition of thin films of an appropriately chosen metal–organic framework (MOF) material is an effective method for immobilizing the needed quantity of catalyst. For electrocatalytic CO 2 reduction, we used a material that contains functionalized Fe-porphyrins as catalytically competent, redox-conductive linkers. The approach yields a high effective surface coverage of electrochemically addressable catalytic sites (~10 15 sites/cm 2). The chemical products of the reduction, obtained withmore » ~100% Faradaic efficiency, are mixtures of CO and H 2. The results validate the strategy of using MOF chemistry to obtain porous, electrode-immobilized, networks of molecular catalysts having competency for energy-relevant electrochemical reactions.« less

  12. A Highly Selective and Robust Co(II)-Based Homogeneous Catalyst for Reduction of CO2 to CO in CH3CN/H2O Solution Driven by Visible Light.

    PubMed

    Ouyang, Ting; Hou, Cheng; Wang, Jia-Wei; Liu, Wen-Ju; Zhong, Di-Chang; Ke, Zhuo-Feng; Lu, Tong-Bu

    2017-07-03

    Visible-light driven reduction of CO 2 into chemical fuels has attracted enormous interest in the production of sustainable energy and reversal of the global warming trend. The main challenge in this field is the development of efficient, selective, and economic photocatalysts. Herein, we report a Co(II)-based homogeneous catalyst, [Co(NTB)CH 3 CN](ClO 4 ) 2 (1, NTB = tris(benzimidazolyl-2-methyl)amine), which shows high selectivity and stability for the catalytic reduction of CO 2 to CO in a water-containing system driven by visible light, with turnover number (TON) and turnover frequency (TOF) values of 1179 and 0.032 s -1 , respectively, and selectivity to CO of 97%. The high catalytic activity of 1 for photochemical CO 2 -to-CO conversion is supported by the results of electrochemical investigations and DFT calculations.

  13. Continuous-flow processes for the catalytic partial hydrogenation reaction of alkynes

    PubMed Central

    Moreno-Marrodan, Carmen; Liguori, Francesca

    2017-01-01

    The catalytic partial hydrogenation of substituted alkynes to alkenes is a process of high importance in the manufacture of several market chemicals. The present paper shortly reviews the heterogeneous catalytic systems engineered for this reaction under continuous flow and in the liquid phase. The main contributions appeared in the literature from 1997 up to August 2016 are discussed in terms of reactor design. A comparison with batch and industrial processes is provided whenever possible. PMID:28503209

  14. NOx reduction in catalytically stabilized thermal burners. Annual report, pril 1, 1988-March 31, 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfefferle, L.D.

    1989-09-01

    Catalytically stabilized combustors can be designed to combine the high reaction rates of thermal combustors with low-NOx emissions. The objectives of the research are to understand why the CST burner has inherently low-NOx emissions and whether preexisting NOx can be reduced in-situ in the post-flame zone of a CST burner. Initial results indicate that reduced NOx emissions are, at least for some operating conditions, due to more than just the ability to stabilize combustion at low temperatures. The next phase of the investigation will focus on isothermal flow-tube kinetics studies to isolate catalytic and thermal effects.

  15. Bubble driven quasioscillatory translational motion of catalytic micromotors.

    PubMed

    Manjare, Manoj; Yang, Bo; Zhao, Y-P

    2012-09-21

    A new quasioscillatory translational motion has been observed for big Janus catalytic micromotors with a fast CCD camera. Such motional behavior is found to coincide with both the bubble growth and burst processes resulting from the catalytic reaction, and the competition of the two processes generates a net forward motion. Detailed physical models have been proposed to describe the above processes. It is suggested that the bubble growth process imposes a growth force moving the micromotor forward, while the burst process induces an instantaneous local pressure depression pulling the micromotor backward. The theoretic predictions are consistent with the experimental data.

  16. Bubble Driven Quasioscillatory Translational Motion of Catalytic Micromotors

    NASA Astrophysics Data System (ADS)

    Manjare, Manoj; Yang, Bo; Zhao, Y.-P.

    2012-09-01

    A new quasioscillatory translational motion has been observed for big Janus catalytic micromotors with a fast CCD camera. Such motional behavior is found to coincide with both the bubble growth and burst processes resulting from the catalytic reaction, and the competition of the two processes generates a net forward motion. Detailed physical models have been proposed to describe the above processes. It is suggested that the bubble growth process imposes a growth force moving the micromotor forward, while the burst process induces an instantaneous local pressure depression pulling the micromotor backward. The theoretic predictions are consistent with the experimental data.

