Sample records for catalyzed azide-alkyne cycloaddition

  1. Copper-Catalyzed Sulfonyl Azide-Alkyne Cycloaddition Reactions: Simultaneous Generation and Trapping of Copper-Triazoles and -Ketenimines for the Synthesis of Triazolopyrimidines.

    PubMed

    Nallagangula, Madhu; Namitharan, Kayambu

    2017-07-07

    First simultaneous generation and utilization of both copper-triazole and -ketenimine intermediates in copper-catalyzed sulfonyl azide-alkyne cycloaddition reactions is achieved for the one-pot synthesis of triazolopyrimidines via a novel copper-catalyzed multicomponent cascade of sulfonyl azides, alkynes, and azirines. Significantly, the reaction proceeds under very mild conditions in good yields.

  2. Solvent effect on copper-catalyzed azide-alkyne cycloaddition (CuAAC): synthesis of novel triazolyl substituted quinolines as potential anticancer agents.

    PubMed

    Ellanki, Amarender Reddy; Islam, Aminul; Rama, Veera Swamy; Pulipati, Ranga Prasad; Rambabu, D; Krishna, G Rama; Reddy, C Malla; Mukkanti, K; Vanaja, G R; Kalle, Arunasree M; Kumar, K Shiva; Pal, Manojit

    2012-05-15

    A regioselective route to novel mono triazolyl substituted quinolines has been developed via copper-catalyzed azide-alkyne cycloaddition (CuAAC) of 2,4-diazidoquinoline with terminal alkynes in DMF. The reaction provided bis triazolyl substituted quinolines when performed in water in the presence of Et(3)N. A number of the compounds synthesized showed promising anti-proliferative properties when tested in vitro especially against breast cancer cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Pressure-accelerated azide-alkyne cycloaddition: micro capillary versus autoclave reactor performance.

    PubMed

    Borukhova, Svetlana; Seeger, Andreas D; Noël, Timothy; Wang, Qi; Busch, Markus; Hessel, Volker

    2015-02-01

    Pressure effects on regioselectivity and yield of cycloaddition reactions have been shown to exist. Nevertheless, high pressure synthetic applications with subsequent benefits in the production of natural products are limited by the general availability of the equipment. In addition, the virtues and limitations of microflow equipment under standard conditions are well established. Herein, we apply novel-process-window (NPWs) principles, such as intensification of intrinsic kinetics of a reaction using high temperature, pressure, and concentration, on azide-alkyne cycloaddition towards synthesis of Rufinamide precursor. We applied three main activation methods (i.e., uncatalyzed batch, uncatalyzed flow, and catalyzed flow) on uncatalyzed and catalyzed azide-alkyne cycloaddition. We compare the performance of two reactors, a specialized autoclave batch reactor for high-pressure operation up to 1800 bar and a capillary flow reactor (up to 400 bar). A differentiated and comprehensive picture is given for the two reactors and the three methods of activation. Reaction speedup and consequent increases in space-time yields is achieved, while the process window for favorable operation to selectively produce Rufinamide precursor in good yields is widened. The best conditions thus determined are applied to several azide-alkyne cycloadditions to widen the scope of the presented methodology. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Peptidomimetics via copper-catalyzed azide-alkyne cycloadditions.

    PubMed

    Angell, Yu L; Burgess, Kevin

    2007-10-01

    This critical review concerns the impact of copper-mediated alkyne-azide cycloadditions on peptidomimetic studies. It discusses how this reaction has been used to insert triazoles into peptide chains, to link peptides to other functionalities (e.g. carbohydrates, polymers, and labels), and as a basis for evolution of less peptidic compounds as pharmaceutical leads. It will be of interest to those studying this click reaction, peptidomimetic secondary structure and function, and to medicinal chemists.

  5. Cyclic Multiblock Copolymers via Combination of Iterative Cu(0)-Mediated Radical Polymerization and Cu(I)-Catalyzed Azide-Alkyne Cycloaddition Reaction.

    PubMed

    Xiao, Lifen; Zhu, Wen; Chen, Jiqiang; Zhang, Ke

    2017-02-01

    Cyclic multiblock polymers with high-order blocks are synthesized via the combination of single-electron transfer living radical polymerization (SET-LRP) and copper-catalyzed azide-alkyne cycloaddition (CuAAC). The linear α,ω-telechelic multiblock copolymer is prepared via SET-LRP by sequential addition of different monomers. The SET-LRP approach allows well control of the block length and sequence as A-B-C-D-E, etc. The CuAAC is then performed to intramolecularly couple the azide and alkyne end groups of the linear copolymer and produce the corresponding cyclic copolymer. The block sequence and the cyclic topology of the resultant cyclic copolymer are confirmed by the characterization of 1 H nuclear magnetic resonance spectroscopy, gel permeation chromatography, Fourier transform infrared spectroscopy, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A versatile method for the preparation of conjugates of peptides with DNA/PNA/analog by employing chemo-selective click reaction in water

    PubMed Central

    Gogoi, Khirud; Mane, Meenakshi V.; Kunte, Sunita S.; Kumar, Vaijayanti A.

    2007-01-01

    The specific 1,3 dipolar Hüisgen cycloaddition reaction known as ‘click-reaction’ between azide and alkyne groups is employed for the synthesis of peptide–oligonucleotide conjugates. The peptide nucleic acids (PNA)/DNA and peptides may be appended either by azide or alkyne groups. The cycloaddition reaction between the azide and alkyne appended substrates allows the synthesis of the desired conjugates in high purity and yields irrespective of the sequence and functional groups on either of the two substrates. The versatile approach could also be employed to generate the conjugates of peptides with thioacetamido nucleic acid (TANA) analog. The click reaction is catalyzed by Cu (I) in either water or in organic medium. In water, ∼3-fold excess of the peptide-alkyne/azide drives the reaction to completion in 2 h with no side products. PMID:17981837

  7. Catalytic "active-metal" template synthesis of [2]rotaxanes, [3]rotaxanes, and molecular shuttles, and some observations on the mechanism of the cu(i)-catalyzed azide-alkyne 1,3-cycloaddition.

    PubMed

    Aucagne, Vincent; Berna, José; Crowley, James D; Goldup, Stephen M; Hänni, Kevin D; Leigh, David A; Lusby, Paul J; Ronaldson, Vicki E; Slawin, Alexandra M Z; Viterisi, Aurélien; Walker, D Barney

    2007-10-03

    A synthetic approach to rotaxane architectures is described in which metal atoms catalyze covalent bond formation while simultaneously acting as the template for the assembly of the mechanically interlocked structure. This "active-metal" template strategy is exemplified using the Huisgen-Meldal-Fokin Cu(I)-catalyzed 1,3-cycloaddition of azides with terminal alkynes (the CuAAC "click" reaction). Coordination of Cu(I) to an endotopic pyridine-containing macrocycle allows the alkyne and azide to bind to metal atoms in such a way that the metal-mediated bond-forming reaction takes place through the cavity of the macrocycle--or macrocycles--forming a rotaxane. A variety of mono- and bidentate macrocyclic ligands are demonstrated to form [2]rotaxanes in this way, and by adding pyridine, the metal can turn over during the reaction, giving a catalytic active-metal template assembly process. Both the stoichiometric and catalytic versions of the reaction were also used to synthesize more complex two-station molecular shuttles. The dynamics of the translocation of the macrocycle by ligand exchange in these two-station shuttles could be controlled by coordination to different metal ions (rapid shuttling is observed with Cu(I), slow shuttling with Pd(II)). Under active-metal template reaction conditions that feature a high macrocycle:copper ratio, [3]rotaxanes (two macrocycles on a thread containing a single triazole ring) are also produced during the reaction. The latter observation shows that under these conditions the mechanism of the Cu(I)-catalyzed terminal alkyne-azide cycloaddition involves a reactive intermediate that features at least two metal ions.

  8. Design and synthesis of unnatural heparosan and chondroitin building blocks

    PubMed Central

    Bera, Smritilekha; Linhardt, Robert J.

    2011-01-01

    Triazole linked heparosan and chondroitin disaccharide and tetrasaccharide building blocks were synthesized in a stereoselective manner by applying a very efficient Copper Catalyzed Azide-Alkyne Cycloadditions (CuAAC) reaction of appropriately substituted azido-glucuronic acid and propargyluted N-acetyl glucosamine and N-acetyl galactosamine derivative respectively. The resulting suitably substituted tetrasaccharide analogs can be easily converted into azide and alkyne unit for further synthesis of higher oligosaccharide analogs. PMID:21438620

  9. Conjugating folate on superparamagnetic Fe{sub 3}O{sub 4}@Au nanoparticles using click chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Xiaofang, E-mail: xfshen@jiangnan.edu.cn; Ge, Zhaoqiang; Pang, Yuehong

    2015-02-15

    Gold-coated magnetic core@shell nanoparticles, which exhibit magneto-optical properties, not only enhance the chemical stability of core and biocompatibility of surface, but also provide a combination of multimodal imaging and therapeutics. The conjugation of these tiny nanoparticles with specific biomolecules allows researchers to target the desired location. In this paper, superparamagnetic Fe{sub 3}O{sub 4}@Au nanoparticles were synthesized and functionalized with the azide group on the surface by formation of self-assembled monolayers. Folate (FA) molecules, non-immunogenic target ligands for cancer cells, are conjugated with alkyne and then immobilized on the azide-terminated Fe{sub 3}O{sub 4}@Au nanoparticles through copper(I)-catalyzed azide-alkyne cycloaddition (click reaction). Myelogenousmore » leukemia K562 cells were used as a folate receptor (FR) model, which can be targeted and extracted by magnetic field after interaction with the Fe{sub 3}O{sub 4}@Au–FA nanoparticles. - Graphical abstract: Self-assembled azide-terminated group on superparamagnetic Fe{sub 3}O{sub 4}@Au nanoparticles followed by click reaction with alkyne-functionalized folate, allowing the nanoparticles target folate receptor of cancer cells. - Highlights: • Azidoundecanethiol was coated on the superparamagnetic Fe{sub 3}O{sub 4}@Au nanoparticles by forming self-assembled monolayers. • Alkyne-terminated folate was synthesized from a reaction between the amine and the carboxylic acid. • Conjugation of Fe{sub 3}O{sub 4}@Au nanoparticles with folate was made by copper-catalyzed azide-alkyne cycloaddition click chemistry.« less

  10. Direct Functionalization of an Acid-Terminated Nanodiamond with Azide: Enabling Access to 4-Substituted-1,2,3-Triazole-Functionalized Particles

    DOE PAGES

    Kennedy, Zachary C.; Barrett, Christopher A.; Warner, Marvin G.

    2017-03-01

    Azides on the periphery of nanodiamond materials (ND) are of great utility because they have been shown to undergo Cu-catalyzed and Cu-free cycloaddition reactions with structurally diverse alkynes, affording particles tailored for applications in biology and materials science. However, current methods employed to access ND featuring azide groups typically require either harsh pretreatment procedures or multiple synthesis steps and use surface linking groups that may be susceptible to undesirable cleavage. Here in this paper we demonstrate an alternative single-step approach to producing linker-free, azide-functionalized ND. Our method was applied to low-cost, detonation-derived ND powders where surface carbonyl groups undergo silver-mediatedmore » decarboxylation and radical substitution with azide. ND with directly grafted azide groups were then treated with a variety of aliphatic, aromatic, and fluorescent alkynes to afford 1-(ND)-4-substituted-1,2,3-triazole materials under standard copper-catalyzed cycloaddition conditions. Surface modification steps were verified by characteristic infrared absorptions and elemental analyses. High loadings of triazole surface groups (up to 0.85 mmol g –1) were obtained as determined from thermogravimetric analysis. The azidation procedure disclosed is envisioned to become a valuable initial transformation in numerous future applications of ND.« less

  11. One-pot synthesis of 2,5-dihydropyrroles from terminal alkynes, azides, and propargylic alcohols by relay actions of copper, rhodium, and gold.

    PubMed

    Miura, Tomoya; Tanaka, Takamasa; Matsumoto, Kohei; Murakami, Masahiro

    2014-12-01

    Relay actions of copper, rhodium, and gold formulate a one-pot multistep pathway, which directly gives 2,5-dihydropyrroles starting from terminal alkynes, sulfonyl azides, and propargylic alcohols. Initially, copper-catalyzed 1,3-dipolar cycloaddition of terminal alkynes with sulfonyl azides affords 1-sulfonyl-1,2,3-triazoles, which then react with propargylic alcohols under the catalysis of rhodium. The resulting alkenyl propargyl ethers subsequently undergo the thermal Claisen rearrangement to give α-allenyl-α-amino ketones. Finally, a gold catalyst prompts 5-endo cyclization to produce 2,5-dihydropyrroles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Covalent protein-oligonucleotide conjugates by copper-free click reaction

    PubMed Central

    Khatwani, Santoshkumar L.; Mullen, Daniel G.; Hast, Michael A.; Beese, Lorena S.; Distefano, Mark D.; Taton, T. Andrew

    2013-01-01

    Covalent protein-oligodeoxynucleotide (protein-ODN) conjugates are useful in a number of biological applications, but synthesizing discrete conjugates—where the connection between the two components is at a defined location in both the protein and the ODN—under mild conditions with significant yield can be a challenge. In this article, we demonstrate a strategy for synthesizing discrete protein-ODN conjugates using strain-promoted azide-alkyne [3+2] cycloaddition (SPAAC, a copper-free “click” reaction). Azide-functionalized proteins, prepared by enzymatic prenylation of C-terminal CVIA tags with synthetic azidoprenyl diphosphates, were “clicked” to ODNs that had been modified with a strained dibenzocyclooctyne (DIBO-ODN). The resulting protein-ODN conjugates were purified and characterized by size-exclusion chromatography and gel electrophoresis. We find that the yields and reaction times of the SPAAC bioconjugation reactions are comparable to those previously reported for copper-catalyzed azide-alkyne [3+2] cycloaddition (CuAAC) bioconjugation, but require no catalyst. The same SPAAC chemistry was used to immobilize azide-modified proteins onto surfaces, using surface-bound DIBO-ODN as a heterobifunctional linker. Cu-free click bioconjugation of proteins to ODNs is a simple and versatile alternative to Cu-catalyzed click methods. PMID:22682299

  13. Combining aminocyanine dyes with polyamide dendrons: a promising strategy for imaging in the near-infrared region.

    PubMed

    Ornelas, Cátia; Lodescar, Rachelle; Durandin, Alexander; Canary, James W; Pennell, Ryan; Liebes, Leonard F; Weck, Marcus

    2011-03-21

    Cyanine dyes are known for their fluorescence in the near-IR (NIR) region, which is desirable for biological applications. We report the synthesis of a series of aminocyanine dyes containing terminal functional groups such as acid, azide, and cyclooctyne groups for further functionalization through, for example, click chemistry. These aminocyanine dyes can be attached to polyfunctional dendrons by copper-catalyzed azide alkyne cycloaddition (CuAAC), strain-promoted azide alkyne cycloaddition (SPAAC), peptide coupling, or direct S(NR)1 reactions. The resulting dendron-dye conjugates were obtained in high yields and displayed high chemical stability and photostability. The optical properties of the new compounds were studied by UV/Vis and fluorescence spectroscopy. All compounds show large Stokes shifts and strong fluorescence in the NIR region with high quantum yields, which are optimal properties for in vivo optical imaging. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Surface Functionalization of Exosomes Using Click Chemistry

    PubMed Central

    2015-01-01

    A method for conjugation of ligands to the surface of exosomes was developed using click chemistry. Copper-catalyzed azide alkyne cycloaddition (click chemistry) is ideal for biocojugation of small molecules and macromolecules to the surface of exosomes, due to fast reaction times, high specificity, and compatibility in aqueous buffers. Exosomes cross-linked with alkyne groups using carbodiimide chemistry were conjugated to a model azide, azide-fluor 545. Conjugation had no effect on the size of exosomes, nor was there any change in the extent of exosome adherence/internalization with recipient cells, suggesting the reaction conditions were mild on exosome structure and function. We further investigated the extent of exosomal protein modification with alkyne groups. Using liposomes with surface alkyne groups of a similar size and concentration to exosomes, we estimated that approximately 1.5 alkyne groups were present for every 150 kDa of exosomal protein. PMID:25220352

  15. Isoxazolodihydropyridinones: 1,3-dipolar cycloaddition of nitrile oxides onto 2,4-dioxopiperidines

    PubMed Central

    Coffman, Keith C.; Hartley, Timothy P.; Dallas, Jerry L.; Kurth, Mark J.

    2012-01-01

    Practical and efficient methods have been developed for the diversity-oriented synthesis of isoxazolodihydropyridinones via the 1,3-dipolar cycloaddition of nitrile oxides onto 2,4-dioxopiperidines. A select few of these isoxazolodihydropyridinones were further elaborated with triazoles by copper catalyzed azide-alkyne cycloaddition reactions. A total of 70 compounds and intermediates were synthesized and analyzed for drug likeness. Sixty-four of these novel compounds were submitted to the NIH Molecular Libraries Small Molecule Repository for high-throughput biological screening. PMID:22352295

  16. General method for labeling siRNA by click chemistry with fluorine-18 for the purpose of PET imaging.

    PubMed

    Mercier, Frédéric; Paris, Jérôme; Kaisin, Geoffroy; Thonon, David; Flagothier, Jessica; Teller, Nathalie; Lemaire, Christian; Luxen, André

    2011-01-19

    The alkyne-azide Cu(I)-catalyzed Huisgen cycloaddition, a click-type reaction, was used to label a double-stranded oligonucleotide (siRNA) with fluorine-18. An alkyne solid support CPG for the preparation of monostranded oligonucleotides functionalized with alkyne has been developed. Two complementary azide labeling agents (1-(azidomethyl)-4-[(18)F]fluorobenzene) and 1-azido-4-(3-[(18)F]fluoropropoxy)benzene have been produced with 41% and 35% radiochemical yields (decay-corrected), respectively. After annealing with the complementary strand, the siRNA was directly labeled by click chemistry with [(18)F]fluoroazide to produce the [(18)F]-radiolabeled siRNA with excellent radiochemical yield and purity.

  17. Synthesis of 6-amino-5-cyano-1,4-disubstituted-2(1H)-pyrimidinones via copper-(I)-catalyzed alkyne-azide 'click chemistry' and their reactivity.

    PubMed

    Najahi, Ennaji; Sudor, Jan; Chabchoub, Fakher; Nepveu, Françoise; Zribi, Fethi; Duval, Romain

    2010-12-03

    In this paper we present the room temperature synthesis of a novel serie of 1,4-disubstituted-1,2,3-triazoles 4a-l by employing the (3+2) cycloaddition reaction of pyrimidinones containing alkyne functions with different model azides in the presence of copper sulphate and sodium ascorbate. To obtain the final triazoles, we also synthesized the major precursors 6-amino-5-cyano-1,4-disubstituted-2(1H)-pyrimidinones 3a-r from ethyl 2,2-dicyanovinylcarbamate derivatives 2a-c and various primary aromatic amines containing an alkyne group. The triazoles were prepared in good to very good yields.

  18. Design, synthesis and fluorescence property evaluation of blue emitting triazole-linked chromene peptidomimetics.

    PubMed

    Mohan, T Jency; Bahulayan, D

    2017-08-01

    A highly efficient "Click with MCR" strategy for the three-step synthesis of two types of blue emitting chromene peptidomimetics is described. The peptidomimetics were synthesized via a copper-catalyzed [3[Formula: see text]2] azide-alkyne cycloaddition between chromene alkynes obtained from a three-component reaction and the peptide azides obtained from Ugi or Mannich type multicomponent reactions. The photophysical properties of the peptidomimetics are comparable with commercial fluorophores. Computational studies using drug property descriptors support the possibility of using these molecules for modulating difficult target classes having large, flat, and groove-shaped binding sites.

  19. Azide–Alkyne Click Conjugation on Quantum Dots by Selective Copper Coordination

    PubMed Central

    Mann, Victor R.; Powers, Alexander S.; Tilley, Drew C.; Sack, Jon T.; Cohen, Bruce E.

    2018-01-01

    Functionalization of nanocrystals is essential for their practical application, but synthesis on nanocrystal surfaces is limited by incompatibilities with certain key reagents. The copper-catalyzed azide-alkyne cycloaddition (CuAAC) is among the most useful methods for ligating molecules to surfaces, but has been largely useless for semiconductor quantum dots (QDs) because Cu+ ions quickly and irreversibly quench QD fluorescence. To discover non-quenching synthetic conditions for Cu-catalyzed click reactions on QD surfaces, we developed a combinatorial fluorescence assay to screen >2000 reaction conditions to maximize cycloaddition efficiency while minimizing QD quenching. We identify conditions for complete coupling without significant quenching, which are compatible with common QD polymer surfaces and various azide/alkyne pairs. Based on insight from the combinatorial screen and mechanistic studies of Cu coordination and quenching, we find that superstoichiometric concentrations of Cu can promote full coupling if accompanied by ligands that selectively compete the Cu from the QD surface but allow it to remain catalytically active. Applied to the conjugation of a K+ channel-specific peptidyl toxin to CdSe/ZnS QDs, we synthesize unquenched QD conjugates and image their specific and voltage-dependent affinity for K+ channels in live cells. PMID:29608274

  20. Click chemistry reactions in medicinal chemistry: applications of the 1,3-dipolar cycloaddition between azides and alkynes.

    PubMed

    Tron, Gian Cesare; Pirali, Tracey; Billington, Richard A; Canonico, Pier Luigi; Sorba, Giovanni; Genazzani, Armando A

    2008-03-01

    In recent years, there has been an ever-increasing need for rapid reactions that meet the three main criteria of an ideal synthesis: efficiency, versatility, and selectivity. Such reactions would allow medicinal chemistry to keep pace with the multitude of information derived from modern biological screening techniques. The present review describes one of these reactions, the 1,3-dipolar cycloaddition ("click-reaction") between azides and alkynes catalyzed by copper (I) salts. The simplicity of this reaction and the ease of purification of the resulting products have opened new opportunities in generating vast arrays of compounds with biological potential. The present review will outline the accomplishments of this strategy achieved so far and outline some of medicinal chemistry applications in which click-chemistry might be relevant in the future. (c) 2007 Wiley Periodicals, Inc.

  1. Copper(II)-Catalyzed Conversion of Aryl/Heteroaryl Boronic Acids, Boronates, and Trifluoroborates into the Corresponding Azides: Substrate Scope and Limitations.

    PubMed

    Grimes, Kimberly D; Gupte, Amol; Aldrich, Courtney C

    2010-05-01

    We report the copper(II)-catalyzed conversion of organoboron compounds into the corresponding azide derivatives. A systematic series of phenylboronic acid derivatives is evaluated to examine the importance of steric and electronic effects of the substituents on reaction yield as well as functional group compatibility. Heterocyclic substrates are also shown to participate in this mild reaction while compounds incorporating B-C(sp(3)) bonds are unreactive under the reaction conditions. The copper(II)-catalyzed boronic acid-azide coupling reaction is further extended to both boronate esters and potassium organotrifluoroborate salts. The method described herein complements existing procedures for the preparation of aryl azides from the respective amino, triazene, and halide derivatives and we expect that it will greatly facilitate copper- and ruthenium-catalyzed azide-alkyne cycloaddition reactions for the preparation of diversely functionalized 1-aryl- or 1-heteroaryl-1,2,3-triazoles derivatives.

  2. Copper on Chitosan: A Recyclable Heterogeneous Catalyst for Azide-alkyne Cycloaddition Reactions in Water

    EPA Science Inventory

    Copper sulfate is immobilized over chitosan by simply stirring an aqueous suspension of chitosan in water with copper sulfate; the ensuing catalyst has been utilized for the azide-alkyne cycloaddition in aqueous media and it can be recycled and reused many time without loosing it...

  3. Rapid discovery and structure-activity profiling of novel inhibitors of human immunodeficiency virus type 1 protease enabled by the copper(I)-catalyzed synthesis of 1,2,3-triazoles and their further functionalization.

    PubMed

    Whiting, Matthew; Tripp, Jonathan C; Lin, Ying-Chuan; Lindstrom, William; Olson, Arthur J; Elder, John H; Sharpless, K Barry; Fokin, Valery V

    2006-12-28

    Building from the results of a computational screen of a range of triazole-containing compounds for binding efficiency to human immunodeficiency virus type 1 protease (HIV-1-Pr), a novel series of potent inhibitors has been developed. The copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC), which provides ready access to 1,4-disubstituted-1,2,3-triazoles, was used to unite a focused library of azide-containing fragments with a diverse array of functionalized alkyne-containing building blocks. In combination with direct screening of the crude reaction products, this method led to the rapid identification of a lead structure and readily enabled optimization of both azide and alkyne fragments. Replacement of the triazole with a range of alternative linkers led to greatly reduced protease inhibition; however, further functionalization of the triazoles at the 5-position gave a series of compounds with increased activity, exhibiting Ki values as low as 8 nM.

  4. Synthesis of novel 13α-18-norandrostane-ferrocene conjugates via homogeneous catalytic methods and their investigation on TRPV1 receptor activation.

    PubMed

    Szánti-Pintér, Eszter; Wouters, Johan; Gömöry, Ágnes; Sághy, Éva; Szőke, Éva; Helyes, Zsuzsanna; Kollár, László; Skoda-Földes, Rita

    2015-12-01

    13α-Steroid-ferrocene derivatives were synthesized via two reaction pathways starting from an unnatural 16-keto-18-nor-13α-steroid. The unnatural steroid was converted to ferrocene derivatives via copper-catalyzed azide-alkyne cycloaddition or palladium-catalyzed aminocarbonylation. 16-Azido- and 16-N-(prop-2-ynyl)-carboxamido-steroids were synthesized as starting materials for azide-alkyne cycloaddition with the appropriate ferrocene derivatives. Based on our earlier work, aminocarbonylation of 16-iodo-16-ene and 16-iodo-15-ene derivatives was studied with ferrocenylmethylamine. The new products were obtained in moderate to good yields and were characterized by (1)H and (13)C NMR, IR and MS. The solid state structure of the starting material 13α-18-norandrostan-16-one and two carboxamide products were determined by X-ray crystallography. Evidences were provided that the N-propargyl-carboxamide compound as well as its ferrocenylmethyltriazole derivative are able to decrease the activation of TRPV1 receptor on TRG neurons. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Cationic 1,2,3-Triazolium Alkynes: Components To Enhance 1,4-Regioselective Azide-Alkyne Cycloaddition Reactions.

    PubMed

    Monasterio, Zaira; Sagartzazu-Aizpurua, Maialen; Miranda, José I; Reyes, Yuri; Aizpurua, Jesus M

    2016-02-19

    4-Alkynyl-1,2,3-triazolium cations undergo thermal [3 + 2] cycloaddition reactions with azides roughly 50- to 100-fold faster than comparable noncharged alkynes. Further, the reaction is highly 1,4-regioselective (dr up to 99:1) owing to the selective stabilization of 1,4-TS transition states via conjugative π-acceptor assistance of the alkyne triazolium ring. The novel cationic triazolium alkynes also accelerate the CuAAC reaction to provide bis(1,2,3-triazoles) in an "ultrafast" way (<5 min).

  6. Site-specific protein labeling with PRIME and chelation-assisted Click chemistry

    PubMed Central

    Uttamapinant, Chayasith; Sanchez, Mateo I.; Liu, Daniel S.; Yao, Jennifer Z.; White, Katharine A.; Grecian, Scott; Clarke, Scott; Gee, Kyle R.; Ting, Alice Y.

    2016-01-01

    This protocol describes an efficient method to site-specifically label cell-surface or purified proteins with chemical probes in two steps: PRobe Incorporation Mediated by Enzymes (PRIME) followed by chelation-assisted copper-catalyzed azide-alkyne cycloaddition (CuAAC). In the PRIME step, Escherichia coli lipoic acid ligase site-specifically attaches a picolyl azide derivative to a 13-amino acid recognition sequence that has been genetically fused onto the protein of interest. Proteins bearing picolyl azide are chemoselectively derivatized with an alkyne-probe conjugate by chelation-assisted CuAAC in the second step. We describe herein the optimized protocols to synthesize picolyl azide, perform PRIME labeling, and achieve CuAAC derivatization of picolyl azide on live cells, fixed cells, and purified proteins. Reagent preparations, including synthesis of picolyl azide probes and expression of lipoic acid ligase, take 12 d, while the procedure to perform site-specific picolyl azide ligation and CuAAC on cells or on purified proteins takes 40 min-3 h. PMID:23887180

  7. Copper-catalyzed domino cycloaddition/C-N coupling/cyclization/(C-H arylation): an efficient three-component synthesis of nitrogen polyheterocycles.

    PubMed

    Qian, Wenyuan; Wang, Hao; Allen, Jennifer

    2013-10-11

    A cat of all trades: A single copper catalyst promoted up to three reaction steps with separate catalytic cycles in a domino sequence (azide-alkyne cycloaddition/Goldberg amidation/Camps cyclization/(CH arylation)) for the rapid construction of complex heterocycles from three simple components under mild conditions. Facile cleavage of the triazole ring enables further elaboration of the condensation products. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. One-step ligand exchange reaction as an efficient way for functionalization of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Mrówczyński, Radosław; Rednic, Lidia; Turcu, Rodica; Liebscher, Jürgen

    2012-07-01

    Novel magnetic Fe3O4 nanoparticles (NPs) covered by one layer of functionalized fatty acids, bearing entities (Hayashi catalyst, biotin, quinine, proline, and galactose) of high interest for practical application in nanomedicine or organocatalysis, were synthesized. The functionalized fatty acids were obtained by Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) of azido fatty acids with alkynes. All the magnetic NPs show superparamagnetic behavior with high values of magnetization and high colloidal stability in DCM solution.

  9. Cu-Click Compatible Triazabutadienes To Expand the Scope of Aryl Diazonium Ion Chemistry.

    PubMed

    Cornali, Brandon M; Kimani, Flora W; Jewett, John C

    2016-10-07

    Triazabutadienes can be used to readily generate reactive aryl diazonium ions under mild, physiologically relevant conditions. These conditions are compatible with a range of functionalities that do not tolerate traditional aryl diazonium ion generation. To increase the utility of this aryl diazonium ion releasing chemistry an alkyne-containing triazabutadiene was synthesized. The copper-catalyzed azide-alkyne cycloaddition ("Cu-click") reaction was utilized to modify the alkyne-containing triazabutadiene and shown to be compatible with the nitrogen-rich triazabutadiene. One of the triazole products was tethered to a fluorophore, thus enabling the direct fluorescent labeling of a model protein.

  10. Kinetics and mechanics of photo-polymerized triazole-containing thermosetting composites via the copper(I)-catalyzed azide-alkyne cycloaddition

    PubMed Central

    Song, Han Byul; Wang, Xiance; Patton, James R.; Stansbury, Jeffrey W.; Bowman, Christopher N.

    2017-01-01

    Objectives Several features necessary for polymer composite materials in practical applications such as dental restorative materials were investigated in photo-curable CuAAC (copper(I)-catalyzed azide-alkyne cycloaddition) thermosetting resin-based composites with varying filler loadings and compared to a conventional BisGMA/TEGDMA based composite. Methods Tri-functional alkyne and di-functional azide monomers were synthesized for CuAAC resins and incorporated with alkyne-functionalized silica microfillers for CuAAC composites. Polymerization kinetics, in situ temperature change, and shrinkage stress were monitored simultaneously with a tensometer coupled with FTIR spectroscopy and a data-logging thermocouple. The glass transition temperature was analyzed by dynamic mechanical analysis. Flexural modulus/strength and flexural toughness were characterized in three-point bending on a universal testing machine. Results The photo-CuAAC polymerization of composites containing between 0 and 60 wt% microfiller achieved ~99% conversion with a dramatic reduction in the maximum heat of reaction (~20 °C decrease) for the 60 wt% filled CuAAC composites as compared with the unfilled CuAAC resin. CuAAC composites with 60 wt% microfiller generated more than twice lower shrinkage stress of 0.43±0.01 MPa, equivalent flexural modulus of 6.1±0.7 GPa, equivalent flexural strength of 107±9 MPa, and more than 10 times higher energy absorption of 10±1 MJ m−3 when strained to 11% relative to BisGMA-based composites at equivalent filler loadings. Significance Mechanically robust and highly tough, photo-polymerized CuAAC composites with reduced shrinkage stress and a modest reaction exotherm were generated and resulted in essentially complete conversion. PMID:28363645

  11. Kinetics and mechanics of photo-polymerized triazole-containing thermosetting composites via the copper(I)-catalyzed azide-alkyne cycloaddition.

    PubMed

    Song, Han Byul; Wang, Xiance; Patton, James R; Stansbury, Jeffrey W; Bowman, Christopher N

    2017-06-01

    Several features necessary for polymer composite materials in practical applications such as dental restorative materials were investigated in photo-curable CuAAC (copper(I)-catalyzed azide-alkyne cycloaddition) thermosetting resin-based composites with varying filler loadings and compared to a conventional BisGMA/TEGDMA based composite. Tri-functional alkyne and di-functional azide monomers were synthesized for CuAAC resins and incorporated with alkyne-functionalized glass microfillers for CuAAC composites. Polymerization kinetics, in situ temperature change, and shrinkage stress were monitored simultaneously with a tensometer coupled with FTIR spectroscopy and a data-logging thermocouple. The glass transition temperature was analyzed by dynamic mechanical analysis. Flexural modulus/strength and flexural toughness were characterized in three-point bending on a universal testing machine. The photo-CuAAC polymerization of composites containing between 0 and 60wt% microfiller achieved ∼99% conversion with a dramatic reduction in the maximum heat of reaction (∼20°C decrease) for the 60wt% filled CuAAC composites as compared with the unfilled CuAAC resin. CuAAC composites with 60wt% microfiller generated more than twice lower shrinkage stress of 0.43±0.01MPa, equivalent flexural modulus of 6.1±0.7GPa, equivalent flexural strength of 107±9MPa, and more than 10 times higher energy absorption of 10±1MJm -3 when strained to 11% relative to BisGMA-based composites at equivalent filler loadings. Mechanically robust and highly tough, photo-polymerized CuAAC composites with reduced shrinkage stress and a modest reaction exotherm were generated and resulted in essentially complete conversion. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. From Mechanism to Mouse: A Tale of Two Bioorthogonal Reactions

    PubMed Central

    2011-01-01

    Bioorthogonal reactions are chemical reactions that neither interact with nor interfere with a biological system. The participating functional groups must be inert to biological moieties, must selectively reactive with each other under biocompatible conditions, and, for in vivo applications, must be nontoxic to cells and organisms. Additionally, it is helpful if one reactive group is small and therefore minimally perturbing of a biomolecule into which it has been introduced either chemically or biosynthetically. Examples from the past decade suggest that a promising strategy for bioorthogonal reaction development begins with an analysis of functional group and reactivity space outside those defined by Nature. Issues such as stability of reactants and products (particularly in water), kinetics, and unwanted side reactivity with biofunctionalities must be addressed, ideally guided by detailed mechanistic studies. Finally, the reaction must be tested in a variety of environments, escalating from aqueous media to biomolecule solutions to cultured cells and, for the most optimized transformations, to live organisms. Work in our laboratory led to the development of two bioorthogonal transformations that exploit the azide as a small, abiotic, and bioinert reaction partner: the Staudinger ligation and strain-promoted azide–alkyne cycloaddition. The Staudinger ligation is based on the classic Staudinger reduction of azides with triarylphosphines first reported in 1919. In the ligation reaction, the intermediate aza-ylide undergoes intramolecular reaction with an ester, forming an amide bond faster than aza-ylide hydrolysis would otherwise occur in water. The Staudinger ligation is highly selective and reliably forms its product in environs as demanding as live mice. However, the Staudinger ligation has some liabilities, such as the propensity of phosphine reagents to undergo air oxidation and the relatively slow kinetics of the reaction. The Staudinger ligation takes advantage of the electrophilicity of the azide; however, the azide can also participate in cycloaddition reactions. In 1961, Wittig and Krebs noted that the strained, cyclic alkyne cyclooctyne reacts violently when combined neat with phenyl azide, forming a triazole product by 1,3-dipolar cycloaddition. This observation stood in stark contrast to the slow kinetics associated with 1,3-dipolar cycloaddition of azides with unstrained, linear alkynes, the conventional Huisgen process. Notably, the reaction of azides with terminal alkynes can be accelerated dramatically by copper catalysis (this highly popular Cu-catalyzed azide–alkyne cycloaddition (CuAAC) is a quintessential “click” reaction). However, the copper catalysts are too cytotoxic for long-term exposure with live cells or organisms. Thus, for applications of bioorthogonal chemistry in living systems, we built upon Wittig and Krebs’ observation with the design of cyclooctyne reagents that react rapidly and selectively with biomolecule-associated azides. This strain-promoted azide–alkyne cycloaddition is often referred to as “Cu-free click chemistry”. Mechanistic and theoretical studies inspired the design of a series of cyclooctyne compounds bearing fluorine substituents, fused rings, and judiciously situated heteroatoms, with the goals of optimizing azide cycloaddition kinetics, stability, solubility, and pharmacokinetic properties. Cyclooctyne reagents have now been used for labeling azide-modified biomolecules on cultured cells and in live Caenorhabditis elegans, zebrafish, and mice. As this special issue testifies, the field of bioorthogonal chemistry is firmly established as a challenging frontier of reaction methodology and an important new instrument for biological discovery. The above reactions, as well as several newcomers with bioorthogonal attributes, have enabled the high-precision chemical modification of biomolecules in vitro, as well as real-time visualization of molecules and processes in cells and live organisms. The consequence is an impressive body of new knowledge and technology, amassed using a relatively small bioorthogonal reaction compendium. Expansion of this toolkit, an effort that is already well underway, is an important objective for chemists and biologists alike. PMID:21838330

  13. Hierachical assembly of collagen mimetic peptides into biofunctional materials

    NASA Astrophysics Data System (ADS)

    Gleaton, Jeremy W.

    Collagen is a remarkably strong and prevalent protein distributed throughout nature and as such, collagen is an ideal material for a variety of medical applications. Research efforts for the development of synthetic collagen biomaterials is an area of rapid growth. Here we present two methods for the assembly of collagen mimetic peptides (CMPs). The initial approach prompts assembly of CMPs which contain modifications for metal ion-triggered assembly. Hierarchical assembly into triple helices, followed by formation of disks via hydrophobic interactions has been demonstrated. Metal-ion mediated assembly of these disks, using iron (II)-bipyrdine interactions, has been shown to form micron-sized cages. The nature of the final structures that form depends on the number of bipyridine moieties incorporated into the CMP. These hollow spheres encapsulate a range of molecular weight fluorescently labeled dextrans. Furthermore, they demonstrate a time dependent release of contents under a variety of thermal conditions. The second approach assembles CMPs via the copper-catalyzed alkyne-azide cycloaddition (CuAAC) and the strain-promoted alkyne-azide cycloaddition (SPAAC) reactions. CMPs that incorporate the unnatural amino acids L-propargylglycine and L-azidolysine form triple helices and demonstrate higher order assembly when reacted via CuAAC. Reaction of the alkyne/azide modified CMPs under CuAAC conditions was found to produce an crosslinked 3-dimensional network. Moreover, we demonstrate that polymers, such as, PEG, can be reacted with alkyne and azide CMP triple helices via CuAAC and SPAAC. This designed covalent CMP chemistry allows for high flexibility in integrating various chemical cues, such as cell growth and differentiation within the higher order structures.

  14. Towards understanding the kinetic behaviour and limitations in photo-induced copper(i) catalyzed azide-alkyne cycloaddition (CuAAC) reactions.

    PubMed

    El-Zaatari, Bassil M; Shete, Abhishek U; Adzima, Brian J; Kloxin, Christopher J

    2016-09-14

    The kinetic behaviour of the photo-induced copper(i) catalyzed azide-alkyne cycloaddition (CuAAC) reaction was studied in detail using real-time Fourier transform infrared (FTIR) spectroscopy on both a solvent-based monofunctional and a neat polymer network forming system. The results in the solvent-based system showed near first-order kinetics on copper and photoinitiator concentrations up to a threshold value in which the kinetics switch to zeroth-order. This kinetic shift shows that the photo-CuAAC reaction is not susceptible from side reactions such as copper disproportionation, copper(i) reduction, and radical termination at the early stages of the reaction. The overall reaction rate and conversion is highly dependent on the initial concentrations of photoinitiator and copper(ii) as well as their relative ratios. The conversion was decreased when an excess of photoinitiator was utilized compared to its threshold value. Interestingly, the reaction showed an induction period at relatively low intensities. The induction period is decreased by increasing light intensity and photoinitiator concentration. The reaction trends and limitations were further observed in a solventless polymer network forming system, exhibiting a similar copper and photoinitiator threshold behaviour.

  15. Discovery of novel anti-HIV agents via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry-based approach.

    PubMed

    Gao, Ping; Sun, Lin; Zhou, Junsu; Li, Xiao; Zhan, Peng; Liu, Xinyong

    2016-09-01

    In recent years, a variety of new synthetic methodologies and concepts have been proposed in the search for new pharmaceutical lead structures and optimization. Notably, the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry approach has drawn great attention and has become a powerful tool for the generation of privileged medicinal skeletons in the discovery of anti-HIV agents. This is due to the high degree of reliability, complete specificity (chemoselectivity and regioselectivity), mild conditions, and the biocompatibility of the reactants. Herein, the authors describe the progress thus far on the discovery of novel anti-HIV agents via the CuAAC click chemistry-based approach. CuAAC click chemistry is a proven protocol for synthesizing triazole products which could serve as basic pharmacophores, act as replacements of traditional scaffold or substituent modification, be a linker of dual-target or dual-site inhibitors and more for the discovery of novel anti-HIV agents. What's more, it also provides convenience and feasibility for dynamic combinatorial chemistry and in situ screening. It is envisioned that click chemistry will draw more attention and make more contributions in anti-HIV drug discovery in the future.

  16. Synthesis of δ- and α-Carbolines via Nickel-Catalyzed [2 + 2 + 2] Cycloaddition of Functionalized Alkyne-Nitriles with Alkynes.

    PubMed

    Wang, Gaonan; You, Xu; Gan, Yi; Liu, Yuanhong

    2017-01-06

    A new method for the synthesis of δ- and α-carbolines through Ni-catalyzed [2 + 2 + 2] cycloaddition of ynamide-nitriles or alkyne-cyanamides with alkynes has been developed. The catalytic system of NiCl 2 (DME)/dppp/Zn with a low-cost Ni(II)-precursor was first utilized in Ni-catalyzed [2 + 2 + 2] cycloaddition reactions, and the in situ generated Lewis acid may play an important role for the successful transformation. Not only internal alkynes but also terminal alkynes undergo the desired cycloaddition reactions efficiently to furnish the carboline derivatives with wide diversity and functional group tolerance.

  17. Electrochemically Protected Copper(I)-Catalyzed Azide-Alkyne Cycloaddition

    PubMed Central

    Hong, Vu; Udit, Andrew K.; Evans, Richard A.; Finn, M.G.

    2012-01-01

    The copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction has found broad application in myriad fields. For the most demanding applications requiring high yields at low substrate concentrations, highly active but air-sensitive copper complexes must be used. We describe here the use of an electrochemical potential to maintain catalysts in the active Cu(I) oxidation state in the presence of air. The simple procedure efficiently achieves excellent yields of CuAAC products involving both small molecule and protein substrates without the use of potentially damaging chemical reducing agents. A new water-soluble carboxylated version of the popular tris(benzyltriazolylmethyl)amine (TBTA) ligand is described. Cyclic voltammetry revealed reversible or quasi-reversible electrochemical redox behavior of copper complexes of the TBTA derivative (2; E1/2 = 60 mV vs. Ag/AgCl), sulfonated bathophenanthroline (3; E1/2 = -60 mV), and sulfonated tris(benzimidazoylmethyl)amine (4; E1/2 ~ -70 mV), and showed catalytic turnover to be rapid relative to the voltammetry time scale. Under the influence of a -200 mV potential established using a reticulated vitreous carbon working electrode, CuSO4 and 3 formed a superior catalyst. Electrochemically-protected bioconjugations in air were performed using bacteriophage Qβ derivatized with azide moieties at surface lysine residues. The complete addressing of more than 600 reactive sites per particle was demonstrated within 12 hours of electrolysis with sub-stoichiometric quantities of Cu•3. PMID:18504727

  18. Functionalisation of lanthanide complexes via microwave-enhanced Cu(I)-catalysed azide-alkyne cycloaddition.

    PubMed

    Szíjjártó, Csongor; Pershagen, Elias; Borbas, K Eszter

    2012-07-07

    Cu(I)-catalysed azide-alkyne cycloaddition reactions were used to functionalise lanthanide(III)-complexes (Ln; La, Eu and Tb) incorporating alkyne or azide reactive groups. Microwave irradiation significantly accelerated the reactions, enabling full conversion to the triazole products in some cases in 5 min. Alkyl and aryl azides and alkyl and aryl alkynes could all serve as coupling partners. These reaction conditions proved efficient for cyclen-tricarboxylates and previously unreactive cyclen-tris-primary amide chelates. The synthesis of heterobimetallic (Eu/Tb, EuTb17 and Eu/La, EuLa17) and heterotrimetallic (Eu/La/Eu) complexes was achieved in up to 60% isolated yield starting from coumarin 2-appended alkynyl complexes Tb16 or La16 and an azido-Eu complex Eu4, and bis-alkynyl La-complex La5 and Eu4, respectively. EuTb17 displayed dual Eu(III) and Tb(III)-emission upon antenna-centred excitation.

  19. Steering the azido-tetrazole equilibrium of 4-azidopyrimidines via substituent variation - implications for drug design and azide-alkyne cycloadditions.

    PubMed

    Thomann, A; Zapp, J; Hutter, M; Empting, M; Hartmann, R W

    2015-11-21

    This paper focuses on an interesting constitutional isomerism called azido-tetrazole equilibrium which is observed in azido-substituted N-heterocycles. We present a systematic investigation of substituent effects on the isomer ratio within a 2-substituted 4-azidopyrimidine model scaffold. NMR- and IR-spectroscopy as well as X-ray crystallography were employed for thorough analysis and characterization of synthesized derivatives. On the basis of this data, we demonstrate the possibility to steer this valence tautomerism towards the isomer of choice by means of substituent variation. We show that the tetrazole form can act as an efficient disguise for the corresponding azido group masking its well known reactivity in azide-alkyne cycloadditions (ACCs). In copper(I)-catalyzed AAC reactions, substituent-stabilized tetrazoles displayed a highly decreased or even abolished reactivity whereas azides and compounds in the equilibrium were directly converted. By use of an acid sensitive derivative, we provide, to our knowledge, the first experimental basis for a possible exploitation of this dynamic isomerism as a pH-dependent azide-protecting motif for selective SPAAC conjugations in aqueous media. Finally, we demonstrate the applicability and efficiency of stabilized tetrazolo[1,5-c]pyrimidines for Fragment-Based Drug Design (FBDD) in the field of quorum sensing inhibitors.

  20. Site-Specific Antibody Labeling by Covalent Photoconjugation of Z Domains Functionalized for Alkyne-Azide Cycloaddition Reactions.

    PubMed

    Perols, Anna; Arcos Famme, Melina; Eriksson Karlström, Amelie

    2015-11-01

    Antibodies are extensively used in research, diagnostics, and therapy, and for many applications the antibodies need to be labeled. Labeling is typically performed by using amine-reactive probes that target surface-exposed lysine residues, resulting in heterogeneously labeled antibodies. An alternative labeling strategy is based on the immunoglobulin G (IgG)-binding protein domain Z, which binds to the Fc region of IgG. Introducing the photoactivable amino acid benzoylphenylalanine (BPA) into the Z domain makes it possible for a covalent bond to be be formed between the Z domain and the antibody on UV irradiation, to produce a site-specifically labeled product. Z32 BPA was synthesized by solid-phase peptide synthesis and further functionalized to give alkyne-Z32 BPA and azide-Z32 BPA for Cu(I) -catalyzed cycloaddition, as well as DBCO-Z32 BPA for Cu-free strain-promoted cycloaddition. The Z32 BPA variants were conjugated to the human IgG1 antibody trastuzumab and site-specifically labeled with biotin or fluorescein. The fluorescently labeled trastuzumab showed specific staining of the membranes of HER2-expressing cells in immunofluorescence microscopy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Metal-Free Poly-Cycloaddition of Activated Azide and Alkynes toward Multifunctional Polytriazoles: Aggregation-Induced Emission, Explosive Detection, Fluorescent Patterning, and Light Refraction.

    PubMed

    Wu, Yongwei; He, Benzhao; Quan, Changyun; Zheng, Chao; Deng, Haiqin; Hu, Rongrong; Zhao, Zujin; Huang, Fei; Qin, Anjun; Tang, Ben Zhong

    2017-09-01

    The metal-free click polymerization (MFCP) of activated alkynes and azides or activated azide and alkynes have been developed into powerful techniques for the construction of polytriazoles without the obsession of metallic catalyst residues problem. However, the MFCP of activated azides and alkynes is rarely applied in preparation of functional polytriazoles. In this paper, soluble multifunctional polytriazoles (PIa and PIb) with high weight-average molecular weights (M w up to 32 000) are prepared via the developed metal-free poly-cycloaddition of activated azide and alkynes in high yields (up to 90%). The resultant PIa and PIb are thermally stable, and show aggregation-induced emission characteristics, enabling their aggregates to detect explosives with superamplification effect. Moreover, thanks to their containing aromatic rings and polar moieties, PIa and PIb exhibit high refractive indices. In addition, they can also be cross-linked upon UV irradiation to generate 2D fluorescent patterning due to their remaining azide groups and containing ester groups. Thus, these multifunctional polytriazoles are potentially applicable in the optoelectronic and sensing fields. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Kinetics of bulk photo-initiated copper(i)-catalyzed azide-alkyne cycloaddition (CuAAC) polymerizations.

    PubMed

    Song, Han Byul; Baranek, Austin; Bowman, Christopher N

    2016-01-21

    Photoinitiation of polymerizations based on the copper(i)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction enables spatio-temporal control and the formation of mechanically robust, highly glassy photopolymers. Here, we investigated several critical factors influencing photo-CuAAC polymerization kinetics via systematic variation of reaction conditions such as the physicochemical nature of the monomers; the copper salt and photoinitiator types and concentrations; light intensity; exposure time and solvent content. Real time Fourier transform infrared spectroscopy (FTIR) was used to monitor the polymerization kinetics in situ . Six different di-functional azide monomers and four different tri-functional alkyne monomers containing either aliphatic, aromatic, ether and/or carbamate substituents were synthesized and polymerized. Replacing carbamate structures with ether moieties in the monomers enabled an increase in conversion from 65% to 90% under similar irradiation conditions. The carbamate results in stiffer monomers and higher viscosity mixtures indicating that chain mobility and diffusion are key factors that determine the CuAAC network formation kinetics. Photoinitiation rates were manipulated by altering various aspects of the photo-reduction step; ultimately, a loading above 3 mol% per functional group for both the copper catalyst and the photoinitiator showed little or no rate dependence on concentration while a loading below 3 mol% exhibited 1 st order rate dependence. Furthermore, a photoinitiating system consisting of camphorquinone resulted in 60% conversion in the dark after only 1 minute of 75 mW cm -2 light exposure at 400-500 nm, highlighting a unique characteristic of the CuAAC photopolymerization enabled by the combination of the copper(i)'s catalytic lifetime and the nature of the step-growth polymerization.

  3. Improved metal-adhesive polymers from copper(I)-catalyzed azide-alkyne cycloaddition.

    PubMed

    Accurso, Adrian A; Delaney, Mac; O'Brien, Jeff; Kim, Hyonny; Iovine, Peter M; Díaz Díaz, David; Finn, M G

    2014-08-18

    Electrically conductive adhesive polymers offer many potential advantages relative to Sn-Pb solders, including reduced toxicity, low cost, low processing temperatures, and the ability to make application-specific formulations. Polymers generated from the copper(I)-catalyzed cycloaddition (CuAAC) reaction between multivalent azides and alkynes have previously been identified as strong metal-binding adhesives. Herein we demonstrate that the performance of these materials can be remarkably improved by the incorporation of a flexibility-inducing difunctionalized component and a tertiary amine additive in optimized concentrations. The best formulations were identified by means of rapid adhesion testing of a library of potential candidates by using a custom-built instrument and validated in an American Society for Testing and Materials (ASTM)-standard lap-shear test. Characteristic phase transitions were identified by differential scanning calorimetry (DSC) for adhesives with and without the additives as a function of curing temperature. The incorporation of flexible components was found to more than double the strength of the adhesive. Moreover, the adhesive was made electrically conductive by the inclusion of 20 wt% silver-coated copper flakes and further improved in this regard by the incorporation of multiwalled carbon nanotubes in the formulation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Ratiometric Fluorescence Azide-Alkyne Cycloaddition for Live Mammalian Cell Imaging.

    PubMed

    Fu, Hongxia; Li, Yanru; Sun, Lingbo; He, Pan; Duan, Xinrui

    2015-11-17

    Click chemistry with metabolic labeling has been widely used for selectively imaging biomacromolecules in cells. The first example of azide-alkyne cycloaddition for ratiometric fluorescent imaging of live cells is reported. The precursor of the azido fluorophore (cresyl violet) has a fluorescence emission peak at 620 nm. The electron-rich nitrogen of the azido group blue-shifts the emission peak to 566 nm. When the click reaction occurs, an emission peak appears at 620 nm due to the lower electronic density of the newly formed triazole ring, which allows us to ratiometrically record fluorescence signals. This emission shift was applied to ratiometric imaging of propargylcholine- and dibenzocyclooctyne-labeled human breast cancer cells MCF-7 under laser confocal microscopy. Two typical triazole compounds were isolated for photophysical parameter measurements. The emission spectra presented a fluorescence emission peak around 620 nm for both click products. The results further confirmed the emission wavelength change was the result of azide-alkyne cycloaddition reaction. Since nearly all biomolecules can be metabolically labeled by reported alkyne-functionalized derivatives of native metabolites, our method can be readily applied to image these biomacromolecules.

  5. Electrochemically protected copper(I)-catalyzed azide-alkyne cycloaddition.

    PubMed

    Hong, Vu; Udit, Andrew K; Evans, Richard A; Finn, M G

    2008-06-16

    The copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction has found broad application in myriad fields. For the most demanding applications that require high yields at low substrate concentrations, highly active but air-sensitive copper complexes must be used. We describe here the use of an electrochemical potential to maintain catalysts in the active Cu(I) oxidation state in the presence of air. This simple procedure efficiently achieves excellent yields of CuAAC products from both small-molecule and protein substrates without the use of potentially damaging chemical reducing agents. A new water-soluble carboxylated version of the popular tris(benzyltriazolylmethyl)amine (TBTA) ligand is also described. Cyclic voltammetry revealed reversible or quasi-reversible electrochemical redox behavior of copper complexes of the TBTA derivative (2; E(1/2)=60 mV vs. Ag/AgCl), sulfonated bathophenanthroline (3; E(1/2)=-60 mV), and sulfonated tris(benzimidazoylmethyl)amine (4; E(1/2) approximately -70 mV), and showed catalytic turnover to be rapid relative to the voltammetry time scale. Under the influence of a -200 mV potential that was established by using a reticulated vitreous carbon working electrode, CuSO4 and 3 formed a superior catalyst. Electrochemically protected bioconjugations in air were performed by using bacteriophage Qbeta that was derivatized with azide moieties at surface lysine residues. Complete derivatization of more than 600 reactive sites per particle was demonstrated within 12 h of electrolysis with substoichiometric quantities of Cu3.

  6. Grafting polycaprolactone diol onto cellulose nanocrystals via click chemistry: Enhancing thermal stability and hydrophobic property.

    PubMed

    Zhou, Ling; He, Hui; Li, Mei-Chun; Huang, Siwei; Mei, Changtong; Wu, Qinglin

    2018-06-01

    Hydrophobic and thermally-stable cellulose nanocrystals (CNCs) were synthesized by polycarpolactone diol (PCL diol) grafting via click chemistry strategy. The synthesis was designed as a three-step procedure containing azide-modification of CNCs, alkyne-modification of PCL diol and sequent copper(I)-catalyzed azide-alkyne cycloaddition reaction. The structure of azide-modified CNCs and alkyne-modified PCL diol, the structure, hydrophobic ability and thermal stability of click products CNC-PCL were characterized. FTIR, XPS and H 1 NMR results indicated a successful grafting of the N 3 groups onto the CNCs, synthesis of PCL diol-CCH, and formation of the CNC-PCL material. CNC-PCL had enhanced dispersion in the non-polar solvent chloroform owing to the well-maintained microscale size and PCL-induced hydrophobic surface. The thermal stability of CNC-PCL was largely increased due to the grafting of thermally-stable PCL. This work demonstrates that click chemistry is an attractive modification strategy to graft CNCs with polyester chains for further potential application in polymer composites. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Biocompatible click chemistry enabled compartment-specific pH measurement inside E. coli

    PubMed Central

    Yang, Maiyun; Jalloh, Abubakar S.; Wei, Wei

    2014-01-01

    Bioorthogonal reactions, especially the Cu(I)-catalyzed azide-alkyne cycloaddition, have revolutionized our ability to label and manipulate biomolecules under living conditions. The cytotoxicity of Cu(I) ions, however, has hindered the application of this reaction in the internal space of living cells. By systematically surveying a panel of Cu(I)-stabilizing ligands in promoting protein labeling within the cytoplasm of E. coli, here we identify a highly efficient and biocompatible catalyst for intracellular modification of proteins by azide-alkyne cycloaddition. This reaction permits us to conjugate an environment-sensitive fluorophore site-specifically onto HdeA, an acid-stress chaperone that adopts pH-dependent conformational changes, in both the periplasm and cytoplasm of E. coli. The resulting protein-fluorophore hybrid pH indicators enable compartment-specific pH measurement to determine the pH gradient across the E. coli cytoplasmic membrane. This construct also allows the measurement of E. coli transmembrane potential, and the determination of the proton motive force across its inner membrane under normal and acid-stress conditions. PMID:25236616

  8. An eco-compatible strategy for the diversity-oriented synthesis of macrocycles exploiting carbohydrate-derived building blocks.

    PubMed

    Maurya, Sushil K; Rana, Rohit

    2017-01-01

    An efficient, eco-compatible diversity-oriented synthesis (DOS) approach for the generation of library of sugar embedded macrocyclic compounds with various ring size containing 1,2,3-triazole has been developed. This concise strategy involves the iterative use of readily available sugar-derived alkyne/azide-alkene building blocks coupled through copper catalyzed azide-alkyne cycloaddition (CuAAC) reaction followed by pairing of the linear cyclo-adduct using greener reaction conditions. The eco-compatibility, mild reaction conditions, greener solvents, easy purification and avoidance of hazards and toxic solvents are advantages of this protocol to access this important structural class. The diversity of the macrocycles synthesized (in total we have synthesized 13 macrocycles) using a set of standard reaction protocols demonstrate the potential of the new eco-compatible approach for the macrocyclic library generation.

  9. Cu-free 1,3-dipolar cycloaddition click reactions to form isoxazole linkers in chelating ligands for fac-[M(I)(CO)3]+ centers (M = Re, 99mTc).

    PubMed

    Bottorff, Shalina C; Kasten, Benjamin B; Stojakovic, Jelena; Moore, Adam L; MacGillivray, Leonard R; Benny, Paul D

    2014-02-17

    Isoxazole ring formation was examined as a potential Cu-free alternative click reaction to Cu(I)-catalyzed alkyne/azide cycloaddition. The isoxazole reaction was explored at macroscopic and radiotracer concentrations with the fac-[M(I)(CO)3](+) (M = Re, (99m)Tc) core for use as a noncoordinating linker strategy between covalently linked molecules. Two click assembly methods (click, then chelate and chelate, then click) were examined to determine the feasibility of isoxazole ring formation with either alkyne-functionalized tridentate chelates or their respective fac-[M(I)(CO)3](+) complexes with a model nitrile oxide generator. Macroscale experiments, alkyne-functionalized chelates, or Re complexes indicate facile formation of the isoxazole ring. (99m)Tc experiments demonstrate efficient radiolabeling with click, then chelate; however, the chelate, then click approach led to faster product formation, but lower yields compared to the Re analogues.

  10. Toward a Molecular Lego Approach for the Diversity-Oriented Synthesis of Cyclodextrin Analogues Designed as Scaffolds for Multivalent Systems.

    PubMed

    Lepage, Mathieu L; Schneider, Jérémy P; Bodlenner, Anne; Compain, Philippe

    2015-11-06

    A modular strategy has been developed to access a diversity of cyclic and acyclic oligosaccharide analogues designed as prefunctionalized scaffolds for the synthesis of multivalent ligands. This convergent approach is based on bifunctional sugar building blocks with two temporarily masked functionalities that can be orthogonally activated to perform Cu(I)-catalyzed azide-alkyne cycloaddition reactions (CuAAC). The reducing end is activated as a glycosyl azide and masked as a 1,6-anhydro sugar, while the nonreducing end is activated as a free alkyne and masked as a triethylsilyl-alkyne. Following a cyclooligomerization approach, the first examples of close analogues of cyclodextrins composed of d-glucose residues and triazole units bound together through α-(1,4) linkages were obtained. The cycloglucopyranoside analogue containing four sugar units was used as a template to prepare multivalent systems displaying a protected d-mannose derivative or an iminosugar by way of CuAAC. On the other hand, the modular approach led to acyclic alkyne-functionalized scaffolds of a controlled size that were used to synthesize multivalent iminosugars.

  11. Bioorthogonal probes for imaging sterols in cells.

    PubMed

    Jao, Cindy Y; Nedelcu, Daniel; Lopez, Lyle V; Samarakoon, Thilani N; Welti, Ruth; Salic, Adrian

    2015-03-02

    Cholesterol is a fundamental lipid component of eukaryotic membranes and a precursor of potent signaling molecules, such as oxysterols and steroid hormones. Cholesterol and oxysterols are also essential for Hedgehog signaling, a pathway critical in embryogenesis and cancer. Despite their importance, the use of imaging sterols in cells is currently very limited. We introduce a robust and versatile method for sterol microscopy based on C19 alkyne cholesterol and oxysterol analogues. These sterol analogues are fully functional; they rescue growth of cholesterol auxotrophic cells and faithfully recapitulate the multiple roles that sterols play in Hedgehog signal transduction. Alkyne sterol analogues incorporate efficiently into cellular membranes and can be imaged with high resolution after copper(I)-catalyzed azide-alkyne cycloaddition reaction with fluorescent azides. We demonstrate the use of alkyne sterol probes for visualizing the subcellular distribution of cholesterol and for two-color imaging of sterols and choline phospholipids. Our imaging strategy should be broadly applicable to studying the role of sterols in normal physiology and disease. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Regenerative biomaterials that "click": simple, aqueous-based protocols for hydrogel synthesis, surface immobilization, and 3D patterning.

    PubMed

    Nimmo, Chelsea M; Shoichet, Molly S

    2011-11-16

    The click chemistry era has generated a library of versatile "spring-loaded" reactions that offer high yields, regio- and stereospecificity, and outstanding functional group tolerance. These powerful transformations are particularly advantageous for the design of sophisticated biomaterials that require high levels of precision and control, namely, materials that promote tissue regeneration such as hydrogels, 2D functionalized substrates, and 3D biomimetic scaffolds. In this review, the synthesis and application of regenerative biomaterials via click chemistry are summarized. Particular emphasis is placed on the copper(I)-catalyzed alkyne-azide cycloaddition, Diels-Alder cycloadditions, and thiol-click coupling.

  13. 7-Chloroquinolinotriazoles: synthesis by the azide-alkyne cycloaddition click chemistry, antimalarial activity, cytotoxicity and SAR studies.

    PubMed

    Pereira, Guilherme R; Brandão, Geraldo Célio; Arantes, Lucas M; de Oliveira, Háliton A; de Paula, Renata Cristina; do Nascimento, Maria Fernanda A; dos Santos, Fábio M; da Rocha, Ramon K; Lopes, Júlio César D; de Oliveira, Alaíde Braga

    2014-02-12

    Twenty-seven 7-chloroquinolinotriazole derivatives with different substituents in the triazole moiety were synthesized via copper-catalyzed cycloaddition (CuAAC) click chemistry between 4-azido-7-chloroquinoline and several alkynes. All the synthetic compounds were evaluated for their in vitro activity against Plasmodium falciparum (W2) and cytotoxicity to Hep G2A16 cells. All the products disclosed low cytotoxicity (CC50 > 100 μM) and five of them have shown moderate antimalarial activity (IC50 from 9.6 to 40.9 μM). As chloroquine analogs it was expected that these compounds might inhibit the heme polymerization and SAR studies were performed aiming to explain their antimalarial profile. New structural variations can be designed on the basis of the results obtained. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  14. The concern of emergence of multi-station reaction pathways that might make stepwise the mechanism of the 1,3-dipolar cycloadditions of azides and alkynes

    NASA Astrophysics Data System (ADS)

    Mohtat, Bita; Siadati, Seyyed Amir; Khalilzadeh, Mohammad Ali; Zareyee, Daryoush

    2018-03-01

    After hot debates on the concerted or stepwise nature of the mechanism of the catalyst-free 1,3-dipolar cycloadditions (DC)s, nowadays, it is being believed that for the reaction of each dipole and dipolarophile, there is a possibility that the reaction mechanism becomes stepwise, intermediates emerge, and the reaction becomes non-stereospecific. Yield of even minimal amounts of unwanted side products or stereoisomers as impurities could bring many troubles like difficult purification steps. In this project, we have made attempts to study all probable reaction channels of the azide cycloadditions with two functionalized alkynes, in order to answer this question: "is there any possibility that intermediates evolve in the catalyst-free click 1,3-DC reaction of azide-alkynes?". During the calculations, several multi-station reaction pathways supporting the stepwise and concerted mechanisms were detected. Also, the born-oppenheimer molecular dynamic (BOMD) simulation was used to find trustable geometries which could be emerged during the reaction coordinate.

  15. Synthesis, structure and antimicrobial evaluation of a new gossypol triazole conjugates functionalized with aliphatic chains and benzyloxy groups.

    PubMed

    Pyta, Krystian; Blecha, Marietta; Janas, Anna; Klich, Katarzyna; Pecyna, Paulina; Gajecka, Marzena; Przybylski, Piotr

    2016-09-01

    Synthetic limitations in the copper-catalyzed azide alkyne cycloaddition (CuAAC) on gossypol's skeleton functionalized with alkyne (2) or azide (3) groups have been indicated. Modified approach to the synthesis of new gossypol-triazole conjugates yielded new compounds (24-31) being potential fungicides. Spectroscopic studies of triazole conjugates 24-31 have revealed their structures in solution, i.e., the presence of enamine-enamine tautomeric forms and π-π stacking intramolecular interactions between triazole arms. Biological evaluation of the new gossypol-triazole conjugates revealed the potency of 30 and 31 derivatives, having triazole-benzyloxy moieties, comparable with that of miconazole against Fusarium oxysporum. The results of HPLC evaluation of ergosterol content in different fungi strains upon treatment of gossypol and its derivatives enabled to propose a mechanism of antifungal activity of these compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Concise and diversity-oriented synthesis of ligand arm-functionalized azoamides.

    PubMed

    Urankar, Damijana; Kosmrlj, Janez

    2008-01-01

    Azoamides, previously established as bioactive intracellular GSH-depleting agents, were decorated with a terminal alkyne moiety to 4 and then were transformed, by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC), into different ligand-arm functionalized azoamides 6. Azides 5 having ligand-arms amenable for binding to platinum(II) were selected for this study. Because, for the fragile azoamides 4, the typically employed reaction conditions for CuAAC failed, several alternative solvents and copper catalysts were tested. Excellent results were obtained with copper(II) sulfate pentahydrate/metallic copper and especially with heterogeneous catalysts, such as copper-in-charcoal, cupric oxide, and cuprous oxide. The heterogeneous catalysts were employed to obtain the desired products in almost quantitative yields by a simple three-step "stir-filter-evaporate" protocol with no or negligible contamination with copper impurities. This is of particular importance because compounds 6 have been designed for coordination.

  17. Consecutive three-component synthesis of (hetero)arylated propargyl amides by chemoenzymatic aminolysis-Sonogashira coupling sequence.

    PubMed

    Hassan, Sidra; Ullrich, Anja; Müller, Thomas J J

    2015-02-07

    A novel chemoenzymatic three-component synthesis of (hetero)arylated propargyl amides in good yields based upon Novozyme® 435 (Candida antarctica lipase B (CAL-B)) catalyzed aminolysis of methyl carboxylates followed by Sonogashira coupling with (hetero)aryliodides in a consecutive one-pot fashion has been presented. This efficient methodology can be readily concatenated with a CuAAC (Cu catalyzed alkyne azide cycloaddition) as a third consecutive step to furnish 1,4-disubstituted 1,2,3-triazole ligated arylated propargyl amides. This one-pot process can be regarded as a transition metal catalyzed sequence that takes advantage of the copper source still present from the cross-coupling step.

  18. N-heterocyclic carbene gold(I) and silver(I) complexes bearing functional groups for bio-conjugation

    PubMed Central

    Garner, Mary E.; Niu, Weijia; Chen, Xigao; Ghiviriga, Ion; Tan, Weihong; Veige, Adam S.

    2015-01-01

    This work describes several synthetic approaches to append organic functional groups to gold and silver N-heterocyclic carbene (NHC) complexes suitable for applications in biomolecule conjugation. Carboxylate appended NHC ligands (3) lead to unstable AuI complexes that convert into bis-NHC species (4). A benzyl protected carboxylate NHC-AuI complex 2 was synthesized but deprotection to produce the carboxylic acid functionality could not be achieved. A small library of new alkyne functionalized NHC proligands were synthesized and used for subsequent silver and gold metalation reactions. The alkyne appended NHC gold complex 13 readily react with benzyl azide in a copper catalyzed azide-alkyne cycloaddition reaction to form the triazole appended NHC gold complex 14. Cell cytotoxicity studies were performed on DLD-1 (colorectal adenocarcinoma), Hep-G2 (hepatocellular carcinoma), MCF-7 (breast adenocarcinoma), CCRF-CEM (human T-Cell leukemia), and HEK (human embryonic kidney). Complete spectroscopic characterization of the ligands and complexes was achieved using 1H and 13C NMR, gHMBC, ESI-MS, and combustion analysis. PMID:25490699

  19. Surface grafting of reduced graphene oxide using nanocrystalline cellulose via click reaction

    NASA Astrophysics Data System (ADS)

    Kabiri, Roya; Namazi, Hassan

    2014-07-01

    Reduced graphene oxide (RGO) sheet was functionalized with nanocrystalline cellulose (NCC) via click coupling between azide-functionalized graphene oxide (GO-N3) and terminal propargyl-functionalized nanocrystalline cellulose (PG-NCC). First, the reactive azide groups were introduced on the surface of GO with azidation of 2-chloroethyl isocyanate-treated graphene oxide (GO-Cl). Then, the resulted compounds were reacted with PG-NCC utilizing copper-catalyzed azide-alkyne cycloaddition. During the click reaction, GO was simultaneously reduced to graphene. The coupling was confirmed by Fourier transform infrared, Raman, DEPT135, and 13C NMR spectroscopy, and the complete exfoliation of graphene in the NCC matrix was confirmed with X-ray diffraction measurement. The degree of functionalization from the gradual mass loss of RGO-NCC suggests that around 23 mass % has been functionalized covalently. The size of both NCC and GO was found to be in nanometric range, which decreased after click reaction.

  20. Catalyst-free room-temperature iClick reaction of molybdenum(ii) and tungsten(ii) azide complexes with electron-poor alkynes: structural preferences and kinetic studies.

    PubMed

    Schmid, Paul; Maier, Matthias; Pfeiffer, Hendrik; Belz, Anja; Henry, Lucas; Friedrich, Alexandra; Schönfeld, Fabian; Edkins, Katharina; Schatzschneider, Ulrich

    2017-10-10

    Two isostructural and isoelectronic group VI azide complexes of the general formula [M(η 3 -allyl)(N 3 )(bpy)(CO) 2 ] with M = Mo, W and bpy = 2,2'-bipyridine were prepared and fully characterized, including X-ray structure analysis. Both reacted smoothly with electron-poor alkynes such as dimethyl acetylenedicarboxylate (DMAD) and 4,4,4-trifluoro-2-butynoic acid ethyl ester in a catalyst-free room-temperature iClick [3 + 2] cycloaddition reaction. Reaction with phenyl(trifluoromethyl)acetylene, on the other hand, did not lead to any product formation. X-ray structures of the four triazolate complexes isolated showed the monodentate ligand to be N2-coordinated in all cases, which requires a 1,2-shift of the nitrogen from the terminal azide to the triazolate cycloaddition product. On the other hand, a 19 F NMR spectroscopic study of the reaction of the fluorinated alkyne with the tungsten azide complex at 27 °C allowed detection of the N1-coordinated intermediate. With this method, the second-order rate constant was determined as (7.3 ± 0.1) × 10 -2 M -1 s -1 , which compares favorably with that of first-generation compounds such as difluorocyclooctyne (DIFO) used in the strain-promoted azide-alkyne cycloaddition (SPAAC). In contrast, the reaction of the molybdenum analogue was too fast to be studied with NMR methods. Alternatively, solution IR studies revealed pseudo-first order rate constants of 0.4 to 6.5 × 10 -3 s -1 , which increased in the order of Mo > W and F 3 C-C[triple bond, length as m-dash]C-COOEt > DMAD.

  1. Synthesis of chitosan-PEO hydrogels via mesylation and regioselective Cu(I)-catalyzed cycloaddition.

    PubMed

    Tirino, Pasquale; Laurino, Rosaria; Maglio, Giovanni; Malinconico, Mario; d'Ayala, Giovanna Gomez; Laurienzo, Paola

    2014-11-04

    In this work, a well-defined hydrogel was developed by coupling chitosan with PEO through "click chemistry". Azide functionalities were introduced onto chitosan, through mesylation of C-6 hydroxyl groups, and reacted with a di-alkyne PEO by a regioselective Cu(I)-catalyzed cycloaddition. This synthetic approach allowed us to obtain a hydrogel with a controlled crosslinking degree. In fact, the extent of coupling is strictly dependent on the amount of azido groups on chitosan, which in turn can be easily modulated. The obtained hydrogel, with a crosslinking degree of around 90%, showed interesting swelling properties. With respect to chitosan hydrogels reported in literature, a considerably higher equilibrium uptake was reached (940%). The possibility to control the crosslinking degree of hydrogel and its capability to rapidly absorb high amounts of water make this material suitable for several applications, such as controlled drug release and wound healing. Copyright © 2014. Published by Elsevier Ltd.

  2. Towards understanding the kinetic behaviour and limitations in photo-induced copper(I) catalyzed azide-alkyne cycloaddition (CuAAC) reactions

    PubMed Central

    El-Zaatari, Bassil M.; Shete, Abhishek U.; Adzima, Brian J.; Kloxin, Christopher J.

    2016-01-01

    The kinetic behaviour of the photo-induced copper(I) catalyzed azide—alkyne cycloaddition (CuAAC) reaction was studied in detail using real-time Fourier Transform Infrared Spectroscopy (FTIR) on both a solvent-based monofunctional and a neat polymer network forming system. The results in the solvent-based system showed near first-order kinetics on copper and photoinitiator concentrations up to a threshold value in which the kinetics switch to zeroth-order. This kinetic shift shows that the photo-CuAAC reaction is not suseptible from side reactions such as copper disproportionation, copper(I) reduction, and radical termination at the early stages of the reaction. The overall reaction rate and conversion is highly dependent on the initial concentrations of photoinitiator and copper(II), as well as their relative ratios. The conversion was decreased when an excess of photoinitiator was utilized compared to its threshold value. Interestingly, the reaction showed an induction period at relatively low intensities. The induction period is decreased by increasing light intensity, and photoinitiator concentration. The reaction trends and limitations were further observed in a solventless polymer network forming system, exhibiting a similar copper and photoinitiator threshold behaviour. PMID:27711587

  3. Citrus Peel Additives for One-Pot Triazole Formation by Decarboxylation, Nucleophilic Substitution, and Azide-Alkyne Cycloaddition Reactions

    ERIC Educational Resources Information Center

    Mendes, Desiree E.; Schoffstall, Allen M.

    2011-01-01

    This undergraduate organic laboratory experiment consists of three different reactions occurring in the same flask: a cycloaddition reaction, preceded by decarboxylation and nucleophilic substitution reactions. The decarboxylation and cycloaddition reactions occur using identical Cu(I) catalyst and conditions. Orange, lemon, and other citrus fruit…

  4. Incorporation of Methionine Analogues Into Bombyx mori Silk Fibroin for Click Modifications.

    PubMed

    Teramoto, Hidetoshi; Kojima, Katsura

    2015-05-01

    Bombyx mori silk fibroin incorporating three methionine (Met) analogues-homopropargylglycine (Hpg), azidohomoalanine (Aha), and homoallylglycine (Hag)-can be produced simply by adding them to the diet of B. mori larvae. The Met analogues are recognized by methionyl-tRNA synthetase, bound to tRNA(Met), and used for the translation of adenine-uracil-guanine (AUG) codons competitively with Met. In the presence of the standard amount of Met in the diet, incorporation of these analogues remains low. Lowering the amount of Met in the diet drastically improves incorporation efficiencies. Alkyne and azide groups in Hpg and Aha incorporated into silk fibroin can be selectively modified with Cu-catalyzed azide-alkyne cycloaddition reactions (click chemistry). Since Met residues exist only at the N-terminal domain of the fibroin heavy chain and in the fibroin light chain, good access to the reactive sites is expected and domain-selective modifications are possible without perturbing other major domains, including repetitive domains. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Rhodium-catalyzed Intra- and Intermolecular [5+2] Cycloaddition of 3-Acyloxy-1,4-enyne and Alkyne with Concomitant 1,2-Acyloxy Migration

    PubMed Central

    Shu, Xing-Zhong; Li, Xiaoxun; Shu, Dongxu; Huang, Suyu; Schienebeck, Casi M.; Zhou, Xin; Robichaux, Patrick J.; Tang, Weiping

    2012-01-01

    A new type of rhodium-catalyzed [5+2] cycloaddition was developed for the synthesis of seven-membered rings with diverse functionalities. The ring formation was accompanied by a 1,2-acyloxy migration event. The 5- and 2-carbon components of the cycloaddition are 3-acyloxy-1,4-enynes (ACEs) and alkynes respectively. Cationic rhodium (I) catalysts worked most efficiently for the intramolecular cycloaddition, while only neutral rhodium (I) complexes could facilitate the intermolecular reaction. In both cases, electron-poor phosphite or phosphine ligands often improved the efficiency of the cycloadditions. The scope of ACEs and alkynes was investigated in both intra- and intermolecular reactions. The resulting seven-membered ring products have three double bonds that could be selectively functionalized. PMID:22364320

  6. Highly regioselective Lewis acid-catalyzed [3+2] cycloaddition of alkynes with donor-acceptor oxiranes by selective carbon-carbon bond cleavage of epoxides.

    PubMed

    Liu, Renrong; Zhang, Mei; Zhang, Junliang

    2011-12-28

    A novel, efficient, highly regioselective Sc(OTf)(3)-catalyzed [3+2] cycloaddition of electron-rich alkynes with donor-acceptor oxiranes via highly chemoselective C-C bond cleavage under mild conditions was developed. This journal is © The Royal Society of Chemistry 2011

  7. Second-Generation Difluorinated Cyclooctynes for Copper-Free Click Chemistry

    PubMed Central

    2008-01-01

    The 1,3-dipolar cycloaddition of azides and activated alkynes has been used for site-selective labeling of biomolecules in vitro and in vivo. While copper catalysis has been widely employed to activate terminal alkynes for [3 + 2] cycloaddition, this method, often termed “click chemistry”, is currently incompatible with living systems because of the toxicity of the metal. We recently reported a difluorinated cyclooctyne (DIFO) reagent that rapidly reacts with azides in living cells without the need for copper catalysis. Here we report a novel class of DIFO reagents for copper-free click chemistry that are considerably more synthetically tractable. The new analogues maintained the same elevated rates of [3 + 2] cycloaddition as the parent compound and were used for imaging glycans on live cells. These second-generation DIFO reagents should expand the use of copper-free click chemistry in the hands of biologists. PMID:18680289

  8. Second-generation difluorinated cyclooctynes for copper-free click chemistry.

    PubMed

    Codelli, Julian A; Baskin, Jeremy M; Agard, Nicholas J; Bertozzi, Carolyn R

    2008-08-27

    The 1,3-dipolar cycloaddition of azides and activated alkynes has been used for site-selective labeling of biomolecules in vitro and in vivo. While copper catalysis has been widely employed to activate terminal alkynes for [3 + 2] cycloaddition, this method, often termed "click chemistry", is currently incompatible with living systems because of the toxicity of the metal. We recently reported a difluorinated cyclooctyne (DIFO) reagent that rapidly reacts with azides in living cells without the need for copper catalysis. Here we report a novel class of DIFO reagents for copper-free click chemistry that are considerably more synthetically tractable. The new analogues maintained the same elevated rates of [3 + 2] cycloaddition as the parent compound and were used for imaging glycans on live cells. These second-generation DIFO reagents should expand the use of copper-free click chemistry in the hands of biologists.

  9. Improved Synthesis of 5-Substituted 1H-Tetrazoles via the [3+2] Cycloaddition of Nitriles and Sodium Azide Catalyzed by Silica Sulfuric Acid

    PubMed Central

    Du, Zhenting; Si, Changmei; Li, Youqiang; Wang, Yin; Lu, Jing

    2012-01-01

    A silica supported sulfuric acid catalyzed [3+2] cycloaddition of nitriles and sodium azide to form 5-substituted 1H-tetrazoles is described. The protocol can provide a series of 5-substituted 1H-tetrazoles using silica sulfuric acid from nitriles and sodium azide in DMF in 72%–95% yield. PMID:22606004

  10. Synthesis and Biological Evaluation of Non-Hydrolizable 1,2,3-Triazole Linked Sialic Acid Derivatives as Neuraminidase Inhibitors

    PubMed Central

    Weïwer, Michel; Chen, Chi-Chang; Kemp, Melissa M.; Linhardt, Robert J.

    2013-01-01

    α-Sialic acid azide 1 has been used as a substrate for the efficient preparation of 1,2,3-triazole derivatives of sialic acid using the copper-catalyzed azide-alkyne Huisgen cycloaddition (“click chemistry”). Our approach is to generate non-natural N-glycosides of sialic acid that are resistant to neuraminidase catalyzed hydrolysis as opposed to the natural O-glycosides. These N-glycosides would act as neuraminidase inhibitors to prevent the release of new virions. As a preliminary study, a small library of 1,2,3-triazole-linked sialic acid derivatives has been synthesized in 71-89% yield. A disaccharide mimic of sialic acid has also been prepared using the α-sialic acid azide 1 and a C-8 propargyl sialic acid acceptor in 68% yield. A model sialic acid coated dendrimer was also synthesized from a per-propargylated pentaerythritol acceptor. These novel sialic acid derivatives were then evaluated as potential neuraminidase inhibitors using a 96-well plate fluorescence assay; micromolar IC50 values were observed, comparable to the known sialidase inhibitor Neu5Ac2en. PMID:24223493

  11. Click chemistry-mediated cyclic cleavage of metal ion-dependent DNAzymes for amplified and colorimetric detection of human serum copper (II).

    PubMed

    Li, Daxiu; Xie, Jiaqing; Zhou, Wenjiao; Jiang, Bingying; Yuan, Ruo; Xiang, Yun

    2017-11-01

    The determination of the level of Cu 2+ plays important roles in disease diagnosis and environmental monitoring. By coupling Cu + -catalyzed click chemistry and metal ion-dependent DNAzyme cyclic amplification, we have developed a convenient and sensitive colorimetric sensing method for the detection of Cu 2+ in human serums. The target Cu 2+ can be reduced by ascorbate to form Cu + , which catalyzes the azide-alkyne cycloaddition between the azide- and alkyne-modified DNAs to form Mg 2+ -dependent DNAzymes. Subsequently, the Mg 2+ ions catalyze the cleavage of the hairpin DNA substrate sequences of the DNAzymes and trigger cyclic generation of a large number of free G-quadruplex sequences, which bind hemin to form the G-quadruplex/hemin artificial peroxidase to cause significant color transition of the sensing solution for sensitive colorimetric detection of Cu 2+ . This method shows a dynamic range of 5 to 500 nM and a detection limit of 2 nM for Cu 2+ detection. Besides, the level of Cu 2+ in human serums can also be determined by using this sensing approach. With the advantages of simplicity and high sensitivity, such sensing method thus holds great potential for on-site determination of Cu 2+ in different samples. Graphical abstract Sensitive colorimetric detection of copper (II) by coupling click chemistry with metal ion-dependentDNAzymes.

  12. Facile preparation of cobaltocenium-containing polyelectrolyte via click chemistry and RAFT polymerization.

    PubMed

    Yan, Yi; Zhang, Jiuyang; Qiao, Yali; Tang, Chuanbing

    2014-01-01

    A facile method to prepare cationic cobaltocenium-containing polyelectrolyte is reported. Cobaltocenium monomer with methacrylate is synthesized by copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction between 2-azidoethyl methacrylate and ethynylcobaltocenium hexafluorophosphate. Further controlled polymerization is achieved by reversible addition-fragmentation chain transfer polymerization (RAFT) by using cumyl dithiobenzoate (CDB) as a chain transfer agent. Kinetic study demonstrates the controlled/living process of polymerization. The obtained side-chain cobaltocenium-containing polymer is a metal-containing polyelectrolyte that shows characteristic redox behavior of cobaltocenium. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Synthesis, structure and in vitro cytostatic activity of ferrocene-Cinchona hybrids.

    PubMed

    Kocsis, László; Szabó, Ildikó; Bősze, Szilvia; Jernei, Tamás; Hudecz, Ferenc; Csámpai, Antal

    2016-02-01

    Exploring copper(I)- and ruthenium(II)-catalyzed azide-alkyne cycloadditions and a Sonogashira protocol, novel cytostatic ferrocene-cinchona hybrids were synthetized displaying significant in vitro activity on HepG-2 and HT-29 cells. Preliminary SAR studies disclosed that compounds incorporating linkers with 1,2,3-triazole and chalchone residues can be considered as promising lead structures. According to the best of our knowledge this is the first letter on the incorporation of ferrocene nucleus in the reputed cinchona family via triazole and chalcone linkers with established pharmaceutical profile. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Indirect photopatterning of functionalized organic monolayers via copper-catalyzed "click chemistry"

    NASA Astrophysics Data System (ADS)

    Williams, Mackenzie G.; Teplyakov, Andrew V.

    2018-07-01

    Solution-based lithographic surface modification of an organic monolayer on a solid substrate is attained based on selective area photo-reduction of copper (II) to copper (I) to catalyze the azide-alkyne dipolar cycloaddition "click" reaction. X-ray photoelectron spectroscopy is used to confirm patterning, and spectroscopic results are analyzed and supplemented with computational models to confirm the surface chemistry. It is determined that this surface modification approach requires irradiation of the solid substrate with all necessary components present in solution. This method requires only minutes of irradiation to result in spatial and temporal control of the covalent surface functionalization of a monolayer and offers the potential for wavelength tunability that may be desirable in many applications utilizing organic monolayers.

  15. Fluorescence biosensor for inorganic pyrophosphatase activity.

    PubMed

    Zhang, Ying; Guo, Yajuan; Zhao, Mengmeng; Lin, Cuiying; Lin, Zhenyu; Luo, Fang; Chen, Guonan

    2017-02-01

    A highly sensitive and selective fluorescence biosensor for inorganic pyrophosphatase (PPase) activity has been developed based on special click ligation trigger hyperbranched rolling circle amplification (CLT-HRCA). Pyrophosphate ion (PPi) can coordinate with Cu 2+ to form stable PPi/Cu 2+ complex and Cu 2+ in the complex cannot be reduced to Cu + . The addition of PPase causes the hydrolysis of PPi into orthophosphate (Pi) and therefore induces the releasing of Cu 2+ from the stable PPi/Cu 2+ complex, and the free Cu 2+ is easily reduced to Cu + by sodium ascorbate. Then Cu + catalyzes the cyclization reaction between the specially designed 5'-azide and 3'-alkyne tagged padlock probes through Cu + catalyzed azide-alkyne cycloaddition (CuAAC), which in turn initiates the hyperbranched rolling circle amplification (HRCA). Given that the CLT-HRCA products contain large amounts of double-stranded DNAs (dsDNAs), the addition of SYBR Green I resulted in the enhanced fluorescence signal. There was a linear relationship between the enhanced fluorescence intensity and the logarithm PPase activity ranging from 0.05 to 25 mU with a detection limit of 0.02 mU. Such proposed biosensor has been successfully applied to screen the potential PPase inhibitors and has accessed the related inhibit ability with high efficiency.

  16. Liquid/Liquid Interfacial Synthesis of a Click Nanosheet.

    PubMed

    Rapakousiou, Amalia; Sakamoto, Ryota; Shiotsuki, Ryo; Matsuoka, Ryota; Nakajima, Ukyo; Pal, Tigmansu; Shimada, Rintaro; Hossain, Amran; Masunaga, Hiroyasu; Horike, Satoshi; Kitagawa, Yasutaka; Sasaki, Sono; Kato, Kenichi; Ozawa, Takeaki; Astruc, Didier; Nishihara, Hiroshi

    2017-06-22

    A liquid/liquid interfacial synthesis is employed, for the first time, to synthesize a covalent two-dimensional polymer nanosheet. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) between a three-way terminal alkyne and azide at a water/dichloromethane interface generates a 1,2,3-triazole-linked nanosheet. The resultant nanosheet, with a flat and smooth texture, has a maximum domain size of 20 μm and minimum thickness of 5.3 nm. The starting monomers in the organic phase and the copper catalyst in the aqueous phase can only meet at the liquid/liquid interface as a two-dimensional reaction space; this allows them to form the two-dimensional polymer. The robust triazole linkage generated by irreversible covalent-bond formation allows the nanosheet to resist hydrolysis under both acidic and alkaline conditions, and to endure pyrolysis up to more than 300 °C. The coordination ability of the triazolyl group enables the nanosheet to act as a reservoir for metal ions, with an affinity order of Pd 2+ >Au 3+ >Cu 2+ . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. α-Conotoxin dendrimers have enhanced potency and selectivity for homomeric nicotinic acetylcholine receptors.

    PubMed

    Wan, Jingjing; Huang, Johnny X; Vetter, Irina; Mobli, Mehdi; Lawson, Joshua; Tae, Han-Shen; Abraham, Nikita; Paul, Blessy; Cooper, Matthew A; Adams, David J; Lewis, Richard J; Alewood, Paul F

    2015-03-11

    Covalently attached peptide dendrimers can enhance binding affinity and functional activity. Homogenous di- and tetravalent dendrimers incorporating the α7-nicotinic receptor blocker α-conotoxin ImI (α-ImI) with polyethylene glycol spacers were designed and synthesized via a copper-catalyzed azide-alkyne cycloaddition of azide-modified α-ImI to an alkyne-modified polylysine dendron. NMR and CD structural analysis confirmed that each α-ImI moiety in the dendrimers had the same 3D structure as native α-ImI. The binding of the α-ImI dendrimers to binding protein Ac-AChBP was measured by surface plasmon resonance and revealed enhanced affinity. Quantitative electrophysiology showed that α-ImI dendrimers had ∼100-fold enhanced potency at hα7 nAChRs (IC50 = 4 nM) compared to native α-ImI (IC50 = 440 nM). In contrast, no significant potency enhancement was observed at heteromeric hα3β2 and hα9α10 nAChRs. These findings indicate that multimeric ligands can significantly enhance conotoxin potency and selectivity at homomeric nicotinic ion channels.

  18. Fully recoverable rigid shape memory foam based on copper-catalyzed azide-alkyne cycloaddition (CuAAC) using a salt leaching technique.

    PubMed

    Alzahrani, Abeer A; Saed, Mohand; Yakacki, Christopher M; Song, Han Byul; Sowan, Nancy; Walston, Joshua J; Shah, Parag K; McBride, Matthew K; Stansbury, Jeffrey W; Bowman, Christopher N

    2018-01-07

    This study is the first to employ the use of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) polymerization to form a tough and stiff, porous material from a well-defined network possessing a high glass transition temperature. The effect of the network linkages formed as a product of the CuAAC reaction, i.e., the triazoles, on the mechanical behavior at high strain was evaluated by comparing the CuAAC foam to an epoxy-amine-based foam, which consisted of monomers with similar backbone structures and mechanical properties (i.e., T g of 115 °C and a rubbery modulus of 1.0 MPa for the CuAAC foam, T g of 125 °C and a rubbery modulus of 1.2 MPa for the epoxy-amine foam). When each foam was compressed uniformly to 80% strain at ambient temperature, the epoxy-amine foam was severely damaged after only reaching 70% strain in the first compression cycle with a toughness of 300 MJ/m 3 . In contrast, the CuAAC foam exhibited pronounced ductile behavior in the glassy state with three times higher toughness of 850 MJ/m 3 after the first cycle of compression to 80% strain. Additionally, when the CuAAC foam was heated above T g after each of five compression cycles to 80% strain at ambient temperature, the foam completely recovered its original shape while exhibiting a gradual decrease in mechanical performance over the multiple compression cycles. The foam demonstrated almost complete shape fixity and recovery ratios even through five successive cycles, indicative of "reversible plasticity", making it highly desirable as a glassy shape memory foams.

  19. Copper-free Sonogashira cross-coupling for functionalization of alkyne-encoded proteins in aqueous medium and in bacterial cells.

    PubMed

    Li, Nan; Lim, Reyna K V; Edwardraja, Selvakumar; Lin, Qing

    2011-10-05

    Bioorthogonal reactions suitable for functionalization of genetically or metabolically encoded alkynes, for example, copper-catalyzed azide-alkyne cycloaddition reaction ("click chemistry"), have provided chemical tools to study biomolecular dynamics and function in living systems. Despite its prominence in organic synthesis, copper-free Sonogashira cross-coupling reaction suitable for biological applications has not been reported. In this work, we report the discovery of a robust aminopyrimidine-palladium(II) complex for copper-free Sonogashira cross-coupling that enables selective functionalization of a homopropargylglycine (HPG)-encoded ubiquitin protein in aqueous medium. A wide range of aromatic groups including fluorophores and fluorinated aromatic compounds can be readily introduced into the HPG-containing ubiquitin under mild conditions with good to excellent yields. The suitability of this reaction for functionalization of HPG-encoded ubiquitin in Escherichia coli was also demonstrated. The high efficiency of this new catalytic system should greatly enhance the utility of Sonogashira cross-coupling in bioorthogonal chemistry.

  20. Selective and Orthogonal Post-Polymerization Modification using Sulfur(VI) Fluoride Exchange (SuFEx) and Copper-Catalyzed Azide–Alkyne Cycloaddition (CuAAC) Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oakdale, James S.; Kwisnek, Luke; Fokin, Valery V.

    2016-06-10

    Functional polystyrenes and polyacrylamides, containing combinations of fluorosulfate, aromatic silyl ether, and azide side chains, were used as scaffolds to demonstrate the postpolymerization modification capabilities of sulfur(VI) fluoride exchange (SuFEx) and CuAAC chemistries. Fluorescent dyes bearing appropriate functional groups were sequentially attached to the backbone of the copolymers, quantitatively and selectively addressing their reactive partners. Furthermore, this combined SuFEx and CuAAC approach proved to be robust and versatile, allowing for a rare accomplishment: triple orthogonal functionalization of a copolymer under essentially ambient conditions without protecting groups.

  1. Preparation of a Corannulene-functionalized Hexahelicene by Copper(I)-catalyzed Alkyne-azide Cycloaddition of Nonplanar Polyaromatic Units.

    PubMed

    Álvarez, Celedonio M; Barbero, Héctor; Ferrero, Sergio

    2016-09-18

    The main purpose of this video is to show 6 reaction steps of a convergent synthesis and prepare a complex molecule containing up to three nonplanar polyaromatic units, which are two corannulene moieties and a racemic hexahelicene linking them. The compound described in this work is a good host for fullerenes. Several common organic reactions, such as free-radical reactions, C-C coupling or click chemistry, are employed demonstrating the versatility of functionalization that this compound can accept. All of these reactions work for planar aromatic molecules. With subtle modifications, it is possible to achieve similar results for nonplanar polyaromatic compounds.

  2. Functional Biomimetic Architectures

    NASA Astrophysics Data System (ADS)

    Levine, Paul M.

    N-substituted glycine oligomers, or 'peptoids,' are a class of sequence--specific foldamers composed of tertiary amide linkages, engendering proteolytic stability and enhanced cellular permeability. Peptoids are notable for their facile synthesis, sequence diversity, and ability to fold into distinct secondary structures. In an effort to establish new functional peptoid architectures, we utilize the copper-catalyzed azide-alkyne [3+2] cycloaddition (CuAAC) reaction to generate peptidomimetic assemblies bearing bioactive ligands that specifically target and modulate Androgen Receptor (AR) activity, a major therapeutic target for prostate cancer. Additionally, we explore chemical ligation protocols to generate semi-synthetic hybrid biomacromolecules capable of exhibiting novel structures and functions not accessible to fully biosynthesized proteins.

  3. Observation of the controlled assembly of preclick components in the in situ click chemistry generation of a chitinase inhibitor

    PubMed Central

    Hirose, Tomoyasu; Maita, Nobuo; Gouda, Hiroaki; Koseki, Jun; Yamamoto, Tsuyoshi; Sugawara, Akihiro; Nakano, Hirofumi; Hirono, Shuichi; Shiomi, Kazuro; Watanabe, Takeshi; Taniguchi, Hisaaki; Sharpless, K. Barry; Ōmura, Satoshi; Sunazuka, Toshiaki

    2013-01-01

    The Huisgen cycloaddition of azides and alkynes, accelerated by target biomolecules, termed “in situ click chemistry,” has been successfully exploited to discover highly potent enzyme inhibitors. We have previously reported a specific Serratia marcescens chitinase B (SmChiB)-templated syn-triazole inhibitor generated in situ from an azide-bearing inhibitor and an alkyne fragment. Several in situ click chemistry studies have been reported. Although some mechanistic evidence has been obtained, such as X-ray analysis of [protein]–[“click ligand”] complexes, indicating that proteins act as both mold and template between unique pairs of azide and alkyne fragments, to date, observations have been based solely on “postclick” structural information. Here, we describe crystal structures of SmChiB complexed with an azide ligand and an O-allyl oxime fragment as a mimic of a click partner, revealing a mechanism for accelerating syn-triazole formation, which allows generation of its own distinct inhibitor. We have also performed density functional theory calculations based on the X-ray structure to explore the acceleration of the Huisgen cycloaddition by SmChiB. The density functional theory calculations reasonably support that SmChiB plays a role by the cage effect during the pretranslation and posttranslation states of selective syn-triazole click formation. PMID:24043811

  4. Copper-catalyzed azide alkyne cycloaddition polymer networks

    NASA Astrophysics Data System (ADS)

    Alzahrani, Abeer Ahmed

    The click reaction concept, introduced in 2001, has since spurred the rapid development and reexamination of efficient, high yield reactions which proceed rapidly under mild conditions. Prior to the discovery of facile copper catalysis in 2002, the thermally activated azide-alkyne or Huisgen cycloaddition reaction was largely ignored following its discovery in large part due to its slow kinetics, requirement for elevated temperature and limited selectivity. Now, arguably, the most prolific and capable of the click reactions, the copper-catalyzed azide alkyne cycloaddition (CuAAC) reaction is extremely efficient and affords exquisite control of the reaction. The orthogonally and chemoselectivity of this reaction enable its wide utility across varied scientific fields. Despite numerous inherent advantages and widespread use for small molecule synthesis and solution-based polymer chemistry, it has only recently and rarely been utilized to form polymer networks. This work focuses on the synthesis, mechanisms, and unique attributes of the CuAAC reaction for the fabrication of functional polymer networks. The photo-reduction of a series of copper(II)/amine complexes via ligand metal charge transfer was examined to determine their relative efficiency and selectivity in catalyzing the CuAAC reaction. The aliphatic amine ligands were used as an electron transfer species to reduce Cu(II) upon irradiation with 365 nm light while also functioning as an accelerating agent and as protecting ligands for the Cu(I) that was formed. Among the aliphatic amines studied, tertiary amines such as triethylamine (TEA), tetramethyldiamine (TMDA), N,N,N',N",N"-pentamethyldiethylenetriamine (PMDTA), and hexamethylenetetramine (HMTETA) were found to be the most effective. The reaction kinetics were accelerated by increasing the PMDETA : Cu(II) ratio with a ratio of ligand to Cu(II) of 4:1 yielding the maximum conversion in the shortest time. The sequential and orthogonal nature of the photo-CuAAC reaction and a chain-growth acrylate homopolymerization were demonstrated and used to form branched polymer structures. A bulk, organic soluble initiation system consisting of a Cu(II) salt and a primary amine was also examined in both model reactions and in bulk polymerizations. The system was shown to be highly efficient, leading to nearly complete CuAAC polymerization at ambient temperature. Increasing the ratio of amine to copper from 1 to 4 increases the CuAAC reaction rate significantly from 4 mM/min for 1:1 ratio of Cu(II):hexyalmine to 14mM/min for 1:4 ratio. The concentration dependence of the amine on the reaction rate enables the polymerization rate to be controlled simply by manipulating the hexylamine concentration. Sequential thiol--acrylate and photo-CuAAC click reactions were utilized to form two-stage reactive polymer networks capable of generating wrinkles in a facile manner. The click thiol-Michael addition reaction was utilized to form a cross-linked polymer with residual, reactive alkyne sites that remained tethered throughout the network. The latent, unreacted alkyne sites are subsequently reacted with diazide monomers via a photoinduced Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) reaction to increase the cross-link density. Increased cross-linking raised the modulus and glass transition temperature from 1.6 MPa and 2 °C after the thiol-acrylate reaction to 4.4 MPa and 22 °C after the CuAAC reaction, respectively. The double click reaction approach led to micro-wrinkles with well-controlled wavelength and amplitude of 8.50 +/- 1.6 and 1.4 μm, respectively, for a polymer with a 1280 μm total film thickness. Additionally, this approach further enables spatial selectivity of wrinkle formation by photo-patterning. The CuAAC-based polymerization was also used to design smart, responsive porous materials from well-defined CuAAC networks, which possesses a high glass transition temperature (Tg= 115°C) due to the formation of the triazole linkages. The toughness, recovery, fixity, and shape memory attributes of this material were examined. The unique recovery behavior of the porous CuAAC material is characterized by its ability to recover plastic deformation upon heating. The tough and stiff nature of the glassy CuAAC polymer networks translates into desirable high compressive strain shape memory foams. The CuAAC foam exhibited excellent shape-memory behavior and was able to recover through each of five successive cycles of 80% compression at ambient temperature, presenting a significant volume change and resistance to fracture. In addition, the glassy CuAAC foam was able to withstand more than 10 cycles of compression to 50% strain and subsequent recovery at ambient temperature, indicative of ductile behavior in the glassy state.

  5. Au-iClick mirrors the mechanism of copper catalyzed azide–alkyne cycloaddition (CuAAC)

    DOE PAGES

    Powers, Andrew R.; Ghiviriga, Ion; Abboud, Khalil A.; ...

    2015-07-20

    This report outlines the investigation of the iClick mechanism between gold(I)-azides and gold(I)-acetylides to yield digold triazolates. Isolation of digold triazolate complexes offer compelling support for the role of two copper(I) ions in CuAAC. In addition, a kinetic investigation reveals the reaction is first order in both Au(I)-N 3 and Au(I)-C≡C-R equivalent to C-R, thus second order overall. A Hammett plot with a ρ = 1.02(5) signifies electron-withdrawing groups accelerate the cycloaddition by facilitating the coordination of the second gold ion in a π-complex. Rate inhibition by the addition of free triphenylphosphine to the reaction indicates that ligand dissociation ismore » a prerequisite for the reaction. The mechanistic conclusions mirror those proposed for the CuAAC reaction.« less

  6. Synthesis and Characterization of Multiwalled Carbon Nanotubes/Poly(HEMA-co-MMA) by Utilizing Click Chemistry.

    PubMed

    Bach, Long Giang; Cao, Xuan Thang; Islam, Md Rafiqul; Jeong, Yeon Tae; Kim, Jong Su; Lim, Kwon Taek

    2016-03-01

    The hybrid material consisting of multi walled carbon nanotubes (MWNTs) and poly(2-hydroxyethylmethacrylate-co-methylmethacrylate) [poly(HEMA-co-MMA)] was synthesized by a combination of RAFT and Click chemistry. In the primary stage, the copolymer poly(HEMA-co-MMA) was prepared by applying RAFT technique. Alkynyl side groups were incorporated onto the poly(HEMA-co-MMA) backbone by esterification reaction. Then, MWNTs-N3 was prepared by treating MWNTs with 4-azidobutylamine. The click coupling reaction between azide-functionalized MWNTs (MWNTs-N3) and the alkyne-functionalized random copolymer ((HEMA-co-MMA)-Alkyne) with the Cu(I)-catalyzed [3+2] Huisgen cycloaddition afforded the hybrid compound. The structure and properties of poly(MMA-co-HEMA)-g-MWNTs were investigated by FT-IR, EDX and TGA measurements. The copolymer brushes were observed to be immobilized onto the functionalized MWNTs by SEM and TEM analysis.

  7. Discrete Cu(i) complexes for azide-alkyne annulations of small molecules inside mammalian cells.

    PubMed

    Miguel-Ávila, Joan; Tomás-Gamasa, María; Olmos, Andrea; Pérez, Pedro J; Mascareñas, José L

    2018-02-21

    The archetype reaction of "click" chemistry, namely, the copper-promoted azide-alkyne cycloaddition (CuAAC), has found an impressive number of applications in biological chemistry. However, methods for promoting intermolecular annulations of exogenous, small azides and alkynes in the complex interior of mammalian cells, are essentially unknown. Herein we demonstrate that isolated, well-defined copper(i)-tris(triazolyl) complexes featuring designed ligands can readily enter mammalian cells and promote intracellular CuAAC annulations of small, freely diffusible molecules. In addition to simplifying protocols and avoiding the addition of "non-innocent" reductants, the use of these premade copper complexes leads to more efficient processes than with the alternative, in situ made copper species prepared from Cu(ii) sources, tris(triazole) ligands and sodium ascorbate. Under the reaction conditions, the well-defined copper complexes exhibit very good cell penetration properties, and do not present significant toxicities.

  8. Ruthenium-Catalyzed Cycloaddition of 1-Haloalkynes with Nitrile Oxides and Organic Azides; Synthesis of 4-Halo Isoxazoles and 5-Halo Triazoles

    PubMed Central

    Oakdale, James S.; Sit, Rakesh K.

    2015-01-01

    (Cyclopentadienyl)(cyclooctadiene) ruthenium(II) chloride [CpRuCl(cod)] catalyzes the reaction between nitrile oxides and electronically deficient 1-choro-, 1-bromo- and 1-iodoalkynes leading to 4-haloisoxazoles. Organic azides are also suitable 1,3-dipoles, resulting in 5-halo-1,2,3-triazoles. These air tolerant reactions can be performed at room temperature with 1.25 equiv of the respective 1,3-dipole relative to the alkyne component. Reactive 1-haloalkynes include propiolic amides, esters, ketones and phosphonates. Post-functionalization of the halogenated azole products can be accomplished using palladium-catalyzed cross-coupling reactions as well as via manipulation of reactive amide groups. The lack of catalysis observed with Cp*RuCl(cod) is attributed to steric demands of the Cp* (η5-C5Me5) ligand in comparison to the parent Cp (η5-C5H5). This hypothesis is supported by the poor reactivity of (η5-C5Me4CF3)RuCl(cod), which serves as a an isosteric mimic of Cp* and as an isoelectronic analog of Cp. PMID:25059647

  9. ZINClick: a database of 16 million novel, patentable, and readily synthesizable 1,4-disubstituted triazoles.

    PubMed

    Massarotti, Alberto; Brunco, Angelo; Sorba, Giovanni; Tron, Gian Cesare

    2014-02-24

    Since Professors Sharpless, Finn, and Kolb first introduced the concept of "click reactions" in 2001 as powerful tools in drug discovery, 1,4-disubstituted-1,2,3-triazoles have become important in medicinal chemistry due to the simultaneous discovery by Sharpless, Fokin, and Meldal of a perfect click 1,3-dipolar cycloaddition reaction between azides and alkynes catalyzed by copper salts. Because of their chemical features, these triazoles are proposed to be aggressive pharmacophores that participate in drug-receptor interactions while maintaining an excellent chemical and metabolic profile. Surprisingly, no virtual libraries of 1,4-disubstituted-1,2,3-triazoles have been generated for the systematic investigation of the click-chemical space. In this manuscript, a database of triazoles called ZINClick is generated from literature-reported alkynes and azides that can be synthesized within three steps from commercially available products. This combinatorial database contains over 16 million 1,4-disubstituted-1,2,3-triazoles that are easily synthesizable, new, and patentable! The structural diversity of ZINClick ( http://www.symech.it/ZINClick ) will be explored. ZINClick will also be compared to other available databases, and its application during the design of novel bioactive molecules containing triazole nuclei will be discussed.

  10. Click strategy using disodium salts of amino acids improves the water solubility of plinabulin and KPU-300.

    PubMed

    Yakushiji, Fumika; Muguruma, Kyohei; Hayashi, Yoshiki; Shirasaka, Takuya; Kawamata, Ryosuke; Tanaka, Hironari; Yoshiwaka, Yushi; Taguchi, Akihiro; Takayama, Kentaro; Hayashi, Yoshio

    2017-07-15

    Plinabulin and KPU-300 are promising anti-microtubule agents; however, the low water solubility of these compounds (<0.1µg/mL) has limited their pharmaceutical advantages. Here, we developed five water-soluble derivatives of plinabulin and KPU-300 with a click strategy using disodium salts of amino acids. The mother skeleton, diketopiperazine (DKP), was transformed into a monolactim-type alkyne and a copper-catalyzed alkyne azide cycloaddition (CuAAC) combined azides that was derived from amino acids as a water-solubilizing moiety. The conversion of carboxyl groups into disodium salts greatly improved the water solubility by 0.8 million times compared to the solubility of the parent molecules. In addition, the α-amino acid side chains of the water-solubilizing moieties affected both the water solubility and the half-lives of the compounds during enzymatic hydrolysis. Our effort to develop a variety of water-soluble derivatives using the click strategy has revealed that the replaceable water-solubilizing moieties can alter molecular solubility and stability under enzymatic hydrolysis. With this flexibility, we are approaching to the in vivo study using water-soluble derivative. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Synthesis, molecular docking and biological evaluation as HDAC inhibitors of cyclopeptide mimetics by a tandem three-component reaction and intramolecular [3+2] cycloaddition.

    PubMed

    Pirali, Tracey; Faccio, Valeria; Mossetti, Riccardo; Grolla, Ambra A; Di Micco, Simone; Bifulco, Giuseppe; Genazzani, Armando A; Tron, Gian Cesare

    2010-02-01

    Novel macrocyclic peptide mimetics have been synthesized by exploiting a three-component reaction and an azide-alkyne [3 + 2] cycloaddition. The prepared compounds were screened as HDAC inhibitors allowing us to identify a new compound with promising biological activity. In order to rationalize the biological results, computational studies have also been performed.

  12. Poly(Acrylic Acid-b-Styrene) Amphiphilic Multiblock Copolymers as Building Blocks for the Assembly of Discrete Nanoparticles

    PubMed Central

    Greene, Anna C.; Zhu, Jiahua; Pochan, Darrin J.; Jia, Xinqiao; Kiick, Kristi L.

    2011-01-01

    In order to expand the utility of current polymeric micellar systems, we have developed amphiphilic multiblock copolymers containing alternating blocks of poly(acrylic acid) and poly(styrene). Heterotelechelic poly(tert-butyl acrylate-b-styrene) diblock copolymers containing an α-alkyne and an ω-azide were synthesized by atom transfer radical polymerization (ATRP), allowing control over the molecular weight while maintaining narrow polydispersity indices. The multiblock copolymers were constructed by copper-catalyzed azide-alkyne cycloaddition of azide-alkyne end functional diblock copolymers which were then characterized by 1H NMR, FT-IR and SEC. The tert-butyl moieties of the poly(tert-butyl acrylate-b-styrene) multiblock copolymers were easily removed to form the poly(acrylic acid-b-styrene) multiblock copolymer ((PAA-PS)9), which contained up to 9 diblock repeats. The amphiphilic multiblock (PAA-PS)9 (Mn = 73.3 kg/mol) was self-assembled by dissolution into tetrahydrofuran and extensive dialysis against deionized water for 4 days. The critical micelle concentration (CMC) for (PAA-PS)9 was determined by fluorescence spectroscopy using pyrene as a fluorescent probe and was found to be very low at 2 × 10-4 mg/mL. The (PAA-PS)9 multiblock was also analyzed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The hydrodynamic diameter of the particles was found to be 11 nm. Discrete spherical particles were observed by TEM with an average particle diameter of 14 nm. The poly(acrylic acid) periphery of the spherical particles should allow for future conjugation of biomolecules. PMID:21552373

  13. 1H-1,2,3-triazole-tethered uracil-ferrocene and uracil-ferrocenylchalcone conjugates: Synthesis and antitubercular evaluation.

    PubMed

    Singh, Amandeep; Biot, Christophe; Viljoen, Albertus; Dupont, Christian; Kremer, Laurent; Kumar, Kewal; Kumar, Vipan

    2017-06-01

    Copper-catalyzed azide-alkyne [3 + 2] cycloaddition has been utilized for preparing a series of 1H-1,2,3-triazoles with the purpose of probing structure-activity relationships among a uracil-ferrocene-triazole conjugate family. The antitubercular evaluation studies revealed an improvement in activity with the introduction of a ferrocene nucleus among N-alkylazido-uracil precursors, with a preference for a bromo-substituent along with moderate chain lengths of n = 2-6. The reported protocol is a successful approach for integrating uracil-ferrocene-chalcone functionalities tethered via 1H-1,2,3-triazole rings with apparent physicochemical stability. © 2016 John Wiley & Sons A/S.

  14. Functionalization of Mechanochemically Passivated Germanium Nanoparticles via "Click" Chemistry

    NASA Astrophysics Data System (ADS)

    Purkait, Tapas Kumar

    Germanium nanoparticles (Ge NPs) may be fascinating for their electronic and optoelectronic properties, as the band gap of Ge NPs can be tuned from the infrared into the visible range of solar spectru. Further functionalization of those nanoparticles may potentially lead to numerous applications ranging from surface attachment, bioimaging, drug delivery and nanoparticles based devices. Blue luminescent germanium nanoparticles were synthesized from a novel top-down mechanochemical process using high energy ball milling (HEBM) of bulk germanium. Various reactive organic molecules (such as, alkynes, nitriles, azides) were used in this process to react with fresh surface and passivate the surface through Ge-C or Ge-N bond. Various purification process, such as gel permeation chromatography (GPC), Soxhlet dailysis etc. were introduced to purify nanoparticles from molecular impurities. A size separation technique was developed using GPC. The size separated Ge NPs were characterize by TEM, small angle X-ray scattering (SAXS), UV-vis absorption and photoluminescence (PL) emission spectroscopy to investigate their size selective properties. Germanium nanoparticles with alkyne termini group were prepared by HEBM of germanium with a mixture of n-alkynes and alpha, o-diynes. Additional functionalization of those nanoparticles was achieved by copper(I) catalyzed azide-alkyne "click" reaction. A variety of organic and organometallic azides including biologically important glucals have been reacted in this manner resulting in nanopartilces adorned with ferrocenyl, trimethylsilyl, and glucal groups. Additional functionalization of those nanoparticles was achieved by reactions with various azides via a Cu(I) catalyzed azide-alkyne "click" reaction. Various azides, including PEG derivatives and cylcodextrin moiety, were grafted to the initially formed surface. Globular nanoparticle arrays were formed through interparticle linking via "click" chemistry or "host-guest" chemistry. Copper(I) catalyzed "click" chemistry also can be explored with azido-terminated Ge NPs which were synthesized by azidation of chloro-terminated Ge NPs. Water soluble PEGylated Ge NPs were synthesized by "click" reaction for biological application. PEGylated Ge NP clusters were prepared using alpha, o-bis alkyno or bis-azido polyethylene glycol (PEG) derivatives by copper catalyzed "click" reaction via inter-particle linking. These nanoparticles were further functionalized by azido beta-cyclodextrin (beta-CD) and azido adamantane via alkyne-azide "click" reactions. Nanoparticle clusters were made from the functionalized Ge NPs by "host-guest" chemistry of beta-CD functionalized Ge NPs either with adamantane functionalized Ge NPs or fullerene, C60.

  15. Synthesis of Dendronized Poly(l-Glutamate) via Azide-Alkyne Click Chemistry

    PubMed Central

    Perdih, Peter; Kržan, Andrej; Žagar, Ema

    2016-01-01

    Poly(l-glutamate) (PGlu) was modified with a second-generation dendron to obtain the dendronized polyglutamate, P(Glu-D). Synthesized P(Glu-D) exhibited a degree of polymerization (DPn) of 46 and a 43% degree of dendronization. Perfect agreement was found between the P(Glu-D) expected structure and the results of nuclear magnetic resonance spectroscopy (NMR) and size-exclusion chromatography coupled to a multi-angle light-scattering detector (SEC-MALS) analysis. The PGlu precursor was modified by coupling with a bifunctional building block (N3-Pr-NH2) in the presence of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) coupling reagent. The second-generation polyamide dendron was prepared by a stepwise procedure involving the coupling of propargylamine to the l-lysine carboxyl group, followed by attaching the protected 2,2-bis(methylol)propionic acid (bis-MPA) building block to the l-lysine amino groups. The hydroxyl groups of the resulting second-generation dendron were quantitatively deprotected under mild acidic conditions. The deprotected dendron with an acetylene focal group was coupled to the pendant azide groups of the modified linear copolypeptide, P(Glu-N3), in a Cu(I) catalyzed azide-alkyne cycloaddition reaction to form a 1,4-disubstituted triazole. The dendronization reaction proceeded quantitatively in 48 hours in aqueous medium as confirmed by 1H NMR and Fourier transform infrared spectroscopy (FT-IR) spectroscopy. PMID:28773369

  16. Kinetics of bulk photo-initiated copper(i)-catalyzed azide–alkyne cycloaddition (CuAAC) polymerizations†

    PubMed Central

    Song, Han Byul; Baranek, Austin; Bowman, Christopher N.

    2016-01-01

    Photoinitiation of polymerizations based on the copper(i)-catalyzed azide–alkyne cycloaddition (CuAAC) reaction enables spatio-temporal control and the formation of mechanically robust, highly glassy photopolymers. Here, we investigated several critical factors influencing photo-CuAAC polymerization kinetics via systematic variation of reaction conditions such as the physicochemical nature of the monomers; the copper salt and photoinitiator types and concentrations; light intensity; exposure time and solvent content. Real time Fourier transform infrared spectroscopy (FTIR) was used to monitor the polymerization kinetics in situ. Six different di-functional azide monomers and four different tri-functional alkyne monomers containing either aliphatic, aromatic, ether and/or carbamate substituents were synthesized and polymerized. Replacing carbamate structures with ether moieties in the monomers enabled an increase in conversion from 65% to 90% under similar irradiation conditions. The carbamate results in stiffer monomers and higher viscosity mixtures indicating that chain mobility and diffusion are key factors that determine the CuAAC network formation kinetics. Photoinitiation rates were manipulated by altering various aspects of the photo-reduction step; ultimately, a loading above 3 mol% per functional group for both the copper catalyst and the photoinitiator showed little or no rate dependence on concentration while a loading below 3 mol% exhibited 1st order rate dependence. Furthermore, a photoinitiating system consisting of camphorquinone resulted in 60% conversion in the dark after only 1 minute of 75 mW cm−2 light exposure at 400–500 nm, highlighting a unique characteristic of the CuAAC photopolymerization enabled by the combination of the copper(i)’s catalytic lifetime and the nature of the step-growth polymerization. PMID:27429650

  17. Click Chemistry and Radiochemistry: The First 10 Years.

    PubMed

    Meyer, Jan-Philip; Adumeau, Pierre; Lewis, Jason S; Zeglis, Brian M

    2016-12-21

    The advent of click chemistry has had a profound influence on almost all branches of chemical science. This is particularly true of radiochemistry and the synthesis of agents for positron emission tomography (PET), single photon emission computed tomography (SPECT), and targeted radiotherapy. The selectivity, ease, rapidity, and modularity of click ligations make them nearly ideally suited for the construction of radiotracers, a process that often involves working with biomolecules in aqueous conditions with inexorably decaying radioisotopes. In the following pages, our goal is to provide a broad overview of the first 10 years of research at the intersection of click chemistry and radiochemistry. The discussion will focus on four areas that we believe underscore the critical advantages provided by click chemistry: (i) the use of prosthetic groups for radiolabeling reactions, (ii) the creation of coordination scaffolds for radiometals, (iii) the site-specific radiolabeling of proteins and peptides, and (iv) the development of strategies for in vivo pretargeting. Particular emphasis will be placed on the four most prevalent click reactions-the Cu-catalyzed azide-alkyne cycloaddition (CuAAC), the strain-promoted azide-alkyne cycloaddition (SPAAC), the inverse electron demand Diels-Alder reaction (IEDDA), and the Staudinger ligation-although less well-known click ligations will be discussed as well. Ultimately, it is our hope that this review will not only serve to educate readers but will also act as a springboard, inspiring synthetic chemists and radiochemists alike to harness click chemistry in even more innovative and ambitious ways as we embark upon the second decade of this fruitful collaboration.

  18. Tuning Sensory Properties of Triazole-Conjugated Spiropyrans: Metal-Ion Selectivity and Paper-Based Colorimetric Detection of Cyanide

    PubMed Central

    Lee, Juhyen; Choi, Eun Jung; Kim, Inwon; Lee, Minhe; Satheeshkumar, Chinnadurai; Song, Changsik

    2017-01-01

    Tuning the sensing properties of spiropyrans (SPs), which are one of the photochromic molecules useful for colorimetric sensing, is important for efficient analysis, but their synthetic modification is not always simple. Herein, we introduce an alkyne-functionalized SP, the modification of which would be easily achieved via Cu-catalyzed azide-alkyne cycloaddition (“click reaction”). The alkyne-SP was conjugated with a bis(triethylene glycol)-benzyl group (EG-BtSP) or a simple benzyl group (BtSP), forming a triazole linkage from the click reaction. The effects of auxiliary groups to SP were tested on metal-ion sensing and cyanide detection. We found that EG-BtSP was more Ca2+-sensitive than BtSP in acetonitrile, which were thoroughly examined by a continuous variation method (Job plot) and UV-VIS titrations, followed by non-linear regression analysis. Although both SPs showed similar, selective responses to cyanide in a water/acetonitrile co-solvent, only EG-BtSP showed a dramatic color change when fabricated on paper, highlighting the important contributions of the auxiliary groups. PMID:28783127

  19. 1,3-Dipolar Cycloadditions of Diazo Compounds in the Presence of Azides.

    PubMed

    Aronoff, Matthew R; Gold, Brian; Raines, Ronald T

    2016-04-01

    The diazo group has untapped utility in chemical biology. The tolerance of stabilized diazo groups to cellular metabolism is comparable to that of azido groups. However, chemoselectivity has been elusive, as both groups undergo 1,3-dipolar cycloadditions with strained alkynes. Removing strain and tuning dipolarophile electronics yields diazo group selective 1,3-dipolar cycloadditions that can be performed in the presence of an azido group. For example, diazoacetamide but not its azido congener react with dehydroalanine residues, as in the natural product nisin.

  20. Biocompatible click chemistry enabled compartment-specific pH measurement inside E. coli.

    PubMed

    Yang, Maiyun; Jalloh, Abubakar S; Wei, Wei; Zhao, Jing; Wu, Peng; Chen, Peng R

    2014-09-19

    Bioorthogonal reactions, especially the Cu(I)-catalysed azide-alkyne cycloaddition, have revolutionized our ability to label and manipulate biomolecules under living conditions. The cytotoxicity of Cu(I) ions, however, has hindered the application of this reaction in the internal space of living cells. By systematically surveying a panel of Cu(I)-stabilizing ligands in promoting protein labelling within the cytoplasm of Escherichia coli, we identify a highly efficient and biocompatible catalyst for intracellular modification of proteins by azide-alkyne cycloaddition. This reaction permits us to conjugate an environment-sensitive fluorophore site specifically onto HdeA, an acid-stress chaperone that adopts pH-dependent conformational changes, in both the periplasm and cytoplasm of E. coli. The resulting protein-fluorophore hybrid pH indicators enable compartment-specific pH measurement to determine the pH gradient across the E. coli cytoplasmic membrane. This construct also allows the measurement of E. coli transmembrane potential, and the determination of the proton motive force across its inner membrane under normal and acid-stress conditions.

  1. Experimental Investigation on the Mechanism of Chelation-Assisted, Copper(II) Acetate-Accelerated Azide-Alkyne Cycloaddition

    PubMed Central

    Kuang, Gui-Chao; Guha, Pampa M.; Brotherton, Wendy S.; Simmons, J. Tyler; Stankee, Lisa A.; Nguyen, Brian T.; Clark, Ronald J.; Zhu, Lei

    2011-01-01

    A mechanistic model is formulated to account for the high reactivity of chelating azides (organic azides capable of chelation-assisted metal coordination at the alkylated azido nitrogen position) and copper(II) acetate (Cu(OAc)2) in copper(II)-mediated azide-alkyne cycloaddition (AAC) reactions. Fluorescence and 1H NMR assays are developed for monitoring the reaction progress in two different solvents – methanol and acetonitrile. Solvent kinetic isotopic effect and pre-mixing experiments give credence to the proposed different induction reactions for converting copper(II) to catalytic copper(I) species in methanol (methanol oxidation) and acetonitrile (alkyne oxidative homocoupling), respectively. The kinetic orders of individual components in a chelation-assisted, copper(II)-accelerated AAC reaction are determined in both methanol and acetonitrile. Key conclusions resulting from the kinetic studies include (1) the interaction between copper ion (either in +1 or +2 oxidation state) and a chelating azide occurs in a fast, pre-equilibrium step prior to the formation of the in-cycle copper(I)-acetylide, (2) alkyne deprotonation is involved in several kinetically significant steps, and (3) consistent with prior experimental and computational results by other groups, two copper centers are involved in the catalysis. The X-ray crystal structures of chelating azides with Cu(OAc)2 suggest a mechanistic synergy between alkyne oxidative homocoupling and copper(II)-accelerated AAC reactions, in which both a bimetallic catalytic pathway and a base are involved. The different roles of the two copper centers (a Lewis acid to enhance the electrophilicity of the azido group and a two-electron reducing agent in oxidative metallacycle formation, respectively) in the proposed catalytic cycle suggest that a mixed valency (+2 and +1) dinuclear copper species be a highly efficient catalyst. This proposition is supported by the higher activity of the partially reduced Cu(OAc)2 in mediating a 2-picolylazide-involved AAC reaction than the fully reduced Cu(OAc)2. Finally, the discontinuous kinetic behavior that has been observed by us and others in copper(I/II)-mediated AAC reactions is explained by the likely catalyst disintegration during the course of a relatively slow reaction. Complementing the prior mechanistic conclusions drawn by other investigators which primarily focus on the copper(I)/alkyne interactions, we emphasize the kinetic significance of copper(I/II)/azide interaction. This work not only provides a mechanism accounting for the fast Cu(OAc)2-mediated AAC reactions involving chelating azides, which has apparent practical implications, but suggests the significance of mixed-valency dinuclear copper species in catalytic reactions where two copper centers carry different functions. PMID:21809811

  2. Replacement of the lactone moiety on podophyllotoxin and steganacin analogues with a 1,5-disubstituted 1,2,3-triazole via ruthenium-catalyzed click chemistry.

    PubMed

    Imperio, Daniela; Pirali, Tracey; Galli, Ubaldina; Pagliai, Francesca; Cafici, Laura; Canonico, Pier Luigi; Sorba, Giovanni; Genazzani, Armando A; Tron, Gian Cesare

    2007-11-01

    Steganacin and podophyllotoxin are two naturally occurring lignans first isolated from plant sources, which share the capability to disrupt tubulin assembly. Although not strictly essential for its activity, the lactone ring on both structures represents Achilles' heel, as it is a potential site of metabolic degradation and epimerization on its C2 carbon brings about a significant loss in potency. In the present manuscript, we have used the ruthenium-catalyzed [3+2] azide-alkyne cycloaddition, a click-chemistry reaction, to replace the lactone ring with a 1,5-disubstituted triazole in few synthetic steps. The compounds were cytotoxic, although to a lesser degree compared to podophyllotoxin, while retaining antitubulin activity. The present structures might therefore represent a good platform for the fast generation of metabolically stable compounds with few stereogenic centers that might be of value from a medicinal chemistry point of view.

  3. The application of click chemistry in the synthesis of agents with anticancer activity

    PubMed Central

    Ma, Nan; Wang, Ying; Zhao, Bing-Xin; Ye, Wen-Cai; Jiang, Sheng

    2015-01-01

    The copper(I)-catalyzed 1,3-dipolar cycloaddition between alkynes and azides (click chemistry) to form 1,2,3-triazoles is the most popular reaction due to its reliability, specificity, and biocompatibility. This reaction has the potential to shorten procedures, and render more efficient lead identification and optimization procedures in medicinal chemistry, which is a powerful modular synthetic approach toward the assembly of new molecular entities and has been applied in anticancer drugs discovery increasingly. The present review focuses mainly on the applications of this reaction in the field of synthesis of agents with anticancer activity, which are divided into four groups: topoisomerase II inhibitors, histone deacetylase inhibitors, protein tyrosine kinase inhibitors, and antimicrotubule agents. PMID:25792812

  4. Elaboration of thermoresponsive supramolecular diblock copolymers in water from complementary CBPQT4+ and TTF end-functionalized polymers.

    PubMed

    Sambe, Léna; Stoffelbach, François; Poltorak, Katarzyna; Lyskawa, Joël; Malfait, Aurélie; Bria, Marc; Cooke, Graeme; Woisel, Patrice

    2014-02-01

    A well-defined poly(N-isopropyl acrylamide) 1 incorporating at one termini a cyclobis(paraquat-p-phenylene) (CBPQT(4+)) recognition unit is prepared via a RAFT polymerization followed by a copper-catalyzed azide-alkyne cycloaddition (CuAAC). (1)H NMR (1D, DOSY), UV-vis and ITC experiments reveal that polymer 1 is able of forming effective host-guest complexes with tetrathiafulvalene (TTF) end-functionalized polymers in water, thereby leading to the formation of non-covalently-linked double-hydrophilic block copolymers. The effect of the temperature on both the LCST phase transition of 1 and its complexes and on CBPQT(4+)/TTF host-guest interactions is investigated. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Synthesis and Spectroscopic Evaluation of Two Novel Glycosylated Zinc(II)-Phthalocyanines.

    PubMed

    Bächle, Felix; Hanack, Michael; Ziegler, Thomas

    2015-10-09

    In continuation of our work on glycoconjugated phthalocyanines, two new water soluble, non-ionic zinc(II) phthalocyanines have been prepared and fully characterized by means of ¹H-NMR, 13C-NMR, MALDI-TOF, ESI-TOF, UV-Vis spectroscopy, emission spectroscopy and fluorescence lifetime measurements. The carbohydrate-containing phthalonitrile precursors were synthesized through a copper-catalyzed azide-alkyne cycloaddition (CuAAC). The 2-methoxyethoxymethyl protecting group (MEM) was used to protect the carbohydrate moieties. It resisted the harsh basic cyclotetramerization conditions and could be easily cleaved under mild acidic conditions. The glycoconjugated zinc(II) phthalocyanines described here have molar extinction coefficents εmax>10⁵ m(-1) cm(-1) and absorption maxima λ>680 nm, which make them attractive photosensitizers for photo-dynamic therapy.

  6. O-(Triazolyl)methyl carbamates as a novel and potent class of FAAH inhibitors

    PubMed Central

    Colombano, Giampiero; Albani, Clara; Ottonello, Giuliana; Ribeiro, Alison; Scarpelli, Rita; Tarozzo, Glauco; Daglian, Jennifer; Jung, Kwang-Mook; Piomelli, Daniele; Bandiera, Tiziano

    2015-01-01

    Inhibition of fatty acid amide hydrolase (FAAH) activity is under investigation as a valuable strategy for the treatment of several disorders, including pain and drug addiction. A number of potent FAAH inhibitors belonging to different chemical classes have been disclosed. O-aryl carbamates are one of the most representative families. In the search for novel FAAH inhibitors, we synthesized a series of O-(1,2,3-triazol-4-yl)methyl carbamate derivatives exploiting the copper-catalyzed [3 + 2] cycloaddition reaction between azides and alkynes (click chemistry). We explored structure-activity relationships within this new class of compounds and identified potent inhibitors of both rat and human FAAH with IC50 values in the single-digit nanomolar range. PMID:25338703

  7. Self-organisation of dodeca-dendronized fullerene into supramolecular discs and helical columns containing a nanowire-like core.

    PubMed

    Guerra, Sebastiano; Iehl, Julien; Holler, Michel; Peterca, Mihai; Wilson, Daniela A; Partridge, Benjamin E; Zhang, Shaodong; Deschenaux, Robert; Nierengarten, Jean-François; Percec, Virgil

    2015-06-01

    Twelve chiral and achiral self-assembling dendrons have been grafted onto a [60]fullerene hexa-adduct core by copper-catalyzed alkyne azide "click" cycloaddition. The structure adopted by these compounds was determined by the self-assembling peripheral dendrons. These twelve dendrons mediate the self-organisation of the dendronized [60]fullerene into a disc-shaped structure containing the [60]fullerene in the centre. The fullerene-containing discs self-organise into helical supramolecular columns with a fullerene nanowire-like core, forming a 2D columnar hexagonal periodic array. These unprecedented supramolecular structures and their assemblies are expected to provide new developments in chiral complex molecular systems and their application to organic electronics and solar cells.

  8. Click chemistry for the conservation of cellular structures and fluorescent proteins: ClickOx.

    PubMed

    Löschberger, Anna; Niehörster, Thomas; Sauer, Markus

    2014-05-01

    Reactive oxygen species (ROS), including hydrogen peroxide, are known to cause structural damage not only in living, but also in fixed, cells. Copper-catalyzed azide-alkyne cycloaddition (click chemistry) is known to produce ROS. Therefore, fluorescence imaging of cellular structures, such as the actin cytoskeleton, remains challenging when combined with click chemistry protocols. In addition, the production of ROS substantially weakens the fluorescence signal of fluorescent proteins. This led us to develop ClickOx, which is a new click chemistry protocol for improved conservation of the actin structure and better conservation of the fluorescence signal of green fluorescent protein (GFP)-fusion proteins. Herein we demonstrate that efficient oxygen removal by addition of an enzymatic oxygen scavenger system (ClickOx) considerably reduces ROS-associated damage during labeling of nascent DNA with ATTO 488 azide by Cu(I)-catalyzed click chemistry. Standard confocal and super-resolution fluorescence images of phalloidin-labeled actin filaments and GFP/yellow fluorescent protein-labeled cells verify the conservation of the cytoskeleton microstructure and fluorescence intensity, respectively. Thus, ClickOx can be used advantageously for structure preservation in conventional and most notably in super-resolution microscopy methods. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. N,N-Diethylurea-Catalyzed Amidation between Electron-Defficient Aryl Azides and Phenylacetaldehydes

    PubMed Central

    Xie, Sheng; Ramström, Olof; Yan, Mingdi

    2015-01-01

    Urea structures, of which N,N-diethylurea (DEU) proved to be the most efficient, were discovered to catalyze amidation reactions between electron-defficient aryl azides and phenylacetaldehydes. Experimental data support 1,3-dipolar cycloaddition between DEU-activated enols and electrophilic phenyl azides, especially perfluoroaryl azides, followed by rearrangement of the triazoline intermediate. The activation of the aldehyde under near-neutral conditions was of special importance in inhibiting dehydration/aromatization of the triazoline intermediate, thus promoting the rearrangement to form aryl amides. PMID:25616121

  10. Enantioselective Rhodium-Catalyzed [2+2+2] Cycloadditions of Terminal Alkynes and Alkenyl Isocyanates: Mechanistic Insights Lead to a Unified Model that Rationalizes Product Selectivity

    PubMed Central

    Dalton, Derek M.; Oberg, Kevin M.; Yu, Robert T.; Lee, Ernest E.; Perreault, Stéphane; Oinen, Mark Emil; Pease, Melissa L.; Malik, Guillaume; Rovis, Tomislav

    2009-01-01

    This manuscript describes the development and scope of the asymmetric rhodium-catalyzed [2+2+2] cycloaddition of terminal alkynes and alkenyl isocyanates leading to the formation of indolizidine and quinolizidine scaffolds. The use of phosphoramidite ligands proved crucial for avoiding competitive terminal alkyne dimerization. Both aliphatic and aromatic terminal alkynes participate well, with product selectivity a function of both the steric and electronic character of the alkyne. Manipulation of the phosphoramidite ligand leads to tuning of enantio- and product selectivity, with a complete turnover in product selectivity seen with aliphatic alkynes when moving from Taddol-based to biphenol-based phosphoramidites. Terminal and 1,1-disubstituted olefins are tolerated with nearly equal efficacy. Examination of a series of competition experiments in combination with analysis of reaction outcome shed considerable light on the operative catalytic cycle. Through a detailed study of a series of X-ray structures of rhodium(cod)chloride/phosphoramidite complexes, we have formulated a mechanistic hypothesis that rationalizes the observed product selectivity. PMID:19817441

  11. 'Click Chemistry' in the preparation of porous polymer-basedparticulate stationary phases for mu-HPLC separation of peptides andproteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slater, Michael; Snauko, Marian; Svec, Frantisek

    With the use of the copper(I)-catalyzed (3 + 2) azide-alkynecycloaddition, an element of "click chemistry," stationary phasescarrying long alkyl chains or soybean trypsin inhibitor have beenprepared for use in HPLC separations in the reversed-phase and affinitymodes, respectively. The ligands were attached via a triazole ring tosize monodisperse porous beads containing either alkyne or azide pendantfunctionalities. Alkyne-containing beads prepared by directcopolymerization of propargyl acrylate with ethylene dimethacrylate wereallowed to react with azidooctadecane to give a reversed-phase sorbent.Azide-functionalized beads were prepared by chemical modification ofglycidyl methacrylate particles. Subsequent reaction with a terminalaliphatic alkyne produced a reversed-phase sorbent similar to thatobtained from themore » alkyne beads. Soybean trypsin inhibitor wasfunctionalized with N-(4-pentynoyloxy) succinimide to carry alkyne groupsand then allowed to react with the azide-containing beads to produce anaffinity sorbent for trypsin. The performance of these stationary phaseswas demonstrated with the HPLC separations of a variety of peptides andproteins.« less

  12. Covalently crosslinked diels-alder polymer networks.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, Christopher; Adzima, Brian J.; Anderson, Benjamin John

    2011-09-01

    This project examines the utility of cycloaddition reactions for the synthesis of polymer networks. Cycloaddition reactions are desirable because they produce no unwanted side reactions or small molecules, allowing for the formation of high molecular weight species and glassy crosslinked networks. Both the Diels-Alder reaction and the copper-catalyzed azide-alkyne cycloaddition (CuAAC) were studied. Accomplishments include externally triggered healing of a thermoreversible covalent network via self-limited hysteresis heating, the creation of Diels-Alder based photoresists, and the successful photochemical catalysis of CuAAC as an alternative to the use of ascorbic acid for the generation of Cu(I) in click reactions. An analysis ofmore » the results reveals that these new methods offer the promise of efficiently creating robust, high molecular weight species and delicate three dimensional structures that incorporate chemical functionality in the patterned material. This work was performed under a Strategic Partnerships LDRD during FY10 and FY11 as part of a Sandia National Laboratories/University of Colorado-Boulder Excellence in Science and Engineering Fellowship awarded to Brian J. Adzima, a graduate student at UC-Boulder. Benjamin J. Anderson (Org. 1833) was the Sandia National Laboratories point-of-contact for this fellowship.« less

  13. Synthesis of RNA 5'-Azides from 2'-O-Pivaloyloxymethyl-Protected RNAs and Their Reactivity in Azide-Alkyne Cycloaddition Reactions.

    PubMed

    Warminski, Marcin; Kowalska, Joanna; Jemielity, Jacek

    2017-07-07

    Commercially available 2'-O-pivaloyloxymethyl (PivOM) phosphoramidites were employed in an SPS protocol for RNA 5' azides. The utility of the N 3 -RNAs in CuAAC and SPAAC was demonstrated by RNA 5' labeling, chemical ligation including fragment joining and cyclization, and bioconjugation. As a result, several new RNA conjugates that may be valuable tools for studies on biological events such as innate immune response (cyclic dinucleotides), post-transcriptional gene regulation (circular RNAs), or mRNA turnover (m 7 G capped RNAs) were obtained.

  14. A general approach to DNA-programmable atom equivalents.

    PubMed

    Zhang, Chuan; Macfarlane, Robert J; Young, Kaylie L; Choi, Chung Hang J; Hao, Liangliang; Auyeung, Evelyn; Liu, Guoliang; Zhou, Xiaozhu; Mirkin, Chad A

    2013-08-01

    Nanoparticles can be combined with nucleic acids to programme the formation of three-dimensional colloidal crystals where the particles' size, shape, composition and position can be independently controlled. However, the diversity of the types of material that can be used is limited by the lack of a general method for preparing the basic DNA-functionalized building blocks needed to bond nanoparticles of different chemical compositions into lattices in a controllable manner. Here we show that by coating nanoparticles protected with aliphatic ligands with an azide-bearing amphiphilic polymer, followed by the coupling of DNA to the polymer using strain-promoted azide-alkyne cycloaddition (also known as copper-free azide-alkyne click chemistry), nanoparticles bearing a high-density shell of nucleic acids can be created regardless of nanoparticle composition. This method provides a route to a virtually endless class of programmable atom equivalents for DNA-based colloidal crystallization.

  15. Kinetics studies of rapid strain-promoted [3 + 2]-cycloadditions of nitrones with biaryl-aza-cyclooctynone.

    PubMed

    McKay, Craig S; Chigrinova, Mariya; Blake, Jessie A; Pezacki, John Paul

    2012-04-21

    Strain-promoted cycloadditions of cyclic nitrones with biaryl-aza-cyclooctynone (BARAC) proceed with rate constants up to 47.3 M(-1) s(-1), this corresponds to a 47-fold rate enhancement relative to reaction of BARAC with benzyl azide and a 14-fold enhancement over previously reported strain promoted alkyne-nitrone cycloadditions (SPANC). Studies of the SPANC reaction using the linear free energy relationship defined by the Hammett equation demonstrated that the cycloaddition reaction has a rho value of 0.25 ± 0.04, indicating that reaction is not sensitive to substituents and thus should have broad applicability. This journal is © The Royal Society of Chemistry 2012

  16. Cycloaddition Reactions of Cobalt-Complexed Macrocyclic Alkynes: The Transannular Pauson-Khand Reaction.

    PubMed

    Karabiyikoglu, Sedef; Boon, Byron A; Merlic, Craig A

    2017-08-04

    The Pauson-Khand reaction is a powerful tool for the synthesis of cyclopentenones through the efficient [2 + 2 + 1] cycloaddition of dicobalt alkyne complexes with alkenes. While intermolecular and intramolecular variants are widely known, transannular versions of this reaction are unknown and the basis of this study. Macrocyclic enyne and dienyne complexes were readily synthesized by palladium(II)-catalyzed oxidative macrocyclizations of bis(vinyl boronate esters) or ring-closing metathesis reactions followed by complexation with dicobalt octacarbonyl. Several reaction modalities of these macrocyclic complexes were uncovered. In addition to the first successful transannular Pauson-Khand reactions, other intermolecular and transannular cycloaddition reactions included intermolecular Pauson-Khand reactions, transannular [4 + 2] cycloaddition reactions, intermolecular [2 + 2 + 2] cycloaddition reactions, and intermolecular [2 + 2 + 1 + 1] cycloaddition reactions. The structural and reaction requirements for each process are presented.

  17. Carbohydrate CuAAC click chemistry for therapy and diagnosis.

    PubMed

    He, Xiao-Peng; Zeng, Ya-Li; Zang, Yi; Li, Jia; Field, Robert A; Chen, Guo-Rong

    2016-06-24

    Carbohydrates are important as signaling molecules and for cellular recognition events, therefore offering scope for the development of carbohydrate-mimetic diagnostics and drug candidates. As a consequence, the construction of carbohydrate-based bioactive compounds and sensors has become an active research area. While the advent of click chemistry has greatly accelerated the progress of medicinal chemistry and chemical biology, recent literature has seen an extensive use of such approaches to construct functionally diverse carbohydrate derivatives. Here we summarize some of the progress, covering the period 2010 to mid-2015, in Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition CuAAC "click chemistry" of carbohydrate derivatives, in the context of potential therapeutic and diagnostic tool development. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Soluble organic nanotubes for catalytic systems

    NASA Astrophysics Data System (ADS)

    Xiong, Linfeng; Yang, Kunran; Zhang, Hui; Liao, Xiaojuan; Huang, Kun

    2016-03-01

    In this paper, we report a novel method for constructing a soluble organic nanotube supported catalyst system based on single-molecule templating of core-shell bottlebrush copolymers. Various organic or metal catalysts, such as sodium prop-2-yne-1-sulfonate (SPS), 1-(2-(prop-2-yn-1-yloxy)ethyl)-1H-imidazole (PEI) and Pd(OAc)2 were anchored onto the tube walls to functionalize the organic nanotubes via copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Depending on the ‘confined effect’ and the accessible cavity microenvironments of tubular structures, the organic nanotube catalysts showed high catalytic efficiency and site-isolation features. We believe that the soluble organic nanotubes will be very useful for the development of high performance catalyst systems due to their high stability of support, facile functionalization and attractive textural properties.

  19. Soluble organic nanotubes for catalytic systems.

    PubMed

    Xiong, Linfeng; Yang, Kunran; Zhang, Hui; Liao, Xiaojuan; Huang, Kun

    2016-03-18

    In this paper, we report a novel method for constructing a soluble organic nanotube supported catalyst system based on single-molecule templating of core–shell bottlebrush copolymers. Various organic or metal catalysts, such as sodium prop-2-yne-1-sulfonate (SPS), 1-(2-(prop-2-yn-1-yloxy)ethyl)-1H-imidazole (PEI) and Pd(OAc)2 were anchored onto the tube walls to functionalize the organic nanotubes via copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Depending on the 'confined effect' and the accessible cavity microenvironments of tubular structures, the organic nanotube catalysts showed high catalytic efficiency and site-isolation features. We believe that the soluble organic nanotubes will be very useful for the development of high performance catalyst systems due to their high stability of support, facile functionalization and attractive textural properties.

  20. Cobalt/rhodium heterobimetallic nanoparticle-catalyzed carbonylative [2+2+1] cycloaddition of allenes and bisallenes to Pauson-Khand-type reaction products.

    PubMed

    Park, Ji Hoon; Kim, Eunha; Kim, Hyeong-Mook; Choi, Soo Young; Chung, Young Keun

    2008-05-28

    The first catalytic intra- and intermolecular [2+2+1] cocyclization reactions of allenes and carbon monoxide have been developed. In the Co(2)Rh(2) heterobimetallic nanoparticle-catalyzed carbonylative [2+2+1] cycloaddition of allenes and carbon monoxide, the allenes formally serve both as an excellent alkene- and alkyne-like moiety within a Pauson-Khand-type process.

  1. A Catalytic Asymmetric Synthesis of Polysubstituted Piperidines Using a Rhodium (I) Catalyzed [2+2+2] Cycloaddition Employing a Cleavable Tether

    PubMed Central

    Martin, Timothy J.; Rovis, Tomislav

    2013-01-01

    An enantioselective rhodium (I) catalyzed [2+2+2] cycloaddition with a cleavable tether has been developed. The reaction proceeds with a variety of alkyne substrates in good yield and high enantioselectivity. Upon reduction of the vinylogous amide in high diastereoselectivity (>19:1) and cleavage of the tether, N-methylpiperidine products with functional group handles can be accessed. PMID:23606664

  2. Guiding plant virus particles to integrin-displaying cells

    NASA Astrophysics Data System (ADS)

    Hovlid, Marisa L.; Steinmetz, Nicole F.; Laufer, Burkhardt; Lau, Jolene L.; Kuzelka, Jane; Wang, Qian; Hyypiä, Timo; Nemerow, Glen R.; Kessler, Horst; Manchester, Marianne; Finn, M. G.

    2012-05-01

    Viral nanoparticles (VNPs) are structurally regular, highly stable, tunable nanomaterials that can be conveniently produced in high yields. Unmodified VNPs from plants and bacteria generally do not show tissue specificity or high selectivity in binding to or entry into mammalian cells. They are, however, malleable by both genetic and chemical means, making them useful scaffolds for the display of large numbers of cell- and tissue-targeting ligands, imaging moieties, and/or therapeutic agents in a well-defined manner. Capitalizing on this attribute, we modified the genetic sequence of the Cowpea mosaic virus (CPMV) coat protein to display an RGD oligopeptide sequence derived from human adenovirus type 2 (HAdV-2). Concurrently, wild-type CPMV was modified via NHS acylation and Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry to attach an integrin-binding cyclic RGD peptide. Both types of particles showed strong and selective affinity for several different cancer cell lines that express RGD-binding integrin receptors.Viral nanoparticles (VNPs) are structurally regular, highly stable, tunable nanomaterials that can be conveniently produced in high yields. Unmodified VNPs from plants and bacteria generally do not show tissue specificity or high selectivity in binding to or entry into mammalian cells. They are, however, malleable by both genetic and chemical means, making them useful scaffolds for the display of large numbers of cell- and tissue-targeting ligands, imaging moieties, and/or therapeutic agents in a well-defined manner. Capitalizing on this attribute, we modified the genetic sequence of the Cowpea mosaic virus (CPMV) coat protein to display an RGD oligopeptide sequence derived from human adenovirus type 2 (HAdV-2). Concurrently, wild-type CPMV was modified via NHS acylation and Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry to attach an integrin-binding cyclic RGD peptide. Both types of particles showed strong and selective affinity for several different cancer cell lines that express RGD-binding integrin receptors. Electronic supplementary information (ESI) available: Synthetic procedures and compound characterization data; assay procedures; additional confocal micrographs at different time points. See DOI: 10.1039/c2nr30571b

  3. Azobenzene dye-coupled quadruply hydrogen-bonding modules as colorimetric indicators for supramolecular interactions.

    PubMed

    Zhang, Yagang; Zimmerman, Steven C

    2012-01-01

    The facile coupling of azobenzene dyes to the quadruply hydrogen-bonding modules 2,7-diamido-1,8-naphthyridine (DAN) and 7-deazaguanine urea (DeUG) is described. The coupling of azobenzene dye 2 to mono-amido DAN units 4, 7, and 9 was effected by classic 4-(dimethylamino)pyridine (DMAP)-catalyzed peptide synthesis with N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC) as activating agent, affording the respective amide products 5, 8, and 10 in 60-71% yield. The amide linkage was formed through either the aliphatic or aromatic ester group of 2, allowing both the flexibility and absorption maximum to be tuned. Azobenzene dye 1 was coupled to the DeUG unit 11 by Steglich esterification to afford the product amide 12 in 35% yield. Alternatively, azobenzene dye 16 underwent a room-temperature copper-catalyzed azide-alkyne Huisgen cycloaddition with DeUG alkyne 17 to give triazole 18 in 71% yield. Azobenzene coupled DAN modules 5, 8, and 10 are bright orange-red in color, and azobenzene coupled DeUG modules 12 and 18 are orange-yellow in color. Azobenzene coupled DAN and DeUG modules were successfully used as colorimetric indicators for specific DAN-DeUG and DAN-UPy (2-ureido-4(1H)-pyrimidone) quadruply hydrogen-bonding interactions.

  4. A versatile platform for precise synthesis of asymmetric molecular brush in one shot.

    PubMed

    Xu, Binbin; Feng, Chun; Huang, Xiaoyu

    2017-08-24

    Asymmetric molecular brushes emerge as a unique class of nanostructured polymers, while their versatile synthesis keeps a challenge for chemists. Here we show the synthesis of well-defined asymmetric molecular double-brushes comprising two different side chains linked to the same repeat unit along the backbone by one-pot concurrent atom transfer radical polymerization (ATRP) and Cu-catalyzed azide/alkyne cycloaddition (CuAAC) reaction. The double-brushes are based on a poly(Br-acrylate-alkyne) homopolymer possessing an alkynyl for CuAAC reaction and a 2-bromopropionate initiating group for ATRP in each repeat unit. The versatility of this one-shot approach is demonstrated by CuAAC reaction of alkynyl/poly(ethylene oxide)-N 3 and ATRP of various monomers. We also show the quantitative conversion of pentafluorophenyl ester groups to amide groups in side chains, allowing for the further fabrication of diverse building blocks. This work provides a versatile platform for facile synthesis of Janus-type double-brushes with structural and functional control, in a minimum number of reactions.Producing well-defined polymer compositions and structures facilitates their use in many different applications. Here the authors show the synthesis of well-defined asymmetric double-brushes by a one-pot concurrent atom transfer radical polymerization and Cu-catalyzed Click reaction.

  5. A toxic RNA catalyzes the in cellulo synthesis of its own inhibitor.

    PubMed

    Rzuczek, Suzanne G; Park, HaJeung; Disney, Matthew D

    2014-10-06

    Potent modulators of RNA function can be assembled in cellulo by using the cell as a reaction vessel and a disease-causing RNA as a catalyst. When designing small molecule effectors of function, a balance between permeability and potency must be struck. Low molecular weight compounds are more permeable whereas higher molecular weight compounds are more potent. The advantages of both types of compounds could be synergized if low molecular weight molecules could be transformed into potent, multivalent ligands by a reaction that is catalyzed by binding to a target in cells expressing a genetic defect. It was shown that this approach is indeed viable in cellulo. Small molecule modules with precisely positioned alkyne and azide moieties bind adjacent internal loops in r(CCUG)(exp), the causative agent of myotonic dystrophy type 2 (DM2), and are transformed into oligomeric, potent inhibitors of DM2 RNA dysfunction by a Huisgen 1,3-dipolar cycloaddition reaction, a variant of click chemistry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Copper-granule-catalyzed microwave-assisted click synthesis of polyphenol dendrimers.

    PubMed

    Lee, Choon Young; Held, Rich; Sharma, Ajit; Baral, Rom; Nanah, Cyprien; Dumas, Dan; Jenkins, Shannon; Upadhaya, Samik; Du, Wenjun

    2013-11-15

    Syringaldehyde- and vanillin-based antioxidant dendrimers were synthesized via microwave-assisted alkyne-azide 1,3-dipolar cycloaddition using copper granules as a catalyst. The use of Cu(I) as a catalyst resulted in copper contaminated dendrimers. To produce copper-free antioxidant dendrimers for biological applications, Cu(I) was substituted with copper granules. Copper granules were ineffective at both room temperature and under reflux conditions (<5% yield). However, they were an excellent catalyst when dendrimer synthesis was performed under microwave irradiation, giving yields up to 94% within 8 h. ICP-mass analysis of the antioxidant dendrimers obtained with this method showed virtually no copper contamination (9 ppm), which was the same as the background level. The synthesized antioxidants, free from copper contamination, demonstrated potent radical scavenging with IC50 values of less than 3 μM in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. In comparison, dendrimers synthesized from Cu(I)-catalyzed click chemistry showed a high level of copper contamination (4800 ppm) and no detectable antioxidant activity.

  7. Solid-phase synthesis of smac peptidomimetics incorporating triazoloprolines and biarylalanines.

    PubMed

    Le Quement, Sebastian T; Ishoey, Mette; Petersen, Mette T; Thastrup, Jacob; Hagel, Grith; Nielsen, Thomas E

    2011-11-14

    Apoptotic induction mechanisms are of crucial importance for the general homeostasis of multicellular organisms. In cancer the apoptotic pathways are downregulated, which, at least partly, is due to an abundance of inhibitors of apoptosis proteins (IAPs) that block the apoptotic cascade by deactivating proteolytic caspases. The Smac protein has an antagonistic effect on IAPs, thus providing structural clues for the synthesis of new pro-apoptotic compounds. Herein, we report a solid-phase approach for the synthesis of Smac-derived tetrapeptide libraries. On the basis of a common (N-Me)AVPF sequence, peptides incorporating triazoloprolines and biarylalanines were synthesized by means of Cu(I)-catalyzed azide-alkyne cycloaddition and Pd-catalyzed Suzuki cross-coupling reactions. Solid-phase procedures were optimized to high efficiency, thus accessing all products in excellent crude purities and yields (both typically above 90%). The peptides were subjected to biological evaluation in a live/dead cellular assay which revealed that structural decorations on the AVPF sequence indeed are highly important for cytotoxicity toward HeLa cells.

  8. Direct 3D Printing of Catalytically Active Structures

    DOE PAGES

    Manzano, J. Sebastian; Weinstein, Zachary B.; Sadow, Aaron D.; ...

    2017-09-22

    3D printing of materials with active functional groups can provide custom-designed structures that promote chemical conversions. Catalytically active architectures were produced by photopolymerizing bifunctional molecules using a commercial stereolithographic 3D printer. Functionalities in the monomers included a polymerizable vinyl group to assemble the 3D structures and a secondary group to provide them with active sites. The 3D-printed architectures containing accessible carboxylic acid, amine, and copper carboxylate functionalities were catalytically active for the Mannich, aldol, and Huisgen cycloaddition reactions, respectively. The functional groups in the 3D-printed structures were also amenable to post-printing chemical modification. And as proof of principle, chemically activemore » cuvette adaptors were 3D printed and used to measure in situ the kinetics of a heterogeneously catalyzed Mannich reaction in a conventional solution spectrophotometer. In addition, 3D-printed millifluidic devices with catalytically active copper carboxylate complexes were used to promote azide-alkyne cycloaddition under flow conditions. The importance of controlling the 3D architecture of the millifluidic devices was evidenced by enhancing reaction conversion upon increasing the complexity of the 3D prints.« less

  9. Direct 3D Printing of Catalytically Active Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manzano, J. Sebastian; Weinstein, Zachary B.; Sadow, Aaron D.

    3D printing of materials with active functional groups can provide custom-designed structures that promote chemical conversions. Catalytically active architectures were produced by photopolymerizing bifunctional molecules using a commercial stereolithographic 3D printer. Functionalities in the monomers included a polymerizable vinyl group to assemble the 3D structures and a secondary group to provide them with active sites. The 3D-printed architectures containing accessible carboxylic acid, amine, and copper carboxylate functionalities were catalytically active for the Mannich, aldol, and Huisgen cycloaddition reactions, respectively. The functional groups in the 3D-printed structures were also amenable to post-printing chemical modification. And as proof of principle, chemically activemore » cuvette adaptors were 3D printed and used to measure in situ the kinetics of a heterogeneously catalyzed Mannich reaction in a conventional solution spectrophotometer. In addition, 3D-printed millifluidic devices with catalytically active copper carboxylate complexes were used to promote azide-alkyne cycloaddition under flow conditions. The importance of controlling the 3D architecture of the millifluidic devices was evidenced by enhancing reaction conversion upon increasing the complexity of the 3D prints.« less

  10. "Click" on PLGA-PEG and hyaluronic acid: Gaining access to anti-leishmanial pentamidine bioconjugates.

    PubMed

    Scala, Angela; Piperno, Anna; Micale, Nicola; Mineo, Placido G; Abbadessa, Antonio; Risoluti, Roberta; Castelli, Germano; Bruno, Federica; Vitale, Fabrizio; Cascio, Antonio; Grassi, Giovanni

    2017-12-08

    Pentamidine (Pent), an antiparasitic drug used for the treatment of visceral leishmaniasis, has been modified with terminal azide groups and conjugated to two different polymer backbones (PLGA-PEG [PP] copolymer and hyaluronic acid [HA]) armed with alkyne end-groups. The conjugation has been performed by Copper Catalyzed Azido Alkyne Cycloaddition (CuAAC) using CuSO 4 /sodium ascorbate as metal source. The novel PP-Pent and HA-Pent bioconjugates are proposed, respectively, as non-targeted and targeted drug delivery systems against Leishmania infections. Moreover, Pent has been encapsulated into PP nanoparticles by the oil-in-water emulsion method, with the aim to compare the biological activity of the bioconjugates with that of the classical drug-loaded delivery system that physically entraps the therapeutic agent. Biological assays against Leishmania infantum amastigote-infected macrophages and primary macrophages revealed that Pent, either covalently conjugated with polymers or loaded into polymeric nanoparticles, turned out to be more potent and less toxic than the free Pent. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  11. Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(i) acetylides†

    PubMed Central

    Hein, Jason E.

    2011-01-01

    Copper-catalyzed azide–alkyne cycloaddition (CuAAC) is a widely utilized, reliable, and straightforward way for making covalent connections between building blocks containing various functional groups. It has been used in organic synthesis, medicinal chemistry, surface and polymer chemistry, and bioconjugation applications. Despite the apparent simplicity of the reaction, its mechanism involves multiple reversible steps involving coordination complexes of copper(i) acetylides of varying nuclearity. Understanding and controlling these equilibria is of paramount importance for channeling the reaction into the productive catalytic cycle. This tutorial review examines the history of the development of the CuAAC reaction, its key mechanistic aspects, and highlights the features that make it useful to practitioners in different fields of chemical science. PMID:20309487

  12. Synthesis of β-galactosylamides as ligands of the peanut lectin. Insights into the recognition process.

    PubMed

    Cano, María Emilia; Varela, Oscar; García-Moreno, María Isabel; García Fernández, José Manuel; Kovensky, José; Uhrig, María Laura

    2017-04-18

    The synthesis of mono and divalent β-galactosylamides linked to a hydroxylated chain having a C2 symmetry axis derived from l-tartaric anhydride is reported. Reference compounds devoid of hydroxyl groups in the linker were also prepared from β-galactosylamine and succinic anhydride. After functionalization with an alkynyl residue, the resulting building blocks were grafted onto different azide-equipped scaffolds through the copper catalyzed azide-alkyne cycloaddition. Thus, a family of structurally related mono and divalent β-N-galactopyranosylamides was obtained and fully characterized. The binding affinities of the ligands towards the model lectin PNA were measured by the enzyme-linked lectin assay (ELLA). The IC 50 values were significantly higher than that of galactose but the presence of hydroxyl groups in the aglycone chain improved lectin recognition. Docking and molecular dynamics experiments were in accordance with the hypothesis that a hydroxyl group properly disposed in the linker could mimic the Glc O3 in the recognition process. On the other hand, divalent presentation of the ligands led to lectin affinity enhancements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Synthesis and characterization of maltose-based amphiphiles as supramolecular hydrogelators.

    PubMed

    Clemente, María J; Fitremann, Juliette; Mauzac, Monique; Serrano, José L; Oriol, Luis

    2011-12-20

    Low molecular mass amphiphilic glycolipids have been prepared by linking a maltose polar head and a hydrophobic linear chain either by amidation or copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. The liquid crystalline properties of these amphiphilic materials have been characterized. The influence of the chemical structure of these glycolipids on the gelation properties in water has also been studied. Glycolipids obtained by the click coupling of the two components give rise to stable hydrogels at room temperature. The fibrillar structure of supramolecular hydrogels obtained by the self-assembly of these gelators have been characterized by electron microscopy. Fibers showed some torsion, which could be related with a chiral supramolecular arrangement of amphiphiles, as confirmed by circular dichroism (CD). The sol-gel transition temperature was also determined by differential scanning calorimetry (DSC) and NMR. © 2011 American Chemical Society

  14. Photophysical studies of newly derivatized mono substituted phthalocyanines grafted onto silica nanoparticles via click chemistry.

    PubMed

    Fashina, Adedayo; Amuhaya, Edith; Nyokong, Tebello

    2015-04-05

    This work reports on the synthesis, characterization and photophysical studies of newly derived phthalocyanine complexes and the phthalocyanine-silica nanoparticles conjugates. The derived phthalocyanine complexes have one terminal alkyne group. The derived phthalocyanine complexes showed improved photophysical properties (ФF, ФT, ΦΔ and τT) compared to the respective phthalocyanine complexes from which they were derived. The derived phthalocyanine complexes were conjugated to the surface of an azide functionalized silica nanoparticles via copper (1) catalyzed cyclo-addition reaction. All the conjugates showed lower triplet quantum yields ranging from 0.37 to 0.44 compared to the free phthalocyanine complexes. The triplet lifetimes ranged from 352 to 484 μs for the conjugates and from 341 to 366 μs for the free phthalocyanine complexes. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Rapid cycloaddition of a diazo group with an unstrained dipolarophile.