  17. Bench-Scale Evaluation of Hydrothermal Processing Technology for Conversion of Wastewater Solids to Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marrone, Philip A.; Elliott, Douglas C.; Billing, Justin M.

    Hydrothermal Liquefaction (HTL) and Catalytic Hydrothermal Gasification (CHG) proof-of-concept bench-scale tests were performed to assess the potential of hydrothermal treatment for handling municipal wastewater sludge. HTL tests were conducted at 300-350°C and 20 MPa on three different feeds: primary sludge, secondary sludge, and digested solids. Corresponding CHG tests were conducted at 350°C and 20 MPa on the HTL aqueous phase output using a ruthenium based catalyst. Biocrude yields ranged from 25-37%. Biocrude composition and quality were comparable to biocrudes generated from algae feeds. Subsequent hydrotreating of biocrude resulted in a product with comparable physical and chemical properties to crude oil.more » CHG product gas methane yields on a carbon basis ranged from 47-64%. Siloxane concentrations in the CHG product gas were below engine limits. The HTL-CHG process resulted in a chemical oxygen demand (COD) reduction of > 99.9% and a reduction in residual solids for disposal of 94-99%.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Rodney

    The objective of this project was to define the scope and cost of a technology research and development program that will demonstrate the feasibility of using an off-the-shelf, unmodified, large bore diesel powered generator in a grid-connected application, utilizing various blends of BioDiesel as fuel. Furthermore, the objective of project was to develop an emissions control device that uses a catalytic process and BioDiesel (without the presence of Ammonia or Urea)to reduce NOx and other pollutants present in a reciprocating engine exhaust stream with the goal of redefining the highest emission reduction efficiencies possible for a diesel reciprocating generator. Process:more » Caterpillar Power Generation adapted an off-the-shelf Diesel Generator to run on BioDiesel and various Petroleum Diesel/BioDiesel blends. EmeraChem developed and installed an exhaust gas cleanup system to reduce NOx, SOx, volatile organics, and particulates. The system design and function was optimized for emissions reduction with results in the 90-95% range;« less

  19. Electrochemical characterisation of air electrodes based on La 0.6Sr 0.4CoO 3 and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Thiele, Doreen; Züttel, Andreas

    The efficiency of fuel cells suffers from the high activation polarisation at the cathode, where the oxygen reduction reaction takes place. In order to improve the performance, air electrodes composed of carbon nanotubes (CNTs) and the perovskite La 0.6Sr 0.4CoO 3 are produced by two different methods and investigated. In the first method CNTs are directly grown on the perovskite and in the second method CNTs and perovskite are combined by ultrasonic mixing. Their catalytic activity towards oxygen reduction in alkaline solution is evaluated by polarisation curves and electrochemical impedance spectroscopy. Best performance shows the electrode composed of 25 wt% CNTs, 55 wt% La 0.6Sr 0.4CoO 3 and 20 wt% PTFE as binder, produced by ultrasonic mixing. The Nyquist plot of this electrode displays two potential-dependent semi-circles, accounting for processes on the catalyst surface and for processes depending on the morphology of the electrode.

  20. Iron catalyzed coal liquefaction process

    DOEpatents

    Garg, Diwakar; Givens, Edwin N.

    1983-01-01

    A process is described for the solvent refining of coal into a gas product, a liquid product and a normally solid dissolved product. Particulate coal and a unique co-catalyst system are suspended in a coal solvent and processed in a coal liquefaction reactor, preferably an ebullated bed reactor. The co-catalyst system comprises a combination of a stoichiometric excess of iron oxide and pyrite which reduce predominantly to active iron sulfide catalysts in the reaction zone. This catalyst system results in increased catalytic activity with attendant improved coal conversion and enhanced oil product distribution as well as reduced sulfide effluent. Iron oxide is used in a stoichiometric excess of that required to react with sulfur indigenous to the feed coal and that produced during reduction of the pyrite catalyst to iron sulfide.

  1. Catalytic processes for space station waste conversion

    NASA Technical Reports Server (NTRS)

    Schoonover, M. W.; Madsen, R. A.