    PubMed

    Aronoff, Matthew R; Gold, Brian; Raines, Ronald T

    2016-06-01

    The cycloaddition of a diazoacetamide with ethyl 4,4,4-trifluorocrotonate proceeds with k = 0.1 M -1 s -1 . This second-order rate constant rivals those of optimized strain-promoted azide- alkyne cycloadditions, even though the reaction does not release strain. The regioselectivity and a computational distortion/interaction analysis of the reaction energetics are consistent with the formation of an N-H…F-C hydrogen bond in the transition state and the electronic character of the trifluorocrotonate. Analogous reactions with an azidoacetamide dipole or with an acrylate or crotonate dipolarophile were much slower. These findings suggest a new strategy for the design of diazo-selective reagents for chemical biology.

  16. Nickel-catalyzed cycloadditions of unsaturated hydrocarbons, aldehydes, and ketones.

    PubMed

    Tekavec, Thomas N; Louie, Janis

    2008-04-04

    The nickel-catalyzed cycloaddition of unsaturated hydrocarbons and carbonyls is reported. Diynes and enynes were used as coupling partners. Carbonyl substrates include both aldehdyes and ketones. Reactions of diynes and aldehydes afforded the [3,3] electrocyclic ring-opened tautomers, rather than pyrans, in high yields. The cycloaddition reaction of enynes and aldehydes afforded two distinct products. A new carbon-carbon bond is formed, prior to a competitive beta-hydrogen elimination of a nickel alkoxide, between the carbonyl carbon and either one of the carbons of the olefin or the alkyne. The steric hindrance of the enyne greatly affected the chemoselectivity of the cycloaddition of enynes and aldehydes. In some cases, dihydropyran was also formed. The scope of the cycloaddition reaction was expanded to include the coupling of enynes and ketones. No beta-hydrogen elimination was observed in cycloaddition reaction of enynes and ketones. Instead, C-O bond-forming reductive elimination occurred exclusively to afford dihydropyrans in excellent yields. In all cases, complete chemoselectivity was observed; only dihydropyrans where the carbonyl carbon forms a carbon-carbon bond with a carbon of the olefin, rather than of the alkyne, were observed. All cycloaddition reactions occur at room temperature and employ nickel catalysts bearing the hindered 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) or its saturated analogue, 1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazolin-2-ylidene (SIPr).

  17. Nickel-Catalyzed Cycloadditions of Unsaturated Hydrocarbons, Aldehydes, and Ketones

    PubMed Central

    Tekavec, Thomas N.

    2014-01-01

    The nickel-catalyzed cycloaddition of unsaturated hydrocarbons and carbonyls is reported. Diynes and enynes were used as coupling partners. Carbonyl substrates include both aldehdyes and ketones. Reactions of diynes and aldehydes afforded the [3, 3] electrocyclic ring-opened tautomers, rather than pyrans, in high yields. The cycloaddition reaction of enynes and aldehydes afforded two distinct products. A new carbon–carbon bond is formed, prior to a competitive β-hydrogen elimination of a nickel alkoxide, between the carbonyl carbon and either one of the carbons of the olefin or the alkyne. The steric hindrance of the enyne greatly affected the chemoselectivity of the cycloaddition of enynes and aldehydes. In some cases, dihydropyran was also formed. The scope of the cycloaddition reaction was expanded to include the coupling of enynes and ketones. No β-hydrogen elimination was observed in cycloaddition reaction of enynes and ketones. Instead, C–O bond-forming reductive elimination occurred exclusively to afford dihydropyrans in excellent yields. In all cases, complete chemoselectivity was observed; only dihydropyrans where the carbonyl carbon forms a carbon–carbon bond with a carbon of the olefin, rather than of the alkyne, were observed. All cycloaddition reactions occur at room temperature and employ nickel catalysts bearing the hindered 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) or its saturated analogue, 1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazolin-2-ylidene (SIPr). PMID:18318544

  18. Intracellular in situ labeling of TiO2 nanoparticles for fluorescence microscopy detection

    PubMed Central

    Brown, Koshonna; Thurn, Ted; Xin, Lun; Liu, William; Bazak, Remon; Chen, Si; Lai, Barry; Vogt, Stefan; Jacobsen, Chris; Paunesku, Tatjana; Woloschak, Gayle E.

    2018-01-01

    Titanium dioxide (TiO2) nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic nanoparticles for cancer detection and treatment, drug delivery, induction of DNA double-strand breaks, and imaging of specific cells and subcellular structures. Currently, the use of optical microscopy, an imaging technique most accessible to biology and medical pathology, to detect TiO2 nanoparticles in cells and tissues ex vivo is limited with low detection limits, while more sensitive imaging methods (transmission electron microscopy, X-ray fluorescence microscopy, etc.) have low throughput and technical and operational complications. Herein, we describe two in situ post-treatment labeling approaches to stain TiO2 nanoparticles taken up by the cells. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called Click chemistry, for labeling and detection of azide-conjugated TiO2 nanoparticles with alkyne-conjugated fluorescent dyes such as Alexa Fluor 488. To confirm that optical fluorescence signals of these nanoparticles match the distribution of the Ti element, we used synchrotron X-ray fluorescence microscopy (XFM) at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific XFM showed excellent overlap with the location of optical fluorescence detected by confocal microscopy. Therefore, future experiments with TiO2 nanoparticles may safely rely on confocal microscopy after in situ nanoparticle labeling using approaches described here. PMID:29541425

  19. Intracellular in situ labeling of TiO2 nanoparticles for fluorescence microscopy detection.

    PubMed

    Brown, Koshonna; Thurn, Ted; Xin, Lun; Liu, William; Bazak, Remon; Chen, Si; Lai, Barry; Vogt, Stefan; Jacobsen, Chris; Paunesku, Tatjana; Woloschak, Gayle E

    2018-01-01

    Titanium dioxide (TiO 2 ) nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic nanoparticles for cancer detection and treatment, drug delivery, induction of DNA double-strand breaks, and imaging of specific cells and subcellular structures. Currently, the use of optical microscopy, an imaging technique most accessible to biology and medical pathology, to detect TiO 2 nanoparticles in cells and tissues ex vivo is limited with low detection limits, while more sensitive imaging methods (transmission electron microscopy, X-ray fluorescence microscopy, etc.) have low throughput and technical and operational complications. Herein, we describe two in situ post-treatment labeling approaches to stain TiO 2 nanoparticles taken up by the cells. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called Click chemistry, for labeling and detection of azide-conjugated TiO 2 nanoparticles with alkyne-conjugated fluorescent dyes such as Alexa Fluor 488. To confirm that optical fluorescence signals of these nanoparticles match the distribution of the Ti element, we used synchrotron X-ray fluorescence microscopy (XFM) at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific XFM showed excellent overlap with the location of optical fluorescence detected by confocal microscopy. Therefore, future experiments with TiO 2 nanoparticles may safely rely on confocal microscopy after in situ nanoparticle labeling using approaches described here.

  20. Selective posttranslational modification of phage-displayed polypeptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsao, Meng-Lin; Tian, Feng; Schultz, Peter

    The invention relates to posttranslational modification of phage-displayed polypeptides. These displayed polypeptides comprise at least one unnatural amino acid, e.g., an aryl-azide amino acid such as p-azido-L-phenylalanine, or an alkynyl-amino acid such as para-propargyloxyphenylalanine, which are incorporated into the phage-displayed fusion polypeptide at a selected position by using an in vivo orthogonal translation system comprising a suitable orthogonal aminoacyl-tRNA synthetase and a suitable orthogonal tRNA species. These unnatural amino acids advantageously provide targets for posttranslational modifications such as azide-alkyne [3+2] cycloaddition reactions and Staudinger modifications.

  1. Selective posttranslational modification of phage-displayed polypeptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsao, Meng-Lin; Tian, Feng; Schultz, Peter

    The invention relates to posttranslational modification of phage-displayed polypeptides. These displayed polypeptides comprise at least one unnatural amino acid, e.g., an aryl-azide amino acid such as p-azido-L-phenylalanine, or an alkynyl-amino acid such as para-propargyloxyphenylalanine, which are incorporated into the phage-displayed fusion polypeptide at a selected position by using an in vivo orthogonal translation system comprising a suitable orthogonal aminoacyl-tRNA synthetase and a suitable orthogonal tRNA species. These unnatural amino acids advantageously provide targets for posttranslational modifications such as azide-alkyne [3+2]cycloaddition reactions and Staudinger modifications.

  2. Silver-Catalyzed [2+1] Cyclopropenation of Alkynes with Unstable Diazoalkanes: N-Nosylhydrazones as Room-Temperature Decomposable Diazo Surrogates.

    PubMed

    Liu, Zhaohong; Li, Qiangqiang; Liao, Peiqiu; Bi, Xihe

    2017-04-06

    The [2+1] cycloaddition of alkynes with diazo compounds represents one of the most powerful and reliable methods for the construction of cyclopropenes. However, it remains a formidable challenge to accomplish the cyclopropenation of alkynes with non-stabilized diazoalkanes, owing to the fact that such compounds are unstable and prone to detonation. Herein, we report a general silver-catalyzed cyclopropenation reaction of alkynes with unstable diazoalkanes, by for the first time the discovery and application of N-nosylhydrazones as room-temperature decomposiable diazo surrogates. This method allows for the efficient assembly a wide variety of cyclopropene derivatives that are otherwise difficult to access by conventional methods. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Synthesis of Cross-Linked Polymeric Micelle pH Nanosensors: An Investigation of Design Flexibility.

    PubMed

    Kumar, E K Pramod; Jølck, Rasmus I; Andresen, Thomas L

    2015-09-01

    The design flexibility that polymeric micelles offer in the fabrication of optical nanosensors for ratiometric pH measurements is investigated. pH nanosensors based on polymeric micelles are synthesized either by a mixed-micellization approach or by a postmicelle modification strategy. In the mixed-micellization approach, self-assembly of functionalized unimers followed by shell cross-linking by copper-catalyzed azide-alkyne cycloaddition (CuAAC) results in stabilized cRGD-functionalized micelle pH nanosensors. In the postmicelle modification strategy, simultaneous cross-linking and fluorophore conjugation at the micelle shell using CuAAC results in a stabilized micelle pH nanosensor. Compared to the postmicelle modification strategy, the mixed-micellization approach increases the control of the overall composition of the nanosensors. Both approaches provide stable nanosensors with similar pKa profiles and thereby nanosensors with similar pH sensitivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Click Chemistry Mediated Functionalization of Vertical Nanowires for Biological Applications.

    PubMed

    Vutti, Surendra; Schoffelen, Sanne; Bolinsson, Jessica; Buch-Månson, Nina; Bovet, Nicolas; Nygård, Jesper; Martinez, Karen L; Meldal, Morten

    2016-01-11

    Semiconductor nanowires (NWs) are gaining significant importance in various biological applications, such as biosensing and drug delivery. Efficient and controlled immobilization of biomolecules on the NW surface is crucial for many of these applications. Here, we present for the first time the use of the Cu(I) -catalyzed alkyne-azide cycloaddition and its strain-promoted variant for the covalent functionalization of vertical NWs with peptides and proteins. The potential of the approach was demonstrated in two complementary applications of measuring enzyme activity and protein binding, which is of general interest for biological studies. The attachment of a peptide substrate provided NW arrays for the detection of protease activity. In addition, green fluorescent protein was immobilized in a site-specific manner and recognized by antibody binding to demonstrate the proof-of-concept for the use of covalently modified NWs for diagnostic purposes using minute amounts of material. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Synthesis, characterization, conformation and self-assembly behavior of polypeptide-based brush with oligo (ethylene glycol) side chains

    NASA Astrophysics Data System (ADS)

    Huang, Yugang; Luo, Weiang; Ye, Guodong

    2015-02-01

    A new polypeptide-based copolymer brush composed of poly (γ-propargyl-L-glutamate)-block-poly (propylene oxide)-block-poly (γ-propargyl-L-glutamate) backbone (PPLG-b-PPO-b-PPLG) and oligo (ethylene glycol) (PEG) side-chain was synthesized by combination of N-carboxyanhydride ring-opening polymerization and click chemistry. Nearly 100% grafting efficiency was achieved by copper-catalyzed azide-alkyne Huisgen 1,3-dipolar cycloaddition (CuAAc) reaction. The α-helical conformation adopted by the grafted polypeptide blocks in water was relatively stable and showed a reversible change in a heating-cooling circle from 5 to 70 °C. It displayed weak stability against elevated temperature but still reversible changes in the presence of 0.47 M NaCl. The brushes were amphiphilic and could self-assemble into thermo-sensitive micelles in water. Big micelles could break into small micelles upon heating due to the improved solubility.

  6. Self-organisation of dodeca-dendronized fullerene into supramolecular discs and helical columns containing a nanowire-like core† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc00449g Click here for additional data file.

    PubMed Central

    Guerra, Sebastiano; Iehl, Julien; Holler, Michel; Peterca, Mihai; Wilson, Daniela A.; Partridge, Benjamin E.; Zhang, Shaodong

    2015-01-01

    Twelve chiral and achiral self-assembling dendrons have been grafted onto a [60]fullerene hexa-adduct core by copper-catalyzed alkyne azide “click” cycloaddition. The structure adopted by these compounds was determined by the self-assembling peripheral dendrons. These twelve dendrons mediate the self-organisation of the dendronized [60]fullerene into a disc-shaped structure containing the [60]fullerene in the centre. The fullerene-containing discs self-organise into helical supramolecular columns with a fullerene nanowire-like core, forming a 2D columnar hexagonal periodic array. These unprecedented supramolecular structures and their assemblies are expected to provide new developments in chiral complex molecular systems and their application to organic electronics and solar cells. PMID:29142695

  7. Integration of CuAAC Polymerization and Controlled Radical Polymerization into Electron Transfer Mediated "Click-Radical" Concurrent Polymerization.

    PubMed

    Xue, Wentao; Wang, Jie; Wen, Ming; Chen, Gaojian; Zhang, Weidong

    2017-03-01

    The successful chain-growth copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) polymerization employing Cu(0)/pentamethyldiethylenetriamine (PMDETA) and alkyl halide as catalyst is first investigated by a combination of nuclear magnetic resonance, gel-permeation chromatography, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. In addition, the electron transfer mediated "click-radical" concurrent polymerization utilizing Cu(0)/PMDETA as catalyst is successfully employed to generate well-defined copolymers, where controlled CuAAC polymerization of clickable ester monomer is progressed in the main chain acting as the polymer backbone, the controlled radical polymerization (CRP) of acrylic monomer is carried out in the side chain. Furthermore, it is found that there is strong collaborative effect and compatibility between CRP and CuAAC polymerization to improve the controllability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A multimodal optical and electrochemical device for monitoring surface reactions: redox active surfaces in porous silicon Rugate filters.

    PubMed

    Ciampi, Simone; Guan, Bin; Darwish, Nadim A; Zhu, Ying; Reece, Peter J; Gooding, J Justin

    2012-12-21

    Herein, mesoporous silicon (PSi) is configured as a single sensing device that has dual readouts; as a photonic crystal sensor in a Rugate filter configuration, and as a high surface area porous electrode. The as-prepared PSi is chemically modified to provide it with stability in aqueous media and to allow for the subsequent coupling of chemical species, such as via Cu(I)-catalyzed cycloaddition reactions between 1-alkynes and azides ("click" reactions). The utility of the bimodal capabilities of the PSi sensor for monitoring surface coupling procedures is demonstrated by the covalent coupling of a ferrocene derivative, as well as by demonstrating ligand-exchange reactions (LER) at the PSi surface. Both types of reactions were monitored through optical reflectivity measurements, as well as electrochemically via the oxidation/reduction of the surface tethered redox species.

  9. Synthesis of hydrogel via click chemistry for DNA electrophoresis.

    PubMed

    Finetti, Chiara; Sola, Laura; Elliott, Jim; Chiari, Marcella

    2017-09-01

    This work introduces a novel sieving gel for DNA electrophoresis using a classical click chemistry reaction, the copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC), to cross-link functional polymer chains. The efficiency of this reaction provides, under mild conditions, hydrogels with near-ideal network connectivity and improved physical properties. Hydrogel formation via click chemistry condensation of functional polymers does not involve the use of toxic monomers and UV initiation. The performance of the new hydrogel in the separation of double stranded DNA fragments was evaluated in the 2200 TapeStation system, an analytical platform, recently introduced by Agilent that combines the advantages of CE in terms of miniaturization and automation with the simplicity of use of slab gel electrophoresis. The click gel enables addition of florescent dyes prior to electrophoresis with considerable improvement of resolution and separation efficiency over conventional cross-linked polyacrylamide gels. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A recyclable and reusable supported Cu(I) catalyzed azide-alkyne click polymerization

    NASA Astrophysics Data System (ADS)

    Wu, Haiqiang; Li, Hongkun; Kwok, Ryan T. K.; Zhao, Engui; Sun, Jing Zhi; Qin, Anjun; Tang, Ben Zhong

    2014-05-01

    The azide-alkyne click polymerization (AACP) has emerged as a powerful tool for the synthesis of functional polytriazoles. While, for the Cu(I)-catalyzed AACP, the removal of the catalytic Cu(I) species from the resulting polytriazoles is difficult, and the research on the recyclability and reusability of the catalyst remains intact. Herein, we reported the first example of using recyclable and reusable supported Cu(I) catalyst of CuI@A-21 for the AACP. CuI@A-21 could not only efficiently catalyze the AACP but also be reused for at least 4 cycles. Moreover, pronounced reduction of copper residues in the products was achieved. Apart from being a green and cost-effective polymer synthesis strategy, this method will also broaden the application of AACP in material and biological sciences and provide guidelines for other polymerizations with metal catalysts.

  11. Bioorthogonal Modification of the Major Sheath Protein of Bacteriophage M13: Extending the Versatility of Bionanomaterial Scaffolds.

    PubMed

    Urquhart, Taylor; Daub, Elisabeth; Honek, John Frank

    2016-10-19

    With a mass of ∼1.6 × 10 7 Daltons and composed of approximately 2700 proteins, bacteriophage M13 has been employed as a molecular scaffold in bionanomaterials fabrication. In order to extend the versatility of M13 in this area, residue-specific unnatural amino acid incorporation was employed to successfully display azide functionalities on specific solvent-exposed positions of the pVIII major sheath protein of this bacteriophage. Employing a combination of engineered mutants of the gene coding for the pVIII protein, the methionine (Met) analog, l-azidohomoalanine (Aha), and a suitable Escherichia coli Met auxotroph for phage production, conditions were developed to produce M13 bacteriophage labeled with over 350 active azides (estimated by fluorescent dye labeling utilizing a strain-promoted azide-alkyne cycloaddition) and capable of azide-selective attachment to 5 nm gold nanoparticles as visualized by transmission electron microscopy. The capability of this system to undergo dual labeling utilizing both chemical acylation and bioorthogonal cycloaddition reactions was also verified. The above stratagem should prove particularly advantageous in the preparation of assemblies of larger and more complex molecular architectures based on the M13 building block.

  12. A General Synthetic Approach for Designing Epitope Targeted Macrocyclic Peptide Ligands.

    PubMed

    Das, Samir; Nag, Arundhati; Liang, JingXin; Bunck, David N; Umeda, Aiko; Farrow, Blake; Coppock, Matthew B; Sarkes, Deborah A; Finch, Amethist S; Agnew, Heather D; Pitram, Suresh; Lai, Bert; Yu, Mary Beth; Museth, A Katrine; Deyle, Kaycie M; Lepe, Bianca; Rodriguez-Rivera, Frances P; McCarthy, Amy; Alvarez-Villalonga, Belen; Chen, Ann; Heath, John; Stratis-Cullum, Dimitra N; Heath, James R

    2015-11-02

    We describe a general synthetic strategy for developing high-affinity peptide binders against specific epitopes of challenging protein biomarkers. The epitope of interest is synthesized as a polypeptide, with a detection biotin tag and a strategically placed azide (or alkyne) presenting amino acid. This synthetic epitope (SynEp) is incubated with a library of complementary alkyne or azide presenting peptides. Library elements that bind the SynEp in the correct orientation undergo the Huisgen cycloaddition, and are covalently linked to the SynEp. Hit peptides are tested against the full-length protein to identify the best binder. We describe development of epitope-targeted linear or macrocycle peptide ligands against 12 different diagnostic or therapeutic analytes. The general epitope targeting capability for these low molecular weight synthetic ligands enables a range of therapeutic and diagnostic applications, similar to those of monoclonal antibodies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The application of CuAAC 'click' chemistry to catenane and rotaxane synthesis.

    PubMed

    Hänni, Kevin D; Leigh, David A

    2010-04-01

    The copper(I)-catalysed azide-alkyne cycloaddition (the CuAAC 'click' reaction) is proving to be a powerful new tool for the construction of mechanically interlocked molecular-level architectures. The reaction is highly selective for the functional groups involved (terminal alkynes and azides) and the experimental conditions are mild and compatible with the weak and reversible intermolecular interactions generally used to template the assembly of interlocked structures. Since the CuAAC reaction was introduced as a means of making rotaxanes by an 'active template' mechanism in 2006, it has proven effective for the synthesis of numerous different types of rotaxanes, catenanes and molecular shuttles by passive as well as active template strategies. Mechanistic insights into the CuAAC reaction itself have been provided by unexpected results encountered during the preparation of rotaxanes. In this tutorial review we highlight the rapidly increasing utility and future potential of the CuAAC reaction in mechanically interlocked molecule synthesis.

  14. Quantum dynamics of nuclear spins and spin relaxation in organic semiconductors

    DOE PAGES

    Mkhitaryan, V. V.; Dobrovitski, V. V.

    2017-06-12

    3D printing of materials with active functional groups can provide custom-designed structures that promote chemical conversions. Herein, catalytically active architectures were produced by photopolymerizing bifunctional molecules using a commercial stereolithographic 3D printer. Functionalities in the monomers included a polymerizable vinyl group to assemble the 3D structures and a secondary group to provide them with active sites. The 3D-printed architectures containing accessible carboxylic acid, amine, and copper carboxylate functionalities were catalytically active for the Mannich, aldol, and Huisgen cycloaddition reactions, respectively. The functional groups in the 3D-printed structures were also amenable to post-printing chemical modification. As proof of principle, chemically activemore » cuvette adaptors were 3D printed and used to measure in situ the kinetics of a heterogeneously catalyzed Mannich reaction in a conventional solution spectrophotometer. In addition, 3D-printed millifluidic devices with catalytically active copper carboxylate complexes were used to promote azide-alkyne cycloaddition under flow conditions. The importance of controlling the 3D architecture of the millifluidic devices was evidenced by enhancing reaction conversion upon increasing the complexity of the 3D prints.« less

  15. pH-Responsive Dimeric Zinc(II) Phthalocyanine in Mesoporous Silica Nanoparticles as an Activatable Nanophotosensitizing System for Photodynamic Therapy.

    PubMed

    Wong, Roy C H; Chow, Sun Y S; Zhao, Shirui; Fong, Wing-Ping; Ng, Dennis K P; Lo, Pui-Chi

    2017-07-19

    An acid-cleavable acetal-linked zinc(II) phthalocyanine dimer with an azido terminal group (cPc) was prepared and conjugated to alkyne-modified mesoporous silica nanoparticles via copper(I)-catalyzed alkyne-azide cycloaddition reaction. For comparison, an amine-linked analogue (nPc) was also prepared as a non-acid-cleavable counterpart. These dimeric phthalocyanines were significantly self-quenched due to the close proximity of the phthalocyanine units inside the mesopores, resulting in much weaker fluorescence emission and singlet oxygen generation, both in N,N-dimethylformamide and in phosphate-buffered saline (PBS), compared with the free molecular counterparts. Under acidic conditions in PBS, the cPc-encapsulated nanosystem was activated in terms of fluorescence emission and singlet oxygen production. After internalization into human colon adenocarcinoma HT29 cells, it exhibited much higher intracellular fluorescence and photocytotoxicity compared to the nanosystem entrapped with nPc. The activation of this nanosystem was also demonstrated in tumor-bearing nude mice. The intratumoral fluorescence intensity increased gradually over 24 h, while for the nPc counterpart the fluorescence remained very weak. The results suggest that this nanosystem serves as a promising activatable nanophotosensitizing agent for photodynamic therapy.

  16. Asymmetric allylation of ketones and subsequent tandem reactions catalyzed by a novel polymer-supported titanium-BINOLate complex.

    PubMed

    Yadav, Jagjit; Stanton, Gretchen R; Fan, Xinyuan; Robinson, Jerome R; Schelter, Eric J; Walsh, Patrick J; Pericas, Miquel A

    2014-06-02

    By using a novel, simple, and convenient synthetic route, enantiopure 6-ethynyl-BINOL (BINOL = 1,1-binaphthol) was synthesized and anchored to an azidomethylpolystyrene resin through a copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction. The polystyrene (PS)-supported BINOL ligand was converted into its diisopropoxytitanium derivative in situ and used as a heterogeneous catalyst in the asymmetric allylation of ketones. The catalyst showed good activity and excellent enantioselectivity, typically matching the results obtained in the corresponding homogeneous reaction. The allylation reaction mixture could be submitted to epoxidation by simple treatment with tert-butyl hydroperoxide (TBHP), and the tandem asymmetric allylation epoxidation process led to a highly enantioenriched epoxy alcohol with two adjacent quaternary centers as a single diastereomer. A tandem asymmetric allylation/Pauson-Khand reaction was also performed, involving simple treatment of the allylation reaction mixture with Co2(CO)8/N-methyl morpholine N-oxide. This cascade process resulted in the formation of two diastereomeric tricyclic enones in high yields and enantioselectivities. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Large-scale separation of single-walled carbon nanotubes by electronic type using click chemistry

    NASA Astrophysics Data System (ADS)

    Um, Jo-Eun; Song, Sun Gu; Yoo, Pil J.; Song, Changsik; Kim, Woo-Jae

    2018-01-01

    Single-walled carbon nanotubes (SWCNTs) can be either metallic or semiconducting, making their separation critical for applications in nanoelectronics, biomedical materials, and solar cells. Herein, we investigate a novel solution-phase separation method based on click chemistry (azide-alkyne Huisgen cycloaddition) and determine its efficiency and scalability. In this method, metallic SWCNTs in metallic/semiconducting SWCNT mixtures are selectively functionalized with alkyne groups by being reacted with 4-propargyloxybenezenediazonium tetrafluoroborate. Subsequently, silica nanoparticles are functionalized with azide groups and reacted with alkyne-bearing metallic SWCNTs in the SWCNT mixture in the presence of a Cu catalyst. As a result, metallic SWCNTs are anchored on silica powder, whereas non-functionalized semiconducting SWCNTs remain in solution. Low-speed centrifugation effectively removes the silica powder with attached metallic SWCNTs, furnishing a solution of highly pure semiconducting SWCNTs, as confirmed by Raman and UV-vis/near-infrared absorption measurements. This novel separation scheme exhibits the advantage of simultaneously separating both metallic and semiconducting SWCNTs from their mixtures, being cost-effective and therefore applicable at an industrial scale.

  18. "Click" saccharide/beta-lactam hybrids for lectin inhibition.

    PubMed

    Palomo, Claudio; Aizpurua, Jesus M; Balentová, Eva; Azcune, Itxaso; Santos, J Ignacio; Jiménez-Barbero, Jesús; Cañada, Javier; Miranda, José Ignacio

    2008-06-05

    Hybrid glycopeptide beta-lactam mimetics designed to bind lectins or carbohydrate recognition domains in selectins have been prepared according to a "shape-modulating linker" design. This approach was implemented using the azide-alkyne "click" cycloaddition reaction, and as shown by NMR/MD experiments, binding of the resulting mimetics to Ulex Europaeus Lectin-1 (UEL-1) occurred after a "bent-to-extended" conformational change around a partially rotatable triazolylmethylene moiety.

  19. Structure and evaluation of antibacterial and antitubercular properties of new basic and heterocyclic 3-formylrifamycin SV derivatives obtained via 'click chemistry' approach.

    PubMed

    Pyta, Krystian; Klich, Katarzyna; Domagalska, Joanna; Przybylski, Piotr

    2014-09-12

    Thirty four novel derivatives of 3-formylrifamycin SV were synthesized via reductive alkylation and copper(I)-catalysed azide-alkyne cycloaddition. According to the obtained results, 'click chemistry' can be successfully applied for modification of structurally complex antibiotics such as rifamycins, with the formation of desired 1,2,3-triazole products. However, when azide-alkyne cycloaddition on 3-formylrifamycin SV derivatives demanded higher amount of catalyst, lower temperature and longer reaction time because of the high volatility of substrates, an unexpected intramolecular condensation with the formation of 3,4-dihydrobenzo[g]quinazoline heterocyclic system took place. Structures of new derivatives in solution were determined using one- and two-dimensional NMR methods and FT-IR spectroscopy. Computational DFT and PM6 methods were employed to correlate their conformation and acid-base properties to biological activity and establish SAR of the novel compounds. Microbiological, physico-chemical (logP, solubility) and structural studies of newly synthesised rifamycins indicated that for the presence of relatively high antibacterial (MIC ~0.01 nmol/mL) and antitubercular (MIC ~0.006 nmol/mL) activities, a rigid and basic substituent at C(3) arm, containing a protonated nitrogen atom "open" toward intermolecular interactions, is required. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. Tripodal penta(p-phenylene) for the biofunctionalization of alkynyl-modified silicon surfaces

    NASA Astrophysics Data System (ADS)

    Sánchez-Molina, María; Díaz, Amelia; Valpuesta, María; Contreras-Cáceres, Rafael; López-Romero, J. Manuel; López-Ramírez, M. Rosa

    2018-07-01

    Here we report the optimization on the covalent grafting methodology of a tripod-shaped penta(p-phenylene), 1, on alkynyl-terminated silicon surfaces, and the incorporation of an active theophylline derivative, 2, for the specific immobilization of proteins. The tripodal molecule presents azide-terminal groups to be attached onto a silicon surface containing an alkynyl monolayer. Initially, compound 1 has been covalently incorporated on alkynyl-terminated Si wafers, by the copper catalyzed alkyne-azide 1,3-dipolar cycloaddition (CuAAC, a click reaction). The tripod density on the silicon surface is tuned by performing the CuAAC reaction at different concentrations of 1, as well as under different experimental conditions (T, base, copper source, shaking). Then, tripod 1-modified surface has also been biofunctionalized with 2. The effective preparation of this silicon-modified surface allowed us to study the streptavidin immobilization on the surface. Characterization of the different surfaces has been carried out by X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM) and Bright-Field Optical Transmission Microscopy (Confocal) techniques. We also include density functional theory (DFT) analysis of the organic structures to confirm the height-profile and the tripod-surface relative configuration extracted from AFM images.

  1. Functional Degradable Polymers by Radical Ring-Opening Copolymerization of MDO and Vinyl Bromobutanoate: Synthesis, Degradability and Post-Polymerization Modification.

    PubMed

    Hedir, Guillaume G; Bell, Craig A; O'Reilly, Rachel K; Dove, Andrew P

    2015-07-13

    The synthesis of vinyl bromobutanoate (VBr), a new vinyl acetate monomer derivative obtained by the palladium-catalyzed vinyl exchange reaction between vinyl acetate (VAc) and 4-bromobutyric acid is reported. The homopolymerization of this new monomer using the RAFT/MADIX polymerization technique leads to the formation of novel well-defined and controlled polymers containing pendent bromine functional groups able to be modified via postpolymerization modification. Furthermore, the copolymerization of vinyl bromobutanoate with 2-methylene-1,3-dioxepane (MDO) was also performed to deliver a range of novel functional degradable copolymers, poly(MDO-co-VBr). The copolymer composition was shown to be able to be tuned to vary the amount of ester repeat units in the polymer backbone, and hence determine the degradability, while maintaining a control of the final copolymers' molar masses. The addition of functionalities via simple postpolymerization modifications such as azidation and the 1,3-dipolar cycloaddition of a PEG alkyne to an azide is also reported and proven by (1)H NMR spectroscopy, FTIR spectroscopy, and SEC analyses. These studies enable the formation of a novel class of hydrophilic functional degradable copolymers using versatile radical polymerization methods.

  2. Nanoscale water condensation on click-functionalized self-assembled monolayers.

    PubMed

    James, Michael; Ciampi, Simone; Darwish, Tamim A; Hanley, Tracey L; Sylvester, Sven O; Gooding, J Justin

    2011-09-06

    We have examined the nanoscale adsorption of molecular water under ambient conditions onto a series of well-characterized functionalized surfaces produced by Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC or "click") reactions on alkyne-terminated self-assembled monolayers on silicon. Water contact angle (CA) measurements reveal a range of macroscopic hydrophilicity that does not correlate with the tendency of these surfaces to adsorb water at the molecular level. X-ray reflectometry has been used to follow the kinetics of water adsorption on these "click"-functionalized surfaces, and also shows that dense continuous molecular water layers are formed over 30 h. For example, a highly hydrophilic surface, functionalized by an oligo(ethylene glycol) moiety (with a CA = 34°) showed 2.9 Å of adsorbed water after 30 h, while the almost hydrophobic underlying alkyne-terminated monolayer (CA = 84°) showed 5.6 Å of adsorbed water over the same period. While this study highlights the capacity of X-ray reflectometry to study the structure of adsorbed water on these surfaces, it should also serve as a warning for those intending to characterize self-assembled monolayers and functionalized surfaces to avoid contamination by even trace amounts of water vapor. Moreover, contact angle measurements alone cannot be relied upon to predict the likely degree of moisture uptake on such surfaces. © 2011 American Chemical Society

  3. A Pauson-Khand-type reaction between alkynes and olefinic aldehydes catalyzed by rhodium/cobalt heterobimetallic nanoparticles: an olefinic aldehyde as an olefin and CO source.

    PubMed

    Park, Kang Hyun; Jung, Il Gu; Chung, Young Keun

    2004-04-01

    Co/Rh (Co:Rh = 2:2) heterobimetallic nanoparticles derived from Co(2)Rh(2)(CO)(12) react with alkynes and alpha,beta-unsaturated aldehydes such as acrolein, crotonaldehyde, and cinnamic aldehyde and release products resulting from [2 + 2 + 1]cycloaddition of alkyne, carbon monoxide, and alkene. alpha,beta-Unsaturated aldehydes act as a CO and alkene source. These reactions produce 2-substituted cyclopentenones.

  4. Non-nucleoside building blocks for copper-assisted and copper-free click chemistry for the efficient synthesis of RNA conjugates.

    PubMed

    Jayaprakash, K N; Peng, Chang Geng; Butler, David; Varghese, Jos P; Maier, Martin A; Rajeev, Kallanthottathil G; Manoharan, Muthiah

    2010-12-03

    Novel non-nucleoside alkyne monomers compatible with oligonucleotide synthesis were designed, synthesized, and efficiently incorporated into RNA and RNA analogues during solid-phase synthesis. These modifications allowed site-specific conjugation of ligands to the RNA oligonucleotides through copper-assisted (CuAAC) and copper-free strain-promoted azide-alkyne cycloaddition (SPAAC) reactions. The SPAAC click reactions of cyclooctyne-oligonucleotides with various classes of azido-functionalized ligands in solution phase and on solid phase were efficient and quantitative and occurred under mild reaction conditions. The SPAAC reaction provides a method for the synthesis of oligonucleotide-ligand conjugates uncontaminated with copper ions.

  5. Teaching Experiment to Elucidate a Cation-Pi Effect in an Alkyne Cycloaddition Reaction and Illustrate Hypothesis-Driven Design of Experiments

    ERIC Educational Resources Information Center

    St.Germain, Elijah J.; Horowitz, Andrew S.; Rucco, Dominic; Rezler, Evonne M.; Lepore, Salvatore D.

    2017-01-01

    An organic chemistry experiment is described that is based on recent research to elucidate a novel cation-pi interaction between tetraalkammonium cations and propargyl hydrazines. This nonbonded interaction is a key component of the mechanism of ammonium-catalyzed intramolecular cycloaddition of nitrogen to the terminal carbon of a C-C triple bond…

  6. Self-assembly of diphenylalanine with preclick components as capping groups.

    PubMed

    Gemma, Andrea; Mayans, Enric; Ballano, Gema; Torras, Juan; Díaz, Angélica; Jiménez, Ana I; Puiggalí, Jordi; Cativiela, Carlos; Alemán, Carlos

    2017-10-11

    Alkyne and azide, which are commonly used in the cycloaddition reaction recognized as "click chemistry", have been used as capping groups of two engineered diphenylalanine (FF) derivatives due to their ability to form weak intermolecular interactions (i.e. dipole-π and π-π stacking). In Poc-FF-N 3 , alkyne and azide act as N- and C-terminal capping groups, respectively, while such positions are exchanged in N 3 -FF-OPrp. The self-assembly of such two synthesized peptides has been extensively studied in their "pre-click" state, considering the influence of three different factors: the peptide concentration, the polarity of the medium, and the nature of the substrate. Poc-FF-N 3 assembles into microfibers that, depending on the medium and the substrate, can aggregate hierarchically in supramolecular structures with different morphologies. The most distinctive one corresponds to very stable birefringent dendritic-like microstructures, which are derived from the ordered agglomeration of microfibers. These branched supramolecular structures, which are observed under a variety of conditions, are relatively uncommon in short FF sequences. At the molecular level, Poc-FF-N 3 organizes in antiparallel β-sheets stabilized by N-HO intermolecular hydrogen bonds and re-enforced by weak interactions between the azide and alkyne groups of neighbouring molecules. In contrast, N 3 -FF-OPrp exhibits a very poor tendency to organize into structures with a well-defined morphology. Theoretical calculations on model complexes indicate that the tendency of the latter peptide to organize into small amorphous agglomerates is due to its poor ability to form specific intermolecular interactions in comparison with Poc-FF-N 3 . The implications of the weak interactions induced by the alkyne and azide groups, which strengthen peptidepeptide hydrogen bonds and π-ladders due to the stacked aromatic phenyl side groups, are discussed.

  7. Poly(L-lysine) Interfaces via Dual Click Reactions on Surface-Bound Custom-Designed Dithiol Adsorbates.

    PubMed

    Shakiba, Amin; Jamison, Andrew C; Lee, T Randall

    2015-06-09

    Surfaces modified with poly(L-lysine) can be used to immobilize selected biomolecules electrostatically. This report describes the preparation of a set of self-assembled monolayers (SAMs) from three different azide-terminated adsorbates as platforms for performing controlled surface attachments and as a means of determining the parameters that afford stable poly(L-lysine)-modified SAM surfaces having controlled packing densities. A maleimide-terminated alkyne linker was "clicked" to the azide-terminated surfaces via a copper-catalyzed cycloaddition reaction to produce the attachment sites for the polypeptides. A thiol-Michael addition was then used to immobilize cysteine-terminated poly(L-lysine) moieties on the gold surface, avoiding adsorbate self-reactions with this two-step procedure. Each step in this process was analyzed by ellipsometry, X-ray photoelectron spectroscopy, polarization modulation infrared reflection-absorption spectroscopy, and contact angle goniometry to determine which adsorbate structure most effectively produced the targeted polypeptide interface. Additionally, a series of mixed SAMs using an azidoalkanethiol in combination with a normal alkanethiol having an equivalent alkyl chain were prepared to provide data to determine how dilution of the azide reactive site on the SAM surface influences the initial click reaction. Overall, the collected data demonstrate the advantages of an appropriately designed bidentate absorbate and its potential to form effective platforms for biomolecule surface attachment via click reactions.

  8. Rapid, Efficient and Versatile Strategies for Functionally Sophisticated Polymers and Nanoparticles: Degradable Polyphosphoesters and Anisotropic Distribution of Chemical Functionalities

    NASA Astrophysics Data System (ADS)

    Zhang, Shiyi

    The overall emphasis of this dissertation research included two kinds of asymmetrically-functionalized nanoparticles with anisotropic distributions of chemical functionalities, three degradable polymers synthesized by organocatalyzed ring-opening polymerizations, and two polyphosphoester-based nanoparticle systems for various biomedical applications. Inspired by the many hierarchical assembly processes that afford complex materials in Nature, the construction of asymmetrically-functionalized nanoparticles with efficient surface chemistries and the directional organization of those building blocks into complex structures have attracted much attention. The first method generated a Janus-faced polymer nanoparticle that presented two orthogonally click-reactive surface chemistries, thiol and azido. This robust method involved reactive functional group transfer by templating against gold nanoparticle substrates. The second method produced nanoparticles with sandwich-like distribution of crown ether functionalities through a stepwise self-assembly process that utilized crown ether-ammonium supramolecular interactions to mediate inter-particle association and the local intra-particle phase separation of unlike hydrophobic polymers. With the goal to improve the efficiency of the production of degradable polymers with tunable chemical and physical properties, a new type of reactive polyphosphoester was synthesized bearing alkynyl groups by an organocatalyzed ring-opening polymerization, the chemical availability of the alkyne groups was investigated by employing "click" type azide-alkyne Huisgen cycloaddition and thiol-yne radical-mediated reactions. Based on this alkyne-functionalized polyphosphoester polymer and its two available "click" type reactions, two degradable nanoparticle systems were developed. To develop the first system, the well defined poly(ethylene oxide)-block-polyphosphester diblock copolymer was transformed into a multifunctional Paclitaxel drug conjugate by densely attaching the polyphosphoester block with azide-functionalized Paclitaxel by azide-alkyne Huisgen cycloaddition. This Paclitaxel drug conjugate provides a powerful platform for combinational cancer therapy and bioimaging due to its ultra-high Paclitaxel loading (> 65 wt%), high water solubility (>6.2 mg/mL for PTX) and easy functionalization. Another polyphosphoester-based nanoparticle system has been developed by a programmable process for the rapid and facile preparation of a family of nanoparticles with different surface charges and functionalities. The non-ionic, anionic, cationic and zwitterionic nanoparticles with hydrodynamic diameters between 13 nm to 21 nm and great size uniformity could be rapidly prepared from small molecules in 6 h or 2 days. The anionic and zwitterionic nanoparticles were designed to load silver ions to treat pulmonary infections, while the cationic nanoparticles are being applied to regulate lung injuries by serving as a degradable iNOS inhibitor conjugates. In addition, a direct synthesis of acid-labile polyphosphoramidate by organobase-catalyzed ring-opening polymerization and an improved two-step preparation of polyphosphoester ionomer by acid-assisted cleavage of phosphoramidate bonds on polyphosphoramidate were developed. Polyphosphoramidate and polyphosphoester ionomers may be applied to many applications, due to their unique chemical and physical properties.

  9. Modular Assembly of Hierarchically Structured Polymers

    NASA Astrophysics Data System (ADS)

    Leophairatana, Porakrit

    The synthesis of macromolecules with complex yet highly controlled molecular architectures has attracted significant attention in the past few decades due to the growing demand for specialty polymers that possess novel properties. Despite recent efforts, current synthetic routes lack the ability to control several important architectural variables while maintaining low polydispersity index. This dissertation explores a new synthetic scheme for the modular assembly of hierarchically structured polymers (MAHP) that allows virtually any complex polymer to be assembled from a few basic molecular building blocks using a single common coupling chemistry. Complex polymer structures can be assembled from a molecular toolkit consisting of (1) copper-catalyzed azide-alkyne cycloaddition (CuAAC), (2) linear heterobifunctional macromonomers, (3) a branching heterotrifunctional molecule, (4) a protection/deprotection strategy, (5) "click" functional solid substrates, and (6) functional and responsive polymers. This work addresses the different challenges that emerged during the development of this synthetic scheme, and presents strategies to overcome those challenges. Chapter 3 investigates the alkyne-alkyne (i.e. Glaser) coupling side reactions associated with the atom transfer radical polymerization (ATRP) synthesis of alkyne-functional macromonomers, as well as with the CuAAC reaction of alkyne functional building blocks. In typical ATRP synthesis of unprotected alkyne functional polymers, Glaser coupling reactions can significantly compromise the polymer functionality and undermine the success of subsequent click reactions in which the polymers are used. Two strategies are reported that effectively eliminate these coupling reactions: (1) maintaining low temperature post-ATRP upon exposure to air, followed by immediate removal of copper catalyst; and (2) adding excess reducing agents post-ATRP, which prevents the oxidation of Cu(I) catalyst required by the Glaser coupling mechanism. Post-ATRP Glaser coupling was also influenced by the ATRP synthesis ligand used. The order of ligand activity for catalyzing Glaser coupling was: linear bidentate > tridentate > tetradentate. Glaser coupling can also occur for alkynes held under CuAAC reaction conditions but again can be eliminated by adding appropriate reducing agents. With the strategy presented in Chapter 3, alkyne-terminated polymers of high-functionality were produced without the need for alkyne protecting groups. These "click" functional building blocks were employed to investigate the overall efficiency of the CuAAC "click" coupling reactions between alkyne- and azide-terminated macromonomers as discussed in Chapter 4. Quantitative convolution modeling of the entire molecular weight distribution post-CuAAC indicates a CuAAC efficiency of about 94% and an azide substitution efficiency of >99%. However, incomplete functionality of the azide-terminated macromonomer (˜92%) proves to be the largest factor compromising the overall efficacy of the coupling reactions, and is attributed primarily to the loss of bromine functionality during synthesis by ATRP. To address this issue, we discuss in Chapter 6 the development of a new set of molecular building blocks consisting of alkyne functional substrates and heterobifunctional degradable linkers that allow the growth and subsequent detachment of polymers from the solid substrate. Complex polymeric structures are created by progressive cycles of CuAAC and deprotection reactions that add building blocks to the growing polymer chain ends. We demonstrate that these building blocks were completely stable under both CuAAC and deprotection reaction conditions. Since the desired product is covalently bound to the solid surface, the unreacted monomers/macromonomers and by-products (i.e. non-functional building blocks) can be easily separated from the product via removal of the polymer-tethered solid substrate in one step. Chapter 5 discusses how MAHP was employed to prepare a variety of hierarchically structured polymers and copolymers with controlled branching architectures. alpha-azido,o-TIPS-alkyne-heterobifunctional and heterotrifunctional building blocks were first prepared via ATRP and organic synthesis. Preliminary NMR and SEC studies demonstrated that these building blocks all satisfied the criteria necessary for MAHP: (1) the TIPS protecting group is stable during ATRP and CuAAC, (2) the "click" functionality is completely regenerated during the deprotection step, and (3) the CuAAC reaction of branching macromonomers is quantitative (>94%). To demonstrate the concept, poly(n-butyl acrylate)-b-dipolystyrene- b-dipoly(tert-butyl acrylate) penta-block branching copolymacromer was prepared via MAHP and quantitively characterized with SEC and NMR. (Abstract shortened by ProQuest.).

  10. Biofunctionalization on alkylated silicon substrate surfaces via "click" chemistry.

    PubMed

    Qin, Guoting; Santos, Catherine; Zhang, Wen; Li, Yan; Kumar, Amit; Erasquin, Uriel J; Liu, Kai; Muradov, Pavel; Trautner, Barbara Wells; Cai, Chengzhi

    2010-11-24

    Biofunctionalization of silicon substrates is important to the development of silicon-based biosensors and devices. Compared to conventional organosiloxane films on silicon oxide intermediate layers, organic monolayers directly bound to the nonoxidized silicon substrates via Si-C bonds enhance the sensitivity of detection and the stability against hydrolytic cleavage. Such monolayers presenting a high density of terminal alkynyl groups for bioconjugation via copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC, a "click" reaction) were reported. However, yields of the CuAAC reactions on these monolayer platforms were low. Also, the nonspecific adsorption of proteins on the resultant surfaces remained a major obstacle for many potential biological applications. Herein, we report a new type of "clickable" monolayers grown by selective, photoactivated surface hydrosilylation of α,ω-alkenynes, where the alkynyl terminal is protected with a trimethylgermanyl (TMG) group, on hydrogen-terminated silicon substrates. The TMG groups on the film are readily removed in aqueous solutions in the presence of Cu(I). Significantly, the degermanylation and the subsequent CuAAC reaction with various azides could be combined into a single step in good yields. Thus, oligo(ethylene glycol) (OEG) with an azido tag was attached to the TMG-alkyne surfaces, leading to OEG-terminated surfaces that reduced the nonspecific adsorption of protein (fibrinogen) by >98%. The CuAAC reaction could be performed in microarray format to generate arrays of mannose and biotin with varied densities on the protein-resistant OEG background. We also demonstrated that the monolayer platform could be functionalized with mannose for highly specific capturing of living targets (Escherichia coli expressing fimbriae) onto the silicon substrates.

  11. Synthesis and luminescence properties of iridium(III) azide- and triazole-bisterpyridine complexes.

    PubMed

    Goldstein, Daniel C; Peterson, Joshua R; Cheng, Yuen Yap; Clady, Raphael G C; Schmidt, Timothy W; Thordarson, Pall

    2013-07-26

    We describe here the synthesis of azide-functionalised iridium(III) bisterpyridines using the "chemistry on the complex" strategy. The resulting azide-complexes are then used in the copper(I)-catalysed azide-alkyne Huisgen 1,3-dipolar cycloaddition "click chemistry" reaction to from the corresponding triazole-functionalised iridium(III) bisterpyridines. The photophysical characteristics, including lifetimes, of these compounds were also investigated. Interestingly, oxygen appears to have very little effect on the lifetime of these complexes in aqueous solutions. Unexpectedly, sodium ascorbate acid appears to quench the luminescence of triazole-functionalised iridium(III) bisterpyridines, but this effect can be reversed by the addition of copper(II) sulfate, which is known to oxidize ascorbate under aerobic conditions. The results demonstrate that iridium(III) bisterpyridines can be functionalized for use in "click chemistry" facilitating the use of these photophysically interesting complexes in the modification of polymers or surfaces, to highlight just two possible applications.

  12. 1,2,3-Triazole-Functionalized Polysulfone Synthesis through Microwave-Assisted Copper-Catalyzed Click Chemistry: A Highly Proton Conducting High Temperature Membrane.

    PubMed

    Sood, Rakhi; Donnadio, Anna; Giancola, Stefano; Kreisz, Aurélien; Jones, Deborah J; Cavaliere, Sara

    2016-07-06

    Microwave heating holds all the aces regarding development of effective and environmentally friendly methods to perform chemical transformations. Coupling the benefits of microwave-enhanced chemistry with highly reliable copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry paves the way for a rapid and efficient synthesis procedure to afford high performance thermoplastic materials. We describe herein fast and high yielding synthesis of 1,2,3-triazole-functionalized polysulfone through microwave-assisted CuAAC as well as explore their potential as phosphoric acid doped polymer electrolyte membranes (PEM) for high temperature PEM fuel cells. Polymers with various degrees of substitution of the side-chain functionality of 1,4-substituted 1,2,3-triazole with alkyl and aryl pendant structures are prepared by sequential chloromethylation, azidation, and microwave-assisted CuAAC using a range of alkynes (1-pentyne, 1-nonyne, and phenylacetylene). The completeness of reaction at each step and the purity of the clicked polymers were confirmed by (1)H-(13)C NMR, DOSY-NMR and FTIR-ATR spectroscopies. The thermal and thermochemical properties of the modified polymers were characterized by differential scanning calorimetry and thermogravimetric analysis coupled with mass spectroscopy (TG-MS), respectively. TG-MS analysis demonstrated that the commencement of the thermal degradation takes place with the decomposition of the triazole ring while its substituents have critical influence on the initiation temperature. Polysulfone functionalized with 4-phenyl-1,2,3-triazole demonstrates significantly higher Tg, Td, and elastic modulus than the ones bearing 4-propyl-1,2,3-triazole and 4-heptyl-1,2,3-triazole groups. After doping with phosphoric acid, the functionalized polymers with acid doping level of 5 show promising performance with high proton conductivity in anhydrous conditions (in the range of 27-35 mS/cm) and satisfactorily high elastic modulus (in the range of 332-349 MPa).

  13. Click Chemistry, a Powerful Tool for Pharmaceutical Sciences

    PubMed Central

    Hein, Christopher D.; Liu, Xin-Ming; Wang, Dong

    2008-01-01

    Click chemistry refers to a group of reactions that are fast, simple to use, easy to purify, versatile, regiospecific, and give high product yields. While there are a number of reactions that fulfill the criteria, the Huisgen 1,3-dipolar cycloaddition of azides and terminal alkynes has emerged as the frontrunner. It has found applications in a wide variety of research areas, including materials sciences, polymer chemistry, and pharmaceutical sciences. In this manuscript, important aspects of the Huisgen cycloaddition will be reviewed, along with some of its many pharmaceutical applications. Bioconjugation, nanoparticle surface modification, and pharmaceutical-related polymer chemistry will all be covered. Limitations of the reaction will also be discussed. PMID:18509602

  14. Just Click It: Undergraduate Procedures for the Copper(I)-Catalyzed Formation of 1,2,3-Triazoles from Azides and Terminal Acetylenes

    ERIC Educational Resources Information Center

    Sharpless, William D.; Peng Wu; Hansen, Trond Vidar; Lindberg, James G.

    2005-01-01

    The click chemistry uses only the most reliable reactions to build complex molecules from olefins, electrophiles and heteroatom linkers. A variation on Huisgen's azide-alkyne 1,2,3-triazole synthesis, the addition of the copper (I), the premium example of the click reaction, catalyst strongly activates terminal acetylenes towards the 1,3-dipole in…

  15. Activity-Based Protein Profiling of Ammonia Monooxygenase in Nitrosomonas europaea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Kristen; Sadler, Natalie C.; Wright, Aaron T.

    Nitrosomonas europaeais an aerobic nitrifying bacterium that oxidizes ammonia (NH 3) to nitrite (NO 2 ₋) through the sequential activities of ammonia monooxygenase (AMO) and hydroxylamine dehydrogenase (HAO). Many alkynes are mechanism-based inactivators of AMO, and here we describe an activity-based protein profiling method for this enzyme using 1,7-octadiyne (17OD) as a probe. Inactivation of NH 4 +-dependent O 2uptake byN. europaeaby 17OD was time- and concentration-dependent. The effects of 17OD were specific for ammonia-oxidizing activity, andde novoprotein synthesis was required to reestablish this activity after cells were exposed to 17OD. Cells were reacted with Alexa Fluor 647 azide usingmore » a copper-catalyzed azide-alkyne cycloaddition (CuAAC) (click) reaction, solubilized, and analyzed by SDS-PAGE and infrared (IR) scanning. A fluorescent 28-kDa polypeptide was observed for cells previously exposed to 17OD but not for cells treated with either allylthiourea or acetylene prior to exposure to 17OD or for cells not previously exposed to 17OD. The fluorescent polypeptide was membrane associated and aggregated when heated with β-mercaptoethanol and SDS. The fluorescent polypeptide was also detected in cells pretreated with other diynes, but not in cells pretreated with structural homologs containing a single ethynyl functional group. The membrane fraction from 17OD-treated cells was conjugated with biotin-azide and solubilized in SDS. Streptavidin affinity-purified polypeptides were on-bead trypsin-digested, and amino acid sequences of the peptide fragments were determined by liquid chromatography-mass spectrometry (LC-MS) analysis. Peptide fragments from AmoA were the predominant peptides detected in 17OD-treated samples. In-gel digestion and matrix-assisted laser desorption ionization–tandem time of flight (MALDI-TOF/TOF) analyses also confirmed that the fluorescent 28-kDa polypeptide was AmoA.« less

  16. Activity-Based Protein Profiling of Ammonia Monooxygenase in Nitrosomonas europaea

    PubMed Central

    Bennett, Kristen; Sadler, Natalie C.; Wright, Aaron T.; Yeager, Chris

    2016-01-01

    Nitrosomonas europaea is an aerobic nitrifying bacterium that oxidizes ammonia (NH3) to nitrite (NO2−) through the sequential activities of ammonia monooxygenase (AMO) and hydroxylamine dehydrogenase (HAO). Many alkynes are mechanism-based inactivators of AMO, and here we describe an activity-based protein profiling method for this enzyme using 1,7-octadiyne (17OD) as a probe. Inactivation of NH4+-dependent O2 uptake by N. europaea by 17OD was time- and concentration-dependent. The effects of 17OD were specific for ammonia-oxidizing activity, and de novo protein synthesis was required to reestablish this activity after cells were exposed to 17OD. Cells were reacted with Alexa Fluor 647 azide using a copper-catalyzed azide-alkyne cycloaddition (CuAAC) (click) reaction, solubilized, and analyzed by SDS-PAGE and infrared (IR) scanning. A fluorescent 28-kDa polypeptide was observed for cells previously exposed to 17OD but not for cells treated with either allylthiourea or acetylene prior to exposure to 17OD or for cells not previously exposed to 17OD. The fluorescent polypeptide was membrane associated and aggregated when heated with β-mercaptoethanol and SDS. The fluorescent polypeptide was also detected in cells pretreated with other diynes, but not in cells pretreated with structural homologs containing a single ethynyl functional group. The membrane fraction from 17OD-treated cells was conjugated with biotin-azide and solubilized in SDS. Streptavidin affinity-purified polypeptides were on-bead trypsin-digested, and amino acid sequences of the peptide fragments were determined by liquid chromatography-mass spectrometry (LC-MS) analysis. Peptide fragments from AmoA were the predominant peptides detected in 17OD-treated samples. In-gel digestion and matrix-assisted laser desorption ionization–tandem time of flight (MALDI-TOF/TOF) analyses also confirmed that the fluorescent 28-kDa polypeptide was AmoA. PMID:26826234

  17. Stepwise-activable multifunctional peptide-guided prodrug micelles for cancerous cells intracellular drug release

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Li, Mengfei; Yuan, Zhefan; Wu, Dan; Chen, Jia-da; Feng, Jie

    2016-10-01

    A novel type of stepwise-activable multifunctional peptide-guided prodrug micelles (MPPM) was fabricated for cancerous cells intracellular drug release. Deca-lysine sequence (K10), a type of cell-penetrating peptide, was synthesized and terminated with azido-glycine. Then a new kind of molecule, alkyne modified doxorubicin (DOX) connecting through disulfide bond (DOX-SS-alkyne), was synthesized. After coupling via Cu-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry reaction, reduction-sensitive peptide-guided prodrug was obtained. Due to the amphiphilic property of the prodrug, it can assemble to form micelles. To prevent the nanocarriers from unspecific cellular uptake, the prodrug micelles were subsequently modified with 2,3-dimethyl maleic anhydride to obtain MPPM with a negatively charged outer shell. In vitro studies showed that MPPM could be shielded from cells under psychological environment. However, when arriving at mild acidic tumor site, the cell-penetrating capacity of MPPM would be activated by charge reversal of the micelles via hydrolysis of acid-labile β-carboxylic amides and regeneration of K10, which enabled efficient internalization of MPPM by tumor cells as well as following glutathione- and protease-induced drug release inside the cancerous cells. Furthermore, since the guide peptide sequences can be accurately designed and synthesized, it can be easily changed for various functions, such as targeting peptide, apoptotic peptide, even aptamers, only need to be terminated with azido-glycine. This method can be used as a template for reduction-sensitive peptide-guided prodrug for cancer therapy.

  18. High-throughput identification of proteins with AMPylation using self-assembled human protein (NAPPA) microarrays.

    PubMed

    Yu, Xiaobo; LaBaer, Joshua

    2015-05-01

    AMPylation (adenylylation) has been recognized as an important post-translational modification that is used by pathogens to regulate host cellular proteins and their associated signaling pathways. AMPylation has potential functions in various cellular processes, and it is widely conserved across both prokaryotes and eukaryotes. However, despite the identification of many AMPylators, relatively few candidate substrates of AMPylation are known. This is changing with the recent development of a robust and reliable method for identifying new substrates using protein microarrays, which can markedly expand the list of potential substrates. Here we describe procedures for detecting AMPylated and auto-AMPylated proteins in a sensitive, high-throughput and nonradioactive manner. The approach uses high-density protein microarrays fabricated using nucleic acid programmable protein array (NAPPA) technology, which enables the highly successful display of fresh recombinant human proteins in situ. The modification of target proteins is determined via copper-catalyzed azide-alkyne cycloaddition (CuAAC). The assay can be accomplished within 11 h.

  19. Ionic liquid syntheses via click chemistry: expeditious routes toward versatile functional materials.

    PubMed

    Mirjafari, Arsalan

    2018-03-25

    Since the introduction of click chemistry by K. B. Sharpless in 2001, its exploration and exploitation has occurred in countless fields of materials sciences in both academic and industrial spheres. Click chemistry is defined as an efficient, robust, and orthogonal synthetic platform for the facile formation of new carbon-heteroatom bonds, using readily available starting materials. Premier examples of click reactions are copper(i)-catalyzed azide-alkyne Huisgen cycloaddition (CuAAC) and the thiol-X (X = ene and yne) coupling reactions to form C-N and C-S bonds, respectively. The emphasis of this review is centered on the rapidly expanding area of click chemistry-mediated synthesis of functional ionic liquids via CuAAC, thiol-X and oxime formation, and selected examples of nucleophilic ring-opening reactions, while offering some thoughts on emerging challenges, opportunities and ultimately the evolution of this field. Click chemistry offers tremendous opportunities, and introduces intriguing perspectives for efficient and robust generation of tailored task-specific ionic liquids - an important class of soft materials.

  20. Chemical Synthesis of GM2 Glycans, Bioconjugation with Bacteriophage Qβ, and the Induction of Anticancer Antibodies.

    PubMed

    Yin, Zhaojun; Dulaney, Steven; McKay, Craig S; Baniel, Claire; Kaczanowska, Katarzyna; Ramadan, Sherif; Finn, M G; Huang, Xuefei

    2016-01-01

    The development of carbohydrate-based antitumor vaccines is an attractive approach towards tumor prevention and treatment. Herein, we focused on the ganglioside GM2 tumor-associated carbohydrate antigen (TACA), which is overexpressed in a wide range of tumor cells. GM2 was synthesized chemically and conjugated with a virus-like particle derived from bacteriophage Qβ. Although the copper-catalyzed azide-alkyne cycloaddition reaction efficiently introduced 237 copies of GM2 per Qβ, this construct failed to induce significant amounts of anti-GM2 antibodies compared to the Qβ control. In contrast, GM2 immobilized on Qβ through a thiourea linker elicited high titers of IgG antibodies that recognized GM2-positive tumor cells and effectively induced cell lysis through complement-mediated cytotoxicity. Thus, bacteriophage Qβ is a suitable platform to boost antibody responses towards GM2, a representative member of an important class of TACA: the ganglioside. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Scaffold optimization in discontinuous epitope containing protein mimics of gp120 using smart libraries.

    PubMed

    Mulder, Gwenn E; Quarles van Ufford, H Linda C; van Ameijde, Jeroen; Brouwer, Arwin J; Kruijtzer, John A W; Liskamp, Rob M J

    2013-04-28

    A diversity of protein surface discontinuous epitope mimics is now rapidly and efficiently accessible. Despite the important role of protein-protein interactions involving discontinuous epitopes in a wide range of diseases, mimicry of discontinuous epitopes using peptide-based molecules remains a major challenge. Using copper(I) catalyzed azide-alkyne cycloaddition (CuAAC), we have developed a general and efficient method for the synthesis of collections of discontinuous epitope mimics. Up to three different cyclic peptides, representing discontinuous epitopes in HIV-gp120, were conjugated to a selection of scaffold molecules. Variation of the scaffold molecule, optimization of the ring size of the cyclic peptides and screening of the resulting libraries for successful protein mimics led to an HIV gp120 mimic with an IC50 value of 1.7 μM. The approach described here provides rapid and highly reproducible access to clean, smart libraries of very complex bio-molecular constructs representing protein mimics for use as synthetic vaccines and beyond.

  2. Modification of symmetrically substituted phthalocyanines using click chemistry: phthalocyanine nanostructures by nanoimprint lithography.

    PubMed

    Chen, Xiaochun; Thomas, Jayan; Gangopadhyay, Palash; Norwood, Robert A; Peyghambarian, N; McGrath, Dominic V

    2009-09-30

    Phthalocyanines (Pcs) are commonly applied to advanced technologies such as optical limiting, photodynamic therapy (PDT), organic field-effect transistors (OFETs), and organic photovoltaic (OPV) devices, where they are used as the p-type layer. An approach to Pc structural diversity and the incorporation of a functional group that allows fabrication of solvent resistant Pc nanostructures formed by using a newly developed nanoimprint by melt processing (NIMP) technique, a variant of standard nanoimprint lithography (NIL), is reported. Copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC), a click chemistry reaction, serves as an approach to structural diversity in Pc macrocycles. We have prepared octaalkynyl Pc 1b and have modified this Pc using the CuAAC reaction to yield four Pc derivatives 5a-5d with different peripheral substituents on the macrocycle. One of these derivatives, 5c, has photo-cross-linkable cinnamate residues, and we have demonstrated the fabrication of robust cross-linked photopatterned and imprinted nanostructures from this material.

  3. "Click" star-shaped and dendritic PEGylated gold nanoparticle-carborane assemblies.

    PubMed

    Li, Na; Zhao, Pengxiang; Salmon, Lionel; Ruiz, Jaime; Zabawa, Mark; Hosmane, Narayan S; Astruc, Didier

    2013-10-07

    Carboranes that have a high boron content are key materials for boron neutron capture therapy (BNCT), while PEGylated gold nanoparticles (AuNPs) are also most useful in various aspects of nanomedicine including photothermotherapy, imaging and drug vectorization. Therefore, methods to assemble these key components have been investigated for the first time. Strategies and results are delineated in this article, and the nanomaterials have been characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-vis., mass and multinuclear NMR data. A series of well-defined water-soluble bifunctional AuNPs containing carborane and polyethylene glycol (PEG) were synthesized through either two-step Cu(I)-catalyzed azide-alkyne cycloaddition CuAAC ("click") reactions at the periphery of azido-terminated AuNPs in the presence of the efficient catalyst [Cu(I)tren(CH2Ph)6][Br] or simply by direct stabilization of AuNPs using a tris-carborane thiol dendron or a hybrid dendron containing both PEG and carborane.

  4. Rational steering of insulin binding specificity by intra-chain chemical crosslinking

    NASA Astrophysics Data System (ADS)

    Viková, Jitka; Collinsová, Michaela; Kletvíková, Emília; Buděšínský, Miloš; Kaplan, Vojtěch; Žáková, Lenka; Veverka, Václav; Hexnerová, Rozálie; Aviñó, Roberto J. Tarazona; Straková, Jana; Selicharová, Irena; Vaněk, Václav; Wright, Daniel W.; Watson, Christopher J.; Turkenburg, Johan P.; Brzozowski, Andrzej M.; Jiráček, Jiří

    2016-01-01

    Insulin is a key hormone of human metabolism with major therapeutic importance for both types of diabetes. New insulin analogues with more physiological profiles and better glycemic control are needed, especially analogues that preferentially bind to the metabolic B-isoform of insulin receptor (IR-B). Here, we aimed to stabilize and modulate the receptor-compatible conformation of insulin by covalent intra-chain crosslinking within its B22-B30 segment, using the CuI-catalyzed Huisgen 1,3-dipolar cycloaddition reaction of azides and alkynes. This approach resulted in 14 new, systematically crosslinked insulin analogues whose structures and functions were extensively characterized and correlated. One of the analogues, containing a B26-B29 triazole bridge, was highly active in binding to both IR isoforms, with a significant preference for IR-B. Our results demonstrate the potential of chemistry-driven modulation of insulin function, also shedding new light on the functional importance of hormone’s B-chain C-terminus for its IR-B specificity.

  5. Exploration of labeling by near infrared dyes of the polyproline linker for bivalent-type CXCR4 ligands.

    PubMed

    Nomura, Wataru; Aikawa, Haruo; Taketomi, Shohei; Tanabe, Miho; Mizuguchi, Takaaki; Tamamura, Hirokazu

    2015-11-01

    We have previously used poly-L-proline linkers for the development of bivalent-type ligands for the chemokine receptor, CXCR4. The bivalent ligands with optimum linkers showed specific binding to CXCR4, suggesting the existence of CXCR4 possibly as a dimer on the cell membrane, and enabled definition of the amount of CXCR4 expressed. This paper reports the synthesis by a copper-catalyzed azide-alkyne cycloaddition reaction as the key reaction, of bivalent CXCR4 ligands with near infrared (NIR) dyes at the terminus or the center of the poly-L-proline linker. Some of the NIR-labeled ligands, which would be valuable probes useful in studies of the behavior of cells expressing CXCR4, have been obtained. The information concerning the effects of the labeling positions of NIR dyes on their binding properties is useful for the design of modified bivalent-type CXCR4 ligands. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Rate of Interfacial Electron Transfer through the 1,2,3-Triazole Linkage

    PubMed Central

    Devaraj, Neal K.; Decreau, Richard A.; Ebina, Wataru; Collman, James P.; Chidsey, Christopher E. D.

    2012-01-01

    The rate of electron transfer is measured to two ferrocene and one iron tetraphenylporphyrin redox species coupled through terminal acetylenes to azide-terminated thiol monolayers by the Cu(I)-catalyzed azide–alkyne cycloaddition (a Sharpless “click” reaction) to form the 1,2,3-triazole linkage. The high yield, chemoselectivity, convenience, and broad applicability of this triazole formation reaction make such a modular assembly strategy very attractive. Electron-transfer rate constants from greater than 60,000 to 1 s−1 are obtained by varying the length and conjugation of the electron-transfer bridge and by varying the surrounding diluent thiols in the monolayer. Triazole and the triazole carbonyl linkages provide similar electronic coupling for electron transfer as esters. The ability to vary the rate of electron transfer to many different redox species over many orders of magnitude by using modular coupling chemistry provides a convenient way to study and control the delivery of electrons to multielectron redox catalysts and similar interfacial systems that require controlled delivery of electrons. PMID:16898751

  7. Synthesis, characterization, and pharmacological studies of ferrocene-1H-1,2,3-triazole hybrids

    NASA Astrophysics Data System (ADS)

    Haque, Ashanul; Hsieh, Ming-Fa; Hassan, Syed Imran; Haque Faizi, Md. Serajul; Saha, Anannya; Dege, Necmi; Rather, Jahangir Ahmad; Khan, Muhammad S.

    2017-10-01

    A series of ferrocene-1H-1,2,3-triazole hybrids namely 1-(4-nitrophenyl)-4-ferrocenyl-1H-1,2,3-triazole (1), 1-(4,4‧-dinitro-2-biphenyl)-4-ferrocenyl-1H-1,2,3-triazole (2), 1-(3-chloro-4-fluorophenyl)-4-ferrocenyl-1H-1,2,3-triazole (3), 1-(4-bromophenyl)-4-ferrocenyl-1H-1,2,3-triazole (4) and 1-(2-nitrophenyl)-4-ferrocenyl-1H-1,2,3-triazole (5) were designed and synthesized by copper-catalyzed azide alkyne cycloaddition (CuAAC) reaction. All the new hybrids were characterized by microanalyses, NMR (1H and 13C), UV-vis, IR, ESI-MS and electrochemical techniques. Crystal structure of the compound (3) was solved by single crystal X-ray diffraction method. The structural (single crystal) and spectroscopic (UV-Vis. and IR) properties of the compound 3 have been analyzed and compared by complementary quantum modeling. Hybrids 1-5 exhibited low toxicity and demonstrated neuroprotective effect.

  8. Water soluble cationic dextran derivatives containing poly(amidoamine) dendrons for efficient gene delivery.

    PubMed

    Mai, Kaijin; Zhang, Shanshan; Liang, Bing; Gao, Cong; Du, Wenjun; Zhang, Li-Ming

    2015-06-05

    To develop new dextran derivatives for efficient gene delivery, the conjugation of poly(amidoamine) dendrons onto biocompatible dextran was carried out by a Cu(I)-catalyzed azide-alkyne cycloaddition, as confirmed by FTIR and (1)H NMR analyses. For resultant dextran conjugates with various generations of poly(amidoamine) dendrons, their buffering capacity and in vitro cytotoxicity were evaluated by acid-base titration and MTT tests, respectively. In particular, their physicochemical characteristics for the complexation with plasmid DNA were investigated by the combined analyses from agarose gel electrophoresis, zeta potential, particle size, transmission electron microscopy and fluorescence emission spectra. Moreover, their complexes with plasmid DNA were studied with respect to their transfection efficiency in human embryonic kidney (HEK293) cell lines. In the case of a higher generation of poly(amidoamine) dendrons, such a dextran conjugate was found to have much lower cytotoxicity and better gene delivery capability when compared to branched polyethylenimine (bPEI, 25kDa), a commonly used gene vector. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Clicked bis-PEG-peptide conjugates for studying calmodulin-Kv7.2 channel binding.

    PubMed

    Bonache, M Angeles; Alaimo, Alessandro; Malo, Covadonga; Millet, Oscar; Villarroel, Alvaro; González-Muñiz, Rosario

    2014-11-28

    The recombinant Kv7.2 calmodulin (CaM) binding site (Q2AB CaMBD) shows a high tendency to aggregate, thus complicating biochemical and structural studies. To facilitate these studies we have conceived bis-PEG-peptide CaMBD-mimetics linking helices A and B in single, easy to handle molecules. Short PEG chains were selected as spacers between the two peptide molecules, and a Cu(i)-catalyzed cycloaddition (CuAAC) protocol was used to assemble the final bis-PEG-peptide conjugate, by the convenient functionalization of PEG arms with azide and alkyne groups. The resulting conjugates, with a certain helical character in TFE solutions (CD), showed nanomolar affinity in a fluorescence CaM binding in vitro assay, higher than just the sum of the precursor PEG-peptide affinities, thus validating our design. The approach to these first described examples of Kv7.2 CaMBD-mimetics could pave the way to chimeric conjugates merging helices A and B from different Kv7 subunits.

  10. Strained Cyclophane Macrocycles: Impact of Progressive Ring Size Reduction on Synthesis and Structure

    PubMed Central

    Bogdan, Andrew R.; Jerome, Steven V.; Houk, K. N.; James, Keith

    2012-01-01

    The synthesis, X-ray crystal structures, and calculated strain energies are reported for a homologous series of 11- to 14-membered drug-like cyclophane macrocycles, representing an unusual region of chemical space that can be difficult to access synthetically. The ratio of macrocycle to dimer, generated via a copper catalyzed azide-alkyne cycloaddition macrocyclization in flow at elevated temperature, could be rationalized in terms of the strain energy in the macrocyclic product. The progressive increase in strain resulting from reduction in macrocycle ring size, or the introduction of additional conformational constraints, results in marked deviations from typical geometries. These strained cyclophane macrocyclic systems provide access to spatial orientations of functionality that would not be readily available in unstrained or acyclic analogs. The most strained system prepared represents the first report of an 11-membered cyclophane containing a 1,4-disubstituted 1,2,3-triazole ring, and establishes a limit to the ring strain that can be generated using this macrocycle synthesis methodology. PMID:22133103

  11. "Click" on Alkynylated Carbon Quantum Dots: An Efficient Surface Functionalization for Specific Biosensing and Bioimaging.

    PubMed

    Gao, Ming Xuan; Yang, Lin; Zheng, Yi; Yang, Xiao Xi; Zou, Hong Yan; Han, Jing; Liu, Ze Xi; Li, Yuan Fang; Huang, Cheng Zhi

    2017-02-10

    Surface functionalization is an essential pre requisite for wide and specific applications of nanoparticles such as photoluminescent (PL) carbon quantum dots (CQDs), but it remains a major challenge. In this report, alkynylated CQDs, prepared from carboxyl-rich CQDs through amidation with propargylamine in the presence of 1,1'-carbonyldiimidazole, were modified efficiently with azido molecular beacon DNA through a copper(I)-catalyzed alkyne-azide cycloaddition reaction (CuAAC). As a proof-of-concept, the DNA-modified CQDs are then bonded with gold nanoparticles (AuNPs, 5 nm) through a gold-sulfur bond. Owing to the emission enhancement, this complex can then be applied to the recognition of a single-base- mismatched target. The same functionalizing strategy applied to click the alkynylated CQDs with a nuclear localization sequence (NLS) peptide showed that the NLS-modified CQDs could target the nuclei specifically. These results indicate that surface functionalization of CQDs through a nonstoichiometric copper chalcogenide nanocrystal- (nsCuCNC-) catalyzed click reaction is efficient, and has significant potential in the fields of biosensing and bioimaging. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Growing Applications of “Click Chemistry” for Bioconjugation in Contemporary Biomedical Research

    PubMed Central

    Nwe, Kido

    2009-01-01

    Summation This update summarizes the growing application of “click” chemistry in diverse areas such as bioconjugation, drug discovery, materials science, and radiochemistry. This update also discusses click chemistry reactions that proceed rapidly with high selectivity, specificity, and yield. Two important characteristics make click chemistry so attractive for assembling compounds, reagents, and biomolecules for preclinical and clinical applications. First, click reactions are bio-orthogonal; neither the reactants nor their product's functional groups interact with functionalized biomolecules. Second, the reactions proceed with ease under mild nontoxic conditions, such as at room temperature and, usually, in water. The copper-catalyzed Huisgen cycloaddition, azide-alkyne [3 + 2] dipolar cycloaddition, Staudinger ligation, and azide-phosphine ligation each possess these unique qualities. These reactions can be used to modify one cellular component while leaving others unharmed or untouched. Click chemistry has found increasing applications in all aspects of drug discovery in medicinal chemistry, such as for generating lead compounds through combinatorial methods. Bioconjugation via click chemistry is rigorously employed in proteomics and nucleic research. In radiochemistry, selective radiolabeling of biomolecules in cells and living organisms for imaging and therapy has been realized by this technology. Bifunctional chelating agents for several radionuclides useful for positron emission tomography and single-photon emission computed tomography imaging have also been prepared by using click chemistry. This review concludes that click chemistry is not the perfect conjugation and assembly technology for all applications, but provides a powerful, attractive alternative to conventional chemistry. This chemistry has proven itself to be superior in satisfying many criteria (e.g., biocompatibility, selectivity, yield, stereospecificity, and so forth); thus, one can expect it will consequently become a more routine strategy in the near future for a wide range of applications. PMID:19538051

  13. A Sucrose-derived Scaffold for Multimerization of Bioactive Peptides

    PubMed Central

    Rao, Venkataramanarao; Alleti, Ramesh; Xu, Liping; Tafreshi, Narges K.; Morse, David L.; Gillies, Robert J.; Mash, Eugene A.

    2011-01-01

    A spherical molecular scaffold bearing eight terminal alkyne groups was synthesized in one step from sucrose. One or more copies of a tetrapeptide azide, either N3(CH2)5(C=O)-His-dPhe-Arg-Trp-NH2 (MSH4) or N3(CH2)5(C=O)-Trp-Met-Asp-Phe-NH2 (CCK4), were attached to the scaffold via the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Competitive binding assays using Eu-labeled probes based on the superpotent ligands Ser-Tyr-Ser-Nle-Glu-His-dPhe-Arg-Trp-Gly-Lys-Pro-Val-NH2 (NDP-α-MSH) and Asp-Tyr-Met-Gly-Trp-Met-Asp-Phe-NH2 (CCK8) were used to study the interactions of monovalent and multivalent MSH4 and CCK4 constructs with Hek293 cells engineered to overexpress MC4R and CCK2R. All of the monovalent and multivalent MSH4 constructs exhibited binding comparable to that of the parental ligand, suggesting that either the ligand spacing was inappropriate for multivalent binding, or MSH4 is too weak a binder for a second “anchoring” binding event to occur before the monovalently-bound construct is released from the cell surface. In contrast with this behavior, monovalent CCK4 constructs were significantly less potent than the parental ligand, while multivalent CCK4 constructs were as or more potent than the parental ligand. These results are suggestive of multivalent binding, which may be due to increased residence times for monovalently bound CCK4 constructs on the cell surface relative to MSH4 constructs, the greater residence time being necessary for the establishment of multivalent binding. PMID:21940174

  14. A sucrose-derived scaffold for multimerization of bioactive peptides.

    PubMed

    Rao, Venkataramanarao; Alleti, Ramesh; Xu, Liping; Tafreshi, Narges K; Morse, David L; Gillies, Robert J; Mash, Eugene A

    2011-11-01

    A spherical molecular scaffold bearing eight terminal alkyne groups was synthesized in one step from sucrose. One or more copies of a tetrapeptide azide, either N(3)(CH(2))(5)(CO)-His-DPhe-Arg-Trp-NH(2) (MSH4) or N(3)(CH(2))(5)(CO)-Trp-Met-Asp-Phe-NH(2) (CCK4), were attached to the scaffold via the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Competitive binding assays using Eu-labeled probes based on the superpotent ligands Ser-Tyr-Ser-Nle-Glu-His-DPhe-Arg-Trp-Gly-Lys-Pro-Val-NH(2) (NDP-α-MSH) and Asp-Tyr-Met-Gly-Trp-Met-Asp-Phe-NH(2) (CCK8) were used to study the interactions of monovalent and multivalent MSH4 and CCK4 constructs with Hek293 cells engineered to overexpress MC4R and CCK2R. All of the monovalent and multivalent MSH4 constructs exhibited binding comparable to that of the parental ligand, suggesting that either the ligand spacing was inappropriate for multivalent binding, or MSH4 is too weak a binder for a second 'anchoring' binding event to occur before the monovalently-bound construct is released from the cell surface. In contrast with this behavior, monovalent CCK4 constructs were significantly less potent than the parental ligand, while multivalent CCK4 constructs were as or more potent than the parental ligand. These results are suggestive of multivalent binding, which may be due to increased residence times for monovalently bound CCK4 constructs on the cell surface relative to MSH4 constructs, the greater residence time being necessary for the establishment of multivalent binding. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Ultralow protein adsorbing coatings from clickable PEG nanogel solutions: Benefits of attachment under salt-induced phase separation conditions and comparison with PEG/albumin nanogel coatings

    PubMed Central

    Donahoe, Casey D.; Cohen, Thomas L.; Li, Wenlu; Nguyen, Peter K.; Fortner, John D.; Mitra, Robi D.; Elbert, Donald L.

    2013-01-01

    Clickable nanogel solutions were synthesized by using the copper catalyzed azide/alkyne cycloaddition (CuAAC) to partially polymerize solutions of azide and alkyne functionalized poly(ethylene glycol) (PEG) monomers. Coatings were fabricated using a second click reaction: a UV thiol-yne attachment of the nanogel solutions to mercaptosilanated glass. Because the CuAAC reaction was effectively halted by the addition of a copper-chelator, we were able to prevent bulk gelation and limit the coating thickness to a single monolayer of nanogels in the absence of the solution reaction. This enabled the inclusion of kosmotropic salts, which caused the PEG to phase-separate and nearly double the nanogel packing density, as confirmed by Quartz Crystal Microbalance with Dissipation (QCM-D). Protein adsorption was analyzed by single molecule counting with total internal reflection fluorescence (TIRF) microscopy and cell adhesion assays. Coatings formed from the phase-separated clickable nanogel solutions attached with salt adsorbed significantly less fibrinogen than other 100% PEG coatings tested, as well as poly-L-lysine-g-PEG (PLL-g-PEG) coatings. However, PEG/albumin nanogel coatings still outperformed the best 100% PEG clickable nanogel coatings. Additional surface crosslinking of the clickable nanogel coating in the presence of copper further reduced levels of fibrinogen adsorption closer to those of PEG/albumin nanogel coatings. However, this step negatively impacted long-term resistance to cell adhesion and dramatically altered the morphology of the coating by atomic force microscopy (AFM). The main benefit of the click strategy is that the partially polymerized solutions are stable almost indefinitely, allowing attachment in the phase-separated state without danger of bulk gelation, and thus, producing the best performing 100% PEG coating that we have studied to date. PMID:23441808

  16. Synthesis of Stable Interfaces on SnO2 Surfaces for Charge-Transfer Applications

    NASA Astrophysics Data System (ADS)

    Benson, Michelle C.

    The commercial market for solar harvesting devices as an alternative energy source requires them to be both low-cost and efficient to replace or reduce the dependence on fossil fuel burning. Over the last few decades there has been promising efforts towards improving solar devices by using abundant and non-toxic metal oxide nanomaterials. One particular metal oxide of interest has been SnO2 due to its high electron mobility, wide-band gap, and aqueous stability. However SnO2 based solar cells have yet to reach efficiency values of other metal oxides, like TiO2. The advancement of SnO2 based devices is dependent on many factors, including improved methods of surface functionalization that can yield stable interfaces. This work explores the use of a versatile functionalization method through the use of the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The CuAAC reaction is capable of producing electrochemically, photochemically, and electrocatalytically active surfaces on a variety of SnO2 materials. The resulting charge-transfer characteristics were investigated as well as an emphasis on understanding the stability of the resulting molecular linkage. We determined the CuAAC reaction is able to proceed through both azide-modified and alkyne-modified surfaces. The resulting charge-transfer properties showed that the molecular tether was capable of supporting charge separation at the interface. We also investigated the enhancement of electron injection upon the introduction of an ultra-thin ZrO2 coating on SnO2. Several complexes were used to fully understand the charge-transfer capabilities, including model systems of ferrocene and a ruthenium coordination complex, a ruthenium mononuclear water oxidation catalyst, and a commercial ruthenium based dye.

  17. Use of Complementary Approaches to Imaging Biomolecules and Endogenous and Exogenous Trace Elements and Nanoparticles in Biological Samples

    NASA Astrophysics Data System (ADS)

    Brown, Koshonna Dinettia

    X-ray Fluorescence Microscopy (XFM) is a useful technique for study of biological samples. XFM was used to map and quantify endogenous biological elements as well as exogenous materials in biological samples, such as the distribution of titanium dioxide (TiO2) nanoparticles. TiO 2 nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic particles for cancer detection and treatment, drug delivery, and induction of DNA breaks. Delivery of such nanoparticles can be targeted to specific cells and subcellular structures. In this work, we develop two novel approaches to stain TiO2 nanoparticles for optical microscopy and to confirm that staining by XFM. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called CLICK chemistry, for labeling of azide conjugated TiO2 nanoparticles with "clickable" dyes such as alkyne Alexa Fluor dyes with a high fluorescent yield. To confirm that the optical fluorescence signals of nanoparticles stained in situ match the distribution of the Ti element, we used high resolution synchrotron X-Ray Fluorescence Microscopy (XFM) using the Bionanoprobe instrument at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific X-ray fluorescence showed excellent overlap with the location of Alexa Fluor optical fluorescence detected by confocal microscopy. In this work XFM was also used to investigate native elemental differences between two different types of head and neck cancer, one associated with human papilloma virus infection, the other virus free. Future work may see a cross between these themes, for example, exploration of TiO2 nanoparticles as anticancer treatment for these two different types of head and neck cancer.

  18. Temperature and pH Dual-Responsive Core-Brush Nanocomposite for Enrichment of Glycoproteins.

    PubMed

    Jiang, Lingdong; Messing, Maria E; Ye, Lei

    2017-03-15

    In this report, we present a novel modular approach to the immobilization of a high density of boronic acid ligands on thermoresponsive block copolymer brushes for effective enrichment of glycoproteins via their synergistic multiple covalent binding with the immobilized boronic acids. Specifically, a two-step, consecutive surface-initiated atom transfer radical polymerization (SI-ATRP) was employed to graft a flexible block copolymer brush, pNIPAm-b-pGMA, from an initiator-functionalized nanosilica surface, followed by postpolymerization modification of the pGMA moiety with sodium azide. Subsequently, an alkyne-tagged boronic acid (PCAPBA) was conjugated to the polymer brush via a Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction, leading to a silica-supported polymeric hybrid material, Si@pNIPAm-b-pBA, with a potent glycol binding affinity. The obtained core-brush nanocomposite was systematically characterized with regard to particle size, morphology, organic content, brush density, and number of immobilized boronic acids. We also studied the characteristics of glycoprotein binding of the nanocomposite under different conditions. The nanocomposite showed high binding capacities for ovalbumin (OVA) (98.0 mg g -1 ) and horseradish peroxidase (HRP) (26.8 mg g -1 ) in a basic buffer (pH 9.0) at 20 °C. More importantly, by adjusting the pH and temperature, the binding capacities of the nanocomposite can be tuned, which is meaningful for the separation of biological molecules. In general, the synthetic approach developed for the fabrication of block copolymer brushes in the nanocomposite opened new opportunities for the design of more functional hybrid materials that will be useful in bioseparation and biomedical applications.

  19. Genetic encoding of a bicyclo[6.1.0]nonyne-charged amino acid enables fast cellular protein imaging by metal-free ligation.

    PubMed

    Borrmann, Annika; Milles, Sigrid; Plass, Tilman; Dommerholt, Jan; Verkade, Jorge M M; Wiessler, Manfred; Schultz, Carsten; van Hest, Jan C M; van Delft, Floris L; Lemke, Edward A

    2012-09-24

    Visualizing biomolecules by fluorescent tagging is a powerful method for studying their behaviour and function inside cells. We prepared and genetically encoded an unnatural amino acid (UAA) that features a bicyclononyne moiety. This UAA offered exceptional reactivity in strain-promoted azide-alkyne cycloadditions. Kinetic measurements revealed that the UAA reacted also remarkably fast in the inverse-electron-demand Diels-Alder cycloaddition with tetrazine-conjugated dyes. Genetic encoding of the new UAA inside mammalian cells and its subsequent selective labeling at low dye concentrations demonstrate the usefulness of the new amino acid for future imaging studies. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Hydrosoluble Cu(i)-DAPTA complexes: synthesis, characterization, luminescence thermochromism and catalytic activity for microwave-assisted three-component azide-alkyne cycloaddition click reaction.

    PubMed

    Mahmoud, Abdallah G; Guedes da Silva, M Fátima C; Sokolnicki, Jerzy; Smoleński, Piotr; Pombeiro, Armando J L

    2018-05-16

    New hydrosoluble and air-stable Cu(i) halide compounds, viz. [CuX(DAPTA)3] (1) and (2), and [Cu(μ-X)(DAPTA)2]2 (3) and (4) (X = Br or I, in this order), have been prepared by reacting Cu(i) halide (i.e., bromide or iodide) with 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane (DAPTA) under mild conditions. They represent the first examples of Cu(i) halide complexes bearing the DAPTA ligand, which have been fully characterized by elemental analysis, IR, 1H, 13C{1H} and 31P{1H} NMR spectroscopies, ESI-MS+ and, for 4, also by single-crystal X-ray diffraction (SCXRD) analyses. Complexes 1-4 are efficient catalysts for the one-pot microwave assisted three-component (terminal alkyne, organic halide and NaN3) Huisgen cycloaddition reaction in aqueous media to afford the corresponding disubstituted triazoles. The catalysis proceeds with a broad alkyne substrate scope and according to "click rules". Photophysical studies of compound 4 showed an unusual reversible thermochromic behaviour exhibiting a blue emission at 298 K due to the halide-to-ligand charge transfer (3XLCT) and a red emission at 77 K because of the {Cu2I2} unit.

  1. Bone marrow cells stained by azide-conjugated Alexa fluors in the absence of an alkyne label.

    PubMed

    Lin, Guiting; Ning, Hongxiu; Banie, Lia; Qiu, Xuefeng; Zhang, Haiyang; Lue, Tom F; Lin, Ching-Shwun

    2012-09-01

    Thymidine analog 5-ethynyl-2'-deoxyuridine (EdU) has recently been introduced as an alternative to 5-bromo-2-deoxyuridine (BrdU) for cell labeling and tracking. Incorporation of EdU into replicating DNA can be detected by azide-conjugated fluors (eg, Alexa-azide) through a Cu(i)-catalyzed click reaction between EdU's alkyne moiety and azide. While this cell labeling method has proven to be valuable for tracking transplanted stem cells in various tissues, we have found that some bone marrow cells could be stained by Alexa-azide in the absence of EdU label. In intact rat femoral bone marrow, ~3% of nucleated cells were false-positively stained, and in isolated bone marrow cells, ~13%. In contrast to true-positive stains, which localize in the nucleus, the false-positive stains were cytoplasmic. Furthermore, while true-positive staining requires Cu(i), false-positive staining does not. Reducing the click reaction time or reducing the Alexa-azide concentration failed to improve the distinction between true- and false-positive staining. Hematopoietic and mesenchymal stem cell markers CD34 and Stro-1 did not co-localize with the false-positively stained cells, and these cells' identity remains unknown.

  2. Copper-free click reactions with polar bicyclononyne derivatives for modulation of cellular imaging.

    PubMed

    Leunissen, E H P; Meuleners, M H L; Verkade, J M M; Dommerholt, J; Hoenderop, J G J; van Delft, F L

    2014-07-07

    The ability of cells to incorporate azidosugars metabolically is a useful tool for extracellular glycan labelling. The exposed azide moiety can covalently react with alkynes, such as bicyclo[6.1.0]nonyne (BCN), by strain-promoted alkyne-azide cycloaddition (SPAAC). However, the use of SPAAC can be hampered by low specificity of the cycloalkyne. In this article we describe the synthesis of more polar BCN derivatives and their properties for selective cellular glycan labelling. The new polar derivatives [amino-BCN, glutarylamino-BCN and bis(hydroxymethyl)-BCN] display reaction rates similar to those of BCN and are less cell-permeable. The labelling specificity in HEK293 cells is greater than that of BCN, as determined by confocal microscopy and flow cytometry. Interestingly, amino-BCN appears to be highly specific for the Golgi apparatus. In addition, the polar BCN derivatives label the N-glycan of the membrane calcium channel TRPV5 in HEK293 cells with significantly enhanced signal-to-noise ratios. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Second Generation TQ-Ligation for Cell Organelle Imaging.

    PubMed

    Zhang, Xiaoyun; Dong, Ting; Li, Qiang; Liu, Xiaohui; Li, Lin; Chen, She; Lei, Xiaoguang

    2015-07-17

    Bioorthogonal ligations play a crucial role in labeling diverse types of biomolecules in living systems. Herein, we describe a novel class of ortho-quinolinone quinone methide (oQQM) precursors that show a faster kinetic rate in the "click cycloaddition" with thio-vinyl ether (TV) than the first generation TQ-ligation in both chemical and biological settings. We further demonstrate that the second generation TQ-ligation is also orthogonal to the widely used strain-promoted azide-alkyne cycloaddition (SPAAC) both in vitro and in vivo, revealing that these two types of bioorthogonal ligations could be used as an ideal reaction pair for the simultaneous tracking of multiple elements within a single system. Remarkably, the second generation TQ-ligation and SPAAC are effective for selective and simultaneous imaging of two different cell organelles in live cells.

  4. Universal strategies for the DNA-encoding of libraries of small molecules using the chemical ligation of oligonucleotide tags

    PubMed Central

    Litovchick, Alexander; Clark, Matthew A; Keefe, Anthony D

    2014-01-01

    The affinity-mediated selection of large libraries of DNA-encoded small molecules is increasingly being used to initiate drug discovery programs. We present universal methods for the encoding of such libraries using the chemical ligation of oligonucleotides. These methods may be used to record the chemical history of individual library members during combinatorial synthesis processes. We demonstrate three different chemical ligation methods as examples of information recording processes (writing) for such libraries and two different cDNA-generation methods as examples of information retrieval processes (reading) from such libraries. The example writing methods include uncatalyzed and Cu(I)-catalyzed alkyne-azide cycloadditions and a novel photochemical thymidine-psoralen cycloaddition. The first reading method “relay primer-dependent bypass” utilizes a relay primer that hybridizes across a chemical ligation junction embedded in a fixed-sequence and is extended at its 3′-terminus prior to ligation to adjacent oligonucleotides. The second reading method “repeat-dependent bypass” utilizes chemical ligation junctions that are flanked by repeated sequences. The upstream repeat is copied prior to a rearrangement event during which the 3′-terminus of the cDNA hybridizes to the downstream repeat and polymerization continues. In principle these reading methods may be used with any ligation chemistry and offer universal strategies for the encoding (writing) and interpretation (reading) of DNA-encoded chemical libraries. PMID:25483841

  5. Cell-free identification of novel N-myristoylated proteins from complementary DNA resources using bioorthogonal myristic acid analogues.

    PubMed

    Takamitsu, Emi; Fukunaga, Kazuki; Iio, Yusuke; Moriya, Koko; Utsumi, Toshihiko

    2014-11-01

    To establish a non-radioactive, cell-free detection system for protein N-myristoylation, metabolic labeling in a cell-free protein synthesis system using bioorthogonal myristic acid analogues was performed. After Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) with a biotin tag, the tagged proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and blotted on a polyvinylidene fluoride (PVDF) membrane, and then protein N-myristoylation was detected by enhanced chemiluminescence (ECL) using horseradish peroxidase (HRP)-conjugated streptavidin. The results showed that metabolic labeling in an insect cell-free protein synthesis system using an azide analogue of myristic acid followed by CuAAC with alkynyl biotin was the most effective strategy for cell-free detection of protein N-myristoylation. To determine whether the newly developed detection method can be applied for the detection of novel N-myristoylated proteins from complementary DNA (cDNA) resources, four candidate cDNA clones were selected from a human cDNA resource and their susceptibility to protein N-myristoylation was evaluated using the newly developed strategy. As a result, the products of three cDNA clones were found to be novel N-myristoylated protein, and myristoylation-dependent specific intracellular localization was observed for two novel N-myristoylated proteins. Thus, the metabolic labeling in an insect cell-free protein synthesis system using bioorthogonal azide analogue of myristic acid was an effective strategy to identify novel N-myristoylated proteins from cDNA resources. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. One-pot reaction for the preparation of biofunctionalized self-assembled monolayers on gold surfaces

    NASA Astrophysics Data System (ADS)

    Raigoza, Annette F.; Fies, Whitney; Lim, Amber; Onyirioha, Kristeen; Webb, Lauren J.

    2017-02-01

    The Huisgen cycloaddition reaction (;click; chemistry) has been used extensively to functionalize surfaces with macromolecules in a straightforward manner. We have previously developed a procedure using the copper(I)-catalyzed click reaction to tether synthetic α-helical peptides carrying two alkyne groups to a well-ordered azide-terminated alkanethiol self-assembled monolayer (SAM) on a Au(111) surface. While convenient, click-based strategies potentially pose significant problems from reagents, solvents, and reaction temperatures that may irreversibly damage some molecules or substrates. Tuning click chemistry conditions would allow individual optimization of reaction conditions for a wide variety of biomolecules and substrate materials. Here, we explore the utility of simultaneous SAM formation and peptide-attachment chemistry in a one-pot reaction. We demonstrate that a formerly multistep reaction can be successfully carried out concurrently by mixing azide-terminated alkanethiols, CuCl, and a propargylglycine-containing peptide over a bare gold surface in ethanol and reacting at 70 °C. X-ray photoelectron spectroscopy (XPS), surface infrared spectroscopy, surface circular dichroic (CD) spectroscopy, and scanning tunneling microscopy (STM) were used to determine that this one-pot reaction strategy resulted in a high density of surface-bound α-helices without aggregation. This work demonstrates the simplicity and versatility of a SAM-plus-click chemistry strategy for functionalizing Au surfaces with structured biomolecules.

  7. Cycloadditions in modern polymer chemistry.

    PubMed

    Delaittre, Guillaume; Guimard, Nathalie K; Barner-Kowollik, Christopher

    2015-05-19

    Synthetic polymer chemistry has undergone two major developments in the last two decades. About 20 years ago, reversible-deactivation radical polymerization processes started to give access to a wide range of polymeric architectures made from an almost infinite reservoir of functional building blocks. A few years later, the concept of click chemistry revolutionized the way polymer chemists approached synthetic routes. Among the few reactions that could qualify as click, the copper-catalyzed azide-alkyne cycloaddition (CuAAC) initially stood out. Soon, many old and new reactions, including cycloadditions, would further enrich the synthetic macromolecular chemistry toolbox. Whether click or not, cycloadditions are in any case powerful tools for designing polymeric materials in a modular fashion, with a high level of functionality and, sometimes, responsiveness. Here, we wish to describe cycloaddition methodologies that have been reported in the last 10 years in the context of macromolecular engineering, with a focus on those developed in our laboratories. The overarching structure of this Account is based on the three most commonly encountered cycloaddition subclasses in organic and macromolecular chemistry: 1,3-dipolar cycloadditions, (hetero-)Diels-Alder cycloadditions ((H)DAC), and [2+2] cycloadditions. Our goal is to briefly describe the relevant reaction conditions, the advantages and disadvantages, and the realized polymer applications. Furthermore, the orthogonality of most of these reactions is highlighted because it has proven highly beneficial for generating unique, multifunctional polymers in a one-pot reaction. The overview on 1,3-dipolar cycloadditions is mostly centered on the application of CuAAC as the most travelled route, by far. Besides illustrating the capacity of CuAAC to generate complex polymeric architectures, alternative 1,3-dipolar cycloadditions operating without the need for a catalyst are described. In the area of (H)DA cycloadditions, beyond the popular maleimide/furan couple, we present chemistries based on more reactive species, such as cyclopentadienyl or thiocarbonylthio moieties, particularly stressing the reversibility of these systems. In these two greater families, as well as in the last section on [2+2] cycloadditions, we highlight phototriggered chemistries as a powerful tool for spatially and temporally controlled materials synthesis. Clearly, cycloaddition chemistry already has and will continue to transform the field of polymer chemistry in the years to come. Applying this chemistry enables better control over polymer composition, the development of more complicated polymer architectures, the simplification of polymer library production, and the discovery of novel applications for all of these new polymers.

  8. Click chemistry improved wet adhesion strength of mussel-inspired citrate-based antimicrobial bioadhesives

    PubMed Central

    Guo, Jinshan; Kim, Gloria B.; Shan, Dingying; Kim, Jimin P.; Hu, Jianqing; Wang, Wei; Hamad, Fawzi G.; Qian, Guoying; Rizk, Elias B.; Yang, Jian

    2016-01-01

    For the first time, a convenient copper-catalyzed azide-alkyne cycloaddition (CuAAC, click chemistry) was successfully introduced into injectable citrate-based mussel-inspired bioadhesives (iCMBAs, iCs) to improve both cohesive and wet adhesive strengths and elongate the degradation time, providing numerous advantages in surgical applications. The major challenge to developing such an adhesive was the mutual inhibition effect between the oxidant used for crosslinking catechol groups and the Cu(II) reductant used for CuAAC, which was successfully minimized by adding a biocompatible buffering agent typically used in cell culture, 4-(2-hydroxyethyl) -1-piperazineethanesulfonic acid (HEPES), as a copper chelating agent. Among the investigated formulations, the highest adhesion strength achieved (223.11 ± 15.94 kPa) was around 13 times higher than that of a commercially available fibrin glue (15.4 ± 2.8 kPa). In addition, dual-crosslinked (i.e. click crosslinking and mussel-inspired crosslinking) iCMBAs still preserved considerable antibacterial and antifungal capabilities that are beneficial for the bioadhesives used as hemostatic adhesives or sealants for wound management. PMID:27770631

  9. From BACE1 Inhibitor to Multifunctionality of Tryptoline and Tryptamine Triazole Derivatives for Alzheimer’s Disease

    PubMed Central

    Jiaranaikulwanitch, Jutamas; Govitrapong, Piyarat; Fokin, Valery V.; Vajragupta, Opa

    2013-01-01

    Efforts to discover new drugs for Alzheimer’s disease emphasizing multiple targets was conducted seeking to inhibit amyloid oligomer formation and to prevent radical formation. The tryptoline and tryptamine cores of BACE1 inhibitors previously identified by virtual screening were modified in silico for additional modes of action. These core structures were readily linked to different side chains using 1,2,3-triazole rings as bridges by copper catalyzed azide-alkyne cycloaddition reactions. Three compounds among the sixteen designed compounds exerted multifunctional activities including β-secretase inhibitory action, anti-amyloid aggregation, metal chelating and antioxidant effects at micromolar levels. The neuroprotective effects of the multifunctional compounds 6h, 12c and 12h on Aβ1–42 induced neuronal cell death at 1 μM were significantly greater than those of the potent single target compound, BACE1 inhibitor IV and were comparable to curcumin. The observed synergistic effect resulting from the reduction of the Aβ1–42 neurotoxicity cascade substantiates the validity of our multifunctional strategy in drug discovery for Alzheimer’s disease. PMID:22781443

  10. Are 1,4- and 1,5-disubstituted 1,2,3-triazoles good pharmacophoric groups?

    PubMed

    Massarotti, Alberto; Aprile, Silvio; Mercalli, Valentina; Del Grosso, Erika; Grosa, Giorgio; Sorba, Giovanni; Tron, Gian Cesare

    2014-11-01

    Over the last decade, 1,2,3-triazoles have received increasing attention in medicinal chemistry thanks to the discovery of the highly useful and widely applicable 1,3-dipolar cycloaddition reaction between azides and alkynes (click chemistry) catalyzed by copper salts and ruthenium complexes. After a decade of medicinal chemistry research on 1,2,3-triazoles, we feel that the time is ripe to demonstrate the real ability of this heterocycle to participate in important and pivotal binding interactions with biological targets while maintaining a good pharmacokinetic profile. In this study, we retrieved and analyzed X-ray crystal structures of complexes between 1,2,3-triazoles and either proteins or DNA to understand the pharmacophoric role of the triazole. Furthermore, the metabolic stability, the capacity to inhibit cytochromes, and the contribution of 1,2,3-triazoles to the overall aqueous solubility of compounds containing them have been analyzed. This information should furnish fresh insight for medicinal chemists in the design of novel bioactive molecules that contain the triazole nucleus. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Copper-catalyzed Huisgen and oxidative Huisgen coupling reactions controlled by polysiloxane-supported amines (AFPs) for the divergent synthesis of triazoles and bistriazoles.

    PubMed

    Zheng, Zhan-Jiang; Ye, Fei; Zheng, Long-Sheng; Yang, Ke-Fang; Lai, Guo-Qiao; Xu, Li-Wen

    2012-10-29

    An interesting example of a divergent catalysis with a copper(I) and amine-functional macromolecular polysiloxanes system was successfully presented in click chemistry. In this manuscript, we demonstrate the remarkable ability of the secondary amine-functional polysiloxane to induce oxidative coupling in the copper-mediated Huisgen reactions of azides and alkynes, thereby achieving good yields and selectivities. The click reactions mediated by a polysiloxane-supported secondary amine allow the preparation of novel heterocyclic compounds, that is, bistriazoles. Comparably, it is also surprising that the use of a diamine-functional polysiloxane as ligand led to a classic Huisgen [3+2] cycloaddition in excellent yields. From the results of the present amine-functional polysiloxanes-controlled Huisgen reaction or oxidative Huisgen coupling reaction to divergent products and the proposed mechanism, we suggested that the mononuclear bistriazole-copper complex stabilized and dispersed by the secondary amine-functional polysiloxane was beneficial to prevalent the way to oxidative coupling. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Novel menadione hybrids: Synthesis, anticancer activity, and cell-based studies.

    PubMed

    Prasad, Chakka Vara; Nayak, Vadithe Lakshma; Ramakrishna, Sistla; Mallavadhani, Uppuluri Venkata

    2018-01-01

    A series of novel menadione-based triazole hybrids were designed and synthesized by employing copper-catalyzed azide-alkyne cycloaddition (CuAAC). All the synthesized hybrids were characterized by their spectral data ( 1 H NMR, 13 C NMR, IR, and HRMS). The synthesized compounds were evaluated for their anticancer activity against five selected cancer cell lines including lung (A549), prostate (DU-145), cervical (Hela), breast (MCF-7), and mouse melanoma (B-16) using MTT assay. The screening results showed that majority of the synthesized compounds displayed significant anticancer activity. Among the tested compounds, the triazoles 5 and 6 exhibited potent activity against all cell lines. In particular, compound 6 showed higher potency than the standard tamoxifen and parent menadione against MCF-7 cell line. Flow cytometric analysis revealed that compound 6 arrested cell cycle at G0/G1 phase and induced apoptotic cell death which was further confirmed by Hoechst staining, measurement of mitochondrial membrane potential (ΔΨm) and Annexin-V-FITC assay. Thus, compound 6 can be considered as lead molecule for further development as potent anticancer therapeutic agent. © 2017 John Wiley & Sons A/S.

  13. Divergent and convergent synthesis of GalNAc-conjugated dendrimers using dual orthogonal ligations.

    PubMed

    Thomas, Baptiste; Pifferi, Carlo; Daskhan, Gour Chand; Fiore, Michele; Berthet, Nathalie; Renaudet, Olivier

    2015-12-21

    The synthesis of glycodendrimers remains a challenging task. In this paper we propose a protocol based on both oxime ligation (OL) to combine cyclopeptide repeating units as the dendritic core and the copper(i)-catalyzed azide-alkyne cycloaddition (CuAAC) to conjugate peripheral α and β propargylated GalNAc. By contrast with the oxime-based iterative protocol reported in our group, our current strategy can be used in both divergent and convergent routes with similar efficiency and the resulting hexadecavalent glycodendrimers can be easily characterized compared to oxime-linked analogues. A series of glycoconjugates displaying four or sixteen copies of both α and β GalNAc have been prepared and their ability to inhibit the adhesion of the soybean agglutinin (SBA) lectin to polymeric-GalNAc immobilized on microtiter plates has been evaluated. As was anticipated, the higher inhibitory effect (IC50 = 0.46 μM) was measured with the structure displaying αGalNAc with the higher valency (compound 13), which demonstrates that the binding properties of these glycoconjugates are strongly dependent on the orientation and distribution of the GalNAc units.

  14. Thermomechanical Formation–Structure–Property Relationships in Photopolymerized Copper-Catalyzed Azide–Alkyne (CuAAC) Networks

    PubMed Central

    Baranek, Austin; Song, Han Byul; McBride, Mathew; Finnegan, Patricia; Bowman, Christopher N.

    2016-01-01

    Bulk photopolymerization of a library of synthesized multifunctional azides and alkynes was carried out toward developing structure–property relationships for CuAAC-based polymer networks. Multifunctional azides and alkynes were formulated with a copper catalyst and a photoinitiator, cured, and analyzed for their mechanical properties. Material properties such as the glass transition temperatures (Tg) show a strong dependence on monomer structure with Tg values ranging from 41 to 90 °C for the series of CuAAC monomers synthesized in this study. Compared to the triazoles, analogous thioether-based polymer networks exhibit a 45–49 °C lower Tg whereas analogous monomers composed of ethers in place of carbamates exhibit a 40 °C lower Tg. Here, the formation of the triazole moiety during the polymerization represents a critical component in dictating the material properties of the ultimate polymer network where material properties such as the rubbery modulus, cross-link density, and Tg all exhibit strong dependence on polymerization conversion, monomer composition, and structure postgelation. PMID:27867223

  15. Labeling proteins on live mammalian cells using click chemistry.

    PubMed

    Nikić, Ivana; Kang, Jun Hee; Girona, Gemma Estrada; Aramburu, Iker Valle; Lemke, Edward A

    2015-05-01

    We describe a protocol for the rapid labeling of cell-surface proteins in living mammalian cells using click chemistry. The labeling method is based on strain-promoted alkyne-azide cycloaddition (SPAAC) and strain-promoted inverse-electron-demand Diels-Alder cycloaddition (SPIEDAC) reactions, in which noncanonical amino acids (ncAAs) bearing ring-strained alkynes or alkenes react, respectively, with dyes containing azide or tetrazine groups. To introduce ncAAs site specifically into a protein of interest (POI), we use genetic code expansion technology. The protocol can be described as comprising two steps. In the first step, an Amber stop codon is introduced--by site-directed mutagenesis--at the desired site on the gene encoding the POI. This plasmid is then transfected into mammalian cells, along with another plasmid that encodes an aminoacyl-tRNA synthetase/tRNA (RS/tRNA) pair that is orthogonal to the host's translational machinery. In the presence of the ncAA, the orthogonal RS/tRNA pair specifically suppresses the Amber codon by incorporating the ncAA into the polypeptide chain of the POI. In the second step, the expressed POI is labeled with a suitably reactive dye derivative that is directly supplied to the growth medium. We provide a detailed protocol for using commercially available ncAAs and dyes for labeling the insulin receptor, and we discuss the optimal surface-labeling conditions and the limitations of labeling living mammalian cells. The protocol involves an initial cloning step that can take 4-7 d, followed by the described transfections and labeling reaction steps, which can take 3-4 d.

  16. Synthesis of linear and cyclic peptide-PEG-lipids for stabilization and targeting of cationic liposome-DNA complexes.

    PubMed

    Ewert, Kai K; Kotamraju, Venkata Ramana; Majzoub, Ramsey N; Steffes, Victoria M; Wonder, Emily A; Teesalu, Tambet; Ruoslahti, Erkki; Safinya, Cyrus R

    2016-03-15

    Because nucleic acids (NAs) have immense potential value as therapeutics, the development of safe and effective synthetic NA vectors continues to attract much attention. In vivo applications of NA vectors require stabilized, nanometer-scale particles, but the commonly used approaches of steric stabilization with a polymer coat (e.g., PEGylation; PEG=poly(ethylene glycol)) interfere with attachment to cells, uptake, and endosomal escape. Conjugation of peptides to PEG-lipids can improve cell attachment and uptake for cationic liposome-DNA (CL-DNA) complexes. We present several synthetic approaches to peptide-PEG-lipids and discuss their merits and drawbacks. A lipid-PEG-amine building block served as the common key intermediate in all synthetic routes. Assembling the entire peptide-PEG-lipid by manual solid phase peptide synthesis (employing a lipid-PEG-carboxylic acid) allowed gram-scale synthesis but is mostly applicable to linear peptides connected via their N-terminus. Conjugation via thiol-maleimide or strain-promoted (copper-free) azide-alkyne cycloaddition chemistry is highly amenable to on-demand preparation of peptide-PEG-lipids, and the appropriate PEG-lipid precursors are available in a single chemical step from the lipid-PEG-amine building block. Azide-alkyne cycloaddition is especially suitable for disulfide-bridged peptides such as iRGD (cyclic CRGDKGPDC). Added at 10 mol% of a cationic/neutral lipid mixture, the peptide-PEG-lipids stabilize the size of CL-DNA complexes. They also affect cell attachment and uptake of nanoparticles in a peptide-dependent manner, thereby providing a platform for preparing stabilized, affinity-targeted CL-DNA nanoparticles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Discrete Cu(i) complexes for azide–alkyne annulations of small molecules inside mammalian cells† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc04643j

    PubMed Central

    Miguel-Ávila, Joan; Tomás-Gamasa, María; Olmos, Andrea

    2018-01-01

    The archetype reaction of “click” chemistry, namely, the copper-promoted azide–alkyne cycloaddition (CuAAC), has found an impressive number of applications in biological chemistry. However, methods for promoting intermolecular annulations of exogenous, small azides and alkynes in the complex interior of mammalian cells, are essentially unknown. Herein we demonstrate that isolated, well-defined copper(i)–tris(triazolyl) complexes featuring designed ligands can readily enter mammalian cells and promote intracellular CuAAC annulations of small, freely diffusible molecules. In addition to simplifying protocols and avoiding the addition of “non-innocent” reductants, the use of these premade copper complexes leads to more efficient processes than with the alternative, in situ made copper species prepared from Cu(ii) sources, tris(triazole) ligands and sodium ascorbate. Under the reaction conditions, the well-defined copper complexes exhibit very good cell penetration properties, and do not present significant toxicities. PMID:29675241

  18. Branched Polyhedral Oligomeric Silsesquioxane Nanoparticles Prepared via Strain-Promoted 1,3-Dipolar Cycloadditions

    PubMed Central

    Ledin, Petr A.; Xu, Weinan; Friscourt, Frédéric; Boons, Geert-Jan; Tsukruk, Vladimir V.

    2016-01-01

    Conjugation of small organic molecules and polymers to polyhedral oligosilsesquioxane (POSS) cores results in novel hybrid materials with unique physical characteristics. We report here an approach in which star-shaped organic–inorganic scaffolds bearing eight cyclooctyne moieties can be rapidly functionalized via strain-promoted azide–alkyne cycloaddition (SPAAC) to synthesize a series of nearly monodisperse branched core–shell nanoparticles with hydrophobic POSS cores and hydrophilic arms. We established that SPAAC is a robust method for POSS core octafunctionalization with the reaction rate constant of 1.9 × 10−2 M−1 s−1. Functionalization with poly(ethylene glycol) (PEG) azide, fluorescein azide, and unprotected lactose azide gave conjugates which represent different classes of compounds: polymer conjugates, fluorescent dots, and bioconjugates. These resulting hybrid compounds were preliminarily tested for their ability to self-assemble in solution and at the air–water interface. We observed the formation of robust smooth Langmuir monolayers with diverse morphologies. We found that polar lactose moieties are completely submerged into the subphase whereas the relatively hydrophobic fluorescein arms had extended conformation at the interface, and PEG arms were partially submerged. Finally, we observed the formation of stable micelles with sizes between 70 and 160 nm in aqueous solutions with size and morphology of the structures dependent on the molecular weight and the type of the peripheral hydrophilic moieties. PMID:26131712

  19. Synthesis of 1,3-bis(tetracyano-2-azulenyl-3-butadienyl)azulenes by the [2+2] cycloaddition-retroelectrocyclization of 1,3-bis(azulenylethynyl)azulenes with tetracyanoethylene.

    PubMed

    Shoji, Taku; Maruyama, Mitsuhisa; Maruyama, Akifumi; Ito, Shunji; Okujima, Tetsuo; Toyota, Kozo

    2014-09-08

    1,3-Bis(azulenylethynyl)azulene derivatives 9-14 have been prepared by palladium-catalyzed alkynylation of 1-ethynylazulene 8 with 1,3-diiodoazulene 1 or 1,3-diethynylazulene 2 with the corresponding haloazulenes 3-7 under Sonogashira-Hagihara conditions. Bis(alkynes) 9-14 reacted with tetracyanoethylene (TCNE) in a formal [2+2] cycloaddition-retroelectrocyclization reaction to afford the corresponding new bis(tetracyanobutadiene)s (bis(TCBDs)) 15-20 in excellent yields. The redox behavior of bis(TCBD)s 15-20 was examined by using CV and differential pulse voltammetry (DPV), which revealed their reversible multistage reduction properties under the electrochemical conditions. Moreover, a significant color change of alkynes 9-14 and TCBDs 15-20 was observed by visible spectroscopy under the electrochemical reduction conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. “Click” Immobilization on Alkylated Silicon Substrates: Model for the Study of Surface Bound Antimicrobial Peptides

    PubMed Central

    Li, Yan; Santos, Catherine M.; Kumar, Amit; Zhao, Meirong; Lopez, Analette I.; Qin, Guoting; McDermott, Alison M.

    2011-01-01

    We describe an effective approach for the covalent immobilization of antimicrobial peptides (AMPs) to bioinert substrates via CuI-catalyzed azide–alkyne cycloaddition (CuAAC). The bioinert substrates were prepared by surface hydrosilylation of oligo-(ethylene glycol) (OEG) terminated alkenes on hydrogen-terminated silicon surfaces. To render the OEG monolayers “clickable”, mixed monolayers were prepared using OEG-alkenes with and without a terminal alkyne protected by a trimethylgermanyl (TMG) group. The mixed monolayers were characterized by X-ray photoelectron spectroscopy (XPS), elliposometry and contact angle measurement. The TMG protecting group can be readily removed to yield a free terminal alkyne by catalytic amounts of CuI in an aqueous media. This step can then be combined with the subsequent CuAAC reaction. Thus, the immobilization of an azide modified AMP (N3-IG-25) was achieved in a one-pot de-protection/coupling reaction. Varying the ratio of the two alkenes in the deposition mixture allowed for control over the density of the alkynyl groups in the mixed monolayer, and subsequently the coverage of the AMPs on the monolayer. These samples allowed for study of the dependence of antimicrobial activities on the AMP density. The results show that a relative low coverage of AMPs (~1.6×1013 molecule per cm2) is sufficient to significantly suppress the viability of Pseudomonas aeruginosa, while the surface presenting the highest density of AMPs (~2.8×1013 molecule per cm2) is still cyto-compatible. The remarkable antibacterial activity is attributed to the long and flexible linker and the site-specific “click” immobilization, which may facilitate the covalently attached peptides to interact with and disrupt the bacterial membranes. PMID:21264959

  1. An Investigation of Siloxane Cross-linked Hydroxyapatite-Gelatin/Copolymer Composites for Potential Orthopedic Applications†

    PubMed Central

    Dyke, Jason Christopher; Knight, Kelly Jane; Zhou, Huaxing; Chiu, Chi-Kai; Ko, Ching-Chang; You, Wei

    2012-01-01

    Causes of bone deficiency are numerous, but biomimetic alloplastic grafts provide an alternative to repair tissue naturally. Previously, a hydroxyapatite-gelatin modified siloxane (HAp-Gemosil) composite was prepared by cross-linking (N, N′-bis[(3-trimethoxysilyl)propyl]ethylene diamine (enTMOS) around the HAp-Gel nanocomposite particles, to mimic the natural composition and properties of bone. However, the tensile strength remained too low for many orthopedic applications. It was hypothesized that incorporating a polymer chain into the composite could help improve long range interaction. Furthermore, designing this polymer to interact with the enTMOS siloxane cross-linked matrix would provide improved adhesion between the polymer and the ceramic composite, and improve mechanical properties. To this end, copolymers of L-Lactide (LLA), and a novel alkyne derivatized trimethylene carbonate, propargyl carbonate (PC), were synthesized. Incorporation of PC during copolymerization affects properties of copolymers such as molecular weight, Tg, and % PC incorporation. More importantly, PC monomers bear a synthetic handle, allowing copolymers to undergo post-polymerization functionalization with graft monomers to specifically tailor the properties of the final composite. For our investigation, P(LLA-co-PC) copolymers were functionalized by an azido-silane (AS) via copper catalyzed azide-alkyne cycloaddition (CuAAC) through terminal alkyne on PC monomers. The new functionalized polymer, P(LLA-co-PC)(AS) was blended with HAp-Gemosil, with the azido-silane linking the copolymer to the silsesquioxane matrix within the final composite. These HAp-Gemosil/P(LLA-co-PC)(AS) composites were subjected to mechanical and biological testing, and the results were compared with those from the HAp-Gemosil composites. This study revealed that incorporating a cross-linkable polymer served to increase the flexural strength of the composite by 50%, while maintaining the biocompatibility of HAp-Gemosil ceramics. PMID:23139457

  2. Alkyne- and 1,6-elimination- succinimidyl carbonate - terminated heterobifunctional poly(ethylene glycol) for reversible "Click" PEGylation.

    PubMed

    Xie, Yumei; Duan, Shaofeng; Forrest, M Laird

    2010-01-01

    A new heterobifunctional (succinimidyl carbonate, SC)-activated poly(ethylene glycol) (PEG) with a reversible 1,6-elimination linker and a terminal alkyne for "click" chemistry was synthesized with high efficiency and low polydispersity. The α-alkyne-ω-hydroxyl PEG was first prepared using trimethylsilyl-2-propargyl alcohol as an initiator for ring-opening polymerization of ethylene oxide followed by mild deprotection with tetrabutylammonium fluoride. The hydroxy end was then modified with diglycolic anhydride to generate α-alkyne-ω-carboxylic acid PEG. The reversible 1, 6-elimination linker was introduced by conjugation of a hydroxymethyl phenol followed by activation with N,N'-disuccinimidyl carbonate to generate the heterobifunctional α-alkyne-ω-SC PEG. The terminal alkyne is available for "click" conjugation to azido ligands via 1,3-dipolar cycloaddition, and the succinimidyl carbonate will form a reversible conjugate to amines (e.g. in proteins) that can release the unaltered amine after base or enzyme catalyzed cleavage of the 1,6-linker.

  3. Bio-waste corn-cob cellulose supported poly(hydroxamic acid) copper complex for Huisgen reaction: Waste to wealth approach.

    PubMed

    Mandal, Bablu Hira; Rahman, Md Lutfor; Yusoff, Mashitah Mohd; Chong, Kwok Feng; Sarkar, Shaheen M

    2017-01-20

    Corn-cob cellulose supported poly(hydroxamic acid) Cu(II) complex was prepared by the surface modification of waste corn-cob cellulose through graft copolymerization and subsequent hydroximation. The complex was characterized by IR, UV, FESEM, TEM, XPS, EDX and ICP-AES analyses. The complex has been found to be an efficient catalyst for 1,3-dipolar Huisgen cycloaddition (CuAAC) of aryl/alkyl azides with a variety of alkynes as well as one-pot three-components reaction in the presence of sodium ascorbate to give the corresponding cycloaddition products in up to 96% yield and high turn over number (TON 18,600) and turn over frequency (TOF 930h -1 ) were achieved. The complex was easy to recover from the reaction mixture and reused six times without significant loss of its catalytic activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. pH responsive label-assisted click chemistry triggered sensitivity amplification for ultrasensitive electrochemical detection of carbohydrate antigen 24-2.

    PubMed

    Zheng, Yun; Zhao, Lihua; Ma, Zhanfang

    2018-05-15

    Sensitivity amplification strategy by implementing click chemistry in the construction of biosensing interface can efficiently improve the performance of immunosensor. Herein, we developed a sandwich-type amperometric immunosensor for ultrasensitive detection of carbohydrate antigen 24-2 (CA 242) based on pH responsive label-assisted click chemistry triggered sensitivity amplification strategy. The sensitivity of amperometric immunosensor relies on the current response differences (ΔI) caused by per unit concentration target analyte. The pH responsive Cu 2+ -loaded polydopamine (CuPDA) particles conjugated with detection antibodies were employed as labels, which can release Cu(II) ions by regulating pH. In the presence of ascorbic acid (reductant), Cu(II) ions were reduced to Cu(I) ions. Azide-functionalized double-stranded DNA (dsDNA) as signal enhancer was immobilized on the substrate through Cu + -catalyzed azide/alkyne cycloaddition reaction. With the help of the click reaction, the ΔI caused by target was elevated prominently, resulting in sensitivity amplification of the immunosensor. Under optimal condition, the proposed immunosensor exhibited excellent performance with linear range from 0.0001 to 100 U mL -1 and ultralow detection limit of 20.74 μU mL -1 . This work successfully combines click chemistry with pH-responsive labels in sandwich-type amperometric immunosensor, providing a promising sensitivity amplification strategy to construct immunosensing platform for analysis of other tumor marker. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Orthogonal Clickable Iron Oxide Nanoparticle Platform for Targeting, Imaging, and On-Demand Release.

    PubMed

    Guldris, Noelia; Gallo, Juan; García-Hevia, Lorena; Rivas, José; Bañobre-López, Manuel; Salonen, Laura M

    2018-04-12

    A versatile iron oxide nanoparticle platform is reported that can be orthogonally functionalized to obtain highly derivatized nanomaterials required for a wide variety of applications, such as drug delivery, targeted therapy, or imaging. Facile functionalization of the nanoparticles with two ligands containing isocyanate moieties allows for high coverage of the surface with maleimide and alkyne groups. As a proof-of-principle, the nanoparticles were subsequently functionalized with a fluorophore as a drug model and with biotin as a targeting ligand towards tumor cells through Diels-Alder and azide-alkyne cycloaddition reactions, respectively. The thermoreversibility of the Diels-Alder product was exploited to induce the on-demand release of the loaded molecules by magnetic hyperthermia. Additionally, the nanoparticles were shown to target cancer cells through in vitro experiments, as analyzed by magnetic resonance imaging. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Investigating the cellular fate of a DNA-targeted platinum-based anticancer agent by orthogonal double-click chemistry

    PubMed Central

    Qiao, Xin; Ding, Song; Liu, Fang; Kucera, Gregory L.

    2014-01-01

    Confocal fluorescence microscopy was used to study a platinum-based anticancer agent in intact NCI-H460 lung cancer cells. Orthogonal copper-catalyzed azide–alkyne cycloaddition (click) reactions were used to simultaneously determine the cell-cycle-specific localization of the azide-functionalized platinum–acridine agent 1 and monitor its effects on nucleic acid metabolism. Copper-catalyzed postlabeling showed advantages over copper-free click chemistry using a dibenzocyclooctyne (DIBO)-modified reporter dye, which produced high background levels in microscopic images and failed to efficiently label platinum adducts in chromatin. Compound 1 was successfully labeled with the fluorophore DIBO to yield 1* (characterized by in-line high-performance liquid chromatography/electrospray mass spectrometry). 1 and 1* show a high degree of colocalization in the confocal images, but the ability of 1* to target the (compacted) chromatin was markedly reduced, most likely owing to the steric bulk introduced by the DIBO tag. Nuclear platinum levels correlated inversely with the ability of the cells to synthesize DNA and cause cell cycle arrest, as confirmed by bivariate flow cytometry analysis. In addition, a decrease in the level of cellular transcription, shrinkage of the nucleolar regions, and redistribution of RNA into the cytosol were observed. Postlabeling in conjunction with colocalization experiments is a useful tool for studying the cell killing mechanism of this type of DNA-targeted agent. PMID:24407462

  7. Azido, triazolyl, and alkynyl complexes of gold(I): syntheses, structures, and ligand effects.

    PubMed

    Robilotto, Thomas J; Deligonul, Nihal; Updegraff, James B; Gray, Thomas G

    2013-08-19

    Gold(I) triazolyl complexes are prepared in [3 + 2] cycloaddition reactions of (tertiary phosphine)gold(I) azides with terminal alkynes. Seven such triazolyl complexes, not previously prepared, are described. Reducible functional groups are accommodated. In addition, two new (N-heterocyclic carbene)gold(I) azides and two new gold(I) alkynyls are described. Eight complexes are crystallographically authenticated; aurophilic interactions appear in one structure only. The packing diagrams of gold(I) triazolyls all show intermolecular hydrogen bonding between N-1 of one molecule and N-3 of a neighbor. This hydrogen bonding permeates the crystal lattice. Density-functional theory calculations of (triphenylphosphine)gold(I) triazolyls and the corresponding alkynyls indicate that the triazolyl is a stronger trans-influencer than is the alkynyl, but the alkynyl is more electron-releasing. These results suggest that trans-influences in two-coordinate gold(I) complexes can be more than a simple matter of ligand donicity.

  8. Disorder-to-order transitions induced by alkyne/azide click chemistry in diblock copolymer thin films.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, X.; Gu, W.; Chen, W.

    2012-01-01

    We investigated thin film morphologies of binary blends of alkyne-functionalized diblock copolymer poly(ethylene oxide)-block-poly(n-butyl methacrylate-random-propargyl methacrylate) (PEO-b-P(nBMA-r-PgMA)) and Rhodamine B azide, where the thermal alkyne/azide click reaction between the two components induced a disorder-to-order transition (DOT) of the copolymer. By controlling the composition of the neat copolymers and the mole ratio between the alkyne and azide groups, different microphase separated morphologies were achieved. At higher azide loading ratios, a perpendicular orientation of the microdomains was observed with wide accessible film thickness window. As less azide was incorporated, the microdomains have a stronger tendency to be parallel to the substrate, andmore » the film thickness window for perpendicular orientation also became narrower.« less

  9. A highly sensitive protocol for microscopy of alkyne lipids and fluorescently tagged or immunostained proteins[S

    PubMed Central

    Gaebler, Anne; Penno, Anke; Kuerschner, Lars; Thiele, Christoph

    2016-01-01

    The demand to study the cellular localization of specific lipids has led to recent advances in lipid probes and microscopy. Alkyne lipids bear a small, noninterfering tag and can be detected upon click reaction with an azide-coupled reporter. Fluorescent alkyne lipid imaging crucially depends on appropriate azide reporters and labeling protocols that allow for an efficient click reaction and therefore a sensitive detection. We synthesized several azide reporters with different spacer components and tested their suitability for alkyne lipid imaging in fixed cells. The implementation of a copper-chelating picolyl moiety into fluorescent or biotin-based azide reagents strongly increased the sensitivity of the imaging routine. We demonstrate the applicability and evaluate the performance of this approach using different lipid classes and experimental setups. As azide picolyl reporters allow for reduced copper catalyst concentrations, they also enable coimaging of alkyne lipids with multiple fluorescent proteins including enhanced green fluorescent protein. Alternatively, and as we also show, microscopy of alkyne lipids can be combined with protein detection by immunocytochemistry. In summary, we present a robust, sensitive, and highly versatile protocol for the labeling of alkyne lipids with azide-coupled reporters for fluorescence microscopy that can be combined with different protein detection and imaging techniques. PMID:27565170

  10. Stereocontrolled syntheses of the nemorensic acids using 6-diazoheptane-2,5-dione in carbonyl ylide cycloadditions.

    PubMed

    Hodgson, David M; Le Strat, Frédéric; Avery, Thomas D; Donohue, Andrew C; Brückl, Tobias

    2004-12-10

    Levulinic acid-derived 6-diazoheptane-2,5-dione (9) serves as a common precursor in a formal synthesis of frontalin 19, and in syntheses of cis-nemorensic acid 1, 4-hydroxy-cis-nemorensic acid 2, 3-hydroxy-cis-nemorensic acid 3, and nemorensic acid 4. The key step in these syntheses is the Rh(2)(OAc)(4)-catalyzed tandem carbonyl ylide formation-intermolecular 1,3-dipolar cycloadditions of diazodione 9 with formaldehyde, alkynes or allene, which occur with high regioselectivity. Subsequent oxidative cleavage of the ring originally derived from the cyclic carbonyl ylide intermediate provides a straightforward access to polysubstituted tetrahydrofurans, and in particular an efficient entry to the nemorensic acids. Enantioselective cycloadditions with diazodione 9, using chiral rhodium catalysts, gave cycloadducts in up to 51% ee.

  11. DNA with Parallel Strand Orientation: A Nanometer Distance Study with Spin Labels in the Watson-Crick and the Reverse Watson-Crick Double Helix.

    PubMed

    Wunnicke, Dorith; Ding, Ping; Yang, Haozhe; Seela, Frank; Steinhoff, Heinz-Jürgen

    2015-10-29

    Parallel-stranded (ps) DNA characterized by its sugar-phosphate backbones pointing in the same direction represents an alternative pairing system to antiparallel-stranded (aps) DNA with the potential to inhibit transcription and translation. 25-mer oligonucleotides were selected containing only dA·dT base pairs to compare spin-labeled nucleobase distances over a range of 10 or 15 base pairs in ps DNA with those in aps DNA. By means of the copper(I)-catalyzed Huisgen-Meldal-Sharpless alkyne-azide cycloaddition, the spin label 4-azido-2,2,6,6-tetramethylpiperidine-1-oxyl was clicked to 7-ethynyl-7-deaza-2'-deoxyadenosine or 5-ethynyl-2'-deoxyuridine to yield 25-mer oligonucleotides incorporating two spin labels. The interspin distances between spin labeled residues were determined by pulse EPR spectroscopy. The results reveal that in ps DNA these distances are between 5 and 10% longer than in aps DNA when the labeled DNA segment is located near the center of the double helix. The interspin distance in ps DNA becomes shorter compared with aps DNA when one of the spin labels occupies a position near the end of the double helix.

  12. A genetically encoded and gate for cell-targeted metabolic labeling of proteins.

    PubMed

    Mahdavi, Alborz; Segall-Shapiro, Thomas H; Kou, Songzi; Jindal, Granton A; Hoff, Kevin G; Liu, Shirley; Chitsaz, Mohsen; Ismagilov, Rustem F; Silberg, Jonathan J; Tirrell, David A

    2013-02-27

    We describe a genetic AND gate for cell-targeted metabolic labeling and proteomic analysis in complex cellular systems. The centerpiece of the AND gate is a bisected methionyl-tRNA synthetase (MetRS) that charges the Met surrogate azidonorleucine (Anl) to tRNA(Met). Cellular protein labeling occurs only upon activation of two different promoters that drive expression of the N- and C-terminal fragments of the bisected MetRS. Anl-labeled proteins can be tagged with fluorescent dyes or affinity reagents via either copper-catalyzed or strain-promoted azide-alkyne cycloaddition. Protein labeling is apparent within 5 min after addition of Anl to bacterial cells in which the AND gate has been activated. This method allows spatial and temporal control of proteomic labeling and identification of proteins made in specific cellular subpopulations. The approach is demonstrated by selective labeling of proteins in bacterial cells immobilized in the center of a laminar-flow microfluidic channel, where they are exposed to overlapping, opposed gradients of inducers of the N- and C-terminal MetRS fragments. The observed labeling profile is predicted accurately from the strengths of the individual input signals.

  13. A Genetically Encoded AND Gate for Cell-Targeted Metabolic Labeling of Proteins

    PubMed Central

    Mahdavi, Alborz; Segall-Shapiro, Thomas H.; Kou, Songzi; Jindal, Granton A.; Hoff, Kevin G.; Liu, Shirley; Chitsaz, Mohsen; Ismagilov, Rustem F.; Silberg, Jonathan J.; Tirrell, David A.

    2013-01-01

    We describe a genetic AND gate for cell-targeted metabolic labeling and proteomic analysis in complex cellular systems. The centerpiece of the AND gate is a bisected methionyl-tRNA synthetase (MetRS) that charges the Met surrogate azidonorleucine (Anl) to tRNAMet. Cellular protein labeling occurs only upon activation of two different promoters that drive expression of the N- and C-terminal fragments of the bisected MetRS. Anl-labeled proteins can be tagged with fluorescent dyes or affinity reagents via either copper-catalyzed or strain-promoted azide-alkyne cycloaddition. Protein labeling is apparent within five minutes after addition of Anl to bacterial cells in which the AND gate has been activated. This method allows spatial and temporal control of proteomic labeling and identification of proteins made in specific cellular subpopulations. The approach is demonstrated by selective labeling of proteins in bacterial cells immobilized in the center of a laminar-flow microfluidic channel, where they are exposed to overlapping, opposed gradients of inducers of the N- and C-terminal MetRS fragments. The observed labeling profile is predicted accurately from the strengths of the individual input signals. PMID:23406315

  14. Synthesis, characterization, and antifungal evaluation of novel 1,2,3-triazolium-functionalized starch derivative.

    PubMed

    Tan, Wenqiang; Zhang, Jingjing; Luan, Fang; Wei, Lijie; Li, Qing; Dong, Fang; Guo, Zhanyong

    2017-08-01

    1,2,3-Triazolium-functionalized starch derivative was obtained by straightforward quaternization of the synthesized starch derivative bearing 1,2,3-triazole with benzyl bromide by combining the robust attributes of cuprous-catalyzed azide-alkyne cycloaddition. These novel starch derivatives were characterized by FTIR, UV-vis, 1 H NMR, 13 C NMR, and elemental analysis. Their antifungal activities against Colletotrichum lagenarium, Watermelon fusarium, and Phomopsis asparagi were investigated by hypha measurement in vitro. The fungicidal assessment revealed that compared with starch and starch derivative bearing 1,2,3-triazole with inhibitory indices of below 15% at 1.0mg/mL, 1,2,3-triazolium-functionalized starch derivative had superior antifungal activity with inhibitory rates of over 60%. Especially, the best inhibitory index of 1,2,3-triazolium-functionalized starch derivative against Colletotrichum lagenarium attained 90% above at 1.0mg/mL. The results obviously showed that quaternization of 1,2,3-triazole with benzyl bromide could effectively enhance antifungal activity of the synthesized starch derivatives. The synthetic strategy described here could be utilized for the development of starch as novel antifungal biomaterial. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Expedient construction of small molecule macroarrays via sequential palladium- and copper-mediated reactions and their ex situ biological testing.

    PubMed

    Frei, Reto; Breitbach, Anthony S; Blackwell, Helen E

    2012-05-01

    We report the highly efficient syntheses of a series of focused libraries in the small molecule macroarray format using Suzuki-Miyaura and copper-catalyzed azide-alkyne cycloaddition (or "click") reactions. The libraries were based on stilbene and triazole scaffolds, which are known to have a broad range of biological activities, including quorum-sensing (QS) modulation in bacteria. The library products were generated in parallel on the macroarray in extremely short reaction times (~10-20 min) and isolated in excellent purities. Biological testing of one macroarray library post-cleavage (ex situ) revealed several potent agonists of the QS receptor, LuxR, in Vibrio fischeri. These synthetic agonists, in contrast to others that we have reported, were only active in the presence of the native QS signal in V. fischeri, which is suggestive of a different mode of activity. Notably, the results presented herein showcase the ready compatibility of the macroarray platform with chemical reactions that are commonly utilized in small molecule probe and drug discovery today. As such, this work serves to expand the utility of the small molecule macroarray as a rapid and operationally straightforward approach toward the synthesis and screening of bioactive agents.

  16. Research on the structure-surface adsorptive activity relationships of triazolyl glycolipid derivatives for mild steel in HCl.

    PubMed

    Zhang, Hai-Lin; He, Xiao-Peng; Deng, Qiong; Long, Yi-Tao; Chen, Guo-Rong; Chen, Kaixian

    2012-06-01

    Triazolyl glycolipid derivatives constructed via Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition reaction (Cue-AAC) represent a new range of carbohydrate-based scaffolds for use in many fields of the chemical research. Here the surface adsorptive ability of series of our previously prepared C1- or C6-triazole linked gluco- and galactolipid derivatives for mild steel in 1 M HCl was studied via electrochemical impedance spectroscopy (EIS). Results indicated that these monosaccharide-fatty acid conjugates are weak inhibitors against HCl corrosion for mild steel. Moreover, some newly synthesized triazolyl disaccharide (maltose)-fatty alcohol conjugates failed to display enhanced activity, meaning that the structural enlargement of the sugar moiety does not favor the iron surface adsorption. However, a bis-triazolyl glycolipid derivative, which was realized by introducing a benzenesulfonamide group via Cue-AAC to the C6-position of a C1-triazolyl glucolipid analog, eventually showed significantly improved adsorptive potency compared to that of its former counterparts. The corrosion inhibitive modality of this compound for mild steel in HCl was subsequently studied via potentiodynamic polarization and thermodynamic calculations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Multiple Click-Selective tRNA Synthetases Expand Mammalian Cell-Specific Proteomics.

    PubMed

    Yang, Andrew C; du Bois, Haley; Olsson, Niclas; Gate, David; Lehallier, Benoit; Berdnik, Daniela; Brewer, Kyle D; Bertozzi, Carolyn R; Elias, Joshua E; Wyss-Coray, Tony

    2018-06-13

    Bioorthogonal tools enable cell-type-specific proteomics, a prerequisite to understanding biological processes in multicellular organisms. Here we report two engineered aminoacyl-tRNA synthetases for mammalian bioorthogonal labeling: a tyrosyl ( ScTyr Y43G ) and a phenylalanyl ( MmPhe T413G ) tRNA synthetase that incorporate azide-bearing noncanonical amino acids specifically into the nascent proteomes of host cells. Azide-labeled proteins are chemoselectively tagged via azide-alkyne cycloadditions with fluorophores for imaging or affinity resins for mass spectrometric characterization. Both mutant synthetases label human, hamster, and mouse cell line proteins and selectively activate their azido-bearing amino acids over 10-fold above the canonical. ScTyr Y43G and MmPhe T413G label overlapping but distinct proteomes in human cell lines, with broader proteome coverage upon their coexpression. In mice, ScTyr Y43G and MmPhe T413G label the melanoma tumor proteome and plasma secretome. This work furnishes new tools for mammalian residue-specific bioorthogonal chemistry, and enables more robust and comprehensive cell-type-specific proteomics in live mammals.

  18. Preparation of a Versatile Bifunctional Zeolite for Targeted Imaging Applications

    PubMed Central

    Ndiege, Nicholas; Raidoo, Renugan; Schultz, Michael K.; Larsen, Sarah

    2011-01-01

    Bifunctional zeolite Y was prepared for use in targeted in vivo molecular imaging applications. The strategy involved functionalization of the external surface of zeolite Y with chloropropyltriethoxysilane followed by reaction with sodium azide to form azide-functionalized NaY, which is amenable to copper(1) catalyzed click chemistry. In this study, a model alkyne (4-pentyn-1-ol) was attached to the azide-terminated surface via click chemistry to demonstrate feasibility for attachment of molecular targeting vectors (e.g., peptides, aptamers) to the zeolite surface. The modified particle efficiently incorporates the imaging radioisotope gallium-68 (68Ga) into the pores of the azide-functionalized NaY zeolite to form a stable bifunctional molecular targeting vector. The result is a versatile “clickable” zeolite platform that can be tailored for future in vivo molecular targeting and imaging modalities. PMID:21306141

  19. A highly sensitive protocol for microscopy of alkyne lipids and fluorescently tagged or immunostained proteins.

    PubMed

    Gaebler, Anne; Penno, Anke; Kuerschner, Lars; Thiele, Christoph

    2016-10-01

    The demand to study the cellular localization of specific lipids has led to recent advances in lipid probes and microscopy. Alkyne lipids bear a small, noninterfering tag and can be detected upon click reaction with an azide-coupled reporter. Fluorescent alkyne lipid imaging crucially depends on appropriate azide reporters and labeling protocols that allow for an efficient click reaction and therefore a sensitive detection. We synthesized several azide reporters with different spacer components and tested their suitability for alkyne lipid imaging in fixed cells. The implementation of a copper-chelating picolyl moiety into fluorescent or biotin-based azide reagents strongly increased the sensitivity of the imaging routine. We demonstrate the applicability and evaluate the performance of this approach using different lipid classes and experimental setups. As azide picolyl reporters allow for reduced copper catalyst concentrations, they also enable coimaging of alkyne lipids with multiple fluorescent proteins including enhanced green fluorescent protein. Alternatively, and as we also show, microscopy of alkyne lipids can be combined with protein detection by immunocytochemistry. In summary, we present a robust, sensitive, and highly versatile protocol for the labeling of alkyne lipids with azide-coupled reporters for fluorescence microscopy that can be combined with different protein detection and imaging techniques. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  20. Advancements in the mechanistic understanding of the copper-catalyzed azide–alkyne cycloaddition

    PubMed Central

    2013-01-01

    Summary The copper-catalyzed azide–alkyne cycloaddition (CuAAC) is one of the most broadly applicable and easy-to-handle reactions in the arsenal of organic chemistry. However, the mechanistic understanding of this reaction has lagged behind the plethora of its applications for a long time. As reagent mixtures of copper salts and additives are commonly used in CuAAC reactions, the structure of the catalytically active species itself has remained subject to speculation, which can be attributed to the multifaceted aggregation chemistry of copper(I) alkyne and acetylide complexes. Following an introductory section on common catalyst systems in CuAAC reactions, this review will highlight experimental and computational studies from early proposals to very recent and more sophisticated investigations, which deliver more detailed insights into the CuAAC’s catalytic cycle and the species involved. As diverging mechanistic views are presented in articles, books and online resources, we intend to present the research efforts in this field during the past decade and finally give an up-to-date picture of the currently accepted dinuclear mechanism of CuAAC. Additionally, we hope to inspire research efforts on the development of molecularly defined copper(I) catalysts with defined structural characteristics, whose main advantage in contrast to the regularly used precatalyst reagent mixtures is twofold: on the one hand, the characteristics of molecularly defined, well soluble catalysts can be tuned according to the particular requirements of the experiment; on the other hand, the understanding of the CuAAC reaction mechanism can be further advanced by kinetic studies and the isolation and characterization of key intermediates. PMID:24367437

  1. Curing of polymer thermosets via click reactions and on demand processes

    NASA Astrophysics Data System (ADS)

    Brei, Mark Richard

    In the first project, an azide functional resin and tetra propargyl aromatic diamines were fabricated for use as a composite matrix. These systems take already established epoxy/amine matrices and functionalize them with click moieties. This allows lower temperatures to be used in the production of a thermoset part. These new systems yield many better mechanical properties than their epoxy/amine derivatives, but their Tgs are low in comparison. The second project investigates the characterization of a linear system based off of the above azide functional resin and a difunctional alkyne. Through selectively choosing catalyst, the linear system can show regioselectivity to either a 1,4-disubstituted triazole, or a 1,5-disubstituted triazole. Without the addition of catalyst, the system produces both triazoles in almost an equal ratio. The differently catalyzed systems were cured and then analyzed by 1H and 13C NMR to better understand the structure of the material. The third project builds off of the utility of the aforementioned azide/alkyne system and introduces an on-demand aspect to the curing of the thermoset. With the inclusion of copper(II) within the azide/alkyne system, UV light is able to catalyze said reaction and cure the material. It has been shown that the copper(II) loading levels can be extremely small, which helps in reducing the copper's effect on mechanical properties The fourth project takes a look at polysulfide-based sealants. These sealants are normally cured via an oxidative reaction. This project took thiol-terminated polysulfides and fabricated alkene-terminated polysulfides for use as a thiol-ene cured material. By changing the mechanism for cure, the polysulfide can be cured via UV light with the use of a photoinitiator within the thiol/alkene polysulfide matrix. The final chapter will focus on a characterization technique, MALDI-TOF, which was used to help characterize the above materials as well as many others. By using MALDI-TOF, the researcher is able to elicit the molecular weight of the repeat unit and end group, which allows the determination of the polymer's structure. This technique can also determine the Mn and M w, as well as the PDI for each given polymer.

  2. Single-step azide introduction in proteins via an aqueous diazo transfer.

    PubMed

    van Dongen, Stijn F M; Teeuwen, Rosalie L M; Nallani, Madhavan; van Berkel, Sander S; Cornelissen, Jeroen J L M; Nolte, Roeland J M; van Hest, Jan C M

    2009-01-01

    The controlled introduction of azides in proteins provides targetable handles for selective protein manipulation. We present here an efficient diazo transfer protocol that can be applied in an aqueous solution, leading to the facile introduction of azides in the side chains of lysine residues and at the N-terminus of enzymes, e.g. horseradish peroxidase (HRP) and the red fluorescent protein DsRed. The effective introduction of azides was verified by mass spectrometry, after which the azido-proteins were used in Cu(I)-catalyzed [3 + 2] cycloaddition reactions. Azido-HRP retained its catalytic activity after conjugation of a small molecule. This modified protein could also be successfully immobilized on the surface of an acetylene-covered polymersome. Azido-DsRed was coupled to an acetylene-bearing protein allowing it to act as a fluorescent label, demonstrating the wide applicability of the diazo transfer procedure.

  3. Synthesis and characterization of cyclic polystyrene using copper-catalyzed alkyne-azide cycloaddition coupling - evaluation of physical properties and optimization of cyclization conditions

    NASA Astrophysics Data System (ADS)

    Elupula, Ravinder

    Polymers with a cyclic topology exhibit a range of unique and potentially useful physical properties, including reduced rates of degradation and increased rates of diffusion in bulk relative to linear analogs. However the synthesis of high purity cyclic polymers, and verification of their structural purity remains challenging. The copper-catalyzed azide-alkyne "click" cyclization route toward cyclic polymers has been used widely, due to its synthetic ease and its compatibility with diverse polymer backbones. Yet unoptimized click cyclization conditions have been observed to generate oligomeric byproducts. In order to optimize these cyclization conditions, and to better understand the structure of the higher molecular weight oligomers, these impurities have been isolated by size exclusion chromatography (SEC) and characterized by mass spectrometry (MS). Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-ToF) MS is a particularly valuable characterization tool and was used to determine that the high molecular weight impurities are predominantly cyclic oligomers. It should also be noted that the rapid analysis and small analyte requirements of this MS technique make it particularly attractive as a general tool for elucidating polymer architecture. Ability to tailor the physical properties of polymers by changing the architecture alone has garnered a lot of attention over the past few decades. Compared to their linear analogues, these novel polymer architectures behave completely different in nanoscale regime. Cyclic polymers are especially intriguing since we can compare the differences in the physical properties with that of the linear chains. One of the major physical property changes are T g-confinement effect. Using ATRP and "click chemistry" we have produced highly pure cyclic PS (c-PS) with number-average molecular weight (MW) of 3.4 kg/mol and 9.1 kg/mol. Bulk glass transition temperatures for c-PS were weakly depended on MWs. Whereas, anionically prepared A-PS had much higher reliance on the molecular weight changes for its glass transition temperature. However, in thin films, c-PS films have, within error, no confinement effect. In contrast, A-PS has seen large T g reduction with confinement. Ellipsometry analysis suggests that this invariance of the Tg-confinement effect in c-PS is a result of the weak perturbation to Tg near the free surface (i.e. the polymer-air interface). These weak perturbations are the result of the high packing efficiency of cyclic PS segments. The copper-catalyzed alkyne/azide cycloaddition (CuAAC) click reaction has been used to cyclize many linear polymers with complementary azide and alkyne end groups via unimolecular heterodifunctional approach. Cyclic polymers exhibit unique and potentially useful physical properties compared to their linear analogs, hence increasing interest in techniques for preparing this class of polymers. However, a general route for producing high purity cyclic polymers remained elusive. Prior to the discovery of "click" chemistry, it was difficult to produce highly pure cyclic polymers via the ring-closure approach, requiring extensive post-cyclization purification. However, even minor amounts of linear impurities can influence the physical properties of cyclic polymers. Thermal gradient interaction chromatography (TGIC) coupled with Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-ToF MS) allows the fractionation of cyclic polymer samples and produce valuable data for determining both the quantity and identity of linear impurities. This understanding further enables us to optimize cyclization conditions towards the goal of and efficient, general methodology for producing highly pure cyclic polymers. To solve the ever-growing energy needs of the world and capture the renewable energy that is generated sporadically, we need to create devices that can store high amounts of energy and discharge power at faster rates. While batteries do a great job in storing smaller amounts of energy, they fail in storing higher amounts of energy and cannot discharge energy at faster rates. Capacitors can provide an attractive energy storage alternative to address the problems associated with batteries. Recent advances in nanostructured capacitors have focused on perovskite ceramic nanoparticles. However, dielectric capacitors made from ceramic nanoparticles breakdown after modest loading energies. Polymers, on the other hand have high breakdown field strength. The combination of ceramic nanoparticles and the polymer materials with an appropriate nanostructure is expected to enhance the performance of the capacitors. Four different approaches were investigated to arrive at the optimal performance of a capacitor. The first one involves, a simple solvent of mixing high molecular weight polystyrene with narrow polydispersity barium titanate nanoparticles. The second one consists of creating polymer networks that can store charge. The third approach involves growing polymer chains off of the ceramic nanoparticles to ensure the polymer covers the nanoparticle surface hermetically. And the fourth approach immobilizes and embeds the nanoparticles in to polymer network.

  4. Intracellular in situ labeling of TiO 2 nanoparticles for fluorescence microscopy detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Koshonna; Thurn, Ted; Xin, Lun

    Titanium dioxide (TiO 2) nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic nanoparticles for cancer detection and treatment, drug delivery, induction of DNA double-strand breaks, and imaging of specific cells and subcellular structures. Currently, the use of optical microscopy, an imaging technique most accessible to biology and medical pathology, to detect TiO 2 nanoparticles in cells and tissues ex vivo is limited with low detection limits, while more sensitive imaging methods (transmission electron microscopy, X-ray fluorescence microscopy, etc.) have low throughput and technical and operational complications. In this paper, we describe two in situ posttreatmentmore » labeling approaches to stain TiO 2 nanoparticles taken up by the cells. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called Click chemistry, for labeling and detection of azide-conjugated TiO 2 nanoparticles with alkyneconjugated fluorescent dyes such as Alexa Fluor 488. To confirm that optical fluorescence signals of these nanoparticles match the distribution of the Ti element, we used synchrotron X-ray fluorescence microscopy (XFM) at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific XFM showed excellent overlap with the location of optical fluorescence detected by confocal microscopy. Finally and therefore, future experiments with TiO 2 nanoparticles may safely rely on confocal microscopy after in situ nanoparticle labeling using approaches described here.« less

  5. Intracellular in situ labeling of TiO 2 nanoparticles for fluorescence microscopy detection

    DOE PAGES

    Brown, Koshonna; Thurn, Ted; Xin, Lun; ...

    2017-07-19

    Titanium dioxide (TiO 2) nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic nanoparticles for cancer detection and treatment, drug delivery, induction of DNA double-strand breaks, and imaging of specific cells and subcellular structures. Currently, the use of optical microscopy, an imaging technique most accessible to biology and medical pathology, to detect TiO 2 nanoparticles in cells and tissues ex vivo is limited with low detection limits, while more sensitive imaging methods (transmission electron microscopy, X-ray fluorescence microscopy, etc.) have low throughput and technical and operational complications. In this paper, we describe two in situ posttreatmentmore » labeling approaches to stain TiO 2 nanoparticles taken up by the cells. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called Click chemistry, for labeling and detection of azide-conjugated TiO 2 nanoparticles with alkyneconjugated fluorescent dyes such as Alexa Fluor 488. To confirm that optical fluorescence signals of these nanoparticles match the distribution of the Ti element, we used synchrotron X-ray fluorescence microscopy (XFM) at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific XFM showed excellent overlap with the location of optical fluorescence detected by confocal microscopy. Finally and therefore, future experiments with TiO 2 nanoparticles may safely rely on confocal microscopy after in situ nanoparticle labeling using approaches described here.« less

  6. Anchoring TGF-β1 on biomaterial surface via affinitive interactions: Effects on spatial structures and bioactivity.

    PubMed

    Xiao, Meng; Xiao, Jiangwei; Wu, Gang; Ke, Yu; Fang, Liming; Deng, Chunlin; Liao, Hua

    2018-06-01

    Protein adsorption on biomaterial surfaces is clinically applied to increase therapeutic effects; however, this adsorption is possibly accompanied by conformational changes and results in loss of protein bioactivity or adverse reactions. In this research, a transforming growth factor β1 (TGF-β1) affinitive peptide HSNGLPL was grafted onto biopolymer surface to stabilize TGF-β1 spatial conformation after adhesion. The peptide with azide end group was combined with the propynyl pendant group on polyurethane via copper-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction. The final polymer was characterized by Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy, which indicated that the affinitive peptide was introduced to the polymer. Quartz crystal microbalance with dissipation (QCM-D) was performed to monitor TGF-β1 adsorption and desorption on the surfaces coated with polyurethane with and without peptide combination. Results showed that TGF-β1 adhered on polyurethane surface and formed a compact and rigid layer. This layer showed spatial structural change but presented a loose and diffuse layer on the peptide-grafted polyurethane surface, indicating stable spatial conformation after adherence. Similar regulations were observed on the two surfaces where BSA layer was coated in advance. In vivo animal experiments revealed that immune reactions and tissue regenerations occurred earlier on peptide-modified polyurethane than on polyurethane, which did not undergo peptide grafting. This finding confirmed that affinitive interactions may preserve TGF-β1 bioactivity on polymer surface after adsorption. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. A shortcut to high-affinity Ga-68 and Cu-64 radiopharmaceuticals: one-pot click chemistry trimerisation on the TRAP platform.

    PubMed

    Baranyai, Zsolt; Reich, Dominik; Vágner, Adrienn; Weineisen, Martina; Tóth, Imre; Wester, Hans-Jürgen; Notni, Johannes

    2015-06-28

    Due to its 3 carbonic acid groups being available for bioconjugation, the TRAP chelator (1,4,7-triazacyclononane-1,4,7-tris(methylene(2-carboxyethylphosphinic acid))) is chosen for the synthesis of trimeric bioconjugates for radiolabelling. We optimized a protocol for bio-orthogonal TRAP conjugation via Cu(I)-catalyzed Huisgen-cycloaddition of terminal azides and alkynes (CuAAC), including a detailed investigation of kinetic properties of Cu(II)-TRAP complexes. TRAP building blocks for CuAAC, TRAP(alkyne)3 and TRAP(azide)3 were obtained by amide coupling of propargylamine/3-azidopropyl-1-amine, respectively. For Cu(II) complexes of neat and triply amide-functionalized TRAP, the equilibrium properties as well as pseudo-first-order Cu(II)-transchelation, using 10 to 30 eq. of NOTA and EDTA, were studied by UV-spectrophotometry. Dissociation of any Cu(II)-TRAP species was found to be independent on the nature or excess of a competing chelator, confirming a proton-driven two-step mechanism. The respective thermodynamic stability constants (log K(ML): 19.1 and 17.6) and dissociation rates (k: 38 × 10(-6) and 7 × 10(-6) s(-1), 298 K, pH 4) show that the Cu(II) complex of the TRAP-conjugate possesses lower thermodynamic stability but higher kinetic inertness. At pH 2-3, its demetallation with NOTA was complete within several hours/days at room temperature, respectively, enabling facile Cu(II) removal after click coupling by direct addition of NOTA trihydrochloride to the CuAAC reaction mixture. Notwithstanding this, an extrapolated dissociation half life of >100 h at 37 °C and pH 7 confirms the suitability of TRAP-bioconjugates for application in Cu-64 PET (cf. t(1/2)(Cu-64) = 12.7 h). To showcase advantages of the method, TRAP(DUPA-Pep)3, a trimer of the PSMA inhibitor DUPA-Pep, was synthesized using 1 eq. TRAP(alkyne)3, 3.3 eq. DUPA-Pep-azide, 10 eq. Na ascorbate, and 1.2 eq. Cu(II)-acetate. Its PSMA affinity (IC50), determined by the competition assay on LNCaP cells, was 18-times higher than that of the corresponding DOTAGA monomer (IC50: 2 ± 0.1 vs. 36 ± 4 nM), resulting in markedly improved contrast in Ga-68-PET imaging. In conclusion, the kinetic inertness profile of Cu(II)-TRAP conjugates allows for simple Cu(II) removal after click functionalisation by means of transchelation, but also confirms their suitability for Cu-64-PET as demonstrated previously (Dalton Trans., 2012, 41, 13803).

  8. Longitudinally Controlled Modification of Cylindrical and Conical Track-Etched Poly(ethylene terephthalate) Pores Using an Electrochemically Assisted Click Reaction

    DOE PAGES

    Coceancigh, Herman; Tran-Ba, Khanh-Hoa; Siepser, Natasha; ...

    2017-09-27

    Here in this study, the longitudinally controlled modification of the inner surfaces of poly(ethylene terephthalate) (PET) track-etched pores was explored using an electrochemically assisted Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) click reaction. Cylindrical or conical PET track-etched pores were first decorated with ethynyl groups via the amidation of surface -COOH groups, filled with a solution containing Cu(II) and azide-tagged fluorescent dye, and then sandwiched between comb-shaped and planar gold electrodes. Cu(I) was produced at the comb-shaped working electrode by the reduction of Cu(II); it diffused along the pores toward the other electrode and catalyzed CuAAC between an azide-tagged fluorescent dye and amore » pore-tethered ethynyl group. The modification efficiency of cylindrical pores (ca. 1 μm in diameter) was assessed from planar and cross-sectional fluorescence microscope images of modified membranes. Planar images showed that pore modification took place only above the teeth of the comb-shaped electrode with a higher reaction yield for longer Cu(II) reduction times. Cross-sectional images revealed micrometer-scale gradient modification along the pore axis, which reflected a Cu(I) concentration profile within the pores, as supported by finite-element computer simulations. The reported approach was applicable to the asymmetric modification of cylindrical pores with two different fluorescent dyes in the opposite directions and also for the selective visualization of the tip and base openings of conical pores (ca. 3.5 μm in base diameter and ca. 1 μm in tip diameter). Lastly, the method based on electrochemically assisted CuAAC provides a controlled means to fabricate asymmetrically modified nanoporous membranes and, in the future, will be applicable for chemical separations and the development of sequential catalytic reactors.« less

  9. Longitudinally Controlled Modification of Cylindrical and Conical Track-Etched Poly(ethylene terephthalate) Pores Using an Electrochemically Assisted Click Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coceancigh, Herman; Tran-Ba, Khanh-Hoa; Siepser, Natasha

    Here in this study, the longitudinally controlled modification of the inner surfaces of poly(ethylene terephthalate) (PET) track-etched pores was explored using an electrochemically assisted Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) click reaction. Cylindrical or conical PET track-etched pores were first decorated with ethynyl groups via the amidation of surface -COOH groups, filled with a solution containing Cu(II) and azide-tagged fluorescent dye, and then sandwiched between comb-shaped and planar gold electrodes. Cu(I) was produced at the comb-shaped working electrode by the reduction of Cu(II); it diffused along the pores toward the other electrode and catalyzed CuAAC between an azide-tagged fluorescent dye and amore » pore-tethered ethynyl group. The modification efficiency of cylindrical pores (ca. 1 μm in diameter) was assessed from planar and cross-sectional fluorescence microscope images of modified membranes. Planar images showed that pore modification took place only above the teeth of the comb-shaped electrode with a higher reaction yield for longer Cu(II) reduction times. Cross-sectional images revealed micrometer-scale gradient modification along the pore axis, which reflected a Cu(I) concentration profile within the pores, as supported by finite-element computer simulations. The reported approach was applicable to the asymmetric modification of cylindrical pores with two different fluorescent dyes in the opposite directions and also for the selective visualization of the tip and base openings of conical pores (ca. 3.5 μm in base diameter and ca. 1 μm in tip diameter). Lastly, the method based on electrochemically assisted CuAAC provides a controlled means to fabricate asymmetrically modified nanoporous membranes and, in the future, will be applicable for chemical separations and the development of sequential catalytic reactors.« less

  10. A polymer supported Cu(I) catalyst for the 'click reaction' in aqueous media.

    PubMed

    Ul Islam, Rafique; Taher, Abu; Choudhary, Meenakshi; Witcomb, Michael J; Mallick, Kaushik

    2015-01-21

    Polymer stabilized monovalent copper has been synthesized using an in situ chemical transformation route and was characterized by means of different microscopic, optical and surface characterization techniques, which offered information about the chemical structure of the polymer and the morphology of the complex. The supramolecular material, Cu(i)-poly(2-aminobenzoic acid), denoted Cu(i)-pABA, showed catalytic activity for the cycloaddition reaction between terminal alkynes and azides to synthesize 1,2,3-triazoles with excellent yields. The catalyst was recovered from the reaction mixture and recycled several times without an appreciable loss of catalytic activity. The whole strategy was done under ambient conditions and in the presence of water as a solvent.