    1986-01-01

    Catalytic techniques for processing waste products onboard space vehicles were evaluated. The goal of the study was the conversion of waste to carbon, wash water, oxygen and nitrogen. However, the ultimate goal is conversion to plant nutrients and other materials useful in closure of an ecological life support system for extended planetary missions. The resulting process studied involves hydrolysis at 250 C and 600 psia to break down and compact cellulose material, distillation at 100 C to remove water, coking at 450 C and atmospheric pressure, and catalytic oxidation at 450 to 600 C and atmospheric pressure. Tests were conducted with a model waste to characterize the hydrolysis and coking processes. An oxidizer reactor was sized based on automotive catalytic conversion experience. Products obtained from the hydrolysis and coking steps included a solid residue, gases, water condensate streams, and a volatile coker oil. Based on the data obtained, sufficient component sizing was performed to make a preliminary comparison of the catalytic technique with oxidation for processing waste for a six-man spacecraft. Wet oxidation seems to be the preferred technique from the standpoint of both component simplicity and power consumption.

  2. Synthesis and characterization of NiFe{sub 2}O{sub 4}–Pd magnetically recyclable catalyst for hydrogenation reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karaoğlu, E., E-mail: ekaraoglu@fatih.edu.tr; Özel, U.; Caner, C.

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Novel superparamagnetic NiFe{sub 2}O{sub 4}–Pd magnetically recyclable catalyst was fabricated through co-precipitation. ► It could be reused several times without significant loss in catalytic activity for hydrogenation reaction. ► No further modification of the NiFe{sub 2}O{sub 4}–Pd magnetically recyclable catalyst is necessary for utilization as catalyst. -- Abstract: Herein we report the fabrication and characterization magnetically recyclable catalysts of NiFe{sub 2}O{sub 4}–Pd nanocomposite as highly effective catalysts for reduction reactions in liquid phase. The reduction Pd{sup 2+} was accomplished with polyethylene glycol 400 (PEG-400) instead of sodium borohydride (NaBH{sub 4}) and NiFe{sub 2}O{sub 4}more » nanoparticles was prepared by sonochemically using FeCI{sub 3}·6H{sub 2}O and NiCl{sub 2}. The chemical characterization of the product was done with X-ray diffractometry, Infrared spectroscopy, transmission electron microscopy, UV–Vis spectroscopy, thermal gravimetry and inductively coupled plasma. Thus formed NiFe{sub 2}O{sub 4}–Pd MRCs showed a very high activity in reduction reactions of 4-nitro aniline and 1,3-dinitrobenzene in liquid phase. It was found out that the catalytic activity of NiFe{sub 2}O{sub 4}–Pd MRCs on the reduction of 4-nitro aniline and 1,3-dinitrobenzene in liquid phase are between 99–93% and 98–93%, respectively. Magnetic character of this system allowed recovery and multiple use without significant loss of its catalytic activity. It is found that NiFe{sub 2}O{sub 4}–Pd MRCs showed very efficient catalytic activity and multiple usability.« less

  3. Electrochemical reduction of CO2 to CO over Zn in propylene carbonate/tetrabutylammonium perchlorate

    NASA Astrophysics Data System (ADS)

    Shen, Feng-xia; Shi, Jin; Chen, Tian-you; Shi, Feng; Li, Qing-yuan; Zhen, Jian-zheng; Li, Yun-fei; Dai, Yong-nian; Yang, Bin; Qu, Tao

    2018-02-01

    Developing low cost and high efficient electrode for carbon dioxide (CO2) reduction in organic media is essential for practical application. Zn is a cheap metal and has high catalytic effects on CO2 reduction to carbon monoxide (CO) in aqueous solution. However, little attention has been given to investigate the performance of Zn in organic media for CO2 reduction. In present work, we have conducted CO2 reduction in propylene carbonate/tetrabutylammonium perchlorate on Zn due to that propylene carbonate is a widely used industrial absorber, and tetrabutylammonium perchlorate is a commonly used organic supporting electrolyte. In addition, because electrochemical reduction of CO2 to CO naturally produces H2O, we have discussed water effects on CO2 reduction in propylene carbonate/tetrabutylammonium perchlorate+6.8 wt % H2O. Our experiment results reveal that the faradaic efficiency for CO formation reaches to 83%, and the current density remains stable at 6.72 mA/cm2 at voltage -2.3 V for 4 h. Interestingly, Zn presents higher catalytic activity than Ag, and slightly lower than Au. X-ray photoelectron spectroscopy results confirm that no poisonous species is formed and absorbed on the cathode, which is an important advantage in practical application.

  4. Factors that control catalytic two- versus four-electron reduction of dioxygen by copper complexes.

    PubMed

    Fukuzumi, Shunichi; Tahsini, Laleh; Lee, Yong-Min; Ohkubo, Kei; Nam, Wonwoo; Karlin, Kenneth D

    2012-04-25

    The selective two-electron reduction of O(2) by one-electron reductants such as decamethylferrocene (Fc*) and octamethylferrocene (Me(8)Fc) is efficiently catalyzed by a binuclear Cu(II) complex [Cu(II)(2)(LO)(OH)](2+) (D1) {LO is a binucleating ligand with copper-bridging phenolate moiety} in the presence of trifluoroacetic acid (HOTF) in acetone. The protonation of the hydroxide group of [Cu(II)(2)(LO)(OH)](2+) with HOTF to produce [Cu(II)(2)(LO)(OTF)](2+) (D1-OTF) makes it possible for this to be reduced by 2 equiv of Fc* via a two-step electron-transfer sequence. Reactions of the fully reduced complex [Cu(I)(2)(LO)](+) (D3) with O(2) in the presence of HOTF led to the low-temperature detection of the absorption spectra due to the peroxo complex [Cu(II)(2)(LO)(OO)] (D) and the protonated hydroperoxo complex [Cu(II)(2)(LO)(OOH)](2+) (D4). No further Fc* reduction of D4 occurs, and it is instead further protonated by HOTF to yield H(2)O(2) accompanied by regeneration of [Cu(II)(2)(LO)(OTF)](2+) (D1-OTF), thus completing the catalytic cycle for the two-electron reduction of O(2) by Fc*. Kinetic studies on the formation of Fc*(+) under catalytic conditions as well as for separate examination of the electron transfer from Fc* to D1-OTF reveal there are two important reaction pathways operating. One is a rate-determining second reduction of D1-OTF, thus electron transfer from Fc* to a mixed-valent intermediate [Cu(II)Cu(I)(LO)](2+) (D2), which leads to [Cu(I)(2)(LO)](+) that is coupled with O(2) binding to produce [Cu(II)(2)(LO)(OO)](+) (D). The other involves direct reaction of O(2) with the mixed-valent compound D2 followed by rapid Fc* reduction of a putative superoxo-dicopper(II) species thus formed, producing D.

  5. Surface-enhanced Raman scattering studies of the reduction of p-nitroaniline catalyzed by a nanonized Ag porous-glass hybrid composite.

    PubMed

    Huang, Genin Gary; Sou, Nga-Lai; Hung, Mei-Jou

    2016-09-05

    Nanonized noble metal composites have been known for their excellent catalytic properties. However, the mechanism and intermediates formed on the surfaces of nanocatalysts during catalysis are speculated with mostly insufficient evidence. In this study, to obtain further understanding of the roles of noble metal nanocatalysts in a catalytic reaction, surface-enhanced Raman scattering (SERS) was used to monitor the surfaces of silver (Ag) nanocatalysts. Furthermore, UV-Vis spectrometry was used to trace the concentration variations of reactants and products in bulk solutions, thereby correlating the variations of the Ag nanocatalyst surfaces with those in the bulk solutions. Nanonized Ag porous-glass hybrid composites were prepared by reducing naked Ag nanoparticles on porous-glass filter plates and were used as catalysts for nitroanilines reduction. The complete process was monitored using SERS and UV-Vis spectrometry simultaneously. The results indicated that the reactant and product molecules adsorbed on the Ag nanocatalysts can reach equilibrium, and the equilibrium is affected by the reaction conditions, including reducing agent concentration, pH of the reaction system, and temperature. In addition, the reduction of reactants in the bulk solutions is also related to the behavior of Ag nanocatalyst surfaces. Furthermore, Ag nanocatalysts can act as electron relays even if their surfaces are occupied by reactants and products. Analyzing the collected SERS and UV-Vis spectra can provide a new insight into Ag nanoparticle catalysis, and the role of Ag nanocatalysts can be further comprehended. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. 77 FR 497 - Control of Emissions From New Nonroad Compression-Ignition Engines: Approval of New Scheduled...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-05

    ... replenishment of the nitrogen-containing reducing agent for selective catalytic reduction (SCR) technologies... NO X reduction requirements for their diesel engines. SCR systems use a nitrogen-containing reducing... balance between the dictates of operating nonroad equipment (which requires DEF tanks of small enough...

  7. Functionalization of Organotrifluoroborates: Reductive Amination

    PubMed Central

    Cooper, David J.