  11. Efficient enzymatic synthesis and dual-colour fluorescent labelling of DNA probes using long chain azido-dUTP and BCN dyes

    PubMed Central

    Ren, Xiaomei; El-Sagheer, Afaf H.; Brown, Tom

    2016-01-01

    A sterically undemanding azide analogue of dTTP (AHP dUTP) with an alkyl chain and ethynyl attachment to the nucleobase was designed and incorporated into DNA by primer extension, reverse transcription and polymerase chain reaction (PCR). An azide-modified 523 bp PCR amplicon with all 335 thymidines replaced by AHP dU was shown to be a perfect copy of the template from which it was amplified. Replacement of thymidine with AHP dU increases duplex stability, accounting in part for the high incorporation efficiency of the azide-modified triphosphate. Single-stranded azide-labelled DNA was conveniently prepared from PCR products by λ-exonuclease digestion and streptavidin magnetic bead isolation. Efficient fluorescent labelling of single and double-stranded DNA was carried out using dyes functionalized with bicyclo[6.1.0]non-4-yne (BCN) via the strain-promoted alkyne-azide cycloaddition (SPAAC) reaction. This revealed that the degree of labelling must be carefully controlled to achieve optimum fluorescence and avoid fluorescence quenching. Dual-coloured probes were obtained in a single tube fluorescent labelling reaction; and varying the ratios of the two dyes provides a simple method to prepare DNA probes with unique fluorescent signatures. AHP dUTP is a versatile clickable nucleotide with potentially wide applications in biology and nanotechnology including single molecule studies and synthesis of modified aptamer libraries via SELEX. PMID:26819406

  12. Purification-Free, Target-Selective Immobilization of a Protein from Cell Lysates.

    PubMed

    Cha, Jaehyun; Kwon, Inchan

    2018-02-27

    Protein immobilization has been widely used for laboratory experiments and industrial processes. Preparation of a recombinant protein for immobilization usually requires laborious and expensive purification steps. Here, a novel purification-free, target-selective immobilization technique of a protein from cell lysates is reported. Purification steps are skipped by immobilizing a target protein containing a clickable non-natural amino acid (p-azidophenylalanine) in cell lysates onto alkyne-functionalized solid supports via bioorthogonal azide-alkyne cycloaddition. In order to achieve a target protein-selective immobilization, p-azidophenylalanine was introduced into an exogenous target protein, but not into endogenous non-target proteins using host cells with amber codon-free genomic DNAs. Immobilization of superfolder fluorescent protein (sfGFP) from cell lysates is as efficient as that of the purified sfGFP. Using two fluorescent proteins (sfGFP and mCherry), the authors also demonstrated that the target proteins are immobilized with a minimal immobilization of non-target proteins (target-selective immobilization). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The high-throughput synthesis and phase characterisation of amphiphiles: a sweet case study.

    PubMed

    Feast, George C; Hutt, Oliver E; Mulet, Xavier; Conn, Charlotte E; Drummond, Calum J; Savage, G Paul

    2014-03-03

    A new method for the discovery of amphiphiles by using high-throughput (HT) methods to synthesise and characterise a library of galactose- and glucose-containing amphiphilic compounds is presented. The copper-catalysed azide–alkyne cycloaddition (CuAAC) “click” reaction between azide-tethered simple sugars and alkyne-substituted hydrophobic tails was employed to synthesise a library of compounds with systematic variations in chain length and unsaturation in a 24-vial array format. The liquid–crystalline phase behaviour was characterised in a HT manner by using synchrotron small-angle X-ray scattering (SSAXS). The observed structural variation with respect to chain parameters, including chain length and degree of unsaturation, is discussed, as well as hydration effects and degree of hydrogen bonding between head groups. The validity of our HT screening approach was verified by resynthesising a short-chain glucose amphiphile. A separate phase analysis of this compound confirmed the presence of numerous lyotropic liquid–crystalline phases.

  14. The search for new amphiphiles: synthesis of a modular, high-throughput library.

    PubMed

    Feast, George C; Lepitre, Thomas; Mulet, Xavier; Conn, Charlotte E; Hutt, Oliver E; Savage, G Paul; Drummond, Calum J

    2014-01-01

    Amphiphilic compounds are used in a variety of applications due to their lyotropic liquid-crystalline phase formation, however only a limited number of compounds, in a potentially limitless field, are currently in use. A library of organic amphiphilic compounds was synthesised consisting of glucose, galactose, lactose, xylose and mannose head groups and double and triple-chain hydrophobic tails. A modular, high-throughput approach was developed, whereby head and tail components were conjugated using the copper-catalysed azide-alkyne cycloaddition (CuAAC) reaction. The tails were synthesised from two core alkyne-tethered intermediates, which were subsequently functionalised with hydrocarbon chains varying in length and degree of unsaturation and branching, while the five sugar head groups were selected with ranging substitution patterns and anomeric linkages. A library of 80 amphiphiles was subsequently produced, using a 24-vial array, with the majority formed in very good to excellent yields. A preliminary assessment of the liquid-crystalline phase behaviour is also presented.

  15. Ferric Hydrogensulfate [Fe(HSO4)3] As a Reusable Heterogeneous Catalyst for the Synthesis of 5-Substituted-1H-Tetrazoles and Amides

    PubMed Central

    Eshghi, Hossein; Seyedi, Seyed Mohammad; Zarei, Elaheh Rahimi

    2011-01-01

    Ferric hydrogensulfate catalyzed the synthesis of 5-substituted 1H-tetrazoles via [2 + 3] cycloaddition of nitriles and sodium azide. This method has the advantages of high yields, simple methodology, and easy workup. The catalyst can be recovered by simple filtration and reused delivering good yields. Also, ferric hydrogensulfate catalyzed the hydrolysis of nitriles to primary amides under aqueous conditions. Various aliphatic and aromatic nitriles converted to the corresponding amides in good yields without any contamination with carboxylic acids. PMID:24052817

  16. Design, synthesis and biological evaluation of N-methyl-N-[(1,2,3-triazol-4-yl)alkyl]propargylamines as novel monoamine oxidase B inhibitors.

    PubMed

    Di Pietro, Ornella; Alencar, Nelson; Esteban, Gerard; Viayna, Elisabet; Szałaj, Natalia; Vázquez, Javier; Juárez-Jiménez, Jordi; Sola, Irene; Pérez, Belén; Solé, Montse; Unzeta, Mercedes; Muñoz-Torrero, Diego; Luque, F Javier

    2016-10-15

    Different azides and alkynes have been coupled via Cu-catalyzed 1,3-dipolar Huisgen cycloaddition to afford a novel family of N 1 - and C 5 -substituted 1,2,3-triazole derivatives that feature the propargylamine group typical of irreversible MAO-B inhibitors at the C4-side chain of the triazole ring. All the synthesized compounds were evaluated against human MAO-A and MAO-B. Structure-activity relationships and molecular modeling were utilized to gain insight into the structural and chemical features that enhance the binding affinity and selectivity between the two enzyme isoforms. Several lead compounds, in terms of potency (submicromolar to low micromolar range), MAO-B selective recognition, and brain permeability, were identified. One of these leads (MAO-B IC 50 of 3.54μM, selectivity MAO-A/MAO-B index of 27.7) was further subjected to reversibility and time-dependence inhibition studies, which disclosed a slow and irreversible inhibition of human MAO-B. Overall, the results support the suitability of the 4-triazolylalkyl propargylamine scaffold for exploring the design of multipotent anti-Alzheimer compounds endowed with irreversible MAO-B inhibitory activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A sensitive fluorescent sensor for quantification of alpha-fetoprotein based on immunosorbent assay and click chemistry.

    PubMed

    Xie, Qunfang; Weng, Xiuhua; Lu, Lijun; Lin, Zhenyu; Xu, Xiongwei; Fu, Caili

    2016-03-15

    A novel fluoresencent immunosensor for determination of cancer biomarkers such as alpha-fetoprotein (AFP) was designed by utilizing both the high specificity of antigen-antibody sandwich structure and the high sensitivity of the click chemistry based fluorescence detection. Instead of an enzyme or fluorophore, the CuO nanoparticles are labeled on the detection antibody, which was not susceptible to the change of the external environments. The CuO nanoparticles which were modified on the sandwich structure can be dissolved to produce Cu(2+) ions with the help of HCl and then the Cu(2+) ions were reduced by sodium ascorbate to produce Cu(+) ions which triggered the Cu(+) catalyzed alkyne-azide cycloaddition (CuAAC) reaction between the weak fluorescent compound (3-azido-7-hydroxycoumarin) and propargyl alcohol to form a strong fluorescent compound. A good linear relationship was observed between the fluorescence increase factor of the system and the concentration of AFP in the range of 0.025-5.0 ng/mL with a detection limit of 12 pg/mL (S/N=3). The proposed fluorescent sensor had been applied to detect AFP in the human serum samples and gave satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Protein and Bacterial Antifouling Behavior of Melt-Coextruded Nanofiber Mats.

    PubMed

    Kim, Si-Eun; Zhang, Cong; Advincula, Abigail A; Baer, Eric; Pokorski, Jonathan K

    2016-04-13

    Antifouling surfaces are important for biomedical devices to prevent secondary infections and mitigate the effects of the foreign body response. Herein, we describe melt-coextruded poly(ε-caprolactone) (PCL) nanofiber mats grafted with antifouling polymers. Nonwoven PCL fiber mats are produced using a multilayered melt coextrusion process followed by high-pressure hydroentanglement to yield porous patches. The resulting fiber mats show submicrometer cross-sectional fiber dimensions and yield pore sizes that were nearly uniform, with a mean pore size of 1.6 ± 0.9 μm. Several antifouling polymers, including hydrophilic, zwitterionic, and amphipathic molecules, are grafted to the surface of the mats using a two-step procedure that includes photochemistry followed by the copper-catalyzed azide-alkyne cycloaddition reaction. Fiber mats are evaluated using separate adsorption tests for serum proteins and E. coli. The results indicate that poly(oligo(ethylene glycol) methyl ether methacrylate)-co-(trifluoroethyl methacrylate) (poly(OEGMEMA-co-TFEMA)) grafted mats exhibit approximately 85% less protein adhesion and 97% less E. coli adsorption when compared to unmodified PCL fibermats. In dynamic antifouling testing, the amphiphilic fluorous polymer surface shows the highest flux and highest rejection value of foulants. The work presented within has implications on the high-throughput production of antifouling microporous patches for medical applications.

  19. Copper-catalyzed azide-alkyne cycloaddition (click chemistry)-based Detection of Global Pathogen-host AMPylation on Self-assembled Human Protein Microarrays*

    PubMed Central

    Yu, Xiaobo; Woolery, Andrew R.; Luong, Phi; Hao, Yi Heng; Grammel, Markus; Westcott, Nathan; Park, Jin; Wang, Jie; Bian, Xiaofang; Demirkan, Gokhan; Hang, Howard C.; Orth, Kim; LaBaer, Joshua

    2014-01-01

    AMPylation (adenylylation) is a recently discovered mechanism employed by infectious bacteria to regulate host cell signaling. However, despite significant effort, only a few host targets have been identified, limiting our understanding of how these pathogens exploit this mechanism to control host cells. Accordingly, we developed a novel nonradioactive AMPylation screening platform using high-density cell-free protein microarrays displaying human proteins produced by human translational machinery. We screened 10,000 unique human proteins with Vibrio parahaemolyticus VopS and Histophilus somni IbpAFic2, and identified many new AMPylation substrates. Two of these, Rac2, and Rac3, were confirmed in vivo as bona fide substrates during infection with Vibrio parahaemolyticus. We also mapped the site of AMPylation of a non-GTPase substrate, LyGDI, to threonine 51, in a region regulated by Src kinase, and demonstrated that AMPylation prevented its phosphorylation by Src. Our results greatly expanded the repertoire of potential host substrates for bacterial AMPylators, determined their recognition motif, and revealed the first pathogen-host interaction AMPylation network. This approach can be extended to identify novel substrates of AMPylators with different domains or in different species and readily adapted for other post-translational modifications. PMID:25073739

  20. Photobactericidal porphyrin-cellulose nanocrystals: synthesis, characterization, and antimicrobial properties.

    PubMed

    Feese, Elke; Sadeghifar, Hasan; Gracz, Hanna S; Argyropoulos, Dimitris S; Ghiladi, Reza A

    2011-10-10

    Adherence and survival of pathogenic bacteria on surfaces leading to concomitant transmission to new hosts significantly contributes to the proliferation of pathogens, which in turn considerably increases the threat to human health, particularly by antibiotic-resistant bacteria. Consequently, more research into effective surface disinfection and alternative materials (fabrics, plastics, or coatings) with antimicrobial and other bioactive characteristics is desirable. This report describes the synthesis and characterization of cellulose nanocrystals that were surface-modified with a cationic porphyrin. The porphyrin was appended onto the cellulose surface via the Cu(I)-catalyzed Huisgen-Meldal-Sharpless 1,3-dipolar cycloaddition having occurred between azide groups on the cellulosic surface and porphyrinic alkynes. The resulting, generally insoluble, crystalline material, CNC-Por (5), was characterized by infrared and diffusion (1)H NMR spectroscopies, gel permeation chromatography, and thermogravimetric analysis. Although only suspended, and not dissolved, in an aqueous system, CNC-Por (5) showed excellent efficacy toward the photodynamic inactivation of Mycobacterium smegmatis and Staphylococcus aureus , albeit only slight activity against Escherichia coli . The synthesis, properties, and activity of CNC-Por (5) described herein serve as a benchmark toward our overall objectives of developing novel, potent, bioactive, photobactericidal materials that are effective against a range of bacteria, with potential utilization in the health care and food preparation industries.

  1. Transition Metal Free Multicomponent approach to Stereo-enriched Cyclopentyl-isoxazoles via C-C Bond Cleavage.

    PubMed

    Kaliappan, Krishna Pillai; Subramanian, Parthasarathi

    2018-06-19

    An efficient multicomponent reaction leading to the synthesis of stereo-enriched cyclopentyl-isoxazoles from camphor derived α-oxime, alkynes and MeOH is reported. Our method involves a series of cascade transformations such as in situ generation of catalyst I(III) which catalyzes the addition MeOH into a sterically hindered ketone, oxime oxidation and α-hydroxyiminium ion rearrangement to generate in situ nitrile oxide which upon [3+2]-cycloaddition reaction with alkynes delivers regioselective products. The reaction is very selective to syn-oxime. This multicomponent approach has also been extended for the synthesis of a novel glycoconjugate, camphoric ester-isoxazole C-galactoside. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Highly K+ -Selective Fluorescent Probes for Lifetime Sensing of K+ in Living Cells.

    PubMed

    Schwarze, Thomas; Mertens, Monique; Müller, Peter; Riemer, Janine; Wessig, Pablo; Holdt, Hans-Jürgen

    2017-12-06

    The new K + -selective fluorescent probes 1 and 2 were obtained by Cu I -catalyzed 1,3-dipolar azide alkyne cycloaddition (CuAAC) reactions of an alkyne-substituted [1,3]dioxolo[4,5-f][1,3]benzodioxole (DBD) ester fluorophore with azido-functionalized N-phenylaza-18-crown-6 ether and N-(o-isopropoxy) phenylaza-18-crown-6 ether, respectively. Probes 1 and 2 allow the detection of K + in the presence of Na + in water by fluorescence enhancement (2.2 for 1 at 2000 mm K + and 2.5 for 2 at 160 mm K + ). Fluorescence lifetime measurements in the absence and presence of K + revealed bi-exponential decay kinetics with similar lifetimes, however with different proportions changing the averaged fluorescence decay times (τ f(av) ). For 1 a decrease of τ f(av) from 12.4 to 9.3 ns and for 2 an increase from 17.8 to 21.8 ns was observed. Variation of the substituent in ortho position of the aniline unit of the N-phenylaza-18-crown-6 host permits the modulation of the K d value for a certain K + concentration. For example, substitution of H in 1 by the isopropoxy group (2) decreased the K d value from >300 mm to 10 mm. 2 was chosen for studying the efflux of K + from human red blood cells (RBC). Upon addition of the Ca 2+ ionophor ionomycin to a RBC suspension in a buffer containing Ca 2+ , the fluorescence of 2 slightly rose within 10 min, however, after 120 min a significant increase was observed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Methods for the Detection, Study, and Dynamic Profiling of O-GlcNAc Glycosylation.

    PubMed

    Thompson, John W; Griffin, Matthew E; Hsieh-Wilson, Linda C

    2018-01-01

    The addition of O-linked β-N-acetylglucosamine (O-GlcNAc) to serine/threonine residues of proteins is a ubiquitous posttranslational modification found in all multicellular organisms. Like phosphorylation, O-GlcNAc glycosylation (O-GlcNAcylation) is inducible and regulates a myriad of physiological and pathological processes. However, understanding the diverse functions of O-GlcNAcylation is often challenging due to the difficulty of detecting and quantifying the modification. Thus, robust methods to study O-GlcNAcylation are essential to elucidate its key roles in the regulation of individual proteins, complex cellular processes, and disease. In this chapter, we describe a set of chemoenzymatic labeling methods to (1) detect O-GlcNAcylation on proteins of interest, (2) monitor changes in both the total levels of O-GlcNAcylation and its stoichiometry on proteins of interest, and (3) enable mapping of O-GlcNAc to specific serine/threonine residues within proteins to facilitate functional studies. First, we outline a procedure for the expression and purification of a multiuse mutant galactosyltransferase enzyme (Y289L GalT). We then describe the use of Y289L GalT to modify O-GlcNAc residues with a functional handle, N-azidoacetylgalactosamine (GalNAz). Finally, we discuss several applications of the copper-catalyzed azide-alkyne cycloaddition "click" reaction to attach various alkyne-containing chemical probes to GalNAz and demonstrate how this functionalization of O-GlcNAc-modified proteins can be used to realize (1)-(3) above. Overall, these methods, which utilize commercially available reagents and standard protein analytical tools, will serve to advance our understanding of the diverse and important functions of O-GlcNAcylation. © 2018 Elsevier Inc. All rights reserved.

  4. 3'-O-Substituted 5-(perylen-3-ylethynyl)-2'-deoxyuridines as tick-borne encephalitis virus reproduction inhibitors.

    PubMed

    Proskurin, Gleb V; Orlov, Alexey A; Brylev, Vladimir A; Kozlovskaya, Liubov I; Chistov, Alexey A; Karganova, Galina G; Palyulin, Vladimir A; Osolodkin, Dmitry I; Korshun, Vladimir A; Aralov, Andrey V

    2018-05-26

    A series of analogues of potent antiviral perylene nucleoside dUY11 with methylthiomethyl (MTM), azidomethyl (AZM) and HO-C 1-4 -alkyl-1,2,3-triazol-1,4-diyl groups at 3'-O-position as well as the two products of copper-free alkyne-azide cycloaddition of the AZM derivative were prepared and evaluated against tick-borne encephalitis virus (TBEV). Four compounds (4, 6, 8a, 8b) showed EC 50  ≤ 10 nM, thus appearing the most potent TBEV inhibitors to date. Moreover, these nucleosides have higher lipophilicity (clogP) and increased solubility in aq. DMSO vs. parent compound dUY11. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Metronidazole-triazole conjugates: Activity against Clostridium difficile and parasites

    PubMed Central

    Jarrad, Angie M.; Karoli, Tomislav; Debnath, Anjan; Tay, Chin Yen; Huang, Johnny X.; Kaeslin, Geraldine; Elliott, Alysha G.; Miyamoto, Yukiko; Ramu, Soumya; Kavanagh, Angela M.; Zuegg, Johannes; Eckmann, Lars; Blaskovich, Mark A.T.; Cooper, Matthew A.

    2015-01-01

    Metronidazole has been used clinically for over 50 years as an antiparasitic and broad-spectrum antibacterial agent effective against anaerobic bacteria. However resistance to metronidazole in parasites and bacteria has been reported, and improved second-generation metronidazole analogues are needed. The copper catalysed Huigsen azide-alkyne 1,3-dipolar cycloaddition offers a way to efficiently assemble new libraries of metronidazole analogues. Several new metronidazole-triazole conjugates (Mtz-triazoles) have been identified with excellent broad spectrum antimicrobial and antiparasitic activity targeting Clostridium difficile, Entamoeba histolytica and Giardia lamblia. Cross resistance to metronidazole was observed against stable metronidazole resistant C. difficile and G. lamblia strains. However for the most potent Mtz-triazoles, the activity remained in a therapeutically relevant window. PMID:26117821

  6. Intracellular Chemistry: Integrating Molecular Inorganic Catalysts with Living Systems.

    PubMed

    Ngo, Anh H; Bose, Sohini; Do, Loi H

    2018-03-23

    This concept article focuses on the rapid growth of intracellular chemistry dedicated to the integration of small-molecule metal catalysts with living cells and organisms. Although biological systems contain a plethora of biomolecules that can deactivate inorganic species, researchers have shown that small-molecule metal catalysts could be engineered to operate in heterogeneous aqueous environments. Synthetic intracellular reactions have recently been reported for olefin hydrogenation, hydrolysis/oxidative cleavage, azide-alkyne cycloaddition, allylcarbamate cleavage, C-C bond cross coupling, and transfer hydrogenation. Other promising targets for new biocompatible reaction discovery will also be discussed, with a special emphasis on how such innovations could lead to the development of novel technologies and chemical tools. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A Versatile Bioorthogonal Copper-free Click Chemistry Platform to Functionalize Cisplatin Prodrugs

    PubMed Central

    Pathak, Rakesh K.; McNitt, Christopher D.; Popik, Vladimir V.; Dhar, Shanta

    2015-01-01

    The ability to rationally design and construct a platform technology to develop new platinum(IV) [Pt(IV)] prodrugs with functionalities for installation of targeting moieties, delivery systems, fluorescent reporters from a single precursor with the ability to release biologically active cisplatin using well-defined chemistry is critical for discovering new platinum-based therapeutics. With limited numbers of possibilities by considering the sensitivity of Pt(IV) centers to reduction, thiols, etc, we used a strain promoted azide alkyne cycloaddition (SPAAC) approach to provide a novel platform where new functionalities can easily be installed on cisplatin prodrugs from a single Pt(IV) precursor. The ability of this platform to be incorporated in nano-delivery vehicle and conjugation to fluorescent reporters were also investigated. PMID:24756923

  8. Copper-free click-chemistry platform to functionalize cisplatin prodrugs.

    PubMed

    Pathak, Rakesh K; McNitt, Christopher D; Popik, Vladimir V; Dhar, Shanta

    2014-06-02

    The ability to rationally design and construct a platform technology to develop new platinum(IV) [Pt(IV)] prodrugs with functionalities for installation of targeting moieties, delivery systems, fluorescent reporters from a single precursor with the ability to release biologically active cisplatin by using well-defined chemistry is critical for discovering new platinum-based therapeutics. With limited numbers of possibilities considering the sensitivity of Pt(IV) centers, we used a strain-promoted azide-alkyne cycloaddition approach to provide a platform, in which new functionalities can easily be installed on cisplatin prodrugs from a single Pt(IV) precursor. The ability of this platform to be incorporated in nanodelivery vehicle and conjugation to fluorescent reporters were also investigated. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Peptide-Appended Permethylated β-Cyclodextrins with Hydrophilic and Hydrophobic Spacers

    PubMed Central

    2017-01-01

    A novel synthetic methodology, employing a combination of the strain-promoted azide–alkyne cycloaddition and maleimide–thiol reactions, for the preparation of permethylated β-cyclodextrin-linker-peptidyl conjugates is reported. Two different bifunctional maleimide cross-linking probes, the polyethylene glycol containing hydrophilic linker bicyclo[6.1.0] nonyne-maleimide and the hydrophobic 5′-dibenzoazacyclooctyne-maleimide, were attached to azide-appended permethylated β-cyclodextrin. The successfully introduced maleimide function was exploited to covalently graft a cysteine-containing peptide (Ac-Tyr-Arg-Cys-Amide) to produce the target conjugates. The final target compounds were isolated in high purity after purification by isocratic preparative reverse-phase high-performance liquid chromatography. This novel synthetic approach is expected to give access to many different cyclodextrin–linker peptides. PMID:28697600

  10. Regioselective Sequential Modification of Chitosan via Azide-Alkyne Click Reaction: Synthesis, Characterization, and Antimicrobial Activity of Chitosan Derivatives and Nanoparticles

    PubMed Central

    Sarwar, Atif; Katas, Haliza; Samsudin, Siti Noradila; Zin, Noraziah Mohamad

    2015-01-01

    Recently, the attention of researchers has been drawn toward the synthesis of chitosan derivatives and their nanoparticles with enhanced antimicrobial activities. In this study, chitosan derivatives with different azides and alkyne groups were synthesized using click chemistry, and these were further transformed into nanoparticles by using the ionotropic gelation method. A series of chitosan derivatives was successfully synthesized by regioselective modification of chitosan via an azide-alkyne click reaction. The amino moieties of chitosan were protected during derivatization by pthaloylation and subsequently unblocked at the end to restore their functionality. Nanoparticles of synthesized derivatives were fabricated by ionic gelation to form complexes of polyanionic penta-sodium tripolyphosphate (TPP) and cationic chitosan derivatives. Particle size analysis showed that nanoparticle size ranged from 181.03 ± 12.73 nm to 236.50 ± 14.32 nm and had narrow polydispersity index and positive surface charge. The derivatives and corresponding nanoparticles were evaluated in vitro for antibacterial and antifungal activities against three gram-positive and gram-negative bacteria and three fungal strains, respectively. The minimum inhibitory concentration (MIC) of all derivatives ranged from 31.3 to 250 µg/mL for bacteria and 188 to1500 µg/mL for fungi and was lower than that of native chitosan. The nanoparticles with MIC ranging from 1.56 to 25 µg/mLfor bacteria and 94 to 750 µg/mL for fungi exhibited higher activity than the chitosan derivatives. Chitosan O-(1-methylbenzene) triazolyl carbamate and chitosan O-(1-methyl phenyl sulfide) triazolyl carbamate were the most active against the tested bacterial and fungal strains. The hemolytic assay on erythrocytes and cell viability test on two different cell lines (Chinese hamster lung fibroblast cells V79 and Human hepatic cell line WRL68) demonstrated the safety; suggesting that these derivatives could be used in future medical applications. Chitosan derivatives with triazole functionality, synthesized by Huisgen 1,3-dipolar cycloaddition, and their nanoparticles showed significant enhancement in antibacterial and antifungal activities in comparison to those associated with native, non-altered chitosan. PMID:25928293

  11. Synthesis of C-glycosyl-bis-1,2,3-triazole derivatives from 3,4,6-tri-O-acetyl-D-glucal.

    PubMed

    Shamim, Anwar; Souza, Frederico B; Trossini, Gustavo H G; Gatti, Fernando M; Stefani, Hélio A

    2015-08-01

    We have developed an efficient, CuI-catalyzed, microwave-assisted method for the synthesis of bis-1,2,3-triazole derivatives starting from a 3,4,6-tri-O-acetyl-D-glucal-derived mesylate. This mesylate was obtained from 3,4,6-tri-O-acetyl-D-glucal through C-glycosidation, deprotection of acetate groups to alcohols, and selective mesylation of the primary alcohol. This mesylate moiety was then converted to an azide through a microwave-assisted method with good yield. The azide, once synthesized, was then treated with different terminal alkynes in the presence of CuI to synthesize various bis-triazoles in high yields and short reaction times.

  12. Synthesis of heteroglycoclusters by using orthogonal chemoselective ligations

    PubMed Central

    Thomas, Baptiste; Fiore, Michele; Bossu, Isabelle; Dumy, Pascal

    2012-01-01

    Summary Synthetic heteroglycoclusters are being subjected to increasing interest due to their potential to serve as selective ligands for carbohydrate-binding proteins. In this paper, we describe an expedient strategy to prepare cyclopeptides displaying well-defined distributions and combinations of carbohydrates. By using both oxime ligation and copper(I)-catalyzed alkyne–azide cycloaddition, two series of compounds bearing binary combinations of αMan, αFuc or βLac in an overall tetravalent presentation, and either 2:2 or 3:1 relative proportions, have been prepared. PMID:22509212

  13. Chemical proteomics approaches for identifying the cellular targets of natural products.

    PubMed

    Wright, M H; Sieber, S A

    2016-05-04

    Covering: 2010 up to 2016Deconvoluting the mode of action of natural products and drugs remains one of the biggest challenges in chemistry and biology today. Chemical proteomics is a growing area of chemical biology that seeks to design small molecule probes to understand protein function. In the context of natural products, chemical proteomics can be used to identify the protein binding partners or targets of small molecules in live cells. Here, we highlight recent examples of chemical probes based on natural products and their application for target identification. The review focuses on probes that can be covalently linked to their target proteins (either via intrinsic chemical reactivity or via the introduction of photocrosslinkers), and can be applied "in situ" - in living systems rather than cell lysates. We also focus here on strategies that employ a click reaction, the copper-catalysed azide-alkyne cycloaddition reaction (CuAAC), to allow minimal functionalisation of natural product scaffolds with an alkyne or azide tag. We also discuss 'competitive mode' approaches that screen for natural products that compete with a well-characterised chemical probe for binding to a particular set of protein targets. Fuelled by advances in mass spectrometry instrumentation and bioinformatics, many modern strategies are now embracing quantitative proteomics to help define the true interacting partners of probes, and we highlight the opportunities this rapidly evolving technology provides in chemical proteomics. Finally, some of the limitations and challenges of chemical proteomics approaches are discussed.

  14. Fluorine-18 labeling of an anti-HER2 VHH using a residualizing prosthetic group via a strain-promoted click reaction: Chemistry and preliminary evaluation.

    PubMed

    Zhou, Zhengyuan; Chitneni, Satish K; Devoogdt, Nick; Zalutsky, Michael R; Vaidyanathan, Ganesan

    2018-05-01

    In a previous study, we evaluated a HER2-specific single domain antibody fragment (sdAb) 2Rs15d labeled with 18 F via conjugation of a residualizing prosthetic agent that was synthesized by copper-catalyzed azide-alkyne cycloaddition (CuAAC). In order to potentially increase overall efficiency and decrease the time required for labeling, we now investigate the use of a strain-promoted azide-alkyne cycloaddition (SPAAC) between the 2Rs15d sdAb, which had been pre-derivatized with an azide-containing residualizing moiety, and an 18 F-labeled aza-dibenzocyclooctyne derivative. The HER2-targeted sdAb 2Rs15d and a nonspecific sdAb R3B23 were pre-conjugated with a moiety containing both azide- and guanidine functionalities. The thus derivatized sdAbs were radiolabeled with 18 F using an 18 F-labeled aza-dibenzocyclooctyne derivative ([ 18 F]F-ADIBO) via SPAAC, generating the desired conjugate ([ 18 F]RL-II-sdAb). For comparison, unmodified 2Rs15d was labeled with N-succinimidyl 4-guanidinomethyl-3-[ 125 I]iodobenzoate ([ 125 I]SGMIB), the prototypical residualizing agent for radioiodination. Radiochemical purity (RCP), immunoreactive fraction (IRF), HER2-binding affinity and cellular uptake of [ 18 F]RL-II-2Rs15d were assessed in vitro. Paired label biodistribution of [ 18 F]RL-II-2Rs15d and [ 125 I]SGMIB-2Rs15d, and microPET/CT imaging of [ 18 F]RL-II-2Rs15d and the [ 18 F]RL-II-R3B23 control sdAb were performed in nude mice bearing HER2-expressing SKOV-3 xenografts. A radiochemical yield of 23.9 ± 6.9% (n = 8) was achieved for the SPAAC reaction between [ 18 F]F-ADIBO and azide-modified 2Rs15d and the RCP of the labeled sdAb was >95%. The affinity (K d ) and IRF for the binding of [ 18 F]RL-II-2Rs15d to HER2 were 5.6 ± 1.3 nM and 73.1 ± 22.5% (n = 3), respectively. The specific uptake of [ 18 F]RL-II-2Rs15d by HER2-expressing BT474M1 breast carcinoma cells in vitro was 14-17% of the input dose at 1, 2, and 4 h, slightly higher than seen for co-incubated [ 125 I]SGMIB-2Rs15d. The uptake of [ 18 F]RL-II-2Rs15d in SKOV-3 xenografts at 1 h and 2 h p.i. were 5.54 ± 0.77% ID/g and 6.42 ± 1.70% ID/g, respectively, slightly higher than those for co-administered [ 125 I]SGMIB-2Rs15d (4.80 ± 0.78% ID/g and 4.78 ± 1.39% ID/g). MicroPET/CT imaging with [ 18 F]RL-II-2Rs15d at 1-3 h p.i. clearly delineated SKOV-3 tumors while no significant accumulation of activity in tumor was seen for [ 18 F]RL-II-R3B23. With the exception of kidneys, normal tissue levels for [ 18 F]RL-II-2Rs15d were low and cleared rapidly. To our knowledge, this is the first time SPAAC method has been used to label an sdAb with 18 F, especially with residualizing functionality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Circular DNA by "Bis-Click" Ligation: Template-Independent Intramolecular Circularization of Oligonucleotides with Terminal Alkynyl Groups Utilizing Bifunctional Azides.

    PubMed

    Yang, Haozhe; Seela, Frank

    2016-01-22

    A highly effective and convenient "bis-click" strategy was developed for the template-independent circularization of single-stranded oligonucleotides by employing copper(I)-assisted azide-alkyne cycloaddition. Terminal triple bonds were incorporated at both ends of linear oligonucleotides. Alkynylated 7-deaza-2'-deoxyadenosine and 2'-deoxyuridine residues with different side chains were used in solid-phase synthesis with phosphoramidite chemistry. The bis-click ligation of linear 9- to 36-mer oligonucleotides with 1,4-bis(azidomethyl)benzene afforded circular DNA in a simple and selective way; azido modification of the oligonucleotide was not necessary. Short ethynyl side chains were compatible with the circularization of longer oligonucleotides, whereas octadiynyl residues were used for short 9-mers. Compared with linear duplexes, circular bis-click constructs exhibit a significantly increased duplex stability over their linear counterparts. The intramolecular bis-click ligation protocol is not limited to DNA, but may also be suitable for the construction of other macrocycles, such as circular RNAs, peptides, or polysaccharides. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Use of Ambient Ionization High-Resolution Mass Spectrometry for the Kinetic Analysis of Organic Surface Reactions.

    PubMed

    Sen, Rickdeb; Escorihuela, Jorge; Smulders, Maarten M J; Zuilhof, Han

    2016-04-12

    In contrast to homogeneous systems, studying the kinetics of organic reactions on solid surfaces remains a difficult task due to the limited availability of appropriate analysis techniques that are general, high-throughput, and capable of offering quantitative, structural surface information. Here, we demonstrate how direct analysis in real time mass spectrometry (DART-MS) complies with above considerations and can be used for determining interfacial kinetic parameters. The presented approach is based on the use of a MS tag that--in principle--allows application to other reactions. To show the potential of DART-MS, we selected the widely applied strain-promoted alkyne-azide cycloaddition (SPAAC) as a model reaction to elucidate the effects of the nanoenvironment on the interfacial reaction rate.

  17. Methods for the selective detection of alkyne-presenting molecules and related compositions and systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdez, Carlos A.; Vu, Alexander K.

    Provided herein are methods for selectively detecting an alkyne-presenting molecule in a sample and related detection reagents, compositions, methods and systems. The methods include contacting a detection reagent with the sample for a time and under a condition to allow binding of the detection reagent to the one or more alkyne-presenting molecules possibly present in the matrix to the detection reagent. The detection reagent includes an organic label moiety presenting an azide group. The binding of the azide group to the alkyne-presenting molecules results in emission of a signal from the organic label moiety.

  18. Genetic engineering and chemical conjugation of potato virus X.

    PubMed

    Lee, Karin L; Uhde-Holzem, Kerstin; Fischer, Rainer; Commandeur, Ulrich; Steinmetz, Nicole F

    2014-01-01

    Here we report the genetic engineering and chemical modification of potato virus X (PVX) for the presentation of various peptides, proteins, and fluorescent dyes, or other chemical modifiers. Three different ways of genetic engineering are described and by these means, peptides are successfully expressed not only when the foot and mouth disease virus (FMDV) 2A sequence or a flexible glycine-serine linker is included, but also when the peptide is fused directly to the PVX coat protein. When larger proteins or unfavorable peptide sequences are presented, a partial fusion via the FMDV 2A sequence is preferable. When these PVX chimeras retain the ability to assemble into viral particles and are thus able to infect plants systemically, they can be utilized to inoculate susceptible plants for isolation of sufficient amounts of virus particles for subsequent chemical modification. Chemical modification is required for the display of nonbiological ligands such as fluorophores, polymers, and small drug compounds. We present three methods of chemical bioconjugation. For direct conjugation of small chemical modifiers to solvent exposed lysines, N-hydroxysuccinimide chemistry can be applied. Bio-orthogonal reactions such as copper-catalyzed azide-alkyne cycloaddition or hydrazone ligation are alternatives to achieve more efficient conjugation (e.g., when working with high molecular weight or insoluble ligands). Furthermore, hydrazone ligation offers an attractive route for the introduction of pH-cleavable cargos (e.g., therapeutic molecules).

  19. Synthesis and Cytotoxic Evaluation of 1H-1,2,3-Triazol-1-ylmethyl-2,3-dihydronaphtho[1,2-b]furan-4,5-diones.

    PubMed

    Chipoline, Ingrid C; Alves, Evelyne; Branco, Paola; Costa-Lotufo, Leticia V; Ferreira, Vitor F; Silva, Fernando C DA

    2018-01-01

    The 1,2-naphthoquinone compound was previously considered active against solid tumors. Moreover, glycosidase inhibitors such as 1,2,3-1H triazoles has been pointed out as efficient compounds in anticancer activity studies. Thus, a series of eleven 1,2-naphthoquinones tethered in C2 to 1,2,3-1H-triazoles 9a-k were designed, synthesized and their cytotoxic activity evaluated using HCT-116 (colon adenocarcinoma), MCF-7 (breast adenocarcinoma) and RPE (human nontumor cell line from retinal epithelium). The chemical synthesis was performed from C-3 allylation of lawsone followed by iodocyclization with subsequent nucleophilic displacement with sodium azide and, finally, the 1,3-dipolar cycloaddition catalyzed by Cu(I) with terminal alkynes led to the formation of 1H-1,2,3-Triazol-1-ylmethyl-2,3-dihydronaphtho[1,2-b]furan-4,5-diones in good yields. Compounds containing aromatic group linked to 1,2,3-triazole ring (9c, 9d, 9e, 9i) presented superior cytotoxic activity against cancer cell lines with IC50 in the range of 0.74 to 4.4 µM indicating that the presence of aromatic rings substituents in the 1,2,3-1H-triazole moiety is probably responsible for the improved cytotoxic activity.

  20. Amphiphilic graft copolymers from end-functionalized starches: synthesis, characterization, thin film preparation, and small molecule loading.

    PubMed

    Ryno, Lisa M; Reese, Cassandra; Tolan, McKenzie; O'Brien, Jeffrey; Short, Gabriel; Sorriano, Gerardo; Nettleton, Jason; Fulton, Kayleen; Iovine, Peter M

    2014-08-11

    End-functionalized macromolecular starch reagents, prepared by reductive amination, were grafted onto a urethane-linked polyester-based backbone using copper-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry to produce novel amphiphilic hybrid graft copolymers. These copolymers represent the first examples of materials where the pendant chains derived from starch biopolymers have been incorporated into a host polymer by a grafting-to approach. The graft copolymers were prepared in good yields (63-90%) with high grafting efficiencies (66-98%). Rigorous quantitative spectroscopic analyses of both the macromolecular building blocks and the final graft copolymers provide a comprehensive analytical toolbox for deciphering the reaction chemistry. Due to the modular nature of both the urethane-linked polyester synthesis and the postpolymerization modification, the starch content of these novel hybrid graft copolymers was easily tuned from 28-53% (w/w). The uptake of two low molecular weight guest molecules into the hybrid polymer thin films was also studied. It was found that binding of 1-naphthol and pterostilbene correlated linearly with amount of starch present in the hybrid polymer. The newly synthesized graft copolymers were highly processable and thermally stable, therefore, opening up significant opportunities in film and coating applications. These results represent a proof-of-concept system for not only the construction of starch-containing copolymers, but also the loading of these novel polymeric materials with active agents.

  1. Synthesis of Fucosylated Chondroitin Sulfate Glycoclusters: A Robust Route to New Anticoagulant Agents.

    PubMed

    Zhang, Xiao; Yao, Wang; Xu, Xiaojiang; Sun, Huifang; Zhao, Jinhua; Meng, Xiangbao; Wu, Mingyi; Li, Zhongjun

    2018-02-01

    Fucosylated chondroitin sulfate (FuCS) is a structurally distinct glycosaminoglycan with excellent anticoagulant activity. Studies show that FuCS and its depolymerized fragments exhibit a different anticoagulant mechanism from that of heparin derivatives, with decreased risks of adverse effects and bleeding. However, further exploitation has been hindered by the scarcity of structurally defined oligosaccharides. Herein, facile method is reported for the synthesis of the repeating trisaccharide unit of FuCS based on the degradation of chondroitin sulfate polymers. A series of simplified FuCS glycomimetics that have highly tunable structures, controllable branches, and defined sulfation motifs were generated by copper-catalyzed alkyne-azide cycloaddition. Remarkable improvement in activated partial thromboplastin time (APTT) assay activities was observed as the branches increased, but no significant influences were observed for prothrombin time (PT) and thrombin time (TT) assay activities. Further FXase inhibition tests suggested that glycoclusters 33 b-40 b selectively inhibited intrinsic anticoagulant activities, but had little effect on the extrinsic and common coagulation pathways. Notably, glycoclusters with the 2,4-di-O-sulfated fucosyl residue displayed the most potency, which was in consistent with that of natural polysaccharides. These FuCS clusters demonstrated potency to mimic linear glycosaminoglycans and offer a new framework for the development of novel anticoagulant agents. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Layer-by-Layer Fabrication of Porphyrin Multilayer Films via Copper(I)-Catalyzed Azide-Alkyne Cycloaddition: Film Properties and Applications in Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Palomaki, Peter Karl Bunk

    Solar energy may be the only renewable source of energy available to the human race that could provide the energy we require while at the same time minimizing negative impacts on the planet and population. These characteristics may be instrumental in diminishing the potential for societal conflict. In order for photovoltaic devices to succeed on a global scale, research and development must lead to reduced costs and/or increased efficiency. Dye-Sensitized Solar Cells (DSSCs) are one class of nextgeneration photovoltaic technologies with the potential to realize these goals. Herein, I describe efforts towards developing a new light harvesting array of chromophores assembled on oxide substrates using copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC or ‘click’ chemistry) that could prove useful in improving DSCC performance while maintaining low cost and simple fabrication. Specifically, molecular multilayers of porphyrin-based chromophores have been fabricated via sequential selflimiting CuAAC reactions to generate multilayered light harvesting films. Films of synthetic porphyrins, perylenes, and mixtures of the two are constructed in order to highlight the versatility of this molecular layer-by-layer (LbL) technique. Characterization in the form of electrochemical techniques, UV-Visible spectroscopy, infrared spectroscopy (IR), and water contact angle all indicate that the films are reacting as expected. Film thickness and morphology are investigated using X-ray reflectivity showing that film growth displays a high degree of linearity, while the roughness increases with thickness. Growth angles based on the porphyrin plane are estimated via a comparison of molecular models and experimentally determined thickness measurements. A more finite measurement of growth angle (and as a result the primary bonding mode) is determined by grazing angle IR spectroscopy. Blocking layer studies suggest that the films could be useful as a self-passivating layer in DSSCs to reduce recombination effects and improve DSSC device efficiency. Porphyrin light harvesting films assembled on ITO show a cathodic photocurrent when assembled in a DSSC device. Cobalt2+/3+ and I- /I3- redox mediators are commonly used in DSSCs as an electron shuttle. Experiments with cobalt2+/3+ redox mediators as well as I-/I3- provide an initial benchmark for the performance of unoptimized solar cells with multilayered porphyrin sensitizer films. Devices operating with I -/I3- show the largest photocurrents, but low open circuit potentials. Devices using cobalt2+/3+ result in lower photocurrents but greater operating potentials than I-/I 3-. For all redox mediators tested, photocurrent increases with the addition of porphyrin layers beyond a monolayer. However, photocurrent reaches a maximum value at a point greater than one layer, after which it decreases. This demonstrates that multilayered porphyrin light harvesting films can be beneficial to improving DSSC performance but optimal film thickness (number of layers) is dependent on the redox mediator. This facile and versatile technique for creating molecular multilayer films may have implications in light harvesting materials, sensors, and molecular electronics. It could be amenable to large scale roll-to-roll processing which would be advantageous for applications requiring large surface area depositions. In summary, these techniques allow for simple and rapid evaluation of numerous molecular components in light harvesting arrays that could lead to much needed breakthroughs in solar applications.

  3. Design and synthesis via click chemistry of 8,9-anhydroerythromycin A 6,9-hemiketal analogues with anti-MRSA and -VRE activity.

    PubMed

    Sugawara, Akihiro; Sunazuka, Toshiaki; Hirose, Tomoyasu; Nagai, Kenichiro; Yamaguchi, Yukie; Hanaki, Hideaki; Sharpless, K Barry; Omura, Satoshi

    2007-11-15

    An erythromycin analogue, 11,12-di-O-iso-butyryl-8,9-anhydroerythromycin A 6,9-hemiketal (1b), was found to be a potential anti-MRSA and anti-VRE agent. The use of copper catalyzed azide-acetylene cycloaddition, and click chemistry, readily provided 10 types of triazole analogues of 1b in good to nearly quantitative yield. Among the library, 5b exhibited activity against MRSA and VRE bacterial strains, representing more than twice the potency of 1b.

  4. Utilizing copper(I) catalyzed azide-alkyne Huisgen 1,3-dipolar cycloaddition for the surface modification of colloidal particles with electroactive and emissive moieties

    NASA Astrophysics Data System (ADS)

    Rungta, Parul

    The development of charge-transporting and fluorescing colloidal particles that can be directly printed into electroluminescent devices may result in a broad impact on the use of electrical energy for illumination. The objective of this work was to design and synthesize electroactive & fluorescing colloidal particles; establish their optical, electronic, and thermodynamic properties; and transition them into a device format for potential applications. The original intended application of this work was to build "better" colloidally-based organic light emitting devices (OLEDs) by creating functional particles with superior electrical and optical performance relative to commercially available technologies, but through the course of the research, the particles that were developed were found to be better suited for medical applications. Nonetheless, the global objective envisioned at the onset of this research was consistent with its final outcomes. The research tasks pursued to accomplish this global objective included: (1) The design and synthesis of electroactive moieties and their conversion into organic light emitting devices; An electron-transporting monomer was synthesized that was structurally & energetically similar to the small molecule 2-biphenyl-4-yl-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (tBu-PBD). The monomer was copolymerized with 2-(9H-carbazol-9-yl)ethyl 2-methylacrylate (CE) and the resulting copolymer was utilized in OLEDs which employed fluorescent coumarin 6 (C6) or phosphorescent tris(2-phenylpyridine)iridium(III) [Ir(ppy)3] emitters. The copolymer devices exhibited a mean luminance of ca. 400 and 3,552 cd/m2 with the C6 and Ir(ppy)3 emitters, that were stable with thermal aging at temperatures ranging from 23°C to 130°C. Comparable poly(9-vinyl-9H-carbazole)/tBu-PBD blend devices exhibited more pronounced variations in performance with thermal aging. (2) The surface-modification of colloids with electroactive & fluorescing moieties via "click" chemistry; Aqueous-phase 83 nm poly(propargyl acrylate) (PA) nanoparticles were surface-functionalized with sparingly water soluble fluorescent moieties through a copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) (i.e., "click" transformation) to produce fluoroprobes with a large Stokes shift. For moieties which could not achieve extensive surface coverage on the particles utilizing a standard click transformation procedure, the presence of beta-cyclodextrin (beta-CD) during the transformation enhanced the grafting density onto the particles. For an oxadiazole containing molecule (AO), an azide-modified coumarin 6 (AD1) and a polyethylene glycol modified naphthalimide-based emitter (AD2), respectively, an 84%, 17% and 5% increase in the grafting densities were observed, when the transformation was performed in the presence of beta-CD. In contrast, a carbazolyl-containing moiety (AC) exhibited a slight retardation in the final grafting density when beta-CD was employed. Photoluminescence studies indicated that AC & AO when attached to the particles form an exciplex. An efficient energy transfer from the exciplex to the surface attached AD2 resulted in a total Stokes shift of 180 nm for the modified particles. (3) The synthesis and characterization of near-infrared (NIR) emitting particles for potential applications in cancer therapy. PA particles were surface modified through the "click" transformation of an azide-terminated indocyanine green (azICG), an NIR emitter, and poly(ethylene glycol) (azPEG) chains of various molecular weights. The placement of azICG onto the surface of the particles allowed for the chromophores to complex with bovine serum albumin (BSA) when dispersed in PBS that resulted in an enhancement of the dye emission. In addition, the inclusion of azPEG with the chromophores onto the particle surface resulted in a synergistic nine-fold enhancement of the fluorescence intensity, with azPEGs of increasing molecular weight amplifying the response. Preliminary photodynamic therapy (PDT) studies with human liver carcinoma cells (HepG2) combined with the modified particles indicated that a minor exposure of 780 nm radiation resulted in a statistically significant reduction in cell growth.

  5. Spherical Nucleic Acids: A New Form of DNA

    NASA Astrophysics Data System (ADS)

    Cutler, Joshua Isaac

    Spherical Nucleic Acids (SNAs) are a new class of nucleic acid-based nanomaterials that exhibit unique properties currently being explored in the contexts of gene-based cancer therapies and in the design of programmable nanoparticle-based materials. The properties of SNAs differ from canonical, linear nucleic acids by virtue of their dense packing into an oriented 3-dimensional array. SNAs can be synthesized from a number of useful nanoparticle templates, such as plasmonic gold and silver, magnetic oxides, luminescent semi-conductor quantum dots, and silica. In addition, by crosslinking the oligonucleotides and dissolving the core, they can be made in a hollow form as well. This dissertation describes the evolution of SNAs from initial studies of inorganic nanoparticle-based materials densely functionalized with oligonucleotides to the proving of a hypothesis that their unique properties can be observed in a core-less structure if the nucleic acids are densely packed and highly oriented. Chapter two describes the synthesis of densely functionalized polyvalent oligonucleotide superparamagnetic iron oxide nanoparticles using the copper-catalyzed azide-alkyne cycloaddition reaction. These particles are shown to exhibit cooperative binding in a density- and salt concentration-dependent fashion, with nearly identical behaviors to those of SNA-functionalized gold nanoparticles. Importantly, these particles are the first non-gold particles shown to be capable of entering cells in high numbers via the SNA-mediated cellular uptake pathway, and provided the first evidence that SNA-mediated cellular uptake is core-independent. In the third chapter, a gold nanoparticle catalyzed alkyne cross-linking reaction is described that is capable of forming hollow organic nanoparticles using polymers with alkyne-functionalized backbones. With this method, the alkyne-modified polymers adsorb to the particle surfaces, cross-link on the surface, allowing the gold nanoparticle to be subsequently dissolved oxidatively with KCN or Iodine. The reaction pathway is analyzed through characterization of the reaction progression and resulting products, and a mechanistic pathway is proposed. This is the first report of a gold nanoparticle catalyzed reaction involving the conversion of propargyl ethers to terminal alcohols, which can subsequently cross-link if densely arranged on a gold nanoparticle surface. Importantly, these structures can be synthesized using gold nanoparticles of a range of sizes, thereby providing control over the size and properties of the resulting crosslinked particle. Chapter four returns to the topic of SNAs and builds upon the chemistry of chapter three culminating in the synthesis of cross-linked hollow SNA nanoparticles. These structures are formed by the cross-linking of synthetically modified alkyne-bearing oligonucleotides through the pathway described in chapter three. When the gold core is dissolved, the resulting hollow SNAs exhibit nearly identical binding, nuclease resistance, cellular uptake, and gene regulation properties of SNA-gold nanoparticle conjugates. Indeed, this chapter demonstrates that the unique properties of SNA-nanoparticle conjugates are core-independent and stem solely from the dense ensemble of oligonucleotides arranged on their surfaces. The fifth chapter further asserts the synthetic achievements made in chapter four by showing how hollow SNAs can be substituted for SNA-gold nanoparticles in the context of DNA-programmable assembly. In this case, they can be used as building blocks within binary synthetic schemes to synthesize unique nanoparticle superlattices. It bolsters the design rules of DNA-programmable assembly by showing that the predicted structures form based on the behavior of SNA hybridization, and are universal for any SNA-functionalized nanoparticle.

  6. An Efficient and Straightforward Method for Radiolabeling of Nanoparticles with {sup 64}Cu via Click Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dong-Eun; Kim, Kwangmeyung; Park, Sang Hyun

    2015-07-01

    Recently, nanoparticles have received a great deal of interest in diagnosis and therapy applications. Since nanoparticles possess intrinsic features that are often required for a drug delivery system and diagnosis, they have potential to be used as platforms for integrating imaging and therapeutic functions, simultaneously. Intrinsic issues that are associated with theranostic nanoparticles, particularly in cancer treatment, include an efficient and straightforward radiolabeling method for understanding the in vivo biodistribution of nanoparticles to reach the tumor region, and monitoring therapeutic responses. Herein, we investigated a facile and highly efficient strategy to prepare radiolabeled nanoparticles with {sup 64}Cu via a strain-promotedmore » azide, i.e., an alkyne cycloaddition strategy, which is often referred to as click chemistry. First, the azide (N3) group, which allows for the preparation of radiolabeled nanoparticles by copper-free click chemistry, was incorporated into glycol chitosan nanoparticles (CNPs). Second, the strained cyclooctyne derivative, dibenzyl cyclooctyne (DBCO) conjugated with a 1,4,7,10-tetraazacyclododecane- 1,4,7,10-tetraacetic acid (DOTA) chelator, was synthesized for preparing the pre-radiolabeled alkyne complex with {sup 64}Cu radionuclide. Following incubation with the {sup 64}Cu-radiolabeled DBCO complex (DBCO-PEG4-Lys-DOTA-{sup 64}Cu with high specific activity, 18.5 GBq/μ mol), the azide-functionalized CNPs were radiolabeled successfully with {sup 64}Cu, with a high radiolabeling efficiency and a high radiolabeling yield (>98%). Importantly, the radiolabeling of CNPs by copper-free click chemistry was accomplished within 30 min, with great efficiency in aqueous conditions. After {sup 64}Cu-CNPs were intravenously administered to tumor-bearing mice, the real time, in vivo biodistribution and tumor-targeting ability of {sup 64}Cu-CNPs were quantitatively evaluated by micro-PET images of tumor-bearing mice. These results demonstrate the benefit of copper-free click chemistry as a facile, pre-radiolabeling approach to Medical sciences conveniently radiolabel nanoparticles for evaluating the real-time in vivo biodistribution of nanoparticles. (authors)« less

  7. Development of a general methodology for labelling peptide-morpholino oligonucleotide conjugates using alkyne-azide click chemistry.

    PubMed

    Shabanpoor, Fazel; Gait, Michael J

    2013-11-11

    We describe a general methodology for fluorescent labelling of peptide conjugates of phosphorodiamidate morpholino oligonucleotides (PMOs) by alkyne functionalization of peptides, subsequent conjugation to PMOs and labelling with a fluorescent compound (Cy5-azide). Two peptide-PMO (PPMO) examples are shown. No detrimental effect of such labelled PMOs was seen in a biological assay.

  8. Fluorogenic Strain-Promoted Alkyne-Diazo Cycloadditions

    PubMed Central

    Friscourt, Frédéric; Fahrni, Christoph J.; Boons, Geert-Jan

    2016-01-01

    Fluorogenic reactions in which non- or weakly-fluorescent reagents produce highly fluorescent products are attractive for detecting a broad range of compounds in the fields of bio-conjugation and material sciences. We report here that Fl-DIBO, a dibenzocyclooctyne derivative modified with a cyclopropenone moiety, can undergo fast strain-promoted cycloadditions under catalyst-free conditions with azides, nitrones, nitrile oxides as well as mono- and disubstituted diazo-derivatives. While the reaction with nitrile oxides, nitrones and disubstituted diazo compounds gave cycloadducts with low quantum yield, monosubstituted diazo reagents produced 1H-pyrazole derivatives that exhibited a ~160-fold fluorescence enhancement over Fl-DIBO combined with a greater than 10,000-fold increase in brightness. Concluding from quantum chemical calculations, fluorescence quenching of 3H-pyrazoles, which are formed by reaction with disubstituted diazo-derivatives, is likely due to the presence of energetically low-lying (n,π*) states. The fluorogenic probe Fl-DIBO was successfully employed for the labeling of diazo-tagged proteins without detectable background signal. Diazo-derivatives are emerging as attractive reporters for the labeling of biomolecules and the studies presented here demonstrate that Fl-DIBO can be employed for visualizing such biomolecules without the need for probe washout. PMID:26330090

  9. Double quick, double click reversible peptide "stapling".

    PubMed

    Grison, Claire M; Burslem, George M; Miles, Jennifer A; Pilsl, Ludwig K A; Yeo, David J; Imani, Zeynab; Warriner, Stuart L; Webb, Michael E; Wilson, Andrew J

    2017-07-01

    The development of constrained peptides for inhibition of protein-protein interactions is an emerging strategy in chemical biology and drug discovery. This manuscript introduces a versatile, rapid and reversible approach to constrain peptides in a bioactive helical conformation using BID and RNase S peptides as models. Dibromomaleimide is used to constrain BID and RNase S peptide sequence variants bearing cysteine (Cys) or homocysteine ( h Cys) amino acids spaced at i and i + 4 positions by double substitution. The constraint can be readily removed by displacement of the maleimide using excess thiol. This new constraining methodology results in enhanced α-helical conformation (BID and RNase S peptide) as demonstrated by circular dichroism and molecular dynamics simulations, resistance to proteolysis (BID) as demonstrated by trypsin proteolysis experiments and retained or enhanced potency of inhibition for Bcl-2 family protein-protein interactions (BID), or greater capability to restore the hydrolytic activity of the RNAse S protein (RNase S peptide). Finally, use of a dibromomaleimide functionalized with an alkyne permits further divergent functionalization through alkyne-azide cycloaddition chemistry on the constrained peptide with fluorescein, oligoethylene glycol or biotin groups to facilitate biophysical and cellular analyses. Hence this methodology may extend the scope and accessibility of peptide stapling.

  10. RGD-conjugated rod-like viral nanoparticles on 2D scaffold improved bone differentiation of mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Pongkwan, Sitasuwan; Lee, L.; Li, Kai; Nguyen, Huong

    2014-05-01

    Viral nanoparticles have uniform and well-defined nano-structures and can be produced in large quantities. Several plant viral nanoparticles have been tested in biomedical applications due to the lack of mammalian cell infectivity. We are particularly interested in using Tobacco mosaic virus (TMV), which has been demonstrated to enhance bone tissue regeneration, as a tuneable nanoscale building block for biomaterials development. Unmodified TMV particles have been shown to accelerate osteogenic differentiation of adult stem cells by synergistically upregulating BMP2 and IBSP expression with dexamethasone. However, the lack of affinity to mammalian cell surface resulted in low initial cell adhesion. In this study, to increase cell binding capacity of TMV based material the chemical functionalization of TMV with arginine-glycine-aspartic acid (RGD) peptide was explored. An azide-derivatized RGD peptide was “clicked” to tyrosine residues on TMV outer surface via an efficient copper(I) catalysed azide-alkyne cycloaddition reaction. The ligand spacing is calculated to be 2-4 nm, which could offer a polyvalent ligand clustering effect for enhanced cell receptor signalling, further promoting the proliferation and osteogenic differentiation of bone marrow derived mesenchymal stem cells.

  11. A Diverging DOS Strategy Using an Allene-Containing Tryptophan Scaffold and a Library Design that Maximizes Biologically Relevant Chemical Space While Minimizing the Number of Compounds

    PubMed Central

    Painter, Thomas O.; Wang, Lirong; Majumder, Supriyo; Xie, Xiang-Qun; Brummond, Kay M.

    2011-01-01

    A diverging diversity-oriented synthesis (DOS) strategy using an allene-containing tryptophan as a key starting material was investigated. An allene-yne substituted derivative of tryptophan 12 gave indolylmethylazabicyclooctadiene 17 when subjected to a microwave-assisted allenic [2 + 2] cycloaddition reaction. This same tryptophan-derived precursor afforded an indolylmethyldihydrocyclopentapyridinone 14 when subjected to a rhodium(I)-catalyzed cyclocarbonylation reaction and an indolylmethylpyrrolidinocyclopentenones 16 when reacted with molybdenum hexacarbonyl. Construction of allenic tetrahydro-β-carboline scaffolds via a Pictet-Spengler reaction and subsequent silver(I)-catalyzed cycloisomerization afforded tetrahydroindolizinoindoles (21). Attachment of allene and alkyne groups to the tetrahydro-β-carboline followed by a microwave-assisted allenic [2 + 2] cycloaddition reaction provided tetrahydrocyclobutaindoloquinolizinones 24 and the tetrahydrocyclopentenone indolizinoindolone 26 when reacted with molybdenum hexacarbonyl. These six scaffolds were used as a template for the construction of a virtual library of 11,748 compounds employing 44 indoles, 12 aldehydes, and 51 alkynes. Diversity analyses using a combination of cell-based chemistry space computations using BCUT (Burden (B) CAS (C) Pearlman at the University of Texas (UT)) metrics and Tanimoto coefficient (Tc) similarity calculations using two-dimensional (2D) fingerprints showed that the compounds in the virtual library occupied new chemical space when compared to the 327,000 compounds in the molecular libraries small molecule repository (MLSMR). A subset of fifty-three compounds was identified from the virtual library using the DVS package of Sybyl 8.0; this subset represents the most diverse compounds within the chemical space defined by these compounds and will be synthesized and screened for biological activity. PMID:21332123

  12. Glycotriazole-peptides derived from the peptide HSP1: synergistic effect of triazole and saccharide rings on the antifungal activity.

    PubMed

    Junior, Eduardo F C; Guimarães, Carlos F R C; Franco, Lucas L; Alves, Ricardo J; Kato, Kelly C; Martins, Helen R; de Souza Filho, José D; Bemquerer, Marcelo P; Munhoz, Victor H O; Resende, Jarbas M; Verly, Rodrigo M

    2017-08-01

    This work proposes a strategy that uses solid-phase peptide synthesis associated with copper(I)-catalyzed azide alkyne cycloaddition reaction to promote the glycosylation of an antimicrobial peptide (HSP1) containing a carboxyamidated C-terminus (HSP1-NH 2 ). Two glycotriazole-peptides, namely [p-Glc-trz-G 1 ]HSP1-NH 2 and [p-GlcNAc-trz-G 1 ]HSP1-NH 2 , were prepared using per-O-acetylated azide derivatives of glucose and N-acetylglucosamine in the presence of copper(II) sulfate pentahydrate (CuSO 4 ·5H 2 O) and sodium ascorbate as a reducing agent. In order to investigate the synergistic action of the carbohydrate motif linked to the triazole-peptide structure, a triazole derivative [trz-G 1 ]HSP1-NH 2 was also prepared. A set of biophysical approaches such as DLS, Zeta Potential, SPR and carboxyfluorescein leakage from phospholipid vesicles confirmed higher membrane disruption and lytic activities as well as stronger peptide-LUVs interactions for the glycotriazole-peptides when compared to HSP1-NH 2 and to its triazole derivative, which is in accordance with the performed biological assays: whereas HSP1-NH 2 presents relatively low and [trz-G 1 ]HSP1-NH 2 just moderate fungicidal activity, the glycotriazole-peptides are significantly more effective antifungal agents. In addition, the glycotriazole-peptides and the triazole derivative present strong inhibition effects on ergosterol biosynthesis in Candida albicans, when compared to HSP1-NH 2 alone. In conclusion, the increased fungicidal activity of the glycotriazole-peptides seems to be the result of (A) more pronounced membrane-disruptive properties, which is related to the presence of a saccharide ring, together with (B) the inhibition of ergosterol biosynthesis, which seems to be related to the presence of both the monosaccharide and the triazole rings.

  13. Ternary mixed-mode silica sorbent of solid-phase extraction for determination of basic, neutral and acidic drugs in human serum.

    PubMed

    Jin, Shupei; Qiao, Yinghua; Xing, Jun

    2018-06-01

    In this study, a ternary mixed-mode silica sorbent (TMSS) with octamethylene, carboxyl, and amino groups was prepared via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction and a subsequent reduction of azide to primary amine. While used in solid-phase extraction (SPE), the retention behavior of TMSS towards a total of nine kinds of basic, neutral, and acidic drugs was investigated in detail. The results revealed that hydrophobic, ion-exchange interaction, and electrostatic repulsion between TMSS and the analytes were closely related to the retention behavior of TMSS. Besides, the log K ow value of the analyte was also a factor influencing the retention behavior of analytes on TMSS. The nine analytes could be retained by TMSS simultaneously and then, were eluted into two fractions according to the acid-base property of the analytes for further determinations. The acidic and neutral analytes were in one fraction, and the basic ones in the other fraction. When used to treat the human serum spiked with the nine drugs, TMSS offered higher recoveries than BakerBond CBA and comparable recoveries to Oasis WCX. It should be noted TMSS had better purifying capability for human serum than Oasis WCX. Under the optimized SPE conditions, a method of SPE hyphenated to high-performance liquid chromatography-ultraviolet detection (HPLC-UV) for determination of the basic, neutral, and acidic drugs spiked in human serum was established. For the nine drugs, the linear ranges were all between 5.0 and 1000 μg L -1 with correlation coefficients (R 2 ) above 0.9990, and the limits of detection (LODs) were in the range of 0.8-2.3 μg L -1 . The intra-day and inter-day relative standard deviations (RSDs) were less than 5.3 and 8.8%, respectively. Graphical abstract Treating drugs in human serum by SPE with ternary mixed-mode silica sorbent.

  14. Engineering single-molecule, nanoscale, and microscale bio-functional materials via click chemistry

    NASA Astrophysics Data System (ADS)

    Daniele, Michael Angelo-Anthony

    To expand the design envelope and supplement the materials library available to biomaterials scientists, the copper(I)-catalyzed azide-alkyne cycloaddition (CuCAAC) was explored as a route to design, synthesize and characterize bio-functional small-molecules, nanoparticles, and microfibers. In each engineered system, the use of click chemistry provided facile, bio-orthogonal control for materials synthesis; moreover, the results provided a methodology and more complete, fundamental understanding of the use of click chemistry as a tool for the synergy of biotechnology, polymer and materials science. Fluorophores with well-defined photophysical characteristics (ranging from UV to NIR fluorescence) were used as building blocks for small-molecule, fluorescent biosensors. Fluorophores were paired to exhibit fluorescence resonant energy transfer (FRET) and used to probe the metabolic activity of carbazole 1,9a-dioxygenase (CARDO). The FRET pair exhibited a significant variation in PL response with exposure to the lysate of Pseudomonas resinovorans CA10, an organism which can degrade variants of both the donor and acceptor fluorophores. Nanoparticle systems were modified via CuCAAC chemistry to carry affinity tags for CARDO and were subsequently utilized for affinity based bioseparation of CARDO from crude cell lysate. The enzymes were baited with an azide-modified carbazolyl-moiety attached to a poly(propargyl acrylate) nanoparticle. Magnetic nanocluster systems were also modified via CuCAAC chemistry to carry fluorescent imaging tags. The iron-oxide nanoclusters were coated with poly(acrylic acid-co-propargyl acrylate) to provide a clickable surface. Ultimately, alternate Cu-free click chemistries were utilized to produce biohybrid microfibers. The biohybrid microfibers were synthesized under benign photopolymerization conditions inside a microchannel, allowing the encapsulation of viable bacteria. By adjusting pre-polymer solutions and laminar flow rates within the microchannel, the morphology, hydration, and thermal properties of the fibers were easily tuned. The methodology produced hydrogel fibers that sustained viable cells as demonstrated by the encapsulation and subsequent proliferation of Bacillus cereus and Escherichia coli communities.

  15. Efficient synthesis of a fluorine-18 labeled biotin derivative.

    PubMed

    Claesener, Michael; Breyholz, Hans-Jörg; Hermann, Sven; Faust, Andreas; Wagner, Stefan; Schober, Otmar; Schäfers, Michael; Kopka, Klaus

    2012-11-01

    The natural occurring vitamin biotin, also known as vitamin H or vitamin B(7), plays a major role in various metabolic reactions. Caused by its high binding affinity to the protein avidin with a dissociation constant of about 10(-15)M the biotin-avidin system was extensively examined for multiple applications. We have synthesized a fluorine-18 labeled biotin derivative [(18)F]4 for a potential application in positron emission tomography (PET). Mesylate precursor 3 was obtained by an efficient two-step reaction via a copper catalyzed azide-alkyne cycloaddition (CuAAC) from easily accessible starting materials. [(18)F]4 was successfully synthesized by a nucleophilic radiofluorination of precursor 3. A biodistribution study by means of small-animal PET imaging in wt-mice was performed and serum stability was examined. Compound [(18)F]4 was obtained from precursor compound 3 with an average specific activity of 16GBq/μmol within 45min and a radiochemical yield of 45±5% (decay corrected). [(18)F]4 demonstrated only negligible decomposition in human serum. A qualitative binding study revealed the high affinity of the synthesized biotin derivative to avidin. Blocking experiments with native biotin showed that binding was site-specific. Biodistribution studies showed that [(18)F]4 was cleared quickly and efficiently from the body by hepatobiliary and renal elimination. An efficient synthesis for [(18)F]4 was established. In vivo characteristics were determined and demonstrated the pharmacokinetic behaviour of [(18)F]4. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Inhibition of the norepinephrine transporter by χ-conotoxin dendrimers.

    PubMed

    Wan, Jingjing; Brust, Andreas; Bhola, Rebecca F; Jha, Prerna; Mobli, Mehdi; Lewis, Richard J; Christie, Macdonald J; Alewood, Paul F

    2016-05-01

    Peptide dendrimers are a novel class of macromolecules of emerging interest with the potential of delayed renal clearance due to their molecular size and enhanced activity due to the multivalency effect. In this work, an active analogue of the disulfide-rich χ-conotoxin χ-MrIA (χ-MrIA), a norepinephrine reuptake (norepinephrine transporter) inhibitor, was grafted onto a polylysine dendron. Dendron decoration was achieved by employing copper-catalyzed alkyne-azide cycloaddition with azido-PEG chain-modified χ-MrIA analogues, leading to homogenous 4-mer and 8-mer χ-MrIA dendrimers with molecular weights ranging from 8 to 22 kDa. These dendrimers were investigated for their impact on peptide secondary structure, in vitro functional activity, and potential anti-allodynia in vivo. NMR studies showed that the χ-MrIA tertiary structure was maintained in the χ-MrIA dendrimers. In a functional norepinephrine transporter reuptake assay, χ-MrIA dendrimers showed slightly increased potency relative to the azido-PEGylated χ-MrIA analogues with similar potency to the parent peptide. In contrast to χ-MrIA, no anti-allodynic action was observed when the χ-MrIA dendrimers were administered intrathecally in a rat model of neuropathic pain, suggesting that the larger dendrimer structures are unable to diffuse through the spinal column tissue and reach the norepinephrine transporter. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  17. Multicomponent click synthesis of new 1,2,3-triazole derivatives of pyrimidine nucleobases: promising acidic corrosion inhibitors for steel.

    PubMed

    González-Olvera, Rodrigo; Espinoza-Vázquez, Araceli; Negrón-Silva, Guillermo E; Palomar-Pardavé, Manuel E; Romero-Romo, Mario A; Santillan, Rosa

    2013-12-06

    A series of new mono-1,2,3-triazole derivatives of pyrimidine nucleobases were synthesized by one-pot copper(I)-catalyzed 1,3-dipolar cycloaddition reactions between N-1-propargyluracil and thymine, sodium azide and several benzyl halides. The desired heterocyclic compounds were obtained in good yields and characterized by NMR, IR, and high resolution mass spectrometry. These compounds were investigated as corrosion inhibitors for steel in 1 M HCl solution, using electrochemical impedance spectroscopy (EIS) technique. The results indicate that these heterocyclic compounds are promising acidic corrosion inhibitors for steel.

  18. Bioorthogonal in Situ Hydrogels Based on Polyether Polyols for New Biosensor Materials with High Sensitivity.

    PubMed

    Herrmann, Anna; Kaufmann, Lena; Dey, Pradip; Haag, Rainer; Schedler, Uwe

    2018-04-04

    Both noncovalent and covalent encapsulations of active biomolecules, for example, proteins and oligonucleotides, for a new biosensor matrix in an in situ bioorthogonal hydrogel formation via a strain-promoted azide-alkyne cycloaddition reaction were investigated. Unspecific interaction between the gel and the biomolecules as well as protein denaturation was prevented by the bioorthogonal gel components, which ensure a uniform aqueous environment in the hydrogel network. No leaching of the active biomolecules was observed. Additionally, a much higher and also adjustable loading of biomolecules in the hydrogel matrix was achieved compared to conventional biosensor surfaces, where the sensor molecules are immobilized on monolayers (2D surfaces) or brushlike structures (3D surfaces). Spotting experiments of the hydrogel confirm the possibility to use this new surface for microarray-based multiplex applications which require very high signal-to-noise ratios.

  19. Design, Synthesis, and Biological Functionality of a Dendrimer-based Modular Drug Delivery Platform

    PubMed Central

    Mullen, Douglas G.; McNerny, Daniel Q.; Desai, Ankur; Cheng, Xue-min; DiMaggio, Stassi C.; Kotlyar, Alina; Zhong, Yueyang; Qin, Suyang; Kelly, Christopher V.; Thomas, Thommey P.; Majoros, Istvan; Orr, Bradford G.; Baker, James R.; Banaszak Holl, Mark M.

    2011-01-01

    A modular dendrimer-based drug delivery platform was designed to improve upon existing limitations in single dendrimer systems. Using this modular strategy, a biologically active platform containing receptor mediated targeting and fluorescence imaging modules was synthesized by coupling a folic acid (FA) conjugated dendrimer with a fluorescein isothiocyanate (FITC) conjugated dendrimer. The two different dendrimer modules were coupled via the 1,3-dipolar cycloaddition reaction (‘click’ chemistry) between an alkyne moiety on the surface of the first dendrimer and an azide moiety on the second dendrimer. Two simplified model systems were also synthesized to develop appropriate ‘click’ reaction conditions and aid in spectroscopic assignments. Conjugates were characterized by 1H NMR spectroscopy and NOESY. The FA-FITC modular platform was evaluated in vitro with a human epithelial cancer cell line (KB) and found to specifically target the over-expressed folic acid receptor. PMID:21425790

  20. Streamlined Synthesis and Assembly of a Hybrid Sensing Architecture with Solid Binding Proteins and Click Chemistry.

    PubMed

    Swift, Brian J F; Shadish, Jared A; DeForest, Cole A; Baneyx, François

    2017-03-22

    Combining bioorthogonal chemistry with the use of proteins engineered with adhesive and morphogenetic solid-binding peptides is a promising route for synthesizing hybrid materials with the economy and efficiency of living systems. Using optical sensing of chloramphenicol as a proof of concept, we show here that a GFP variant engineered with zinc sulfide and silica-binding peptides on opposite sides of its β-barrel supports the fabrication of protein-capped ZnS:Mn nanocrystals that exhibit the combined emission signatures of organic and inorganic fluorophores. Conjugation of a chloramphenicol-specific DNA aptamer to the protein shell through strain-promoted azide-alkyne cycloaddition and spontaneous concentration of the resulting nanostructures onto SiO 2 particles mediated by the silica-binding sequence enables visual detection of environmentally and clinically relevant concentrations of chloramphenicol through analyte-mediated inner filtering of sub-330 nm excitation light.

  1. RAFT-synthesized Graft Copolymers that Enhance pH-dependent Membrane Destabilization and Protein Circulation Times

    PubMed Central

    Crownover, Emily; Duvall, Craig L.; Convertine, Anthony; Hoffman, Allan S.; Stayton, Patrick S.

    2012-01-01

    Here we describe a new graft copolymer architecture of poly(propylacrylic acid) (polyPAA) that displays potent pH-dependent, membrane-destabilizing activity and in addition is shown to enhance protein blood circulation kinetics. PolyPAA containing a single telechelic alkyne functionality was prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization with an alkyne-functional chain transfer agent (CTA) and coupled to RAFT polymerized poly(azidopropyl methacrylate) (polyAPMA) through azide-alkyne [3+2] Huisgen cycloaddition. The graft copolymers become membrane destabilizing at endosomal pH values and are active at significantly lower concentrations than the linear polyPAA. A biotin terminated polyPAA graft copolymer was prepared by grafting PAA onto polyAPMA polymerized with a biotin functional RAFT CTA. The blood circulation time and biodistribution of tritium labeled avidin conjugated to the polyPAA graft copolymer was characterized along with a clinically utilized 40 kDa branched polyethylene glycol (PEG) also possessing biotin functionalization. The linear and graft polyPAA increase the area under the curve (AUC) over avidin alone by 9 and 12 times, respectively. Furthermore, polyPAA graft copolymer conjugates accumulated in tumor tissue significantly more than the linear polyPAA and the branched PEG conjugates. The collective data presented in this report indicate that the polyPAA graft copolymers exhibit robust pH-dependent, membrane-destabilizing activity, low cytotoxicity and significantly enhance blood circulation time and tumor accumulation. PMID:21699931

  2. Synthesis and characterization of a porphyrazine-Gd(III) MRI contrast agent and in vivo imaging of a breast cancer xenograft model.

    PubMed

    Trivedi, Evan R; Ma, Zhidong; Waters, Emily A; Macrenaris, Keith W; Subramanian, Rohit; Barrett, Anthony G M; Meade, Thomas J; Hoffman, Brian M

    2014-01-01

    Porphyrazines (Pz), or tetraazaporphyrins, are being studied for their potential use in detection and treatment of cancer. Here, an amphiphilic Cu-Pz-Gd(III) conjugate has been prepared via azide-alkyne Huisgen cycloaddition or 'click' chemistry between an azide functionalized Pz and alkyne functionalized DOTA-Gd(III) analog for use as an MRI contrast agent. This agent, Cu-Pz-Gd(III), is synthesized in good yield and exhibits solution-phase ionic relaxivity (r1  = 11.5 mM(-1) s(-1)) that is approximately four times higher than that of a clinically used monomeric Gd(III) contrast agent, DOTA-Gd(III). Breast tumor cells (MDA-MB-231) associate with Cu-Pz-Gd(III) in vitro, where significant contrast enhancement (9.336 ± 0.335 contrast-to-noise ratio) is observed in phantom cell pellet MR images. This novel contrast agent was administered in vivo to an orthotopic breast tumor model in athymic nude mice and MR images were collected. The average T1 of tumor regions in mice treated with 50 mg kg(-1) Cu-Pz-Gd(III) decreased relative to saline-treated controls. Furthermore, the decrease in T1 was persistent relative to mice treated with the monomeric Gd(III) contrast agent. An ex vivo biodistribution study confirmed that Cu-Pz-Gd(III) accumulates in the tumors and is rapidly cleared, primarily through the kidneys. Differential accumulation and T1 enhancement by Cu-Pz-Gd(III) in the tumor's core relative to the periphery offer preliminary evidence that this agent would find application in the imaging of necrotic tissue. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Diazo Compounds as Highly Tunable Reactants in 1,3-Dipolar Cycloaddition Reactions with Cycloalkynes†

    PubMed Central

    McGrath, Nicholas A.

    2012-01-01

    Diazo compounds, which can be accessed directly from azides by deimidogenation, are shown to be extremely versatile dipoles in 1,3-dipolar cycloaddition reactions with a cyclooctyne. The reactivity of a diazo compound can be much greater or much less than its azide analog, and is enhanced markedly in polar-protic solvents. These reactivities are predictable from frontier molecular orbital energies. The most reactive diazo compound exhibited the highest known second-order rate constant to date for a dipolar cycloaddition with a cycloalkyne. These data provide a new modality for effecting chemoselective reactions in a biological context. PMID:23227302

  4. Azide/alkyne-"click"-reactions of encapsulated reagents: toward self-healing materials.

    PubMed

    Gragert, Maria; Schunack, Marlen; Binder, Wolfgang H

    2011-03-02

    The successful encapsulation of reactive components for the azide/alkyne-"click"-reaction is reported featuring for the first time the use of a liquid polymer as reactive component. A liquid, azido-telechelic three-arm star poly(isobutylene) (M(n) = 3900 g · mol⁻¹) as well as trivalent alkynes were encapsulated into micron-sized capsules and embedded into a polymer-matrix (high-molecular weight poly(isobutylene), M(n) = 250,000 g · mol⁻¹). Using (Cu(I)Br(PPh₃)₃) as catalyst for the azide/alkyne-"click"-reaction, crosslinking of the two components at 40 °C is observed within 380 min and as fast as 10 min at 80 °C. Significant recovery of the tensile storage modulus was observed in a material containing 10 wt.-% and accordingly 5 wt.-% capsules including the reactive components within 5 d at room temperature, thus proving a new concept for materials with self-healing properties. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. "Clickable", trifunctional magnetite nanoparticles and their chemoselective biofunctionalization.

    PubMed

    Das, Manasmita; Bandyopadhyay, Debarati; Mishra, Debasish; Datir, Satyajit; Dhak, Prasanta; Jain, Sanyog; Maiti, Tapas Kumar; Basak, Amit; Pramanik, Panchanan

    2011-06-15

    A multifunctional iron oxide based nanoformulation for combined cancer-targeted therapy and multimodal imaging has been meticulously designed and synthesized using a chemoselective ligation approach. Novel superparamagnetic magnetite nanoparticles simultaneously functionalized with amine, carboxyl, and azide groups were fabricated through a sequence of stoichiometrically controllable partial succinylation and Cu (II) catalyzed diazo transfer on the reactive amine termini of 2-aminoethylphosphonate grafted magnetite nanoparticles (MNPs). Functional moieties associated with MNP surface were chemoselectively conjugated with rhodamine B isothiocyanate (RITC), propargyl folate (FA), and paclitaxel (PTX) via tandem nucleophic addition of amine to isothithiocyanates, Cu (I) catalyzed azide--alkyne click chemistry and carbodiimide-promoted esterification. An extensive in vitro study established that the bioactives chemoselectively appended to the magnetite core bequeathed multifunctionality to the nanoparticles without any loss of activity of the functional molecules. Multifunctional nanoparticles, developed in the course of the study, could selectively target and induce apoptosis to folate-receptor (FR) overexpressing cancer cells with enhanced efficacy as compared to the free drug. In addition, the dual optical and magnetic properties of the synthesized nanoparticles aided in the real-time tracking of their intracellular pathways also as apoptotic events through dual fluorescence and MR-based imaging.

  6. Fluorogenic Strain-Promoted Alkyne-Diazo Cycloadditions.

    PubMed

    Friscourt, Frédéric; Fahrni, Christoph J; Boons, Geert-Jan

    2015-09-28

    Fluorogenic reactions, in which non- or weakly fluorescent reagents produce highly fluorescent products, are attractive for detecting a broad range of compounds in the fields of bioconjugation and material sciences. Herein, we report that a dibenzocyclooctyne derivative modified with a cyclopropenone moiety (Fl-DIBO) can undergo fast strain-promoted cycloaddition reactions under catalyst-free conditions with azides, nitrones, nitrile oxides, as well as mono- and disubstituted diazo-derivatives. Although the reaction with nitrile oxides, nitrones, and disubstituted diazo compounds gave cycloadducts with low quantum yield, monosubstituted diazo reagents produced 1H-pyrazole derivatives that exhibited an approximately 160-fold fluorescence enhancement over Fl-DIBO combined with a greater than 10,000-fold increase in brightness. Concluding from quantum chemical calculations, fluorescence quenching of 3H-pyrazoles, which are formed by reaction with disubstituted diazo-derivatives, is likely due to the presence of energetically low-lying (n,π*) states. The fluorogenic probe Fl-DIBO was successfully employed for the labeling of diazo-tagged proteins without detectable background signal. Diazo-derivatives are emerging as attractive reporters for the labeling of biomolecules, and the studies presented herein demonstrate that Fl-DIBO can be employed for visualizing such biomolecules without the need for probe washout. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Dimensional control of block copolymer nanofibers with a π-conjugated core: crystallization-driven solution self-assembly of amphiphilic poly(3-hexylthiophene)-b-poly(2-vinylpyridine).

    PubMed

    Gwyther, Jessica; Gilroy, Joe B; Rupar, Paul A; Lunn, David J; Kynaston, Emily; Patra, Sanjib K; Whittell, George R; Winnik, Mitchell A; Manners, Ian

    2013-07-08

    With the aim of accessing colloidally stable, fiberlike, π-conjugated nanostructures of controlled length, we have studied the solution self-assembly of two asymmetric crystalline-coil, regioregular poly(3-hexylthiophene)-b-poly(2-vinylpyridine) (P3HT-b-P2VP) diblock copolymers, P3HT23-b-P2VP115 (block ratio=1:5) and P3HT44-b-P2VP115 (block ratio=ca. 1:3). The self-assembly studies were performed under a variety of solvent conditions that were selective for the P2VP block. The block copolymers were prepared by using Cu-catalyzed azide-alkyne cycloaddition reactions of azide-terminated P2VP and alkyne end-functionalized P3HT homopolymers. When the block copolymers were self-assembled in a solution of a 50% (v/v) mixture of THF (a good solvent for both blocks) and an alcohol (a selective solvent for the P2VP block) by means of the slow evaporation of the common solvent; fiberlike micelles with a P3HT core and a P2VP corona were observed by transmission electron microscopy (TEM). The average lengths of the micelles were found to increase as the length of the hydrocarbon chain increased in the P2VP-selective alcoholic solvent (MeOH3 μm) fiberlike micelles were prepared by the dialysis of solutions of the block copolymers in THF against iPrOH. Furthermore the widths of the fibers were dependent on the degree of polymerization of the chain-extended P3HT blocks. The crystallinity and π-conjugated nature of the P3HT core in the fiberlike micelles was confirmed by a combination of UV/Vis spectroscopy, photoluminescence (PL) measurements, and wide-angle X-ray scattering (WAXS). Intense sonication (iPrOH, 1 h, 0 °C) of the fiberlike micelles formed by P3HT23-b-P2VP115 resulted in small (ca. 25 nm long) stublike fragments that were subsequently used as initiators in seeded growth experiments. Addition of P3HT23-b-P2VP115 unimers to the seeds allowed the preparation of fiberlike micelles with narrow length distributions (L(w)/L(n) < 1.11) and lengths from about 100-300 nm, that were dependent on the unimer-to-seed micelle ratio. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Copper-free click chemistry for dynamic in vivo imaging

    PubMed Central

    Baskin, Jeremy M.; Prescher, Jennifer A.; Laughlin, Scott T.; Agard, Nicholas J.; Chang, Pamela V.; Miller, Isaac A.; Lo, Anderson; Codelli, Julian A.; Bertozzi, Carolyn R.

    2007-01-01

    Dynamic imaging of proteins in live cells is routinely performed by using genetically encoded reporters, an approach that cannot be extended to other classes of biomolecules such as glycans and lipids. Here, we report a Cu-free variant of click chemistry that can label these biomolecules rapidly and selectively in living systems, overcoming the intrinsic toxicity of the canonical Cu-catalyzed reaction. The critical reagent, a substituted cyclooctyne, possesses ring strain and electron-withdrawing fluorine substituents that together promote the [3 + 2] dipolar cycloaddition with azides installed metabolically into biomolecules. This Cu-free click reaction possesses comparable kinetics to the Cu-catalyzed reaction and proceeds within minutes on live cells with no apparent toxicity. With this technique, we studied the dynamics of glycan trafficking and identified a population of sialoglycoconjugates with unexpectedly rapid internalization kinetics. PMID:17942682

  9. Ketenimines from Isocyanides and Allyl Carbonates: Palladium-Catalyzed Synthesis of β,γ-Unsaturated Amides and Tetrazoles.

    PubMed

    Qiu, Guanyinsheng; Mamboury, Mathias; Wang, Qian; Zhu, Jieping

    2016-12-05

    The reaction of allyl ethyl carbonates with isocyanides in the presence of a catalytic amount of Pd(OAc) 2 provided ketenimines through β-hydride elimination of the allyl imidoylpalladium intermediates. The insertion of the isocyanide into the π-allyl Pd complex proceeded via an unusual η 1 -allyl Pd species. The resulting ketenimines were hydrolyzed to β,γ-unsaturated carboxamides during purification by flash column chromatography on silica gel or converted in situ into 1,5-disubstituted tetrazoles by [3+2] cycloaddition with hydrazoic acid or trimethylsilyl azide. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Catalytic asymmetric synthesis of chiral propargylic alcohols for the intramolecular Pauson-Khand cycloaddition.

    PubMed

    Turlington, Mark; Yue, Yang; Yu, Xiao-Qi; Pu, Lin

    2010-10-15

    Several methods for the catalytic asymmetric alkyne addition to aldehydes are used to prepare the propargylic alcohol-based chiral en-ynes. Protection of the propargylic alcohols with either an acetyl or a methyl group allows the resulting en-ynes to undergo the intramolecular Pauson-Khand reaction to form the corresponding optically active 5,5- and 5,6-fused bicyclic products with high diastereoselectivity and high enantiomeric purity. In the major product, the propargylic substituent and the bridgehead hydrogen are cis with respect to each other on the fused bicyclic rings. The enantiomeric purity of the propargylic alcohols generated from the asymmetric alkyne addition is maintained in the cycloaddition products. The allylic ethers of the chiral propargylic alcohols are prepared which can also undergo the highly diastereoselective Pauson-Khand cycloaddition with retention of the high enantiomeric purity. This study has shown that the size of the substituents at the propargylic position as well as on the alkyne is important for the diastereoselectivity with the greater bulkiness of the substituents giving higher diastereoselectivity.

  11. Azobenzene dye-coupled quadruply hydrogen-bonding modules as colorimetric indicators for supramolecular interactions

    PubMed Central

    Zhang, Yagang

    2012-01-01

    Summary The facile coupling of azobenzene dyes to the quadruply hydrogen-bonding modules 2,7-diamido-1,8-naphthyridine (DAN) and 7-deazaguanine urea (DeUG) is described. The coupling of azobenzene dye 2 to mono-amido DAN units 4, 7, and 9 was effected by classic 4-(dimethylamino)pyridine (DMAP)-catalyzed peptide synthesis with N-(3-dimethylaminopropyl)-N’-ethyl carbodiimide hydrochloride (EDC) as activating agent, affording the respective amide products 5, 8, and 10 in 60–71% yield. The amide linkage was formed through either the aliphatic or aromatic ester group of 2, allowing both the flexibility and absorption maximum to be tuned. Azobenzene dye 1 was coupled to the DeUG unit 11 by Steglich esterification to afford the product amide 12 in 35% yield. Alternatively, azobenzene dye 16 underwent a room-temperature copper-catalyzed azide–alkyne Huisgen cycloaddition with DeUG alkyne 17 to give triazole 18 in 71% yield. Azobenzene coupled DAN modules 5, 8, and 10 are bright orange–red in color, and azobenzene coupled DeUG modules 12 and 18 are orange–yellow in color. Azobenzene coupled DAN and DeUG modules were successfully used as colorimetric indicators for specific DAN–DeUG and DAN–UPy (2-ureido-4(1H)-pyrimidone) quadruply hydrogen-bonding interactions. PMID:22509220

  12. Clickable, hydrophilic ligand for fac-[M(I)(CO)3](+) (M = Re/(99m)Tc) applied in an S-functionalized α-MSH peptide.

    PubMed

    Kasten, Benjamin B; Ma, Xiaowei; Liu, Hongguang; Hayes, Thomas R; Barnes, Charles L; Qi, Shibo; Cheng, Kai; Bottorff, Shalina C; Slocumb, Winston S; Wang, Jing; Cheng, Zhen; Benny, Paul D

    2014-03-19

    The copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction was used to incorporate alkyne-functionalized dipicolylamine (DPA) ligands (1 and 3) for fac-[M(I)(CO)3](+) (M = Re/(99m)Tc) complexation into an α-melanocyte stimulating hormone (α-MSH) peptide analogue. A novel DPA ligand with carboxylate substitutions on the pyridyl rings (3) was designed to increase the hydrophilicity and to decrease in vivo hepatobiliary retention of fac-[(99m)Tc(I)(CO)3](+) complexes used in single photon emission computed tomography (SPECT) imaging studies with targeting biomolecules. The fac-[Re(I)(CO)3(3)] complex (4) was used for chemical characterization and X-ray crystal analysis prior to radiolabeling studies between 3 and fac-[(99m)Tc(I)(OH2)3(CO)3](+). The corresponding (99m)Tc complex (4a) was obtained in high radiochemical yields, was stable in vitro for 24 h during amino acid challenge and serum stability assays, and showed increased hydrophilicity by log P analysis compared to an analogous complex with nonfunctionalized pyridine rings (2a). An α-MSH peptide functionalized with an azide was labeled with fac-[M(I)(CO)3](+) using both click, then chelate (CuAAC reaction with 1 or 3 followed by metal complexation) and chelate, then click (metal complexation of 1 and 3 followed by CuAAC with the peptide) strategies to assess the effects of CuAAC conditions on fac-[M(I)(CO)3](+) complexation within a peptide framework. The peptides from the click, then chelate strategy had different HPLC tR's and in vitro stabilities compared to those from the chelate, then click strategy, suggesting nonspecific coordination of fac-[M(I)(CO)3](+) using this synthetic route. The fac-[M(I)(CO)3](+)-complexed peptides from the chelate, then click strategy showed >90% stability during in vitro challenge conditions for 6 h, demonstrated high affinity and specificity for the melanocortin 1 receptor (MC1R) in IC50 analyses, and led to moderately high uptake in B16F10 melanoma cells. Log P analysis of the (99m)Tc-labeled peptides confirmed the enhanced hydrophilicity of the peptide bearing the novel, carboxylate-functionalized DPA chelate (10a') compared to the peptide with the unmodified DPA chelate (9a'). In vivo biodistribution analysis of 9a' and 10a' showed moderate tumor uptake in a B16F10 melanoma xenograft mouse model with enhanced renal uptake and surprising intestinal uptake for 10a' compared to predominantly hepatic accumulation for 9a'. These results, coupled with the versatility of CuAAC, suggests this novel, hydrophilic chelate can be incorporated into numerous biomolecules containing azides for generating targeted fac-[M(I)(CO)3](+) complexes in future studies.

  13. Polyisobutylene chain end transformations: Block copolymer synthesis and click chemistry functionalizations

    NASA Astrophysics Data System (ADS)

    Magenau, Andrew Jackson David

    The primary objectives of this research were twofold: (1) development of synthetic procedures for combining quasiliving carbocationic polymerization (QLCCP) of isobutylene (IB) and reversible addition fragmentation chain transfer (RAFT) polymerization for block copolymer synthesis; (2) utilization of efficient, robust, and modular chemistries for facile functionalization of polyisobutylene (PIB). In the first study block copolymers consisting of PIB, and either PMMA or PS block segments, were synthesized by a site transformation approach combining living cationic and reversible addition-fragmentation chain transfer (RAFT) polymerizations. The initial PIB block was synthesized via quasiliving cationic polymerization using the TMPCl/TiCl4 initiation system and was subsequently converted into a hydroxylterminated PIB. Site transformation of the hydroxyl-terminated PIB into a macro chain transfer agent (PIB-CTA) was accomplished by N,N'-dicyclohexylcarbodiimide/dimethylaminopyridine-catalyzed esterification with 4-cyano-4-(dodecylsulfanylthiocarbonylsulfanyl)pentanoic acid. In the second study another site transformation approach was developed to synthesize a novel block copolymer, composed of PIB and PNIPAM segments. The PIB block was prepared via quasiliving cationic polymerization and end functionalized by in-situ quenching to yield telechelic halogen-terminated PIB. Azido functionality was obtained by displacement of the terminal halogen through nucleophilic substitution, which was confirmed by both 1H and 13C NMR. Coupling of an alkyne-functional chain transfer agent (CTA) to azido PIB was successfully accomplished through a copper catalyzed click reaction. Structure of the resulting PIB-based macro-CTA was verified with 1H NMR, FTIR, and GPC; whereas coupling reaction kinetics were monitored by real time variable temperature (VT) 1H NMR. In a third study, a click chemistry functionalization procedure was developed based upon the azide-alkyne 1,3-dipolar cycloaddition reaction. 1-(o-Azidoalkyl)pyrrolyl-terminated PIB was successfully synthesized both by substitution of the terminal halide of 1-(o-haloalkyl)pyrrolyl-terminated PIB with sodium azide and by in situ quenching of quasiliving PIB with a 1-(o-azidoalkyl)pyrrole. GPC indicated the absence of coupled PIB under optimized conditions, confirming exclusive mono-substitution on each pyrrole ring. In a fourth study, radical thiol-ene hydrothiolation "Click" chemistry was explored and adapted to easily and rapidly modify exo -olefin PIB with an array of thiol compounds bearing useful functionalities, including primary halogen, primary amine, primary hydroxyl, and carboxylic acid. The thiol-ene "click" procedure was shown to be applicable to both mono and difunctional exo-olefin polyisobutylene. Telechelic mono- and difunctional exo-olefin PIBs were synthesized via quasiliving cationic polymerization followed by quenching with the hindered amine, 1,2,2,6,6-pentamethylpiperidine. Lower reaction temperatures were found to increase exo-olefin conversion to near quantitative amounts. In the fifth study, thiol-terminated polyisobutylene (PIB-SH) was synthesized by reaction of thiourea with alpha,o-bromine-terminated PIB in a three step one-pot procedure. First the alkylisothiouronium salt was produced using a 1:1 (v:v) DMF:heptane cosolvent mixture at 90°C. Hydrolysis of the salt by aqueous base produced thiolate chain ends, which were then acidified to form the desired thiol functional group. An extension of this reaction was performed by a sequential thiol-ene/thiol-yne procedure to produce tetra-hydroxy functionalized PIB. 1H NMR was used to confirm formation of both alkyne and tetrahydroxyl functional species. Further utility of PIB-SH was demonstrated by base catalyzed thiol-isocyanate reactions. A model reaction was conducted with phenyl isocyanate in THF using triethylamine as the catalyst. Last, conversion of PIB-SH directly into a RAFT macro-CTA was accomplished, as shown by 1H NMR, by treatment of PIB-SH with triethylamine in carbon disulfide and subsequent alkylation with 2-bromopropionic acid. (Abstract shortened by UMI.)

  14. Influence of sequential modifications and carbohydrate variations in synthetic AFGP analogues on conformation and antifreeze activity.

    PubMed

    Nagel, Lilly; Budke, Carsten; Erdmann, Roman S; Dreyer, Axel; Wennemers, Helma; Koop, Thomas; Sewald, Norbert

    2012-10-01

    Certain Arctic and Antarctic ectotherm species have developed strategies for survival under low temperature conditions that, among others, consist of antifreeze glycopeptides (AFGP). AFGP form a class of biological antifreeze agents that exhibit the ability to inhibit ice growth in vitro and in vivo and, hence, enable life at temperatures below the freezing point. AFGP usually consist of a varying number of (Ala-Ala-Thr)(n) units (n=4-55) with the disaccharide β-D-galactosyl-(1→3)-α-N-acetyl-D-galactosamine glycosidically attached to every threonine side chain hydroxyl group. AFGP have been shown to adopt polyproline II helical conformation. Although this pattern is highly conserved among different species, microheterogeneity concerning the amino acid composition usually occurs; for example, alanine is occasionally replaced by proline in smaller AFGP. The influence of minor and major sequence mutations on conformation and antifreeze activity of AFGP analogues was investigated by replacement of alanine by proline and glycosylated threonine by glycosylated hydroxyproline. The target compounds were prepared by using microwave-enhanced solid phase peptide synthesis. Furthermore, artificial analogues were obtained by copper-catalyzed azide-alkyne cycloaddition (CuAAC): propargyl glycosides were treated with polyproline helix II-forming peptides comprising (Pro-Azp-Pro)(n) units (n=2-4) that contained 4-azidoproline (Azp). The conformations of all analogues were examined by circular dichroism (CD). In addition, microphysical analysis was performed to provide information on their inhibitory effect on ice recrystallization. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Precise localization of metal nanoparticles in dendrimer nanosnakes or inner periphery and consequences in catalysis

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Gregurec, Danijela; Irigoyen, Joseba; Martinez, Angel; Moya, Sergio; Ciganda, Roberto; Hermange, Philippe; Ruiz, Jaime; Astruc, Didier

    2016-10-01

    Understanding the relationship between the location of nanoparticles (NPs) in an organic matrix and their catalytic performances is essential for catalyst design. Here we show that catalytic activities of Au, Ag and CuNPs stabilized by dendrimers using coordination to intradendritic triazoles, galvanic replacement or stabilization outside dendrimers strongly depends on their location. AgNPs are found at the inner click dendrimer periphery, whereas CuNPs and AuNPs are encapsulated in click dendrimer nanosnakes. AuNPs and AgNPs formed by galvanic replacement are larger than precursors and only partly encapsulated. AuNPs are all the better 4-nitrophenol reduction catalysts as they are less sterically inhibited by the dendrimer interior, whereas on the contrary CuNPs are all the better alkyne azide cycloaddition catalysts as they are better protected from aerobic oxidation inside dendrimers. This work highlights the role of the location in macromolecules on the catalytic efficiency of metal nanoparticles and rationalizes optimization in catalyst engineering.

  16. Synthesis and Catalytic Applications of Multi-Walled Carbon Nanotube-Polyamidoamine Dendrimer Hybrids.

    PubMed

    Desmecht, Antonin; Steenhaut, Timothy; Pennetreau, Florence; Hermans, Sophie; Riant, Olivier

    2018-06-20

    Polyamidoamine (PAMAM) dendrimers were covalently immobilized on multi-walled carbon nanotubes (MWNT) via two 'grafting to' strategies. We demonstrate the existence of non-covalent interactions between the two components but outline the superiority of our two grafting approaches, namely xanthate and click chemistry. MWNT surfaces were functionalized with activated ester and propargylic moieties prior to their reaction with PAMAM or azido-PAMAM dendrimers, respectively. The grafting of PAMAM generations 0 to 3 was evaluated with X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and transmission electron microscopy (TEM). The versatility of our hybrids was demonstrated by post-functionalization sequences involving copper alkyne-azide cycloaddition (CuAAC). We synthesized homogeneous supported iridium complexes at the extremities of the dendrimers. In addition, our materials were used as template for the encapsulation of Pd nanoparticles (NP), validating our nanocomposites for catalytic applications. The palladium-based catalyst was active for carbonylative coupling during 5 consecutive runs without loss of activity. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Target guided synthesis using DNA nano-templates for selectively assembling a G-quadruplex binding c-MYC inhibitor

    NASA Astrophysics Data System (ADS)

    Panda, Deepanjan; Saha, Puja; Das, Tania; Dash, Jyotirmayee

    2017-07-01

    The development of small molecules is essential to modulate the cellular functions of biological targets in living system. Target Guided Synthesis (TGS) approaches have been used for the identification of potent small molecules for biological targets. We herein demonstrate an innovative example of TGS using DNA nano-templates that promote Huisgen cycloaddition from an array of azide and alkyne fragments. A G-quadruplex and a control duplex DNA nano-template have been prepared by assembling the DNA structures on gold-coated magnetic nanoparticles. The DNA nano-templates facilitate the regioselective formation of 1,4-substituted triazole products, which are easily isolated by magnetic decantation. The G-quadruplex nano-template can be easily recovered and reused for five reaction cycles. The major triazole product, generated by the G-quadruplex inhibits c-MYC expression by directly targeting the c-MYC promoter G-quadruplex. This work highlights that the nano-TGS approach may serve as a valuable strategy to generate target-selective ligands for drug discovery.

  18. Synthesis of giant globular multivalent glycofullerenes as potent inhibitors in a model of Ebola virus infection

    NASA Astrophysics Data System (ADS)

    Muñoz, Antonio; Sigwalt, David; Illescas, Beatriz M.; Luczkowiak, Joanna; Rodríguez-Pérez, Laura; Nierengarten, Iwona; Holler, Michel; Remy, Jean-Serge; Buffet, Kevin; Vincent, Stéphane P.; Rojo, Javier; Delgado, Rafael; Nierengarten, Jean-François; Martín, Nazario

    2016-01-01

    The use of multivalent carbohydrate compounds to block cell-surface lectin receptors is a promising strategy to inhibit the entry of pathogens into cells and could lead to the discovery of novel antiviral agents. One of the main problems with this approach, however, is that it is difficult to make compounds of an adequate size and multivalency to mimic natural systems such as viruses. Hexakis adducts of [60]fullerene are useful building blocks in this regard because they maintain a globular shape at the same time as allowing control over the size and multivalency. Here we report water-soluble tridecafullerenes decorated with 120 peripheral carbohydrate subunits, so-called ‘superballs’, that can be synthesized efficiently from hexakis adducts of [60]fullerene in one step by using copper-catalysed azide-alkyne cycloaddition click chemistry. Infection assays show that these superballs are potent inhibitors of cell infection by an artificial Ebola virus with half-maximum inhibitory concentrations in the subnanomolar range.

  19. Identification of secreted bacterial proteins by noncanonical amino acid tagging

    PubMed Central

    Mahdavi, Alborz; Szychowski, Janek; Ngo, John T.; Sweredoski, Michael J.; Graham, Robert L. J.; Hess, Sonja; Schneewind, Olaf; Mazmanian, Sarkis K.; Tirrell, David A.

    2014-01-01

    Pathogenic microbes have evolved complex secretion systems to deliver virulence factors into host cells. Identification of these factors is critical for understanding the infection process. We report a powerful and versatile approach to the selective labeling and identification of secreted pathogen proteins. Selective labeling of microbial proteins is accomplished via translational incorporation of azidonorleucine (Anl), a methionine surrogate that requires a mutant form of the methionyl-tRNA synthetase for activation. Secreted pathogen proteins containing Anl can be tagged by azide-alkyne cycloaddition and enriched by affinity purification. Application of the method to analysis of the type III secretion system of the human pathogen Yersinia enterocolitica enabled efficient identification of secreted proteins, identification of distinct secretion profiles for intracellular and extracellular bacteria, and determination of the order of substrate injection into host cells. This approach should be widely useful for the identification of virulence factors in microbial pathogens and the development of potential new targets for antimicrobial therapy. PMID:24347637

  20. Dynamic covalent chemistry enables formation of antimicrobial peptide quaternary assemblies in a completely abiotic manner

    NASA Astrophysics Data System (ADS)

    Reuther, James F.; Dees, Justine L.; Kolesnichenko, Igor V.; Hernandez, Erik T.; Ukraintsev, Dmitri V.; Guduru, Rusheel; Whiteley, Marvin; Anslyn, Eric V.

    2018-01-01

    Naturally occurring peptides and proteins often use dynamic disulfide bonds to impart defined tertiary/quaternary structures for the formation of binding pockets with uniform size and function. Although peptide synthesis and modification are well established, controlling quaternary structure formation remains a significant challenge. Here, we report the facile incorporation of aryl aldehyde and acyl hydrazide functionalities into peptide oligomers via solid-phase copper-catalysed azide-alkyne cycloaddition (SP-CuAAC) click reactions. When mixed, these complementary functional groups rapidly react in aqueous media at neutral pH to form peptide-peptide intermolecular macrocycles with highly tunable ring sizes. Moreover, sequence-specific figure-of-eight, dumbbell-shaped, zipper-like and multi-loop quaternary structures were formed selectively. Controlling the proportions of reacting peptides with mismatched numbers of complementary reactive groups results in the formation of higher-molecular-weight sequence-defined ladder polymers. This also amplified antimicrobial effectiveness in select cases. This strategy represents a general approach to the creation of complex abiotic peptide quaternary structures.

  1. A Study on the Kinetics of a Disorder-to-Order Transition Induced by Alkyne/Azide Click Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    X Wei; L Li; J Kalish

    2011-12-31

    The kinetics of binary blends of poly(ethylene oxide)-block-poly(n-butyl methacrylate-random-propargyl methacrylate) (PEO-b-P(nBMA-r-PgMA)) diblock copolymer and Rhodamine B azide was investigated during a disorder-to-order transition induced by alkyne/azide click reaction. The change in the domain spacing and conversion of reactants as a function of annealing time were investigated by in situ small-angle X-ray scattering (SAXS) and infrared spectroscopy (IR), suggesting several kinetic processes with different time scales during thermal annealing. While a higher conversion can be realized by extending the annealing time, the microphase-separated morphology is independent of the annealing conditions, as long as both the reagents and final products have enoughmore » mobility.« less

  2. Injectable dextran hydrogels fabricated by metal-free click chemistry for cartilage tissue engineering.

    PubMed

    Wang, Xiaoyu; Li, Zihan; Shi, Ting; Zhao, Peng; An, Kangkang; Lin, Chao; Liu, Hongwei

    2017-04-01

    Injectable dextran-based hydrogels were prepared for the first time by bioorthogonal click chemistry for cartilage tissue engineering. Click-crosslinked injectable hydrogels based on cyto-compatible dextran (Mw=10kDa) were successfully fabricated under physiological conditions by metal-free alkyne-azide cycloaddition (click) reaction between azadibenzocyclooctyne-modified dextran (Dex-ADIBO) and azide-modified dextran (Dex-N 3 ). Gelation time of these dextran hydrogels could be regulated in the range of approximately 1.1 to 10.2min, depending on the polymer concentrations (5% or 10%) and ADIBO substitution degree (DS, 5 or 10) of Dex-ADIBO. Rheological analysis indicated that the dextran hydrogels were elastic and had storage moduli from 2.1 to 6.0kPa with increasing DS of ADIBO from 5 to 10. The in vitro tests revealed that the dextran hydrogel crosslinked from Dex-ADIBO DS 10 and Dex-N 3 DS 10 at a polymer concentration of 10% could support high viability of individual rabbit chondrocytes and the chondrocyte spheroids encapsulated in the hydrogel over 21days. Individual chondrocytes and chondrocyte spheroids in the hydrogel could produce cartilage matrices such as collagen and glycosaminoglycans. However, the chondrocyte spheroids produced a higher content of matrices than individual chondrocytes. This study indicates that metal-free click chemistry is effective to produce injectable dextran hydrogels for cartilage tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Synthesis of Selective Agonists for the α7 Nicotinic Acetylcholine Receptor with In Situ Click-Chemistry on Acetylcholine-Binding Protein Templates

    PubMed Central

    Yamauchi, John G.; Gomez, Kimberly; Grimster, Neil; Dufouil, Mikael; Nemecz, Ákos; Fotsing, Joseph R.; Ho, Kwok-Yiu; Talley, Todd T.; Sharpless, K. Barry; Fokin, Valery V.

    2012-01-01

    The acetylcholine-binding proteins (AChBPs), which serve as structural surrogates for the extracellular domain of nicotinic acetylcholine receptors (nAChRs), were used as reaction templates for in situ click-chemistry reactions to generate a congeneric series of triazoles from azide and alkyne building blocks. The catalysis of in situ azide-alkyne cycloaddition reactions at a dynamic subunit interface facilitated the synthesis of potentially selective compounds for nAChRs. We investigated compound sets generated in situ with soluble AChBP templates through pharmacological characterization with α7 and α4β2 nAChRs and 5-hydroxytryptamine type 3A receptors. Analysis of activity differences between the triazole 1,5-syn- and 1,4-anti-isomers showed a preference for the 1,4-anti-triazole regioisomers among nAChRs. To improve nAChR subtype selectivity, the highest-potency building block for α7 nAChRs, i.e., 3α-azido-N-methylammonium tropane, was used for additional in situ reactions with a mutated Aplysia californica AChBP that was made to resemble the ligand-binding domain of the α7 nAChR. Fourteen of 50 possible triazole products were identified, and their corresponding tertiary analogs were synthesized. Pharmacological assays revealed that the mutated binding protein template provided enhanced selectivity of ligands through in situ reactions. Discrete trends in pharmacological profiles were evident, with most compounds emerging as α7 nAChR agonists and α4β2 nAChR antagonists. Triazoles bearing quaternary tropanes and aromatic groups were most potent for α7 nAChRs. Pharmacological characterization of the in situ reaction products established that click-chemistry synthesis with surrogate receptor templates offered novel extensions of fragment-based drug design that were applicable to multisubunit ion channels. PMID:22784805

  4. Thermosensitive polymer-grafted iron oxide nanoparticles studied by in situ dynamic light backscattering under magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Hemery, Gauvin; Garanger, Elisabeth; Lecommandoux, Sébastien; Wong, Andrew D.; Gillies, Elizabeth R.; Pedrono, Boris; Bayle, Thomas; Jacob, David; Sandre, Olivier

    2015-12-01

    Thermometry at the nanoscale is an emerging area fostered by intensive research on nanoparticles (NPs) that are capable of converting electromagnetic waves into heat. Recent results suggest that stationary gradients can be maintained between the surface of NPs and the bulk solvent, a phenomenon sometimes referred to as ‘cold hyperthermia’. However, the measurement of such highly localized temperatures is particularly challenging. We describe here a new approach to probing the temperature at the surface of iron oxide NPs and enhancing the understanding of this phenomenon. This approach involves the grafting of thermosensitive polymer chains to the NP surface followed by the measurement of macroscopic properties of the resulting NP suspension and comparison to a calibration curve built up by macroscopic heating. Superparamagnetic iron oxide NPs were prepared by the coprecipitation of ferrous and ferric salts and functionalized with amines, then azides using a sol-gel route followed by a dehydrative coupling reaction. Thermosensitive poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) with an alkyne end-group was synthesized by controlled radical polymerization and was grafted using a copper assisted azide-alkyne cycloaddition reaction. Measurement of the colloidal properties by dynamic light scattering (DLS) indicated that the thermosensitive NPs exhibited changes in their Zeta potential and hydrodynamic diameter as a function of pH and temperature due to the grafted PDMAEMA chains. These changes were accompanied by changes in the relaxivities of the NPs, suggesting application as thermosensitive contrast agents for magnetic resonance imaging (MRI). In addition, a new fibre-based backscattering setup enabled positioning of the DLS remote-head as close as possible to the coil of a magnetic heating inductor to afford in situ probing of the backscattered light intensity, hydrodynamic diameter, and temperature. This approach provides a promising platform for estimating the response of magnetic NPs to application of a radiofrequency magnetic field or for understanding the behaviour of other thermogenic NPs.

  5. Synthesis and characterisation of luminescent rhenium tricarbonyl complexes with axially coordinated 1,2,3-triazole ligands.

    PubMed

    Uppal, Baljinder S; Booth, Rebecca K; Ali, Noreen; Lockwood, Cindy; Rice, Craig R; Elliott, Paul I P

    2011-08-07

    A series of 1-alkyl-4-aryl-1,2,3-triazoles (1-methyl-4-phenyl-1,2,3-triazole (1a); 1-propyl-4-phenyl-1,2,3-triazole (1b); 1-benzyl-4-phenyl-1,2,3-triazole (1c); 1-propyl-4-p-tolyl-1,2,3-triazole (1d)) have been prepared through a one-pot procedure involving in situ generation of the alkyl azide from a halide precursor followed by copper catalysed alkyne/azide cycloaddition (CuAAC) with the appropriate aryl alkyne. Cationic Re(I) complexes [Re(bpy)(CO)(3)(1a-d)]PF(6) (2a-d) were then prepared by stirring [Re(bpy)(CO)(3)Cl] with AgPF(6) in dichloromethane in the presence of ligands 1a-d. X-ray crystal structures were obtained for 2a and 2b. In the solid state, 2a adopts a highly distorted geometry, which is not seen for 2b, in which the plane of the triazole ligand tilts by 13° with respect to the Re-N bond as a result of a π-stacking interaction between the Ph substituent and one of the rings of the bpy ligand. This π-stacking interaction also results in severe twisting of the bpy ligand. Infrared spectra of 2a-d exhibit ν(CO) bands at ∼2035 and ∼1926 cm(-1) suggesting that these ligands are marginally better donors than pyridine (ν(CO) = 2037, 1932 cm(-1)). The complexes are luminescent in aerated dichloromethane at room temperature with emission maxima at 542 to 552 nm comparable to that of the pyridine analogue (549 nm) and blue shifted relative to the parent chloride complex. Long luminescent lifetimes are observed for the triazole complexes (475 to 513 ns) in aerated dichloromethane solutions at room temperature.

  6. All kinds of reactivity: recent breakthroughs in metal-catalyzed alkyne chemistry.

    PubMed

    Anaya de Parrodi, Cecilia; Walsh, Patrick J

    2009-01-01

    Alkynes of reactions: Recent breakthroughs in metal-catalyzed alkyne reactions, which expand the synthetic utility of alkynes, have been achieved. These approaches broaden the range of alkynes that are accessible by C--N and C--C bond-forming reactions and demonstrate that the use of bifunctional heterobimetallic catalysts can lead to new reactivity and excellent enantioselectivity (see scheme).

  7. Versatility of Alkyne-Modified Poly(Glycidyl Methacrylate) Layers for Click Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soto-Cantu, Dr. Erick; Lokitz, Bradley S; Hinestrosa Salazar, Juan Pablo

    2011-01-01

    Functional soft interfaces are of interest for a variety of technologies. We describe three methods for preparing substrates with alkyne groups, which show versatility for 'click' chemistry reactions. Two of the methods have the same root: formation of thin, covalently attached, reactive interfacial layers of poly(glycidyl methacrylate) (PGMA) via spin coating onto silicon wafers followed by reactive modification with either propargylamine or 5-hexynoic acid. The amine or the carboxylic acid moieties react with the epoxy groups of PGMA, creating interfacial polymer layers decorated with alkyne groups. The third method consists of using copolymers comprising glycidyl methacrylate and propargyl methacrylate (pGP).more » The pGP copolymers are spin coated and covalently attached on silicon wafers. For each method, we investigate the factors that control film thickness and content of alkyne groups using ellipsometry, and study the nanophase structure of the films using neutron reflectometry. Azide-terminated polymers of methacrylic acid and 2-vinyl-4,4-dimethylazlactone synthesized via reversible addition-fragmentation chain transfer polymerization were attached to the alkyne-modified substrates using 'click' chemistry, and grafting densities in the range of 0.007-0.95 chains nm{sup -2} were attained. The maximum density of alkyne groups attained by functionalization of PGMA with propargylamine or 5-hexynoic acid was approximately 2 alkynes nm{sup -3}. The alkyne content obtained by the three decorating approaches was sufficiently high that it was not the limiting factor for the click reaction of azide-capped polymers.« less

  8. The efficiency of 18F labelling of a prostate specific membrane antigen ligand via strain-promoted azide-alkyne reaction: reaction speed versus hydrophilicity.

    PubMed

    Wang, Mengzhe; McNitt, Christopher D; Wang, Hui; Ma, Xiaofen; Scarry, Sarah M; Wu, Zhanhong; Popik, Vladimir V; Li, Zibo

    2018-06-27

    Here we report the 18F labeling of a prostate specific membrane antigen (PSMA) ligand via a strain promoted oxa-dibenzocyclooctyne (ODIBO)- or bicyclo[6.1.0]nonyne (BCN)-azide reaction. Although ODIBO reacts with azide 20 fold faster than BCN, in vivo PET imaging suggests that 18F-BCN-azide-PSMA demonstrated much higher tumor uptake and a much higher tumor to background contrast.

  9. Clickable, Hydrophilic Ligand for fac-[MI(CO)3]+ (M = Re/99mTc) Applied in an S-Functionalized α-MSH Peptide

    PubMed Central

    2015-01-01

    The copper(I)-catalyzed azide–alkyne cycloaddition (CuAAC) click reaction was used to incorporate alkyne-functionalized dipicolylamine (DPA) ligands (1 and 3) for fac-[MI(CO)3]+ (M = Re/99mTc) complexation into an α-melanocyte stimulating hormone (α-MSH) peptide analogue. A novel DPA ligand with carboxylate substitutions on the pyridyl rings (3) was designed to increase the hydrophilicity and to decrease in vivo hepatobiliary retention of fac-[99mTcI(CO)3]+ complexes used in single photon emission computed tomography (SPECT) imaging studies with targeting biomolecules. The fac-[ReI(CO)3(3)] complex (4) was used for chemical characterization and X-ray crystal analysis prior to radiolabeling studies between 3 and fac-[99mTcI(OH2)3(CO)3]+. The corresponding 99mTc complex (4a) was obtained in high radiochemical yields, was stable in vitro for 24 h during amino acid challenge and serum stability assays, and showed increased hydrophilicity by log P analysis compared to an analogous complex with nonfunctionalized pyridine rings (2a). An α-MSH peptide functionalized with an azide was labeled with fac-[MI(CO)3]+ using both click, then chelate (CuAAC reaction with 1 or 3 followed by metal complexation) and chelate, then click (metal complexation of 1 and 3 followed by CuAAC with the peptide) strategies to assess the effects of CuAAC conditions on fac-[MI(CO)3]+ complexation within a peptide framework. The peptides from the click, then chelate strategy had different HPLC tR’s and in vitro stabilities compared to those from the chelate, then click strategy, suggesting nonspecific coordination of fac-[MI(CO)3]+ using this synthetic route. The fac-[MI(CO)3]+-complexed peptides from the chelate, then click strategy showed >90% stability during in vitro challenge conditions for 6 h, demonstrated high affinity and specificity for the melanocortin 1 receptor (MC1R) in IC50 analyses, and led to moderately high uptake in B16F10 melanoma cells. Log P analysis of the 99mTc-labeled peptides confirmed the enhanced hydrophilicity of the peptide bearing the novel, carboxylate-functionalized DPA chelate (10a′) compared to the peptide with the unmodified DPA chelate (9a′). In vivo biodistribution analysis of 9a′ and 10a′ showed moderate tumor uptake in a B16F10 melanoma xenograft mouse model with enhanced renal uptake and surprising intestinal uptake for 10a′ compared to predominantly hepatic accumulation for 9a′. These results, coupled with the versatility of CuAAC, suggests this novel, hydrophilic chelate can be incorporated into numerous biomolecules containing azides for generating targeted fac-[MI(CO)3]+ complexes in future studies. PMID:24568284

  10. Unveiling the uncatalyzed reaction of alkynes with 1,2-dipoles for the room temperature synthesis of cyclobutenes.

    PubMed

    Alcaide, Benito; Almendros, Pedro; Fernández, Israel; Lázaro-Milla, Carlos

    2015-02-25

    2-(Pyridinium-1-yl)-1,1-bis(triflyl)ethanides have been used as 1,2-dipole precursors in a metal-free direct [2+2] cycloaddition reaction of alkynes. Starting from stable zwitterionic pyridinium salts, the electron deficient olefin 1,1-bis(trifluoromethylsulfonyl)ethene is generated in situ and immediately reacted at room temperature with an alkyne to afford substituted cyclobutenes. Remarkably, this mild and facile uncatalyzed protocol requires neither irradiation nor heating.

  11. Improving the Imaging Contrast of 68Ga-PSMA-11 by Targeted Linker Design: Charged Spacer Moieties Enhance the Pharmacokinetic Properties.

    PubMed

    Baranski, Ann-Christin; Schäfer, Martin; Bauder-Wüst, Ulrike; Wacker, Anja; Schmidt, Jana; Liolios, Christos; Mier, Walter; Haberkorn, Uwe; Eisenhut, Michael; Kopka, Klaus; Eder, Matthias

    2017-09-20

    68 Ga-Glu-urea-Lys-(Ahx)-HBED-CC ( 68 Ga-PSMA-11) represents a successful radiopharmaceutical for PET/CT imaging of prostate cancer. Further optimization of the tumor-to-background contrast might significantly enhance the sensitivity of PET/CT imaging and the probability of detecting recurrent prostate cancer at low PSA values. This study describes the advantage of histidine (H)/glutamic acid (E) and tryptophan (W)/glutamic acid (E) containing linkers on the pharmacokinetic properties of 68 Ga-PSMA-11. The tracers were obtained by a combination of standard Fmoc-based solid-phase synthesis and copper(I)-catalyzed azide-alkyne cycloaddition. Their 68 Ga complexes were compared to the clinical reference 68 Ga-PSMA-11 with respect to cell binding, effective internalization, and tumor targeting properties in LNCaP-bearing balb/c nu/nu mice. The introduction of (HE) i (i = 1-3) or (WE) i (i = 1-3) into PSMA-11 resulted in a significantly changed biodistribution profile. The uptake values in kidneys, spleen, liver, and other background organs were reduced for (HE) 3 while the tumor uptake was not affected. For (HE) 1 the tumor uptake was significantly increased. The introduction of tryptophan-containing linkers also modulated the organ distribution profile. The results clearly indicate that histidine is of essential impact in order to improve the tumor-to-organ contrast. Hence, the histidine/glutamic acid linker modifications considerably improved the pharmacokinetic properties of 68 Ga-PSMA-11 leading to a reduced uptake in dose limiting organs and a significantly enhanced tumor-to-background contrast. Glu-urea-Lys-(HE) 3 -HBED-CC represents a promising 68 Ga complex ligand for PET/CT-imaging of prostate cancer.

  12. Matrix metalloproteinase 9 (MMP-9) mediated release of MMP-9 resistant stromal cell-derived factor 1α (SDF-1α) from surface modified polymer films.

    PubMed

    Steinhagen, Max; Hoffmeister, Peter-Georg; Nordsieck, Karoline; Hötzel, Rudi; Baumann, Lars; Hacker, Michael C; Schulz-Siegmund, Michaela; Beck-Sickinger, Annette G

    2014-04-23

    Preparation of smart materials by coatings of established surfaces with biomolecules will lead to the next generation of functionalized biomaterials. Rejection of implants is still a major problem in medical applications but masking the implant material with protein coatings is a promising approach. These layers not only disguise the material but also equip it with a certain biological function. The anti-inflammatory chemokine stromal cell-derived factor 1α (SDF-1α) is well suited to take over this function, because it efficiently attracts stem cells and promotes their differentiation and proliferation. At least the initial stem cell homing requires the formation of a concentration gradient. Thus, a reliable and robust release mechanism of SDF-1α from the material is essential. Several proteases, most notably matrix metalloproteinases, are upregulated during inflammation, which, in principle, can be exploited for a tightly controlled release of SDF-1α. Herein, we present the covalent immobilization of M-[S4V]-SDF-1α on novel biodegradable polymer films, which consist of heterobifunctional poly(ethylene glycol) and oligolactide-based functionalized macromers. A peptidic linker with a trimeric matrix metalloproteinase 9 (MMP-9) cleavage site (MCS) was used as connection and the linkage between the three components was achieved by combination of expressed protein ligation and Cu(I) catalyzed azide/alkyne cycloaddition. The MCS was used for MMP-9 mediated release of M-[S4V]-SDF-1α from the biomaterial and the released SDF-1α derivative was biologically active and induced strong cell migration, which demonstrates the great potential of this system.

  13. Synthesis and redox activity of "clicked" triazolylbiferrocenyl polymers, network encapsulation of gold and silver nanoparticles and anion sensing.

    PubMed

    Rapakousiou, Amalia; Deraedt, Christophe; Irigoyen, Joseba; Wang, Yanlan; Pinaud, Noël; Salmon, Lionel; Ruiz, Jaime; Moya, Sergio; Astruc, Didier

    2015-03-02

    The design of redox-robust polymers is called for in view of interactions with nanoparticles and surfaces toward applications in nanonetwork design, sensing, and catalysis. Redox-robust triazolylbiferrocenyl (trzBiFc) polymers have been synthesized with the organometallic group in the side chain by ring-opening metathesis polymerization using Grubbs-III catalyst or radical polymerization and with the organometallic group in the main chain by Cu(I) azide alkyne cycloaddition (CuAAC) catalyzed by [Cu(I)(hexabenzyltren)]Br. Oxidation of the trzBiFc polymers with ferricenium hexafluorophosphate yields the stable 35-electron class-II mixed-valent biferrocenium polymer. Oxidation of these polymers with Au(III) or Ag(I) gives nanosnake-shaped networks (observed by transmission electron microscopy and atomic force microscopy) of this mixed-valent Fe(II)Fe(III) polymer with encapsulated metal nanoparticles (NPs) when the organoiron group is located on the side chain. The factors that are suggested to be synergistically responsible for the NP stabilization and network formation are the polymer bulk, the trz coordination, the nearby cationic charge of trzBiFc, and the inter-BiFc distance. For instance, reduction of such an oxidized trzBiFc-AuNP polymer to the neutral trzBiFc-AuNP polymer with NaBH4 destroys the network, and the product flocculates. The polymers easily provide modified electrodes that sense, via the oxidized Fe(II)Fe(III) and Fe(III)Fe(III) polymer states, respectively, ATP(2-) via the outer ferrocenyl units of the polymer and Pd(II) via the inner Fc units; this recognition works well in dichloromethane, but also to a lesser extent in water with NaCl as the electrolyte.

  14. Site-Directed Immobilization of BMP-2: Two Approaches for the Production of Innovative Osteoinductive Scaffolds.

    PubMed

    Tabisz, Barbara; Schmitz, Werner; Schmitz, Michael; Luehmann, Tessa; Heusler, Eva; Rybak, Jens-Christoph; Meinel, Lorenz; Fiebig, Juliane E; Mueller, Thomas D; Nickel, Joachim

    2017-03-13

    The regenerative potential of bone is strongly impaired in pathological conditions, such as nonunion fractures. To support bone regeneration various scaffolds have been developed in the past, which have been functionalized with osteogenic growth factors such as bone morphogenetic proteins (BMPs). However, most of them required supra-physiological levels of these proteins leading to burst releases, thereby causing severe side effects. Site-specific, covalent coupling of BMP2 to implant materials might be an optimal strategy in order to overcome these problems. Therefore, we created a BMP-2 variant (BMP2-K3Plk) containing a noncanonical amino acid (propargyl-l-lysine) substitution introduced by genetic code expansion that allows for site-specific and covalent immobilization onto polymeric scaffold materials. To directly compare different coupling strategies, we also produced a BMP2 variant containing an additional cysteine residue (BMP2-A2C) allowing covalent coupling by thioether formation. The BMP2-K3Plk mutant was coupled to functionalized beads by a copper-catalyzed azide-alkyne cycloaddition (CuAAC) either directly or via a short biotin-PEG linker both with high specificity. After exposing the BMP-coated beads to C2C12 cells, ALP expression appeared locally restricted in close proximity to these beads, showing that both coupled BMP2 variants trigger cell differentiation. The advantage of our approach over non-site-directed immobilization techniques is the ability to produce fully defined osteogenic surfaces, allowing for lower BMP2 loads and concomitant higher bioactivities, for example, due to controlled orientation toward BMP2 receptors. Such products might provide superior bone healing capabilities with potential safety advantages as of homogeneous product outcome.

  15. Click Synthesis of Hydrophilic Maltose-Functionalized Iron Oxide Magnetic Nanoparticles Based on Dopamine Anchors for Highly Selective Enrichment of Glycopeptides.

    PubMed

    Bi, Changfen; Zhao, Yingran; Shen, Lijin; Zhang, Kai; He, Xiwen; Chen, Langxing; Zhang, Yukui

    2015-11-11

    The development of methods to isolate and enrich low-abundance glycopeptides from biological samples is crucial to glycoproteomics. Herein, we present an easy and one-step surface modification strategy to prepare hydrophilic maltose functionalized Fe3O4 nanoparticles (NPs). First, based on the chelation of the catechol ligand with iron atoms, azido-terminated dopamine (DA) derivative was assembled on the surface of magnetic Fe3O4 nanoparticles by sonication. Second, the hydrophilic maltose-functionalized Fe3O4 (Fe3O4-DA-Maltose) NPs were obtained via copper(I)-catalyzed azide-alkyne cycloaddition (click chemistry). The morphology, structure, and composition of Fe3O4-DA-Maltose NPs were investigated by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), X-ray photoelectron spectrometer (XPS), and vibrating sample magnetometer (VSM). Meanwhile, hydrophilicity of the obtained NPs was evaluated by water contact angle measurement. The hydrophilic Fe3O4-DA-Maltose NPs were applied in isolation and enrichment of glycopeptides from horseradish peroxidase (HRP), immunoglobulin (IgG) digests. The MALDI-TOF mass spectrometric analysis indicated that the novel NPs exhibited high detection sensitivity in enrichment from HRP digests at concentration as low as 0.05 ng μL(-1), a large binding capacity up to 43 mg g(-1), and good recovery for glycopeptides enrichment (85-110%). Moreover, the Fe3O4-DA-Maltose NPs were applied to enrich glycopeptides from human renal mesangial cells (HRMC) for identification of N-glycosylation sites. Finally, we identified 115 different N-linked glycopeptides, representing 93 gene products and 124 glycosylation sites in HRMC.

  16. Synthesis, characterization and cytotoxicity studies of 1,2,3-triazoles and 1,2,4-triazolo [1,5-a] pyrimidines in human breast cancer cells.

    PubMed

    Gilandoust, Maryam; Harsha, Kachigere B; Mohan, Chakrabhavi Dhananjaya; Raquib, Ainiah Rushdiana; Rangappa, Shobith; Pandey, Vijay; Lobie, Peter E; Basappa; Rangappa, Kanchugarakoppal S

    2018-05-09

    Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) is essential for physiological functions of tissues and neovasculature. VEGFR signaling is associated with the progression of pathological angiogenesis in various types of malignancies, making it an attractive therapeutic target in cancer treatment. In the present work, we report the synthesis of 1,4-disubstituted 1,2,3-triazoles and 1,2,4-triazolo[1, 5-a]pyrimidine derivatives via copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction and screened for their anticancer activity against MCF7 cells. We identified 1-(2'-ethoxy-4'-fluoro-[1,1'-biphenyl]-4-yl)-4-phenyl-1H-1,2,3-triazole (EFT) as lead cytotoxic agent against MCF7 cell lines with an IC 50 value of 1.69 µM. Further evaluation revealed that EFT induces cytotoxicity on Ishikawa, MDA-MB-231 and BT474 cells with IC 50 values of 1.97, 4.81 and 4.08 µM respectively. However, EFT did not induce cytotoxicity in normal lung epithelial (BEAS-2B) cells. Previous reports suggested that 1,2,3-triazoles are the inhibitors of VEGFR1 and therefore, we evaluated the effect of EFT on the expression of VEGFR1. The results demonstrated that EFT downregulates the expression of VEGFR1 in MCF7 cells. In summary, we identified a potent cytotoxic agent that imparts its antiproliferative activity by targeting VEGFR1 in breast cancer cells. The novel compound could serve as a lead structure in developing VEGFR1 inhibitors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Novel Bispecific PSMA/GRPr Targeting Radioligands with Optimized Pharmacokinetics for Improved PET Imaging of Prostate Cancer.

    PubMed

    Liolios, C; Schäfer, M; Haberkorn, U; Eder, M; Kopka, K

    2016-03-16

    A new series of bispecific radioligands (BRLs) targeting prostate-specific membrane antigen (PSMA) and gastrin releasing peptide receptor (GRPr), both expressed on prostate cancer cells, was developed. Their design was based on the bombesin (BN) analogue, H2N-PEG2-[D-Tyr(6),β-Ala(11),Thi(13),Nle(14)]BN(6-14), which binds to GRPr with high affinity and specificity, and the peptidomimetic urea-based pseudoirreversible inhibitor of PSMA, Glu-ureido-Lys. The two pharmacophores were coupled through copper(I)-catalyzed azide-alkyne cycloaddition to the bis(tetrafluorophenyl) ester of the chelating agent HBED-CC via amino acid linkers made of positively charged His (H) and negatively charged Glu (E): -(HE)n- (n = 0-3). The BRLs were labeled with (68)Ga, and their preliminary pharmacological properties were evaluated in vitro (competitive and time kinetic binding assays) on prostate cancer (PC-3, LNCaP) and rat pancreatic (AR42J) cell lines and in vivo by biodistribution and small animal PET imaging studies in both normal and tumor-bearing mice. The IC50/Ki values determined for all BRLs essentially matched those of the respective monomers. The maximal cellular uptake of the BLRs was observed between 20 and 30 min. The BRLs showed a synergistic ability in vivo by targeting both PSMA (LNCaP) and GRPr (PC-3) positive tumors, whereas the charged -(HE)n- (n = 1-3) linkers significantly reduced the kidney and spleen uptake. The bispecific (PSMA and GRPr) targeting ability and optimized pharmacokinetics of the compounds developed in this study could lead to their future application in clinical practice as more sensitive radiotracers for noninvasive imaging of prostate cancer (PCa) by PET/CT and PET/MRI.

  18. Efficient Förster resonance energy transfer in 1,2,3-triazole linked BODIPY-Zn(II) meso-tetraphenylporphyrin donor-acceptor arrays.

    PubMed

    Leonardi, Matthew J; Topka, Michael R; Dinolfo, Peter H

    2012-12-17

    Cu(I) catalyzed azide-alkyne cycloaddition (CuAAC) reactivity was successfully employed to synthesize three donor-acceptor energy transfer (EnT) arrays that contain one (Dyad), three (Tetrad) and four (Pentad) 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) donors connected to a Zn-tetraphenylporphyrin acceptor via 1,2,3-triazole linkages. The photophysical properties of the three arrays, along with individual donor and acceptor chromophores, were investigated by UV-vis absorption and emission spectroscopy, fluorescence lifetimes, and density functional theory (DFT) electronic structure modeling. Comparison of the UV-vis absorption spectra and frontier molecular orbitals from DFT calculations of the three arrays with ZnTPP, ZnTTrzlP, and Trzl-BODIPY shows that the electronic structure of the chromophores is essentially unperturbed by the 1,2,3-triazole linkage. Time-dependent DFT (TDDFT) calculations on the Dyad reproduce the absorption spectra in THF and show no evidence of excited state mixing of the donor and acceptor. The BODIPY singlet excited state emission is significantly quenched in all three arrays, consistent with EnT to the porphyrin core, with efficiencies of 95.8, 97.5, and 97.2% for the Dyad, Tetrad, and Pentad, respectively. Fluorescence excitation spectra of the three arrays, measured at the porphyrin emission, mirror the absorption profile of both the porphyrin and BODIPY chromophores and are consistent with the Förster resonance energy transfer (FRET) mechanism. Applying Förster theory to the spectroscopic data of the chromophores gives EnT efficiency estimates that are in close agreement with experimental values, suggesting that the through-space mechanism plays a dominant role in the three arrays.

  19. Iron-catalyzed intermolecular cycloaddition of diazo surrogates with hexahydro-1,3,5-triazines.

    PubMed

    Liu, Pei; Zhu, Chenghao; Xu, Guangyang; Sun, Jiangtao

    2017-09-26

    We report here an unprecedented iron-catalyzed cycloaddition reaction of diazo surrogates with hexahydro-1,3,5-triazines, providing five-membered heterocycles in moderate to high yields under mild reaction conditions. This cycloaddition features C-N and C-C bond formation using a cheap iron catalyst. Importantly, different to our former report on a gold-catalyzed system, both donor/donor and donor/acceptor diazo substrates are tolerated in this iron-catalyzed protocol.

  20. Synthesis and antimicrobial evaluation of ester-linked 1,4-disubstituted 1,2,3-triazoles with a furyl/thienyl moiety.

    PubMed

    Kaushik, C P; Luxmi, Raj; Singh, Dharmendra; Kumar, Ashwani

    2017-02-01

    Twenty ester-linked 1,4-disubstituted 1,2,3-triazoles having a furyl/thienyl moiety have been synthesized from heteroaryl prop-2-yn-1-yl carboxylate and aromatic azides via a Cu(I) catalyzed 1,3-dipolar cycloaddition. All the synthesized compounds were characterized by FTIR, [Formula: see text]H NMR, [Formula: see text]C NMR spectroscopy and HRMS. Synthesized triazoles were tested in vitro for antimicrobial evaluation against Gram-negative bacteria-Escherichia coli, Enterobacter aerogenes and Klebsiella pneumoniae; Gram-positive bacteria-Staphylococcus aureus and two fungal strains-Candida albicans and Aspergillus niger, reflecting moderate to good activity. The structure of compound 6f was also confirmed by X-ray crystallography (CCDC 1469326).

  1. Construction of Nontoxic Polymeric UV-Absorber with Great Resistance to UV-Photoaging

    PubMed Central

    Huang, Zhong; Ding, Aishun; Guo, Hao; Lu, Guolin; Huang, Xiaoyu

    2016-01-01

    In this article, we developed a series of new nontoxic polymeric UV-absorbers through covalently attaching a benzophenone derivative onto the main chain of poly(vinyl chloride) (PVC) via mild and quantitative click chemistry. Azide groups were firstly introduced into the backbone of PVC via a nucleophilic reaction without affecting polymeric skeleton. Copper-catalyzed Husigen-Click cycloaddition reaction was performed between the pendant azide groups of PVC and alkynyl of (2-hydroxy-4-(prop-2-ynyloxy)phenyl)(phenyl)methanone at ambient temperature for affording the desired PVC-based UV-absorbers (PVC-UV) with different amounts of benzophenone moieties, which displayed great resistance to photoaging without degradation while exposed to UV irradiation. These polymeric UV-absorbers also showed good solubilities in common organic solvents and no cytotoxicity vs. HaCat cell. Small amounts of PVC-UV were homogeneously mixed with PVC as additive for stabilizing PVC against UV-photoaging without degradation and releasing small molecule even after 200 h while keeping thermal stability. This route of polymeric additive clearly paved an efficient way for solving the puzzle of separation of small molecule additive. PMID:27138547

  2. The [2 + 2] Cycloaddition-Retroelectrocyclization and [4 + 2] Hetero-Diels-Alder Reactions of 2-(Dicyanomethylene)indan-1,3-dione with Electron-Rich Alkynes: Influence of Lewis Acids on Reactivity.

    PubMed

    Donckele, Etienne J; Finke, Aaron D; Ruhlmann, Laurent; Boudon, Corinne; Trapp, Nils; Diederich, François

    2015-07-17

    The reaction of electrophilic 2-(dicyanomethylene)indan-1,3-dione (DCID) with substituted, electron-rich alkynes provides two classes of push-pull chromophores with interesting optoelectronic properties. The formal [2 + 2] cycloaddition-retroelectrocyclization reaction at the exocyclic double bond of DCID gives cyanobuta-1,3-dienes, and the formal [4 + 2] hetero-Diels-Alder (HDA) reaction at an enone moiety of DCID generates fused 4H-pyran heterocycles. Both products can be obtained in good yield and excellent selectivity by carefully tuning the reaction conditions; in particular, the use of Lewis acids dramatically enhances formation of the HDA adduct.

  3. Chemical proteomics approaches for identifying the cellular targets of natural products

    PubMed Central

    Sieber, S. A.

    2016-01-01

    Covering: 2010 up to 2016 Deconvoluting the mode of action of natural products and drugs remains one of the biggest challenges in chemistry and biology today. Chemical proteomics is a growing area of chemical biology that seeks to design small molecule probes to understand protein function. In the context of natural products, chemical proteomics can be used to identify the protein binding partners or targets of small molecules in live cells. Here, we highlight recent examples of chemical probes based on natural products and their application for target identification. The review focuses on probes that can be covalently linked to their target proteins (either via intrinsic chemical reactivity or via the introduction of photocrosslinkers), and can be applied “in situ” – in living systems rather than cell lysates. We also focus here on strategies that employ a click reaction, the copper-catalysed azide–alkyne cycloaddition reaction (CuAAC), to allow minimal functionalisation of natural product scaffolds with an alkyne or azide tag. We also discuss ‘competitive mode’ approaches that screen for natural products that compete with a well-characterised chemical probe for binding to a particular set of protein targets. Fuelled by advances in mass spectrometry instrumentation and bioinformatics, many modern strategies are now embracing quantitative proteomics to help define the true interacting partners of probes, and we highlight the opportunities this rapidly evolving technology provides in chemical proteomics. Finally, some of the limitations and challenges of chemical proteomics approaches are discussed. PMID:27098809

  4. Undergraduate Organic Experiment: Tetrazole Formation by Microwave Heated (3 + 2) Cycloaddition in Aqueous Solution

    ERIC Educational Resources Information Center

    DeFrancesco, Heather; Dudley, Joshua; Coca, Adiel

    2018-01-01

    An undergraduate experiment for the organic laboratory is described that utilizes microwave heating to prepare 5- substituted 1H-tetrazole derivatives through a (3 + 2) cycloaddition between aryl nitriles and sodium azide. The reaction mixture is analyzed by thin layer chromatography. The products are purified through an acid-base extraction and…

  5. Antifungal activity of 1'-homo-N-1,2,3-triazol-bicyclic carbonucleosides: A novel type of compound afforded by azide-enolate (3+2) cycloaddition.

    PubMed

    González-Calderón, Davir; Mejía-Dionicio, María G; Morales-Reza, Marco A; Aguirre-de Paz, José G; Ramírez-Villalva, Alejandra; Morales-Rodríguez, Macario; Fuentes-Benítes, Aydeé; González-Romero, Carlos

    2016-12-01

    The first report of 1'-homo-N-1,2,3-triazol-bicyclic carbonucleosides (7a and 7b) is described herein. Azide-enolate (3+2) cycloaddition afforded the synthesis of this novel type of compound. Antifungal activity was evaluated in vitro against four filamentous fungi (Aspergillus fumigatus, Trichosporon cutaneum, Rhizopus oryzae and Mucor hiemalis) as well as nine species of Candida spp. as yeast specimens. These pre-clinical studies suggest that compounds 7a and 7b are promising candidates for complementary biological studies due to their good activity against Candida spp. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. In situ click chemistry: from small molecule discovery to synthetic antibodies

    PubMed Central

    Agnew, Heather D.; Lai, Bert; Lee, Su Seong; Lim, Jaehong; Nag, Arundhati; Pitram, Suresh; Rohde, Rosemary; Heath, James R.

    2013-01-01

    Advances in the fields of proteomics, molecular imaging, and therapeutics are closely linked to the availability of affinity reagents that selectively recognize their biological targets. Here we present a review of Iterative Peptide In Situ Click Chemistry (IPISC), a novel screening technology for designing peptide multiligands with high affinity and specificity. This technology builds upon in situ click chemistry, a kinetic target-guided synthesis approach where the protein target catalyzes the conjugation of two small molecules, typically through the azide–alkyne Huisgen cycloaddition. Integrating this methodology with solid phase peptide libraries enables the assembly of linear and branched peptide multiligands we refer to as Protein Catalyzed Capture Agents (PCC Agents). The resulting structures can be thought of as analogous to the antigen recognition site of antibodies and serve as antibody replacements in biochemical and cell-based applications. In this review, we discuss the recent progress in ligand design through IPISC and related approaches, focusing on the improvements in affinity and specificity as multiligands are assembled by target-catalyzed peptide conjugation. We compare the IPISC process to small molecule in situ click chemistry with particular emphasis on the advantages and technical challenges of constructing antibody-like PCC Agents. PMID:22836343

  7. Study of the Effect of Grafting Method on Surface Polarity of Tempo-Oxidized Nanocellulose Using Polycaprolactone as the Modifying Compound: Esterification versus Click-Chemistry

    PubMed Central

    Benkaddour, Abdelhaq; Jradi, Khalil; Robert, Sylvain; Daneault, Claude

    2013-01-01

    Esterification and click-chemistry were evaluated as surface modification treatments for TEMPO-oxidized nanocelluloses (TONC) using Polycaprolactone-diol (PCL) as modifying compound in order to improve the dispersion of nanofibers in organic media. These two grafting strategies were analyzed and compared. The first consists of grafting directly the PCL onto TONC, and was carried out by esterification between hydroxyl groups of PCL and carboxyl groups of TONC. The second strategy known as click-chemistry is based on the 1,3-dipolar cycloaddition reaction between azides and alkyne terminated moieties to form the triazole ring between PCL and TONC. The grafted samples were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Thermogravimetry analysis (TGA). Further, the effects of the two treatments on the surface hydrophobization of TONC were investigated by contact angle measurements. The results show that both methods confirm the success of such a modification and the click reaction was significantly more effective than esterification. PMID:28348357

  8. A Nucleus-Imaging Probe That Selectively Stabilizes a Minor Conformation of c-MYC G-quadruplex and Down-regulates c-MYC Transcription in Human Cancer Cells

    PubMed Central

    Panda, Deepanjan; Debnath, Manish; Mandal, Samir; Bessi, Irene; Schwalbe, Harald; Dash, Jyotirmayee

    2015-01-01

    The c-MYC proto-oncogene is a regulator of fundamental cellular processes such as cell cycle progression and apoptosis. The development of novel c-MYC inhibitors that can act by targeting the c-MYC DNA G-quadruplex at the level of transcription would provide potential insight into structure-based design of small molecules and lead to a promising arena for cancer therapy. Herein we report our finding that two simple bis-triazolylcarbazole derivatives can inhibit c-MYC transcription, possibly by stabilizing the c-MYC G-quadruplex. These compounds are prepared using a facile and modular approach based on Cu(I) catalysed azide and alkyne cycloaddition. A carbazole ligand with carboxamide side chains is found to be microenvironment-sensitive and highly selective for “turn-on” detection of c-MYC quadruplex over duplex DNA. This fluorescent probe is applicable to visualize the cellular nucleus in living cells. Interestingly, the ligand binds to c-MYC in an asymmetric fashion and selects the minor-populated conformer via conformational selection. PMID:26286633

  9. Biocompatible artificial DNA linker that is read through by DNA polymerases and is functional in Escherichia coli

    PubMed Central

    El-Sagheer, Afaf H.; Sanzone, A. Pia; Gao, Rachel; Tavassoli, Ali; Brown, Tom

    2011-01-01

    A triazole mimic of a DNA phosphodiester linkage has been produced by templated chemical ligation of oligonucleotides functionalized with 5′-azide and 3′-alkyne. The individual azide and alkyne oligonucleotides were synthesized by standard phosphoramidite methods and assembled using a straightforward ligation procedure. This highly efficient chemical equivalent of enzymatic DNA ligation has been used to assemble a 300-mer from three 100-mer oligonucleotides, demonstrating the total chemical synthesis of very long oligonucleotides. The base sequences of the DNA strands containing this artificial linkage were copied during PCR with high fidelity and a gene containing the triazole linker was functional in Escherichia coli. PMID:21709264

  10. An intramolecular [2 + 2] cycloaddition of ketenimines via palladium-catalyzed rearrangements of N-allyl-ynamides.

    PubMed

    DeKorver, Kyle A; Hsung, Richard P; Song, Wang-Ze; Wang, Xiao-Na; Walton, Mary C

    2012-06-15

    A cascade of Pd-catalyzed N-to-C allyl transfer-intramolecular ketenimine-[2 + 2] cycloadditions of N-allyl ynamides is described. This tandem sequence is highly stereoselective and the [2 + 2] cycloaddition could be rendered in a crossed or fused manner depending on alkene substitutions, leading to bridged and fused bicycloimines.

  11. The Electrode as Organolithium Reagent: Catalyst-Free Covalent Attachment of Electrochemically Active Species to an Azide-Terminated Glassy Carbon Electrode Surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Atanu K.; Engelhard, Mark H.; Liu, Fei

    2013-12-02

    Glassy carbon electrodes have been activated for modification with azide groups and subsequent coupling with ferrocenyl reagents by a catalyst-free route using lithium acetylide-ethylenediamine complex, and also by the more common Cu(I)-catalyzed alkyne-azide coupling (CuAAC) route, both affording high surface coverages. Electrodes were preconditioned at ambient temperature under nitrogen, and ferrocenyl surface coverages obtained by CuAAC were comparable to those reported with preconditioning at 1000 °C under hydrogen/nitrogen. The reaction of lithium acetylide-ethylenediamine with the azide-terminated electrode affords a 1,2,3-triazolyllithium-terminated surface that is active toward covalent C-C coupling reactions including displacement at an aliphatic halide and nucleophilic addition at anmore » aldehyde. For example, surface ferrocenyl groups were introduced by reaction with (6-iodohexyl)ferrocene; the voltammetry shows narrow, symmetric peaks indicating uniform attachment. Coverages are competitive with those obtained by the CuAAC route. X-ray photoelectron spectroscopic data, presented for each synthetic step, are consistent with the proposed reactions. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.« less

  12. A polytriazole synthesized by 1,3-dipolar polycycloaddition showing aggregation-enhanced emission and utility in explosive detection.

    PubMed

    Wang, Qiang; Chen, Ming; Yao, Bicheng; Wang, Jian; Mei, Ju; Sun, Jing Zhi; Qin, Anjun; Tang, Ben Zhong

    2013-05-14

    The metal-free click polymerizations (MFCPs) of activated alkynes and azides have become a powerful technique for the preparation of functional polytriazoles. Recently, a new MFCP of activated azide and alkyne has been established, but no functional polytriazole is prepared. In this paper, polytriazole PIa with aggregation-enhanced emission (AEE) characteristics is prepared by this efficient polymerization in excellent yield (97.9%). PIa is thermally stable, with 5% loss of its weight at temperature as high as 440 °C. Thanks to its unique AEE feature of PIa, its nanoaggregates can be used to detect explosives with a superamplification quenching effect. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Amide to Alkyne Interconversion via a Nickel/Copper-Catalyzed Deamidative Cross-Coupling of Aryl and Alkenyl Amides.

    PubMed

    Srimontree, Watchara; Chatupheeraphat, Adisak; Liao, Hsuan-Hung; Rueping, Magnus

    2017-06-16

    A nickel-catalyzed deamidative cross-coupling reaction of amides with terminal alkynes as coupling partners was disclosed. This newly developed methodology allows the direct interconversion of amides to alkynes and enables a facile route for C(sp2)-C(sp) bond formation in a straightforward and mild fashion.

  14. Pyridine synthesis by reactions of allyl amines and alkynes proceeding through a Cu(OAc)2 oxidation and Rh(III)-catalyzed N-annulation sequence.

    PubMed

    Kim, Dong-Su; Park, Jung-Woo; Jun, Chul-Ho

    2012-11-28

    A new methodology has been developed for the synthesis of pyridines from allyl amines and alkynes, which involves sequential Cu(II)-promoted dehydrogenation of the allylamine and Rh(III)-catalyzed N-annulation of the resulting α,β-unsaturated imine and alkyne.

  15. Adjusting the surface areal density of click-reactive azide groups by kinetic control of the azide substitution reaction on bromine-functional SAMs.

    PubMed

    Zhang, Shuo; Maidenberg, Yanir; Luo, Kai; Koberstein, Jeffrey T

    2014-06-03

    Azide-alkyne click chemistry has emerged as an important and versatile means for tethering a wide variety of guest molecules to virtually any substrate. In many of these applications, it is important to exercise control over the areal density of surface functional groups to achieve a desired areal density of the tethered guest molecule of interest. We demonstrate herein that the areal density of surface azide groups on flat germanium surfaces and nanoparticle substrates (silica and iron oxide) can be controlled kinetically by appropriately timed quenching of the S(N)2 substitution reaction of bromo-alkane-silane monolayers induced by the addition of sodium azide. The kinetics of the azide substitution reaction on monolayers formed on flat Ge substrates, determined by attenuated total reflection infrared spectroscopy (ATR-IR), are found to be identical to those for monolayers formed on both silica and iron oxide nanoparticles, the latter determined by transmission infrared spectroscopy. To validate the method, the percentages of surface bromine groups converted to azide groups after various reaction times were measured by quenching the S(N)2 reaction followed by analysis with ATR-IR (for Ge) and thermogravimetric analysis (after a subsequent click reaction with an alkyne-terminal polymer) for the nanoparticle substrates. The conversions found after quenching agree well with those expected from the standard kinetic curves. The latter result suggests that the kinetic method for the control of azide group areal density is a versatile means for functionalizing substrates with a prescribed areal density of azide groups for subsequent click reactions, and that the method is universal for any substrate, flat or nanoparticle, that can be modified with bromo-alkane-silane monolayers. Regardless of the surface geometry, we find that the azide substitution reaction is complete within 2-3 h, in sharp contrast to previous reports that indicate times of 48-60 h required for completion of the reaction.

  16. An Intramolecular [2 + 2] Cycloaddition of Ketenimines via Palladium-Catalyzed Rearrangements of N-Allyl-Ynamides

    PubMed Central

    DeKorver, Kyle A.; Song, Wang-Ze; Wang, Xiao-Na; Walton, Mary C.

    2012-01-01

    A cascade of Pd-catalyzed N-to-C allyl transfer–intramolecular ketenimine–[2 + 2] cycloadditions of N-allyl ynamides is described. This tandem sequence is highly stereoselective and the [2 + 2] cycloaddition could be rendered in a crossed or fused manner depending on alkene substitutions, leading to bridged and fused bicycloimines. PMID:22667819

  17. New functionalized mercaptoundecahydrododecaborate derivatives for potential application in boron neutron capture therapy: synthesis, characterization and dynamic visualization in cells.

    PubMed

    Genady, Afaf R; Ioppolo, Joseph A; Azaam, Mohamed M; El-Zaria, Mohamed E

    2015-03-26

    A series of mercaptoundecahydrododecaborate (B12H11SH(2-), BSH) bearing mono- and dicarboxyalkyl derivatives was prepared, characterized, and their reactivity towards amidation and esterification in DMF was evaluated. Symmetrical alkylation of BSH was achieved by treatment with primary haloalkyl carboxylic acids in aqueous acetonitrile to produce S,S-bis(carboxyalkyl)sulfonium-undecahydro-closo-dodecaborate tetramethylammonium salts. Unsymmetrically substituted sulfonium salts were obtained through a similar treatment of cyanoethylthioether-undecahydro-closo-dodecaborate tetramethylammonium salt with haloalkyl carboxylic acid. Selective removal of the remaining cyanoethyl group upon treatment with tetramethylammonium hydroxide yielded S-carboxyalkyl-thioether-undecahydro-closo-dodecaborate ditetramethylammonium salts. N,N'-dicyclohexylcarbodiimide (DCC) activated amidation of S,S-bis(carboxyalkyl)sulfonium-undecahydro-closo-dodecaborate or S-carboxyalkyl-thioether-undecahydro-closo-dodecaborate tetramethylammonium salts with propargylamine provided the opportunity to install terminal acetylene groups for further conjugation. These compounds acted as powerful building blocks for the synthesis of a broad range of 1,4-disubstituted 1,2,3-triazole products in high yields, utilizing the Cu(I)-mediated click cycloaddition reaction. The synthesis of BSH-lipid with a two-tailed moiety was also achieved, by esterification of S,S-bis(carboxyethyl)sulfoniumundecahydro-closo-dodecaborate(1-) tetramethylammonium salt with 1,2-O-distearoyl-sn-3-glycerol, which may prove useful in the liposomal boron delivery system. The bio-compatibility of the azide-alkyne click reaction was then utilized by performing this reaction in cell culture. The distribution of BSH in HeLa cells could be visualized by treating the cells first with a BSH-alkyne compound and then with Alexa Fluor 488(®) azide dye. The BSH-dye conjugate, which did not wash out, revealed the distribution of boron in the HeLa cells. Cytotoxicity assays of these BSH derivatives revealed that the synthesized BSH-conjugated triazoles possessed low cytotoxicity in HeLa cancer cells. Of these compounds, BSH conjugated triazole 15 induced a significant increase in the level of boron accumulation in HeLa cells. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  18. Synthesis of geminal bis- and tristriazoles: exploration of unconventional azide chemistry.

    PubMed

    Erhardt, Hellmuth; Mohr, Fabian; Kirsch, Stefan F

    2016-01-11

    A range of geminal bis- and tristriazoles are presented. These rare and hardly studied compound classes were easily synthesized using ethyl 2,2-diazido-3-oxobutanoate as the common starting point. Firstly, CuAAC-reaction with an alkyne afforded the corresponding deacetylated bistriazoles. Upon further azidation yielding azidomethylenebistriazoles, a second CuAAC-functionalization then led to the creation of the geminal tristriazole compounds.

  19. Ferrocene-decorated nanocrystalline cellulose with charge carrier mobility.

    PubMed

    Eyley, Samuel; Shariki, Sara; Dale, Sara E C; Bending, Simon; Marken, Frank; Thielemans, Wim

    2012-04-24

    Ferrocene-decorated cellulose nanowhiskers were prepared by the grafting of ethynylferrocene onto azide functionalized cotton-derived cellulose nanowhiskers using azide-alkyne cycloaddition. Successful surface modification and retention of the crystalline morphology of the nanocrystals was confirmed by elemental analysis, inductively coupled plasma-atomic emission spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The coverage with ferrocenyl is high (approximately 1.14 × 10(-3) mol g(-1) or 4.6 × 10(13) mol cm(-2) corresponding to a specific area of 61 Å(2) per ferrocene). Cyclic voltammetry measurements of films formed by deposition of ferrocene-decorated nanowhiskers showed that this small spacing of redox centers along the nanowhisker surface allowed conduction hopping of electrons. The apparent diffusion coefficient for electron (or hole) hopping via Fe(III/II) surface sites is estimated as Dapp = 10(-19) m(2)s(-1) via impedance methods, a value significantly less than nonsolvated ferrocene polymers, which would be expected as the 1,2,3-triazole ring forms a rigid linker tethering the ferrocene to the nanowhisker surface. In part, this is believed to be also due to "bottleneck" diffusion of charges across contact points where individual cellulose nanowhiskers contact each other. However, the charge-communication across the nanocrystal surface opens up the potential for use of cellulose nanocrystals as a charge percolation template for the preparation of conducting films via covalent surface modification (with applications similar to those using adsorbed conducting polymers), for use in bioelectrochemical devices to gently transfer and remove electrons without the need for a solution-soluble redox mediator, or for the fabrication of three-dimensional self-assembled conducting networks.

  20. A Rhodium(I)-Xylyl-BINAP Catalyzed Asymmetric Ynamide-[2 + 2 + 2] Cycloaddition in the Synthesis of Optically Enriched N,O-Biaryls

    PubMed Central

    Oppenheimer, Jossian; Johnson, Whitney L.; Figueroa, Ruth; Hayashi, Ryuji; Hsung, Richard P.

    2009-01-01

    A rhodium(I)-xylyl-BINAP catalyzed asymmetric [2 + 2 + 2] cycloaddition of achiral conjugated aryl ynamides with various diynes is described here. This asymmetric cycloaddition provides a series of structurally interesting chiral N,O-biaryls with excellent enantioselectivity along with a modest diastereoselectivity with respect to both C-C and C-N axial chirality. PMID:20161177

  1. The [2+2] Cycloaddition-Retroelectrocyclization (CA-RE) Click Reaction: Facile Access to Molecular and Polymeric Push-Pull Chromophores.

    PubMed

    Michinobu, Tsuyoshi; Diederich, François

    2018-03-26

    The [2+2] cycloaddition-retroelectrocyclization (CA-RE) reaction between electron-rich alkynes and electron-deficient alkenes is an efficient procedure to create nonplanar donor-acceptor (D-A) chromophores in both molecular and polymeric platforms. They feature attractive properties including intramolecular charge-transfer (ICT) bands, nonlinear optical properties, and redox activities for use in next-generation electronic and optoelectronic devices. This Review summarizes the development of the CA-RE reaction, starting from the initial reports with organometallic compounds to the extension to purely organic systems. The structural requirements for rapid, high-yielding transformations with true click chemistry character are illustrated by examples that include the broad alkyne and alkene substitution modes. The CA-RE click reaction has been successfully applied to polymer synthesis, with the resulting polymeric push-pull chromophores finding many interesting applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Chemical Synthesis of GM2 Glycans, Bioconjugation with Bacteriophage Qβ, and the Induction of Anticancer Antibodies

    PubMed Central

    Yin, Zhaojun; Dulaney, Steven; McKay, Craig S.; Baniel, Claire; Kaczanowska, Katarzyna; Ramadan, Sherif; Finn, M. G.

    2016-01-01

    The development of carbohydrate-based antitumor vaccines is an attractive approach towards tumor prevention and treatment. Herein, we focused on the ganglioside GM2 tumor-associated carbohydrate antigen (TACA), which is overexpressed in a wide range of tumor cells. GM2 was synthesized chemically and conjugated with a virus-like particle derived from bacteriophage Qβ. Although the copper-catalyzed azide–alkyne cyclo-addition reaction efficiently introduced 237 copies of GM2 per Qβ, this construct failed to induce significant amounts of anti-GM2 antibodies compared to the Qβ control. In contrast, GM2 immobilized on Qβ through a thiourea linker elicited high titers of IgG antibodies that recognized GM2-positive tumor cells and effectively induced cell lysis through complement-mediated cytotoxicity. Thus, bacteriophage Qβ is a suitable platform to boost antibody responses towards GM2, a representative member of an important class of TACA: the ganglioside. PMID:26538065

  3. Palladium-Catalyzed Direct C-H Allylation of Electron-Deficient Polyfluoroarenes with Alkynes.

    PubMed

    Zheng, Jun; Breit, Bernhard

    2018-04-06

    A palladium-catalyzed intermolecular direct C-H allylation of polyfluoroarenes with alkynes is reported. Unlike classic hydroarylation reactions, alkynes are used as allylic electrophile surrogates in this direct aromatic C-H allylation. As an atom-economic and efficient method, various linear allylated fluoroarenes were synthesized from two simple and easy-to-access feedstocks in good to excellent yields, as well as regio- and stereoselectivity.

  4. Gold-catalyzed three-component annulation: efficient synthesis of highly functionalized dihydropyrazoles from alkynes, hydrazines, and aldehydes or ketones.