    2010-01-01

    Herein we report the conversion of aldehyde-containing potassium and tetrabutylammonium organotrifluoroborates to the corresponding amines through reductive amination protocols. Potassium formate facilitated by catalytic palladium acetate, sodium triacetoxyborohydride, and pyridine borane have all served as effective hydride donors, reducing the initially formed imines or iminium ions to provide the corresponding amines. PMID:18412389

  8. ENDOGENOUS REDUCTANTS SUPPORT THE CATALYTIC FUNCTION OF REOMBINANT RAT CYT119, AN ARSENIC METHYLTRANSFERASE

    EPA Science Inventory

    The postulated scheme for the metabolism of inorganic As involves alternating steps of oxidative methylation and of reduction of As from the pentavalent to the trivalent oxidation state, producing methylated compounds containing AsIII that are highly reactive and toxic. S-adenosy...

  9. Catalytic multi-stage process for hydroconversion and refining hydrocarbon feeds

    DOEpatents

    Comolli, Alfred G.; Lee, Lap-Keung

    2001-01-01

    A multi-stage catalytic hydrogenation and hydroconversion process for heavy hydrocarbon feed materials such as coal, heavy petroleum fractions, and plastic waste materials. In the process, the feedstock is reacted in a first-stage, back-mixed catalytic reactor with a highly dispersed iron-based catalyst having a powder, gel or liquid form. The reactor effluent is pressure-reduced, vapors and light distillate fractions are removed overhead, and the heavier liquid fraction is fed to a second stage back-mixed catalytic reactor. The first and second stage catalytic reactors are operated at 700-850.degree. F. temperature, 1000-3500 psig hydrogen partial pressure and 20-80 lb./hr per ft.sup.3 reactor space velocity. The vapor and light distillates liquid fractions removed from both the first and second stage reactor effluent streams are combined and passed to an in-line, fixed-bed catalytic hydrotreater for heteroatom removal and for producing high quality naphtha and mid-distillate or a full-range distillate product. The remaining separator bottoms liquid fractions are distilled at successive atmospheric and vacuum pressures, low and intermediate-boiling hydrocarbon liquid products are withdrawn, and heavier distillate fractions are recycled and further upgraded to provide additional low-boiling hydrocarbon liquid products. This catalytic multistage hydrogenation process provides improved flexibility for hydroprocessing the various carbonaceous feedstocks and adjusting to desired product structures and for improved economy of operations.

  10. Photolytic AND Catalytic Destruction of Organic Waste Water Pollutants

    NASA Astrophysics Data System (ADS)

    Torosyan, V. F.; Torosyan, E. S.; Kryuchkova, S. O.; Gromov, V. E.

    2017-01-01

    The system: water supply source - potable and industrial water - wastewater - sewage treatment - water supply source is necessary for water supply and efficient utilization of water resources. Up-to-date technologies of waste water biological treatment require for special microorganisms, which are technologically complex and expensive but unable to solve all the problems. Application of photolytic and catalytically-oxidizing destruction is quite promising. However, the most reagents are strong oxidizers in catalytic oxidation of organic substances and can initiate toxic substance generation. Methodic and scientific approaches to assess bread making industry influence on the environment have been developed in this paper in order to support forecasting and taking technological decisions concerning reduction of this influence. Destructive methods have been tested: ultra violet irradiation and catalytic oxidation for extraction of organic compounds from waste water by natural reagents.

  11. Reversible catalytic dehydrogenation of alcohols for energy storage

    PubMed Central

    Bonitatibus, Peter J.; Chakraborty, Sumit; Doherty, Mark D.; Siclovan, Oltea; Jones, William D.; Soloveichik, Grigorii L.

    2015-01-01

    Reversibility of a dehydrogenation/hydrogenation catalytic reaction has been an elusive target for homogeneous catalysis. In this report, reversible acceptorless dehydrogenation of secondary alcohols and diols on iron pincer complexes and reversible oxidative dehydrogenation of primary alcohols/reduction of aldehydes with separate transfer of protons and electrons on iridium complexes are shown. This reactivity suggests a strategy for the development of reversible fuel cell electrocatalysts for partial oxidation (dehydrogenation) of hydroxyl-containing fuels. PMID:25588879

  12. Reversible catalytic dehydrogenation of alcohols for energy storage

    DOE PAGES

    Bonitatibus, Jr., Peter J.; Chakraborty, Sumit; Doherty, Mark D.; ...