    PubMed

    Suzuki, Yamato; Naoe, Saori; Oishi, Shinya; Fujii, Nobutaka; Ohno, Hiroaki

    2012-01-06

    Polysubstituted dihydropyrazoles were directly obtained by a gold-catalyzed three-component annulation. This reaction consists of a Mannich-type coupling of alkynes with N,N'-disubstituted hydrazines and aldehydes/ketones followed by intramolecular hydroamination. Cascade cyclization using 1,2-dialkynylbenzene derivatives as the alkyne component was also performed producing fused tricyclic dihydropyrazoles in good yields. © 2011 American Chemical Society

  5. Photochemical cycloaddition reagents for rigidly attaching the 1, 4-dimethoxynaphthalene chromophore to scaffold alkenes

    PubMed

    Margetic; Russell; Warrener

    2000-12-14

    The norbornanecyclobutene epoxides 1a-1c containing a fused 1, 4-dimethoxynaphthalene chromophore have been reacted with cyclobutenes, cyclohexenes, norbornenes, 7-isopropylidenenorbornenes, 7-azanorbornenes, and other cyclic or electron-deficient alkenes at room temperature to form 1:1 adducts in stereoselective 1,3-dipolar cycloaddition reactions; alkynes can also participate in this reaction. The ability to form 2:1 adducts has also been demonstrated, thereby opening up opportunities for preparing functionalized products with large chromophore separations.

  6. Systematic Evaluation of Bioorthogonal Reactions in Live Cells with Clickable HaloTag Ligands: Implications for Intracellular Imaging.

    PubMed

    Murrey, Heather E; Judkins, Joshua C; Am Ende, Christopher W; Ballard, T Eric; Fang, Yinzhi; Riccardi, Keith; Di, Li; Guilmette, Edward R; Schwartz, Joel W; Fox, Joseph M; Johnson, Douglas S

    2015-09-09

    Bioorthogonal reactions, including the strain-promoted azide-alkyne cycloaddition (SPAAC) and inverse electron demand Diels-Alder (iEDDA) reactions, have become increasingly popular for live-cell imaging applications. However, the stability and reactivity of reagents has never been systematically explored in the context of a living cell. Here we report a universal, organelle-targetable system based on HaloTag protein technology for directly comparing bioorthogonal reagent reactivity, specificity, and stability using clickable HaloTag ligands in various subcellular compartments. This system enabled a detailed comparison of the bioorthogonal reactions in live cells and informed the selection of optimal reagents and conditions for live-cell imaging studies. We found that the reaction of sTCO with monosubstituted tetrazines is the fastest reaction in cells; however, both reagents have stability issues. To address this, we introduced a new variant of sTCO, Ag-sTCO, which has much improved stability and can be used directly in cells for rapid bioorthogonal reactions with tetrazines. Utilization of Ag complexes of conformationally strained trans-cyclooctenes should greatly expand their usefulness especially when paired with less reactive, more stable tetrazines.

  7. Protein addressing on patterned microchip by coupling chitosan electrodeposition and 'electro-click' chemistry.

    PubMed

    Shi, Xiao-Wen; Qiu, Ling; Nie, Zhen; Xiao, Ling; Payne, Gregory F; Du, Yumin

    2013-12-01

    Many applications in proteomics and lab-on-chip analysis require methods that guide proteins to assemble at surfaces with high spatial and temporal control. Electrical inputs are particularly convenient to control, and there has been considerable effort to discover simple and generic mechanisms that allow electrical inputs to trigger protein assembly on-demand. Here, we report the electroaddressing of a protein to a patterned surface by coupling two generic electroaddressing mechanisms. First, we electrodeposit the stimuli-responsive film-forming aminopolysaccharide chitosan to form a hydrogel matrix at the electrode surface. After deposition, the matrix is chemically functionalized with alkyne groups. Second, we ''electro-click' an azide-tagged protein to the functionalized matrix using electrical signals to trigger conjugation by Huisgen 1,3-dipolar cycloadditions. Specifically, a cathodic potential is applied to the matrix-coated electrode to reduce Cu(II) to Cu(I) which is required for the click reaction. Using fluorescently-labeled bovine serum albumin as our model, we demonstrate that protein conjugation can be controlled spatially and temporally. We anticipate that the coupling of polysaccharide electrodeposition and electro-click chemistry will provide a simple and generic approach to electroaddress proteins within compatible hydrogel matrices.

  8. Highly Regioselective Synthesis of Substituted Isoindolinones via Ruthenium-Catalyzed Alkyne Cyclotrimerizations

    PubMed Central

    Foster, Robert W; Tame, Christopher J; Hailes, Helen C; Sheppard, Tom D

    2013-01-01

    (Cyclooctadiene)(pentamethylcyclopentadiene)ruthenium chloride [Cp*RuCl(cod)] has been used to catalyze the regioselective cyclization of amide-tethered diynes with monosubstituted alkynes to give polysubstituted isoindolinones. Notably, the presence of a trimethylsilyl group on the diyne generally led to complete control over the regioselectivity of the alkyne cyclotrimerization. The cyclization reaction worked well in a sustainable non-chlorinated solvent and was tolerant of moisture. The optimized conditions were effective with a diverse range of alkynes and diynes. The 7-silylisoindolinone products could be halogenated, protodesilylated or ring opened to access a range of usefully functionalized products. PMID:24124414

  9. Rh(I)-catalyzed [(3 + 2) + 1] cycloaddition of 1-yne/ene-vinylcyclopropanes and CO: homologous Pauson-Khand reaction and total synthesis of (+/-)-alpha-agarofuran.

    PubMed

    Jiao, Lei; Lin, Mu; Zhuo, Lian-Gang; Yu, Zhi-Xiang

    2010-06-04

    A novel Rh(I)-catalyzed [(3 + 2) + 1] cycloaddition, which can be regarded as a homologous Pauson-Khand reaction, was developed to synthesize bicyclic cyclohexenones and cyclohexanones, enabling a new approach for synthesis of six-membered carbocycles ubiquitously found in natural products and pharmaceutics. The significance of the Rh-catalyzed [(3 + 2) + 1] cycloaddition has been demonstrated by the total synthesis of a furanoid sesquiterpene natural product, alpha-agarofuran, in which the bicyclic skeleton was constructed by the [(3 + 2) + 1] reaction of 1-yne-VCP and CO.

  10. Site-Directed Immobilization of Bone Morphogenetic Protein 2 to Solid Surfaces by Click Chemistry.

    PubMed

    Siverino, Claudia; Tabisz, Barbara; Lühmann, Tessa; Meinel, Lorenz; Müller, Thomas; Walles, Heike; Nickel, Joachim

    2018-03-29

    Different therapeutic strategies for the treatment of non-healing long bone defects have been intensively investigated. Currently used treatments present several limitations that have led to the use of biomaterials in combination with osteogenic growth factors, such as bone morphogenetic proteins (BMPs). Commonly used absorption or encapsulation methods require supra-physiological amounts of BMP2, typically resulting in a so-called initial burst release effect that provokes several severe adverse side effects. A possible strategy to overcome these problems would be to covalently couple the protein to the scaffold. Moreover, coupling should be performed in a site-specific manner in order to guarantee a reproducible product outcome. Therefore, we created a BMP2 variant, in which an artificial amino acid (propargyl-L-lysine) was introduced into the mature part of the BMP2 protein by codon usage expansion (BMP2-K3Plk). BMP2-K3Plk was coupled to functionalized beads through copper catalyzed azide-alkyne cycloaddition (CuAAC). The biological activity of the coupled BMP2-K3Plk was proven in vitro and the osteogenic activity of the BMP2-K3Plk-functionalized beads was proven in cell based assays. The functionalized beads in contact with C2C12 cells were able to induce alkaline phosphatase (ALP) expression in locally restricted proximity of the bead. Thus, by this technique, functionalized scaffolds can be produced that can trigger cell differentiation towards an osteogenic lineage. Additionally, lower BMP2 doses are sufficient due to the controlled orientation of site-directed coupled BMP2. With this method, BMPs are always exposed to their receptors on the cell surface in the appropriate orientation, which is not the case if the factors are coupled via non-site-directed coupling techniques. The product outcome is highly controllable and, thus, results in materials with homogeneous properties, improving their applicability for the repair of critical size bone defects.

  11. Disulfide-Linked Dendritic Oligomeric Phthalocyanines as Glutathione-Responsive Photosensitizers for Photodynamic Therapy.

    PubMed

    Chow, Sun Y S; Wong, Roy C H; Zhao, Shirui; Lo, Pui-Chi; Ng, Dennis K P

    2018-04-17

    A series of disulfide-linked dendritic phthalocyanines were synthesized by using the Cu I -catalyzed alkyne-azide cycloaddition reaction as the key step. Whereas these compounds were essentially nonaggregated in N,N-dimethylformamide, they were stacked in citrate solution (pH 7.4, with 1 % Cremophor EL), as shown by the broad appearance of their Q-band absorption. Having two-to-six zinc(II) phthalocyanine units in a molecule, these compounds were significantly self-quenched, particularly in citrate solution. Both the fluorescence intensity and singlet-oxygen generation efficiency were significantly lower than those of the monomeric counterparts, and the self-quenching efficiency increased as the number of phthalocyanine units increased. Upon interaction with 5 mm glutathione (GSH) in citrate solution, the fluorescence intensity of these compounds increased as a result of cleavage of the disulfide linkages and separation of the phthalocyanine units, which thereby reduced the self-quenching effect. The "on/off" ratios were found to be 7, 18, 23, and 21 for the dimeric (PC2), trimeric (PC3), tetrameric (PC4), and hexameric (PC6) systems, respectively. GSH also enhanced the fluorescence emission inside human colon adenocarcinoma HT29 cells and promoted the formation of singlet oxygen of these compounds. Upon irradiation, their half maximal inhibitory concentration (IC 50 ) values were found to be in the range of 0.18 to 0.38 μm. Finally, the biodistribution and activation of PC2 and PC6 were also examined in HT29 tumor-bearing nude mice. For both compounds, the fluorescence intensity per unit area at the tumor was found to grow gradually during the first 24 h. Whereas the intensity then dropped for PC2, the intensity for PC6 remained steady over the following 6 d, which might have been a result of the enhanced permeability and retention effect arising from the larger molecular mass of the hexameric system. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effect of mannose targeting of hydroxyl PAMAM dendrimers on cellular and organ biodistribution in a neonatal brain injury model.

    PubMed

    Sharma, Anjali; Porterfield, Joshua E; Smith, Elizabeth; Sharma, Rishi; Kannan, Sujatha; Kannan, Rangaramanujam M

    2018-06-05

    Neurotherapeutics for the treatment of central nervous system (CNS) disorders must overcome challenges relating to the blood-brain barrier (BBB), brain tissue penetration, and the targeting of specific cells. Neuroinflammation mediated by activated microglia is a major hallmark of several neurological disorders, making these cells a desirable therapeutic target. Building on the promise of hydroxyl-terminated generation four polyamidoamine (PAMAM) dendrimers (D4-OH) for penetrating the injured BBB and targeting activated glia, we explored if conjugation of targeting ligands would enhance and modify brain and organ uptake. Since mannose receptors [cluster of differentiation (CD) 206] are typically over-expressed on injured microglia, we conjugated mannose to the surface of multifunctional D4-OH using highly efficient, atom-economical, and orthogonal Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) click chemistry and evaluated the effect of mannose conjugation on the specific cell uptake of targeted and non-targeted dendrimers both in vitro and in vivo. In vitro results indicate that the conjugation of mannose as a targeting ligand significantly changes the mechanism of dendrimer internalization, giving mannosylated dendrimer a preference for mannose receptor-mediated endocytosis as opposed to non-specific fluid phase endocytosis. We further investigated the brain uptake and biodistribution of targeted and non-targeted fluorescently labeled dendrimers in a maternal intrauterine inflammation-induced cerebral palsy (CP) rabbit model using quantification methods based on fluorescence spectroscopy and confocal microscopy. We found that the conjugation of mannose modified the distribution of D4-OH throughout the body in this neonatal rabbit CP model without lowering the amount of dendrimer delivered to injured glia in the brain, even though significantly higher glial uptake was not observed in this model. Mannose conjugation to the dendrimer modifies the dendrimer's interaction with cells, but does not minimize its inherent inflammation-targeting abilities. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Generation of N-Heterocycles via Tandem Reactions of N '-(2-Alkynylbenzylidene)hydrazides.

    PubMed

    Qiu, Guanyinsheng; Wu, Jie

    2016-02-01

    As a powerful synthon, N '-(2-alkynylbenzylidene)hydrazides have been utilized efficiently for the construction of N-heterocycles. Since N '-(2-alkynylbenzylidene)hydrazides can easily undergo intramolecular 6-endo cyclization promoted by silver triflate or electrophiles, the resulting isoquinolinium-2-yl amides can proceed through subsequent transformations including [3 + 2] cycloaddition, nucleophilic addition, and [3 + 3] cycloaddition. Several unexpected rearrangements via radical processes were observed in some cases, which afforded nitrogen-containing heterocycles with molecular complexity. Reactive partners including internal alkynes, arynes, ketenimines, ketenes, allenoates, and activated alkenes reacted through [3 + 2] cycloaddition and subsequent aromatization, leading to diverse H-pyrazolo[5,1-a]isoquinolines with high efficiency. Nucleophilic addition to the in situ generated isoquinolinium-2-yl amide followed by aromatization also produced H-pyrazolo[5,1-a]isoquinoline derivatives when terminal alkynes, carbonyls, enamines, and activated methylene compounds were used as nucleophiles. Isoquinoline derivatives were obtained when indoles or phosphites were employed as nucleophiles in the reactions of N '-(2-alkynylbenzylidene)hydrazides. A tandem 6-endo cyclization and [3 + 3] cycloaddition of cyclopropane-1,1-dicarboxylates with N '-(2-alkynylbenzylidene)hydrazides was observed as well. Small libraries of these compounds were constructed. Biological evaluation suggested that some compounds showed promising activities for inhibition of CDC25B, TC-PTP, HCT-116, and PTP1B. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Rhodium-Catalyzed Acyloxy Migration of Propargylic Esters in Cycloadditions, Inspiration from Recent “Gold Rush”

    PubMed Central

    Shu, Xing-Zhong; Shu, Dongxu; Schienebeck, Casi M.

    2012-01-01

    Transition metal-catalyzed acyloxy migration of propargylic esters offers versatile entries to allene and vinyl carbene intermediates for various fascinating subsequent transformations. Most π-acidic metals (e.g. gold and platinum) are capable of facilitating these acyloxy migration events. However, very few of these processes involve redox chemistry, which are well-known for most other transition metals such as rhodium. The coupling of acyloxy migration of propargylic esters with oxidative addition, migratory insertion, and reductive elimination may lead to ample new opportunities for the design of new reactions. This tutorial review summarizes recent developments in Rh-catalyzed 1,3- and 1,2-acyloxy migration of propargylic esters in a number of cycloaddition reactions. Related Au- and Pt-catalyzed cycloadditions involving acyloxy migration are also discussed. PMID:22895533

  15. Ti-Catalyzed Multicomponent Oxidative Carboamination of Alkynes with Alkenes and Diazenes

    PubMed Central

    Davis-Gilbert, Zachary W.; Yao, Letitia J.; Tonks, Ian A.

    2017-01-01

    The inter- or intramolecular oxidative carboamination of alkynes catalyzed by [py2TiCl2NPh]2 is reported. These multicomponent reactions couple alkenes, alkynes and diazenes to form either α,β-unsaturated imines or α-(iminomethyl)cyclopropanes via a TiII/TiIV redox cycle. Each of these products is formed from a common azatitanacyclohexene intermediate that undergoes either β-H elimination or α,γ-coupling, wherein the selectivity is under substrate control. PMID:27790910

  16. The origin of the ligand-controlled regioselectivity in Rh-catalyzed [(2 + 2) + 2] carbocyclizations: steric vs. stereoelectronic effects.

    PubMed

    Crandell, Douglas W; Mazumder, Shivnath; Evans, P Andrew; Baik, Mu-Hyun

    2015-12-01

    Density functional theory calculations demonstrate that the reversal of regiochemical outcome of the addition for substituted methyl propiolates in the rhodium-catalyzed [(2 + 2) + 2] carbocyclization with PPh 3 and ( S )-xyl-binap as ligands is both electronically and sterically controlled. For example, the ester functionality polarizes the alkyne π* orbital to favor overlap of the methyl-substituted terminus of the alkyne with the p π -orbital of the alkenyl fragment of the rhodacycle during alkyne insertion with PPh 3 as the ligand. In contrast, the sterically demanding xyl-binap ligand cannot accommodate the analogous alkyne orientation, thereby forcing insertion to occur at the sterically preferred ester terminus, overriding the electronically preferred orientation for alkyne insertion.

  17. Enantioselective synthesis of C2 -symmetric spirobipyridine ligands through cationic Rh(I)/modified-BINAP- catalyzed double [2 + 2 + 2] cycloaddition.

    PubMed

    Wada, Azusa; Noguchi, Keiichi; Hirano, Masao; Tanaka, Ken

    2007-03-29

    [structure: see text]. Enantioenriched C2-symmetric spirobipyridine ligands were efficiently synthesized through a cationic rhodium(I)/(R)-Segphos or (R)-H8-BINAP complex-catalyzed enantioselective intramolecular double [2 + 2 + 2] cycloaddition of bis-diynenitriles.

  18. Alkyne Benzannulation Reactions for the Synthesis of Novel Aromatic Architectures.

    PubMed

    Hein, Samuel J; Lehnherr, Dan; Arslan, Hasan; J Uribe-Romo, Fernando; Dichtel, William R

    2017-11-21

    Aromatic compounds and polymers are integrated into organic field effect transistors, light-emitting diodes, photovoltaic devices, and redox-flow batteries. These compounds and materials feature increasingly complex designs, and substituents influence energy levels, bandgaps, solution conformation, and crystal packing, all of which impact performance. However, many polycyclic aromatic hydrocarbons of interest are difficult to prepare because their substitution patterns lie outside the scope of current synthetic methods, as strategies for functionalizing benzene are often unselective when applied to naphthalene or larger systems. For example, cross-coupling and nucleophilic aromatic substitution reactions rely on prefunctionalized arenes, and even directed metalation methods most often modify positions near Lewis basic sites. Similarly, electrophilic aromatic substitutions access single regioisomers under substrate control. Cycloadditions provide a convergent route to densely functionalized aromatic compounds that compliment the above methods. After surveying cycloaddition reactions that might be used to modify the conjugated backbone of poly(phenylene ethynylene)s, we discovered that the Asao-Yamamoto benzannulation reaction is notably efficient. Although this reaction had been reported a decade earlier, its scope and usefulness for synthesizing complex aromatic systems had been under-recognized. This benzannulation reaction combines substituted 2-(phenylethynyl)benzaldehydes and substituted alkynes to form 2,3-substituted naphthalenes. The reaction tolerates a variety of sterically congested alkynes, making it well-suited for accessing poly- and oligo(ortho-arylene)s and contorted hexabenzocoronenes. In many cases in which asymmetric benzaldehyde and alkyne cycloaddition partners are used, the reaction is regiospecific based on the electronic character of the alkyne substrate. Recognizing these desirable features, we broadened the substrate scope to include silyl- and halogen-substituted alkynes. Through a combined experimental and computational approach, we have elucidated mechanistic insight and key principles that govern the regioselectivity outcome of the benzannulation of structurally diverse alkynes. We have applied these methods to prepare sterically hindered, shape-persistent aromatic systems, heterocyclic aromatic compounds, functionalized 2-aryne precursors, polyheterohalogenated naphthalenes, ortho-arylene foldamers, and graphene nanoribbons. As a result of these new synthetic avenues, aromatic structures with interesting properties were uncovered such as ambipolar charge transport in field effect transistors based on our graphene nanoribbons, conformational aspects of ortho-arylene architectures resulting from intramolecular π-stacking, and modulation of frontier molecular orbitals via protonation of heteroatom containing aromatic systems. Given the availability of many substituted 2-(phenylethynyl)benzaldehydes and the regioselectivity of the benzannulation reaction, naphthalenes can be prepared with control of the substitution pattern at seven of the eight substitutable positions. Researchers in a range of fields are likely to benefit directly from newly accessible molecular and polymeric systems derived from polyfunctionalized naphthalenes.

  19. Copper(II)-catalyzed oxidative [3+2] cycloaddition reactions of secondary amines with α-diazo compounds: a facile and efficient synthesis of 1,2,3-triazoles.

    PubMed

    Li, Yi-Jin; Li, Xue; Zhang, Shao-Xiao; Zhao, Yu-Long; Liu, Qun

    2015-07-25

    A novel copper-catalyzed [3+2] cycloaddition reaction of secondary amines with α-diazo compounds has been developed via a cross-dehydrogenative coupling process. The reaction involves a sequential aerobic oxidation/[3+2] cycloaddition/oxidative aromatization procedure and provides an efficient method for the construction of 1,2,3-triazoles in a single step in an atom-economic manner from readily available starting materials under very mild conditions.

  20. Enhanced Tumor Retention Effect by Click Chemistry for Improved Cancer Immunochemotherapy.

    PubMed

    Mei, Ling; Liu, Yayuan; Rao, Jingdong; Tang, Xian; Li, Man; Zhang, Zhirong; He, Qin

    2018-05-30

    Because of the limited drug concentration in tumor tissues and inappropriate treatment strategies, tumor recurrence and metastasis are critical challenges for effectively treating malignancies. A key challenge for effective delivery of nanoparticles is to reduce uptake by reticuloendothelial system and to enhance the permeability and retention effect. Herein, we demonstrated Cu(I)-catalyzed click chemistry triggered the aggregation of azide/alkyne-modified micelles, enhancing micelles accumulation in tumor tissues. In addition, combined doxorubicin with the adjuvant monophosphoryl lipid A, an agonist of toll-like receptor4, generated immunogenic cell death, which further promoted maturity of dendritic cells, antigen presentation and induced strong effector T cells in vivo. Following combined with anti-PD-L1 therapy, substantial antitumor and metastasis inhibitory effects were achieved because of the reduced PD-L1 expression and regulatory T cells. In addition, effective long-term immunity from memory T cell responses protected mice from tumor recurrence.

  1. Recent advances in transition metal-catalyzed N -atom transfer reactions of azides

    PubMed Central

    Driver, Tom G.

    2011-01-01

    Transition metal-catalyzed N-atom transfer reactions of azides provide efficient ways to construct new carbon–nitrogen and sulfur–nitrogen bonds. These reactions are inherently green: no additive besides catalyst is needed to form the nitrenoid reactive intermediate, and the by-product of the reaction is environmentally benign N2 gas. As such, azides can be useful precursors for transition metal-catalyzed N-atom transfer to sulfides, olefins and C–H bonds. These methods offer competitive selectivities and comparable substrate scope as alternative processes to generate metal nitrenoids. PMID:20617243

  2. Synthesis of aryl azides and vinyl azides via proline-promoted CuI-catalyzed coupling reactions.

    PubMed

    Zhu, Wei; Ma, Dawei

    2004-04-07

    The coupling reaction of aryl halides or vinyl iodide with sodium azide under catalysis of CuI/L-proline works at relatively low temperature to provide aryl azides or vinyl azides in good to excellent yields.

  3. Rhodium-catalyzed [5 + 2 + 1] cycloaddition of ene-vinylcyclopropanes and CO: reaction design, development, application in natural product synthesis, and inspiration for developing new reactions for synthesis of eight-membered carbocycles.

    PubMed

    Wang, Yi; Yu, Zhi-Xiang

    2015-08-18

    Practical syntheses of natural products and their analogues with eight-membered carbocyclic skeletons are important for medicinal and biological investigations. However, methods and strategies to construct the eight-membered carbocycles are limited. Therefore, developing new methods to synthesize the eight-membered carbocycles is highly desired. In this Account, we describe our development of three rhodium-catalyzed cycloadditions for the construction of the eight-membered carbocycles, which have great potential in addressing the challenges in the synthesis of medium-sized ring systems. The first reaction described in this Account is our computationally designed rhodium-catalyzed two-component [5 + 2 + 1] cycloaddition of ene-vinylcyclopropanes (ene-VCPs) and CO for the diastereoselective construction of bi- and tricyclic cyclooctenones. The design of this reaction is based on the hypothesis that the C(sp(3))-C(sp(3)) reductive elimination of the eight-membered rhodacycle intermediate generated from the rhodium-catalyzed cyclopropane cleavage and alkene insertion, giving Wender's [5 + 2] cycloadduct, is not easy. Under CO atmosphere, CO insertion may occur rapidly, converting the eight-membered rhodacycle into a nine-membered rhodacycle, which then undergoes an easy C(sp(2))-C(sp(3)) reductive elimination process and furnishes the [5 + 2 + 1] product. This hypothesis was supported by our preliminary DFT studies and also served as inspiration for the development of two [7 + 1] cycloadditions: the [7 + 1] cycloaddition of buta-1,3-dienylcyclopropanes (BDCPs) and CO for the construction of cyclooctadienones, and the benzo/[7 + 1] cycloaddition of cyclopropyl-benzocyclobutenes (CP-BCBs) and CO to synthesize the benzocyclooctenones. The efficiency of these rhodium-catalyzed cycloadditions can be revealed by the application in natural product synthesis. Two eight-membered ring-containing natural products, (±)-asterisca-3(15),6-diene and (+)-asteriscanolide, have been synthesized using the [5 + 2 + 1] cycloaddition as the key step. In the latter case, excellent asymmetric induction was obtained using a chiral substrate. The efficiency of the [5 + 2 + 1] reaction was further demonstrated by the synthesis of four sesquiterpene natural products, (±)-pentalenene, (+)-hirsutene, (±)-1-desoxyhypnophilin, and (±)-hirsutic acid C, containing linear or branched triquinane skeletons utilizing the tandem or stepwise [5 + 2 + 1] cycloaddition/aldol reaction strategy. With the success of [5 + 2 + 1] cycloaddition in natural product synthesis, application of the [7 + 1] and benzo/[7 + 1] cycloadditions in target- and function-oriented syntheses can be envisioned.

  4. Preparation and optical properties of indium tin oxide/epoxy nanocomposites with polyglycidyl methacrylate grafted nanoparticles.

    PubMed

    Tao, Peng; Viswanath, Anand; Schadler, Linda S; Benicewicz, Brian C; Siegel, Richard W

    2011-09-01

    Visibly highly transparent indium tin oxide (ITO)/epoxy nanocomposites were prepared by dispersing polyglycidyl methacrylate (PGMA) grafted ITO nanoparticles into a commercial epoxy resin. The oleic acid stabilized, highly crystalline, and near monodisperse ITO nanoparticles were synthesized via a nonaqueous synthetic route with multigram batch quantities. An azido-phosphate ligand was synthesized and used to exchange with oleic acid on the ITO surface. The azide terminal group allows for the grafting of epoxy resin compatible PGMA polymer chains via Cu(I) catalyzed alkyne-azide "click" chemistry. Transmission electron microscopy (TEM) observation shows that PGMA grafted ITO particles were homogeneously dispersed within the epoxy matrix. Optical properties of ITO/epoxy nanocomposites with different ITO concentrations were studied with an ultraviolet-visible-near-infrared (UV-vis-NIR) spectrometer. All the ITO/epoxy nanocomposites show more than 90% optical transparency in the visible light range and absorption of UV light from 300 to 400 nm. In the near-infrared region, ITO/epoxy nanocomposites demonstrate low transmittance and the infrared (IR) transmission cutoff wavelength of the composites shifts toward the lower wavelength with increased ITO concentration. The ITO/epoxy nanocomposites were applied onto both glass and plastic substrates as visibly transparent and UV/IR opaque optical coatings.

  5. Exploiting [2+2] cycloaddition chemistry: achievements with allenes.

    PubMed

    Alcaide, Benito; Almendros, Pedro; Aragoncillo, Cristina

    2010-02-01

    The allene moiety represents an excellent partner for the [2+2] cycloaddition with alkenes and alkynes, affording the cyclobutane and cyclobutene skeletons in a single step. This strategy has been widely studied under thermal, photochemical and microwave induced conditions. More recently, the use of transition metal catalysis has been introduced as an alternative relying on the activation of the allenic component. On the other hand, the intramolecular version has attracted much attention as a strategy for the synthesis of polycyclic compounds in a regio- and stereoselective fashion. This critical review focuses on the most recently developed [2+2] cycloadditions on allenes along with remarkable early works accounting for the mechanism, the regio- and diastereoselectivity of the cycloadducts formed (103 references).

  6. A general and regioselective synthesis of 5-trifluoromethyl-pyrazoles.

    PubMed

    Foster, Robert S; Jakobi, Harald; Harrity, Joseph P A

    2012-09-21

    Two synthetic approaches to 4-trifluoromethylsydnones, a novel class of these mesoionic reagents, are reported. These compounds undergo regioselective alkyne cycloaddition reactions, thereby providing a general approach to 5-trifluoromethylpyrazoles. This method has been employed in a short formal synthesis of the herbicide fluazolate.

  7. Gold-Catalyzed Formal [4+1]/[4+3] Cycloadditions of Diazo Esters with Triazines.

    PubMed

    Zhu, Chenghao; Xu, Guangyang; Sun, Jiangtao

    2016-09-19

    Reported herein is the unprecedented gold-catalyzed formal [4+1]/[4+3] cycloadditions of diazo esters with hexahydro-1,3,4-triazines, thus providing five- and seven-membered heterocycles in moderate to high yields under mild reaction conditions. These reactions feature the use of a gold complex to accomplish the diverse annulations and the first example of the involvement of a gold metallo-enolcarbene in a cycloaddition. It is also the first utilization of stable triazines as formal dipolar adducts in the carbene-involved cycloadditions. Mechanistic investigations reveal that the triazines reacted directly, rather than as formaldimine precursors, in the reaction process. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Degradable polymeric nanoparticles by aggregation of thermoresponsive polymers and ``click'' chemistry

    NASA Astrophysics Data System (ADS)

    Dworak, Andrzej; Lipowska, Daria; Szweda, Dawid; Suwinski, Jerzy; Trzebicka, Barbara; Szweda, Roza

    2015-10-01

    This study describes a novel approach to the preparation of crosslinked polymeric nanoparticles of controlled sizes that can be degraded under basic conditions. For this purpose thermoresponsive copolymers containing azide and alkyne functions were obtained by ATRP of di(ethylene glycol) monomethyl ether methacrylate (D) and 2-aminoethyl methacrylate (A) followed by post polymerization modification. The amino groups of A were reacted with propargyl chloroformate or 2-azido-1,3-dimethylimidazolinium hexafluorophosphate, which led to two types of copolymers. Increasing the temperature of aqueous solutions of the mixed copolymers caused their aggregation into spherical nanoparticles composed of both types of chains. Their dimensions could be controlled by changing the concentration and heating rate of the solutions. Covalent stabilization of aggregated chains was performed by a ``click'' reaction between the azide and alkyne groups. Due to the presence of a carbamate bond the nanoparticles undergo pH dependent degradation under mild basic conditions. The proposed procedure opens a route to new carriers for the controlled release of active species.This study describes a novel approach to the preparation of crosslinked polymeric nanoparticles of controlled sizes that can be degraded under basic conditions. For this purpose thermoresponsive copolymers containing azide and alkyne functions were obtained by ATRP of di(ethylene glycol) monomethyl ether methacrylate (D) and 2-aminoethyl methacrylate (A) followed by post polymerization modification. The amino groups of A were reacted with propargyl chloroformate or 2-azido-1,3-dimethylimidazolinium hexafluorophosphate, which led to two types of copolymers. Increasing the temperature of aqueous solutions of the mixed copolymers caused their aggregation into spherical nanoparticles composed of both types of chains. Their dimensions could be controlled by changing the concentration and heating rate of the solutions. Covalent stabilization of aggregated chains was performed by a ``click'' reaction between the azide and alkyne groups. Due to the presence of a carbamate bond the nanoparticles undergo pH dependent degradation under mild basic conditions. The proposed procedure opens a route to new carriers for the controlled release of active species. Electronic supplementary information (ESI) available: GPC-MALLS chromatograms for P(D-co-A)_1 and P(D-co-A)_2 copolymers, absorbance spectra of P(D-co-A)_1, P(D-co-A)_2, P(D-co-A_Pr) and P(D-co-A_Az) after reaction with ninhydrine. See DOI: 10.1039/c5nr04448k

  9. Construction of Benzene Rings by Copper-Catalyzed Cycloaddition Reactions of Oximes and Maleimides: An Access to Fused Phthalimides.

    PubMed

    Yang, Jie; Zhao, Bo; Xi, Yue; Sun, Si; Yang, Zhen; Ye, Ying; Jiang, Kun; Wei, Ye

    2018-02-16

    A useful Cu-catalyzed cycloaddition protocol for the construction of benzene rings has been achieved. The reactions, utilizing readily available oximes and maleimides as starting materials, proceed under mild reaction conditions to generate a series of structurally interesting fused-phthalimides that are difficult to be prepared by conventional methods.

  10. Late Stage Azidation of Complex Molecules

    PubMed Central

    2016-01-01

    Selective functionalization of complex scaffolds is a promising approach to alter the pharmacological profiles of natural products and their derivatives. We report the site-selective azidation of benzylic and aliphatic C–H bonds in complex molecules catalyzed by the combination of Fe(OAc)2 and a PyBox ligand. The same system also catalyzes the trifluoromethyl azidation of olefins to form derivatives of natural products containing both fluorine atoms and azides. In general, both reactions tolerate a wide range of functional groups and occur with predictable regioselectivity. Azides obtained by functionalization of C–H and C=C bonds were converted to the corresponding amines, amides, and triazoles, thus providing a wide variety of nitrogen-containing complex molecules. PMID:27800554

  11. Synthesis of symmetrical tetrameric conjugates of the radiolanthanide chelator DOTPI for application in endoradiotherapy by means of click chemistry

    NASA Astrophysics Data System (ADS)

    Wurzer, Alexander; Vágner, Adrienn; Horváth, Dávid; Fellegi, Flóra; Wester, Hans-Jürgen; Kálmán, Ferenc K.; Notni, Johannes

    2018-04-01

    Due to its 4 carbonic acid groups being available for bioconjugation, the cyclen tetraphosphinate chelator DOTPI, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis[methylene(2-carboxyethylphosphinic acid)], represents an ideal scaffold for synthesis of tetrameric bioconjugates for labeling with radiolanthanides, to be applied as endoradiotherapeuticals. We optimized a protocol for bio-orthogonal DOTPI conjugation via Cu(I)-catalyzed Huisgen-cycloaddition of terminal azides and alkynes (CuAAC), based on the building block DOTPI(azide)4. A detailed investigation of kinetic properties of Cu(II)-DOTPI complexes aimed at optimization of removal of DOTPI-bound copper by transchelation. Protonation and equilibrium properties of Ca(II)-, Zn(II) and Cu(II)-complexes of DOTPI and its tetra-cyclohexylamide DOTPI(Chx)4 (a model for DOTPI conjugates) as well as kinetic inertness (transchelation challenge in the presence of 20 to 40-fold excess of EDTA) were investigated by pH-potentiometry and spectrophotometry. Similar stability constants of CaII-, ZnII and CuII-complexes of DOTPI (logK(CaL)=8.65, logK(ZnL=15.40, logK(CuL)=20.30) and DOTPI(Chx)4 (logK(CaL)=8.99, logK(ZnL)=15.13, logK(CuL)=20.42) were found. Transchelation of CuII-complexes occurs via proton-assisted dissociation, whereafter released Cu(II) is scavenged by EDTA. The corresponding dissociation rates (kd=25×10‑7 and 5×10‑7 s‑1 for Cu(DOTPI) and Cu(DOTPI(Chx)4), respectively, at pH 4 and 298 K) indicate that conjugation increases the kinetic inertness by a factor of 5. However demetallation is completed within 4.5 and 7.2 hours at pH 2 and 25 °C, respectively, indicating that CuII removal after formation of CuAAC can be achieved in an uncomplicated manner by addition of excess H4EDTA. For proof-of-principle, tetrameric DOTPI conjugates of the prostate-specific membrane antigen (PSMA) targeting motif Lys-urea-Glu (KuE) were synthesized via CuAAC as well as dibenzo-cyclooctine (DBCO) based, strain-promoted click chemistry (SPAAC), which were labeled with Lu-177 and subsequently evaluated in vitro and in SCID mice bearing subcutaneous LNCaP tumor (PSMA+ human prostate carcinoma) xenografts. High affinities (3.4 and 1.4 nM, respectively) and persistent tumor uptakes (approx. 3.5% 24 h after injection) confirm suitability of DOTPI-based tetramers for application in targeted radionuclide therapy.

  12. Synthesis of Symmetrical Tetrameric Conjugates of the Radiolanthanide Chelator DOTPI for Application in Endoradiotherapy by Means of Click Chemistry

    PubMed Central

    Wurzer, Alexander; Vágner, Adrienn; Horváth, Dávid; Fellegi, Flóra; Wester, Hans-Jürgen; Kálmán, Ferenc K.; Notni, Johannes

    2018-01-01

    Due to its 4 carbonic acid groups being available for bioconjugation, the cyclen tetraphosphinate chelator DOTPI, 1,4,7,10-tetraazacyclododecane-1,4,7, 10-tetrakis[methylene(2-carboxyethylphosphinic acid)], represents an ideal scaffold for synthesis of tetrameric bioconjugates for labeling with radiolanthanides, to be applied as endoradiotherapeuticals. We optimized a protocol for bio-orthogonal DOTPI conjugation via Cu(I)-catalyzed Huisgen-cycloaddition of terminal azides and alkynes (CuAAC), based on the building block DOTPI(azide)4. A detailed investigation of kinetic properties of Cu(II)-DOTPI complexes aimed at optimization of removal of DOTPI-bound copper by transchelation. Protonation and equilibrium properties of Ca(II)-, Zn(II), and Cu(II)-complexes of DOTPI and its tetra-cyclohexylamide DOTPI(Chx)4 (a model for DOTPI conjugates) as well as kinetic inertness (transchelation challenge in the presence of 20 to 40-fold excess of EDTA) were investigated by pH-potentiometry and spectrophotometry. Similar stability constants of CaII-, ZnII, and CuII-complexes of DOTPI (logK(CaL) = 8.65, logK(ZnL = 15.40, logK(CuL) = 20.30) and DOTPI(Chx)4 (logK(CaL) = 8.99, logK(ZnL) = 15.13, logK(CuL) = 20.42) were found. Transchelation of Cu(II)-complexes occurs via proton-assisted dissociation, whereafter released Cu(II) is scavenged by EDTA. The corresponding dissociation rates [kd = 25 × 10−7 and 5 × 10−7 s−1 for Cu(DOTPI) and Cu(DOTPI(Chx)4), respectively, at pH 4 and 298 K] indicate that conjugation increases the kinetic inertness by a factor of 5. However, demetallation is completed within 4.5 and 7.2 h at pH 2 and 25°C, respectively, indicating that Cu(II) removal after formation of CuAAC can be achieved in an uncomplicated manner by addition of excess H4EDTA. For proof-of-principle, tetrameric DOTPI conjugates of the prostate-specific membrane antigen (PSMA) targeting motif Lys-urea-Glu (KuE) were synthesized via CuAAC as well as dibenzo-azacyclooctine (DBCO) based, strain-promoted click chemistry (SPAAC), which were labeled with Lu-177 and subsequently evaluated in vitro and in SCID mice bearing subcutaneous LNCaP tumor (PSMA+ human prostate carcinoma) xenografts. High affinities (3.4 and 1.4 nM, respectively) and persistent tumor uptakes (approx. 3.5% 24 h after injection) confirm suitability of DOTPI-based tetramers for application in targeted radionuclide therapy. PMID:29692987

  13. HARNESSING THE CHEMISTRY OF CO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louie, Janis

    2012-11-30

    Our research presents several strategies for addressing the challenges of activating CO2. In addition, our cycloaddition chemistry addresses several fundamental issues pertaining to catalysis as it applies to energy conservation. Topics addressed include: DEVELOPMENT OF A CYCLOADDITION CATALYST; INCREASING THE UTILITY OF THE NI CYCLOADDITION CATALYST; UNDERSTANDING THE MECHANISM OF NI-CATALYZED CYCLOADDITION; and METAL-FREE CO{sub 2} ACTIVATION.

  14. Direct synthesis of alkenyl iodides via indium-catalyzed iodoalkylation of alkynes with alcohols and aqueous HI.

    PubMed

    Wu, Chao; Wang, Zheng; Hu, Zhan; Zeng, Fei; Zhang, Xing-Yu; Cao, Zhong; Tang, Zilong; He, Wei-Min; Xu, Xin-Hua

    2018-05-02

    A convenient and efficient indium-catalyzed approach to synthesize alkenyl iodides has been developed through direct iodoalkylation of alkynes with alcohols and aqueous HI under mild conditions. This catalytic protocol offers an attractive approach for the synthesis of a diverse range of alkenyl iodides in good to excellent yields.

  15. Recent Advances in the Pauson-Khand Reaction.

    PubMed

    Ricker, J David; Geary, Laina M

    2017-06-01

    The Pauson-Khand [2+2+1] cycloaddition of alkynes, alkenes, and carbon monoxide has been a vibrant area of research for more than 40 years. This review highlights recent achievements in the Pauson-Khand reaction, particularly in catalytic and asymmetric variants. Discussion of regioselectivity and advances in substrate scope is also presented.

  16. Computational Study of a Model System of Enzyme-Mediated [4+2] Cycloaddition Reaction

    PubMed Central

    2015-01-01

    A possible mechanistic pathway related to an enzyme-catalyzed [4+2] cycloaddition reac-tion was studied by theoretical calculations at density functional (B3LYP, O3LYP, M062X) and semiempirical levels (PM6-DH2, PM6) performed on a model system. The calculations were carried out for the key [4+2] cycloaddition step considering enzyme-catalyzed biosynthesis of Spinosyn A in a model reaction, where a reliable example of a biological Diels-Alder reaction was reported experimentally. In the present study it was demonstrated that the [4+2] cycloaddition reaction may benefit from moving along the energetically balanced reaction coordinate, which enabled the catalytic rate enhancement of the [4+2] cycloaddition pathway involving a single transition state. Modeling of such a system with coordination of three amino acids indicated a reliable decrease of activation energy by ~18.0 kcal/mol as compared to a non-catalytic transformation. PMID:25853669

  17. Generation of therapeutic protein variants with the human serum albumin binding capacity via site-specific fatty acid conjugation.

    PubMed

    Cho, Jinhwan; Lim, Sung In; Yang, Byung Seop; Hahn, Young S; Kwon, Inchan

    2017-12-21

    Extension of the serum half-life is an important issue in developing new therapeutic proteins and expanding applications of existing therapeutic proteins. Conjugation of fatty acid, a natural human serum albumin ligand, to a therapeutic protein/peptide was developed as a technique to extend the serum half-life in vivo by taking advantages of unusually long serum half-life of human serum albumin (HSA). However, for broad applications of fatty acid-conjugation, several issues should be addressed, including a poor solubility of fatty acid and a substantial loss in the therapeutic activity. Therefore, herein we systematically investigate the conditions and components in conjugation of fatty acid to a therapeutic protein resulting in the HSA binding capacity without compromising therapeutic activities. By examining the crystal structure and performing dye conjugation assay, two sites (W160 and D112) of urate oxidase (Uox), a model therapeutic protein, were selected as sites for fatty acid-conjugation. Combination of site-specific incorporation of a clickable p-azido-L-phenylalanine to Uox and strain-promoted azide-alkyne cycloaddition allowed the conjugation of fatty acid (palmitic acid analog) to Uox with the HSA binding capacity and retained enzyme activity. Deoxycholic acid, a strong detergent, greatly enhanced the conjugation yield likely due to the enhanced solubility of palmitic acid analog.

  18. Bio-Orthogonally Crosslinked, Engineered Protein Hydrogels with Tunable Mechanics and Biochemistry for Cell Encapsulation.

    PubMed

    Madl, Christopher M; Katz, Lily M; Heilshorn, Sarah C

    2016-06-07

    Covalently-crosslinked hydrogels are commonly used as 3D matrices for cell culture and transplantation. However, the crosslinking chemistries used to prepare these gels generally cross-react with functional groups present on the cell surface, potentially leading to cytotoxicity and other undesired effects. Bio-orthogonal chemistries have been developed that do not react with biologically relevant functional groups, thereby preventing these undesirable side reactions. However, previously developed biomaterials using these chemistries still possess less than ideal properties for cell encapsulation, such as slow gelation kinetics and limited tuning of matrix mechanics and biochemistry. Here, engineered elastin-like proteins (ELPs) are developed that cross-link via strain-promoted azide-alkyne cycloaddition (SPAAC) or Staudinger ligation. The SPAAC-crosslinked materials form gels within seconds and complete gelation within minutes. These hydrogels support the encapsulation and phenotypic maintenance of human mesenchymal stem cells, human umbilical vein endothelial cells, and murine neural progenitor cells. SPAAC-ELP gels exhibit independent tuning of stiffness and cell adhesion, with significantly improved cell viability and spreading observed in materials containing a fibronectin-derived arginine-glycine-aspartic acid (RGD) domain. The crosslinking chemistry used permits further material functionalization, even in the presence of cells and serum. These hydrogels are anticipated to be useful in a wide range of applications, including therapeutic cell delivery and bioprinting.

  19. Synthesis of isocoumarins through three-component couplings of arynes, terminal alkynes, and carbon dioxide catalyzed by an NHC-copper complex.

    PubMed

    Yoo, Woo-Jin; Nguyen, Thanh V Q; Kobayashi, Shū

    2014-09-15

    A copper-catalyzed multicomponent coupling reaction between in situ generated ortho-arynes, terminal alkynes, and carbon dioxide was developed to access isocoumarins in moderate to good yields. The key to this CO2-incorporating reaction was the use of a versatile N-heterocyclic carbene/copper complex that was able to catalyze multiple transformations within the three-component reaction. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Catalytic Hydroamination of Alkynes and Norbornene with Neutral and Cationic Tantalum Imido Complexes

    PubMed Central

    Anderson, Laura L.; Arnold, John; Bergman, Robert G.

    2005-01-01

    Several tantalum imido complexes have been synthesized and shown to efficiently catalyze the hydroamination of internal and terminal alkynes. An unusual hydroamination/hydroarylation reaction of norbornene catalyzed by a highly electrophilic cationic tantalum imido complex is also reported. Factors affecting catalyst activity and selectivity are discussed along with mechanistic insights gained from stoichiometric reactions. PMID:15255680

  1. Decreasing Distortion Energies without Strain: Diazo-Selective 1,3-Dipolar Cycloadditions.

    PubMed

    Gold, Brian; Aronoff, Matthew R; Raines, Ronald T

    2016-07-15

    The diazo group has attributes that complement those of the azido group for applications in chemical biology. Here, we use computational analyses to provide insights into the chemoselectivity of the diazo group in 1,3-dipolar cycloadditions. Dipole distortion energies are responsible for ∼80% of the overall energetic barrier for these reactions. Here, we show that diazo compounds, unlike azides, provide an opportunity to decrease that barrier substantially without introducing strain into the dipolarophile. The ensuing rate enhancement is due to the greater nucleophilic character of a diazo group compared to that of an azido group, which can accommodate decreased distortion energies without predistortion. The tuning of distortion energies with substituents in a diazo compound or dipolarophile can enhance reactivity and selectivity in a predictable manner. Notably, these advantages of diazo groups are amplified in water. Our findings provide a theoretical framework that can guide the design and application of both diazo compounds and azides in "orthogonal" contexts, especially for biological investigations.

  2. Rapid Analysis of Protein Farnesyltransferase Substrate Specificity Using Peptide Libraries and Isoprenoid Diphosphate Analogues

    PubMed Central

    2015-01-01

    Protein farnesytransferase (PFTase) catalyzes the farnesylation of proteins with a carboxy-terminal tetrapeptide sequence denoted as a Ca1a2X box. To explore the specificity of this enzyme, an important therapeutic target, solid-phase peptide synthesis in concert with a peptide inversion strategy was used to prepare two libraries, each containing 380 peptides. The libraries were screened using an alkyne-containing isoprenoid analogue followed by click chemistry with biotin azide and subsequent visualization with streptavidin-AP. Screening of the CVa2X and CCa2X libraries with Rattus norvegicus PFTase revealed reaction by many known recognition sequences as well as numerous unknown ones. Some of the latter occur in the genomes of bacteria and viruses and may be important for pathogenesis, suggesting new targets for therapeutic intervention. Screening of the CVa2X library with alkyne-functionalized isoprenoid substrates showed that those prepared from C10 or C15 precursors gave similar results, whereas the analogue synthesized from a C5 unit gave a different pattern of reactivity. Lastly, the substrate specificities of PFTases from three organisms (R. norvegicus, Saccharomyces cerevisiae, and Candida albicans) were compared using CVa2X libraries. R. norvegicus PFTase was found to share more peptide substrates with S. cerevisiae PFTase than with C. albicans PFTase. In general, this method is a highly efficient strategy for rapidly probing the specificity of this important enzyme. PMID:24841702

  3. Vinyl azides derived from allenes: thermolysis leading to multisubstituted 1,4-pyrazines and Mn(III)-catalyzed photochemical reaction leading to pyrroles.

    PubMed

    Sajna, K V; Kumara Swamy, K C

    2012-10-05

    Thermolysis of phosphorus-based vinyl azides under solvent- and catalyst-free conditions furnished a new route for 1,4-pyrazines. A simple one-pot, Mn(III)-catalyzed photochemical route has been developed for multisubstituted pyrroles starting from allenes and 1,3-dicarbonyls via in situ-generated vinyl azides. The utility of new phosphorus-based pyrroles is also demonstrated in the Horner reaction. The structures of key products are unequivocally confirmed by X-ray crystallography.

  4. Synthesis, characterization and functionalization of silicon nanoparticle based hybrid nanomaterials for photovoltaic and biological applications

    NASA Astrophysics Data System (ADS)

    Xu, Zejing

    Silicon nanoparticles are attractive candidates for biological, photovoltaic and energy storage applications due to their size dependent optoelectronic properties. These include tunable light emission, high brightness, and stability against photo-bleaching relative to organic dyes (see Chapter 1). The preparation and characterization of silicon nanoparticle based hybrid nanomaterials and their relevance to photovoltaic and biological applications are described. The surface-passivated silicon nanoparticles were produced in one step from the reactive high-energy ball milling (RHEBM) of silicon wafers with various organic ligands. The surface structure and optical properties of the passivated silicon nanoparticles were systematically characterized. Fast approaches for purifying and at the same time size separating the silicon nanoparticles using a gravity GPC column were developed. The hydrodynamic diameter and size distribution of these size-separated silicon nanoparticles were determined using GPC and Diffusion Ordered NMR Spectroscopy (DOSY) as fast, reliable alternative approaches to TEM. Water soluble silicon nanoparticles were synthesized by grafting PEG polymers onto functionalized silicon nanoparticles with distal alkyne or azide moieties. The surface-functionalized silicon nanoparticles were produced from the reactive high-energy ball milling (RHEBM) of silicon wafers with a mixture of either 5-chloro-1-pentyne in 1-pentyne or 1,7 octadiyne in 1-hexyne to afford air and water stable chloroalkyl or alkynyl terminated nanoparticles, respectively. Nanoparticles with the ω-chloroalkyl substituents were easily converted to ω-azidoalkyl groups through the reaction of the silicon nanoparticles with sodium azide in DMF. The azido terminated nanoparticles were then grafted with monoalkynyl-PEG polymers using a copper catalyzed alkyne-azide cycloaddition (CuAAC) reaction to afford core-shell silicon nanoparticles with a covalently attached PEG shell. Covalently linked silicon nanoparticle clusters were synthesized via the CuAAC "click" reaction of functional silicon nanoparticles with α,ω-functional PEG polymers of various lengths. Dynamic light scattering studies show that the flexible globular nanoparticle arrays undergo a solvent dependent change in volume (ethanol> dichloromethane> toluene) similar in behavior to hydrogel nanocomposites. A novel light-harvesting complex and artificial photosynthetic material based on silicon nanoparticles was designed and synthesized. Silicon nanoparticles were used as nanoscaffolds for organizing the porphyrins to form light-harvesting complexes thereby enhancing the light absorption of the system. The energy transfer from silicon nanoparticles to porphyrin acceptors was investigated by both steady-state and time-resolved fluorescence spectroscopy. The energy transfer efficiency depended on the donor-acceptor ratio and the distance between the nanoparticle and the porphyrin ring. The addition of C60 resulted in the formation of silicon nanoparticle-porphyrin-fullerene nanoclusters which led to charge separation upon irradiation of the porphyrin ring. The electron-transfer process between the porphyrin and fullerene was investigated by femto-second transient absorption spectroscopy. Finally, the water soluble silicon nanoparticles were used as nanocarriers in photodynamic therapeutic application, in which can selectively deliver porphyrins into human embryonic kidney 293T (HEK293T) cells. In particular, the PEGylated alkynyl-porphyrins were conjugated onto the azido-terminated silicon nanoparticles via a CuAAC "click" reaction. The resultant PEGylated porphyrin grafted silicon nanoparticles have diameters around 13.5 +/- 3.8 nm. The cryo-TEM and conventional TEM analysis proved that the PEGylated porphyrin grafted silicon nanoparticle could form the micelle-like structures at higher concentration in water via self-assembly. The UV-Vis absorption analysis demonstrated that the silicon nanoparticle could reduce the porphyrin aggregation in water which can reduce the photophysical activity of porphyrin. In addition, the nanoparticle complex was capable of producing singlet oxygen when the porphyrin units were excited by light. The cell studies demonstrated that the silicon nanoparticle could deliver the porphyrin drugs into HEK293T cells and accumulate in the mitochondria where the porphyrin could serve as an efficient photosensitizer to kill the cells via mitochondrial apoptotic pathway.

  5. A regioselective Huisgen reaction inside a Keplerate polyoxomolybdate nanoreactor.

    PubMed

    Besson, Claire; Schmitz, Sebastian; Capella, Kimberly M; Kopilevich, Sivil; Weinstock, Ira A; Kögerler, Paul

    2012-09-07

    A 1,3-dipolar cycloaddition reaction taking place quantitatively between propiolic acid "guests" and azide functions previously attached to binding sites within the cavity of a {Mo(132)}-type Keplerate reproducibly gives a 2 : 1 ratio of 1,4- and 1,5-triazoles.

  6. Exploration Of `Click' Chemistry For Microelectronic Applications

    NASA Astrophysics Data System (ADS)

    Musa, Osama M.; Sridhar, Laxmisha M.

    The ‘Click’ chemistry was explored for low temperature snap cure and for possible use as an adhesion promoter in electronic applications. Several azide and alkyne resins were synthesized and their curing potential was evaluated with a special emphasis on exploring Cu(I) catalyst effect. The preliminary curing study in the absence of catalysts showed a strong dependence of cure temperatures on the electronic nature of alkynes. The cure temperatures showed a tendency to increase with decreasing electronegativity of the substituent on alkynes. The capability of Cu(I) catalysts to accelerate the ‘Click’ chemistry was demonstrated for the first time in bulk phase. Using several Cu(I) catalysts, the cure temperatures could be lowered by as much as 40-100°C compared to the control, depending on the nature of catalyst and the catalyst loading. We discovered a novel synergistic effect between Cu(I) and silver filler in lowering the cure temperatures. Using this combination, lower cure temperatures could be obtained than using either alone. Among several resins screened, one resin system has shown promise for 80°C snap-cure in which the aforementioned synergistic effect is operative. Solution phase ‘Click’ chemistry was employed for the synthesis of a hybrid triazole-epoxy resin system. This system was found to cure without added amine curative. The triazole group here serves as a linker as well as an internal adhesion promoter. To address the incompatibility and volatility issues, which arose during evaluation, a controlled oligomerization method has been developed using controlled heating of azides and alkynes in solution phase.

  7. Synthesis of Single and Double Dibenzohelicenes by Rhodium-Catalyzed Intramolecular [2+2+2] and [2+1+2+1] Cycloaddition.

    PubMed

    Yamano, Ryota; Shibata, Yu; Tanaka, Ken

    2018-04-25

    Dibenzo[7]helicenes were synthesized with up to 99 % ee by rhodium(I)/binap-catalyzed enantioselective intramolecular [2+2+2] cycloaddition of 2-phenylnaphthalene-linked triynes. Additionally, [2+1+2+1] cycloaddition products, that is, twisted anthracenes, were also synthesized by using difluorphos as ligand. Although these compounds are not configurationally stable at elevated temperature, their Scholl reactions afforded configurationally stable double dibenzo[6]helicenes. The thus-obtained dibenzo[7]helicene exhibited good circularly polarized luminescence property and the double dibenzo[6]helicene showed high fluorescence quantum yield. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Phosphine-catalyzed cycloadditions of allenic ketones: new substrates for nucleophilic catalysis.

    PubMed

    Wallace, Debra J; Sidda, Rachel L; Reamer, Robert A

    2007-02-02

    A range of phosphine-catalyzed cycloaddition reactions of allenic ketones have been studied, extending the scope of these processes from the more widely used 2,3-butadienoates to allow access to a number of synthetically useful products. Reaction of allenyl methyl ketone 4 with exo-enones afforded spirocyclic compounds in good regioselectivity and promising enantioselectivity via a [2 + 3] cycloaddtion. Aromatic allenyl ketones undergo a phosphine-promoted dimerization to afford functionalized pyrans, leading to a formal [2 + 4] Diels-Alder product, but did not react in the [2 + 3] cycloaddition. The results from other reactions that had found utility with 2,3-butadienoates are also reported.

  9. The divergent synthesis of nitrogen heterocycles by rhodium(II)-catalyzed cycloadditions of 1-sulfonyl 1,2,3-triazoles with 1,3-dienes.

    PubMed

    Shang, Hai; Wang, Yuanhao; Tian, Yu; Feng, Juan; Tang, Yefeng

    2014-05-26

    The first rhodium(II)-catalyzed aza-[4+3] cycloadditions of 1-sulfonyl 1,2,3-triazoles with 1,3-dienes have been developed, and enable the efficient synthesis of highly functionalized 2,5-dihydroazepines from readily available precursors. In some cases, the reaction pathway could divert to formal aza-[3+2] cycloadditions, thus leading to 2,3-dihydropyrroles. In this context, the titled reaction represents a capable tool for the divergent synthesis of two types of synthetically valuable aza-heterocycles from common rhodium(II) iminocarbene intermediates. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Synthesis, optical properties, and helical self-assembly of a bivaline-containing tetraphenylethene

    NASA Astrophysics Data System (ADS)

    Li, Hongkun; Zheng, Xiaoyan; Su, Huimin; Lam, Jacky W. Y.; Sing Wong, Kam; Xue, Shan; Huang, Xuejiao; Huang, Xuhui; Li, Bing Shi; Tang, Ben Zhong

    2016-01-01

    A chiral tetraphenylethene derivative with two valine-containing attachments (TPE-DVAL), was synthesized by Cu(I)-catalyzed azide-alkyne “click” reaction. The optical properties and self-assembling behaviours of TPE-DVAL were investigated. The molecule is non-emissive and circular dichroism (CD)-silent in solution, but shows strong fluorescence and Cotton effects in the aggregation state, demonstrating aggregation-induced emission (AIE) and CD (AICD) characteristics. TPE-DVAL exhibits good circularly polarized luminescence (CPL) when depositing on the surface of quartz to allow the evaporation of its 1,2-dichloroethane solution. SEM and TEM images of the molecule show that the molecule readily self-assembles into right-handed helical nanofibers upon the evaporation of its solvent of DCE. The molecular alignments and interactions in assembling process are further explored through XRD analysis and computational simulation. The driving forces for the formation of the helical fibers were from the cooperative effects of intermolecular hydrogen bonding, π-π interactions and steric effect.

  11. Semiconducting organic-inorganic nanocomposites by intimately tethering conjugated polymers to inorganic tetrapods

    NASA Astrophysics Data System (ADS)

    Jung, Jaehan; Yoon, Young Jun; Lin, Zhiqun

    2016-04-01

    Semiconducting organic-inorganic nanocomposites were judiciously crafted by placing conjugated polymers in intimate contact with inorganic tetrapods via click reaction. CdSe tetrapods were first synthesized by inducing elongated arms from CdSe zincblende seeds through seed-mediated growth. The subsequent effective inorganic ligand treatment, followed by reacting with short bifunctional ligands, yielded azide-functionalized CdSe tetrapods (i.e., CdSe-N3). Finally, the ethynyl-terminated conjugated polymer poly(3-hexylthiophene) (i.e., P3HT-&z.tbd;) was tethered to CdSe-N3 tetrapods via a catalyst-free alkyne-azide cycloaddition, forming intimate semiconducting P3HT-CdSe tetrapod nanocomposites. Intriguingly, the intimate contact between P3HT and CdSe tetrapod was found to not only render the effective dispersion of CdSe tetrapods in the P3HT matrix, but also facilitate the efficient electronic interaction between these two semiconducting constituents. The successful anchoring of P3HT chains onto CdSe tetrapods was substantiated through Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy measurements. Moreover, the absorption and photoluminescence studies further corroborated the intimate tethering between P3HT and CdSe tetrapods. The effect of the type of bifunctional ligands (i.e., aryl vs. aliphatic ligands) and the size of tetrapods on the device performance of hybrid organic-inorganic solar cells was also scrutinized. Interestingly, P3HT-CdSe tetrapod nanocomposites produced via the use of an aryl bifunctional ligand (i.e., 4-azidobenzoic acid) exhibited an improved photovoltaic performance compared to that synthesized with their aliphatic ligand counterpart (i.e., 5-bromovaleric acid). Clearly, the optimal size of CdSe tetrapods ensuring the effective charge transport in conjunction with the good dispersion of CdSe tetrapods rendered an improved device performance. We envision that the click-reaction strategy enabled by capitalizing on two consecutive effective ligand exchanges (i.e., inorganic ligand treatment and subsequent bifunctional ligand exchange) to yield intimately connected organic-inorganic nanocomposites provides a unique platform for developing functional optoelectronic devices.Semiconducting organic-inorganic nanocomposites were judiciously crafted by placing conjugated polymers in intimate contact with inorganic tetrapods via click reaction. CdSe tetrapods were first synthesized by inducing elongated arms from CdSe zincblende seeds through seed-mediated growth. The subsequent effective inorganic ligand treatment, followed by reacting with short bifunctional ligands, yielded azide-functionalized CdSe tetrapods (i.e., CdSe-N3). Finally, the ethynyl-terminated conjugated polymer poly(3-hexylthiophene) (i.e., P3HT-&z.tbd;) was tethered to CdSe-N3 tetrapods via a catalyst-free alkyne-azide cycloaddition, forming intimate semiconducting P3HT-CdSe tetrapod nanocomposites. Intriguingly, the intimate contact between P3HT and CdSe tetrapod was found to not only render the effective dispersion of CdSe tetrapods in the P3HT matrix, but also facilitate the efficient electronic interaction between these two semiconducting constituents. The successful anchoring of P3HT chains onto CdSe tetrapods was substantiated through Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy measurements. Moreover, the absorption and photoluminescence studies further corroborated the intimate tethering between P3HT and CdSe tetrapods. The effect of the type of bifunctional ligands (i.e., aryl vs. aliphatic ligands) and the size of tetrapods on the device performance of hybrid organic-inorganic solar cells was also scrutinized. Interestingly, P3HT-CdSe tetrapod nanocomposites produced via the use of an aryl bifunctional ligand (i.e., 4-azidobenzoic acid) exhibited an improved photovoltaic performance compared to that synthesized with their aliphatic ligand counterpart (i.e., 5-bromovaleric acid). Clearly, the optimal size of CdSe tetrapods ensuring the effective charge transport in conjunction with the good dispersion of CdSe tetrapods rendered an improved device performance. We envision that the click-reaction strategy enabled by capitalizing on two consecutive effective ligand exchanges (i.e., inorganic ligand treatment and subsequent bifunctional ligand exchange) to yield intimately connected organic-inorganic nanocomposites provides a unique platform for developing functional optoelectronic devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00269b

  12. Nickel-Catalyzed Addition-Type Alkenylation of Unactivated, Aliphatic C-H Bonds with Alkynes: A Concise Route to Polysubstituted γ-Butyrolactones.

    PubMed

    Li, Mingliang; Yang, Yudong; Zhou, Danni; Wan, Danyang; You, Jingsong

    2015-05-15

    Through the nickel-catalyzed chelation-assisted C-H bond activation strategy, the addition-type alkenylation of unreactive β-C(sp(3))-H bonds of aliphatic amides with internal alkynes is developed for the first time to produce γ,δ-unsaturated carboxylic amide derivatives. The resulting alkenylated products can further be transformed into polysubstituted γ-butyrolactones with pyridinium chlorochromate (PCC).

  13. The origin of the ligand-controlled regioselectivity in Rh-catalyzed [(2 + 2) + 2] carbocyclizations: steric vs. stereoelectronic effects† †Electronic supplementary information (ESI) available: Computational details, Cartesian coordinates and vibrational frequencies of all optimized structures. See DOI: 10.1039/c5sc02307f Click here for additional data file.

    PubMed Central

    Crandell, Douglas W.; Mazumder, Shivnath

    2015-01-01

    Density functional theory calculations demonstrate that the reversal of regiochemical outcome of the addition for substituted methyl propiolates in the rhodium-catalyzed [(2 + 2) + 2] carbocyclization with PPh3 and (S)-xyl-binap as ligands is both electronically and sterically controlled. For example, the ester functionality polarizes the alkyne π* orbital to favor overlap of the methyl-substituted terminus of the alkyne with the pπ-orbital of the alkenyl fragment of the rhodacycle during alkyne insertion with PPh3 as the ligand. In contrast, the sterically demanding xyl-binap ligand cannot accommodate the analogous alkyne orientation, thereby forcing insertion to occur at the sterically preferred ester terminus, overriding the electronically preferred orientation for alkyne insertion. PMID:28757978

  14. Rhodium(II)-catalyzed enantioselective synthesis of troponoids.

    PubMed

    Murarka, Sandip; Jia, Zhi-Jun; Merten, Christian; Daniliuc, Constantin-G; Antonchick, Andrey P; Waldmann, Herbert

    2015-06-22

    We report a rhodium(II)-catalyzed highly enantioselective 1,3-dipolar cycloaddition reaction between the carbonyl moiety of tropone and carbonyl ylides to afford troponoids in good to high yields with excellent enantioselectivity. We demonstrate that α-diazoketone-derived carbonyl ylides, in contrast to carbonyl ylides derived from diazodiketoesters, undergo [6+3] cycloaddition reactions with tropone to yield the corresponding bridged heterocycles with excellent stereoselectivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synthesis of unnatural amino acids via microwave-assisted regio-selective one-pot multi-component reactions of sulfamidates

    EPA Science Inventory

    Synthesis of triazole-based unnatural amino acids, triazole bisaminoacids and β-amino triazole has been described via stereo and regioselective one-pot multi-component reaction of sulfamidates, sodium azide, and alkynes under MW irradiation conditions. The developed method is app...

  16. Organic reactions catalyzed by methylrhenium trioxide: Reactions of ethyl diazoacetate and organic azides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Z.; Espenson, J.H.

    1996-10-16

    Methylrhenium trioxide (CH{sub 3}ReO{sub 3} or MTO) catalyzes several classes of reactions of ethyl diazoacetate, EDA. It is the first high valent oxo complex for carbene transfer. Under mild conditions and in the absence of other substrates, EDA was converted to a 9:1 mixture of diethyl maleate and diethyl fumarate. In the presence of alcohols, {alpha}-alkoxy ethyl acetates were obtained in good yield. The yields dropped for the larger and more branched alcohols, the balance of material being diethyl maleate and fumarate. An electron-donating group in the para position of phenols favors the formation of {alpha}-phenoxy ethyl acetates. The usemore » of EDA to form {alpha}-thio ethyl acetates and N-substituted glycine ethyl esters, on the other hand, is hardly affected by the size or structure of the parent thiol or amine, with all of these reactions proceeding in high yield. MTO-catalyzed cycloaddition reactions occur between EDA and aromatic imines, olefins, and carbonyl compounds. Three-membered ring products are formed: aziridines, cyclopropanes, and epoxides, respectively. The reactions favor the formation of trans products, and provide a convenient route for the preparation of aziridines. Intermediate carbenoid and nitrenoid species have been proposed. In the presence of an oxygen source such as an epoxide, ethyl diazoacetate and azibenzil are converted to an oxalic acid monoethyl ester and to benzil; at the same time the epoxide was converted to an olefin. 75 refs., 1 fig., 7 tabs.« less

  17. Rhodium(III)-catalyzed three-component reaction of imines, alkynes, and aldehydes through C-H activation.

    PubMed

    Huang, Ji-Rong; Song, Qiang; Zhu, Yu-Qin; Qin, Liu; Qian, Zhi-Yong; Dong, Lin

    2014-12-15

    An efficient rhodium(III)-catalyzed tandem three-component reaction of imines, alkynes and aldehydes through CH activation has been developed. High stereo- and regioselectivity, as well as good yields were obtained in most cases. The simple and atom-economical approach offers a broad scope of substrates, providing polycyclic skeletons with potential biological properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Gold (I)-Catalyzed Diastereo- and Enantioselective 1,3-Dipolar Cycloaddition and Mannich Reactions of Azlactones

    PubMed Central

    Melhado, Asa D.; Amarante, Giovanni W.; Wang, Z. Jane; Luparia, Marco; Toste, F. Dean

    2011-01-01

    Azlactones participate in stereoselective reactions with electron-deficient alkenes and N-sulfonyl aldimines to give products of 1,3-dipolar cycloaddition and Mannich addition reactions respectively. Both of these reactions proceed with good to excellent diastereo- and enantioselectivity using a single class of gold-catalysts, namely C2-symmetric bis(phosphinegold(I) carboxylate)complexes. The development of the azlactone Mannich reaction to provide fully protected anti-α,β-diamino acid derivatives is described. 1,3-Dipolar cycloaddition reactions of several acyclic 1,2-disubstituted alkenes, and the chemistry of the resultant cycloadducts, are examined to probe the stereochemical course of this reaction. Reaction kinetics and tandem MS studies of both the cycloaddition and Mannich reactions are reported. These studies support a mechanism in which the gold complexes catalyze addition reactions through nucleophile activation rather than the more typical activation of the electrophilic reaction component. PMID:21341677

  19. Approaches to the synthesis of (+/-)-strychnine via the cobalt-mediated [2 + 2 + 2] cycloaddition: rapid assembly of a classic framework.

    PubMed

    Eichberg, M J; Dorta, R L; Grotjahn, D B; Lamottke, K; Schmidt, M; Vollhardt, K P

    2001-09-26

    Five synthetic approaches to racemic strychnine (1), with the cobalt-mediated [2 + 2 + 2] cycloaddition of alkynes to indoles as the key step, are described. These include the generation and attempted cyclization of macrocycle 8 and the synthesis of dihydrocarbazoles 15, 22, and 26 and their elaboration to pentacyclic structures via a conjugate addition, dipolar cycloaddition, and propellane-to-spirofused skeletal rearrangement, respectively. Finally, the successful total synthesis of 1 is discussed. The development of a short, highly convergent route (14 steps in the longest linear sequence) is highlighted by the cyclization of enynoylindole 40 with acetylene and the formal intramolecular 1,8-conjugate addition of amine 49 to form pentacycle 50. Numerous attempts toward the formation of the piperidine ring of 1 from vinyl iodide 56 were made and its successful formation via palladium-, nickel-, and radical-mediated processes is described.

  20. Synthesis and Thermal Analysis of Nano-Aluminum/Fluorinated Polyurethane Elastomeric Composites for Structural Energetics.

    PubMed

    Zhang, Xianyu; Kim, Jin Seuk; Kwon, Younghwan

    2017-04-01

    Here we describe the synthesis of polyurethane (PU)-based energetic nanocomposites loaded with nano-aluminum (n-Al) particles. The energetic nanocomposite was prepared by polyurethane reaction of poly(glycidyl azide-co-tetramethylene glycol) (PGT) prepolymers and IPDI/N-100 isocyanates with simultaneous catalyst-free azide-alkyne Click reaction in the presence of n-Al. Initial study carried out with various n-Al/fluorinated PGT blends and demonstrated the potential of fluorinated PGT prepolymer for an energetic PU matrix. Thermal analysis of n-Al/fluorinated PGT-based PU energetic nanocomposite was performed using DSC and TGA.

  1. Comparison of Linear and Hyperbranched Polyether Lipids for Liposome Shielding by 18F-Radiolabeling and Positron Emission Tomography.

    PubMed

    Wagener, Karolin; Worm, Matthias; Pektor, Stefanie; Schinnerer, Meike; Thiermann, Raphael; Miederer, Matthias; Frey, Holger; Rösch, Frank

    2018-04-27

    Multifunctional and highly biocompatible polyether structures play a key role in shielding liposomes from degradation in the bloodstream, providing also multiple functional groups for further attachment of targeting moieties. In this work hyperbranched polyglycerol ( hbPG) bearing lipids with long alkyl chain anchor are evaluated with respect to steric stabilization of liposomes. The branched polyether lipids possess a hydrophobic bis(hexadecyl)glycerol membrane anchor for the liposomal membrane. hbPG was chosen as a multifunctional alternative to PEG, enabling the eventual linkage of multiple targeting vectors. Different hbPG lipids ( M n = 2900 and 5200 g mol -1 ) were examined. A linear bis(hexadecyl)glycerol-PEG lipid ( M n = 3000 g mol -1 ) was investigated as well, comparing hbPG and PEG with respect to shielding properties. Radiolabeling of the polymers was carried out using 1-azido-2-(2-(2-[ 18 F]fluoroethoxy)ethoxy)ethane ([ 18 F]F-TEG-N) 3 via copper-catalyzed alkyne-azide cycloaddition with excellent radiochemical yields exceeding 95%. Liposomes were prepared by the thin-film hydration method followed by repeated extrusion. Use of a custom automatic extrusion device gave access to reproducible sizes of the liposomes (hydrodynamic radius of 60-94 nm). The in vivo fate of the bis(hexadecyl)glycerol polyethers and their corresponding assembled liposome structures were evaluated via noninvasive small animal positron emission tomography (PET) imaging and biodistribution studies (1 h after injection and 4 h after injection) in mice. Whereas the main uptake of the nonliposomal polyether lipids was observed in the kidneys and in the bladder after 1 h due to rapid renal clearance, in contrast, the corresponding liposomes showed uptake in the blood pool as well as in organs with good blood supply, that is, heart and lung over the whole observation period of 4 h. The in vivo behavior of all three liposomal formulations was comparable, albeit with remarkable differences in splenic uptake. Overall, liposomes shielded by the branched polyglycerol lipids show a favorable biodistribution with greatly prolonged blood circulation times, rendering them promising novel nanovesicles for drug transport and targeting.

  2. Synthesis and characterization of sugar based low molecular weight gelators and the preparation of chiral sulfinamides

    NASA Astrophysics Data System (ADS)

    Mangunuru, Hari Prasad Reddy

    Low molecular weight gelators (LMWGs) have received considerable attention in the field of chemistry from last few decades. These compounds form self-assembled fibrous networks like micelles, cylindrical, sheets, fibers, layers and so on. The fibrous network entraps the solvent and forms gel, because of the self-assembly phenomenon and their demonstrated potential uses in a variety of areas, ranging from environmental to medicinal applications. Sugars are good starting materials to synthesize the new class of LMWG's, because these are different from some expensive materials, these are natural products. We have synthesized and characterized the LMGS's based on D-glucose and D-glucosamine. D-glucosamine is the versatile starting material to make different peptoids and triazoles. Several series of compounds were synthesized using compounds 1-3 as starting material and studied the gelation behavior all the compounds. We have studied the self-assembling properties of a new class of tripeptoids, synthesized by one-pot Ugi reaction from simple starting materials. Among the focused library of tripeptoids synthesized, we found that several efficient low molecular weight organogelators were obtained for aqueous DMSO and ethanol mixtures. We have also synthesized and characterized a series of monosaccharide triazole derivatives. These compounds were synthesized from N-acetyl glucosamine and D-glucose via a Cu(I) catalyzed azide/alkyne cycloaddition reaction (CuAAc). The compounds have been screened for their gelation properties and several efficient low molecular weight organo/hydro gelators were obtained, among these compounds, five per-acetyl glucosamine derivatives and one peracetyl glucose derivative were able to form gels in water. These new molecules are expected to be useful in drug delivery and tissue engineering.*. Asymmetric synthesis of chiral amines is a challenging in synthetic organic chemistry. The development of new catalysts for asymmetric organic transformations is a very important research goal in modern synthetic organic chemistry. We have synthesized a new class of chiral oxathiozinone from chiral amino phenol. From this synthesized chiral sulfinamides, ketimines followed by reducing the ketimines synthesized the highly hindered chiral amines. *Please refer to dissertation for diagrams.

  3. The Copper-nicotinamide complex: sustainable applications in coupling and cycloaddition reactions

    EPA Science Inventory

    Crystalline copper (II)-nicotinamide complex, synthesized via simple mixing of copper chloride and nicotinamide solution at room temperature, catalyzes the C-S, C-N bond forming and cycloaddition reactions under a variety of sustainable reaction conditions.

  4. CuAAC-Based Click Chemistry in Self-Healing Polymers.

    PubMed

    Döhler, Diana; Michael, Philipp; Binder, Wolfgang H

    2017-10-17

    Click chemistry has emerged as a significant tool for materials science, organic chemistry, and bioscience. Based on the initial concept of Barry Sharpless in 2001, the copper(I)-catalyzed azide/alkyne cycloaddition (CuAAC) reaction has triggered a plethora of chemical concepts for linking molecules and building blocks under ambient conditions, forming the basis for applications in autonomous cross-linking materials. Self-healing systems on the other hand are often based on mild cross-linking chemistries that are able to react either autonomously or upon an external trigger. In the ideal case, self-healing takes place efficiently at low temperatures, independent of the substrate(s) used, by forming strong and stable networks, binding to the newly generated (cracked) interfaces to restore the original material properties. The use of the CuAAC in self-healing systems, most of all the careful design of copper-based catalysts linked to additives as well as the chemical diversity of substrates, has led to an enormous potential of applications of this singular reaction. The implementation of click-based strategies in self-healing systems therefore is highly attractive, as here chemical (and physical) concepts of molecular reactivity, molecular design, and even metal catalysis are connected to aspects of materials science. In this Account, we will show how CuAAC reactions of multivalent components can be used as a tool for self-healing materials, achieving cross-linking at low temperatures (exploiting concepts of autocatalysis or internal chelation within the bulk CuAAC and systematic optimization of the efficiency of the used Cu(I) catalysts). Encapsulation strategies to separate the click components by micro- and nanoencapsulation are required in this context. Consequently, the examples reported here describe chemical concepts to realize more efficient and faster click reactions in self-healing polymeric materials. Thus, enhanced chain diffusion in (hyper)branched polymers, autocatalysis, or internal chelation concepts enable efficient click cross-linking already at 5 °C with a simultaneously reduced amount of Cu(I) catalyst and increased reaction rates, culminating in the first reported self-healing system based on click cycloaddition reactions. Via tailor-made nanocarbon/Cu(I) catalysts we can further improve the click cross-linking reaction in view of efficiency and kinetics, leading to the generation of self-healing graphene-based epoxy nanocomposites. Additionally, we have designed special CuAAC click methods for chemical reporting and visualization systems based on the detection of ruptured capsules via a fluorogenic click reaction, which can be combined with CuAAC cross-linking reactions to obtain simultaneous stress detection and self-healing within polymeric materials. In a similar concept, we have prepared polymeric Cu(I)-biscarbene complexes to detect (mechanical) stress within self-healing polymeric materials via a triggered fluorogenic reaction, thus using a destructive force for a constructive chemical response.

  5. Photo-affinity labelling and biochemical analyses identify the target of trypanocidal simplified natural product analogues

    PubMed Central

    Tulloch, Lindsay B.; Menzies, Stefanie K.; Fraser, Andrew L.; Gould, Eoin R.; King, Elizabeth F.; Zacharova, Marija K.; Florence, Gordon J.

    2017-01-01

    Current drugs to treat African sleeping sickness are inadequate and new therapies are urgently required. As part of a medicinal chemistry programme based upon the simplification of acetogenin-type ether scaffolds, we previously reported the promising trypanocidal activity of compound 1, a bis-tetrahydropyran 1,4-triazole (B-THP-T) inhibitor. This study aims to identify the protein target(s) of this class of compound in Trypanosoma brucei to understand its mode of action and aid further structural optimisation. We used compound 3, a diazirine- and alkyne-containing bi-functional photo-affinity probe analogue of our lead B-THP-T, compound 1, to identify potential targets of our lead compound in the procyclic form T. brucei. Bi-functional compound 3 was UV cross-linked to its target(s) in vivo and biotin affinity or Cy5.5 reporter tags were subsequently appended by Cu(II)-catalysed azide-alkyne cycloaddition. The biotinylated protein adducts were isolated with streptavidin affinity beads and subsequent LC-MSMS identified the FoF1-ATP synthase (mitochondrial complex V) as a potential target. This target identification was confirmed using various different approaches. We show that (i) compound 1 decreases cellular ATP levels (ii) by inhibiting oxidative phosphorylation (iii) at the FoF1-ATP synthase. Furthermore, the use of GFP-PTP-tagged subunits of the FoF1-ATP synthase, shows that our compounds bind specifically to both the α- and β-subunits of the ATP synthase. The FoF1-ATP synthase is a target of our simplified acetogenin-type analogues. This mitochondrial complex is essential in both procyclic and bloodstream forms of T. brucei and its identification as our target will enable further inhibitor optimisation towards future drug discovery. Furthermore, the photo-affinity labeling technique described here can be readily applied to other drugs of unknown targets to identify their modes of action and facilitate more broadly therapeutic drug design in any pathogen or disease model. PMID:28873407

  6. Effects of side group functionality and molecular weight on the activity of synthetic antimicrobial polypeptides.

    PubMed

    Engler, Amanda C; Shukla, Anita; Puranam, Sravanthi; Buss, Hilda G; Jreige, Nina; Hammond, Paula T

    2011-05-09

    The rapid emergence of antibiotic-resistant bacteria along with increasing difficulty in biofilm treatment has caused an immediate need for the development of new classes of antimicrobial therapeutics. We have developed a library of antimicrobial polypeptides, prepared by the ring-opening polymerization of γ-propargyl-L-glutamate N-carboxyanhydride and the alkyne-azide cycloaddition click reaction, which mimic the favorable characteristics of naturally occurring antimicrobial peptides (AmPs). AmPs are known not to cause drug resistance as well as prevent bacteria attachment on surfaces. The ease and scale of synthesis of the antimicrobial polypeptides developed here are significantly improved over the traditional Merrifield synthetic peptide approaches needed for naturally occurring antimicrobial peptides and avoids the unique challenges of biosynthetic pathways. The polypeptides range in length from 30 to 140 repeat units and can have varied side group functionality, including primary, secondary, tertiary, and quaternary amines with hydrocarbon side chains ranging from 1 to 12 carbons long. Overall, we find these polypeptides to exhibit broad-spectrum activity against both Gram positive and Gram negative bacteria, namely, S. aureus and E. coli , while having very low hemolytic activity. Many of the polypeptides can also be used as surface coatings to prevent bacterial attachment. The polypeptide library developed in this work addresses the need for effective biocompatible therapeutics for drug delivery and medical device coatings.

  7. Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering.

    PubMed

    Jiang, Yanjiao; Chen, Jing; Deng, Chao; Suuronen, Erik J; Zhong, Zhiyuan

    2014-06-01

    Hydrogels, microgels and nanogels have emerged as versatile and viable platforms for sustained protein release, targeted drug delivery, and tissue engineering due to excellent biocompatibility, a microporous structure with tunable porosity and pore size, and dimensions spanning from human organs, cells to viruses. In the past decade, remarkable advances in hydrogels, microgels and nanogels have been achieved with click chemistry. It is a most promising strategy to prepare gels with varying dimensions owing to its high reactivity, superb selectivity, and mild reaction conditions. In particular, the recent development of copper-free click chemistry such as strain-promoted azide-alkyne cycloaddition, radical mediated thiol-ene chemistry, Diels-Alder reaction, tetrazole-alkene photo-click chemistry, and oxime reaction renders it possible to form hydrogels, microgels and nanogels without the use of potentially toxic catalysts or immunogenic enzymes that are commonly required. Notably, unlike other chemical approaches, click chemistry owing to its unique bioorthogonal feature does not interfere with encapsulated bioactives such as living cells, proteins and drugs and furthermore allows versatile preparation of micropatterned biomimetic hydrogels, functional microgels and nanogels. In this review, recent exciting developments in click hydrogels, microgels and nanogels, as well as their biomedical applications such as controlled protein and drug release, tissue engineering, and regenerative medicine are presented and discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Multifunctional porous silicon nanoparticles for cancer theranostics.

    PubMed

    Wang, Chang-Fang; Sarparanta, Mirkka P; Mäkilä, Ermei M; Hyvönen, Maija L K; Laakkonen, Pirjo M; Salonen, Jarno J; Hirvonen, Jouni T; Airaksinen, Anu J; Santos, Hélder A

    2015-04-01

    Nanomaterials provide a unique platform for the development of theranostic systems that combine diagnostic imaging modalities with a therapeutic payload in a single probe. In this work, dual-labeled iRGD-modified multifunctional porous silicon nanoparticles (PSi NPs) were prepared from dibenzocyclooctyl (DBCO) modified PSi NPs by strain-promoted azide-alkyne cycloaddition (SPAAC) click chemistry. Hydrophobic antiangiogenic drug, sorafenib, was loaded into the modified PSi NPs to enhance the drug dissolution rate and improve cancer therapy. Radiolabeling of the developed system with (111)In enabled the monitoring of the in vivo biodistribution of the nanocarrier by single photon emission computed tomography (SPECT) in an ectopic PC3-MM2 mouse xenograft model. Fluorescent labeling with Alexa Fluor 488 was used to determine the long-term biodistribution of the nanocarrier by immunofluorescence at the tissue level ex vivo. Modification of the PSi NPs with an iRGD peptide enhanced the tumor uptake of the NPs when administered intravenously. After intratumoral delivery the NPs were retained in the tumor, resulting in efficient tumor growth suppression with particle-loaded sorafenib compared to the free drug. The presented multifunctional PSi NPs highlight the utility of constructing a theranostic nanosystems for simultaneous investigations of the in vivo behavior of the nanocarriers and their drug delivery efficiency, facilitating the selection of the most promising materials for further NP development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Novel 3-phenylcoumarin-lipoic acid conjugates as multi-functional agents for potential treatment of Alzheimer's disease.

    PubMed

    Jalili-Baleh, Leili; Nadri, Hamid; Forootanfar, Hamid; Samzadeh-Kermani, Alireza; Küçükkılınç, Tuba Tüylü; Ayazgok, Beyza; Rahimifard, Mahban; Baeeri, Maryam; Doostmohammadi, Mohsen; Firoozpour, Loghman; Bukhari, Syed Nasir Abbas; Abdollahi, Mohammad; Ganjali, Mohammad Reza; Emami, Saeed; Khoobi, Mehdi; Foroumadi, Alireza

    2018-05-02

    New series of triazole-containing 3-phenylcoumarin-lipoic acid conjugates were designed as multi-functional agents for treatment of Alzheimer's disease. The target compounds 4a-o were synthesized via the azide-alkyne cycloaddition reaction and their biological activities were primarily evaluated in terms of neuroprotection against H 2 O 2 -induced cell death in PC12 cells and AChE/BuChE inhibition. The promising compounds 4j and 4i containing four carbons spacer were selected for further biological evaluations. Based on the obtained results, the benzocoumarin derivative 4j with IC 50 value of 7.3 µM was the most potent AChE inhibitor and displayed good inhibition toward intracellular reactive oxygen species (ROS). This compound with antioxidant and metal chelating ability showed also protective effect on cell injury induced by Aβ 1-42 in SH-SY5Y cells. Although the 8-methoxycoumarin analog 4i was slightly less active than 4j against AChE, but displayed higher protection ability against H 2 O 2 -induced cell death in PC12 and could significantly block Aβ-aggregation. The results suggested that the prototype compounds 4i and 4j might be promising multi-functional agents for the further development of the disease-modifying treatments of Alzheimer's disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Efficient 18F-Labeling of Large 37-Amino Acid pHLIP Peptide Analogues and their Biological Evaluation

    PubMed Central

    Daumar, Pierre; Wanger-Baumann, Cindy A.; Pillarsetty, NagaVaraKishore; Fabrizio, Laura; Carlin, Sean D.; Andreev, Oleg A.; Reshetnyak, Yana K.; Lewis, Jason S.

    2012-01-01

    Solid tumors often develop an acidic microenvironment, which plays a critical role in tumor progression and is associated with increased level of invasion and metastasis. The 37-residue pH (low) insertion peptide (pHLIP®) is under study as an imaging platform because of its unique ability to insert into cell membranes at a low extracellular pH (pHe<7). Labeling of peptides with [18F]-fluorine is usually performed via prosthetic groups using chemoselective coupling reactions. One of the most successful procedures involves the alkyne-azide copper(I) catalyzed cycloaddition (CuAAC). However, none of the known “click” methods have been applied to peptides as large as pHLIP. We designed a novel prosthetic group and extended the use of the CuAAC “click chemistry” for the simple and efficient 18F-labeling of large peptides. For the evaluation of this labeling approach, a D-amino acid analogue of WT-pHLIP and a L-amino acid control peptide K-pHLIP, both functionalized at the N-terminus with 6-azidohexanoic acid, were used. The novel 6-[18F]fluoro-2-ethynylpyridine prosthetic group, was obtained via nucleophilic substitution on the corresponding bromo-precursor after 10 min at 130 °C with a radiochemical yield of 27.5 ± 6.6% (decay corrected) with high radiochemical purity ≥ 98%. The subsequent CuI catalyzed “click” reaction with the azido functionalized pHLIP peptides was quantitative within 5 min at 70 °C in a mixture of water and ethanol using Cu-acetate and sodium L-ascorbate. [18F]-D-WT-pHLIP and [18F]-L-K-pHLIP were obtained with total radiochemical yields of 5–20% after HPLC purification. The total reaction time was only 85 min including formulation. In vitro stability tests revealed high stability of the [18F]-D-WT-pHLIP in human and mouse plasma after 120 min, with the parent tracer remaining intact at 65 and 85%, respectively. PET imaging and biodistribution studies in LNCaP and PC-3 xenografted mice with the [18F]-D-WT-pHLIP and the negative control [18F]-L-K-pHLIP revealed pH-dependent tumor retention. This reliable and efficient protocol promises to be useful for the 18F-labeling of large peptides such as pHLIP and will accelerate the evaluation of numerous [18F]-pHLIP analogues as potential PET tracers. PMID:22784215

  11. Cu-catalyzed formal methylative and hydrogenative carboxylation of alkynes with carbon dioxide: efficient synthesis of α,β-unsaturated carboxylic acids.

    PubMed

    Takimoto, Masanori; Hou, Zhaomin

    2013-08-19

    The sequential hydroalumination or methylalumination of various alkynes catalyzed by different catalyst systems, such those based on Sc, Zr, and Ni complexes, and the subsequent carboxylation of the resulting alkenylaluminum species with CO2 catalyzed by an N-heterocyclic carbene (NHC)-copper catalyst have been examined in detail. The regio- and stereoselectivity of the overall reaction relied largely on the hydroalumination or methylalumination reactions, which significantly depended on the catalyst and alkyne substrates. The subsequent Cu-catalyzed carboxylation proceeded with retention of the stereoconfiguration of the alkenylaluminum species. All the reactions could be carried out in one-pot to afford efficiently a variety of α,β-unsaturated carboxylic acids with well-controlled configurations, which are difficult to construct by previously reported methods. This protocol could be practically useful and attractive because of its high regio- and stereoselectivity, simple one-pot reaction operation, and the use of CO2 as a starting material. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Stereo- and regio-selective one-pot synthesis of triazole-based unnatural amino acids and β- amino triazoles

    EPA Science Inventory

    Synthesis of triazole based unnatural amino acids and β-amino triazole has been described via stereo and regioselective one-pot multi-component reaction of sulfamidates, sodium azide, and alkynes under MW conditions. The developed method is applicable to a broad substrate scope a...

  13. A facile and regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles using click chemistry

    EPA Science Inventory

    The reaction of α-tosyloxy ketones, sodium azide and terminal alkynes in presence of copper(I) in aqueous polyethylene glycol afforded regioselectively 1,4-disubstituted 1,2,3-triazoles in good yield at ambient temperature. The one-pot exclusive formation of 1,4-disubstituted 1,2...

  14. Synthesis, Antiviral and Cytotoxic Activity of Novel Terpenyl Hybrid Molecules Prepared by Click Chemistry.

    PubMed

    Pertino, Mariano Walter; Petrera, Erina; Alché, Laura Edith; Schmeda-Hirschmann, Guillermo

    2018-06-03

    Naturally occurring terpenes were combined by click reactions to generate sixteen hybrid molecules. The diterpene imbricatolic acid (IA) containing an azide group was used as starting compound for the synthesis of all the derivatives. The alkyne group in the terpenes cyperenoic acid, dehydroabietinol, carnosic acid γ-lactone, ferruginol, oleanolic acid and aleuritolic acid was obtained by esterification using appropriate alcohols or acids. The hybrid compounds were prepared by combining the IA azide function with the different terpene-alkynes under click chemistry conditions. The cytotoxic activity of the terpene hybrids 1 ⁻ 16 was assessed against Vero cells and tumour cell lines (HEP-2, C6 and Raw 264.7). Compounds 1 , 2 , 3 and 7 showed cytotoxic activity against the tested cell lines. The antiviral activity of the compounds was evaluated against HSV-1 KOS, Field and B2006 strain. For the pairs of hybrid compounds formed between IA-diterpene (compounds 3 ⁻ 8 , except for compound 7 ), a moderate activity was observed against the three HSV-1 strains with an interesting selectivity index (SI ≥10, SI = CC 50 /CE 50 ) for some compounds.

  15. Genetic Incorporation of Twelve meta-Substituted Phenylalanine Derivatives Using A Single Pyrrolysyl-tRNA Synthetase

    PubMed Central

    Wang, Yane-Shih; Fang, Xinqiang; Chen, Hsueh-Ying; Wu, Bo; Wang, Zhiyong U.; Hilty, Christian; Liu, Wenshe R.

    2012-01-01

    When coexpressed with its cognate amber suppressing tRNACUAPyl, a pyrrolysyl-tRNA synthetase mutant N346A/C348A is able to genetically incorporate twelve meta-substituted phenylalanine derivatives into proteins site-specifically at amber mutation sites in Escherichia coli. These genetically encoded noncanonical amino acids resemble phenylalanine in size and contain diverse bioorthogonal functional groups such as halide, trifluoromethyl, nitrile, nitro, ketone, alkyne, and azide moieties. The genetic installation of these functional groups in proteins provides multiple ways to site-selectively label proteins with biophysical and biochemical probes for their functional investigations. We demonstrate that a genetically incorporated trifluoromethyl group can be used as a sensitive 19F NMR probe to study protein folding/unfolding, and that genetically incorporated reactive functional groups such as ketone, alkyne, and azide moieties can be applied to site-specifically label proteins with florescent probes. This critical discovery allows the synthesis of proteins with diverse bioorthogonal functional groups for a variety of basic studies and biotechnology development using a single recombinant expression system. PMID:23138887

  16. A Torquoselective Extrusion of Isoxazoline N-Oxides. Application to the Synthesis of Aryl Vinyl and Divinyl Ketones for Nazarov Cyclization

    PubMed Central

    Canterbury, Daniel P.; Herrick, Ildiko R.; Um, Joann; Houk, K. N.; Frontier, Alison J.

    2009-01-01

    A mild, convenient reaction sequence for the synthesis of Nazarov cyclization substrates is described. The [3+2] dipolar cycloaddition of a nitrone and an electron-deficient alkyne gives an isolable isoxazoline intermediate, which upon oxidation undergoes stereoselective extrusion of nitrosomethane to give aryl vinyl or divinyl ketones. PMID:20161228

  17. Reverse the diastereoselectivity of the Rh(I)-catalyzed Pauson-Khand cycloaddition.

    PubMed

    Turlington, Mark; Pu, Lin

    2011-08-19

    It is discovered that the diastereoselectivity of the Rh(I)-catalyzed Pauson-Khand cycloaddition of chiral enynes can be reversed to generate the trans diastereomer as the major product in the absence of a chelate phosphine ligand when the substrate contains an appropriate functional group capable of chelate coordination to the Rh(I) center. This expands the application of the Rh(I)-based catalytic processes to prepare both the cis and trans stereoisomers. © 2011 American Chemical Society

  18. Rh(III)-Catalyzed C-H Activation of Benzoylacetonitriles and Tandem Cyclization with Diazo Compounds to Substituted Benzo[ de]chromenes.

    PubMed

    Fang, Feifei; Zhang, Chunmei; Zhou, Chaofan; Li, Yazhou; Zhou, Yu; Liu, Hong

    2018-04-06

    Rh (III)-catalyzed C-H activation of benzoylacetonitriles in coupling with diazo compounds was developed to synthesize diversified substituted benzo[ de]chromenes via a formal (4 + 2) cycloaddition with a diazo compound and subsequent tandem (4 + 2) cycloaddition with another diazo compound. Intriguingly, synthesis of substituted benzo[ de]chromenes and their decarboxylation products could be realized by controlling the reaction conditions. These reactions have a broad range of substrates, moderate to good yields, and high regioselectivity.

  19. Synthesis of Imidazopyridines via Copper-Catalyzed, Formal Aza-[3 + 2] Cycloaddition Reaction of Pyridine Derivatives with α-Diazo Oxime Ethers.

    PubMed

    Park, Sangjune; Kim, Hyunseok; Son, Jeong-Yu; Um, Kyusik; Lee, Sooho; Baek, Yonghyeon; Seo, Boram; Lee, Phil Ho

    2017-10-06

    The Cu-catalyzed, formal aza-[3 + 2] cycloaddition reaction of pyridine derivatives with α-diazo oxime ethers in trifluoroethanol was used to synthesize imidazopyridines via the release of molecular nitrogen and elimination of alcohol. These methods enabled modular synthesis of a wide range of N-heterobicyclic compounds such as imidazopyridazines, imidazopyrimidines, and imidazopyrazines with an α-imino Cu-carbenoid generated from the α-diazo oxime ethers and copper.

  20. Ferrocene Derived Bifunctional Phosphine-Catalyzed Asymmetric Oxa-[4+2] Cycloaddition of α-Substituted Allenones with Enones.

    PubMed

    Wang, Huamin; Lu, Weike; Zhang, Junliang

    2017-10-04

    An efficient ferrocene-derived bifunctional phosphine-catalyzed enantioselective oxa-[4+2] cycloaddition of α-substituted allenones with a broad range of enones is investigated for the preparation of stereodefined dihydropyrans in good to excellent yields (up to 99 %) and excellent enantioselectivity (up to 99 % ee). Furthermore, a series of valuable chiral polyheterocyclic frameworks can be efficiently achieved in good yields with excellent enantioselectivities. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Copper-Catalyzed Synthesis of Tetrasubstituted Enynylboronates via Chemo-, Regio-, and Stereoselective Borylalkynylation.

    PubMed

    Han, Jung Tae; Yun, Jaesook

    2018-04-06

    An efficient, catalytic method for accessing tetrasubstituted enynylboronates has been established via copper-catalyzed chemo-, regio-, and stereoselective borylalkynylation of internal alkynes. In this protocol, a range of symmetrical and unsymmetrical internal alkynes with aryl, heteroaryl, and alkyl substituents afforded fully substituted enynylboron compounds in good yields and with high levels of regio- and stereoselectivity, up to a ratio of >20:1. The enynylboron products could be further utilized in transforming the C-B bond into C-C bonds by coupling reactions.

  2. Nickel-Catalyzed Highly Regioselective Hydrocyanation of Terminal Alkynes with Zn(CN)2 Using Water as the Hydrogen Source.

    PubMed

    Zhang, Xingjie; Xie, Xin; Liu, Yuanhong

    2018-06-08

    The first efficient and general nickel-catalyzed hydrocyanation of terminal alkynes with Zn(CN) 2 in the presence of water has been developed. The reaction provides a regioselective protocol for the synthesis of functionalized vinyl nitriles with a range of structural diversity under mild reaction conditions while obviating use of the volatile and hazardous reagent of HCN. Deuterium-labeling experiments confirmed the role of water as the hydrogen source in this hydrocyanation reaction.

  3. Rhodium(III)-Catalyzed [3+2]/[5+2] Annulation of 4-Aryl 1,2,3-Triazoles with Internal Alkynes through Dual C(sp2)-H Functionalization.

    PubMed

    Yang, Yuan; Zhou, Ming-Bo; Ouyang, Xuan-Hui; Pi, Rui; Song, Ren-Jie; Li, Jin-Heng

    2015-05-26

    A rhodium(III)-catalyzed [3+2]/[5+2] annulation of 4-aryl 1-tosyl-1,2,3-triazoles with internal alkynes is presented. This transformation provides straightforward access to indeno[1,7-cd]azepine architectures through a sequence involving the formation of a rhodium(III) azavinyl carbene, dual C(sp(2))-H functionalization, and [3+2]/[5+2] annulation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Rhodium-catalyzed redox-neutral coupling of phenidones with alkynes.

    PubMed

    Fan, Zhoulong; Lu, Heng; Li, Wei; Geng, Kaijun; Zhang, Ao

    2017-07-21

    A switchable synthesis of N-substituted indole derivatives from phenidones via rhodium-catalyzed redox-neutral C-H activation has been achieved. In this protocol, we firstly disclosed that the reactivity of Rh(iii) catalysis could be enhanced through employing palladium acetate as an additive. Some representative features include external oxidant-free, applicable to terminal alkynes, short reaction time and operational simplicity. The utility of this method is further showcased by the economical synthesis of potent anticancer PARP-1 inhibitors.

  5. Click nucleic acid ligation: applications in biology and nanotechnology.

    PubMed

    El-Sagheer, Afaf H; Brown, Tom

    2012-08-21

    Biochemical strategies that use a combination of synthetic oligonucleotides, thermostable DNA polymerases, and DNA ligases can produce large DNA constructs up to 1 megabase in length. Although these ambitious targets are feasible biochemically, comparable technologies for the chemical synthesis of long DNA strands lag far behind. The best available chemical approach is the solid-phase phosphoramidite method, which can be used to assemble DNA strands up to 150 bases in length. Beyond this point, deficiencies in the chemistry make it impossible to produce pure DNA. A possible alternative approach to the chemical synthesis of large DNA strands is to join together carefully purified synthetic oligonucleotides by chemical methods. Click ligation by the copper-catalyzed azide-alkyne (CuAAC) reaction could facilitate this process. In this Account, we describe the synthesis, characterization, and applications of oligonucleotides prepared by click ligation. The alkyne and azide oligonucleotide strands can be prepared by standard protocols, and the ligation reaction is compatible with a wide range of chemical modifications to DNA and RNA. We have employed click ligation to synthesize DNA constructs up to 300 bases in length and much longer sequences are feasible. When the resulting triazole linkage is placed in a PCR template, various DNA polymerases correctly copy the entire base sequence. We have also successfully demonstrated both in vitro transcription and rolling circle amplification through the modified linkage. This linkage has shown in vivo biocompatibility: an antibiotic resistance gene containing triazole linkages functions in E. coli . Using click ligation, we have synthesized hairpin ribozymes up to 100 nucleotides in length and a hammerhead ribozyme with the triazole linkage located at the substrate cleavage site. At the opposite end of the length scale, click-ligated, cyclic mini-DNA duplexes have been used as models to study base pairing. Cyclic duplexes have potential therapeutic applications. They have extremely high thermodynamic stability, have increased resistance to enzymatic degradation, and have been investigated as decoys for regulatory proteins. For potential nanotechnology applications, we have synthesized double stranded DNA catenanes by click ligation. Other researchers have studied covalently fixed multistranded DNA constructs including triplexes and quadruplexes.

  6. Rhodium(III)-catalyzed [3+2] annulation of 5-aryl-2,3-dihydro-1H-pyrroles with internal alkynes through C(sp²)-H/alkene functionalization.

    PubMed

    Zhou, Ming-Bo; Pi, Rui; Hu, Ming; Yang, Yuan; Song, Ren-Jie; Xia, Yuanzhi; Li, Jin-Heng

    2014-10-13

    This study describes a new rhodium(III)-catalyzed [3+2] annulation of 5-aryl-2,3-dihydro-1H-pyrroles with internal alkynes using a Cu(OAc)2 oxidant for building a spirocyclic ring system, which includes the functionalization of an aryl C(sp(2))-H bond and addition/protonolysis of an alkene C=C bond. This method is applicable to a wide range of 5-aryl-2,3-dihydro-1H-pyrroles and internal alkynes, and results in the assembly of the spiro[indene-1,2'-pyrrolidine] architectures in good yields with excellent regioselectivities. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Regioconvergent and Enantioselective Rhodium-Catalyzed Hydroamination of Internal and Terminal Alkynes: A Highly Flexible Access to Chiral Pyrazoles.

    PubMed

    Haydl, Alexander M; Hilpert, Lukas J; Breit, Bernhard

    2016-05-04

    The rhodium-catalyzed asymmetric N-selective coupling of pyrazole derivatives with internal and terminal alkynes features an utmost chemo-, regio-, and enantioselective access to enantiopure allylic pyrazoles, readily available for incorporation in small-molecule pharmaceuticals. This methodology is distinguished by a broad substrate scope, resulting in a remarkable compatability with a variety of different functional groups. It furthermore exhibits an intriguing case of regio-, position-, and enantioselectivity in just one step, underscoring the sole synthesis of just one out of up to six possible products in a highly flexible approach to allylated pyrazoles by emanating from various internal and terminal alkynes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Computational Insights into an Enzyme-Catalyzed [4+2] Cycloaddition

    PubMed Central

    2017-01-01

    The enzyme SpnF, involved in the biosynthesis of spinosyn A, catalyzes a formal [4+2] cycloaddition of a 22-membered macrolactone, which may proceed as a concerted [4+2] Diels–Alder reaction or a stepwise [6+4] cycloaddition followed by a Cope rearrangement. Quantum mechanics/molecular mechanics (QM/MM) calculations combined with free energy simulations show that the Diels–Alder pathway is favored in the enzyme environment. OM2/CHARMM free energy simulations for the SpnF-catalyzed reaction predict a free energy barrier of 22 kcal/mol for the concerted Diels–Alder process and provide no evidence of a competitive stepwise pathway. Compared with the gas phase, the enzyme lowers the Diels–Alder barrier significantly, consistent with experimental observations. Inspection of the optimized geometries indicates that the enzyme may prearrange the substrate within the active site to accelerate the [4+2] cycloaddition and impede the [6+4] cycloaddition through interactions with active-site residues. Judging from partial charge analysis, we find that the hydrogen bond between the Thr196 residue of SpnF and the substrate C15 carbonyl group contributes to the enhancement of the rate of the Diels–Alder reaction. QM/MM simulations show that the substrate can easily adopt a reactive conformation in the active site of SpnF because interconversion between the C5–C6 s-trans and s-cis conformers is facile. Our QM/MM study suggests that the enzyme SpnF does behave as a Diels-Alderase. PMID:29131960

  9. Tri- and pentacalix[4]pyrroles: synthesis, characterization and their use in the extraction of halide salts.

    PubMed

    Aydogan, Abdullah; Akar, Ahmet

    2012-02-13

    Calixpyrrole-based oligomeric compounds were synthesized by "click chemistry" from the corresponding alkyne- and azide-functionalized calix[4]pyrroles. Calix[4]pyrrole 3, possessing an alkyne functional group, was prepared through a mixed condensation of pyrrole with acetone and but-3-ynyl 4-oxopentanoate. Another alkyne-group-containing calix[4]pyrrole 5 was obtained by treatment of 4'-hydroxyphenyl-functionalized calixpyrrole 4 with propargyl bromide. Tetrakis(azidopentyl)-functionalized calix[4]pyrrole 7 was synthesized by reacting NaN(3) with tetrabromopentyltetraethylcalix[4]pyrrole 6, which was prepared through a condensation reaction of pyrrole and 7-bromohept-2-one. Oligomeric calixpyrrole compounds were found to be capable of extracting tetrabutylammonium chloride and fluoride salts from aqueous media. Extraction abilities of the oligomeric compounds were monitored by NMR and UV/Vis spectroscopy and thermogravimetric analysis. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Regioselective Formation of (E)-β-Vinylstannanes with a Topologically Controlled Molybdenum-Based Alkyne Hydrostannation Catalyst.

    PubMed

    Mandla, Kyle A; Moore, Curtis E; Rheingold, Arnold L; Figueroa, Joshua S

    2018-06-04

    The regioselective formation of (E)-β-vinylstannanes has been a long-standing challenge in transition-metal-catalyzed alkyne hydrostannation. Herein, we report a well-defined molybdenum-based system featuring two encumbering m-terphenyl isocyanides that reliably and efficiently delivers (E)-β-vinylstannanes from a range of terminal and internal alkynes with high regioselectivity. The system is particularly effective for aryl alkynes and can discriminate between alkyl chains of low steric hindrance in unsymmetrically substituted dialkyl alkynes. Catalytic hydrostannation with this system is also characterized by an electronic effect that leads to a decrease in regioselectivity when electron-withdrawing groups are present on the alkyne substrate. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nitrous oxide-forming codenitrification catalyzed by cytochrome P450nor.

    PubMed

    Su, Fei; Takaya, Naoki; Shoun, Hirofumi

    2004-02-01

    Intact cells of the denitrifying fungus Fusarium oxysporum were previously shown to catalyze codenitrification to form a hybrid nitrous oxide (N2O) species from nitrite and other nitrogen compounds such as azide and ammonia. Here we show that cytochrome P450nor can catalyze the codenitrification reaction to form N2O from nitric oxide (NO) but not nitrite, and azide or ammonia. The results show that the direct substrate of the codenitrification by intact cells should not be nitrite but NO, which is formed from nitrite by the reaction of a dissimilatory nitrite reductase.

  12. Dehydrogenative [2 + 2 + 2] Cycloaddition of Cyano-yne-allene Substrates: Convenient Access to 2,6-Naphthyridine Scaffolds.

    PubMed

    Haraburda, Ewelina; Lledó, Agustí; Roglans, Anna; Pla-Quintana, Anna

    2015-06-19

    A rhodium-catalyzed [2 + 2 + 2] cycloaddition of cyano-yne-allene scaffolds followed by a dehydrogenative process enabling the direct synthesis of unsaturated pyridine-containing compounds that can be conveniently converted to 2,6-naphthyridine derivatives is reported.

  13. Gold-catalyzed sequential annulations towards 3,4-fused bi/tri-cyclic furans involving a [3+2+2]-cycloaddition.

    PubMed

    Liu, Suna; Yang, Pu; Peng, Shiyong; Zhu, Chenghao; Cao, Shengyu; Li, Jian; Sun, Jiangtao

    2017-01-17

    A gold-catalyzed sequential annulation reaction to prepare 3,4-fused bicyclic furan compounds has been realized by employing 2-(1-alkynyl)-2-alken-1-ones and 1,3,5-triazines as the starting materials under mild reaction conditions. This protocol features multiple bond formation in a single operation with the incorporation of two nitrogen and two carbon atoms into the final products. A mechanistic investigation reveals that the sequential annulations involved an unprecedented stepwise [3+2+2]-cycloaddition.

  14. Rh(I)-catalyzed intramolecular [2 + 2 + 1] cycloaddition of allenenes: Construction of bicyclo[4.3.0]nonenones with an angular methyl group and tricyclo[6.4.0.01,5]dodecenone

    PubMed Central

    Inagaki, Fuyuhiko; Itoh, Naoya; Hayashi, Yujiro; Matsui, Yumi

    2011-01-01

    Summary The [RhCl(CO)dppp]2-catalyzed intramolecular carbonylative [2 + 2 + 1] cycloaddition of allenenes was developed to prepare bicyclo[4.3.0]nonenones possessing a methyl group at the ring junction, which is difficult to achieve by the Pauson–Khand reaction of the corresponding enynes. This method also provided a new procedure for the construction of the tricyclo[6.4.0.01,5]dodecenone framework in a satisfactory yield. PMID:21512593

  15. Pore surface engineering in covalent organic frameworks.

    PubMed

    Nagai, Atsushi; Guo, Zhaoqi; Feng, Xiao; Jin, Shangbin; Chen, Xiong; Ding, Xuesong; Jiang, Donglin

    2011-11-15

    Covalent organic frameworks (COFs) are a class of important porous materials that allow atomically precise integration of building blocks to achieve pre-designable pore size and geometry; however, pore surface engineering in COFs remains challenging. Here we introduce pore surface engineering to COF chemistry, which allows the controlled functionalization of COF pore walls with organic groups. This functionalization is made possible by the use of azide-appended building blocks for the synthesis of COFs with walls to which a designable content of azide units is anchored. The azide units can then undergo a quantitative click reaction with alkynes to produce pore surfaces with desired groups and preferred densities. The diversity of click reactions performed shows that the protocol is compatible with the development of various specific surfaces in COFs. Therefore, this methodology constitutes a step in the pore surface engineering of COFs to realize pre-designed compositions, components and functions.

  16. Formal [4+2] cycloaddition of di-tert-butyl 2-ethoxycyclobutane-1,1-dicarboxylate with ketones or aldehydes and tandem lactonization.

    PubMed

    Okado, Ryohei; Nowaki, Aya; Matsuo, Jun-Ichi; Ishibashi, Hiroyuki

    2012-01-01

    A catalytic amount of tin(IV) chloride catalyzed formal [4+2] cycloaddition reaction of di-tert-butyl 2-ethoxycyclobutane-1,1-carboxylate with ketones or aldehydes to give diethyl 6-ethoxydihydro-2H-pyran-3,3(4H)-dicarboxylates, whereas two equivalents of trimethylsilyl triflate promoted tandem [4+2] cycloaddition and lactonization to afford 3-oxo-2,6-dioxabicyclo[2.2.2]octane-4-carboxylate esters.

  17. Site-Selective Copper-Catalyzed Amination and Azidation of Arenes and Heteroarenes via Deprotonative Zincation.

    PubMed

    Hendrick, Charles E; Bitting, Katie J; Cho, Seoyoung; Wang, Qiu

    2017-08-23

    Arene amination is achieved by site-selective C-H zincation followed by copper-catalyzed coupling with O-benzoylhydroxylamines under mild conditions. Key to this success is ortho-zincation mediated by lithium amidodiethylzincate base that is effective for a wide range of arenes, including nonactivated arenes bearing simple functionalities such as fluoride, chloride, ester, amide, ether, nitrile, and trifluoromethyl groups as well as heteroarenes including indole, thiophene, pyridine, and isoquinoline. An analogous C-H azidation is also accomplished using azidoiodinane for direct introduction of a useful azide group onto a broad scope of arenes and heteroarenes. These new transformations offer rapid access to valuable and diverse chemical space of aminoarenes. Their broad applications in organic synthesis and drug discovery are demonstrated in the synthesis of novel analogues of natural product (-)-nicotine and antidepressant sertraline by late-stage amination and azidation reactions.

  18. Cobalt nanoparticles on charcoal: a versatile catalyst in the Pauson-Khand reaction, hydrogenation, and the reductive Pauson-Khand reaction.

    PubMed

    Son, Seung Uk; Park, Kang Hyun; Chung, Young Keun

    2002-10-31

    [formula: see text] Dispersions of nanometer-sized cobalt particles with very high stability were prepared in charcoal and analyzed by electron microscopy and X-ray analysis. The resulting cobalt nanoparticles on charcoal (CNC) were successfully used as a catalyst for the carbonylative cycloaddition of alkyne, alkene, and carbon monoxide (Pauson-Khand reaction), hydrogenation, and the reductive Pauson-Khand reaction.

  19. N-mustard analogs of S-adenosyl-L-methionine as biochemical probes of protein arginine methylation.

    PubMed

    Hymbaugh Bergman, Sarah J; Comstock, Lindsay R

    2015-08-01

    Nucleosomes, the fundamental building blocks of eukaryotic chromatin, undergo post-synthetic modifications and play a major role in the regulation of transcriptional processes. Combinations of these modifications, including methylation, regulate chromatin structure, determining its different functional states and playing a central role in differentiation. The biological significance of cellular methylation, particularly on chromatin, is widely recognized, yet we know little about the mechanisms that link biological methylation events. To characterize and fully understand protein methylation, we describe here novel N-mustard analogs of S-adenosyl-l-methionine (SAM) as biochemical tools to better understand protein arginine methylation events using protein arginine methyltransferase 1 (PRMT1). Specifically, azide- and alkyne-functionalized N-mustard analogs serve as cofactor mimics of SAM and are enzymatically transferred to a model peptide substrate in a PRMT1-dependent fashion. Once incorporated, the resulting alkynes and azides can be modified through chemoselective ligations, including click chemistry and the Staudinger ligation. These results readily demonstrate the feasibility of utilizing N-mustard analogs as biochemical tools to site-specifically label substrates of PRMT1 and serve as an alternative approach to study protein methylation events. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Current Developments and Challenges in the Search for a Naturally Selected Diels-Alderase

    PubMed Central

    Kim, Hak Joong; Ruszczycky, Mark W.; Liu, Hung-wen

    2012-01-01

    Only a very few examples of enzymes known to catalyze pericyclic reactions have been reported, and presently no enzyme has been demonstrated unequivocally to catalyze a Diels-Alder reaction. Nevertheless, research into secondary metabolism has led to the discovery of numerous natural products exhibiting the structural hallmarks of [4+2] cycloadditions, prompting efforts to characterize the responsible enzymatic processes. These efforts have resulted in a growing collection of enzymes believed to catalyze pericyclic [4+2] cycloaddition reactions; however, in each case the complexity of the substrates and catalytic properties of these enzymes poses significant challenges in substantiating these hypotheses. Herein we consider the principles motivating these efforts and the enzymological systems currently under investigation. PMID:22260931

  1. Recent advances in the development of alkyne metathesis catalysts

    PubMed Central

    Wu, Xian

    2011-01-01

    Summary The number of well-defined molybdenum and tungsten alkylidyne complexes that are able to catalyze alkyne metathesis reactions efficiently has been significantly expanded in recent years.The latest developments in this field featuring highly active imidazolin-2-iminato- and silanolate–alkylidyne complexes are outlined in this review. PMID:21286398

  2. MICROWAVE-ASSISTED CU (I) CATALYZED SOLVENT-FREE THREE COMPONENT COUPLING OF ALDEHYDE, ALKYNE AND AMINE

    EPA Science Inventory

    Direct Grignard type addition of terminal alkynes to in situ generated imines, from aldehydes and amines, occurs under microwave irradiation using CuBr alone in a one-pot operation. This solventless approach provides ready access to propargylamines and is applicable both...

  3. Catalytic asymmetric enyne addition to aldehdyes and Rh(I)-catalyzed stereoselective domino Pauson-Khand/[4 + 2] cycloaddition.

    PubMed

    Chen, Wei; Tay, Jia-Hui; Ying, Jun; Yu, Xiao-Qi; Pu, Lin

    2013-03-15

    The 1,1'-bi-2-naphthol-ZnEt2-Ti(O(i)Pr)4-Cy2NH system is found to catalyze the 1,3-enyne addition to aliphatic aldehydes as well as other aldehydes at room temperature with 75-96% yield and 82-97% ee. This system is also broadly applicable for the highly enantioselective reaction of other alkyl-, aryl-, and silylalkynes with structurally diverse aldehydes. The propargylic alcohols prepared from the catalytic asymmetric enyne addition to aliphatic aldehydes are used to prepare a series of optically active trienynes. In the presence of a catalytic amount of [RhCl(CO)2]2 and 1 atm of CO, the optically active trienynes undergo highly stereoselective domino Pauson-Khand/[4 + 2] cycloaddition to generate optically active multicyclic products. The Rh(I) catalyst is also found to catalyze the coupling of a diyne with CO followed by [4 + 2] cycloaddition to generate an optically active multicyclic product. These transformations are potentially useful for the asymmetric synthesis of polyquinanes containing a quaternary chiral carbon center.

  4. Tin(IV) chloride catalyzed cycloaddition reactions between 3-ethoxycyclobutanones and allylsilanes.

    PubMed

    Matsuo, Jun-ichi; Sasaki, Shun; Hoshikawa, Takaya; Ishibashi, Hiroyuki

    2009-09-03

    Formal [4 + 2] cycloaddition between various 3-ethoxycyclobutanones and allyltrialkylsilanes proceeded to give 3-ethoxy-5-[(trialkylsilyl)methyl]cyclohexan-1-ones by catalysis with tin(VI) chloride. The use of allyl-tert-butyldiphenylsilane induced 1,5-hydride transfer, which gave 2-[3-(tert-butyldiphenylsilyl)propyl]-6-methyltetrahydro-4-pyrones.

  5. The Label Matters: μPET Imaging of the Biodistribution of Low Molar Mass 89Zr and 18F-Labeled Poly(2-ethyl-2-oxazoline).

    PubMed

    Glassner, Mathias; Palmieri, Luca; Monnery, Bryn D; Verbrugghen, Thomas; Deleye, Steven; Stroobants, Sigrid; Staelens, Steven; Wyffels, Leonie; Hoogenboom, Richard

    2017-01-09

    Poly(2-alkyl-2-oxazoline)s (PAOx) have received increasing interest for biomedical applications. Therefore, it is of fundamental importance to gain an in-depth understanding of the biodistribution profile of PAOx. We report the biodistribution of poly(2-ethyl-2-oxazoline) (PEtOx) with a molar mass of 5 kDa radiolabeled with PET isotopes 89 Zr and 18 F. 18 F-labeled PEtOx is prepared by the strain-promoted azide-alkyne cycloaddition (SPAAC) of [ 18 F]fluoroethylazide to bicyclo[6.1.0]non-4-yne (BCN)-functionalized PEtOx as many common labeling strategies were found to be unsuccessful for PEtOx. 89 Zr-labeled PEtOx is prepared using desferrioxamine end-groups as a chelator. Five kDa PEtOx shows a significantly faster blood clearance compared to PEtOx of higher molar mass while uptake in the liver is lower, indicating a minor contribution of the liver in excretion of the 5 kDa PEtOx. While [ 18 F]-PEtOx displays a rapid and efficient clearance from the kidneys, 5 kDa [ 89 Zr]-Df-PEtOx is not efficiently cleared over the time course of the study, which is most likely caused by trapping of 89 Zr-labeled metabolites in the renal tubules and not the polymer itself, demonstrating the importance of selecting the appropriate label for biodistribution studies.

  6. Chirality-controlled spontaneous twisting of crystals due to thermal topochemical reaction.

    PubMed

    Rai, Rishika; Krishnan, Baiju P; Sureshan, Kana M

    2018-03-20

    Crystals that show mechanical response against various stimuli are of great interest. These stimuli induce polymorphic transitions, isomerizations, or chemical reactions in the crystal and the strain generated between the daughter and parent domains is transcribed into mechanical response. We observed that the crystals of modified dipeptide LL (N 3 -l-Ala-l-Val-NHCH 2 C≡CH) undergo spontaneous twisting to form right-handed twisted crystals not only at room temperature but also at 0 °C over time. Using various spectroscopic techniques, we have established that the twisting is due to the spontaneous topochemical azide-alkyne cycloaddition (TAAC) reaction at room temperature or lower temperatures. The rate of twisting can be increased by heating, exploiting the faster kinetics of the TAAC reaction at higher temperatures. To address the role of molecular chirality in the direction of twisting the enantiomer of dipeptide LL, N 3 -d-Ala-d-Val-NHCH 2 C≡CH (DD), was synthesized and topochemical reactivity and mechanoresponse of its crystals were studied. We have found that dipeptide DD not only underwent TAAC reaction, giving 1,4-triazole-linked pseudopolypeptides of d-amino acids, but also underwent twisting with opposite handedness (left-handed twisting), establishing the role of molecular chirality in controlling the direction of mechanoresponse. This paper reports ( i ) a mechanical response due to a thermal reaction and ( ii ) a spontaneous mechanical response in crystals and ( iii ) explains the role of molecular chirality in the handedness of the macroscopic mechanical response.

  7. Double quick, double click reversible peptide “stapling”† †Electronic supplementary information (ESI) available: Synthesis and characterization, additional biophysical and biochemical analyses. See DOI: 10.1039/c7sc01342f Click here for additional data file. Click here for additional data file. Click here for additional data file.

    PubMed Central

    Grison, Claire M.; Burslem, George M.; Miles, Jennifer A.; Pilsl, Ludwig K. A.; Yeo, David J.; Imani, Zeynab; Warriner, Stuart L.; Webb, Michael E.

    2017-01-01

    The development of constrained peptides for inhibition of protein–protein interactions is an emerging strategy in chemical biology and drug discovery. This manuscript introduces a versatile, rapid and reversible approach to constrain peptides in a bioactive helical conformation using BID and RNase S peptides as models. Dibromomaleimide is used to constrain BID and RNase S peptide sequence variants bearing cysteine (Cys) or homocysteine (hCys) amino acids spaced at i and i + 4 positions by double substitution. The constraint can be readily removed by displacement of the maleimide using excess thiol. This new constraining methodology results in enhanced α-helical conformation (BID and RNase S peptide) as demonstrated by circular dichroism and molecular dynamics simulations, resistance to proteolysis (BID) as demonstrated by trypsin proteolysis experiments and retained or enhanced potency of inhibition for Bcl-2 family protein–protein interactions (BID), or greater capability to restore the hydrolytic activity of the RNAse S protein (RNase S peptide). Finally, use of a dibromomaleimide functionalized with an alkyne permits further divergent functionalization through alkyne–azide cycloaddition chemistry on the constrained peptide with fluorescein, oligoethylene glycol or biotin groups to facilitate biophysical and cellular analyses. Hence this methodology may extend the scope and accessibility of peptide stapling. PMID:28970902

  8. Preparation of a poly(3'-azido-3'-deoxythymidine-co-propargyl methacrylate-co-pentaerythritol triacrylate) monolithic column by in situ polymerization and a click reaction for capillary liquid chromatography of small molecules and proteins.

    PubMed

    Lin, Zian; Yu, Ruifang; Hu, Wenli; Zheng, Jiangnan; Tong, Ping; Zhao, Hongzhi; Cai, Zongwei

    2015-07-07

    Combining free radical polymerization with click chemistry via a copper-mediated azide/alkyne cycloaddition (CuAAC) reaction in a "one-pot" process, a facile approach was developed for the preparation of a poly(3'-azido-3'-deoxythymidine-co-propargyl methacrylate-co-pentaerythritol triacrylate) (AZT-co-PMA-co-PETA) monolithic column. The resulting poly(AZT-co-PMA-co-PETA) monolith showed a relatively homogeneous monolithic structure, good permeability and mechanical stability. Different ratios of monomers and porogens were used for optimizing the properties of a monolithic column. A series of alkylbenzenes, amides, anilines, and benzoic acids were used to evaluate the chromatographic properties of the polymer monolith in terms of hydrophobic, hydrophilic and cation-exchange interactions, and the results showed that the poly(AZT-co-PMA-co-PETA) monolith exhibited more flexible adjustment in chromatographic selectivity than that of the parent poly(PMA-co-PETA) and AZT-modified poly(PMA-co-PETA) monoliths. Column efficiencies for toluene, DMF, and formamide with 35,000-48,000 theoretical plates per m could be obtained at a linear velocity of 0.17 mm s(-1). The run-to-run, column-to-column, and batch-to-batch repeatabilities of the retention factors were less than 4.2%. In addition, the proposed monolith was also applied to efficient separation of sulfonamides, nucleobases and nucleosides, anesthetics and proteins for demonstrating its potential.

  9. Tailoring the supramolecular structure of amphiphilic glycopolypeptide analogue toward liver targeted drug delivery systems.

    PubMed

    Mohamed Wali, Aisha Roshan; Zhou, Jie; Ma, Shengnan; He, Yiyan; Yue, Dong; Tang, James Zhenggui; Gu, Zhongwei

    2017-06-15

    Amphiphilic glycopolypeptide analogues have harboured great importance in the development of targeted drug delivery systems. In this study, lactosylated pullulan-graft-arginine dendrons (LP-g-G3P) was synthesized using Huisgen azide-alkyne 1,3-dipolar cycloaddition between lactosylated pullulan and generation 3 arginine dendrons bearing Pbf and Boc groups on the periphery. Hydrophilic lactosylated pullulan was selected for amphiphilic modification, aiming at specific lectin recognition. Macromolecular structure of LP-g-G3P combined alkyl, aromatic, and peptide dendritic hydrophobic moieties and was able to self-assemble spontaneously into core-shell nanoarchitectures with small particle sizes and low polydispersity in the aqueous media, which was confirmed by CAC, DLS and TEM. Furthermore, the polyaromatic anticancer drug (doxorubicin, DOX) was selectively encapsulated in the hydrophobic core through multiple interactions with the dendrons, including π-π interactions, hydrogen bonding and hydrophobic interactions. Such multiple interactions had the merits of enhanced drug loading capacity (16.89±2.41%), good stability against dilution, and excellent sustained release property. The cell viability assay presented that LP-g-G3P nanoparticles had an excellent biocompatibility both in the normal and tumor cells. Moreover, LP-g-G3P/DOX nanoparticles could be effectively internalized into the hepatoma carcinoma cells and dramatically inhibited cell proliferation. Thus, this approach paves the way to develop amphiphilic and biofunctional glycopolypeptide-based drug delivery systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Rh-Catalyzed [3 + 2] Cycloaddition of 1-Sulfonyl-1,2,3-triazoles: Access to the Framework of Aspidosperma and Kopsia Indole Alkaloids.

    PubMed

    Li, Yun; Zhang, Qingyu; Du, Qiucheng; Zhai, Hongbin

    2016-08-19

    A Rh(II)-catalyzed dearomative intramolecular [3 + 2] dipolar cycloaddition involving the indolic C2-C3 carbon-carbon double bond has been developed. The reaction was launched from the triazole moiety within the substrate and proceeded efficiently under mild conditions. A wide range of functional groups could be tolerated. These features render the current reaction a highly useful tool for the synthesis of polycyclic indole alkaloids, as showcased by a rapid assembly of the core structure of Aspidosperma and the related alkaloids.

  11. Excess Substrate is a Spectator Ligand in a Rhodium-Catalyzed Asymmetric [2+2+2] Cycloaddition of Alkenyl Isocyanates with Tolanes

    PubMed Central

    Oinen, Mark Emil; Yu, Robert T.; Rovis, Tomislav

    2009-01-01

    Excess substrate has been identified as an unintended spectator ligand affecting enantioselectivity in the [2+2+2] cycloaddition of alkenyl isocyanates with tolanes. Replacement of excess substrate with an exogenous additive affords products with consistent and higher ee’s. The increase in enantioselectivity is the result of a change in composition of a proposed rhodium(III) intermediate on the catalytic cycle. The net result is a rational probe of a short-lived rhodium(III) intermediate, and gives insight that may have applications in many rhodium catalyzed reactions. PMID:19803471

  12. Two Palladium-Catalyzed Domino Reactions from One Set of Substrates/Reagents: Efficient Synthesis of Substituted Indenes and cis-Stilbenoid Hydrocarbons from the Same Internal Alkynes and Hindered Grignard Reagents

    PubMed Central

    Dong, Cheng-Guo; Yeung, Pik; Hu, Qiao-Sheng

    2008-01-01

    Two types of domino reactions from the same internal alkynes and hindered Grignard reagents based on carbopalladation, Pd-catalyzed cross-coupling reaction and C-H activation strategy are described. The realization of these domino reactions relied on the control of the use of the ligand and the reaction temperature. Our study provides an efficient access to useful polysubstituted indenes and cis-substituted stilbenes, and may offer new means to the development of tandem/domino reactions in a more efficient way. PMID:17217305

  13. Stereodivergent Synthesis of N-Heterocycles by Catalyst-Controlled, Activity-Directed Tandem Annulation of Diazo Compounds with Amino Alkynes.

    PubMed

    Liu, Kai; Zhu, Chenghao; Min, Junxiang; Peng, Shiyong; Xu, Guangyang; Sun, Jiangtao

    2015-10-26

    A stereodivergent synthesis of five-membered N-heterocycles, such as 2,3-dihydropyrroles, and 2-methylene and 3-methylene pyrrolidines, has been developed through a tandem annulation of amino alkynes with diazo compounds and involves the trapping of in situ formed intermediates. Mechanistic investigations indicate that the copper-catalyzed tandem annulations proceed by allenoate formation and subsequent intramolecular hydroamination. In contrast, the rhodium-catalyzed protocol features a carbenoid insertion into the NH bond and subsequent Conia-ene cyclization. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Fast dye salts provide fast access to azidoarene synthons in multi-step one-pot tandem click transformations

    PubMed Central

    Fletcher, James T.; Reilly, Jacquelline E.

    2012-01-01

    This study examined whether commercially available diazonium salts could be used as efficient aromatic azide precursors in one-pot multi-step click transformations. Seven different diazonium salts, including Fast Red RC, Fast Blue B, Fast Corinth V and Variamine Blue B were surveyed under aqueous click reaction conditions of CuSO4/Na ascorbate catalyst with 1:1 t-BuOH:H2O solvent. Two-step tandem reactions with terminal alkyne and diyne co-reactants led to 1,2,3-triazole products in 66%-88% yields, while three-step tandem reactions with trimethylsilyl-protected alkyne and diyne co-reactants led to 1,2,3-triazole products in 61%-78% yields. PMID:22368306

  15. Total synthesis of (+/-)-strychnine via a [4 + 2]-cycloaddition/rearrangement cascade.

    PubMed

    Zhang, Hongjun; Boonsombat, Jutatip; Padwa, Albert

    2007-01-18

    A new strategy for the synthesis of the Strychnos alkaloid (+/-)-strychnine has been developed and is based on an intramolecular [4 + 2]-cycloaddition/rearrangement cascade of an indolyl-substituted amidofuran. The critical D-ring was assembled by an intramolecular palladium-catalyzed enolate-driven cross-coupling of an N-tethered vinyl iodide. [reaction: see text].

  16. Total Synthesis of (±)-Strychnine via a [4+2]-Cycloaddition/Rearrangement Cascade

    PubMed Central

    Zhang, Hongjun; Boonsombat, Jutatip

    2008-01-01

    A new strategy for the synthesis of the Strychnos alkaloid (±)-strychnine has been developed and is based on an intramolecular [4+2]-cycloaddition/rearrangement cascade of an indolyl substituted amidofuran. The critical D-ring was assembled by an intramolecular palladium catalyzed enolate-driven cross-coupling of an N-tethered vinyl iodide. PMID:17217284

  17. Rhodium-Catalyzed Denitrogenative [3+2] Cycloaddition: Access to Functionalized Hydroindolones and the Framework of Montanine-Type Amaryllidaceae Alkaloids.

    PubMed

    Yang, Hongjian; Hou, Shengtai; Tao, Cheng; Liu, Zhao; Wang, Chao; Cheng, Bin; Li, Yun; Zhai, Hongbin

    2017-09-18

    Rhodium-catalyzed denitrogenative [3+2] cycloaddition of 1-sulfonyl-1,2,3-triazoles with cyclic silyl dienol ethers has been developed for the synthesis of functionalized hydroindolones or their corresponding silyl ethers. The present method has been employed to construct synthetically valuable bicyclo[3.3.1]alkenone derivatives and pyrrolidine-ring-containing bicyclic indole compounds. As a further synthetic application, a stereoselective synthesis of 5,11-methanomorphanthridin-3-one, which shares a key skeleton with montanine-type Amaryllidaceae alkaloids has been achieved by using this chemistry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Non-Catalyzed Click Reactions of ADIBO Derivatives with 5-Methyluridine Azides and Conformational Study of the Resulting Triazoles

    PubMed Central

    Smyslova, Petra; Popa, Igor; Lyčka, Antonín; Tejral, Gracian; Hlavac, Jan

    2015-01-01

    Copper-free click reactions between a dibenzoazocine derivative and azides derived from 5-methyluridine were investigated. The non-catalyzed reaction yielded both regioisomers in an approximately equivalent ratio. The NMR spectra of each regioisomer revealed conformational isomery. The ratio of isomers was dependent on the type of regioisomer and the type of solvent. The synthesis of various analogs, a detailed NMR study and computational modeling provided evidence that the isomery was dependent on the interaction of the azocine and pyrimidine parts. PMID:26673606

  19. Engineering an Affinity-Enhanced Peptide through Optimization of Cyclization Chemistry.

    PubMed

    Ngambenjawong, Chayanon; Pineda, Julio Marco B; Pun, Suzie H

    2016-12-21

    Peptide cyclization is a strategy used to improve stability and activity of peptides. The most commonly used cyclization method is disulfide bridge formation of cysteine-containing peptides, as is typically found in nature. Over the years, an increasing number of alternative chemistries for peptide cyclization with improved efficiency, kinetics, orthogonality, and stability have been reported. However, there has been less appreciation for the opportunity to fine-tune peptide activity via the diverse chemical entities introduced at the site of linkage by different cyclization strategies. Here, we demonstrate how cyclization optimization of an M2 "anti-inflammatory" macrophage-binding peptide (M2pep) resulted in a significant increase in binding affinity of the optimized analog to M2 macrophages while maintaining binding selectivity compared to M1 "pro-inflammatory" macrophages. In this study, we report synthesis and evaluation of four cyclic M2pep(RY) analogs with diverse cyclization strategies: (1) Asp-[amide]-Lys, (2) azido-Lys-[triazole(copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC))]-propargyl-Gly, (3) Cys-[decafluorobiphenyl (DFBP)]-Cys, and (4) Cys-[decafluorobiphenyl sulfone (DFS)]-Cys, whereby the chemical entity or linker at the linkage site is shown in the square bracket and is between the residues involved in cyclization. These peptides are compared to a disulfide-cyclized M2pep(RY) that we previously reported as a serum-stable, affinity-enhanced analog to the original linear M2pep. DFBP-cyclized M2pep(RY) exhibits the highest binding activity to M2 macrophages with apparent dissociation constant (K D ) about 2.03 μM compared to 36.3 μM for the original disulfide-cyclized M2pep(RY) and 220 μM for the original linear peptide. DFS-cyclized M2pep(RY) also binds more strongly than the original cyclized analog, whereas amide- and triazole-cyclized M2pep(RY) analogs bind less strongly. We verified that DFBP alone has negligible binding to M2 macrophages and the incorporation of diphenylalanine to the original sequence improves binding activity at the expense of solubility and increased toxicity. In conclusion, we report development of cyclic M2pep(RY) analogs with diverse cyclization strategies leading to the discovery of DFBP-cyclized M2pep(RY) with enhanced M2 macrophage-binding activity.

  20. Direct imaging of glycans in Arabidopsis roots via click labeling of metabolically incorporated azido-monosaccharides.

    PubMed

    Hoogenboom, Jorin; Berghuis, Nathalja; Cramer, Dario; Geurts, Rene; Zuilhof, Han; Wennekes, Tom

    2016-10-10

    Carbohydrates, also called glycans, play a crucial but not fully understood role in plant health and development. The non-template driven formation of glycans makes it impossible to image them in vivo with genetically encoded fluorescent tags and related molecular biology approaches. A solution to this problem is the use of tailor-made glycan analogs that are metabolically incorporated by the plant into its glycans. These metabolically incorporated probes can be visualized, but techniques documented so far use toxic copper-catalyzed labeling. To further expand our knowledge of plant glycobiology by direct imaging of its glycans via this method, there is need for novel click-compatible glycan analogs for plants that can be bioorthogonally labelled via copper-free techniques. Arabidopsis seedlings were incubated with azido-containing monosaccharide analogs of N-acetylglucosamine, N-acetylgalactosamine, L-fucose, and L-arabinofuranose. These azido-monosaccharides were metabolically incorporated in plant cell wall glycans of Arabidopsis seedlings. Control experiments indicated active metabolic incorporation of the azido-monosaccharide analogs into glycans rather than through non-specific absorption of the glycan analogs onto the plant cell wall. Successful copper-free labeling reactions were performed, namely an inverse-electron demand Diels-Alder cycloaddition reaction using an incorporated N-acetylglucosamine analog, and a strain-promoted azide-alkyne click reaction. All evaluated azido-monosaccharide analogs were observed to be non-toxic at the used concentrations under normal growth conditions. Our results for the metabolic incorporation and fluorescent labeling of these azido-monosaccharide analogs expand the possibilities for studying plant glycans by direct imaging. Overall we successfully evaluated five azido-monosaccharide analogs for their ability to be metabolically incorporated in Arabidopsis roots and their imaging after fluorescent labeling. This expands the molecular toolbox for direct glycan imaging in plants, from three to eight glycan analogs, which enables more extensive future studies of spatiotemporal glycan dynamics in a wide variety of plant tissues and species. We also show, for the first time in metabolic labeling and imaging of plant glycans, the potential of two copper-free click chemistry methods that are bio-orthogonal and lead to more uniform labeling. These improved labeling methods can be generalized and extended to already existing and future click chemistry-enabled monosaccharide analogs in Arabidopsis.

  1. I. Development of Metal-Mediated SPOT-Synthesis Methods for the Efficient Construction of Small-Molecule Macroarrays. II. Design and Synthesis of Novel Bacterial Biofilm Inhibitors

    NASA Astrophysics Data System (ADS)

    Frei, Reto

    I. The use of small molecule probes to explore biological phenomena has become a valuable tool in chemical biology. As a result, methods that permit the rapid synthesis and biological evaluation of such compounds are highly sought-after. The small molecule macroarray represents one such approach for the synthesis and identification of novel bioactive agents. Macroarrays are readily constructed via the SPOT-synthesis technique on planar cellulose membranes, yielding spatially addressed libraries of ˜10-1000 unique compounds. We sought to expand the arsenal of chemical reactions compatible with this solid-phase platform, and developed highly efficient SPOT-synthesis protocols for the Mizoroki-Heck, Suzuki-Miyaura, and copper-catalyzed azide-alkyne cycloaddition reaction. We demonstrated that these metal-mediated reactions can be implemented, either individually or sequentially, for the efficient construction of small molecules in high purity on rapid time scales. Utilizing these powerful C-C and C-N bond forming coupling reactions, we constructed a series of macroarrays based on novel stilbene, phenyl-naphthalene, and triazole scaliblds. Subsequent biological testing of the stilbene and phenyl-naphthalene libraries revealed several potent antagonists and agonists, respectively, of the quorum sensing (QS) receptor LuxR in Vibrio fischeri. II. Bacteria living within biofilms are notorious for their resistance to known antibiotic agents, and constitute a major human health threat. Methods to attenuate biofilm growth would have a significant impact on the management of bacterial infections. Despite intense research efforts, small molecules capable of either inhibiting or dispersing biolilms remain scarce. We utilized natural products with purported anti-biofilm or QS inhibitory activity as sources of structural insight to guide the synthesis of novel biofilm modulators with improved activities. These studies revealed 2-aminobenzimidazole derivatives as highly potent biofilm inhibitors and dispersers in the opportunistic pathogen Pseudomonas aeruginosa. Studies of second-generation 2-aminobenzimidazoles revealed important structure-activity relationships that guided the design of yet more potent analogs. These compounds are amongst the most potent inhibitors of biofilm formation in wild-type P. aeruginosa to be reported. Mechanistic studies of the most active compounds suggest that QS inhibition is one pathway by which 2-aminobenzimidazoles modulate biofilm growth.

  2. Facile regio- and stereoselective hydrometalation of alkynes with a combination of carboxylic acids and group 10 transition metal complexes: selective hydrogenation of alkynes with formic acid.

    PubMed

    Shen, Ruwei; Chen, Tieqiao; Zhao, Yalei; Qiu, Renhua; Zhou, Yongbo; Yin, Shuangfeng; Wang, Xiangbo; Goto, Midori; Han, Li-Biao

    2011-10-26

    A facile, highly stereo- and regioselective hydrometalation of alkynes generating alkenylmetal complex is disclosed for the first time from a reaction of alkyne, carboxylic acid, and a zerovalent group 10 transition metal complex M(PEt(3))(4) (M = Ni, Pd, Pt). A mechanistic study showed that the hydrometalation does not proceed via the reaction of alkyne with a hydridometal generated by the protonation of a carboxylic acid with Pt(PEt(3))(4), but proceeds via a reaction of an alkyne coordinate metal complex with the acid. This finding clarifies the long proposed reaction mechanism that operates via the generation of an alkenylpalladium intermediate and subsequent transformation of this complex in a variety of reactions catalyzed by a combination of Brϕnsted acid and Pd(0) complex. This finding also leads to the disclosure of an unprecedented reduction of alkynes with formic acid that can selectively produce cis-, trans-alkenes and alkanes by slightly tuning the conditions.

  3. Efficient Homodifunctional Bimolecular Ring-Closure Method for Cyclic Polymers by Combining RAFT and Self-Accelerating Click Reaction.

    PubMed

    Qu, Lin; Sun, Peng; Wu, Ying; Zhang, Ke; Liu, Zhengping

    2017-08-01

    An efficient metal-free homodifunctional bimolecular ring-closure method is developed for the formation of cyclic polymers by combining reversible addition-fragmentation chain transfer (RAFT) polymerization and self-accelerating click reaction. In this approach, α,ω-homodifunctional linear polymers with azide terminals are prepared by RAFT polymerization and postmodification of polymer chain end groups. By virtue of sym-dibenzo-1,5-cyclooctadiene-3,7-diyne (DBA) as small linkers, well-defined cyclic polymers are then prepared using the self-accelerating double strain-promoted azide-alkyne click (DSPAAC) reaction to ring-close the azide end-functionalized homodifunctional linear polymer precursors. Due to the self-accelerating property of DSPAAC ring-closing reaction, this novel method eliminates the requirement of equimolar amounts of telechelic polymers and small linkers in traditional bimolecular ring-closure methods. It facilitates this method to efficiently and conveniently produce varied pure cyclic polymers by employing an excess molar amount of DBA small linkers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Azidoethoxyphenylalanine as a Vibrational Reporter and Click Chemistry Partner in Proteins.

    PubMed

    Tookmanian, Elise M; Phillips-Piro, Christine M; Fenlon, Edward E; Brewer, Scott H

    2015-12-21

    An unnatural amino acid, 4-(2-azidoethoxy)-L-phenylalanine (AePhe, 1), was designed and synthesized in three steps from known compounds in 54% overall yield. The sensitivity of the IR absorption of the azide of AePhe was established by comparison of the frequency of the azide asymmetric stretch vibration in water and dimethyl sulfoxide. AePhe was successfully incorporated into superfolder green fluorescent protein (sfGFP) at the 133 and 149 sites by using the amber codon suppression method. The IR spectra of these sfGFP constructs indicated that the azide group at the 149 site was not fully solvated despite the location in sfGFP and the three-atom linker between the azido group and the aromatic ring of AePhe. An X-ray crystal structure of sfGFP-149-AePhe was solved at 1.45 Å resolution and provides an explanation for the IR data as the flexible linker adopts a conformation which partially buries the azide on the protein surface. Both sfGFP-AePhe constructs efficiently undergo a bioorthogonal strain-promoted click cycloaddition with a dibenzocyclooctyne derivative. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Expeditious Preparation of Open-Cage Fullerenes by Rhodium(I)-Catalyzed [2+2+2] Cycloaddition of Diynes and C60: an Experimental and Theoretical Study.

    PubMed

    Artigas, Albert; Pla-Quintana, Anna; Lledó, Agustí; Roglans, Anna; Solà, Miquel

    2018-06-04

    A novel methodology to transform C60 into a variety of open-cage fullerene derivatives employing rhodium(I) catalysis has been developed. This transformation encompasses a partially intermolecular [2+2+2] cycloaddition reaction between diynes 1 and C60 to deliver a cyclohexadiene-fused fullerene, which concomitantly undergoes a formal [4+4]/retro-[2+2+2] rearrangement to deliver open-cage fullerenes 2. Most notably, this process occurs without the need of photoexcitation. The complete mechanism of this transformation has been rationalized by DFT calculations, which indicate that, after [2+2+2] cycloaddition, the cyclohexadiene-fused intermediate evolves into the final product through a Rh-catalyzed di-π-methane rearrangement followed by a retro-[2+2+2] cycloaddition. The obtained open-cage fullerenes can be derivatized by Suzuki-Miyaura cross-coupling, or subjected to ring expansion to deliver a 12-membered ring orifice in the fullerene structure. Overall, the methodology presented constitutes a straightforward entry to functional open-cage C60-fullerene derivatives employing catalytic methods. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Generation of TiII Alkyne Trimerization Catalysts in the Absence of Strong Metal Reductants

    PubMed Central

    See, Xin Yi; Beaumier, Evan P.; Davis-Gilbert, Zachary W.; Dunn, Peter L.; Larsen, Jacob A.; Pearce, Adam J.; Wheeler, T. Alex; Tonks, Ian A.

    2017-01-01

    Low-valent TiII species have typically been synthesized by the reaction of TiIV halides with strong metal reductants. Herein we report that TiII species can be generated simply by reacting TiIV imido complexes with 2 equiv of alkyne, yielding a metallacycle that can reductively eliminate pyrrole while liberating TiII. In order to probe the generality of this process, TiII-catalyzed alkyne trimerization reactions were carried out with a diverse range of TiIV precatalysts. PMID:28690352

  7. Waste-free synthesis of condensed heterocyclic compounds by rhodium-catalyzed oxidative coupling of substituted arene or heteroarene carboxylic acids with alkynes.

    PubMed

    Shimizu, Masaki; Hirano, Koji; Satoh, Tetsuya; Miura, Masahiro

    2009-05-01

    The direct oxidative coupling of 2-amino- and 2-hydroxybenzoic acids with internal alkynes proceeds efficiently in the presence of a rhodium/copper catalyst system under air to afford the corresponding 8-substituted isocoumarin derivatives, some of which exhibit solid-state fluorescence. Depending on conditions, 4-ethenylcarbazoles can be synthesized selectively from 2-(arylamino)benzoic acids. The oxidative coupling reactions of heteroarene carboxylic acids as well as aromatic diacids with an alkyne are also described.

  8. Two palladium-catalyzed domino reactions from one set of substrates/reagents: efficient synthesis of substituted indenes and cis-stilbenoid hydrocarbons from the same internal alkynes and hindered Grignard reagents.

    PubMed

    Dong, Cheng-Guo; Yeung, Pik; Hu, Qiao-Sheng

    2007-01-18

    Two types of domino reactions from the same internal alkynes and hindered Grignard reagents based on carbopalladation, Pd-catalyzed cross-coupling reaction, and a C-H activation strategy are described. The realization of these domino reactions relied on the control of the use of the ligand and the reaction temperature. Our study provides efficient access to useful polysubstituted indenes and cis-substituted stilbenes and may offer a new means of development of tandem/domino reactions in a more efficient way. [reaction: see text].

  9. Synthesis, structure, antimycobacterial and anticancer evaluation of new pyrrolo-phenanthroline derivatives.

    PubMed

    Al Matarneh, Cristina M; Mangalagiu, Ionel I; Shova, Sergiu; Danac, Ramona

    2016-01-01

    A study concerning design, synthesis, structure and in vitro antimycobacterial and anticancer evaluation of new fused derivatives with pyrrolo[2,1-c][4,7]phenanthroline skeleton is described. The strategy adopted for synthesis involves a [3 + 2] dipolar cycloaddition of several in situ generated 4,7-phenanthrolin-4-ium ylides to different substituted alkynes and alkenes. Stereo- and regiochemistry of cycloaddition reactions were discussed. The structure of the new compounds was proven unambiguously, single-crystal X-ray diffraction studies including. The antimycobacterial and anticancer activity of a selection of new synthesized compounds was evaluated against Mycobacterium tuberculosis H37Rv under aerobic conditions and 60 human tumour cell line panel, respectively. Five of the tested compounds possess a moderate antimycobacterial activity, while two of the compounds have a significant antitumor activity against renal cancer and breast cancer.

  10. Preparation and In Vitro Photodynamic Activity of Glucosylated Zinc(II) Phthalocyanines as Underlying Targeting Photosensitizers.

    PubMed

    Liu, Jian-Yong; Wang, Chen; Zhu, Chun-Hui; Zhang, Zhi-Hong; Xue, Jin-Ping

    2017-05-19

    Two novel glucosylated zinc(ІІ) phthalocyanines 7a-7b, as well as the acetyl-protected counterparts 6a-6b, have been synthesized by the Cu(I)-catalyzed 1,3-dipolar cycloaddition between the propargylated phthalocyanine and azide-substituted glucoses. All of these phthalocyanines were characterized with various spectroscopic methods and studied for their photo-physical, photo-chemical, and photo-biological properties. With glucose as the targeting unit, phthalocyanines 7a-7b exhibit a specific affinity to MCF-7 breast cancer cells over human embryonic lung fibroblast (HELF) cells, showing higher cellular uptake. Upon illumination, both photosensitizers show high cytotoxicity with IC 50 as low as 0.032 µM toward MCF-7 cells, which are attributed to their high cellular uptake and low aggregation tendency in the biological media, promoting the generation of intracellular reactive oxygen species (ROS). Confocal laser fluorescence microscopic studies have also revealed that they have high and selective affinities to the lysosomes, but not the mitochondria, of MCF-7 cells. The results show that these two glucosylated zinc(II) phthalocyanines are potential anticancer agents for targeting photodynamic therapy.

  11. Interaction of Ammonia Monooxygenase from Nitrosomonas europaea with Alkanes, Alkenes, and Alkynes

    PubMed Central

    Hyman, Michael R.; Murton, Ian B.; Arp, Daniel J.

    1988-01-01

    Ammonia monooxygenase of Nitrosomonas europaea catalyzes the oxidation of alkanes (up to C8) to alcohols and alkenes (up to C5) to epoxides and alcohols in the presence of ammonium ions. Straight-chain, N-terminal alkynes (up to C10) all exhibited a time-dependent inhibition of ammonia oxidation without effects on hydrazine oxidation. PMID:16347810

  12. Kinetic and spectroscopic studies of the [palladium(Ar-bian)]-catalyzed semi-hydrogenation of 4-octyne.

    PubMed

    Kluwer, Alexander M; Koblenz, Tehila S; Jonischkeit, Thorsten; Woelk, Klaus; Elsevier, Cornelis J

    2005-11-09

    The kinetics of the stereoselective semi-hydrogenation of 4-octyne in THF by the highly active catalyst [Pd{(m,m'-(CF(3))(2)C(6)H(3))-bian}(ma)] (2) (bian = bis(imino)acenaphthene; ma = maleic anhydride) has been investigated. The rate law under hydrogen-rich conditions is described by r = k[4-octyne](0.65)[Pd][H(2)], showing first order in palladium and dihydrogen and a broken order in substrate. Parahydrogen studies have shown that a pairwise transfer of hydrogen atoms occurs in the rate-limiting step. In agreement with recent theoretical results, the proposed mechanism consists of the consecutive steps: alkyne coordination, heterolytic dihydrogen activation (hydrogenolysis of one Pd-N bond), subsequent hydro-palladation of the alkyne, followed by addition of N-H to palladium, reductive coupling of vinyl and hydride and, finally, substitution of the product alkene by the alkyne substrate. Under hydrogen-limiting conditions, side reactions occur, that is, formation of catalytically inactive palladacycles by oxidative alkyne coupling. Furthermore, it has been shown that (Z)-oct-4-ene is the primary reaction product, from which the minor product (E)-oct-4-ene is formed by an H(2)-assisted, palladium-catalyzed isomerization reaction.

  13. Selective Radical Amination of Aldehydic C(sp2)–H Bonds with Fluoroaryl Azides via Co(II)-Based Metalloradical Catalysis: Synthesis of N-Fluoroaryl Amides from Aldehydes under Neutral and Nonoxidative Conditions

    PubMed Central

    Jin, Li-Mei; Lu, Hongjian; Cui, Yuan; Lizardi, Christopher L.; Arzua, Thiago N.; Wojtas, Lukasz; Cui, Xin

    2014-01-01

    The Co(II) complex of the D2h-symmetric amidoporphyrin 3,5-DitBu-IbuPhyrin, [Co(P1)], has proven to be an effective metalloradical catalyst for intermolecular amination of C(sp2)–H bonds of aldehydes with fluoroaryl azides. The [Co(P1)]-catalyzed process can employ aldehydes as the limiting reagents and operate under neutral and non-oxidative conditions, generating nitrogen gas as the only byproduct. The metalloradical aldehydic C–H amination is suitable for different combinations of aldehydes and fluoroaryl azides, producing the corresponding N-fluoroaryl amides in good to excellent yields. A series of mechanistic studies support a stepwise radical mechanism for the Co(II)-catalyzed intermolecular C–H amination. PMID:25071929

  14. Selective Radical Amination of Aldehydic C(sp2)-H Bonds with Fluoroaryl Azides via Co(II)-Based Metalloradical Catalysis: Synthesis of N-Fluoroaryl Amides from Aldehydes under Neutral and Nonoxidative Conditions.

    PubMed

    Jin, Li-Mei; Lu, Hongjian; Cui, Yuan; Lizardi, Christopher L; Arzua, Thiago N; Wojtas, Lukasz; Cui, Xin; Zhang, X Peter

    2014-06-01

    The Co(II) complex of the D 2h -symmetric amidoporphyrin 3,5-Di t Bu-IbuPhyrin, [Co( P1 )], has proven to be an effective metalloradical catalyst for intermolecular amination of C(sp 2 )-H bonds of aldehydes with fluoroaryl azides. The [Co( P1 )]-catalyzed process can employ aldehydes as the limiting reagents and operate under neutral and non-oxidative conditions, generating nitrogen gas as the only byproduct. The metalloradical aldehydic C-H amination is suitable for different combinations of aldehydes and fluoroaryl azides, producing the corresponding N -fluoroaryl amides in good to excellent yields. A series of mechanistic studies support a stepwise radical mechanism for the Co(II)-catalyzed intermolecular C-H amination.

  15. Rhodium(i)-catalyzed asymmetric [4 + 2] cycloaddition reactions of 2-alkylenecyclobutanols with cyclic enones through C–C bond cleavage: efficient access to trans-bicyclic compounds† †Electronic supplementary information (ESI) available. CCDC 1575240. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc04784c

    PubMed Central

    Zheng, Xinxin; Guo, Rui

    2018-01-01

    We report a rhodium-catalyzed asymmetric formal intermolecular [4 + 2] cycloaddition reaction of 2-alkylenecyclobutanols with α,β-unsaturated cyclic ketones leading to synthetically useful trans-bicyclic molecules. Three consecutive stereogenic centers are formed in a highly enantio- and diastereoselective manner. Stepwise C–C bond cleavage and annulation are likely involved in the reaction pathway. Here, iPr-Duphos is the viable chiral ligand that promotes excellent enantio-control. PMID:29675233

  16. Stabilization of AuNPs by monofunctional triazole linked to ferrocene, ferricenium, or coumarin and applications to synthesis, sensing, and catalysis.

    PubMed

    Li, Na; Zhao, Pengxiang; Igartua, María E; Rapakousiou, Amalia; Salmon, Lionel; Moya, Sergio; Ruiz, Jaime; Astruc, Didier

    2014-11-03

    Monofunctional triazoles linked to ferrocene, ferricenium, or coumarin (Cou), easily synthesized by copper-catalyzed azide alkyne (CuAAC) "click" reactions between the corresponding functional azides and (trimethylsilyl)acetylene followed by silyl group deprotection, provide a variety of convenient neutral ligands for the stabilization of functional gold nanoparticles (AuNPs) in polar organic solvents. These triazole (trz)-AuNPs are very useful toward a variety of applications to synthesis, sensing, and catalysis. Both ferrocenyl (Fc) and isostructural ferricenium linked triazoles give rise to AuNP stabilization, although by different synthetic routes. Indeed, the first direct synthesis and stabilization of AuNPs by ferricenium are obtained by the reduction of HAuCl4 upon reaction with a ferrocene derivative, AuNP stabilization resulting from a synergy between electrostatic and coordination effects. The ferricenium/ferrocene trz-AuNP redox couple is fully reversible, as shown by cyclic voltammograms that were recorded with both redox forms. These trz-AuNPs are stable for weeks in various polar solvents, but at the same time, the advantage of trz-AuNPs is the easy substitution of neutral trz ligands by thiols and other ligands, giving rise to applications. Indeed, this ligand substitution of trz at the AuNP surface yields a stable Fc-terminated nanogold-cored dendrimer upon reaction with a Fc-terminated thiol dendron, substitution of Cou-linked trz with cysteine, homocysteine, and glutathione provides remarkably efficient biothiol sensing, and a ferricenium-linked trz-AuNP catalyst is effective for NaBH4 reduction of 4-nitrophenol to 4-aminophenol. In this catalytic example, the additional electrostatic AuNP stabilization modulates the reaction rate and induction time.

  17. Pedagogical Comparison of Five Reactions Performed under Microwave Heating in Multi-Mode versus Mono-Mode Ovens: Diels-Alder Cycloaddition, Wittig Salt Formation, E2 Dehydrohalogenation to Form an Alkyne, Williamson Ether Synthesis, and Fischer Esterification

    ERIC Educational Resources Information Center

    Baar, Marsha R.; Gammerdinger, William; Leap, Jennifer; Morales, Erin; Shikora, Jonathan; Weber, Michael H.

    2014-01-01

    Five reactions were rate-accelerated relative to the standard reflux workup in both multi-mode and mono-mode microwave ovens, and the results were compared to determine whether the sequential processing of a mono-mode unit could provide for better lab logistics and pedagogy. Conditions were optimized so that yields matched in both types of…

  18. Facile purification and click labeling with 2-[ 18F]fluoroethyl azide using solid phase extraction cartridges

    DOE PAGES

    Zhou, Dong; Chu, Wenhua; Peng, Xin; ...

    2014-11-04

    In this paper, a facile method was developed to purify 2-[ 18F]fluoroethyl azide ([ 18F]FEA) using a C18 cartridge and an Oasis® HLB cartridge in series, in which [18F]FEA was exclusively trapped on the HLB cartridge. [ 18F]FEA can be eluted for reactions in solution; alternatively click labeling can be carried out on the HLB cartridge itself by loading an alkyne substrate and copper (I) catalyst dissolved in DMF onto the cartridge. Finally, this solid phase extraction methodology for purification and click labeling with [ 18F]FEA, either in solution or on the cartridge, is safe, simple, reproducible in high yield,more » and compatible with automated synthesis of 18F-labeled PET tracers.« less

  19. Palladium-catalyzed one-pot three- or four-component coupling of aryl iodides, alkynes, and amines through C-N bond cleavage: efficient synthesis of indole derivatives.

    PubMed

    Hao, Wei; Geng, Weizhi; Zhang, Wen-Xiong; Xi, Zhenfeng

    2014-02-24

    An efficient synthesis of N-substituted indole derivatives was realized by combining the Pd-catalyzed one-pot multicomponent coupling approach with cleavage of the C(sp(3))-N bonds. Three or four components of aryl iodides, alkynes, and amines were involved in this coupling process. The cyclopentadiene-phosphine ligand showed high efficiency. A variety of aryl iodides, including cyclic and acyclic tertiary amino aryl iodides, and substituted 1-bromo-2-iodobenzene derivatives could be used. Both symmetric and unsymmetric alkynes substituted with alkyl, aryl, or trimethylsilyl groups could be applied. Cyclic secondary amines such as piperidine, morpholine, 4-methylpiperidine, 1-methylpiperazine, 2-methylpiperidine, and acyclic amines including secondary and primary amines all showed good reactivity. Further application of the resulting indole derivatives was demonstrated by the synthesis of benzosilolo[2,3-b]indole. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Catalyst-free "click" functionalization of polymer brushes preserves antifouling properties enabling detection in blood plasma.

    PubMed

    Parrillo, Viviana; de Los Santos Pereira, Andres; Riedel, Tomas; Rodriguez-Emmenegger, Cesar

    2017-06-08

    Progress in biosensors for clinical detection critically relies on modifications of the transducer surface to prevent non-specific adsorption from matrix components (i.e. antifouling) while supporting biomolecular recognition elements to capture the analyte. Such combination of properties presents a significant challenge. Hierarchically structured polymer brushes comprising an antifouling polymer bottom block and a functionalizable top block are proposed as a promising strategy to achieve this goal. We employed the catalyst-free strain-promoted alkyne-azide cycloaddition (SPAAC) "click" reaction to biofunctionalize antifouling polymer brushes without impairing their resistance to fouling. The functionalization was performed on the side chains along the top polymer block or only on the end-groups of the polymer brush. The immobilized amounts of bioreceptors (streptavidin followed by biotin-conjugated proteins) and the resistance to fouling from blood plasma of the surfaces obtained were evaluated via surface plasmon resonance. The end group functionalization approach resulted in very low immobilization of bioreceptor. On the other hand, the side group modification of a top polymer block led to immobilization of 83% of a monolayer of streptavidin. Following binding of a biotin-conjugated antibody (66 ng cm -2 ) the functionalized layer was able to reduce the fouling from undiluted human blood plasma by 89% in comparison with bare gold. Finally, the functionalized hierarchical polymer brushes were applied to the label-free detection of a model analyte in diluted human blood plasma, highlighting the potential for translation to medical applications. Copyright © 2017. Published by Elsevier B.V.

Top