    2015-01-14

    Reversibility of a dehydrogenation/hydrogenation catalytic reaction has been an elusive target for homogeneous catalysis. In this paper, reversible acceptorless dehydrogenation of secondary alcohols and diols on iron pincer complexes and reversible oxidative dehydrogenation of primary alcohols/reduction of aldehydes with separate transfer of protons and electrons on iridium complexes are shown. Finally, this reactivity suggests a strategy for the development of reversible fuel cell electrocatalysts for partial oxidation (dehydrogenation) of hydroxyl-containing fuels.

  13. Fabrication of novel ternary Au/CeO2@g-C3N4 nanocomposite: kinetics and mechanism investigation of 4-nitrophenol reduction, and benzyl alcohol oxidation

    NASA Astrophysics Data System (ADS)

    Kohantorabi, Mona; Gholami, Mohammad Reza

    2018-06-01

    Au nanoparticles supported on cerium oxide/graphitic carbon nitride (CeO2@g-C3N4) was synthesized and used as heterogeneous catalyst in redox reaction. The catalyst was characterized by different techniques such as FT-IR, XRD, FE-SEM, EDS, TEM, BET, TGA, and ICP. The as-prepared ternary nanocomposite was used as an effective catalyst for the reduction of toxic 4-nitrophenol to useful 4-aminophenol by NaBH4. The rate constant value of reduction reaction reached up to 0.106 s-1 by Au/CeO2@g-C3N4, which was 3.8, and 8.8 times higher than that of Au@CeO2 (0.028 s-1), and Au@g-C3N4 (0.012 s-1) nanocomposites, respectively. The superior catalytic performance of as-prepared catalyst in 4-NP reduction can be attributed to synergistic effect between Au nanoparticles and CeO2@g-C3N4 support, and efficient electron transfer. The reduction reaction was carried out at different temperatures, and the energy of activation ({Ea}), and thermodynamic parameters including, activation of entropy (Δ S^ ≠), enthalpy (Δ H^ ≠), and Gibbs free energy (Δ G^ ≠) were determined. Additionally, the mechanism of reaction was studied in details, and equilibrium constants of 4-NP ( K 4-NP), and {BH}4^{ - } ({K_{{BH}4^{{ - }} }}) were calculated using Langmuir-Hinshelwood model. Furthermore, this nanocomposite exhibited excellent catalytic activity in oxidation of benzyl alcohol by molecular oxygen as a green oxidant. This study revealed that the ternary Au/CeO2@g-C3N4 nanocomposite is an attractive candidate for catalytic applications.

  14. Fluoroalkylated α,β-unsaturated imines as synthons for the preparation of fluorinated triazinane-2,4-diones and dihydropyrimidin-2(1H)-ones.

    PubMed

    Fernández de Trocóniz, Guillermo; Ochoa de Retana, Ana M; Rubiales, Gloria; Palacios, Francisco

    2014-06-06

    A regioselective addition of isocyanates to fluoroalkylated α,β-unsaturated imines 1 is described. Fluoroalkyl-substituted triazinane-2,4-diones 4 are obtained by the reaction of phenyl isocyanate with fluorinated imines 1, while fluorinated dihydropyridin-2(1H)-ones 7 are prepared when tosyl isocyanate is used. Tetrahydro-pyridin-2(1H)-one 10 is obtained by catalytic reduction of dihydropyridin-2(1H)-one 7. Computational studies are performed to explain the different behaviors of both isocyanates and the mechanisms of the processes.

  15. Enhanced activity and stability of copper oxide/γ-alumina catalyst in catalytic wet-air oxidation: Critical roles of cerium incorporation

    NASA Astrophysics Data System (ADS)

    Zhang, Yongli; Zhou, Yanbo; Peng, Chao; Shi, Junjun; Wang, Qingyu; He, Lingfeng; Shi, Liang

    2018-04-01

    By successive impregnation method, the Ce-modified Cu-O/γ-Al2O3 catalyst was prepared and characterized using nitrogen adsorption-desorption, scanning electron microscopy energy dispersive X-ray analysis (SEM-EDS), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman, and H2-Temperature programming reduction (H2-TPR). In catalytic wet-air oxidation (CWAO) process for the printing and dyeing wastewater (PDW), the effects of Ce addition on performance, mechanism and kinetics of the catalyst were investigated. The Ce addition increases the Brunauer-Emmett-Teller (BET) surface area and pore volume of the catalyst and makes the active components uniformly distributed on the catalyst surface. Formation of a stable CuAl2O4 solid solution by anchoring Cu onto the γ-Al2O3 crystal lattice leads to a significant decrease in metal leaching of the Ce-modified catalyst. The proportion of lattice oxygen in the catalyst substantially increases and the apparent activation energy of Cu-O/γ-Al2O3 catalyst decreases owing to Ce addition. Therefore, the catalytic activity and stability of the Ce-modified catalyst are considerably improved. The scavengers experiments identify the active species existed in the CWAO reaction system, with the order of reactivity: h+ > O2•- > H2O2 > HO•. This novel Cu-Ce-O/γ-Al2O3 catalyst has great potential in applications for treatment of concentrated organic wastewater due to its superior catalytic activity and improved stability.

  16. Facile Synthesis of Highly Efficient Amorphous Mn-MIL-100 Catalysts: Formation Mechanism and Structure Changes during Application in CO Oxidation.

    PubMed

    Zhang, Xiaodong; Li, Hongxin; Lv, Xutian; Xu, Jingcheng; Wang, Yuxin; He, Chi; Liu, Ning; Yang, Yiqiong; Wang, Yin

    2018-06-21

    A comprehensive study was carried out on amorphous metal-organic frameworks Mn-MIL-100 as efficient catalysts for CO oxidation. This study focused on explaining the crystalline-amorphous-crystalline transformations during thermolysis of Mn-MIL-100 and studying the structure changes during the CO oxidation reaction. A possible formation mechanism of amorphous Mn-MIL-100 was proposed. Amorphous Mn-MIL-100 obtained by calcination at 250 °C (a-Mn-250) showed a smaller specific surface area (4 m 2  g -1 ) but high catalytic activity. Furthermore, the structure of amorphous Mn-MIL-100 was labile during the reaction. When a-Mn-250 was treated with reaction atmosphere at high temperature (giving used-a-Mn-250-S), the amorphous catalysts transformed into Mn 2 O 3 . Meanwhile, the BET surface area (164 m 2  g -1 ) and catalytic performance both sharply increased. In addition, used-a-Mn-250-S catalyst transformed from Mn 2 O 3 into Mn 3 O 4 , and this resulted in a slight decrease of catalytic activity in the presence of 1 vol % water vapor in the feed stream. A schematic mechanism of the structure changes during the reaction process was proposed. The success of the synthesis relies on the increase in BET surface area by using CO as retreatment atmosphere, and the enhanced catalytic activity was attributed to the unique structure, a large quantity of surface active oxygen species, oxygen vacancies, and good low-temperature reduction behavior. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Dynamics of the active site architecture in plant-type ferredoxin-NADP(+) reductases catalytic complexes.

    PubMed

    Sánchez-Azqueta, Ana; Catalano-Dupuy, Daniela L; López-Rivero, Arleth; Tondo, María Laura; Orellano, Elena G; Ceccarelli, Eduardo A; Medina, Milagros

    2014-10-01

    Kinetic isotope effects in reactions involving hydride transfer and their temperature dependence are powerful tools to explore dynamics of enzyme catalytic sites. In plant-type ferredoxin-NADP(+) reductases the FAD cofactor exchanges a hydride with the NADP(H) coenzyme. Rates for these processes are considerably faster for the plastidic members (FNR) of the family than for those belonging to the bacterial class (FPR). Hydride transfer (HT) and deuteride transfer (DT) rates for the NADP(+) coenzyme reduction of four plant-type FNRs (two representatives of the plastidic type FNRs and the other two from the bacterial class), and their temperature dependences are here examined applying a full tunnelling model with coupled environmental fluctuations. Parameters for the two plastidic FNRs confirm a tunnelling reaction with active dynamics contributions, but isotope effects on Arrhenius factors indicate a larger contribution for donor-acceptor distance (DAD) dynamics in the Pisum sativum FNR reaction than in the Anabaena FNR reaction. On the other hand, parameters for bacterial FPRs are consistent with passive environmental reorganisation movements dominating the HT coordinate and no contribution of DAD sampling or gating fluctuations. This indicates that active sites of FPRs are more organised and rigid than those of FNRs. These differences must be due to adaptation of the active sites and catalytic mechanisms to fulfil their particular metabolic roles, establishing a compromise between protein flexibility and functional optimisation. Analysis of site-directed mutants in plastidic enzymes additionally indicates the requirement of a minimal optimal architecture in the catalytic complex to provide a favourable gating contribution. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Aqueous stream characterization from biomass fast pyrolysis and catalytic fast pyrolysis

    DOE PAGES

    Black, Brenna A.; Michener, William E.; Ramirez, Kelsey J.; ...

    2016-09-05

    Here, biomass pyrolysis offers a promising means to rapidly depolymerize lignocellulosic biomass for subsequent catalytic upgrading to renewable fuels. Substantial efforts are currently ongoing to optimize pyrolysis processes including various fast pyrolysis and catalytic fast pyrolysis schemes. In all cases, complex aqueous streams are generated containing solubilized organic compounds that are not converted to target fuels or chemicals and are often slated for wastewater treatment, in turn creating an economic burden on the biorefinery. Valorization of the species in these aqueous streams, however, offers significant potential for substantially improving the economics and sustainability of thermochemical biorefineries. To that end, heremore » we provide a thorough characterization of the aqueous streams from four pilot-scale pyrolysis processes: namely, from fast pyrolysis, fast pyrolysis with downstream fractionation, in situ catalytic fast pyrolysis, and ex situ catalytic fast pyrolysis. These configurations and processes represent characteristic pyrolysis processes undergoing intense development currently. Using a comprehensive suite of aqueous-compatible analytical techniques, we quantitatively characterize between 12 g kg -1 of organic carbon of a highly aqueous catalytic fast pyrolysis stream and up to 315 g kg -1 of organic carbon present in the fast pyrolysis aqueous streams. In all cases, the analysis ranges between 75 and 100% of mass closure. The composition and stream properties closely match the nature of pyrolysis processes, with high contents of carbohydrate-derived compounds in the fast pyrolysis aqueous phase, high acid content in nearly all streams, and mostly recalcitrant phenolics in the heavily deoxygenated ex situ catalytic fast pyrolysis stream. Overall, this work provides a detailed compositional analysis of aqueous streams from leading thermochemical processes -- analyses that are critical for subsequent development of selective valorization strategies for these waste streams.« less

  19. Aqueous stream characterization from biomass fast pyrolysis and catalytic fast pyrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Brenna A.; Michener, William E.; Ramirez, Kelsey J.

    Here, biomass pyrolysis offers a promising means to rapidly depolymerize lignocellulosic biomass for subsequent catalytic upgrading to renewable fuels. Substantial efforts are currently ongoing to optimize pyrolysis processes including various fast pyrolysis and catalytic fast pyrolysis schemes. In all cases, complex aqueous streams are generated containing solubilized organic compounds that are not converted to target fuels or chemicals and are often slated for wastewater treatment, in turn creating an economic burden on the biorefinery. Valorization of the species in these aqueous streams, however, offers significant potential for substantially improving the economics and sustainability of thermochemical biorefineries. To that end, heremore » we provide a thorough characterization of the aqueous streams from four pilot-scale pyrolysis processes: namely, from fast pyrolysis, fast pyrolysis with downstream fractionation, in situ catalytic fast pyrolysis, and ex situ catalytic fast pyrolysis. These configurations and processes represent characteristic pyrolysis processes undergoing intense development currently. Using a comprehensive suite of aqueous-compatible analytical techniques, we quantitatively characterize between 12 g kg -1 of organic carbon of a highly aqueous catalytic fast pyrolysis stream and up to 315 g kg -1 of organic carbon present in the fast pyrolysis aqueous streams. In all cases, the analysis ranges between 75 and 100% of mass closure. The composition and stream properties closely match the nature of pyrolysis processes, with high contents of carbohydrate-derived compounds in the fast pyrolysis aqueous phase, high acid content in nearly all streams, and mostly recalcitrant phenolics in the heavily deoxygenated ex situ catalytic fast pyrolysis stream. Overall, this work provides a detailed compositional analysis of aqueous streams from leading thermochemical processes -- analyses that are critical for subsequent development of selective valorization strategies for these waste streams.« less

  20. Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials

    PubMed Central

    Sharma, Nilesh C.; Nath, Sudip; Parsons, Jason G.; Gardea- Torresdey, Jorge L.; Pal, Tarasankar

    2008-01-01

    Growth of Sesbania seedlings in chloroaurate solution resulted in the accumulation of gold with the formation of stable gold nanoparticles in plant tissues. Transmission electron microscopy revealed the intracellular distribution of monodisperse nanospheres, possibly due to reduction of the metal ions by secondary metabolites present in cells. X-ray absorption near-edge structure and extended X-ray absorption fine structure demonstrated a high degree of efficiency for the biotransformation of Au(III) into Au(0) by plant tissues. The catalytic function of the nanoparticle-rich biomass was substantiated by the reduction of aqueous 4-nitrophenol (4-NP). This is the first report of gold nanoparticle-bearing biomatrix directly reducing a toxic pollutant, 4-NP. PMID:17711235

Top